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Abstract

The neural networks have been extensively used for tasks based on image sensors.

These models have, in the past decade, consistently performed better than other ma-

chine learning methods on tasks of computer vision. It is understood that methods

for transfer learning from neural networks trained on large datasets can reduce the

total data requirement while training new neural network models. These methods

tend not to perform well when the data recording sensor or the recording envi-

ronment is unique from the existing large datasets. The machine learning literature

provides various methods for prior-information inclusion in a learning model. Such

methods employ methods like designing biases into the data representation vectors,

enforcing priors or physical constraints on the models. Including such informa-

tion into neural networks for the image frames and image-sequence classification

is hard because of the very high dimensional neural network mapping function and

little information about the relation between the neural network parameters. In this

thesis, we introduce methods for evaluating the statistically learned data represen-

tation and combining these information descriptors. We have introduced methods

for including information into neural networks. In a series of experiments, we

have demonstrated methods for adding the existing model or task information to

neural networks. This is done by 1) Adding architectural constraints based on the

physical shape information of the input data, 2) including weight priors on neu-

ral networks by training them to mimic statistical and physical properties of the

data (hand shapes), and 3) by including the knowledge about the classes involved

in the classification tasks to modify the neural network outputs. These methods

are demonstrated, and their positive influence on the hand shape and hand gesture

classification tasks are reported. This thesis also proposes methods for combina-

tion of statistical and physical models with parametrized learning models and show

improved performances with constant data size. Eventually, these proposals are



tied together to develop an in-car hand-shape and hand-gesture classifier based on

a Time of Flight sensor.
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Chapter 1

Introduction

The strategy for developing solutions of vision based Human Computer Interaction

(HCI) depends on the nature of camera, the available computing power, and the en-

vironment of the tasks being completed. Utilizing the environment information and

working within the constraints that the task enforces may be useful while designing

solutions for such problems. The varying environment and nature of problem forces

redesigning of the entire solutions. However, methods which are based on learning

statistical models and inferences from recorded data promise relative independence

of algorithm from the camera model or the physical environment on which the task

is conducted. However, such solutions impose the requirement of large and varied

datasets while training the solution.

This thesis will focus on first understanding the process of feature learning for clas-

sification of images. The experiments will be made on hand shape dataset and

publicly available datasets. These methods for better utilization of the learnt latent

variables and mutually independent information will be used for hand shape classi-

fication in cars.

Further, this thesis will discuss methods for better classification of hand shape and

1
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hand gesture classification within the constraints of database size. These methods

will be built using various architectures of the neural networks. Broadly two meth-

ods have been proposed for this. First, those which incorporate the information

about the task and data into the architecture of the neural network algorithm. Sec-

ond, identifying the features that carry distinct information and methods to combine

them for better performance on the specific tasks. The goal is to develop meth-

ods where existing datasets or combination of datasets, and model information can

help in improving the neural network algorithm performance. This is an attempt

at substituting the requirement for more data with either priors learnt from existing

datasets or priors and constraints forced by the tasks.

This thesis will extensively discuss hand shape and hand gesture classification prob-

lem using machine learning based approaches. It will sometime venture into prob-

lems distinct from hand gesture and shapes. Experiments made on specific tasks

in this thesis are made keeping in mind that they should be generalized into solv-

ing other tasks involving machine learning as one of the components of a solution

pipeline. The basic tools for creating hand shape and hand gesture tasks already

exist. This document will discuss methods developed to extend the applicability

of these tools. The thesis develops a hand shape and hand gesture classification

system, in the process it works on two relevant problems of machine learning algo-

rithm based solutions. It seeks to demonstrate that,

1. The data even when unlabelled carries important information about the prob-

lem, learning the biases in the data can improve the learning performance.

It can simultaneously hamper the performance of the learning algorithm on

the out-of-sample data points . Judiciously learning and utilizing these biases

improves the system performance without new data.

Similar biases can also be introduced by the choice of the learning system
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architectures and constrained combinations of the outputs of such systems.

2. Learning algorithms learn different feature representations, and these differ-

ent representations can be combined to improve the learning performance.

The correct choice of the features that are combined and the strategy for the

combination improves the information that the neural network learning algo-

rithm captures.

This thesis also deals with the tools for evaluation of the proportion of the contribu-

tion of similar-property neural network features in completing a classification task.

It also demonstrates improved classification performance by utilizing the informa-

tion addition in features that carry independent properties.

1.1 Motivation

One of the important methods for HCI are hand gestures without touching the sen-

sor citefreeman1995orientation, SHG. These methods have shown to be particu-

larly useful in Advanced Driving Assistant Systems (ADAS) in cars [1, 2]. These

methods are often developed using vision based sensors specifically developed for

car-interiors. The hand shape and gesture vocabulary, camera position, sensor

type change the hand gesture classification problem and the required experimen-

tal datasets [3]. The nature of hand gestures also changes based on the context of

the feedback or conversation [4]. Further, the problem of gesture response by the

individual, and the detection and identification by the algorithm is also influenced

by the world in which the gesture is made [5]. This creates a situation where the

requirement for repeated data collection is created, or the existing data must be

re-modelled into the specific problem that a developer wishes to solve. It is well

known that the neural networks require large datasets for training and this along
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with the variance discussed above further complicates the solution for a hand ges-

ture classification system based on neural network.

The popular hand-pose dataset [6] is recorded forward facing hands with the cam-

era placed horizontally in front of the hand. The Viva dataset [7] is recorded in a car

with an RGBD sensor. The task of hand shape and gesture recognition that this the-

sis deals with uses a Time of Flight (ToF) sensor placed vertically above the hand

location in the car. Thus, large annotated data available publicly cannot be used

directly unless we develop methods to do so. This encourages developing methods

where these datasets can be used to improve the performance of the proposed hand

shape and gesture classification models.

1.2 Problem Statement

It can be argued that the development of a learning based solution comprises of

three steps, the collection of data and its preprocessing, training a learning algo-

rithm, and validating these algorithms. Many solutions for hand pose [8] and ges-

ture [9, 10] identification have been proposed. These methods are based on training

neural networks with labelled data. During the experiments conducted on an ap-

plication for hand shape and gesture in the class it was repeatedly identified that

the classification accuracy worsened when the data used to train the neural network

was reduced. The motivation of this work includes reducing the requirements of

specifically labelled data. To this end it is proposed that prior experiences about the

task environment and the domain independent properties of the data are employed

to choose better initializations and network models.

The car interiors have fast changing light conditions, also the interiors of different

cars are usually distinct. The above mentioned problems can be resolved by care-

ful preprocessing based on the properties of the car environment. The other issue

that applications based on sensors which are cheaper, less popular, often built ex-
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clusively for one application is the absence of existing large datasets. This leaves

someone trying to develop machine learning based solutions with two problems.

Firstly, generating large datasets for the tasks using the corresponding sensors. Sec-

ondly, existing strategies for transferring features learnt on large public dataset may

not work off the shelf. This created a challenge where, it was important to find

methods for reducing data requirement, and finding methods for targeted transfer

of usable learnt knowledge.

Effectively, the three problem statements that the thesis attempts to answer are,

1. Is it possible to demonstrate the advantages of combining orthogonal infor-

mation on a learning task? And, is it possible to create a quantitative measure

for the feature contribution on the task performed by a neural network?

2. What are the priors that can be included in the architecture of neural network

based learning systems for improved performance, or can data properties in-

dependent of the task be used as priors, does this help in domain adaptation?

3. What are the applications where multi-modal data combination improves

learning performance? Can concept of multi-modal data combination can

be used in multi-property feature combination?

These three questions and the demonstration of the experiments made to explore

these questions have been discussed in the Chapter 3,Chapter 4 and Chapter 5 re-

spectively. The relative advantages of following the proposed learning of features

and information combination strategies will be demonstrated in each chapter. The

distinctions and advantages with the existing methods will be mentioned in the sec-

tions within these chapters.
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1.3 Contributions

This section briefly describes the contributions presented in each of the following

chapters of this thesis.

Chapter 3 addresses the issue of improving feature learning methods and evaluat-

ing the contributions of the neural network features originating at different layers of

the network for the classification task. The chapter presents a Slow Feature Anal-

ysis (SFA) based classification scheme which exploits the orthogonality of feature

vectors. The applicability of SFA as an information extraction technique is ascer-

tained. This work has been reported in [11] and the proposed extension of the SFA

is shown to perform considerably better than [12] on classification of hand written

digits and hand shapes.

Further, a method developed for quantitative estimates of neural network methods

[13] is reported in this chapter. Random forests are used as feature selection tools

and a statistical measure for feature contribution to output decision is made. This

quantitative feature evaluation tool for neural networks validated various neural

network related intuitions.

Publications

[11] Tewari A., Taetz B., Grandidier F., and Stricker D., Using mutual

independence of slow features for improved information extraction and

better hand-pose classification. Journal of WSCG, pages 35-43, 2015.

[13] Tewari A., Gu F., Grandidier F., and Stricker D., Quantitative

Evaluation of Salient Deep Neural Network Features Using Random

Forest. 13th IEEE Image, Video, and Multidimensional Signal Pro-

cessing Workshop (IVMSP), Zagori,Greece. IEEE, 2018.
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Chapter 4 presents methods for introducing some model constraints to the conven-

tional and recurrent neural network systems [14, 15]. These models are compared

against the conventional models, and models reported to work well on the hand

shape problem [16] on other datasets. Further, it is demonstrated that the hand-

shape class probability outputs can help gesture prediction with the support of a

weak-experience model [17]. This chapter also includes experiments on domain

adaptation methods where neural network is trained on statistical and model prop-

erties of the data with unlabelled data to learn data priors, it is demonstrated that

transfer learning is possible using this method.

Publications

[14]Tewari A., Taetz B., Grandidier F., and Stricker D., Two phase

classification for early hand gesture recognition in 3D top view data.

In Lecture Notes in Computer Science, volume 10072, pages 353-363.

Springer, 2016.

[15]Tewari A., Grandidier F., Taetz B., and Stricker D., Adding model

constraints to CNN for top view hand pose recognition in range im-

ages. In Proceedings of ICPRAM, ISBN 978-989-758-173-1), pages

170-177, 2016.

[17]Tewari A., Taetz B., Grandidier F., and Stricker D., A probabilistic

combination of CNN and RNN estimates for hand gesture based inter-

action in car. In 16th IEEE International Symposium on Mixed and

Augmented Reality (ISMAR), Nantes, France 2017.

Chapter 5 evaluates the combination of neural networks to solve classification
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tasks. First the experiments are carried out with multi-modal datasets on human

action datasets and the utility of simultaneous training with independent sensor

sources. This is then extended to a system that combines different learning proper-

ties of a hand gesture recognition system that uses a combination of 3D Convolu-

tional Neural Network (C3D) and Recurrent Neural Networks (RNN) for identify-

ing gestures at different delays from the start of gestures. This work combines the

ideas of [18] with those of [19]. Results are demonstrated on the VIVA challenge

dataset [7] and improvement in performance is noticed and reported on short in-

complete sequences of the gesture. The combination model performs better on half

and quarter length incomplete gesture sequence.

Finally, a system for fusing the LSTM estimate with a Kalman filter output is pre-

sented to show that the regression estimates of RNN are improved in a fusion sys-

tem [20].

Publications

[21]Tewari A., Taetz B., Grandidier F., and Stricker D., Combination

of Temporal Neural Networks for Improved Hand Gesture Classifica-

tion, Journal of WSCG 2018, Pilsen,May 28 - June 1, 2018.

[20]Rambach J.R., Tewari A., Pagani A., and Stricker D., Learning to

fuse: A deep learning approach to visual-inertial camera pose estima-

tion. In Proceedings of 15th IEEE International Symposium on Mixed

and Augmented Reality., Nantes, France 2016.

Chapter 6 presents contributions towards developing an in-car hand shape and

gesture recognition systems. Concepts discussed earlier in the Thesis are used.

The final architecture that allows real time classification on a moderately powered

CPU and the compromises made for the application is introduced here. Finally,

the chapter also describes the sensor, the recording set up and preprocessing steps

before the data is fed into the neural networks.



Chapter 2

Background Theory

This thesis focuses on improving performance of machine learning, especially neu-

ral network, based methods using prior mathematical and intuitive understanding

of the task or data or both. Methods will be developed for supervised learning on

camera images and videos along with inertial measurements. The application of

these methods will focus on a specific cases of hand and body gesture and shape

classification. Often, the proposed methods will be validated for performance on

public datasets and then shown to work for hand and body pose or gesture prob-

lems.

For a long period of time, any research on practical applications of learning algo-

rithms attempted to create representations that mapped into a low dimension, high

information space [22]. The creation of a feature space that captures maximum

information has remained one of the important focus of the research. A breadth

of mathematical and practical knowledge to create such representations have been

developed. Identifying the relationships and the contributions of the components of

information is an important part of such work.

The recent advances in machine learning and computer vision have been driven by

9
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neural networks, particularly convolutional neural networks has helped in solving

various problems in vision and speech [23, 9, 24]. The advances in neural net-

work based algorithms have changed the procedures of a learning algorithm. A

reasonably large proportion of computer vision research had earlier focussed on the

methods for designing features. This includes choosing features by prior under-

standing of salient component of data like peaks [25], or designing algorithms that

choose the most informative components of a particular kind of data like in case of

SIFT [26]. The neural network based methods that will be discussed in this thesis

combines the process of feature learning and the identification of a partition bound-

ary between classes. This document, will propose various methods for positively

influencing the feature learning process and better use of these features in predic-

tion tasks.

In the following section a brief introduction to feature extraction and learning meth-

ods is presented Section 2.1. This chapter will then shortly discuss important con-

tributions as well as recent developments in Neural Networks Section 2.2. Further,

a report on the attempts at including physical model information to the Neural Net-

works is presented in Section 2.3. A short survey on information increment in

learning algorithms, and use of such strategies in neural networks is presented in

the Section 2.4. Finally, some successful methods for hand shape and gesture clas-

sification are listed with special focus on methods that use neural network based

algorithms.

2.1 Features and Feature Learning

The performance of machine learning methods has always depended on the feature

input. The features have been defined as prior information or hint about the tasks by

[27], they further go on to state that "prior knowledge is meant as any information

about the problem that can be used to impose constraints on the learning systems
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or help it arrive at a better solution." Throughout this thesis this definition of the

prior information shall be used. As mentioned below, there are two broad classes

of feature representation of the data. Both the hand crafted and learned feature

representation are drawn by imposing certain constraints.

2.1.1 Hand Crafted Feature

The Histogram of Oriented Gradient (HOG) and the Scale Invariant Feature Trans-

form (SIFT) [28, 29] features remained popular for solving vision tasks. The HOG

and SIFT features are based on the assumption that these features by using the

local gradient are capable of capturing the local shapes.[22] have shown proce-

dure for building feature representations using the Haar Wavelets [30]. This works

by accumaliting features on increasing scales to make decisions on progressively

complex regions. Similar approaches of hand designing low-level feature represen-

tations have been used in the GLOH and SURF features [31, 32]. Integral Channel

Features (ICF) [33] have also been used to calculate the local features on integral

images.

It is harder to create representation that are the mid-level representations of the data

using hand designed strategies. Designing combination of the low-level features to

create the mid-level representation is often done using learning schemes [34].

2.1.2 Learning Feature Representations

The hand crafted features described earlier have been used as a common approach

for various classification and detection problems. These features are motivated

from domain based applications, thus it is hard to use the same strategies on diverse

data problems. Such strategies require re-engineering the design for use outside the

domain in which the features were originally designed. It is hard to extend these
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features to sensor modalities like scans, texts or to videos from the same sensors

[35]. To develop methods for feature space identification which are independent

of the data and application domain, various learning based feature representation

algorithms are proposed.

Linear Factor Models are the simplest feature models and can be used a smaller

blocks for large combinations [36] that describe the data. The Independent Compo-

nent Analysis is linear factor analysis based method designed for source separation

and has been used in various applications like background separation, face identi-

fication [37, 38]. The principal component analysis based on eigen value analysis

[39] has been used for latent variable generation. The eigen value analysis based

feature vector calculation is used in the famous work on Eigenfaces[40]. These

methods are also identified as dimensionality reduction techniques and have the

limitation that they only capture the properties in a linear subspace.

The linear factor models work best when the data resides close to a linear manifold.

Methods have been developed to create the feature subspace for data residing on

a curved manifold. The Locally Linear Embedding (LLE) is defined such that the

data is approximated to lie on a linear surface in a small neighborhood, and each

point is a combination of these local linear spaces [41]. This can be extended into

scenarios where the data is distributed over disconnected regions by following the

scheme proposed by [42].

Isomap projections [43] is used for identifying the non-linear degrees of freedom

of a dataset. It identifies the data subspace by identifying the euclidean surface

most similar to the geodesic distances calculated on the data. These methods have

been used for human motion recognition [44], image classification [43]. In [45]

the Local Binary Patterns (LBPs) [46] which are hand designed features have been

used for identifying the texture in an image, the LBPs are analyzed using an isomap

projection.

Later in the thesis, SFA [11] is discussed in some detail. The SFA is a linear factor
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Figure 2.1: A Multi Layer Perceptron

model and is based on the principle of slowness. Slowness principle means that

those characteristics that change very slowly compared to individual components

of the data are better descriptor about the combined information from the data.

2.2 Artificial Neural Networks

The neural networks as computational logic were introduced by [47]. Later, [48]

formalised the Artificial Neural Networks also called the feed-forward neural net-

work or Multi Layer Perceptron (MLP) as learn-able models as a system of con-

nected cells Figure 2.1. Each cell of the perceptron is returns a weighted addition

of the impulses received from connected cell units. A set of cells are called layer

and for a feed-forward network the layer with associated weights as W and bias B

and input x has the output σ(B+WT x). Where σ is the activation function which

adds non-linearity to the models.
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The MLP has one hidden layer before the outer cells, when activated with vector x

the MLP returns an output vector f(x) such that,

f(x) = σ(B2 +W2
T (σ(B1 +W1

T x))) (2.1)

Wi are the weights connecting the inputs to the cells in the layers. A deep neural

network has multiple layers and each layer outputs a multidimensional vector or

scalar which is used as the output or is feed into a following layer. As shown in the

Figure 2.2 a feed-forward neural network is thus a mapping form x to y such that

the functions g1, g2, g3 .... gn act on the input x in series. Eventually, a feed-forward

neural network can be represented as:

y = gn(gn−1(...(g3(g2(g1(x)))))) = fW((x)) (2.2)

The parameters of the functions gi are represented by the vector Wi and Bi. The

parameters Wi and Bi are learnt. These control parameters of the neural network

are traditionally trained by a back-propagation of error [49]. The control parame-

ters of the neural network model are called weights and the optimisation procedure

for neural network was described by [50]. This document will often use fW as a

functional representation of a neural network model.

The neural networks have performed successfully on various applications in speech

processing and computer vision. These algorithms have won various benchmarking

in contests in the recent years. This section will briefly discuss major contributions

and progresses in the deep supervised learning by neural networks.

A neural network is defined as large parallel connections of processor (neurons)

that act as a collective [51]. Each neuron produces a certain activation value which

is further propagated in the connections. The parameters connecting these neurons

are called weights and these weights are adjustable. The weight tuning of neural

networks is done using the back-propagation algorithm [52, 53]. Formal framework

for use of back-propagation in neural network is described in [54], a parallel dis-
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Figure 2.2: An example feedforward network

tributed approach to back-propagation was introduced in [55]. The parameters of

the neural network are updated at multiple iterations of the algorithm. The neural

networks frequently use the stochastic gradient descent algorithm [56] for weight

adaptation using the back propagation of error method.

2.2.1 Convolutional Neural Networks

The Convolutional Neural Network (CNN) is the neural network architecture which

is commonly used to process input data from a 2D-matrix. The CNN includes

what are called the convolutional layers. The output of these layers are calculated

by 2-dimensional filtering on the channels of the input images(2D matrices). The

feed-forward equation without bias addition in the CNN for input matrix G(c,x,y)

is,

f(x,y) = ∑
C

∑
U

∑
V

K(c,u,v)G(c,x−u,y− v). (2.3)
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The kernel K of the filter of size (U,V ) is parametrised by weight vector W of the

size c×U×V .

These layers generate feature maps by convolution with parameters learnt during

the optimization procedure. A sub-sampling layer called the Pooling layer is often

used in conjunction with the convolution layer in these networks. The convolu-

tional layers are connected weights which act as convolutional filters. There have

been numerous applications of convolutional networks, early applications included

a delayed speech recognition system [57], document reader [58] and optical char-

acter recognition system [59].

More recently the CNNs have successfully solved problems of optical flow, seg-

mentation, localization and human pose identification [60, 61]. The CNNs benefit

from the general property of neural networks that creates hierarchical feature rep-

resentation [62]. When the convolution layer is combined with a pooling layer the

aggregation of multiple local features in the space is improved. [63]. This ag-

gregation is similar to the scheme used for combination of the local Histogram of

oriented gradients(HOG) and Scale-invariant feature transform(SIFT) like features

in various non neural network based algorithms for computer vision. Variations of

convolution layers have been proposed for segmentation of images [64, 65]. One

example is the deconvolution layer, which is essentially transposed convolution

layer. It has been used in semantic segmentation tasks [66], such segmentation net-

works generally use a network constructed only of 2 dimensional layers.

2.2.2 Recurrent Neural Networks

RNN process on input sequences of vectors in time. The RNN units have states. At

time t the state is given by ht−1 and these states can theoretically remember past for

an indefinite period.
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ft(x) = σ(Bt +Wx
T xt +Wh

T ht−1) (2.4)

The RNN adds the weighted past state to the current output. In the above equation

the feedback weights are represented by Wh and the feed-forward weights are Wx.

A longstanding deep learning problem of ineffective learning by back-propagation

was exaggerated in the RNNs. It was observed that typical neural networks are

constrained by problem of vanishing or exploding gradients [67].

