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Foreword

This text constitutes a faithful transcript of the lecture Cohomology of Groups held at the TU Kaiser-
slautern during the Summer Semester 2018 (14 Weeks, 4SWS).

Together with the necessary theoretical foundations the main aims of this lecture are to:

‚ provide students with a modern approach to group theory;

‚ learn about homological algebra and a specific cohomology theory;

‚ consistently work with universal properties and get acquainted with the language of category
theory:

‚ establish connections between the cohomology of groups and the theory of central extensions of
groups as developed by Schur at the beginning of the 1900’s.

We assume as pre-requisites bachelor-level algebra courses dealing with linear algebra and elemen-
tary group theory, such as the standard lectures Grundlagen der Mathematik, Algebraische Strukturen,
Einführung in die Algebra, and Kommutative Algebra at the TU Kaiserslautern. In order to complement
these pre-requisites, the first chapter will deal formally with more advanced background material on
group theory, namely semi-direct products and presentation of groups, while the second chapter will
provide a short introduction to the theory of modules, where we will emphasise in particular definitions
using universal properties but omit proofs.

I am grateful to Jacques Thévenaz who provided me with his lecture "Groupes & Cohomologie" (14 weeks,
2SWS) hold at the EPFL in the Autumn Semester 2011, which I used as a basis for the development
of this text, and I am grateful to Rafaël Gugliellmetti who provided me with the .tex files of his lecture
notes from 2011.

Finally, I am also grateful to the students who mentioned typos in the preliminary versions of these
notes. Further comments, corrections and suggestions are of course more than welcome.

Kaiserslautern, 14th July 2018
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Chapter 1. Background Material: Group Theory

The aim of this chapter is to introduce formally two constructions of the theory of groups: semi-direct
products and presentations of groups. Later on in the lecture we will relate semi-direct products with
a 1st and a 2nd cohomology group. Presentations describe groups by generators and relations in a
concise way, they will be useful when considering concrete groups, for instance in examples.

References:
[Hum96] J. F. Humphreys, A course in group theory, Oxford Science Publications, The Clarendon

Press, Oxford University Press, New York, 1996.
[Joh90] D. L. Johnson, Presentations of groups, London Mathematical Society Student Texts, vol. 15,

Cambridge University Press, Cambridge, 1990.

1 Semi-direct Products
The semi-direct product is a construction of the theory of groups, which allows us to build new groups
from old ones. It is a natural generalisation of the direct product.

Definition 1.1 (Semi-direct product)
A group G is said to be the (internal or inner) semi-direct product of a normal subgroup N Ĳ G
by a subgroup H ď G if the following conditions hold:

(a) G “ NH;

(b) N XH “ t1u.

Notation: G “ N ¸H .

Example 1

(1) A direct product G1 ˆ G2 of two groups is the semi-direct product of N :“ G1 ˆ t1u by
H :“ t1u ˆ G2.

(2) G “ S3 is the semi-direct product of N “ C3 “ xp1 2 3qy Ĳ S3 and H “ C2 “ xp1 2qy ď S3.
Hence S3 – C3 ¸ C2.
Notice that, in particular, a semi-direct product of an abelian subgroup by an abelian subgroup
need not be abelian.

7
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(3) More generally G “ Sn (n ě 3) is a semi-direct product ofN “ An Ĳ Sn by H “ C2 “ xp1 2qy.

Remark 1.2

(a) If G is a semi-direct product of N by H , then the 2nd Isomorphism Theorem yields

G{N “ HN{N – H{H XN “ H{t1u – H

and this gives rise to a short exact sequence

1 ÝÑ N ÝÑ G ÝÑ H ÝÑ 1 .

Hence a semi-direct product of N by H is a special case of an extension of N by H .

(b) In a semi-direct product G “ N ¸ H of N by H , the subgroup H acts by conjugation on N ,
namely @h P H ,

θh : N ÝÑ N
n ÞÑ hnh´1 ,

is an automorphism of N . In addition θhh1 “ θh ˝ θh1 for every h, h1 P H , so that we have a
group homomorphism

θ : H ÝÑ AutpNq
h ÞÑ θh .

Proposition 1.3
With the above notation, N,H and θ are sufficient to reconstruct the group law on G.

Proof : Step 1. Each g P G can be written in a unique way as g “ nh where n P N , h P H:

indeed by (a) and (b) of the Definition, if g “ nh “ n1h1 with n, n1 P N , h, h1 P H , then

n´1n1 “ hph1q´1 P N XH “ t1u ,

hence n “ n1 and h “ h1.
Step 2. Group law: Let g1 “ n1h1, g2 “ n2h2 P G with n1, n2 P N , h1, h2 P H as above. Then

g1g2 “ n1h1n2h2 “ n1 h1n2ph´1
1

loooomoooon

θh1 pn2q

h1qh2 “ rn1θh1pn2qs ¨ rh1h2s .

With the construction of the group law in the latter proof in mind, we now consider the problem of
constructing an "external" (or outer) semi-direct product of groups.

Proposition 1.4
Let N and H be two arbitrary groups, and let θ : H ÝÑ AutpNq, h ÞÑ θh be a group homomorphism.
Set G :“ N ˆH as a set. Then the binary operation
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¨ : G ˆ G ÝÑ G
`

pn1, h1q, pn2, h2q
˘

ÞÑ pn1, h1q ¨ pn2, h2q :“ pn1θh1pn2q, h1h2q

defines a group law on G. The neutral element is 1G “ p1N , 1Hq and the inverse of pn, hq P N ˆH
is pn, hq´1 “ pθh´1pn´1q, h´1q.
Furthermore G is an internal semi-direct product of N0 :“ N ˆ t1u – N by H0 :“ t1u ˆH – H .

Proof : Exercise 1, Exercice Sheet 1.

Definition 1.5
In the context of Proposition 1.3 we say that G is the external (or outer) semi-direct product of N
by H w.r.t. θ, and we write G “ N ¸θ H .

Example 2
Here are a few examples of very intuitive semi-direct products of groups, which you have very prob-
ably already encountered in other lectures, without knowing that they were semi-direct products:

(1) If H acts trivially on N (i.e. θh “ IdN @h P H), then N ¸θ H “ N ˆH .

(2) Let K be a field. Then

GLnpK q “ SLnpK q ¸
 

diagpλ, 1, . . . , 1q P GLnpK q | λ P Kˆ
(

,

where diagpλ, 1, . . . , 1q is the diagonal matrix with (ordered) diagonal entries λ, 1, . . . , 1.

(3) Let K be a field and let

B :“
#˜

˚ ˚

. . .
0 ˚

¸

P GLnpK q
+

p“ upper triangular matricesq,

U :“
#˜

1 ˚

. . .
0 1

¸

P GLnpK q
+

p“ upper unitriangular matricesq,

T :“
#˜

λ1 0
. . .

0 λn

¸

P GLnpK q
+

p“ diagonal matricesq.

Then B is a semi-direct product of T by U .

(4) Let Cm “ xgy and Cn “ xhy (m,n P Zě1) be finite cyclic groups.
Assume moreover that k P Z is such that kn ” 1 pmod mq and set

θ : Cn ÝÑ AutpCmq
hi ÞÑ pθhqi ,

where θh : Cm ÝÑ Cm, g ÞÑ gk . Then

pθhqnpgq “ pθhqn´1pgkq “ pθhqn´2pgk2
q “ . . . “ gkn “ g

since opgq “ m and kn ” 1 pmod mq. Thus pθhqn “ IdCm and θ is a group homomorphism. It
follows that under these hypotheses there exists a semi-direct product of Cm by Cn w.r.t. to θ.

Particular case: m ě 1, n “ 2 and k “ ´1 yield the dihedral group D2m of order 2m with
generators g (of order m) and h (of order 2) and the relation θhpgq “ hgh´1 “ g´1.
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The details of Examples (1)-(4) will be discussed during the Präsensübung on Wednesday, 11th of
April.

2 Presentations of Groups
Idea: describe a group using a set of generators and a set of relations between these generators.

Examples: p1q Cm “ xgy “ xg | gm “ 1y 1 generator: g
1 relation: gm “ 1

p2q D2m “ Cm ¸θ C2 (see Ex. 2(4)q 2 generators: g, h
3 relations: gm “ 1, h2 “ 1, hgh´1 “ g´1

p3q Z “ x1Zy 1 generator: 1Z

no relation (ù "free group")

To begin with we examine free groups and generators.

Definition 2.1 (Free group / Universal property of free groups)
Let X be a set. A free group of basis X (or free group on X ) is a group F containing X as a subset
and satisfying the following universal property: For any group G and for any (set-theoretic) map
f : X ÝÑ G, there exists a unique group homomorphism f̃ : F ÝÑ G such that f̃ |X “ f , or in other
words such that the following diagram commutes:

X G

F

i:“inc

f

ö

D! f̃ s.t. f̃ |X“f̃˝i“f

Moreover, |X | is called the rank of F .

Proposition 2.2
If F exists, then F is the unique free group of basis X up to a unique isomorphism.

Proof : Assume F 1 is another free group of basis X .
Let i : X ãÑ F be the canonical inclusion of X in F and let i1 : X ãÑ F 1 be the canonical inclusion of X
in F 1.
X F 1

F

i

i1

D! ĩ

D! ĩ1
By the universal property of Definition 2.1, there exists:
- a unique group homomorphism ĩ1 : F ÝÑ F 1 s.t. i1 “ ĩ1 ˝ i; and
- a unique group homomorphism ĩ : F 1 ÝÑ F s.t. i “ ĩ ˝ i1.

X F

F

i

i

ĩ˝ĩ1

IdF
Then p̃i˝ĩ1q|X “ i, but obviously we also have IdF |X “ i. Therefore, by uniqueness,
we have ĩ ˝ ĩ1 “ IdF .

A similar argument yields ĩ1 ˝ ĩ “ IdF 1 , hence F and F 1 are isomorphic, up to a unique isomorphism,
namely ĩ with inverse ĩ1.
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Proposition 2.3
If F is a free group of basis X , then X generates F .

Proof : Let H :“ xXy be the subgroup of F generated by X , and let jH :“ X ãÑ H denote the canonical
inclusion of X in H . By the universal property of Definition 2.1, there exists a unique group homomorphism
rjH such that rjH ˝ i “ jH :

X H

F

i

jH

ö

D! rjH

Therefore, letting κ : H ãÑ F denote the canonical inclusion of H in F , we have the following commutative
diagram:

X H F

F

i

jH κ

rjH IdF

κ˝ rjH

Thus by uniqueness κ ˝ rjH “ IdF , implying that rjH : H ÝÑ F is injective. Thus

F “ ImpIdF q “ Impκ ˝ rjHq “ Imp rjHq Ď H

and it follows that F “ H . The claim follows.

Theorem 2.4
For any set X , there exists a free group F with basis X .

Proof : Set X :“ txα | α P Iu where I is a set in bijection with X , set Y :“ tyα | α P Iu in bijection with X
but disjoint from X , i.e. X X Y “ H, and let Z :“ X Y Y .
Furthermore, set E :“

Ť8

n“0 Zn, where Z 0 :“ tp qu (i.e. a singleton), Z 1 :“ Z , Z 2 :“ Z ˆ Z , . . .
Then E becomes a monoid for the concatenation of sequences, that is

pz1, . . . , znq
looooomooooon

PZn

¨ pz11, . . . , z1mq
looooomooooon

PZm

:“ pz1, . . . , zn, z11, . . . , z1nq
loooooooooooomoooooooooooon

PZn`m

.

The law ¨ is clearly associative by definition, and the neutral element is the empty sequence p q P Z 0.
Define the following Elementary Operations on the elements of E :
Type (1): add in a sequence pz1, . . . , znq two consecutive elements xα , yα and obtain

pz1, . . . , zk , xα , yα , zk`1, . . . , znq
Type (1bis): add in a sequence pz1, . . . , znq two consecutive elements yα , xα and obtain

pz1, . . . , zm, yα , xα , zm`1, . . . , znq
Type (2): remove from a sequence pz1, . . . , znq two consecutive elements xα , yα and obtain

pz1, . . . , zr , x̌α , y̌α , zr`1, . . . , znq
Type (2bis): remove from a sequence pz1, . . . , znq two consecutive elements yα , xα and obtain

pz1, . . . , zs, y̌α , x̌α , zs`1, . . . , znq
Now define an equivalence relation „ on E as follows:

two sequences in E are equivalent :ðñ the 2nd sequence can be obtain from the 1st
sequence through a succession of Elementary
Operations of type (1), (1bis), (2) and (2bis).

It is indeed easily checked that this relation is:
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– reflexive: simply use an empty sequence of Elementary Operations;
– symmetric: since each Elementary Operation is invertible;
– transitive: since 2 consecutive sequences of Elementary Operations is again a sequence of Elementary
Operations.
Now set F :“ E{ „, and write rz1, . . . , zns for the equivalence class of pz1, . . . , znq in F “ E{ „.

Claim 1: The above monoid law on E induces a monoid law on F .
The induced law on F is: rz1, . . . , zns ¨ rz11, . . . , z1ms “ rz1, . . . , zn, z11, . . . , z1ms.
It is well-defined: if pz1, . . . , znq „ pt1, . . . , tkq and pz11, . . . , z1mq „ pt11, . . . , t1lq, then

pz1, . . . , znq ¨ pz11, . . . , z1mq “ pz1, . . . , zn, z11, . . . , z1mq
„ pt1, . . . , tk , z11, . . . , z1mq via Elementary Operations on the 1st part
„ pt1, . . . , tk , t11, . . . , t1lq via Elementary Operations on the 2nd part
“ pt1, . . . , tnq ¨ pt11, . . . , t1mq

The associativity is clear, and the neutral element is rp qs. The claim follows.

Claim 2: F endowed with the monoid law defined in Claim 1 is a group.
Inverses: the inverse of rz1, . . . , zns P F is the equivalence of the sequence class obtained from
pz1, . . . , znq by reversing the order and replacing each xα with yα and each yα with xα . (Obvious
by definition of „.)

Claim 3: F is a free group on X .
Let G be a group and f : X ÝÑ G be a map. Define

pf : E ÝÑ G
pz1, . . . , znq ÞÑ fpz1q ¨ ¨ ¨ ¨ ¨ fpznq ,

where f is defined on Y by fpyαq :“ fpx´1
α q for every yα P Y .

Thus, if pz1, . . . , znq „ pt1, . . . , tkq, then pfpz1, . . . , znq “ pfpt1, . . . , tkq by definition of f on Y . Hence
f induces a map

r

pf : F ÝÑ G
rz1, . . . , zns ÞÑ fpz1q ¨ ¨ ¨ ¨ ¨ fpznq ,

By construction pf is a monoid homomorphism, therfore so is rpf , but since F and G are groups, rpf is
in fact a group homomorphism. Hence we have a commutative diagram

X G

F

i

f

ö

r

pf

where i : X ÝÑ F, x ÞÑ rxs is the canonical inclusion.
Finally, notice that the definition of rpf is forced if we want rpf to be a group homorphism, hence we
have uniqueness of rpf , and the universal property of Definition 2.1 is satisfied.

Notation and Terminology

¨ To lighten notation, we identify rxα s P F with xα , hence ryα s with x´1
α , and rz1, . . . , zns with

z1 ¨ ¨ ¨ zn in F .

¨ A sequence pz1, . . . , znq P E with each letter zi (1 ď i ď n) equal to an element xαi P X or
x´1
αi is called a word in the generators txα | α P Iu. Each word defines an element of F via:
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pz1, . . . , znq ÞÑ z1 ¨ ¨ ¨ zn P F . By abuse of language, we then often also call z1 ¨ ¨ ¨ zn P F a word.

¨ Two words are called equivalent :ðñ they define the same element of F .

¨ If pz1, . . . , znq P Zn Ď E (n P Zě0), then n is called the length of the word pz1, . . . , znq.

¨ A word is said to be reduced if it has minimal length amongst all the words which are equivalent
to this word.

Proposition 2.5
Every group G is isomorphic to a factor group of a free group.

Proof : Let S :“ tgα P G | α P Iu be a set of generators for G (in the worst case, take I “ G). Let
X :“ txα | α P Iu be a set in bijection with S, and let F be the free group on X . Let i : X ãÑ F denote
the canonical inclusion.

X G

F

F{ kerpf̃q

i

f

D! f̃

can. proj.

ö

D!pf̃

By the universal property of free groups the map f : X ãÑ G, xα ÞÑ gα
induces a unique group homomorphism f̃ : F ÝÑ G such that f̃ ˝ i “ f .
Clearly f̃ is surjective since the generators of G are all Impf̃q. Therefore
the 1st Isomorphism Theorem yields G – F{ kerpf̃q.

We can now consider relations between the generators of groups:

Notation and Terminology
Let S :“ tgα P G | α P Iu be a set of generators for the group G, let X :“ txα | α P Iu be in
bijection with S, and let F be the free group on X .

By the previous proof, G – F{N , where N :“ kerpf̃q (gα Ø xα “ xαN via the homomorphism pf̃ ).
Any word pz1, . . . , znq in the xα ’s which defines an element of F in N is mapped in G to an expression
of the form

z1 ¨ ¨ ¨ zn “ 1G , where zi :“ image of zi in G under the canonical homomorphism.

In this case, the word pz1, . . . , znq is called a relation in the group G for the set of generators S.
Now let R :“ trβ | β P Ju be a set of generators of N as normal subgroup of F (this means that N
is generated by the set of all conjugates of R ). Such a set R is called a set of defining relations
of G.
Then the ordered pair pX,Rq is called a presentation of G, and we write

G “ xX | Ry “ xtxαuαPI | trβuβPJy .

The group G is said to be finitely presented if it admits a presentation G “ xX | Ry, where both
|X |, |R | ă 8. In this case, by abuse of notation, we also often write presentations under the form

G “ xx1, . . . , x|X | | r1 “ 1, . . . , r|R | “ 1y .
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Example 3
The cyclic group Cn “ t1, g, . . . , gn´1u of order n P Zě1 generated by S :“ tgu. In this case, we
have:

X “ txu
R “ txnu
F “ xxy – pC8, ¨q
C8

f̃
ÝÑ Cn, x ÞÑ g has a kernel generated by xn as a normal subgroup. Then Cn “ xtxu | txnuy.

By abuse of notation, we write simply Cn “ xx | xny or also Cn “ xx | xn “ 1y.

Proposition 2.6 (Universal property of presentations)
Let G be a group generated by S “ tsα | α P Iu, isomorphic to a quotient of a free group F on
X “ txα | α P Iu in bijection with S. Let R :“ trβ | β P Ju be a set of relations in G.
Then G admits the presentation G “ xX | Ry if and only if G satisfies the following universal
property:
X H

G

j

f

ö

f

For every group H , and for every set-theoretic map f : X ÝÑ H such that
f̃prβq “ 1H @ rβ P R , there exists a unique group homomorphism f : G ÝÑ H
such that f ˝ j “ f , where j : X ÝÑ G, xα ÞÑ sα , and f̃ is the unique extension
of f to the free group F on X .

Proof : "ñ": Suppose that G “ xX | Ry. Therefore G – F{N , where N is generated by R as normal
subgroup. Thus the condition f̃prβq “ 1H @ rβ P R implies that N Ď kerpf̃q, since

f̃pzrβz´1q “ f̃pzq f̃prβq
loomoon

“1H

f̃pzq´1 “ 1H @ rβ P R, @ z P F.

Therefore, by the universal property of the quotient, f̃ induces a unique group homomorphism
f : G – F{N ÝÑ H such that f ˝ π “ f̃ , where π : F ÝÑ F{N is the canonical epimorphism.
Now, if i : X ÝÑ F denotes the canonical inclusion, then j “ π ˝ i, and as a consequence we have
f ˝ j “ f .

"ð": Conversely, assume that G satisfies the universal property of the statement (i.e. relatively to
X, F, R ). Set N :“ R for the normal closure of R . Then we have two group homomorphisms:

φ : F{N ÝÑ G
xα ÞÑ sα

induced by f̃ : F ÝÑ G, and

ψ : G ÝÑ F{N
sα ÞÑ xα

given by the universal property. Then clearly φ ˝ ψpsαq “ φpxαq “ sα for each α P I , so that
φ ˝ ψ “ IdG and similarly ψ ˝ φ “ IdF{R . The claim follows.

Example 4 (The dihedral groups)
Consider the finite dihedral group D2m of order 2m with 2 ď m ă 8. We can assume that D2m is
generated by

r :“ rotation of angle 2π
m and s :“ symmetry through the origin in R2 .
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Then xry – Cm Ď G, xsy – C2 and we have seen that D2m “ xry ¸ xsy with three obvious relations
rm “ 1, s2 “ 1, and srs´1 “ r´1.
Claim: D2m admits the presentation xr, s | rm “ 1, s2 “ 1, srs´1 “ r´1y .
In order to prove the Claim, we let F be the free group on X :“ tx, yu, R :“ txm, y2, yxy´1xu,
N Ĳ F be the normal subgroup generated by R , and G :“ F{N so that

G “ xx, y | xm “ 1, y2 “ 1, y x y´1x “ 1y .

By the universal property of presentations the map

f : tx, yu ÝÑ D2m
x ÞÑ r
y ÞÑ s

induces a group homomorphism

f : G ÝÑ D2m
x ÞÑ r
y ÞÑ s ,

which is clearly surjective since D2m “ xr, sy. In order to prove that f is injective, we prove that G
is a group of order at most 2m. Recall that each element of G is an expression in x, y, x´1, y´1,
hence actually an expression in x, y, since x´1 “ xm´1 and y´1 “ y. Moreover, yxy´1 “ x´1

implies yx “ x´1y, hence we are left with expressions of the form

xayb with 0 ď a ď m´ 1 and 0 ď b ď 1 .

Thus we have |G| ď 2m, and it follows that f is an isomorphism.

Notice that if we remove the relation rm “ 1, we can also formally define an infinite dihedral group
D8 via the following presentation

D8 :“ xr, s | s2 “ 1, srs´1 “ r´1y .

Theorem 2.7
Let G be a group generated by two distinct elements, s and t, both of order 2. Then G – D2m,
where 2 ď m ď 8. Moreover, m is the order of st in G, and

G “ xs, t | s2 “ 1, t2 “ 1, pstqm “ 1y .

(m “ 8 simply means "no relation".)

Proof : Set r :“ st and let m be the order of r.
Firstly, note that m ě 2, since m “ 1 ñ st “ 1 ñ s “ t´1 “ t as t2 “ 1. Secondly, we have the
relation srs´1 “ r´1, since

srs´1 “ sps
loomoon

“1G

tqs´1 “ ts´1 “ t´1s´1 “ pstq´1 “ r´1 .

Clearly G can be generated by r and s as r “ st and so t “ sr.
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Now, H :“ xry – Cm and H Ĳ G since

srs´1 “ r´1 P H and rrr´1 “ r P H (or because |G : H| “ 2) .

Set C :“ xsy – C2.
Claim: s R H .
Indeed, assuming s P H yields s “ ri “ pstqi for some 0 ď i ď m´ 1. Hence

1 “ s2 “ spstqi “ ptsqi´1t “ pts ¨ ¨ ¨ tq
looomooon

length i´1

s pts ¨ ¨ ¨ tq
looomooon

length i´1

,

so that conjugating by t, then s, then . . ., then t, we get 1 “ s, contradicting the assumption that opsq “ 2.
The claim follows.
Therefore, we have proved that G “ HC and H X C “ t1u, so that G “ H ¸ C “ D2m as seen in the
previous section.
Finally, to prove that G admits the presentation xs, t | s2 “ 1, t2 “ 1, pstqm “ 1y, we apply the universal
property of presentations twice to the maps

f : txs, xru ÝÑ xs, t | s2 “ 1, t2 “ 1, pstqm “ 1y
xs ÞÑ s
xr ÞÑ st

and

g : tys, ytu ÝÑ G “ xr, s | rm “ 1, s2 “ 1, srs´1 “ 1y
ys ÞÑ s
yt ÞÑ sr .

This yields the existence of two group homomorphisms

f : G “ xr, s | rm “ 1, s2 “ 1, srs´1 “ 1y ÝÑ xs, t | s2 “ 1, t2 “ 1, pstqm “ 1y

and
g : xs, t | s2 “ 1, t2 “ 1, pstqm “ 1y ÝÑ G “ xr, s | rm “ 1, s2 “ 1, srs´1 “ 1y

such that gf “ Id and fg “ Id. (Here you should check the details for yourself!)



Chapter 2. Background Material: Module Theory

The aim of this chapter is to recall the basics of the theory of modules, which we will use throughout.
We review elementary constructions such as quotients, direct sum, direct products, exact sequences,
free/projective/injective modules and tensor products, where we emphasise the approach via universal
properties. Particularly important for the forthcoming homological algebra and cohomology of groups
are the notions of free and, more generally, of projective modules.

Throughout this chapter we let R and S denote rings, and unless otherwise specified, all rings are
assumed to be unital and associative.

Most results are stated without proof, as they have been studied in the B.Sc. lecture Commutative
Algebra. As further reference I recommend for example:

Reference:
[Rot10] J. J. Rotman, Advanced modern algebra. 2nd ed., Providence, RI: American Mathematical

Society (AMS), 2010.

