
Ontology-Based Approach
to Decentralized Production Control

in the Context of Cloud
Manufacturing Execution Systems

Vom Fachbereich Maschinenbau und Verfahrenstechnik

der Technischen Universität Kaiserslautern

zur Verleihung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

genehmigte

Dissertation

von

Herrn

M.Sc. Badarinath Katti

aus Dharwad, Indien

2020

Promotionskommission:

Vorsitzender : Prof. Dr.-Ing. Jens Göbel

1. Berichterstatter : Prof. Dr.-Ing. Martin Ruskowski

2. Berichterstatter : Prof. Dr. Klaus Schneider

Tag der mündlichen Prüfung: 05.05.2020

D 386

III

Preface

This research work is supported by a doctoral grant from SAP SE. I would like to sincerely

thank Veronika, for giving me this opportunity to work on my thesis, and also work in a

wonderful ”dream” team. I would like to sincerely thank PCo Team collegaues - Chris-

tian, Christine, Emil, Edgar, Hans-Juergen, Kathryn, Maria-Anna, Martin, Michael, Nalini,

Rüdiger, Salih and Thomas. I have thanked Michael n number of times, and I still believe

this number is very small, and he believes the opposite!

The thesis research was also carried out at the SmartFactoryKL in German Research Center

for Artificial Intelligence. I would sincerely like to thank Professor Zühlke for considering

my profile admissible to work in his research team. A big thank you to Professor Ruskowski

for being my doctoral supervisor, from instilling the confidence since our first meeting we

had in the mid June 2017 to giving me the freedom to work on my research throughout the

process. I could not have asked for a better Doktorvater! I cannot thank enough Professor

Schneider, who was my second Doktorvater. I have always considerd him a father figure,

and cannot list here all things he has done for me over the course of my stay in this foreign

land. I would sincerely like to thank all the colleagues of SmartFactoryKL, who have helped

me grow academically over the past few years. It would be unfair if I did not mention the

folllowing names: Rüdiger, Rüdiger, Marius, Simon, and Rouven. Penultimately, Christiane!

This thesis would not have materialized if not for her constant (moral, sometimes!) support,

collaboration and dogged perseverance. I hope she knows that!

Lastly, my family - Pappa, Amma, Venu, Anusha, Samanvita, Kaka(s), Kaku(s), Atya,

Mama, Vatsa, Pravalika, Janhavi, Raghu, Ramya, Sony, Mini.. (a big one at that, hence

cannot name everyone here due to space constraints!), without which nothing would have

been possible.

Each one of you is an inspiration for me in his/her own way. Thanks for being kind, consid-

erate and patient with me all these days, months and years. I hope and aspire to be as good

a researcher, programmer, leader and wonderful human being as you all are.

Kaiserslautern, May, 2020

Badarinath Katti

V

Contents

Preface III

Abstract VII

1 Introduction, Problem Statement and Overview 1

1.1 Problem Statement . 4

1.2 Establishing the boundaries of research . 10

1.3 Solution Methodology and Organization of Thesis Manuscript 11

2 State of the Art 15

2.1 Manufacturing Execution Systems . 15

2.1.1 Enterprise Business Solutions in Manufacturing: Motivation for MES 15

2.1.2 Objectives of MES . 17

2.1.3 MES Deployment Options . 19

2.1.4 Previous Works in Cloud Manufacturing 22

2.2 Production Control Strategies . 24

2.2.1 Centralized and Decentralized Control Systems 26

2.2.2 Well-Known Decentralized Architectures for Production Control . . . 27

2.3 DIN SPEC 91345: Reference Architecture Model for Industrie 4.0 34

2.3.1 Industrie 4.0 Component (I4.0 Component) 35

2.3.2 RAMI4.0 Communication Layer: IEC 62541 OPC UA Standard . . . 37

2.3.3 Status-Quo Evaluation . 40

2.4 Service Oriented Manufacturing and Semantic Web Technologies 42

2.4.1 Service Oriented Architecture . 42

2.4.2 Semantic Web . 43

2.4.3 Semantic Web Services (SWS) . 45

2.4.4 Previous Works . 50

3 System Architecture 53

3.1 Caching of Production Scheduling and Control Information 53

3.1.1 Characteristics of GeSCo . 54

3.1.2 Anticipated challenges due to caching 55

VI Contents

3.2 Proposed System Architecture . 58

4 Semantic Modeling 65

4.1 Assimilation of OWL-S Framework in OPC UA 69

4.1.1 Modified OWL-S Sub-Ontologies . 70

4.1.2 Working Principle of OWL-S Augmented OPC UA 76

4.2 Assimilation of SAWSDL Specification in OPC UA 79

4.2.1 Organization of Application-Specific Method Nodes in OPC UA Server

Address Space . 80

4.2.2 Exploitation of OPC UA Node structure 81

4.2.3 Assumptions, conventions and Scope Definition 86

4.2.4 Publishing OPC UA Methods Grounding Metadata 87

4.2.5 Working Principle of SAWSDL Augmented OPC UA 89

4.3 Incorporation of a Hybrid of OWL-S Framework and SAWSDL Specification

to OPC UA . 90

4.3.1 Motivation for the Hybrid Approach 90

4.3.2 Methodology . 94

5 Implementation 97

5.1 Classification of Rulesets . 99

5.2 Integration of Ontology to Cloud based MES 103

5.3 Automatic Encoding of the Ontology . 106

5.4 Creation of Ontology Resolution and Business Rules in SWRL 112

5.5 Centralized and Semi-Automatic Modeling of Capabilities of Manufacturing

Resources . 115

5.6 Ontology as Placeholder for Manufacturing Data Collection 118

6 Experimental Evaluation 120

6.1 Infrastructure Set-Up . 120

6.2 Production Design Time Activities . 123

6.3 Method Discovery and Orchestration . 130

6.3.1 Use case 1: Quality Control . 135

6.3.2 Use case 2: Resource Breakdown . 136

6.4 Open Integrated Factory - Generation 2017: Supplementary Use Case 136

6.5 Implementation Considerations, Challenges, Results and Lessons Learned . . 137

7 Discussion: Summary and Outlook 141

Bibliography 146

VII

Abstract

Decentralized manufacturing is an active research topic in current smart and open inte-

grated factories, and is probably also the future state of practice in both the process and

manufacturing industries. Decentralized systems are known to reduce the communication

effort, increase flexibility, autonomy, adaptability and efficiency of the industrial automa-

tion systems. Meanwhile, the Manufacturing Execution System (MES) is a comprehensive

automation software solution that coordinates all the responsibilities of modern production

systems. Further, when the advantages and downsides of various MES offerings are explored

in anticipation of changing production environments, the Cloud MES (CMES) emerges as

the most flexible and affordable solution. The MES solution is essentially designed as a

centralized manufacturing control unit, which goes against the principle of the decentralized

manufacturing paradigm. Additionally, when operated as a cloud based solution, the MES

faces another big challenge: connectivity and network latency.

To address these problems, this thesis introduces an edge layer called Generic Shop-Floor

Connector (GeSCo) between CMES and shop-floor. In order to accomplish the assigned

manufacturing tasks effectively, the edge layer is required to possess contextual awareness to

make run-time decisions in production. Semantic technologies, on the other hand, assist in

discerning the meaning, reasoning and drawing inferences from the data. To that end, the

well-known Web Ontology Language for Web Services (OWL-S) framework and Semantic

Annotation for Web Service Definition Language (SAWSDL) specification from the domain

of semantic web services are incorporated to OPC UA application specific methods. Subse-

quently, a hybrid approach which is a combination of OWL-S and SAWSDL specifications is

proposed. In order to enable market-like demand-supply synergy employing these semantic

frameworks, abstract services in the production order and concrete services provided by the

field devices on the shop-floor need to refer to a common production ontology. The creation

of this ontology is a challenge of its own. This research also proposes a pragmatic automation

of an encoding of a primary and light weight production ontology based on the source code

of MES. The delegation of manufacturing runtime control by the CMES to this edge layer

consequently facilitates dynamic manufacturing service discovery and adaptive orchestration

plans. Furthermore, the derived hybrid approach is applied to a real use case to demonstrate

its feasibility in industrial environments.

1

1 Introduction, Problem Statement
and Overview

From the perspective of manufacturing industries, enterprise information systems are com-

prised of several business applications such as Enterprise Resource Planning (ERP), Product

Lifecycle Management (PLM) and Manufacturing Execution Systems (MES) [Arab17] (see

Figure 1.1). There are other business-oriented tools such as Business Process Management

(BPM) and Human Resource Management (HRM) that either exist independently in some

manufacturing facilities or their functionality is subsumed by other well-known applications

such as ERP.

In an integrated manufacturing environment, an ERP maintains an enterprise database where

each business transaction is entered, recorded, processed, monitored and reported. This in

turn, presents an unified enterprise view of the business encompassing all the departments

and their corresponding functions. ERP encompasses the areas of product design, operations

and logistics, sales and marketing, information warehousing, materials planning, human re-

sources, finance and project management [Umbl03]. On the other hand, PLM is a business

software that manages all the data associated to a product during its lifecycle phases which

include design, manufacturing, usage, maintenance, recycling and disposal [MATS10]. PLM

is often referred to as a ”single system of record” for product data across the product life-

cycle. As maturity [Paul93] increases, product and process information flows from PLM

to downstream layers such as ERP and MES [Grea17]. In manufacturing companies, both

PLM and ERP complement each other. The PLM software enables the engineering design

process [Haik18], and when the design is approved, ERP ensures quality products are man-

ufactured in a time-bound and cost-controlled manner [Hill]. Both ERP and PLM business

software comprise layer 4 of the automation pyramid.

Although ERP achieves better integration with regards to flow of information between busi-

ness functions in and across the organizations, it alone cannot meet the intricate challenges

presented by the Mass Customization in Production (MCP) [Silv01]. ERP concentrates on

the managerial level of decision-making, and its shop-floor supervision is relatively weak to

support frontline workers and supervisors [Zhon13, Yang16]. [Zhon13] also states that

ERP needs real-time data to generate optimal results. However, both ERP (level 4) and

2 Chapter 1: Introduction, Problem Statement and Overview

Business
Planning

and Logistics

Level 4

Level 3

Level 2

Level 1

Level 0

Manufacturing Operations
and Management

Monitoring and Supervision

Sensing and Manipulation

Production Process

MonthsMonths

Days

Hours

Minutes

ms / μs

Seconds

ERP & PLM

MES

SCADA/HMI

PLC

Timeframes
of various layers

IP Networks

Sensors & Signals

Field
Networks

Figure 1.1: The conventional automation pyramid according to the ANSI/ISA-95 model.

The five levels, 0-5, are defined in the middle. At each level, the typical system(s) used

are showed to the right. Different levels are concerned with different timeframes which are

visualised to the left [Aker18, Zueh10].

control layer (level 0 and 1) at the shop-floor operate on different time frames (refer Figure

1.1). Hence, the concept of ‘soft-real-time’ in ERP greatly differs with regards to the control

layer. In the context of digital manufacturing, MES bridges this knowledge gap between

the ERP and shop-floor by reacting to the events of the manufacturing shop-floor in real

time. The IEC 62264-3:2016 standard [IEC16] divides the entire MES activities into four

functional areas namely production, maintenance, quality and inventory management. Typ-

ical functionalities of production management in MES include sequencing the operations,

monitoring the production and determination of the states of different entities involved in

production with respect to real time. MES is also the focal point of this thesis.

Supervisory Control and Data Acquisition (SCADA) systems constitute layer 2 of the au-

tomation pyramid. They are software packages interfaced to the Programmable Logic Con-

trollers (PLC), Distributed Control Systems (DCS), Intelligent Electronic Devices (IED)

or other commercial hardware modules that form layer 1 of the ISA 95 model [DANE99].

SCADA systems consist of a number of remote terminal units (RTUs) that are connected

to PLC, DCS and IED. These RTUs collect field data and transfer it to the master station,

via a communication system. The master station displays the acquired data and allows the

3

human operator to perform remote control tasks. The accurate and timely data allows for

optimization of the plant operation and process [Bail03].

The PLCs in level 1 of the automation pyramid are connected via field bus to level 0.

Manufacturing resources on the factory shop-floor which consist of sensors, actuators, motors,

switches, valves and contacts constitute level 0. Manufacturing resources are responsible for

performing production tasks.

MES implements production and maintenance planning, production quality management and

dynamic rescheduling through structural and functional interfaces to the SCADA systems

[Colo12]. However, in recent times, there has been an increasing overlap between the roles

of MES and SCADA systems in terms of production execution and control. In the same

vein, functional areas of ERP and MES also run into each other [Modr09]. Therefore, the

automation pyramid is not strictly a closed structure as shown in Figure 1.1.

With the advent of low-cost and smart sensors and subsequently Cyber Physical Systems

(CPS), the sensors that are connected to the machines are now reachable as they can be

addressed over the network via TCP/UDP over IP. Barring exceptional behaviors, ISA-95 also

emphasizes that MES operates on the same time scales as SCADA. Thus, the manufacturing

execution systems can directly co-ordinate with the machines in manufacturing plant without

any time-compatibility issues. This development has given rise to the possibility of omitting

the SCADA layer and delegating its responsibilities to the manufacturing execution. In

many cases, SCADA systems and the connectivity solutions from the MES layer through

the SCADA down to the shop floor have been characteristically vendor-specific. They do

not follow industry standards and thus make it difficult to replace machines on the shop

floor level. The trend of moving towards standardized communication protocols on all layers

of the automation pyramid also fosters this development of circumvention of the SCADA

layer. Figure 1.2 illustrates the practical positioning of the MES and SCADA in automation

pyramid [Katt18b].

Level 4

Level 3

Level 2

Level 0 & 1

Level 4

Level 2 & 3

Level 0 & 1

ERPERP

MESMES

SCADASCADA
PLCs, Machines,

Sensors and Actuators
PLCs, Machines,

Sensors and Actuators

Bi-Directional
Communication

Figure 1.2: Evolution of classical Automation Pyramid [Katt18b].

4 Chapter 1: Introduction, Problem Statement and Overview

The focus of this research work is the production management aspect of MES. Therefore,

the research scope naturally broadens to accommodate the factors on the factory shop-floor

that influence the production behavior at execution time.

The rest of this chapter is organized as follows: The definition and motivation of research

problems that have been addressed in this research work is presented in section 1.1. Sub-

section 1.2 lists the concepts that are outside the scope of this thesis. Section 1.3 describes

solution to overcome the research challenges.

1.1 Problem Statement

MES are operated in various forms and sizes across the manufacturing and process industries,

such as homegrown MES, proprietary production control system, on-premise MES from third

party vendor and cloud operated MES [Katt18b]. The cloud based MES is the subject

matter of this thesis.

Motivation

During production execution, work stations comprising of plant modules, individual ma-

chines, even field devices seek information directly from cloud based MES. These work sta-

tions on the shop-floor request cloud MES for routing details at every stage of the production.

Each work station collects the operation, Bill of Materials (BoM), machine parameters and

other resource configuration details. Once this information is collected the machine is in-

structed on how to proceed with that step of the production process. Once that step of

the production is completed, the work station informs the cloud MES the same along with

the generated results. The cloud MES then processes the results and accordingly sets the

next operation of the production. This process continues until all the planned operations

to manufacture the planned component have been executed. During exceptional cases or

conflicting goals, if the need arises, the routing path is changed, as instructed by cloud MES,

to accommodate the exceptional situations. For example, the work in progress is diverted

to a rework station if concerns regarding the quality of the products are raised. As work

stations communicate directly with the cloud MES, it is possible to react immediately to

changes in the production process such as priority customer orders and quality defects. It is

also possible to take an alternative course of action in case of unavailable resources.

Though cloud MES has its advantages in terms of economy and scalability over classical on-

premise MES [Katt18b], there are certain challenges in the cloud MES, or cloud computing

technology in general. The cloud downtime and network latency are critical concerns for the

manufacturer.

1.1 Problem Statement 5

The communication between traditional MES and shop-floor takes place over WAN, which

means that the transmission delay is not bounded. The network latency is a function of

internet traffic that undergoes random fluctuation for the same bandwidth and infrastructure.

Even though, today’s internet links have been over-provisioned [Fral03] with high-speed

links that experience little network congestion, when hundreds to thousands of shop-floor

entities communicate at the same time, the degradation of network performance is inevitable.

This latency becomes even more challenging in high speed manufacturing scenarios where

the right information is required at the right time. Based on the experience, [Zueh10] also

claims that WLAN links at industrial trade fairs often break down due to the network traffic

generated within a relatively small enclosed area by a large number of smart devices which

are equipped with wireless communication interfaces.

In the state of the art industries, the work stations constantly communicate with cloud

MES to seek process parameters, recipe, machine configuration values and push the results

describing status of products and resources during production control. This digitization of

manufacturing produces large amounts of data that varies with the degree of automation on

the shop-floor. This large dataset in turn has an adverse effect on data processing times on

Create-Read-Update-Delete (CRUD) operations between factory shop-floor and cloud MES.

This factor significantly contributes to the delay in response from cloud MES.

Typically, enterprise applications such as MES employ Simple Object Access Protocol

(SOAP) [Box00] based web services for business-to-business (B2B) integration due to its

W3 specifications and extensions that provide robust security, ACID [Haer83] compliance,

successful/retry logic and provision of contracts. However, the complex envelope of SOAP

consumes high network bandwidth, and extraction of SOAP envelope and parsing the con-

tained XML information is an overhead compared to contemporary HTTP based light weight

alternatives such as REST [Fiel00] based services. The virtualization principle of cloud com-

puting [Zhan09] that can be applied at different levels such as computer hardware, operating

system, storage and network also introduces its own series of packet delays and causes fur-

ther performance degradation [Wang10]. Moreover, the problem of network latency which

is encountered each time the request is created to fetch the next operation details from cloud

MES does not auger well in high speed manufacturing scenarios.

In addition, although cloud providers claim near 100% availability, there are instances in

the life cycle of cloud solutions where the services are disrupted due to many reasons such

as electric failure, hardware failure, cascading failure on routers and cloud downtime arising

out of data center migration, server update against vulnerability et cetera. These incidences,

on an average, reduce the availability to 99.91%, which in other words a non-availability of

7.884 hours per year [Gagn14]. [Gagn14] also cites that Microsoft Windows Azure, which

is one of key players in cloud business, had a total downtime of 272.04 hours in the year 2013.

6 Chapter 1: Introduction, Problem Statement and Overview

Such network outages are not acceptable in the event of manufacturing a priority order.

Another argument against the cloud MES is its centralized governance. Decentralized sys-

tems are known to reduce the communication effort, increase flexibility, autonomy, adapt-

ability and efficiency of the industrial automation systems [Marq17, Carv18, Kend17,

Wagn10]. [Mour13] argues that owing to their benefits in terms of manufacturing costs,

delivery times and agility, decentralized manufacturing approaches are preferred over cen-

tralized practices. Following arguments in this section are based with the focus on the

decentralization in manufacturing.

OPC UA Information Model

The discussion in favor of decentralized manufacturing warrants a shift of focus on OPC

Unified Architecture (OPC UA) technology. Currently, the Reference Architecture Model

for Industrie 4.0 (RAMI 4.0) [Plat16] recommends only the IEC standard 62541 OPC UA

for implementing the communication layer (refer Section 2.3). OPC UA is a platform and

vendor independent communication technology for a secure and reliable data exchange over

the different levels of the industrial automation pyramid. In addition, the information models

of the OPC UA standard provide the foundation for semantic interoperability [OPC 19].

When the capabilities of a manufacturing resource are modeled in OPC UA servers, different

resource vendors align to their own process and data model. It is typical of a manufacturing

site to operate a variety of resources from diverse vendors that are based on different tech-

nologies and present different application interfaces and data formats. When the production

line is set up with this arrangement for a specific product variant, the configuration is tightly

coupled to the manufacturing resources. The changes to the production line for a differ-

ent product variant require manual changes to the software configuration since this exercise

involves consuming different manufacturing services of the resources and in some cases, it

involves the introduction of new resources altogether. Even manual involvement of software

reconfiguration is not smooth due to the heterogeneous production landscape constituted by

these independently developed manufacturing resources. Additionally, the transmission of

the right information to the right entity at the right time to solve complex manufacturing

tasks is not possible when human interpretation is required at each step of the transaction.

Moreover, manual configuration may also lead to performance degradation, anomalies and

outages in practice. Even in the absence of error-free decision making, human involvement

significantly slows down the data transfer and processing [Khil11]. Another associated prob-

lem is semantic under-specification: a term used by one information model may map to a

different concept in another model, or different terms of different information models may

refer to the same concept. These problems require interpretation of data by a human before

1.1 Problem Statement 7

its utilization, and thus hamper interoperability among Cloud MES and on-premise software

stack involved in manufacturing execution and control.

OPC UA Companion Specifications In order to make an optimal use of resources dur-

ing production design and control, a standardized process and resource related information

should be available. With an intention of encapsulating the services of manufacturing re-

sources in a transparent and vendor-independent manner, OPC UA companion specifications

(also called OPC UA Collaborations) of manufacturing resources across various types of in-

dustries are being released. The companion specifications enable building identical OPC UA

servers for all the manufacturing resources that provide the same functionality, irrespective

of the vendor. In other words, this allows identical modeling of a type of manufacturing

resource from different vendors. Such a similar resource modeling warrants the same treat-

ment from the perspective of an OPC UA client, and hence, significantly streamlines the

task of obtaining the vital process data. The companion specifications that provide these

standardized mappings between the manufacturing resources and the corresponding OPC

UA information model are the ideal solution to achieve semantic interoperability.

In addition, the companion specifications also extend the semantic vocabulary provided by

the standard OPC UA specification. The companion specifications enable resource to re-

source communication (horizontal integration), and production design and control solutions

to resource communication (vertical integration) without referring to the technical service

interfaces. The resources self-describe their information model which in turn substantially

reduce the production line configuration effort.

Current Usage of Companion Specifications The self-description of resources sub-

stantially reduces the complexity involved in central production design and configuration.

The production designer assigns the Production Order (PO) requirements to these standard

methods of OPC UA server suggested by the common information model. In a cloud based

manufacturing scenario, the companion specification of a particular manufacturing resource

is hooked to the cloud MES in the form of an XML file containing the nodeset of the OPC

UA server. The cloud MES then reads through the OPC UA node file to create an abstract

resource at design time. Each manufacturing resource consists of numerous field devices

which in turn greatly complicates the tag and method structure of the OPC UA server.

Therefore, only requisite and partial nodeset structure is instantiated to create a resource

digital twin in the cloud during production design phase, and its functionality is mapped

against the service required to fulfill the business needs. Such an upfront mapping configu-

ration consisting of a static orchestration plan is created in the cloud and dispatched to the

edge layer of the manufacturing shop-floor to take over the control of the production. From

a centralized manufacturing point-of-view, such a production design increases simplicity, and

also instills confidence in production managers on account of its transparency and absence

8 Chapter 1: Introduction, Problem Statement and Overview

of emergent behaviors.

Inadequacies of OPC UA Companion Specifications

� The companion specifications that are prescribed on paper aim to provide only an

identical OPC UA information model of resources that deliver the same manufacturing

services. For example, the companion specification allows an OPC UA client to interact

in an identical manner with the devices of two different manufacturers that expose the

same semantic information model and API. Despite this fact, this informal information

model does not provide sound reasoning power to the machines. In other words, it

allows a human to easily understand a machine model, but it does not assist in machine-

machine automation under all circumstances.

� Besides providing the OPC UA servers of similar resources with the same information

model, these various manufacturing resource vendors also provide additional function-

alities in order to differentiate themselves from the market. The consumption of the

additional services requires referring to vendor specifications, and hence an involvement

of a human user cannot be avoided.

� Modern manufacturing plants contain countless numbers of manufacturing resources

at an abstract level, and field devices at a detailed level for the purpose of regulation,

control, analysis and visualization of production. Considering this complex arrange-

ment of the manufacturing site, it is also impractical to assume that every entity shall

possess an OPC UA companion specification.

� Another line of argument is the provision of rich information modeling in the OPC

UA that offers the description of the data and the contextual information. Though

Job Shop 5

Resource 1 Resource 2 Resource 3

Welding Milling Work Station 1 Drilling 1.5 kW

Which resource in jobshop5 performs drilling?

Which resource in jobshop5 is in workstation1?

Which resource in jobshop5 which can peform either milling or
drilling, is situated in Workstation1 and has a drive power of 1.5kW?

Figure 1.3: Illustration of Logical Reasoning Incompetency of OPC UA

1.1 Problem Statement 9

OPC UA working groups have covered the bases with regards to most aspects of se-

mantic information modeling, a reasoning engine that recognizes conflicting semantic

definitions and infers logical consequences using the principles of first order predicate

logic or description logics is still missing in OPC UA. Refer Section 2.3.3 for detailed

description.

To apply strict and consistent rules in information modeling, the entities should be

subjected to formal definitions. Currently, the OPC UA can design from a simple to

the most complex information model depending on the application requirements. It is

highly probable that errors are introduced inadvertently during the design of an infor-

mation model of such complex systems. Therefore, it is even more important to enforce

consistency checking during such modeling process. In contrast, formal ontologies do

not just list real-world concepts into an ontological model, they also have the power

of reasoning. Figure 1.3 provides an example of above explanation where the OPC

UA with its current capabilities can only answer questions with green tick bullets, but

not crossed in red. Such intelligence is required to reason on the services provided by

manufacturing resources, assess the resource conditions for better coordination in the

production and evaluate the pre- and post-conditions of an OPC UA method execution

in the PO orchestration. The above-mentioned example is for the purpose of brevity,

but this type of reasoning can also scale to represent the conditions of complex man-

ufacturing systems. Mere provision of manufacturing service without adhering to its

business and production pre- and post-conditions is not considered useful. Such con-

ditions that not only involve connecting the mere references, but also involve logical

and reasoning expressions which are represented in the information model at design

time, and need to be processed at runtime to assess contextual information at factory

shop floor, and it is not possible with the current OPC UA specification. To this end,

the vocabulary provided by the OPC UA address space should transform to formal

ontologies.

In a nutshell, the OPC UA information model and accompanying companion specifications

do not assist in autonomous decision making of the entities in the shop-floor in the context

of decentralized manufacturing. In the state of art, the companion specification only allows a

human user to couple the required manufacturing services to the fixed physical resources on

the shop-floor during the production design step on the assumption that a specific resource

type contains the required application method. However, this static production design does

not sustain disruptions in case of exception scenarios in production.

The argument of network latency in the centralized cloud MES, and subsequent discussion

on emergence of decentralized control in manufacturing leads to the following main research

question:

10 Chapter 1: Introduction, Problem Statement and Overview

Research Question 1: In a production setting controlled by cloud MES, is it feasible to

delegate the manufacturing execution and control to the production network layer in order to

enable decentralization of production? In other words, how to empower the factory shop-floor

to become self-reliant in terms of production related decision-making and execution based on

its local conditions?

The above discussion leads to the following supplementary research question:

Research Question 2: In the light of decentralized control, it is necessary for the decision

making entity on the production shop-floor to have the capability of reasoning and drawing

inferences on the suitability of manufacturing services of the OPC UA servers for the given

production order (PO) requirements. How to construct such automated reasoning systems?

The current trend is the ever-increasing tendency of shifting the manufacturing facilities

towards decentralized control systems [Mour13]. However, designing such a completely

decentralized system is a complex task [Tsit84] and also reduces the transparency of man-

ufacturing processes to the business applications such as MES and ERP. The thesis strives

to strike the right balance between these two extreme paradigms of production control.

The design and evaluation of an effective communication strategy between production facil-

ities, equipment, individual sensors, actuators on one side and a centralized cloud MES on

the other to answer the above-listed research questions is the aim of this dissertation.

1.2 Establishing the boundaries of research

There are several aspects that are out of scope of this thesis:

� The loss of governance is perceived as another big impediment to the acceptance of

cloud based manufacturing solutions [Mang11]. When business applications are moved

to the cloud, it forces the organizations to accept the control of the service provider

on several important issues and areas of business and manufacturing data. As a result,

the cloud solution provider will have overarching influence on the business processes.

The fact that the valuable enterprise data resides outside the company firewall raises

serious security and privacy concerns. However, security concerns of the cloud based

MES are outside the purview of this research work.

� It is not possible to accurately determine the latency between two fixed points since

the data packets encapsulated at the network layer of OSI reference model [Zimm80]

need to pass through several proprietary routers of the internet before reaching the

destination. Each of these routers has unpredictable traffic which is dependent on a

variety of factors. Moreover, the network latency which is a function of internet traffic

1.3 Solution Methodology and Organization of Thesis Manuscript 11

also undergoes random fluctuation for a given bandwidth and infrastructure. Therefore,

instead of imposing hard real-time constraints, the practical unit of measurement should

be average time for the network latency. Additionally, the focus of the thesis is the

high level process automation, which usually do not pose real time requirements.

� Modern MES are capable of replicating most of the functionalities of ERP with regards

to manufacturing activities. Creation of Production Order/ Shop Order, which is

one of the activities pertinent to production management aspect, can be carried out

independently in MES. Therefore, the ERP is not part of this study.

� There are several standards to implement the communication layer in the indus-

trial automation setting such as OPC [OPC 02], OPC Unified Architecture (OPC

UA) [OPC 17a], MTConnect [Vija08], Woopsa [Web 16], Data Distribution Service

[Kang12]. However, the Reference Architecture Model for Industrie 4.0 (RAMI 4.0)

recommends only the IEC standard 62541 OPC UA. Moreover, as per Platform In-

dustrie 4.0, even to comply with the ”Industrie 4.0-enabled” at lowest category, an in-

dustrial resource/product should integrate the OPC UA information model [Hopp17].

Therefore, this work concentrates on the OPC UA standard. From a communication

protocol perspective, the signed and encrypted UA native binary protocol is opted since

its performance is better in comparison to the WS-* based SOAP/HTTP(S) OPC UA

implementation. Other protocols such as MQTT and AMQP are not discussed in this

study.

� This research targets only the discrete event automation systems. Although the thesis

solution can be extrapolated to continuous-time systems and controllers, it has not

been subjected to evaluation.

1.3 Solution Methodology and Organization of Thesis

Manuscript

Taking the following actions is one of the first steps of the multipronged strategy to overcome

the problems described in Section 1.1:

1. Reduction of geographical distance between the cyber physical systems (CPS) on the

factory shop floor and MES

2. Shifting of validations on intermediate results that are necessary to ensure the produc-

tion does not deviate from the plan from centralized cloud MES to factory network

layer

The above-mentioned first action negates the network delay. As the data grows in MES,

12 Chapter 1: Introduction, Problem Statement and Overview

the average duration of time needed to upload, download, process and analyze the data also

grows in correlation. The second action overcomes the large dataset processing delay that

stems in MES and thereby quickly arrive at feedback relevant instructions within a short

time delay. The implication of these above actions is that the control data which is required

for production execution should be close to the shop floor. In other words, this data should

be cached at the proximity to the shop floor. This initiative of caching the production data

is the first measure in the direction of promoting autonomy for production systems.

Despite the collaborative nature of decentralized production processes, a facilitator should

be identified that owns the process for successful completion of production. Decentralized

production involves interaction among participants of the shop-floor, and the facilitator helps

in reaching a consensus [Marq17]. Therefore, an edge component called Generic Shop-Floor

Connector (GeSCo) is conceptualized to play the role of the facilitator that orchestrates the

production execution. The designed architecture also includes identifying a set of modules

in GeSCo with dedicated responsibilities. The production data is cached in GeSCo (refer

Chapter 3 for more details).

Mere caching of production control data at the proximity of the shop-floor solves only a

part of the problem. The static production data does not take into account the context of

the shop-floor, and hence, is incapable of exploiting the dynamic conditions of the shop-

floor. Furthermore, in the event of exceptions such as quality non-conformance and resource

breakdown, the continuation of production execution requires guidance from cloud based

MES. Therefore, the next step of the process is the flexible production orchestration by

GeSCo which is possible only via automatic search, discovery and invocation of the manu-

facturing services offered by the OPC UA servers of the manufacturing resources. However,

the information model of OPC UA alone is not sufficient to formally describe the seman-

tics of the application-specific methods of an OPC UA server. The OPC UA collaborations

[OPC 18a] seek to standardize the OPC UA servers into a common data model and common

communication interface for a particular industry type. However, this exercise is still in its

nascent stage, and also it is impractical to assume that every entity represented as OPC UA

server in the manufacturing site shall adhere to an OPC UA collaboration. Additionally,

the orchestration engine that needs to take care of pre- and post-conditions of a method

execution cannot be part of an OPC UA collaboration. Such knowledge which encapsulates

the circumstantial states of various elements of manufacturing facility only originates on per

business case basis. Therefore, the application-specific methods of OPC UA that enable

service oriented architecture in production automation must be described in a formal and

vendor-neutral manner in order to describe all the aspects of production orchestration in a

machine-interpretable format from a server perspective, and assist in discerning the meaning,

reasoning and drawing inferences from this data automatically from a client perspective.

1.3 Solution Methodology and Organization of Thesis Manuscript 13

Description Logics (DL) provide the required degree of formalism and also, at the same

time is decidable in finite time [Baad08]. Moreover, there are many widely known ontology

frameworks such as OWL-S [Mart04], SAWSDL [Kope07] and WSMO [Roma05] that

fortify web services with formal semantics. Instead of reinventing the wheel, this thesis

uses case-based reasoning for self-description of application-specific methods of OPC UA

resources. It adapts the existing semantic web service (SWS) standards for this purpose.

The author proposes a modified OWL-S framework (top-down approach) [Katt18d] and

SAWSDL (bottom-up approach) [Katt18a] standard to the OPC UA application methods.

Further, a hybrid approach [Katt18c] which is a blend of the above-mentioned modified

OWL-S and SAWSDL specifications is introduced. The integrated approach overcomes the

downsides and yet retains the benefits of its constituents. All the three approaches are

described in Chapter 4.

The above-presented semantic frameworks operate on the hypothesis that a production on-

tology is created by a human expert. This acts as a foundation for developing ontologies for

OPC UA application methods. But production ontology encoding is a complicated and time-

consuming overhead task that befalls on the manufacturer. Therefore, the thesis presents

a pragmatic automation of an encoding of a primary and light weight production ontology

based on the source code of MES (refer Chapter 5 for more details). To this end, the knowl-

edge of OPC UA collaborations is also exploited during the creation of resource ontologies.

This approach also eliminates the creation of ad-hoc ontologies at different levels of the

automation pyramid and subsequent ontology alignment practices. The reverse-engineering

transformation from source code implementation (imperative paradigm) to ontology repre-

sentation (declarative paradigm) results in unavoidable loss of information. This informa-

tion loss is compensated by the formulation of a ruleset using OWL based constructs and

OWL based rule languages such as Semantic Web Rule Language (SWRL), Semantic Query-

Enhanced Web Rule Language (SQWRL) and SPARQL Protocol and RDF Query Language

(SPARQL) based on the feasibility and requirements of specific rules. The generated ontol-

ogy and an abstract PO hooked with formulated rules are cached to the shop-floor network

for consequent production control to enable smart edge production. An evaluation of the

conceptualized solution is run on an intelligent key finder demonstrator (refer Chapter 6).

GeSCo discovers appropriate manufacturing services for the given production order (PO) by

looking up into its method discovery repository and subsequently, creates the orchestration

plan. During production execution and control, pre- and post-conditions are executed/val-

idated and accordingly the next production step is pursued. The average latency over the

course of PO execution is reduced drastically due to localized decision support provided by

the combination of semantic frameworks of OPC UA application methods and DL based rule

validations. Chapter 7 discusses the scientific and industrial contributions of the thesis on

a holistic level, and concludes with the recommendations for future work. Figure 1.4 shows

14 Chapter 1: Introduction, Problem Statement and Overview

the structure of this thesis and also inter-dependencies between chapters.

1. Introduction and
Problem Statement

2. State of the Art

4. Semantic Matchmaking
Algorithms for

Manufacturing Services

3. Reconfiguration of MES
Modules into Cloud and

Edge (GeSCo) Components

5. Transfer of Production
KnowledgeBase from
Cloud MES to GeSCo

6. Implementation and
Evaluation

7. Summary and Outlook

Figure 1.4: Thesis Structure and Interdependencies between Chapters

15

2 State of the Art

This chapter is divided into four sections. Section 2.1 motivates the usage of MES in

the manufacturing, explains various MES deployment options, and lists related work in the

area of cloud control in manufacturing. Section 2.2 describes how decentralized production

strategies in manufacturing fare better than centralized control. Later, some important de-

centralized architectures and implementations are discussed. Section 2.3 briefly describes

Reference Architecture Model for Industrie 4.0 and Asset Administration Shell (AAS). Focus

is shifted to the OPC UA architecture which is a RAMI4.0 recommendation to implement

communication layer of AAS, and later, the insufficiency of formal reasoning capabilities on

its information model to implement decentralized production control is described. Last Sec-

tion 2.4 emphasizes on semantic web and semantic web services, some well-known semantic

web services frameworks, and ends with the description of previous work in this direction.

2.1 Manufacturing Execution Systems

In the context of manufacturing, ERP and PLM are most commonly used business software

solutions. This section argues that these solutions are not capable of detailed shop-floor su-

pervision, and MES, which forms layer 3 of automation pyramid fills this gap. Its objectives,

various deployment options, and finally, the previous work in this area with a focus on the

research topic are discussed in this section.

2.1.1 Enterprise Business Solutions in Manufacturing: Motivation
for MES

Business management and logistics softwares such as ERP and PLM are promoted as

integrated software applications based on central information systems. PLM is a technology

solution which provides a shared platform for collaboration among product stakeholders, and

streamlines the flow of information along all the stages of the product life cycle [Amer05].

Product information tied to a product design process increasingly resides within PLM

systems, and on the other hand transaction-based manufacturing processes typically reside

in ERP systems [Batc12]. Table 2.1 briefly summerizes differences between PLM and ERP.

16 Chapter 2: State of the Art

Table 2.1: Distinction between PLM and ERP. Adapted from [Wu14]

Attribute PLM ERP

Domain Engineering Design Manufacturing

Goal Product Management Resource Planning

Driver Projects Orders

BoM Structure Engineering-BoM Manufacturing-BoM

Delivery New Products Ongoing Manufacturing

The ERP addresses all the core functions of an enterprise that include sales, marketing, manu-

facturing, distribution, personnel, supply chain management, and finance modules [Holl99].

From the perspective of manufacturing, the ERP empowers a production designer with an

integrated real-time view of core business processes such as production, sales/shop-order

processing and inventory management. This enhances the visibility of business processes

and accuracy of information to the manufacturer [Seet15]. The resulting benefits from a

broader perspective are informed decision-making which lower the production costs, alleviate

product quality non-conformance, reduce wastages in terms of resources and time, improve

production efficiency and achieve real-time deliverables. In the context of enterprise business

solutions, many literature make loose references to real-time without the consideration of

predictability and worst case execution time. Within this thesis, 'real-time'ness of enterprise

business solutions is the ability to update information to all the stakeholders within and

across the organization instantaneously without bounded time complexity.

The ERP transactions are executed at the point-of-use that operate under the perception

that data changes with regards to the transaction are percolated to all the software modules

participating in the manufacturing. However, the batch processes must be run to downstream

the transaction data in order to make the changes visible to other modules. Similarly,

the changes effected by other modules also need to be uploaded to the ERP. But modules

in different layers of ISA 95 model operate on different temporal horizons ranging from

days to weeks at the strategic level to seconds at the operational level (refer Figure 1.1).

Therefore, there is a time lag between the actual occurance of shop-floor control data and its

recognition by the management level in the ERP systems [Helo14]. [Huan02, Helo14] also

claim that decisions of high-level plans of ERP hardly reach the lower-levels of operational

systems. Even though ERP supports information flow across all the stakeholders, there are

also concerns regarding the effectiveness of ERP capabilities in shop-floor supervision as it

only stresses on managerial issues [Jeon17]. Hence, MES was introduced for managing shop-

floor activities that integrates the high-level production schedule in the shop-floor according

to the conditions of lower-level operational systems.

2.1 Manufacturing Execution Systems 17

2.1.2 Objectives of MES

MES is a comprehensive automation software solution that coordinates all the responsibil-

ities of modern production systems. The MES historically has been a vendor and industry

specific solution and hence, is also called by other names such as Collaborative Production

Management (CPM) and Manufacturing Operations Management (MOM) [IEC16]. Recent

MES solutions comprise of former Computer Integrated Manufacturing (CIM) components

such as Computer Aided Planning (CAP), Computer Aided Manufacturing (CAM), Com-

puter Aided Quality Assurance (CAQ), Production Data Acquisition (PDA), Machine Data

Acquisition (MDA) and Personnel Time Recording (PTR) [Arbe11]. Figure 2.1 illustrates

the functionality overlap of MES with these former and current CIM components.

The CIM components were not thoroughly integrated into operations and processes as they

operated as department specific standalone applications. Instead of supporting individual

departments within an enterprise, MES considers the production as a holistic process within

an organization.

The horizontal and vertical integration in manufacturing refines the operation flow, which in

turn increases the productivity. Such productivity gains are significant to the manufacturing

companies to compete in the future and stay relevant in their fields [Wang00]. The

MES, which fundamentally is a centralized control structure, helps achieve this goal of the

“MES provides an information hub that links to and sometimes between all of these
systems. MES overlaps with other manufacturing system types, which also overlap
with each other. Degrees of overlap vary by industry and implementation.”

KEY
CAP = Computer Aided Planning
CAM = Computer Aided Manufacturing

SCM = Supply Chain Management

PDA = Production Data Acquisition
PTR = Personnel Time Recording

MDA = Machine Data Acquisition

CAQ = Computer Aided Quality Assurance

MES = Manufacturing Execution System

Controls = PLC, Line and Machine Control
ERP = Enterprise Resource Planning

Figure 2.1: MES Information Context Model in Manufacturing Enterprise. Adapted from

[MESA97]

18 Chapter 2: State of the Art

Operations
Definition

Operations
Capability

Operations
Request

Operations
ResponseLevel 4

Level 3

Levels 2,1,0 Level 2 Activities

Resource
Management Tracking

Detailed
Scheduling

Dispatching

Definition
Management

Data
Collection

Execution
Management

Analysis

Figure 2.2: Generic activity model of MES [IEC16]

manufacturing companies by connecting the manufacturing resources and field devices to

its centralized production control data. The MES also helps in better understanding the

internal and external value chains in the manufacturing companies [Auto17]. The purposes

of installation of MES are as follow [Arbe11]:

� Improve productivity while increasing production flexibility

� Enhanced process and product quality

� General process and cost optimization

� Shorten the production life cycles of the product

The IEC 62264-3:2016 standard, which is an extension of ANSI/ISA-95 model, defines activ-

ity models of MES in the view of enabling integration of enterprise system and the control

systems. It divides the entire manufacturing operations management activities into the fol-

lowing four functional areas:

� Production operations management

� Maintenance operations management

� Quality operations management

� Inventory operations management

These different areas of the manufacturing operations management follow the generic activity

model pattern as illustrated in Figure 2.2. Various levels in Figure 2.2 correspond to those

levels in automation pyramid conceptualized in ISA-95 model (refer Figure 1.1). The generic

2.1 Manufacturing Execution Systems 19

activity model can be broadly classified into four types of activities:

� Operations Definition - Specifications of operations and the required resources

� Operations Capability - Resource attributes

� Operations Request - Scheduling, Dispatching and Execution of operations

� Operations Response - Feedback and Results of the operations

The MES solution implements these activities and coordinates the information exchange

between them.

Verein Deutscher Ingenieure (VDI) defines VDI guidelines 5600 [Vere07], which are based

on the ANSI/ISA-95 model directed at discrete industry, for the German speaking commu-

nity. It postulates that the MES should incorporate the following chronological aspects of

the production process: Prognostic, real-time and historical. The prognostic aspect deals

with production process planning; the real-time aspect involves management of the produc-

tion process and the historical aspect involves analysis and reporting of production process.

