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Abstract

Here the almost sure convergence of one dimensional Kohonen’s algorithm in its
general form, namely, 2k point neighbour setting with a non-uniform stimuli distribu-
tion is proved.We show that the asymptotic behaviour of the algorithm is governed by
a cooperative system of differential equations which in general is irreducible. The sys-
tem of differential equation has an asymptotically stable fixed point which a compact
subset of its domain of attraction will be visited by the state variable X™ infinitely
often.

Key words neural networks, stochastic approximation, theory of differential equa-~
tions.
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1 Introduction

Self-organizing maps play a crucial role in many functions of the nervous system as well as
artificial intelligent tasks . Different sensory inputs , such as visual and acoustic inputs, are
known to be mapped onto different areas of the cortex in an orderly, topology preserving
manner, i.e., similar inputs are mapped onto neighbouring places in the cortex. These
mappings are not genetically prespecified in detail but instead self-organize during the
early stages of the formation of nervous system. For more details see [9] and references
therein.

Among a number of algorithms which have been suggested for the formation of such
mappings, Kohonen’s algorithm is the most popular one. This algorithm has been employed
successfully in a wide range of applications including speech recognition [8], robotics [14],

*This work is supported by German Academic Exchange Service .
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computer vision [11] , etc. The adaptation of the weights in the Kohonen algorithm can
be decomposed into two phases . In the first phase it self organizes a topology preserving
map and then it converges to the final weights which are supposed to make a better
representation of the input space. Depending on the nature of the application each of
these phases may become more or less important. For example in numerical integration
[12] the asymptotic behaviour of the algorithm is more important than its other features.

Let I be a set of n neurons labeled from 1 to N. The Kohonen net defined on [ is a triple
T = (G, Q, F) where
~G = (I,(V;: 1€ I))is agraph on I, in which V; C I is the set of all neurons
connected to neuron 1 (its neighbours ) such that
1)jeVi=ieV;foralli,jel,
2yieV;foralliel
—( is the set of states of neurons which usually is a subset of R™ . Every neuron takes
a weight vector X; € ).
—F = {fij 4,7 € I} is the set of neighbourhood functions, f;; : I X I - R.

This network is used to build a mapping from R™ to the set of neurons which is usually
arranged as a d-dimensional net. Every v € ) corresponds with the neurons i*(v) which
satisfy

[ Xiey =v Il Xi = |l Vel (1)

To be more accurate, this is a mapping from @ to the power set of I.

The weights X will be adapted in the learning phase according to

XM = X7+ enfiri(v = XJY) Vel 2)

k3

where v € Q is chosen randomly (according to some probability distribution P(v)) e, is
the learning parameter and f;«; are the neighbourhood functions for ¢ and 2*.

In this paper we consider the one dimensional Kohonen net. In this-case every neuron 4
takes a value X; € Q C Rand V; = {i = 1,4,i + 1} N {1, -+, N}. Moreover

Y0 if it
vy, i d=at el or d=at4l,
firi=19q ¢ E (3)
Y if t=4"—k or i=i"+k
0 otherwise,

in which v = 1, 0 < v < -+ < <1 and k > 0. The initial weight vector XV =
{X9,--+, X%} can be chosen randomly from QV.
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Although the exact definition of topology preservation involves much , cf. [15], it can be
easily defined for a one dimensional map. A map is topology preserving iff it is ordered,i.e.,
either X; < X; ¢ i < j (ascending) or X; < X; & 1 > j (descending), for all 4, j. Tt is
well known that once the one dimensional Kohonen map becomes ordered, it will preserve
its ordering for ever,[9] .

Two special cases of this algorithm, namely & = 0 and £k = 1, 73 = 1, have been
investigated by Cottrell and Fort , [4], and Bouton and Pages , [2, 3]. The results of these
papers confirm the almost sure (a.s.) convergence of the algorithm for both cases, if the
stimuli is distributed uniformly . In the non-uniform case it is shown that, if Log{P(v)) is
strictly concave then the corresponding mean differential equation has an asymptotically
stable equilibrium state, cf. [2] . However, it is not enough to ensure the a.s. convergence
of the algorithm and no conclusion concerning the convergence to an equilibrium state has
been achieved for stimulies which are distributed non-uniformly.