The back-propagation error is observed to either grow exponentially or shrink rapidly.

This problem in the RNNs has been alleviated by adding a memory cell with con-

stant error carousel (CEC) in the Long Short-Term Memory (LSTM) architecture.

It uses gated units that decide the magnitude of change that the present state makes

on the past accumulated states. Various LSTM topologies have been developed

which includes evolving structure of the memory cell such as [68]. The LSTM

networks have proven to be considerably better at learning temporal patterns on

time sequences longer than five to ten frames. This has been demonstatred by their

comparitive performance while solving the problem of speech recognition [69], for

robot localization [70], human action classification [71, 72] and other applications.

Other RNN architectures that use memory units have been proposed. The Gated

Recurrent Units [73] are simpler memory cells than the LSTM and have shown to

perform well compared to the LSTMs on some tasks [74]. Proposals [75] for using

external memory include, coupling the neural network controller with an external

memory bank, the recurrent unit in this design can selectively read and write from

a memory matrix. The work by [76] proposes use of four learn-able components

and a static memory matrix. To distinguish from the recurrent networks from the

feed-forward networks, such models will be represented by f r
W.



Chapter 2. Background Theory 18

2.3 Model Information and Neural Network with Pri-
ors

Generally, learning for tasks inherently creates a bias learning [77]. This means that

learning models for discrimination and regressions specific tasks introduces biases

in models. As discussed earlier the learning compromises of prior knowledge of

the data and task, and the training data. A neural network ( fW) with n wieghts

W, it learns a mapping between the input and expected output. Some prior knowl-

edge or hints can reduce the appropriate n to achieve required performance [27].

[27] described the prior knowledge for neural network like connected graphs as,

"... any information about the problem that can be used to impose constraints on

the learning system or help it arrive at a better solution". While various model and

data based constraints that are used often will be discussed further in this section,

it is important to identify that simple choices like the network architectures, input

pre-processing and the output coding also imposes certain biases.

The priors and constraints can be enforced on a neural networks by introducing

several architectural constraints or by using prior biases based on some data prop-

erty. The methods that have been used to introduce such information or hint before

starting the training of machine learning models, specifically the neural networks

are now discussed.

2.3.1 Models with prior knowledge introduced by data

A model initialized by information about the data naturally carries the biases from

the data. This has been formalized as sample selection bias, its influence on learnt

classifier models has been discussed in detail by [78]. This property creates the

constraint that a model learnt on a sub-sample of data does not generalize outside

this set; this effectively creates a need for multiple large datasets. Such constraints



19 2.3. Model Information and Neural Network with Priors

have inspired work on using the prior knowledge introduced by the data in a learnt

model. Two important fields of research on this front include transfer learning and

domain adaptation training.

The machine learning community has worked on developing methods for predic-

tions on the future data using statistical models that are trained on previously col-

lected labeled or unlabeled training data; this procedure is identified as transfer

learning. Methods based on domain adaptation have been proposed. In [79] the

classifier is adapted from one language corpus to another. In [80] the correspon-

dence between words in separate datasets is learnt for better transfer learning.

The other approach selects transferable properties from one model to another. One

of the methods proposed by [81] includes generating class labels for unlabeled

data by clustering and then transferring specific discriminative information from

supervised knowledge to the unlabeled samples in other classes. In [82] presents

a method for learning auxiliary problems from large unlabeled data and used it on

a target problem. The Information Vector Machine of [83] learns the most infor-

mative features in a data by performing multiple tasks and creating models that

conserve such features.

One of the primary reasons of the popularity of the CNN based transfer learning

[84], is that transfer learning provides the ability of CNNs to share weights and

learn robust image features and transfer these to new image-sets. Transfer learning

using AlexNet [24] lead to various important developments in the problem related

to classification, detection and localization. Like other machine learning models

The pre-training of the weights in the neural network creates bias for solving prob-

lems on a certain kind of data. This assertion will be further re-visited in Chapter 4.

Efforts have been made to transfer biases across domains. Using the ideas from un-

supervised learning like autoencoders [85], the work of [86] tries to obtain domain-

adaptation with unsupervised learning. Unsupervised methods like [87] use sparse

coding to extract high level features to support supervised (transfer) learning. There
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are approaches that use synthetic data for pre-training of NNs, e.g. [88]; which can

be formally interpreted as model based reasoning [88].

Further, works on domain adaption focusing on neural network based adaptation

have focused on maximizing feature correlation from separate datasets [89] and

[90]. Some other approaches like [91] simultaneously learn domain confusion and

adaptation while solving a task on labelled data from one dataset and unlabelled

data from another. These methods use shared losses and shared weights concept

for transfer of bias from one domain to another. These are strictly not based only

on the data prior but also constraints from the network influence the transfer pro-

cess.

Influence of Model Architecture on Learning.

Constraint based priors can also be forced by neural network architectures, these

constraints can be forced in various ways. Shared weights [92] were first used as

regularizers for the network, funnel shape networks [93] was used for better visu-

alization and simplification of decision understanding, networks connected at the

output are common examples of system where architecture of the network creates

constraints on the input data based on the task. Some methods also include de-

composing the network to create a neural network system [94] with the knowledge

that the tasks can later be combined to understand a higher level abstraction. Some

applications have also attempted to design the model such that it understands the

physical property of the task domain [95].

2.4 Information Combination in Neural Networks

It has been observed that ensemble algorithms [96] based on combination of weak

models perform well on generalization tasks. These algorithms are capable of
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combining independent information, the importance of orthogonal or independent

source of information for making decision has already been discussed in Section 2.1.2.

Multi-modal learning is the process of learning to combine the features from one

system (say a visual feature extractor) with feature from another system (inertial

measures or audio). The multi-modal learning is inspired by ensemble methods but

it attempts to learn optimum methods for combination of features.

In many applications of machine learning use of different input channel is help-

ful. It is possible to capture useful but different representations from separate input

channels. These representations can be combined to learn about classification or

recognition tasks that the machine learning problem attempts to solve. A guide to

creating useful multi-modal combination is provided in [97], they suggest that the

different representation should have the property that "similarity in the representa-

tion space implies similarity of the corresponding concepts", that absence of one

information should be compensate-able. They then propose a Boltzmann machine

based classification and retrieval application.

The Flickr retrieval solution challenge contributed to various multi-modal approaches

[98, 99]. These solutions involved combination of the text and image information.

Another area in which combination of separate sensor information is prevalent is the

speech recognition. It is identified [100] that the combination of audio-visual cues

improves the speech detection performance of any algorithm. Detailed experiments

by [101] show the usefulness of such approaches, they show that the performance

of the deep learning algorithms can be improved using the multi-modal learning in

parallel.

These methods of information selection have also been used in creating encoders

for image-sentence embedding using RNNs [102]. Similar methods have been used

for combination of audio cues with skeleton images for human gesture identifica-

tion [103]. Multi-modal methods have shown to be useful for sensor fusion, espe-

cially on discriminatory tasks [104]. These methods allow a flexible combination
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of independent features.

2.5 The Hand Shape and Gesture Application

Most vehicles are shipped with touch and tactile based interfaces for various sys-

tems. The number of interactive systems in a car have rapidly increased over the

past few years, this increases the overall complexity of controlling the operations

for these systems. The touch and tactile based systems cause visual distraction

which affects the attention of the driving [105]. The experiments simulated in [106]

show that simpler and natural interactions with these devices can improve driver’s

safety. [107] has compared various methods of interactions and reported that the

gesture based interaction requires least eye contact, though the study also reveals

that gestures were not entirely attention free. Work by [108] also shows that the

performance of the driver can degrade sharply with small increase in the shift of

attention. It can thus be argued that a robust, touch-sensor free gesture based inter-

action can improve the safety of the driver. It is important that the chosen gestures

for such application are natural gestures such that they do not distract the driver.

This makes touch-less vision based methods particularly suited applications of Au-

tomotive interfaces.

The Vision based Hand Gesture identification techniques can be distributed into two

broad classes. One class of solutions recognizes a static pose of hand [109, 110]

and the second class uses the hand pose and hand motion over frames. For the later

scheme, hand-poses over these frames may or may not change. The second scheme

provides the flexibility of designing various hand-gestures. This approach allows

a use of a more natural set of gestures and the number of possible actions is also

increased.

The early solution for hand gesture recognition used Finite State Machines (FSM)

[111], a gesture was distributed into phases and set of twelve gestures were classi-
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fied. Inspired by the results on handwriting recognition [112] and speech analysis

[113], the multi-modal approach by [114] does simultaneous detection and classifi-

cation based on HOG and HOG2 features. The other methods employed for action

recognition use trajectory shapes, boundaries and motion structures in a bag of fea-

tures approach [115].

Another branch of solution includes sequential neural networks as well as RNNs.

Human and hand pose identification and hand shape classification was approached

using CNNs [116]. In [117] a graphical model enforced constraints for human

pose classification using CNN. These networks are trained on RGB-D dataset and

can be utilized to initialize various other models, to tackle hand related problems.

RNNs were used for gesture classification by [118]. More recently, various Neural

Network architectures have been used for human activity and gesture recognition

problems. For instance, [19] used an LSTM architecture for action recognition in

videos. A C3D network [10] was trained with data from multiple vision sensors and

radar. Another similar network is described in [18]. This work used multi-column

C3D architecture with variation in the input scale of the two columns.

Using a neural network with convolution layers usually requires a large dataset and

relatively large training time. The convolutional layers extract spatial features from

the input images. As various researchers work with a multitude of sensing modali-

ties, they can often not use datasets like [119] or [120] to initialize (pre-train) their

models, due to data from a different sensing modality. This avoids the possibil-

ity to benefit from the additional variations in existing datasets to solve the task of

hand-pose or hand-shape recognition more appropriately.
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Chapter 3

Feature Representation

3.1 Introduction

Feature engineering is one of the most important components in a Machine Learn-

ing or Computer Vision system. Unsupervised feature representation changes the

data representation process in two important ways, firstly it removes the tedious

process of handcrafting the features, then evaluating them, and redesigning [121].

Secondly, the process of unsupervised learning provides some insulation against the

biases of those who design the handcrafted features [122]. Obviously, such methods

usually also remove expert experiences from the data representation process. In this

chapter and thesis the phrases learning representations, feature learning and feature

representation will be used interchangeably. Bengio et al [27, 123] listed the prop-

erties that make a useful learning representation. Some of these desired properties

are re-formalized here. To learn the mapping X→ Y on the dataset D of sample

size N, a set of representations F for the set of concepts O are explored. Each rep-

resentation function fi ∈ F provides a concept oi : i ∈ [k], where k is the number of

representations. The members of the representation function set F should be such

that,

25
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1. Representation functions fi are smooth, where smoothness is defined as

x≈ y⇒ fi(x)≈ fi(y)

2. The concepts oi and o j mapped from fi and f j are not necessarily mutually

exclusive but are sufficiently dissimilar

3. The concepts O ⊆ O explaining IP(X), the distribution of X, is useful for

understanding a probability mapping IP(Y|X) for X

4. Different values of the target vectors, especially in case of classification tasks,

may be associated with different subsets of the concepts

5. The distance between the feature at time T and T + δT or at space S and

S+δS is a small value ε → 0.

This thesis will often return to these formalizations to justify the choices of the

chosen learning representation schemes. Many modifications to the schemes for

feature explorations introduced in this text are motivated from these formalizations.

3.1.1 Factor analysis

When modelling an input as pmodel(x | D) the feature representation can be inter-

preted as a set of latent variables H with each latent variable identified as hi. The

process of formation of x from the latent variable can be explained as a weighted

sum of the infinite latent variables,

x =
i→∞

∑
i=0

Wihi. (3.1)

A set of N latent variables H such that N � ∞ can be used to estimate x, this

approximation of x is defined as the linear factor model for x.

x̄≈WH + z(σ), (3.2)
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where z is Gaussian noise. This is merely an extension of the 3.1.

The latent variable H if represented as a conditional distribution H : H =N (H ;0,I)

can allow a probabilistic model based explanation for the linear factor analysis.

The a priori suppositions on the H and the choice of noise model influences the

explored latent variables and the weights W of the linear factor model. Various

methods are used to calculate the linear components of 3.2. These methods attempt

to find a finite number of latent variables whose linear combination can best ap-

proximates the variable x.

Of the various Linear Factor Analysis models, the Section 3.2 of this chapter dis-

cusses the SFA. A new scheme for classification using SFA is introduced in the

Section 3.2.3. The SFA is modified such that the property of orthogonality is bet-

ter exploited. It is later demonstrated that this scheme of SFA works better than

the existing methods and also performs better than other latent variable (Principal

Component Analysis (PCA), LLE) based classifiers.

The Section 3.3 introduces the neural networks as feature learning algorithms. In

the Section 3.3.1 the methodologies that were developed for understanding the con-

tribution of neural network features to classification are described. This section

uses random forests to identify the classification contributions of the features that

are not necessarily mutually exclusive but carry sufficiently dissimilar concepts.

The evaluations made by these methods and the resulting conclusion are described

and discussed in the Section 3.3.3.

3.2 Slow Feature Analysis

This section describes the SFA, one of the various linear factor models, in some

detail. The prior assumption in the exploration of the SFA is that a feature that

does not vary rapidly, yet has a slow consistent change promises to describe the

behavior of a function in better detail [124].The SFA allows unsupervised learning
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of invariant or slowly varying features. It can learn translation, scale and rotational

invariances [125]. Low level features are short duration features and are often mis-

leading meanwhile, the high level features of the data carry information that extends

beyond small neighbourhoods. SFA learns functions that represent such high level

features. These high level representation can better explain the property of the data

space. The slow features thus provide a consistent trend in the data.

The SFA has been modified to provide consistent trends within elements belonging

to a static dataset [12]. It has also been modified to achieve supervised learning to

achieve classification [12]. It provides mutually orthogonal features thus the promi-

nent features carry independent information about the data even though they remain

invariant to size, rotation and translation. Another important property of the SFA is

the guaranteed optimization to the slowest changing function which allows for easy

extension when learning a new class.

In this section procedure for learning several slow feature functions is introduced.

This further improve the classification performance for each class . To achieve this

the property of mutual orthogonality is applied on features learnt from each class.

The mutually orthogonality of SFA features result in aggregation of information

thus it increases the effective information that a classifier receives. The results are

compared against the earlier proposed methods of [125] and [12] and it is shown

that the proposed SFA scheme performs better on classification tasks.

3.2.1 Defining the SFA

SFA was originally formulated on temporal data. It was proposed as a solution

for the problem of detecting trends in temporal data [125]. If a vectorial input

X(t) ∈ IRd is a time series, one of the slow features is the function g(·), such that

yt = g(X(t)), varies as slowly as possible while avoiding trivial responses.
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The problem is formally described by [126] as minimizing the absolute differential

∆(y j) := 〈ẏ j
2〉. (3.3)

Here y j is the jth component of yt and ẏ j is the derivative of y j with respect to time

t and 〈·〉 denotes average over time. The absolute differential is minimized under

the following conditions:

〈y j〉= 0 (3.4)

〈y2
j〉= 1 (3.5)

〈yiy j〉= 0 i 6= j. (3.6)

While the minimization selects invariant features, (3.5) forces some variance and

removes the possibility of obsolete solutions like a constant function and (3.6)

forces independence among the calculated slow features. These constraints are

forced by sphering the data [127].

Sphering of X ∈ Rd means we transform X such that the covariance matrix of the

transformed random variable X∗ is an identity matrix. X = (x1,x2...,xn), represents

a data matrix and x1,x2,x3, ...,xn are n vectors belonging to it. If (X−µ) and Σ are

respectively the centered data matrix and the covariance matrix, then the sphered

data is expressed as:

X∗ = Bn(X−µ), with BT
n Bn = Σ−1. (3.7)

The sphered data X∗ is projected into a quadratic space, resulting in data Z. The

derivative Z(t +1)−Z(t), is represented by Ż. Let W = [w1,w2....,wn] be the

eigenvectors of the covariance matrix of the derivative matrix Ż and λW be the

corresponding eigenvalues,

〈ŻŻT〉W = λW. (3.8)

The eigenvectors corresponding to the smallest eigenvalues are the direction of the

slowest change in differential of the data. These eigenvectors compose the slow
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feature functions. These functions are the weighted linear sums over the compo-

nents of the expanded signal, where weights are the components of eigenvectors

w,

g j(x) = w j
T .Z(t). (3.9)

Where w j is the jth eigenvector. The m smallest eigenvalues correspond to the m

primary slow feature functions: g1, g2, g3 ...gm. This set of slow features given by

functional G is the F of features which was introduced earlier in the Section 3.1 and

the output of these functions are the latent variables H calculated on the dataset

D . The condition of orthogonality introduced by eigenvectors enforces the mutual

exclusivity of the elements of G.

3.2.2 SFA for Classification

The slow features describe intrinsic properties of a time series. It is the property

of slow features to conserve variations over time, this property can be exploited

for classification. The data for classification is not temporal and thus the absolute

differential described in 3.3 is modified to perform a supervised classification. To

perform a supervised classification, functions resulting in minimum inter-element

difference within each class must be identified. As in case of time series SFA, the

conditions of zero mean, constant variance and linear independence are imposed.

Once again these conditions are satisfied by sphering the data. Furthermore, the

optimization process tries to increase the variance outside a class, to identify the

slow feature functions.

For the dataset D , we define a matrix Z, such that Z is the quadratic expansion

of the sphered transform of D . Accordingly, the differential term for a vector zel

belonging to the expanded dataset Z is represented as:

∇el :=
N

∑
C=1

( NC

∑
n=1

(zn
C− zel)2

) 1
2
. (3.10)
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Thus average differential for the data Z can be re-represented as:

∇ := 〈∇el〉. (3.11)

Where, zel is the vector corresponding to the element for which the differential is

calculated. zn
C is the nth element of a class C, N is the number of classes and NC is

the number of data points in the class C. The value of ∇ is now minimized. This

minimization condition returns functions that forces slow variance within classes.

Each of the slow features correspond to one of the classes, to further improve the

extracted feature functions, 3.11 is extended to maximize the variance between

classes while minimizing it within the class [128].

To achieve this we subtract the average of the absolute difference of the in-class

element with elements outside the class (∇o
el) from the average differential within

the class (∇el), that yields

∇
o
el :=

N

∑
C=1

( N

∑
{c=1,c6=C}

Nc

∑
n=1

(zn
c− zel)2

) 1
2
. (3.12)

This difference of in-class and out-class variance is used as the cost function. Effec-

tively, the slow feature function of 3.11 is modified to minimizing the cost function

O, where O is defined as:

O = 〈∇el〉−〈∇o
el〉. (3.13)

The minimisation process is described in the next section.

3.2.3 Using Orthogonality to Increase Information

The classification process described above returns (N=number of classes) functions.

These functions are learnt from the entire dataset using the optimization function

of 3.13. This procedure results in a set of functions which provide low variance

response. The constraint of decorrelation between different slow features creates

the possibility of learning many functions corresponding to one class.



Chapter 3. Feature Representation 32

The ready availability of features after doing an SFA procedure, and there mutual

independence motivates us to find more features within a class. Thus we calcu-

late multiple slow features corresponding to each class. Rather than learning slow

features over the entire dataset we learn a set of functions for every class. Slow fea-

tures are learnt by restricting the dataset to elements of one class, this is repeated

for all classes.

As each function is orthogonal, we have more than one function representing in-

trinsic properties of the specific class. These linear functions are decorrelated on

the expanded space. Learning slow features in every class requires a larger train-

ing dataset, meanwhile it also results in adding information for classification. The

optimization function 3.13 is further modified to minimize variance within a class,

while maximising out-of-class variation using all other classes ( 3.15). This modi-

fication extends 3.12 as follows:

∇elC :=
( NC

∑
n=1

(zn
C− zelC)2

) 1
2
, (3.14)

∇
o
elC :=

( N

∑
{c=1,c 6=C}

Nc

∑
n=1

(zn
c− zelC)2

) 1
2
, (3.15)

where, ∇o
elC

is the sum of out-of-class variances calculated over the training dataset.

OC = 〈∇elC〉−〈∇
o
elC〉. (3.16)

elC represents that the calculation for the differential is done for elements belonging

to the class C. The optimisation for class C is achieved by minimizing OC.

The functions are collected as matrix WC where C is the class for which these

functions are learnt. wλCj
is the vector corresponding to the jth eigenvalue λC j of

class matrix WC. For a test input vector P the functional G returns an output vector

G(W,P). The functional G has m linear functions in the space corresponding to

the dimension of vector expanded in data space,

G(WC,P) = P ·Wc
T . (3.17)
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The variance for the output of the function is calculated as,

VarC = ∑
j
(P ·wλCj

)2 = ∑G(WC,P)2. (3.18)

The final classification is performed as follows:

class = argmin
C

(VarC). (3.19)

While doing an N class classification using m functions for each class, we have Nm

functions.

The value of functions corresponding to a class when applied to an element from

the same class is centred around a constant value. When a function is applied on a

mismatched class, the result is random. This randomness likely results in a wrong

identification.

In the case of multiple centred functions, corresponding to a class, the resulting out-

put for a matching sample has all the function outputs centred around zero. Some

functions from non-matching classes may return centred responses close to zero

but, the aggregated variance for a mismatch element is higher, resulting in clearer

distinction from the matching class.

The next section discusses SFA and the proposed classification approach in light of

the earlier discussed (Section 3.1) properties of good latent variables.

3.2.4 Classification with SFA

MNIST dataset [129] is one of the classical dataset for classification problems. To

validate the proposed method of further tested and compared both methods of using

SFA for classification described earlier on the same dataset. Earlier, [12] described

the original classification technique on the MNIST Hand written digit dataset.