3 Modules, Submodules, Morphisms
Definition 3.1 (Left R-module, right R-module, pR, Sq-bimodule, homomorphism of modules)

(a) A left R-module is an abelian group pM,`q endowed with a scalar multiplication (or external
composition law) ¨ : R ˆM ÝÑ M, pr, mq ÞÑ r ¨m such that the map

λ : R ÝÑ EndpMq
r ÞÑ λprq :“ λr : M ÝÑ M,m ÞÑ r ¨m ,

is a ring homomorphism. By convention, when no confusion is to be made, we will simply
write "R-module" to mean "left R-module", and rm instead of r ¨m.

(a’) A right R-module is defined analogously using a scalar multiplication ¨ : M ˆ R ÝÑ M,
pm, rq ÞÑ m ¨ r on the right-hand side.

(a”) If S is a second ring, then an pR, Sq-bimodule is an abelian group pM,`q which is both a
left R-module and a right S-module, and which satisfies the axiom

r ¨ pm ¨ sq “ pr ¨mq ¨ s @ r P R,@ s P S,@m P M .

17
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(b) An R-submodule of an R-module M is a subgroup N ď M such that r ¨n P N for every r P R
and every n P N . (Similarly for right modules and bimodules.)

(c) A (homo)morphism of R-modules (or an R-linear map, or an R-homomorphism) is a map of
R-modules φ : M ÝÑ N such that:

(i) φ is a group homomorphism; and
(ii) φpr ¨mq “ r ¨ φpmq @ r P R , @ m P M .

A bijective homomorphism of R-modules is called an isomorphism (or an R-isomorphism), and
we write M – N if there exists an R-isomorphism between M and N .
An injective (resp. surjective) homomorphism of R-modules is sometimes called a monomor-
phism (resp. epimorphism) and we sometimes denote it with a hook arrow "ãÑ" (resp. a
two-head arrow "�").
(Similarly for right modules and bimodules.)

Notation: We let RMod denote the category of left R-modules (with R-linear maps as morphisms), we
let ModR denote the category of right R-modules (with R-linear maps as morphisms), and we let RModS
denote the category of pR, Sq-bimodules (with pR, Sq-linear maps as morphisms). For the language of
category theory, see the Appendix.

Convention: From now on, unless otherwise stated, we will always work with left modules.

Example 5

(a) Vector spaces over a field K are K -modules, and conversely.

(b) Abelian groups are Z-modules, and conversely.

(c) If the ring R is commutative, then any right module can be made into a left module, and
conversely.

(d) If φ : M ÝÑ N is a morphism of R-modules, then the kernel kerpφq of φ is an R-submodule
of M and the image Impφq :“ φpMq of f is an R-submodule of N .

Notation 3.2
Given R-modules M and N , we set HomRpM,Nq :“ tφ : M ÝÑ N | φ is an R-homomorphismu.
This is an abelian group for the pointwise addition of functions:

` : HomRpM,Nq ˆHomRpM,Nq ÝÑ HomRpM,Nq
pφ, ψq ÞÑ φ ` ψ : M ÝÑ N,m ÞÑ φpmq ` ψpmq .

In case N “ M , we write EndRpMq :“ HomRpM,Mq for the set of endomorphisms of M and
AutRpMq for the set of automorphisms of M , i.e. the set of invertible endomorphisms of M .
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Exercise [Exercise 1, Exercise Sheet 3]
Let M,N be R-modules. Prove that:

(a) EndRpMq, endowed with the usual composition and sum of functions, is a ring.

(b) If R is commutative then the abelian group HomRpM,Nq is a left R-module.

Lemma-Definition 3.3 (Quotients of modules)
Let U be an R-submodule of an R-module M . The quotient group M{U can be endowed with the
structure of an R-module in a natural way:

R ˆM{U ÝÑ M{U
`

r, m` U
˘

ÞÝÑ r ¨m` U

The canonical map π : M ÝÑ M{U,m ÞÑ m` U is R-linear.

Proof : Direct calculation.

Theorem 3.4
(a) Universal property of the quotient: Let φ : M ÝÑ N be a homomorphism of R-modules.

If U is an R-submodule of M such that U Ď kerpφq, then there exists a unique R-module
homomorphism φ : M{U ÝÑ N such that φ ˝π “ φ, or in other words such that the following
diagram commutes:

M N

M{U

π

φ

ö

D!φ

Concretely, φpm` Uq “ φpmq @ m` U P M{U .

(b) 1st isomorphism theorem: With the notation of (a), if U “ kerpφq, then

φ : M{kerpφq ÝÑ Impφq

is an isomorphism of R-modules.

(c) 2nd isomorphism theorem: If U1, U2 are R-submodules of M , then so are U1XU2 and U1`U2,
and there is an an isomorphism of R-modules

pU1 ` U2q{U2 – U1{U1 X U2 .

(d) 3rd isomorphism theorem: If U1 Ď U2 are R-submodules of M , then there is an an isomor-
phism of R-modules

´

M{U1

¯

{
´

U2{U1

¯

– M{U2 .
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(e) Correspondence theorem: If U is an R-submodule of M , then there is a bijection

tX R-submodule of M | U Ď Xu ÐÑ tR-submodules of M{Uu
X ÞÑ X{U

π´1pZ q Ð [ Z .

Proof : We assume it is known from the "Einführung in die Algebra" that these results hold for abelian groups
and morphisms of abelian groups. Exercise: check that they carry over to the R-module structure.

Definition 3.5 (Cokernel, coimage)
Let φ P HomRpM,Nq. Then, the cokernel of φ is the quotient R-module N{Imφ , and the coimage
of φ is the quotient R-module M{kerφ .

4 Direct Products and Direct Sums
Let tMiuiPI be a family of R-modules. Then the abelian group

ś

iPIMi, that is the product of tMiuiPI
seen as a family of abelian groups, becomes an R-module via the following external composition law:

R ˆ
ź

iPI
Mi ÝÑ

ź

iPI
Mi

`

r, pmiqiPI
˘

ÞÝÑ
`

r ¨mi
˘

iPI .

Furthermore, for each j P I , we let πj :
ś

iPIMi ÝÑ Mj denotes the j-th projection from the product to
the module Mj .

Proposition 4.1 (Universal property of the direct product)
If
 

φi : L ÝÑ MiuiPI is a collection of R-linear maps, then there exists a unique morphism of
R-modules φ : L ÝÑ

ś

iPIMi such that πj ˝ φ “ φj for every j P I .

L

φk





φj

��

φ

��
ś

iPIMi

πk{{
πj

##
Mk Mj

In other words

HomR

´

L,
ź

iPI
Mi

¯

ÝÑ
ź

iPI
HomRpL,Miq

f ÞÝÑ
`

πi ˝ f
˘

i

is an isomorphism of abelian groups.

Proof : Exercise 2, Exercise Sheet 3.
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Now let
À

iPIMi be the subgroup of
ś

iPIMi consisting of the elements pmiqiPI such that mi “ 0 al-
most everywhere (i.e. mi “ 0 exept for a finite subset of indices i P I). This subgroup is called the
direct sum of the family tMiuiPI and is in fact an R-submodule of the product. For each j P I , we let
ηj : Mj ÝÑ

À

iPIMi denote the canonical injection of Mj in the direct sum.

Proposition 4.2 (Universal property of the direct sum)
If
 

fi : Mi ÝÑ LuiPI is a collection of R-linear maps, then there exists a unique morphism of
R-modules φ :

À

iPIMi ÝÑ L such that f ˝ ηj “ fj for every j P I .

L

À

iPIMi

f

OO

Mk

ηk

;;

fk

CC

Mj

ηj

cc

fj

[[

In other words

HomR

´

à

iPI
Mi, L

¯

ÝÑ
ź

iPI
HomRpMi, Lq

f ÞÝÑ
`

f ˝ ηi
˘

i

is an isomorphism of abelian groups.

Proof : Exercise 2, Exercise Sheet 3.

Remark 4.3
It is clear that if |I| ă 8, then

À

iPIMi “
ś

iPIMi.

The direct sum as defined above is often called an external direct sum. This relates as follows with the
usual notion of internal direct sum:

Definition 4.4 (“Internal” direct sums)
Let M be an R-module and N1, N2 be two R-submodules of M . We write M “ N1 ‘N2 if every
m P M can be written in a unique way as m “ n1 ` n2, where n1 P N1 and n2 P N2.

In fact M “ N1 ‘N2 (internal direct sum) if and only if M “ N1 `N2 and N1 XN2 “ t0u.

Proposition 4.5
If N1, N2 and M are as above and M “ N1 ‘N2 then the homomorphism of R-modules

φ : M ÝÑ N1 ˆN2 “ N1 ‘N2 (external direct sum)
m “ n1 ` n2 ÞÑ pn1, n2q ,

is an isomorphism of R-modules.

The above generalises to arbitrary internal direct sums M “
À

iPI Ni.
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5 Exact Sequences
Definition 5.1 (Exact sequence)

A sequence L φ
ÝÑ M ψ

ÝÑ N of R-modules and R-linear maps is called exact (at M) if Imφ “ kerψ.

Remark 5.2 (Injectivity/surjectivity/short exact sequences)

(a) L φ
ÝÑ M is injective ðñ 0 ÝÑ L φ

ÝÑ M is exact at L.

(b) M ψ
ÝÑ N is surjective ðñ M ψ

ÝÑ N ÝÑ 0 is exact at N .

(c) 0 ÝÑ L φ
ÝÑ M ψ

ÝÑ N ÝÑ 0 is exact (i.e. at L, M and N) if and only if φ is injective, ψ is
surjective and ψ induces an isomorphism ψ : M{Imφ ÝÑ N .
Such a sequence is called a short exact sequence (s.e.s. in short).

(d) If φ P HomRpL,Mq is an injective morphism, then there is a s.e.s.

0 ÝÑ L φ
ÝÑ M π

ÝÑ cokerpφq ÝÑ 0

where π is the canonical projection.

(d) If ψ P HomRpM,Nq is a surjective morphism, then there is a s.e.s.

0 ÝÑ kerpφq i
ÝÑ M ψ

ÝÑ N ÝÑ 0 ,

where i is the canonical injection.

Proposition 5.3
Let Q be an R-module. Then the following holds:

(a) HomRpQ,´q : RMod ÝÑ Ab is a left exact covariant functor. In other words, if
0 ÝÑ L φ

ÝÑ M ψ
ÝÑ N ÝÑ 0 is a s.e.s of R-modules, then the induced sequence

0 // HomRpQ, Lq
φ˚ // HomRpQ,Mq

ψ˚ // HomRpQ,Nq

is an exact sequence of abelian groups. (Here φ˚ :“ HomRpQ,φq, that is φ˚pαq “ φ ˝ α and
similarly for ψ˚.)

(b) HomRp´, Qq : RMod ÝÑ Ab is a left exact contravariant functor. In other words, if
0 ÝÑ L φ

ÝÑ M ψ
ÝÑ N ÝÑ 0 is a s.e.s of R-modules, then the induced sequence

0 // HomRpN,Qq
ψ˚ // HomRpM,Qq

φ˚ // HomRpL,Qq

is an exact sequence of abelian groups. (Here φ˚ :“ HomRpφ,Qq, that is φ˚pαq “ α ˝ φ and
similarly for ψ˚.)
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Proof : One easily checks that HomRpQ,´q and HomRp´, Qq are functors.

(a) ¨ Exactness at HomRpQ, Lq: Clear.
¨ Exactness at HomRpQ,Mq: We have

β P kerψ˚ ðñ ψ ˝ β “ 0
ðñ Imβ Ă kerψ
ðñ Imβ Ă Imφ
ðñ @q P Q, D! lq P L such that βpqq “ φplqq
ðñ D a map λ : Q ÝÑ L which sends q to lq and such that φ ˝ λ “ β
φ inj
ðñ D λ P HomRpQ, Lq which send q to lq and such that φ ˝ λ “ β
ðñ β P Imφ˚.

(b) Exercise 5, Exercise Sheet 3.

Remark 5.4
Notice that HomRpQ,´q and HomRp´, Qq are not right exact in general. See Exercise 5, Exercise
Sheet 3.

Lemma 5.5 (The snake lemma)
Suppose we are given the following commutative diagram of R-modules and R-module homomor-

phisms with exact rows:

L
φ //

f
��

M
ψ //

g
��

N //

h
��

0

0 // L1
φ1 // M 1

ψ1 // N 1

Then the following hold:

(a) There exists an exact sequence

ker f φ // kerg ψ // kerh δ // coker f φ1 // cokerg ψ1 // cokerh,

where φ1, ψ1 are the morphisms induced by the universal property of the quotient, and δpnq “
πL ˝ φ1´1

˝ g ˝ ψ´1pnq for every n P kerphq (here πL : L ÝÑ cokerpfq is the canonical
homomorphism). The map δ is called the connecting homomorphism.

(b) If φ : L ÝÑ M is injective, then φ|ker f : ker f ÝÑ kerg is injective.

(c) If ψ1 : M 1 ÝÑ N 1 is surjective, then ψ1 : cokerg ÝÑ cokerh is surjective.

Proof : (a) First, we check that δ is well-defined. Let n P kerh and choose two preimages m1, m2 P M of
n under ψ. Hence m1 ´ m2 P kerψ “ Imφ. Thus, there exists l P L such that m1 “ φplq ` m2.
Then, we have

gpm1q “ g ˝ φplq ` gpm2q “ φ1 ˝ fplq ` gpm2q.
Since n P kerh, for i P t1, 2u we have

ψ1 ˝ gpmiq “ h ˝ ψpmiq “ hpnq “ 0,

so that gpmiq P kerψ1 “ Imφ1. Therefore, there exists l1i P L1 such that φ1pl1iq “ gpmiq. It follows
that

gpm2q “ φ1pl12q “ φ1 ˝ fplq ` φ1pl11q.
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Since φ1 is injective, we obtain l12 “ fplq ` l11. Hence, l11 and l12 have the same image in coker f .
Therefore, δ is well-defined.
We now want to check the exactness at kerh. Let m P kerg. Then gpmq “ 0, so that δψpmq “ 0
and thus Imψ

ˇ

ˇ

kerh Ă ker δ . Conversely, let m P ker δ . With the previous notation, this means that
l11 “ 0, and thus l11 “ f p̃lq for some l̃ P L. We have

g ˝ φp̃lq “ φ1 ˝ f p̃lq “ φ1pl11q “ gpm1q.

Hence, m1 ´ φp̃lq P kerg. It remains to check that this element is sent to n by ψ. We get

ψ
`

m1 ´ φp̃lq
˘

“ ψpm1q ´ ψ ˝ φp̃lq “ ψpm1q “ n.

Hence Imψ
ˇ

ˇ

kerh “ ker δ .
The fact that δ is an R-homomorphism, and the exactness at the other points are checked in a
similar fashion.

(b) Is obvious.
(c) Is a a direct consequence of the universal property of the quotient.

Remark 5.6
The name of the lemma comes from the following diagram

0

��

0

��

0

��
ker f

��

φ // kerg

��

ψ // kerh

��

//

L
δf

��

φ // M
g
��

ψ // N

h
��

// 0

0 // L1

��

φ1
// M 1

��

ψ1
// N 1

��
coker f

��

φ1 // cokerg

��

ψ1 // cokerh

����
0 0 0

If fact the snake lemma holds in any abelian category. In particular, it holds for the categories of
chain and cochain complexes, which we will study in Chapter 3.

Lemma-Definition 5.7

A s.e.s. 0 ÝÑ L φ
ÝÑ M ψ

ÝÑ N ÝÑ 0 of R-modules is called split iff it satisfies the following
equivalent conditions:

(a) There exists an R-linear map σ : N ÝÑ M such that ψ ˝σ “ idN (σ is called a section for ψ).

(b) There exists an R-linear map ρ : M ÝÑ L such that ρ ˝ φ “ idL (ρ is called a retraction
for φ).
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(c) The submodule Imφ “ kerψ is a direct summand of M , that is there exists a submodule M 1

of M such that M “ Imφ ‘M 1.

Proof : Exercise.

Example 6
The sequence

0 // Z{2Z
φ // Z{2Z‘ Z{2Z

π // Z{2Z // 0

defined by φpr1sq “ pr1s, r0sq and π is the canonical projection into the cokernel of φ is split but
the squence

0 // Z{2Z
φ // Z{4Z

π // Z{2Z // 0

defined by φpr1sq “ pr2sq and π is the canonical projection onto the cokernel of φ is not split.

6 Free, Injective and Projective Modules

Free modules

Definition 6.1 (Generating set / R-basis / free R-module)
Let M be an R-module and X Ď M be a subset.

(a) M is said to be generated by X if every element of M can be written as an R-linear combi-
nation

ř

xPX λxx , that is with λx P R almost everywhere 0.

(b) X is an R-basis (or a basis) if X generates M and if every element of M can be written in a
unique way as an R-linear combination

ř

xPX λxX (i.e. with λs P R almost everywhere 0).

(c) M is called free if it admits an R-basis.
Notation: In this case we write M “

À

xPX Rx –
À

xPX R “: R pXq.

Remark 6.2

(a) When we write the sum
ř

xPX λxX , we always assume that the λs are 0 almost everywhere.

(b) Let X be a generating set for M . Then, X is a basis of M if and only if S is R-linearly
independent.

(c) If R is a field, then every R-module is free. (R-vector spaces.)

Proposition 6.3 (Universal property of free modules)
Let P be a free R-module with basis X and let i : X �

� //P be the inclusion map. For every
R-module M and for every map (of sets) φ : X ÝÑ M , there exists a unique morphism of R-modules
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φ̃ : P ÝÑ M such that the following diagram commutes

X
φ //

i
��

M

P
φ̃

>>

Proof : If P Q m “
ř

xPX λxx (unique expression), then we set φ̃pmq “
ř

xPX λxφpxq. It is then easy to check
φ̃ has the required properties.

Proposition 6.4 (Properties of free modules)

(a) Every R-module M is isomorphic to a quotient of a free R-module.

(b) If P is a free R-module, then HomRpP,´q is an exact functor.

Proof : (a) Choose a set txiuiPI of generators of M (take all elements of M if necessary). Then define

φ :
à

iPI
R ÝÑ M

priqiPI ÞÝÑ
ÿ

iPI
rixi.

It follows that M – p
À

iPI Rq {kerφ .

(b) We know that HompP,´q is left exact for any R-module P . It remains to prove that if ψ : M ÝÑ N
is a surjective R-linear maps, then ψ˚ : HomRpP,Mq ÝÑ HomRpP,Nq : β ÝÑ ψ˚pβq “ ψ ˝ β is
also surjective. So let α P HomRpP,Nq. We have the following situation:

P

α
��

D?

~~
M

ψ
// N // 0

Let teiuiPI be an R-basis of P . Each αpeiq P N is in the image of ψ, so that for each i P I there
exists mi P M such that ψpmiq “ αpeiq. Hence, there is a map β : teiuiPI ÝÑ M,ei ÞÑ mi. By the
universal property of free modules this induces an R-linear map β̃ : P ÝÑ M such that β̃peiq “ mi
@ i P I . Thus

ψ ˝ β̃peiq “ ψpmiq “ αpeiq ,

so that ψ ˝ β̃ and α coincide on the basis teiuiPI . By the uniqueness of β̃, we must have α “
ψ ˝ β̃ “ ψ˚

`

β̃
˘

.

Injective modules

Proposition-Definition 6.5 (Injective module)
Let I be an R-module. Then the following are equivalent:

(a) The functor HomRp´, Iq is exact.
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(b) If φ P HomRpL,Mq is a injective morphism, then φ˚ : HomRpM, Iq ÝÑ HomRpL, Iq is surjective
(hence, any R-linear map α : L ÝÑ I can be lifted to an R-linear map β : M ÝÑ I , i.e.,
β ˝ φ “ α).

(c) If η : I ÝÑ M is an injective R-linear map, then η splits, i.e., there exists ρ : M ÝÑ I such
that ρ ˝ η “ IdI .

If I satisfies these equivalent conditions, then I is called injective.

Proof : Exercise.

Remark 6.6
Note that Condition pbq is particularly interesting when L ď M and φ is the inclusion.

Projective modules

Proposition-Definition 6.7 (Projective module)
Let P be an R-module. Then the following are equivalent:

(a) The functor HomRpP,´q is exact.

(b) If ψ P HomRpM,Nq is a surjective morphism of R-modules, then the morphism of abelian
groups ψ˚ : HomRpP,Mq ÝÑ HomRpP,Nq is surjective.

(c) If π : M ÝÑ P is a surjective R-linear map, then π splits, i.e., there exists σ : P ÝÑ M such
that π ˝ σ “ IdP .

(d) P is isomorphic to a direct summand of a free R-module.

If P satisfies these equivalent conditions, then P is called projective.

Example 7

(a) If R “ Z, then every submodule of a free Z-module is again free (main theorem on Z-modules).

(b) Let e be an idempotent in R , that is e2 “ e. Then, R – Re‘ Rp1´ eq and Re is projective
but not free if e ‰ 0, 1.

(c) A product of modules tIjujPJ is injective if and only if each Ij is injective.

(d) A direct sum of modules tPiuiPI is projective if and only if each Pi is projective.

7 Tensor Products
Definition 7.1 (Tensor product of R-modules)

Let M be a right R-module and let N be a left R-module. Let F be the free abelian group (= free



Lecture Notes: Cohomology of Groups SS 2018 28

Z-module) with basis M ˆN . Let G be the subgroup of F generated by all the elements

pm1 `m2, nq ´ pm1, nq ´ pm2, nq, @m1, m2 P M,@n P N,
pm,n1 ` n2q ´ pm,n1q ´ pm,n2q, @m P M,@n1, n2 P N, and
pmr, nq ´ pm, rnq, @m P M,@n P N,@r P R.

The tensor product of M and N (balanced over R ), is the abelian group M bR N :“ F{G . The
class of pm,nq P F in M bR N is denoted by mb n.

Remark 7.2

(a) M bR N “ xmb n | m P M,n P NyZ.

(b) In M bR N , we have the relations

pm1 `m2q b n “ m1 b n`m2 b n, @m1, m2 P M,@n P N,
mb pn1 ` n2q “ mb n1 `mb n2, @m P M,@n1, n2 P N, and
mr b n “ mb rn, @m P M,@n P N,@r P R.

In particular, mb 0 “ 0 “ 0b n @ m P M , @ n P N and p´mq b n “ ´pmb nq “ mb p´nq
@ m P M , @ n P N .

Definition 7.3 (R-balanced map)
Let M and N be as above and let A be an abelian group. A map f : M ˆ N ÝÑ A is called
R-balanced if

fpm1 `m2, nq “ fpm1, nq ` fpm2, nq, @m1, m2 P M,@n P N,
fpm,n1 ` n2q “ fpm,n1q ` fpm,n2q, @m P M,@n1, n2 P N,
fpmr, nq “ fpm, rnq, @m P M,@n P N,@r P R.

Remark 7.4
The canonical map t : M ˆN ÝÑ M bR N, pm,nq ÞÑ mb n is R-balanced.

Proposition 7.5 (Universal property of the tensor product)
Let M be a right R-module and let N be a left R-module. For every abelian group A and every
R-balanced map f : M ˆN ÝÑ A there exists a unique Z-linear map f : M bR N ÝÑ A such that
the following diagram commutes: M ˆN f //

t
��

A

M bR N
f

ö

;;

Proof : Let ı : M ˆ N ÝÑ F denote the canonical inclusion, and let π : F ÝÑ F{G denote the canonical
projection. By the universal property of the free Z-module, there exists a unique Z-linear map f̃ : F ÝÑ A
such that f̃ ˝ ı “ f . Since f is R-balanced, we have that G Ď kerpf̃q. Therefore, the universal property of
the quotient yields the existence of a unique homomorphism of abelian groups f : F{G ÝÑ A such that
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f ˝ π “ f̃ :
M ˆN f //

ı

��
t

��

A

F

f̃

==

π

��
M bR N – F{G

f

KK

Clearly t “ π ˝ ı, and hence f ˝ t “ f ˝ π ˝ ı “ f̃ ˝ ı “ f .

Remark 7.6

(a) Let tMiuiPI be a collection of right R-modules, M be a right R-module, N be a left R-module
and tNjuiPJ be a collection of left R-modules. Then, we have

à

iPI
Mi bR N –

à

iPI
pMi bR Nq

M bR
à

jPJ
Nj –

à

jPJ
pM bR Njq.

(b) For every R-module M , we have R bR M – M via r bm ÞÑ rm.

(c) If P be a free left R-module with basis X , then M bR P –
À

xPX M .

(d) Let Q be a ring. Let M be a pQ,Rq-bimodule and let N be an pR, Sq-module. Then M bR N
can be endowed with the structure of a pQ,Sq-bimodule via

qpmb nqs “ qmb ns, @q P Q,@s P S,@m P M,@n P N.

(e) If R is commutative, then any R-module can be viewed as an pR,Rq-bimodule. Then, in
particular, M bR N becomes an R-module.

(f ) Tensor product of morphisms: Let f : M ÝÑ M 1 be a morphism of right R-modules and
g : N ÝÑ N 1 be a morphism of left R-modules. Then, by the universal property of the
tensor product, there exists a unique Z-linear map f b g : M bR N ÝÑ M 1 bR N 1 such that
pf b gqpmb nq “ fpmq b gpnq.

Proposition 7.7 (Right exactness of the tensor product)

(a) Let N be a left R-module. Then ´bR N : ModR ÝÑ Ab is a right exact covariant functor.

(b) Let M be a right R-module. Then M bR ´ :R Mod ÝÑ Ab is a right exact covariant functor.

