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Abstract 

Here the almost sure convergence of one dimensional Kohonen’s algorithm in its 
general form, namely, 21c point neighbour setting with a non-uniform stimuli distribu- 
tion is proved.We show that t,he asymptotic behaviour of the algorithm is governed by 
a cooperative system of differential equations which in general is irreducible. The sys- 
tem of differential equation has an asymptotically stable fixed point which a compact, 
subset of its domain of attract,ion will be visit.ed by the state variable X” infinitely 
often. 

Key words neural networks, stochastic agprorcirnation, theory of dif?crentinl cqua- 
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I Introduction 

Self-organizing maps play a crucial role in many f~rnctions of the nervous system as well as 
artificial intelligent tasks . Different sensory inputs , such as visual and acoustic inputs : are 
known to be mapped unto different areas of t,hc cortex in an orderly, topology preserving 
manners i.e.! similar inputs are mapped ont80 uctighbonring plnces in the cortex. These 
mappings arc not genetically prespecified in detail hut instesd self-organize tllrring the 
early stages of the forniation of nervous system. For more details see [9] and references 
therein. 

Among a number of algorithm which have been suggested for the formation of such 



Let 1 be a set of n neurons labeled from 1 to N, The Kohonen net defined on 1 is a triple 
T = (G,&,F) where 

-G = (I, (Vi : i E I)) is a graph on 1 : in which Vi C 1 is the set of 2211 neurons 
connected to neuron i (its neighbours ) such that; 

1) j E K =+ i E Vj for all i, j E I, 
2) i E Vi for all i E 1. 

-& is the set of states of neurons which usually is a subset of IP.Every IXWOII takes 
a weight vector Xi E &. 

-F = {fij : i, j E I) is the set of neighl~ourhood functions, fii : i x .I -+ R. 

This network is used to build a mapping from A? to the set of neurons which is usually 
arranged as a &dimensional net. Every u E & corresponds with the neurons i*(1)) which 
satisfy 

II xi*(,) - ‘1) I/<11 xi - ?J II v iE:I. (1) 

To be more accurate, this is a mapping from & to the power set of I. 

The weights Xp will be adapted in the learning phase according to 

x:+1 rz XF + F,,fili(ll - XF) v iEI> (3 

where ZI E Q is chosen randomly (according to sorn~ probability distribution P(U)) ,t?,, is 
the learning paralneter and f;%i are the neighbourhood functions for 1: and 1;*. 

In this paper we consider the one dimensional Kohonen net. In this case every neuron i 
takes a value Xi E Q c Rand x = {i - l,i:,I. i- 1) fl {1:*.“,N}. Moreover 

computer vision [ll] , etc. The adaptation of the weights in the Kohonen algorithm can 
be decomposed into two phases . In the first phase it self organizes a topology preserving 
map and then it converges to the final weights which are supposed t,o make a better 
representation of the input space. Depending on the nature of the application each of 
these phases may become more or less important. For cxamplc in numerical integration 
[12] th, y pt t b ,l e as m o ic c mviour of the algorithm is more important than its other features. 
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Although t,he exact definition of topology preservation involves much 1 cf. [Is], it can be 
easily defined for a me dimensional map. A map is topology preserving iff it is ordered&e., 
either Xi < JU, e i < j (ascending) or Xi < Xi ++ i > ,j (descending), for all 1;, .j. It is 
well known that OIKX the one dimensional Kohoncn map becomes ordered, it will preserve 
its ordering for cver,[9] . 

Two special cases of this algorithm, namely k = 0 arid k = 1, yl = 1, have been 
investigated by Cottrell and Fort , [4], and Bouton and Pages ! [2, 31. The results of these 
papers confirm the almost sure (a.s.) convergence of the algorithm for both cases, if the 
stimuli is distributed urliformly . In the non-uniform case it is shown that, if Log(?‘(~)) is 
strictly concave then the corresponding mean differential equation has an asymptotically 
stable equilibrium state, cf. [2] . However, it is not enough to ensure the as. convergence 
of the algorithm and no conclusion conccrnin, m the convergence to an equilibrium state has 
been achieved for stimulies which are distributed non-uniformly. 