Two experiments have been performed. First, ten slow features functions are cal-

culated for the full dataset. Second, ten slow feature functions for each class are
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calculated according to the proposed method of Section 3.2.3. It was observed that

the identification performance for every class improved when the property of in-

class orthogonality is used to calculate slow feature functions. The comparative

results are listed in Table 3.1.

Table 3.1: Digit classification accuracy. The second row values are accuracy per-
centages when slow feature functions are learnt from the entire dataset, the third
row shows the accuracy percentages when several functions are learnt.

Class 0 1 2 3 4 5 6 7 8 9
Full Dataset 81 93 79 83 77 72 77 80 73 84

Class Separation 91 96 82 85 79 81 89 91 83 84

Hand shape data and classification

A 3D ToF, PMD-Nano camera has been used to collect a dataset of hand-poses.

The camera is fixed vertically above the palm. The output of the PMD-Nano ToF

camera is an 120x165x2 image. The two channels of the image are the amplitude

value and the depth map image data. We cover the arm region with absorbent cloth-

ing and use the reflectance of skin to segment the palm. The reflectance constraint

does not entirely remove the background and thus the closest contour greater than

a threshold area is chosen as the palm region. The segmented palm region is then

converted into a binary image which is further used for hand-pose identification.

The Hand pose dataset is used for a classification task on classes labelled as "Fist",

"Flat", "Index", "Open" and "Grab". Overall, fifteen thousand samples of hands

were collected and the slow features learnt. Thousand frames in each class are

randomly selected and rotated in either direction, by an angle between 10◦ and

20 ◦. These rotated frames are added to the training dataset along with the original

frames. Note that, this spreads the poses such that they cover the whole rotational
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axis, it also increases the dataset and generates samples which train the SFA for

rotational invariances.

Before learning slow features from the dataset of segmented hands, the image is

scaled down to one-third of its original size. This is followed by a PCA which re-

duces each image to a thirty-five dimension vector that is projected to its quadratic

space to allow the learning of non-linear invariances in the principal components of

the training data.

Three hundred frames are selected for each class through random partitioning of

the original dataset. These samples are used as test dataset, while the remaining

original dataset is used for training. The preprocessing follows the same procedure

as described for the training dataset.

During the SFA learning process the covariance matrix of the differential data as

well as the eigenvectors corresponding to the largest eigenvalues are recorded.These

vectors correspond to linear functions used for classification. Once learnt, these

functions are used to compute the corresponding function-mean over the training

samples. Each function is centred around the mean values learnt during the training

process, and the variance over the functions is then calculated.

It is observed that the samples of matching classes are tightly spread around the

mean values of the classes. The class which corresponds to the function has much

smaller variance as compared to other classes. Figure 3.1 shows the response of the

test dataset on the most prominent function of the "Fist" class. The data points for

each class are represented by a unique color. The "Fist" class which is represented

by blue in the figure has relatively tight packing of the data-points as compared to

any other class. Like in the previous figures the X axis of the plot represents the

data points which are arranged by their labels, and the Y axis represents the centred

value of the learnt function.

This pattern is visible over the entire set of Nm functions, 5×10 = 50 in the present

case. Table 3.2 shows the response of each data-point to the first five of the ten learnt
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Table 3.2: Scatter map showing the value for 5 SFA functions for every class on
the test dataset, different colors represent different classes.

Func 1 Func 2 Func 3 Func 4 Func 5

FIST

FLAT

INDEX

OPEN

GRAB

functions of each class. Each rows represents a set of functions corresponding to

the class.

It can be observed that the functions learnt for one class have lower variance in

the same class, while higher variance in other classes. This observation is used to

differentiate classes. Thus we calculate the variance of the function response over

all the functions calculated for a class.

The three hundred frames of each class in the dataset are used for evaluations.

While learning models that are saved include, PCA mapping for each class, the

sphering matrix, m eigenvectors and the covariance matrices for each class.
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Figure 3.1: Slow function response for class ’Fist’.

3.2.5 Classification Accuracy Comparison

The results of the classification using SFA were compared against results from

KNN on physical features extracted from each frame. The physical features in-

clude coordinates of the tip of the finger (or the tip of the palm), the coordinates

of the palm centroid, the convex ratio and the concave depth of the image and the

polar and azimuth angle of the finger [130, 131, 132] . Comparisons are also made

against the results to KNN applied on the PCA of the data and the low dimension

manifold of the raw binary image [133].

These calculations are demonstrated to show the performance of the SFA based la-

tent variable against the latent variables calculated using well known linear factors

methods like LLE and PCA. The KNN models for the physical features are gen-

erated using 1500 samples from each class and are modelled by simple euclidean

distances. The manifold is learned by Isomap algorithm [43] and the learning is
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Table 3.3: Confusion matrix
for SFA classification.

% FI FL IN O G

FI 97.0 1.0 0.0 1.7 0.3
FL 0.0 96.7 2.3 1.0 0.0
I 0.0 0.0 98.7 1.3 0.0
O 1.0 0.0 1.3 97.6 0.0
G 0.7 2.3 0 0.3 96.7

Table 3.4: KNN Confusion Matrix
for physical features.

% FI FL I O G

FI 97.0 0.7 1.3 0 1.0
FL 0.7 95.7 3.0 0 0.7
I 2.7 5.7 91.7 0.3 0.0
O 3.0 2.3 0 94.3 0.3
G 0.7 4.7 0 0.3 94.3

Table 3.5: KNN Confusion Matrix
for 35-D PCA.

% FI FL IN O G

FI 78.3 12.2 2.9 3.8 2.9
FL 1.3 80.7 6.3 6.6 5.0
I 0.0 3.3 81.7 2.0 14.0
O 0.0 7.7 4.7 85.3 2.3
G 0.3 3.3 7.7 3.0 85.7

Table 3.6: KNN Confusion Matrix
for 9-D isomap.

% FI FL IN O G

FI 97.0 0.3 2.0 0.7 0
FL 0.3 98.3 1.3 0 0.3
I 3.7 0.3 96.0 0 0
O 1.7 0.0 1.0 96.3 1.0
G 2.7 0.3 0.3 0.7 96.0

done by the same training data as used for SFA.

The SFA based classification works better than the physical feature based classifi-

cation evaluated in the KNN model. It also outperforms the KNN evaluation done

with 35-dimensional (35-D) PCA and 9-dimensional (9-D) manifold representa-

tion of the dataset. A 35-D PCA is chosen because it is used as the basis for SFA

calculation and 9-D isomap because the classification by KNN performs best for it.

Table 3.3 shows the confusion matrix for the SFA based classification and Table 3.4

shows the confusion matrix for classification on KNN model trained on the hand

crafted physical features. Table 3.5 is the confusion matrix for classification results

from KNN model trained on the 35-D PCA representation of the image data. While

classifying on the 9-D element vector received from the isomap done on the palm

region as described earlier, the results are improved as compared to KNN on phys-

ical features and PCA based KNN. Table 3.6.

The results from the SFA are considerably better than the results from the physi-

cal features. These features are carefully selected for hand-pose estimation. This
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underlines the ability of the method to search for relevant features in a class. This

improvement also suggests that SFA is capable of reducing the effect of local noise

and distortion.

Comparison of SFA is made against KNN on the lower dimension representation

of the data computed by PCA. The confusion matrices of Table 3.3 and Table 3.5

clearly demonstrate that SFA performs far better. Thus the process of calculating

the slow feature functions after doing PCA on the data further refines the knowl-

edge that we are able to extract from the dataset.

SFA classification also performs better than a KNN model trained on manifold rep-

resentation of the dataset. While the identification of the "Flat" hand-pose is better

than the SFA in case of the isomap representation, the overall performance of SFA

is superior. This result suggests that SFA is capable of managing non-linearities in

the data, this can be attributed to the step in which the PCA data is projected onto a

quadratic space.

The improvement from PCA to Isomap modeling is a result of better handling of

non-linearities in the data. The KNN model based on euclidean distances suffers

from the inability to compensate for non-linearities, this is overcome when we use

the isomap projection. It is also important to note that while the KNN model is

learnt over the isomap projection, SFA classification provides better results by sim-

ple variance calculations. It is worth mentioning that the performance improve-

ment in the quality of classification was minimal when we scaled the palm region

by distances. This observation can be attributed to the characteristic of SFA that,

it explores multidimensional linear functions which encompasses the invariances

over the data points.
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3.3 Evaluation of CNN as a Feature Extractor

The calculation of the SFA, as described in the Section 3.2, involves SVD decom-

position. As, the dataset becomes larger the calculation involves large matrices.

Thus the experiments on the SFA were made on a relatively smaller dataset. The

neural network on the other hand learns by iteratively evaluating the input data-

sample, this allows the use of larger dataset.

The CNNs as feed forward neural networks were introduced in the section Sec-

tion 2.2. It was mentioned that these networks may have one or more convolutional

layer connected to fully connected layers. The combinational output of the convo-

lutional layer are used as input to the traditional multi layer perceptron. The CNN

learns a combination of suitable filters which are used to extract features from im-

ages. The large number of features provided by the convolutional neural network

provide separate information. Visualization of feature property is one of the often

used methods to do so. It is easy to identify that these features rise on the scale-

space as they propagate through the neural network.

Unlike the SFA from the last section, it is not possible to design mutually exclu-

sive features by training a CNN. But, it is important to understand the properties

of these features. The CNN features include the properties of the data type, data

domain and task. In the SFA, the orthogonality, the in-class invariance and the

divergence among features from different classes is forced by an optimization con-

straints, the cross entropy cost function does the same optimization for maximizing

the accuracy performance of the neural network.

Table 3.7: Hand Shape classification accuracy

% Flat Point Open Fist Join

CNN 89 88 88 89 96
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Figure 3.2: Hand shape classifier

A simple hand shape classifier CNN shown in Figure 3.2 is trained. The training

for this neural networks is completed in ten thousand batch iteration of sixty-four

samples per batch. The classification of the hand-shapes and the class-wise accu-

racy values for the large dataset are given in the Table 3.7.

To develop and compare the tools for feature analysis the experiments on the hand

shape dataset are conducted with the network shown in Figure 3.2. The features in

the neural network are not separable and thus various methods there analysis have

been proposed. The visualization and node-activation based methods for neural

network are important in understanding the underlying nature of the network. In

this section the methods for a quantitative measure of saliency are proposed and

described. The Guided Random Forests (GRRF) [134] are used to identify regions

carrying relatively independent information. Further, modifications in the entropy

measure are made to develop tools for identifying important and unimportant fea-

tures for the specific task. Along with the GRRF, the concept of shadow features

[135] is used to identify features informative for the classification tasks, importance

feature ratio from each class is calculated and presented. The neural network fea-

tures extracted from the hand shape dataset are shown in Figure 3.3.
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In this sections the experiments are made by using the features extracted from a

neural network shown in Figure 3.2. A hand shape dataset with one hundred five

thousand samples of hand shapes in training set and ten thousand samples in the

test set is used for the experiments of hand shape classification. The dataset is later

described in detail in the Section 4.5.1. For experiments, feature datasets are cre-

ated by extracting features produced by all images of the datasets. These features

include outputs from all non-output layers, and carry an identifier of the layer of

origin. As the feature vectors create an extremely large dataset, the experiments

and the evaluations are conducted on one-fourth of the training data images are

randomly sampled from the dataset.

Experiments are also conducted on the classical LeNet [136] model on the hand

written digit MNIST dataset.

3.3.1 Feature saliency Measure With Random Forests

Samples of the features resulting from the trained neural networks are shown in the

Figure 3.3, these features contribute to the classification task. The task now is to

identify which components of the network are learning relatively independent fea-

tures, and which part carry important informations. To this end a Random Forests

algorithm based on the idea of growing a large number of trees from random sam-

ples of training data is used. Each tree of the Random Forests votes for a class and

the Forests chooses the class with the highest vote. A decision tree, at every node,

makes a binary partition such that the total information gain, gain(·), is maximized.

The information gain is the increase in normalized entropy, H after every partition.

This strategy for growing a tree and the random sampling from training data to

create multiple trees makes Random Forests classifier a tool for measurement of

feature saliency. When high dimensional feature vector is input into the Random

Forests the probability of uninformative feature selection and multiple splitting of
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(a) Sample of channels from input convolution
layer

(b) Sample of channels from first convolution
layer

(c) Sample of channels from last convolution
layer

(d) Sample of channels from first fully connected
layer

Figure 3.3: Samples of channel ouptput from different layers of the network.
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branch is increased. The two possible solution proposed in earlier research shall be

shortly discussed and will be used with Random Forest on Neural Network features

to identify the informative regions of the neural network and there contribution to

classifier feature set.

Guided Regularized Random Forests

A saliency measure for each feature that contributes to the classification in Random

Forest is calculated. The saliency score Ψi for a feature fi in the Random Forest

input is calculated as,

Ψi =
1

ntree
∑

η∈Ni

gain(fi,η) (3.20)

Where Ni is the set of nodes where partition decision is made by feature fi and ntree

is the number of trees in the Forests.

The Regularized Random Forest (RRF) are designed such that they use minimum

number of features while creating Random Forests for a task. An initial set of

features F0 is chosen. This set is iteratively increased in size. At each test step t the

set is modified to Ft . This modification is achieved by adding a new feature f if the

information gain by a partition using the feature f is at least 1
λ

fractions higher than

gain from features already existing Ft−1. At the end of the iterations of the features

the feature set, F, is created.

λ is used to normalize the gain and create the regularized gain term, the gainR(f ) is

defined as:

gainR(fi) =

λi ·gain(fi) fi /∈ F

gain(fi) fi ∈ F.
(3.21)

The number of samples used to train the deeper levels of the tree nodes are compar-

atively much smaller than the numbers used to train a classic Random Forests. The

smaller data size used to create the partition boundary in these scenarios makes the

gain evaluation deceptive. Thus a gain regularizing factor λi is used to restrict the
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size of the tree. It also ascertains that only those features that add substantially to

the decision tree information are added to the final F. Unlike 3.21 where the gain

regularizer λ is a constant, the GRRF uses a parameterized λ which is defined as:

λi = (1− γ)+ γ · Ψ̄i (3.22)

Where the normalized saliency score Ψ̄i of the feature fi is obtained by normal-

ization of the saliency score Ψi by the maximum saliency score Ψ∗ in the feature

set F. It is to be noted that the normalized saliency is calculated by first training a

classical Random Forests on the training data.

Shadow Features

The shadow feature method avoids selection of features which do not provide infor-

mation about the task(classification here) to be completed by the Random Forests.

In these experiments, the sample feature are tested by creating duplicates of the

original samples and creating a random distribution of labels for the duplicate sam-

ples. Thus, those features of the duplicate samples should not provide any impor-

tant information to the prediction task. The procedure described in [135] is then

followed to choose the important feature set Fi. The training set containing all

the shadow samples is trained by different random forests. N Random Forests are

trained and the ith Random Forests selects a features set Fs
i . The saliency measure

is calculated by the repetition frequency of these features. The best saliency value

of each randomized sample in the shadows is chosen to form the final sample rep-

resenting the uninformative features, which is called shadow saliency sample in the

following context. Those real features whose contribution to the classifier is same

as shadow sample features are discarded. Thus a subset of the salient features set

is selected. The similarity of the features is calculated by the Wilcoxon check sum

test [137].
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These two methods are used for the saliency analysis of Neural Network features

in the experiments described in the following sections.

3.3.2 Experiments and Observation

The analysis is first performed on the features from a convolution and pooling lay-

ers to decide if features from one of the two layers can be used to represent same

information.The Random Forests are built using convolutional features from each

convolutional and pooling layers of the neural network. In each case, multiple

forests are constructed with a defined maximum depth. The results from this ex-

periment confirm the theoretical expectation that the corresponding convolutional

and pooling layers provide features of similar information but because of reduced

features size in pooling layer, the per-feature performance of the pooling layers is

better than the convolution layer features. This result will be used to reduce the fea-

ture dimension in the following analysis. Hereafter only the pooling layer features

shall be used as the proxy for the features from the corresponding convolutional

and pooling layers.

Important Feature Frequency in Random Forests

In the following experiments the regions of the neural network that contribute

higher to completing the task of classification are identified. This is a simple mea-

sure of frequency expectation of the source of salient features. Random Forests

consisting of hundred trees and twenty maximal depth is trained. During the train-

ing procedure, the features providing the maximum splitting gain at each node are

counted. The Random Forests is trained using the features from the convolutional

features from the final two 2-D layers and the first fully connected dense layer.

Figure 3.4 shows the share of features from each neural network layer used for
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Figure 3.4: Salient Feature Contribution from layers at various decision tree levels.

splitting the dataset at nodes of the Random Forests when tested with the MNIST

dataset. The first fully connected layer contributes extensively to splitting the nodes

on the first level of the Random Forests trees. It was also observed that as the trees

grow deeper the contribution of the features from the pooling layers increase. The

outermost layer contributes (58%) the largest to the top layer(= ip1) of the decision

Forests which means it contributes the highest entropy for the required classifica-

tion task. The less discriminatory but yet important features for making decisions

steadily increase on traversing down the layers of the decision forests to being 50%

each at the twentieth layer.

3.3.3 Salient Feature Reduction Using Random Forests

The last experiment uses all features of the neural network which is a very large

dimension vector, it thus suffers from the problem of not providing a credible es-

timate of the importance value. The stated goal of these experiments is to identify

importance of salient features or neurons that are salient for the particular task. In

order to achieve this the salient and essential features are identified.
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The innermost fully connected layer and the outermost 2-D layers are used as fea-

ture source for training the neural networks. The experiment to identify and evalu-

ate the salient regions of the neural network are now presented.These experiments

are conducted with GRRF and shadow features.

Experiment with Guided Regularised Random Forests

A simple Random Forest is first trained on the training dataset created from the

neural network features. This is done to calculate the normalized saliency score.

The value of Ψ̄i, for each feature is calculated. These normalized saliency scores

are then used for training a GRRF. The GRRF is trained using the same training

set and the normalized saliency score scheme. The GRRF selects a subset f of the

feature set F and provides a classification output. In these experiments the size of

the subset f depends on the parameter γ introduced in 3.22. Larger γ value makes

the addition of new features to RF classifier harder. Thus, the larger the γ smaller

the size of the selected subset f.

The performance of the GRRF trained Random Forest is compared to the Random

Forest trained on the entire features of the neural network. The accuracy of Random

Forest trained on full feature set is 98.5% for the MNIST and 91.6% for the Hand

shape dataset. When the value of γ is much less than hundred the GRRF elimi-

nates almost half of the features without a considerable reduction in the accuracy

performance. In fact in the MNIST experiment for the γ value of 0.005 and 0.015

the accuracy of over 98.6% is achieved which is higher than the accuracy from the

full feature set. The reduction in the feature size and influence on the share from

different layers is shown in Table 3.8 and Table 3.9.

A feature survival rate for each layer can now be defined. The ratio of the features

which originate in a particular layer accepted by the GRRF to the total features

provided by the layer is the feature survival rate. The accuracy performance, the
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percentage size of the feature vector wrt the original feature vector and the layer-

wise survival rate with increasing γ are recorded in the Table 3.8 and Table 3.9. It

is apparent that while the inner layers of the network are less dominant in the con-

tributing to the classification property, the decay rate for the contributing features

for such layers in substantially larger than the outer fully connected layers.

Table 3.8: MNIST: GRRF accuracy and layer wise survival

IP 1st Pool 2nd Pool
γ Accuracy(%) Size(%) Survival Rate(%)

0.005 98.66 28 58 36 26
0.010 98.62 25 51 37 22
0.015 98.65 23 52 34 20
0.03 98.62 19 42 30 15
0.06 98.54 12 29 16 11
0.10 98.40 10 21 9 6

RF trained with all features has accuracy 98.5%

Table 3.9: HAND data: GRRF accuracy and layer wise survival

IP 3rd Conv 2nd Pool
γ Accuracy(%) Size(%) Survival Rate(%)

0.005 91.6 33 64 34 27
0.010 91.4 28 61 26 22
0.015 90.8 24 56 22 18
0.03 90.8 22 51 20 18
0.06 91.2 18 32 16 16
0.10 90.4 12 26 13 9

RF trained with all features for Hand Shape has accuracy 91.6%

Experiment with Shadow Features

The features generated by the CNN and collected earlier are duplicated. The du-

plicated set of features are labeled with incorrect and randomized labels. These

features are thus information-less. The training set of feature vectors is thus cor-

rupted with information-less features and the combined feature dataset is used for
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training N = 200 Random Forests.

Using the earlier strategy from RRF a subset of salient features are collected, this

subset of salient features is again tested with Wilcoxon rank sum method. While

training a random forest only parts of the features are used. On the entire set of

the N Random Forests the impact of real and duplicate features on the output is

compared. As mentioned earlier, the measure of this similarity is created using the

pValue calculated from the Wilcoxon test.

Those features which are similar to the shadow features in influencing the output

are considered uninformative features and are filtered out. Thus, If the pValue in

the Wilcoxon rank sum test of a feature and its shadow is bigger than a chosen

threshold, this feature is discarded from the salient feature set F.

In the experiment, saliency scores of 200 different random forests are gathered to

perform the Wilcoxon rank sum test. The results are shown in Table 3.10 and 3.11.

The relatively lower fall in the size of the vector shows that most features learnt by

the CNN contain task information. It also suggests that while the features contain

useful information but they contain information which is repeated, as the reduction

in the useful feature size in these experiments is considerably less than the experi-

ment done with GRRF.