The ability of the algorithm to self-organize a topology preserving map has been proved for
2-point neighbour setting case, [4, 2]. Due to very many implementations of the algorithm
it is believed that this result is valid generally for 2k-point neighbour setting.In this paper
the asymptotic behaviour of the algorithm will be investigated, with the assumption that
the ordering has been already established . We will prove the a.s. convergence of the 2k
point neighbour algorithm for all continuous stimuli distributions P(v) whose support set
is [0,1].

In one dimensional case the adaptation process (2) may be considered as a stochastic
dynamical system in RN . Such time discrete systems have been treated by many authors
in the stochastic approximation context, [1, 10]. A usual method to study the long time
behaviour of these systems is to compare them with the so called mean differential equation
, (m.d.e), which under certain conditions has the same asymptotic behaviour as the original
discrete system. In Section 2 of this paper we formulate the problem as a Robbins-Monro
algorithm and introduce the conditions under which the m.d.e. governs the long time
behaviour of the algorithm. Section 3 is devoted to the properties of the m.d.e , in which
it is shown that the stochastic variable X™ evolves in the domain of attraction of the
equilibrium state of the m.d.e. . This enables us to establish the main result of this paper
, namely a.s. convergence of the algorithm (Theorem 2 ) . In Section 4 we use the m.d.e.
to investigate the effect of neighbourhood function f;; on the final distribution of neuron
.The concluding remarks are also contained in Section 4.

2 Robbins-Monro formulation of the algorithm

Throughout this paper we suppose that the order has been established as ascending.Two
possible orderings, ascending or descending, are mathematically equivalent and all the
results are valid for descending case as well. Moreover, we let Q= [0,1] and X" &
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[0,1]Y the vector of all weights at step n. The probability distribution P(v) is always
assumed to be regular enough such that P(0 < v < z) , the probability of v € [0,2] |
is continuous in [0,1]. This is the case for all functions which are Lebesgue integrable in
[0,1].

The adaptation algorithm (2) may be rewritten in a more general form ,
Xn+1 = X"~ En'r/an -+ 677,'77nIN><'17)m (4)

where ¢, € R, Inyx1 = (1,--+, 17 [ v, € [0,1] is an identically independent distributed
(i.i.d.) random variable with a distribution P(v), and 1, = n(X™,v) := RN x R s RN*N
is a piecewise continuous function which associates with any pair (X, v) € RY x R the
matrix n, = [n7],

Ve, if i=g=3"=k or i=j=¢"+k,
0, otherwise.
Here 5* denotes the so called winner unit, which is defined by (1).

Remark 1. Although 7, is not an i.i.d. random variable, it still satisfies the relation

P(nnmnwla -2y N0y Xn,Xan T XO) = P(77n

Xﬂ,)

in which P(.|.) is the conditional probability function.

Let us adopt the following notations

XPo=05(XP+ X2 ) for 1<i<N and XP:= O,XR,H =1 Vn>1,

Pi(X") = [::\:{;1 Pv)dv, Qi(X"):= {\j?“ vP(w)dv, ¥V 1<i<N,

Ri(X7) = Py(X") + (Pa (X7) 4 P (X)) yr - 4 (P (X)) + P (X)),
Si(X™) = Qi(X™) + (Qir (X™) + Qi t (X)) + - 4+ (Qiceie(XT) 4 Qg (X)) ks
PX™) = Q(X™) =0,  if <0 or i> N (5)

Introduce h,(X™) for the expectation value of (=7, X" 4+ 9 Inx1n),
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hn(X™) = E(=y X" + nlnsivn) = [y (= X" + nnlnxi0)p(v)dv, (6)

then

_RI (Xn)X? + Sl (Xn)

h(X™) = | —Ri(XM)XD + S(X™) |- (7)

| —BN(XT) XK+ Sn(XT) ]

Since hy(.) is independent of n , we remove the index n and set h(.) = h,(.) . Now
define

En == X" + nulnxivn — R(X™). (8)

&, is a random variable with expectation value zero.

The recursive algorithm (4) can now be rewritten as

Xn+1 = X"+ En,h»(Xn) + €n€n- (9)

This is a Robbins-Monro like algorithm which was originally suggested to find the roots
of a function h(z). The asymptotic behaviour of such algorithms has been studied by
Kushner and Clark [10], from which we quote the following conditions and theorem which
is a special case of theorem (2.3.1) in [10] .