The ability of the algorithm to self-organize a topology preserving map has been proved for 
2-point neighbour setting case, [4, 21. Due to very many implementations of the algorithm 
it is believed that this result is valid generally for 2k-point neighbour settingIn this paper 
the asymptotic behaviour of the algorithm will be investigated, with the assumption that 
the ordering has been already established . We will prove the as. convergence of the 2k 
point neighbour algorithm for all continuous stimuli distributions F’(v) whose support set 
is [O,l]. 

In one dimensional cake the adaptation process (2) may be considered as a stochastic 
dynamical system in H.l” . Such time discrete systems have been treated by many authors 
in the stochastic approximation context, [l, lo]. A usual method to study the long time 
behaviour of these systems is to compare them with the so called mean differential equation 
, (m.d.e), which under certain conditions has the SXIK asymptotic behaviour as the ori&al 
discrete system. In Section 2 of this paper we formulat,e the problem as a Robbins-Monro 
algorithm and introduce the conditions under which the 1n.d.c. governs the long t~irne 
behaviour of the algorithm. Section 3 is devoted to the properties of the m.d.e , in which 
it is shown that the stochastic variable X” evolves in the domain of attraction of the 
equilibrium state of the m.d.e. . This enables us to establish the main result of this paper 
, narnely as. convergence of the algorithm (Theorem 2 ) , In Section 4 we use the m.d.e. 
to investigate the effect of neif;hbourhood function fii on the final distribution of neuron 
.The concluding remarks are also contained in Section 4. 

2 Robbins-Monro formulation of the algorithm 

Throughout this paper we suppose that the order has been cst,at~lisl~r:d as ascending.Two 
possible orderings~ ascending or descending, are m;ttlicniatically equivalent and all t,he 
results are valid for descending case as well. ;2iIoreovcr, we let Q = [O, I] and X” E 
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[0, 11” the vector of all weights at step 72. The probability distribution P(U) is always 
assumed to be regular enough such that P(0 < ‘u < :c) , the probability of ‘I/ E [0, :z] , 
is continuous in [O, 11. This is the case for all functions which are Lebesgue integrable in 
LO, 11. 
The adaptation algorithm (2) may be rewritten in a more general form , 

p+1 z /yn - Wl,X1. t- Wd‘NX lh, (4 

where E, E II1 Ilvxl = (1, a . + , lJT , V, E [0, I] is an identically independent distributed 
(i.i.d.) random variable with a distribut,ion P(U), and rllt = 7)(X7’, II) := RN x R t-+ RNxN 
is a piecewise continuous function which associates with any pair (X, 21) E R” x R the 
matrix ql. = [$!I, 

if i=j =i*, 
y1 ) if % = j = %* - 1 or 1: z j = i* + 1, 

if ayj=;* -- x: 01’ % = j Z j,* + jq 
otherwise. 

Here i* denotes the so called winner unit, which is defined by (1). 

Remark 1. Although q,, is uot an i.i.d. random variable! it still satisfies the relation 

P(Tjn/Tjn-l, 7jv1-2, * 1. ,?p-J; xn,x7+l ’ * *X0) = P(rj711XTx)) 

in which P(.j .) is the conditional probability function. 

Let us adopt the following rrotatk)ns 



r -R&YL)X;I + sl(x7L) - 

-Ri(.Y”)Xj i- Si(X’“) . (7) 

-R&~“)XJ;- -I- S,(XTL) 

Since IL, (.) is independent of n , we remove the index n and set /I( .) = /I,, (.) . Now 
define 

&* = -rj,,xn + 7~TLI~~x~2~17, - h(X”L). (8) 

tn is a random variable with expectation value zero. 