[Vere07, Kara14]

The standards such as IEC-62264, ANSI/ISA-95 and VDI 5600 provide only the guidelines

and there is no standardization in MES implementation. It varies for different vendors,

manufacturers and industries.

2.1.3 MES Deployment Options

A manufacturing facility can employ one of the several MES deployment options that fits its

requirements, resources and budget. This section explores these MES flavors in a nutshell

in terms of their competitive advantages and downfalls from a manufacturer point of view.

Though, there is no universal solution for every set of requirements, it provides a general

recommendation on the choice of MES based on economic and/or administrative rationality.

On-Premise MES Solutions

Historically, the MES have been mostly an on-premise software solution, i.e., they are nursed

close to production sites.

Home-Grown MES The development task of such in-house systems is carried out by

internal IT employees. This exercise involves direct contact between IT employees and back

office personnel who utilize the system, and hence the system can be tailored to requirements.

Hence, the majority of manufacturers choose this custom option in order to have an exact

fit to their manufacturing processes.

20 Chapter 2: State of the Art

Analysis: The manufacturer possesses complete control over the functionality, and a thor-

ough knowledge of the system. At the same time, these self-owned MES are also difficult

to enhance, in terms of business functionalities arising due to the growing trend of an in-

creasing number of product variants and shortened product life cycles, in an efficient and

time bound manner. As the implemented MES fits exactly to the requirements and is

subjected to continuous development on an evolutionary basis, the software modules are

tightly coupled to the manufacturing infrastructure. Both these factors are hindrances to

the adoption of new technological innovations that enable complete horizontal and vertical

integration.[Beac00, Katt18b, Schn10]

MES from Third-Party Vendor In this case, the manufacturer purchases the MES from

third-party vendors. The manufacturing industry is complex and diverse, and hence, it

is natural to find various mix and match approaches by the manufacturers to best fit their

production requirements and budget constraints. A common subclassification in this category

is a tailor-made version from the vendor who builds the MES as per the functional model

specified by the manufacturer. Another little-known practice is the purchase of core modules

of MES from the vendor by the manufacturer. This exercise further involves training and

service from the vendor so that the manufacturer can take over the source code for additional

custom development. This subclassification of vendor-provided MES provides all the benefits

of an in-house MES without the huge investment of time.

The selection of an MES generally results in a long term relationship with the MES vendor

in the interest of protection of investment [Beac00]. To that end, a detailed analysis of

investment is necessary taking into the account the life cycle and cost of maintenance during

the feasibility evaluation of an MES vendor [Wei07, Hedm14].

Analysis: The vendor provides a proven and off-the-shelf solution that incorporates in-

dustry best practices, along with professional support and training to the work force of

the manufacturing organization. The vendor guarantees long term maintenance and fur-

ther development of MES modules, and integrates the future customer requirements in the

product design and development. However, the continuation of status-quo after successful

installation of MES is expensive since it involves upgradation of hardware components and

IT solutions owing to their short innovation cycles. Additional difficulties such as plat-

form dependency, license model, costs to maintain the MES software and work force that

needs to be trained also needs to be considered. Under these circumstances, the purchased

system can also be inflexible as it is targeted to the whole class of a particular industry.

[Iiva90, Ltd12, Prab15]

Proprietary MES The proprietary production control system that is part of the automa-

tion hardware is the third classification of MES. These production control systems convert

2.1 Manufacturing Execution Systems 21

the ERP orders to technical production orders for the assembly lines [Arbe11]. However,

such MES systems are increasingly discontinued due to the recent trend of provision of stan-

dardized interfaces across all the layers of automation.

Analysis: This complementary MES can be operated off-of-shelf, and also relatively eco-

nomical compared to its other on-premise counterparts. However, when the hardware and

subsequently the production control software is discontinued, the future manufacturing

maintenance is not safeguarded. In such situations, the implementation of expansions and

changed requirements at the production execution is highly impractical and expensive. This

compromises the flexibility and future security of the plant. [Arbe11]

Cloud Based MES

The cloud based MES is a blend of various IT technologies such as distributed computing,

internet technology, hardware virtualization and open source software. To be more pre-

cise, Internet of things (IoT), which enables perception, internet connection, acquisition and

automatic control of various manufacturing resources and capabilities, is the core enabling

technology for the implementation of cloud based MES [Tao14]. Cloud based solutions, in

general, are best described as web based solutions that run on remote servers and accessed

via internet on standard web browsers [Lena11]. The cloud MES solutions are offered as

IaaS (Infrastructure as a service), PaaS (Platform as a service) and SaaS (Software as a

service) layers in the cloud architecture that are demand driven and charged as per usage

[Hwan11]. The services in cloud based MES are generated by virtualizing and encapsulating

the available manufacturing resources and capabilities [Tao15].

Analysis: Instead of developing individual projects from scratch, these MES Solutions are

mostly assembled from configurable software components. The generic set of functionalities

is built as per the customers’ requirements and typically, the functionalities provided by

cloud based MES are richer than on-premise counterparts [Mars11] and are also simple,

fast and cheap [Voor11]. Another main benefit of the cloud based MES is that it requires

nearly no IT resource investment [Lena11], and therefore, lowers the entry costs for smaller

firms that try to benefit from compute-intensive business analytics that were previously

available only to the large corporations. This also lowers the IT barriers to innovation in

the manufacturing processes [Mars11]. The cloud based MES helps smoothly face the

challenge of unexpected peak production demand without additional investment on on-

premise resources [Wood09]. This is made possible with the virtualization principle of

cloud computing technology. The virtualization argument holds true in case of redundancy

or upgrade costs of the on-premise resources. The cloud servers are run as per the necessity,

licenses can be increased or decreased accordingly. This decision need not be made upfront.

22 Chapter 2: State of the Art

The dearth of skilled resources that are acquainted with MES technology, achieving the

returns on investment and technology compatibility are no longer the problems in the cloud

scenario. Consequently, this version of comprehensive MES setup quickly adapts to the

newer innovative technologies and also offers significant cost benefits to the manufacturer

at the same time. These arguments infer that cloud based MES is a good substitute for

traditional on-premise MES solutions.

Nonetheless, there are mainly two important downsides in adopting the cloud solutions

in general, namely security and privacy concerns, and network latency [Apos13]. Only

the latter is the focus of this thesis. Cloud based MES provides on-demand and scalable

storage system, and computing power that can scale to digital manufacturing requirements.

However, for the purpose of condition-monitoring of resources, emergency-response and

other latency-sensitive applications, the round trip delay caused in transferring the data

to and from the Cloud based MES is unacceptable. Furthermore, it is not an efficient

approach to send large data to the cloud for storage and processing as it also saturates

network bandwidth [Dast16]. Storage of large amounts of data in cloud based MES also

makes it vulnerable to have high computation cost (refer to the description of the problem

statement of the thesis in Section 1.1).

2.1.4 Previous Works in Cloud Manufacturing

Pioneering and Initial Works

Networking, autonomous systems and resources, and smart decision-making processes em-

ploying the emerging technologies from the information technology (IT) domain are the char-

acteristics of digital factories of the future [Wahl12]. The cloud computing paradigm which

has its roots in the IT world has emerged as a dominant force in industrial systems to offer

automation functions as services. Among many utilities of cloud infrastructure in the context

of manufacturing such as data analysis, digital twin and condition monitoring, and training

statistical models of high complexity and computing power, only the works concerned with

production control are considered in this section. [Xu12] proposed the cloud manufactur-

ing business model where distributed resources were encapsulated into cloud services and

managed in a centralized way. Manufacturers used these cloud services according to their

requirements in a pay-as-you-go model. This work also extends the idea of cloud services to

apply to all the stages of the product life cycle such as product design, manufacturing, testing

and management. At the same time, [Tao11] proposes cloud manufacturing, called CMfg,

combining cloud computing and the service oriented manufacturing model. It discusses as

key enabling technologies four types of cloud service platforms: public, private, community,

and hybrid, and advantages and challenges of implementation. The main objective of Cloud

2.1 Manufacturing Execution Systems 23

Agile Manufacturing , presented in [Maci12], is to offer the industrial production systems as

a service, also called Machine-as-a-Service (MaaS) via virtual representation in the cloud. It

provides higher level business applications in cloud a direct access to the automation services

such as access to quality metrics, process control, and status of resources, raw materials and

processed products.

[Schl13] introduced a new edge-cloud architecture, based on global information architecture

for industrial automation by [Voge13], consisting of two layers modeled as cones. The upper

and lower layers represented business and technical processes, respectively. These two lay-

ers exchange information in a standardized manner using an information model sandwiched

between them to enable vertical and horizontal integration. There are also some works that

distinguish the control level into two parts: control functions that need highest performance

for critical control loops, and other control functions that can operate with reduced per-

formance. Accordingly, the latter functions that control the lower levels are migrated to

the cloud [Bett13]. The architecture proposed by [Schl13], which distinguishes IT and

automation technology (AT) clouds, was subsequently adapted by further integrating these

clouds [Give13].

Literature related to network latency in Cloud Manufacturing

[Lang12, Verl14, Lang14] are one of the pilot projects to shift the runtime control level to

the cloud via standard interfaces and semantics. The key objective of these works is to apply

the ideas and methods from the world of IT to the world of automation in a systematic and

structured manner.

[Gold15] introduces Control-as-a-Service (CaaS) in industrial automation which employs the

cloud based Soft PLC which achieves a round-trip time of around 1000 ms in 99.72% of times

while serving 30 parallel tenants/programs. The concept of caching machine data on the

internet gateway in case of low bandwidth, and transferring this cached data to the cloud on

reduction of the traffic congestion is proposed in this work. Another soft-real time Industrial

Automation as a Cloud Service to manage many computing and communication systems

was proposed in [Hega15]. This work also argued that cloud controllers can act as backup

for physical controllers during upgradation or replacement. [Gazi15] is another approach to

reduce the network latency in a typical industrial scenario. It proposes fog computing where

after careful examination of resource data at the gateway, only necessary information that is

required for the IoT application is transferred to a cloud. In an industrial automation setting,

[Kane16] concentrates on availability by introducing redundancy in public cloud servers. In

[Khan17], the authors recommend to increase the computational power of the gateway in

order to run the sophisticated statistical models used for examining the data. [Lenn17]

24 Chapter 2: State of the Art

Table 2.2: Requirements for some typical automation domains. Adapted from [Lenn17]

Types Cycle Time Communication

Technology

Building Automation Seconds BACnet

Process Automation 10 - 1000 ms DCOM, TCP/IP

Factory Automation 500 µs - 100 ms RT Ethernet (Profinet)

Substation Automation 250 µs - 50 ms Profinet IRT, Modbus

High Voltage DC control 10 - 100 µs Not applicable

classifies the various application scenarios, the corresponding communication technologies

and the cycle times (refer Table 2.2).

The white paper by Cisco [Cisc15] and [Khan17] suggest for data aggregation as one of

the possible solutions to counter the network latency. They further recommend to send only

essential pieces of information to the cloud for further analysis. [Abde17] proposes a delay

compensation technique to counter the latency by reducing the problem statement to the one

presented in [Besc12]. On similar lines, [Sang17, Mube17] also present delay compensation

techniques to mitigate the network delays.

This thesis considers countering the problem of cloud network latency between the automa-

tion pyramid levels 1 and 3 (refer Figures 1.1 and 1.2). The goal is to achieve a soft real-time

and average response times in the range of 100 ms.

Even though MES is a centralized system, it allows entities participating in manufacturing

access its data in production runtime, and hence, enables logical decentralization.

2.2 Production Control Strategies

After discussing the centralized MES in Section 2.1, this section compares the centralized and

decentralized systems, discusses some important decentralized production architectures, and

makes general observations and recommendations regarding the control strategies suitable

in manufacturing.

The argument of centralized versus decentralized decision-making has for long been the

topic of research in a myriad of contexts, namely economics, game-theory, political science,

biology and ecology [Zabo02]. These concepts are applicable to decision-making processes in

an organization. The characteristic focus of these literature has been on trade-offs between

the two opposite sides of delegation of control in production [Zabo02]. The same concepts

have also been extrapolated to the manufacturing domain.

Early manufacturing system theory suggested cautious and rather pessimistic organizing

2.2 Production Control Strategies 25

principles for systems exposed to substantial internal and external uncertainties. These prin-

ciples profess that it is better to recognize ignorance than to presume knowledge. Ensuing

research in this area led to an evolution of the system structure with distributed responsi-

bilities, tasks and resources [Mono06]. Later investigations in this area classified control

mechanisms into four types, namely, “centralized”, “hierarchical”, “modified hierarchical”,

and “heterarchical” system structures [Dilt91]. An adapted version of the [Dilt91] classifi-

cation was introduced by [Scho07] who groups the system structures into two broad classes,

namely hierarchical and heterarchical controls. This work further classifies control structures

into three categorizations: centralized, decentralized and autonomous control, where decen-

tralized control spans over both hierarchical and heterarchical structures. This classification

is described in Figure 2.3, and this thesis also follows it. Inspired by [Dilt91], [Tren09]

also constructs an architecture typology where three distributed control structures, called

“fully hierarchical”, “semi-heterarchcal” and “fully heterarchical” controls, are derived from

a “centralized” control system. The following sub-section describes the broad categorization

of centralized and decentralized paradigms in brief, and subsequently presents the prevailing

conditions of modern industry in this direction.

Centralized
Control

Autonomous
Control

Decentralized
Control

Hierarchical
Control Structures

Heterarchical
Control Structures

Caption:
Control System Product Resource

Manufacturing control level

Process control level

Field Level

Figure 2.3: Classification of Production Control Systems [Scho07, Kolb18].

26 Chapter 2: State of the Art

2.2.1 Centralized and Decentralized Control Systems

Centralized control systems possess strict master-slave relationships between the com-

ponents, where control decisions propagate in top-down fashion and the status is reported in

bottom-up fashion [Vers06]. These control systems are characterized by complex solution

algorithms, and an omnipresent processing unit, also called decision center in some literature

[Marq16], and are tailored to solve a dedicated set of problems [Ande00]. This decision

center is acquainted with all the system information. It is responsible for the entire system

planning and hence, manages the operations at all stages of the manufacturing. This central

entity also takes unbiased decisions that are aimed at optimization of the objectives of an

entire organization [Fray01]. There is no direct communication between the local controllers

at the bottom layer [Früh17], and they are helpless when cut off from their directing super-

visors [Vers06]. The implementation of complex algorithms and analysis of large amounts

of information set to obtain a globally optimal solution in centralized systems results in

large computation time, and hence, the decision-making process slows down. Additionally,

centralized systems have proven to be inflexible in cases of unexpected events and product

customizations [Saha06, Leit09]. For example, from the planning and execution point of

view, in the event of a manufacturing resource breakdown during production control, the

corresponding information is fed back to the business systems such as ERP or MES. The

production routing is adapted in the business systems, and the updated PO is pushed to the

shop-floor to act against the prevailing contingency. The resulting response time is very long

which renders the whole system inapplicable for high speed manufacturing scenarios. From

the configuration perspective, if a product definition changes in PLM or ERP, it necessitates

retooling of the entire system which is expensive in terms of both time and money. [Leit09]

states that centralized control systems also do not efficiently support current manufacturing

requirements, namely reconfigurability, robustness, agility and expansibility.

The manufacturing control is concerned with managing and controlling the physical activities

on the shop-floor aimed at executing the manufacturing plans provided by the manufactur-

ing planning activity, and to monitor the progress of the product as it is being processed,

assembled, moved and inspected in the shop-floor. However, there is a big gap between

the manufacturing planning and its actual control which is famously described as follows

[Paru87]:

”[. . .] In fact, it is proverbial among shop foremen that the schedules produced by the

front office are out of date the moment they hit the floor. [. . .]”

Therefore, centralized control systems that are inflexible to adapt based on the conditions

of the factory shop-floor are not ideal from a manufacturing control perspective. Instead

decentralized control systems are preferred. The decision-making process is delegated

2.2 Production Control Strategies 27

to the individual actors in the factory shop-floor in decentralized manufacturing. At each

step of the manufacturing process, a decision-maker is identified out of all the participating

entities in the production. Decentralized systems are based on distributed control in which

individual machines react to local conditions in real time. These machine components are

linked to neighboring components to form a network that display the desired self-organizing

behavior. The behavior of each of the individual entities is defined with an express intent

of optimizing its own objectives [Marq16]. The decision-maker also acts speculatively to

arrive at a decision with an assumption of the decisions of other entities. But the extent

of such assumption depends on the degree of collaboration of different entities [Marq17].

Furthermore, the decision variables of each entity are generally influenced by other entities’

decisions [Hong08, Marq17]. In order for decentralized control to be effective and, more

so, for the emergent behavior of the whole system to be consistent and predictable, the

coordination of the supply chain is necessary where the operational decisions and activities

are shared accurately and in time-bound manner with all the entities to avoid uncertainties.

Additionally, there is a third variety of extremely decentralized control structures, called

autonomous control systems. Autonomous control methods are characterised by de-

centralised coordination of logistic objects in a heterarchically structured organisation (see

Figure 2.3). These logistic objects are capable of processing information independently in

order to take and execute decisions [Frei04].

Purely distributed approaches require a radical shift in the mindset to deal with the decision-

making problems, which sometimes is difficult to apprehend and develop. The design of

such distributed systems involves a high complexity of the system due to a high degree of

interactions involved. The missing central component also causes some obstacles to industrial

adoption. Therefore, in spite of emergence of these extremely distributed control structures

a couple of decades ago, there are only a few research papers and much less industrial

implementations. [Leit09, Jevt16, Kolb18]

2.2.2 Well-Known Decentralized Architectures for Production
Control

Owing to the rigidity and low receptiveness to changes in manufacturing, centralized manu-

facturing practices are being replaced by decentralized manufacturing models. Decentralized

models are dynamic in nature and demonstrate adaptive response to the changes in produc-

tion orders - qualities that are key to competitiveness [Ueda04].

In the last few decades, various novel concepts were proposed to achieve decentralized pro-

duction. Famous among them are Flexible Manufacturing Systems (FMS), Reconfigurable

Manufacturing Systems (RMS), Holonic Manufacturing Systems (HMS) and Bionic Manu-

28 Chapter 2: State of the Art

facturing Systems (BMS). The FMS and RMS are hardware-dominated architectures, and

the HMS and BMS architectures are realized via software.

Hardware dominated Architectures

This section describes in brief the main architectures that heavily rely on physical system

elements.

Dedicated Manufacturing Lines (DML) are a pre-requisite to understand and ana-

lyze the concepts of FMS and RMS. DML are based on fixed automation that produces a

company's core products or parts over a long period and at high volume [Kore10]. The

main driver of DML is the cost-effectiveness which is achieved through pre-planning and

optimization [ElMa05].

FMS provide pre-planned flexibility for the production to react to both predicted and un-

predicted changes [ElMa09]. The flexibility can be mainly categorized into two groups:

routing and machine flexibility [Brow84]. Routing flexibility refers to the ability to change

the order of operations performed on the product part, whereas resource flexibility refers to

the ability to employ multiple manufacturing resources to perform the same operation on the

product part. As per [ElMa05], “the objective of FMS is to cost-effectively manufacture

several types of parts, within pre-defined product part families that can change over time,

with minimum changeover cost, on the same system at the required volume and quality”.

Typically, FMS consist of general-purpose computer-numerically-controlled (CNC) machines

and other programmable forms of automation. Because CNC machines are characterized

by single-tool operation, FMS throughput is much lower than that of dedicated lines. The

combination of high equipment cost and low throughput makes the cost per part using FMS

relatively high. Therefore, FMS production capacity is usually much lower than that of

dedicated lines [Kore10].

In RMS, the system is designed for rapidly adjusting its production capacity and func-

tionality through rearranging or changing its components to adapt to the changes of

the manufacturing environment. This characteristic requires a reconfigurable hardware

which enables to reconfigure both on the system structure level and on the machine level

[Park12, Wien07, ElMa05]. Three features, namely capacity, functionality, and cost, dif-

ferentiate the three types of manufacturing systems - RMS, DML and FMS. While FMS are

usually constrained by the capacity-functionality factors, RMS are neither constrained by

capacity nor by functionality, and are capable of changing over time in response to changing

market circumstances [Kore10].

2.2 Production Control Strategies 29

Software-Oriented Architectures

Long before the emergence of so-called Industrie 4.0 paradigm in Germany or Industrial

Internet in USA, an international collaborative research program in manufacturing, called

Intelligent Manufacturing Systems (IMS) [Comm96], was conceived in the early 1990s to

advance manufacturing, help manufacturers compete on a global scale, and adopt next gen-

eration technologies in order to address the challenges arising from ever more demanding

consumer market. Within this programme, several paradigms for the factories of the future

were developed. The prominent among them are holonic, biological and fractal manufactur-

ing systems [Leit09]. These theories exhibit similar concepts and characterisitcs in that they

assume open, dynamic and reconfigurable systems where decisions are made and the pro-

duction is carried out by independent and cooperative entities. But they are inspired from

different sources: fractal manufacturing is grounded on mathematics [Thar96, Leit09],

biological manufacturing paradigm is based on evolution and self-organization models of

biological systems [Ueda97], and the holonic manufacturing paradigm is based on social

organizations [Van 98].

Agent-Based Manufacturing Systems Agent technology is one of the important founda-

tions in the field of artificial intelligence, and is also well-known and adopted in manufacturing

applications. The study of agent technology began more than three decades ago, within the

field of distributed artificial intelligence [Gire04]. The agent concept is applicable to a large

range of domains, namely e-commerce, intelligent manufacturing, robotics and information

systems. Nowadays, it is a very active area of research, and many commercial and industrial

applications are based on it. Despite several definitions and interpretations, there is a general

consensus regarding its three main abstractions [Mono06]:

� An agent is a computational system that is situated in a dynamic environment and is

capable of exhibiting autonomous and intelligent behavior.

� An agent may have an environment that includes other agents. This community of

agents interact, and as a whole, they operate as a multi-agent system.

� Agents are usually adaptive i.e., they are capable of tailoring their behavior to the

changes in their environment in order to meet the set objective

Figure 2.4 illustrates the interaction of an agent with its sorrounding environment. The agent

operates in an environment from which it is clearly separated. Hence, it makes unbiased

observations about its environment with the aid of sensors. And finally, based on its priori

knowledge and objectives, it initiates and executes actions using actuators to change the

environment. Agents without physical embodiment receive inputs via either file contents,

key strokes on keypad or network packets, and react appropriately in response [Russ16].

30 Chapter 2: State of the Art

Environment

Agent
Sensors

Actuators

Knowledge

Decision

Objectives

Percepts

Actions

Figure 2.4: Interaction of an Agent with its Environment. Adapted from [Mono06, Russ16].

An agent can perform various tasks such as perception and execution, knowledge represen-

tation, reasoning, learning, coordination, and control, planning and scheduling [Shen03].

However, an agent need not incorporate all these functionalities. The design of an agent

varies with requirements and application field.

A Multi-Agent System (MAS) is constituted by a network of agents which interact with

each other. Within MAS, each agent owns only a partial model of sorrounding environment

and follows its own objectives, which may differ from the objectives of other agents. However,

due to the interaction of agents, MAS can provide solutions and emergent behaviors that

are beyond the capabilities of individual agents [Mono06, Paru97b]. In the context of

manufacturing, agent technology provides robustness, flexibility, reconfigurability, and plug

and produce capability [Pěch08, Buss13, Merd09], and hence, is widely regarded as the

enabling approach for future intelligent manufacturing systems [Jenn03, Buss13].

Early works in the field of manufacturing employing agent technology are AARIA [Paru97a]

and MetaMorph [Matu99] architectures. Recent contributions in this area include the ap-

plication of ontologies for advanced handling, exchanging and reasoning about knowledge in

the area of industrial automation based on multi-agent technology [Vrba11].

HMS The holonic concept was first developed by the philosopher Arthur Koestler to ex-

plain the behavior of social systems [Koes67]. He postulated that these self-reliant social

systems exist as both wholes and parts : almost everything is whole and part at once. These

observations led Koestler to coin the word holon which is a composition of greek word ho-

los meaning whole and greek suffix on meaning part [Koes67]. Koestler also observed two

important characteristics of holons [Leit09]:

� Autonomy, where the stability of the holons result from their ability to act au-

tonomously in case of unpredictable circumstances;

� Co-operation, which is the ability to have holons cooperating, transforming these holons

into effective components of bigger wholes.

2.2 Production Control Strategies 31

Inter-Holon
Interface

Control
Functions

Human
Interface

Control Functions

Physical Processing

} Information
Processing

Part

}
Physical

Processing
Part

(Optional)

Figure 2.5: General Architecture of Holon [Gire04].

Holonic manufacturing systems describe autonomous, self-reliant manufacturing units, called

holons. Any manufacturing unit can be a holon, for example, factory, production line,

manufacturing resource, product, conveyor belt, or production order. The holonic paradigm

combines the high performance and predictability of centralized systems with the robustness

of decentralized systems against disturbances. This is possible because a holon can function

as a whole, which leads to increased robustness of the system. At the same time, it can also

act as a part of a bigger whole forming a hierarchy with other holons for a certain period of

time [Vers06].

A holon must be able to create and control the execution of its own plans and strategies.

It contains an information processing part containing information about itself and its sur-

rounding environment, and optionally, a physical processing part if it represents a physical

device [Leit09]. Figure 2.5 illustrates a general architecture of a physical holon. The phys-

ical interface of the holon connects to a device that performs the manufacturing operation

based on control instructions originating from the holon.

A holarchy is defined as a system of holons, organized in a hierarchical structure, cooperat-

ing to achieve the system goals, by combining their individual skills and knowledge. Each

holarchy has fixed rules and directives, and a holon can dynamically belong to multiple ho-

larchies at the same time preserving its autonomy and individuality, which is an important

difference to the traditional concept of hierarchies.[Leit06a]

Several reference architectures have been proposed within the framework of HMS. A well-

known holonic reference architecture for manufacturing systems, called Product-Resource-

Order-Staff Architecture (PROSA) [Van 98], was proposed within a project initiated at KU

Leuven. It defines three types of basic holons: order holons, product holons and resource

holons, which are structured using object-oriented concepts of aggregation and specialization.

The product holon contains the process and product knowledge and describes the product

to be manufactured; the order holon represents the production steps for manufacturing a

concrete product; and the resource holon represents existing manufacturing resources on the

shop-floor. ADAptive holonic COntrol aRchitecture (ADACOR) for distributed manufac-

32 Chapter 2: State of the Art

turing systems is another familiar holonic manufacturing architecture that focuses on the

job-shop production, characterized by concurrent and asynchronous processes with non-pre-

emptive operations and alternative routings. The proposed adaptive architecture intends to

be as decentralised as possible to tackle disruptions and as centralised as necessary for the

sake of process optimization [Leit06b]. There are also numerous early works in this direc-

tion. [Ka98, Tsen97, Chir00] propose only two building blocks, namely order and resource

holon, where order holon also integrates the functionalities of the product. More recently,

an evolution to the ADACOR holonic control architecture, called ADACOR2, was proposed

insprired by biological theories [Barb15].

Distinction between Holon and Agent Though it appears that both the concepts have

numerous similarities, there are also important distinctions. Agent technology has its roots

in computer science (artificial intelligence namely), and holons in the CIM domain focusing

on the problems associated with flexible manufacturing systems. Both holon and agent

exhibit characteristics such as autonomy, cooperation, reorganization, reactivity, rationality,

and learnability [Gire04]. In addition to these behavioral characteristics, holons also have

some structural properties which agents lack. One of them is the property of recursiveness

which allows to break-up an existing holon into several other holons, which in turn can be

broken into further holons and so on until no further decomposition is possible or is a non-

productive exercise. This feature allows the structural development of production control

systems through the encapsulation of manufacturing services and components. However,

Agent
High-Level

Decision-Making
(Java, C#.....)

High-Level
Decision-Making

(Java, C#.....)

AgentInter-Holon
Communication

Real-Time
Communication

High-Level

Low-Level

Holonic Logical Part Holonic Logical Part

FB/Ladder
Application

Logic

FB/Ladder
Application

Logic

Figure 2.6: Implementation of Holon Information Processing Part using Agent Technology

[Mari05].

2.2 Production Control Strategies 33

when an agent represents a manufacturing resource, the focus is not on the integration of

physical devices. Although both holon and agent contain an information processing part, an

optional physical processing part of holon is missing in agent.

Additionally, a holon is a concept, and an agent is both a concept and a technology. Hence,

the holonic concept can be implemented using agent technology to model behavioral char-

acteristics such as modularity, decentralization, and reusability. The agent implements only

the information processing part of a holon, and its physical processing part is connected to

industrial PLCs to read data from sensors and send actions to actuators in real-time (refer

Figure 2.6).

Market-Based Manufacturing Control using Agent Technology

Fundamentally, the task of deciding which manufacturing resource should be allocated to

perform a specific manufacturing operation at a given time and context is viewed as man-

ufacturing resource allocation problem. Here, the manufacturing resource is assumed to be

modular and autonomous. Economics theories have influenced the manufacturing systems to

decode the solution to this problem. Subsequently, it has resulted in a family of techniques

known as market-based manufacturing control [Clea96] where resource allocation process is

Order Agent
Resource Agents

task announcement

biddings

bid evaluation
accept/reject bids

confirmation

earliest start time

task starts

awarded time slot

re
so

ur
ce

 s
ch

ed
ul

e

tim
e

Δ
t

Δ
t -

 b
id

 e
va

lu
at

io
n

tim
e

Figure 2.7: Market-Based Manufacturing Control [Mono06].

34 Chapter 2: State of the Art

automated through software agents in a resource-constrained and market-like manufacturing

environment. In a virtual economy, the software agents present the demand in the form of

required manufacturing service and the matching manufacturing resources supply resource

time slots [Kuma02] (refer Figure 2.7). The software agents are embedded with the custom

bid evaluation algorithms to accept/reject bids. Upon confirmation of a bid and ensuing con-

tractual agreements, the requestor and accepted supplier coordinate to agree upon a suitable

timeframe for consumption/provision of the required manufacturing services, respectively.

Auctions are promising decentralized methods for agents-based scenario to allocate and re-

allocate manufacturing operations in dynamic, partially known and time-constrained do-

mains with positive or negative synergies among operations. Auction-based coordination

systems are also easy to understand, simple to implement and broadly applicable [Koen10].

Due to this dynamic nature of the economy, the approach achieves higher levels of flexibility

and scalability [Mono06]. This distributed scheduling and control helps to minimize net-

work latency, maximize throughput and other system defined objectives, and at the same

time adhere to constraints such as precedence and assignment restrictions.

2.3 DIN SPEC 91345: Reference Architecture Model

for Industrie 4.0

This section briefly explains RAMI4.0, and shifts its focus to asset administration shell where

communication is mandated to take place via OPC UA standard. Subsequently, the OPC UA

standard specification and its information model is summarized. In status-quo evaluation,

the inadequacy of current OPC UA specification to implement decentralized production

control with regard to formal reasoning capabilities on its information model is described.

Introduction to the Architecture

In order to achieve a common understanding of standards and use cases which are nec-

essary to realize the abstract concept of Industrie 4.0, it became necessary to develop an

uniform architecture model as a reference, serving as a basis for the discussion of its interre-

lationships and details [Adol15]. The Plattform Industrie 4.0 consisting of Zentralverband

Elektrotechnik- und Elektronikindustrie e.V. (ZVEI), Verband Deutscher Maschinen- und

Anlagenbau (VDMA), and Bundesverband Informationswirtschaft, Telekommunikation und

neue Medien (BITKOM), has published a first version of a DIN SPEC 91345: Reference

Architecture Model for Industrie 4.0 which provides a structured description of fundamental

ideas and precisely describes Industrie 4.0-compliant production equipment (see Figure 2.8)

[Adol15].

2.3 DIN SPEC 91345: Reference Architecture Model for Industrie 4.0 35

Figure 2.8: Reference architecture model for Industrie 4.0 [Plat16].

RAMI4.0, which is represented in a three-dimensional coordinate system, describes all neces-

sary aspects of a resource using a level model. The right horizontal axis shows the hierarchy

levels defined in the IEC 62264 and IEC 61512 standards for enterprise IT and control

systems. It also extends these hierarchical levels with the layers Product and Connected

World that represent workpiece and inter-enterprise communication respectively [Adol15].

In contrast, the IEC 62264 and IEC 61512 standards are intended for only intra-enterprise

communication. The left horizontal axis represents the data acquisition along the entire life

cycle of systems and products based on the IEC 62890 standard. RAMI4.0 makes a clear

distinction between a type and an instance. A type becomes an instance when the design

and prototyping is completed and the product is ready for being manufactured [Adol15].

The vertical axis, also known as architecture layers, provides six layered representation of the

information relevant to the role of the manufacturing resource. Description and implementa-

tion of highly flexible concepts can be realized by means of this reference architecture model.

RAMI4.0 enables a step-by-step migration of the state of practice of present day factories to

the vision of the Industrie 4.0 paradigm [Adol15].

2.3.1 Industrie 4.0 Component (I4.0 Component)

Along with the RAMI4.0 layers, the Plattform Industrie 4.0 also defined the concept of an

I4.0 Component in the DIN SPEC 91345. DIN SPEC 91345 defines an I4.0 Component as a

“production system, an individual machine or unit, or a module within a machine”. Despite

that, a machine or machine unit cannot be automatically considered as an I4.0 Component

unless it has at least a passive communication capability and has been equipped with an asset

36 Chapter 2: State of the Art

administration shell (AAS) (refer Figure 2.9). An asset administration shell contains relevant

information to represent an asset and its technical functionality. It shares the information

regarding the asset with the outside world in a structure conforming to the guidelines laid

down in RAMI4.0. Apart from providing with service capabilities, the AAS also provides

semantic information of the managed asset. An equivocal semantics is required for seamless

exchange of information between the I4.0 components. Additionally, an I4.0 component can

be represented as a configuration of two or more I4.0 components using “the principle of

recursive description of I4.0 components”. This implies that any configuration of an asset

can be digitally represented to any degree of granularity by describing structured assets, and

combinations thereof, using the concept of I4.0 component. [Adol15]

Asset Administration Shell (AAS)

AAS, or simply Administration Shell, is the root node of the I4.0 component postulated in

DIN 91345. It is also refered to as virtual entity in [Bede17] to better align within the

concept of cyber physical systems (CPS) which have a physical and a virtual entity. The

author believes the idea of AAS has its roots in the concept of holon which consists of an

information processing part and a physical processing part.

With regards to the information processing part, the structure of an AAS is divided into

two parts: a header and a body. The specification of a header is mandatory for an AAS.

The header only consists of minimal information to identify the encapsulating AAS and its

managed assets. Pointers to the security related aspects such as key sizes, authentication et

cetera also form part of the header. A client can deduce the type and the instance information

of asset(s) managed by an AAS by means of this header information.

The body of an AAS is a container for properties, supported views, services and references.

Asset Asset

Administration Shell
Representation of Information
Technical Functionality

I4.0 Component

Manifest

Component
Manager

Figure 2.9: Description of I4.0 component containing an asset and its Administration Shell

[Plat16].

2.3 DIN SPEC 91345: Reference Architecture Model for Industrie 4.0 37

It contains all the information and functions to perform various operations on the managed

assets. Static and dynamic properties of managed assets are represented in a key-value pair

where the key is a globally unique identifier enabling semantics on data element look up, and

the value characterizes the corresponding value of the property. In order to make exploration

of these properties convenient for the client, related properties are grouped together. Views

provide the means to filter the contents of an AAS so that only relevant data is shown as

per roles and/or interest groups. The service set of an AAS can be invoked to execute

certain functionality on or of the managed asset. Each service provides an interface to asset-

specific functionality such as close valve, drill hole et cetera. Administrative services retrieve

historical data or alarm conditions. Similar to properties, related service sets are also grouped

together.

2.3.2 RAMI4.0 Communication Layer: IEC 62541 OPC UA Stan-
dard

OPC Unified Architecture (OPC UA) is a platform and vendor independent communication

technology for a secure and reliable data exchange over the different levels of the industrial

automation pyramid. In addition, the information models of the OPC UA standard pro-

vide the foundation for semantic interoperability [OPC 19]. OPC UA is the successor to

the well-known and adopted OPC architecture originally designed by the OPC Foundation.

OPC UA provides a number of benefits in comparison to its predecessor, namely platform

independence, provision of internet and IP based communication protocols, built in secu-

rity features, generic object model, extensible type system and scalability through profiles

[Când10].

Vendor Specific Extensions

Information Model from
Companion Specifications

DA AC HA Prog

OPC UA Base Abstract Services

Transport
WS-* / UA Binary OPC UA Data Model

OPC UA Spec
Parts 8, 9, 10, 11

OPC UA Spec
 Part 4

OPC UA Spec
 Parts 3, 5, 6, 7

Figure 2.10: OPC UA Specification Stack [OPC 19].

38 Chapter 2: State of the Art

The OPC UA specification is standardized as the IEC 62541 standard series containing

14 parts [OPC 19]. The first 7 parts are associated with the core specifications, namely,

overview, security model, address space model, services, information model, service mappings

and profiles. Parts 8 to 11 are called access type specification parts, and they provide backward

compatibility to the classic OPC implementations with respect to data access, alarms and

events, and historical access in the form of built-in base information models. OPC UA

programs are stateful complex functions representing any level of functionality in an OPC

UA server that can be invoked and managed by a client. Parts 12 to 14 are called utility

type specification parts, and they are optional to set up an OPC UA platform. Parts 12

and 13 provide specification with regards to local OPC UA server discovery and OPC UA

server aggregation functionalities respectively. An aggregated OPC UA server aggregates

one or more OPC UA server(s) to provide relevant and compact information in its address

space so that the client need not access several servers. OPC UA was originally designed as

a client-server architecture, and recently the standard was extended to accommodate part

14 which provides a specification for the publish-subscribe messaging pattern. Figure 2.10

illustrates the multi-layered OPC UA architecture. The so-called Companion specifications

or OPC UA collaborations also occupy a place in this OPC UA specification stack. These

specifications are the result of an agreement of a consortium of industry partners to adopt

a common information model extending the standard information model of the OPC UA

server. In addition to the Companion specifications, some manufacturers also include custom

add-ins into the server in order to differentiate from the market.

Cross-vendor data exchange is necessary for communication between machines, or between

machines and workpieces. This requires unified semantics including a common syntax for

data. Currently, the RAMI 4.0 recommends only the IEC standard 62541 OPC UA for imple-

menting the communication layer (refer Figure 2.8) [Plat16, Adol15, Pauk16]. Moreover,

Plattform Industrie 4.0 published a checklist for advertising and classifying Industrie 4.0

products into one of the following: basic, ready and full. To comply with the Industrie 4.0

communication and qualify for even the lowest basic criterions, the products and resources

in the factory shop-floor must be addressable over the network via TCP/UDP or IP, and at

least integrate the OPC UA information model [Hopp17, Adol15]. Besides, the information

modeling capability, security, and scalability of OPC UA is unmatched to any existing similar

technology solutions. Therefore, this thesis considers shop-floor communication exploiting

OPC UA technology.

Information Modelling in OPC UA

Unlike the classic OPC DA, where the address space is built around folder objects and vari-

ables, OPC UA introduces the Object Oriented Paradigm (OOP) to the address space, where

2.3 DIN SPEC 91345: Reference Architecture Model for Industrie 4.0 39

objects can be defined with members such as attributes and methods, and instantiated ob-

jects can invoke these members (Refer Figure 2.11). It also allows to express the relationship

between the object types. [OPC 17b]

Every object in the OPC UA is represented as a node in the address space. It uses a tree-

based hierarchical representation where references are used to associate different nodes of

the tree, thus providing a full-meshed network of nodes. A node can be categorized into

eight different node classes which are specializations of the base node class. These include

Object, Variable, Method, View, ObjectType, VariableType, ReferenceType and DataType.

The address space model which is defined in part 3 of the specification series is the meta

model of OPC UA.

Application-Agnostic Standard Services and Application-Specific Methods

With regards to management of this address space, OPC UA specification part 4 defines a

fixed set of protocol and technology independent base services with parameters and behavior

definition. All OPC UA servers should implement these services. The genericity of these

services ensures interoperability. These so-called base service sets are divided according to

functionality such as server discovery, server address space browsing, reading and writing

node values, reading history of data and events, invocation of methods, subscription for data

changes and events, and management of nodes and references. An OPC UA service itself is

defined by its request and response messages, and thus, it is on the same level as an operation

in a WSDL [Stop09].

Inside these wrapper application-agnostic services and the address space, application-specific

Object

Variables

Methods

References
to other
Objects

Data change
Notifications

Read / Write

Invocation

Event
Notifications

Figure 2.11: OPC UA Object Model. [OPC 17b].

40 Chapter 2: State of the Art

methods are defined in the OPC UA server. These application-specific methods are the topic

of interest of this thesis work. These methods are represented as method nodes which inherit

from base node class, and they provide interfaces to perform specific application-related

actions. A application-specific method, which is similar to a method of a class in an object-

oriented programming, is a stateless entity, and invoked by an OPC UA client, proceed to

completion on the server to return the result to the client. The OPC UA client can discover

these methods defined in the server by browsing the owning objects references that identify

their supported methods. A method node contains the metadata that identifies varying

number of input and output arguments of the method, and such a method can be invoked

by using the call service defined in part 4 of the specification series. [OPC 17b]

2.3.3 Status-Quo Evaluation

RAMI4.0 creates a collective understanding of norms, standards and case studies to realize

the concept of industrie 4.0. In the event of non-availability of a suitable standard, it helps

identify those gaps [Econ17]. To that end, the AAS of a device/resource can be characterized

using the information model of OPC UA. Currently, the OPC UA architecture possesses only

the base information model, and this vocabulary can be enhanced in the form of companion

specifications. This informal semantics cannot enforce strict information modeling rules. In

other words, these virtual resource representations should possess reasoning capabilities in

order to make runtime decisions in decentralized manufacturing control. The information

modeling in OPC UA relies on two fundamental concepts: node and reference. Based on the

utility of the node, it can belong to one of the node classes, namely object, variable, method,

referenceType, ObjectType, VariableType, datatype and view. These nodes are connected

to one another with an OPC UA defined reference type(s). The OPC UA information

model helps represent contextual information by linking a node in question to a related

target concept node with the defined (and/or extended) reference type(s). In order to meet

custom requirements, this linkage relation of objects can also be extended. The node that

contains the reference is called the source node and the node that is referenced is called

target node. A combination of the source and target nodes together with the reference type

is used to uniquely identify references in OPC UA service requests. The target node can

also be located in a different OPC UA server, which is referenced as the concatenation of

the server name and the node ID. This concept of interconnecting the OPC UA objects

to another object via reference provides a good alternative to the classical “Subject-Verb-

Object” data representation of semantic technologies. OPC UA address space can express

complex RDF triples like graphs with the concept of interconnection of fully qualified nodes

with binary relationships tailored to the needs of the customer. The OPC UA information

model provides a vocabulary that enables to model the hierarchical and non-hierarchical

2.3 DIN SPEC 91345: Reference Architecture Model for Industrie 4.0 41

relationships between the nodes. The flexibility provided by the OPC UA allows to design

a scalable information model of the entities of the shop floor that participate in the product

life cycle.

Notwithstanding the benefits of the rich information model of OPC UA described above,

the OPC UA semantic vocabularies, in particular the hierarchical relationships, are only

reasoned based on dictionary of common understanding, and therefore, do not enforce strict

information modeling rules. Furthermore, the non-hierarchical relations in the OPC UA

information model are not governed by any reasoning. Though OPC UA working groups have

covered the bases with regards to most aspects of semantic information modeling, a reasoning

engine that recognizes conflicting semantic definitions and infers logical consequences using

the principles of first order predicate logic or description logics is still missing in OPC UA.