A.1. k() is a continuous R™ valued function on RV,
A.2. {e,} is a sequence of positive real numbers such that ¢, — 0 and e, = oco.

A3, &, is a sequence of RN valued random variables such that for some 7' > 0 and
each ¢ >0

. n(j1+t)~1

lim P{sup max |0_71_(J +t) 66 > e =0.

=30 i>n t<T i=m(jT) A

Here P(.) is the probability function and m(.) is defined as

by = E;I_i:*olfis
max{n :t, <t}, t>0,
mt) = { 0 et =t £< 0,
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Define the function X,(.) by

Xo(ta) = X",
; thy — t t—tn o ,
Xo(t) = 2H_Zxm g XL for by <t < by,
€n €n

XO(t + tn)a b2 —ty,
X0, t<

now we are in a position to state the following theorem

Theorem 1. (Kushner and Clark 1978) Let X™ be given by (9). Assume A.1 to A3, and
let X™ be bounded with probability 1. Then there is a null set Qo such that v & Qo implies
that { X, (.)} is equicontinuous, and also that the limit X (.) of any convergent subsequence
of {Xn(.)} is bounded and satisfies the system of differential equations

& = h(zx) (10)

on the time interval (—oo,00). Let xg be a locally asymptotically stable (in the sense of
Liapunov) solution to (10) ,with domain of attraction DA(xo). Then if v & Qo and there
is a compact set A C DA(zo) such that X™ € A infinitely often, we have X™ — xp as
n — oo.

Scheme of proof. Define the functions Xy(.) and My(.) by

Xot) = X" for by St <tpiy,
11
Mo(t,) = Z €iln)
=0
t -1 t— 1, g
My(t) = Lt}—_lVf()(tn) + = Mo(tni), for by S8 <,
1 n,
l\/f() (f, + tn) - M()(tn) t 2~y
My(t) = i<,
n(t) { — My (tn) b iy,

we may now write

3
X)) = Xn(0) + / h(Xo(ty + 5))ds + My (t).

JO
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Set

¢ ¢
/ MXo(ty + 8))ds = / h{( X, (8))ds + " (1),
0 Jo

then we have

t
Xn(t) = X,(0) +/ h(X,(s))ds + 6" (t) + My (t).
0

If n — oo then conditions A-1 to A-3 imply 6*(#) — 0 and M,(t) — 0 . {X,(t)} is
equicontinuous and bounded , and using the Arzela-Ascoli theorem it contains converging
subsequences . Now let X, (t) be a converging subsequence of X,(t). Then as n — oo
, Xn,(t) converges to a solution of & = h(z) .

O
In the rest of this section ,we show that the Kohonen algorithm ,as formulated in (9)

,satisfies the conditions A.1 and A.3 , provided that X7 < X} <..- < X},

Lemma 1. Suppose {e,} is a sequence of positive real numbers such that Xpe, =
oo and Y,€ < oo.  Then ,with probability 1 , any convergent subsequence of {X™}
converges to a solution of the system of differential equations

~- Ry (T)T1 -+ S1(.’L‘>

T = ——Rl(’r)fz, + Si(x) . (11)

| —Ry(z)zy + Sy(z) |

Let xy be a locally asymptotically stable (in the sense of Liapunouv) solution to (11, ,with
domain of attraction DA(xg). Then if there is a compact set A C DA(xo) such that
X" e A infinitely often,with probability 1 we have X™ — 25 as n — 00.

Proof. The functions F;(X") and Q;(X"), 1 <i < N, are continuous , i.e. , h(.) is
a continuous function of its argument .

For A.3., it suffices to note that the variance of &, is uniformly bounded and moreover
its conditional expectation value satisfy

.E[fn/))(o’ ‘Yla Tty XV”] e E[gn

X" =0.

Then, {371 €;&;} is a matriangle sequence and if $5°,e? < 0o , A.3. is fulfiled, cf. [10,
pp. 26-27].

The boundedness condition on {X"} is fulfiled automatically by Kohonen’s algorithm.

]
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3 Stability analysis of the mean differential equation

In this section our ultimate aim is to show that the system (11) has an asymptotically
stable equilibrium, which a compact subset of its domain of attraction will be visited by
the stochastic process X™ infinitely often.

