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Abstract
B-spline surfaces are a well-established tool to analytically describe objects. They are commonly used
in various fields, e.g., mechanical and aerospace engineering, computer aided design, and computer
graphics. Obtaining and using B-spline surface models of real-life objects is an intricate process. Initial
virtual representations are usually obtained via scanning technologies in the form of discrete data, e.g.,
point clouds, surface meshes, or volume images. This data often requires pre-processing to remove noise
and artifacts. Even with high quality data, obtaining models of complex or very large structures needs
specialized solutions that are viable for the available hardware. Once B-spline models are constructed,
their properties can be utilized and combined with application-specific knowledge to provide efficient
solutions for practical problems.
This thesis contributes to various aspects of the processing pipeline. It addresses pre-processing, creating
B-spline models of large and topologically challenging data, and the use of such models within the
context of visual surface inspection. Proposed methods improve existing solutions in terms of efficiency,
hardware restrictions, and quality of the results. The following contributions are presented:
Fast and memory-efficient quantile filter: Quantile filters are widely used operations in image pro-
cessing. The most common instance is the median filter which is a standard solution to treat noise while
preserving the shape of an object. Various implementations of such filters are available offering either
high performance or low memory complexity, but not both. This thesis proposes a generalization of two
existing algorithms: one that favors speed and one that favors low memory usage. An adaptable hybrid
algorithm is introduced. It can be tuned for optimal performance on the available hardware. Results
show that it outperforms both state-of-the-art reference methods for most practical filter sizes.
Robust B-spline reconstructions of isosurfaces in volume images: The micro-structure of wood-
based thermal insulation materials is analyzed to research heat conductivity properties. High-quality
scans reveal a complex system of cellulose fibers. B-spline models of individual fibers are highly de-
sirable to conduct simulations. Due to the physical processing of the material, the surfaces of those
fibers consist of challenging elements like loose filaments, holes, and tunnels. Standard solutions fail to
partition the data into a small number of quadrilateral cells which is required for the B-spline construc-
tion step. A novel approach is presented that splits up the data processing into separate topology and
geometry pipelines. This robust method is demonstrated by constructing B-spline models with 236 to
676 surfaces from triangulated isosurfaces with 423 628 to 1 203 844 triangles.
Local method for smooth B-spline surface approximations: Constructing smooth B-spline models
to approximate discrete data is a challenging task. Various standard solutions exist, often imposing re-
strictions to knot vectors, spline order, or available degrees of freedom for the data approximation. This
thesis presents a local approach with less restrictions aiming for approximate G1-continuity. Nonlinear
terms are added to standard minimization problems. The local design of the algorithm compensates for
the higher computational complexity. Results are shown and evaluated for objects of varying complexity.
A comparison with an exact G1-continuous method shows that the novel method improves approxima-
tion accuracy on average by a factor of 10 at the cost of having small discontinuities in normal vectors
of less than 1 degree.
Model-based viewpoint generation for surface inspection: Within modern and flexible factories, sur-
face inspection of products is still a very rigid process. An automated inspection system requires the
definition of viewpoints from which a robot then takes pictures during the inspection process. Setting
up such a system is a time-intensive process which is primarily done manually by experts. This work
presents a purely virtual approach for the generation of viewpoints. Based on an intuitive definition of
analytic feature functionals, a non-uniform sampling with respect to inspection-specific criteria is per-
formed on given B-spline models. This leads to the definition of a low number of viewpoint candidates.
Results of applying this method to several test objects with varying parameters indicate that good view-
points can be obtained through a fast process that can be performed fully automatically or interactively
through the use of meaningful parameters.
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insulation investigation in Chapter 4 was funded by the German Federal Ministry of
Food and Agriculture (BMEL) through its Agency for Renewable Resources, project
LowLambda.

Performing the research, implementation of related and new algorithms, and writ-
ing this thesis was a lengthy and extensive process that would not have been possible
without the help and support of many people.

In particular, I would like to thank my academic advisers Prof. Dr. Hans Hagen
and Prof. Dr. Bernd Hamann who were always accessible whenever I needed help and
supported me with their knowledge, guidance, and experience. I thank my co-adviser
Dr. Katja Schladitz who was willing to familiarize herself with new topics and always
provided helpful feedback, even in busy times. I also thank Dr. Oliver Wirjadi, my
co-adviser from the time I started with this project. Through his advice, ideas, and long
term visions, he helped create the foundation of this thesis.

Furthermore, I would like to thank my colleague Petra Gospodnetić for the en-
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Chapter 1

Introduction

Generating virtual models of real-world objects is a fundamental part and of great im-
portance in many application-driven scientific fields. These models should consist of
simple data structures, be easy to understand, and provide a good description of the real-
world object. Meaningful representations are required for various tasks [47, 61, 82],
e.g., visualization, simulation, analysis, and quality assurance. This thesis focuses on
modeling three-dimensional (3D) objects by describing their surfaces. Various types of
models are suitable within this context.

A widely used representation is the explicit discrete model. Common instances
are surface meshes [22] and point clouds [41]. Such models consist of a finite set of
points, describing an object’s surface geometry. In a mesh, these points are additionally
connected via edges and polygonal faces, defining the topology. A mesh consisting of
purely triangular faces is called triangular mesh. Such meshes are widely used in
computer graphics and engineering disciplines, e.g., raytracing [81] or finite element
methods [86].

An object can also be represented by a 3D image, i.e., an integer lattice with color or
intensity values assigned to lattice points [57]. This is called an implicit discrete model.
The surface is implicitly given by a single number, called isovalue. Lattice points
are classified as inside and outside based on whether the corresponding pixel value is
higher or lower than the isovalue. Such an implicit surface can easily be converted into
an explicit mesh representation via contouring methods, e.g., Marching Cubes [46].

Furthermore, objects can be described through continuous models, i.e., analytical
descriptions via functions. This is often done by using parametric surfaces [21]. Those
functions map each point in a parameter domain Ω ∈ R2 to a surface point in world
coordinates (usually R3). The continuous nature of these surfaces allows for the calcu-
lation of derivatives and integrals, either analytically or using numeric methods. Con-
tinuous models can be converted into a discrete representation by sampling them with
arbitrary resolution to create a finite number of surface points.
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State-of-the-art editing software allows users to manually model objects of various
shapes both in continuous or discrete form. Numerous modeling tools are freely avail-
able and open-source projects are continuously developed and improved, e.g., MeshLab
[9] and Blender [5]. However, a manual approach is mostly useful when designing new
objects. Modeling existing real-world objects accurately by hand is generally only pos-
sible for simple structures.

Virtual representations of complex objects are typically acquired via 3D scanning.
Data acquisition methods, like laser scanning [44] or computed tomography (CT) [33],
generate discrete models. However, they often including noise and other artifacts that
may cause difficulties for the subsequent processing. Depending on the resolution of the
scanning hardware, storing the resulting models can require large amounts of memory.
Lowering the resolution might result in the loss of important features. Furthermore, the
computation of geometric properties, e.g., normal vectors or curvature, strongly depend
on the quality of the discretization.

For these reasons, a representation with parametric surfaces is often desirable.
However, obtaining those continuous models is a non-trivial task. Many methods have
been researched to reverse engineer various types of parametric surfaces.

The focus of this thesis is the generation and use of B-spline surfaces. These sur-
faces are a specific type of parametric surfaces and are commonly used in various fields,
e.g., mechanical and aerospace engineering, computer aided design (CAD), and com-
puter graphics. A B-spline surface consists of piecewise polynomial pieces of a prede-
fined order. Its shape is defined by a grid of control points. Single B-spline surfaces are
capable of representing small and complex regions with high precision, but can also be
used to define large and mostly flat surfaces with the same amount of control points. A
B-spline surface model consists of multiple continuously connected B-spline surfaces.
It can represent complex objects, combining regions with distinct features and large flat
parts, at low memory costs. Furthermore, B-splines are widely used in industry. Hence,
B-spline surface models are compatible with a wide range of production, simulation,
and analysis tools.

This thesis presents various improvements to the process of generating and using
B-spline models. Contributions include pre-processing of discrete input data, gener-
ating B-spline models when faced with difficult topological situations and large data,
and using the properties of the resulting B-spline models to gain application-specific
knowledge.

First, Chapter 2 reviews the relevant concepts related to B-spline surfaces. Ad-
ditionally, fundamental methods to construct B-spline models from discrete data are
discussed. Important equations are stated in a unified notation and with a focus on easy
implementation. This chapter summarizes relevant literature and existing research. All
subsequent chapters present new contributions.

Chapter 3 covers a novel hybrid approach for quantile filtering of 3D image data.
It is based on two existing solutions which are either fast or memory efficient. The
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proposed algorithm interpolates between these solutions. This allows for a compromise
between speed and memory requirements. As a consequence, the method can optimally
adapt to the available hardware.

Often, even when presented with scans of complex structures, B-spline models are
difficult to construct. For example, a complicated surface topology does not allow
for a good partition into quadrilateral cells which is required for the subsequent B-
spline approximation step. Chapter 4 discusses an example in which cellulose fibers
are reconstructed from 3D images. Such models are needed for various applications
in material science [3, 47, 61]. The data is available in the form of high-resolution
CT scans without noise or artifacts. However, during manufacturing, the material has
undergone physical processing causing damage to the fibers’ surfaces. The presented
method employs a topological simplification to partition the data into a low number of
cells while still using the original geometry for the B-spline approximation step. This
stable reconstruction scheme allows for the removal of unwanted small holes in the
fiber walls while preserving the overall shape. It provides models with low memory
requirements that are well-suited for the subsequent simulation process.