Remark 7.8
The functors ´bR N and M bR ´ are not left exact in general.
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Definition 7.9 (Flat module)
A left R-module N is called flat if the functor ´bR N : ModR ÝÑ Ab is a left exact functor.

Proposition 7.10
Any projective R-module is flat.

Proof : To begin with, we note that a direct sum of modules is flat if and only if each module in the sum is
flat. Next, consider the free R-module P “

À

xPX Rx . If

0 // M1
φ // M2

ψ // M3 // 0

is a short exact sequence of right R-modules, then we obtain

0 // M1 bR
`
À

xPX R
˘ φbIdP //

–

��

M2 bR
`
À

xPX R
˘ ψbIdP //

–

��

M3 bR
`
À

xPX R
˘

//

–

��

0

0 //À
xPX M1

pφqxPX //À
xPX M2

pψqxPX //À
xPX M3 // 0.

Since the original sequence is exact, so is the bottom sequence, and therefore so is the top sequence.
Hence, ´bR P is exact when P is free.
Now, if N is a projective R-module, then N ‘ N 1 “ P 1 for some free R-module P 1 and for some R-
module N 1. It follows that N is flat, by the initial remark.



Chapter 3. Homological Algebra

The aim of this chapter is to introduce the fundamental results of homological algebra. Homological
algebra appeared in the 1800’s and is nowadays a very useful tool in several branches of mathematics,
such as algebraic topology, commutative algebra, algebraic geometry, and, of particular interest to us,
group theory.

Throughout this chapter R denotes a ring, and unless otherwise specified, all rings are assumed to be
unital and associative.

Reference:
[Rot09] J. J. Rotman, An introduction to homological algebra. Second ed., Universitext, Springer, New

York, 2009.
[Wei94] C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Math-

ematics, vol. 38, Cambridge University Press, Cambridge, 1994.

8 Chain and Cochain Complexes
Definition 8.1 (Chain complex)

(a) A chain complex (or simply a complex) of R-modules is a sequence

pC‚, d‚q “
ˆ

¨ ¨ ¨ ÝÑ Cn`1
dn`1
ÝÑ Cn

dn
ÝÑ Cn´1 ÝÑ ¨ ¨ ¨

˙

,

where for each n P Z, Cn is an R-modules and dn P HomRpCn, Cn´1q satisfies dn ˝ dn`1 “ 0.
We often write simply C‚ instead of pC‚, d‚q.

(b) The integer n is called the degree of the R-module Cn.

(c) The R-linear maps dn (n P Z) are called the differential maps.

(d) A complex C‚ is called non-negative (resp. positive) if Cn “ 0, for all n P Ză0 (resp. for all
n P Zď0).

Notice that sometimes we will omit the indices and write d for all differential maps, and thus the

31
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condition dn ˝ dn`1 “ 0 can be written as d2 “ 0. If there is an integer N such that Cn “ 0 for all
n ď N , then we omit to write the zero modules and zero maps on the right-hand side of the complex:

¨ ¨ ¨ ÝÑ CN`2
dN`2
ÝÑ CN`1

dN`1
ÝÑ CN

Similarly, if there is an integer N such that Cn “ 0 for all n ě N , then we omit to write the zero
modules and zero maps on the left-hand side of the complex:

CN
dN
ÝÑ CN´1

dN´1
ÝÑ CN´2 ÝÑ ¨ ¨ ¨

Definition 8.2 (Morphism of complexes)
A morphism of complexes (or a chain map) between two chain complexes pC‚, d‚q and pD‚, d1‚q,
written φ‚ : C‚ ÝÑ D‚, is a familiy of R-linear maps φn : Cn ÝÑ Dn (n P Z) such that φn ˝ dn`1 “
d1n`1 ˝ φn`1 for each n P Z, that is such that the following diagram commutes:

¨ ¨ ¨
dn`2 // Cn`1

φn`1
��

dn`1 // Cn
φn
��

dn // Cn´1

φn´1
��

dn´1 // ¨ ¨ ¨

¨ ¨ ¨
d1n`2 // Dn`1

d1n`1 // Dn
d1n // Dn´1

d1n´1 // ¨ ¨ ¨

Notation. Chain complexes together with morphisms of chain complexes (and composition given by
degreewise composition of R-morphisms) form a category, which we will denote by Ch(RMod).

Definition 8.3 (Subcomplex / quotient complex)

(a) A subcomplex C 1‚ of a chain complex pC‚, d‚q is a family of R-modules C 1n ď Cn (n P Z), such
that dnpC 1nq Ă C 1n´1 for every n P Z.
In this case, pC 1‚, d‚q becomes a chain complex and the inclusion C 1‚ ãÑ C‚ given by the
canonical inclusion of C 1n into Cn for each n P Z is a chain map.

(b) If C 1‚ is a subcomplex of C‚, then the quotient complex C‚{C 1‚ is the familiy of R-modules Cn{C 1n
(n P Z) together with the differential maps dn : Cn{C 1n ÝÑ Cn´1{C 1n´1 uniquely determined
by the universal property of the quotient.
In this case, the quotient map π‚ : C‚ ÝÑ C‚{C 1‚ defined for each n P Z by the canonical
projection πn : Cn ÝÑ Cn{C 1n is a chain map.

Definition 8.4 (Kernel / image / cokernel)
Let φ‚ : C‚ ÝÑ D‚ be a morphism of chain complexes between pC‚, d‚q and pD‚, d1‚q. Then,

(a) the kernel of φ‚ is the subcomplex of C‚ defined by kerφ‚ :“ ptkerφnunPZ, d‚q;

(b) the image of φ‚ is the subcomplex of D‚ defined by Imφ‚ :“ ptImφnunPZ, d1‚q; and

(c) the cokernel of φ‚ is the quotient complex cokerφ‚ :“ D‚{ Imφ‚ .
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With these notions of kernel and cokernel, one can show that Ch(RMod) is in fact an abelian category.

Definition 8.5 (Cycles, boundaries, homology)
Let pC‚, d‚q be a chain complex of R-modules.

(a) An n-cycle is an element of kerdn “: ZnpC‚q :“ Zn.

(b) An n-boundary is an element of Imdn`1 “: BnpC‚q :“ Bn.
[Clearly, since dn ˝ dn`1 “ 0, we have 0 Ď Bn Ď Zn Ď Cn @n P Z. ]

(c) The n-th homology module (or simply group) of C‚ is HnpC‚q :“ Zn{Bn .

In fact, for each n P Z, Hnp´q : Ch(RMod) ÝÑ RMod is a covariant additive functor (see Exercise 1,
Exercise Sheet 6), which we define on morphisms as follows:

Lemma 8.6
Let φ‚ : C‚ ÝÑ D‚ be a morphism of chain complexes between pC‚, d‚q and pD‚, d1‚q. Then φ‚
induces an R-linear map

Hnpφ‚q : HnpC‚q ÝÑ HnpD‚q
zn ` BnpC‚q ÞÑ φnpznq ` BnpD‚q

for each n P Z. To simplify, this map is often denoted by φ˚ instead of Hnpφ‚q.

Proof : Fix n P Z, and let πn : ZnpC‚q ÝÑ ZnpC‚q{BnpC‚q, resp. π1n : ZnpD‚q ÝÑ ZnpD‚q{BnpD‚q, be the
canonical projections.
First, notice that φn

`

ZnpC‚q
˘

Ă ZnpD‚q because if z P Zn, then d1n ˝ φnpzq “ φn´1 ˝ dnpzq “ 0. Hence,
we have φnpzq P ZnpDq.
Similarly, we have φn

`

BnpC‚q
˘

Ă BnpD‚q. Indeed, if b P BnpC‚q, then b “ dn`1paq for some a P Cn`1,
and because φ‚ is a chain map we have φnpbq “ φn ˝ d1n`1paq “ dn`1 ˝ φn`1paq P BnpD‚q.
Therefore, by the universal property of the quotient, there exists a unique R-linear map π1n ˝ φn such
that the following diagram commutes:

ZnpC‚q

πn
��

φn // ZnpD‚q
π1n // ZnpD‚q{BnpD‚q

ZnpC‚q{BnpC‚q

π1n˝φn

33

Set Hnpφ‚q :“ π1n ˝ φn . The claim follows.

It should be thought that the homology module HnpC‚q measures the "non-exactness" of the sequence

Cn`1
dn`1 //Cn

dn //Cn´1 .

Moroever, the functors Hnp´q (n P Z) are neither left exact, nor right exact in general. As a matter of
fact, using the Snake Lemma, we can use s.e.s. of complexes to produce so-called "long exact sequences"
of R-modules.
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Theorem 8.7 (Long exact sequence in homology)

Let 0‚ //C‚
φ‚ //D‚

ψ‚ //E‚ //0‚ be a s.e.s. of chain complexes. Then there is a long exact
sequence

¨ ¨ ¨
δn`1 // HnpC‚q

φ˚ // HnpD‚q
ψ˚ // HnpE‚q

δn // Hn´1pC‚q
φ˚ // Hn´1pD‚q

ψ˚ // ¨ ¨ ¨ ,

where for each n P Z, δn : HnpE‚q ÝÑ Hn´1pC‚q is an R-linear map, called connecting homomor-
phism.

Note: Here 0‚ simply denotes the zero complex, that is the complex

¨ ¨ ¨ ÝÑ 0 0
ÝÑ 0 0

ÝÑ 0 ÝÑ ¨ ¨ ¨

consisting of zero modules and zero morphisms. We often write simply 0 instead of 0‚.

Proof : To simplify, we denote all differential maps of the three complexes C‚, D‚, E‚ with the same letter d,
and we fix n P Z. First, we apply the “non-snake” part of the Snake Lemma to the commutative diagram

0 // Cn

dn
��

φn // Dn

dn
��

ψn // En

dn
��

// 0

0 // Cn´1
φn´1 // Dn´1

ψn´1 // En´1 // 0 ,

and we obtain two exact sequences

0 // ZnpC‚q
φn // ZnpD‚q

ψn // ZnpE‚q ,

and

Cn´1{Imdn
φn´1 // Dn´1{Imdn

ψn´1 // En´1{Imdn // 0.

Shifting indices in both sequences we obtain similar sequences in degrees n ´ 1, and n respectively.
Therefore, we have a commutative diagram with exact rows of the form:

Cn{Imdn`1
φn //

dn
��

Dn{Imdn`1
ψn //

dn
��

En{Imdn`1
//

dn
��

0

0 // Zn´1pC‚q
φn´1 // Zn´1pD‚q

ψn´1 // Zn´1pE‚q ,

where dn : Cn{ Imdn`1 ÝÑ Zn´1pC‚q is the unique R-linear map induced by the universal property of
the quotient by dn : Cn ÝÑ Cn´1 (as Imdn`1 Ď kerdn by definition of a chain complex), and similarly
for D‚ and E‚. Therefore, the Snake Lemma yields the existence of the connecting homomorphisms

δn : kerdnpE‚q
loooomoooon

“HnpE‚q

ÝÑ cokerdnpC‚q
loooooomoooooon

“Hn´1pC‚q

for each n P Z as well as the required long exact sequence:

¨ ¨ ¨
δn`1 // HnpC‚q

loomoon

“kerdn

φ˚ // HnpD‚q
loomoon

“kerdn

ψ˚ // HnpE‚q
loomoon

“kerdn

δn // Hn´1pC‚q
loooomoooon

“cokerdn

φ˚ // Hn´1pD‚q
loooomoooon

“cokerdn

ψ˚ // ¨ ¨ ¨
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We now describe some important properties of chain maps and how they relate with the induced mor-
phisms in homology.

Definition 8.8 (Quasi-isomorphism)
A chain map φ‚ : C‚ ÝÑ D‚ is called a quasi-isomorphism if Hnpφ‚q is an isomorphism for all
n P Z.

Warning: A quasi-isomorphism does not imply that the complexes C‚ and D‚ are isomorphic as chain
complexes. See Exercise 2, Sheet 5 for a counter-example.

In general complexes are not exact sequences, but if they are, then their homology vanishes, so that
there is a quasi-isomorphism from the zero complex.

Exercise [Exercise 3, Exercise Sheet 5]
Let C‚ be a chain complex of R-modules. Prove that TFAE:

(a) C‚ is exact (i.e. exact at Cn for each n P Z);

(b) C‚ is acyclic , that is, HnpC‚q “ 0 for all n P Z;

(c) The map 0‚ ÝÑ C‚ is a quasi-isomorphism.

Definition 8.9 (Homotopic chain maps / homotopy equivalence)
Two chain maps φ‚, ψ‚ : C‚ ÝÑ D‚ between chain complexes pC‚, d‚q and pD‚, d1‚q are called
(chain) homotopic if there exists a familiy of R-linear maps tsn : Cn ÝÑ Dn`1unPZ such that

φn ´ ψn “ d1n`1 ˝ sn ` sn´1 ˝ dn

for each n P Z.

¨ ¨ ¨ // Cn`1
dn`1 //

φn`1´ψn`1

��

Cn
dn //

sn

yy

φn´ψn

��

Cn´1

φn´1´ψn´1

��
sn´1

yy

// ¨ ¨ ¨

¨ ¨ ¨ // Dn`1 d1n`1

// Dn d1n
// Dn´1 // ¨ ¨ ¨

In this case, we write φ‚ „ ψ‚.
Moreover, a chain map φ‚ : C‚ ÝÑ D‚ is called a homotopy equivalence if there exists a chain
map σ : D‚ ÝÑ C‚ such that σ‚ ˝ φ‚ „ idC‚ and φ‚ ˝ σ‚ „ idD‚ .

Note: One easily checks that „ is an equivalence relation on the class of chain maps.

Proposition 8.10
If φ‚, ψ‚ : C‚ ÝÑ D‚ are homotopic morphisms of chain complexes, then they induce the same
morphisms in homology, that is

Hnpφ‚q “ Hnpψ‚q : HnpC‚q ÝÑ HnpD‚q @n P Z.
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Proof : Fix n P Z and let z P ZnpC‚q. Then, with the notation of Definition 8.9, we have
`

φn ´ ψn
˘

pzq “
`

d1n`1sn ` sn´1dn
˘

pzq “ d1n`1snpzq
loooomoooon

PBnpD‚q

` sn´1dnpzq
loooomoooon

“0

P BnpD‚q.

Hence, for every z ` BnpC‚q P HnpC‚q, we have

pHnpφ‚q ´Hnpψ‚qq pz ` BnpC‚qq “ Hnpφ‚ ´ ψ‚qpz ` BnpC‚qq “ 0` BnpD‚q .

In other words Hnpφ‚q ´Hnpψ‚q ” 0, so that Hnpφ‚q “ Hnpψ‚q.

Remark 8.11
(Out of the scope of the lecture!)
Homotopy of complexes leads to considering the so-called homomotopy category of R-modules,
denoted Ho(RMod), which is very useful in algebraic topology or representation theory of finite
groups for example. It is defined as follows:

¨ The objects are the chain complexes, i.e. Ob Ho(RMod) “ Ob Ch(RMod) .

¨ The morphisms are given by HomHo(RMod) :“ HomCh(RMod) {„ .

It is an additive category, but it is not abelian in general though. The isomorphisms in the homotopy
category are exactly the classes of the homotopy equivalences.

Dualizing the objects and concepts we have defined above yields the so-called "cochain complexes" and
the notion of "cohomology".

Definition 8.12 (Cochain complex / cohomology)

(a) A cochain complex of R-modules is a sequence

pC‚, d‚q “
ˆ

¨ ¨ ¨ ÝÑ Cn´1 dn´1
ÝÑ Cn dn

ÝÑ Cn`1 ÝÑ ¨ ¨ ¨

˙

,

where for each n P Z, Cn is an R-module and dn P HomRpCn, Cn`1q satisfies dn`1 ˝ dn “ 0.
We often write simply C‚ instead of pC‚, d‚q.

(b) The elements of Zn :“ ZnpC‚q :“ kerdn are the n-cocycles.

(c) The elements of Bn :“ BnpC‚q :“ Imdn´1 are the n-coboundaries.

(d) The n-th cohomology module (or simply group) of C‚ is HnpC‚q :“ Zn{Bn.

Similarly to the case of chain complexes, we can define:

¨ Morphisms of cochain complexes (or simply cochain maps) between two cochain complexes
pC‚, d‚q and pD‚, d̃‚q, written φ‚ : C‚ ÝÑ D‚, as a familiy of R-linear maps φn : Cn ÝÑ Dn

(n P Z) such that φn ˝dn´1 “ d̃n´1 ˝φn´1 for each n P Z, that is such that the following diagram
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commutes:
¨ ¨ ¨

dn´2
// Cn´1

φn´1
��

dn´1
// Cn

φn
��

dn // Cn`1

φn`1
��

dn`1
// ¨ ¨ ¨

¨ ¨ ¨
d̃n´2
// Dn´1 d̃n´1

// Dn d̃n // Dn`1 d̃n`1
// ¨ ¨ ¨

¨ subcomplexes, quotient complexes;

¨ kernels, images, cokernels of morphisms of cochain complexes.

¨ Cochain complexes together with morphisms of cochain complexes (and composition given by
degreewise composition of R-morphisms) form an abelian category, which we will denote by
CoCh(RMod).

Exercise: formulate these definitions in a formal way.

Theorem 8.13 (Long exact sequence in cohomology)

Let 0‚ //C‚
φ‚ //D‚

ψ‚ //E‚ //0‚ be a s.e.s. of cochain complexes. Then, for each n P Z, there
exists a connecting homomorphism δn : HnpE‚q ÝÑ Hn`1pC‚q such that the following sequence is
exact:

¨ ¨ ¨
δn`1
// HnpC‚q

φ˚ // HnpD‚q
ψ˚ // HnpE‚q δn // Hn`1pC‚q

φ˚ // Hn`1pD‚q
ψ˚ // ¨ ¨ ¨

Proof : Similar to the proof of the long exact sequence in homology (Theorem 8.7). Apply the Snake Lemma.

9 Projective Resolutions
Definition 9.1 (Projective resolution)

Let M be an R-module. A projective resolution of M is a non-negative complex of projective
R-modules

pP‚, d‚q “
`

¨ ¨ ¨
d3 // P2

d2 // P1
d1 // P0

˘

which is exact at Pn for every n ě 1 and such that H0pP‚q “ P0{ Imd1 – M .
Moreover, if Pn is a free R-module for every n ě 0, then P‚ is called a free resolution of M .

Notation: Letting ε : P0 � M denote the quotient homomorphism, we have a so-called augmented
complex

¨ ¨ ¨
d3 //P2

d2 //P1
d1 //P0

ε // //M //0 ,

associated to the projective resolution, and this augmented complex is exact. Hence we will also denote
projective resolutions of M by P‚

ε
� M .

Example 8

The Z-module M “ Z{nZ admits the following projective resolution: 0 //Z ¨n //Z .
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We now prove that projective resolutions do exist, and consider the question of how "unique" they are.

Proposition 9.2
Any R-module has a projective resolution. (It can even chosen to be free.)

Proof : We use the fact that every R-module is a quotient of a free R-module (Proposition 6.4). Thus there
exists a free module P0 together with a surjective R-linear map ε : P0 � M such that M – P0{ ker ε.
Next, let P1 be a free R-module together with a surjective R-linear map d1 : P1 � ker ε Ď P0 such that
P1{ kerd1 – ker ε :

P1
d1 //

d1 "" ""

P0
ε // // M .

ker ε
- 


<<

Inductively, assuming that the R-homomorphism dn´1 : Pn´1 ÝÑ Pn´2 has already been defined, then
there exists a free R-module Pn and a surjective R-linear map dn : Pn � kerdn´1 Ď Pn´1 with
Pn{ kerdn – kerdn´1. The claim follows.

Theorem 9.3 (Lifting Theorem)
Let pP‚, d‚q and pQ‚, d1‚q be two non-negative chain complexes such that

1. Pn is a projective R-module for every n ě 0;

2. Q‚ is exact at Qn for every n ě 1 (that is HnpQ‚q “ 0, for all n ě 1).

Let ε : P0 � H0pP‚q and ε1 : Q0 � H0pQ‚q be the quotient homomorphims.
If f : H0pP‚q ÝÑ H0pQ‚q is an R-linear map, then there exists a chain map φ‚ : P‚ ÝÑ Q‚ inducing
the given map f in degree-zero homology, that is such that H0pφ‚q “ f and f ˝ε “ ε1˝φ0. Moreover,
such a chain map φ‚ is unique up to homotopy.

In the situation of the Theorem, it is said that φ‚ lifts f .

Proof : Existence. Beacuse P0 is projective and ε1 is surjective, by definition (Def. 6.7), there exists an
R-linear map φ0 : P0 ÝÑ Q0 such that the following diagram commutes

¨ ¨ ¨
d1 // P0

ö

ε // //

Dφ0

��

H0pP‚q “ P0{ Imd1

f
��

¨ ¨ ¨
d11 // Q0

ε1 // // H0pQ‚q “ Q0{ Imd11 ,

that is f ˝ ε “ ε1 ˝φ0 . But then, ε1 ˝φ0 ˝d1 “ f ˝ ε ˝ d1
loomoon

“0

“ 0, so that Impφ0 ˝d1q Ď ker ε1 “ Imd11. Again

by Definition 6.7, since P1 is projective and d11 is surjective onto its image, there exists an R-linear map
φ1 : P1 ÝÑ Q1 such that φ0 ˝ d1 “ d11 ˝ φ1:

P1

ö

d1 //

Dφ1

��

φ0˝d1

  

P0

φ0

��
Q1 d11

// // Imd11 “ ker ε1 �
�

inc
// Q0
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The morphisms φn : Pn ÝÑ Qn are constructed similarly by induction on n. Hence the existence of a
chain map φ‚ : P‚ ÝÑ Q‚ as required.
Uniqueness. For the uniqueness statement, suppose ψ‚ : P‚ ÝÑ Q‚ also lifts the given morphism f . We
have to prove that φ‚ „ ψ‚ (or equivalently that φ‚ ´ ψ‚ is homotopic to the zero chain map).
For each n ě 0 set σn :“ φn ´ ψn, so that σ‚ : P‚ ÝÑ Q‚ is becomes a chain map. In particular
σ0 “ φ0´ψ0 “ H0pφ‚q´H0pψ‚q “ f ´ f “ 0. Then we let s´2 : 0 ÝÑ H0pQ‚q and s´1 : H0pP‚q ÝÑ Q0
be the zero maps. Therefore, in degree zero, we have the following maps:

P0
ε // // H0pP‚q

0
��

s´1
xx

0 // 0

s´2xx
Q0 ε1

// // H0pQ‚q 0
// 0 ,

where clearly 0 “ s´2 ˝0`ε1 ˝ s´1. This provides us with the starting point for constructing a homotopy
sn : Pn ÝÑ Qn`1 by induction on n. So let n ě 0 and suppose si : Pi ÝÑ Qi`1 is already constructed
for each ´2 ď i ď n´ 1 and satisfies d1i`1 ˝ si ` si´1 ˝ di “ σi for each i ě ´1, and where we identify

P´1 “ H0pP‚q, Q´1 “ H0pQ‚q, P´2 “ 0 “ Q´2, d0 “ ε, d10 “ ε1, d´1 “ 0 “ d1´1 .

Now, we check that the image of σn ´ sn´1 ˝ dn is contained in kerd1n “ Imd1n`1:

d1n ˝
`

σn ´ sn´1 ˝ dn
˘

“ d1n ˝ σn ´ d1n ˝ sn´1 ˝ dn
“ d1n ˝ σn ´ pσn´1 ´ sn´2 ˝ dn´1q ˝ dn
“ d1n ˝ σn ´ σn´1 ˝ dn
“ σn´1 ˝ dn ´ σn´1 ˝ dn “ 0 ,

where the last-nut-one equality holds because both σ‚ is a chain map. Therefore, again by Definition 6.7,
since Pn is projective and d1n`1 is surjective onto its image, there exists an R-linear map sn : Pn ÝÑ Qn`1
such that d1n`1 ˝ sn “ σn ´ sn´1 ˝ dn:

Pn
Dsn

��

dn //

σn´sn´1˝dn
��

Pn´1
dn´1 //

sn´1

ww

σn´1

��

Pn´2

σn´2

��

sn´2

ww

// ¨ ¨ ¨

xx
Qn`1 d1n`1

// Qn d1n
// Qn´1 d1n´1

// Qn´2 // ¨ ¨ ¨

Hence we have φn ´ ψn “ σn “ d1n`1 ˝ sn ` sn´1 ˝ dn, as required.

As a corollary, we obtain the required statement on the uniqueness of projective resolutions:

Theorem 9.4 (Comparison Theorem)

Let P‚
ε
� M and Q‚

ε1
� M be two projective resolutions of an R-module M . Then P‚ and Q‚ are

homotopy equivalent. More precisely, there exist chain maps φ‚ : P‚ ÝÑ Q‚ and ψ‚ : Q‚ ÝÑ P‚
lifting the identity on M and such that ψ‚ ˝ φ‚ „ IdP‚ and φ‚ ˝ ψ‚ „ IdQ‚ .