At present, the OPC UA, which is a standard intersection of IT and automation, does not

possess reasoning capabilities which allow to make numerical and logical calculations that

consequently assist in the design of consistency-check rules, and derive logical inferencing.

This intelligence is required to reason on the services provided by manufacturing resources,

assess the resource conditions for better coordination in the production, and evaluate the

pre- and post-conditions of an OPC UA method execution in the PO orchestration.

Figure 1.3 provides an example of the above explanation where the OPC UA with its current

capabilities can only answer questions with green tick bullets, but not crossed in red. Such

conditions that not only involve connecting the mere references but also involve logical and

reasoning expressions need to be represented in the information model at design time, and

need to be processed at runtime to assess contextual information at factory shop-floor, and

it is not possible with the current OPC UA specification.

The above-mentioned shortcoming in OPC UA can also be viewed from the perspective of the

services offered by the AAS in the communication layer of RAMI 4.0. In order to interact with

services offered by the AAS, in and out parameters, exceptional behaviors and interaction

paradigm needs to be defined. These service signatures are still under discussion. The expert

committee of Gesellschaft Mess- und Automatisierungstechnik 7.21 (GMA 7.21) has proposed

a number of application-agnostic basis services. However, it agrees that, “Interactions with

industrial assets are today often based on vendor-specific means. There exist no standards for

application-specific services of AAS, nor respective service catalogs are known.” It also muses,

“it is still unclear whether a generic AAS model for all use cases is achievable and practical.

Application-specific variants streamlined for certain resource constraints and communication

needs may need to be investigated.” [Bede17]

As per RAMI 4.0 suggestion, the OPC UA technology stack is not only employed in communi-

cation, but also to define an asset virtual representation [Bede17, Plat16, Pauk16]. Unlike

42 Chapter 2: State of the Art

informal semantic descriptions of application-agnostic services of OPC UA/AAS which re-

main the same for all the servers, the application-specific methods of OPC UA/AAS are

required to be reasoned about before invocation and hence, a formal definition is necessary.

Formal representation allows the client to understand the context of manufacturing, the

manufacturing service provided by the method, the required in/out parameters, and pre-

and post-conditions of the method execution. This information, in turn, assists in creating

adaptable manufacturing orchestration in the factory shop-floor.

2.4 Service Oriented Manufacturing and Semantic

Web Technologies

This section describes service oriented architecture from the perspective of manufacturing

and later, the concept of semantic web is explained. These concepts are used as a basis to

introduce the theory of semantic web services that enable automatic manufacturing service

discovery, and subsequent adaptive production orchestration, which is followed by the de-

scription of well-known semantic web service frameworks. The section ends with description

of relevant previous work regarding application of software services in manufacturing.

2.4.1 Service Oriented Architecture

Starting at the turn of 21th century, researchers in the field of intelligent manufacturing

shifted their attention to general IT technologies, namely service oriented architectures (SOA)

[Shaw96] and semantic web technologies [Bern01]. SOA is an architectural paradigm for

designing software in the form of reusable, loosely coupled and inter-operable software com-

ponents, called services. SOA aims at defining interfaces, protocols, and data formats for

Service
 Registry

Service
 Consumer

Service
 Provider

Service
Description

Service

Service
Description

Find

Bind and Invoke

Publish

Figure 2.12: Interactions in Service-Oriented Architecture [Endr04].

2.4 Service Oriented Manufacturing and Semantic Web Technologies 43

accessing services in order to allow the developer to combine various services into a final

application.

It involves the “publish, find, bind and invoke” collaboration cycle where a service consumer

searches a service by querying the service registry with match criteria. In case of a match,

the service registry provides the web service invocation details such as the web service in-

terface contract and the end point address to the client (refer Figure 2.12). Some of the

key characteristics of web Services are that they are inherently open and standard based,

composable, language independent and interoperable [Endr04].

Evidently, MAS and SOA are based on the same principles. Alternatively, SOA is one of

the enabler technologies to implement agents. In case of both MAS and SOA implemen-

tations, the application is composed of self-contained entities collaborating in a networked

environment [Leit13]. For example, [Zhan11] does not distinguish between web services

and agents. However, this work encapsulates the functionalities of an agent in web services.

2.4.2 Semantic Web

The term Semantic Web was coined by Tim Berners-Lee in [Bern01]. The Semantic Web is

an extension of the World Wide Web through standards by the World Wide Web Consortium

(W3C) [Brat07], and it is a collaborative effort led by the W3C with participation from

a large number of researchers and industrial partners. The objective of these standards is

the promotion of common data formats and exchange protocols on the web. It provides a

common framework that allows data to be shared and reused across application, enterprise,

and community boundaries.[Hawk12]

[Hitz10] identified three main topics as core concepts of the Semantic Web:

� Building models in order to describe knowledge about the world in abstract terms,

� Calculating with knowledge in order to use these knowledge models and their encoded

information with reasoning machines that can draw meaningful conclusions,

� exchanging complex information in order to distribute, interlink, and reconcile knowl-

edge on a global scale.

Semantic Web technology stack

The semantic web annotates machine processable data about documents and related enti-

ties on the web, and their relationship. The standards, technologies, rule languages such

as eXtensible Markup Language (XML) [Bray97], Resource Description Framework (RDF)

44 Chapter 2: State of the Art

[Lass99], RDF Schema (RDFS) [Bric04], Web Ontology Language (OWL) [OWL18a], Se-

mantic Web Rule Language (SWRL) [SWR18a], SPARQL Protocol And RDF Query Lan-

guage (SPARQL) [SPA18b] et cetera are the means to construct such an infrastructure.

The semantic web architecture has XML at the bottom to make sure that it follows the

common syntax and hence, enables data interoperability among the software applications.

The semantics is provided by the upper layers of the architecture. RDF provides the core

data representation structure by representing the information about real world objects in

the form of graphs. RDF represents the information in the form of subject-predicate-object

(SPO) format in pursuit of representing the graph data. The RDF Schema (RDF-S) lan-

guage formalizes the RDF taxonomy by providing a set of classes, sub-classes, properties,

sub-properties, domain and range restrictions in order to create a lightweight ontology. For

example, RDF-S can express a class or a property as a sub-type of another more general

type. Ideally, RDF-S is suitable to handle large amounts of data with a less expressive

formalism. A more evolved and detailed ontology can only be created in OWL, which is

derived in description logics (DL) [Baad08]. OWL is syntactically embedded into RDF and

it provides additional standard vocabulary by offering more constructs over RDF-S. In order

to express unconstrained knowledge representation and support the corresponding reasoning

and calculations within finite time, the OWL language provides three increasingly expres-

sive versions: OWL Lite (minimal classification hierarchy and simple constraint features),

Querying:
SPARQL/
SQWRL

Ontologies:
OWL

Rules:
RIF/SWRL

Taxonomies: RDFS

Data Interchange: RDF

Syntax: XML

Identifiers: URI Character Set: UNICODE

Cryptography

Unifying Logic

Proof

Trust

User Interface and Applications

Figure 2.13: The Semantic Web technology stack [Horr05, Stev07].

2.4 Service Oriented Manufacturing and Semantic Web Technologies 45

OWL DL (expressivity with computational completeness and decidability) and OWL Full

(maximum expressiveness with no computational guarantees). OWL 2 [OWL18a] which is

a reengineered version of OWL also has two major dialects OWL 2 Full and OWL 2 DL

whose underlying motivations are the same as in their earlier counterparts. However, OWL

Lite is replced by three versions of OWL 2 profiles: OWL 2 EL, OWL 2 QL and OWL 2

RL (refer [OWL18b]), and each of these versions has various target use-cases. However, the

increase in efficiency of these profiles comes at an expense of restricted expressivity. SWRL

is a syntactic extension of OWL; it enhances the OWL-DL expressivity with its ability to

formulate rules. SPARQL is a RDF query language for diverse data sources stored natively

as RDF or viewed as RDF via middleware. All these components of the semantic web along

with their relation to one another are represented in the so-called Semantic Web layer cake

or Semantic Web technology stack (see Figure 2.13).

The semantic Web has numerous application fields which span financial, public and govern-

mental institutions, e-Commerce, automotive, health care, life sciences, oil and gas, phar-

maceutical and telecommunications industries. The application areas are data integration,

semantic annotation, natural language interface, text mining, domain modeling, improved

searching, content discovery and management, service integration and management, and

schema mapping.[Bake12, Lége05, Camb12]

2.4.3 Semantic Web Services (SWS)

Web services were formally designed for human interpretation and utilization. At the onset,

Business-to-business (B2B) and e-Commerce applications increasingly employed web services

for data exchange. The web service search and the decision of its qualification to fulfil the

requirements was made at design time by the humans. In most cases, the web services

interoperation was achieved via hard-coded information-extraction code to locate and extract

content. This resulted in tight coupling between the web client applications and service

interface, even though the server implementation itself was decoupled from the clients in

SOA [McIl01, Haki]. This scenario faces multiple difficulties [Bary10, Fens11b, McIl01]:

� Increasing size of web service repository

� Various web services designed and implemented from different points of view and tech-

nologies introduce challenges during service composition in terms of mismatches with

regards to functionality, in/out parameters, and other side-effects

� Dealing with evolving information such as revisions to the existing web services in terms

of both functional and non-functional characteristics due to corresponding changes to

the service contract

46 Chapter 2: State of the Art

� Unpredictability of web services characteristics such as downtime and replacement of

old services

The hand-written code on the client side either broke or needed to be changed in each of the

above-listed scenarios.

Early implementation of web services was based on the SOAP messaging protocol which

is grounded in XML. The Web Service Description Language (WSDL) [Chri01] is a W3C

recommendation which provides a formal, syntactic and machine readable description of

SOAP-based web services. However, the description of the service interface and its capabili-

ties in WSDL is merely syntactic in nature. As a result, there is a semantic gap between the

syntactic description of a service and the underlying meaning. This semantic gap makes an

automated discovery, selection and orchestration of appropriate services almost impossible

[Losk11], and makes them susceptible to human intervention.

Fundamental to having computer programs or agents implement reliable, large-scale inter-

operation of web services is the need to make such services computer interpretable. To this

end, properties, capabilities, interfaces, and effects must be encoded in an unambiguous and

machine-understandable form [McIl01]. This led to the development of SWS which are the

convergence of semantic web concepts with service oriented computing (refer Figure 2.14).

SWS address the major challenge of automated, interoperable and meaningful coordination

of web services to be carried out by intelligent software agents [Klus08].

Even in the context of manufacturing, the semantic description of manufacturing services

enables dynamic discovery, efficient reuse and (semi-)automatic orchestration of manufactur-

ing services to build higher value production processes [Losk11]. In this context, SWS also

realize the automation of market-based manufacturing control described in Section 2.2.2.

Static

Dynamic

WWW

Semantic Web
Services

Web Services

Semantic Web
URL, HTML, HTTP

UDDI, WSDL, SOAP

RDF, RDFS, OWL

Bringing Web to its Full Potential

Figure 2.14: Vision from WWW to Semantic-Web Services [Fens11b, Fens18].

2.4 Service Oriented Manufacturing and Semantic Web Technologies 47

Formal Reasoning in Semantic Service Descriptions SWS combine different techno-

logical concepts such as web services, semantic web, and automated logical reasoning. The

formal description of web services opens new challenges: first, the identification of SWS that

meet the requirements by web clients, and second, dynamic composition of SWS to construct

services of higher complexity. In order to address these challenges, the web services should

be described in terms of their capabilities, and necessary frameworks need to conceptual-

ized containing algorithms that match the service description to the service request. The

basic idea of formally grounded descriptions of web services is to enable the client to under-

stand the functional and non-functional semantics through appropriate logic-based reasoning

[Klus08]. The concept expressions used to describe the service input and output parameters

are assumed to build up from the basic concepts of the common ontologies referred by both

the service provider and the requester.

SWS Frameworks

The focus of SWS is to transform web services from an interface-oriented description into

a meaning-oriented description which supports automatic discovery, composition, invoca-

tion and interoperation of services [Varg05]. W3C recommends the use of software agents

to automate the service discovery tasks with the aid of formal specifications using ontolo-

gies containing domain operational knowledge. Technologies and frameworks are needed to

support human experts to augment the web service descriptions with such formal semantic

ontologies. This led to an investigation in both academia and industry to describe semantic

web services and the corresponding operational environment. There are numerous research

initiatives in this direction such as OWL-S, WSMO, SAWSDL and SWSF [Batt05]. The

following sub-sections provide a brief overview of important SWS frameworks.

OWL-S is an OWL-based ontology framework of the semantic web to describe SWS, and

it enables the agent-based framework to discover, orchestrate and invoke the SWS. It com-

prises three main sub-ontologies, namely service profile, process model and service ground-

ing (refer Figure 2.15). The service profile advertises the service functionality, the process

model provides the detailed description of the service and the service grounding provides

concrete details to communicate with the service instance. Specifically, the process model

also describes the service composition (both orchestration and choreography) of one or more

services. The process corresponding to the process model in OWL-S can be atomic, simple

or composite. An atomic process corresponds to an instance of service operation, whereas

a composite process is a composition of various atomic processes constructed with various

control flow operations like if-then-else, while-until, sequence, split and split-join. A simple

process is a service or process abstraction which has to be realized by an atomic process.

[Mart04]

48 Chapter 2: State of the Art

Service

ServiceProfile

ServiceGrounding

ServiceModel

presents

supports

describedBy

(what it does)

(how to access it)

(how it works)

Figure 2.15: Architecture of OWL-S Ontology [Mart04].

SAWSDL Semantic Annotations for WSDL (SAWSDL) [Kope07] is an incremental

bottom-up mechanism of modeling SWS and is a W3C recommendation. However, it does

not specify an ontology language for semantic service description, but only specifies mecha-

nisms to semantically annotate the ontologies defined either within or outside the scope of

WSDL to the WSDL description elements. These annotations are attached to the WSDL

using WSDL extension elements. The SAWSDL specification defines two types of extension

attributes on the web service concepts, namely modelReference and schemaMapping. The

former correlates a WSDL element with a concept in the semantic model, and the latter

extension attribute is employed for bi-directional XML and semantic data transformation.

[Kope07]

The semantic annotation that points to semantic concepts can be applied on interface, op-

eration, faults, input and output parameters, and binding levels. The schema lowering

mechanism maps the semantic model to the XML that facilitates service invocation, whereas

schema lifting does the reverse transformation. These formal concepts enable in automatic

service discovery, and subsequent dynamic orchestration of web services. Listing 2.1 illus-

<wsdl : operation name=”Welding”
sawsdl : modelReference=”http :// opcua=sawsdl . poc . de/#WeldingMethod”>
<wsdl : input element=”CoOrdinates ”
sawsdl : modelReference=”http :// opcua=sawsdl . poc . de/#PlanarWeldingParams”
sawsdl : loweringSchemaMapping=”http ://WDFN32202381A/CoOrdOnt2CoOrd . x s l t ”
sawsdl : l i f t ingSchemaMapping=”http ://WDFN32202381A/Ack2StatusOnt . xml”/>
<wsdl : output element=”Acknowledgement”
sawsdl : modelReference=”http :// opcua=sawsdl . poc . de/#opera t i onSta tus ”/>

</wsdl : operation>

Listing 2.1: Example of SAWSDL Annotations on a Web Service Operation and its

Parameters.

2.4 Service Oriented Manufacturing and Semantic Web Technologies 49

trates an example of semantic annotations on a manufacturing operation called welding.

The SAWSDL specification neither expresses a precise semantic model nor does it direct the

ways of exploiting the semantically annotated XML data. It is left as the prerogative of the

user or the software agent to make an informed decision. Moreover, the lack of specification

to state the preconditions and effects of services in SAWSDL hinders its ability to compose

services.

Web Service Modeling Ontology (WSMO) WSMO is an evolution of the Web Service

Modeling Framework (WSMF) which is a result of various European Commission funded

research projects in the domain of SWS [Klus08]. WSMO provides the conceptual under-

pinning and a formal language for semantically describing all relevant aspects of Web services

in order to facilitate the automatization of discovering, combining and invoking electronic

services over the Web. Although both OWL-S and WSMO provide orchestration capabilities

[Losk13], WSMO has a different approach of mediation where it tries to resolve potential

mismatches in the representation of source and target ontologies.

The overall structure of WSMO is described by its four main components (refer Figure 2.16)

which are described briefly in the following [Roma05]:

� Ontologies provide terminology to be used by other components to describe the relevant

aspects of the domains of discourse.

� Web Services represent computational entities that, in turn, provide access to the some

value added services. Web service descriptions comprise the capabilities, interfaces and

Objectives of Client

Semantic description of
web services:
° Capability
° Non-functional requirements
° Protocol and Binding

Connectors that handle service provider
 and requester ontology/requirements heterogeneities

Formally specified
terminology used by
other actors of the
framework

Goals

On
to

lo
gi

es

Mediators

W
eb

 S
er

vic
es

Figure 2.16: Top level elements of WSMO. Adapted from [Roma05]

50 Chapter 2: State of the Art

internal workings of the service using the terminology defined in the ontologies.

� Goals represent the requirements of service requesters.

� Mediators deal with interoperability problems on the data (different terminology), pro-

cess (composition of web services) and protocol (communication between the web ser-

vices) level among the WSMO components.

The WSMO framework also provides a formal language called web services modeling language

(WSML) for the definition of logical statements in the framework. WSMO framework also

developed a reference architecture, called Web Service Execution Environment (WSMX).

Besides the explicit modelling of mediators, the separate modelling of offered and required

web services is one of the central characteristics of WSMO [Losk13]. However, the core

problem of the approach is the definition of an own ontology and web service description

language which diverges from standards adopted by the W3C such as OWL and WSDL

[Klus08, Losk13].

2.4.4 Previous Works

This section briefly discusses the past project undertakings focusing on industrial service

oriented architectures.

The Service Infrastructure for Real-time Embedded Networked Applications (SIRENA)

project [Bohn06] leverages Service Oriented Architectures to seamlessly interconnect em-

bedded devices within and between the industrial, telecommunication, automotive and home

automation domains. In order to assure interoperability and extensibility of embedded de-

vices, a core framework was developed as a part of this project, called Devices Profile

for Web Services (DPWS) [Orga09]. Since its adoption as OASIS standard, it is a com-

mon web service middleware and profiles for devices [Zeeb07]. DPWS proposed the usage

of WS-* protocols for device networking. It establishes two fundamental elements, namely,

the device and the hosted services on it. The device participates in meta data exchange

and hence, enables its discovery, and the services provide the functional behavior of the de-

vice. Later, DPWS became underpinning for subsequent service oriented architectures in

industrial automation. The Service-Oriented Device and Delivery Architectures (SODA)

project [Deug06] also works on the same theme of modeling embedded devices as web ser-

vices. SOCRADES [SOC09] is one of the earlier and well-known projects that focused on

the development of industrial systems based on the SOA paradigm both at the field device

and the application level. The main features of this project are direct access to devices,

service discovery, legacy device integration, middleware historian, security and formal se-

mantics support, and service composition [De S08]. With respect to SCADA systems, the

IMC-AESOP project [IMC14] implemented a set of monitoring and control functions ex-

2.4 Service Oriented Manufacturing and Semantic Web Technologies 51

posed as services in automation clouds. This project marks a change in interactions among

the different systems, applications and users through a fusion of SOA, cloud computing and

cyber physical systems [Colo14].

The rapid adoption of service oriented approaches also resulted in the increasing popularity

of SWS in manufacturing. Enriched by semantics that are capable of being processed by

machines, SWS gained instant traction since they could efficiently exploit the services on

the web without human intervention. SWS assist in services registration, exploitation of

contextual information, evaluation, discovery, and dynamic service composition [Losk13].

To date, a huge volume of literature has been published on the subject of applying SWS

in the manufacturing domain. The concept of introducing ontologies in manufacturing as

the state of the art was reviewed in [Borg04]. The facilitation of dynamic orchestration

of operational processes in the shop floor by SWS is the reason for its widespread adoption

in factory automation. There are also several research papers, for example, [Izag11] that

focus on purely syntactical level orchestration which is suitable only for static workflow

requirements. However, these approaches fail where adaptive process planning is the key

requirement of the production. The idea of replacing the low-level programming of sensors

and actuators with the high-level programming of the manufacturing resources with the

application of SWS was recognized in [Lobo09]. [Losk13] presented adaptive orchestration

of manufacturing processes using the OWL-S framework. Recently, [Chen17] showed that a

high degree of customization and reconfiguration of the system is possible through ontology-

based web services. [Rohj11] enhanced abstract services covered in part 4 of the OPC UA

specification with semantics for discovery of servers based on location in the field of smart

energy grids. This work employed the WSMO framework for service discovery. Embedded

Multi-Core Systems for Mixed Criticality Applications in Dynamic and Changeable Real-

Time Environments (EMC2EMC2EMC2) [Emb14] is an Artemis [Art09] project with focus on safe and

cost-efficient cyber physical systems using modern microelectronics [Webe16]. Its aim is

to develop an innovative and sustainable service-oriented architecture which is suitable to

handle the following scenarios [Scho17, Webe16]:

� Dynamic adaptability in open systems, scalability and utmost flexibility,

� Utilization of expensive system features only as service-on-demand in order to reduce

the overall system cost,

� Handling of mixed criticality applications under real-time conditions,

� Full scale deployment and management of integrated tool chains

The RACE project introduces a centralized platform computer (CPC) which is inspired by

the approach adopted in the avionics and automation domains [Beck15]. The CPC estab-

lishes a generic safety-critical execution environment for applications, providing interfaces for

52 Chapter 2: State of the Art

test, verification and reliable communication infrastructure to smart sensors and actuators.

The CPC also significantly reduces the complexity of integration and verification of appli-

cations, and enables the support for the Plug and Produce feature. The above-mentioned

projects and research works demonstrate the feasibility of embedment of web services at de-

vice level, and integration of these devices with business information systems at upper levels

of the enterprise architecture.

The most recent development in this area is matrix production which is based on categorized,

standardized and connected production cells. The principle of matrix production is the

separation of logistics and production which ensures smooth execution of wide variety of

processes related to different product variants. The main features of such a production

facility are modularity, autonomy and flexibility, and the manufacturers claim that such a

system systematically fulfils the requirements of Industrie 4.0 in industrial manufacturing

[Smar18].

53

3 System Architecture

This chapter rearranges the deployment locations of the functional modules of cloud MES

based on the task criterion. The modules related to design time activities of production are

retained in the cloud infrastructure, whereas the production runtime tasks related modules

are moved to the production edge layer. Section 3.1.2 discusses the various production

scenarios the edge component should address. Finally, representation of such a realignment

of basic cloud MES modules is illustrated in Section 3.2.

3.1 Caching of Production Scheduling and Control In-

formation

Given the possibilities of IT technologies, this thesis reconsiders current monolithic struc-

ture of the software modules of MES in order to reduce the network latency of shop-floor

communication with the cloud based MES, and subsequently, realize decentralized decision-

making in the production. It recommends breaking down the monolithic MES system into

simpler autonomous components, and deploying those software components to the proximity

of the production site. A subsequent requirement is the smooth interaction between these

distributed partial systems of MES. From an implementation perspective, though this ex-

tension of cloud based MES to the production network involves additional communication

layers between the MES modules, at the same time the exercise leads to the development

of optimally tailored decision support systems which derive conclusions based on contextual

information of the factory shop-floor. To that end, this research proposes introducing an

edge layer, called Generic Shop-Floor Connector (GeSCo), which is an extension of cloud

MES at the edge of a production network layer.

The MES in the cloud is not guaranteed to be close to the site of production. As explained in

Section 1.1, the network latency is directly proportional to the geographic distance. Due to

the physical proximity of GeSCo and shop-floor, and subsequent local area network (LAN)

communication, the network latency is short as data packets need not cross multiple routers.

A small amount of data corresponding to one to few PO(s) in GeSCo also effectively nullifies

the computation time penalty witnessed in the cloud MES platform. Additionally, GeSCo

also alleviates the problem of latency introduced by the virtualization layer of the cloud

54 Chapter 3: System Architecture

infrastructure. Consequently, GeSCo is an ideal place to store the cached data.

3.1.1 Characteristics of GeSCo

GeSCo should be close to, but not tightly coupled to the shop-floor. In its basic concep-

tion, it should control the production processes, and collect the data to and from the shop-

floor and enterprise business software. Therefore, it must provide web service capabilities

to send/receive the information from business software systems (vertical integration), and

should support a wide variety of industrial communication protocols in order to connect to

a wide variety of industry specific data sources of diverse manufacturers, such as OPC UA,

classical OPC and http based web services (horizontal integration) (refer Figure 3.1).

The cached data constitutes an abstract production schedule created in the cloud MES

infrastructure which facilitates in production execution and control data of part of/com-

plete/multiple PO(s). GeSCo collaborates with enterprise software and diverse industrial

data sources to execute this cached PO by performing division of labor in the shop-floor.

That is, it autonomously evaluates and chooses the concrete manufacturing services offered

by the resources, and allocates the production operations to the corresponding resources

on the shop floor at run-time based on the production recipe. Such information empowers

GeSCo to take decisions with regard to production control without consulting the centralized

cloud MES, and hence, it facilitates the implementation of decentralized control in the pro-

duction execution. Besides, the introduction of GeSCo in the shop-floor is not to take over

the role of SCADA. Instead, GeSCo should just serve as a thin client to the centralized cloud

Cloud MES

Shop-Floor
GeSCo

SOAP/REST Based HTTP
WS-* Communication

OPC UA based Communication

Participants in Manufacturing

Figure 3.1: GeSCo Communication Landscape.

3.1 Caching of Production Scheduling and Control Information 55

CMES

Shop Floor
SCADA

CMES

Shop Floor

CMES

Shop Floor
GSFC(s)

Figure 3.2: Evolution of Cloud MES - Shop Floor Connectivity [Katt18b].

MES server. Based on these arguments, the cloud MES and the shop-floor communication

evolution can be illustrated as in Figure 3.2.

3.1.2 Anticipated challenges due to caching

Following the relocation of modules of cloud MES related to runtime production tasks to

production edge, and subsequent caching of the production control data, the intention is to

reduce the communication between the GeSCo and cloud MES as far as possible. Several

exceptional situations may arise in the shop-floor while the GeSCo is in control of the pro-

duction execution. Manufacturing resource breakdown is one such case in point which is a

highly disruptive occurrence in an automated production environment. Even as preventive

maintenance or repair is a preferable way to increase the system reliability and significantly

reduce the system cost, [Chiu10] claims that, machine breakdowns are inevitable in real-life

manufacturing systems. The GeSCo should anticipate such an eventuality and must be well

equipped to take an appropriate course of action.

The current manufacturing operation cannot be swapped to another manufacturing resource

when there are no alternative manufacturing resources in the shop floor cell. In such a case,

the GeSCo should preempt all the other steps of the routing and retain its state. Under such

an abort/resume policy in case of random manufacturing resource breakdown, production

should resume with the processing of the preempted step of the routing after the breakdown

is fixed. Even when GeSCo has started the execution of another PO of a different product

variant with no dependency on the resource which has broken down, it should resume the

execution of the aborted PO after completion of the current PO.

In a job shop environment, the presence of multi purpose manufacturing resources enables

to execute multiple operations on several alternative resources. In such a scenario, GeSCo

56 Chapter 3: System Architecture

must reschedule the production routing by replacing the disrupted resource with an alterna-

tive resource. In the event of manufacturing resource replacement, the new manufacturing

resource should be introduced easily and quickly into the manufacturing system without re-

programming or reconfiguration of the production setup. The GeSCo should be resilient to

such plug and produce concepts.

When the PO is changed in the ERP during execution, the cloud MES should deliver the

necessary information promptly to GeSCo. The GeSCo should check the feasibility of the

changed PO, take appropriate measures and convey the same to the upper layers of the

automation pyramid. Under normal circumstances, the GeSCO should adopt the First-In-

First-Out (FIFO) policy for the execution of a PO. However, when the production routing

consists of manufacturing operations of different lead times, the priority order in the pipeline

should finish the execution earliest. Therefore, the provision should be made in GeSCo by

defining a priority policy to put a non-priority order on hold state in order to expedite the

execution of the priority order.

The traditional MES creates static production routing where manufacturing resources and

operations are coupled together, and pushed down to shop-floor execution. This approach

does not allow the edge component the freedom to make decisions at the shop-floor. In

case of deviation from the production planning, the edge component seeks directions from

cloud MES to recover from the path of deviation to successfully perform all the activities of

production. In very dynamic scenarios such as high-speed manufacturing, more autonomy of

the edge layer is desired in order to enable it to react to unforeseen events. However, in order

to provide more autonomy to the GeSCo, the cloud MES should only create the abstract

production planning without tying the manufacturing operations to resources. This process

should be performed in GeSCo. The GeSCo should possess local intelligence during the

dispatch of manufacturing operations to manufacturing resources. In addition to their reach-

able property, modern manufacturing resources also known as Cyber Physical Production

Systems (CPPS), have more computing power to complement a large number of embedded

sensors and actuators. These resources can track their state, PO buffer, and are aware of

their various configurations to manufacture products with unique characteristics. In state-

of-the-art factories, the shop-floor is considered to be a service market place where different

manufacturing requirements are matched against the corresponding services offered by the

resources to produce a tailored product defined by the customer.

It should be the responsibility of GeSCo to associate each operation of a PO to a particular

manufacturing resource, in order to process a semi-finished assembly, also called CPS. Thus,

the dispatched operation characterizes the logical binding between the CPS and CPPS. The

changes brought about by this combination of the CPS, CPPS and GeSCo that has the

relevant contextual information of the current POs drive changes in manufacturing produc-

3.1 Caching of Production Scheduling and Control Information 57

tion and control, and actuate the remodeling of centralized to truly decentralized production

decision-making systems.

The idea is not to store complete informational and operational technology information in

the GeSCo to make these runtime decisions. The provision should be made where the man-

ufacturing resources publish their capabilities to the GeSCo. The GeSCo should utilize this

information to assign a routing step to one of the manufacturing resources. The dispatcher

module of cloud MES should also push the required abstract services in case of quality non-

conformance along with the non-conformance codes. In the event of quality non-conformance,

the GeSCo only looks up the non-conformance code, and seeks the corresponding services

from the manufacturing resources. Another major challenge is to make feasible decisions

taking into account the physical configuration of the cells of the shop-floor.

In all the above-mentioned exceptional situations, the GeSCo should either resolve or find

an alternative course of actions. The objective of this exercise is the successful completion of

the production execution. The cloud MES should support this goal by sending meaningful

data at the right time.

Challenges of Integration of GeSCo: A Survey

The GeSCo should assume the role of the cloud MES after the PO is transferred to its cache.

The transfer of production control to the GeSCo is smooth under normal circumstances when

the production encounters no problems. However, the system should be designed such that it

should be robust against production fluctuations, and should mitigate or solve the problems

that may arise under exceptional circumstances.

In order to determine which responsibilities such a system must fulfill, several experts in the

field of manufacturing were asked to prioritize the challenges for GeSCo during the execution

of shop orders. The results of this survey in the descending order of their weighted average

are as following:

1. Determination of next routing step since business rules that govern the routing decisions

are present in the cloud MES

2. Semantic translation of data arriving from cloud MES to a technology and business

agnostic solution such as GeSCo

3. Adaptation in GeSCo in the event of change of the data model in the centralized cloud

MES

4. Determination of suitable resources to perform the current operation

5. Routing-path substitution in the event of machine breakdown

58 Chapter 3: System Architecture

6. Dealing with the change of the PO

7. Handling the POs of high priority

8. Course of action in the event of quality defects

9. Resumption of production after a disruption due to unforeseen circumstances

10. Course of action in the event of unavailability of raw materials

11. Distributed manufacturing where components are being manufactured at different sites

3.2 Proposed System Architecture

The production management consists of activities such as planning, scheduling, dispatching,

production execution management, data collection, and tracking. These tasks are segregated

into design time and production runtime activities. Design time activities are retained in

centralized cloud systems, and the functional modules that are responsible for production

runtime are moved to the edge of the production network layer to react to the local conditions

on the factory shop-floor. The solution architecture also takes into account the challenges

mentioned in Section 3.1.2. It should enable the cloud MES to exercise control over the

production process while at the same time ensure a smooth integration of the GeSCo for

providing flexibility in exceptional cases. Hence, both centralized and decentralized aspects

should be incorporated into the architecture.

MES Components in the Cloud

This section describes the set of basic building blocks and services that are required in the

cloud from the view point of the production management (refer Figure 3.3).

Production Planning System This application layer enables the human production plan-

ner to plan the production sequence with generic requirements. To this end, it has different

user interfaces that help define and maintain the plant and product definition, operation

planning, and production execution aspects. This master data facilitates the design of BoM

and the shop-floor routing for a product variant. This unit also enables the human to create

and release the PO to the edge component (GeSCo) on the shop-floor.

Manufacturing Resource Model and Servitization Remote resource sharing and man-

agement is a challenge to the cloud MES since it is geographically separated from the shop-

floor. The resource virtualization is the key idea behind building the cloud services in the

context of manufacturing. The resource model is the transformation of a real manufacturing

3.2 Proposed System Architecture 59

resource to a virtual or logical resource. Each manufacturing resource is modeled formally

with a set of inputs and outputs according to its main functionality. The functional and

non-functional capabilities of the resource can be semantically modeled. The model is then

subjected to one-to-one, one-to-many or many-to-one real-to-virtual mapping methods to

map to a logical resource [Ren12].

The concept of enriching digital plant models by making virtual copies of the manufactur-

ing resources with near real time data from sensors also makes the information flow more

transparent. Virtual resource servitization is the transformation of abstract concepts of ca-

pabilities provided by these resources into formal services that are understandable by the

cloud platform [Ren12]. This process involves several aspects such as definition of the ser-

vice model, message model, ports and protocols. The service model includes the template for

the service offered by the cloud platform. The reception of inputs and generation of outputs

of the service is defined in the message modeling process. The port modeling involves the

definition of functional operation port used to accomplish the operation target. The protocol

binding specifies the different protocols that are supported by the service.

This service interface of the virtual resource enables GeSCo to store the resource relevant

data in a realistic resource model, also called resource digital twin [Rose15]. The GeSCo pe-

riodically collects the data from manufacturing resource, and pushes it to the resource model

in the cloud MES. This assists in real time monitoring of the manufacturing resource for the

purpose of tracking the status, understanding its behavior with regard to its interaction with

other manufacturing systems, and also in calculation of the equipment effectiveness. Further,

the data is archived and the aggregated historical data is fed to a predictive analytics tool

to derive insights into the resource behavior.

Dispatcher The PO created and released by the production planner is digitized and trans-

ferred from the cloud MES to the manufacturing facilities by the dispatcher. The algorithm

for transferring the priority order(s) should also be pre-loaded into the dispatcher. The pa-

rameters that expedite the release and subsequent transfer to the shop-floor are production

end date, priority customer, and inventory and manufacturing resource availability. The

GeSCo, introduced in this research work, is a technology and business agnostic solution.

Therefore, the dispatcher should send unambiguous data, for example, a collaborative prod-

uct definition and operations semantic model to the GeSCo. The GeSCo translates this

information to its compatible data model for further processing.

Data mining and predictive analytics Instead of relying on human expertise alone, there

is an increasing inclination towards aggregating and processing a large amount of data at the

shop-floor, which in turn enables MES to train better models for classification, clustering and

prediction. This component analyzes the current and past semi-structured or unstructured

60 Chapter 3: System Architecture

data, extracts useful patterns and transfers this knowledge to GeSCo. This knowledge of

past experience is then helpful for GeSCo to take run-time decisions that solve or mitigate

the problems arising in the shop-floor during production. This information is also helpful to

achieve optimization of the production processes in the shop-floor.

Information Systems This constituent stores the digitized version of production (shop)

orders with a detailed scheduling plan of all the products created by the human produc-

tion designer. It also stores the product genealogy including complete work instructions,

components and phantom assemblies, operation flow and routing, manufacturing resources

and work centers employed, bill of materials, activities on the shop-floor, rework instruc-

tions and the discrepancies. One possible methodology of realization of product genealogy

was proposed in [Haup13], called Digital Object Memory (DOMe), which maintains all the

information about a product instance over its production lifecycle, where each product is

identified and tracked using an RFID tag that contains the unique shop-floor control num-

ber. Since a DOMe is centrally accessible to all the involved entities of production, it enables

production coordination among these entities, compilation of historic manufacturing reports,

quality investigations and process improvements.

Components of GeSCo

The production management tasks that can be decentrally organized are incorporated into

modules which are part of GeSCo. To overcome the problems of network latency and connec-

tivity associated with cloud MES, the production control should be delegated to the man-

ufacturing edge layer and hence, the argument of decentralization of the decision-making

process is even more applicable to this narrative. To this end, an edge layer that caches

the production execution and control data is designed, and a comprehensive architecture is

designed to integrate this edge layer with the cloud MES. GeSCo consists of the following

components with dedicated responsibilities:

Manufacturing Resource Perception Layer To achieve harmonization among various

manufacturing resources, they need to be coupled together. The perception layer undertakes

this responsibility of loose coupling of different resources on the shop-floor. The different

manufacturing resources at the site also register themselves to this layer. The registration

can take place via publishing either the resource meta-data or the resource endpoint. In case

of the latter, the resource endpoint permits the perception layer to browse the resource data

structures to extract the meta-data of the resource. To this end, this GeSCo module has

an internal sub-module known as Capability Discovery Repository (CDR) (sometimes also

referred as Generic Method Discovery Repository (GMDR) in the thesis) which stores the

capabilities of the various manufacturing resources. The manufacturing resources are also al-

3.2 Proposed System Architecture 61

lowed to directly announce all their capabilities semantically to the CDR. However, a formal

explicit specification of shared concepts and relationship among those concepts, also called

ontology, needs to be modeled at the organization level in order to realize the semantic pub-

lishing of the capabilities. A static service, which provides access to the created ontologies,

should enable referencing and dereferencing of the semantic concepts. The decentralization

facilitator exploits this semantic information from the CDR to arrive at the decisions at run-

time. Since this thesis considers OPC UA for industrial communication, the authors propose

to adopt the semantic web services frameworks to the OPC UA application specific methods

in order to automate the process of method discovery and subsequent method composition.

Details are provided in Chapter 4.

Purely from a communication perspective, the perception layer should support the standard

industrial communication protocols, such as OPC UA, classic OPC and HTTP based web

service stack. These protocols are employed to perceive different manufacturing resources

with an intent to enable intelligent identification, detection, communication, tracking, mon-

itoring and management. The effectiveness of this exercise depends on the ability of this

layer to extract the key information from the real resources.

Production Control Data Cache This component stores the data delivered by the cloud

MES. It contains the blueprint of the production execution on the shop-floor, which is the

detailed routing information in the case of discrete manufacturing. Various entities of GeSCo

such as decentralization facilitator and production engine base their decisions and actions on

this cached production scheduling and control data.

Decentralization Facilitator This entity enables the decentralization in manufacturing

by coordinating with various manufacturing resource models and cloud MES, and thus helps

address the challenge of determining the suitable resources for a particular operation. Specif-

ically, this layer refers to the collection of virtual manufacturing resources maintained by the

method discovery repository for the run-time classification of resources. This, in turn, aids in

on-demand resource capability matching. The virtual resource management helps the decen-

tralization facilitator identify capabilities intelligently by semantically searching for suitable

services and the corresponding manufacturing resources on the shop-floor to meet the pro-

duction requirements. Detailed theory and implementation aspects of method discovery and

ensuing method orchestration are described in Section 6.3.

Common Semantic Model A homogeneous production ontology generated in the cloud

based MES must be distributed to the all the entities participating in the manufactur-

ing including GeSCo. This ontology must include a fact-oriented and formal conceptual

data model and the corresponding instances. When different distributed applications model

their information model based on this reference ontology, the meaning behind the data ex-

62 Chapter 3: System Architecture

change between the applications can be discerned and consequently, this interpretation of

data guarantees interoperability of these applications. The Common Semantic Model (CSM)

component stores a copy of such semantic model.

In line with the above explanation, the metadata of resources on the shop-floor that expresses

their manufacturing capabilities should be modeled using these common semantics. In the

same manner, the PO should be created with abstract manufacturing operations requirements

without tying it to concrete resources. The CSM component assists the decentralization

facilitator in determining the suitable resources for specific production steps taking into

account also the contextual information at production runtime.

Exception Handler This block of the GeSCo is accountable for overcoming shortcomings

that arise in the production environment. These shortcomings are explained in Section 3.1.2,

numbers 5 to 9. The exception handler either attempts to find an alternate course of action

by local coordination, or seeks further instructions from the centralized MES which has a

global picture of the system.

Production Engine and Work-In-Progress Monitor The production engine is the

heart of the GeSCo that collaborates with all the other components of GeSCo to achieve

the end goal of successful completion of the PO. It fetches the PO information and routing

details from the production control data cache, and delegates the responsibility of match-

ing the manufacturing resources for the given operation to the decentralization facilitator.

After identification of suitable services and the corresponding participating manufacturing

resources to carry out production sub-steps, the production engine refers the ordered sets

of operations and creates manufacturing service composition accordingly. It then delegates

each of the jobs of the composition plan to the perception layer that assigns the operations

to the real resources after the necessary configuration. The production engine also assigns

the unique PO identifier to the smart product or the product carrier at the start of the PO

so that the carrier can be identified and tracked any time during production. During the

dispatch of each routing step of a PO, the manufacturing operation harnesses the unique

CPS identifier, and binds the product to the manufacturing resource. The PO is put on hold

in the event of non-availability of default and alternate resources, and is only resumed after

the required resource registers to the perception layer.

To ensure the production is running as expected, it is necessary to monitor the run-time

status and respond to changes. In case of changes and exceptions, this layer coordinates

with decentralization facilitator and exception handler to solve or mitigate the contingency.

The production engine also has the intelligence to recognize the situations where GeSCo

cannot take the optimal decision based on local information. In such scenarios, it seeks the

master data, the singular source of truth, stored in centralized cloud MES.

3.2 Proposed System Architecture 63

Information Systems

Text
Data Mining and

Predictive Analytics
Application Layer -

Production Planning System

Manufacturing Resource
Model and Servitization Dispatcher

Cloud MES

ERP Connector

Product Demand

Periodic Order Status

ERP
(Out of Scope of Study)

Production Report
Production Order,
Product Variant and
Routing Details

Resource Perception Layer

Capability Discovery Repository

Production Engine and
Work-In-Progress Monitor Decentralization Facilitator

Production Control Data Cache Production Process Logger

Exception Handler

GeSCo

Production Monitor and Control

Manufacturing Resources
and Capabilities Manufacturing Operations Shop-Floor

Common Semantic Model

Figure 3.3: Integration of GeSCo with cloud MES [Katt18b].

Production Process Logger This component uploads the data corresponding to a variety

of production processes or manufacturing steps it gathers during the production onto the

cloud MES. This unstructured data is subjected to analysis, and an effort is made by the

cloud MES to find patterns in previous behaviors of resources, and transform it into a

structured data. This knowledge in turn can be channeled as feedback to the MES-GeSCo

closed loop system in order to optimize the production in the long run. The data is also

stored for retrospective tracking of product quality and evidence purposes.

Based on this discussion, the entire landscape can be constructed as illustrated in Figure

3.3. However, in order to simulate the manufacturing conditions of distributed manufac-

turing where components are manufactured at different sites requires multiple test beds,

and logistic support such as automatic guided vehicles. The non-availability of such multi-

ple manufacturing islands coupled with the lower priority of the corresponding requirement

from the survey necessitated to the omission of the last requirement presented in Section

3.1.2. With the exception of this last requirement, the research work tries to find the solu-

tion with the above-defined solution architecture. Caching of abstract PO(s) and production

64 Chapter 3: System Architecture

ontology at GeSCo, coupled with the introduction of a semantic framework for OPC UA

application specific methods discovery and composition empowers GeSCo to make local pro-

duction scheduling and control decisions at runtime, and thereby also effectively addresses

the problem of network latency experienced in pure cloud based manufacturing.