When it comes to constructing B-spline models with smooth transitions between
individual surfaces, several approaches exist, but these impose strong restrictions to
the available degrees of freedom [20, 60]. Chapter 5 presents an alternative approach
for the construction of models with approximate tangent plane continuity along surface
boundaries. Instead of formulating restrictive conditions that have to be met, smooth-
ness is achieved via nonlinear optimization. To counter the high computational com-
plexity that is required to solve these problems, the method is designed to work locally.
An additional benefit from such an approach is that it can easily deal with large, even
incomplete, input data.

Finally, Chapter 6 demonstrates the use of B-spline models within the context of
automatic surface inspection. The task is to determine good camera positions for a
given real-world object with the constraint that all relevant parts of the object are suf-
ficiently covered. Those positions are then traversed automatically using robot arms.
The taken pictures are automatically processed with image processing tools to find de-
fects. However, defining camera positions and orientations for the robot is a non-trivial
task. When done manually by an expert, it takes days, often even weeks, to set up
such a system. Automatic approaches based on discrete (mesh) models offer partial
solutions, but still struggle with computational complexity when aiming for optimal
results. Using the mathematical properties of a B-spline surface model, a novel method
is presented that produces a low number of meaningful viewpoint candidates. The dis-
tribution of these viewpoints is controlled through so-called feature functionals that
measure the prominence of certain geometric features within a given area of the sur-
face. Several practical feature functionals are described and analyzed that allow experts
to factor in application-specific knowledge. An optimal subset of final viewpoints for
the inspection is then found using a straightforward greedy approach.
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Chapter 2

Fundamental Methods for
Constructing B-spline Surface
Approximations

A key component used throughout this thesis is the construction of B-spline surface
models to approximate objects given in the form of discrete data. This task occurs in
many variations and a wide range of specialized solutions exists [17, 20, 27, 42, 45,
85]. The fundamental principles are well-researched and covered in depth by various
textbooks, e.g., [11, 21, 32, 62, 64]. This chapter summarizes the key concepts and
states necessary equations for the relevant steps in a unified notation. Formal definitions
can be found in literature.

A B-spline surface is defined by an order k ∈ N, a knot vector for each parameter
direction, and a rectangular grid of control points. To keep the construction of a model
with multiple continuously connected surfaces as simple as possible, the B-splines con-
sidered here are restricted to quadratic grids of nc×nc control points bi,j ∈ R3 and use
the same knot vector τ = (τ1, ..., τnc+k+1) in both u and v direction with increasing
knots τi ≤ τi+1. The piecewise polynomial basis functions of order k associated with
knot vector τ are defined recursively by

Ni,0,τ (t) =

{
1, if t ∈ [τi, τi+1)

0, otherwise

Ni,k,τ (t) =
t− τi

τi+k − τi
Ni,k−1,τ (t) +

τi+k+1 − t
τi+k+1 − τi+1

Ni+1,k−1,τ (t).

These basic functions have several useful properties:

• Non-negativity: Ni,k,τ (t) ≥ 0

• Local support: Ni,k,τ (t) = 0, if t /∈ [τi, τi+k+1)

5
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• Decomposition of one:
∑nc

i=1Ni,k,τ (t) = 1, for t ∈ [τk+1, τnc+1)

• Derivatives: d
dtNi,k,τ (t) = k

τi+k−τiNi,k−1,τ (t) − k
τi+k+1−τi+1

Ni+1,k−1,τ (t) for
k > 1.

Since k and τ are usually given constants, they are omitted for a simpler notation,
i.e., Ni(t) = Ni,k,τ (t). Possible divisions by zero in the presence of multiple knots are
avoided by defining 0/0 = 0. Basis functions until order k = 3 are shown in Figure
2.1.

The B-spline surface is given by

S :Ω→ R3

S(u, v) =

nc∑
i=1

nc∑
j=1

Ni(u)Nj(v)bi,j .

with a rectangular parameter region Ω = [umin, umax]× [vmin, vmax] ⊂ R2. Throughout
this thesis, the unit square is used as parameter region, i.e., Ω = [0, 1]2. An example
surface is shown in Figure 2.2. Important properties of B-spline surfaces are:

• Local support: Changing one control point bi,j affects only the surface segment
{S(u, v) |u ∈ [τi, τi+k+1), v ∈ [τj , τj+k+1)}.

• Convex hull property: Every point on the surface S(u, v) lies within the convex
hull of the control points bi,j .

• Affine invariance: Applying an affine transformation to the control points has the
same effect as applying this transformation to the surface.

The curve obtained by evaluating a surface along an edge of its parameter domain
is called boundary curve. The four boundary curves are denoted by C(1)(t) = S(t, 0),
C(2)(t) = S(1, t), C(3)(t) = S(t, 1), C(4)(t) = S(0, t) with t ∈ [0, 1].

When using end knots with multiplicity k+ 1, the B-spline surface interpolates the
B-spline curves defined by the outer rows of control points. This property is essential
for the design of continuous B-spline models comprised of multiple surfaces. Hence,
the knot vectors used here are chosen as

τ = ( 0, ..., 0︸ ︷︷ ︸
k+1 times

, τk+2, ..., τnc , 1, ..., 1︸ ︷︷ ︸
k+1 times

) ∈ [0, 1]nc+k+1. (2.1)
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(a) Basis functions of order k = 0 (b) Basis functions of order k = 1

(c) Basis functions of order k = 2 (d) Basis function of order k = 3

(e) Full set of basis functions of order k = 3

Figure 2.1: B-spline basis functions. (a)-(d) show the intermediate steps for the
recursive definition of a single basis function of order 3 with uniform knot vector
τ1 = (0, 1, 2, 3). A full set of 9 basis functions of order 3 for a larger knot vector
τ2 = (0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 6, 6, 6) is shown in (e).
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(a) (b) (c)

Figure 2.2: B-spline surface of order k = 3, 6 × 6 control points, and knot vector
τ = (0, 0, 0, 0, 1/3, 2/3, 1, 1, 1, 1). The unit square in R2 (a) is mapped to a surface in
R3 (b). Isoparametric lines corresponding to the individual knots τi are drawn in black.
The 6× 6 grid of control points is shown in (c)

.

This allows for the explicit expression of the boundary curves as

C(1)(t) =

nc∑
i=1

Ni(t)bi,1

C(2)(t) =

nc∑
j=1

Nj(t)bnc,j

C(3)(t) =

nc∑
i=1

Ni(t)bi,nc

C(4)(t) =

nc∑
j=1

Nj(t)b1,j .

Figure 2.3 illustrates this concept.
When modeling objects with multiple surfaces, incident B-spline surfaces need to

satisfy certain continuity requirements along their boundaries. The most common con-
ditions are C0- and G1-continuity which are demonstrated in Figure 2.4.

Two B-spline surfaces areC0-continuously connected, if they have a shared bound-
ary curve. When using knot vectors with multiple ends as in Equation (2.1), C0-
continuity between two surfaces is achieved if and only if the control points of both
surfaces are equal along the shared boundary.

Furthermore, two neighboring surfaces are G1-continuously connected if they are
C0-continuously connected and there are no discontinuities in tangent planes along the
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(a) (b)

Figure 2.3: Using a knot vector with k + 1 multiple ends leads to interpolation of
boundary curves. (a) shows a boundary of the parameter domain highlighted in green.
The corresponding curve on the B-spline surface only depends on the outer row of
control points, colored in red (b).

shared boundary curve, i.e., at any point on this boundary the (normalized) normal
vectors of both surfaces are equal.

A single B-spline surface is usually not sufficient to represent a complex object as it
can support only disk-like surface topology. Therefore, a number of B-spline surfaces
is needed, each modeling a part of the object. This means that the given data first needs
to be partitioned into a number of quadrilateral cells, a so-called quad-mesh. Each cell
needs to have disk-like topology so that one surface can later be used to approximate
it. Furthermore, each data point is assigned a two-dimensional parameter value which
indicates the approximate relative position of the data point within its containing cell.
This is required to reduce the number of unknowns in the approximation step and avoid
complicated nonlinear equations.

Optionally, the data points can have weights assigned to them. Weights can be cho-
sen manually or based on statistical properties of the data. They allow to control how
much a point contributes to the shape of the surface and becomes especially relevant
when dealing with unevenly distributed data.

In total, the following is needed to start the B-spline approximation process:

1. A finite set of discrete data points P ⊂ R3

2. A quad-mesh that

(a) defines a partition of the data into ns quadrilateral cells P (1), ..., P (ns) with⋃ns
j=1 P

(j) = P and
(b) provides a topological neighborhood structure to the cells, i.e., identifies

shared boundaries and corners.
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(a) (b)

(c) (d)

Figure 2.4: Different types of continuity. (a) shows two B-spline surfaces with a C0-
continuous, but not G1-continuous, connection. The discontinuity in normal vectors is
clearly visible along the shared boundary curve (b). Two G1-continuously connected
surfaces (c) have no visible discontinuities in their shading (d).
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Figure 2.5: Construction of a B-spline surface model approximating a triangulated
surface. First, the input mesh is partitioned into a collection of quadrilateral cells. Each
cell is parameterized over a square region providing a correlation between discrete data
points and their approximate locations on the B-spline surface. The B-spline model is
obtained by minimizing distances between the data points and B-spline surfaces using
a least squares approach.