Proof : Consider the identity morphism IdM : M ÝÑ M .
By the Lifting Theorem, there exists a chain map φ‚ : P‚ ÝÑ Q‚, unique up to homotopy, such that
H0pφ‚q “ IdM and IdM ˝ε “ ε1 ˝ φ0. Likewise, there exists a chain map ψ‚ : Q‚ ÝÑ P‚, unique up to
homotopy, such that H0pφ‚q “ IdM and IdM ˝ε1 “ ε ˝ ψ0 .
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¨ ¨ ¨ //

¨¨¨

Pn
Dφn
��

dn // ¨ ¨ ¨ //

¨¨¨

P1

öDφ1

��

d1 // P0

öDφ0

��

ε // M

IdM
��

// 0

¨ ¨ ¨ // Qn

Dψn

OO

d1n
// ¨ ¨ ¨ // Q1

Dψ1

OO

d11
// Q0

Dψ0

OO

ε1 // M

IdM

OO

// 0

Now, ψ‚˝φ‚ and IdP‚ are both chain maps that lift the identity map IdM : H0pP‚q ÝÑ H0pP‚q. Therefore,
by the uniqueness statement in the Lifting Theorem, we have ψ‚ ˝ φ‚ „ IdP‚ . Likewise, φ‚ ˝ψ‚ and IdQ‚
are both chain maps that lift the identity map IdM : H0pQ‚q ÝÑ H0pQ‚q, therefore they are homotopic,
that is φ‚ ˝ ψ‚ „ IdQ‚ .

Another way to construct projective resolutions is given by the following Lemma, often called the Horse-
shoe Lemma, because it requires to fill in a horseshoe-shaped diagram:

Lemma 9.5 (Horseshoe Lemma)

Let 0 // M 1 // M // M2 // 0 be a short exact sequence of R-modules. Let P 1‚
ε1
� M 1 be a

resolution of M 1 and P2‚
ε2
� M2 be a projective resolution of M2.

...

��

...

��
P 11
��

P21
��

P 10
ε1 ��

P20
ε2 ��

0 // M 1 //

��

M // M2 //

��

0

0 0

Then, there exists a resolution P‚
ε
� M of M such that Pn – P 1n‘P2n for each n P Zě0 and the s.e.s.

0 // M 1 // M // M2 // 0 lifts to a s.e.s. of chain complexes 0‚ // P 1‚
i‚ // P‚

π‚ // P2‚ // 0‚

where i‚ and π‚ are the canonical injection and projection. Moreover, if P 1‚
ε1
� M 1 is a projective

resolution, then so is P‚
ε
� M .

Proof : Exercise 3, Exercise Sheet 6.
[Hint: Proceed by induction on n, and use the Snake Lemma.]

Finally, we note that dual to the notion of a projective resolution is the notion of an injective resolution:

Definition 9.6 (Injective resolution)
Let M be an R-module. An injective resolution of M is a non-negative cochain complex of injective
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R-modules
pI‚, d‚q “

`

I0 d0
// I1 d1

// I2 d2
// ¨ ¨ ¨

˘

which is exact at In for every n ě 1 and such that H0pI‚q “ kerd0{0 – M .

Notation: Letting ı : M ãÑ I0 denote the natural injection, we have a so-called augmented complex

M ı // I0 d0
// I1 d1

// I2 // ¨ ¨ ¨

associated to the injective resolution pI‚, d‚q, and this augmented complex is exact. Hence we will also
denote injective resolutions of M by M ı

ãÑ I‚.

Similarly to projective resolutions, one can prove that an injective resolution always exists. There is
also a Lifting Theorem and a Comparison Theorem for injective resolutions, so that they are unique up
to homotopy (of cochain complexes).

10 Ext and Tor
We now introduce the Ext and Tor groups, which are cohomology and homology groups obtained from
applying Hom and tensor product functors to projective/injective resolutions. We will see later that Ext
groups can be used in group cohomology to classify abelian group extensions.

Definition 10.1 (Ext-groups)

Let M and N be two left R-modules and let P‚
ε
� M be a projective resolution of M . For n P Zě0,

the n-th Ext-group of M and N is

ExtnRpM,Nq :“ Hn`HomRpP‚, Nq
˘

,

that is, the n-th cohomology group of the cochain complex HomRpP‚, Nq.

Recipe:

1. Choose a projective resolution P‚ of M .

2. Apply the left exact contravariant functor HomRp´, Nq to the projective resolution

P‚ “
`

¨ ¨ ¨
d3 // P2

d2 // P1
d1 // P0

˘

to obtain a cochain complex

HomRpP0, Nq
d˚1 // HomRpP1, Nq

d˚2 // HomRpP3, Nq
d˚3 // ¨ ¨ ¨ .

of abelian groups (which is not exact in general).

3. Compute the cohomology of this new complex.

First of all, we have to check that the definition of the abelian groups ExtnRpM,Nq is independent from
the choice of the projective resolution of M .
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Proposition 10.2

If P‚
ε
� M and Q‚

ε1
� M are two projective resolutions of M , then the groups Hn`HomRpP‚, Nq

˘

and Hn`HomRpQ‚, Nq
˘

are (canonically) isomorphic, via the homomorphisms induced by the chain
maps between P‚ and Q‚ given by the Comparison Theorem applied to the identity morphism IdM .

Proof : By the Comparison Theorem, there exist chain maps φ‚ : P‚ ÝÑ Q‚ and ψ‚ : Q‚ ÝÑ P‚ lifting the
identity on M and such that ψ‚ ˝ φ‚ „ IdP‚ and φ‚ ˝ ψ‚ „ IdQ‚ .
Now, applying the functor HomRp´, Nq yields morphisms of cochain complexes

φ˚ : HomRpQ‚, Nq ÝÑ HomRpP‚, Nq and ψ˚ : HomRpP‚, Nq ÝÑ HomRpQ‚, Nq .

Since φ‚˝ψ‚ „ IdQ‚ and ψ‚˝φ‚ „ IdP‚ , it follows that φ˚˝ψ˚ „ IdHomR pP‚,Nq and ψ˚˝φ˚ „ IdHomR pQ‚,Nq.
But then, passing to cohomology, φ˚ induces a group homomorphism

φ˚ : Hn`HomRpQ‚, Nq
˘

ÝÑ Hn`HomRpP‚, Nq
˘

(see Exercise 1, Exercise Sheet 5). Since φ‚ is unique up to homotopy, so is φ˚, and hence φ˚ is
unique because homotopic chain maps induce the same morphisms in cohomology. Likewise, there is a
unique homomorphism ψ˚ : Hn`HomRpP‚, Nq

˘

ÝÑ Hn`HomRpQ‚, Nq
˘

of abelian groups induced by
ψ‚ . Finally, φ˚ ˝ ψ˚ „ Id and ψ˚ ˝ φ˚ „ Id imply that φ˚ ˝ ψ˚ “ Id and ψ˚ ˝ φ˚ “ Id. Therefore, φ˚
and ψ˚ are canonically defined isomorphisms.

Proposition 10.3 (Properties of ExtnR )
Let M,M1,M2 and N,N1, N2 be R-modules and let n P Zą0 be an integer. The following holds:

(a) Ext0RpM,Nq – HomRpM,Nq.

(b) Any morphism of R-modules α : M1 ÝÑ M2 induces a group homomorphism

α˚ : ExtnRpM2, Nq ÝÑ ExtnRpM1, Nq .

(c) Any morphism of R-modules β : N1 ÝÑ N2 induces a group homomorphism

β˚ : ExtnRpM,N1q ÝÑ ExtnRpM,N2q .

(d) If P is a projective R-module, then ExtnRpP,Nq “ 0 for all n ě 1.

(e) If I is an injective R-module, then ExtnRpM, Iq “ 0 for all n ě 1.

Proof : (a) Let P‚
ε
� M be a projective resolution of M . Applying the left exact functor HomRp´, Nq to

the resolution P‚ yields the cochain complex

HomRpP0, Nq
d˚1 // HomRpP1, Nq

d˚2 // HomRpP3, Nq
d˚3 // ¨ ¨ ¨ .

Therefore,
Ext0RpM,Nq “ H0`HomRpP‚, Nq

˘

“ kerd˚1 {0 – kerd˚1 .

Now, the tail ¨ ¨ ¨ d1
ÝÑ P0

ε
ÝÑ M ÝÑ 0 of the augmented complex P‚

ε
� M is an exact sequence

of R-modules, so that the induced sequence

0 // HomRpM,Nq
ε˚ // HomRpP0, Nq

d˚1 // ¨ ¨ ¨
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is exact at HomRpM,Nq and at HomRpP0, Nq and it follows that

Ext0RpM,Nq – kerd˚1 “ Im ε˚ – HomRpM,Nq

because ε˚ is injective.

(b) Let P‚
ε
� M1 be a projective resolution of M1 and P 1‚

ε1
� M2 be a projective resolution of M2. The

Lifting Theorem implies that α lifts to a chain map φ‚ : P‚ ÝÑ P 1‚. Then, φ‚ induces a morphism
of chain complexes φ˚ : HomRpP 1‚, Nq ÝÑ HomRpP‚, Nq and then φ˚ induces a morphism in
cohomology

φ˚ : ExtnRpM2, Nq ÝÑ ExtnRpM1, Nq

for each n ě 0 and we set α˚ :“ φ˚.

(c) Let P‚
ε
� M be a projective resolution of M . Then, there is a morphism of cochain complexes

β‚ : HomRpP‚, N1q ÝÑ HomRpP‚, N2q induced by β, which, in turn, induces a homomorphism of
abelian groups β˚ in cohomology.

(d) Let P‚
ε
� M be a projective resolution of M .Choose ¨ ¨ ¨ // 0 // 0 // P as a projective

resolution of P (i.e. P0 :“ P , P1 “ 0, . . . ), augmented by the identity morphism IdP : P ÝÑ P .
Then the induced cochain complex is

HomRpP,Nq
0 // 0 0 // 0 0 // ¨ ¨ ¨ ,

so that clearly ExtnRpP,Nq “ 0 for each n ě 1.

(e) Let P‚
ε
� M be a projective resolution of M . Since I is injective, the functor HomRp´, Iq is exact.

Therefore the induced cochain complex

HomRpP0, Iq
d˚1 // HomRpP1, Iq

d˚2 // HomRpP2, Iq
d˚3 // ¨ ¨ ¨

is exact and its cohomology is zero. The claim follows.

Remark 10.4
Using the proposition one can prove that for every n P Zě0, ExtnRp´, Nq : RMod ÝÑ Ab is a
contravariant additive functor, and ExtnRpM,´q : RMod ÝÑ Ab is a covariant additive functor.

Theorem 10.5 (Long exact sequences of Ext-groups)

(a) Any s.e.s. 0 //N1
φ //N2

ψ //N3 //0 of R-modules induces a long exact sequence of
abelian groups

0 // Ext0RpM,N1q
φ˚ // Ext0RpM,N2q

ψ˚ // Ext0RpM,N3q
δ0
// Ext1RpM,N1q // . . .

. . . // ExtnRpM,N1q
φ˚ // ExtnRpM,N2q

ψ˚ // ExtnRpM,N3q
δn // Extn`1

R pM,N1q // . . . .

(b) Any s.e.s. 0 //M1
α //M2

β //M3 //0 of R-modules induces a long exact sequence of
abelian groups

0 // Ext0RpM3, Nq
β˚ // Ext0RpM2, Nq α˚ // Ext0RpM1, Nq δ1

// Ext1RpM3, Nq // . . .

. . . // ExtnRpM3, Nq
β˚ // ExtnRpM2, Nq α˚ // ExtnRpM1, Nq δn // Extn`1

R pM3, Nq // . . . .
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Proof : (a) Let P‚ be a projective resolution of M . Then there is an induced short exact sequence of cochain
complexes

0 // HomRpP‚, N1q
φ‚ // HomRpP‚, N2q

ψ‚ // HomRpP‚, N3q // 0

because each module Pn is projective. Indeed, at each degree n P Zě0 this sequence is

0 // HomRpPn, N1q
φ˚ // HomRpPn, N2q

ψ˚ // HomRpPn, N3q // 0

obtained by applying the functor HomRpPn,´q, which is exact as Pn is projective. It is then easily
checked that this gives a s.e.s. of cochain complexes, that is that the induced differential maps
commute with the induced homomorphisms φ˚. Thus, applying Theorem 8.13 yields the required
long exact sequence in cohomology.

(b) Let P‚ be a projective resolution of M1 and let Q‚ be a projective resolution of M3. By the
Horseshoe Lemma (Lemma 9.5), there exists a projective resolution R‚ of M2 and a short exact
sequence of chain complexes

0 // P‚ // R‚ // Q‚ // 0 ,

lifting the initial s.e.s. of R-modules. Since Qn is projective for each n ě 0, the sequences

0 //Pn //Rn //Qn //0

are split exact for each n ě 0. Therefore applying HomRp´, Nq yields a split exact s.e.s.

0 //HomRpQn, Nq //HomRpRn, Nq //HomRpPn, Nq //0

for each for each n ě 0. It follows that there is a s.e.s. of cochain complexes

0 // HomRpQ‚, Nq // HomRpR‚, Nq // HomRpP‚, Nq // 0.

The associated long exact sequence in cohomology (Theorem 8.13) is the required long exact
sequence.

The above results show that the Ext groups “measure” and "repair" the non-exactness of the functors
HomRpM,´q and HomRp´, Nq.

The next result is called “dimension-shifting” in the literature (however, it would be more appropriate
to call it “degree-shifting”); it provides us with a method to compute Ext-groups by induction.

Remark 10.6 (Dimension shifting)
Let N be an R-module and consider a s.e.s.

0 //L α //P β //M //0

of R-modules, where is P projective (if M is given, take e.g. P free mapping onto M , with kernel L).
Then ExtnRpP,Nq “ 0 for all n ě 1 and applying the long exact sequence of Ext-groups yields at
each degree n ě 1 an exact sequence of the form

0 α˚ // ExtnRpL,Nq
δn // Extn`1

R pM,Nq β˚ // 0,
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where the connecting homomorphism δn is therefore forced to be an isomorphism:

Extn`1
R pM,Nq – ExtnRpL,Nq .

Note that the same method applies to the second variable with a short exact sequence whose middle
term is injective.

A consequence of the dimension shifting argument is that it allows us to deal with direct sums and
products of modules in each variable of the Ext-groups. For this we need the following lemma:

Lemma 10.7
Consider the following commutative diagram of R-modules with exact rows:

A1 α //

f
��

A β //

g
��

A2 // 0

B1 φ
// B

ψ
// B2 // 0

Then there exists a morphism h P HomRpA2, B2q such that h ˝ β “ ψ ˝ g. Moreover, if f and g are
isomorphisms, then so is h.

Proof : Exercise 5, Exercise Sheet 7.

Proposition 10.8 (Ext and direct sums)

(a) Let tMiuiPI be a family of R-modules and let N be an R-module. Then

ExtnR

˜

à

iPI
Mi, N

¸

–
ź

iPI
ExtnRpMi, Nq @n ě 0 .

(b) Let M be an R-module and let tNiuiPI be a family of R-modules. Then

ExtnR

˜

M,
ź

iPI
Ni

¸

–
ź

iPI
ExtnRpM,Niq @n ě 0.

Proof : (a) Case n “ 0. By Proposition 10.3(a) and the universal property of the direct sum (Proposi-
tion 4.2), we have

Ext0R

˜

à

iPI
Mi, N

¸

– HomR

˜

à

iPI
Mi, N

¸

–
ź

iPI
HomRpMi, Nq –

ź

iPI
ExtnRpMi, Nq .

Now, suppose that n ě 1 and choose for each i P I a s.e.s. of R-modules

0 // Li // Pi // Mi // 0,
where Pi is projective (e.g. choose Pi free with quotient isomorphic to Mi and kernel Li). These
sequences induce a s.e.s.

0 //À
iPI Li //À

iPI Pi //À
iPIMi // 0 .
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Case n ě 1: We proceed by induction on n.
First, for n=1, using a long exact sequence of Ext-groups, we obtain a commutative diagram

HomRp
À

iPI Pi, Nq //

–

��
ö

HomRp
À

iPI Li, Nq
δ0
//

–

��

Ext1Rp
À

iPIMi, Nq // Ext1R p
À

iPI Pi, Nq

ś

iPI HomRpPi, Nq // ś
iPI HomRpLi, Nq // ś

iPI Ext1RpMi, Nq // ś
iPI Ext1RpPi, Nq

with the following properties:
¨ the morphisms of the bottom row are induced componentwise;
¨ both rows are exact; and
¨ the two vertical isomorphisms are given by the case n “ 0.

Since Pi is projective for every i P I , so is
À

iPI Pi, thus Proposition 10.3 yields

Ext1R

˜

à

iPI
Pi, N

¸

– 0 –
ź

iPI
Ext1RpPi, Nq @ i P I .

Therefore Lemma 10.7 yields

Ext1R

˜

à

iPI
Mi, N

¸

–
ź

iPI
Ext1RpMi, Nq .

Now assume that n ě 2 and assume that the claim holds for the pn´ 1q-th Ext-groups, that is

Extn´1
R

˜

à

iPI
Li, N

¸

–
ź

iPI
Extn´1

R pLi, Nq .

Then, applying the Dimension Shifting argument yields

Extn´1
R

˜

à

iPI
Li, N

¸

– ExtnR

˜

à

iPI
Mi, N

¸

.

and
Extn´1

R pLi, Nq – ExtnRpMi, Nq @i P I ,

so that
ź

iPI
Extn´1

R pLi, Nq –
ź

iPI
ExtnRpMi, Nq .

Hence the required isomorphism

ExtnR

˜

à

iPI
Mi, N

¸

–
ź

iPI
ExtnRpMi, Nq .

(b) Similar to (a): proceed by induction and apply a dimension shift. (In this case, we use s.e.s.’s with
injective middle terms.)

To end this chapter, we introduce the Tor-groups, which “measure” the non-exactness of the functors
M bR ´ and ´bR N .
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Definition 10.9 (Tor-groups)
Let M be a right R-module and N be a left R-module. Let P‚ be a projective resolution of N . For
n P Zě0, the n-th Tor-group of M and N is

TorRn pM,Nq :“ HnpM bR P‚q,

that is, the n-th homology group of the chain complex M bR P‚.

Proposition 10.10
Let M,M1,M2,M3 be right R-modules and let N,N1, N2, N3 be left R-modules.

(a) The group TorRn pM,Nq is independant of the choice of the projective resolution of N .

(b) TorR0 pM,Nq – M bR N .

(c) TorRn p´, Nq is an additive covariant functor.

(d) TorRn pM,´q is an additive covariant functor.

(e) TorRn pM1 ‘M2, Nq – TorRn pM1, Nq ‘ TorRn pM2, Nq.

(f ) TorRn pM,N1 ‘N2q – TorRn pM,N1q ‘ TorRn pM,N2q.

(g) If either M or N is flat (so in particular if either M or N is projective), then TorRn pM,Nq “ 0
for all n ě 1.

(h) Any s.e.s. 0 //M1
α //M2

β //M3 //0 of right R-modules induces a long exact se-
quence

¨ ¨ ¨ // TorRn`1pM3, Nq
δn`1 // TorRn pM1, Nq

α˚ // TorRn pM2, Nq
β˚ // TorRn pM3, Nq

δn // ¨ ¨ ¨

¨ ¨ ¨ // TorR1 pM3, Nq
δ1 // M1 bR N

αbIdN // M2 bR N
βbIdN // M3 bR N // 0

of abelian groups.

(i) Any s.e.s. 0 //N1
α //N2

β //N3 //0 of left R-modules induces a long exact sequence

¨ ¨ ¨ // TorRn`1pM,N3q
δn`1 // TorRn pM,N1q

α˚ // TorRn pM,N2q
β˚ // TorRn pM,N3q

δn // ¨ ¨ ¨

¨ ¨ ¨ // TorR1 pM,N3q
δ1 // M bR N1

IdM bα // M bR N2
IdM bβ // M bR N3 // 0

of abelian groups.

The proof of the above results are in essence similar to the proofs given for the Ext-groups.



Chapter 4. Cohomology of groups

From now on we assume that we are given a group pG, ¨q (in multiplicative notation) and consider
modules over the group algebra KG of G over a commutative ring K . The main aim of this chapter is to
introduce the cohomology groups of G and describe concrete projective resolutions which shall allow
use to compute them in some cases.
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11 Modules over the Group Algebra
Lemma-Definition 11.1 (Group algebra)

If G is a group and K is a commutative ring, we may form the group ring KG whose elements are
the formal linear combinations

ř

gPG λgg with λg P K , and addition and multiplication are given by
ÿ

gPG
λgg`

ÿ

gPG
µgg “

ÿ

gPG
pλg ` µgqg and

`

ÿ

gPG
λgg

˘

¨
`

ÿ

hPG
µhh

˘

“
ÿ

g,hPG
pλgµhqgh .

Thus KG is a K -algebra, which as a K -module is free with basis G. Hence we usually call KG the
group algebra of G over K rather than simply group ring.

Proof : By definition KG is a free K -module with basis G, and the multiplication in G is extended by K -
bilinearity to the multiplication KG ˆ KG ÝÑ KG. It is then straightforward to check that this makes
KG into a K -algebra.

In this lecture, we will mainly work with the following commutative rings: K “ Z the ring of integers,
and fields.

48
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Remark 11.2
(a) KG-modules and representations:

If K is a field, then specifying a KG-module V is the same thing as specifying a K -vector
space V together with a K -linear action of G on V , i.e. a group homomorphism

G ÝÑ AutK pV q “: GLpV q ,

or in other words a K-representation of G.
Similarly, if K “ Z, then specifying a ZG-module M is the same thing as specifying a
Z-module M together with a Z-linear action of G on M , i.e. a group homomorphism

G ÝÑ AutZpMq

also called an integral representation of G .

(b) Left and right KG-modules:
Since G is a group, the map KG ÝÑ KG such that g ÞÑ g´1 for each g P G is an anti-
automorphism. It follows that any left KG-module M may be regarded as a right KG-module
via the right G-action m ¨ g :“ g´1m. Thus the sidedness of KG-modules is not usually an
issue.

(c) The trivial KG-module:
The commutative ring K itself can be seen as a KG-module via the G-action

¨ : G ˆ K ÝÑ K
pg, λq ÞÝÑ g ¨ λ :“ λ

extended by K -linearity to the whole of KG . This module is called the trivial KG-module.
An arbitrary KG-module A on which G acts trivially is also called a trivial KG-module.

(d) Tensor products of KG-modules:
If M and N are two KG-modules, then the tensor product M bK N of M and N balanced
over K can be made into a KG-module via the diagonal action of G, i.e.

g ¨ pmb nq :“ gmb gn @g P G,@m P M,@n P N .

(e) Morphisms of KG-modules:
If M and N are two KG-modules, then the abelian group HomK pM,Nq can be made into a
KG-module via the conjugation action of G, i.e.

pg ¨ fqpmq :“ g ¨ fpg´1 ¨mq @g P G,@m P M .

(f ) The augmentation map and the augmentation ideal:
The map ε : KG ÝÑ K defined by εpgq :“ 1 for every g P G and extended by K -linearity
to the whole of KG is called the augmentation map. This is a surjective homomorphism of
K -algebras whose kernel

kerpεq “: IG
is called the augmentation ideal of KG , and KG{IG – K . (Notice that ε is hence also a
homomorphism of KG-modules, so that we can also see IG as a KG-submodule of KG.)
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Lemma 11.3

(a) IG is a free K -module with K -basis tg´ 1 | g P Gzt1uu .

(b) If X is a set of generators for the group G, then IG is generated as a KG-module by the set
tx ´ 1 | x P Xu .

(c) If M is a KG-module, then IG ¨M “ xg ¨m´m | g P G,m P MyK .

Proof : (a) First of all, the set S :“ tg ´ 1 | g P Gzt1uu is clearly contained in ker ε by definition of ε.
The set S is K -linearly independent since

0 “
ÿ

gPGzt1u
λgpg´ 1q pλg P K q

“
ÿ

gPGzt1u
λgg ´

ÿ

gPGzt1Gu
λg

implies that λg “ 0 for every g P Gzt1u, because G is K -linearly independent in KG.
To prove that S spans IG, let

ř

gPG λgg (λg P K ) be an element of IG “ ker ε. Hence

0 “ εp
ÿ

gPG
λggq “

ÿ

gPG
λg

and it follows that
ÿ

gPG
λgg “

ÿ

gPG
λgg´ 0 “

ÿ

gPG
λgg´

ÿ

gPG
λg “

ÿ

gPG
λgpg´ 1q “

ÿ

gPGzt1u
λgpg´ 1q .

(b) Clearly, for every elements g1, g2 P G we have:

g1g2 ´ 1 “ g1pg2 ´ 1q ` pg1 ´ 1q and g´1
1 ´ 1 “ ´g´1

1 pg1 ´ 1q

Therefore tg´ 1 | g P Gzt1uu Ď xtx ´ 1 | x P XuyKG , which implies that

IG “ xtg´ 1 | g P Gzt1uyK Ď xtx ´ 1 | x P XuyKG Ď IG

and hence equality holds.
(c) Follows from (a).

Definition 11.4 (G-fixed points and G-cofixed points)
Let M be a KG-module.

(a) The G-fixed points of M are by definition MG :“
 

m P M | g ¨m “ m @g P G
(

.

(b) The G-cofixed points of M are by definition MG :“ M{pIG ¨Mq.

Exercise [Exercise 1, Exercise Sheet 8]
Let M and N be KG-modules. Prove that:

(a) MG is the largest submodule of M on which G acts trivially;

(b) MG is the largest quotient of M on which G acts trivially;
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(c) HomK pM,NqG “ HomKGpM,Nq;

(d) pM bK NqG – M bKG N;

(e) If G is finite, then pKGqG “ x
ř

gPG gyK and if G is infinite, then pKGqG “ 0.