The recursive algorithm (4) can now be rewritten as 

Jpa+l = X7& i- .En,l?$YL) -t t&, . PI 

This is a Robbins-Monro like algorithm which was originally suggested to find the roots 
of a function h(z). The asymptotic behaviour of such algorithms has been studied by 
Kushner and Clark [lo], f rom which we quote t,he following conditions and theorem which 
is a special case of theorem (2.3.1) in [lo] . 

A-1. h(.) is a continuous R” valued function on l?“. 

A.2. {tn.} is a sequence of positive real numbers such that, F,, + 0 and CE,, = 00. 

A.3. E,, is a sequence of n” valued random variables such that for some T > 0 and 
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Define the function X,(.) by 

now we are in a position to state the following theorem 

Theorem I.. (Kushney and Clarlc 1978) Let Xn be given by (9). Assr~me A.1 to A.3, und 
let X” be bounded with pobability 1. Then there is a null set Cl” such that v $2 120 ~implies 

that {-G(.)} cl 2s e uicontinuous, and also that the limit X(.) f o an7 convergent subsequence J 

of -p&L(.)) ‘( b ‘1s; ounded and satisfies the system, of diflerential equations 

:i = h(x) (10) 

on the time interval (---co, CO). Let :EO be a locally asymptoticully stable (in the sense of 
Liapunov) solution to (10) ,with domain of attraction DA(xo). Then if v $Z 120 and there 
is a compact set A c DA(xo) such that X’” E A +~finitely often,, UK have Xn + 20 as 
n -+ co. 

Scheme of proof. Define the functions SO(.) and MO(.) by 

X,(t) = xn for t,t I t < tn+1> 

M"(t) = 
L+1 -t 

M)(L) + 
t - t, 
-----MI(~n+l)~ 

en En 

we may now write 

I 

*I 
x,,(t) = X,,(O) -t- ll(x”()(trl + s))ds -t ,u,Jt). 

.o 
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set 

.i 

t 

.i‘ 

t 
h(X&, f s))ds = h(X,,,(s))ds + P(t)7 

0 0 
then we have 

i 

t 
x,,(t) = X,(O) + h(X,(s))ds -t- P(t) + MJt). 

0 

If n -+ 00 then conditions A-l to A-3 imply P(t) + 0 and MrL(t) + 0 . (X,,,(C)} is 
equicontinuous and bounded , and using the ArzelRAscoli theorem it contains converging 
subsequences I Now let X,;(t) be a converging subsequence of X,(t). Then as n + 0~) 

, Xni(t) converges to a solution of :i: = h(z) . 

cl 

In the rest of this section ,we show that t,he Kohonen algorithm ,as formulated in (9) 
,satisfies the conditions A.1 and A.3 , provided thni; Xl” <c: XF 5 . * 4 Xj$. 

Lemma 1. Suppose {en} is a seq’uence of positive id numbers mch that CnE,, = 
IX and C& < w. Th,en ,with probability 1 J any con~~erqent subsequence of {X”} 
converges to a solution of the system of diflerential equations 

4&(X)Xl + S&c) 

i= -Ll(x)x, + S&x) * (W 

-R;v(x)x,~ 4 S,(x) 

Let 20 be a locally as7jmptoticull~y stable (in the sense (i-f Lin~~~ncw) solution to (11; ,with 
domain of attraction DA(Q). Then if there is c1 compuct set A c DA(Q) such, thut 
Xn E A injinitel~y oftqwith prvhahility 1 we have X7’, -+ x0 us n -+ co. 

Proof. The functions Pi(X’L) and Qi(Xn), 1. <_ i <: N I are continuous , i.e. , h(.) is 
a continuous function of its argument , 

For 4.3., it suffices to note that the variance of <,, is uniformly bounded and moreover 
its conditional expectation value sat,isfy 

.E[~,,/X”,X1,*- , xtty := E[$lX7”] = 0. 

Then, {C/L, ei{i} is a matriangle sequence and if CzCj crf < 00 - A.3. is fulfiled, cf. [lo, 
pp. 26-271. 