Table 3.10: MNIST: GRRF accuracy and layer wise survival using the shadow
features

FC 1st Pool 2nd Pool
− log(pValue) Accuracy Size(%) Survival Rate(%)

10 98.5 96.7 100 94 98.2
20 98.5 93.8 100 91.5 98
30 98.7 92.4 100 89.5 97
40 98.5 90.7 100 87 97
50 98.4 89 100 84 96

100 98.4 68.8 100 72 92
125 98.6 51.9 95 48 83.4
150 96.6 45.8 93 43 72.4
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Table 3.11: HAND Data: GRRF accuracy and layer wise survival using the shadow
features

FC 2nd Pool 3rd Conv
− log(pValue) Accuracy Size(%) Survival Rate(%)

10 91.6 97.1 100 95 98
20 91.6 96.5 100 91 97
30 91.4 91.2 100 92 96.7
40 90.4 89.6 100 87 96.3
50 90.4 88.8 100 88 95

100 90.8 72.0 100 72 82
125 89.8 62.0 100 42 63.4
150 90.2 52.0 98 33 55.4

In both experiments it was demonstrated that the feature size can be reduced con-

siderably without loss of accuracy, it indicates repetition of information. The size

can be reduced to almost 50% with less than 1% loss in prediction accuracy.

While the CNN performed better than the Random Forests trained to classify the

MNIST dataset, it was observed that the performance of the Hand classification im-

proved when all neural network features were used to train the CNN Table 3.12. It

is possible that this is because of the non-optimal choice of the learning parameters

for the neural network. This observation suggests that a shorter training of Random

Forests can be used to optimize the hyper-parameter choices while training a neural

network.

The experiments show consistent properties of neural network layers. Two meth-

Table 3.12: Accuracy for hand shape classification with CNN and Random Forests
on CNN features

% Flat Point Open Fist Join

CNN 89 88 88 89 96
RF on CNN 91 88 92 91 95

ods for validating these properties were introduced and the experiments were com-
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pleted on two separate datasets to check for consistencies. The utility of these ex-

periments is proven by validation of various qualitative arguments. The argument

that the outer layer contains properties which increase information about the task is

validated by these experiments, that the pooling layer increases information density

is also demonstrated. Overall these methods for quantitative evaluation of features

demonstrate that various features of the deep neural network share information. Re-

ducing the features to half the original size only has a minuscule influence on the

performance of the network. The higher discriminatory nature of the outer fully

connected layers is quantitatively demonstrated. The importance of pooling layers

as information intensifying layer is also validated.

3.4 Conclusion

This chapter introduced the information increment through increasing the number

of extracted orthogonal feature vectors in a dataset. This was done using two ex-

amples, the new scheme for SFA and the evaluations made on different but not

mutually exclusive neural network features.

It was demonstrated that increase in orthogonal slow feature component improved

the performance on a classification problem. As orthogonality could not be forced

on the features learnt from a trained neural network feature vectors, the condition

of independence was sought to be imposed using the Random Forests. A feature

importance measure and a feature survival measure was developed to identify im-

portant regions of the neural network.

These experiments provide insights on independence and separated information

carried by feature inputs. These will be utilized in the Chapter 4 for improving

the classification using combination of neural network architectures which either

have separate properties or are trained on distinct data sources.



Chapter 4

Knowledge Inclusion for
Better Neural Network
Learning

4.1 Introduction

The Chapter 3 introduced the neural network as a combinational model of non lin-

ear function and a multi-scale feature extractor. It was also mentioned that the H of

a data can be selected by choosing a model prior for the data and the noise distribu-

tion. Any feature transfer done on neural network presented in the Chapter 3 can be

represented as a solution for better prior modeling [138]. This chapter will review

a formulation for transfer learning in the Bayesian settings, present the Bayesian

interpretation of Artificial Neural Networks (ANN)s and then present various ex-

periments to demonstrate the influence of model priors on the learning process.

Priors are created on weights by the transfer learning methods used in neural net-

works. In neural networks transfer learning is the process of using the statistical

information learned on one domain of a problem and reuse it on a new domain of

53
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the problem. Deep neural networks require large datasets for training, it is assumed

that the large amount of data and large parameters of neural networks create a gen-

eralization over a large data distribution, this creates a problem where some local

minimas of optimization are reasonably good solutions [139]. Given the large data

requirement for solving such tasks, transfer learning between task domains is de-

sirable.

This chapter will present experiments focusing on classification by various neu-

ral network architectures. All classification tasks will attempt at minimizing the

cost C given by the cross-entropy loss of the network estimates and negative log

likelihood(NLL) loss for binary classification with 0 and 1 as output is, and multi-

class(K) classification respectively is,

C ( fW(x),y) =−(y log( fW(x))+(1− y) log(1− fW(x)), (4.1)

for multiclass classifier with input vector x and output vector y the NLL is written

as,

C ( fW(x),y) =−
K−1

∑
k=0

yk log( fW(xk)). (4.2)

Thus the average NLL loss over a set of N data samples {X ,Y} is,

C ( fW(X),Y ) =− 1
N

N−1

∑
i=0

K−1

∑
k=0

yi,k log( fW(xi,k)). (4.3)

where xi,k and yi,k are the input and output vector values of the kth component of

the ith element of the set {X ,Y}.

The optimization of these neural network models is done using gradient back prop-

agation.

This chapter deals with improving the neural network performance using prior in-

formations. For this, three strategies are employed,

1. Introducing architectural changes in the neural network model for incorpo-

rating constraints forced by the physical models of the data,
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2. Including the statistical and physical biases of the data into the neural net-

work as weight priors,

3. Drawing neural network based systems such that they do task separation and

such that their estimates can be corrected using task priors.

In this chapter, a bayesian interpretation for using a prior learning on the neural

networks is first presented in the Section 4.2, a definition of the transfer-learning

and the constraints this definition imposes is presented in Section 4.2. A brief intro-

duction of the information inclusion strategies for neural network are described in

Section 4.3, the physical model constraints, the weight priors and the task separa-

tion are introduced. Section 4.4 introduces a constituent learning procedure which

is a proposal for intra-domain transfer learning.

The dataset used for experiments demonstrating these concepts is described in the

Section 4.5. Section 4.6 introduces a hand-shape classification problem and the

experiments are made with a hand model neural network training procedure for us-

ing badly processed data, and non-specific classes for better initilsation of weight

priors is also presented in this section. Finally, it is demonstrated that weight pri-

ors learnt in one pre-processed dataset can be transferred to same dataset but pre-

processed with another scheme. In the Section 4.7 the experiments on the intra-

domain transfer learning method of Section 4.4 are made. Then the combination of

the Section 4.3 and Section 4.4 is shown in the Section 4.7.4. These experiments

conclusively demonstrate the advantages of the information combination.

The Separation of task and their eventual combination to impose task model con-

straints is discussed in the Section 4.8, the experiments are conducted to demon-

strate improved performance on a hand-gesture classification task. Finally, in Sec-

tion 4.8.2 a combination of task model and task priors enforced by a combination

of neural network models is shown and proposed as an optimum solution for the

hand-gesture problem.
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4.2 Defining the Learning Process

Given the transformation y = f (x,Θ), the linear regression can be formalized by

Bayesian treatment. Assuming that the prior probability distribution over the pa-

rameters Θ is Gaussian distributed as N (µo,ωo). If the conditional variance for

f (x,Θ) is ωc, the relation with the posterior distribution p(Θ |D ,ωm) can be give

as,

p(Θ |D ,ωm) ∝ p(Θ | ωo)p(D |Θ,ωc). (4.4)

For D of N observations and using the assumption of independent Gaussian distri-

bution, the likelihood of observation y = y1,y2,y3....,yN is given by

p(D |Θ,ωc) =
N

∏
n=1

N (yn | f (xn,Θ),ωc). (4.5)

In case of classification the log likelihood L of Θ given the outcome is L (Θ | y),

the above method is used to solve for Θ such that the average log likelihood L̂ is

maximized over the dataset D . Given a neural network fW(·) with W representing

the multidimensional parameters of the neural network. The Bayesian approach for

linear regression can not be directly applied for the neural networks. The multiple

non-linearities introduced by the squashing functions at the neural network layers

create non-linear dependencies between x and fW(x) : x ∈ D . A closed solution

and an exact convex optimization of the log loss of neural network output is not

possible. Thus the posterior distribution is no more a Gaussian distribution.

To overcome these constraints [140, 141] proposed an analogy between hyper-

parameter optimization in neural networks and the Bayesian optimization for sim-

ple linear regression. The non-linear nature of the neural networks and necessitates

assumptions of small posterior distribution variance in comparison with the W.

This assumption allows a posterior in the Gaussian form.



57 4.2. Defining the Learning Process

Transfer Learning

The classical machine learning algorithms solve isolated problems and methods

for identifying and transferring the task knowledge are not very popular. Separate

tasks have different decision boundaries and formal methods for modification of

the boundaries are hard to define. But, when a learning agent learns a certain task,

it should be able to apply the knowledge gained from the learning to a distinct new

task. This process of transferring information from one task to the another is de-

scribed as transfer learning.

In [142] transfer learning has been defined as maximum posterior adaption of max-

imum entropy models. A existing model which has been trained to be maximum

information model is adapted such that the adapted log likelihood is maximized.

During the adaption phase the prior distribution of the parameters is centered at

around a mean µ0 estimated from the background data. For a feature-set Fb learnt

on a background task, [143] explains the process of knowledge transfer to feature-

set Fa. The overall probability estimation when the transfer learning is made be-

tween the dataset Ds and Dt is thus given by the relation between the two datasets,

the datasets can be weighted by a weighing factor w such that for a pair of input

and label x,y, it is defined as,

w(x) =
p(x,yt ∈Dt | ωc)

p(x,ys ∈Ds | ωc′ )
. (4.6)

for the known variance ωc and ωc′ . Eventually, given pS = p(ys | xs), the pT =

p(yt | xs) is desired which can be estimated using the proportional relationship,

pT (y | xt) ∝ w(xt)pS(y | xt)pS(xt). (4.7)

Here, ys and yt are the labels for the dataset Ds and Dt respectively. And, y is the

output of the model. It can be argued from (4.6) that this formulation of transfer

learning enforces similarity of the data sources.
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Figure 4.1: The concept for learning from priors and the data.

4.3 Neural Network Priors and Constraints

The Bayesian analogy for the neural network optimization allows interpretation of

the pre-trained network weights as biases and neural network architecture as con-

straints. This assumption allows various methods for inculcating model informa-

tions while training. A short introduction to the concepts that form the basis for the

experiments in this chapter is presented in this section. The earlier mentioned three

strategies can be enforced by architectural and weight priors. This is explained in

some detail here, before the experiments are described.

4.3.1 Weight Priors

The classical transfer learning as described in the Section 4.2 creates a constraint

of similar data-space for two datasets. A method for transfer learning over data

with different property domains is proposed in the next Section 4.4. It is done by

finding a common space on which certain properties of both datasets are mapped.

It is proposed that data from, different sensing modalities like the RGB camera,

depth camera or Infra-red cameras, recording the same object or event can be used

to initialize neural networks for problems on other dataset.
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4.3.2 Architectural Constraints

The probabilistic interpretation of the neural network allows us to think of the ini-

tialization of the connection weights and the choice of network model as a prior.

The training procedure modifies the weight prior in the process of optimization. A

constraints set by the neural network architecture as in [92] and [93] changes the

learning behavior. It is argued here, that the nature of data can be encoded into the

architecture of the neural network. In the experiments later, it will be demonstrated

that this may improve the performance of a neural network.

While a physical model of data introduces a bias, a similar approach can be used by

enforcing the known-information about the separate properties that form the com-

ponents of a task for better learning. It will be demonstrated that separation of

independent learning tasks and their combination thereafter, creates a system that

performs better than a single network.

4.4 Constituent Transfer Learning

Domain adaptation is an important field of machine learning but apart from few re-

cent works based on adversarial networks [144], [145] their are only few attempts

for using neural networks for attempting to solve the tasks like domain adaptation

and mapping described in [146] and [147] are few. Here, inspiration from these

works is used to produce solutions on neural networks.

Let us begin with considering two datasets Dα and Dβ from two sensors measuring

on separate principles. The two datasets have recorded either the same or a similar

events (e.g. a hand shape). Now, let us assume that the data type on which we

wish to solve the problem is of the kind that matches Dβ and the data type Dα is

available in larger quantity. The problem is now to find a mapping on the data that
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Figure 4.2: The description of the proposed transfer learning, where the data con-
stituent remain the same but source changes.

extracts useful features from Dα , such that a network learned on this representation

can be used as warm start for a faster learning progress on Dβ , than if it would only

be learnt on Dβ (from scratch). The principle is also illustrated in Figure 4.2.

Earlier in Chapter 3, it was mentioned that the concepts O ⊆ O explaining IP(X)

are useful for understanding IP(Y|X), in this section this property of the latent vari-

ables will be employed for an intra-domain transfer learning. The properties de-

rived from the unsupervised learning of image dataset Dα and the reasoning in the

model which are common to both Dα and Dβ are used for transfer learning. The

training procedure is developed such that the constituents of the image models can

be transferred over independent recording domains, with similar models.

Given a set of property which is represented by a numerical proxy C. This numeri-

cal representation lies on the same space IRN, and to which both Dα and Dβ behave

similarly. This property is used to learn a mapping from Dα to C. Learning this

mapping provides an initial point for optimization to solve a new problem on the

Dβ . This can be formalized as:

Given that the c is vector of matrix C which is the numerical representation of the

properties of all samples in Dα , then a fp is learnt such that,

fp(x) = c∀x ∈Dα ,
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Eventually, a mapping fm between the elements of Dβ and the corresponding task

labels y is learnt, such that,

fm( fp(x
′
)) = y∀x′ ∈Dβ

4.4.1 Constituent Learning

This section describes an unlabelled initialization for transfer learning. It is spe-

cific to data describing events composed of similar constituents, i.e. similar events,

described via different modalities. The reasoning for the choice of various data

embedding schemes used for training an initializer neural network are presented.

Finally, a similar scheme with labelled data is presented. The principal objectives

of constituent learning are

• Learning a representation of data properties.

• Data properties that remain consistent over source and target recording schemes

should be captured.

• The learned features generalize well to new tasks.

Unlabeled constituent learning

A neural network fW(·), when trained to perform classification or regression task,

maps the input data sample to an independent output space. A classifier learns

to compose discriminatory features. Some networks magnify or suppress features

depending on the task targets. It is proposed to train the neural network to learn

the constituent properties of the problem space. This is done by training a neural

network to learn a mapping for the target representation of the data.The neural net-

work f p
W(·) thus learns the mapping fp on Dα . Such representations are conducive
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to transfer learning when the data-sets are similar in some physical constitutions

but originate from different sensor sources. More specifically, the weights w of the

f p
W(·) learning fp are trained such that the following loss function L over the dataset

is minimized,

min
w

L( fp(X), f p
W(X)), (4.8)

X ⊂ Dα is the combined representation for a subset of elements from the Dα of

size n. fp : IRD 7−→ IRd,d << D is the accurate transformation which creates a

descriptor for the dataset and transposes the data to Y . A squared l2 distance is used

as a loss function. It is recommended that while using an unbounded loss function,

both the output activations of the network and the target vectors are normalized to

a unit sphere before the loss calculation. Effectively, the loss function L(·) is,

L(X) =
1
n

n

∑
i=1

li, (4.9)

with

li = ‖ fp(xi)−T (xi)‖2 (4.10)

and x is the spherical-normalization operator and xi is the nth element of set X .

Choice of target representation

The mapping that creates the target representation should

• Preserve the properties which are consistent over the datasets.

• Try to conserve information.

• Diminish the variance caused due to outliers or noise.

If the transformation fp acts on the input X such that Y = fp(X). The choice of fp

is to be made such that it assists the network in learning self-contained properties

of the data rather than the correlation between the input X and the output Y in some
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independent target space. Apart from this property, a low dimension projection

scheme such as Principal Component Analysis (PCA) transformation satisfies the

earlier mentioned requirements of alleviating noise while simultaneously preserv-

ing transferable properties and the information held in the data. PCA also handles

the normalization problem as the data is spherised during transformation process,

also the PCA optimization does not involve local minima [148]. This contributes

to the important property that the transformation fp is constant for the dataset and

does not depend on initialization of the algorithm or the order in which data is pre-

sented to the algorithm. A neural network, however is capable of non-linear trans-

formations and training the network to mimic a PCA transformation forces a linear

mapping constraint on models capable of learning non-linear transformations. The

Locally Linear Embedding (LLE) [41] for dimensionality reduction also employs

a non-linear optimization and satisfies requirements discussed earlier. Thus, the

two transformations used for training an initializer neural network are the PCA and

LLE. The low dimensional representation from these is the numerical representa-

tion of the constituents of the data.

Labeled constituent learning

Learning a neural network with constituent information about the data is also pos-

sible with a scheme where the network is trained with labels that represent self-

contained properties of the input data. This necessitates datasets with ground-truth.

Though, it is important that the ground-truth could be approximately modeled en-

tirely from the input data. The model, albeit, may be extremely complex.

Later in an experiment with the hand skeleton structure it is stated that, the skeleton

structure of a hand is a valid low dimensional representation and the location vector

of the skeletal points relative to the palm center is a self-contained property. The

skeletal point vector of the hand is the numerical representation c which represents
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some property of hand shape. The neural network f p
W(·) in this case will learn the

mapping fp which is a function that projects image input to skeletal point locations.

4.4.2 Constituent Learning Procedure

The classical transfer learning scheme is such that, an (initializer network ) is first

trained either in a supervised or unsupervised manner on a large database (Dα ).

The trained network is then re-trained to solve a separate problem or to work with a

new dataset(Dβ ) of the same kind, or both. If the initial neural network acts on the

input as f p
W(·), the retraining process modifies the neural network to f m

W(·), which

is subsequently called solver network.

Let two datasets Dα and Dβ be recorded from two sensors of different modality.

The target is to use Dα to improve the performance of a solution on Dβ . Thus,

properties on Dα that can be transferred to Dβ are identified. A neural network

is trained to mimic the property of the model fp(·) on the dataset Dα . Following

the conventional transfer learning technique, the output layer of the neural network

trained on Dα is modified and the network is re-trained with Dβ to solve the target

problem. The procedure is described in Algorithm 1.

To create the initializer, the neural network, which in a crude sense is a very high

dimension regressor, is trained to model a function. In such scenarios, it is highly

likely that many weights of the neural network collapse to very small values. These

weights of the network may then remain unaffected during the training process. To

discourage this behaviour a random Gaussian noise is added to the target represen-

tation. The variance of the Gaussian noise is sampled from a exponential power

distribution.

The initializers explained in the Section 4.4.1 when trained are approximations of

property conservation projections. It is important to remember that on re-training

with a new dataset for a new task the learnt projection function fW(·) is itself mod-
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ified to fw′ (·).

4.5 Dataset for Experiments

4.5.1 Hand-Shape Dataset for Model Experiments

The next sections will discuss using the model constraints and model priors for the

classification of hand-shapes. A hand-shape dataset has been recorded for these

experiments, the data is recorded on a desk setup. Wrist onwards the hand has high

degree of freedom. A hand can thus form various signs and symbols, some of these

poses are naturally used for communication. Of these possible symbols six poses

are defined and recorded as the top view of the hand. Five of the poses are ’Fist’,

’Flat’, ’Joined’, ’Pointing’, and ’Spread’. The ’Fist’ is a closed fist hand with palm

facing downwards. Pose ’Flat’ is when the palm is open with the four fingers joined

together. ’Joined’ is when the hand is conically shaped and points downwards with

all fingers touching each other. ’Pointing’ is the index finger pointing forward.

Finally ’Spread’ is an open palm with fingers spread apart. Further, a class of hand-

pose in the places where the hand transitions from open to close are recorded. This

class can have different uses. It can be identified as class of unintended poses or

one that helps describing transitions of pose in a gesture.

Data Recording and Segmentation

A large dataset of hand-pose is collected using a 3D-ToF camera the ’pmd cam-

board nano’. The datapoints are 16 bit two channel images of dimension 120×

165×2, Figure 4.3. The first channels of the matrix represent the amplitude of the

reflected ray received by the camera and the second channel are the range values of

the respective pixels, expressed in millimeters.
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Algorithm 1: Procedure for training the initializer network and using it to
train a new network.

input : The Dataset Dα

input : The Dataset Dβ

input : Labels Tβ for Dβ

network: neural network with random initial weights.
output : Initializer network trained to approximate T (·)
output : neural network trained to complete the task on Dβ

/* Training Initializer network. */
1 for i in Initialepochs do
2 for dataPoint in Dα do

/* Generating targets. */
3 targ←CalcProjection(dataPoint);
4 targ←targ +N (0,σ);
5 pred←ForwardNN(dataPoint,iniParams);
6 loss←CalcLoss (pred,targ);
7 iniParams←BackProp (loss, iniParams);
8 end
9 end

10 iniNet← SaveNetwork (iniParams);
/* Training solver network. */

11 params← GetParams (iniNet);
12 for i in epochs do
13 for dataPoint, label in Dβ ,Tβ do
14 pred←ForwardNN(dataPoint,params);

/* Using groundtruth targets. */
15 loss←CalcLoss (pred,label);
16 params←BackProp (loss, params);
17 end
18 end
19 usedNet← SaveNetwork (params);
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(a) Raw Distance Data. (b) Raw Amplitude Data.

Figure 4.3: The hand shape channel sample.

(a) Fist (b) Flat (c) Open (d) Point (e) Join

Figure 4.4: Sample of the processed and normalized Hand shapes.

Recording Setup

The data is recorded within a cuboidal space with varying heights. The ToF camera

is mounted vertically above the recording region. The furthest vertical range is

marked by a table top. The height of the camera from the table varies between 400

and 800 mm. The closest vertical approach to the camera is marked at 150mm from

it. While recording the participants were asked to wrap an absorbing cloth on their

arms, Figure 4.5.
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(a) The recording ToF sensor with a Leap Mo-
tion

(b) The recording set-up device and the sensor
housing

Figure 4.5: The recording setup for the on desk recordings.

Recording

Twelve participants were recorded for pose and gestures. Each participant keeps

his palm as one of the defined poses, and randomly but not abruptly moves the

palm within the virtual cuboidal space. This is recorded for two minutes, for all six

poses. Such recording of the data adds variances in depth and variances of hand

orientation in the horizontal plane. The participants are also asked to rotate their

palms to add the angular variances in the vertical plane.