Consider the system of differential equations
T = f(x), reQC R, f: Q= R™ (12)

The following terminology will be used throughout this section: The system (12) is coop-
erative if f is continuously differentiable and

of;

ailtj

>0 for all J .

An m xm matrix A = [a;;] is irreducible if it does not map any nonzero proper
linear subspace of R™ into itself. A necessary and sufficient condition for A to be
irreducible is that for any o, 8 € N, 1 < «a,8 < m there exists a chain of integers
@ = ap,a1, -, q, = 3 such that ag,_,a, # 0 forall 0 <1 <k, seeeg. [5]. The
system (12) is irreducible if the Jacobian matrix J(z) = [0f;/dz;(x)] is irreducible for
all z € Q.

For vectors z,y € R™ we write z <y if z; <y; for all 7. A set Q C R™ is p-convex
whenever z,y € @ and 2 <y, then () containg the entire line segment joining =
and y.

Let @, (t) denotes the solutirn of (12) which satisfies ®,(0) = z. The matrix D®,(t) is
the spatial derivative of ®,(t). We say the flow @ has positive derivatives if D®,(t) > 0
for all ¢ > 0 and all z € Q. It has eventually positive derivatives if there exists a
to > 0 such that D®,(t) > 0 forall t>ty and all 2 € Q. Clearly if & has positive
derivatives , it has also eventually positive derivatives. @ is strongly monotone provided
z <y implies ®.(t) < &, (t) forall ¢>0and z,y € Qsuchthat  x#y.

Aset F' C R™ is called positive invariant, if for all = € F and all ¢ > 0 for which ®,(¢)
is defined; ®,(t) C F. F denotes the closure of F'.

If any neighbourhood of a point  zp contains a point -z, € ®,(¢) then xzy is said to
be a limit point of ®,(¢). The w-limit set of a solution ®,(t) is the set of points p € Q
such that &, (tx) — p for some sequence #p — oo

An equilibrium is a point z* for which f(z*) = 0. E is the set of all equilibria in Q.
The equilibrium =* is simple if zero is not an eigenvalue of the jacobian J(z*). Tt is a sink
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if all eigenvalues of the jacobian have negative real parts. If there exists an open set T,
not necessarily containing z*, such that for all z € I', ®;(z) converges to z* uniformly
as t — oo, then z* is called a trap. A simple trap is known to be a sink.

The asymptotic behaviour of cooperative irreducible systems of differential equations has
been investigated by Hirsch [6, 7). The advantage of Hirsch’s method is that to find the
domain of attraction of an equilibrium no Liapunov function is needed. Moreover the
asymptotic stability of the equilibrium is guaranteed if there is a unique equilibrium or if
E is countable and all equilibria are simple. In fact the simplicity of all equilibria assures
the existence of some z* € E such that the jacobian J(z*) has all its eigenvalues in
the negative complex half-plane. For the convenience of the reader we recall the following
important results. In the sequel § is an open p-convex subset of R™.

Lemma 2. (Hirsch 1985) Let f be a cooperative irreducible vector field on the open
p-convez set 2 C R™. Then

a) ® has positive derwatives,

b) & s strongly monotone .

The lemmas 3 and 4 are valid if ®,(¢) has eventually positive derivatives. Q¢ C §) is a set
of points = whose corresponding flow ®,(¢) has a compact closure in 2.

Lemma 3. ( Hirsch 1985) There is a set Q C Q° having Lebesgue measure zero, such
that ®4(t) approaches the equilibrium set E as t — oo , for all x € Q\Q.

Lemma 4. (Hirsch 1985)

a) Assume E is countable . Then ®,(t) converges to a trap as t — oo. for almost
all z € Q°.

b) Assume all equilibria are simple . Then $,(t) converges to a sink as t— oo, for
almost all © € Q°.

Lemma 5. (Hirsch 1988) Assume that ® is strongly monotone and f(x) has a unique
equilibrium p € Q°. Then @, (t) = p for all z € Q.

For the proofs see [6, 7].