3. For each cell j, a parameterization of the contained data points, i.e., each point
pi ∈ P (j) has a parameter value (ui, vi) ∈ [0, 1]2.

4. A weight wi ∈ R for each data point pi ∈ P (optional)

In this chapter, it is assumed that the initial input is provided in the form of a
triangle mesh. The data points used for the B-spline approximation are the vertices of
that mesh. Furthermore, the topological information, encoded in the mesh, is relevant
for the computation of the quad-mesh for which Section 2.1 describes a selection of
methods. The subsequent parameterization of the data is described in Section 2.2. If
the input is provided in the form of a point cloud, it can easily be converted into a
mesh by freely available tools, e.g., MeshLab [9]. Objects that are given implicitly as
isosurface of a 3D volume image can be extracted as meshes with the Marching Cubes
Algorithm [46], which is available in MAVI [24] or CGAL [78].

Once the initial data has been processed and the required input is available, Section
2.3 describes how to construct a B-spline model that approximates the given data points.
Figure 2.5 illustrates the entire process.

2.1 Quad-mesh Generation

In order to compute a B-spline model to approximate a triangulated surface, the surface
first needs to be subdivided into a collection of four-sided regions (quadrilaterals) with
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disk-like topology. For small or geometrically simple objects, this can be done manu-
ally, e.g., by defining a set of cutting planes or simply drawing boundary curves on the
surface using CAD tools. When objects are too complex to be processed manually, an
automatic method is needed.

Eck and Hoppe [17] describe a method to compute such a partition into quadrilat-
eral cells. Their algorithm starts by computing a surface Voronoi tessellation, ensuring
that all cells have disk-like topology. Then, the dual Delaunay-like complex is con-
structed, consisting of triangular cells. Finally, these cells are merged pairwise into
quadrilateral cells. This approach provides good results and can be implemented eas-
ily.

Dong et al. [14] propose an approach based on surface harmonics. They compute
eigenfunctions of the discrete Laplacian mesh operator. For a triangle mesh M with
nv vertices this operator can be expressed by a matrix L ∈ Rnv×nv with coefficients

Li,j =


∑

(i,k)∈Edges(M) ωi,k, if i = j

−ωi,j , if (i, j) ∈ Edges(M)

0, otherwise.

(2.2)

Here, Edges(M) is the set of all edges of the given mesh, denoted as tuples (i, j) of the
incident vertex indices. The method uses the discrete harmonic weights [63] given by

ωi,j =
1

2
(cot(αi,j) + cot(βi,j)) (2.3)

where αi,j and βi,j denote the angles opposite to the edge (i, j) within the two incident
triangles. The local extrema of these (scalar) eigenfunctions are usually evenly dis-
tributed across the surface. Constructing a Morse-Smale complex, i.e., connecting the
extrema along gradient flows, leads to a quadrilateral partitioning of the surface. Topo-
logical clean-up methods on the Morse-Smale complex can be utilized to eliminate
small cells in the presence of high-frequency noise. An open-source implementation of
this algorithm is available within the Topology Toolkit [79].

Jakob et al. [37] present an algorithm, called Instant Meshes, that works locally and
produces shape aligned quad-meshes. It is based on the computation of an orientation
and position field. The orientation field defines the alignment of the quad-edges. It
assigns each vertex of the input mesh a 90 degree rotationally symmetric cross which is
derived from principle curvatures. By minimizing a smoothness term, these crosses de-
fine feature oriented field lines with few singularities. The position field determines the
placement of the quad-vertices by mapping each triangle vertex to a two-dimensional
lattice in its tangent. The edge length of these lattices is defined by the user and cor-
responds to the desired length of the quad-edges. Lattices are translated in their local
coordinate system by a fraction of their edge length to nearly coincide with the lattices
of nearby vertices. These translations define a local parameterization which is smooth



CHAPTER 2. FUNDAMENTAL METHODS FOR CONSTRUCTING B-SPLINE
SURFACE APPROXIMATIONS 13

and consistent with the orientation field. It is then used to guide a successive edge
collapsing that leads to the final quad-mesh.

The Quadriflow algorithm, presented by Huang et al. [34], is based on the idea of
Instant Meshes. It uses the same locally computed orientation and position fields and
reduces singularities by adding linear and quadratic constraints. A global minimum-
cost network flow problem in combination with local boolean satisfiability problems
are solved to ensure that these constraints are met. Due to the low computational com-
plexity of these problems, they can be solved very quickly, even for large meshes.

Freely available implementations for both Instant Meshes and Quadriflow are pro-
vided by the authors [34, 37].

2.2 Parameterization

The discrete data points inside each quadrilateral cell need to be correlated to the re-
spective B-spline surface. This is done by computing a parameterization that maps each
data point to the same parameter domain over which the B-spline surfaces are defined.
Parameterizations are computed for each cell individually.

A common way to parameterize data is via discrete harmonic maps [16]. Let
np be the number of data points (vertices) within the given cell. Furthermore, let
h : N→ R2 denote the mapping that assigns each vertex i ∈ {1, ..., np} a parameteri-
zation (ui, vi) ∈ [0, 1]2. An energy term for this function is defined as

Eharm[h] =
1

2

∑
(i,j)∈Edges(M)

ωi,j‖h(i)− h(j)‖2. (2.4)

Using the Laplacian operator, see Equation (2.2), its gradient is given by

∇Eharm[h] = Lh (2.5)

where

h =

 h(1)T

...
h(np)

T

 ∈ Rnp×2.

The weights ωi,j are the harmonic weights, defined by Equation (2.3).
A harmonic map can be constructed in two steps. First, the vertices on the boundary

of the quadrilateral cell are mapped onto the boundary of the unit square, such that the
ratio of their Euclidean distances in R3 is preserved. Then, the remaining degrees of
freedom are determined by minimizing Eharm[h]. Since this term is quadratic with
respect to the unknowns, the minimum is achieved when the gradient (2.5) vanishes,
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Figure 2.6: Parameterization of a single quad-cell via a harmonic map. The boundary
of the cell is mapped onto the boundary of the unit square. Then, the parameter values
of inner vertices are determined by minimizing the energy Eharm.

i.e., Lh = 0. Note that some entries of h are already set by the boundary mapping.
Without loss of generality, let the indices of the data be ordered such that

h =

[
hi

hb

]
, L = [Li Lb]

with hb denoting the (fixed) parameter values on the boundary and hi the (unknown)
interior parameterization. Then, the values of hi can be found by solving

Lh = [Li Lb]

[
hi

hb

]
= Lihi + Lbhb

= 0

⇔ Lihi = −Lbhb.

This procedure can be interpreted as a physical system of ideal mechanical springs
[16]. The mesh vertices correspond to free particles without mass which are connected
by springs representing the mesh edges. When the boundary is fixed to a planar square,
the spring forces cause the free particles to be distributed within the square such that the
overall system assumes a state of equilibrium, where the total forces on each interior
particle sum up to zero. An example is shown in Figure 2.6.

The freely available software package CGAL [78] provides an implementation of
discrete harmonic maps as well as various other mesh parameterization methods.
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2.3 B-spline Approximation

This Section reviews the construction of B-spline surfaces to approximate discrete data.
Equations that need to be solved are stated in a uniform notation aimed for straightfor-
ward implementation. It is assumed that the order k and a knot vector τ are given.

As input, a set of data points and their parameterization is required. Optionally,
they can also have weights assigned to them, which is useful when considering a non-
uniform distribution of data points. If no weights are given, they are assumed to be
equal to one. For complex objects that cannot be modeled with a single surface, a par-
tition into quadrilateral cells is required as well. The data contained in each cell is then
approximated by an individual B-spline surface that has to satisfy certain continuity
constraints with neighboring surfaces.

For simplicity, Subsection 2.3.1 discusses the construction of a single surface only.
The concept is generalized and a global system is introduced in Subsection 2.3.2 which
includes the constraints necessary for the computation of a continuous model consisting
of multiple B-spline surfaces.

2.3.1 Single B-spline Surface Approximation

First, the approximation of a set of data points by a single B-spline surface is discussed.
This requires a given set of np points pi ⊂ R3, i = 1, ..., np with assigned parameter
values (ui, vi) ∈ [0, 1]2 and weights wi ∈ R.

The shortest distance between a data point and a B-spline surface is the solution of
the nonlinear minimization problem

min
(u,v)∈[0,1]2

‖S(u, v)− pi‖. (2.6)

However, the given parameter values (ui, vi) express where the closest point on the
B-spline surface is expected. Hence, the approximately closest point S(ui, vi) is used
to estimate the distance between the point and the surface, i.e.,

min
(u,v)∈[0,1]2

‖S(u, v)− pi‖ ≈ ‖S(ui, vi)− pi‖. (2.7)

Using the approximate shortest distances, the least squares error of the surface with
respect to the input data is denoted by

ELS =
1

2

np∑
i=1

wi ‖S (ui, vi)− pi‖2 . (2.8)

An equivalent notation can be used to simplify this term. Let b ∈ Rn2
c×3 be a one

dimensional list containing the B-spline control points and let bx, by, bz ∈ Rn2
c be the
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vectors containing their x, y, and z coordinates. A correlation between the list index i
and the indices i, j in the original grid is established through a bidirectional mapping,
e.g., i = inc + j. Using the same index mapping, let

N(u, v) = [N1(u)N1(v), ... , Nnc(u)Nnc(v)] ∈ R1×n2
c (2.9)

be a row vector containing the associated tensor products of basis functions. Then,
Equation (2.8) becomes

ELS =
1

2

np∑
i=1

wi
∥∥N(ui, vi)b− pTi

∥∥2
.