The recorded participants have varying skin textures and palm sizes, some of the

participants are recorded while wearing rings.
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Segmentation

The absorbing cloth wrapped on the arms of the participants assists in hand seg-

mentation by thresholding the amplitude channel of the image. The reflectance

constraint does not entirely remove the background and thus the closest contour

greater than a threshold area is chosen as the palm region. The segmented palm

region is then converted into a binary image which is used as a mask for both chan-

nels. The resulting image is a two channel 16-bit image of the palm isolated from

the environment. After segmentation The depth channel values for the background

are set to a fixed maximum-depth and the amplitude values are set to 0. The ba-

sic processing after segmentation involves re-normalisation of the segmented hand

pixels to values between zero and two hundred fifty five.

4.5.2 Gesture Data and Features

Further, in this chapter the next sections will also discuss using the model con-

straints on time series classification problem. A dataset recorded in the car to solve

a hand gesture classification problem has been recorded and will be used to demon-

strate these experiments. In this section the definition of the gestures and the record-

ing setup is defined.

A hand-gesture is a sequence of frames of moving palm. It can involve motion

of palm without change in the hand-pose or it could be defined as a sequence of

hand-poses where the occurrence of the different hand-poses have a predictable,

predetermined order. For this work the recorded hand-gestures include, ’Clicking’,

’Swiping’ in Left and Right direction and in Up and Down motion, ’Accepting’,

’Declining’, ’Drop’ and ’Grabbing’. ’Clicking’ involves a forward horizontal mo-

tion of the pointing finger. Hand motion in horizontal left-right direction is denoted

as ’Swiping’ in left and right direction. The swiping motion may be repeated more
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than once. Similar vertical palm motion is denoted as vertical swiping. ’Accepting’

is a motion of hand outwards from the screen (relative to the camera) . ’Declining’

is the motion of a hand into the screen. ’Grabbing’ involves a transition of a spread

hand with the palm facing vertically downwards to a position of joined fingers ac-

companied with some vertical motion. ’Drop’ begins with joined fingers ending in

a spread hand with a short downward motion.

4.5.3 Data Collection and Properties

The output frames from the camera have two channels, the depth and the amplitude.

The amplitude value of the pixels are proportional to the reflectance of the surface

and inversely proportional to the square of the distance values. The data is recorded

with a frame rate of 25 frames per second.

We use a Photonic Mixer Device (PMD) Nano sensor with a resolution of 120×165

pixel for recording data. This ToF based 3-D camera is attached to the rear-view

mirror holder protection. The experiments for hand gesture recognition inside the

car are conducted with seventeen participants. The data is recorded inside the car

and each participant repeats nine gestures around the sat-nav screen of the car. Ev-

ery participant repeats each gesture six to twelve times. Each frame of the sequence

is marked with two labels. ’Accepting’, ’Declining’, ’Drop’, ’Grabbing’, ’Click-

ing’, ’Horizontal’, and ’Vertical’ are used as the primary labels. Sequences marked

as ’Horizontal’ are marked with a secondary label ’Left’ and ’Right’, and those

marked with ’Vertical’ are marked with secondary labels ’Up’ and ’Down’.

Training and testing sampling

Before training the network, the data was shuffled such that the frames from a com-

plete gesture sequence stay together, while the gesture sequences were placed ran-
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Table 4.1: Number of gesture class samples in dataset

Up Down Left Right Click Accept Decline Grab Drop TOTAL

data-points 220 226 247 247 160 188 194 172 160 1814
down-sampled 44 45 49 49 32 47 48 34 32 380
Total 264 271 296 296 192 235 228 204 192 2194

domly. This shuffling was essential because the participant continuously repeated

the same gesture multiple times during recording. Each frame of the gesture se-

quence is marked with the label for the entire sequence. This allows us to train the

network in a way such that it attempts at predicting the sequence-label from the

start of the gesture.

The total number of available sequences for training the model are increased by

sub-sampling approximately one-fifth of sequences in time. Equal proportion of

sequences from each class of gesture are reduced to half duration. Such down-

sampling effectively creates sample-points on which the duration for completing

a gesture is shorter than the average gesture sequence. The start and end of each

sequence including the sub-sampled once are marked. Both training and testing

phase of the algorithm use these sequence markers. Table 4.1 gives a description

of the distribution of the data-samples over classes and the number of sub-sampled

sequences created for each class.

For testing a leave-two cross-validation was performed on the data. This was com-

pleted by training the dataset collected from all but two sets recorded subjects and

was tested on the two subjects left out during training. The data from the seventeen

participants was distributed into eight sets of two participants and one set of one.

The average accuracy is reported on nine-fold repetition of cross-validation. The

set with only subject when used as test data uses a leave-one cross-validation. The

sub-sampled sequences are separately divided into nine groups and then used in

training and testing accordingly.



Chapter 4. Knowledge Inclusion for Better Neural Network Learning 72

Table 4.2: Description of features used for the experiments

Type Feature Names Description

Location

Finger Coordinates The X,Y,Z coordinates of the tracked pixel
closest to the screen.

Hand Coordinates The X,Y,Z coordinates of the tracked palm
centroid.

Finger Azimuth Polar angle of the Principal component vector
of the finger cluster of the palm.

Finger Polar Azimuth angle of the Principal component
vector of the finger cluster of the palm.

Velocity
Finger Velocity The X,Y,Z components of the tracked pixel

closest to the screen.
Hand Velocity The X,Y,Z components of the tracked palm

centroid.

Shape
Concave Depth The maximum distance between convex hull

and edge of the segmented palm region.
Convex Ratio The ratio of the size of the convex hull around

the palm and the segmented palm region.
Active Pixels The number of pixels in the segmented palms

provides an indication of palm-size.

4.5.4 Segmentation and Feature Extraction

These experiments are conducted by identifying the hand gesture by feature ex-

traction. These features are calculated on the palm region segmented by creating a

virtual cuboidal space in the region where the hand-gestures are observed.

A background was generated by recording a video in the car and keeping the con-

sistent pixels. This 3-D background image was then removed from each incoming

images of the video sequences. Furthermore, the palm pixel closest to screen is

tracked. Hand region is segmented by calculating the largest connected contour

and, another a threshold is used for palm-hand segmentation. This threshold is esti-

mated by by K-means clustering on a sample of data. The Mahalanobis distance is

used as measure for calculating the K-means clusters for palm-finger segmentation.

The hand palm centroid and finger-tip are estimated and tracked using a Kalman
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filter. Features are further described in Table 4.2. The features were centred and

normalized such that the mean of each feature element over the training data was

zero and the variance was unity.

The foremost location of the palm was tracked in the segmented video frames. The

coordinates of the palm centroid were estimated. Moreover, the azimuth and po-

lar angle of the extended fingers were calculated by covariance matrix analysis,

via principal component analysis. The number of active pixels after completion

of the segmentation procedure was an indication of the palm shape. The convex

hull and concave depth of the palm, calculated at every frame,describes the overall

hand shape in the gesture sequence. Motion descriptor features include velocities

of the foremost finger and hand centroid in all three dimensions. Thus, a seventeen

dimensional vector was used to describe the palm shape and motion at each frame.

4.6 Physical Model Constraints

In this section a set of experiments with the constraints of the physical model of the

data introduced to the neural network are explained. A neural network is designed

and trained; it is compared against a modified network with reduced connection but

including information about the degree of freedom of the hand shape. This section

describes various experiments conducted on the same hand-shape dataset and the

same network with the three pre-processing methods. The hand shape classifier is

a neural network trained on the Hand Shape dataset described earlier.

The hand-pose classification network is a sequential neural network. The selected

architecture has four convolution layers followed by four fully connected layers

which perform inner product. Each layer is connected to a Rectified Linear Unit

(ReLu) which adds non-linearity to the network. A convolution layer is connected

to the input data. The output of the top three convolution layers is pooled by max-

pooling strategy. The second and third pooling layers also sub-sample the output
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Figure 4.6: The CNN model with hand model constraints

Figure 4.7: The larger CNN model without hand model constraints.

Figure 4.8: The neural network models trained for classification of the hand shapes.

image of convolution layer by a factor of two. The output layer for the network is

a fully connected layer followed by a softmax function. The strategy for creating a

neural networks model that solves a task on the hand model is designed such that a

part of the neural networks unit is used for learning some properties the hand model

neural networks f h
W(·). Further, additional layers are appended to the model unit

this creates a new neural networks that attempts to solve task with imposed soft

constraints of hand model. This new model is represented by f ht
W(·).

The hand models used for hand-wrist replacements have often used a twenty-two

degree of freedom [149] model based on joint locations. In the model trained for

the classification of the hand-shapes the model unit used is based on these fixed

number joint model of hand. The combined state of the joint locations of the hand
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provides information of the hand shape. The hand-model information is included

in the network by adding a twenty-two node layer as one of the outer layers of the

network. This creates a funnel shape in the network and forces the network to learn

from a small dimensional representation of the input images.

In the first set of experiments a model enforcing layer is trained simultaneously with

the classifier. Later, in the chapter, the experiments showing model information

transfer will detail a solution on transfer learning using model information.

4.6.1 Training the Hand Model Network.

As described in the Section 4.5.1 six shapes are recorded to understand the hand-

gesture, one of the classes is a transition shape which is inconsistent over various

people. Though, eventually the model is trained to classify five classes, it is trained

with all six classes to initialize the weights using a relatively larger dataset. The

gradient descent optimization is completed by using the NLL loss.

The described training procedure uses the concept of transfer learning on the pro-

posed model.

• The model f h
W(·) is trained on the dataset D with six hand shape classes,

including the poorly segmented and incorrectly labelled data.

• A subset of the dataset Ds is selected. Ds includes five distinct hand shape

classes, and carefully segmented and labelled data is used.

• The weights from f h
W(·) are used to initialize f ht

W(·) which is re-trained on

Ds.

In the first phase of training which uses all six classes of data the network wights

are initialized by xavier initialization [150]. Of the six classes, "Point", "Join",

"Open", "Fist", "Flat", and "Transition" the resulting classifier f ht
W(·) is trained and
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tested on the first five. All the channels of the input image are normalized over the

dataset to [0,1]. This normalization is done by recording the maximum amplitude

value for valid pixels in the dataset. The maximum value for the depth defined

during recording is used for depth channel normalization. Normalization is done

while masking background pixels.

Experiment on the raw data

The first set of experiments are conducted on a two-channel input image of the

dataset D and Ds. The second channel provides the depth information which assists

the network in assimilating the scale variations. Both channels are mean subtracted

independently.

As described earlier in Section 4.6.1 the training is performed in the two. The train-

ing progression on the test data for the first phase with six class and poorly selected

inputs is shown in the Figure 4.9(a), the second phase of training is shown in the

Figure 4.9(c). The resulting trained network f hr
W(·) provides an average accuracy of

82%.

Experiment on amplitude images

The same procedure as described in Section 4.6.1 is conducted on a single channel

input of the amplitude values to train the neural network f ha
W (·). Using the depth

channel of the image the amplitude channel is projected on a plane at a fixed dis-

tance from the camera. This, makes the input images independent of the scale.
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(a) Accuracy progression for training stage 1. (b) Loss progression for training stage 1.

(c) Accuracy progression for training stage 2. (d) Loss progression for training stage 2.

Figure 4.9: Training progression for training with two-channel images

(a) (b)

Figure 4.10: Training progression for training with amplitude images. 4.10(a):
Accuracy stage 2. 4.10(b): Loss stage 2.
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(a) Accuracy propogation training stage 2. (b) Loss propagation training stage 2.

Figure 4.11: Training progression for training with binary images.

Experiment on binary images

The experiments are also carried out on the binary images extracted from the scaled

amplitude images. The neural network f hb
W (·) is tested and trained. The best classi-

fication performance on the model was 90%. The better performance of the binary

images can be attributed to the binary nature of the data. The intensity values of

the pixels of a ToF camera depend on the reflectance of the surfaces and the inci-

dence angle of the active light these factors contribute ambiguous information to

the amplitude channel.

4.6.2 The Gains from the Model Constraint Imposition

To validate the advantage of the model constraints, the network is compared against

another network with the model enforcing layer replaced by a larger layer Fig-

ure 4.7. The Datasets D and Ds are used in the scheme as described earlier. The

performance of the raw, amplitude and binary image dataset is compared on both

the original and model-enforcing networks. The Table 4.3 shows the comparison

between the model with the funnel shape created by hand model and the standard

model. The average performance of the hand model network exceeds the perfor-
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Table 4.3: Comparison of the Hand Model Network with the larger CNN on the
three kinds of datasets

Data Raw Amplitude Binary
Shape HandCNN CNN HandCNN CNN HandCNN CNN

Fist 84 84 87 95 87 86
Flat 83 80 87 95 89 87

Open 82 82 82 95 91 90
Point 86 85 88 95 91 91
Join 79 82 81 95 93 91

Dataset 83 83 85 83 90 89

mance of the network with a larger output layer described in Section 4.6.1.

Feature transfer on distinctly preprocessed dataset

The two stage learning uses the ability of a CNN to transfer learnt features over

separate problems. Experiments were conducted to test if this similar to step train-

ing procedure can also be used with networks which were trained on the same data

with different pre-processing procedures. The experiments were conducted on the

corrected, five class hand data set Ds the background was isolated. Effectively, The

two stage training was replaced such that the first network was trained on the bi-

nary images to classify the five classes. The trained network was used to transfer

weights to the a network initialized to classify the amplitude images.

Two neural networks f ha
W (·) and f hb

W (·) were trained simultaneously with the ampli-

tude and binary images Da
s and Db

s . The networks were initialized with the same

random weights, the images were presented to the both neural networks in exactly

the same sequence and the range of values of the image pixels in both the datasets

was [0,1]. Once the two networks were separately optimized, an amplitude nor-

malized image was fed into the neural networks f ha
W (·) and f hb

W (·) respectively. The

mean channel output at each layer were calculated and compared. The comparison
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showed that the mean difference calculated in the euclidean sense for the first pool-

ing layer output was of the order of 10−6, which increases to 10−3 for the second

pooling layer and 10−2 for the output convolution layer.

These experiments indicated the applicability of the feature transfer in the given set-

tings. The difference was considerably larger for the fully connected layers which

were closer to the output. This indicates that the filter weights learnt by the net-

work for the first cases are general and can be reused for the training. The property

of feature transfer was tested by employing the model trained with binary images

obtained in last section to directly test the amplitude normalized dataset. In this

experiment a test accuracy of 75.4% was achieved. When the same model was used

as an initialization for the second phase training of the amplitude normalized im-

ages the accuracy of the amplitude images crossed 80% within 500 batch-iterations,

Figure 4.12.

Figure 4.12: Training Accuracy: Binary Image Dataset Fine Tuned with Amplitude
Image Dataset.
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(a) MNIST Sample (b) SVHN Sample

Figure 4.13: Image sample from the two digit datasets.

4.7 Constituent Learning for Weight Priors

To validate the scheme proposed in the Section 4.4 and to demonstrate the useful-

ness of the constituent learning method. In this section, three sets of experiments

are performed. These experiment also show the learning of weight priors.

4.7.1 Digit Low Dimension Representations to Digit Classifier

The first set of experiments were completed on the MNIST and the SVHN dataset.

MNIST has hand written numerals and SVHN dataset has house numbers. The

MNIST dataset is centered, scaled and anti-aliased version of binary images. The

anti-aliasing changes the binary images to grey-scale. In our experiments we con-

vert the MNIST data samples to binary images by thresholding. Similarly, the

RGB SVHN dataset is converted to grey-scale images. One sample of each dataset

is shown in the Figure 4.13. The MNIST data is already centered while the SVHN

dataset provides boxes of size 32×32 around the target digit.
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(a) The original sample (b) Hand depth image (c) Hand Binary image

Figure 4.14: Image sample from the Hand dataset.

In this experiment, the binary MNIST data was used to train a digit-initializer net-

work to solve SVHN classification. The architecture in [151] was used for com-

pleting the experiments. Two such networks were trained, one with PCA, the other

with LLE, as the transformation function. These initializer networks were then

used to initialize the parameters for training the solver network by the gray-scale

SVHN dataset. The outer 64 node layer is replaced by a 10 node classifier layer.

The SVHN data is now used to train the network data to solve the digit classi-

fication problem on the SVHN dataset. Similar experiments are conducted with

LeNet [152] initialized by a subsample of gray-scale SVHN used to train the bi-

nary MNIST.

4.7.2 2-D Hand Pose Locations to Hand Shape Classifier

The dynamic hand gesture dataset of [6] provides depth images and skeletal points

of a hand. The one and two finger hand shape of the gestures pinch, rotate, swipe

up and left, are used to create a ten class shape-classification problem to validate

the labeled-constituent learning explained in Section 4.4.1.

A hand binary dataset (Figure 4.14) is generated from the depth images. A neural

network which resembled the single-stream of [153] was trained with those images

as input and the x,y coordinates of the skeletal points as labels. Thus, the output
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Table 4.4: Digit Classification Accuracy :Two Initializations.

Init MNIST to SVHN SVHN to MNIST
Type Accu % Iteration Accu % Iteration

Random 92.77 100,000 98.09 100,000
PCA 90.76 60,000 96.57 60,000
LLE 92.65 10,000 97.03 60,000

Table 4.5: Hand Classification Accuracy: Regression Initializer.

Iteration 60,000 70,000 80,000 90,000

Accuracy 79.96 79.76 81.64 81.88
Accuracy for Randomly initialized Classification 81.32

layer of the network had 44 nodes. The coordinates of the skeletal points are relative

to the center of the hand. Noise is also added to the skeletal points. The variation

of the hand location in the images of the dataset is not large, to better learn skeletal

position relations with respect to the hand, the hand location in the training set is

often randomly inside the image area. The resulting hand-pose network trained on

the binary hand images is then modified to behave like a shape classifier for the

depth images. The fourty-four node output is changed to ten node softmax layer

and the network is re-trained with the depth dataset.

4.7.3 Results of Learning with Constituent Transfer

In order to measure the quality of transfer learning, the neural network parameters

are frozen and the outer MLP layer weights are initialized with norm-random vari-

ables.

The initializer neural network is trained for a fixed number of iterations with unla-

belled data to learn the target transformation, then the solver network is initialized

from the initializer network. The accuracies are reported after at various iterations.
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Figure 4.15: Progress of the MNIST classification with and without initialization.

For comparison a randomly initialized solver network is trained for a predetermined

number of iterations to solve the task and its accuracy is recorded.

Digit classification experiment

The randomly initialized SVHN neural network was trained for hundred thousand

iterations until the test data achieves an accuracy of 92.65%. It is important to

note that a batch of sixty-four is used for training and the reported iterations are on

batches and not epochs. SVHN neural network was initialized with PCA and LLE

on MNIST and then the solver neural network was re-trained on SVHN dataset.

The Table 4.4 shows the iterations required and the accuracies reached for this ex-

periment. The same experiments were conducted when the SVHN was used for

initialization of classification on MNIST database. The observations from those

experiments are also noted in Table 4.4. In both cases the initialization with a tar-

get representation helped. The reported accuracies on sixty-thousand iterations are

comparable to accuracies at hundred-thousand iteration in case of non-initialized

network. The accuracy progress shown in Figure 4.15 shows the comparatively

faster learning in the initialized model for the first sixty-thousand iterations.

Hands experiment uses the hand shape classification network which is initialized
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by training for skeletal position for one hundred fifty thousand iterations. This net-

work is then used for the classification of ten classes. The Table 4.5 describes the

accuracy performance over iterations of training. The initialized model achieved

the accuracy achieved by the non-initialized network ten thousand iterations ear-

lier.

The two experiments demonstrate that we could employ the model-based con-

stituent information for transfer learning. Effectively, for similar accuracies the

model pre-trained with SVHN sees 2,560,000 less repetition of MNIST data points,

the model pre-trained with MNIST sees 3,000,000 less repetitions of SVHN data

points and the model for hand shape classification trained on the skeletal data sees

640,000 less repetitions of hand data points and obtains a better classification accu-

racy.

An unlabelled and constituent property based transfer learning approach is useful

in improving the learning performance on a hand shape classification problem on

depth data using a network initialized by learning skeletal points on binary hand im-

ages. This finding allows transfer learning over datasets which have similar physical

properties but are recorded from sensors of different properties. It is possible that

weight collapsing can be better handled by designing various representations for

the data and using them randomly to generate targets while training the initializer

network

4.7.4 Weight Priors with Physical Model Constraints

In this section a combination of the weight prior learning and the physical model

constraints is attempted. The earlier described hand model neural network is re-

trained using the concept from the constituent transfer network. The convolutional

network is now trained to learn a twenty-two dimension low dimensional represen-

tation of the hand pose images.
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The frames from hand gesture sequences are used to learn a SVD based low di-

mensional representation extracted from the PCA. Ten thousand frames are used

to learn this PCA decomposition. Further, the hand model network is trained as a

regressor with sixty-five thousand image frames. The low dimensional representa-

tions of the hand images are the mapping output to be learnt by the algorithm. The

PCA-embedding network is trained using a batch learning scheme with a batch size

of sixty-four. The PCA embedding is tested on six thousand frames from the same

gesture dataset.

Finally, a five node soft-max layer is added to the PCA-embedding network and it

Figure 4.16: Test loss progression on PCA embedding network.

is fine-tuned to learn a classifier. The classifier learnt initialized by this procedure

learns faster. The accuracy performance improved when the CNN for pose classifi-

cation is trained with the proposed initialization based on first training the network

with the PCA embedding. The initialized network was trained as compared to

the Xavier initialized network trained for two times longer. The modified training

procedure improves the classification accuracy for all classes of hand poses. This

demonstrated a suitable solution for better classification when the labelled data is

scarce or expensive. The new training procedure improved the average classifica-

tion accuracy of the full test dataset from 90.5% reported in the Section 4.6.1 to

91.5%. The class-wise accuracy for both initializations are shown in Table 4.6. Fi-
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Table 4.6: Accuracy for classification of five poses with hand model CNN the two
initialisations.