Now we apply the above mentioned lemmas to the mean differential equation (11)." As
a first step let us consider the existence of an equilibritm. A result similar to the next
lemma was first established by Bouton and Pages for k = 0 and k =1 ,7v, =1 in [2]. Here
we modify the argument to generalize it to 1 <k < N and v £ << <yp < 10 In the rest
of this paper v; =0 for j >k
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Lemma 6. Consider the set F* = {z € [0,1]V] 0<z1 <3< ... <any <1},

a) if P(v) is Lebesque integrable on [0,1] ,then there exists a 2" € F* such that
h(z*) = 0.

b) If supp P(v) =[0,1}, vj41 <7vjy N=22j+1 forsomej 0<7<k, then
z* e Ft .

Proof. a) F* is a compact subset of RY. So using the Brower theorem, see e.g. [13], it
is sufficient to show that z + h(z) maps F' into itself continuously. For all v € [0, 1],

T =2+ nulyxiv maps FTointo F*. It ensures that its mean value, ie. x4+ h(z),
maps F* into F71 as well. The continuity condition was shown in Section 2.

b) For notational convenience we define Z;; = Q;(z*) — 2} Pi(z*), then
Z;; >0 for i>j7 and Z;; <0 for i<

If 23 =0 then hy(z*) = 0 implies Si(z*) = 0, but this means that Qq(z*) = - =
Qr1{z*) =0 , ie, 23 = = zp ., = 0. With the same argument z; = 0, for all

1 <14 < N, which implies hn(z*) = fol zP(z)dr = 0 and this contradicts the diffusity
of P(x).

Suppose z, = 37;*1»

have Zi,p = Zivphl,

ry < apyy << zhy <1 forsome p, 1 <p < N. Then we

hp (™) Zpp + 1 (Zp—ipt Zprip) + 0+ Vel Lp—ip + Zpikp) =0,
hp—l(m*) = Zp»l,p»l + 71(Zp~2,p*l + Zp,pwl) +o 'Yk(Zp+lc~~‘l p—11 Zp»k_l,p#l) = (),

and
hp(2*) = hp-1(2%) = S5 (% = Y1) Zpsip + S (3 = i 1) Zpip = O,

Under the assumptions, each of the contributions in this equation is non-negative , so all
of them have to vanish.

If p< N-—j then p+j € {i,--- N} and (v;—=7vj41)%p+jp > 0 which is a contradiction.

Nowlet p>N-—j. Then p—j—1¢&{l,---,N} and this implies 2, ;. 1, =0,

Le. Ty g = :1’;;_j. Now p-—j < N —j, which implies Z,,_; = 0. If p < N this
implies @}, =z}, which is a contradiction and if p = N, then it has to be z}, = 1,

which again is a contradiction.

The only case which remains is z;_| < @y = 25, = - =xy =1 1 <p< N.

‘pt-1 =
hp(z*) = 0 implies
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ZP,]D + leZp--»].,p toeee ot 7A7Z])~»k,g) = (). (13)

All the contributions in (13) are non-positive , so all of them ought to vanish.But Z,, <0
which is again a contradiction.

O
It is a known result that F* is an absorbing set for the Kohonen algorithm, cf. [9]. The
following lemma shows that this property is preserved by the m.d.e. (11). We will use
this result later on to establish the a.s. convergence of the algorithm.
Lemma 7. Suppose 1 > ~yi-++ >y, >0 . Then the following statements are valid,
a) F* is a positive invariant set for (11),

b) Forall z € F™ , of ~yjp1 <7 and N >2j+1 forsome 0<j<k, then
. (t) has a compact closure in  F*,

¢) For all z € FIN\F* if ~vjp1 <7 and N >2j+1 forsome 0 <j <k, then
D, (t) € F+ fort > 0.

Proof. For both a) and b) It suffices to show that if z € F* then ®,(¢) has no limit
point on  FT\F*,

Suppose z* = (0,--+,0,25 4, -+, z}) is a limit point of @,(?) for some p,1 <p <N,
and 0<:1;;;Jrl <oe <oy <1, Set

S(z*e) ={z e Ft|z* —e< o <a* +¢} (14)

For any sufficiently small e, if ©,(¢) enters S(z* ¢) then we have

dz :
b - S (o
—- = —Ry(x)xy + Sp(x) > 0. (15)
This implies that x,(t) can not approach zero, i.e. ®,(¢) has no limit point on the
hyperplane 2y =g = =z, =0 forany 1 <p < N.
Now let «* = (af,- - ,:r,;ml,m;, ceay), L<p <N Ty = :1:;, and zp <0<

xly <1 , be a limit point of ®,(t) . We have

d(’L' - w'[) : * : *
—-—E—TJ—IL——E— = (Tp-1 = Ty ) Rpr(2) = (2 — ) By ()