65

4 Semantic Modeling

In today’s factories, the field device level services are abstracted by composition and integra-

tion into higher level services. Hence, the intricate details of lowest layer of automation are

hidden employing standard communication interfaces and functional encapsulation of field

devices. This characteristic implies that the services offered by the manufacturing resources

can be directly invoked without the burden of understanding complex Programmable Logic

Controller (PLC) programming. From GeSCo point of view, this encapsulation necessitates

application specific programming only at the last layer of abstraction as illustrated in Figure

4.1.

In the context of the thesis, there are two classes of application specific methods in OPC UA,

namely methods that perform business or manufacturing tasks, and methods that retrieve

the status information of resources on a number of aspects such as their current temperature,

pressure, energy consumption, PO queue et cetera. These two types of OPC UA application

methods are composed by GeSCo according to the PO requirements in order to form complex

operation sequences of higher order.

Concrete GeSCo Composition

Method Consumer

Manufacturing Resource Manufacturing Resource Manufacturing Resource

Orchestration By GeSCo Production Engine

Abstract Resource-Level Composition

Figure 4.1: Service Orientation in Manufacturing Resources [Katt18d].

66 Chapter 4: Semantic Modeling

This chapter is organized into four sections. Section 4 builds a case to integrate formal

ontologies into the GeSCo functional modules in general, and the OPC UA information

model in particular. Sections 4.1 and 4.2 describe the adoption of the well-known OWL-S

and SAWSDL semantic web service frameworks to application specific methods of OPC UA

server, respectively. Subsequently, Section 4.3 presents an improved hybrid version of the

above-mentioned semantic web service frameworks. The author attempts to overcome the

insufficiency of OPC UA (refer Section 2.3.3) by augmenting it with a reasoning engine based

on description logics. Additionally, the service oriented architecture provided by OPC UA

is decoupled from the actual implementation details in order that the vendors can choose a

communication protocol of their preference. Hence, an effort is made to develop a seman-

tic OPC UA solution that is independent of the underlying communication protocol details.

With the introduction of these novel semantic OPC UA approaches, it is possible to generate

a flexible orchestration plan of manufacturing operations which can be changed in case of

unforeseen events in production with well-founded semantic reasoning of the OPC UA meth-

ods. Additionally, the intelligent planning algorithms introduced by the formal description

of manufacturing services using semantic OPC UA infrastructure facilitates the implemen-

tation of loosely coupled production systems, and thereby provides plug and produce and

smooth reconfigurability features.

Ontologies in Manufacturing

The touch points of this research work range from production design to production planning,

execution and control. Though these three stages of manufacturing are distinct in theory,

in reality the boundaries of each of these activities come into contact with each other. In

order to achieve higher efficiency, integration of these stages is essential. Ontologies make

it possible by making the data interoperable across different stages. The development of

ontologies which allow to configure the complete manufacturing system using a model-based

engineering approach is the step in the right direction for the advancement of domain and

contextual knowledge. At the same time, when they are designed in certain specific ontology

construction languages such as Web Ontology Language (OWL) and Resource Description

Framework (RDF), they also permit effective assimilation of such knowledge in software

and agent-based automation systems. Additionally, the deductive reasoning provided by the

inference engine of OWL ontology can be better than human interpretation and transform

the facts into a source of smart data [Fort14]. Accordingly, this research work proposes to

model the manufacturing and internal logistics system structure into an ontology which is

machine processable, and subsequently enables integration of knowledge within automated

systems.

A decentralized decision-making process permits quick response to production requirements

67

and is also resilient to changing manufacturing environments [Zhan17] (refer Section 2.2.1

for brief overview). To achieve such a smooth production monitoring and control, GeSCo

should be equipped to handle the following scenarios:

� Decentralized production line control

� Decentralized material flow control

This results in circumstance-based supervision and regulation of manufacturing resources and

product (including basic and work-in-progress sub-assemblies) resulting in dynamic synergy

between these participating manufacturing systems. To this end, the production engine

component of GeSCo which is in charge of the manufacturing process orchestration needs to

structure and manage the evolving domain knowledge and track the real time process data

to take time bound decisions during the control of the industrial cyber physical systems. To

summarize, the author employs the ontology in this work for the following purposes:

� Automation of data assimilation among different software units

� Formal representation of relationships between various concepts of the production in-

formation model, and creation of relevant rules that need to be adhered to in the

production

� Gain contextual awareness

� Assist GeSCo in decision-making activities to generate an on-the-fly configuration of the

production processes that consists of dynamic orchestration of manufacturing services

provided by resources

� Decentralized manufacturing planning and control without an upfront knowledge of

the factory layout

As described in Section 2.3.2, this thesis considers the OPC UA technology for resource-

resource, and GeSCo-resource communications (refer Figure 3.1). The next sub-section

briefly describes the shortcomings of the OPC UA specification with regards to the pro-

vision of formal semantics, and a solution is proposed to describe the semantic model of

OPC UA servers using a DL-based ontology language such as OWL.

Formal Semantics with regards to Dynamic Method Invocation

Information exchange and usage between disparate manufacturing resources is possible if

common data formats and exchange protocols constituted by semantic technologies are em-

ployed. In a service-oriented manufacturing paradigm, OPC UA methods of manufacturing

resources are invoked to consume their manufacturing services. Therefore, the concept of

semantic information modeling of OPC UA should also be extended to the methods of the

68 Chapter 4: Semantic Modeling

OPC UA server.

The following enumeration lists the aspects related to automated discovery, composition and

invocation of an OPC UA method from a software agent point of view:

1. Application methods of OPC UA servers of all the relevant manufacturing resources

in the shop-floor should provide the semantic description of capabilities that can be

interpreted by a computer.

2. In order to invoke the method in an OPC UA address space, the client needs to know

the browse path of the method node. This information is more relevant in OPC UA

methods than in web service operations. The web service operations are invoked by

operation names. In contrast, in OPC UA application specific methods, the client

requires the method node ID, the parent node ID of the method and method arguments

as per the OPC UA specification.

3. During and between the method invocation(s), the pre- and post-conditions that rep-

resent the current and the subsequent state of the method execution context must be

modeled with strict definition enforcement. From a production runtime perspective,

before dispatching the routing step of a PO to a manufacturing resource, GeSCo, which

is in charge of production orchestration in the shop-floor, should query the manufac-

turing resource for its state, PO capacity, current PO queue at its work station and

product-specific business conditions in order to evaluate its feasibility to the PO task

at hand.

4. The endpoint URL, in conjunction with the server security policy and message security

mode, of each of the OPC UA servers is also one of the requirements for the automatic

invocation of an application method.

This thesis focuses on OPC UA aspects that need further research with regards to its infor-

mation model. For example, above-listed item 2 deals with automatic method invocation,

and items 1 and 3 deal with formal semantic capabilities for the purpose of autonomous

discovery and composition of manufacturing services. The item 4 refers security concepts

which are outside the purview of this research work. The complex information arriving from

the multitude of manufacturing entities must be aggregated and normalized by subjecting to

numerical and/or logical operations before interpretation. In order to enable the OPC UA

client to access the above information at manufacturing runtime, the semantic model of the

OPC UA server should be described, for example, in a computational logic-based language

such as Web Ontology Language (OWL) that can be subjected to consistency checks and

inference. The ontological language that is grounded on description logics enables to create a

set of axioms that provide explicit logical assertions about the concepts (class), individuals,

and object and data properties. Additional rules on the properties of class instances (indi-

4.1 Assimilation of OWL-S Framework in OPC UA 69

viduals) can be modeled using a Rule Markup Language, for instance, SWRL, SQWRL and

SPARQL. When the reasoner engine takes over the modeled ontology and generated rules

in SWRL, it infers other implicit logical assertions contained in the ontology. Such a rule

based ontology capacitates GeSCo to compute the values and states of all the participating

entities, and thereby, have a holistic view of the production to make smart decisions.

The application-specific methods of the OPC UA server which are on the same level as op-

erations of WSDL are the focus of this thesis. The introduction of a new framework for

semantic augmentation of these application-specific methods of an OPC UA server presents

barriers for industry adoption. To overcome this problem, the well-known OWL-S frame-

work and SAWSDL specification from the domain of semantic web services are incorporated

to OPC UA methods. Subsequently, a hybrid approach which is a combination of OWL-S

and SAWSDL specifications is proposed. All three proposed semantic approaches enable

market-like demand-supply synergy described in Section 2.2.2. These semantic approaches

enable classical walrasian-like markets [Vega97] during production runtime where auctions

are placed centrally so that agents make local decisions [Clea96], and thus consolidate global

declarative and local imperative knowledge. Such frameworks also make sure the emergent

behavior due to local interactions conforms to global convergence. Subsequently, the au-

tonomous discovery of manufacturing services of abstract PO leads to dynamic orchestration

of the manufacturing processes using OWL-S constructs or BPMN tools.

4.1 Assimilation of OWL-S Framework in OPC UA

Based on the principle that semantics should be separated from the underlying details, the

OWL-S approach follows a top-down design where service semantics is described independent

of actual realization. It is only later grounded to concrete service descriptions such as WSDL.

The OWL-S specification is built on top of OWL. It consists of the main ontology called

service that has three sub-ontologies, i.e., the profile, the process model and the grounding.

Apart from semantic service description and software interface for service invocation, the

OWL-S specification also allows to specify the preconditions and results of a process execution

to model the initial and subsequent states of the world, respectively. The preconditions and

results of a method invocation can be set on the states of the manufacturing resources and

products that are part of the common semantic model. The OWL-S constructs such as if-

then-else, while-until, sequence, split and split-join take into account the various outcomes

of a process. This facilitates an adaptive orchestration plan that considers the states of

the world before and after the execution of the process. Although the OWL-S ontology

was conceived for web services, the framework is applicable to describe services in general.

This thesis incorporates the OWL-S standard into OPC UA application specific methods.

70 Chapter 4: Semantic Modeling

OPCUAMethod

presents -
what it does describedBy -

how it works

supports -
how to access it

Method
Profile Method

(or Process)
Model

Method
Grounding

Figure 4.2: OPC UA Compliant OWL-S Ontology [Katt18d].

This approach is named SemOPC UA. The details are described with regards to a concrete

example.

4.1.1 Modified OWL-S Sub-Ontologies

The main OPCUAMethod class and its sub-ontologies, namely, MethodProfile, MethodModel

and MethodGrounding provide the means of organizing the description parts of a web ser-

vice. Sometimes, method model and process model are used interchangeably, as both terms

signify the same meaning. These ontological concepts are partially relevant with reference

to the OPC UA application methods. Therefore, these ontological components must be

enhanced/modified to incorporate the concepts related to OPC UA. The remodeling of the

OWL-S ontologies also involved adapting the terminology to make it relevant and compatible

with OPC UA. Figure 4.2 illustrates the renamed top ontologies of OWL-S. The modified

ontologies are imported into the method metadata file (see Listing 4.1).

For the purpose of brevity, this thesis only refers to the important object and data properties

of the sub-ontologies relevant to method discovery and invocation. The current section

describes the modified sub-ontologies that define the metadata of an OPC UA application

specific method, and a concrete example is provided with regards to an imaginary welding

method example.

methodProfile Ontology The profile class is presentedBy the OPC UA method to provide

the introductory information such as method name and textual description. It also provides

a functional description regarding information transformation and changes to the state of

the world when the method is executed by specifying the input, output parameters, and pre-

conditions and post conditions respectively. The result is the combination of method output

and the changes to the domain caused by method execution. In order to avoid confusion,

the thesis classifies the state of the world, with the exception of output parameters, post

4.1 Assimilation of OWL-S Framework in OPC UA 71

1 xmlns : methodProf i l e=”http ://www. rescom . org / owls /methodProf i l e#”

2 xmlns : processModel=”http ://www. rescom . org / owls / processModel#”

3 xmlns : methodGrounding=”http ://www. rescom . org / owls /methodGrounding#”

4 xmlns : Node=”http ://www. rescom . org / owls /OPCUANode#”

5 xmlns :WeldParams=”http ://www. rescom . org / owls /WeldParams#”

6 xmlns : Expr=”http ://www. rescom . org / owls /Express ion#”

7 xml : base=”http ://www. example . org /opcuamethod . owl”>

8 <owl :Ontology rd f : about=”http ://www. rescom . org /ABox Owls”>

9 <owl : imports rd f : r e s ou r c e=” f i l e : /C: / workspace/MethodGrounding . owl”

/>

10 <owl : imports rd f : r e s ou r c e=” f i l e : /C: / workspace/MethodProf i le . owl”/>

11 <owl : imports rd f : r e s ou r c e=” f i l e : /C: / workspace/Node . owl”/>

12 <owl : imports rd f : r e s ou r c e=” f i l e : /C: / workspace/WeldParams . owl”/>

13 <owl : imports rd f : r e s ou r c e=” f i l e : /C: / workspace/Express ion . owl”/>

14 </owl :Ontology>

15 <method:Method rd f : ID=”WeldingMethod”>

16 <method: presents>

17 <prof i le : Profi le rd f : ID=”Weld ingPro f i l e ”/>

18 </method: presents>

19 <method: describedBy>

20 <process :AtomicProcess rd f : ID=”WeldingModel”/>

21 </method: describedBy>

22 <method: supports>

23 <grounding :Grounding rd f : ID=”WeldingGrounding”/>

24 </method: supports>

25 </method:Method>

Listing 4.1: Imported Modified Ontologies.

invocation of an OPC UA method into post-conditions, as against the usage of results and

effects terminology of original OWL-S ontology framework. The profile class only introduces

the method, it provides no description. Hence, it is recommended that the method param-

eters in the profile class should point to the process model class that points to the concrete

ontological concepts.

The functionality of a web service in the IT world is determined by its algorithm that

transforms the data in terms of input and output. In manufacturing, the functionality of a

machine method is its ability to transform the workpiece from one state to another. In this

context, the method functionality cannot be represented by the in-out parameters alone, and

hence, a task-oriented description which supplies additional information is also needed. To

that end, the thesis recommends to link the concrete manufacturing service provided by a

manufacturing resource to the method category class. Concrete method selection parameters

such as execution time and manufacturing cost are also introduced as data properties and

72 Chapter 4: Semantic Modeling

1 <prof i le : Profi le rd f : about=”#Weld ingPro f i l e ”>

2 <method:presentedBy rd f : r e s ou r c e=”#WeldingMethod”/>

3 <prof i le :OPCUAMethodName>Welding</prof i le :OPCUAMethodName>

4 <prof i le : textDescription>Welding task</prof i le : textDescription>

5 <prof i le : hasInput rd f : r e s ou r c e=”#X=CoOrdinate”/>

6 <prof i le : hasInput rd f : r e s ou r c e=”#Y=CoOrdinate”/>

7 <prof i le :hasOutput rd f : r e s ou r c e=”#Acknowledgement”/>

8 <prof i le : hasPrecondition rd f : r e s ou r c e=”Expr#StatusSta r t ”/>

9 <prof i le : hasResult rd f : r e s ou r c e=”Expr#StatusWelded”/>

10 <prof i le :methodCategory rd f : r e s ou r c e=”WeldParams#Welding”/>

11 <prof i le :ExecutionTime rd f : r e s ou r c e=”abc”/>

12 <prof i le : ExecutionCost rd f : r e s ou r c e=”xyz”/>

13 </prof i le : Profi le>

Listing 4.2: OWL-S Profile concept applied to OPC UA Method.

linked to the method category class in order to make the method discovery relevant to

manufacturing services.

The method profile is utilized by the client side agent during the method discovery stage.

The discovery is successful if the method invoker satisfies the constraints put forward by the

server method, and the server method returns the arguments expected by the client. In other

words, if ClientinArgs is the list of input arguments of a client request template and ServerinArgs

is the list of input arguments of a server side method, then the discovery function D(x, y) is

successful if following condition holds true: ∀x ∈ ServerinArgs, ∃y ∈ ClientinArgs, D(x, y). In

the same vein, if ClientoutArgs is the list of output arguments of a client request template and

ServeroutArgs is the list of output arguments of a server side method, in order to match the

following relation should hold true: ∀x ∈ ClientoutArgs, ∃y ∈ ServeroutArgs, D(x, y). In order

to find a suitable method, this relation should hold true over preconditions, postconditions

and method category properties. Various semantic matching algorithms can be applied on

the attributes of the method profile ontology in order to find a degree of match.

Although backward compatible, the deprecated properties and ontological elements of the

OWL 1.0 and 1.1 release profile class are not discussed. The changes to the method Profile

ontology are only cosmetic. The object property serviceParameter which is used as a con-

struct to define a supplementary property, and a few data properties, namely, serviceProduct,

taxonomy, code and value are omitted on the grounds of simplicity and inapplicability. List-

ing 4.2 provides an example of the profile class of an OPC UA method offered by the welding

machine in terms of method name, category, input and output parameters, and preconditions

and result.

4.1 Assimilation of OWL-S Framework in OPC UA 73

methodModel Ontology The method model ontology describes the method specification

with regards to transformation of data: in terms of input and output parameters, and trans-

formation of the world: in terms of pre- and post-conditions. Though the method profile

plays an active role during initial method discovery by the client agent, and the method model

ontology is involved during method invocation, they are essentially two different representa-

tions of the same OPC UA method. Naturally, the input, output, pre- and post-conditions

appear in both these ontologies. After a preliminary investigation of the method profile, if

the method is found suitable for the client’s requirements, the method discovery agent is redi-

rected to the method model instance ontology using the hasProcess object property. From

this point on, the method model controls the interaction with the method [Mart04]. The

method model can have any number of inputs (including zero), and can produce any number

of outputs after successful method invocation. However, the pre-condition(s) of a specific

method should hold true to invoke it, and the successful invocation produces a change in

the world, called post-condition of the method. Through these attributes, the method model

ontology provides a declarative specification on the objectives of the method and guidance

to the clients for interaction with the server. In a nutshell, the profile ontology of the weld-

ing method describes the service provided by the method, and the method model ontology

declares that in order to invoke the method the client should pass the welding co-ordinates

on the work piece to the server.

As OWL-S does not have a construct for grouping several processes, each method model

corresponds to a single OPC UA method. Therefore, the OPC UA server is required to gen-

erate a separate OWL-S method metadata file for each of its methods. However, composite

processes which are hierarchically defined workflows made up of atomic, simple and other

composite processes can be constructed using a number of control flow operators.

There is no syntactic differentiation between a method in OPC UA and an operation of a

web service. Hence, the original service model ontology can be used as-is to represent an

OPC UA method signature. The parameter, which is a subclass of a variable defined in

Semantic Web Rule Language (SWRL), and parameterType are renamed to Argument and

ArgumentType respectively in order to reflect the terminology relevant to arguments of the

OPC UA specification.

The pre- and post-conditions of the OPC UA method can be represented as SWRL rules.

Thus, the functional properties of an application specific method are evenly distributed in

both the method profile and method model sub-ontologies. However, in order to advertise

the same method to different perspectives of clients, the same method model ontology can be

tied to different method profile ontologies. For example, the method representing the man-

ufacturing service provided by a versatile milling machine can have different method profile

ontologies corresponding to its drilling, boring, gear-cutting, and slots production profiles.

74 Chapter 4: Semantic Modeling

1 <process :AtomicProcess rd f : about=”#WeldingProcess ”>

2 <method: describes rd f : r e s ou r c e=”#WeldingMethod”/>

3 <process : hasInput><process : Input rd f : ID=”X=CoOrdinate”>

4 <process :ArgumentType rd f : r e s ou r c e=”WeldParams#X=CoOrdinate”/>

5 </process : Input></process : hasInput>

6 <process : hasInput><process : Input rd f : ID=”Y=CoOrdinate”>

7 <process :ArgumentType rd f : r e s ou r c e=”WeldParams#Y=CoOrdinate”/>

8 </process : Input></process : hasInput>

9 <process :hasOutput><process :Output rd f : ID=”Acknowledgement”>

10 <process :ArgumentType rd f : r e s ou r c e=”WeldParams#ACK”/>

11 </process :Output></process :hasOutput>

12 <process : hasPreCondition><process :PreCondition rd f : ID=” Sta tusSta r t ”>

13 <process :Condition rd f : r e s ou r c e=”Expr#StatusSta r t ”/>

14 </process :PreCondition></process : hasPreCondition>

15 <process : hasPostCondition><process : PostCondition rd f : ID=”StatusEnd”>

16 <process :Condition rd f : r e s ou r c e=”Expr#StatusWelded”/>

17 </process : PostCondition></process : hasPostCondition>

18 </process :AtomicProcess>

Listing 4.3: OWL-S Process Model Sub-Ontology Adapted to OPC UA Method.

Listing 4.3 illustrates the method model of the welding method where the arguments, pre-

and post-conditions refer to concrete ontological concepts.

methodGrounding Ontology While the profile and process model ontologies describe the

capabilities of the method, the grounding ontology specifies the details of method invoca-

tion. It maps the abstract method specification to the concrete implementation details. The

original OWL-S grounding ontology was modeled for facilitating the execution of web service

operation. The ontology exemplified to pragmatically connect the ontology to the prevalent

web service standard of WSDL. Therefore, the method grounding sub-ontology has to un-

dergo major changes as the mode of method invocation is inherently different in OPC UA

compared to a web service.

1 <grounding :Grounding rd f : about=”#WeldingGrounding”>

2 <method: supportedBy rd f : r e s ou r c e=”#WeldingMethod”/>

3 <grounding :hasAtomicProcessGrounding>

4 <grounding :AtomicProcessGrounding rd f : ID=”

WeldingAtomicProcessGrounding”/>

5 </grounding :hasAtomicProcessGrounding>

6 </grounding :Grounding>

7 <grounding :AtomicProcessGrounding rd f : about=”#

WeldingAtomicProcessGrounding”>

8 <grounding : owlsProcess rd f : r e s ou r c e=”#WeldingProcess ”/>

9 <grounding :EndpointURL rd f : datatype=”http ://www.w3 . org /2001/

4.1 Assimilation of OWL-S Framework in OPC UA 75

XMLSchema#anyURI”>

10 opc . tcp :// l o c a l h o s t :58711/PCoUaServer</grounding :EndpointURL>

11 <process :methodInfo>

12 <grounding :MethodBrowseInfo rd f : ID=”N1”>

13 </grounding :MethodBrowseInfo>

14 </process :methodInfo>

15 <process :hasInputArgument><grounding :Argument rd f : r e s ou r c e=”#X=

CoOrdinate”>

16 <Node:NodeID>ns=2;s=50bcabac=623b=43ea=8f69=17b12d533166=1</Node:

NodeID>

17 </grounding :Argument></process :hasInputArgument>

18 <process :hasInputArgument><grounding :Argument rd f : r e s ou r c e=”#Y=

CoOrdinate”>

19 <Node:NodeID>ns=2;s=50bcabac=623b=43ea=8f69=17b12d533166=2</Node:

NodeID>

20 </grounding :Argument></process :hasInputArgument>

21 <process :hasOutputArgument><grounding :Argument rd f : r e s ou r c e=”#

Acknowledgement”>

22 <Node:NodeID>ns=2;s=50bcabac=623b=43ea=8f69=17b12d533166=3</Node:

NodeID>

23 </grounding :Argument></process :hasOutputArgument>

24 </grounding :AtomicProcessGrounding>

25 <grounding :MethodBrowseInfo rd f : ID=”N1” rd f : r e s ou r c e=”Node#Node”>

26 <Node:ReferenceType>Organizes</Node:ReferenceType>

27 <Node:NodeID>ns=2;s=a72e725d=6be7=4a17=bcd4=0be67b6cbfbe</Node:

NodeID>

28 <Node:BrowseDirection>Forward</Node:BrowseDirection>

29 <Node:NodeClassMask>Object |Method|Variable</Node:NodeClassMask>

30 <Node:ResultMask>All</Node:ResultMask>

31 <grounding :MethodBrowseInfo rd f : r e s ou r c e=”#N2”/>

32 </grounding :MethodBrowseInfo>

33 <grounding :MethodBrowseInfo rd f : ID=”N2” rd f : r e s ou r c e=”Node#Node”

>

34 <Node:ReferenceType>HasComponent</Node:ReferenceType>

35 <Node:NodeID>ns=2;s=77786eba=f095=4996=9dcb=4013f3d7df04</Node:

NodeID>

36 <Node:BrowseDirection>Forward</Node:BrowseDirection>

37 <Node:NodeClassMask>Object |Method|Variable</Node:NodeClassMask>

38 <Node:ResultMask>All</Node:ResultMask>

39 </grounding :MethodBrowseInfo>

Listing 4.4: OWL-S Grounding Sub-Ontology Adapted to OPC UA Method.

Lines 1-6 in Listing 4.4 declare the grounding for the welding atomic process defined in the

76 Chapter 4: Semantic Modeling

method model, whereas the definition of the atomic process grounding takes place in lines

7-39. Since the wsdlDocument data property of OWL-S is not applicable in this context, it

has been replaced with the EndpointURL data property. An OPC UA client requires this

endpoint URL to connect and subsequently create a session with the OPC UA server. The

object property MethodBrowseInfo provides the root node of the OPC UA server. The nested

object property, called hasNodeReference, provides the browse information from the default

or the root node of the server to reach the method node.

The input parameters of the OPC UA call service which invokes the required application

method are the ID of the method node, and the ID of the object that provides the method

node along with input arguments. Although the hasNodeReference is essentially recursive,

in effect, the two innermost nodes are adequate. In order to create a request instance to

browse the references of a node, the Node has several data properties, namely, NodeID,

ReferenceType, BrowseDirection, NodeClassMask and resultMask. The property has the

predicate ReferenceType to represent the reference type of the node. The predicates NodeID

and BrowseDirection represent the OPC UA node ID and the direction of the returned

browsed nodes respectively. The predicate NodeClassMask expresses which node classes

should be returned by the browse service, while the predicate ResultMask conveys the types of

fields that the browse service should return. Furthermore, this modified OWL-S specification

also provides the means to access the input and output argument nodes with the Argument

predicate.

It is a strategic decision to always opt for the TCP-UA or UA native binary protocol since the

performance is better in comparison to the WS-* based SOAP/HTTP(S) OPC UA imple-

mentation [Arch18]. Moreover, the OPC Foundation guidelines suggest the implementation

of the UA native binary protocol as a mandatory procedure to set up an OPC UA server.

Implementations of other communication protocol bindings are optional. Hence, the OPC

UA transport description which includes protocol, message formats, serialization, transport

and addressing is not part of this method metadata OWL-S file. The complete modified

OWL-S ontology is illustrated in Figure 4.3.

4.1.2 Working Principle of OWL-S Augmented OPC UA

The manufacturing resource providing an OPC UA application specific method transmits the

method profile, method model and method grounding ontologies either in different OWL-S files

or in a single OWL-S file to the GeSCo GMDR with regards to its manufacturing service

capability. These OWL-S files are centrally accessible to all the entities of the production as

a static ontology service. During production runtime, the decentralization facilitator compo-

nent of GeSCo parses these metadata files from its GMDR with the aid of common semantic

4.1 Assimilation of OWL-S Framework in OPC UA 77

model, and matches the required manufacturing services of PO to the capabilities offered by

resources on the shop-floor. With the OWL-S concepts, it is possible to generate a flexible

orchestration plan which can be changed in case of unforeseen events in the production.

It also facilitates the implementation of loosely coupled production systems, and thereby

provides plug and produce, and smooth reconfigurability features.

78
C

h
ap

ter
4:

S
em

an
tic

M
o
d
elin

g

MethodProfile

Profile

&process#Parameter

&process#Input

&expr#Condition

&expr#Condition

&process#Output

#anyURL

#Literal

#Literal

#MethodCategory
#anyURL

#anyURL
#anyURL Grounding MethodGrounding

AtomicMethodGrounding

Node
#Literal

#Literal
#Literal

#Literal
#Literal

Node
InputArgument

Output
Argument

#Literal #Literal

#Literal

#Literal#anyURL

Method

MethodModel&expr#Condition

&expr#Condition

Parameter

Input

Output

Local

AtomicProcess

SimpleProcess
CompositeProcess

ControlConstruct

Sequence
Split-Join

AnyOrder

Split Choice

Data Property

Object Property

Sub Class/Property

hasParamter

hasPreCondition

hasPostCondition

hasInput
hasOutput

methodClassification

methodName

textDescription
hasMC*

category

execCost* execTime*

hasProcess

hasOWLSProcess

hasAtomicProcessGrounding
hasEndPointURL

hasInputArgument

hasOutputArgument

nodeId

nodeId

argumentName

argumentName

hasPreCondition
hasPostCondition

composedOf

nodeId
referenceType
browseDirection
resultMask

nodeClassMask

hasNodeReference

methodBrowseInfo

hasIn/OutPut
/Local

hasParamter

Figure 4.3: Complete OWL-S Ontology with regard to OPC UA Application Method.

4.2 Assimilation of SAWSDL Specification in OPC UA 79

4.2 Assimilation of SAWSDL Specification in OPC UA

The previous Section 4.1 proposed SemOPC UA by incorporating prominent OWL-S con-

cepts to OPC UA application specific methods in the manufacturing domain to enable factory

automation. This section continues the pursuit of enriching the OPC UA with semantics,

and to that end, extends the idea of the industry-neutral SAWSDL specification that does

not enforce the usage of a particular ontology modeling language, to OPC UA server side

application specific methods. This approach is named as SA-OPC UA. The intentional sim-

plicity and easy implementation of SAWSDL concepts are the factors that lower the entrance

barrier by smoothening the learning curve for adopters of formal semantics in OPC UA.

The following subsections lay the groundwork by drawing the parallels between WSDL el-

ements and OPC UA information model elements with regards to OPC UA application

methods. With this analogy, the research work later extends the annotation concepts of

SAWSDL to OPC UA applications methods.

WSDL and SAWSDL Concepts

The Web Service Description Language (WSDL) is a W3C recommendation which provides

a formal and machine readable description of SOAP based web services. WSDL provides

information with respect to the functionality offered by the web service. It provides both an

abstract and concrete aspect of a web service by describing the messages exchanged during

a web service operation, and binding specific information such as transport and wire format

details for one or more interfaces. However, the web service description using WSDL is merely

of syntactic nature. It neither expresses the goals of the web service nor the meanings of its

input and output arguments. As a consequence, there is a semantic gap between the syntactic

description of web service and its underlying meaning. Semantic Annotations for WSDL

(SAWSDL), a W3C recommendation, is an incremental bottom-up approach of modeling

Semantic Web Services (SWS). It is a mechanism where elements of WSDL are decorated

with extensible attributes to attach semantic annotations. These semantically annotated

WSDL elements consist of references to concepts in a semantic model, for example classes

of an OWL ontology. SAWSDL is ontology modeling language agnostic, i.e., it does not

command the usage of a specific ontology modeling language. This choice is left to the end-

user. However, from the perspective of SAWSDL, references of semantic descriptions must

be Unique Resource Identifiers (URI) that must point to semantic concepts defined either

within or outside the scope of WSDL.

The SAWSDL specification defines two types of extension attributes on the web service

concepts, namely modelReference and schemaMapping. The schemaMapping attributes are

80 Chapter 4: Semantic Modeling

1 <wsdl : operation name=”Welding”
2 sawsdl : modelReference=”http :// opcua=sawsdl . poc . de/#WeldingMethod”>
3 <wsdl : input element=”CoOrdinates ”
4 sawsdl : modelReference=”http :// opcua=sawsdl . poc . de/#PlanarWeldingParams”
5 sawsdl : loweringSchemaMapping=”http ://WDFN32202381A/CoOrdOnt2CoOrd . x s l t ”
6 sawsdl : l i f t ingSchemaMapping=”http ://WDFN32202381A/Ack2StatusOnt . xml”/>
7 <wsdl : output element=”Acknowledgement”
8 sawsdl : modelReference=”http :// opcua=sawsdl . poc . de/#opera t i onSta tus ”/>
9 </wsdl : operation>

Listing 4.5: Example of SAWSDL Annotations on a Web Service Operation and its

Parameters.

further classified into liftingSchemaMapping and loweringSchemaMapping attributes. List-

ing 4.5 illustrates an example usage of these attributes on a web service operation and its

parameters. The modelReference that is set to an URI indicates the correlation between the

WSDL or XML schema component, and a concept of the semantic model. This attribute is

annotated over WSDL interfaces, web service operations and its messages, XML schema type

definitions and element declarations. WSDL fault element(s) which declare and describe the

runtime exceptions that may occur during an operation execution can also be semantically

annotated to provide a high level semantic description of the fault. The model references

are employed to arbitrate between the client requirements and the service capabilities. After

the match is found, incongruities might arise between the parameters of the client and the

server during the operation invocation. A mechanism is required to translate the semantic

model into a request message on the client side to match the expected format on the server

side. Another requirement is the transformation of a service output represented in a suitable

data model to a corresponding semantic model. The former technique where semi-structured

XML data is translated to semantic data is known as lowering transformation and the latter

is known as lifting transformation. In general, these are extension attributes applicable in

case the structure of an instance data does not have a direct relationship with the organi-

zation of the semantic data. The SAWSDL specification recommends that these extension

attributes point to the transformation documents such as XSL (eXtensible Stylesheet Lan-

guage) transformation (XSLT) that understand and resolve the mismatches in the event the

web service request structure fed by the client does not satisfy the server expectation (refer

[Fens11a] for details).

4.2.1 Organization of Application-Specific Method Nodes in OPC
UA Server Address Space

This section proposes to classify the application specific methods pertaining to a OPC UA

server of a manufacturing resource in order to organize them in a defined structure instead

of scattering across the server. This structure also streamlines the browsing of the OPC UA

4.2 Assimilation of SAWSDL Specification in OPC UA 81

OPC UA Server
Root Node

Application
Methods Node

Status
Methods Base Node

Manufacturing
Methods Base Node

Status
Methods Nodes

Manufacturing
Methods Nodes

Figure 4.4: Organization of Application Specific Methods in OPC UA Server [Katt18a].

server during method discovery. The application specific methods of the OPC UA server

should be classified into two categorizations: status methods and manufacturing methods.

The status methods of a manufacturing resource provide information about various physical

aspects of the manufacturing resource, status of the assigned PO and miscellaneous data

like PO queue at its work station. Manufacturing methods when invoked should deliver the

corresponding manufacturing service. Based on the business tasks they perform, each of

the methods belonging to a particular categorization should be grouped under a common

parent node. The thesis names these two parent nodes as status methods base node and

manufacturing methods base node respectively. These two base nodes should further be

grouped under a single node, called Application Methods Node, as illustrated in Figure 4.4. In

addition to the provision of streamlined method browsing for human users, this organization

of methods also plays a role in method discovery by software agents.

4.2.2 Exploitation of OPC UA Node structure

The WSDL is the underlying enabling technology of SAWSDL. SAWSDL enables semantic

annotations using extension attributes of WSDL on WSDL elements such as interface, op-

eration, messages, fault and binding. Unlike WSDL, which describes the syntax of the web

services and its operations, there exists no such equivalent facility in OPC UA to describe

the syntactical behavior of the OPC UA server. The UA node set file which describes the

information model of the OPC UA server is a distant match to WSDL of web services, how-

82 Chapter 4: Semantic Modeling

Table 4.1: Drawing Parallel between WSDL Attributes and OPC UA Application Specific

Method Nodes

WSDL Elements OPC UA Types related to Server Methods

Interface (or PortType) Status or Manufacturing Methods Base Node

Operation Status or Manufacturing Method Node

Message (Input) Argument []

Message (Output) Argument []

Input Message Part Argument

Output Message Part Argument

Fault StatusCode

ever, it contains neither grounding information, nor is it extensible. In addition, there is

also no provision to add extension elements to methods, input and output parameters in the

OPC UA address space.

As described in Section 4.2.1, an OPC UA server is a collection of clusters of application

methods segregated by type of functionality provided by them. This logical segregation is

equivalent to implementations of different interfaces in web services to achieve the design

principle of separation of concerns. Moreover, an application method in OPC UA has the

following components, namely, Method Node class, Input and Output Arguments and Service

Result Node class. It is necessary to make the distinction between the WSDL elements

and the corresponding OPC UA terms to correlate the SAWSDL concepts to the OPC UA

specification. Based on the organization of application-specific method nodes described in

Subsection 4.2.1, Table 4.1 provides equivalent mappings between WSDL elements and

OPC UA application method specific elements.

All the OPC UA types listed in Table 4.1 inherit from the base Node class which has an

Object
Variables

Methods

References
to other
Objects

Data change
Notifications

Read / Write

Invocation

Event
Notifications

Description

Figure 4.5: SAWSDL Style Semantic Annotation in the Description Field of OPC UA Object

Model.

4.2 Assimilation of SAWSDL Specification in OPC UA 83

optional attribute called Description that is reserved for localized textual description of the

node (see Figure 4.5). Since this attribute is optional, the effective usage of the field is

entirely at the discretion of the OPC UA server programmer. Hence, this field is subjected

to arbitrary usage. The author proposes that this free flow textual field should semantically

describe the node when annotated with the ontological concept. As such, this attribute

serves as a hook-point for attaching the shared knowledge base. As all the concepts that are

essential to describe a method have the provision for semantic annotation, the concepts of

SAWSDL can be smoothly extended to OPC UA application specific methods.

The capabilities of a manufacturing resource can be divided into two granularities: server

level and method level. From a client perspective, server level capability discovery is suf-

ficient when a manufacturing resource provides a single dedicated functionality. However,

in case a resource offers multiple manufacturing services, the corresponding OPC UA server

exposes multiple stand-alone methods in its address space. In this context, a client is usually

interested in only one or two of the methods rather than all the methods offered by the

server, and instead of server discovery, the semantic client might need to do the finer grained

method discovery. The annotation on the server method using model reference pointers is

intended only to provide a rough approximation of method capability which is used as an

initial indication to gauge the suitability for a particular requirement, and thereby filter out

large number of incompatible methods. Further, the annotations on the inputs and output

arguments of the method convey additional behavioral aspects and thus, assist zeroing in on

the required OPC UA method.

During the discovery phase of a method, the OPC UA client searches for a suitable server

method that accomplishes a specific set of goals. In the broader perspective, the qualified

methods participate in method composition which is subjected to orchestration to complete

the PO. However, the method capability along with the input and output compatibility alone

are not the yardstick to gauge the suitability of the method to fit into method composition.

The pre- and post-conditions represent the current and the subsequent state of the method

execution context such as resource status, product state et cetera. At runtime, the pre-

conditions of a method should hold true to invoke it. The output parameters plus post-

conditions together express the outcome of the method. A formal specification of the method

outcome reveals whether a method accomplishes the manufacturing objectives of the OPC

UA client. During the production orchestration which is essentially an execution of methods

in succession, these conditions act as bridges between the methods. To that end, SAWSDL is

subjected to a general criticism that it is incapable of specifying the pre- and post-conditions

of a web service operation as it only provides a single place holder to attach semantics

at the operation attribute of WSDL (for example, refer [Ploc11, Losk13]). The OPC

UA information model also suffers such a drawback as each node only has one Description

field for semantic annotation. Since the concepts of pre- and post-conditions of OPC UA

84 Chapter 4: Semantic Modeling

<owl : Class rd f : ID=”OPCUAMethod”>

<rdfs : subClassOf><owl : Restriction>

<owl : onProperty rd f : r e s ou r c e=”#manufacServiceCategoryProperty ”/>

<owl : qualifiedCardinality rd f : datatype=”xsd#nonNegat iveInteger ”>1

</owl : qualifiedCardinality><owl : onClass rd f : r e s ou r c e=”#

ManufacServiceCategory ”/>

</owl : Restriction></rdfs : subClassOf>

<rdfs : subClassOf><owl : Restriction>

<owl : onProperty rd f : r e s ou r c e=”#manufacServiceProperty ”/>

<owl : qualifiedCardinality rd f : datatype=”xsd#nonNegat iveInteger ”>1

</owl : qualifiedCardinality><owl : onClass rd f : r e s ou r c e=”#ManufacService

”/>

</owl : Restriction></rdfs : subClassOf>

<rdfs : subClassOf><owl : Restriction>

<owl : onProperty rd f : r e s ou r c e=”#postCondit ionObjectProperty ”/>

<owl : qualifiedCardinality rd f : datatype=”xsd#nonNegat iveInteger ”>1

</owl : qualifiedCardinality><owl : onClass rd f : r e s ou r c e=”#

MethodPostCondition”/>

</owl : Restriction></rdfs : subClassOf>

<rdfs : subClassOf><owl : Restriction>

<owl : onProperty rd f : r e s ou r c e=”#preCondit ionObjectProperty ”/>

<owl : qualifiedCardinality rd f : datatype=”xsd#nonNegat iveInteger ”>1

</owl : qualifiedCardinality><owl : onClass rd f : r e s ou r c e=”#

MethodPreCondition”/>

</owl : Restriction></rdfs : subClassOf></owl : Class>

<owl :ObjectProperty rd f : ID=”manufacServiceProperty ”>

<rdfs :domain rd f : r e s ou r c e=”#OPCUAMethod”/>

<rdfs : range rd f : r e s ou r c e=”#ManufacService ”/></owl :ObjectProperty>

<owl :ObjectProperty rd f : ID=”manufacServiceCategoryProperty ”>

<rdfs :domain rd f : r e s ou r c e=”#OPCUAMethod”/>

<rdfs : range rd f : r e s ou r c e=”#ManufacServiceCategory ”/></owl :

ObjectProperty>

<owl :ObjectProperty rd f : ID=”postCondit ionObjectProperty ”>

<rdfs :domain rd f : r e s ou r c e=”#OPCUAMethod”/>

<rdfs : range rd f : r e s ou r c e=”#MethodPostCondition”/></owl :ObjectProperty

>

<owl :ObjectProperty rd f : ID=”preCondit ionObjectProperty ”>

<rdfs :domain rd f : r e s ou r c e=”#OPCUAMethod”/>

<rdfs : range rd f : r e s ou r c e=”#MethodPreCondition”/></owl :ObjectProperty>

Listing 4.6: Additional Object Properties Definition in OPC UA Method.

4.2 Assimilation of SAWSDL Specification in OPC UA 85

method execution, which are also deciding factors to check whether a given method meets

the manufacturing requirement, cannot be modeled with such a simple approach, the method

composition is not possible. Consequently, at manufacturing runtime the orchestration of

the production process that relies on method composition is also not possible. Based on

this reasoning, SAWSDL augmented OPC UA server only allows to discover the individual

methods that serve the PO manufacturing services by dynamic discovery of capabilities of

registered manufacturing resources in the shop-floor.

In order to overcome this problem, this thesis proposes the following: the ontological concept

that is attached to the OPC UA application method should describe not only its capability

but also pre- and post-conditions. In essence, any additional behavioral constraints like

method category can also be associated with the nodes of method, and the concept can be

Manufacturing Method
Base Node

Welding Method

X-CoOrdinate
Y-CoOrdinate

Acknowledgement

Semantical Annotations on Node Description fields
of OPC-UA Server Method and its Arguments

Node Structure of OPC-UA
Welding Method

2 Level
Dereferencing to
access Method

 Pre- and
Post-Conditions

<owl:NamedIndividual rdf:ID="WeldingMethod">
 <rdf:type rdf:resource="#OPCUAMethod"/>
 <capabilityObjPropoerty rdf:resource="#WeldingCapability"/>
 <categoryObjPropoerty rdf:resource="#MetalProcess"/>
 <postconditionObjPropoerty rdf:resource="#WeldingPostCond"/>
 <preconditionObjPropoerty rdf:resource="#WeldingPreCond"/>
</owl:NamedIndividual>
<owl:NamedIndividual rdf:ID="MetalProcess">
 <rdf:type rdf:resource="#MethodCategory"/></owl:NamedIndividual>
<owl:NamedIndividual rdf:ID="WeldingCapability">
 <rdf:type rdf:resource="#MethodCapability"/></owl:NamedIndividual>
<owl:NamedIndividual rdf:ID="WeldingPostCond">
 <rdf:type rdf:resource="#MethodPostcondition"/></owl:NamedIndividual>
<owl:NamedIndividual rdf:ID="WeldingPreCond">
 <rdf:type rdf:resource="#MethodPrecondition"/></owl:NamedIndividual>

Method Properties including Pre- and Post-Conditions

Common
Semantic

Model

.....