Furthermore, let N ∈ Rnp×n2
c be the matrix containing the basis function coeffi-

cients all given the parameter values ui, vi and let a list of all data points be denoted by
p, i.e.,

N =

 N(u1, v1)
...

N(unp , vnp)

 , p =

 p
T
1
...
pTnp

 .
The least squares error can then be expressed as

ELS =
1

2

∑
σ∈{x,y,z}

(Nbσ − pσ)TW (Nbσ − pσ)

with the weights as diagonal matrix W = diag(w1, ..., wnp). Its gradient is

∇σELS = NTWNbσ −NTWpσ.

Minimizing the least squares error is equivalent to solving ∇σELS = 0 for all compo-
nents σ ∈ {x, y, z}.

Due to the discrete nature of the data, an approximation based on only the least
squares error often includes unwanted wiggles. This is compensated by penalizing the
deviation from a smooth surface by a fairing term. A commonly used term is the thin-
plate energy functional [15, 17, 30]

ETP =
1

2

∫ 1

0

∫ 1

0
‖∂uuS(u, v)‖2 + 2 ‖∂uvS(u, v)‖2 + ‖∂vvS(u, v)‖2 dudv (2.10)

which, for B-splines, can be rewritten as

ETP =
1

2

∑
σ∈{x,y,z}

bTσMbσ
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with gradient
∇σETP = Mbσ

where M ∈ Rn2
c×n2

c is a matrix containing the integrals of the basis functions given by

M =

∫ 1

0

∫ 1

0
(∂uuN(u, v))T (∂uuN(u, v))

+ 2(∂uvN(u, v))T (∂uvN(u, v))

+ (∂vvN(u, v))T (∂vvN(u, v))dudv. (2.11)

The B-spline basis functions are piecewise polynomials. Hence, their integrals can
either be determined analytically or by numeric integration, e.g., applying Gaussian
quadrature to each knot interval [τi, τi+1) with a high enough degree to be exact for the
corresponding polynomial [2].

To compute a smooth surface that approximates the data points, a linear combina-
tion of both terms is minimized, i.e.,

minimize (1− λ)ELS + λETP (2.12)

with the parameter λ ∈ [0, 1) controlling the impact of the fairing term to the resulting
surface. Since (2.12) is a system of quadratic equations with respect to the B-spline
control points, its optimal solution is found by solving

0 = (1− λ)∇σELS + λ∇σETP

= (1− λ)(NTWNbσ −NTWpσ) + λMbσ

for each coordinate σ ∈ {x, y, z}. It can be written as

((1− λ)(NTWN) + λM)b = (1− λ)NTWp. (2.13)

This is a linear system with respect to the control points b. Efficient solvers are imple-
mented in various freely available code packages, e.g., Eigen [29].

Iterative Approximation

The described approach aims on minimizing the distance between data points pi and the
approximately closest points on the surface S(ui, vi), associated to them through their
parameterization. However, these are not necessarily the smallest distances between the
data points and the surface. It is a common practice to improve the quality of the ap-
proximation by employing an iterative approach, alternating between the construction
of the surface and an update to the parameter values.
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After a surface has been constructed, the parameter values of each data point are
updated, by solving

(u′i, v
′
i) = argminu,v∈[0,1]‖S(u, v)− pi‖.

Approximations to these new parameter values can be found efficiently by considering
low degree Taylor series [66]. However, with modern hardware, a more accurate so-
lution can also directly be acquired by using numerical nonlinear solvers, e.g., NLopt
[39].

2.3.2 Constructing a Continuous B-spline Surface Model

When constructing a model with ns surfaces, the same principles as for a single sur-
face apply. However, some modifications are necessary to ensure continuous transitions
between neighboring surfaces. Data and control points are stored in a global list by con-
catenating the lists of each individual surface. The coefficient, weight, and smoothing
matrices are combined to diagonal block matrices. Using

b̂ =

 b
(1)

...
b(ns)

 , p̂ =

 p
(1)

...
p(ns)

 ,

N̂ =

N
(1) 0

. . .
0 N (ns)

 , Ŵ =

W
(1) 0

. . .
0 W (ns)

 , M̂ =

M 0
. . .

0 M

 ,
instead of the single surface terms in Equation (2.13) leads to the same result as con-
structing each surface individually.

Achieving C0-continuity by Adding Constraints

To obtain C0-continuity, i.e., a watertight model, the row of control points along a
shared boundary between any two neighboring surfaces needs to be identical. This can
be expressed by a number of constraints of the form b̂i − b̂j = 0 with i, j being the
indices in the global control point vector of the points that need to be identical. All
constraints together can be expressed by a matrix vector product: Gb̂ = 0 where G is a
matrix with each row expressing one such equality constraint.

With these constraints, the optimization problem (2.12) becomes

minimize (1− λ)ÊLS + λÊTP (2.14)

s.t. Gb̂ = 0.
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Using the method of Lagrange multipliers, an optimal solution of (2.14) can be found
by solving[

((1− λ)N̂T Ŵ N̂ + λM̂ GT

G 0

] [
b̂

Λ

]
=

[
(1− λ)N̂T Ŵ p̂

0

]
(2.15)

with a vector of Lagrange multipliers Λ. This system can be implemented and solved
in a straightforward way. However, adding the C0-constraints in the form of the matrix
G increases the size of the overall system.

Achieving C0-continuity by Reduction of Variables

An alternative is to implicitly enforce C0-continuity, by using only one variable for
each set of control points that are supposed to be identical. The matrix G is not needed
and the overall number of unknowns is reduced, which allows better performance when
solving the system. However, an index transformation is necessary to implement this
system, i.e., each index î in the global (full) control point list b̂ is assigned a new index
ĩ in the reduced list of control points b̃. Using a matrix H with entries Hî,̃i = 1 and

zero everywhere else, the original list of control points can be reconstructed as b̂ = Hb̃.
Inserting that in into the objective function (2.14) and solving for the gradient being
equal to zero leads to(

(1− λ)HT N̂T Ŵ N̂H + λHT M̂H
)
b̃ = (1− λ)HT N̂T Ŵ p̂ (2.16)

Achieving G1-continuity

The index transformation can be modified to also ensure G1-continuity, i.e., transitions
between surfaces with continuous tangent planes. Here, a method by Fan and Peters
[20] is used. It is designed for B-splines of order k = 3 with grids of nc = 8 control
points per row and requires two double interior knots within the knot vector. It is
therefore set to

τ = (0, 0, 0, 0,
1

3
,
1

3
,
2

3
,
2

3
, 1, 1, 1, 1).

Given a quad-mesh, they provide equations for a smooth surface model where all B-
spline control points b̂i are expressed as linear combinations of the quad-mesh vertices
q. Using these equations and an appropriate indexing, the overall B-spline control
points can be expressed as matrix-vector product b̂ = V q. The coefficients of the
matrix V are explicitly stated in [20].

By considering the vertex positions q as unknowns and using V instead of the index
transformation H , (2.16) can be rewritten as(

(1− λ)V T N̂T Ŵ N̂V + λV T M̂V
)
q = (1− λ)V T N̂T Ŵ p̂. (2.17)
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Solving this linear system corresponds to finding optimal vertices q of a quad-mesh.
Applying the scheme by Fan and Peters to these vertices yields a set of B-spline surfaces
that minimize the objective function (2.14). The resulting surfaces are G1-continuous
everywhere.



Chapter 3

Fast and Memory-efficient
Quantile Filter for Data in Three
and Higher Dimensions

3.1 Abstract

Quantile filters are a very common tool in images processing. One of the most promi-
nent instances is the median filter, which is primarily used for image denoising. Fast
implementations accumulate a histogram within a mask around each pixel. The desired
quantile for a pixel is then selected from the corresponding histogram in constant time.

When considering a d-dimensional image and a hypercube with side length 2r + 1
as filter mask, constructing the histogram by simply reading all pixel values within the
mask takes O(rd) operations per pixel. This results in high computational costs for
large filter masks.

For two-dimensional images, Huang et al. propose a “sliding window” approach
in which a histogram is shifted pixel-by-pixel. As shown in this chapter, this approach
can easily be adapted to be applied in arbitrary dimensions with O(rd−1) operations
per pixel. Generalizing this method, Perreault and Hébert propose an algorithm for
images of any dimension with O(1) operations per pixel. However, the low runtime
complexity comes at the cost of high memory requirements.

This chapter presents a novel hybrid approach. It is based on a generalization of
the two aforementioned methods and allows for a trade-off between computational cost
and memory requirements. The proposed algorithm is analyzed with respect to runtime
and space complexity.