12 (Co)homology of Groups
We can eventually define the homology and cohomology groups of a given group G.

Definition 12.1 (Homology and cohomology of a group)
Let A be a KG-module and let n P Zě0. Define:

(a) HnpG,Aq :“ TorKGn pK, Aq, the n-th homology group of G with coefficients in A ; and

(b) HnpG,Aq :“ ExtnKGpK, Aq, the n-th cohomology group of G with coefficients in A .

Remark 12.2
A priori the definition of the homology and cohomology groups HnpG,Aq and HnpG,Aq seem to
depend on the base ring K , but in fact it is not the case. Indeed, it can be proven that there are
group isomorphisms

TorKGn pK, Aq – TorZG
n pZ, Aq

and
ExtnKGpK, Aq – ExtnZGpZ, Aq

for each n P Zě0 and every KG-module A, which can also be seen as a ZG-module via the unique
ring homomorphism Z ÝÑ K , mapping 1Z to 1K . See Exercise 2, Exercise Sheet 8.

In view of the above remark, from now on, unless otherwise stated, we specify the ring K to Z.

Proposition 12.3 (Long exact sequences)

Let 0 // A
φ // B

ψ // C // 0 be a short exact sequence of ZG-modules. Then there are long
exact sequences of abelian groups in homology and cohomology:

(a)

¨ ¨ ¨ // Hn`1pG,Cq
δn`1 // HnpG,Aq

φ˚ // HnpG,Bq
ψ˚ // HnpG,Cq // ¨ ¨ ¨

¨ ¨ ¨ // H1pG,Cq
δ1 // H0pG,Aq

φ˚ // H0pG,Bq
ψ˚ // H0pG,Cq // 0

(b)

0 // H0pG,Aq
φ˚ // H0pG,Bq

ψ˚ // H0pG,Cq δ0
// H1pG,Aq // ¨ ¨ ¨

¨ ¨ ¨ // HnpG,Aq
φ˚ // HnpG,Bq

ψ˚ // HnpG,Cq δn // Hn`1pG,Aq // ¨ ¨ ¨
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Proof : By definition of the homology and cohomology groups of G, (a) is a special case of Proposition 10.5(a)
and (b) is a special case of Theorem 10.10(i).

To start our investigation we characterise the (co)homology of groups in degree zero:

Proposition 12.4
Let A be a ZG-module. Then

(a) H0pG,Aq – ZbZG A – AG , and

(b) H0pG,Aq – HomZGpZ, Aq – AG

as abelian groups.

Proof :

(a) By Proposition 10.10(a), H0pG,Aq “ TorZG
0 pZ, Aq – ZbZG A. Moreover by Exercise 1(d), Exercise

Sheet 8, we have ZbZG A – pZbZ AqG – AG .
(b) We already know that H0pG,Aq “ Ext0ZGpZ, Aq – HomZGpZ, Aq. Moreover by Exercise 1(c), Exer-

cise Sheet 8, we have HomZGpZ, Aq – HomZpZ, AqG – AG .

The degree-one (co)homology groups with coefficients in a trivial ZG-module can also be characterised
using the augmentation ideal. For this we let Gab :“ G{rG,Gs denote the abelianization of the group G.

Exercise [Exercise 4, Exercise Sheet 8]
Prove that:

(a) There is an isomorphism of abelian groups pIG{pIGq2,`q – pGab, ¨q.

(b) If A is a trivial ZG-module, then:

¨ H1pG,Aq – IG bZG A – IG{pIGq2 bZG A – IG{pIGq2 bZ A – Gab bZ A ;
¨ H1pG,Aq – HomZGpIG, Aq – HomZGpIG{pIGq2, Aq

– HomZpIG{pIGq2, Aq – HomZpGab, Aq – HomGrppG,Aq.

Corollary 12.5
If Z denotes the trivial ZG-module, then H1pG,Zq – IG{pIGq2 – Gab.

Proof : This is straightforward from Exercise 4, Exercise Sheet 8.

13 The Bar Resolution
In order to compute the (co)homology of groups, we need concrete projective resolutions of Z as a
ZG-module.
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Notation 13.1
Let n P Zě0 be a non-negative integer. Let Fn be the free Z-module with Z-basis consisting of all
pn` 1q-tuples pg0, g1, . . . , gnq of elements of G. Then the group G acts on Fn via

g ¨ pg0, g1, . . . , gnq “ pgg0, gg1, . . . , ggnq ,

and it follows that Fn is a free ZG-module with ZG-basis Bn :“
 

p1, g1, . . . , gnq | gi P G
(

. First,
for each 0 ď i ď n, define maps

Bi : Gn`1 ÝÑ Gn

pg0, . . . , gnq ÞÑ pg0, . . . , qgi, . . . , gnq ,

where the check notation means that gi is deleted from the initial pn` 1q-tuple in order to produce
an n-tuple, and extend them by Z-linearity to the whole of Fn. If n ě 1, define

dn : Fn ÝÑ Fn´1

x ÞÝÑ
n
ÿ

i“0
p´1qiBipxq.

Since the maps Bi are ZG-linear by definition, so is dn. Finally consider the augmentation map

ε : F0 “ ZG ÝÑ Z

g ÞÝÑ 1 @g P G.

Proposition 13.2

The sequence ¨ ¨ ¨
dn`1 // Fn

dn // Fn´1
dn´1 // ¨ ¨ ¨

d1 // F0 is a free ZG-resolution of the trivial ZG-
module.

Proof : Set F´1 :“ Z and d0 :“ ε (note that ε “ d0 is consistent with the definition of dn). We have to
prove that the resulting sequence

pF‚, d‚q
ε
� Z :“

ˆ

¨ ¨ ¨
dn`1 // Fn

dn // Fn´1
dn´1 // ¨ ¨ ¨

d1 // F0
d0 // F´1

˙

is an exact complex.

¨ Claim 1: dn´1 ˝ dn “ 0 for every n ě 1.
Indeed: Let pg0, . . . , gnq P Gn`1 be a basis element. Then

pdn´1 ˝ dnqpg0, . . . , gnq “
n´1
ÿ

i“0

n
ÿ

j“0
p´1qip´1qjpBi ˝ Bjqpg0, . . . , gnq .

Now let 0 ď i0 ă j0 ď n. If we remove gj0 first and then gi0 , we get

pBi0 ˝ Bj0qpg0, . . . , gnq “ p´1qi0`j0
`

g0, . . . , qgi0 , . . . , qgj0 , . . . , gn
˘

.

On the other hand, if we remove gi0 first, then gj0 is shifted to position j0´ 1 and must be removed
with sign p´1qj0´1. So both terms cancel and it follows that dn´1 ˝ dn is the zero map.
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¨ Claim 2: F‚
ε
� Z is an exact complex.

Indeed: by definition of the modules Fn (n ě 0), we may view pF‚, d‚q as a complex of Z-modules.
By Exercise 3, Exercise Sheet 5, it suffices to prove that there exists a homotopy between IdF‚ and
the zero chain map. For n ě 0, define

sn : Fn ÝÑ Fn`1
pg0, . . . , gnq ÞÑ p1, g0, . . . , gnq ,

let s´1 : Z “ F´1 ÝÑ F0 – ZG be the Z-homomorphism sending 1 to p1q, and let si :“ 0 for all
i ď ´2. For n ě 0 and pg0, . . . , gnq P Gn`1 compute

`

dn`1 ˝ sn ` sn´1 ˝ dn
˘

pg0, . . . , gnq “ pg0, . . . , gnq `
n`1
ÿ

j“1
p´1qj

`

1, g0, . . . , qgj´1, . . . , gnq

`

n
ÿ

i“0
p´1qi

`

1, g0, . . . , qgi, . . . , gnq

“ pg0, . . . , gnq,

and it is clear that dn`1 ˝ sn ` sn´1 ˝ dn “ IdFn for every n ď ´1, as required.

Notation 13.3 (Bar notation)
Given n P Zě0, set

rg1|g2| . . . |gns :“
`

1, g1, g1g2, g1g2g3, . . . , g1 ¨ . . . ¨ gn
˘

P Gn`1 .

With this notation, we have

p1, h1, . . . , hnq “
“

h1|h´1
1 h2|h´1

2 h3| . . . |h´1
n´1hn

‰

.

Hence Fn becomes a free ZG-module with basis
 

rg1| . . . |gns | gi P G
(

“: Gn, which as a set is
in bijection with Gn. In particular F0 is the free ZG-module with basis tr su (empty symbol). With
this notation, for every n ě 1 and every 0 ď i ď n, we have

Birg1| . . . |gns “

$

’

&

’

%

g1 ¨
“

g2| . . . |gn
‰

i “ 0,
“

g1| . . . |gi´1|gigi`1|gi`2| . . . |gn
‰

1 ď i ď n´ 1,
“

g1| . . . |gn´1
‰

i “ n.

Because of this notation the resolution of Proposition 13.2 is known as the bar resolution.

In fact, it is possible to render computations easier, by considering a slight alteration of the bar reso-
lution called the normalised bar resolution.

Notation 13.4 (The normalised bar notation)
Let n P Zě0, and let Fn be as above and let Dn be the ZG-submodule of Fn generated by all
elements rg1| . . . |gns of Fn such that at least one of the coefficients gi is equal to 1. In other words,
if p1, h1, . . . , hnq P Fn, then:

p1, h1, . . . , hnq P Dn ðñ D 1 ď i ď n´ 1 such that hi “ hi`1 .
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Lemma 13.5

(a) D‚ is a subcomplex of F‚.

(b) snpDnq Ă Dn`1 for all n ě 0.

Proof :

(a) Let n ě 1. We have to prove that dnpDnq Ď Dn´1. So let p1, h1, . . . , hnq P Dn, so that there is an
index 1 ď i ď n´ 1 such that hi “ hi`1. Then, clearly

Bjp1, h1, . . . , hnq P Dn´1 for each 0 ď j ď n such that j ‰ i, i` 1 .

On the other hand, we have the equality Bip1, h1, . . . , hnq “ Bi`1p1, h1, . . . , hnq and in the alter-
nating sum dnp1, h1, . . . , hnq “

řn
i“0p´1qiBip1, h1, . . . , hnq, the signs of Bi and Bi`1 are opposite to

each other. Therefore, we are left with a sum over j ‰ i, i` 1.
(b) Obvious by definition of sn.

Corollary 13.6

Set Fn :“ Fn{Dn for every n ě 0. Then F ‚ is a free ZG-resolution of the trivial module.

Proof : Since D‚ is a subcomplex of F‚, we can form the quotient complex pF‚, d‚q, which consists of free
ZG-modules. Now by the Lemma, snpDnq Ă Dn`1 for each n ě 0, therefore Dn is in the kernel of sn
post-composed with the quotient map Fn`1 ÝÑ Fn`1{Dn`1 and each Z-linear map sn : Fn ÝÑ Fn`1
induces a Z-linear maps sn : Fn ÝÑ Fn`1 via the Universal Property of the quotient. Hence, similarly
to the proof of Proposition 13.2, we get a homotopy

 

sn | n P Z
(

and we conclude that the sequence

¨ ¨ ¨ // Fn
dn // Fn´1 // ¨ ¨ ¨

d1 // F 0
ε“d0 // Z // 0.

is exact, as required.

Definition 13.7 (Normalised bar resolution)

The chain complex pF ‚, d‚q is called the normalised bar resolution of Z as a ZG-module.

Example 9 (Bar resolution in low degrees)
In low degrees the bar resolution has the form

¨ ¨ ¨ // F2
d2 // F1

d1 // F0
ε // Z // 0

bases elts: rg1|g2s rgs r s

with

¨ εpr sq “ 1;

¨ d1prgsq “ B0prgsq ´ B1prgsq “ gr s ´ r s;

¨ d2rg1|g2s “ B0prg1|g2sq ´ B1prg1|g2sq ` B2prg1|g2sq “ g1rg2s ´ rg1g2s ` rg1s.

Similar formulae hold for F ‚. (Exercise!)
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14 Cocycles and Coboundaries
We now use the (normalised) bar resolution in order to compute the cohomology groups HnpG,Aq
(n ě 0), where A is an arbitrary ZG-module. To this end, we need to consider the cochain complex
HomZGpF‚, Aq. Define

CnpG,Aq :“ HomSetpGn, Aq

to be the set of all maps from Gn to A, so that clearly there is an isomorphism of Z-modules

HomZGpFn, Aq
–
ÝÑ CnpG,Aq

mapping f ÞÑ f |Gn . Using this isomorphism, we see that the corresponding differential maps are:

d˚n : Cn´1pG,Aq ÝÑ CnpG,Aq
f ÞÝÑ d˚npfq

where

d˚npfq
`

rg1| . . . |gns
˘

“ f
`

g1rg2| . . . |gns
˘

`

n´1
ÿ

i“1
p´1qif

`

rg1| . . . |gigi`1| . . . |gns
˘

` p´1qnf
`

rg1| . . . |gn´1s
˘

.

Definition 14.1 (n-cochains, n-cocycles, n-coboundaries)
With the above notation:

(a) The elements of CnpG,Aq are called the n-cochains of G.

(b) If f P CnpG,Aq is such that d˚n`1f “ 0, then f is called an n-cocycle of G, and the the set of
all n-cocycles is denoted ZnpG,Aq.

(c) If f P CnpG,Aq is in the image of d˚n : Cn´1pG,Aq ÝÑ CnpG,Aq, then f is called an n-
coboundary of G. We denote by BnpG,Aq the set of all n-coboundaries.

Proposition 14.2
Let A be a ZG-module and n ě 0. Then HnpG,Aq – ZnpG,Aq{BnpG,Aq.

Proof : Compute cohomology via the bar resolution and replace the Z-module HomZGpFn, Aq by its isomorphic
Z-module CnpG,Aq. The claim follows.

Remark 14.3
If we used the normalised bar resolution instead, the n-cochains are replaced by the n-cochains
vanishing on n-tuples rg1| . . . |gns having (at least) one of coefficient gi equal to 1. (This is because
HomZGpFn, Aq Ă HomZGpFn, Aq). We denote these by CnpG,Aq, and thus CnpG,Aq Ď CnpG,Aq.
The set of resulting normalised n-cocycles is denoted by ZnpG,Aq, and the set of resulting nor-
malised n-coboundaries by BnpG,Aq. It follows that

HnpG,Aq – ZnpG,Aq{BnpG,Aq – ZnpG,Aq{BnpG,Aq .



Chapter 5. Easy Cohomology

In this short chapter we consider some cases in which the cohomology groups of a group G have an easy
interpretation. This is for example the case in low degrees (zero, one, two). Next we consider families
of groups whose cohomology groups are easy to compute with the methods we have so far at our disposal.
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15 Low-degree Cohomology

A. Degree-zero cohomology.
We have already proved in Proposition 12.4 that H0pG,Aq – AG , the G-fixed points of A.
In particular, if A is a trivial ZG-module, then H0pG,Aq “ A.

B. Degree-one cohomology.
Using the bar resolution to compute H1pG,Aq yields H1pG,Aq “ Z 1pG,Aq{B1pG,Aq.

1-cocycles: By definition, and the description of the differential maps of the bar resolution, we have

Z 1pG,Aq “ tf P HomSetpG1, Aq | d˚2pfq “ 0u
“ tf P HomSetpG1, Aq | 0 “ fpg1rg2sq ´ fprg1g2sq ` fprg1sq @ rg1|g2s P G2

u

In other words, a map f : G ÝÑ A is a 1-cocycle if and only if it satisfies the

1-cocycle identity: fpg1 ¨ g2q “ g1 ¨ fpg2q ` fpg1q @g1, g2 P G .

57
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1-coboundaries: C0pG,Aq “ HomSetptr su, Aq “ tfa : tr su ÝÑ A, r s ÞÑ a | a P Au bij.
ÐÑ A. It follows

that the differential map
d˚1 : C0pG,Aq ÝÑ C1pG,Aq

is such that d˚1pfaqpgq “ fapgr sq ´ fapr sq “ ga ´ a for every g P G and every a P A. Therefore,
f : G ÝÑ A is a 1-coboundary if and only if there exists a P A such that fpgq “ ga´a for every g P G.

Definition 15.1 (Derivation, principal derivation)
Let A be a ZG-module and let f : G ÝÑ A be a map.

(a) If f satisfies the 1-cocycle identity, then it is called a derivation of G. We denote by DerpG,Aq
the set of all derivations of G to A.

(b) If, moreover, there exists a P A such that fpgq “ ga ´ a for every g P G, then f is called
a principal derivation (or an inner derivation) of G. We denote by InnpG,Aq the set of all
inner derivations of G to A.

Remark 15.2
It follows from the above that H1pG,Aq – Z 1pG,Aq{B1pG,Aq “ DerpG,Aq{ InnpG,Aq.

Example 10
Let A be a trivial ZG-module. In this case, the 1-cocycle identity becomes

fpg ¨ hq “ fpgq ` fphq ,

so that Z 1pG,Aq “ HomGrp
`

pG, ¨q, pA,`q
˘

. Furthermore B1pG,Aq “ 0. Therefore

H1pG,Aq “ HomGrp
`

pG, ¨q, pA,`q
˘

.

C. Degree-two cohomology.
Again using the bar resolution to compute H2pG,Aq yields H2pG,Aq “ Z 2pG,Aq{B2pG,Aq.

2-cocycles: By definition, and the description of the differential maps of the bar resolution, we have

Z 2pG,Aq “ tf P HomSetpG2, Aq | d˚3pfq “ 0u
“ tf P HomSetpG2, Aq | 0 “ fpg1rg2|g3sq ´ fprg1g2|g3sq

` fprg1|g2g3sq ´ fprg1|g2sq @ rg1|g2|g3s P G3
u

In other words, a map f : G ˆ G ÝÑ A is a 2-cocycle if and only if it satisfies the

2-cocycle identity: g1fpg2, g3q ` fpg1, g2g3q “ fpg1g2, g3q ` fpg1, g2q @g1, g2, g3 P G .
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2-coboundaries: If φ P C1pG,Aq, then

d˚2pφqprg1|g2sq “ φpg1rg2sq ´ φprg1g2sq ` φprg1sq @ rg1|g2s P G2 .

Therefore a map f : G ˆG ÝÑ A is a 2-coboundary if and only if there exists a map c : G ÝÑ A such
that

fpg1, g2q “ g1 cpg2q ´ cpg1g2q ` cpg1q @g1, g2 P G .

16 Cohomology of Cyclic Groups
Cyclic groups, finite and infinite, are a family of groups, for which cohomology is easy to compute. Of
course, we could use the bar resolution, but it turns out that in this case, there is a more efficient
resolution to be used, made up of free modules of rank 1.

Notation: If A is a ZG-module and x P ZG, then we let mx : A ÝÑ A, x ÞÑ x ¨ a denote the left action
of x on A (or left external multiplication by x in A).

Proposition 16.1 (Free resolution of finite cyclic groups)

Let Cn be a finite cyclic group of order n P Zą0 generated by g, and let t :“
řn´1
i“0 gi P ZCn. Then

¨ ¨ ¨
mt // ZCn

mg´1 // ZCn
mt // ZCn

mg´1 // ZCn ,

is a free ZCn-resolution of the trivial ZCn-module.

Proof : Set G :“ Cn. By Lemma 11.3,

IG “ xtgi ´ 1 | 1 ď i ď n´ 1uyZ “ xg´ 1yZG .

Therefore, the image of mg´1 is equal to IG, which is the kernel of the augmentation map ε : ZG ÝÑ Z.
Now, let x “

řn´1
i“0 λi gi P ZG. Then, tx “

řn´1
i“0 λi t. Hence

kerpmtq “
 

n´1
ÿ

i“0
λigi |

n´1
ÿ

i“0
λi “ 0

(

and we claim that this is equal to the image of mg´1. Indeed, the inclusion Impmg´1q Ď kerpmtq is clear,
and conversely, if h “

řn´1
i“0 λigi P kerpmtq, then

řn´1
i“0 λi “ 0, so that h P kerpεq “ IG “ Impmg´1q,
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whence kerpmtq Ď Impmg´1q. Finally, we claim that kerpmg´1q “ Impmtq. We have

n´1
ÿ

i“0
λigi P kerpmg´1q ðñ pg´ 1q

˜

n´1
ÿ

i“0
λigi

¸

“ 0

ðñ

n´1
ÿ

i“0
λigi`1 ´

n´1
ÿ

i“0
λigi “ 0

ðñ

n´1
ÿ

j“0
λj´1gj ´

n´1
ÿ

i“0
λigi “ 0, where λ1 :“ λn´1

ðñ

n´1
ÿ

i“0
pλi´1 ´ λiqgi “ 0

ðñ @ 0 ď i ď n´ 1, λi´1 “ λi “: λ

ðñ

n´1
ÿ

i“0
λigi “ λt ðñ

n´1
ÿ

i“0
λigi P Impmtq.

Theorem 16.2 (Cohomology of finite cyclic groups)
Let Cn “ xg | gn “ 1y be a finite cyclic group of order n P Zą0 and let A be a ZCn-module. Then

HmpCn, Aq –

$

&

%

ACn if m “ 0,
ACn{ Impmtq if m ě 2, m even,
kerpmtq{ Impmg´1q if m ě 1, m odd,

where t “
řn´1
i“0 gi P ZCn and for x P tt, g´ 1u, mx denotes left external multiplication by x in A.

Proof : By Proposition 16.1 the trivial ZG-module Z admits the projective resolution

. . . mt // ZCn
mg´1 // ZCn

mt // ZCn
mg´1 // ZCn .

For m “ 0, we already know that H0pCn, Aq “ ACn . For m ą 0, applying the functor HomZCnp´, Aq yields
the cochain complex

HomZCnpZCn, Aq
m˚g´1 // HomZCnpZCn, Aq //m˚t // HomZCnpZCn, Aq

m˚g´1 // ¨ ¨ ¨ ,

where in each degree there is an isomorphism HomZCnpZCn, Aq
–
ÝÑ A, f ÞÑ fp1q. Hence for x P tg´1, tu,

there are commutative diagrams of the form

HomZCnpZCn, Aq
m˚x //

–

��
ö

HomZCnpZCn, Aq

–

��
A mx // A .

Hence, the initial cochain complex is isomorphic to the cochain complex

A
mg´1 // A mt // A

mg´1 // A mt // ¨ ¨ ¨

(degree) 0 1 2 3

and the claim follows.
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For infinite cyclic groups the situation is even simpler:

Theorem 16.3 (Cohomology of infinite cyclic groups)

If G “ xgy is an infinite cyclic group, then 0 // ZG
mg´1 // ZG is a free resolution of the trivial

ZG-module, and

HnpG,Aq “

$

&

%

AG if n “ 0,
A{ Impmg´1q if n “ 1,
0 if n ě 2.

where mg´1 denotes the left external multiplication by g´ 1 in A.

Proof : Exercise 1, Exercise Sheet 9.



Chapter 6. Cohomology and Group Extensions

In this chapter we consider connections between the short exact sequences of groups of the form
1ÝÑ A ÝÑ E ÝÑ G ÝÑ1 with abelian kernel and the cohomology of the group G with coefficients
in A. If the sequence splits, then we shall prove that the 1st cohomology group H1pG,Aq parametrises
the splittings. Moreover, we shall also prove that the 2nd cohomology group H2pG,Aq is in bijection
with the isomorphism classes of extensions 1 ÝÑ A ÝÑ E ÝÑ G ÝÑ 1 inducing the given ZG-module
structure on A, and the neutral element of H2pG,Aq corresponds, under this bijection, to a s.e.s. where
E is a semi-direct product of A by G.
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[Bro94] K. S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag,

New York, 1994.
[Eve91] L. Evens, The cohomology of groups, Oxford Mathematical Monographs, The Clarendon Press,

Oxford University Press, New York, 1991.
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tics, vol. 148, Springer-Verlag, New York, 1995.
[Wei94] C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathe-

matics, vol. 38, Cambridge University Press, Cambridge, 1994.

17 Group Extensions
In Chapter 1, we have seen that if a group G is a semi-direct product of a subgroup N by a subgroup H ,
then this gives rise to a s.e.s. of the form

1 ÝÑ N ÝÑ G ÝÑ H ÝÑ 1 .

This is a special case of a so-called group extension of N by H .

Definition 17.1 (Group extension)
A group extension is a short exact sequence of groups (written multiplicatively) of the form

1 // A i // E
p // G // 1 ,

and, in this situation, we also say that the group E is an extension of A by G.
Convention: We shall always identify A with a normal subgroup of E and assume that i is simply

62
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the canonical inclusion of A in E . Moreover, we shall say that A is the kernel of the extension.

Lemma 17.2

Let 1 // A i // E
p // G // 1 be a group extension, where A is an abelian group. Then A

is naturally endowed with the structure of a ZG-module.

Proof : First note that with the above notation pA, ¨q is a group written multiplicatively. Next, for each g P G,
choose a preimage rg P E of g under p, that is pprgq “ g, and define a left G-action on A via:

˚ : G ˆ A ÝÑ A
pg, aq ÞÑ g ˚ a :“ ga :“ rg ¨ a ¨ rg´1 ,

First, we check that ˚ is well-defined, i.e. that this definition is independent of the choice of the preimages:
indeed, if pg P E is such that pppgq “ g, then, we have

p
`

rg ¨ pg´1˘ “ g ¨ g´1 “ 1G

hence rg ¨ pg´1 P kerppq “ A, and thus, there exists a P A such that rg “ apg. Therefore, for every x P A,

rg ¨ x ¨ rg´1 “ a pgxpg´1
loomoon

AĲE

a´1 “ aa´1
pgxpg´1 “ pgxpg´1 ,

where the last-but-one equality holds because A is abelian.
We extend ˚ by Z-linearity to the whole of ZG, and finally one easily checks that pA, ¨, ˚q is a ZG-module.
See Exercise 2, Exercise Sheet 10.