Figure 4.6: Semantic Annotations on Description Fields Welding Method and its Arguments

from Running Use-Case Example of SA-OPC UA Server [Katt18a].

86 Chapter 4: Semantic Modeling

extended to even other nodes such as input and arguments of method. This is illustrated

in Listing 4.6 where OPCUAMethod concept defines additional object properties, namely

preconditionObjectProperty and postconditionObjectProperty.

From our running use case, Figure 4.6 shows an example of semantic concepts associated with

the welding method which is an instance of OPCUAMethod. During method discovery, the

OPC UA client runs a query on this ontological concept hooked to the method against the

central ontological repository named common semantic model, to find the additional object

and data properties of the method. This simple solution overcomes the problems of both the

non-mandate of SAWSDL to define pre- and post-conditions constructs, and the limitation

of the OPC UA method node to attach additional semantic attributes.

4.2.3 Assumptions, conventions and Scope Definition

Taking into account the constraints of simplicity, scope of thesis research work and annotation

limitations on the OPC UA object model, the author makes the following assumptions and

conventions:

1. OPC UA has a finite number of numeric codes that describe the result of the ser-

vice or operation known as Status Code that is described in part 4 of the OPC UA

specifications. It is a 32 bit number whose higher-word represents the error or the

condition, and the lower-word represents the additional flags that shed light on the

meaning of the status code. This limited sample space of status codes allows the OPC

UA server to do away with the annotation on the status code of the application specific

method. However, the status code can be used freely to model pre- and post-conditions

of methods.

2. The evaluation set up and the thesis problem statement revolve around intra-enterprise

manufacturing where access and communication with the different OPC UA servers of

manufacturing resources on a technical level is presumed to be uniform. It is a strategic

decision to always opt for the signed and encrypted UA native binary protocol since

the performance is better in comparison to the WS-* based SOAP/HTTP(S) OPC

UA implementation. Security is not the research focus of this thesis. Therefore, the

corresponding grounding details such as security mode, security policy and encoding

algorithms of the OPC UA protocol are not discussed as part of this thesis.

3. Though, in theory, any conceivable XML and RDF transformations (refer Subsection

4.2) can be programmed using sophisticated XPath queries in XSLT which is a Turing-

complete language, an XPath expression applied to a particular RDF representation

might not work for another equivalent representation (refer [Fens11a, Akht08] for

details). The hybrid solutions such as XSPARQL [Akht08] which is a combination

4.2 Assimilation of SAWSDL Specification in OPC UA 87

of XQuery and SPARQL might be an alternative. However, no XML data exchange

takes place during and between method invocation(s) as research is carried out on

the premise that UA native binary is the protocol of choice. Hence, schema mapping

transformations are not relevant for the research use-case.

4. The OPC UA node has only one attribute, namely the Description field to associate

the semantic relationship in OPC UA. Therefore, a convention needs to be arrived

at in order to accommodate both model reference and schema mapping attributes of

SAWSDL. To that end, the Description field has no length constraints. Therefore,

this thesis recommends to employ a double semicolon as the delimiter to differentiate

model reference, lowering schema mapping and lifting schema mapping extension at-

tributes. The schema mapping extension attributes are pertinent only in case of WS-*

based SOAP/HTTP(S) OPC UA server which deals with XML request and response

messages.

5. The model reference attribute can also have multiple URIs to accommodate the diverse

heterogeneous ontologies represented in different semantic languages. When an OPC

UA method related node is annotated with multiple URIs, each of the URI concepts

is applicable to the node. However, there need not be a logical relationship between

them. The multiple URIs pointing to the same model reference are separated by white

spaces. This approach of annotation/extension of the nodes is non-intrusive in a way

that does not invalidate the objectives of the OPC UA specification nor the manner it

was previously handled.

4.2.4 Publishing OPC UA Methods Grounding Metadata

The OPC UA client accesses and browses the OPC UA server in order to find the offered

application specific methods. These application methods can potentially be many and it is

a tedious job to discover the required method either for a human browser or an automated

OPC UA client. Therefore, different application specific method characterizations such as

status methods and manufacturing service methods should be attached to the respective

base node classes (see Figure 4.4), to create a logical segregation. The client, then, can

unambiguously browse the specific base node depending on the current requirement.

Following the recommendations of SAWSDL, a semantically enriched WSDL document of

a web service is published in the web service discovery registry which is accessible to the

prospective web clients. However, the OPC UA server does not provide such a distributable

and extensible metadata document for the benefit of the clients in order to discover the offered

methods. To close this gap between SAWSDL and SA-OPC UA, the server should publish

its endpoint URL along with the node IDs of the base node classes to the RPL component

88 Chapter 4: Semantic Modeling

<owl :NamedIndividual rd f : ID=”SAOPCUA ServerMetadata”>

<rdf : type rd f : r e s ou r c e=”#ServerMetaData”/>

<endpointURLDataPropety rd f : datatype=”xsd#anyURI”>

opc . tcp ://WDFN32202381A:58710/PCoUaServer</endpointURLDataPropety>

<StatusMethodsBaseNodeDataPropety rd f : datatype=”xsd#s t r i n g ”>

e40222b8=b9ed=4054=9d76=d f 3 5 5 c f a f c f 9</

StatusMethodsBaseNodeDataPropety>

<ManufacturingMethodsBaseNodeDataPropety rd f : datatype=”xsd#s t r i n g ”>

94b2286d=5fd1=4126=b649=e7d32f67b23b</

ManufacturingMethodsBaseNodeDataPropety>

</owl :NamedIndividual>

Listing 4.7: WSDL Equivalent Metadata published by SA-OPC UA Server of Manufacturing

Resource to GeSCo [Katt18a].

of GeSCo. Listing 4.7 illustrates an example of such a metadata of an OPC UA server.

However, there is a subtle difference between SAWSDL and SA-OPC UA conceptualizations.

The abstract definitions of WSDL are annotated in the former, while concrete methods and

parameters are annotated in the latter. The methods that belong to a particular methods

base node (either status or manufacturing methods base node) in OPC UA are equivalent

to the WSDL operations of the web server belonging to a particular port/interface type. In

effect, the SA-OPC UA server publishes a compact interface that roughly translates to a

semantically annotated WSDL with an aim of assisting the semantic clients in automated

method discovery, composition and invocation. Another feature of this grounding metadata

with regards to SemOPC UA method grounding discussed in Section 4.1.1 is that the method

grounding of a SA-OPC UA server is applicable to all the methods of the server, while the

SemOPC UA server defines method grounding for each of its application methods.

OPC UA
Client

OPC UA
Server

Discovery
Server

Register Server

Find Servers

Get Endpoints
Figure 4.7: Use of Local Discovery Server [OPC 18b].

4.2 Assimilation of SAWSDL Specification in OPC UA 89

The client session that is required to browse the server is created using the standard practice

of Local Discovery Server (LDS) where the OPC UA servers register themselves as prescribed

in part 4 and 12 of the OPC UA specification. This procedure of OPC UA server discovery

is illustrated in Figure 4.7. Therefore, the published endpoint URL is not required to create

a client session with the server. Instead, this endpoint URL is merely a unique identifier of

an OPC UA server to the client.

4.2.5 Working Principle of SAWSDL Augmented OPC UA

As described in [Katt18b], the manufacturing resource should either publish its capabilities

meta data or permit its client to browse its internal structure to extract the metadata.

The SemOPC UA server follows the former approach. The latter is the case in point of

SA-OPC UA server. The sequence of events in method invocation and subsequent method

composition in a SA-OPC UA server is shown in Figure 4.8. The first step is the encoding of

the common semantic model which is relevant for both cloud based MES and GeSCo. This

step involves the creation of formal expressions of the production participants and all relevant

concepts. The contextual conditions are represented using formal rule based languages. The

ensuing step is the annotation of application methods, and their in-out arguments of the SA-

OPC UA server with concept expressions created in the previous step. Following publishing

1. Method and
Arguments
described
using CSM

2. Server
Metadata
Publishing

3. Browse Application
Methods and Arguments

Nodes, and Store
Semantic Concepts in GMDR

4. Requirement-
Capability
Matching

5. Application
Method

Invocation

Common Semantic Model

Manufacturing Configuration-
time Activities

Manufacturing
Runtime Activities

GMDR

SA-OPC-UA Server (Resource)

OPC-UA Client
 (GeSCo)

Figure 4.8: Sequence of Events in Dynamic SA-OPC UA Method Invocation [Katt18a].

90 Chapter 4: Semantic Modeling

the WSDL equivalent metadata by the SA-OPC UA compliant manufacturing resource to

the GeSCo RPL component, a session is established with the SA-OPC UA server whose

endpoint matches the published endpoint URL in the RPL component of GeSCo. Following

this step, the OPC UA client browses both the manufacturing and status method nodes

of the server, the corresponding nodes of input and output arguments of the methods, and

dereferences (or lifts) the semantic concepts attached to the Description attributes of the

nodes in order to discover their capabilities. It then stores the semantic concepts associated

with the application methods in the MDR component of GeSCo. During production runtime,

the abstract manufacturing service requirements of the PO are paired with the concrete

manufacturing services provided by the resources on the shop-floor by dereferencing the

concept expressions stored in MDR against the common semantic model. Naturally, this

arrangement also leads to method composition due to provision for adding any number of

additional constraints to the method concept expression (refer Listing 4.6).

4.3 Incorporation of a Hybrid of OWL-S Framework

and SAWSDL Specification to OPC UA

Following the introduction of the prominent and the industry-neutral OWL-S and SAWSDL

frameworks to the OPC UA specification, known as SA-OPC UA (refer Section 4.1) and

SemOPC UA (refer Section 4.2) respectively, this section introduces a composition of these

schemes to reap the advantages of both approaches to enable true factory automation. It also

provides the rationale behind the conception of such a hybrid approach. The simplicity and

easy implementation of the SAWSDL concepts, coupled with the general-purpose represen-

tation framework of OWL-S make this technique irreproachable and attractive to industry

adoption.

Section 4.3.1 puts forward the arguments for and against both the OWL-S and the SAWSDL

specifications with regards to software quality characteristics such as usability, efficiency

and maintainability. Consequently, it draws the conclusion that a hybrid approach is more

feasible. It derives the benefits and at the same time, precludes the shortcomings of both

approaches. Section 4.3.2 describes the hybrid methodology.

4.3.1 Motivation for the Hybrid Approach

Analysis of SA-OPC UA

Following the guidelines of the SAWSDL specification, the independently modeled ontological

concepts are attached to the OPC UA method and related nodes. Every node in the OPC

4.3 Incorporation of a Hybrid of OWL-S Framework and SAWSDL Specification to OPC UA91

UA information model has a Description field which is the container for a semantic reference.

The pre- and post-conditions of the method execution which are important parameters of the

method orchestration are also encapsulated in the semantic reference of the method node.

The server publishes its endpoint URL along with the manufacturing and status method

nodes to the Resource Perception Layer (RPL) of GeSCo, which is consequently used at

runtime for the purpose of intelligent discovery, composition and consumption of OPC UA

methods (refer Section 4.2.1).

The simplicity and easy implementation of SAWSDL concepts are the factors that lower

the entrance barrier, and make SA-OPC UA agreeable for industrial recognition. However,

SAWSDL does not prescribe the usage of a particular framework to describe the ontologies,

taxonomies or mappings to semantically annotate the WSDL interfaces, operations, and their

input and output messages. This gives the web service programmer the freedom to choose the

ontological language that best represents the capabilities of web services and also allows to

integrate well with the other project modules. However, at the same time the arbitrary usage

of the semantic annotations does not bode well in the production automation in the context of

enabling standardized communication interfaces and protocols between every entity from the

shop-floor to the IT solutions on the cloud. Furthermore, the semantic references attached

to various OPC UA nodes can also be from diverse ontologies. In such a situation, the

OPC UA base node, methods and its arguments nodes cannot be semantically correlated. In

addition, even when the OPC UA base node, methods and argument nodes are semantically

referenced homogeneously, SAWSDL does not impose restrictions on the logical relationship

between them. In order to provide a perspective to the incorporation of generic SAWSDL

concepts to the OPC UA information model, a general-purpose representation framework

must be employed to semantically describe the application specific methods provided by the

OPC UA server.

Analysis of SemOPC UA

With regard to the above argumentation of SAWSDL insufficiency, the widely accepted SWS

framework : OWL-S fits the bill. In case of OWL-S, the semantics of services provided by

these manufacturing resources are modeled within the boundaries of a defined ontological

framework, and published to the generic method discovery repository component of GeSCo

in order to automate the process of intelligent OPC UA method discovery, orchestration and

execution by client software agents. However, the OWL-S on its own is not a good choice of

semantic description framework of OPC UA application methods for the reasons explained

in the following:

� The OWL-S publishes structured semantic data which is a combination of the capability

92 Chapter 4: Semantic Modeling

of the OPC UA method and the corresponding grounding information that provides

the information for invocation of the method. The comprehensive data that is sent

from the OPC UA server to GeSCo warrants an elaborated discovery repository.

� Modern manufacturing resources have rich service provision capabilities in that they

are capable of delivering more than one functionality, and this further increases the

complexities of the manufacturing planning and execution. On the other hand, a

process model ontology in the OWL-S framework only describes one method offered

by an OPC UA server. Therefore, the OPC UA server should publish an OWL-S

ontology for each of the application methods corresponding to the services provided by

the manufacturing resources. This amounts to storing huge amounts of metadata in

GeSCo.

� The labyrinthine browse paths of the OPC UA server nodes, which form part of the

OWL-S grounding ontology also add additional burdens on the production network.

This also goes against the envisioned idea of nurturing a light-weight edge component.

The OPC UA server browse path disclosure also necessitates a sophisticated grounding

process.

� The publication of long browse paths is also not feasible in the event the OPC UA

server is not capable of preserving the same address space on reboot.

� In a manufacturing setting where the entire machinery is connected to the network,

the publishing of the method node browse path also poses a significant security risk.

An additional illustration is provided by Table 4.2 which lists the attributes with regard to

both functional and non-functional properties and compares how the OWL-S framework and

SAWSDL specification fare against these attributes.

Table 4.2: Empirical comparison of OWL-S framework and

SAWSDL specification

Attributes OWL-S SAWSDL

Remarks Rating Remarks Rating

Simplicity and

Implementation

No, more effort – Yes, less effort +

Industry Adop-

tion

Relatively difficult

to pursue

– Smooth +

Framework

Prescription

Yes + No –

4.3 Incorporation of a Hybrid of OWL-S Framework and SAWSDL Specification to OPC UA93

Restriction of

Ontology

Language

Yes ± No ±

Strict Guide-

lines for Pro-

gramming

Yes ± No ±

Standardized

Communication

Interfaces and

Protocols

Supports standard-

ization

+ Possibility of cre-

ation of ad-hoc se-

mantics structures

–

Homogeneous

Ontology

Yes + Multiple ontology

languages can be

used for the same

server annotations

–

Arbitrary Us-

age of Ontology

No + Subjected to arbi-

trary usage

–

Volume of pub-

lished Server

Metadata

More data – Less data +

Entire OWL-S ontol-

ogy is published for

each of the server

methods

– Constant size meta-

data is sent on a per

server basis

+

Storing of huge

amounts of data in

clients

– Storing of compara-

tively little amounts

of data in clients

+

More burden on pro-

duction network

– Less burden on pro-

duction network

+

If the server cannot

preserve address

space, the updated

method grounding

ontologies has to

be published after

every reboot

– Client only stores ID

of the application

methods base node,

and hence it only

needs to get updated

node ID from the re-

booted server

±

Security risk – Relatively less secu-

rity risk

+

94 Chapter 4: Semantic Modeling

Built in Sup-

port for Orches-

tration

Yes + No –

Sophisticated

Discovery

Mechanism

Yes ± No ±

Matchmaking Efficient + Convoluted mecha-

nism due to absence

of a framework

–

Support for

OWL

Yes + Yes +

Considering the above critique of both OWL-S and SAWSDL specifications consisting of

benefits (+), neutral arguments (±) and shortcomings (–), the best practice is to preserve

the general-purpose ontology representation framework, and yet retain maximal information

in the server i.e., the manufacturing resource, and publish only nominal information to the

GeSCo to assist in method discovery.

4.3.2 Methodology

To find a right balance, this thesis proposes a procedure which is a heterogeneous composition

of SAWSDL concepts and the OWL-S framework. In the OWL-S approach, the complete

ontology is developed and the corresponding OWL-S sub-ontology is built parallel to the

OPC UA server. Hence, the OPC UA server and OWL-S ontology are completely decoupled

entities. On start of the OPC UA server, the accompanying OWL-S ontology is published

to the generic method discovery repository. The client in pursuit of method discovery only

interacts with the published OWL-S file and comes into contact with the OPC UA server

only during method invocation time. In the SAWSDL approach, the developed custom ontol-

ogy and OPC UA are tightly coupled to each other. The OPC UA server provides compact

grounding information that is utilized by the client to locate the application specific methods

of the server. In contrast to the OWL-S scheme, the client directly interacts with the se-

mantically annotated OPC UA server over its complete discovery - orchestration - invocation

cycle. In case of the hybrid approach, this thesis employs the OWL-S framework to develop

the sub-ontologies in order to model the methods. These sub-ontologies are annotated to the

corresponding nodes in the OPC UA server and compact grounding information is published

to the RPL component of the GeSCo layer (see Figure 4.9).

The profile and the method model ontologies of OWL-S semantically describe the capabil-

4.3 Incorporation of a Hybrid of OWL-S Framework and SAWSDL Specification to OPC UA95

Method Base Node

Method Node

Array of Input
Arguments Node

Array of Output
Arguments Node

Input
Argument Nodes

Output
Argument Nodes

OWL-S Method Profile

Modified OWL-S Ontology
<profile:Profile rdf:ID="PickPlaceProfile"/>
<profile:Profile rdf:about="#PickPlaceProfile">
 <method:presentedBy rdf:resource="#moveAbsoluteMethod"/>
 <profile:OPCUAMethodName>moveAbsolute</profile:OPCUAMe
 <profile:textDescription>Absolute Movement</profile:textDescrip
 <profile:hasInput rdf:resource="#X-CoOrdinate"/>
 ..
<process:AtomicProcess rdf:ID="moveAbsoluteProcess"/>
<process:AtomicProcess rdf:about="#moveAbsoluteProcess">
 <process:hasMethodCategory rdf:resource="#DisplacerCategory"/>
 <method:describes rdf:resource="#moveAbsoluteMethod"/>
 <process:hasInput><process:Input rdf:ID="X-CoOrdinate">
 <process:ArgumentType rdf:resource="position#X-CoOrdinate"/>
 </process:Input></process:hasInput>..

OWL-S process Model

(A) (B)

<Annotated With>

<Annotated With>

<owl:NamedIndividual rdf:ID="SAOPCUA_ServerMetadata">
 <rdf:type rdf:resource="#ServerMetaData"/>
 <endpointURLDataPropety rdf:datatype="xsd#anyURI">
 opc.tcp://WDFN32202381A:58710/
 translateElectricLinmotAxisXService
 </endpointURLDataPropety>
 <StatusMethodsBaseNodeDataPropety
 rdf:datatype="xsd#string">
 e221929f-d1b2-440d-b4fd-fe137ac9cec9
 </StatusMethodsBaseNodeDataPropety>
 <ManufacturingMethodsBaseNodeDataPropety
 rdf:datatype="xsd#string">
 d7b8bba2-2094-4698-b650-7753fe72ebbf
 </ManufacturingMethodsBaseNodeDataPropety>
</owl:NamedIndividual>

GeSCo : Method Discovery Repository

(C)
WSDL Equivalent Metadata

Publish on OPC-UA
 Server Start

Figure 4.9: Hybrid of OWL-S and SAWSDL specifications applied to a method of a Pick and

Place Robot for the purpose of illustration: (A) Annotated OPC UA Node Structure. (B)

Rough approximation of corresponding OWL-S ontology for node annotation. (C) Grounding

information to be published to OPC UA Clients.

ity of a specific OPC UA method for the purpose of method discovery, and the OWL-S

grounding ontology semantically describes accessing the method and its argument nodes for

the purpose of dynamic method invocation. This thesis recommends that the semantic de-

scription layer and the execution layer that specify the method capability and the grounding

description respectively should be separated for the purpose of achieving the design principle

of separation of concerns.

The profile ontology of the OWL-S framework is attached to the method (both status and

manufacturing) base nodes. These base nodes provide a high-level description of the ca-

pabilities provided by the OPC UA server as illustrated in Figure 4.9 (A) and (B). The

method base node is a parent node for a collection of OPC UA methods. Therefore, it has

to be ensured that the profile ontology that is attached to the manufacturing (or status)

base method node is generically designed to encompass the functionality provided by all

the manufacturing (or status) methods. In accordance with the above argument, the thesis

recommends to keep the generic data property methodClassification attached to the method

96 Chapter 4: Semantic Modeling

profile ontology, and move the more specific object property hasMethodCategory which has

more concrete concepts attached down the hierarchy such as method category, execution cost,

and execution time to the method model ontology.

For further fine grained discovery, the next task is the annotation of the method model

ontology to the OPC UA nodes. There are two possible ways of semantic annotation of

the method model ontology. In the first scheme, each of the semantic references of the

OWL-S process model ontology corresponding to the method capability, and its input and

output arguments should be annotated to the respective OPC UA nodes. In the second

scheme, each of the status and manufacturing method nodes are directly annotated with

the entire method model ontologies of the OWL-S framework. The OWL-S ontology does

not support the concept of collection of method arguments. Consequently, the OPC UA

node that corresponds to the array of input/output arguments cannot be annotated with the

semantic concept. Therefore, the latter scheme is preferred over the former. As the whole

method model ontology is attached to the application method node of the OPC UA server,

the server and client can attach and draw respectively the entire semantic information that

describes the capability of the server method at one place. In the OPC UA server context,

the latter scheme allows to do away with the semantic annotation on the input and output

arguments of the OPC UA method. At the same time, it also simplifies the browsing of an

OPC UA server for a client where the browse path reduces by 1 level corresponding to the

input and output arguments. This results in significantly less effort from both the OPC UA

client and server viewpoints, and hence, is a preferred scheme for semantic annotation.

The organization of OPC UA application methods as described in Section 4.2.1 provides

a standard mechanism to browse the manufacturing and status methods. The browse path

from the server root node to a specific method node becomes irrelevant in such a scenario.

Instead, the node ID of the Application Methods Base Nodes that act as a starting point

to browse the methods down the hierarchy can be supplied as a substitute. The only other

requirement is the provision of the endpoint URL of the OPC UA. Hence, the endpoint URL

along with the application methods base nodes is published to the GeSCo method discovery

repository as illustrated in Figure 4.9 (C). Such an arrangement allows to do away with the

standard grounding ontology of the OWL-S framework.

In a broader sense, OWL-S is the ontological framework and SAWSDL is the method of

integration of the developed ontology to the server for the benefit of intelligent automation.

This reasoning justifies the natural consolidation of both the schemes where modified OWL-S

constructs are appropriately employed as annotations for OPC UA server nodes.

97

5 Implementation

This chapter describes in detail the relevance of ontologies in manufacturing and inefficiencies

involved in the traditional method of the encoding of ontologies. In order to avoid burdening

the manufacturer purchasing the MES with the task of ontology encoding, it then describes a

semi-automatic bidirectional transformation of MES source code to a corresponding reference

ontology taking into account the OPC UA collaborations (refer Section 5.3). With human

involvement, various production and variant-based business rules (refer Sections 5.1 and

5.4) are formulated on top of the generated reference ontology with an intent of reuse. These

rules make up for the information loss suffered in the transformation process.

Introduction and Motivation

Future production environments must be flexible and reconfigurable. To achieve this, the

devices and services to fulfill the different steps of a production order (PO) should not be

selected in the manufacturing execution system (MES), but in an edge component close to

the shop floor. To enable this, abstract services in the PO and concrete services provided by

the field devices on the shop floor need to refer to a production ontology. The creation of

this ontology is a challenge of its own.

The traditional approach has been to design the information model in a formal modeling

language such as OWL for the purpose of correctness, and subsequently, this information

model is used to build the applications. To this end, the general assumption is that an

ontology is predefined by a domain expert, and can then be taken as a starting point for

further software engineering processes. However, the ontology-encoding is a time-consuming

task. From the perspective of the manufacturer who purchases a MES, ontology encoding

and maintenance is an overhead activity in addition to the maintenance of MES. Mere

ontology encoding is also not the final exercise in the formal representation of the production

information model. Additionally, semantic rule languages need to be employed to fill in the

knowledge gap as OWL is not fully capable of expressing all the aspects of the information

model due to a lack of constructs. The modeling of product variant based rules in semantic

rule languages is an additional task. Additionally, ad-hoc encoding of ontology due to partial

state of isolation of various departments involved in various steps of manufacturing processes

98 Chapter 5: Implementation

create knowledge silos. These production design time activities also border on duplication of

work. These diverse ontologies do not facilitate interoperability, and hence, design and PO

changes are not transferred to production in real-time. Though one of the use-cases of the

creation of ontologies is to enable decentralization of manufacturing, the random ontology

encoding defeats the purpose. In order to achieve the objective of decentralization in a

dynamic system without introducing a chaotic behavior, it is important that the generated

ontology is grounded on description logics, and must originate from a centralized system such

as MES.

The thesis proposes a pragmatic automation of an encoding of a primary and light weight

production ontology based on the source code of MES. This chapter describes the transforma-

tion procedure of source code to resource, product and generic concepts of the manufacturing

plant ontology. The proposed approach substantially decreases the ontology engineering ef-

fort at design time. To this end, the knowledge of OPC UA collaborations is also exploited

during the creation of resource ontologies. The generated ontology is used as a reference to

create further rules in OWL-based rule languages.

Due to a fundamental difference between source code implementation (imperative paradigm)

and ontology representation (declarative paradigm), the problem of information loss is in-

evitable. This problem is overcome by the formulation of production and business rules

that encapsulate the logic of the MES. The foundation of ontology is exploited to formulate

these rulesets using OWL based constructs and OWL based rule languages such as Semantic

Web Rule Language(SWRL), Semantic Query-Enhanced Web Rule Language (SQWRL) and

SPARQL Protocol and RDF Query Language (SPARQL) based on feasibility and require-

ments of specific rules. Further, these rulesets are either run on the automatically generated

ontology at design time with an intention to enrich the knowledge base, or production run-

time to validate the pre-defined business rules between the production steps. The generated

ontology also acts as a basis for automatically generating the OWL-S/SAWSDL/hybrid on-

tologies for the OPC UA application methods for the purpose of dynamic manufacturing

service discovery and orchestration. The generated ontology and an abstract production or-

der (PO) hooked with formulated rules are cached to the shop-floor network for consequent

production control to enable smart edge production.

Excluding exceptions, the generation of a conceptual ontology and the formulation of the

corresponding semantic rules is one-time process. Thus, these ontology concepts and rules

can be reused to design the PO, and validate the conditions of the assembly, resources and

shop-floor during intermediate steps of the production to determine the next courses of action

in production execution and control. In the rare events of changes in the base ontologies owing

to the corresponding changes in the source code of MES, only the production rulesets have

to be readjusted to reflect the ontology changes.

5.1 Classification of Rulesets 99

5.1 Classification of Rulesets

This study classifies the explicit rules that govern the execution of each of the production

steps into two categories, namely production process ruleset and business ruleset. These

rulesets make further advancement in the direction of formalizing manufacturing domain

specific knowledge in order to explicitly characterize the production execution process. These

rulesets need to hold true as a precursor to the start of each of the production steps.

A human production designer designs the set of operations, Bill of Materials (BOM) and

routing algorithms and sequences through various work stations in the Manufacturing Ex-

ecution Systems (MES). This step is followed by the creation of a PO which is basically a

hierarchical specification of production steps that details the entire production process in

the cloud based MES. It also includes predecessor and successor relations, and details re-

garding parallel processing of production steps. The PO only contains abstract definitions

of resources. A concrete mapping to actual resources takes place in GeSCo.

The PO created in the cloud is dispatched to the GeSCo for production which has to per-

form the task of delegation of manufacturing operations to suitable resources that match

in principle with the abstract resources defined in the PO. This task can be accomplished

provided that the manufacturing resources in addition to the provision of manufacturing

services, also incorporate the functionality of self-description of the offered manufacturing

service [Bede17]. The published description along with the formal ruleset facilitate the auto-

matic search, discovery, orchestration and invocation of manufacturing services that perform

the transformation steps on the assembly components to produce the end product.

As mentioned before, this research work makes the distinction between the production process

and business rulesets. The production process ruleset constitutes general guidelines in the

form of OWL class axioms to deduce the inference under the following circumstances:

� Discovery of an OPC UA application method that provides a suitable manufacturing

service to execute a manufacturing operation

� Assessment of the compatibility between the production step set points defined in MES

with the inputs of the OPC UA application method

� Evaluation of the OPC UA result with regard to the production step objective

� Location of the positions of the manufacturing resources in the shop-floor layout for

aiding autonomous guided vehicles or conveyor belts to transport raw materials and

products to the corresponding work-stations

� Pre- and post-conditions of the production step execution

The above-mentioned production rules are stipulated in the modified OWL-S ontology which

100 Chapter 5: Implementation

<owl : class>

. . . .

<methodProfile :methodCategory rd f : r e s ou r c e=”http :// emea . g l oba l . corp .

sap/ rescom#Mater ia lProv ider ”/>

<methodProfile : methodclassification rd f : r e s ou r c e=”http :// emea . g l oba l .

corp . sap/ rescom#Transporter ”/>

<methodModel:ManufacService rd f : r e s ou r c e=”http :// emea . g l oba l . corp . sap

/ rescom#Di sp l a c e rS e r v i c e ”/>

<methodModel:PreCondition RuleName rd f : DataType=”xsd#s t r i n g ”>

check IsInMotion Rule</methodModel:PreCondition RuleName>

<methodModel:PostCondition RuleName rd f : DataType=”xsd#s t r i n g ”>

set InMotion Rule</methodModel:PostCondition RuleName>

. . . .

</owl : c lass>

Listing 5.1: Example of Production Ruleset to Choose the Pick and Place Robot.

is customized to manage the OPC UA method description data. As the production ruleset

is related to the OPC UA method offered by the resource, it remains largely unchanged over

the life cycle of a resource as the concepts of all the configurations and the topology of the

resource are covered in the ontology. The OPC UA servers running in the manufacturing

resources publish the OWL-S ontology that contains the production ruleset to the GeSCo

method discovery repository, and hence, the production ruleset is stored and validated on

the factory shop-floor.

On the other hand, there are certain rules that express the constraints from a business

perspective. The constraints that define the business ruleset may be the following:

� Type of sub-components to be used

� Quality assurance activities on sub-assemblies before and after a specific production

step

� Definition of alternative routing in case of non-conformance arising out of quality as-

surance activities

� Selection of an optimal manufacturing resource when more than one resource offer the

exact/similar manufacturing services

The business ruleset is formalized, expressed, classified and managed in the cloud based MES.

The business ruleset is employed by the production planner during PO design in the cloud

MES. In essence, the business ruleset comprises a set of OWL concepts and the associated

ruleset, and it varies for each of the product variants. The production planner assigns

the relevant ontology concepts to the individual elements of the PO where the ontology

concepts represent the manufacturing requirement/service that needs to be fulfilled. This

5.1 Classification of Rulesets 101

step is followed by the injection of the business ruleset as a bridge between the ordered

set of manufacturing operations in the PO routing plan. These rules are executed during

PO execution to assert the validation of the manufacturing process. However, the common

objective of both the rulesets is to largely reduce the engineering effort to realize simultaneous

and event-based production processes.

Representation of Production and Business Rulesets

The parts of a DL knowledge base are TBox, ABox and RBox. TBox statements in a knowl-

edge base are terminological conceptualizations that describe the intentional knowledge in

terms of ontology concepts and their general properties. ABox are TBox compliant state-

ments and contain facts or assertion knowledge, which is associated with the individuals of

the domain of discourse [Zhao17] specified using the domain ontology. The RBox of a DL

knowledge base allows role-centric modeling constructs that support role-inclusion and role

equivalence axioms. An example of an RBox axiom from the research use case is, picks ◦
moves ◦ places v displaces, where [∀p∀q (picks(p,q)) ∧ (moves(p,q)) ∧ (places (p,q)) →
(displaces(p,q))]. In other words, the relation displaces is an implication of the conjunction

of the picks, moves and places relations. In our research work, a TBox ontology contains the

concepts of resources, manufacturing operations, production states, and subcomponents and

end-products, while the ABox ontology contains the corresponsing individuals.

OWL-DL is the universally adopted sub-language of OWL in industrial applications [Li18].

OWL enables automated deduction capabilities, notably the automated reasoning that com-

prises ontology consistency checking, classification of ontology concepts and information re-

trieval based on principles of first order logic such as subsumption, instantiation and general

satisfiability. A combination of a mature standard and a good tool support to OWL also

makes it a preferable choice to represent the structured terminological knowledge of classes,

their properties, inter-relations and assertions. In addition, an OWL ontology can also be

processed by software applications so that it can be easily integrated into the GeSCo architec-

ture. However, the OWL language can only impose simple constraints such as domain, range,

existential and universal quantification on cardinality, equivalence and subclass concepts, and

property chains. The ontology-based reasoning of OWL cannot express formalized and ad-

vanced constraints between inter-structural knowledge bases (TBox conceptualizations and

their relations) as its modeling constructs are not adequate for complex scenario representa-

tion. Moreover, it also has limitations with regards to computing and related mathematical

operations.

The expressive limitations of OWL formalisms in knowledge modeling can be overcome by

the alternative paradigm of rule-based reasoning. Among several rule languages such as

102 Chapter 5: Implementation

RuleML [Rul18], Rule Interchange Format (RIF) [Rul18], SPARQL Inferencing Notation

(SPIN) [SPA18a] and Semantic Web Rule Language (SWRL) [Horr04], SWRL was chosen

in this thesis due to its proximity to OWL, relatively small learning curve, and user friendly

file formats such as Turtle. Additionally, the tool support of the Protégé ontology editor and

SWRL engine support of popular ontology reasoners such as Pellet, Drools and Jess make it

a preferred choice for implementing rule-based industrial applications. As SWRL is a syn-

tactic extension of OWL, it enhances the OWL-DL expressivity with its ability to formulate

rules using a subset of RuleML. Though SWRL provides strong formal guarantees similar

to OWL when performing inference, it must be used with due diligence as indiscriminate

usage might lead to undecidable ontologies. In other words, no known algorithm entails all

possible deductions for all knowledge bases even with unlimited resources and time. There-

fore, fragments of SWRL called DL-safe rules which bind concrete values to only the known

individuals of an ontology make these rules free of contradictions and hence, decidable in

finite time.

The basic form of SWRL is XML, but it can also be expressed in other human readable forms.

It supports unary predicates for describing the OWL classes and data types, binary predicates

for data and object properties and n-ary predicates for some built-in functions. Simple rules

of SWRL are syntactic sugar of OWL, meaning they can be expressed in either OWL or

SWRL. Built-ins, as they are called that support mathematical and logical operations on

data properties, dramatically increase the expressivity of SWRL, and help construct complex

rules which are not OWL syntactic sugar.

SWRL rules are expressed on the basis of formal deduction sequents which is a kind of

conditional assertion to express line-by-line logical arguments. A sequent can be represented

as follows:

A1, A2,, Am ` B1, B2,, Bn

where Ai and Bi are formulae. A sequent is an assertion that whenever all of Ai are true, then

at least one of the Bi is true. In other words, the commas on the left of the turnstile are con-

sidered conjunctions, and commas on the right of it are considered an inclusive disjunctions.

Each formula Ai on the left of the turnstile is called antecedent (also called body) and each

formula Bi on the right of the turnstile is called precedent (also called head), and represented

as antecedent→ precedent. However, in case of SWRL rule, both the antecedents and prece-

dents of SWRL rule are conjunctions of asserted atoms in the form of horn like rules. SWRL

rules also do not support negation and disjunction of asserted atoms. The assertions can

take the following forms: C(x), DP (x, y), OP (x, y), sameAs(x, y), differentFrom(x, y)

and built-ins, where x and y are variables, and C(x), DP (x, y), OP (x, y) are OWL class

description, data and object properties respectively [SWR18a].

5.2 Integration of Ontology to Cloud based MES 103

SQWRL is a SWRL based query language that provides SQL-like operators in order to re-

trieve information from OWL ontologies, and inferred knowledge of OWL and SWRL rules.

The built-in libraries of SWRL can also be employed in SQWRL statements. As the name

suggests, SQWRL cannot write back the aggregated query results to the ontology. Therefore,

this thesis evaluation formulates certain rulesets in SQWRL in case of data retrieval opera-

tions which do not perform modifications to the ontology database. Continuing the previous

argumentation, the thesis evaluation also formulates rulesets in SPARQL which require re-

cursively nested conditions and certain complex scenarios which require greater flexibility in

terms of mathematical constructs.

During the course of this research work, the production ruleset is modeled as a combination

of class-based axioms of OWL and explicit rules are modeled in formal rule languages. On

the other hand, the business ruleset is modeled employing only explicit rules and queries.

5.2 Integration of Ontology to Cloud based MES

The modified automation pyramid proposed in this research work is as illustrated in Figure

3.2. When the manufacturer opts for the cloud based MES, the GeSCo is also shipped as part

of the manufacturing solution suite. In order to provide ontological support, the MES vendor

must put considerable effort into the ontology development process also known as ontology

engineering. It includes the following steps: Determination of scope, enumeration of terms of

taxonomy, encoding of the ontology in terms of definitions of classes, definitions of properties

and constraints, instantiation of individuals, and design of ABox rules, ontology update and

ontology enrichment. In cases of heterogeneous ontologies, ontology alignment (also referred

as ontology learning) is another supplementary task. This effort with regards to ontology

development and maintenance is additional to the maintenance of the main codelines of the

MES and the GeSCo.

In addition to the ontological engineering task, the ontology should also be subjected to

adaption, extension and/or reconstruction owing to the corresponding changes in the devel-

opment codelines of the MES and the GeSCo. Moreover, ontology enrichment which does not

change the concepts and relations, but only refines the existing constraints also needs to be

handled as a result of fine tuning the source code in MES. On the other hand, delegating the

ontology engineering task to the manufacturer is not a feasible solution either. In practice,

the domain experts on the manufacturer’s side who are involved in PO creation might not

have sufficient first hand ontological development experience. Furthermore, the construction

of ontologies using techniques of ontology engineering is also a time-consuming task. The

fact that MES software development and maintenance, and ontology development require a

very different skillset also make complementing the MES with an ontology an incompatible

104 Chapter 5: Implementation

task.

In such a scenario, the solution to the problem of ontology creation and maintenance to keep it

current is to automate the process of encoding of the ontology. The ontology corresponding to

manufacturing resources is one of the pre-requisites to design the OWL-S/SAWSDL/hybrid

OPC UA frameworks described in Chapter 4. Such a manufacturing resource ontology can

be extracted from the so-called state of art OPC UA collaborations. The OPC Foundation

coordinates with various organizations to create OPC UA common information models of

different domains of manufacturing. Its objective is seamless information flow between the

diverse manufacturing resources in a platform independent manner. The OPC UA collabo-

ration defines the complete information model of an OPC UA server of the particular type

of manufacturing resource to integrate the machinery with the manufacturing domain with

regards to installation, version management and machine operation. This open and stan-

dardized machine model provides well defined profiles for different machine variants and the

corresponding functionality offered by these machine variants. Any vendor who supplies the

manufacturing resource in this industry vertical has to adhere to this information model.

These open machine models are offered in two flavors: text based portable document format

(PDF) and embedded links inside these PDF files to XML documents known as UANodeSet

files. There are several methods to achieve the process of (semi-)automatic encoding of

ontologies: plain text processing and machine learning are notable approaches. Based on

these approaches, the following section enumerates different possibilities of encoding the

information model of OPC UA collaborations to the corresponding resource ontology.

Different Approaches to Automatic Encoding of Ontologies

This subsection lists different approaches that can be applied for automatic encoding of

production ontologies employing the OPC UA collaborations of manufacturing resources

serves.

� Ontology generation employing natural language documentation of the standard does

not yield an optimal result even after several iterations of review. Even with the best

statistical algorithms, this unsupervised activity generates sub-optimal ontologies.

� Another idea conceived by the author is to create a list of terms along with the classifi-

cation and relationship data, and feed it to the OPC UA collaboration PDF document

to create custom tags in the document. The tagged document contains the marked

words accompanied by categorization annotation. The tagging of the key words is

indispensable for a good translation of the OPC UA collaboration into the ontology.

The annotations are created by defining the rules that assign the concepts of the cor-

responding OWL entities such as class, objectProperty, dataProperty, entityDomain,

5.2 Integration of Ontology to Cloud based MES 105

entityRange, subClassOf and equivalent. This controlled ontology generation process

is also subjected to repeated iterations with human involvement until all the words are

correctly marked with the correct annotation. This step is followed by the supervised

encoding step of the ontology.

� The third approach is the exploitation of the UANodeSet XML file that describes

the complete information model of the corresponding OPC UA collaboration compli-

ant manufacturing resource. An XML file to ontology transformation is explained in

[Bohr05, Van 08].

However, in agreement with the UANodeSet metadata, the state of the art MES software

already implements machine models using this XML metadata file. These machine models

are exploited to represent the digital twin model required for condition monitoring from the

cloud. Another area of application of machine models in MES is the design of a static routing

plan. In such a scenario, the production designer who sets out to create an ordered list of

manufacturing services to transform the raw materials to end products has to choose the

corresponding manufacturing resources that provide these services. At this point, s/he maps

the methods provided by these machine models against the required manufacturing services

of the PO.

The author believes that the source code of the cloud based MES that implements these

digital twins is the right information model for ontology modeling for the reasons explained

in the following:

� It is not realistic to assume that every manufacturing resource in the shop-floor pos-

sesses a corresponding OPC UA companion specification. However, irrespective of the

availability of a UANodeSet file, the MES implements machine models for the reasons

stated above.

� It is also possible that a companion specification compliant manufacturing resource

might have additional functionality and hence, the resource can have an enhanced

information model which is not identical to the information model of the companion

specification.

� Furthermore, there are also additional utility and calculated fields in the resource in-

formation model of MES that play a vital role in formulating decision-making rules.

� For an effective production control, it is required that the generated ontology covers all

the concepts that play a role in the shop-floor such as manufacturing resources, man-

ufacturing operations, product, its variants and sub-assemblies. However, the UAN-

odeSet file only contains the select node information about the manufacturing resource

type. The constructed ontology employing the UANodeSet file which only describes

the manufacturing resources and their offered services is of little utility in the context

106 Chapter 5: Implementation

of holistic production control. However, there exists corresponding source code in the

cloud based MES that incorporates all the above-mentioned concepts of materials, re-

sources, work-stations, manufacturing operations, BOM, routing plan and PO. Hence,

the source code of the MES must be employed to generate a common reference ontology

model of the different entities.