The ~XI~IK~~~-~INW condition on {.Y72} is fulfiled nutom:Ltically by Kohonen’s algorithm. 
n 
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3 Stability analysis of the mean 

In this section our ultimate aim is to show that the system (11) has an asymptotically 
stable equilibrium, which a compact subset of its domain of attraction will be visited by 
the stochastic process X’% infinitely often. 

Consider the system of differential equations 

j: = f(z), z E 0 c F?“, .f : s2 l-4 IT”. (12) 

The following terminology will be used throughout this section: The system (12) is coop- 
erative if f is continuously differentiable and 

zkO 
vi. for all ,j # 1:. 

,.I 

An m x m matrix A = [aij] is irreducible if it does not map any nonzero proper 
linear subspace of R”l into itself, A necessary and sufficient condition for A to be 
irreducible is that for any a:, p E hi , 1 5 ct,p ‘: n1, there exists a chain of integers 
Q = C.Y(),cq,~~. , ok: = I? such that (L,;-,,~ # 0 for all 0 < z’ ‘: k:, see e.g. [5]. The 
system (12) is irreducible if the Jacobian matrix J(Z) = [afi/&r;j(:c)] is irreducible for 
all 5‘ E R. 

For vectors 2, y E P we write 2 < y if q < 11; for all i. A set IZ c R” is p-convex -* -* 
whenever x,9 E R and :z: < y , then R contains the entire line segment joining n: 
and y. 

Let a:,.(t) denotes the solut+i of (12) which satisfies 9,(O) = :c. The matrix D@,(t) is 
the spatial derivative of (a,(t). We say the flow cf, has positive derivatives if oati, > 0 
for all t > 0 and all x E 0. It has eventually positive derivatives if there exists a 
to > 0 such that D@,(t) > 0 for all t 2 to and all z E 12. Clearly if a) has positive 
derivatives , it has also eventually positive derivatives. 9 is strongly monotone provided 
~1: 5 y implies Q,r(t) < QY(t) for all t > 0 and .c, 11 E 12 such that :c f y . 

A set F c: R” is called positive invariant,, if for all :t‘ E F and all t 2 0 for which (D,).IZ(t) 
is defined, cfjZ(l;) c: E’. $ denotes the closure of E’. 

If any nei~libonrliood of a point :I:() contains a point :c, E (D,Z(t) then :cg is said to 
be a limit point of 9,r(t). Tl 1 16 w-limit# set of a solution (D,x(t) is the set of points p E IL 
such that @‘s(tk) + p for s01m squencc tk -4 ,x2 

An equilibrium is a point :c* for which j(:r:*) = 0. E is the set of all equilibria in 12. 
The equilibrium ,r* is simple if zero is not an eig-envxluc of the jacobian ,7(:r:*). It is a sink 
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if all eigenvalues of the jacobian have negative real parts. If tzhere exists MI OJ.XII set I’, 
not necessarily containing :c*, such that for all :c E I’, Qt(:x:) converges to X* urliformly 
as t -+ co, then z* is called a trap. A simple trap is known to be a sink. 

The asymptotic behaviour of cooperative irreducible systems of differential equations has 
been investigated by Hirsch [6, 71. The advantage of Hirsch’s method is that to find the 
domain of attraction of an equilibrium no Liapunov function is needed. Moreover the 
asymptotic stability of the equilibrium is guaranteed if there is a unique equilibrium or if 
E is countable and all equilibria are simple, In fact the simplicity of all equilibria assures 
the existence of sane :E* E E such that the jacobian J(z*) has all its cigenvalues in 
the negative complex half-plane. For the convenience of the reader we recall the following 
important results. In the sequel 6‘2 is an open p-convex subset of R”. 

Lemma 2. (Hirsch 1985) Let f be a cooperative irreducible vector field on the open 
p-convex set n c Ft. Then 

u) 9 has positioe derivatives , 

b) 43 is strongly monotone . 