(16)

FE (rier = ) (3 Ppesln) = Qpi(®)) + S (i = v (@ Ppa(2) = Qpi()).
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For sufficiently small ¢, if ®,(t) enters S(z*,€) , then apart from (zp.1 —x; ) Rp_1 ()
and (z, ~ x3)Rp(2) , all the contributions in (16) are non-negative. Because ¢ can be
o : 1y —2p— .
chosen arbitrarily small , either ﬂp—dfﬂ——ll > 0 or all these terms ought to vanish. So we

have to show that there exists always non vanishing terms.

If 1<p<N-j then p+j€{l,---,N}andhence (vj41—7v)(xpFPprs ~ Qprj) > 0.

For p>N-—j wehavep—j—1€e{l,.--- N} . If

('Yj - 'Yj—{--i)(mzppwjml - Qp~~j~1) = (),

then 1t has to hold 477;—-3'—1 = :v;m,j . Now p-—j < N — 4 which implies

(Vj+1 = vj)(:?;_ij —Qp) = 0. If p <N this implies zp, = 2, _ which con.tradicts
the assumption z, < 7., . For p = N this implies z; =1 which contradicts the
assumption z, < 1.
Finally let «* € (¢, -, 25y, 25, 2y), op= - =zy=1 az;>z, ,1<p<N.
If for some ¢t >0, ®;(z) € S(z*,¢), then for sufficiently small ¢ we have

dxy

a Ef:OVi(Qp%(m) = pLpi(z)) <0, (17)

which implies that @, dose not reach 1 and z* can not be a limit point of ®y(x). The
assertion ¢) can be proved by letting z* € FY\F* at time ¢ = 0. Then by an analogous
argument as b) it comes that for some § >0 and 0 <t < §, &(z) € FH.

The assertion ¢) can be proved by letting z* € FF\F* at time ¢ = 0. Then by an
analogous argument as b) it comes that for some § > 0 and 0 < ¢t < §, ®(z) € F'.
0

The following lemma shows that there is a strong relation between the system (11) and
the theory of cooperative irreducible differential equations.
Lemma 8. Suppose P(v) is continuous in [0,1] , suppP(v) = [0,1] and v <
Vi1 Sove Ly <1, then we have

a) (11) is cooperative in LT,

b) If 41 <7y, forsome 0<j <k and N >2j+1, then (11) is irreducible
and all its equilibria are simple in FT,

Proof. The Jacobian of h(z) is
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(1’1)1 a’l,k—{»—] O Ve e vt Ja (]
k421 0 Gk42k4+2 Qk+2,2k+3
0 - 0
J(z) = : e @ikl @i Qg it k41
AN ko1 N-2k—-2 **° ON—k=1,Nek=1 " ON—k=1N
: 0 | :
L 0 . PR e 0 a‘N—kHI,N NN a’N,N
ai; = =(P(X)+n(Pe1(X)+ Pip(X) + - + v (Pp (X)) + Py (X))
+0.25(1 = y1)(@it1 = ) P(Zi1) + 0.25(1 — v (i — 1) P(Fy),
Giivp = 0.5(%p| = Vp-1P) (@i = Titp) P(Zip) + 0.5(Vpa1) = Vp)) (28 = Tip+1) P(Zigpt1)-

Here 1 <i+p< N ,p#0 . Clearly all the off-diagonal elements of the jacobian matrix
are non-negative in F7.

Inside F* the condition vj+1 <y; implies that forany ¢, 1 <i <N | if

itgiti+li—ji—j—1€{l,--,N}

then

Aiitg > 0y Giijpr >0, iy >0, aigj1 > 0.
The condition N > 2j + 1 implies that at least for one 7 it holds {i + j,72—j} C
{1,-+-,N} . This assures the irreducibility of J(z).