Convention: From now on, given a group extension 1 // A i // E
p // G // 1 with A abelian,

we always see A as a ZG-module via the G-action of the proof of Lemma 17.2. We write A˚ :“ pA, ¨, ˚q
to indicate that we see A as a ZG-module in this way.

Lemma 17.3

Let 1 // A i // E
p // G // 1 be a group extension with A abelian. Then, A is central in

E if and only if A˚ is trivial as a ZG-module.

Proof : A˚ is a trivial ZG-module ðñ ga “ a @a P A, @g P G ðñ rg ¨ a ¨ rg´1 “ a @a P A, @ rg P E
ðñ rga “ arg @a P A, @ rg P E
ðñ A Ď Z pEq .

Definition 17.4 (Central extension)

A group extension 1 // A i // E
p // G // 1 be a group extension with A abelian satisfying

the equivalent conditions of Lemma 17.3 is called a central extension of A by G.

Definition 17.5 (Split extension)

A group extension 1 // A i // E
p // G // 1 splits iff there exists a group homomorphism

s : G ÝÑ E such that p ˝ s “ IdG . In this case s is called a (group-theoretic) section of p, or a
splitting of the extension.
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Proposition 17.6

Let 1 // A i // E
p // G // 1 be a group extension. Then the following are equivalent:

(a) The extension splits.

(b) There exists a subgroup H of E such that p
ˇ

ˇ

H : H ÝÑ G is an isomorphism.

(c) There exists a subgroup H of E such that E is the internal semi-direct product of A by H .

(d) There exists a subgroup H of E such that every element e P E can be written uniquely e “ ah
with a P A and h P H .

Proof :

(a) ñ (b): By (a) there exists a section s : G ÝÑ E for p. Define H :“ Im s. Then p
ˇ

ˇ

H is an isomorphism
since, on the one hand p

ˇ

ˇ

H ˝ s “ IdG by definition of s, and on the other hand for every h P H ,
there exists g P G such that h “ spgq, so that

ps ˝ p
ˇ

ˇ

Hqphq “ ps ˝ pqpspgqq “ spgq “ h

and s ˝ p
ˇ

ˇ

H “ IdH .
(b) ñ (c): By (b) there is H ď E such that p

ˇ

ˇ

H : H ÝÑ G is an isomorphism. Hence

t1u “ ker
`

p
ˇ

ˇ

H
˘

“ kerppq XH “ AXH .

Now, let e P E . Then ppeq P G ñ
`

p
ˇ

ˇ

H
˘´1

˝ ppeq P H and ppeq “ p
`

p
ˇ

ˇ

´1
H ˝ ppeq

˘

, so that

e ¨
´

`

p
ˇ

ˇ

H
˘´1

˝ ppeq
¯´1

P ker p “ A .

Therefore, there exists a P A such that

e “ a ¨
´

`

p
ˇ

ˇ

H
˘´1

˝ ppeq
¯

looooooooomooooooooon

PH

P AH

as required.
(c) ñ (d): Was proven in Step 1 of the proof of Proposition 1.3.
(d) ñ (b): We have to prove that p

ˇ

ˇ

H : H ÝÑ G is an isomorphism.
Surjectivity: Let g P G. Then by surjectivity of p there exists e P E such that g “ ppeq, and by (d),
e can be written in a unique way as e “ ah with a P A and h P H . Hence p

ˇ

ˇ

H is surjective since

g “ ppeq “ ppahq “ ppaqpphq “ 1 ¨ pphq “ pphq .

Injectivity: If h P H is such that p
ˇ

ˇ

Hphq “ 1, then h P kerppq “ A, therefore

h “ 1 ¨ h “ h ¨ 1 P AH

so that by uniqueness, we must have h “ 1 and kerpp
ˇ

ˇ

Hq “ t1u.
(b) ñ (a): If p

ˇ

ˇ

H : H ÝÑ G is an isomorphism, then we may define s :“
`

p
ˇ

ˇ

H
˘

: G ÝÑ E . This is
obviously a group homomorphism and hence a splitting of the extension.

If the equivalent conditions of the Proposition are satisfied, then there is a name for the subgroup H ,
it is called a complement:
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Definition 17.7 (Complement of a subgroup)
Let E be a group and A be a normal subgroup of E . A subgroup H of E is called a complement of
A in E if E “ AH and AXH “ 1, i.e. if E is the internal semi-direct product of A by H .

Remark 17.8
Unlike short exact sequences of modules, it is not true that p admits a group-theoretic section if
and only if i admits a group-theoretic retraction. In fact, if i admits a group-theoretic retraction,
then E – Aˆ G. (See Exercise Sheet 10.)

18 H1 and Group Extensions
In order to understand the connexion between the group extensions of the form

1 // A // E // G // 1

with abelian kernel and H1pG,A˚q, first we need to investigate the automorphisms of E .

Definition 18.1 (Inner automorphisms, automorphisms inducing the identity)
Let E be a group.

(a) Given x P E , write cx : E ÝÑ E, e ÞÑ xex´1 for the automorphism of E of conjugation by x .

(b) Set InnpEq :“ tφ P AutpEq | Dx P E with φ “ cxu .

(c) If A ď G, then set InnApEq :“ tφ P AutpEq | Dx P A with φ “ cxu .

(d) If 1 // A i // E
p // G // 1 is a group extension with abelian kernel, then set

AutA,GpEq :“ tφ P AutpEq | φ|A “ IdA and p ˝ φpeq “ ppeq @ e P Eu .

We say that the elements φ of AutA,GpEq induce the identity on both A and G.

Recall (e.g. from the Einführung in die Algebra-lecture) that: InnpEqEAutpEq, as φ˝cx ˝φ´1 “ cφpxq for
every x P E and every φ P AutpEq, and the quotient AutpEq{ InnpEq is called the outer automorphism
group of E . Moreover, InnpEq – E{Z pEq. It is also obvious that AutA,GpEq ď AutpEq.

Theorem 18.2 (H1 and automorphisms)

Let 1 // A i // E
p // G // 1 be a group extension with abelian kernel. Then:

(a) H1pG,A˚q – AutA,GpEq{ InnApEq; and

(b) if, moreover, the extension is a central extension then

H1pG,A˚q – AutA,GpEq .
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Proof :

(a) Claim 1: InnApEqE AutA,GpEq.
Indeed, clearly for each a P A, ca|A “ IdA because A is abelian and, moreover,

p ˝ capeq “ p
`

aea´1˘ “ ppaqp
`

ea´1e´1˘ppeq “ ppeq

for every e P E , so that p ˝ ca “ p. Therefore InnA E ď AutA,GpEq, and it is a normal subgroup,
because

φ ˝ ca ˝ φ´1 “ cφpaq “ ca
for every a P A, every φ P AutA,GpEq as φ|a “ IdA.
Claim 2: AutA,GpEq – Z 1pG,A˚q.
We aim at defining a group isomorphism

α : AutA,GpEq ÝÑ Z 1pG,A˚q .
¨ To begin with, we observe that given φ P AutA,GpEq and x P E , we can write φpxq “ fpxqx for

some element fpxq P E . This defines a map (of sets)
f : E ÝÑ E

x ÞÑ φpxqx´1 ,
such that Impfq Ď A “ kerppq because for every x P E ,

ppfpxqq “ ppφpxqx´1q “ ppφpxqq
looomooon

“ppxq

ppx´1q “ 1G

since φ induces the identity on G. Moreover, f is constant on the cosets of E modulo A because

fpxaq “ φpxaq ¨ pxaq´1 “ φpxq ¨ φpaq
loomoon

“a

¨a´1 ¨ x´1 “ φpxqx´1 “ fpxq .

Therefore f induces a map f : G ÝÑ A, g ÞÑ fpgq :“ fprgq where we may choose rg arbitrarily
in p´1pgq. This is a 1-cocycle since for all g, h P G, we may choose Ăgh P p´1pghq, rg P p´1pgq,
and rh P p´1phq such that Ăgh “ rgrh, and hence

fpghq “ f
`

Ăgh
˘

“ f
`

rgrhq “ φprgq ¨ φprhq ¨ rh´1 ¨ rg´1

“ φprgq ¨ rg´1 ¨ rg ¨ fphq ¨ rg´1 “ fpgqgfphq ,

which is the 1-cocycle identity in multiplicative notation.

¨ As a consequence, we set
αpφq :“

`

f : G ÝÑ A
˘

.
To prove that this defines a group homomorphism, let φ1, φ2 P AutA,GpEq and respectively let
f1, f2 : G ÝÑ A be the associated 1-cocycles, i.e. αpφ1q “ f1 and αpφ2q “ f2. Then

φ1prgq “ f1pgqrg, φ2prgq “ f2pgqrg @g P G with rg P p´1pgq ,

and hence using the fact that A is abelian yields

αpφ1 ˝ φ2qpgq “ pφ1 ˝ φ2qprgqrg´1 “ φ1
`

f2pgqrg
˘

rg´1

“ f2pgqφ1prgqrg´1

“ f2pgqf1pgqrgrg´1

“ f2pgqf1pgq
“ αpφ1qpgq ¨ αpφ2qpgq “

`

αpφ1q ¨ αpφ2q
˘

pgq ,

as required.
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¨ In order to prove that α is an isomorphism, we define
β : Z 1pG,A˚q ÝÑ AutA,GpEq

c ÞÑ βpcq : E ÝÑ E, rg ÞÑ cpgq rg ,
where g “ pprgq.
First, we check that βpcq is indeed a group homomorphism: for rg, rh P E with the above
notation, we have

βpcq
`

rg ¨ rh
˘

“ cpghqrgrh 1-cocycle id.
“ cpgq ¨ gcphq ¨ rgrh

“ cpgqrgcphqrg´1
rgrh

“ cpgqrgcphqrh

“ βpcqprgq ¨ βpcqprhq .

Next, if rg P A “ kerppq, then g “ 1G and therefore

βpcqprgq “ cp1q ¨ rg “ 1 ¨ rg “ rg ,

where we use the fact that a 1-cocycle is always normalised (indeed cp1Gq “ 1A, since for
h P G, cp1G ¨ hq “ cp1Gq ¨ p1Gqcphq “ cp1Gqcphq by the 1-cocycle identity). Thus we have
proved that βpcq|A “ IdA.
Furthermore, since cpgq P A “ kerppq, ppcpgqq “ 1G and we get

`

p ˝ βpcq
˘

prgq “ p
`

cpgq ¨ rg
˘

“ p
`

cpgq
˘

looomooon

“1G

¨pprgq “ pprgq

and so p ˝ βpcq “ p, or in other words βpcq induces the identity on G.
Finally, using Exercise 2(c), Exercise Sheet 10, we obtain that any group homomorphism
E ÝÑ E inducing the identity on A and on G must be an isomorphism. Therefore, we have
proved that βpcq P AutA,GpEq for every c P Z 1pG,A˚q.

¨ It remains to prove that α and β are inverse to each other. Firstly,
`

pα ˝ βqpcq
˘

pgq “ βpcqprgq ¨ rg´1 “ cpgqrgrg´1 “ cpgq @g P G,@ c P Z 1pG,A˚q ,

so that α ˝ β is the identity on Z 1pG,A˚q. Secondly,
`

pβ ˝ αqpφq
˘

prgq “ pαpφqqpgq ¨ rg´1 “ φpgqrgrg´1 “ φpgq @rg P E,@φ P AutA,GpEq ,

so that β ˝ α is the identity on AutA,GpEq.
Claim 3: InnApEq – B1pG,A˚q.

¨ Let a P A and ca P InnApEq. Then for every g P G,

αpcaqpgq “ caprgq ¨ rg´1 “ a ¨ rg ¨ a´1 ¨ rg´1
loooooomoooooon

PAĲE

“ rga´1
rg´1 ¨ a “ gpa´1qa “ d˚1 pa´1qpgq

and therefore αpcaq P B1pG,A˚q, i.e. α
`

InnA E
˘

Ď B1pG,A˚q.
Conversely, if a P A and d˚1 paq P B1pG,A˚q, then d˚1 paqpgq “ ga ¨ a´1 and

β
`

d˚1 paq
˘

prgq “ d˚1 paqpgq ¨ rg “ ga ¨ a´1 ¨ rg “ rg ¨ a ¨ rg´1 ¨ a´1 ¨ rg
loooooomoooooon

PAĲE

“ rg ¨ rg´1
loomoon

“1

a´1
rg ¨ a “ ca´1prgq.

Hence β
`

d˚1 paq
˘

“ ca´1 P InnApEq, and β
`

B1pG,A˚q
˘

Ď InnApEq. It follows that InnApEq
corresponds to AutA,GpEq under the bijection given by α and β, and we obtain

H1pG,A˚q “ Z 1pG,A˚q{B1pG,A˚q – AutA,GpEq{ InnApEq .
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(b) If A is a central subgroup of E , then for every a P A the conjugation automorphism by a is given
by ca : E ÝÑ E, e ÞÑ aea´1 “ aa´1e “ e, i.e. the identity on E . Thus

InnApEq “ tca : E ÝÑ E | a P Au “ tIdEu

and it follows from (a) that

H1pG,A˚q – AutA,GpEq{ InnApEq “ AutA,GpEq .

We are now ready to parametrise the slpittings of split group extensions with abelian kernel:

Theorem 18.3 (H1 and splittings)

Let E‚ :“ p 1 // A i // E
p // G // 1 q be a split group extension with abelian kernel. Then

the following holds:

(a) There is a bijection between H1pG,A˚q and the set S of A-conjugacy classes of splittings of
the given extension.

(b) There is a bijection between H1pG,A˚q and the set of E-conjugacy classes of complements
of A in E .

Proof :

(a) Choose a splitting s0 : G ÝÑ E and define a map

α : AutA,GpEq ÝÑ tsplittings of E‚u
φ ÞÑ φ ˝ s0 .

It is obvious that α is well-defined, i.e. that φ˝s0 is a splitting of the extension as pφs0 “ ps0 “ IdG .
Define a second map

β : tsplittings of E‚u ÝÑ AutA,GpEq
s ÞÑ

`

ψs : E ÝÑ E, as0pgq ÞÑ aspgq
˘

,

where by Proposition 17.6 an arbitrary element x P E can be written in a unique way as x “ as0pgq
with a P A and g P G. We check that β is well-defined. Firstly, ψs is a group homomorphism: for
every x1 “ a1s0pg1q, x2 “ a2s0pg2q P E , we have

ψspx1 ¨ x2q “ ψs
`

a1s0pg1q ¨ a2s0pg2q
˘

“ ψs
`

a1 ¨
g1a2 ¨ s0pg1g2q

˘

“ a1 ¨
g1a2 ¨ s

`

g1g2
˘

“ a1spg1q ¨ a2spg2q

“ ψs
`

a1s0pg1q
˘

¨ ψs
`

a2s0pg2q
˘

“ ψspx1q ¨ ψspx2q .

Secondly, ψs|A “ IdA by definition. Thirdly, pψs “ p since for x “ as0pgq P E , we have

pp ˝ ψsqpxq “ pp ˝ ψsqpas0pgqq “ ppaspgqq “ ppaq
loomoon

“1

¨ppspgqq
loomoon

“IdGpgq

“ g “ ppas0pgqq .

Finally, the fact that ψs is an isomorphism follows again from Exercise 2(c), Exercise Sheet 10
because ψs induces the identity on both A and G. Whence β is well-defined.
Next, we check that α and β are inverse to each other. On the one hand,

pα ˝ βqpsq “ αpψsq “ ψs ˝ s0 @ s P tsplittings of E‚u
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but for every g P G, pψs ˝ s0qpgq “ ψsp1A ¨ s0pgqq “ 1Gspgq “ spgq, hence α ˝ β is the identity on
the set of splittings of E‚. On the other hand, for every φ P AutA,GpEq, we have

pβ ˝ αqpφq “ βpφ ˝ s0q “ ψφ˝s0

and for each x “ as0pgq P E (with a P A and g P G), we have

ψφ˝s0

`

as0pgq
˘

“ a ¨ pφ ˝ s0qpgq
φ|A“IdA
“ φpaq ¨ pφ ˝ s0qpgq “ φ

`

a ¨ s0pgq
˘

,

hence β ˝ α is the identity on AutA,GpEq.
Therefore,

AutA,GpEq
α //

tsplittings of E‚u
β

oo

are bijections (of sets). Finally, we determine the behaviour of InnApEq under these bijections. Let
φ P AutA,GpEq and cb P InnApEq with b P A. Let φ1 “ cb ˝ φ. Then

αpφq “ φ ˝ s0 and αpcb ˝ φq “ cb ˝ φ ˝ s0 .

Hence a coset modulo InnApEq is mapped via α to an equivalence class for the action by conjugation
of A on splittings

Aˆ tsplittings of E‚u ÝÑ tsplittings of E‚u
pb, sq ÞÑ cb ˝ s .

Thus passing to the quotient (group quotient on the left hand side AutA,GpEq, and orbits of InnApEq
on the right hand side) yields a bijection

AutA,GpEq{InnApEq
„ //

OO
–pThm. 18.2q
��

tA-conjugacy classes of splittings of E‚u

H1pG,A˚q

as required.
(b) By Proposition 17.6, a splitting s of the extension corresponds to a complement spGq of A in E , and

conversely, a complement H of A in E corresponds to a splitting
`

p
ˇ

ˇ

H
˘´1 : G ÝÑ H . Moreover,

the A-conjugacy class of H is the same as the E-conjugacy class of H , because every e P E may
be written in a unique way as e “ ah with a P A and h P H and so eHe´1 “ aHa´1. The claim
follows.

19 H2 and Group Extensions
Convention: In this section all group extensions are assumed to have abelian kernel.

Definition 19.1 (Equivalent group extensions)

Two group extensions 1 // A i // E
p // G // 1 and 1 // A i1 // E 1

p1 // G // 1
with abelian kernels are called equivalent if there exists a group homomorphism φ : E ÝÑ E 1 such
that the following diagram commutes

1 // A i //

IdA
��

ö

E
p //

φ
��

ö

G //

IdG
��

1

1 // A i1 // E 1
p1 // G // 1.
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Remark 19.2

(a) In the context of Definition 19.1, the homomorphism φ is necessarily bijective. However an
isomorphism of groups does not induce an equivalence of extensions in general. In other
words, the same middle group E can occur in non-equivalent group extensions with the same
kernel A, the same quotient G and the same induced ZG-module structure on A.

(b) Equivalence of group extensions is an equivalence relation.

Notation: If G is a group and A˚ :“ pA, ¨, ˚q is a ZG-module (which may see simply as an abelian
group), then we let EpG,A˚q denote the set of equivalence classes of group extensions

1 // A i // E
p // G // 1

inducing the given ZG-module structure on A.

Theorem 19.3
Let G be a group and let A˚ :“ pA, ¨, ˚q be a fixed ZG-module (written multiplicatively). Then, there
is a bijection

H2pG,A˚q oo „ // EpG,A˚q .

Moreover, the neutral element of H2pG,A˚q corresponds to the class of the split extension.

Proof : We want to define a bijection EpG,A˚q ÝÑ H2pG,A˚q.

¨ To begin with, fix an extension

1 // A i // E
p // G // 1

inducing the given action ˚ on A, and we choose a set-theoretic section s : G ÝÑ E for p, i.e. such
that p ˝ s “ IdG . Possibly s is not be a group homomorphism, but we may write

spgq ¨ sphq “ fpg, hq ¨ spghq

for some element fpg, hq P E . This defines a map
f : G ˆ G ÝÑ E

pg, hq ÞÑ fpg, hq :“ spgq ¨ sphq ¨ spghq´1.
Furthermore, notice that fpg, hq P A “ kerppq because

p
`

fpg, hq
˘

“ p
`

spgqsphqspghq´1˘ “ p
`

spgq
˘

¨ p
`

sphq
˘

¨ p
`

spghq
˘´1

“ ghh´1g´1 “ 1G
for every g, h P G. Hence f P HomSetpG ˆG,Aq, and as a matter of fact, f is a 2-cocycle because:

`

spgq ¨ sphq
˘

¨ spkq “ fpg, hq ¨ spghq ¨ spkq “ fpg, hq ¨ fpgh, kq ¨ spghkq

and

spgq ¨
`

sphq ¨ spkq
˘

“ spgq ¨ fph, kq ¨ sphkq “ spgq ¨ fph, kq ¨ spgq´1 ¨ spgq ¨ sphkq
“ gfph, kq ¨ fpg, hkq ¨ spghkq.

Therefore, by associativity in E , we obtain

fpg, hq ¨ fpgh, kq “ gfph, kq ¨ fpg, hkq,

which is precisely the 2-cocycle identity in multiplicative notation.
Now, we note that if we modify s by a 1-cochain c : G ÝÑ A and define
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s1 : G ÝÑ E
g ÞÑ s1pgq :“ cpgq ¨ spgq ,

then the corresponding 2-cocycle is given by

f 1pg, hq “ s1pgq ¨ s1phq ¨ s1pghq´1

“ cpgq ¨ spgq ¨ cphq ¨ sphq ¨ spghq´1 ¨ cpghq´1

“ cpgq ¨ spgq ¨ cphq ¨ spgq´1spgq ¨ sphq ¨ spghq´1 ¨ cpghq´1

“ cpgq ¨ spgq ¨ cphq ¨ spg´1q ¨ fpg, hq ¨ cpghq´1

“ cpgq ¨ gcphq ¨ cpghq´1 ¨ fpg, hq as A is abelian
“ gcphq ¨ cpghq´1 ¨ cpgq ¨ fpg, hq as A is abelian
“ pd˚2 pcqqpg, hq ¨ fpg, hq @g, h P G.

To sum up, we have modified the 2-cocycle f by the 2-coboundary d˚2 pcq. Therefore, the cohomology
class rfs :“ fB2pG,A˚q of f in H2pG,A˚q is well-defined, depending on the given extension, but
does not depend on the choice of the set-theoretic section s. Hence, we may define a map

ξ : EpG,A˚q ÝÑ H2pG,A˚q
r 1 // A i // E

p // G // 1 s ÞÑ rfs .
¨ We check that ξ is well-defined. Suppose that we have two equivalent extensions

r 1 // A i // E
p // G // 1 s “ r 1 // A i1 // E 1

p1 // G // 1 s P EpG,A˚q ,

that is a commutative diagram of the form

1 // A i //

IdA
��

ö

E
p //

φ
��

ö

G //

IdG
��

1

1 // A i1 // E 1
p1 // G // 1

where φ is an isomorphism of E ÝÑ E 1. As above, we choose a set-theoretic section s : G ÝÑ E
of p, and it follows that φ ˝ s is a set-theoretic section for p1, since p1 ˝ φ ˝ s “ p ˝ s “ IdG . The
corresponding 2-cocycle is given by

f 1pg, hq “ pφ ˝ sqpgq ¨ pφ ˝ sqphq ¨ pφ ˝ sqpghq´1 “ φ
`

spgq ¨ sphq ¨ spghq´1˘

“ φ
`

fpg, hq
˘

“ fpg, hq @g, h P G

as φ|A “ IdA. Hence ξ is well-defined.

¨ Remark: We may choose s : G ÝÑ E is such that sp1q “ 1, and the associated 2-cocycle
is normalised. Now if we modify s by a normalised 1-cochain c : G ÝÑ A (i.e. such that
cp1q “ 1), then d˚2 pcq is a normaised 2-coboundary. Therefore, we may as well use normalised
cocycles/cochains/coboundaries.

¨ Surjectivity of ξ :
Let α P H2pG,A˚q and choose a normalised 2-cocycle f : GˆG ÝÑ A such that α “ rfs. Construct
Ef :“ Aˆ G (as a set), which we endow with the product

pa, gq ¨ pb, hq “
`

a ¨ gb ¨ fpg, hq, g ¨ h
˘

@a, b P A,@g, h P G .

Then pEf , ¨q is a group whose neutral element is p1, 1q. (Exercise, Exercise Sheet 11) Clearly there
are group homomorphisms:

i : A ÝÑ Ef , a ÞÝÑ pa, 1q ,
p : Ef ÝÑ G, pa, gq ÞÝÑ g
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such that kerppq “ Impiq, thus we get a group extension

1 // A i // Ef
p // G // 1.

We need to prove that the cohomology class of the 2-cocycle induced by this extension via the
above construction is precisely rfs. So consider the set-theoretic section s : G ÝÑ Ef , g ÞÝÑ p1, gq
and compute that for all g, h P G, we have

spgq ¨ sphq ¨ spghq´1 “ p1, gq ¨ p1, hq ¨ p1, ghq´1

“
`

1 ¨ g1 ¨ fpg, hq, gh
˘

¨
`

pghq´1fpgh, pghq´1q´1, pghq´1˘

“ pfpg, hqpghqpghq´1fpgh, pghq´1q, pghqpghq´1q

“
`

fpg, hq, 1
˘

as required.