� Any change to the information model and/or production control logic in MES is imme-

diately reflected in the ontology when the ontology generation algorithm is triggered

on updated source code. This in turn enables the creation and the formal reasoning

of production logic based on the latest version of the ontology and thereby substan-

tial reduction of the latency of propagation of source code changes to the real time

production.

The author proposes to exploit the machine model data in the cloud based MES to encode

the ontology to serve the following purposes:

� Assignment of ontology concepts or/and production process ruleset to PO constituents

so that formal reasoning is possible during the selection of suitable services in the

manufacturing shop-floor

� Formulation of the business ruleset using the generated ontology that needs to hold

true before or/and after a production step during the runtime of PO execution

5.3 Automatic Encoding of the Ontology

Based on the discussion of the previous section, this thesis considers the machine model

classes and interfaces that are implemented in the cloud based MES for the automatic on-

tology translation process. On the flip side, high-level programming languages such as Java

and the OWL modeling language belong to the different spheres of software engineering and

ontology engineering, respectively. Hence, an appropriate translation mechanism has to be

devised to find analogous concepts.

The classes and interfaces of the Java source code of the cloud MES are translated to the

corresponding OWL entities. The generalization relationship of the object-oriented concepts

is translated to the IS-A type of relationship in OWL language. An important point of

consideration in the translation process is the handling of operations of a class in java.

There is no equivalent concept for an operation in OWL, and moreover, an operation of a

class on its own does not convey any special information and at best, it merely participates

in the transformation of the value set of the class member fields. Hence, the operations of a

class are ignored during the ontology modeling process. However, the logic of transformation

of member fields is applied during the construction of SWRL business rules. The associations

5.3 Automatic Encoding of the Ontology 107

Figure 5.1: Annotations on MES Source Code.

and aggregations are translated by means of the subject-verb-predicate model of the semantic

web. Associations and aggregations are allowed in object-oriented concepts, but it may

introduce contradictions in strict modeling language like OWL. Therefore, these association

fields are annotated with different values to differentiate during the encoding of the ontology.

The authors define annotations on these fields that are available at execution time via Java

reflections. These annotations provide additional information to the encoding algorithm to

construct the subject-verb-predicate model of the OWL object properties (refer Figure 5.1).

The annotations on the MES source code present an additional, but small overhead activity

to the developers in the form of documentation that states the purpose and context for

smooth code modifications and extensions in the future.

The transformation rules of source code to OWL ontology

The source code of the machine model falls into the category of software engineering / im-

plementation, while the encoding of the ontology is categorized under ontology engineering

/ knowledge modeling process. The authors propose the transformation rules from object-

oriented source code in cloud based MES to formal ontology generation as depicted in Table

5.1. These rules are integrated into the application that performs the above-mentioned trans-

formation. The OWLAPI [Horr11] which is a Java API for the construction of ontologies

in OWL in an application is employed to realize this step of the process. The OWLAPI is

capable of generating, querying, deleting and reasoning on even the most evolved ontology.

In other words, it provides all the features provided by the Protégé-OWL API [Pro19].

108 Chapter 5: Implementation

Table 5.1: Rules to transform Source Code to Formal Ontology.

Source Code At-

tribute

OWL Entity Comments

Project source code

files

Ontology File The complete ontology corresponding to

the machine model source code is stored

into a single ontology file

Class Class Both the source code and OWL ontology

have identical class concepts. The fully

qualified name of the class is used in nam-

ing the ontology class to prevent ambigu-

ity.

Primitive class mem-

ber field

Data Property The primitive types in source code are

translated to the corresponding Datatype

in OWL

Name of the Data

Property

—–

Primitive member

field name

Domain and Range

of Data Property

The encircling class in the source code

is made the domain of the encoded data

property. The encircled data type of the

primitive field is made the range of the

encoded object property

Complex class mem-

ber fields/Composi-

tion/ Composite Ag-

gregation

Object Property The class and complex fields are related

by a whole-part relationship. The part

fields are related to the whole by an object

property

Binary Association

/ Aggregation

Two Object Proper-

ties

The associations are annotated with dif-

ferent values. Therefore, two object prop-

erties are encoded, and they are related by

means of inverse relations in OWL.

Domain of Object

Property

The encircling class in the source code is

made the domain of the encoded object

property.

Association / Ag-

gregation / Compo-

sition

Range of Object

Property

The encircled complex data type is made

the range of the encoded object property

5.3 Automatic Encoding of the Ontology 109

Cardinality of the

Object Property on

Domain and Range

entities

There is no general pattern in the object-

oriented paradigm to represent this aspect

of ontology. Hence, it does not figure in

the ontology transformation process.

Annotations on

Association/Ag-

gregation/ Com-

position fields

Name of the Object

Property

The complex member fields are annotated

with the object property name. This

value is extracted at runtime using Java

reflection.

subClassOf restric-

tion

The interface and classes that a class in-

herits in source code are translated to the

OWL subClassOf restriction.

Inheritance / Gen-

eralization (Imple-

mentation and Ex-

tension)

DisjointWith restric-

tion

In the absence of inheritance in source

code, all the OWL classes are marked dis-

joint with other classes. However, for the

sake of simplicity, this fact is ignored in

the ontology.

EquivalentTo re-

striction

The classes in the source code are unique,

and hence, the case of equivalent classes

in OWL does not arise.

Class Instance OWL Individual The instantiated class object in source

code is equivalent to the OWL type in-

dividual.

Class Methods Equivalent SWRL

rules

There is no behavioral concept of en-

tity that performs data transformation in

OWL. Instead, this shortcoming is over-

come by the formulation of SWRL rules.

Suitable Annota-

tion on source code

classes and fields

Annotations on

TBox and ABox

entities

The OWL annotation properties such as

comments, label, deprecated, versionInfo

et cetera are represented in suitable in an-

notations in source code.

—– Class necessary re-

strictions

The object-oriented concepts only sup-

port IS-A, whole-part, has-a relationships

between classes. There exist no further

constructs in OOPS to express further

formal restrictions that can be placed on

OWL classes.

110 Chapter 5: Implementation

—– ABox restrictions If this step is subjected to automation, it

reduces the reusability and also increases

the development effort in the long run.

Hence, the necessary production process

and business ruleset has to be encoded in

SWRL/SPARQL by a human expert.

The output of this process is the generation of a formalized ontology file that corresponds to

the concepts of manufacturing operation, product, routing and resources. The development

of a formal description of inter-relationships between software artifacts is not the end goal.

They merely provide a medium to the rule-based applications for the formal analysis of

various concepts. In other words, the generated ontology is used as a reference to construct

the ruleset for the defined concepts and also to deduce the inferences. Arguing on the same

lines, even though the above-mentioned transformation rules provide guidance to transform a

class object to an OWL individual, the author only automates the TBox ontology generation

process in practice. Later, during the description of concrete manufacturing services in shop-

floor, in OWL-S framework for example, ABox ontologies are also created as instantiations

of earlier generated TBox ontologies.

It is also to be noted that the automatically generated preliminary ontology does not describe

the intricate details of all the entities of the production process. It only describes the nec-

essary concepts that are required for manufacturing automation through automatic resource

discovery based on the offered methods and their characteristics, and support the formal

design of the business ruleset. In contrast, manually built ontologies are much larger and

more complex which might not necessarily be an advantage. In practice, only a small por-

tion of an ontology is usually reasoned on business ruleset, and for the purpose of automatic

manufacturing service and subsequent resource discovery. A larger ontology also necessitates

larger processing times, which goes against the principles of high speed manufacturing. To

that end, a relatively small ontology is generated during the research evaluation and feasi-

bility analysis phase containing around 750 ontology concepts that are relevant to only the

key finder unit PO at hand.

This generated ontology is distributed among all the actors of the manufacturing system

namely cloud MES based applications in general, and in particular, the common semantic

model component of GeSCo. This ontology is the underpinning for the construction of

manufacturing resource ontologies. These ontologies, in turn, formally describe the various

methods and the corresponding manufacturing services offered by these methods which are

based on the SAWSDL/OWL-S framework.

5.3 Automatic Encoding of the Ontology 111

The complete process of ontology generation to formulation of production and business rules

in terms of SWRL, SQWRL and SPARQL specifications [SPA18b] is shown in Figure 5.2.

Additionally, the terminological knowledge expressed by the generated ontology is exploited

to construct SWRL/SPARQL rules so that the design and manufacturing knowledge can be

combined to formulate complex business constraint rules and inference rules. The business

rules that are slotted in between the various production steps provide clear and event-based

guidelines to the production orchestrator and hence, facilitates smooth process automation.

Based on the classes and properties modeled with formal restriction that have been defined

in the generated ontology, the production designers model the PO and write business rules.

Details follow in the experimental implementation Section 6. The business ruleset offers

START
First Time
Ontology

Generation?

Update in MES
Source code?

Finetune
 Ontology?

Automatic Ontology
Generation from Cloud

 MES Source Code

Ontology Update /
Enrichment With

Human Involvement

Ontology Consistency
Check Rules

Ontology
Consistent?

Formulation of
Production Rules

Assignment of OWL
Concepts to respective

 Nodes ofOPC-UA
Application Methods

Attachment of Production
 Rules as Pre- and Post-
Conditions of Resource
 Service Consumption

Formulation of
State Changes
as SWRL Rules

Can
Validations/

Calculations be
Represented
 in SQWRL?

Formulation of
State Validations/

Calculations
as SQWRL Rules

Formulation of
State Validations

/Calculations
as SPARQL Rules

STOP

YES

NO

NONO

YESYES YES

NO

NO

YES

Figure 5.2: Complete Cycle of Automatic Ontology Generation and Formulation of Rules

with Human Involvement at Production Design Time.

112 Chapter 5: Implementation

enhanced expressiveness to the PO. In contrast to centralized automation, where processes

are explicitly specified, this approach specifies the processes and control of production logic

through interrelated production and business rules.

Another use case of SWRL rules can also be the automated validation of a designed ontology.

The SWRL rules that are formulated with such assert statements corroborate the consistency

of the generated ontology.

5.4 Creation of Ontology Resolution and Business

Rules in SWRL

When the common semantic model has been generated, the production designer can import

the ontology file into Protégé. At this stage, the production designer, if familiar with ontology

engineering, can enhance the ontology by adding or fine-tuning the automatically generated

ontology. Such ontology resolution rules are shown in Listing 5.2. The traditional application

of SWRL is the creation of data and object property assertions, and inference about the

presence of individuals belonging to an OWL ontology class.

The next course of action involves the addition of new data properties which are the prereq-

uisite for writing SWRL rules. The values of these data properties are indicative of the result

of the execution of SWRL rules. In other words, usage and execution of SWRL rules sets

the values of these data properties, and GeSCo takes cues from this information to decide

on the next production step. This step is followed by the imposition of SWRL IF-THEN

constraints on the assertion knowledge of resources, method characteristics and constraints

on production steps of the PO execution by the production designer. Listing 5.3 provides

examples of a few business rules involved in production of the key finder.

Unlike OWL that models declarative knowledge, these SWRL business rules (refer Listing

5.3) provide imperative knowledge that compensates for the shortcomings of the generated

OWL ontology. The argument for imperative knowledge is even more applicable to define the

behavior of the OWL individuals and their relationships. From the perspective of the use-

case of this research work, these SWRL rules do not model static descriptive knowledge, but

dynamic production knowledge. The SWRL rules assert the conditions of the shop-floor, and

accordingly set the data properties added earlier. It has to be considered that the complex

and concrete logic applied on production data at the MES level cannot be subjected to one-

to-one translation into OWL language and the corresponding rule languages. However, the

same rules can be formulated in a more formal manner in ontology languages that define the

processes and their requirements in an abstract way and thus delegate the concrete decision-

making responsibility to the GeSCo. To this end, the OWL ontology in conjunction with the

5.4 Creation of Ontology Resolution and Business Rules in SWRL 113

Rule_1

rescom_resources_AutonomousTransporter(?at) ˆ

rescom_capability_abstracts_Picker(?m) ˆ

rescom_capability_abstracts_Placer(?m) ˆ hasPicker(?m, ?p) ˆ

hasPlacer(?m, ?pl) -> rescom_concepts_Displacer(?m)

Rule_2

rescom_capability_concrete_MaterialSupplier(?ms) ˆ supplies(?ms, ?mat

) ˆ rescom_product_LowerShell(?mat) ->

rescom_resources_LowerShellProvider(?ms)

Rule_3

rescom_capability_concrete_MaterialSupplier(?ms) ˆ supplies(?ms, ?mat

) ˆ rescom_product_UpperShell(?mat) ->

rescom_resources_UpperShellProvider(?ms)

Rule_4

rescom_capability_concrete_MaterialSupplier(?ms) ˆ supplies(?ms, ?mat

) ˆ rescom_product_CircuitBoard(?mat) ->

rescom_resources_CircuitBoardProvider(?ms)

Listing 5.2: Fragment of Ontology Resolution Rules for ResCom Demonstrator Ontology.

Rule_1 : <Is_LowerShell_Identified>

rescom_product_LowerShell(?lowerShell) ˆ hasColor(?lowerShell

, ?clr) ˆ rescom_concepts_Color(White) -> sqwrl:select(

true)

OR

rescom_product_LowerShell(?lowerShell) ˆ hasColor(?lowerShell

, White) -> isIdentified(?lowerShell, true)

Rule_2 : <Can_Assemble>

rescom_product_LowerShell(?lowerShell) ˆ isPlacedInAssembly(?

lowerShell, true) ˆ rescom_product_CircuitBoard(?

circuitBoard) ˆ isPlacedInAssembly(?circuitBoard, true) ˆ

rescom_product_UpperShell(?upperShell) ˆ

isPlacedInAssembly(?upperShell, true) -> sqwrl:select(true

)

Listing 5.3: Examples of Business Rules for the Key Finder PO.

114 Chapter 5: Implementation

SWRL rules provide situational awareness and the corresponding in-memory computation.

Therefore, GeSCo need not play a subsidiary role to MES anymore as it does not rely on the

guidance of the cloud MES after the production data, OWL ontology and associated SWRL

rules are cached to the production network. It can arrive at decisions locally by interaction

between the modules. These decisions have traditionally been taken by centralized MES.

This line of reasoning also diverges from the concept of the classical automation pyramid

(refer Figure 1.1) which puts emphasis on the strong division of responsibilities.

The relative ease with which these SWRL rules can be written using a tool such as Protégé

makes it easier to formulate contextual rules for a production designer with only a little

experience in the knowledge modeling realm. The creation of SWRL rules is product vari-

ant based, and it formally describes the dynamic contexts of the shop-floor environment at

different points of production runtime. Hence, automation of this step is not possible. How-

ever, the ontology and SWRL rules that are constructed for a specific product variant can

be reused for similar POs in the future.

Additionally, SWRL rules can be attached to the reference ontology file in one of the many

supported syntaxes such as RDF/XML format, or they can be constructed and consumed

programmatically on the fly in plain text form. It is recommended to consume the SWRL

rules programmatically [Amer12] and the argument becomes even more applicable if the

parameters to be fed to the rules are generated at program run time. Hence, the business

rules are attached in plain text form to the PO sub steps (refer Figure 6.5).

Nevertheless, the point of contemplation is that certain business rules cannot be evaluated

in the shop-floor even at the expense of increased rule complexity. This could be due to a

variety of reasons such as reliance on other applications for the production step validation,

requirement of large amounts of computing power to arrive at the validation decisions and in

some cases, inability to represent a rule that processes a large amount of data due to the lack

of efficient constructs in OWL/SWRL combination. In such situations, a trade-off should be

made where such rule validations are retained in the cloud based MES.

Furthermore, the SWRL rules need to be manually inspected and changed if necessary in the

event of change in the ontology necessitated by the corresponding change in the MES source

code. The construction and inference of SWRL rules does not take into account the original

OWL ontology restrictions, and hence, newly added SWRL rules may contradict earlier

constraints. Hence, in order to assure the ontology consistency, the production designer

should incrementally add the rules and run the reasoner to ensure the updated ontology does

not contain contradictions.

5.5 Centralized and Semi-Automatic Modeling of Capabilities of Manufacturing Resources115

5.5 Centralized and Semi-Automatic Modeling of Ca-

pabilities of Manufacturing Resources

In order to provide complete control of the production processes to the centralized decision

systems and also eliminate the prospect of low degree of correlation with the automatically

generated ontology, the author of this work does not recommend a decentralized modeling

of manufacturing resources and their manufacturing services. The bottom up approach of

resource capability may also introduce knowledge gaps from the standpoint of centralized

production planning and hence, the system may experience a chaotic behavior. This knowl-

edge gap may arise due to the usage of different ontological concepts stemming from different

taxonomies. It may also be attributed to thought processes of designers/engineers at the fac-

tory shop-floor differing from the centralized production planner. Similar to the discipline

of software engineering, ontology engineering also faces the discrepancies that may arise be-

tween conceptualization and realization phases in case the responsibilities are delegated to

different stakeholders. Some concept(s) might be missed and an equivalent concept(s) might

be added in the event of unsupervised modeling by the production resource ontology de-

signer. In such a scenario, the additional task of determining the correspondences between

the various concepts needs to be carried out to iron out the asymmetricities.

From another standpoint, the natural alternative is the creation of separate ontologies for

the business and production systems in the absence of a central ontology. Subsequently, the

business rules that are constructed and stored in the cloud MES are no longer compatible

with ontologies constructed at the shop-floor for the execution of process validations in

the production runtime. Hence, they cannot be directly used in the production without

subjecting them to advanced ontology aligning treatment. The alignment process based on

SWRL rules is more complex than basic ontology alignment, and involvement in such a

process defeats the purpose of keeping the manufacturing planning and execution simple and

transparent.

In order to avoid this situation, entities that participate in the production planning and

production control must operate on a single centralized ontology. This in turn allows the

cloud MES to have a global view of all the concurrent processes and hence, exercise more

control over the shop-floor. This scheme also allows a unified integration of all the production

participants, and thereby plays a vital role in realizing the shared visions of the organization.

[Mena00] also stresses that services based on agents and one ontology offer flexibility and

adaptability with a low overhead.

The generated common semantic model is pushed to the production network in general, and

to the GeSCo in our research use case. The OPC UA servers of the manufacturing resources

are then formally modeled using the SAWSDL/OWL-S/Hybrid framework on top of the

116 Chapter 5: Implementation

automatically encoded ontology. The various aspects, configurations and capabilities of the

manufacturing resources are instantiated into OWL individuals using OWL constructs such as

equivalent, subClassOf, Instance, sameIndividual and DifferentIndividual. The generation of

this ABox ontology cannot be generated in an unsupervised environment and hence requires

the involvement of a human expert. The human expert also formulates the SWRL rules that

depict the pre- and post-conditions on the product, resource, transportation facilities, PO

and the environment on account of provision of manufacturing service by the manufacturing

resource. With this information at hand, a paradigm shift from machine driven production

definition to information and context driven control processes is possible.

Figure 5.3 shows the UI designed to capture the OWL-S ontology of each of the methods of

the manufacturing resources based on OPC UA servers. This web application tool is hosted

on the cloud based MES and was created as part of this research prototype. It allows to

create an OPC UA client session to connect the HTTP WS-* SOAP-based resource servers

of the key finder demonstrator that are wrapped by a single OPC UA server for the sake of

simplicity. The tool captures the information of various aspects of a manufacturing service

provided by an OPC UA method in terms of the semantic concepts of the reference ontology.

This information is exploited to create a corresponding OWL-S ontology which contains the

profile, method model and grounding ontologies with regards to a specific method of the

OPC UA server of a resource using OWLAPI. These semi-automatically generated OWL-

S ontologies of various manufacturing resources of shop-floor are cached at the production

network for local manufacturing service discovery.

Figure 5.3: Partial Screenshot of Cloud based MES UI to generate the OWL-S ontology for

the moveAbsolute method of the Pick and Place Robot.

5.5 Centralized and Semi-Automatic Modeling of Capabilities of Manufacturing Resources117

The generated OWL-S ontology along with the resource ABox ontology is relevant during

the PO orchestration by the GeSCo. The required manufacturing service for each of the

production steps of the PO is compared to the offered services in these OWL-S ontologies,

and a best fit service is chosen to execute a manufacturing operation corresponding to the

production step. A case of subsumption reasoning is shown in Figure 5.4 where one of the

production steps of the PO puts forward the abstract demand for a PressService. This

PO abstract demand is associated with the concrete manufacturing service supply, named

PneumaticPressServiceInstance, of the factory shop-floor. The manufacturing service supply

is an instance of the concept PneumaticPressService which is subsumed by the required

demand concept of PressService.

As an alternative to automatically generating an OWL-S ontology, the SAWSDL specification

extended to OPC UA application methods can also be used as a substitute for the purpose

of dynamic production orchestration [Katt18a]. Though the SAWSDL specification reduces

the degree of match of a particular manufacturing service, it simplifies the process of finding

the right manufacturing services. Independent ontology or OWL-S based ontology concepts

can be annotated to resource OPC UA servers as illustrated in Figure 4.6 in order to imple-

http://emea.global.corp.sap/rescom#PressService

Semantic Annotation of Production Step in PODemand
<owl:Class>
.....
<Profile:methodCategory/>
<Profile:manufacService rdf:resource="http://emea.global.corp.sap/rescom#PneumaticPressServiceInstance"/>
<model:hasInput/>
<Grounding:hasNodeReference/>
......
</owl:Class>

OWL-DL Reasoner

Supply

Part of OWL-S ontology

<owl:Class rdf:about="http://emea.global.corp.sap/rescom#PneumaticPressService" >
 <rdfs:subClassOf rdf:resource="http://emea.global.corp.sap/rescom#PressService" >
</owl:Class>
<owl:NamedIndividual rdf:about="http://emea.global.corp.sap/rescom#PneumaticPressServiceInstance"/>
 <rdf:type rdf:resource="http://emea.global.corp.sap/rescom#PneumaticPressService"/>
</owl:Class>

Generated Ontology

Figure 5.4: Semantic Manufacturing Service Demand-Supply Matching: Simple Case of DL-

Based Subsumption Reasoning.

118 Chapter 5: Implementation

Resource (?rsrc) ˆ hasPickerTool (?rsrc, ?piTool) ->

PickerResource (?rsrc)

Listing 5.4: Explanation of DL Safe Assertions in SWRL.

ment SAWSDL or hybrid OPC UA servers, respectively. For the sake of completeness, this

research evaluates the efficacy of the automatically generated ontology, and the subsequently

constructed ruleset in orchestrating the key finder production workflow using all the three

proposed semantic OPC UA frameworks.

The generation of an ABox ontology involves not only the creation of a skeletal system,

but also includes instantiation of the inner classes and properties of the main concepts.

Therefore, when a manufacturing resource is instantiated in the resource maintenance UI in

the cloud based MES, the corresponding class along with its sub-component classes and their

properties are also instantiated in the ontology. For example, suppose a Resource concept

is instantiated and is assigned as domain of the hasPickerTool object property. However,

in the absence of a named individual of the range of the hasPickerTool object property (for

example, the ’?piTool’ individual), there is no hasPickerTool object property assertion. In

such a case, when the SWRL rule shown in Listing 5.4 is executed, the resource individual

does not transform into an instance of PickerResource. This is due to the fact that SWRL

rules are DL safe [Klus], and hence do not bind values to individuals that are not explicitly

known at the time of the invocation of the SWRL rules. Therefore, a successful firing of a

rule only takes place when all the instances of the ontology concepts that are part of the rule

are instantiated. However, the DL safety of an ontology is only safeguarded by imposing

restrictions on the inference engine of the SWRL reasoner, but SWRL rules on their own

may still yield an undecidable ontology.

5.6 Ontology as Placeholder for Manufacturing Data

Collection

During production runtime, the generated ontology also serves the purpose of performing

data collection, and stores the PO specific data in the PO individual entity of the ontology.

GeSCo does not report the result of each of the production steps to the central cloud MES

during production control. Instead it accumulates the data in the ontology over the course

of PO execution, and at the end of it, uploads the entire ontology to the cloud based MES.

The MES performs the reverse engineering of transforming the ontology to the corresponding

instance of the java classes, and invokes the appropriate transactions to store the collected

data into cloud MES information systems. Instead of transmitting the raw data results after

the completion of every production step, this technique provides a platform for GeSCo to

5.6 Ontology as Placeholder for Manufacturing Data Collection 119

filter and analyze the data at the factory network level, and hence, substantially reduces

traffic to the cloud.

It is clear that the source code to ontology transformation procedure in general is not re-

versible. The nature of data representation and processing in both the formats is completely

different. However, the MES is aware of both the structure of the reference ontology as it

is generated consuming its own source code and the source code to ontology transformation

algorithm. Therefore, the extraction of information from the reference ontology which is

updated over the course of PO execution to persistent memory in the MES is a relatively

uncomplicated process.

An alternative to sending the whole ontology at the end of PO is to send the partially updated

ontology at the end of every production step of the PO in a one directional asynchronous

pattern. This reduces the effect of the network latency from the cloud communication per-

spective, and also keeps the MES updated with the real time data and activities of the

manufacturing plant. This data in the cloud MES can be transformed to intelligent infor-

mation, and further utilized for the purposes of visualization and condition monitoring.

The described approach involves certain repetitions in tasks such as the definition of various

entities involved in the production and their relationships, and the capability of resources

and their application specific methods of the OPC UA server at design time so that these

capability descriptions serve as pointers to discover the required manufacturing services at

production runtime. However, these pre-production tasks are necessary to establish a har-

monious balance between the centralized systems that plan and schedule on a high level, and

decentralized systems that are involved in detailed level scheduling of the PO and control

of operations. Subsequently, the above-mentioned approaches also effectively manage the

complexity of the production workflow processing.

120

6 Experimental Evaluation

6.1 Infrastructure Set-Up

The demonstrator system which was originally developed in the RES-COM project [RES18]

(see Figure 6.1) that produces smart key finders was enhanced in order to realize the Proof-

of-Concept and evaluate the applicability of semantic frameworks presented in Chapter 4

based on the generated ontology using the methodology described in Chapter 5 in the context

of proposed GeSCo architecture described in Chapter 3. The resources of the key finder

work station are augmented with embedded systems to transform them into cyber physical

production systems. The demonstrator setup contains industrial equipment from various

vendors which constitute a lot size 1 production cell where three individual parts of the key-

Figure 6.1: Automated Key Finder Assembly Demonstrator.

6.1 Infrastructure Set-Up 121

Pneumatic
Press

Grippers

Electric

Press

Circuit Board

Warehouse

Lowershell

Warehouse

Plug and Play

Pneumatic Press

Industrial

Camera Key Finder

Components

RFID

Reader

Pick and Place

Robot

Pneumatic

Press

Mobile

Uppershell

Warehouse

Conveyor Belt

Figure 6.2: Layout of the Key Finder Demonstrator.

finder, namely, housing cover, housing base and the circuit board, are assembled. The work

station has multiple key finder assembly units and a general purpose pick-and-place robot

which makes it convenient for experimenting with adaptability and reusability features of the

manufacturing resources (see demonstrator layout in Figure 6.2). Besides the provision of

rich process variants, the demonstrator also consists of infrastructure for the material flow,

raw material warehouses and quality control identification systems totaling nearly 50 field

devices.

The demonstrator landscape is designed as SOA based control architecture to enable collab-

orative industrial automation. Several embedded systems expose the capabilities of varying

complexity from simple services of field devices to composed services of complex mechatronic

production modules over local area network. Such a landscape where the resources are mon-

itored and controlled during production over the network instead of hard-coded standard

Programmable Logic Controllers (PLC) programs is conducive for achieving decentralized

control of the production. From the outset, the key finder demonstrator modules are con-

trolled via SOAP based web services. OPC UA server wrappers were created around each

of these SOAP based services to make them viable for experimentation of research topics of

this thesis.

122 Chapter 6: Experimental Evaluation

The digital representations of real manufacturing resources are stored as models in the cloud

based MES. These models serve the purpose of product and process planning, validation, and

execution [Tao18]. These virtual models are associated with real manufacturing resources

on the shop floor to pull/push real time data about status of resources and processes. The

cloud based MES transforms this raw data to information, and enables to take automated

or human centered decisions based on the statistical process control activities. Until the

introduction of OPC UA Collaborations, there was no standardized modeling procedure for

these digital resource assets. With the direction from the OPC UA collaboration UANodeSet

files, the MES implements the digital representation of assets.

Existing MES solutions proved to be inflexible to experiment since they are passive in behav-

ior and hence, do not voluntarily react to the conditions of the shop-floor, and also percolate

the changes in the PO to GeSCo. In general, the MES solutions provide directions to the

events of the shop-floor only when the information is sought. In order to engineer a seamless

change in PO and have more control over the simulation, a cloud based MES was developed

that emulates the real MES in the context of production design, planning and execution.

This simulation cloud based MES which is implemented over the course of this research also

contains the information models of manufacturing resources of the key finder demonstrator

in the form of Java source code. The OPC UA servers of the demonstrator modules which are

designed to communicate with the programmable logic controllers to control the kinematics

of the mechanical manufacturing resources do not conform to any of the OPC UA collabo-

ration types. In addition, the evaluation of thesis concepts is executed under the pretense

that the information models of manufacturing resources recovered from the source code of

the cloud MES are designed based on the resource UANodeSet files.

The SAP Plant Connectivity (SAP-PCo) [SAP19a], which is a framework of set of services

and management tools was chosen as a basis for GeSCo. SOAP, REST and an ODATA

[Auer07] based web servers, and OPC UA client and servers were implemented inside the

PCo. During the research evaluation, barring the Production Process Logger module which

is related to supporting the analytics in the cloud MES modules, PCo was architecturally

enhanced to accommodate all the functional modules of GeSCo (refer Figure 3.3). The

GeSCo modules were developed inside a Dynamically Linked Library (DLL) along with a

set of wrapper operations that were exposed as both web service operations and OPC UA

application specific methods that contain the production execution logic. The methods/op-

erations encapsulated in the DLL enable to cache the production control and routing data,

and also embed the orchestration plan algorithms via the design principle of dependency

injection. This concept is also called the Enhanced Method Processing (EMP) [SAP19b] in

SAP-PCo product terminology. Furthermore, the EMP implementation assists in behavior

specification of the edge component by allowing flexible definition of the actions that need to

be executed when invoked by web service or OPC UA client. By inheriting the API class of

6.2 Production Design Time Activities 123

the PCo, the EMP DLLs are implemented independently to configure the actions that need

to be executed during the production runtime. The resulting compiled DLL is imported

into the PCo agent instance at design time and the resulting loaded operations/methods are

hooked onto the PCo SOAP/REST/OData Webserver(s) and/or OPC UA server(s) (refer

Figure 6.9).

Simulation to measure Cloud Network Latency without Formal Semantics For the

purpose of this simulation, the cloud MES was geographically separated by approximately

1000km from the GeSCo and demonstrator system to reproduce the typical network latency

involved with cloud solutions, whereas the GeSCo and demonstrator system were deployed

on the same Local Area Network (LAN). A production process without exceptional scenarios

which corresponds to the lot size 1 production use case illustrated in Subsection 6.1 where

production routing contained manufacturing operations that were distributed to resources

in a fixed manner was conceptualized, and the corresponding PO was created in cloud MES.

GeSCo received only the individual production steps of PO, and communicated the corre-

sponding results from and to the cloud MES, respectively, in order to measure the network

latency encountered during the production execution. The network response time, which is a

combination of network latency plus computation time, was measured in the SOAP UI tool

[SOA19]. However, the simulation cloud MES did not have the data complexity observed in

the real MES, and hence, the computation time was very small in comparison. Therefore,

for practical purposes, this network response time can be considered as minimum baseline.

The simulation results showed an average network latency of approximately 400 milliseconds

between GeSCo and cloud based server. In the event production execution and control mod-

ules of MES continue to reside in cloud infrastructure, this network latency scales linearly

with the number of production steps involved in a PO, and such large waiting times are not

viable in the context of high speed manufacturing. Reduction of these high waiting times is

the secondary goal of this thesis.

6.2 Production Design Time Activities

The automatic generation of the manufacturing ontology of the demonstrator based on the

simulated cloud MES source code with the aid of OWLAPI is the first step among the design

time activities. The rules laid out in Table 5.1 are followed for this ontology transformation.

The jar files corresponding to the source code of the information model of the demonstrator

modules are fed to the automatic ontology generation application which also imports OWL-

API. Using Java reflection concepts, the source code is analyzed and the corresponding

ontology is generated in the form of OWL classes, object and data properties, and similar

class expressions. A screenshot of a fragment of the generated ontology is shown in Figure

124 Chapter 6: Experimental Evaluation

6.3. Typically, the generated ontology originating from the source code of MES modules will

not contain fine grained ontologies pertaining to field devices. However, the abstraction of

lower level services offered by field devices as illustrated in Figure 4.1 makes field device

ontologies obsolete.

The next step is the formulation of the production and business rulesets. In the intelligent

key finder manufacturing use case, most of the rules can be stated in the rule languages.

However, some operations in the PO are executed if certain conditions hold true. Such

Figure 6.3: Fragment of the Automatically Generated OWL Ontology in Protégé.

6.2 Production Design Time Activities 125

assert statements require data property characteristics that represent the status of each of

the production steps of the PO. The use case PO contains 35 production sub-steps and

if each of the steps requires formulation of pre-conditions before delivery of service by the

manufacturing resource, it necessitates defining 35 different data properties to store the

status of the pre-conditions. A single data property that reflects the validation result of

pre-conditions of the current production step cannot be updated multiple times for all the

production steps of the PO. This is due to the property of monotonicity in description logics

that does not allow modification or retraction of existing information in an ontology. If an

assertion is updated due to a successful firing of a SWRL rule it results in that property having

multiple values. When validations are performed against such a property, the validation result

is not correct. For example, an update of the isInMotion data property of the pick and place

robot from false to true when it starts moving results in two data property assertions with

both off and on instances. The solution to overcome this property update problem is to

programmatically remove the existing property prior to saving the new value.

The alternative is to use an elegant querying language known as SQWRL [Sem18] based

on SWRL that provides operators to extract information from an OWL ontology. SQWRL

queries only gather information and compute aggregations. However, they do not allow to

write the query results back to the ontology. Such SQWRL queries are suitable to compute

the rule validation result of the current production step, and apply it directly in the appli-

cation without the need to store it in a result variable. Both the SWRL rules and SQWRL

queries were executed using the Java based SWRLAPI [O’Co08], version 2.0.5.

SWRLAPI comes with two major advantages over the other popular open source reasoners

such as Hermit [Her18]. SWRLAPI contains implementations to a number of built-in libraries

such as temporal built-ins, mathematical built-ins, extensions built-ins, and string, boolean

and date built-ins, and thereby largely increases the expressivity of the rules. It also provides

a powerful extension mechanism to define user-defined built-in libraries. Another advantage

of SWRLAPI which is absent in popular ontology editors such as Protégé is the provision of

built in libraries for TBox and RBox ontologies using SQWRL to query all the OWL axiom

types of an ontology [SWR18b].

Continuing the monotonicity argument in artificial intelligence, the GeSCo executes a PO

only on a copy of the ontology, and the updated ontology is discarded by GeSCo after it is

transmitted to the MES at the end of PO. A reuse of the ontology files that are employed for

previous PO execution introduces possible duplicate assertions in which case the ontology is

rendered inconsistent by an OWL reasoner. Even within a same PO, there is a need to change

the values, for example, updating the current co-ordinates of the pick and place robot. These

values are programmatically removed, and new positions of the robot destination are added

invoking the readActualPosition method of its OPC UA server (refer Figure 6.9 marked in

126 Chapter 6: Experimental Evaluation

blue).

However, both SWRL and SQWRL do not support deep and nested querying features that

are required to compare varying ontology entities and their corresponding property values.

For instance, there are three different assembly resources that provide similar press manufac-

turing services in the demonstrator. A rule needs to be constructed that determines the most

suitable press resource based on the least effort in terms of distance to fetch different raw

materials to the press assembly taking into account various intermediate quality assurance

station visits. This rule involves the creation of nested conditions to compare the efforts

for the three assembly resources which cannot be achieved with a single SQWRL query. In

such cases, the rules are written as SPARQL queries. SPARQL is an RDF query language

Figure 6.4: SPARQL Query to find suitable Assembly Resource with Least Distance Coverage

in X-Axis.

6.2 Production Design Time Activities 127

for diverse data sources stored natively as RDF, or viewed as RDF via middleware. If au-

tomatically generated OWL ontologies that describe the demonstrator resources and their

corresponding manufacturing services is serialized into its primary exchange syntax of RD-

F/XML syntax, then SPARQL queries can be applied to obtain the required results. In such

a case, the generated common semantic model ontology stored in RDF/XML format acts as

RDF store for the SPARQL query. The SPARQL query that computes the least effort in

terms of distance involved among the three assembly resources is shown in Figure 6.4. This

query only computes the distances along X-axis. Similar queries are run to find distances

along Y- and Z-axes. In implementation, these three rules corresponding to the X, Y and

Z axes are merged into a single query, and it is not shown here owing to space constraints.

At the end, the suitable assembly unit is chosen based on least distance coverage in all the

three directions of motion. The advantage of writing such simple and small to moderate

sized rules is avoidance of writing complex source code in a high level language such as Java

to realize the same objective. Furthermore, such rules neither presume any knowledge of

presence of specific resources on the shop-floor nor require any hard-coded values for com-

putations/validations. Similar queries can be formulated on a variety of other constraints

such as least energy consumption, feasibility analysis in terms of resource capacity and its

queue length, and least time duration to manufacturing service provision. An aspect that

must be taken into consideration is that the previously defined SWRL rules must be fired

and the subsequently reasoned and inferred ontology must be saved preceding to running

the queries in SPARQL language as it lacks the full stack reasoning engine. The SQWRL

rules are not relevant here as they do not change the knowledge base. The SPARQL queries

were executed programmatically using Apache Jena ARQ SPARQL 1.1 query engine, version

3.9.0 [ARQ18].

This step is followed by the formulation of pre- and post-conditions of services provided by

the manufacturing resources, and business rulesets. The pre- and post-conditions of services

provided by the manufacturing resources are hooked to the OWL-S ontology described in

Section 5.5. The business rules are also hooked as pre- and/or post-conditions to the

production sub-steps of the PO (refer Figure 6.5). During the production orchestration

phase, these variables in the business rules of the PO (that are prefixed with ’?’) are

replaced by concrete instance of resources and associated components that have been chosen

during the manufacturing service discovery phase. As shown in Figure 6.3, different ontology

concepts of the key module production process come from various java source code packages.

A short name for a semantic annotation such as ’rescom resources IndustrialCamera’ (here

dots in package name are replaced by underscores as dots are not allowed in URI fragments)

is sufficient to identify the concepts and it also fosters readability (see ’Semantic Annotation’

coloumn in Figure 6.5). For the sake of UI simplicity, the conditions are prefixed with either

PRE_COND and POST_COND, and assigned to a single field.

128 Chapter 6: Experimental Evaluation

Another aspect of SWRL business rules which are hooked to the production steps of a PO is

that they characterize a dataflow program. They ensure that production steps do not enter

incorrect states of production. If a production flow enters an incorrect state, the production

must self-heal itself to the correct state before continuing to the next state of production.

For example, when the quality assurance production step at the camera station detects a

black upper shell instead of a white upper shell, the robot places the black upper shell back

to its original co-ordinates. The GeSCo invokes the getCoOrdinates method on the lower

shell warehouse OPC UA server, and chooses the second item from the co-ordinates array of

the response and repeats the process until it finds the white upper shell.

6.2
P

ro
d
u
ction

D
esign

T
im

e
A

ctiv
ities

129

Figure 6.5: Partial Screenshot of Key Finder PO Generation UI.

130 Chapter 6: Experimental Evaluation

6.3 Method Discovery and Orchestration

This thesis recommends implementing the hybrid semantic framework (refer Section 4.3) on

the OPC UA server of manufacturing resources based on its advantages over its individual

constituent approaches. However, it is up to the manufacturer to decide the best-fit approach

based on the requirements and preference. This section only describes the implementation

with regards to the hybrid semantic framework of OPC UA. From a general perspective

of method discovery and orchestration, the procedure described here can also be roughly

extrapolated to the other presented semantic frameworks.

The formal definitions of web service discovery concepts, and subsequent method composition

are stated as following. The set of production ontology O generated from various MES

software modules is defined as:

O = O1 ∪O1 ∪ ∪On

Manufacturing services offered by OPC UA methods are described employing O using any

of the three semantic matchmaking methods described in Chapter 4. These methods are

published to MDR M .

M = {m1,m2,,mn}

In general, each of the methods are described as a tuple of assertions A referring to the

concepts C of ontologies O.

mi = {(a1, ci1), (a2, ci2),, (an, cin) 3 ci1 ∪ ci2 ∪ ∪ cin ⊆ O}

More concretely, each of the mi in the context of three semantic matchmaking methods are

described as a 5-tuple consisting of its method description, input, output, and initial and

final status flags as Pre- and Post-conditions as follows:

mi =< Met Desc, Inm, Outm, P rem, Postm >

where Met Desc represents a semantic annotation corresponding to the manufacturing ser-

vice provided by the method. This semantic annotation can also be enhanced to represent

additional qualities such as purpose, functional category, quality properties and any other

non-functional attributes of the method.

In the same manner, the abstract manufacturing service requirements of PO are also trans-

lated to the corresponding method request template r referring to the same ontologies O for

runtime method discovery.

ri =< Req Desc, Inr, Outr, P rer, Postr >

The discovery mechanism then employs the reasoning techniques of description logics to

6.3 Method Discovery and Orchestration 131

select the methods from M that share the concepts of ri. For a specific ri, a suitable mi is

found from the MDR if and only if following holds:

(Req Desc
.
= Met Desc ∨Met Desc ⊆ Req Desc) ∧ ∀inputm.Inm∃inputr.Inr 3 inputm

.
=

inputr ∪ inputr ⊆ inputm ∧ ∀outputr.Outr∃outputm.Outm 3 outputr
.
= outputm ∪ outputm ⊆

outputr

In a simple scenario, the method discovery mechanism for a given abstract manufacturing

demand is the subsumption check against the concrete manufacturing service supplies of

the production shop-floor (refer Figure 5.4). However, if the discovery mechanism by the

OWL reasoner returns more than one OPC UA method for a specific manufacturing service

demand, the filtered methods should be subjected to additional ranking process to choose

the most optimal method of manufacturing resources. In such cases, the resource whose

manufacturing service category is nearest in class hierarchy to the PO demand is chosen.

In other words, if req is the abstract manufacturing service requirement, and (M
′
,⊆) is a

partially ordered set of discovered methods based on class hierarchy including req, then such

a set is described as follows:

M
′
= {m′

1,m
′
2,,m

′
n, req}

In such case, the manufacturing service m
′
n which is nearest subclass of req is chosen, i.e.,

m
′
n ⊆ req 3 @m′

n−1 ∈M
′
: m

′
n ⊆ m

′
n−1 ⊆ req

Practically, this can be realized by writing a simple SPARQL SELECT statement with the

help of rdfs:subClassOf construct. In case of a tie, either a manufacturing resource is chosen

randomly, or a further filtering takes place.

The third use case is the selection of suitable manufacturing service based on the custom

business logic residing in cloud MES. In this scenario, a preknowledge of multiple resources

that provide similar manufacturing services is acknowledged, and a corresponding filtering

logic is replicated into the SPARQL SELECT queries as described in Figure 6.4.