The primary contributions of this chapter are:

• Review and complexity analysis of two existing algorithms (Huang et al., Per-
reault and Hébert)

21
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• A novel hybrid approach

• A complexity analysis of memory requirements and computational cost of the
presented hybrid approach

3.2 Introduction

The median filter is a popular tool in image processing. It is primarily used for image
denoising or during pre-processing steps of complex algorithms. While it is mostly
known for its use in two-dimensional image processing, it can be applied to data of
arbitrary dimensions. The focus of this thesis are 3D images created via computed
tomography.

In the context of image processing, a median filter is a special case (p = 0.5) of
the p-quantile filter. This filter produces an image in which each pixel is assigned the
p-quantile of the pixels in a predefined neighborhood within the input image. Quantile
filters are used as a generalization of gray value mathematical morphology [74]. How-
ever, straightforward implementations are often slow and become impractical for large
filter masks. Finding efficient solutions is highly desirable. The key feature of interest
is the number of operations per pixel with respect to the size of the filter mask. Note
that in this chapter, the term “pixel” refers to a coordinate-value-pair in an image of
arbitrary dimension.

Several contributions in this field exist. The following key publications represent
major improvements with respect to the computational complexity.

Huang et al. [35] propose a “sliding window” approach in which a histogram is
shifted pixel-by-pixel. The method is designed for 2D images on which it achieves
linear runtime per pixel. It can easily be extended to arbitrary dimensions as shown in
Section 3.3.2.

Weiss [80] introduces an algorithm for 2D data based on computing partial his-
tograms only. These histograms are then reused for multiple computations which re-
sults in logarithmic runtime per pixel.

Perreault and Hébert [58] present an extension of [35]. Their algorithm only needs
a constant number of operations per pixel for images of any dimension. However, the
low runtime complexity comes at the cost of high memory requirements.

In this chapter, a novel hybrid algorithm is presented based on a generalization of
[35] and [58]. It allows for a trade-off between computational cost and memory re-
quirements. This becomes clear when analyzing the runtime and memory requirements
of the methods by Huang et al. and Perreault and Hébert, see Subsections 3.3.2 and
3.3.3. The hybrid approach is presented and analyzed in Subsection 3.3.4. Finally,
Section 3.4 compares numbers for time and memory usage of the different algorithms.
A key result is that, with the implementations used for this thesis, the hybrid strategy
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is more memory efficient and even faster than Perreault and Hébert’s method for most
practically relevant filter and image sizes.

3.3 Method

In order to keep used symbols and variables intuitive, the notation in this chapter de-
viates from the general notation throughout the thesis. It instead aims for consistency
with defaults in the field of image processing.

Let f : Ω→ {0, 1, . . . , 2b − 1} denote a b-bit integer-valued d-dimensional image
on a regular, cubical grid Ω ⊂ Zd. The maximum size of the image in any of its dimen-
sions is denoted by n. Furthermore, let M be a d-dimensional filter mask centered in
the spatial coordinate x ∈ Ω. The filter masks used here are d-dimensional hypercubes
with side length 2r + 1, where r is called radius.

Note that the primary focus of this work is data of dimension d = 3. Computed to-
mography typically produces gray value images with b = 8 or b = 16. Common values
for n are 1024 or 2048. State-of-the-art hardware can produce even larger images.

Here, the algorithmic complexity and memory requirements are analyzed with re-
spect to the mask radius r, data dimension d, and data size n. All considered algorithms
require an initialization step that has a higher algorithmic complexity than the remain-
ing algorithm. In practice, the resulting impact on the total runtime is neglectable.
Therefore, the initialization is omitted in the complexity analysis.

3.3.1 Quantile Computation

A basic operation is the computation of the p-quantile Qp, with p ∈ [0, 1]. This op-
eration is done the same way by all algorithms analyzed here. It requires a discrete
histogram H(M) of the pixel values inside the filter mask M . This histogram consists
of 2b integer-valued entries. The p-quantile can be found by traversing the histogram,
starting at the first entry, and summing up the individual values until the sum reaches the
required percentage p of the total number of pixel within the filter mask. The index of
the entry at which this procedure stops is the desired p-quantile. This approach requires
at most 2b − 1 additions and comparisons. Hence, in terms of the variables considered
for the complexity analysis, computing Qp from H(M) requires O(1) time.

Even though this step requires constant time, it has a strong impact on the total run-
time. Perreault and Hébert proposed two optimizations: (1) “Multi-level histograms”
storing H(M) at multiple resolutions. This allows for the computation of Qp using
a lower number of operations on average. It was previously proposed by Alparone et
al. [1]. (2) “Conditional kernel updating” moves the mask M but updates the highest
histogram resolution only for entries needed for the computation of Qp. A detailed
description is given in [58].
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Figure 3.1: Sliding window in 3D. The histogram in a cubical mask is shifted by one
pixel by subtracting the gray values in one plane in negative scanning direction from
and adding the gray values in one plane to the histogram.

3.3.2 Algorithm by Huang et al.

The algorithm by Huang et al. is based on a “sliding window” approach. The filter
mask M is moved through the image f in a given scan direction. For two filter masks
M1 and M2 around neighboring pixel, the respective histograms H(M1) and H(M2)
differ in two (d−1)-dimensional facets, see Figure 3.1. This allows for the computation
of H(M2) from H(M1) by updating only the histogram entries corresponding to the
pixels within these two facets, i.e., for each pixel added to (removed from) the mask,
the histogram entry corresponding to its value is increased (decreased) by one.

In [35], the authors present the algorithm for d = 2 and state its time complexity as
O(n2r). The following lemmas generalize this result for the d-dimensional case.

Lemma 1. The algorithm by Huang et al. has a time complexity of O(ndrd−1) for
filtering a d-dimensional image f

Proof. The filter mask M is shifted to the next pixel by only considering the differ-
ences in the next and last (d − 1)-dimensional facet in scan direction, see Figure 3.1.
This results in (2r + 1)d−1 additions to and subtractions from the histogram H(M).
As shown in Subsection 3.3.1, the computation of Qp is O(1). Hence, the algorithm
performs O(rd−1) operations per pixel, i.e., O(ndrd−1) for the entire image. After
reaching the end of a scan line, a new histogram has to be constructed to start process-
ing the next line. This step causes O(rd) operations, but can be neglected for large
values of n.

Lemma 2. The algorithm by Huang et al. has a space complexity of O(1) for filtering
a d-dimensional image f
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Figure 3.2: Recursive extension of the “sliding window” approach. In addition to the
histogram of the cubical filter mask, the algorithm of Perreault and Hébert also stores
histograms for 1D columns which are moved by only considering differences in two
pixels (a). The histograms of these columns are used to move 2D slices (b), which are
then used to move the actual filter mask (c).

Proof. During execution, the method holds exactly one histogram H(M) in memory,
which consists of 2b integer-valued entries. Adding to and subtracting from the his-
togram does not require any further memory.

3.3.3 Algorithm by Perreault and Hébert

Perreault and Hébert extend the algorithm of Huang et al. by propagating the concept
of the sliding window recursively down to the lowest dimension d = 1. For d = 3, this
is illustrated in Figure 3.2. As explained in Subsection 3.3.2, the cubical filter mask can
be moved by one pixel by only considering the pixel values in two 2D slices. However,
when the neighboring line is processed, the filter mask is moved using almost the same
slices. In fact, each slice differs from the slice of the last line by only two 1D columns.
Hence, a histogram is stored for each slice along a line. The filter mask is then moved
by adding the histogram of the next slice in scan direction and subtracting the histogram
of the last slice. After a line is processed, all slices are moved to the next line by only
considering the differences in two columns per slice. The same principle applies to the
columns as well, i.e., histograms are stored for each column within a plane. When the
algorithm moves to the next plane of the image, each column is moved by adding the
next pixel above it and subtracting the last pixel on the bottom.

Note that the addition of histograms requires at most 2b operations and is there-
fore O(1). Moving the column histograms requires only two operations and is also
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n Huang et al. Perreault and Hébert Hybrid Approach
500 2 kB 0.5 GB 1 MB

2 000 2 kB 8 GB 4 MB
4 000 2 kB 31 GB 8 MB

Table 3.1: Memory requirements for quantile filtering of an n × n × n image with
r = 3, b = 8, and using 64-bit integers for all histogram entries. The method by
Huang et al. has neglectable memory requirements while the algorithm by Perreault
and Hébert quickly becomes impractical. The proposed hybrid approach is a viable
solution, even for large images.

O(1). This means that only a fixed number of operations of time complexity O(1) are
performed per pixel.

Lemma 3. [58] Perreault and Hébert’s algorithm has a time complexity of O(nd) for
filtering a d-dimensional image f , independent of r.

For d = 3, this algorithm requires that n histograms of slices along the scanning line
and n2 columns within the entire scanning plane need to be held in memory during the
entire process. The extension of the algorithm to higher dimensions is straightforward
and does not increase the computational complexity, as stated in [58]. However, the
memory requirements grow with a power of d− 1.

Lemma 4. [58] Perreault and Hébert’s algorithm has a space complexity of O(nd−1)
while filtering a d-dimensional image f , independent of r.

The proofs of Lemmas 3 and 4 follow from the proofs of the corresponding propo-
sitions 5 and 6 for the novel hybrid algorithm, see Subsection 3.3.4.