The lemmas 3 and 4 are valid if a),(t) has eventually positive derivatives. 11” C 11 is a set 
of points z whose corresponding flow Cp, (t) 1 ias a compact closure in s2 . 

Lemma 3. ( Hirsch 1985) There is a set Q CL SF having Lebesgw measure zero, such 
that 9,(t) approaches the equilibrium set E as f. + 00 ? for all z E W\Q. 

Lemma 4. (Hirsch 1985) 

a) Assume E is coun,tuble . Then Q,(t) convetyes to a trap as t + CO. for almost 
all 5 E 0”. 

2,) Assume all equilibria are simple . Then 9, (t) conw-9es to a sink as t + (.x3, for 
ulmost all ‘r E 12”. 1 < . 3 

Lemma 5. (Hirsch 1988) Assume that @ is stron!gly monotone and f(x) has a w&pc 
equilibri7m p E 62”. Then G:,(t) -+ p for a11 .c E S2. 

For the proofs see [6, 71. 

Now we apply the above mentioned lemmas to the mean differential equation (11). As 
a first step let us consider t,he exist,cnce of an equilibrium. 4 result similar to the next 
lemma was first established by Bouton and Pa& for X: = 0 and k: = 1 , y1 = i in [2]. IIere 
we modify the argument to generalize itj t,o 1 <_ h: < N am1 yh -5 . . . < yl 5 1, 111 th r& 
Of this paper Yj =: 0 for ;j > X: . 



a) if P(u) is Lebesguc. intqrable on [O,f] ,thcn there mists n :1:” E J -+ sucll~ that 

h(x*) = 0. 

b) If supp I+) = [O, 11, ^li+1 < qtj, N 2 aj + 1 for some j, 0 < j $ k, then 
2* E F+ . 

Proof. a) F-+” is a compact subset of R”. So using the Brower theorem, see e.g. [13], it 
is sufficient to show that ~1: f /I maps I;1+ int,o itself continuously. For all 2) E [0, 11, 
3: - qnrc + rj,, I,v x 1 ?I rnaps P+ into F+. It ~nsiires that its mean value, i.e. :1; + h(x), 
maps F+ into E’+ as well. The continuity condition was shown in Section 2. 

b) For notational convenience we define Zi,j = Qi(n:*) - x,~P~(x*), then 

Zij 2 0 for i > j and zi.,j < 0 for 1; < j. 

If z; = 0 then /br (n:*) = 0 implies Sr (5*) = Cl, but this means that Qr(n:*) = . . . = 
Qk+l(z*) = 0 ? i.e., xz = . *. = :E;+~ = 0 . With the same argument :xt = 0 , for all 

1 5 i < N, which implies lLj+*) = J; zP(x)d:c = 0 and this contradicts the diffusity 
of P(x). 

suppose 5* = 2’ 
have Z. c.7, El” 

2:; < :I;;,+, < ..’ < 5*N < 1 for some p, 1 < p 5 N . Then we 
z,p - “Z$ 1, 

fQl(~*) = zp,p f 71 (Zp-l,, + Zp+l,p) f *. * + Yk(Jq,-k,p + Zptk,p) = 0, 

h,&*) = Zp-lpl + yl(Zp-‘Lpl + zp,,-4) -I- **. f Yk(q-+k--l,p-1 + -qPk.-l,p-I) = 0, 

an d 
h&r:*) - h,&*) = g&j - y~*l)zp+jJ) -I. cyyyj - *li-1)Zp-i,, = 0. 

Under the assumptions, each of the contributions i11 this equation is non-negative , so all 
of them have to vanish. 

If p < N-j then p-t-j E (i, t 1 1 , N) Zi.Ild (yj -7.j.+ l)Zp+j,p > 0 which is a contradiction. 