¨ Injectivity of ξ :
Let

r1 // A i // E
p // G // 1s ,

r1 // A ĩ // Ẽ
p̃ // G // 1s

be two classes of group extensions in EpG,A˚q. Choose, respectively, s : G ÝÑ E and s̃ : G ÝÑ Ẽ
two set-theoretic section with corresponding 2-cocycles f and f̃ respectively. Now, assume that

rfs “
“

f̃
‰

P H2pG,A˚q .

Then f̃ “ d˚2 pcq ˝ f for some 1-cochain c : G ÝÑ A. Changing the choice of s̃ by defining
˜̃s : G ÝÑ Ẽ, g ÞÑ cpgq´1 ¨ s̃pgq modifies f̃ into d˚2 pcq´1 ˝ f̃ by the first part of the proof. But
d˚2 pcq´1 ˝ f̃ “ f , therfore, we may assume without loss of generality that the two 2-cocycles are
the same. Compute the group law in E : each element of E can be written uniquely as a ¨ spgq for
a P A and g P G because s : G ÝÑ E is a section for p : E ÝÑ G. Hence the product is

aspgq ¨ bsphq “ aspgqbspgq´1spgqsphq
“ agbspgqsphq
“ agbfpg, hq

loooomoooon

PA

spghq

which is exactely the group law in Ef . Hence Ef – E (via pa, gq ÞÑ a ¨ spgq) as groups, but also
as extensions, because the latter isomorphism induces the identity on both A and G. Similarly, we
get that Ẽ – Ef , as group extensions. The injectivity of ξ follows.

¨ Finally notice that the image under ξ of the split extension

1 // A // A¸ G // G // 1

where the action of G on A is given by ˚, and where the first map is the canonical inclusion
and the second map the projection onto G, is trivial. This is because we can choose a section
s : G ÝÑ A ¸ G, g ÞÑ p1, gq, which is a group homomorphism. Therefore the corresponding
2-cocycle is f : G ˆ G ÝÑ A, pg, hq ÞÑ 1. This proves the 2nd claim.
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Remark 19.4

(a) In the above proof, if we choose s : G ÝÑ E such that sp1q “ 1, then we obtain a normalised
2-cocycle. If we modify s : G ÝÑ A by a 1-cocycle c : G ÝÑ A such that cp1q “ 1 (a
normalized 1-cochain), then dc is a normalized 2-coboundary. So we see that we can use
normalized cochains, cocycles and coboundaries throughout.

(b) If the group A is not abelian, then H3`G, Z pAq
˘

comes into play for the classification of the
extensions. This is more involved.

Example 11
For example, if we want to find all 2-groups of order 2n (n ě 3) with a central subgroup of order 2
and a corresponding dihedral quotient, then we have to classify the central extensions of G :“ D2n´1

by A :“ C2. By Theorem 19.3 the isomorphism classes of central extensions of the form

1 ÝÑ C2 ÝÑ P ÝÑ D2n´1 ÝÑ 1 .

are in bijection with H2pG,A˚q, where A˚ is the trivial ZG-module. Computations yield H2pG,A˚q –
pZ{2q3, hence there are 8 isomorphism classes of such extensions. Since a presentation of D2n´1 is
xρ, σ | ρ2 “ 1 “ σ2, pρσq2n´2

“ 1y, obviously P admits a presentation of the form

xr, s, t | rt “ tr, st “ ts, t2 “ 1, r2 “ ta, s2 “ tb, prsq2n´2
“ tcy, a, b, c P t0, 1u .

Letting a, b, c vary, we obtain the following groups P :

(i) The case a “ b “ c “ 0 gives the direct product C2 ˆD2n´1 .

(ii) The case a “ b “ 0, c “ 1 gives the dihedral group D2n .

(iii) The cases a “ c “ 0, b “ 1 and b “ c “ 0, a “ 1 give the group pC2n´2 ˆ C2q ¸ C2.

(iv) The cases a “ 0, b “ c “ 1 and b “ 0, a “ c “ 1 both give the semi-dihedral group SD2n

of order 2n.

(v) The case c “ 0, a “ b “ 1 gives the group C2n´2 ¸ C4.

(vi) The case a “ b “ c “ 1 gives the generalised quaternion group Q2n .

If n ě 4, the groups in cases (i)-(vi) are pairwise non-isomorphic. If n “ 3 the above holds as
well, but the groups in (ii) and (iii) are all isomorphic to D8, and the groups in (iv) and (v) are all
isomorphic to C2 ˆ C4.



Chapter 7. Subgroups and Cohomology

Throughout this chapter, unless otherwise stated, G denotes a group in multiplicative notation and
H ď G a subgroup of G. The aim of the chapter is to investigate relations between the cohomology
of G and the cohomology of H . This can be done using four operations called restriction, transfer (or
corestriction), induction, and coinduction. As our next aim in the lecture is to prove theorems about
finite groups using cohomology, we will most of the time work under the mild assumption that H has
finite index in G.

References:
[Bro94] K. S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag,

New York, 1994.
[Eve91] L. Evens, The cohomology of groups, Oxford Mathematical Monographs, The Clarendon Press,

Oxford University Press, New York, 1991.

20 Restriction in Cohomology
Notation 20.1 (Restriction of ZG-modules)

Let M be a ZG-module. Because ZH Ď ZG is a subring, by [Exercise 3(a), Exercise Sheet 4] we
may restrict the action of ZG on M to an action of ZH on M and regard M as a ZH-module, which
we denote by M ÓGH or ResGHpMq. This operation is called the restriction of M from G to H . (In
other words, restriction just forgets about the elements of ZG outside ZH .)

Notice that ResGH : ZGMod ÝÑ ZHMod is a covariant functor, which is a special case of a forgetful
functor. One can also prove that M ÓGH– ZG bZG M , where ZG is seen as a pZH,ZGq-bimodule.

Definition 20.2 (Left transversal, right transversal)
A left transversal of H in G is a set tgiuiPI of representatives of the left cosets of H in G. Thus
G “

š

iPI giH . Similarly, a right transversal of H in G is a set of representatives of the right cosets
of H in G.

We want to investigate how restriction of modules interacts with the cohomology the groups G and H .
To this end, first we need to understand restriction of projective resolutions.

74
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Lemma 20.3
Let P be a free (resp. projective) right ZG-module. Then P ÓGH is a free (resp. projective) right
ZH-module. (Similarly for left modules.)

Proof : It suffices to prove that P ÓGH is a free ZH-module for P “ ZG, because an arbitrary free ZG-module
is isomorphic to a direct sum

À

ZG. So, choose a left transversal tgiuiPI of H in G. Then
ZG “

à

iPI
giZH

and it follows that ZG is a free right ZH-module. Now, if P is a projective right ZG-module, then P is
a direct summand of a free ZG-module by Proposition-Definition 6.7, therefore by the above P ÓGH is a
direct summand of a free ZH-module, hence is a projective ZH-module.

Remark 20.4 (Restriction in Cohomology)

Let P‚ “
`

¨ ¨ ¨
d3 // P2

d2 // P1
d1 // P0

˘

be a projective resolution of the trivial ZG-module Z
and let M be an arbitrary ZG-module. Then HnpG,Mq is the cohomology of the cochain complex
HomZGpP‚,Mq. By Lemma 20.3, restricting to H yields a projective resolution

ResGHpP‚q “
`

¨ ¨ ¨
d3 // P2 Ó

G
H

d2 // P1 Ó
G
H

d1 // P0 Ó
G
H
˘

of Z “ ZÓGH seen as a ZH-module. Now, there is an inclusion map of cochain complexes:

i‚ : HomZGpP‚,Mq ãÑ HomZHpResGHpP‚q,M ÓGHq

which, by functoriality (i.e. [Exercise 1, Exercise Sheet 5]), induces a homomorphism in cohomology

resGH : HnpG,Mq ÝÑ HnpH,M ÓGHq.

called restriction from G to H .

Remark 20.5

(a) The map resGH need not be injective in general.

(b) If the bar resolution is used to compute cohomology, then on ZnpG,Mq, the map resGH is given
by ordinary restriction of cocycles from Gn to Hn.

21 Transfer in Cohomology
Assume that H has finite index in G, say r :“ |G : H|. Let tgiu1ďiďr be a finite left transversal for H
in G. If L and M are ZG-modules, then there is a Z-linear map

trGH : HomZHpL,Mq ÝÑ HomZGpL,Mq

φ ÞÝÑ
r
ÿ

i“1
giφg´1

i

where g´1
i denotes the action of g´1

i P G on L and gi denotes the action of gi P G on M .
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Lemma 21.1

The map trGH is well-defined and ZG-linear.

Proof :
(1) The definition of trGH does not depend on the choice of the transversal:

Assume tg1iu1ďiďr is another left transversal for H in G and write g1i “ gihi (1 ď i ď r) for some
hi P H . If φ P HomZHpL,Mq then making use of the ZH-linearity of φ, we get

r
ÿ

i“1
g1iφpg1iq´1 “

r
ÿ

i“1
gihiφh´1

i g´1
i

ZH-lin.
“

r
ÿ

i“1
giφhih´1

i g´1
i “

r
ÿ

i“1
giφg´1

i ,

as required.

(2) ZG-linearity:
Let s P G. Then for each 1 ď i ď r, we may write sgi “ gσpiqhi, where σ P Sr is a permutation and
hi P H (if i and j are such that σpiq “ σpjq, then we find gi “ gj ¨ h´1

j ¨ hi and thus i “ j , since
tgiu is a transversal). Now, let x P L and compute

s ¨
`

trGHpφq
˘

pxq “
r
ÿ

i“1
sgiφ

`

g´1
i x

˘

“

r
ÿ

i“1
gσpiqhiφ

`

g´1
i x

˘

“

r
ÿ

i“1
gσpiqφ

`

hig´1
i x

˘

“

r
ÿ

i“1
gσpiqφ

`

g´1
σpiqsx

˘

“

r
ÿ

i“1
gσpiqφg´1

σpiqpsxq

“
`

trGHpφq
˘

psxq ,

as required.

Assuming pP‚, d‚q is a projective resolution of the trivial ZG-module Z, then for each n ě 1, we may
consider the diagram

HomZHpPn´1,Mq
trGH //

d˚n
��

HomZGpPn´1,Mq

d˚n
��

HomZHpPn,Mq
trGH

// HomZGpPn,Mq ,

where for φ P HomZHpPn´1,Mq we compute

pd˚n ˝ trGHqpφq “
r
ÿ

i“1
d˚n

`

giφg´1
i
˘

“

r
ÿ

i“1

`

giφg´1
i
˘

˝ dn
ZG-lin
“

r
ÿ

i“1
gipφ ˝ dnqg´1

i “ trGH
`

d˚npφq
˘

since dn is ZG-linear. Hence we have proved that

trGH : HomZHpP‚,Mq ÝÑ HomZGpP‚,Mq

is in fact a cochain map, and therefore, for each n ě 0, it induces a homomorphism in cohomology

trGH : HnpH,Mq ÝÑ HnpG,Mq .
Definition 21.2 (Transfer )

The map trGH : HnpH,Mq ÝÑ HnpG,Mq is called transfer from H to G (or the relative trace map,
or corestriction).
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Proposition 21.3
Suppose H has finite index in G, say r :“ |G : H| ă 8. Then the composite map

trGH ˝ resGH : HnpG,Mq ÝÑ HnpG,Mq

is the multiplication by |G : H| for each n ě 0.

Proof : Let P‚ be a projective ZG-resolution of Z. For m P Zě0, the composition

HomZGpPm,Mq
inc // HomZHpPm,Mq

trGH // HomZGpPm,Mq

maps φ P HomZGpPm,Mq to

trGHpφq “
r
ÿ

i“1
giφg´1

i
ZG-lin.
“

r
ÿ

i“1
gig´1

i φ “
r
ÿ

i“1
φ “ |G : H|φ.

These are maps of cochain complexes and induce resGH and trGH in cohomology. Moreover, multiplication
by r induces multiplication by r in cohomology. The claim follows.

22 Induction and Coinduction in Cohomology
Definition 22.1 (Induction)

If M is a ZH-module, we define IndGHpMq :“ ZG bZH M , the induction of M from H to G.

Remark 22.2

IndGHpMq becomes a ZG-module via the left ZG-module structure on ZG. This coincides with the
extension of scalars we studied in [Exercise 3, Exercise Sheet 4]. Hence we have a universal
property for the induction of modules from G to H as follows.

Proposition 22.3 (Universal property of the induction)

Let M be a ZH-module and let ı : M ÝÑ IndGHpMq, m ÞÑ 1 b m be the canonical map. Then
for every ZG-module N and for every ZH-linear map φ : M ÝÑ ResGHpNq, there exists a unique
ZG-linear map φ̃ : IndGHpMq ÝÑ N such that the following diagram commutes:

M
φ //

ı
��

N

IndGHpMq
φ̃

;;

In other words, there is an isomorphism of abelian groups

HomZH
`

M,ResGHpNq
˘

– HomZG
`

IndGHpMq, N
˘

.

Proof : This universal property was proven in [Exercise 3(d), Exercise Sheet 4].
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Remark 22.4 (Out of the scope of the lecture)

In fact, one can prove that the functor IndGH is left adjoint to the functor ResGH .

Definition 22.5 (Coinduction)

In M is a ZH-module, then we define CoindGHpMq :“ HomZHpZG,Mq, the coinduction

Remark 22.6

We immediately see that CoindGHpMq becomes a left ZG-module, using the right ZG-module struc-
ture on ZG. Explicitly, for g P G, φ P HomZHpZG,Mq and x P ZG, we have

pg ¨ φqpxq “ φpxgq .

Proposition 22.7 (Universal property of the coinduction)

Let M be a ZH-module. Let p : CoindGHpMq ÝÑ M,φ ÞÑ φp1q be the canonical evaluation map.
Then for every ZG-module N and every ZH-linear map ψ : N ÝÑ M , there exists a unique
ZG-linear map ψ̃ : N ÝÑ CoindGHpMq such that the following diagram commutes:

CoindGHpMq
p
��

N
ψ

//

ψ̃
::

M

Proof : Exercise.

Theorem 22.8 (The Eckmann-Shapiro Lemma)
Let M be a ZH-module. Then for each n P Zě0 there are group isomorphisms

HnpG, IndGHpMqq – HnpH,Mq and HnpG,CoindGHpMqq – HnpH,Mq .

Proof : Fix n P Zě0 and let P‚ be a projective resolution of Z as a ZG-module (hence also as a ZH-module).
Then

Pn bZH M – Pn bZG ZG bZH M – Pn bZG IndGHpMq .

Now, the left-hand side gives the homology group HnpH,Mq, while the right-hand side gives the homology
group HnpG, IndGHpMqq, hence HnpG, IndGHpMqq – HnpH,Mq.
Similarly

HomZHpPn,Mq – HomZGpPn,CoindGHpMqq ,

where the left-hand side gives the cohomology group HnpH,Mq while the right-hand side gives the
cohomology group HnpG,CoindGHpMqq.

Lemma 22.9

If M is a ZH-module and H has finite index in G, then CoindGHpMq – IndGHpMq.
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Proof : Define

α : ZG bZH M ÝÑ HomZHpZG,Mq
gbm ÞÝÑ φg,m : ZG ÝÑ M,

where for s P G,

φg,mpsq “
#

sgm if sg P H
0 if sg R H

and we easily check that this a ZG-linear map. Now, defining

β : HomZHpZG,Mq ÝÑ ZG bZH M

ψ ÞÝÑ
r
ÿ

i“1
gi b ψpg´1

i q,

where tg1, . . . , gru is a left transversal of H in G, one easily checks that α ˝ β “ Id and β ˝ α “ Id.
Hence the claim follows.

Corollary 22.10

If M is a ZH-module and H has finite index in G, then HnpG, IndGHpMqq – HnpH,Mq for each
n P Zě0.

Proof : By the previous lemma CoindGHpMq – IndGHpMq. Hence the claim follows from the Eckmann-Shapiro
Lemma.



Chapter 8. Finite Groups

The aim of this chapter is to prove several central results of the theory of finite groups: Theorems of
Schur and Zassenhaus and Burnside’s transfer theorem (aslo known as Burnside’s normal p-complement
theorem).
Throughout this chapter, unless otherwise stated, G denotes a finite group in multiplicative notation.
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23 Cohomology of Finite Groups
To begin with, we collect in this section a few general results about the cohomology of finite groups.

Lemma 23.1
If G is a finite group, then |G| ¨HnpG,Mq “ 0 for every n ě 1.

Proof : Let 1 denote the trivial group. Because 1 is a cyclic group of order one Theorem 16.2 yields
Hnp1,Mq – 0 if n ě 1 (whereas H0p1,Mq – M). Now, the composition of the restriction with the
transfer

HnpG,Mq
resG1 // Hnp1,Mq

loooomoooon

–0 if ně1

trG1 // HnpG,Mq

equals multiplication by the index of |G : 1| “ |G| by Proposition 21.3 and factors through 0 if n ě 1 by
the above. Therefore multiplication by |G| is zero in HnpG,Mq if n ě 1.

Proposition 23.2
If G is a finite group and M is a finitely generated ZG-module then H0pG,Mq is a finitely generated
abelian group and HnpG,Mq is a finite abelian group of exponent dividing |G| for all n ě 1.

Proof : Fix n P Zě0.
Claim 1: HnpG,Mq is a finitely generated abelian group.

80
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Indeed: Using the fact that ZG is a noetherian ring as G is finite, we may construct a projective ZG-
resolution P‚ of Z in which all the modules are finitely generated abelian groups. Now, applying the
functor HomZGp´,Mq to P‚ we again obtain complexes of finitely generated abelian groups since for
each m ě 0, HomZGpPm,Mq “ HomZpPm,MqG Ď HomZpPm,Mq, which is a finitely generated abelian
group if both Pm and M are. The cohomology groups of this complex is again finitely generated.

Claim 2: HnpG,Mq is a finite group if n ě 1.
Indeed: Since HnpG,Mq is a finitely generated abelian group by the first claim and |G| ¨HnpG,Mq “ 0
by Lemma 23.1, HnpG,Mq must be torsion, hence finite.

Exercise [Exercise 1, Exercise Sheet 12]
If M is a ZG-module which is induced from the trivial subgroup, then HnpG,Mq “ 0 for all n ě 1.
Deduce that HnpG,Mq “ 0 for all n ě 1 if M is a projective ZG-module.

Exercise [Exercise 2, Exercise Sheet 12]
Let p be a prime number, let G be a finite group of order divisible by p, and let P be a Sylow
p-subgroup of G. If M is an FpG-module, then the restriction map

resGP : HnpG,Mq ÝÑ HnpP,ResGPpMqq

is injective for all n ě 0.

24 The Theorems of Schur and Zassenhaus
In this section we prove two main results of the theory of finite groups, which are often considered as
one Theorem and called the Schur-Zassenhaus Theorem. Beacause of the methods we have developed,
we differentiate between the abelian and the non-abelian case.

Theorem 24.1 (Schur, 1904)
Let G be a finite group and let A “ pA, ¨, ˚q be a ZG-module such that there exists m P Zě1 with
am “ 1 for all a P A. Suppose that

`

|G|, m
˘

“ 1. Then the following hold:

(a) Every group extension 1 // A i // E
p // G // 1 inducing the given G-action on A

splits.

(b) Any two complements of A in E are E-conjugate.

Proof : We prove that the HnpG,Aq is trivial for all n ě 1. For convenience, write A additively in this proof.
Thus by assumption we have m ¨ A “ 0. By Lemma 23.1, we know that |G| ¨HnpG,Aq “ 0 for all n ě 1.
Since m ¨A “ 0, we also have m ¨CnpG,Aq “ 0, and thus m ¨HnpG,Aq “ 0. Now, by the Bézout identity
there exists u, v P Z such that

u ¨ |G| ` v ¨m “ 1 ,

and hence
HnpG,Aq “ u ¨ |G| ¨HnpG,Aqq

loooooooomoooooooon

“0

`v ¨m ¨HnpG,Aq
loooooomoooooon

“0

“ 0 .
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Since H2pG,Aq vanishes any extension splits and since H1pG,Aq vanishes all complements of A are
E-conjugate, by Theorem 19.3 and Theorem 18.3(b) respectively.

Theorem 24.2 (Zassenhaus, 1937 )

Let 1 // A i // E
p // G // 1 be an extension of finite groups (where A is not necessarily

abelian). If
`

|A|, |G|
˘

“ 1, then the extension splits.

Proof : W.l.o.g. we may assume that |G| ě 1. Then we proceed by induction on the size of A.

¨ If |A| “ 1 or |A| is prime, then A is abelian. Moreover, a|A| “ 1 for all a P A. Thus Schur’s Theorem
applies and yields the result.

¨ Suppose now that |A| P Zě2zP. Let q P P be a prime number dividing |A|, let P be a Sylow
q-subgroup of A, and set N :“ NEpPq for the normaliser of P in E .

Claim 1: E “ AN .
Indeed, if e P E , then P and ePe´1 are Sylow q-subgroups of A, hence A-conjugate, so that there
exists a P A such that ePe´1 “ aPa´1. Thus

`

a´1eqP
`

a´1e
˘´1

“ P , i.e. a´1e P NEpPq “ N ,
and therefore e “ a

`

a´1e
˘

P AN .

Claim 2: A has a complement in E .
We split the proof of this claim in two cases:
Case 1: N ‰ E .
In this case, restricting p to N yields the group extension

1 // AXN i // N
p|N // G // 1

where AXN Ĺ A because G – N{pAXNq – AN{A “ E{A. Thus, by the induction hypothesis, this
extension splits. Hence, by Proposition 17.6, there exists a complement H of A X N in N . Since
|H| “ |G|, we have H X A “ t1u, and therefore H is a complement of A in E .
Case 2: N “ E .
Let Z :“ Z pPq be the centre of P , which is a non-trivial subgroup of P because P is a q-group.
Since Z is characteristic in P (i.e. invariant under all automorphisms of P), and since P is normal
in N , we deduce that Z is normal in E . Thus, by the universal property of the quotient, p induces
a group homomorphism p : E{Z ÝÑ G, eZ ÝÑ ppeq, whose kernel is A{Z . In other words, there is
a group extension of the form

1 // A{Z // E{Z // G // 1.

Now |Z | ‰ 1 implies that |A{Z | ă |A|, hence, by the induction hypothesis again, this extension
splits. So let F be a complement of A{Z in E{Z . By the Correspondence Theorem, there exists a
subgroup rF ď E containing Z such that F “ rF{Z . In other words, there is a group extension

1 // Z // rF // F // 1 .

Since F – G and Z ď P ď A, we have
`

|Z |, |F |
˘

“ 1 and therefore this extension splits by Schur’s
Theorem. Thus, there is a complement H of Z in rF . But |H| “ |G| implies H X A “ 1, so that H
is also a complement of A in E . The second claim is proved.

We conclude that the extension splits using Proposition 17.6 .

Remark 24.3
Notice that both Schur’s and Zassenhaus’ Theorems can be stated in terms not involving cohomology,
but their proofs rely on cohomological methods.
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25 Burnside’s Transfer Theorem
Throughout this section, we let H be a subgroup of G of index |G : H| “: r and A be a trivial ZG-
module. Our first aim is to understand the action of the transfer homomorphism on H1pG,Aq. So first
recall that H1pG,Aq “ Z 1pG,Aq “ HomGrppG,Aq by Example 10, and hence we see the transfer as a
homomorphism

trGH : HomGrppH,Aq ÝÑ HomGrppG,Aq .
Lemma 25.1

Let n P Zě0 and let ZGn`1 be the n-th term of the bar resolution of Z as a ZG-module. View it as
a projective resolution of Z as a ZF-module by restriction. Fix a right transversal S “ ts1, . . . , sru
of H in G. Then the comparison maps between this and the bar resolution of Z as a ZH-module
are given by the canonical inclusion

in : ZHn`1ÝÑZGn`1

and by the map

φn : ZGn`1 ÝÑ ZHn`1

pg0, . . . , gnq ÞÑ ph0, . . . , hnq ,

where, for every 0 ď i ď n, gi “ hisi for some hi P H and some si P S.

Proof : Using the definition of the differential maps of the bar resolution, we see that there are commutative
diagrams

ZHn`1

dn
��

in //

ö

ZGn`1

dn
��

ZH

ε
��

i0 //

ö

ZG ,

ε
��

ZHn
in´1

// ZGn Z
Id
// Z

and
ZGn`1

dn
��

φn //

ö

ZHn`1

dn
��

ZG

ε
��

φ0 //

ö

ZH ,

ε
��

ZGn
φn´1

// ZHn Z
Id
// Z

(where n ě 1). Thus the Comparison Theorem yields the result.

Proposition 25.2
Fix a right transversal S “ ts1, . . . , sru of H in G. Then the transfer for H1 is described as follows:

trGH : HomGrppH,Aq ÝÑ HomGrppG,Aq

f ÞÝÑ
˜

trGHpfq : g ÞÝÑ
r
ÿ

i“1
fphiq

¸

,

where sig “ his with hi P H for all 1 ď i ď r.
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Proof : On the one hand
HomGrppH,Aq “ H1pH,Aq – H1`HomZHpZH2, Aq

˘

,

via the bar resolution. On the other hand,

HomGrppH,Aq “ H1pH,Aq – H1`HomZHpZG2, Aq
˘

,

via the bar resolution for G restricted to H . Now, transfer is defined using the second resolution, therefore,
we need to compare these two resolutions. But

H1pH,Aq “ Z 1pH,Aq,

because B1pH,Aq “ 0 since H acts trivially on A, and

Z 1pH,Aq Ď C 1pH,Aq – HomZH
`

ZH2, A
˘

.