3.3.4 Hybrid Algorithm

For 2D images, the memory requirements of O(n) that arise when applying Perreault
and Hébert’s algorithm can easily be met by modern hardware. However, for high-
resolution 3D images, the algorithm requires up to several Gigabyte for typical CT-
image sizes, see Table 3.1. For higher dimensions, the amount of required memory be-
comes even larger, making the algorithm unfeasible for most image sizes. The method
by Huang et al. is also not a viable option for high-dimensional data since its runtime
grows exponentially with d, which is stated in Lemma 1.

A solution to the memory problem was proposed in [58]. By only processing
chunks of the images, the memory requirements can be reduced. However, this in-
troduces computational overhead and also becomes impractical for larger images.

This chapter presents a novel hybrid algorithm that addresses these issue by offer-
ing a compromise between runtime and memory requirements for dimensions d > 2.
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Figure 3.3: Illustration of the novel hybrid algorithm in 3D with c = 1. The histograms
of 2D slices are moved by considering the individual pixels in the last and next column
along their path (a). The filter mask is then moved by simply adding and subtracting
the histograms of the last and next slice in scan direction (b).

Like the method by Perreault and Hébert, the algorithm moves the filter mask through
the image by adding and subtracting (d − 1)-dimensional facets. The histograms of
these facets are also stored and moved orthogonal to the scan direction by adding and
subtracting histograms of (d − 2)-dimensional facets. This recursion is continued as
described by Perreault and Hébert, but stops in dimension d− c, with 0 ≤ c < d. The
histograms of the facets in this direction are moved using the method by Huang et al.
which requires O(rd−1−c) operations, see Figure 3.3. This is computationally more
expensive then the full recursion, but reduces the memory consumption exponentially.
The parameter c of this method interpolates between the algorithms by Huang et al.
(c = 0) and Perreault and Hébert (c = d− 1).

Proposition 5. The hybrid algorithm with recursion-depth parameter 0 ≤ c < d has a
time complexity of O(ndrd−1−c) for filtering a d-dimensional image f .

Proof. The computation of the p-quantile is done once per pixel. As shown in Subsec-
tion 3.3.1, this operation is O(1). In addition, the filter mask and exactly one facet of
each dimension between d− 1 and d− c are moved by one pixel. The addition of two
histograms requires 2b additions, which is of complexityO(1) in terms of the variables
considered here. Therefore, moving the filter mask through the image and perform-
ing updates to the corresponding histogram by adding and subtracting histograms of
(d− 1)-dimensional facets is of complexity O(1). This argumentation can recursively
be applied to moving the lower-dimensional facets as well. The recursion stops at di-
mension d− c. At this point, the “sliding window” approach by Huang et al. is used to
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move the (d − c)-dimensional facet by one pixel. According to Lemma 1, this causes
O(rd−1−c) operations. This leads to a total time complexity of O(ndrd−1−c) for the
full image.

Proposition 6. The hybrid algorithm with recursion-depth parameter 0 ≤ c < d has a
space complexity of O(nc) for filtering a d-dimensional image f .

Proof. Maintaining the histogram of the filter mask requires O(1) memory. To move
the mask via adding and subtracting (d − 1)-dimensional facets, one facet-histogram
needs to be held in memory for each pixel along the entire scan line. This requires
O(n) memory. Following the recursion of the algorithm, a set of (d − 2)-dimensional
facet-histograms needs to be held in memory along the entire path of each (d − 1)-
dimensional facet, causing a total memory requirement of O(n2). The recursion stops
at depth c at which the method by Huang et al. is used to move the (d− c)-dimensional
facets. According to Lemma 2, this requires O(1) memory. Hence, the total memory
requirements of the algorithm are

c∑
i=0

O(ni) = O(nc).

Edge Treatment

As stated in [58], storing and updating facet-histograms at image boundaries adds a
non-constant term to the algorithmic complexity. This term is neglectable in terms
of the asymptotic analysis, as it considers the case n → ∞. In practice, however, it
does have an effect on the runtime of the algorithm. The implementation, used within
the context of this thesis, stores and maintains additional r histograms beyond the do-
main Ω in each direction. Values outside of the image are defined using reflective
edge treatment. Therefore, the true space complexity of this specific implementation is
O((n + 2r)c). However, for practically relevant cases with r � n, this reduces back
to O(nc).

3.4 Results

All methods mentioned in Section 3.3 were implemented in C++ and runtimes were
measured. The experiments were performed under 64-bit Linux on one core of an
Intel Xeon X5675 CPU at 3 GHz. All implementations were single-threaded. How-
ever, parallelization techniques discussed in [35] and [58] are applicable to all analyzed
methods. Tests were performed on 8-bit 3D image data. For the application of the
hybrid algorithm, the parameter c = 1 was chosen. For more accurate measurements
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Figure 3.4: Runtimes in 3D, depending on r and n.

of the algorithm’s performance, chunks with side length n + 2r were cut out from
larger images. Only the inner n3 pixels were processed to avoid additional overhead
from edge effects. The presented measurements are the minimum runtime among three
applications for each parameter setting. The optimizations, described in Subsection
3.3.1, for the algorithm by Perreault and Hébert were implemented as well, but mea-
sured separately (denoted by “Perreault opt.” in Figure 3.4), as they do not affect the
computational complexity itself.

Note that using large quantities of memory causes additional run time, e.g., because
of cache misses. This means that even though the computational complexity improves
for c > 0, the overhead caused by initialization and managing increasing memory leads
to an increase in the measured runtime. Such an effect can be observed in Figure 3.4a.
The method by Huang et al. is fastest for small values of r. Perreault and Hébert’s
algorithm gains a significant speed-up when using the additional optimizations, but
computational time increases with r, even though its theoretical time complexity is
O(1). The hybrid algorithm outperforms both methods for filter sizes r < 80. For a
fixed value of r = 50, Figure 3.4b shows how the algorithms scale when the image
size increases. The method by Huang et al. is left out, as it is no longer viable for the
demonstrated filter size.

3.4.1 Conclusions

This chapter presented an algorithm for quantile filtering of data in three or more dimen-
sions. It is a generalization of the methods by Huang et al. and Perreault and Hébert.
For 3D images, it allows for a hybrid strategy that offers a trade-off between com-
putational cost and memory requirements. In higher-dimensional images, the amount
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of possible hybrid strategies increases by the number of additional dimensions. This
allows the filter to be tuned for optimal performance on the available hardware.

The presented algorithm performed faster than an implementation of [58] for filter
masks with r < 80. For those sizes, the constant time complexity of [58] did not
compensate for the practical overhead caused by higher memory consumption.

3.5 Core Reference

• D. Mosbach, H. Hagen, M. Godehardt, and O. Wirjadi: Fast and memory-
efficient quantile filter for data in three and higher dimensions. IEEE Inter-
national Conference on Image Processing (ICIP), pp. 2928-2932, (2014).



Chapter 4

Topologically Robust B-spline
Reconstruction of Fibers from 3D
Images

4.1 Abstract

The micro-structure of wood-based insulation materials is analyzed to gain insight into
how features on microscopic scales influence macroscopic thermal conductivity. Three-
dimensional image data obtained by micro-computed tomography reveals a complex
structure formed by cellulose fibers. To study the effect of geometry changes, simple
B-spline representations of these fibers are highly desirable.

A straightforward solution is to extract a triangulated isosurface from the 3D image
and partition it into quadrilateral macro-cells with disk-like topology. For each cell,
a B-spline surface is constructed by minimizing a least squares error term. However,
the physical processing of the material affects the structure of the fibers. The resulting
changes in surface topology cause difficulties for the quadrilateral partitioning. Image
processing tools can solve these topological issues, but they also impact geometry.

This chapter presents a novel approach that splits geometry and topology processing
of the data. It allows for topological simplification while still preserving the geometry
of a scanned object. Established B-spline approximation methods are used to create a
model. Presented results show that smooth and accurate models can be created for a
variety of challenging data sets.

This chapter presents the following contributions:

• A novel approach for data processing that allows for stable B-spline approxima-
tions of objects given as 3D images.

• A specific pipeline to construct B-spline surface models of (damaged) cellulose
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fibers.

• Verification of the method by constructing B-spline models consisting of a low
number of surfaces to represent several fibers given as high-resolution data sets.

4.2 Introduction

An important part in researching material properties is the generation of models rep-
resenting microscopic structures which can be used for visualization and simulation
purposes. How these models are obtained depends strongly on the size and complexity
of the samples, the initial data acquisition, and the target application.

This chapter addresses the model generation of cellulose fibers. A cellulose fiber
can be seen as a hollow tube which is open on both ends. The empty space inside
is called lumen. Meaningful models of such structures are helpful to better understand
and assess mechanical properties of a material on a macroscopic scale [3]. For example,
this insight allows researchers to establish a relation between the micro-structure and
physical properties of paper [47]. Another example is an analysis of sound-dampening
properties of wood-based acoustic insulation material with respect to its tortuosity -
a parameter that helps linking physical, acoustic, and morphological properties of a
material [61].

The motivating research of this chapter is the investigation of heat conductivity
properties of wood-based thermal insulation materials. The micro-structure of these
materials consists of a complex system of cellulose fibers which occur in chunks, chips,
and as individuals. To conduct simulations, B-spline surface models of such fibers
are desired. These models should consist of a low number of continuously connected
surfaces and include the inner and outer surfaces of the fiber wall. The main feature of
interest is the shape of the fibers as well as the contained lumen. This means that small
holes in the wall as well as roughness along the surface can be neglected and do not
need to be present in the final model.