Moreover rank J(z) = N , which in turn ensures zero is no eigenvalue of this matrix.
O

Now we are in the position to state the main result of this paper.. As before, here it is
supposed that the order has been already established as ascending :
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Theorem 2. Assume the following conditions hold :

a) {en} s a sequence of positive real numbers such that — Sypes < 0o and
Yinén = 00,

b) P(v) is continuous in [0,1] and supp P(v) = [0,1],
¢) (11) has a unique equilibrium in F™,
d) vjp1 <y for some 0L 3 <k and N > 25+ 1,

then ,with probability 1 , { X"} converges to an asymptotically stable equilibrium of (11)
in FT.

Remark 2. If X" is ordered in a descending manner then theorem 2 is valid, but the
system (11) changes its form as following:

Xr Xxp
P(X™) = / P(v)dv, Qi(X") = / vP(v)dv, Vo 1<i<N. (18)

& n
XM X

Proof. Lemmas 7 and 8 show that the Lemma 5 is applicable.Here 2 = Q¢ = F*. We
conclude that F7 is a subset of the domain of attraction of the eqilibrium and the lemma

1 implies the almost sure convergence of the algorithm to it.
O

Remark 3. If equation (11) has more than one equilibrium, then the lemmas 2-4 imply
that there exists a set Q C Ft with Lebesgue measure zero such that ®.(t) approaches
an asymptotically stable equilibrium for all 2 € F*\Q. This together with lemma 1
implies that if {X™} has a limit point zo € F\Q, then zo is a sink of (11) , which
in turn implies that a compact subset of DA(zg) , the domain of attraction of zy -, is
visited infinitely often by {X"} . ie. {X™} converges to z¢ with probability one.

4  Conclusion

In this paper we have established the a.s.  convergence of one dimensional kohonen’s
algorithm for a fairly large class of stimuli distributions and neighbourhood functions.

The conditions imposed on the learn parameters are necessary to ensure the a.s. conver-
gence. In fact many numerical experiments show that if €, decrease too fast, such that
it violates the condition a) in theorem 2, then the algorithm may get stock in a non-
optimum equilibrium. It can be shown that a better rate of convergence can be reached
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by letting > €2 converge as fast as possible. On the other hand the conditions imposed
on the stimuli distribution cover the applications of the Kohonen algorithm.

The symmetric neighbourhood function (3) is very often used in applications. Unsymmet-
ric neighbourhood functions ,although practically seem to be not interesting, also could
be introduced. In this paper we did not use the symmetric property of this function and
hence the results are valid for nonsymmetric functions, as well.

An interesting issue concerning the final mappings produced by Kohonen’s algorithm is
the effect of the stimuli distribution P(v) and the neighborhood parameters -y, -,y
on the final position of neurons in Q. Using the differential equation (11) we are able
to find the possible final values of neurons. The final values for N =20 | k=1,
P(v) =1, 2v, 6v(v — 1) and 5 = 0.00, 0.25, 0.50, 0.75, 1.00 are depicted in figures
1-3.  The results show that there exists two kinds of final mappings produced by the
algorithm corresponding to 1 = 0 or v; > 0.

For 41 > 0, the final mapping is not sensitive to different values of ;. By the way,
v1 may be used for a better rate of convergence. In this case the final mapping makes a
better representation of stimuli distribution P(v) than v, = 0, although even for v; =0
the final values clearly change their behaviour respective to different choices of P(v).

20 1 T T

18}~ \gamma: {1}=0:00
+ 1 \gamma_{1}=0.25
x - \gamma_{1}=0.50" "
-, \gamma_{1}=0.75
14-- o \gamma_{1}=1.00 -

16p

The neurons
— —
(o] N

o)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fig. 1. The final values of neurons for P(x)=1 in {0,1]
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% \gammé_v{1)=ov_:50 ....... ......... ......... ......... ;;;;;;;; x}{v .. ....... -
‘\gamma_{1}=0.75 : : : : . :

¢

1 1 i 1

I 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fig. 2. The final values of neurons for P(x)=2xin [0,1]

o \gamma~{1)=100&* ..... oo ...... -

Y T T T T Y T 1 a3

LR '\QEIFT?FY‘\E&;_‘{“I }:O;CO ....... ,,,,,,,,,, .......... Ll Lo RN N -
+ \gamma_{1)}=0.25 -
- \gamma_{1}=0.75 : i Lo e 1 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 3. The final values of neurons for P(x)=6x(x-1) in [0,1]
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