Suppose Pre(m) and Post(m) are pre- and post-conditions of a method respectively repre-

sented as formulae in disjunctive normal form, In(m) and Out(m) are inputs and outputs

of a method respectively, and m
′
i and m

′
j are two methods selected in the method discovery

process. The thesis implementation makes following convention for the process of method

composition of m
′
i and m

′
j:

m
′
i ≺ m

′
j 3 ∀out(m

′
i).Out(m

′
i)∃in(m

′
j).In(m

′
j) 3 out(m

′
i)

.
= in(m

′
j) ∪ out(m

′
i) ⊆ in(m

′
j) ∧

∀pre(m′
j) ∈ Pre(m

′
j)∃post(m

′
i) ∈ Post(m

′
i) 3 post(m

′
i) =⇒ pre(m

′
j) = true

The above condition which formalizes causal link using the respective functional parame-

ters allows the chaining of methods m
′
i and m

′
j. The theory mentioned in this section has

132 Chapter 6: Experimental Evaluation

been incorporated in intelligent key-finder demonstrator in the context of OPC UA method

discovery and subsequent flexible orchestration processes of these discovered methods.

The manufacturing and status methods of the OPC UA servers of manufacturing resources

were implemented under their respective base nodes as illustrated in Section 4.2.1. The

GeSCo acts as method discovery repository, OPC UA client and OPC UA server for the

shop-floor communication. The UI of the OPC UA servers of manufacturing resources and

GeSCo was designed such that the OWL-S profile and process model sub-ontologies can be

annotated to the Description fields of the manufacturing and status method base node, and

the corresponding method nodes respectively (refer Figure 4.9). In order to automate this

annotation process, a configuration file was created that mapped the method base nodes and

the application methods to their corresponding OWL-S ontologies. During the start of the

OPC UA servers, this configuration file was referred in order to hook the semantic annotations

to the respective nodes. When the method model concept related to a method is further

dereferenced against a Common Semantic Model (CSM), additional semantic attributes of

the method can be discovered such as method category, and pre- and post-conditions. The

OPC UA client (GeSCo Resource Perception Layer) queries these semantic annotations of

application specific methods against the CSM to arrive at decisions of assigning suitable

resources for the manufacturing operation tasks.

The OPC UA servers of manufacturing resources including GeSCo register themselves by

publishing server metadata containing application methods base nodes to the GeSCo re-

source perception layer when they go online. With the help of the published server meta-

data, the GeSCo, which now acts as OPC UA client, semantically queries all the application

specific methods of the registered manufacturing resources in order to discover the necessary

methods and stores this information regarding the method functionalities in the method

Production Order

BOM
Lower Shell

Upper Shell
Circuit Board

Operations
Transportation Service

Quality Control Service
Assembly Service

Data Matrix Code Detection

RFID IdentificationSWRL/SQWRL/SPARQL
Rules with NC Codes

Figure 6.6: Contents of PO.

6.3 Method Discovery and Orchestration 133

Table 6.1: Illustration of methods offered by resources

Resource Manufacturing Status

Methods Methods

All three prepare isInUse

Press units

assembly isInUseEvent

Pick and Place home readActualPosition

Robot for all

three degrees jogMove

of freedom

jogMoveStop

moveAbsolute

stop

discovery repository component of GeSCo. The method discovery repository stores these

functionalities in a key-value pair collection for the purpose of fast retrieval. The manu-

facturing resources also refer to the method discovery repository in order to find suitable

methods to communicate with GeSCo.

The PO for the production of an intelligent key finder is generated in the cloud MES. It is

basically an ordered list of abstract requirements to produce the product. For the evaluation

use case at hand, it lists the Bill of Materials (BoM), the abstract resource which has at least

three degrees of freedom that organizes the movement of sub-components from warehouse to

the final assembly, the set of quality control operations, and the final assembly operation of

component materials. The quality control operations are data matrix code detection on the

circuit board and the RFID identification of the upper shell of the key finder (refer Figure

6.6 for a brief description of the PO).

The resources of the key finder demonstrator offer various manufacturing and status methods.

The result of the status methods along with the other contextual conditions is taken into

account during formulation of the preconditions for manufacturing methods. For the purpose

of illustration, Table 6.1 lists the methods offered by the press and pick and place robot.

The PO also contains possible non-conformance codes that might arise in production and

a corresponding list of abstract services to resolve the non-conformance issue. When the

dispatcher in the cloud MES dispatches the PO to the GeSCo cache, the production engine

in GeSCo requests GeSCo decentralization facilitator to find the most suitable manufacturing

resource to each of its abstract PO requirements. The decentralization facilitator parses the

semantic concepts related to resource methods from its method discovery repository, and

134 Chapter 6: Experimental Evaluation

1. Method
Description
using CSM

2. Method
Profle, Model and

Grounding published

3. Generation of
Semantic Service

 Request

4. OPC UA Method
Discovery based on
Formal Semantics

Common Semantic Model

OPC UA Server OPC UA Client

GeSCo Method
Discovery Repository

Figure 6.7: Ontology Driven OPC UA Method Creation, Discovery and Invocation employing

OWL-S Framework.

matches the required services of the PO to the capabilities offered by resources on the shop-

floor with the aid of the centrally accessible ontology service. The semantic method creation,

discovery and invocation is illustrated in Figure 6.7.

In implementation, the decentralization facilitator analyzes the method discovery repository

for the manufacturing services that offer the sub-components of the BoM, transportation

service for picking, moving and placing the raw materials, and quality control and assembly

services. The aid of formal representation in the form of OWL-S ontologies hooked to the

OPC UA nodes and their subsequent reasoning capabilities enables the decentralization fa-

cilitator component of GeSCo to automatically select the available manufacturing services

at production runtime. When the production engine receives the chosen manufacturing ser-

vices it combines them to create an adaptive orchestration plan. GeSCo also takes into the

account the necessary pre- and post-conditions of a method to hold true for continuation

of the planned orchestration. For example, in the key-finder use case, the pre-condition for

placing the circuit board onto the assembly unit is the detection of its data matrix code.

Similarly, the upper shell has to be recognized by the RFID reader before it is transported

to the assembly unit. As the OWLAPI is available only for the Java stack, a custom Java

application is implemented that loads, queries, creates, updates, and saves the ontology. It is

also capable of reasoning and adding restriction on the entities of the ontology. At the end of

6.3 Method Discovery and Orchestration 135

each step, the production engine inspects for possible non-conformance logs against the PO,

and also invokes the Java application to reason about the context of method execution by

asserting the class axioms and custom rulesets. The decoupling of manufacturing resources

from manufacturing operations during planning in combination with the proposed seman-

tically enriched OPC UA information model effectively addresses the problems of quality

non-conformance (refer use case 1 in Section 6.3.1) and resource breakdowns (refer use case

2 in Section 6.3.2).

When quality issues are logged against the subassembly at a certain step of production,

the production engine again finds appropriate resources to resolve the non-conformance and

adapts the orchestration plan accordingly. In principle, the production engine makes no

distinction between normal and exceptional situations of the production.

6.3.1 Use case 1: Quality Control

A study was carried out where a quality issue was logged with regard to the assembly oper-

ation with the corresponding non-conformance code. During the orchestration plan creation

step, GeSCo chooses the electric press as first choice for the final assembly operation of the

PO because the pick-place-robot can transport all the sub-components of the key finder to

the electric press mounting area by covering the smallest distance in relation to other presses

(refer to the Figure 6.2). GeSCo arrives at this decision based on the evaluation of a SWRL

rule for selecting the mounting assembly (refer Figure 6.4). The algorithm also takes into

consideration the distance covered by the pick-and-place robot to perform the quality control

operations of the sub-components.

In this use case, the electric assembly unit is issued a command to press after the verifica-

tion of pre-conditions. The electric assembly does not move down to press the sub-assembly

although it does not generate an HTTP 5XX server error. Instead, it returns status code

HTTP 200 OK which corresponds to successful execution of the press operation. These

HTTP response status codes are originated in the encapsulated web servers of the demon-

strator modules, and propagated to the outer OPC UA server. A manual worker who oversees

this production step observes the defective electric assembly unit, and logs a corresponding

Non-Conformance (NC) code against the PO. However, the production work-flow of the

evaluation landscape does not have the option for manual logging of defects. Hence, the

production flow was intercepted through an external application, and the defect is injected

into the production execution. At this point, the production engine realizes the defect in

the assemble step, and it retrieves the abstract services related to the non-conformance code

required to resolve the quality issue from PO cache and sends it to the decentralization fa-

cilitator to find the relevant manufacturing resources. The GeSCo production engine creates

136 Chapter 6: Experimental Evaluation

a new orchestration plan containing only those operations relevant to the logged defect. It

searches in the method discovery repository for the equivalent method providers. Based on

the second choice of the SPARQL query that returns the optimal press resource, GeSCo

concludes that the plug and play pneumatic press also presents a set of methods that pro-

vide the equivalent manufacturing services. Finally, the production step is executed via this

pneumatic press situated on the right part of the demonstrator.

6.3.2 Use case 2: Resource Breakdown

The resource breakdown scenario was also simulated in another PO where the Pneumatic

Press resource which is part of the PO orchestration plan was rendered unresponsive with

the HTTP 500 internal server error status code. The specific PO was put on hold until a

new resource that provided the same manufacturing service was plugged in to the produc-

tion landscape and its capability metadata is published to the GeSCo. A new pneumatic

press resource is plugged in (rightmost press resource in Figure 6.2). GeSCo checks in its

production engine queue for the pending status/new PO that relies on the newly installed

resource, and accordingly changes the orchestration plan.

The decision making process is entirely localized to the shop-floor as GeSCo draws its con-

clusions based on the evaluation results of the SWRL/SQWRL/SPARQL rulesets. Thus, it

proves that with the aid of a formal ontology and subsequent semantic OPC UA framework,

the edge component of a cloud based MES can make adaptive orchestration plans at runtime

in the factory shop-floor even in the event of exceptional scenarios.

6.4 Open Integrated Factory - Generation 2017: Sup-

plementary Use Case

The research concept of extending the functional modules which are related to the runtime

production activities to the production edge layer, and subsequent caching of the PO to the

Production Control Data Cache component of GeSCo was also implemented in the Open

Integrated Factory - Generation 2017 (see Figure 6.8) that SAP along with other technology

partners showcased in Hannover Industrial Fair 2017. This approach significantly reduced

the network latency during the PO execution as GeSCo only communicated with manufac-

turing resources within the local area network. The average network latency between the

GeSCo and the manufacturing resource was in the range of 10-20 milliseconds. However,

the idea of semantic frameworks extended to application specific methods of OPC UA was

not implemented on this demonstrator. The complete PO was cached to the GeSCo with a

concrete mapping of manufacturing resources. The orchestration plan of the PO was created

6.5 Implementation Considerations, Challenges, Results and Lessons Learned 137

Figure 6.8: Open Integrated Factory - Generation 2017.

in the cloud MES as described in Section 1.1. A guidance from the cloud MES is sought by

GeSCo only in the event of a deviation from the production plan.

6.5 Implementation Considerations, Challenges, Re-

sults and Lessons Learned

� The extraction of knowledge and its representation is already a difficult proposition.

In the manufacturing plant, this challenge is amplified owing to the complexity and

the varied nature of the resources, work stations, raw materials, part assemblies and

products. To add to this complexity, the manufacturing plant evolves continuously

during its lifecycle due to the installation and operation of new resources, removal of a

dilapidated resource and introduction of new product variant. This calls for continuous

updates of the knowledge in the shop-floor. Any knowledge extraction solutions should

also be resilient to unscheduled changes of the plant.

� SOAP based web services and subsequently, SWS are deemed to be heavy-weight ser-

vice descriptions after the advent of REST based web services in the last decade. Hence,

SWS could not be widely adopted and consequently, no large scale experimental re-

sults are available to ascertain on their scalability on the internet level. However, for

bounded usage, the semantic description of communication protocols for the purpose

of intelligent discovery and invocation is scalable for new requirements, for example

inter-enterprise operations. This argument also justifies enriching the OPC UA with

138 Chapter 6: Experimental Evaluation

Table 6.2: Comparison of UTF-8 Encoded Data Transfer between OPC UA Server and

GMDR in SemOPC UA and Hybrid Methodologies

SemOPC UA Approach Hybrid Approach

Average Size of the Published

Data per Method

5250 Bytes 510 Bytes

Assumed Number of

Methods per Resource

10

Average Size of the

Published Data per Resource

52500 Bytes 510 Bytes

semantics for communication within the manufacturing plant.

� Taking into account that this work is a first attempt at enriching OPC UA with se-

mantics, there is no tool to automatically create a modified OWL-S sub-ontologies

template that corresponds to a method in OPC UA. Nor is there a tool to attach

the modeled ontology to the OPC UA nodes in case of the SA-OPC UA and hybrid

schemes. The author only developed a utility software that serves the purpose. For

industrial adoption, a sophisticated solution is required that is infalliable, mature, and

hides the complexity involved in developing semantic descriptions.

� All three semantic frameworks of OPC UA presented in Chapter 4 were evaluated

on the key finder demonstrator. Each of the approaches generates data traffic in or-

der to publish the metadata of the application methods offered by the manufacturing

resources. The size of the metadata in case of SA-OPC UA and hybrid approach is

the same as both approaches follow the same concept of server grounding. However,

the hybrid approach shows a significant decrease in the data traffic in comparison to

the SemOPC UA server, and hence, trumps the SemOPC UA approach in this regard.

The SemOPC UA server publishes the entire OWL-S ontology of each of the offered

methods. In addition, the semantic OPC UA server based on the OWL-S framework

sends method grounding data that varies directly with deeper node browse paths and

the number of supported methods. Such method grounding metadata publishing of

all the OPC UA servers of the shop-floor adds the additional burden on the network

bandwidth. On the contrary, the hybrid approach publishes constant size and one-time

metadata of its application method nodes of the OPC UA server to the GeSCo method

discovery repository irrespective of the number of supported methods. Table 6.2 pro-

vides an estimate of the amount of UTF-8 encoded data transferred from an OPC UA

server to the method discovery repository for both the approaches.

6.5 Implementation Considerations, Challenges, Results and Lessons Learned 139

� During experimental evaluation, it was observed that ontology processing does not scale

well with large ontologies. Furthermore, the average response time of the rule validation

services was one second. Specifically, it was also observed that the creation of a new

instances of an OWL ontology manager and an OWL reasoner, creation of SWRL,

SQWRL and SPARQL query engine instances, and loading the ontology documents

from the file system take an inordinate amount of time. In production runtime, this

impacted the resource discovery and rule validations negatively in terms of processing

times. Therefore, REST based web services that provide OWL reasoning and inference

services, and execute SWRL/SQWRL/SPARQL rules/queries were implemented using

a singleton software design pattern in a way it does not affect the concurrency of the

whole system. This permitted in-memory computation of ontology processing, querying

and rule validations, and consequently brought down the average response time of these

web services to under 100 ms. The research use case on the key finder demonstrator

does not contain a large number of parallel processes. Even for a production scenario

involving parallel processes, the waiting times due to a small queue of requests to these

singleton OWL reasoners and rule engines outweigh the drawbacks of large response

times owing to creation of these instances on per service call basis. Furthermore, this

substantial reduction of network latency is an additional benefit over the ability of

GeSCo to react to the local conditions on the shop-floor using formal reasoning which

allows it to function without the explicit guidance from cloud based MES.

� Another aspect that needs to be kept in mind is that the transformation from source

code to OWL ontology is industry and product specific. Furthermore, the rules and

queries that are formulated in the later steps rely heavily on the nitty-gritties of the

generated OWL ontologies. This could be a challenge to general applicability. However,

a stable OWL ontology is guaranteed when the transformation algorithm is run on a

baseline source code that undergoes limited changes. Moreover, the generated OWL

ontology, and associated business and production rulesets can be reused for a particular

product variant.

� Although the presented rule-based approach covers most business scenarios, it was also

discovered during evaluation that the semantic web languages fail in the processing of

large amounts of data and complex calculations. However, in retrospect, the semantic

web languages were essentially conceptualized with only formal knowledge represen-

tation in mind. The research use-case has moderate data processing in the form of

identification of colors of upper and lower shells of the key finder module, and identi-

fying a 2D barcode on the circuit board which is sandwiched between these upper and

lower shells. The corresponding image processing source code was compiled and the

resulting 6kb dynamic linked library (DLL) was cached along with the PO to GeSCo.

The GeSCo is designed such that custom process logic that inherits its API classes can

140 Chapter 6: Experimental Evaluation

Figure 6.9: OPC UA Wrapper for HTTP based ResCom servers, and Caching of source code

for validations involving large data processing (Highlighted in Green Color).

be attached to it as either OPC UA, SOAP, REST or ODATA based WS-* servers

(refer Figure 6.9). Alternatively, when the source code size for the production step val-

idation is too large to cache in the production network, it is inevitable to request the

cloud-based business applications such as MES for rule validations and determination

of the next step of production.

141

7 Discussion: Summary and Outlook

The final chapter of the thesis summarizes the research work concisely, and lays down some

plans for future work.

Decentralization in production control is an important aspect of manufacturing in today’s

world. In line with this objective, even as master control information resides in a cloud

based MES, reaction to local conditions on the factory shop-floor with a negligible amount

of network latency is another requirement of present and future digital factories. The first

approach of this thesis was the distribution of manufacturing responsibilities, which involved

delegation of production runtime tasks to the edge component in order to readily interact

with the physical world. The edge component brings memory and computing physically

closer to the location where it is needed in order to improve the quality of service in a cloud

computing paradigm.

The touchpoints of the thesis include manufacturing activities ranging from production design

to production planning, execution and control. Although these three stages of manufacturing

are distinct in theory, the boundaries of each of these activities come into contact with each

other in reality. In order to achieve higher efficiency, integration of these stages is essential.

Ontologies make it possible by making the data interoperable across different stages and

modules.

With an intention to make data machine processable, and achieve precise and unambigu-

ous communication, RAMI4.0, which helps in identifying relevant standards to realize the

concept of digital factory stresses the importance of semantics. Accordingly, it defines in-

formal semantics for application-agnostic services, but admits a lacuna in the definition of

the application methods of AAS. Though it acknowledges and recommends the importance

of formal ontologies [Econ17], it has not explicitly mandated its usage. To this end, with

the objective to address the difficulties that stem from differences in the meaning and us-

age of manufacturing vocabulary, and subsequent inability to express semantic information

about manufacturing services offered by the OPC UA resources, and automatic discovery

and orchestration by software agents, a scientific methodology is formulated that serves the

following purposes:

� Pragmatic automation of formal domain knowledge creation exploiting the source code

142 Chapter 7: Discussion: Summary and Outlook

of MES modules

� Consistent description of each capability, resource, and state of the resource, PO and

manufacturing operation in the shop-floor by exploiting the generated domain knowl-

edge to design a well-formed ontology

� Exploitation of description logics in the ontology to formulate complex semantic rulesets

using off-the-shelf semantic language axioms and custom conditions in the semantic

web rule languages in order to capture the contextual information at each step of the

production

� Creation of the semantically augmented OPC UA framework that fosters the applica-

tion of knowledge in production which in turn assists in the dynamic decision-making

process

Activities in Cloud MES Activities in Production Shop-Floor
under the Supervision of GeSCo

Automatic Ontoloy
Generation

OntologyResolution
Rules

PO Creation

Business
Rules

Pre-Production Tasks

Application Method Discovery
 and Production Orchestration

Production
Execution and
Control

Post-Production
Ontology to Source Code Transformation

Transmitted
to Production
Edge
Processing
in GeSCo
Modules

--> OWL-S Ontology Generation using Automatically
Geneated Ontology (Production Rules)

--> Semantic Annotation of Automatically Generated
Ontology to OPC UA Application Method Nodes

--> Semantic Annotation of OWL-S sub-ontologies
 to OPC UA Application Method Nodes

refers
refers

time
axis

Figure 7.1: Contributions of Thesis in Chronological Order.

143

Contributions of the Thesis In order to address the requirements at hand, the thesis

presents an aligned three step solution proposal, which are listed in the following (refer

Figure 7.1):

1. Partial extension of functional modules of the cloud MES to the edge of factory shop-

floor, collectively called Generic Shop-Floor Connector (GeSCo), so that control data

temporarily resided, processed, and updated within the local area network

2. Due to inherent inadequacy of OPC UA to formally describe the data in its infor-

mation model, introduction of formal semantic OPC UA framework to facilitate the

production execution and control for autonomous discovery, adaptive orchestration

and subsequent invocation of its application-specific methods taking into account the

contextual information in manufacturing

3. In order to avoid the ad-hoc and time-consuming process of creation of formal ontolo-

gies silos by different departments of manufacturing, and the corresponding ontology

alignment for potential mismatches, the thesis also presents a methodology of semi-

automatic ontology-encoding from the central cloud based MES. As cloud MES has

overarching visibility, the resulting generated homogeneous ontology can be consumed

directly in order to model the data by GeSCo and manufacturing resources. To this end,

the thesis evaluation also allows the semi-automatic creation of an OWL-S ontology

for OPC UA application methods employing the OWLAPI.

With regards to item 2 in the above-mentioned enumeration, the thesis adopts the popular

semantic web services frameworks and specifications of OWL-S and SAWSDL, respectively,

to the application methods of OPC UA. Later, a feasible hybrid approach which is a com-

position of the adopted OWL-S and SAWSDL frameworks that derives the benefits, and

at the same time, precludes the shortcomings of both approaches is introduced. This the-

sis recommends implementing this hybrid semantic framework on the OPC UA server of

manufacturing resources due to its advantages over its individual constituent approaches.

However, the common rationale behind the conception and consequent adoption of these

various semantic web services frameworks to the OPC UA information model is the auto-

matic discovery, orchestration and invocation of web services. Therefore, the decision to

adopt a specific semantic OPC UA framework is up to the manufacturer, who determines

the best-fit approach based on the requirements and preference. With the view on industry

acceptance, an intentional lightweight SA-OPC UA approach has been proposed to smoothen

the learning curve for early adopters of formal semantics on OPC UA application methods.

To that end, one of the important goals of the thesis is to prove the extension of the seman-

tic web services concept, general applicability and implementation feasibility to OPC UA

application methods, and draw further research interest in this direction. Therefore, it does

not experiment with each of the features of these semantic web service frameworks.

144 Chapter 7: Discussion: Summary and Outlook

In relation to item 3, the automatic ontology-encoding process involves the translation of

concepts from the software engineering domain to ontology engineering domain which leads

to inevitable loss of data. The thesis proposes to overcome this inefficacy of the translation

process due to the nature of ontology construction languages such as OWL with the addition

of imperative knowledge provided by formal rule based languages such as SWRL, SQWRL

and SPARQL.

With the above-mentioned solution, the entire PO can be delegated to the GeSCo, and

consequently, GeSCo can handle both normal and exceptional scenarios in manufacturing.

Even though the design was conceptualized keeping in mind multiple PO executions, it was

not experimentally validated due to the logistic limitations of the key-finder demonstrator

modules to conduct parallel implementations.

As an acknowledgement to this thesis, the OPC Foundation has begun the process of adding

support for OWL semantic descriptions as amendments to the existing specification through

an OPC UA working group, tentatively named “Automatic Validation of OPC UA Informa-

tion Model”. Global names, dictionary references, method metadata, interfaces and other

addins are being introduced as initial development. The author is also a member of that

working group.

Future Work

In the discussion of semantic web services, the important frameworks are OWL-S, SAWSDL

and WSMO. The work in this thesis focuses only on the first two frameworks due to their

strong orientation towards OWL, which is a W3C recommendation and part of the semantic

web technology stack. WSMO introduces a formal language, called Web Service Modeling

Language (WSML), for the specification of different aspects of semantic web services. Due

to the poor OWL integration of WSMO, it did not fit into the thesis landscape along with

the other concepts. Nonetheless, it would be an interesting research prospect to apply the

WSMO framework for discovery, composition and invocation of the OPC UA application

methods.

The thesis considers semantic annotation of the nodes of the OPC UA information model

only from the perspective of the automatic application method discovery and composition.

However, with the growing number of OPC UA collaborations, it becomes increasingly dif-

ficult to check for the correctness of every such collaboration document which spans several

hundreds to thousands of pages. In such a situation, the formal semantic annotation of the

complete information model of OPC UA enables automatic detection of anomalies and log-

ical inconsistencies in such a collaboration design of OPC UA servers. Another interesting

research in this direction would be the development of custom rulesets in the form of SWRL

145

or SQWRL rules which when executed provide guidance regarding the custom behaviors in

design in addition to correctness. Such rules and rule based languages dramatically increase

the possibilities.

The thesis only concentrates on the current data at hand in the factory shop-floor. How-

ever from the cloud infrastructure perspective, it did not experiment with the building of

sophisticated statistical models in the centralized MES and training based on past data to

gain insights into the nature of production. For example, computational algorithms which

rely on repeated random sampling understand all the possible outcomes of decisions, assess

the associated impacts and make optimal decisions under uncertain conditions. Such predic-

tion models take into account uncertainty, and hence, prevent/reduce the adaptive measures

taken in the production edge components in case of exceptional situations.

Finally, there is some scope for future work from the standpoint of implementations and

tools around ontologies for the OPC UA information model. The research assigns a func-

tional sub-module to store the metadata published by the manufacturing resources in a

method discovery repository. However, this is only an abstract concept in the thesis, and its

implementation is also ad-hoc in the context of the realization of the evaluation landscape.

The detailed and scientific structure of such a published metadata storage is interesting in

the absence of standards such as WSDL documents. Since it is a first attempt at annotating

OWL reference concepts to OPC UA methods and associated nodes, there exist no tools to

automate this process. Also from a OWL-S point of view, there is a need for a tool that

automatically generates OWL-S ontologies for a specific application method of a remotely

situated OPC UA server, for example from cloud infrastructure.

146

Bibliography

[ARQ18] ARQ - A SPARQL Processor for Jena. 2018. – URL: https://jena.

apache.org/documentation/query/ [Date: 2018-11-28].

[Art09] Artemis Industry Association. 2009. – URL: https://artemis-ia.eu/

[Date: 2019-03-24].

[Emb14] Embedded Multi-Core systems for Mixed Criticality applications in dynamic

and changeable real-time environments. 2014. – URL: https://www.

artemis-emc2.eu/ [Date: 2019-03-24].

[Her18] HermiT OWL Reasoner. 2018. – URL: http://www.hermit-reasoner.

com/ [Date: 2018-11-28].

[IMC14] IMC-AESOP European Project. 2014. – URL: http://imc-aesop.org/

[Date: 2019-03-24].

[OWL18a] OWL 2 Web Ontology Language. 2018. – URL: https://www.w3.org/TR/

owl2-overview/ [Date: 2018-11-28].

[OWL18b] OWL 2 Web Ontology Language Profiles, Second Edition. 2018. – URL: https:

//www.w3.org/TR/owl2-profiles/ [Date: 2019-03-24].

[Pro19] Protege-OWL API. 2019. – URL: https://protegewiki.stanford.

edu/wiki/ProtegeOWL_API_Programmers_Guide/ [Date: 2019-03-24].

[RES18] RES-COM Project. 2018. – URL: http://www.res-com-projekt.de [Ac-

cessed Date: 2018-08-15].

[Rul18] RuleML Wiki. 2018. – URL: http://wiki.ruleml.org/index.php/

RuleML_Home/ [Date: 2018-11-28].

[SAP19a] SAP Plant Connectivity. 2019. – URL: https://help.sap.com/viewer/

p/SAP_PLANT_CONNECTIVITY [Accessed Date: 2019-03-24].

[SAP19b] SAP Plant Connectivity, Enhanced Method Processing. 2019. – URL:

https://help.sap.com/doc/saphelp_mii151sp03/15.1.3/

en-US/75/819a57c209ab6be10000000a4450e5/frameset.htm

[Accessed Date: 2019-03-24].

https://jena.apache.org/documentation/query/
https://jena.apache.org/documentation/query/
https://artemis-ia.eu/
https://www.artemis-emc2.eu/
https://www.artemis-emc2.eu/
http://www.hermit-reasoner.com/
http://www.hermit-reasoner.com/
http://imc-aesop.org/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/owl2-profiles/
https://www.w3.org/TR/owl2-profiles/
https://protegewiki.stanford.edu/wiki/ProtegeOWL_API_Programmers_Guide/
https://protegewiki.stanford.edu/wiki/ProtegeOWL_API_Programmers_Guide/
http://www.res-com-projekt.de
http://wiki.ruleml.org/index.php/RuleML_Home/
http://wiki.ruleml.org/index.php/RuleML_Home/
https://help.sap.com/viewer/p/SAP_PLANT_CONNECTIVITY
https://help.sap.com/viewer/p/SAP_PLANT_CONNECTIVITY
https://help.sap.com/doc/saphelp_mii151sp03/15.1.3/en-US/75/819a57c209ab6be10000000a4450e5/frameset.htm
https://help.sap.com/doc/saphelp_mii151sp03/15.1.3/en-US/75/819a57c209ab6be10000000a4450e5/frameset.htm

Bibliography 147

[Sem18] Semantic Query-Enhanced Web Rule Language. 2018. – URL: https:

//github.com/protegeproject/swrlapi/wiki/SQWRL/ [Date: 2018-

11-28].

[SOA19] SOAP UI. 2019. – URL: https://www.soapui.org/ [Accessed Date: 2018-

03-24].

[SOC09] SOCRADES European Project. 2009. – URL: http://www.socrades.net/

[Date: 2019-03-24].

[SPA18a] SPARQL Inferencing Notation. 2018. – URL: https://www.w3.org/

Submission/spin-overview/ [Date: 2018-11-28].

[SPA18b] SPARQL Protocol and RDF Query Language. 2018. – URL: https://www.

w3.org/TR/rdf-sparql-query/ [Date: 2018-11-28].

[SWR18a] SWRL: A Semantic Web Rule Language Combining OWL and RuleML. 2018.

– URL: https://www.w3.org/Submission/SWRL/ [Date: 2018-11-28].

[SWR18b] SWRL TBox BuiltIn Library. 2018. – URL: https://github.com/

protegeproject/swrlapi/wiki/SWRLTBoxBuiltInLibrary/ [Date:

2018-11-28].

[Abde17] Abdelaal, Alaa E.; Hegazy, Tamir ; Hefeeda, Mohamed: Event-based

control as a cloud service. In: American Control Conference (ACC), 2017 IEEE,

2017, S. 1017–1023.

[Adol15] Adolphs, Peter; Bedenbender, H; Dirzus, D; Ehlich, M; Epple, U; Han-

kel, M; Heidel, R; Hoffmeister, M; Huhle, H; Kärcher, B [u. a.]: Status

Report-Reference Architecture Model Industrie 4.0 (RAMI4. 0). In: VDI-Verein

Deutscher Ingenieure eV and ZVEI-German Electrical and Electronic Manufac-

turers Association, Tech. Rep (2015).

[Aker18] Akerman, Magnus: Implementing Shop Floor IT for Industry 4.0, Diss., 06

2018. – 2–2 S.

[Akht08] Akhtar, Waseem; Kopeckỳ, Jacek; Krennwallner, Thomas ; Polleres,

Axel: XSPARQL: Traveling between the XML and RDF worlds–and avoiding

the XSLT pilgrimage. In: European Semantic Web Conference Springer, 2008,

S. 432–447.

[Amer05] Ameri, Farhad; Dutta, Deba: Product lifecycle management: closing the

knowledge loops. In: Computer-Aided Design and Applications 2 (2005), Nr. 5,

S. 577–590.

[Amer12] Ameri, Farhad; Urbanovsky, Colin ; McArthur, Christian: A systematic

https://github.com/protegeproject/swrlapi/wiki/SQWRL/
https://github.com/protegeproject/swrlapi/wiki/SQWRL/
https://www.soapui.org/
http://www.socrades.net/
https://www.w3.org/Submission/spin-overview/
https://www.w3.org/Submission/spin-overview/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/Submission/SWRL/
https://github.com/protegeproject/swrlapi/wiki/SWRLTBoxBuiltInLibrary/
https://github.com/protegeproject/swrlapi/wiki/SWRLTBoxBuiltInLibrary/

148 Bibliography

approach to developing ontologies for manufacturing service modeling. In: Proc.

7th International Conference on Formal Ontology in Information Systems (FOIS

2012), Graz, Austria Citeseer, 2012.

[Ande00] Anderson, Carl; Bartholdi, John J.: Centralized versus decentralized con-

trol in manufacturing: lessons from social insects. In: Complexity and complex

systems in industry (2000), S. 92–105.

[Apos13] Apostu, Anca; Puican, Florina; Ularu, Geanina; Suciu, George; Todoran,

Gyorgy [u. a.]: Study on advantages and disadvantages of Cloud Computing–

the advantages of Telemetry Applications in the Cloud. In: Recent Advances in

Applied Computer Science and Digital Services 2103 (2013).

[Arab17] Arab-Mansour, Ikbal; Millet, Pierre-Alain ; Botta-Genoulaz, Valérie:

A business repository enrichment process: A case study for manufacturing exe-

cution systems. In: Computers in Industry 89 (2017), S. 13–22.

[Arbe11] Arbeitsgruppe MES, ZVEI; (Verlag), ZVEI (Hrsg.). Manufacturing Ex-

ecution Systems (MES), Market specific requirements and supplier independent

solutions. July 2011.

[Arch18] Architecture, OPC U.: Interoperability for Industrie 4.0 and the Internet of

Things Industrie 4.0. In: OPC Unified Architecture White Paper (2018), June.

[Auer07] Auer, Sören; Bizer, Christian; Kobilarov, Georgi; Lehmann, Jens; Cyga-

niak, Richard ; Ives, Zachary: Dbpedia: A nucleus for a web of open data. In:

The semantic web. Springer, 2007, S. 722–735.

[Auto17] working group in the Automation Division, ZVEI Manufacturing Ex-

ecution S.: Position paper - Industrie 4.0: MES ? Prerequisite for Digital

Operation and Production Management, Tasks and Future Requirements. In:

ZVEI-German Electrical and Electronic Manufacturers Association, Tech. Rep

1 (2017), August, S. 25.

[Baad08] Baader, Franz; Horrocks, Ian ; Sattler, Ulrike: Description logics. In:

Foundations of Artificial Intelligence 3 (2008), S. 135–179.

[Bail03] Bailey, David; Wright, Edwin: Practical SCADA for industry. Elsevier,

2003.

[Bake12] Baker, Thomas; Noy, Natasha ; Swick, Ralph; Herman, Ivan (Hrsg.): Se-

mantic Web Case Studies and Use Cases. June 2012. – URL: https://

www.w3.org/2001/sw/sweo/public/UseCases/ [Date Accessed: 2019-

03-24].

[Barb15] Barbosa, José; Leitão, Paulo; Adam, Emmanuel ; Trentesaux, Damien:

https://www.w3.org/2001/sw/sweo/public/UseCases/
https://www.w3.org/2001/sw/sweo/public/UseCases/

Bibliography 149

Dynamic self-organization in holonic multi-agent manufacturing systems: The

ADACOR evolution. In: Computers in Industry 66 (2015), S. 99–111.

[Bary10] Baryannis, George; Plexousakis, Dimitris: Automated Web Service Com-

position: State of the Art and Research Challenges. In: ICS-FORTH, Tech.

Rep 409 (2010).

[Batc12] Batchelor, Joy; Andersen, HENRIK R.: Bridging the product configuration

gap between PLM and ERP?an automotive case study. In: 19th international

product development management conference, Manchester, 2012.

[Batt05] Battle, Steve; Bernstein, Abraham; Boley, Harold; Grosof, Benjamin;

Gruninger, Michael; Hull, Richard; Kifer, Michael; Martin, David;

McIlraith, Sheila; McGuinness, Deborah [u. a.]: Semantic web services

framework (SWSF) overview. In: W3C Member Submission 9 (2005).

[Beac00] Beach, R; Muhlemann, AP; Price, DHR; Paterson, A ; Sharp, JA: The

selection of information systems for production management: An evolving prob-

lem. In: International Journal of Production Economics 64 (2000), Nr. 1-3, S.

319–329.

[Beck15] Becker, Klaus; Frtunikj, Jelena; Felser, Meik; Fiege, Ludger; Buckl,

Christian; Rothbauer, Stefan; Zhang, Licong ; Klein, Cornel: RACE RTE:

a runtime environment for robust fault-tolerant vehicle functions. In: CARS

2015-Critical Automotive applications: Robustness & Safety, 2015.

[Bede17] Bedenbender, H; Bentkus, A; Epple, U; Hadlich, T; Heidel, R; Hiller-

meier, O; Hoffmeister, M; Huhle, H; Kiele-Dunsche, M; Koziolek, H

[u. a.]: Industrie 4.0 plug-and-produce for adaptable factories: Example use

case definition models and implementation. In: Federal Ministry for Economic

Affairs and Energy (BMWi), Tech. Rep. (2017).

[Bern01] Berners-Lee, Tim; Hendler, James ; Lassila, Ora: The semantic web. In:

Scientific american 284 (2001), Nr. 5, S. 34–43.

[Besc12] Beschi, Manuel; Dormido, Sebastián; Sanchez, José ; Visioli, Antonio:

Characterization of symmetric send-on-delta PI controllers. In: Journal of Pro-

cess Control 22 (2012), Nr. 10, S. 1930–1945.

[Bett13] Bettenhausen, Kurt D.; Kowalewski, Stefan: Cyber-physical systems:

Chancen und Nutzen aus Sicht der Automation. In: VDI/VDE-Gesellschaft

Mess-und Automatisierungstechnik (2013), S. 9–10.

[Bohn06] Bohn, Hendrik; Bobek, Andreas ; Golatowski, Frank: SIRENA-Service

Infrastructure for Real-time Embedded Networked Devices: A service oriented

150 Bibliography

framework for different domains. In: Networking, international conference on

systems and international conference on mobile communications and learning

technologies, 2006. ICN/ICONS/MCL 2006. International conference on IEEE,

2006, S. 43–43.

[Bohr05] Bohring, Hannes; Auer, Sören [u. a.]: Mapping XML to OWL Ontologies.

In: Leipziger Informatik-Tage 72 (2005), S. 147–156.

[Borg04] Borgo, Stefano; Leitão, Paulo: The role of foundational ontologies in man-

ufacturing domain applications. In: OTM Confederated International Confer-

ences” On the Move to Meaningful Internet Systems” Springer, 2004, S. 670–

688.

[Box00] Box, Don; Ehnebuske, David; Kakivaya, Gopal; Layman, Andrew;

Mendelsohn, Noah; Nielsen, Henrik F.; Thatte, Satish ; Winer, Dave.

Simple object access protocol (SOAP) 1.1. 2000.

[Brat07] Bratt, Steve: Semantic web and other W3C technologies to watch. In: Talks

at W3C, January (2007).

[Bray97] Bray, Tim; Paoli, Jean; Sperberg-McQueen, C M.; Maler, Eve ;

Yergeau, François: Extensible markup language (XML). In: World Wide

Web Journal 2 (1997), Nr. 4, S. 27–66.

[Bric04] Brickley, Dan: RDF vocabulary description language 1.0: RDF schema. In:

http://www. w3. org/TR/rdf-schema/ (2004).

[Brow84] Browne, Jim; Dubois, Didier; Rathmill, Keith; Sethi, Suresh P.; Stecke,

Kathryn E. [u. a.]: Classification of flexible manufacturing systems. In: The

FMS magazine 2 (1984), Nr. 2, S. 114–117.

[Buss13] Bussmann, Stefan; Jennings, Nicolas R. ; Wooldridge, Michael: Multiagent

systems for manufacturing control: a design methodology. Springer Science &

Business Media, 2013.

[Camb12] Cambridge Semantics: Examples of Semantic Web Applications. August

2012. – [Online; Accesses 24-March-2019].

[Când10] Cândido, Gonçalo; Jammes, François; de Oliveira, José B. ; Colombo,

Armando W.: SOA at device level in the industrial domain: Assessment of

OPC UA and DPWS specifications. In: Industrial Informatics (INDIN), 2010

8th IEEE International Conference on IEEE, 2010, S. 598–603.

[Carv18] Carvalho, Núbia; Chaim, Omar; Cazarini, Edson ; Gerolamo, Mateus:

Manufacturing in the fourth industrial revolution: A positive prospect in Sus-

tainable Manufacturing. In: Procedia Manufacturing 21 (2018), S. 671–678.

Bibliography 151

[Chen17] Cheng, Haibo; Xue, Lingling; Wang, Peng; Zeng, Peng ; Yu, Haibin:

Ontology-based web service integration for flexible manufacturing systems. In:

Industrial Informatics (INDIN), 2017 IEEE 15th International Conference on

IEEE, 2017, S. 351–356.

[Chir00] Chirn, Jin-Lung; McFarlane, Duncan C.: A holonic component-based ap-

proach to reconfigurable manufacturing control architecture. In: Database and

Expert Systems Applications, 2000. Proceedings. 11th International Workshop

on IEEE, 2000, S. 219–223.

[Chiu10] Chiu, Yuan-Shyi P.; Chen, Kuang-Ku; Cheng, Feng-Tsung ; Wu, Mei-Fang:

Optimization of the finite production rate model with scrap, rework and stochas-

tic machine breakdown. In: Computers & mathematics with applications 59

(2010), Nr. 2, S. 919–932.

[Chri01] Christensen, Erik; Curbera, Francisco; Meredith, Greg; Weerawarana,

Sanjiva [u. a.]. Web services description language (WSDL) 1.1. 2001.

[Cisc15] Cisco: the Internet of Things: Extend the Cloud to Where the Things are. In:

Cisco White Paper (2015).

[Clea96] Clearwater, Scott H.: Market-based control: A paradigm for distributed re-

source allocation. World Scientific, 1996.

[Colo12] Colombo, Armando W.; Mendes, J M.; Leitão, Paulo ; Karnouskos,

Stamatis: Service-oriented SCADA and MES supporting petri nets based or-

chestrated automation systems. In: IECON 2012-38th Annual Conference on

IEEE Industrial Electronics Society IEEE, 2012, S. 6144–6150.

[Colo14] Colombo, Armando W.; Bangemann, Thomas ; Karnouskos, Stamatis:

IMC-AESOP outcomes: Paving the way to collaborative manufacturing sys-

tems. In: Industrial Informatics (INDIN), 2014 12th IEEE International Con-

ference on IEEE, 2014, S. 255–260.

[Comm96] Committee, Technical; IMS (Hrsg.): Intelligent Manufacturing Systems Re-

search Program Archive. June 1996. – URL: http://ksi.cpsc.ucalgary.

ca/IMS/IMS.html/ [Date Accessed: 2019-03-24].

[DANE99] DANEELS, A: WHAT IS SCADA? In: International Conference on Acceler-

ator and Large Experimental Physics Control Systems, 1999, 1999.

[Dast16] Dastjerdi, Amir V.; Buyya, Rajkumar: Fog computing: Helping the Internet

of Things realize its potential. In: Computer 49 (2016), Nr. 8, S. 112–116.

[De S08] De Souza, Luciana Moreira S.; Spiess, Patrik; Guinard, Dominique;

Köhler, Moritz; Karnouskos, Stamatis ; Savio, Domnic: Socrades: A web

http://ksi.cpsc.ucalgary.ca/IMS/IMS.html/
http://ksi.cpsc.ucalgary.ca/IMS/IMS.html/

152 Bibliography

service based shop floor integration infrastructure. In: The internet of things.

Springer, 2008, S. 50–67.

[Deug06] de Deugd, Scott; Carroll, Randy; Kelly, Kevin; Millett, Bill ; Ricker,

Jeffrey: SODA: Service oriented device architecture. In: IEEE Pervasive Com-

puting 5 (2006), Nr. 3, S. 94–96.

[Dilt91] Dilts, David M.; Boyd, Neil P. ; Whorms, HH: The evolution of control ar-

chitectures for automated manufacturing systems. In: Journal of manufacturing

systems 10 (1991), Nr. 1, S. 79–93.

[Econ17] for Economic Affairs, Federal M.; Paper, Energy (BMWi) W.: Applica-

tion Scenario in Practice: Order-controlled Production of a Customised Bicycle

Handlebar – Working Paper. In: MKL Druck GmbH & Co. KG, Ostbevern,

2017, S. 1–20.