The initial data is a scan of a material sample given as 16-bit gray value image
which is obtained by high-resolution synchrotron computed tomography. For denois-
ing, a 5× 5× 5 median filter is applied after which the image is binarized with a global
gray value threshold. Individual fibers are then extracted from this image based on a
local shape criterion [13].

However, the physical processing of the material causes damage to the micro-
structure which leads to cuts and holes in the fiber walls as well as increased surface
roughness in some areas. As Figure 4.1 shows, these effects complicate the topological
structure of the surface by adding numerous small tunnels, holes, and cavities.

As described in Chapter 2, a straightforward solution to create a B-spline model of
those fibers is to extract the isosurface of such a fiber in the form of a triangulated mesh.
In order to compute a continuous B-spline model, this mesh needs to be partitioned
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Figure 4.1: Example of an extracted fiber. While the overall geometric impression ap-
pears to be smooth, close-ups show artifacts affecting the local topology on the surface.

into a collection of quadrilateral macro-cells. Each macro-cell is approximated by a B-
spline surface. Due to the non-trivial topological situation on the fiber’s surface, most
approaches to compute such a quadrilateral decomposition either fail or produce a very
large amount of small macro-cells. Standard image denoising operations can solve the
topological problems, but might also introduce a high geometric error to the resulting
surface.

The contribution of this chapter is a new approach that splits the data processing
pipeline into geometry and topology processing. A strongly cleaned and repaired image
is used to create the mesh of larger quadrilateral faces capturing the topology of the
idealized cellulose fiber. This quad-mesh is then used to partition the original data,
extracted from the unprocessed image, by assigning each data point to the nearest quad-
face. Processing the data this way provides the necessary input for established B-spline
approximation methods. The resulting B-spline models have fiber-like topology and
closely approximate the geometry of the original data.

4.3 Related Work

While no methods exist to extract isosurfaces directly in the form of B-splines, a variety
of research has been published concerning the construction of B-spline approximations
of discrete data given as point clouds or surface meshes. Such an explicit representation
can easily be obtained from a 3D image by contouring methods like Marching Cubes.

Regular tensor product B-spline surfaces can only represent structures with disk-
like topology. To construct a model of complex objects, the data needs to be decom-
posed into quadrilateral cells. The data points in each cell are approximated by a single
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B-spline surface. The key challenge is to ensure certain continuity constraints along
boundaries. While a watertight model, i.e., C0-continuous transitions along shared
boundaries, is almost always a requirement, it is often desired to also have at least
tangent plane continuity, i.e., G1-continuous transitions.

Eck and Hoppe [17] provide an in-depth description of the overall pipeline starting
with a point cloud. Their first step is to establish a topological structure of the data by
generating a fine surface mesh. Using a Voronoi-like tessellation and its dual Delaunay-
like complex, the mesh is subdivided into a set of quadrilateral cells where each cell
has a disk-like topology. Those cells are parameterized using harmonic maps. A B-
spline approximation using a modification of Peters’ scheme [59] is then computed to
minimize the least squares error between the surfaces and the data points.

Gregorski et al. [27] propose a method to construct a set of B-spline surfaces ap-
proximating a given point cloud. They decompose their data into quadrangular cells
based on a so-called strip tree which provides an adaptive subdivision of the data, sim-
ilar to a quad-tree, into small boxes such that the points contained in each box can
be approximated by B-spline surfaces with low error. Control points of neighboring
surfaces are then adjusted during a post-processing step to ensure C1-continuous tran-
sitions. Since they do not establish a topological structure of the surface, their approach
works best on mostly flat objects.

Given a triangulated surface mesh and a manually defined subdivision into quadri-
lateral cells, Krishnamurthy and Levoy [42] remesh each cell to obtain a regular sam-
pling of the data. This implicitly defines a parameterization and reduces the complexity
of the B-spline approximation. However, to apply it to complex objects, an automati-
zation of the quadrilateral decomposition is necessary.

Yoo [83] describes an approach to construct a B-spline model of human bones
given as point cloud or sequence of CT images. First, the input data is used to define an
implicit surface on which a fine quad-mesh is constructed. Each quad and the normal
vectors along its boundaries are then interpolated by a B-spline surface.

Yoshihara et al. [84] capture the topology of a given point cloud by constructing an
implicit function and applying a level set method. At the cost of geometric accuracy in
noisy regions, this allows for a stable processing of difficult data. The object’s surface
is approximated by a Catmull-Clark subdivision surface and the corresponding control
points are used to form a fine quad-mesh which is interpolated by B-spline surfaces.

Lin et al. [45] present a method to create a smooth B-spline model to approximate
a mesh. The quadrilateral decomposition is done manually. After constructing a curve
network representing the boundaries, the data points in each cell are approximated by
a bi-quintic Bézier surface that interpolates the boundary curves. The resulting surface
model is madeG1-continuous by also interpolating pre-computed normal vectors along
the boundaries.

Zhao et al. [85] introduce an iterative approach, allowing individual surfaces to use
differing knot vectors. Given a point cloud and a partition into quads, their approach
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Figure 4.2: Pipeline separating geometry and topology processing. To partition the
data into quadrilateral cells, a morphological closure operation is applied to the input
image. The isosurface of the image is extracted and re-meshed into a quad-mesh defin-
ing the topological structure of the B-spline model. The approximation is computed
with respect to the data points extracted from the isosurface of the original mesh.

constructs an initial set of B-spline surfaces to closely approximate the data and then
ensures approximate G1-continuity in a numerical post-processing step.

Fan and Peters [20] provide a construction scheme for bi-cubic B-splines with ex-
actly two double inner knots. Equations for all control points are explicitly given as
linear combinations of the surrounding vertices of the quad-mesh, but the method can
also be modified to approximate a set of discrete data points.

While a large variety of methods for many scenarios exists, they are primarily de-
signed for structures that allow for a decomposition into a relatively small number of
quadrilateral macro-cells. However, this chapter deals with rough fiber structures with
complicated surface topology. A straightforward decomposition of the data into disk-
like quadrilateral cells would require a very high number of small cells. Automatically
removing these effects during a pre-processing step strongly affects the geometry of the
resulting B-splines. Hence, an alternative solution is introduced here.

4.4 Method

The key aspect of the proposed method is splitting geometry and topology process-
ing, see Figure 4.2. After processing the data this way, standard methods for B-spline
approximation can be applied, e.g., as described in Chapter 2.3.

To compensate for small holes and the rough surface structure in the data, a topolog-
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(a) (b) (c) (d)

Figure 4.3: A morphological closure operation simplifies the topology of the object.
A slice of the 3D volume data (a) and a close-up of the corresponding region in the
isosurface (b) highlight regions hard to handle for subsequent processing. Applying the
closure operation simplifies the surface structure, as seen in (c) and (d).

ical simplification is employed. This is done through the application of a morphological
closure to the volume image, i.e., performing a sequential dilation and erosion on the
object represented by the image’s foreground [57]. The size of the filter mask needs
to be chosen sufficiently large to fill the entire structure. Efficient implementations
for large filter masks are available [52]. This operation preserves the original outer
boundary in smooth regions and absorbs any outside material into the fiber’s surface,
see Figure 4.3. The inside of the fiber and holes in its wall are closed. The resulting
object has the topology of a cylinder. Hence, applying Marching Cubes leads to a sur-
face mesh with a topological structure that is well-suited to be partitioned into large
and evenly sized macro-cells. A re-meshing into a small number of quadrilateral cells
is performed on this mesh using a freely available implementation of the Quadriflow
algorithm [34]. The resulting quad-mesh is a “rough geometric approximation” of the
data, but it provides a suitable topological structure for a B-spline model.

For the geometry-focused part of the pipeline, the original image is considered. As
with the closed image, a triangulated isosurface is extracted using Marching Cubes.
The vertices of this triangulation provide the geometry data for the B-spline approxi-
mation. To associate them with the topological structure of the quad-mesh, each point
is assigned to the closest quad-face. An initial parameterization is obtained by project-
ing the points onto their associated faces. By mapping the corners of a quadrilateral
to the corners of the unit square, a correspondence is established between the position
of the projected point in the quad-cell and a tuple in (u, v)-parameter space, where
(u, v) ∈ [0, 1]2.

Cellulose fibers are hollow. To reconstruct a fiber wall and the contained lumen,
the inside and outside of the isosurface representing the wall are considered separately.
The topology is the same in both cases. Hence, the same quad-mesh can be used for
both approximations. However, each data point needs to be classified as belonging to
either the interior or exterior surface of the fiber wall. The points can be classified
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by applying a Euclidean Distance Transform to the closed image, assigning to each
voxel the distance to the closest point of the isosurface [25]. As the morphological
closure still mostly preserves the outer surface, data points with low distances (here,
≤ 2 voxels) are considered to belong to the outside surface of the wall, while data
points with larger distance values are considered to belong to the inside. Once the
classification is performed, separate surface models are constructed, one for each set of
data points.

The quad-mesh obtained from the simplified image is closed. Since the layout
produced by the Quadriflow algorithm is sensitive to sharp features, the actual open
ends of the fibers align well with individual quad-faces. To reproduce the open structure
of fibers, these quads are removed and the open space between inside and outside B-
spline surfaces is closed via linear interpolation between the boundary curves.