Now let p > N - j . Then p - j - 1 E (I, 1 B 3 , N) and this implies Z7,--,i-l ,p = 0 , 
i.e. I t1;‘3 _._” j-.1 = .‘:i-j* Now p - .j 5 itT -- j, which implies Z,,,-j = 0. If p < N this 
implies 2:: = :xi.i.I which is a contradiction and if p = N, then it has to be zh = 1 , 
which again is a cont,radiction. 

The only cast which remains is :cF-~ < xi; = :c~~,., = * . . I= :rLr = L, 1 <: p < .N. 

&(s*) = 0 implies 
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For sufficiently small 6, if Q,:(t) enters S(:C*! For sufficiently small 6, if Q,:(t) enters S(:C*! c.) , then apart from (:r+r - 2&i)X,-1 (z) 
and (x+ - z;)R,(a:) , and (+ - :$)R,(a:) , all the contributions in all the contributions in (16) are non-negative. 13ccause t: can be 

chosen arbitrarily small , either chosen arbitrarily small , either 4srp-I) > (1 tl(s,-.I+-1) 
rlt > I) or all these terms ought to vanish. So we 

have to show that there exists always”non vanishing terms. 

If 1 < $1 < N - j then I]$- j E { 1,. . . , N} Uld hence (yj+l - ri)(:EGPp+j - &,+j) > 0. 

For p>iV-j wehavep-j-lE(l,.*.,N}. If 

then it has to hold :$--j-r = x;-,~ ” Now p - j < N - j which implies 

hi+1 - rj)(~~-j~~, - Q,) = 0 If 11 < N this implies zt-?*, = zi+r which contradicts 
the ,assumption z$ < :rgil . For p = N this implies zrt‘;; = 1 which contradicts the 
assumption z$ < 1. 

Finally let :E* E (~7, . . ) z&1) c$, 1 a . , z&), 3;; = * I ’ = X> = 1, :$ > :E& [, 1 5 p 5 N. 
If for some t > 0, (a,(z) E S(z*, E), then for sufficiently small E we have 

@E = C&i(Qp-i(~;) - :~&l...i(zr:)) < 0, 
dt 

(17) 

which implies that :E~ dose not reach I and z* can not be a limit point of Q,(z). The 
assertion c) can be proved by letting n:* E F-+\F+ at time t = 0. Then by an analogous 
argument as 6) it COINS that for some S > 0 and 0 < t < 6, ait E E’+, 

The assertion c) can be proved by letting zz:* E E”+\Fj- at time t = 0. Then by an 
analogous argument as b) it comes that for some S > 0 and 0 < t < 6, cat(x) E F+. 

The following lemma shows that there is a stron, ~7 relation between the system (11) and 
the theory of cooperative irreducible differential equations. 

in 



J(x) = 

. . - . . . 

0 aN-k-l,N ’ ’ ’ 

I +yk(Pi-k(X) +J'i+k(X))) 

+0.25(1 - yz)(zi+] - :l$P(zi+l) -I- 0.25(1 -- Yl)(Zi - .;-l)P(li$), 

ai,i+p = 0.5(Yi,j - Y]p-l1Mi - %+p)~@i+p) + WY ip+ll - Ylpl)(2z':i - zi+p+l)p(G+p+l). 

Here 1 < i+p < N ?p # 0 . Clearly all the off-diagonal elements of t?hc jacobian matrix 
are non-negative in F+. 

Inside F+ the condition yi+l < rj implies that for any 1: , 1 5 i < N , if 

i+j,i+j+1, i-j,1:-j-1 E {1,...Jv} 

then 

Ui,i+j > 0, Ui,i+j+l > 0, Ui,i.-.j > 0, CLili-j-- 1 > 0 T 

The condition N 2 23’ + 1 implies that at least for one I, it holds (.i + .i, 1; -- .j} c 
(1, A b. , N} . This assures the irreducibility of J(z). 

Moreover rnrzk J(z) = N , which in turn cnsurcs zero is no eigenvalue of this matrix. 
u 

Now we are in the position to state the main result of this paper. As before, hwe it is 
supposed that the order has been already established as ascending . 