Accu % Fist Flat Open Point Join

Xavier Init 87 89 91 91 93
PCA Init 89 90 94 91 93

Table 4.7: Accuracy for classification of five poses with Hand model CNN the two
initialisations.

Accu % type Fist Flat Open Point Join

Xavier Init
CNN model 86 87 90 91 91

Hand CNN
87 89 91 91 93

PCA Init 89 90 94 91 93

nally, the classification accuracy comparison of the model performance for equal

number of batch iterations for the three experiments, namely, the simple model, the

hand model with Xavier initialization, and hand model with PCA initialization is

shown in Table 4.7

4.8 Task Separation

The last section discussed a model based improvement to the CNN performance on

a specified task. A similar approach of enforcing the known-information about the

task to improve the performance on a time series task is presented in this section.

This section takes an example of the gesture recognition and imposes the existing

knowledge about the direction of motion and the hand shape change on the network.

It was observed that separation of sequential learning tasks and the combination of

the network output thereafter created a system that performs better than a single

network.
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(a) Definition of Classes by Motion and Shape. (b) Definition of Classes by Motion and
Shape.

Figure 4.17: The Gesture Definition and the Block System Architecture.

4.8.1 System Architecture for Model Combination

The following experiments are based on the assertion that a hand-gesture is a se-

quence of frames of moving palm. It is a combination of palm motion with or

without changes in the hand-shape. A gesture can thus be defined as a sequence of

hand-shapes and locations where the sequence and location of various hand-shapes

in one particular gesture class have a predictable, predetermined order.

The hand gesture classes G are divided into two sets Gs and Gm such that Gm∩Gm =

/0 and . The first set has gestures which are predominantly defined by the sequence

of hand-shape modifications, the second set of gestures are those defined by the

direction of motion and the velocity of the hand.

To simultaneously classify these gestures, one large neural network is replaced by

three networks which are trained independently, with distinct sets of feature vectors.

Each neural is such that it solves a separate classification problem. The soft-max
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projection of the output vector is treated as the probability vector P. The recurrent

neural network ( f r
W)s is the classifier that identifies the primary shape and motion

of the hand. The directional recurrent network ( f r
W)v and ( f r

W)h are added in se-

quence to make decisions on the classes.

The first neural network ( f r
W)s is trained to classify seven classes as shown in Fig-

ure 4.17(a). The other two networks are trained to classify the direction of the

motion, Up vs. Down and Left vs. Right. These networks are used in series with

the first network. Various neural network architectures were trained and tested. One

network architecture was chosen for ( f r
W)s, and a smaller identical network archi-

tecture for ( f r
W)v and ( f r

W)h was used. The network architectures which provided

the best cross-validation results separately were used for the classification system.

The LSTM Networks

Each network has an LSTM layer and several fully connected dot product layers.

The input layer is connected to a dot product layer. Non-linearity is added to the

network by using a tanh activation function with each fully-connected layers.

The network for the primary classifier has five layers apart from the input layer and

the output soft-max layer. The LSTM layer is placed as the fourth layer from the

input. The output layer has seven output nodes, each node represents one gesture,

see Figure 4.18(a).

The binary classifier identifies the intended direction of the motion when the palm

moves in horizontal or vertical direction. Since the swiping motion may be repeated

more than once while completing the gesture the identification of the intended ges-

ture is more sophisticated problem than merely identifying the direction of motion.

The binary classifier LSTM network has three hidden layers along with the one

LSTM layer Figure 4.18(b). The output layers have two nodes and a soft-max ac-
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(a) LSTM network with the probability addi-
tion unit

(b) Architecture of the LSTM used for direc-
tion classification.

Figure 4.18: The LSTM architectures used in sequential prediction scheme.

tivation function. The connection weights and bias are independent of each other

in all networks . The three networks are trained independently using the samples

belonging to the corresponding classes from the same training dataset. The training

uses the RPROP Algorithm for the optimization process [154].

4.8.2 Prediction Combination Model

The system is shown in Figure 4.19, it can be broadly separated into a frame clas-

sification part Figure 4.19(a) which produces a nine dimensional probability vector

P′t at time t, and an output probability combination part Figure 4.19(b) which re-

sults in another nine dimensional probability vector Pt.

In the classification part of the system the primary classifier is connected with the

two motion-direction classifiers, see Figure 4.18. It provides a seven dimension

probability vector, PI
t . PI

t has five gesture probabilities PIg
t and probability for hor-

izontal and vertical direction of motion PI
t [h] and PI

t [v]. On identifying vertical or

horizontal swiping of the hand the vertical or horizontal motion classifier is acti-

vated with binary activation signals Av and Ah .

The activated binary classifiers then detect the intended direction of the swiping

gestures resulting in the two dimension probability vectors Pv
t and Ph

t for vertical

and horizontal direction respectively.
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(a) 2-phase gesture recognition setup. (b) Prediction output for gesture
detection.

Figure 4.19: The system architecture and the cumulative probability addition
scheme.

The gesture probabilities PIg
t from the primary classifier are renormalized. The ver-

tical and horizontal probabilities PI
t [h] and PI

t [v] from the primary vector are used

to weigh the probability vector Pv
t and Ph

t . The output probabilities from LSTM

units are combined (4.11) to form a nine dimensional vector P′t and are weighted

by the there values in the primary probability vector, the resulting output vector Pc
t

is re-normalized to form a probability vector P′t, (4.12).

Pc
t =

[
∑

5
j=1 PIg

t [j]
5

.PIg
t ; Pv

t .P
I
t [v]; Ph

t .P
I
t [h]
]
. (4.11)

P
′
= Pc/|Pc|. (4.12)

The early predictions of the LSTM based system are stabilized by using a cumu-

lative probability addition scheme Figure 4.19(b). The cumulative addition of the

probability regularizes the estimates while making an early prediction. This adds

robustness towards jerks, stops and change in hand direction, during the comple-
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tion of the hand-gesture sequence. Also a strategy based on maximum-probability

or majority decision approach predicts the gesture at the end of the sequence. The

described method makes a probability estimation for the gesture at every frame.

The system output probability is given as Pt, (4.13). The sum is reset to zero when-

ever an end of sequence impulse is seen. In is the impulse corresponding to the nth

sequence. The impulse has a value 1 and the impulse time is given by tIn . Effec-

tively, the updated gesture probability vector Pf
t is,

Pf
t = P

′
t +(1− I)(Pt−1). (4.13)

The past probability is added to the estimated probability until an impulse is ob-

served. This addition is renormalised such that the sum of the vector resulting from

the addition is one. Pf
t is the cumulative probability sum at time t and Pt is the

normalised probability sum at t.

Pt = Pf
t/|Pf

t|. (4.14)

Gn = argmax(Pt) : t− tIn−1 > td (4.15)

The probability addition is initiated again with a sequence-begin impulse. The nth

prediction Gn, corresponds to the index of the maximum value in the probability

vector P (4.15). Since the initial frames of the sequence have little or no temporal

context the predictions made during these first td frames of the input stream are

not reliable. This scheme allows continuous predictions unlike majority-vote like

decisions where prediction is made after viewing the entire sequence.

Results

This section describes the training progression of the three models and presents the

performance of the entire system. As mentioned in the last sections the first few

frames of the prediction made by the system are not considered for output, we also
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Table 4.8: Confusion matrix proposed system.

% U D L R C A De G Dr

U 84 4 2 0 8 2 0 0 0
D 4 85 0 0 0 0 8 0 3
L 0 0 92 1 0 0 3 3 1
R 0 0 0 93 0 0 3 4 0
C 0 0 0 0 96 0 4 0 0
A 8 4 0 0 1 82 4 1 0
De 3 7 0 0 0 4 84 2 0
G 4 0 0 0 0 5 0 89 2
Dr 1 4 0 0 0 0 4 0 91

Table 4.9: Confusion matrix single all-class LSTM

% U D L R C A De G Dr

U 77 8 0 0 0 5 3 3 4
D 7 78 0 0 0 0 9 2 4
L 0 0 88 6 0 2 4 0 0
R 0 0 4 89 0 4 3 0 0
C 0 0 0 0 96 0 2 2 0
A 8 5 0 0 1 78 5 1 3
De 2 9 0 0 0 7 80 0 2
G 2 3 0 0 0 2 0 91 2
Dr 3 1 0 0 0 0 5 0 91

U:Up, D:Down, L:Left, R:Right, C:Click, A:Accept, De: Decline, G:Grab, Dr:Dropping.

skipped these frames for the evaluation analysis. The output probabilities for se-

quences beyond the eighth frame of the gesture, which corresponds to a time-period

of 0.3 seconds are considered for the analysis.

The train-test error progression by learning epochs for the three LSTMs that form

the system during a sample cross validation are shown in the primary phase of

classification and the binary classifiers are depicted in Figure 4.21. The network

was trained for six hundred epochs and evaluation was conducted for every sec-

ond epoch. The average misclassification rate for the given training was 5%. The

misclassification rate for the test data at the end of the training was 7%, see Fig-
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Figure 4.20: Test-Train error progression for one all-class LSTM.

ure 4.21(a). Both up-down and left-right classifiers were trained as binary classi-

fiers. These networks were trained for four hundred epochs. It can be observed that

the misclassification rate on training data after the completion of the training for

the up-down motion classifier is 6%, and 1.5% for the left-right classifier. The mis-

classification rate for the test data is 8% and 3%, respectively, see Figure 4.21(c)

and Figure 4.21(b). On combining the three networks as the described system, the

observed misclassification rate for the full system is 9.25%. The Table 4.8 shows

the confusion matrix for the classification of the nine gesture classes in case of the

architecture following the two level classification strategy shown in Figure 4.21.

In comparison with a larger all-class single LSTM, chosen after experiments on

multiple LSTM models, the performance was considerably better. The improve-

ment in the gestures where direction is important is large. In other gestures the

performance improves in all classes apart from ’Drop’ where accuracy remains the

same and ’Grab’ which has a small decrement. The performance of the compared

LSTM model is shown in Table 4.9 and the the training progression example for

this is shown in Figure 4.20. Confusion matrices are calculated at each step of the

9-fold cross validation and the mean confusion matrix are reported.
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(a) Primary LSTM classifier. (b) Left-Right classifier.

(c) Up-Down classifier.

Figure 4.21: The training and test error progression for the three components of the
geture classification system.
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Figure 4.22: Test error at the end of training plotted against the decision latency in
frames.

On the Latency of the Problem

The performance of the system improves when decisions were taken after a longer

delay from the beginning of the sequence. Figure 4.22 shows the accuracy perfor-

mance when the latency period for the frame-wise prediction was changed. The de-

cision after a longer latency gained from larger temporal context and is usually more

accurate. Some gestures with similar shape and short motion were misclassified,

which was reflected in the occasional misclassification of "Accept" and "Decline"

as "Up", "Down", respectively. This explains the lower accuracy of the up-down

gestures in the combined system even though the binary classification accuracy is

high. The accumulated regularization of the system output also resulted in missing

of fast-very short gestures. In the next section, the idea of modelling the problem

is further explored. The task of hand gesture recognition is modelled as a func-

tion of hand shape transitions. Both, the hand-gesture recognition networks and the

hand-shape classifier networks are now available to us and the gesture estimates

are corrected using a probabilistic combination of the task model and the shape

estimates.
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4.9 Task Priors

So far in this chapter, the advantages of the information addition have been demon-

strated. It has been shown that a network performs better when it has physical

or statistical information about the data or the task. The best shape and gesture

classification networks are now combined to improve the gesture classification per-

formance. This combination is created using a weak statistical model of the gesture

classification task.

The CNN shape classifier described in Section 4.6 and the sequential LSTM combi-

nation system used for the hand gesture classification in Section 4.8 return soft-max

outputs and normalized softmax values of the class estimates. The hand shape clas-

sification used a hand degree of freedom constraint and an initialization based on

the dataset PCA, as explained in the Section 4.7.4, are now used in combination,

and the improvement of performance is demonstrated by this combination. The

earlier sections of this chapter introduced model constraints, task based prior for

initialization of the network and task distribution for improved performance of the

classification task. This section introduces a weak combination of the sequential

gesture classifier and the instantaneous shape classifier. Apart from modelling the

neural networks on the priors of the data or task, the prior derived from the gesture

to shape relation are used to improve the classification performance. This section

will demonstrate the use of constraints, biased-weights along with using task infor-

mation at the neural network output.

4.9.1 The Probability Combination System Architecture

As mentioned earlier the output shape and gesture probabilities from the neural

network and neural network system are given by p and P respectively. These prob-
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Figure 4.23: The gesture and shape probability combination system.

abilities for the hand shape and hand gestures are received from the classification

systems described in the Section 4.7.4 and Section 4.8 respectively. As defined ear-

lier the hand gesture is a combination of the transition of hand shapes and locations.

At a frame t of the hand gesture g in gesture set G the shape probability is pt and

by the definition of gesture probability pt|g can be modelled.

The conditional probability pt|gt from the gesture model along with the p from the

CNN shape network are used to make an estimate for the Pt, this system is shown in

the Figure 4.23. The LSTM and the CNN blocks are the earlier described systems

and the model block has the hand gesture models with respect to hand shapes. The

hand gesture model is now described.

Designing the gesture-shape model

The hand gesture model based on the shape is designed as a discreet function of the

p vector and time zone T , gT =Fm(p,T). It can be represented as a matrix of time

and individual shape probability at that instant. These gesture models were con-

structed as week statistical measures. A small dataset with twenty gestures from

each class was created to generate these models. Every frame of the gesture se-
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(a) Model "Accept" (b) Model "Decline" (c) Model "Click"

(d) Model "Drop" (e) Model "Down" (f) Model "Up"

Figure 4.24: The models for the Hand-gestures based on Hand-Shape transition.

quence in dataset was marked with the hand gesture that these frames compose.

Apart from the gesture label, each frame of the normalized gesture sequence was

labelled with the hand shape closest to the hand shape in S. This dataset was used to

create a probability model ps|(G=g)t , to be read as probability of a shape s occurring

during the tth part of the sequence given gesture g in G . Each gesture was modelled

as a sequence of five shape probabilities over a time frames of six frame each.

The shape appearing over each time frame in the samples of each dataset are counted

and a probability estimate is made. To avoid zero-probability situations a value ε is

added to each probability value in the models. The probabilities are renormalized

after this addition. The probability model calculated for a subset of gestures are

shown in are shown in Figure 4.24.
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4.9.2 Final probability estimates and results

An estimate for p′ for the shape probability at the time instant t is made using the

total probability, such that,

p
′
t = ∑

k
p|(G = k)t. (4.16)

The probabilities p and p′ are used to calculate a measure of divergence between the

instantaneous estimates of the two systems. The divergence calculated from shape

probability is used for an online re-weighting of the iterative weighting factor. The

weighted gesture probabilities at each frame are then calculated as,

P(Gcomb)f = P+(ψ(δ (p,p
′
)P
′
, (4.17)

where ψ(x) = 1− x and the divergence δ is calculated as,

δ = max(p)−p
′
[argmaxp]. (4.18)

This is done to give high weighting to the LSTM estimates if the strong hand shape

classifier, based on CNN, is more certain about a class as compared to the weak

model based on the ps|(G=g)t modelling. This corrects for unintended, short change

of shape while completing a gesture. The weighted gesture probability is renormal-

ized.

Comparisons with earlier described methods

The LSTM system for gesture recognition (Section 4.8) and the CNN model initial-

ized from the PCA (Section 4.7.4) were explained in detail earlier. These networks

were trained and tested separately. Further, in the forward phase the probability

output of these models on frames of the gesture sequence were combined to create

a better estimate of the sequence. The corrected estimation for the gesture after
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Table 4.10: Accuracy for nine gesture classification based on three methods.
U:Up, D:Down, L:Left, R:Right, C:Click, A:Accept, De: Decline, G:Grab, Dr:Drop.

% Accu U D L R C A De G Dr

Static gestures Dynamic Getsures
LSTM 77 78 88 89 96 78 80 91 91
2 Phase LSTM 84 85 92 93 96 82 84 89 91
Proposed 81 86 89 93 95 85 87 92 92

combining the probabilities from the two models are now reported in this section.

The results obtained from this method were compared against the task separation

LSTM system that was used for making a gesture estimate in the (Section 4.8 The

gesture classification accuracies were also compared with a single all class LSTM

which was trained and tested on the same dataset.)

The classification decisions are made only after the first ten frames (eight frames

for one-third gesture and two frames wait for entire hand to be in the observation

area) of the gesture. The accuracy percentages are reported as percentage of correct

predictions after the first ten frames. It is observed that the short or rapid change of

gestures were missed because of the LSTM learning procedure. This problem was

solved with the correction scheme. The results from a single phase LSTM were

compared with the LSTM combination explained earlier and finally with the prob-

ability correction paradigm that has been proposed in this work.

The proposed solution outperformed a large single LSTM consistently. On com-

parison with the 2-phase LSTM the solutions provided better accuracy in six of the

nine classes, see Table 4.10. The proposed solutions consistently performed better

on the dynamic gestures. The overall accuracy on the test dataset increased from

88.50% on the 2-phase system to 89.50% on the proposed solution.
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4.10 Conclusion

Three methods of including model information or a priori information to the neural

network were discussed. It was shown that the model constraints and biases intro-

duced to the weights help in training of the neural network. These experiments were

shown on hand shape and hand gesture classification problems. The property of a

priori bias was also used for developing a intra-domain transfer learning method-

ology and it was shown that both physical property and the statistical properties of

the dataset can be used for transfer learning.

Eventually, it was also shown that the neural networks trained to learn separate

problems can support each other if a weak function relating these tasks can be for-

malized. Treating the neural networks as a function on which constraints and biases

can be imposed allows introducing existing experiences into the learning process,

this can be used in various ways. Such methods are particularly useful for reducing

the data requirement, developing strategies for augmenting data with unlabelled

datasets and using synthetic data for learning initialization. This also provides a

scheme for pre-including mathematical models into the learning process.



Chapter 5

Mutli-Modal Networks and
Independent Information

Combining multiple models together in certain ways improves the performance of

the classifiers or regressors. Various methods for the combination include com-

mittees, boosting and majority voting.[155, 156]. The notion of independence of

information and ensemble of these information to make better decision has been

used in various standard learning algorithms. The Random Forests are possibly the

most popular ensemble algorithms, growing a Random Forest involves combina-

tion of various decision trees such that the each tree depends on a random subset of

features sampled independently.

The general procedure in creating an ensemble predictor involves creating multiple

f1(x), f2(x), f3(x), ...., fI(x) prediction function. These functions are built such that

multiple functions are trained with randomly selected independent features from

the feature vector. The combination of the decision trees are made such that mul-

tiple simple models fi are combined to make complex decisions. This strategy

is based on the assertion that, two weak models with classification performance

E > ε , where ε is the performance of random decision,when combined produce

103
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better than either model individually[157]. The ensemble models are also useful

in avoiding over-fitting, theoretically a combination of models trained on mutually

independent information does not over-fit however large the combinational model

grows [157].

This chapter discusses methods of combination for models. The neural network

based solutions are developed in a way that they carry separate information but are

not necessarily mutually exclusive. The three experiments discussed in this chapter

include,

• Neural Network combination of optical and inertial measurement units for

human pose classification.

• A sequential Neural Network combined with block classifier for low latency

classification.

• Fusion scheme using the LSTM based prediction and Kalman Filter correc-

tion using a visual tracker measurement.

The last chapter discussed introduction of models to identify a-priori nature of the

input data and to use this knowledge towards improving the classification perfor-

mance. This chapter will focus on identifying separable features in the input fea-

ture set F and using them such that the networks can learn better representation for

certain tasks. The methods for the eventual combination of the independent infor-

mation will also be discussed in the chapter.

The Section 5.1.2 presents solutions for the combination of inertial and visual infor-

mation to show that the separate subsets of input information combine to improve

the classification task. The experiments are made with combinational networks in

Section 5.1.2 and it is demonstrated that the combination of separate information

improves classification of human body gestures.

Next, in the Section 5.2.5 the combination of features learnt from the same dataset
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but using distinct learning policies and thus resulting in dissimilar patterns are in-

vestigated.

5.1 Multi-Modal Models

The UTD Multimodal Human Action Dataset(UMHAD) [158] is a dataset for hu-

man action recognition. It provides a depth and inertial sensor data for the task

of classifying twenty-seven human action categories recorded on eight individuals.

The experiments were conducted on this dataset to validate the improvement of

performance while using a multi-modal neural network. The UMHAD dataset in-

cludes the output from a Kinect imager which provides a depth image of 320×420

and an RGB image of 640×480. The RGB images are down-sampled by a factor of

two to keep consistent size input. The dataset also includes a six dimension output

from one inertial sensor worn on wrist or thigh depending on the action category.

The start and end of an action sequence are synchronized using the start and end

frame inputs. The experiments described in this section are made to confirm that

the combination of information from separate sources can be combined by neural

network to learn better representations for the tasks at hand.

5.1.1 Information Combination with Body Skeleton and Iner-
tial Measures

The set of experiments conducted included building a benchmark with single source

information. The Kinect frames are threaded together and an LSTM version of

neural network is trained. The skeleton point locations and the inertial values are

used as one dimensional vector. As these vectors describe the location and motion

of the skeleton the vectors are concatenated and the sequence of these values are
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Figure 5.1: Samples of the RGB images, depth channel, skeletal points and intertial
measurements.

used to train another LSTM.

The Inertial Data

Inertial data and the skeleton data are concatenated to produce a sixty-six dimen-

sion vector. It includes sixty elements that define the x−y−z coordinates of twenty

skeletal points and the inertial values representing the three axis of acceleration and

three axis of rotation. A sample sequence of the inputs are shown in the Figure 5.1.