[ElMa05] ElMaraghy, Hoda A.: Flexible and reconfigurable manufacturing systems

paradigms. In: International journal of flexible manufacturing systems 17

(2005), Nr. 4, S. 261–276.

[ElMa09] ElMaraghy, Hoda A.: Changing and evolving products and systems–

models and enablers. In: Changeable and reconfigurable manufacturing systems.

Springer, 2009, S. 25–45.

[Endr04] Endrei, Mark; Ang, Jenny; Arsanjani, Ali; Chua, Sook; Comte, Philippe;

Krogdahl, P̊al; Luo, Min ; Newling, Tony: Patterns: service-oriented ar-

chitecture and web services. IBM Corporation, International Technical Support

Organization, 2004.

[Fens11a] Fensel, Dieter; Facca, Federico M.; Simperl, Elena ; Toma, Ioan:

Lightweight semantic web service descriptions. In: Semantic Web Services.

Springer, 2011, S. 279–295.

[Fens11b] Fensel, Dieter; Facca, Federico M.; Simperl, Elena ; Toma, Ioan: Semantic

web services. Springer Science & Business Media, 2011.

[Fens18] Fensel, Anna: Lecture notes in Semantic Web Services, Summer Semester,

2018. June 2018. – URL: https://www.sti-innsbruck.at/node/

24522/ [Date Accessed: 2019-03-24].

[Fiel00] Fielding, Roy T.; Taylor, Richard N.: Architectural styles and the design

of network-based software architectures. Bd. 7. University of California, Irvine

Irvine, USA, 2000.

[Fort14] Fortineau, Virginie; Fiorentini, Xenia; Paviot, Thomas; Louis-Sidney,

Ludovic ; Lamouri, Samir: Expressing formal rules within ontology-based

https://www.sti-innsbruck.at/node/24522/
https://www.sti-innsbruck.at/node/24522/

Bibliography 153

models using SWRL: an application to the nuclear industry. In: International

Journal of Product Lifecycle Management 7 (2014), Nr. 1, S. 75–93.

[Fral03] Fraleigh, Chuck; Tobagi, Fouad ; Diot, Christophe: Provisioning IP back-

bone networks to support latency sensitive traffic. In: INFOCOM 2003. Twenty-

Second Annual Joint Conference of the IEEE Computer and Communications.

IEEE Societies Bd. 1 IEEE, 2003, S. 375–385.

[Fray01] Frayret, Jean-Marc; D?Amours, Sophie; Montreuil, Benoit ; Cloutier,

Louis: A network approach to operate agile manufacturing systems. In: Inter-

national Journal of Production Economics 74 (2001), Nr. 1-3, S. 239–259.

[Frei04] Freitag, Michael; Herzog, Otthein ; Scholz-Reiter, Bernd: Selbsts-

teuerung logistischer Prozesse–ein Paradigmenwechsel und seine Grenzen. In:

Industrie Management 20 (2004), Nr. 1, S. 23–27.

[Früh17] Frühwirth, Thomas; Einfalt, Alfred; Diwold, Konrad ; Kastner, Wolf-

gang: A distributed multi-agent system for switching optimization in low-

voltage power grids. In: Emerging Technologies and Factory Automation

(ETFA), 2017 22nd IEEE International Conference on IEEE, 2017, S. 1–8.

[Gagn14] Gagnaire, Maurice; Diaz, Felipe; Coti, Camille; Cerin, Christophe; Sh-

iozaki, Kazuhiko; Xu, Yingjie; Delort, Pierre; Smets, Jean-Paul; Le Lous,

Jonathan; Lubiarz, Stephen [u. a.]: Downtime statistics of current cloud solu-

tions. In: International Working Group on Cloud Computing Resiliency, Tech.

Rep (2014).

[Gazi15] Gazis, Vangelis; Leonardi, Alessandro; Mathioudakis, Kostas;

Sasloglou, Konstantinos; Kikiras, Panayotis ; Sudhaakar, Raghu-

ram: Components of fog computing in an industrial internet of things

context. In: Sensing, Communication, and Networking-Workshops (SECON

Workshops), 2015 12th Annual IEEE International Conference on IEEE, 2015,

S. 1–6.

[Gire04] Giret, Adriana; Botti, Vicente: Holons and agents. In: Journal of Intelligent

Manufacturing 15 (2004), Oct, Nr. 5, S. 645–659. – ISSN 1572–8145.

[Give13] Givehchi, Omid; Trsek, Henning ; Jasperneite, Jürgen: Cloud computing

for industrial automation systems?A comprehensive overview. In: Emerging

Technologies & Factory Automation (ETFA), 2013 IEEE 18th Conference on

IEEE, 2013, S. 1–4.

[Gold15] Goldschmidt, Thomas; Murugaiah, Mahesh K.; Sonntag, Christian;

Schlich, Bastian; Biallas, Sebastian ; Weber, Peter: Cloud-based control:

154 Bibliography

A multi-tenant, horizontally scalable soft-PLC. In: 2015 IEEE 8th International

Conference on Cloud Computing (CLOUD) IEEE, 2015, S. 909–916.

[Grea17] Grealou, Lionel; Technologies, TATA (Hrsg.): PLM+ERP+MES+CRM:

THE FOUR CORNERSTONES OF MANUFACTURING. October 2017. –

[Online; posted 31-October-2017].

[Haer83] Haerder, Theo; Reuter, Andreas: Principles of transaction-oriented

database recovery. In: ACM Computing Surveys (CSUR) 15 (1983), Nr. 4,

S. 287–317.

[Haik18] Haik, Yousef; Sivaloganathan, Sangarappillai ; Shahin, Tamer M.: Engi-

neering design process. Nelson Education, 2018.

[Haki] Hakimpour, Farshad; Cong, Suo ; Damm, Daniela E.: A Practical Tutorial

on Semantic Web Services. In: hakimpour. com .

[Haup13] Haupert, Jens: DOMeMan: Repräsentation, Verwaltung und Nutzung von

digitalen Objektgedächtnissen. Saarland University, 2013.

[Hawk12] Hawke, Sandro; Herman, Ivan; Archer, Phil ; Prud, Eric; Herman, Ivan

(Hrsg.): W3C SEMANTIC WEB ACTIVITY. June 2012. – URL: https:

//www.w3.org/2001/sw/ [Date Accessed: 2019-03-24].

[Hedm14] Hedman, Jonas; Andersson, Bo: Selection method for COTS systems. In:

Procedia Technology 16 (2014), S. 301–309.

[Hega15] Hegazy, Tamir; Hefeeda, Mohamed: Industrial automation as a cloud ser-

vice. In: IEEE Transactions on Parallel and Distributed Systems 26 (2015), Nr.

10, S. 2750–2763.

[Helo14] Helo, Petri; Suorsa, Mikko; Hao, Yuqiuge ; Anussornnitisarn, Pornthep:

Toward a cloud-based manufacturing execution system for distributed manufac-

turing. In: Computers in Industry 65 (2014), Nr. 4, S. 646–656.

[Hill] Hillier, Bob; Rule, Design (Hrsg.): PLM vs ERP do you really need both?. –

[Online; Accesses 24-March-2019].

[Hitz10] Hitzler, Pascal; Krotzsch, Markus ; Rudolph, Sebastian: Foundations of

Semantic Web Technologies. (2010).

[Holl99] Holland, Christoper P.; Light, Ben ; Gibson, Nicola: A critical success

factors model for enterprise resource planning implementation. In: Proceedings

of the 7th European conference on information systems Bd. 1, 1999, S. 273–287.

[Hong08] Hong, I-Hsuan; Ammons, Jane C. ; Realff, Matthew J.: Decentralized

decision-making and protocol design for recycled material flows. In: Interna-

https://www.w3.org/2001/sw/
https://www.w3.org/2001/sw/

Bibliography 155

tional Journal of Production Economics 116 (2008), Nr. 2, S. 325–337.

[Hopp17] Hoppe, Stefan; Foundation, OPC (Hrsg.): There Is No Industrie 4.0 without

OPC UA. June 2017. – URL: https://opcconnect.opcfoundation.

org/2017/06/there-is-no-industrie-4-0-without-opc-ua/

[Date Accessed: 2019-03-24].

[Horr04] Horrocks, Ian; Patel-Schneider, Peter F.; Boley, Harold; Tabet, Said;

Grosof, Benjamin; Dean, Mike [u. a.]: SWRL: A semantic web rule language

combining OWL and RuleML. In: W3C Member submission 21 (2004), S. 79.

[Horr05] Horrocks, Ian; Parsia, Bijan; Patel-Schneider, Peter ; Hendler, James:

Semantic web architecture: Stack or two towers? In: International Workshop on

Principles and Practice of Semantic Web Reasoning Springer, 2005, S. 37–41.

[Horr11] Horridge, Matthew; Bechhofer, Sean: The owl api: A java api for owl

ontologies. In: Semantic Web 2 (2011), Nr. 1, S. 11–21.

[Huan02] Huang, Chin-Yin: Distributed manufacturing execution systems: A workflow

perspective. In: Journal of Intelligent manufacturing 13 (2002), Nr. 6, S. 485–

497.

[Hwan11] Hwang, Jing-Jang; Chuang, Hung-Kai; Hsu, Yi-Chang ; Wu, Chien-Hsing:

A business model for cloud computing based on a separate encryption and de-

cryption service. In: Information Science and Applications (ICISA), 2011 In-

ternational Conference on IEEE, 2011, S. 1–7.

[IEC16] IEC, 62264; for Standardization, International O. (Hrsg.): IEC 62264-

3:2016, Enterprise-control system integration – Part 3: Activity models of man-

ufacturing operations management. December 2016. – [Online; Accesses 24-

March-2019].

[Iiva90] Iivari, Juhani: Implementation of in-house developed vs application package

based information systems. In: ACM SIGMIS Database: the DATABASE for

Advances in Information Systems 21 (1990), Nr. 1, S. 1–10.

[Izag11] Izaguirre, M Jorge A G.; Lobov, Andrei ; Lastra, Jose L M.: OPC-UA

and DPWS interoperability for factory floor monitoring using complex event

processing. In: Industrial Informatics (INDIN), 2011 9th IEEE International

Conference on IEEE, 2011, S. 205–211.

[Jenn03] Jennings, Nicholas R.; Bussmann, Stefan: Agent-based control systems: Why

are they suited to engineering complex systems? In: IEEE control systems 23

(2003), Nr. 3, S. 61–73.

[Jeon17] Jeon, Byeong W.; Um, Jumyung; Yoon, Soo C. ; Suk-Hwan, Suh: An

https://opcconnect.opcfoundation.org/2017/06/there-is-no-industrie-4-0-without-opc-ua/
https://opcconnect.opcfoundation.org/2017/06/there-is-no-industrie-4-0-without-opc-ua/

156 Bibliography

architecture design for smart manufacturing execution system. In: Computer-

Aided Design and Applications 14 (2017), Nr. 4, S. 472–485.

[Jevt16] Jevtic, Jovan: Evaluating benefits realisation management (BRM) methodology

as a tool for implementing manufacturing execution system (MES), Diss., 2016.

[Ka98] Ka, B; Monostori, László; Szelke, E [u. a.]: An object-oriented framework

for developing distributed manufacturing architectures. In: Journal of Intelli-

gent Manufacturing 9 (1998), Nr. 2, S. 173–179.

[Kane16] Kaneko, Yu; Ito, Toshio: A Reliable Cloud-Based Feedback Control System.

In: Cloud Computing (CLOUD), 2016 IEEE 9th International Conference on

IEEE, 2016, S. 880–883.

[Kang12] Kang, Woochul; Kapitanova, Krasimira ; Son, Sang H.: RDDS: A real-time

data distribution service for cyber-physical systems. In: IEEE Transactions on

Industrial Informatics 8 (2012), Nr. 2, S. 393–405.

[Kara14] Karadgi, Sachin: A Reference Architecture for Real-Time Performance Mea-

surement. Springer, 2014.

[Katt18a] Katti, Badarinath; Plociennik, Christiane; Ruskowski, Martin ;

Schweitzer, Michael: SA-OPC-UA: Introducing Semantics to OPC-UA Ap-

plication Methods. In: 2018 IEEE 14th International Conference on Automation

Science and Engineering (CASE), 2018. – ISSN 2161–8089, S. 1189–1196.

[Katt18b] Katti, Badarinath; Plociennik, Christiane ; Schweitzer, Michael: GeSCo:

Exploring the Edge Beneath the Cloud in Decentralized Manufacturing. In:

International Journal On Advances in Systems and Measurements v11,1&2

(2018), S. 183–195.

[Katt18c] Katti, Badarinath; Plociennik, Christiane ; Schweitzer, Michael: A

Jumpstart Framework for Semantically Enhanced OPC-UA. In: KI - Künstliche

Intelligenz (2018), Dec.

[Katt18d] Katti, Badarinath; Plociennik, Christiane ; Schweitzer, Michael:

SemOPC-UA: Introducing Semantics to OPC-UA Application Specific Meth-

ods. In: IFAC-PapersOnLine 51 (2018), Nr. 11, S. 1230–1236.

[Kend17] Kendrick, Blake A.; Dhokia, Vimal ; Newman, Stephen T.: Strategies to

realize decentralized manufacture through hybrid manufacturing platforms. In:

Robotics and Computer-Integrated Manufacturing 43 (2017), S. 68–78.

[Khan17] Khan, Waqas A.; Wisniewski, Lukasz; Lang, Dorota ; Jasperneite, Jürgen:

Analysis of the requirements for offering industrie 4.0 applications as a cloud

service. In: Industrial Electronics (ISIE), 2017 IEEE 26th International Sym-

Bibliography 157

posium on IEEE, 2017, S. 1181–1188.

[Khil11] Khilwani, Nitesh: Role of Semantic web in the changing context of Enterprise

Collaboration, © Nitesh Khilwani, Diss., 2011.

[Klus] Kap. 3 In: Klusch, Matthias: CASCOM - Intelligent Service Coordination in

the Semantic Web.

[Klus08] Klusch, Matthias: Semantic web service description. In: CASCOM: intelligent

service coordination in the semantic web. Springer, 2008, S. 41–103.

[Koen10] Koenig, Sven; Keskinocak, Pinar ; Tovey, Craig A.: Progress on Agent

Coordination with Cooperative Auctions. In: AAAI Bd. 10, 2010, S. 1713–1717.

[Koes67] Koestler, Arthur [u. a.]: The ghost in the machine. (1967).

[Kolb18] Kolberg, Dennis: Entwicklung einer Referenzarchitektur zur Realisierung von

Methoden der Lean Production mittels digitaler Technologien, Technische Uni-

versität Kaiserslautern, doctoralthesis, 2018. – VIII, 189 S.

[Kope07] Kopeckỳ, Jacek; Vitvar, Tomas; Bournez, Carine ; Farrell, Joel: Sawsdl:

Semantic annotations for wsdl and xml schema. In: IEEE Internet Computing

(2007), Nr. 6, S. 60–67.

[Kore10] Koren, Yoram; Shpitalni, Moshe: Design of reconfigurable manufacturing

systems. In: Journal of manufacturing systems 29 (2010), Nr. 4, S. 130–141.

[Kuma02] Kumara, SRT; Lee, Y-H ; Chatterjee, K: Distributed multiproject resource

control: A market-based approach. In: CIRP Annals-Manufacturing Technology

51 (2002), Nr. 1, S. 367–370.

[Lang12] Langmann, Reinhard; Makarov, Oleg; Meyer, Laurid ; Nesterenko,

Sergey: The woas project: Web-oriented automation system. In: Remote Engi-

neering and Virtual Instrumentation (REV), 2012 9th International Conference

on IEEE, 2012, S. 1–3.

[Lang14] Langmann, R; Meyer, L: Automation services from the cloud. In: Remote

Engineering and Virtual Instrumentation (REV), 2014 11th International Con-

ference on IEEE, 2014, S. 256–261.

[Lass99] Lassila, Ora; Swick, Ralph R.: Resource description framework (RDF) model

and syntax specification. (1999).

[Lége05] Léger, Alain; Nixon, Lyndon J.; Shvaiko, Pavel ; Charlet, Jean: Seman-

tic Web applications: Fields and Business cases. The Industry challenges the

research. In: IFIP Working Conference on Industrial Applications of Semantic

Web Springer, 2005, S. 27–46.

158 Bibliography

[Leit06a] Leitão, Paulo; Colombo, Armando W. ; Restivo, Francisco: A formal

specification approach for holonic control systems: the ADACOR case. In:

International journal of manufacturing technology and management 8 (2006),

Nr. 1-3, S. 37–57.

[Leit06b] Leitão, Paulo; Restivo, Francisco: ADACOR: A holonic architecture for agile

and adaptive manufacturing control. In: Computers in industry 57 (2006), Nr.

2, S. 121–130.

[Leit09] Leitão, Paulo: Agent-based distributed manufacturing control: A state-of-

the-art survey. In: Engineering Applications of Artificial Intelligence 22 (2009),

Nr. 7, S. 979–991.

[Leit13] Leitão, Paulo; Mař́ık, Vladimı́r ; Vrba, Pavel: Past, present, and future of

industrial agent applications. In: IEEE Transactions on Industrial Informatics

9 (2013), Nr. 4, S. 2360–2372.

[Lena11] Lenart, Anna: ERP in the Cloud–Benefits and Challenges. In: EuroSympo-

sium on Systems Analysis and Design Springer, 2011, S. 39–50.

[Lenn17] Lennvall, Tomas; Gidlund, Mikael ; Åkerberg, Johan: Challenges when

bringing IoT into industrial automation. In: AFRICON, 2017 IEEE IEEE,

2017, S. 905–910.

[Li18] Li, Zhi; Zhou, Xiaowu; Wang, WM; Huang, George; Tian, Zonggui ;

Huang, Shaowei: An ontology-based product design framework for manu-

facturability verification and knowledge reuse. In: The International Journal of

Advanced Manufacturing Technology (2018), S. 1–15.

[Lobo09] Lobov, Andrei; Lopez, Fernando U.; Herrera, Vladimir V.; Puttonen,

Juha ; Lastra, Jose L M.: Semantic Web Services framework for manufac-

turing industries. In: Robotics and Biomimetics, 2008. ROBIO 2008. IEEE

International Conference on IEEE, 2009, S. 2104–2108.

[Losk11] Loskyll, Matthias; Schlick, Jochen; Hodek, Stefan; Ollinger, Lisa; Ger-

ber, Tobias ; P̂ırvu, Bogdan: Semantic service discovery and orchestration for

manufacturing processes. In: Emerging Technologies & Factory Automation

(ETFA), 2011 IEEE 16th Conference on IEEE, 2011, S. 1–8.

[Losk13] Loskyll, Matthias: Entwicklung einer Methodik zur dynamischen kon-

textbasierten Orchestrierung semantischer Feldgerätefunktionalitäten. Technical

University of Kaiserslautern, 2013.

[Ltd12] Ltd, Clydebuilt Business S.: Developing In-House Vs. Off the Shelf. In: Clyde-

built Business Solutions Ltd White Paper (2012).

Bibliography 159

[Maci12] Maciá Pérez, Francisco; Berna-Martinez, Jose V.; Marcos-Jorquera,

Diego; Lorenzo Fonseca, Iren; Ferrándiz Colmeiro, Antonio [u. a.]:

Cloud agile manufacturing. (2012).

[Mang11] Mangiuc, Dragos M.: ENTERPRISE 2.0-IS THE MARKET READY? In:

Accounting and Management Information Systems 10 (2011), Nr. 4, S. 516.

[Mari05] Marik, Vladimir; McFarlane, Duncan: Industrial adoption of agent-based

technologies. In: IEEE Intelligent Systems 20 (2005), Nr. 1, S. 27–35.

[Marq16] Marques, Maria; Agostinho, Carlos; Poler, Raul; Zacharewicz, Gregory

; Jardim-Gonçalves, Ricardo: An architecture to support responsive produc-

tion in manufacturing companies. In: Intelligent Systems (IS), 2016 IEEE 8th

International Conference on IEEE, 2016, S. 40–46.

[Marq17] Marques, Maria; Agostinho, Carlos; Zacharewicz, Gregory ; Jardim-

Gonçalves, Ricardo: Decentralized decision support for intelligent manufac-

turing in Industry 4.0. In: Journal of Ambient Intelligence and Smart Environ-

ments 9 (2017), Nr. 3, S. 299–313.

[Mars11] Marston, Sean; Li, Zhi; Bandyopadhyay, Subhajyoti; Zhang, Juheng ;

Ghalsasi, Anand: Cloud computing?The business perspective. In: Decision

support systems 51 (2011), Nr. 1, S. 176–189.

[Mart04] Martin, David; Burstein, Mark; Hobbs, Jerry; Lassila, Ora; McDer-

mott, Drew; McIlraith, Sheila; Narayanan, Srini; Paolucci, Massimo;

Parsia, Bijan; Payne, Terry [u. a.]: OWL-S: Semantic markup for web ser-

vices. In: W3C member submission 22 (2004), Nr. 4.

[MATS10] MATSOKIS, Aristeidis: An Ontology-Based Approach for Closed-Loop Prod-

uct Lifecycle Management, ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAU-

SANNE, Diss., 2010.

[Matu99] Maturana, Francisco; Shen, Weiming ; Norrie, Douglas H.: MetaMorph:

an adaptive agent-based architecture for intelligent manufacturing. In: Inter-

national Journal of Production Research 37 (1999), Nr. 10, S. 2159–2173.

[McIl01] McIlraith, Sheila A.; Son, Tran C. ; Zeng, Honglei: Semantic web services.

In: IEEE intelligent systems 16 (2001), Nr. 2, S. 46–53.

[Mena00] Mena, Eduardo; Illarramendi, Arantza ; Goni, Alfredo: Automatic on-

tology construction for a multiagent-based software gathering service. In: In-

ternational Workshop on Cooperative Information Agents Springer, 2000, S.

232–243.

[Merd09] Merdan, Munir: Knowledge-based multi-agent architecture applied in the as-

160 Bibliography

sembly domain. na, 2009.

[MESA97] MESA, International: Mes explained: A high level vision. In: MESA Interna-

tional White Paper6 1 (1997), September, S. 25.

[Modr09] Modrák, Vladimı́r; Mandulák, Ján: Mapping Development of MES Func-

tionalities. In: ICINCO-SPSMC, 2009, S. 244–247.

[Mono06] Monostori, László; Váncza, József ; Kumara, Soundar R.: Agent-based

systems for manufacturing. In: CIRP Annals-Manufacturing Technology 55

(2006), Nr. 2, S. 697–720.

[Mour13] Mourtzis, Dimitris; Doukas, Michalis: Decentralized manufacturing systems

review: challenges and outlook. In: Robust Manufacturing Control. Springer,

2013, S. 355–369.

[Mube17] Mubeen, Saad; Nikolaidis, Pavlos; Didic, Alma; Pei-Breivold, Hongyu;

Sandström, Kristian ; Behnam, Moris: Delay mitigation in offloaded cloud

controllers in industrial iot. In: IEEE Access 5 (2017), S. 4418–4430.

[O’Co08] O’Connor, Martin J.; Shankar, Ravi D.; Musen, Mark A.; Das, Amar K. ;

Nyulas, Csongor: The SWRLAPI: A Development Environment for Working

with SWRL Rules. In: OWLED, 2008.

[OPC 02] OPC Foundation: OPC Common Specifications. December 2002. – [Online;

Accesses 24-March-2019].

[OPC 17a] OPC Foundation: OPC UA Specifications. November 2017. – [Online;

Accesses 24-March-2019].

[OPC 17b] OPC Foundation: OPC Unified Architecture Part 3 :Address Space Model.

In: OPC UA Part 3 - Address Space Model Release 1.04 Specification 3 (2017),

November.

[OPC 18a] OPC Foundation: OPC UA Collaborations. December 2018. – URL: https:

//opcfoundation.org/Collaborations/ [Date Accessed: 2019-03-24].

[OPC 18b] OPC Foundation: OPC Unified Architecture Part 12 :Discovery and Global

Services. In: OPC UA Part 12 - Discovery and Global Services Release 1.04

Specification 1.04 (2018), February.

[OPC 19] OPC Foundation: OPC Unified Architecture. Jan 2019. – URL: https://

opcfoundation.org/about/opc-technologies/opc-ua/ [Date Ac-

cessed: 2019-03-24].

[Orga09] Organization for the Advancement of Structured Informa-

tion Standards (OASIS): Devices Profile for Web Services. July

https://opcfoundation.org/Collaborations/
https://opcfoundation.org/Collaborations/
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://opcfoundation.org/about/opc-technologies/opc-ua/

Bibliography 161

2009. – URL: http://docs.oasis-open.org/ws-dd/dpws/1.1/os/

wsdd-dpws-1.1-spec-os.html/ [Date Accessed: 2019-03-24].

[Park12] Park, Hong-Seok; Tran, Ngoc-Hien: An autonomous manufacturing system

based on swarm of cognitive agents. In: Journal of Manufacturing Systems 31

(2012), Nr. 3, S. 337–348.

[Paru87] Parunak, H Van D.: Manufacturing experience with the contract net. In:

Distributed Artificial Intelligence, Volume I. Elsevier, 1987, S. 285–310.

[Paru97a] Parunak, H Van D.; Baker, Albert D. ; Clark, Steven J.: The AARIA agent

architecture: An example of requirements-driven agent-based system design. In:

Agents, 1997, S. 482–483.

[Paru97b] Parunak, H Van D.; VanderBok, Raymond S. [u. a.]: Managing emergent

behavior in distributed control systems. In: Ann Arbor 1001 (1997), S. 48106.

[Pauk16] Pauker, Florian; Frühwirth, Thomas; Kittl, Burkhard ; Kastner, Wolf-

gang: A systematic approach to OPC UA information model design. In: Pro-

cedia CIRP 57 (2016), S. 321–326.

[Paul93] Paulk, Mark C.; Curtis, Bill; Chrissis, Mary B. ; Weber, Charles V.:

The capability maturity model for software. In: Software engineering project

management 10 (1993), S. 1–26.

[Plat16] Platform, Industrie 4.: DIN SPEC 91345: Reference Architecture Model

Industrie 4.0. In: Reference Architecture Model Industrie 4 (2016), April.

[Ploc11] Plociennik, Christiane: Device Cooperation in Ad-hoc Multimedia Ensembles,

University of Rostock, Diss., 2011.

[Prab15] Prabhakar, Badrinath: Advantages, Disadvantages between in house devel-

oped MES system and industry standard MES systems. November 2015. – [On-

line; posted 11-November-2015].

[Pěch08] Pěchouček, Michal; Mař́ık, Vladimı́r: Industrial deployment of multi-agent

technologies: review and selected case studies. In: Autonomous agents and

multi-agent systems 17 (2008), Nr. 3, S. 397–431.

[Ren12] Ren, Lei; Zhang, Lin; Tao, Fei; Zhang, Xiaolong; Luo, Yongliang ; Zhang,

Yabin: A methodology towards virtualisation-based high performance simu-

lation platform supporting multidisciplinary design of complex products. In:

Enterprise IS 6 (2012), S. 267–290.

[Rohj11] Rohjans, Sebastian; Fensel, Dieter ; Fensel, Anna: OPC UA goes seman-

tics: Integrated communications in smart grids. In: Emerging Technologies &

http://docs.oasis-open.org/ws-dd/dpws/1.1/os/wsdd-dpws-1.1-spec-os.html/
http://docs.oasis-open.org/ws-dd/dpws/1.1/os/wsdd-dpws-1.1-spec-os.html/

162 Bibliography

Factory Automation (ETFA), 2011 IEEE 16th Conference on IEEE, 2011, S.

1–4.

[Roma05] Roman, Dumitru; Keller, Uwe; Lausen, Holger; De Bruijn, Jos; Lara,

Rubén; Stollberg, Michael; Polleres, Axel; Feier, Cristina; Bussler,

Cristoph ; Fensel, Dieter: Web service modeling ontology. In: Applied ontology

1 (2005), Nr. 1, S. 77–106.

[Rose15] Rosen, Roland; Von Wichert, Georg; Lo, George ; Bettenhausen,

Kurt D.: About the importance of autonomy and digital twins for the future of

manufacturing. In: IFAC-PapersOnLine 48 (2015), Nr. 3, S. 567–572.

[Russ16] Russell, Stuart J.; Norvig, Peter: Artificial intelligence: a modern approach.

Malaysia; Pearson Education Limited,, 2016.

[Saha06] Saharidis, Georgios K.; Dallery, Yves ; Karaesmen, Fikri: Centralized

versus decentralized production planning. In: RAIRO-Operations Research 40

(2006), Nr. 2, S. 113–128.

[Sang17] Sang, Zhiqian; Xu, Xun: The framework of a cloud-based CNC system. In:

Procedia CIRP 63 (2017), S. 82–88.

[Schl13] Schlick, Jochen; Stephan, Peter ; Greiner, Thomas: Kontext, Dienste und

Cloud Computing. In: atp edition 55 (2013), Nr. 04, S. 32–41.

[Schn10] Schniederjans, Marc J.; Hamaker, Jamie L. ; Schniederjans, Ashlyn M.:

Information Technology Investment: Decision-Making Methodology Second Edi-

tion. World Scientific Publishing Company, 2010.

[Scho07] Scholz-Reiter, B; Freitag, M: Autonomous processes in assembly systems.

In: CIRP annals 56 (2007), Nr. 2, S. 712–729.

[Scho17] Schoitsch, Erwin; Skavhaug, Amund: 12th International ERCIM/EWIC-

S/ARTEMIS Workshop on Dependable Smart Embedded Cyber-Physical Sys-

tems and Systems-of-Systems (DECSoS 2017). In: Computer Safety, Relia-

bility, and Security: SAFECOMP 2017 Workshops, ASSURE, DECSoS, SAS-

SUR, TELERISE, and TIPS, Trento, Italy, September 12, 2017, Proceedings

Bd. 10489 Springer, 2017, S. 96.

[Seet15] Seethamraju, Ravi: Adoption of software as a service (SaaS) enterprise re-

source planning (ERP) systems in small and medium sized enterprises (SMEs).

In: Information systems frontiers 17 (2015), Nr. 3, S. 475–492.

[Shaw96] Shaw, Mary; Garlan, David: Software architecture. Bd. 101. Prentice Hall

Englewood Cliffs, 1996.

Bibliography 163

[Shen03] Shen, Weiming; Norrie, Douglas H. ; Barthès, Jean-Paul: Multi-agent

systems for concurrent intelligent design and manufacturing. CRC press, 2003.

[Silv01] Silveira, Giovani D.; Borenstein, Denis ; Fogliatto, Flavio S.: Mass

customization: Literature review and research directions. In: International

journal of production economics 72 (2001), Nr. 1, S. 1–13.

[Smar18] SmartProduction, KUKA; Center, KUKA Smart P. (Hrsg.): Matrix pro-

duction: an example for Industrie 4.0. February 2018. – [Online; posted 21-

February-2018].

[Stev07] Steve Bratt: Semantic web, and other technologies to watch. August 2007.

– [Online; Accesses 24-March-2019].

[Stop09] Stopper, Markus; Katalinic, Branko: Service-oriented architecture design

aspects of OPC UA for industrial applications. In: Proceedings of the Interna-

tional Multi-Conference of Engineers and Computer Scientists Bd. 2 Citeseer,

2009.

[Tao11] Tao, Fei; Zhang, Lin; Venkatesh, VC; Luo, Y ; Cheng, Ying: Cloud manu-

facturing: a computing and service-oriented manufacturing model. In: Proceed-

ings of the Institution of Mechanical Engineers, Part B: Journal of Engineering

Manufacture 225 (2011), Nr. 10, S. 1969–1976.

[Tao14] Tao, Fei; Cheng, Ying; Da Xu, Li; Zhang, Lin ; Li, Bo H.: CCIoT-CMfg:

cloud computing and internet of things-based cloud manufacturing service sys-

tem. In: IEEE Transactions on Industrial Informatics 10 (2014), Nr. 2, S.

1435–1442.

[Tao15] Tao, Fei; Zhang, Lin; Liu, Yongkui; Cheng, Ying; Wang, Lihui ; Xu, Xun:

Manufacturing service management in cloud manufacturing: overview and fu-

ture research directions. In: Journal of Manufacturing Science and Engineering

137 (2015), Nr. 4, S. 040912.

[Tao18] Tao, Fei; Cheng, Jiangfeng; Qi, Qinglin; Zhang, Meng; Zhang, He ; Sui,

Fangyuan: Digital twin-driven product design, manufacturing and service with

big data. In: The International Journal of Advanced Manufacturing Technology

94 (2018), Nr. 9-12, S. 3563–3576.

[Thar96] Tharumarajah, A: Comparison of the bionic, fractal and holonic manufac-

turing system concepts. In: International Journal of Computer Integrated Man-

ufacturing 9 (1996), Nr. 3, S. 217–226.

[Tren09] Trentesaux, Damien: Distributed control of production systems. In: Engi-

neering Applications of Artificial Intelligence 22 (2009), Nr. 7, S. 971–978.

164 Bibliography

[Tsen97] Tseng, Mitchell M.; Lei, Ming; Su, Chuanjun ; Merchant, M E.: A collab-

orative control system for mass customization manufacturing. In: Cirp Annals

46 (1997), Nr. 1, S. 373–376.

[Tsit84] Tsitsiklis, John N.: Problems in decentralized decision making and com-

putation. / MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR

INFORMATION AND DECISION SYSTEMS. 1984. – Forschungsbericht.

[Ueda97] Ueda, Kanji; Vaario, Jari ; Ohkura, Kazuhiro: Modelling of biological man-

ufacturing systems for dynamic reconfiguration. In: CIRP Annals 46 (1997),

Nr. 1, S. 343–346.

[Ueda04] Ueda, Kanji; Lengyel, Attila ; Hatono, Itsuo: Emergent synthesis ap-

proaches to control and planning in make to order manufacturing environments.

In: CIRP Annals-Manufacturing Technology 53 (2004), Nr. 1, S. 385–388.

[Umbl03] Umble, Elisabeth J.; Haft, Ronald R. ; Umble, M M.: Enterprise resource

planning: Implementation procedures and critical success factors. In: European

journal of operational research 146 (2003), Nr. 2, S. 241–257.

[Van 98] Van Brussel, Hendrik; Wyns, Jo; Valckenaers, Paul; Bongaerts, Luc ;

Peeters, Patrick: Reference architecture for holonic manufacturing systems:

PROSA. In: Computers in industry 37 (1998), Nr. 3, S. 255–274.

[Van 08] Van Deursen, Davy; Poppe, Chris; Martens, Gäetan; Mannens, Erik ;

Van de Walle, Rik: XML to RDF conversion: a generic approach. In:

Automated solutions for Cross Media Content and Multi-channel Distribution,

2008. AXMEDIS’08. International Conference on IEEE, 2008, S. 138–144.

[Varg05] Varga, LZ; Sztaki, ÁH: Semantic Web Services Description Based on Web

Services Description. In: W3C Workshop on Frameworks for Semantics in Web

Services, 2005.

[Vega97] Vega-Redondo, Fernando: The evolution of Walrasian behavior. In: Econo-

metrica: Journal of the Econometric Society (1997), S. 375–384.

[Vere07] Verein Deutscher Ingenieure, Richtlinie: 5600, Manufacturing Execution

Systems. In: Verein Deutscher Ingenieure (2007).

[Verl14] Verl, Alexander; Lechler, Armin: Steuerung aus der Cloud. In: Industrie

4.0 in Produktion, Automatisierung und Logistik. Springer, 2014, S. 235–247.

[Vers06] Verstraete, Paul; Saint Germain, Bart; Hadeli, Karuna; Valckenaers,

Paul ; Van Brussel, Hendrik: On applying the PROSA reference architecture

in multi-agent manufacturing control applications. In: Proceedings of the Multi-

agent Systems and Software Architecture Special Track at Net. ObjectDays, 2006,

Bibliography 165

S. 31–47.

[Vija08] Vijayaraghavan, Athulan; Sobel, Will; Fox, Armando; Dornfeld, David ;

Warndorf, Paul: Improving machine tool interoperability using standardized

interface protocols: MT connect. (2008).

[Voge13] Vogel-Heuser, Birgit; Kegel, Gunther ; Wucherer, Klaus: Global infor-

mation architecture for industrial automation. In: atp edition 51 (2013), Nr.

01-02, S. 108–115.

[Voor11] Voorsluys, William; Broberg, James ; Buyya, Rajkumar: Introduction to

cloud computing. In: Cloud computing: Principles and paradigms (2011), S.

1–41.

[Vrba11] Vrba, Pavel; Radakovič, Miloslav; Obitko, Marek ; Mař́ık, Vladimı́r: Se-

mantic technologies: latest advances in agent-based manufacturing control sys-

tems. In: International Journal of Production Research 49 (2011), Nr. 5, S.

1483–1496.

[Wagn10] Wagner, Thomas; Hausner, Carolin; Elger, Jurgen; Lowen, Ulrich ;

Luder, Arndt: Engineering processes for decentralized factory automation

systems. In: Factory Automation. InTech, 2010.

[Wahl12] Wahlster, Wolfgang: From industry 1.0 to industry 4.0: Towards the 4th

industrial revolution. In: Forum Business meets Research, 2012.

[Wang00] Wangler, B; Paheerathan, SJ: Horizontal and vertical integration of orga-

nizational IT systems. In: Information Systems Engineering (2000).

[Wang10] Wang, Guohui; Ng, TS E.: The impact of virtualization on network perfor-

mance of amazon ec2 data center. In: Infocom, 2010 proceedings ieee IEEE,

2010, S. 1–9.

[Web 16] Web Object Oriented Protocol for Software and Automation:

Woopsa Protocol Specifications. August 2016. – [Online; Accesses 24-March-

2019].

[Webe16] Weber, Werner; Hoess, Alfred; van Deventer, Jan; Oppenheimer,

Frank; Ernst, Rolf; Kostrzewa, Adam; Doré, Philippe; Goubier, Thierry;

Isakovic, Haris; Druml, Norbert [u. a.]: The EMC2 Project on Embedded

Microcontrollers: Technical Progress after Two Years. In: Digital System Design

(DSD), 2016 Euromicro Conference on IEEE, 2016, S. 524–531.

[Wei07] Wei, Chun-Chin; Liang, Gin-Shuh ; Wang, Mao-Jiun J.: A comprehensive

supply chain management project selection framework under fuzzy environment.

In: International Journal of Project Management 25 (2007), Nr. 6, S. 627–636.

166 Bibliography

[Wien07] Wiendahl, H-P; ElMaraghy, Hoda A.; Nyhuis, Peter; Zäh, Michael F.;

Wiendahl, H-H; Duffie, Neil ; Brieke, Michael: Changeable manufacturing-

classification, design and operation. In: CIRP annals 56 (2007), Nr. 2, S.

783–809.

[Wood09] Wood, Timothy; Shenoy, Prashant J.; Gerber, Alexandre; van der

Merwe, Jacobus E. ; Ramakrishnan, Kadangode K.: The Case for

Enterprise-Ready Virtual Private Clouds. In: HotCloud, 2009.

[Wu14] Wu, Wen-Hsiung; Fang, Lung-Ching; Wang, Wei-Yang; Yu, Min-Chun ;

Kao, Hao-Yun: An advanced CMII-based engineering change management

framework: the integration of PLM and ERP perspectives. In: International

Journal of Production Research 52 (2014), Nr. 20, S. 6092–6109.

[Xu12] Xu, Xun: From cloud computing to cloud manufacturing. In: Robotics and

computer-integrated manufacturing 28 (2012), Nr. 1, S. 75–86.

[Yang16] Yang, Zhixin; Zhang, Pengbo ; Chen, Lei: RFID-enabled indoor positioning

method for a real-time manufacturing execution system using OS-ELM. In:

Neurocomputing 174 (2016), S. 121–133.

[Zabo02] Zabojnik, Jan: Centralized and decentralized decision making in organizations.

In: Journal of Labor Economics 20 (2002), Nr. 1, S. 1–22.

[Zeeb07] Zeeb, Elmar; Bobek, Andreas; Bohn, Hendrik ; Golatowski, Frank:

Lessons learned from implementing the Devices Profile for Web Services. In:

Digital EcoSystems and Technologies Conference, 2007. DEST’07. Inaugural

IEEE-IES IEEE, 2007, S. 229–232.

[Zhan09] Zhang, Liang-Jie; Zhou, Qun: CCOA: Cloud computing open architecture.

In: Web Services, 2009. ICWS 2009. IEEE International Conference on Ieee,

2009, S. 607–616.

[Zhan11] Zhang, Yingfeng; Huang, George Q.; Qu, Ting; Ho, Oscar ; Sun, Shudong:

Agent-based smart objects management system for real-time ubiquitous manu-

facturing. In: Robotics and Computer-Integrated Manufacturing 27 (2011), Nr.

3, S. 538–549.

[Zhan17] Zhang, Yingfeng; Zhang, Geng; Liu, Yang ; Hu, Di: Research on services en-

capsulation and virtualization access model of machine for cloud manufacturing.

In: Journal of Intelligent Manufacturing 28 (2017), Nr. 5, S. 1109–1123.

[Zhao17] Zhao, Yuanyuan; Liu, Quan; Xu, Wenjun; Xu, Xun W.; Yu, Shiqiang ; Zhou,

Zude: An interoperable knowledge base for manufacturing resource and service

capability. In: International Journal of Manufacturing Research 12 (2017), Nr.

Bibliography 167

1, S. 20–43.

[Zhon13] Zhong, Ray Y.; Dai, QY; Qu, T; Hu, GJ ; Huang, George Q.: RFID-enabled

real-time manufacturing execution system for mass-customization production.

In: Robotics and Computer-Integrated Manufacturing 29 (2013), Nr. 2, S. 283–

292.

[Zimm80] Zimmermann, Hubert: OSI reference model–The ISO model of architecture

for open systems interconnection. In: IEEE Transactions on communications

28 (1980), Nr. 4, S. 425–432.

[Zueh10] Zuehlke, Detlef: SmartFactory?Towards a factory-of-things. In: Annual Re-

views in Control 34 (2010), Nr. 1, S. 129–138.

168

Curriculum vitae

Personal Details
Name: Badarinath Katti
Nationality: Indian
Residence: Kaiserslautern, Germany

Education
09.2015-05.2020: Scientific Researcher / Doctoral Candidate

Lehrstuhl für Werkzeugmaschinen und Steuerungen
(WSKL), Technische Universität Kaiserslautern.

 SAP SE, Walldorf.
Thesis: Ontology-Based Approach to Decentralized Production
Control in the Context of Cloud Manufacturing Execution Systems
Result: Summa Cum Laude

04.2013-06.2015: Masters in Computer Science
Specialization in Embedded Systems,
Technische Universität Kaiserslautern
Thesis: Conception and Experimental Evaluation of Event Driven
Architecture in MES Context
Result: Very Good

08.2005-06.2009: Bachelors in Electronics and Communication
Engineering, KLE Technological University, Hubballi, India
Thesis: Wireless Hotel Management using Microcontrollers
Result: First class with Distinction

Work Experience
10.2019-Present: Developer at SAP, Walldorf
09.2015-05.2020: PhD Student & Part time developer, SAP SE, Walldorf
12.2014-05.2015: Masters Thesis Student, BASF, Ludwigshafen

06.2014-12.2014: Research Assistant(HiWi), Fraunhofer IESE, Kaiserslautern
09.2013-03.2015: Research Assistant (HiWi), TU Kaiserslautern

10.2009-02.2013: Software Engineer, Infosys Limited, Bengaluru, India

Patent
Title: Transfer of Production Control in Proximity to

Production Site for enabling Decentralized
Manufacturing

First Author: Badarinath Katti
Second Author: Dr. Michael Schweitzer