Theorem 2. Assume the following conditions hold 
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b) P(u) is continuous in [O, I] and supp I’(V) = [O, 11, 

c) (11) has a unique equilibrium in F’, 

b) P(u) is continuous in [O, I] and supp I’(V) = [O, 11, 

c) (11) has a unique equilibrium in F’, 

d) yj+l < rj for some 0 < j < k and N 4 2j e 1, 

then ,vtith probability 1 ) {Xl’} conue~~~es to an asymptotically stable equilibrium of (ii) 
in F+. 

Remark 2, If Xn is ordered in a descending manner then theorem 2 is valid, but the 
system (11) changes its form as following: 
Remark 2, If Xn is ordered in a descending manner then theorem 2 is valid, but the 
system (11) changes its form as following: 

Proof. Lemmas 7 and 8 show that the Lemma 5 is applicable.Herc (2 = RC = F+. We 
conclude that pi- is a subset of the domain of attraction of the eqilibrium and the lemma 
1 implies the almost sure convergence of the algorithm to it. 

Proof. Lemmas 7 and 8 show that the Lemma 5 is applicable.Herc (2 = RC = F+. We 
conclude that pi- is a subset of the domain of attraction of the eqilibrium and the lemma 
1 implies the almost sure convergence of the algorithm to it. 

Remark 3. If equation (11) has more than one equilibrium, then the lemmas 2-4 imply 
that t,here exists a set & c F’ with Lebesgue measure zero such that Q,(i) approaches 
an asymptotically stable equilibrium for all :I: E j?“\Q. This together with lemma 1 
implies that if {X”} has a limit point :cg E Fs’\Q, then 20 is a sink of (11) , which 
in turn implies that a compact subset of DA(xo) , the domain of attraction of :cg , is 
visited infinitely often by {.U”) > i.e, {X”} converges to :cg with probability one. 

Remark 3. If equation (11) has more than one equilibrium, then the lemmas 2-4 imply 
that t,here exists a set & c F’ with Lebesgue measure zero such that Q,(i) approaches 
an asymptotically stable equilibrium for all :I: E j?“\Q. This together with lemma 1 
implies that if {X”} has a limit point :cg E Fs’\(t>, then 20 is a sink of (11) , which 
in turn implies that a compact subset of DA(xo) , the domain of attraction of :cg , is 
visited infinitely often by {.U”) > i.e, {X”} converges to :cg with probability one. 

4 Conclusion 4 Conclusion 

In this paper we have cst~ablished the a.s. In this paper we have cst~ablished the a.s. convergence of one dimensional kohoncn’s convergence of one dimensional kohoncn’s 
algorithm for a fairly large class of st,imuli distributions and neighbourhood functions. algorithm for a fairly large class of Amuli distributions and neighbourhood functions. 

The conditions imposed on the learn parameters are necessary to ensure the a.~. conver- The conditions imposed on the learn parameters are necessary to ensure the a.~. conver- 
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An interesting issue concerning the final mappings produced by Kohonen’s algorithm is 
the effect of the stimuli distribution P(T)) and the ncigl~t~orhood parameters yr, . + 1 , yk: 
on the final position of neurons in Q. Using the differential equation (II) we are able 
to find the possible final values of neurons, The final values for N = 20 , k = I , 
P(u) = 1, 2V, &I(21 - 1) and ~1 = 0.00, 0.25, 0.50, 0.75, 1.00 are depicted in figures 
1-3. The results show that there exists two kinds of final mappings produced by the 
algorithm corresponding to yr = 0 or yr > 0. 
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I?or yr > 0 , the final mapping is not sensitive to different values of yi. By the way, 
yr may be used for a better rate of convergence In this case the final mapping makes a 
better representation of stimuli distribution P(v) tjhan yi = 0 , although even for yi = 0 
the final values clearly change their behaviour respective to difl’ercnt choices of P(V). 
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