In this experiment the 3D coordinates of the skeletal system and the inertial mea-

sures with three axes of accelerometer and three axes of magnetometer measure-

ments are combined in the input vector. The frame rate of the Kinect camera and

the inertial measurement unit are different but the dataset provides a simultaneous

start and end point for the sensor output.

To combine the two inputs a constant frame rate is required. In these experiments
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Figure 5.2: The neural network used for training the classifier with only the IMU
signals.

the higher frequency inertial measurement sequence are sub-sampled to the size

of the Kinect body action sequence. To reduce the loss of information, the sub-

sampling is applied after doing a moving average on the concatenated inertial and

skeletal signal vector with a window of kernel size three.

5.1.2 Neural Networks for Separate Body Skeleton and Inertial
Measures

In the first set of experiments, for the body action recognition two neural networks

are trained for creating single information classifiers. A neural network each is

trained for classification with inertial measurements and skeletal data to classify

the actions. The experiments in this chapter are made with the twenty-one classes

which use the sensor on the wrist. The six classes collected with the sensor worn

on the thigh are not used. The experiments are carried out such that the recordings

of the six recorded individuals "one" to "six" are used to train a neural network, and

the recordings from "seven" and "eight" are used for testing the trained network.

In the first experiment, a neural network is trained on the IMU sequence only. The
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Figure 5.3: The neural network used for training the classifier with only the skeletal
point inputs.

network shown in Figure 5.2 is chosen to train the IMU sequence. This network

has one LSTM layer with a fully connected equal-output layer, and three fully con-

nected layers. The output layer, like in earlier experiments on classification maps

the output layer values to their softmax values. The probability addition scheme

introduced in the Chapter 4 is used for the selection of the most likely action.

The second experiment follows the same scheme, but uses the Skeletal coordi-

nates as the input to the network. The input vector thus is a sixty dimension input

and is trained on the network shown in the Figure 5.3. The vector is formed such

that the respective x,y,z coordinates of the skeletal points are placed together. The

network has three fully connected layer and one LSTM layer with a twenty-one

node input-output fully connected layer. The LSTM networks are trained for one

thousand six hundred epochs and the top-one accuracy is calculated for the body

action classification tasks.

The average accuracy achieved for by training with the inertial input on the inertial

network shown in Figure 5.2 was 67.4% and the average accuracy for the network

trained by the skeletal input was 63.9%. The Figure 5.4(a) shows the class-wise



109 5.1. Multi-Modal Models

(a) Skeletal input accuracy values

(b) IMU input accuracy values

performance for the skeleton inputs and the Figure 5.4(b) shows the class-wise per-

formance of the inertial network.

Comparisons with combination of information in networks

Two experiments are made to evaluate the influence combination of the informa-

tion. The first experiment for evaluating combination of information, includes

separate use of the LSTM networks for IMU and skeletal points described above in

a multi-column policy. The network constitute parts of the IMU and the Skeletal

networks discussed earlier. These two networks receive the input information inde-

pendently and the vectors are fed into the LSTM layer independent of each other

Figure 5.4. The sequential information learnt in the LSTM layer then progresses

in the network and is combined in the outer layers of the network. In such com-

bination, the increase in input vectors space is handled by increased parameters in
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Figure 5.4: The neural network used for training the skeletal and IMU inputs with
separate input.

the network. The overall weight-parameters in such combinations are less than the

sum of the parameters in two independent network.

A second experiment with combined input is completed to validate the argument

that the independent informations add to the performance of a task. To do so com-

parisons are made against a network which learns the time context simultaneously.

The neural network shown in the Figure 5.5 is used for this experiment. The two

sets of data are concatenated and the experiments are conducted on a combined

dataset. As mentioned earlier the start and end frame from both sensors are known

and are used for frequency calibration. This second neural network that is trained

on a concatenated vector is designed such that the number of weights connecting

the fully connected layers are approximately equal to the number of weights in the

two-column network used to make the action predictions.

These experiments are conducted as described in the earlier in Section 5.1.2, but

both the neural networks were trained for two thousand four hundred epochs as op-

posed to one thousand six hundred epochs in these experiments. According to the
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Figure 5.5: neural network used for training the combined skeletal and IMU inputs.

information. The combination of the two networks performs better than the indi-

vidual networks. This confirms that the two sensor information can be combined to

improve task performance in the neural network.

The influence of the combination on the average accuracy for each class is shown

the charts in the Figure 5.6. The average accuracy over the dataset improves when

the combination of the source are used for training the network. An average clas-

sification accuracy improvement of 6% is observed in case of the separate input

decision combination scheme. The concatenated vector scheme also improves the

classification performance but by a smaller margin of 4.5%. The green component

of the bar-graphs in the Figure 5.6 shows the gain because of multiple information

sources. The red portion of the accuracy bars shows the magnitude of the reduced

accuracy.

The comparison between the separate input and concatenated vector input is shown

in the Figure 5.7. The average performance of separate learning is marginally better

than the input tied together. The plot shows the influence of the input kind on the

classification performance.

Of the three trained networks those trained with both inertial measurement and
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(a) Average accuracy for the network trained on
concatenated vector

(b) Average accuracy for the network trained with
separate input vectors

Figure 5.6: Class-wise average performance of the two different input networks in
classifying the actions.

Table 5.1: Average Accuracy for the trained networks.

% Accu Inertial Skeleltal Concatenated Input Separate Input

67.4 63.8 71.90 73.3

skeletal coordinates perform better than the network trained only with the moving

average inertial data, which in turn performed better than the network trained only

on the skeletal data. Further, it was observed that the neural networks that learns

on separate input performs the best. The results for these experiment are shown on

Table 5.1.

5.2 Multi-Information Models

The last section showed the separate combination of two data sources. The network

in which the learning of temporal features is relatively more independent performs

better than other networks. Further, the last section demonstrated that correct strate-

gies for combination of distinct but not mutually exclusive information improves

the learning performance more than a simple combination of information. It is of
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Figure 5.7: The variation of the accuracy from the IMU classifer when combined
input scheme is used.

interest to investigate if the combination of features learnt from the same dataset

but using distinct learning policies and thus resulting in dissimilar patterns can con-

tribute to improving the learning performance.

The same strategy of using multi-column Neural Networks as earlier is employed.

In this section the distinct inputs scheme of the last section is replaced with learning

by temporal layers with different properties. These experiments are made to test if

a combination of LSTM and C3D can help the latency performance of a time series

classification problem. The tests have been made on an in car hand gesture dataset

and the comparisons were made against an earlier reported ([18]) C3D model which

resulted in best classification performance on the classification of the had dataset.

It will be demonstrated that classification properties can be improved by using com-

bination of dis-similar concepts. Multi-column networks with columns having dis-

tinct temporal layers are created. A hand gesture recognition system that uses a

combination of C3D and LSTM architectures of neural network is introduced and

shown to perform well on early-recognition task. This is a combination of ideas

from [18] with those of [19] for early and incomplete gesture recognition.
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Figure 5.8: The example of the hand gestures in the Viva dataset.

5.2.1 Dataset

The VIVA challenge dataset was used for these experiments. The gestures are

moving hands with changing or constant hand poses. The dataset has variations in

illumination and depth. The VIVA challenge dataset has video sequences of fifteen

hand gestures performed by eight subjects under varying lighting conditions. The

dataset includes 885 intensity and depth video sequences [7, 114]. The datatset is

recorded with the Microsoft Kinect device of resolution of 115× 250 pixels. The

durations of the hand gesture in the VIVA dataset are distinct. To create an equal

length gesture, the normalization of the dataset sequence length is required. To

compare with [18] the gestures were re-sampled to sequences of thirty-two frames.

Sampling was done by repeating each frame after a fixed interval when the gesture

sequence is less than thirty-two. When the sequence length is more than thirty-two

the gesture sequences are sub-sampled by dropping frame after a fixed interval.

The normalized gesture sequences contain depth and intensity values. Intensity

gradient values were calculated. The gradient and the depth values were normalized

over the dataset and a two channel input from the gradient and normalized depth

was created for each frame. The labels corresponding to the gesture type mark each

frame. The gestures sub-sampling was done such that the the frame sequences with

most variation in hand shape and motion are dropped with smaller probabilities.

This is done by sampling based on magnitude of per pixel change over time within

a gesture. The dense optical flow between two frames separated by time δT = 2
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was calculated and the absolute change per pixel over the entire gesture was used

for sampling distribution. This strategy allows improving the probability of con-

serving the fast changing frames during sub-sampling and increasing such frames

when up-sampling the sequence.

Three classes which have "Swiping" hand which changes direction in later parts

of the gesture and the class "Tap three times" were removed to analyse the perfor-

mance. This was done because these gestures which are similar in the initial frames

will be characteristically misidentified when tested for incomplete lengths. Effec-

tively the experiments were conducted on fifteen hand gesture classes.

Short length sequences

The section focuses on the improvement in latency performance for the time series

so performance of classification on shorter gesture sequences is tested. To this ef-

fect, the dataset with incomplete gesture length is created. Half length and quarter

length incomplete gestures were created by only using the the first sixteen and eight

frames from the start of the hand motion. To assure that the some hand motion in-

deed exists, the first two frames of the gesture sequence were always removed.

5.2.2 The Components of the Multi-Column Networks

As mentioned in the introduction, this experiment set will demonstrate the useful-

ness of property combination. To do so, a combination of the C3D and the LSTM

layer based neural network architecture is used. The C3D layer uses volumetric

convolutions. The input to the volumetric convolution layer is a block of frames.

The network learns various volumetric filters. As the convoluted blocks are prop-

agated forward through the max-pooling layers the learned filters reside on higher
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scales space. Effectively, the minimum time frame of learning in C3D is thus the

time length of the spatio-temporal filter on the layers closest to the input. This time-

spread increases as we move towards the output layer in the network. The LSTM

on the other hand accepts sequential input. The LSTM learns to use forget gates

and identifies the length of the learned structure in the training phase.

All the networks are trained on the negative log likelihood cost function and each

uses a soft-max projection on the output layer. The networks with single column are

trained for three hundred epochs and two-column network trained simultaneously

are trained for five hundred epochs. A Negative log likelihood cost function is used.

In case of the single phase network the training is completed in 300 epochs. Owing

to their larger size the two-column networks are trained for 500 epochs. Before

explaining the combination, the architecture of the two networks is first described,

C3D network

The two column C3D network of [18] which has shown to work well on the same

dataset, uses two networks with high and low resolution input. These networks pro-

vide two sets of properties, which are multiplied, normalized and used for predic-

tions. The C3D network used in this work, shown in Figure 5.13, is the high resolu-

tion branch of the network proposed in [18] . The C3D consists of four volumetric-

convolution layers, each of these layers have associated volumetric pooling layers.

The tanh layers are used as the activation functions after the volumetric convolu-

tion. The fourth volumetric convolution feeds into a softmax layer which provides

a probability vector as output. The C3D provides one output for the entire block

of the K stitched inputs, the output prediction in this case is the index with highest

probability.

For designing a network that learns to classify a gesture of length K, the input to the

C3D is a K×2×57×125 vector. The experiments were conducted such that each
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Figure 5.9: The C3D network ("C+c") : Two column neural network with the
input passing through a volumetric pooling layer in lower column; The input travels
through multiple layers and the output layer is a softmax probability layer.

frame of the input block belonged to the same gesture type. An output probability

vector of fifteen gestures is produced at the output of the C3D.

The LSTM network

The LSTM network in the second column of the network has two convolutional

layers followed with the usual pooling and ReLu layers. An LSTM layer and a

fully connected layer follows the convolutional layers, see Figure 5.14. The same

K × 2× 57× 125 input for the C3D is feed into the LSTM. The output layer is

a soft-max projection. Each frame of the gesture sequence is marked by a label

such that the LSTM produces a probability output at every frame of the gesture.

The LSTM predictions is made by cumulative probability addition over the gesture

sequence and then the index with highest probability sum at the end of the sequence

is identified as the gesture.
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5.2.3 Experiments with Two-Column Neural Networks

As mentioned earlier a multi-column C3D has been reported as a benchmark on the

hand gesture dataset. The experiments are made to test the performance of this net-

work on the restricted dataset of fifteen classes. Further, this network is compared

against a two-column LSTM and a two-column combination network of LSTM

and C3D. The neural networks are trained with data from fourteen recordings from

seven persons and tested on two sets of recording from the eighth person. The final

accuracy results are averaged over eight experiments where all the test persons are

used once. All networks are trained for full sequence(thirty-two frames) and half

and quarter sequences(sixteen and eight frames)

One column of the both the networks are as described earlier in the Section 5.2.2.

In both cases n average pooling layer is used in the second layer column. This is

done to provide varying scales as input to the first convolutional layers of the two

columns of each network. The first volumetric pooling layer in the C3D network

scales only in the spatial dimensions.

The network naming convention

The following sections use multiple neural network designs using C3D and LSTM

network. To keep track of them a naming convention is proposed. For, the C3D

network the high resolution input network is identified by C and the low resolution

network by "c". Similarly, the LSTM layer based networks are identified by "L"

and "l" and "R" for simple recurrent neural network. A two-column combination is

represented by +, thus a C3D network with two columns of high and low resolution

will be represented by "C+c".
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Figure 5.10: The LSTM network ("L+l") : Two column neural network with the
input passing through a pooling layer in the lower column; The input travels through
multiple layers and the output layer is a softmax probability layer.

Two Column Neural Network

The two column C3D neural network is compared. An end-to-end training with

two-column neural networks based on the components tested above is performed.

First, the two column C3D is compared against a similar size LSTM network de-

scribed in Section 5.2.2 . Thus the following networks are trained and tested,

• A two-column neural network with 3D convolutional layer joined at head

with a fully-connected layer ("C+c"), see Figure 5.9,

• A the two-column neural network with convolutional layers followed by

LSTM layer and joined at head with a fully-connected layer ("L+l"), Fig-

ure 5.10.
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Figure 5.11: The accuracies of 16 frame sequence on "C+c" (Red) and "L+l"
(Blue).

The "C+c" and "L+l" networks of Figure 5.9 and Figure 5.10 respectively are

trained and tested for full sequence gestures of length K = 32 and half length ges-

tures of frame length K = 16.

The test accuracy in percentage for the two networks for different frame lengths

is reported in the Table 5.2. The "L+l" network performs worse than the "C+c"

network on the full sequence gestures. Though, the "L+l" network performs better

than the "C+c" network for shorter sequences. The results from these experiments

are listed in Table 5.2. The class-wise performance of the performance of these

networks on the full sequence and half length gestures is shown in the Figure 5.12

and Figure 5.11 respectively.
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Figure 5.12: The accuracies of 32
"C+c" (Red) and "L+l" (Blue).

Gesture Network: "C+c" "L+l"

length Accu: (%) (%)

32 77.4 73.4

16 55.7 62.3

8 31.6 37.3

Table 5.2: Classification Ac-
curacy with the two-column
LSTM and C3D.

5.2.4 Single Column Neural Network

The results from the last section motivates training single column C3D networks

and LSTM networks to identify if the behavior of volumetric convolutions and

LSTM layers remain consistent. These networks are trained with the same set of

inputs and labels and the initialization procedures, cost function remain the same

as earlier. Apart from the two networks a network with classical recurrent layer is

also tested. The model architectures are exactly like the larger column of the neural

network models described in Section 5.2.2. The three neural networks trained were,

• A neural network architecture from the large column of the convolutional

LSTM ("L") used in two-column experiments,

• A similar C3D network ("C") taken from the two-column network gesture

classification network,

• A neural network architecture from the large column of the convolutional

LSTM used in two-column experiments with LSTM layer replaced by a re-

current network ("R").
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Figure 5.13: The C3D network ("C") : A two channel image is input to the net-
work and the output layer is a softmax layer resulting an output probability of 15
dimensions

Table 5.3: Accuracy with single phase models

Gesture Network: "C" "L" "R"
length Accuracy (%) (%) (%)
32 73.6 64.6 35.6
16 47.6.7 51.3 35.6

The results of Table 5.3 demonstrate that the performance of classical recurrent

neural network for the classification is poorer compared with the performance of

the neural network architectures that use the LSTM layers or volumetric convolu-

tional layers. This is expected because an RNN is not capable of learning long time

contexts.

Looking at the classification performance of Table 5.3, it is also apparent that the

performance of the C3D reduces considerably when an early detection of gesture is

made using a C3D network. The performance also deteriorates for networks with

convolutional layers and an LSTM layer. An important observation is the consider-

ably smoother decay of performance in the network with LSTM layer as compared

to the C3D which has volumetric convolution layers. The performance of the LSTM

and C3D network is consistent with the observations from the two-column networks

tested earlier. The C3D network performs better on the full length sequence but its

performance worsens more rapidly than the LSTM network on testing on incom-
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Figure 5.14: The LSTM network ("L") : A two channel image is input to the net-
work and the output layer is a softmax layer resulting an output probability of 15
dimensions

plete gesture sequences. Thus, both single column and the two column networks

behave such that the C3D performs better on full sequence gestures and the LSTM

network performs better on the shorter sequences.

5.2.5 LSTM and C3D Combination

The observations that C3D consistently perform better on long sequence gestures,

while the LSTM network always works better than C3D on shorter sequences en-

courages the experiments with combinations of the C3D with LSTM. The single

phase LSTM and C3D networks trained in Section 5.2.4 were used to create the

combination network "C+L". The output probabilities of these trained networks

were combined with a separately trained MLP. The MLP learns to combine the out-

put of the probability predictions made by the two separate networks.

The cumulative sum of the LSTM was normalized and a larger thirty eight dimen-

sional vector was created by merging this resulting vector with the C3D output.

The MLP is trained with an input of a thirty-eight vector input; the output is the

probability vector. The entire system is shown in Figure 5.15.
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Figure 5.15: The network "C+L": Part 1 and 2 are "C" and "L" with fiteen dimen-
sion softmax output; Part 3 is a simple MLP which learns to combine the outputs.

Training the MLP

The fifteen dimensional probability vector from the C3D and LSTM are combined

together to form a thirty vector input to the MLP. The MLP has a hidden layer with

sixty four nodes and an output layer of fifteen. The labels of the C3D are used to

train the MLP.

The learning rate is initialized to 0.005 and reduced by a factor of two after each

fifty steps. The MLP combines the classification probability from the two networks

and uses a learning rate of 0.01, it is trained for fifty epochs.

To validate this network, various training and test iterations were made. The net-

works were trained with reducing latency time. The MLP is separately trained for

full length gesture of thirty-two frames, half length sequence of sixteen and for

quarter length of eight frame latency. These results are compared with the best re-

sults received from either the "L+l" or the "C+c" network. The class-wise accuracy

results are plotted in the Figure 5.16(a) and Figure 5.16(b) for the thirty-two and

sixteen frame gestures respectively. The average accuracies are tabulated and com-

pared in the Table 5.4.

The results of this combinatorial networks tabulated in Table 5.4 demonstrate that

the network performs slightly worse than the two column C3D network in case of
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Table 5.4: Classification Acccuracies of "C+L", "C+c" and "L+l"; the accuracy of
best network is bold.

Gesture Network: "C+L" "L+l" "C+c"
length Accuracy(%) (%) (%)
32 75.6 73.3 77.4
16 65.7 62.3 55.7
8 39 31.7 28.7

long gestures.

However, the combination network outperforms the two-column LSTM based ges-

ture classifier in every scenario. When classification accuracies are calculated at

shorter latency period it is observed that the combinational network starts perform-

ing better than the two-column C3D network. For a half length gesture sequence

the accuracy of the combinatorial network is 10% higher than the C3D network

(reported in Table 5.4), it is also marginally better than the LSTM network by 3%.

The combination of the block learning property of the C3D with the contextual

learning of the LSTM network may explain the improved performance of the net-

work on shorter incomplete sequences. It is shown that a C3D network continues

to perform well on full sequence gestures. The accuracy results for the experi-

ments conducted on the one-fourth length sequences demonstrate similar results. It

also shows the difficulty of early identification of the gestures. It is clear that the

accuracy rates falls dramatically as the sequence length is reduced.

5.3 Sensor Fusion with Neural Networks

The combinational models discussed earlier suggest that neural network can be a

part of various fusion algorithms that combine Inertial Measurement Unit (IMU)

and optical data. To evaluate if the information combination discussed in this chap-

ter also works in a sensor fusion sense an architecture for using Kalman filter for
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(a) Class-wise average accuracy compared for 32 frame hand gestures

(b) Class-wise average accuracy compared for 16 frame hand gestures

Figure 5.16: Class-wise average performance of the "C+L" network(Gold) com-
pared against the best of "C+c" and "L+l"(Green).
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Figure 5.17: Architecture of the proposed fusion system.

fusing the inertial data processing. The classical problem of 6DoF pose tracking

using accelerometer and a gyroscope inertial values with optical tracking estimate

is now proposed to be solved using neural network components. The inertial mea-

surements are used to predict camera pose using an LSTM, which acts as a subfunc-

tion F of the fusion problem. The LSTM estimates are fused with optical tracker

estimates using the Kalman Filter. The proposed combination is done under the

assumption that the camera and inertial sensors are synchronized in the sense that

recording is initiated at the same time for both and the inertial sensors frequency of

measurements fs is a multiple of the camera frame capturing frequency fc so that

C = fs/ fc.

5.3.1 Fusion System Architecture

For a frame Ik of the camera the visual tracker provides a a translation vector t and

orientation quaternion q, based on detection and matching of visual features from

the image. Apart from this, the inertial input to the LSTM consist of a sixty-seven
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dimension input correspond to the last ten inertial measurements( C = fs/ fc = 10

in this case) and seven elements of the final pose estimate of the system [t|q]k−1

corresponding to the previous frame k− 1. Based on a C previous system outputs

and inertial measurements the LSTM is trained to provide an estimation of the cur-

rent camera pose [t|q]LSTM
k .