If for a given f P HomGrppH,Aq, f̃ denotes the image of f in HomZH
`

ZH2, A
˘

, then for h P H set

f̃ : ZH2 ÝÑ A
p1, hq “ rhs ÞÝÑ fphq

and thus for each k P H ,
f̃
`

pk, khq
˘

“ f̃
`

k ¨ p1, hq
˘

“ k ¨ fphq “ fphq ,

because H acts trivially on A, and we extend this map by Z-linearity to the whole of ZH2. Using the
comparison map φ1 : ZG2 ÝÑ ZH2 of the previous lemma yields f̃ ˝φ1 : ZG2 ÝÑ A, which is ZH-linear.
Now, computing the transfer using its definition yields for every x P ZG2:

trGH
`

f̃ ˝ φ1
˘

pxq “
r
ÿ

i“1
s´1
i
`

f̃ ˝ φ1
˘

psixq ““
r
ÿ

i“1

`

f̃ ˝ φ1
˘

psixq

because
 

s´1
1 , . . . , s´1

r
(

is a left transversal of H in G and A is trivial. We want to view this as a 1-cocycle
for G, that is evaluate this on an element rgs “ p1, gq P G2 Ă ZG2 :

trGHpfqpgq “ trGH
`

f̃ ˝ φ1
˘

p1, gq “
r
ÿ

i“1

`

f̃ ˝ φ1
˘

psi, sigq “
r
ÿ

i“1
f̃
`

1, hi
˘

because si “ 1 ¨ si and sig “ hisσpiq. So we obtain

trGHpfqpgq “
r
ÿ

i“1
f̃p1, hiq “

r
ÿ

i“1
fphiq ,

as required.

Lemma 25.3 (Choice of transversal for a fixed g P G)
Fix g P G.

(a) There exists a right transversal of H in G of the form

S “
 

t1, t1g, . . . , t1gm1´1, t2, t2g, . . . , t2gm2´1, . . . , ts, tsg, . . . , tsgms´1(

with m1 ` . . .`ms “ |G : H| “ r and tigmit´1
i P H for all 1 ď i ď s.

(b) If f P HomGrppH,Aq and g P G, then trGHpfqpgq “
řs
i“1 f

`

tigmit´1
i

˘

.
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Proof :

(a) The element g acts on the right on right cosets Hs, via Hs ÞÝÑ Hsg. Decompose the set of right
cosets into g-orbits. Let r be the number of g-orbits and let Ht1, . . . , Htr be representatives of the
g-orbits. We get all the right cosets of H by applying powers of g to each Hti and we suppose
that Htigmi´1g “ Hti (that is, mi is the cardinality of the orbit). With this choice, we obtain a
right transversal with the required properties.

(b) Proposition 25.2 together with paq yield for 1 ď i ď s:

tig, tig2, . . . , tigmi´1

belong to the right transversal S, so that
`

tigk
˘

¨ g “ 1 ¨
`

tigk`1˘ P H ¨ S for 0 ď k ď mi ´ 2 and
`

tigmi´1g
˘

“
`

tigmit´1
i

˘

ti P H ¨ S. Therefore

trGHpfqpgq “
s
ÿ

i“1
f
`

tigmit´1
i

˘

,

because all the other elements of H appearing are 1 and fp1q “ 0.

Theorem 25.4 (Burnside’s transfer theorem (or Burnside’s normal p-complement theorem), 1911)
Let G be a finite group, let p be a prime number such that p | |G| and let P be a Sylow p-subgroup
of G. If P is abelian and CGpPq “ NGpPq, then there exists a normal complement N to P in G, i.e.
G “ N ¸ P .

Proof :
Claim: If there exist g P G and u P P such that u, gug´1 P P , then gug´1 “ u.

Indeed: using the assumptions, we have u P g´1Pg, which is abelian, and therefore both P and g´1Pg
are Sylow p-subgroups of CGpuq. Thus P and g´1Pg are conjugate in CGpuq, so that there exists
c P CGpuq such that cPc´1 “ g´1Pg, that is gcPpgcq´1 “ P and hence gc P NGpPq “ CGpPq. Finally,
gug´1 “ pgcqupgcq´1 “ u because u P P , as required.

Now consider the identity map IdP P HomGrppP,Pq and trGPpIdPq P HomGrppG,Pq. The previous lemma
yields for a fixed u P P ,

trGPpIdPqpuq “
s
ź

i“1
IdP

`

tiumit´1
i

looomooon

PP

˘

.

Now using the claim yields tiumit´1
i “ umi for each 1 ď i ď s, hence

trGPpIdPqpuq “
s
ź

i“1
umi “ u|G:P|.

In particular, this proves that trGPpIdPq : G � P is a surjective group homomorphism, because for each
v P P , there exists u P P such that u|G:P| “ v by the Bézout identity. (Indeed, Bézout implies that there
exist a, b P Z such that a|P| ` b|G : P| “ 1, hence v “ v1 “ pvbq|G:P| and we choose u “ vb.)

Finally, set N :“ ker
´

trGPpIdq
¯

, so that we have a group extension

1 // N // G
trGP pIdPq// P // 1

with a section given by 1
|G:P| ¨ ı, where ı : P ÝÑ G is the canonical inclusion. It follows that N is a

normal complement of P in G.



Chapter 9. The Schur Multiplier and Universal Central Extensions

The Schur multiplier is a very important tool of finite group theory and representation theory of finite
groups; it can be defined as certain cohomology group associated to a given group G, but as we will
immediately see, it can also be defined as a homology group, which point of view makes it a very
important tool of algebraic topology as well. We will also show that it has very natural connections
with central extensions and projective representations.

Throughout this chapter, unless otherwise stated, G denotes a group in multiplicative notation, K a
field and Kˆ denotes the multiplicative group of units of K .
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26 The Schur Multiplier
Definition 26.1 (Schur multiplier )

The Schur multiplier (or multiplicator) of a group G is the abelian group MpGq :“ H2pG,Cˆq,
where Cˆ is seen as a trivial ZG-module.

Remark 26.2 (Uniquely divisible groups)
Recall from group theory that:

¨ An abelian group pA,`q is said to be uniquely divisible by an integer n P Zě1 if for all
a P A there exists a unique b P A with a “ nb, or equivalently iff the homomorphism of
multiplication by n, i.e. mn : A ÝÑ A, b ÞÑ nb is an isomorphism. For Example, if A is finite
and p|A|, nq “ 1 then A is uniquely divisible by n.

¨ Moreover, A is said to be uniquely divisible if it is uniquely divisible by every positive integer
n P Zě1.
For example, Q and R are uniquely divisible; Q{Z is not uniquely divisible.
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Lemma 26.3

(a) If G is a finite group and M is a ZG-module which is uniquely divisible by |G| (i.e. as an
abelian group), then HnpG,Mq – 0 for every n ě 1.

(b) HnpG,Cˆq – Hn`1pG,Zq – HnpG,Q{Zq for all n ě 1.

Proof :

(a) Let n ě 1 be fixed. Since multiplication by |G|, m|G| : M ÝÑ M,m ÞÑ |G|m, is an isomorphism, so
is multiplication by |G|, m|G| : HnpG,Mq ÝÑ HnpG,Mq by functoriality of cohomology. But this
map is the zero map by Lemma 23.1, hence HnpG,Mq – 0.

(b) Recall that polar coordinates induce a group isomorphism Cˆ – Rˆą0 ˆ S1, z ÞÑ p|z|, argpzqq and
the exponential map exp : R ÝÑ S1, t ÞÑ e2πit induce a group homomorphism R{Z – S1. Hence
there is a group extension

1 // Z // Rˆą0 ˆ R
Idˆexp // Rˆą0 ˆ S1

loooomoooon

Cˆ

// 1 .

Because the natural logarithm ln : pRˆą0, ¨q ÝÑ pR,`q is a group isomorphism the term in the
middle is isomorphic to R ˆ R, and hence is uniquely divisible. Now the long exact sequence in
cohomology associated to this exact sequence has the form

¨ ¨ ¨ // H1pG,Rˆą0 ˆ Rq
loooooooomoooooooon

–0

// H1pG,Cˆq // H2pG,Zq // H2pG,Rˆą0 ˆ Rq
loooooooomoooooooon

–0

// ¨ ¨ ¨

¨ ¨ ¨ // HnpG,Rˆą0 ˆ Rq
loooooooomoooooooon

–0

// HnpG,Cˆq // Hn`1pG,Zq // Hn`1pG,Rˆą0 ˆ Rq
loooooooooomoooooooooon

–0

// ¨ ¨ ¨

Hence, we conclude that HnpG,Cˆq – Hn`1pG,Zq for each n ě 1.

A similar argument using the s.e.s. 1 // Z
inc // Q

can // Q{Z // 1 yields the isomor-
phism HnpG,Q{Zq – Hn`1pG,Zq for all n ě 1.

Proposition 26.4 (Alternative descriptions of the Schur multiplier )
If G is a finite group, then H2pG,Cˆq – H2pG,Z{Qq – H3pG,Zq – H2pG,Zq.

Proof : The first two isomorphisms are given by Lemma 26.3(b). The isomorphism H3pG,Zq – H2pG,Zq is
a consequence of a result known as the integral duality theorem which states that for a finite group G,
Hn`1pG,Zq – HnpG,Zq whenever n ě 1. We won’t prove it in these notes.

27 The Projective Lifting Property and Universal Central Extensions
For this section, we followed faithfully [CR90, §11E].

28 Universal p1-Central Extensions
This section followed [LT17].



Appendix: The Language of Category Theory

This appendix provides a short introduction to some of the basic notions of category theory used in this
lecture.
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A Categories
Definition A.1 (Category)

A category C consists of:

‚ a class Ob C of objects,

‚ a set HomCpA,Bq of morphisms for every ordered pair pA,Bq of objects, and

‚ a composition function

HomCpA,Bq ˆHomCpB,Cq ÝÑ HomCpA, Cq
pf , gq ÞÑ g ˝ f

for each ordered triple pA,B, Cq of objects,

satisfying the following axioms:

(C1) Unit axiom: for each object A P Ob C, there exists an identity morphism 1A P HomCpA, Aq
such that for every f P HomCpA,Bq for all B P Ob C,

f ˝ 1A “ f “ 1B ˝ f .

(C2) Associativity axiom: for every f P HomCpA,Bq, g P HomCpB,Cq and h P HomCpC,Dq with
A,B, C,D P Ob C,

h ˝ pg ˝ fq “ ph ˝ gq ˝ f .
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Let us start with some remarks and examples to enlighthen this definition:
Remark A.2

(a) Ob C need not be a set!

(b) The only requirement on HomCpA,Bq is that it be a set, and it is allowed to be empty.

(c) It is common to write f : A ÝÑ B or A f
ÝÑ B instead of f P HomCpA,Bq, and to talk about

arrows instead of morphisms. It is also common to write "A P C" instead of "A P Ob C".

(d) The identity morphism 1A P HomCpA, Aq is uniquely determined: indeed, if fA P HomCpA, Aq
were a second identity morphisms, then we would have fA “ fA ˝ 1A “ 1A.

Example A.3

(a) C “ 1 : category with one object and one morphism (the identity morphism):

‚

1‚

(b) C “ 2 : category with two objects and three morphism, where two of them are identity
morphisms and the third one goes from one object to the other:

A B
1A 1B

(c) A group G can be seen as a category CpGq with one object: Ob CpGq “ t‚u, HomCpGqp‚, ‚q “ G
(notice that this is a set) and composition is given by multiplication in the group.

(d) The nˆm-matrices with entries in a field k for n,m ranging over the positive integers form
a category Matk : Ob Matk “ Zą0, morphisms n ÝÑ m from n to m are the mˆ n-matrices,
and compositions are given by the ordinary matrix multiplication.

Example A.4 (Categories and algebraic structures)

(a) C “ Set, the category of sets: objects are sets, morphisms are maps of sets, and composition
is the usual composition of functions.

(b) C “ Veck , the category of vector spaces over the field k : objects are k-vector spaces, mor-
phisms are k-linear maps, and composition is the usual composition of functions.

(c) C “ Top, the category of topological spaces: objects are topological spaces, morphisms are
continous maps, and composition is the usual composition of functions.

(d) C “ Grp, the category of groups: objects are groups, morphisms are homomorphisms of groups,
and composition is the usual composition of functions.
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(e) C “ Ab, the category of abelian groups: objects are abelian groups, morphisms are homomor-
phisms of groups, and composition is the usual composition of functions.

(f ) C “ Rng, the category of rings: objects are rings, morphisms are homomorphisms of rings,
and composition is the usual composition of functions.

(g) C “R Mod, the category of left R-modules: objects are left modules over the ring R , morphisms
are R-homomorphisms, and composition is the usual composition of functions.

(g’) C “ ModR , the category of left R-modules: objects are right modules over the ring R ,
morphisms are R-homomorphisms, and composition is the usual composition of functions.

(g”) C “R ModS , the category of pR, Sq-bimodules: objects are pR, Sq-bimodules over the rings
R and S, morphisms are pR, Sq-homomorphisms, and composition is the usual composition of
functions.

(h) Examples of your own . . .

Definition A.5 (Monomorphism/epimorphism)
Let C be a category and let f P HomCpA,Bq be a morphism. Then f is called

(a) a monomorphism iff for all morphisms g1, g2 : C ÝÑ A,

f ˝ g1 “ f ˝ g2 ùñ g1 “ g2 .

(b) an epimorphism iff for all morphisms g1, g2 : B ÝÑ C ,

g1 ˝ f “ g2 ˝ f ùñ g1 “ g2 .

Remark A.6
In categories, where morphisms are set-theoretic maps, then injective morphisms are monomorphisms,
and surjective morphisms are epimorphisms.
In module categories (RMod, ModR , RModS , . . . ), the converse holds as well, but:
Warning: It is not true in general, that all monomorphisms must be injective, and all epimorphisms
must be surjective.
For example in Rng, the canonical injection ı : Z ÝÑ Q is an epimorphism. Indeed, if C is a ring
and g1, g2 P HomRngpQ, Cq

Z ı // Q
g1
//

g2 // C

are such that g1 ˝ ı “ g2 ˝ ı, then we must have g1 “ g2 by the universal property of the field of
fractions. However, ı is clearly not surjective.

B Functors
Definition B.1 (Covariant functor )

Let C and D be categories. A covariant functor F : C ÝÑ D is a collection of maps:
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‚ F : Ob C ÝÑ Ob D , X ÞÑ F pXq, and

‚ FA,B : HomCpA,Bq ÞÑ HomD pF pAq, F pBqq,

satisfying:

(a) If A f
ÝÑ B g

ÝÑ C are morphisms in C, then F pg ˝ fq “ F pgq ˝ F pfq; and

(b) F p1Aq “ 1FpAq for every A P Ob C.

Definition B.2 (Contravariant functor )
Let C and D be categories. A contravariant functor F : C ÝÑ D is a collection of maps:

‚ F : Ob C ÝÑ Ob D , X ÞÑ F pXq, and

‚ FA,B : HomCpA,Bq ÞÑ HomD pF pBq, F pAqq,

satisfying:

(a) If A f
ÝÑ B g

ÝÑ C are morphisms in C, then F pg ˝ fq “ F pfq ˝ F pgq; and

(b) F p1Aq “ 1FpAq for every A P Ob C.

Remark B.3
Often in the literature functors are defined only on objects of categories. When no confusion is to
be made and the action of functors on the morphism sets are implicitely obvious, we will also adopt
this convention.

Example B.4
Let Q P ObpRModq. Then

HomRpQ,´q : RMod ÝÑ Ab
M ÞÑ HomRpQ,Mq ,

is a covariant functor, and

HomRp´, Qq : RMod ÝÑ Ab
M ÞÑ HomRpM,Qq ,

is a contravariant functor.

Exact Functors.
We are now interested in the relations between functors and exact sequences in categories where it
makes sense to define exact sequences, that is categories that behave essentially like module categories
such as RMod. These are the so-called abelian categories. It is not the aim, to go into these details,
but roughly speaking abelian categories are categories satisfying the following properties:

‚ they have a zero object (in RMod: the zero module)
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‚ they have products and coproducts (in RMod: products and direct sums)

‚ they have kernels and cokernels (in RMod: the usual kernels and cokernels of R-linear maps)

‚ monomorphisms are kernels and epimorphisms are cokernels (in RMod: satisfied)

Definition B.5 (Pre-additive categories/additive functors)

(a) A category C in which all sets of morphisms are abelian groups is called pre-additive.

(b) A functor F : C ÝÑ D between pre-additive categories is called additive iff the maps FA,B
are homomorphisms of groups for all A,B P Ob C.

Definition B.6 (Left exact/right exact/exact functors)
Let F : C ÝÑ D be a covariant (resp. contravariant) additive functor between two abelian categories,
and let 0 ÝÑ A f

ÝÑ B g
ÝÑ C ÝÑ 0 be a s.e.s. of objects and morphisms in C. Then F is called:

(a) left exact if 0 ÝÑ F pAq FpfqÝÑ F pBq FpgqÝÑ F pCq (resp. 0 ÝÑ F pCq FpgqÝÑ F pBq FpfqÝÑ F pAqq) is an
exact sequence.

(b) right exact if F pAq FpfqÝÑ F pBq FpgqÝÑ F pCq ÝÑ 0 (resp. F pCq FpgqÝÑ F pBq FpfqÝÑ F pAqq ÝÑ 0) is an
exact sequence.

(c) exact if 0 ÝÑ F pAq FpfqÝÑ F pBq FpgqÝÑ F pCq ÝÑ 0 (resp. 0 ÝÑ F pCq FpgqÝÑ F pBq FpfqÝÑ F pAqq ÝÑ
0) is a short exact sequence.

Example B.7
The functors HomRpQ,´q and HomRp´, Qq of Example B.4 are both left exact functors. Moreover
HomRpQ,´q is exact if and only if Q is projective, and HomRp´, Qq is exact if and only if Q is
injective.
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Index of Notation

General symbols
C field of complex numbers
Fq finite field with q elements
IdM identity map on the set M
Impfq image of the map f
kerpφq kernel of the morphism φ
N the natural numbers without 0
N0 the natural numbers with 0
P the prime numbers in Z
Q field of rational numbers
R field of real numbers
Z ring of integer numbers
Zěa,Ząa,Zďa,Zăa tm P Z | m ě a (resp. m ą a,m ě a,m ă aqu
|X | cardinality of the set X
δij Kronecker’s delta
Ť

union
š

disjoint union
Ş

intersection
ř

summation symbol
ś

, ˆ cartesian/direct product
¸ semi-direct product
‘ direct sum
b tensor product
H empty set
@ for all
D there exists
– isomorphism
a | b , a - b a divides b, a does not divide b
pa, bq gcd of a and b
f |S restriction of the map f to the subset S
ãÑ injective map
� surjective map
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Group theory
AutpGq automorphism group of the group G
AutA,GpEq automorphism the group G inducing the identity on A and G
An alternating group on n letters
Cm cyclic group of order m in multiplicative notation
CGpxq centraliser of the element x in G
CGpHq centraliser of the subgroup H in G
D2n dihedral group of order 2n
EndpAq endomorphism ring of the abelian group A
EpG,A˚q set of equivalence classes of group extensions

1 // A i // E
p // G // 1 inducing the G-action ˚

G{N quotient group G modulo N
GLnpK q general linear group over K
PGLnpK q projective general linear group over K
H ď G, H ă G H is a subgroup of G, resp. a proper subgroup
N Ĳ G N is a normal subgroup G
NGpHq normaliser of H in G
N ¸θ H semi-direct product of N in H w.r.t. θ
PGLnpK q projective linear group over K
Q8 quaternion group of order 8
Q2n generalised quaternion group of order 8
Sn symmetric group on n letters
SD2n semi-dihedral group of order 2n
SLnpK q special linear group over K
Z{mZ cyclic group of order m in additive notation
xg conjugate of g by x , i.e. gxg´1

xgy Ď G subgroup of G generated by g
G “ xX | Ry presentation for the group G
|G : H| index of the subgroup H in G
x P G{N class of x P G in the quotient group G{N
t1u, 1, 1 trivial group

Module theory
HomRpM,Nq R-homomorphisms from M to N
EndRpMq R-endomorphism ring of the R-module M
KG group algebra of the group G over the ring K
ε : KG ÝÑ K augmentation map
IG augmentation ideal
MG G-fixed points of the module M
MG G-cofixed points of the module M
M ÓGH , ResGHpMq restriction of M from G to H
IndGHpMq induction of M from H to G
resGH restriction from G to H in cohomology
trGH transfer from H to G
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Homological algebra
BnpC‚q n-boundaries of C‚
BnpC‚q n-coboundaries of C‚
BnpG,Aq n-coboundaries with coeff. in A rel. to the bar resolution
pC‚, d‚q, C‚ chain complex
pC‚, d‚q, C‚ cochain complex
CnpG,Aq n-cochains with coeff. in A rel. to the bar resolution
ExtnRpM,Nq n-th Ext-group of M with coefficients in N
HnpC‚q n-th homology group/module of C‚
HnpG,Mq n-th homology group of the group G with coeff. in M
HnpC‚q n-th cohomology group/module of C‚
HnpG,Mq n-th cohomology group of the group G with coeff. in M
P‚ � M projective resolution of the module M
TorRn pM,Nq n-th Tor-group of M with coefficients in N
ZnpC‚q n-cycles of C‚
ZnpC‚q n-cocycles of C‚
ZnpG,Aq n-cocycles with coeff. in A rel. to the bar resolution
rg1|g2| . . . |gns bar notation

Category Theory
Ob C objects of the category C
HomCpA,Bq morphisms from A to B
Set the category of sets
Veck the category of vector spaces over the field k
Top the category of topological spaces
Grp the category of groups
Ab the category of abelian groups
Rng the category of rings
RMod the category of left R-modules
ModR the category of left R-modules
RModS the category of pR, Sq-bimodules



Index

G-cofixed points, 50
G-fixed points, 50
n-boundary, 33
n-coboundary, 36, 56
n-cochain, 56
n-cocycle, 36, 56
n-cycle, 33
n-th cohomology group, 36, 51
n-th homology group, 33, 51

action
conjugation, 49
diagonal, 49

arrow, 89
augmentation

ideal, 49
map, 49

axiom
associativity axiom, 88
unit axion, 88

basis
of a free group, 10
of a module, 25

bimodule, 17

category
abelian, 91
homotopy category, 36
of abelian groups, 90
of bimodules, 90
of groups, 89
of left modules, 90
of right modules, 90
of rings, 90

of sets, 89
of topological spaces, 89
of vector spaces, 89
pre-additive, 92

coimage, 20
coinduction, 78
cokernel

of a morphism, 20
of a morphism of complexes, 32

complement, 65
complex

acyclic, 35
augmented, 37
chain, 31
cochain, 36
exact, 35
non-negative, 31
positive, 31
quotient complex, 32
zero complex, 34

composition function, 88
composition law

external, 17
connecting homomorphism, 23, 34
corestriction, 76

degree, 31
derivation

inner, 58
principal, 58

dimension shifting, 44
direct sum

external, 21
internal, 21
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epimorphism, 90
exact sequence, 22

short, 22
split s.e.s., 24

Ext-group, 41
extension

central, 63
equivalent, 69
split, 63
universal p1-extension, 87

functor
additive, 92
contravariant, 91
covariant, 90
exact, 92
left exact, 92
right exact, 92

generating set, 25
group

extension, 62
finitely presented, 13
free, 10
presentation, 13
uniquely divisible, 86

group algebra, 48
group ring, 48

homotopy equivalence, 35

identity
1-cocycle, 58
2-cocycle, 58

image
of a morphism, 18
of a morphism of complexes, 32

induction
of a module, 77

kernel
of a morphism, 18
of a morphism of complexes, 32
of an extension, 63

lemma
Eckmann-Shapiro lemma, 78
horseshoe lemma, 40
snake lemma, 23

long exact sequence
in cohomology, 37, 51
in homology, 34, 51

map
R-balanced, 28
chain map, 32
cochain map, 36
differential map, 31
relative trace, 76

module
flat, 30
free, 25
homomorphism, 18
injective, 27
left, 17
projective, 27
right, 17
trivial, 49

monomorphism, 90
morphism

identity morphism, 88
in a category, 88
of chain complexes, 32
of cochain complexes, 36

object, 88

projective lifting property, 87

quasi-homomorphism, 35

rank
of a free group, 10

relation, 13
representation, 49
resolution

bar, 54
free, 37
injective, 40
normalised bar, 55
projective, 37

restriction
in cohomology, 75
of a module, 74

retraction, 24

scalar multiplication, 17
Schur multiplier, 86
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section, 24
semi-direct product

external, 9
internal, 7

subcomplex, 32
submodule, 18

tensor product
of modules, 28
of morphisms, 29

theorem
1st isomorphism theorem, 19
2nd isomorphism theorem, 19
3rd isomorphism theorem, 19
lifting theorem, 38
Burnside’s normal p-complement theorem, 85
Burnside’s transfer theorem, 85
comparison theorem, 39
correspondence theorem, 20
Schur, 81
Zassenhaus, 82

Tor-group, 47
transfer, 76
transversal, 74

universal property
of free groups, 10
of free modules, 25
of presentations, 14
of the coinduction, 78
of the direct sum, 21
of the induction, 77
of the product, 20
of the quotient, 19
of the tensor product, 28

word, 12
equivalent, 13
length of, 13
reduced, 13
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