A comparison module is used to detect failures of the visual tracking system by

comparing it to the output of the LSTM. The inertial tracking done by the LSTM

can slowly drift away from the correct pose. However, it does not abruptly produce

highly erroneous outputs. On the other hand the visual tracking system can output

estimates with high error for some frames. In order not to allow these errors to

contaminate the fusion system output the comparison module calculates two dis-

tance metrics dt ,dq between the LSTM output and the visual output, where dt is the

euclidean distance between the estimated positions and dq is the distance between

the corresponding angles of the estimated quaternions. If one of dt ,dq are found

to exceed a threshold it is taken as an indication of failure of the visual system,

and only the output of the LSTM is passed to the next module. This comparison

module is only used as a safeguard against heavily erroneous poses from the visual

tracker and is activated very rarely. The system is thus able to retain a correct pose

for some video frames even if visual tracking fails. However, because of the drift

of inertial tracking, if no correct pose is given from the visual system for a large

number of consecutive the system would have to be reinitialized.

Finally, the Kalman Filter module is used to combine the estimated pose from the

LSTM with the estimated pose from the visual system. A simple linear Kalman

filter model is used. The unitary quaternions q representing orientation are always

renormalized at the output of the LSTM and the Kalman Filter. The entire system

is shown in Figure 5.17
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Figure 5.18: Architecture of the proposed LSTM for camera pose estimation from
inertial measurements.

Visual tracker

Features are extracted from each received frame image Ik and matched to the regis-

tered features based on descriptor similarity. Subsequently, a ratio test between first

and second match similarity is performed in order to exclude ambiguous matches.

Using the selected matched features 2D points in the current image and their known

3D correspondences from registration, refined pose estimation is achieved within

a RANSAC scheme. The visual tracker outputs a camera pose estimate [t|q]vision
k

for every frame consisting of a rotation quaternion q and translation vector t with

respect to the registered targets’ coordinate system, or an error message indicating

failure of the visual tracker.

LSTM

A neural network architecture with an LSTM layer is trained as a regressor. The

neural network is such that the input vector includes all the sensor outputs over

the time period in which the optical system makes a camera-pose estimation. A

ground truth with inertial measurements and accurate camera pose is recorded for

training. At time instance k the LSTM receives the estimated camera pose [t|q]k−1

system output through the feedback channel as seen in Figure 5.17. Given this

input, the neural network is trained to produce an estimate of the current camera
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pose [t|q]LSTM
k . The regression estimates of the neural network are made by min-

imizing the error function used in [159]. This is practically a mean square error

function with a scaling parameter for the quaternions error in order to bring posi-

tion and quaternion error values to approximately the same level. Various neural

network architectures were trained and the one providing the best results is further

described in detail. The training uses the RPROP Algorithm for the optimization

process [154].

The neural network architecture is such that the input layer is followed by an LSTM

layer which captures the temporal relationships in the input sequence. The LSTM

layer has 256 nodes. Three more fully connected layers are further added to the

network. The output layer is a seven node layer, representing the spatial location

t and the orientation quaternion q of the camera. Non-linearity is added to the

network by using a tanh activation function with each layer apart from the output

layer Figure 5.18. The LSTM network is unwrapped such that the input is fed as

a sequence of vectors generated from the sensors and the camera pose. Decision

predictions are made in a moving window style, such that the window slides over

the incoming sequences. The network is trained on a training dataset with ground

truth camera poses obtained from observation of fiducials and corresponding iner-

tial measurements. The trained LSTM can be treated as a subfunction F of the

sensor fusion problem function F , the LSTM function F returns a pose estimate

in frame k using the previous pose estimates from frames k− 1 to k− i where i is

the depth of the regression and inertial sensor measurements.

Kalman filter

The sensor fusion system uses a linear Kalman Filter to fuse the estimates of the

LSTM and the optical tracker. The filter state is also a vector consisting of a position

t and orientation quaternion q together represented by v . Thus, the sensor fusion
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system uses a linear Kalman Filter to fuse the estimated poses vLSTM
k and vvision

k

from the LSTM and the visual tracking respectively, into a final system output pose

estimate vk. During the prediction step of the filter, instead of using the previous

state of the filter the pose estimate from the LSTM is used. Thus, the resulting

prediction equations are

v̂k = FkvLSTM
k (5.1a)

Σk|k−1 = FkΣk−1|k−1FT
k +Qk, (5.1b)

where Fk is the state transition matrix which we set to an identity matrix, Σk is the

state covariance matrix, and Qk is the process noise covariance matrix which we set

to a diagonal matrix containing the variance of the noise estimated at the outputs

of the LSTM. The noise estimate is obtained based on the error measurement made

on the training data. The update of the filter is performed by using the output of the

visual tracking system vvision
k as the measurement.

Evaluation of the Proposed Architecture

The experiments were completed on a printed poster images surrounded by number

of fiducials. These fiducials are described in detail in [160]. A poster is used as the

target of the visual tracking system described and the fiducials are exclusively used

for the purpose of obtaining ground truth for camera pose and the final evaluations

do not use the information from the fiducials. The camera frames were used in the

experiment without any preprocessing. The camera and inertial sensor respective

coordinate frames are not aligned and no hand-eye calibration between them was

used, the LSTM is expected to learn these properties. The same holds for gravity

removal from acceleration measurements.

During the experiments three image sequences and corresponding synchronized

inertial measurements datasets were captured. Out of these datasets, the first one

with a length of 9800 video frames and 98000 inertial sensor measurements was
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Table 5.5: Tracking accuracy comparison between a pure visual approach and the
LSTM based physical model fusion system.

Overlap % Failed Pose estimate(%)
sequence 1(slow) visual 86.3% 7.3%
sequence 1(slow) fusion 90.8% 0%
sequence 2(fast) visual 77.1% 15.7%
sequence 2(fast) fusion 85.6% 0%

used for training the LSTM, and the other datasets of shorter duration (3389 and

3106 video frames) were used for evaluation of the LSTM and of the system as a

whole. All datasets were recorded with the capturing device hand-held and contain

fast translational motion in all directions, as well as fast rotational motion along all

three axes, and combinations of translational and rotational motion.

The evaluations are made by measuring the overlap between the re-projection rect-

angle estimated by the system output camera pose, and the expected rectangle. The

average overlap percentage between the visual tracker and the inertial-visual tracker

is compared for two sequences of images. One sequence with smoother or slow mo-

tion and the other with more abrupt or fast motions. The results of Table 5.5 show

that using the fusion approach an increase can be achieved in the overlap percent-

age in both the slow and the fast sequence.

This experiment was to demonstrate that while in the earlier sections the model in-

formation and independent information separation improved the classification per-

formance of the networks. A trained neural network can be used as a replacement

for the prediction models in a fusion system, where the neural network contributes

to the dynamics of the system, while the measurement modifies the noise perfor-

mance.
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5.4 Conclusion

That multi-modal features improve the performance of a machine learning algo-

rithm has been known, it was demonstrated with IMU-visual data on the body ges-

ture recognition problem. This is further extended to show that the multi-property

learning network perform better than the single information networks. This hypoth-

esis was tested with the combination of such sequential learning networks and the

time filtering networks used simultaneously. This network combination has been

demonstrated on the hand gesture sequences and it was shown that the combination

of the LSTM and C3D networks provide better early gesture classification proper-

ties. Finally, in contrast to the models improving the LSTM estimates in Chapter 3,

in this chapter it was demonstrated the learnt LSTM model is used as a prediction

model whose estimates can be corrected by measurements from another sensor in

the Kalman filtering setup.
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Chapter 6

Application

The previous chapters introduced various algorithms for the hand shape and gesture

classification, these methods tried to solve the classification problems with small

neural network models and minimized data requirements. This chapter describes

the outlines of an actual in-car hand shape and gesture classification system. The

data collection strategy, the architecture of such a system, and the validation of the

results is described in detail.

In the Section 6.2 the set-up of the proposed application is defined. The sensor

choice, the choice of the position of the sensor, the location of the gesture and shape

detection area is described in this section. The reasons for these choices are also

provided. The same section also describes the dataset captured in the car which the

application is trained and tested against. In the next Section 6.2.2, the flow of the

data is described. The input, preprocessing, tracking, and pre-processing blocks

are explained in some details. The decision block which use the neural network

is described in the Section 6.3.1, in the same section the eventual neural network

model used for the shape and gesture classification procedure is presented. The

results of tests made on the data and the computation machine used for the tests are

135
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also detailed in the section Section 6.3.1.

6.1 Application Motivation

Driver distraction is a critical issue for driving safety. The Driver Information Sys-

tem (DIS), music players, navigation system are some of the components often

shipped along with the automobiles. These are important assistance for the driver

and co-passengers but also contribute to the driver distractions.

One of the early and still popular empirical evaluation of distraction in car [161]

recommended fifteen seconds as the maximum time for completing any interaction

with DIS. Since, various studies have been conducted to analyze the influence on

driver concentration when they interact with these objects in the car [1, 162, 2].

These studies found that distraction disrupts natural driving and causes errors. The

study by [2] lists dialing or answering a mobile phone, adjusting MP3 players

among the causes for distraction, it has been experimented that such distraction

contributed to road accidents. It was observed that the time taken to complete sim-

ple interactions with the electronic elements within the car ranged from 8.5 seconds

to 25 seconds [1]. It was also evaluated that the complexity of the interaction in-

creases the distraction time and the length of interaction. In this context, one of

the component of interaction that can be reduced is the searching for controls and

pressing, rotating the controls. The work by [107] preferred interactions and using

gesture based interaction over other interaction because this can remove the visual

distraction. This study was further validated by the experiments conducted by [163]

who reported reduced visual distraction by employing on-steering hand gestures.

The development of a hand-gesture based in-car HCI system is motivated from

these studies. The proposed application will develop a high accuracy hand shape

and gesture classifier, with the constraints of a preferred low latency identification,

without high computation required.
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(a) The ToF sensor for the appli-
cation.

(b) Placement of the ToF sensor. (c) The application setup in the
car.

Figure 6.1: The 3D ToF camera location in the car and the recording setup

6.2 The Sensor and Application Pipeline

A low cost, low power, ideally 3D image sensor is required for the application. The

various solutions available for recording the 3D depth images includes the stereo

vision based combination of two 2D sensors or one 2D camera with pattern pro-

jection. These solutions are typically susceptible to changing lighting conditions.

This happens because of the changing shadows in the moving car in case of the pro-

jections based depth calculations. In case of the stereo vision the changing lights

and light angles create a varying contrast map for the image and such systems are

known to fail in scene content that has no or only rare contrast.

The ToF camera is developed on the principles of reflection of modulated light

source and its phase detection. Thus the depth calculation (the distance between

the sensor and the object) of each pixel is calculated by accurate measures of time

difference from the light source until it is received back by the sensor after re-

flection. This makes the sensor less susceptible to the varying lighting conditions

within the camera field of view. The second amplitude channel has the important
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Figure 6.2: The recording tool for recording data in the car.

property that the pixel values are dependent on the reflectance of the object surface,

this makes the properties of the amplitude channel similar to a grey scale channels.

6.2.1 Sensor Placement

Avoiding driver distraction, required short gestures done close to the steering wheel.

When the actions are committed in a small region close to the steering, minimizing

the scene clutter and occlusions are important for making a decision on the place-

ment of the camera. It has been observed that an overhead location is best suited

for such problems [164]. While, this choice causes substantial self occlusion of the

hand when palm points towards the car floor it is the optimal location of the camera

to remove the occlusion due to objects in the car. A ToF camera was fixed in the

overhead console behind the rear view mirror of the car. The data for the proposed

application is collected inside the car using a data collection tool. The recordings

of the two channel images are made to test the algorithm on the desktop version
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Figure 6.3: The flow for the application architecture.

and a recording tool was developed for recording hand shapes and gestures in the

car Figure 6.2.

6.2.2 Application Architecture

A desktop application to integrate the gesture and shape classification application

was used for including the proposed methodologies. The application proposal uses

existing motion and position feature and feature tracking blocks. These features are

used along with the features extracted from neural networks, these features are the

same as were described in the Section 4.5.4

1. Sensor image collection and preprocessing the sensor output.

2. The hand position, velocity vectors are calculated using the hand center and

the fingertip location.

3. The convolution neural network is used to make a shape prediction. The

shape features of convolutional network is combined with the velocity fea-

tures calculated by tracking and are input into an LSTM.
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(a) The car zones used in the application (b) Gesture and shape identification in zone 1.

Figure 6.4: Screenshots from the car applications.

The sensor provides a 120× 165 pixel two-channel image. In the application, the

depth channel is employed for background removal. The largest contour in the am-

plitude image is then identified and conserved, this removes the noisy pixels. The

depth values corresponding to the pixel position in the amplitude channel are used

for re-scaling the hand image to equal depth. The image is centered in region of in-

terest. The car used for the recording and development of the application is divided

into three zones. A cuboidal area is identified around the car dashboard and marked

as zone one, the area around the gear box is identified as zone two and area around

steering area is identified as zone three, Figure 6.4(a). The application identifies

hand gestures and shapes in the zone one. As the gestures are palm movement,

this constraint removes various unintended gestures that are otherwise identified,

it also allows better pre-processing of the data. The features calculation is done

exactly as defined in Section 4.5.4. Of the seventeen feature components, fourteen

values which include the position, velocity and acceleration of the hand and finger

are used as the input to the LSTM network. The features that represent the shape of

the hand used in the Section 3 are replaced by the shape representation vector from

a convolutional neural network used for shape classification.
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Figure 6.5: The neural network architectures.

6.3 Neural Networks and Tests

The application simultaneously identifies the hand gesture and hand shapes. Both

shape and gesture are identified only when the hand is in an area of interest. The

hand shape classifier is also used as a feature generator for the hand gesture classi-

fier.

The architectures for the two neural networks used for shape and gesture classifi-

cation is described in the Figure 6.5. The shape classifier is the same as the one

described in the Chapter 3. The gesture classifier is a simple LSTM network with

five fully connected layers. The input to the LSTM network is the position and mo-

tion features combined with sixty-four dimension hand shape descriptor resulting

from the second layer of the network used for the shape classification.

The neural networks are activated when the hands are in the zone 1 shown in Fig-

ure 6.4(a), the neural network makes a softmax prediction of the shape and gesture
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class.

6.3.1 Neural Network Training and Test

The earlier used hand shape dataset described in Chapter 3 is combined with a

dataset recorded for gestures.

Training the shape classifier

The Neural Networks are trained using a hybrid dataset of shape and gesture record-

ings made in the desk and car. The recordings made for the desk hand dataset de-

scribed in Section 4.5.1 are combined with a recording made using the same set-up

but inside the car. The recording inside the car is made for thirteen individuals.

The network is first initialized by combining the large hand shape dataset that has

one hundred five thousand data samples, with the car dataset in which there are

eighteen thousand samples. Nine thousand samples from car data are used in this

initialization.

In the second phase of the training only the car-dataset is used and fifteen thousand

of the car data points including those used in initial training are used for training

the classification. The overall training is completed for classification of five hand

shapes. The second phase of training tries to specify the network into the a in-car

hand shape classification network.

Training the gesture classifier

The gesture classifier is trained similar to the hand-shape classifier. A desk-car

hybrid hand gesture dataset is used for initial training of the network, the training

is finalized with the car dataset and the final network is used for the training of the

seven gesture class classifier.
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Table 6.1: The application: classification accuracy of the five hand shapes.

Accu % Fist Flat Open Point Join

94 91 96 93 96

The dataset for the training of the gesture is created by first collecting the hand

shape representation vector for each frame of the gesture and concatenating it with

the motion feature classifier calculated from the hand and finger location tracking.

6.3.2 Forward Phase and Application Evaluations

The forward phase of the application has the hand shape classification and the hand

gesture classification running simultaneously. The scheme used for these two clas-

sification as shown on Figure 6.5 causes a delay in the gesture prediction as the

classifier waits for the feature input from the first first hand shape input. To ascer-

tain that the hand-shape features include the full hand image, the application waits

td = 2 frames after the first hand shape prediction is made to start the input into the

LSTM network. The LSTM then makes the first prediction after a delay of K = 10,

thus the overall delay of the LSTM prediction is Td = td +K +1 = 13 frames.

The classified hand shapes are "Fist", "Point", "Flat", "Open" and "Join". The clas-

sified hand gestures are "Up", "Down" movements, "Left" and "Right" swipe, and

"Click". The performance is tested on an Intel R© Xeon CPU. The time for the for-

ward phase of the CNN is 6.7ms and the time for running the LSTM once the input

from the convolution network and the tracking features are received is 4.2 ms.

These networks were tested with two thousand gestures and ten thousand hand

shapes, the accuracy results for these tests are shown in the Table 6.1 and Table 6.2.

The percentage accuracies of the hand shape and hand gestures are the average

correct estimate made by the respective neural networks where the class estimate

for the output softmax vector P containing elements pi the estimated class i is cal-
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Table 6.2: The application: classification accuracy of the five hand gestures.

Accu % Up Down Left Right Click

91 89 89 92 95

culated as, max
i
(P) for the shape classification problem, and max

i
(∑τ

t=Td
Pt) for a

gesture sequence of length τ .

6.4 Conclusion

Various applications in the car can use the vision based HCI system. The appli-

cation has so far been tested on a desktop PC and will be integrated into the car

system soon. The use of small models and shared features allows an architecture

that requires less memory and can be used in real time. The application uses known

car dimensions for pre-processing of the hand images. The training of the network

used data collected on the desktop setup described in Section 4.5.1 and was cor-

rected with the data recorded inside the car.

Eventually, this algorithm should be a part of the car embedded software and the

driver should be able to control various systems in the car with it. Such use cases

will still require further compression of the neural network models and better inte-

gration on the car embedded system.
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Conclusion

The goals of the thesis broadly covered developing methods for feature evaluation,

identifying methods for improving the feature learning and feature combination

methods for classification. This goal was inspired from the attempt to reduce the

time required for collecting the data, this includes both the process of collecting a

large dataset as well as reducing the requirement for labeled data.

While the neural network based machine learning algorithms are powerful tools for

learning, performance improvement with constant data and model size is difficult

to achieve. Simultaneously, developing an automobile based system that needs to

work on varying car interiors and constantly changing illumination the dataset vari-

ance is large. Further, labeling gesture sequences and marking the start and end

of sequences in large dataset requires manual interventions. The development of

a real-time system that runs on limited computing power inside a car also creates

constraints on the size of the neural network model.

The methods for reduction of training data were developed by, firstly, develop-

ing schemes for better combination of the a-priori physical and statistical informa-

tion, and secondly, by proposing a scheme for combination of neural network. In

145
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Chapter 3 introduced a step by step procedure of increasing physical and statistical

information about data, task and environment for improving the classification per-

formances. In the Chapter 4 the combination of the features is shown to improve

the learning performance and a method for parallel learning of features consist-

ing of separate properties is proposed. The improvement of performance using

such strategies were shown with experiments on the hand shape and hand gesture

datasets.

7.1 Summary of Thesis Achievements

Various methods for hand shape and pose classification already exist. The hand

shape and hand gesture classification system presented in this system uses the ideas

developed for effective transfer learning and better weight initialization schemes.

Emphasis was placed on developing methods of inculcating priors into the neural

network. To review, the contributions of the thesis as they appeared in this docu-

ment are as listed,

• A modification to the SFA extraction procedure for better exploitation of or-

thogonal features. This results in better performance of hand shape classifi-

cation problem.

• Development of Random Forest based methods for the evaluation of the con-

tribution of features from different layers to the classification problem.

• Proposing a funnel shape output layer for hand shape neural network classi-

fier, and introducing statistical priors to it.

• Developing a constituent transfer scheme for intra-domain transfer learning.
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• Using a weak task model for the correction of LSTM sequence estimates

using CNN static estimates. The gesture estimates made by a LSTM were

corrected by the CNN hand shape estimates.

• A multi-property combination of neural network features for faster sequence

classification. The combination of the C3D network with LSTM network is

done for better classification of incomplete gesture sequences.

• A proposed simultaneous in-car hand-shape and hand-gesture classification

algorithm that runs real time on a desktop test PC.

The contributions include theoretical and practical solutions for feature extraction

and feature uses problems. The experiments on orthogonality and feature separation

provide a perspective for understanding feature learning. Further, methods for prior

learning involves ideas borrowed from the fields of domain transfer learning and

sensor fusion for use with neural networks.

7.2 Future Work

Many different adaptations and theoretical formulations have been left to be com-

pleted. The preparation of the data, searching for the optimum model and training

the neural network with the dataset is a time consuming process. Thus, experiments

need to be made in future to better understand parts of work presented in this thesis.

Here we list the most important experiments that should be made further,

1. The evaluation on neural network features’ contributions to the classifica-

tion task made in Chapter 3, may be used for model pruning. A method to

develop such pruning, by developing sparsely connected network and then

reducing the network redundancies could be useful for developing a proce-

dural method for model size reduction.
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2. Further, the constituent learning proposed in the Section 4.4 requires formal-

ization of the properties that can be used for information transfer. In the re-

ported experiments, intuitive properties for model information learning were

used. A better approach would be a mathematical formalization for identifi-

cation of such properties. Further experiments with varying sensors and real

data will strengthen the arguments for the importance of the method.

Apart from this, recently presented variations of SFA called slow and steady feature

analysis [165] should be analyzed. An earlier proposed network pruning method

[147] can be used in conjugation with the feature evaluation work.

Overall, various contributions of this thesis, which included designing biases, de-

veloping methods for domain transfer, and evaluating feature contributions of neu-

ral network will be of interests in developing strategies to better initialize neural net-

work with a known mathematical formulation for the phenomenon of the dataset or

task. Such methods will substantially reduce the labelled data requirement. Better

transfer learning policy will also help researchers use large datasets more creatively

for tasks to be completed on independent dataset received from another sensor.
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