Image processing operations, including closure, Euclidean Distance Transform and
isosurface extraction with Marching Cubes, are performed with MAVI [24]. The pro-
jection of the data points onto the quad-mesh is performed with the freely available
software package libigl [36].

4.5 Results

The presented method was applied to a number of isolated fibers. Figure 4.4 shows
an example, including intermediate steps. Further results are shown in Figure 4.5.
Even though many complicated topological situations arise in the data, the algorithm
produces stable results, see Figure 4.6. The overall shape and important characteristics,
like length and bending, are well-preserved. Loose noise-like structures occurring in
regions with high roughness are smoothed, while larger material parts are absorbed
resulting in only a small distortion of the surface. Holes in the fiber walls are closed, and
the topological structure of the surface does not impact the stability of the quadrilateral
partitioning.

Each resulting B-spline surface is of order k = 3 and is defined by 8 × 8 con-
trol points. The surface model is constructed with the G1-continuous approach by
Fan and Peters, as described in Subsection 2.3.2, which defines the knot vector as
τ = (0, 0, 0, 0, 1/3, 1/3, 2/3, 2/3, 1, 1, 1, 1). The computation is done via three iter-
ations of surface approximation and parameter optimization, with decreasing smooth-
ness parameters λ1 = 0.9, λ2 = 0.5, λ3 = 0.1.

4.5.1 Conclusions

This chapter presented a new approach that reconstructs high-resolution cellulose fibers
from 3D images with a low number of B-spline surfaces. Due to the production process
of the material, the micro-structure contains regions with complex topology that are
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(a) Original surface (553 748 triangles) (b) Simplified surface

(c) Quad-mesh (118 quads) (d) B-spline model (236 B-spline surfaces)

Figure 4.4: Main processing steps. (a) shows an isosurface of the original image.
After applying a morphological closure operation, the topology is simplified (b). A
quad-mesh is computed for this surface (c). Using the geometry of the initial data and
the topology of the quad-mesh, a B-spline model is constructed (d).
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(a) Isosurface (1 203 844 triangles) (b) B-spline model (676 B-spline surfaces)

(c) Isosurface (423 628 triangles) (d) B-spline model (432 B-spline surfaces)

(e) Isosurface (710 808 triangles) (f) B-spline model (580 B-spline surfaces)

(g) Isosurface (601 040 triangles) (h) B-spline model (268 B-spline surfaces)

Figure 4.5: Additional results. Isosurfaces of the exact image data (a), (c), (e), (g) and
their B-spline approximations (b), (d), (f), (h).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.6: Examples of data artifacts (a)-(d) and the B-spline approximations in those
areas (e)-(h).

problematic for established methods. By processing geometry and topology separately,
these difficulties are overcome. This allows for stable reconstructions of the idealized
structure while still approximating the unaltered geometry of the input data.

After the data is processed according to the proposed pipeline, a B-spline surface
model can be generated by using established B-spline methods.

The presented results show how the method can handle challenging situations in
images. For example, surface roughness has almost no impact. Even when larger
chunks of material are present near the surface of a fiber, its wall is still reconstructed
in a topologically correct way, and surplus material is treated as a local deformation of
the surface. The triangulated meshes extracted from the high-resolution input images
contain 423 628 to 1 203 844 triangles, and they are modeled with 236 to 676 B-spline
surfaces.

4.6 Core Reference

• D. Mosbach, K. Schladitz, B. Hamann, and H. Hagen: Topologically robust B-
spline reconstruction of fibers from 3D images. to be published in Topological
Methods in Visualization: Theory, Software and Applications.



Chapter 5

A Local Approach for Computing
Smooth B-spline Surfaces on
Arbitrary Quadrilateral Base
Meshes

5.1 Abstract

A new method for approximating surface data of arbitrary topology by a model of
smoothly connected B-spline surfaces is presented. Most of the existing solutions for
this problem use constructions with limited degrees of freedom or they address smooth-
ness between surfaces in a post-processing step, often leading to undesirable surface
behavior in proximity of the boundaries.

The contribution of this chapter is the design of a local method for the approxima-
tion process. A smooth B-spline surface approximation is computed without imposing
restrictions on the topology of a quadrilateral base mesh defining the individual B-
spline surfaces, the used B-spline knot vectors, or the number of B-spline control points.
Exact tangent plane continuity can generally not be achieved for a set of B-spline sur-
faces for an arbitrary underlying quadrilateral base mesh. The proposed method gen-
erates a set of B-spline surfaces leading to a nearly tangent plane continuous surface
approximation. The presented examples demonstrate that B-spline approximations can
be generated with differences of normal vectors along shared boundary curves of less
than one degree. The approach can also be adapted to locally utilize other approxima-
tion methods leading to higher orders of continuity.

Key contributions of this chapter are:

• Presentation of a novel local algorithm to construct approximatelyG1-continuous
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B-spline surface models

• Meaningful methods to visualize and evaluate the quality of a B-spline surface
model

• Quality analysis of models obtained by applying the proposed method in com-
parison with C0- and G1-continuous models

• Complexity analysis of the algorithm’s computational cost and memory require-
ments

5.2 Introduction

Approximating large quantities of data points by a relatively small number of B-spline
surfaces is an approach commonly used to reduce data size, re-sample objects, or to
create a model for simulations, analysis, or reverse engineering. As discussed in Chap-
ter 2, it is fairly easy to construct a C0-continuous B-spline surface approximation for
a set of given data points. However, achieving higher orders of continuity in a general
setting is still a challenging task. To obtain smooth and visually pleasing models, it is
desirable to generate B-spline approximations with G1-continuity, i.e., approximations
that have continuous tangent planes everywhere.

This problem has been studied quite intensively, and a wealth of literature is avail-
able on the topic. Most existing solutions produce very good results, but introduce
constraints, e.g., to the order of the B-splines or the type of knot vector, which defines
the parameterization of the surface. When the approximation problem must be tackled
in a general setting, several established methods have problems, e.g., in case of large or
incomplete data.

This chapter proposes a local algorithmic framework for the computation of smooth
B-spline models to approximate discrete data. The presented approach is suitable for
B-splines of any order and with arbitrary knot vectors. This allows for the construction
of a model with low complexity surfaces defined by a small number of control points.
The computation of a single surface only requires the data in a small neighborhood to
be available. Due to the locality of the approach, it is easy to handle large amounts of
data and to parallelly compute individual parts of the result. Most of the existing meth-
ods can be localized as well with this method. Its viability is demonstrated by using
a computationally more expensive approach for approximate G1-continuity. Addition-
ally, visualizations and error metrics are discussed to evaluate and compare the quality
of a B-spline approximation.

The main idea of the proposed method is to construct smooth approximations of
subsets of the data. First, optimal B-spline surfaces are constructed around each corner
in the quad-mesh. The control points, necessary for smooth transitions around that
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corner, are fixed for the subsequent steps. Then, a spline approximation is computed
around each boundary curve. Only those control points are kept which are relevant
for the smooth transition along that boundary. These steps are equivalent to defining a
curve network with tangent information. Finally, the remaining free control points are
chosen to approximate the interior of each cell in an optimal way. The main advantage
of this approach is that it only requires data in local neighborhoods, which leads to
several small systems of equations that need to be solved instead of one large global
system.

The method is used to model isosurfaces of binary volume images in the form of
B-spline surfaces. These isosurfaces are the result of applying the Marching Cubes
algorithm to a number of synthetic and application-driven data sets. To compensate
for the discrete nature of the data, a Laplacian smoothing is applied to the resulting
triangulation.

5.3 Related Work

The construction of smooth B-spline models to approximate or interpolate discrete data
is a topic that has been well-researched over the past decades. While B-splines are fairly
easy to understand and use, computing a G1-continuous model of B-spline surfaces is
not a trivial task.

Peters and Fan [60] discuss the complexity of constructing smooth piecewise poly-
nomial surfaces and derive essential conditions that need to be met in order to construct
a G1-connected model of B-splines. A central statement is that a G1-continuous B-
spline model of arbitrary topology with bi-cubic B-spline surfaces requires knot vectors
to have at least two internal double knots. Therefore, for a knot vector with only sin-
gle interior knots it is not guaranteed that there always exists an exact G1-continuous
B-spline model.

However, a variety of methods exist to solve specialized instances. Some accept
certain restrictions on the data or B-splines, others aim only for approximate G1-
continuity.

Milroy et al. [49] present a stitching approach by defining G1-errors as difference
between normal vectors on a fixed number of points along boundary curves and then
minimizing this term. This approach yields good results but is sensitive to the size of
the model due to the complexity of the nonlinear constraints.

Lai and Ueng [43] show that evenG2-continuity can be achieved fairly easily when
simplifying the continuity constraints to colinearity of derivatives along surface bound-
aries. Since this leads to singularities when multiple surfaces meet in one point, the
method is best suited for constructing pairs or stripes of surfaces.

According to Shi et al. [72] a construction of a G1-continuous B-spline model with
single interior knots requires at least bi-quintic splines. For those, they provide explicit
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formulas for the computation of the control points. To deal with irregular corner points,
they project all outgoing tangents onto the plane defined by an averaging normal vector.

Lin et al. [45] approximate data with bi-quintic Bézier surfaces. They compute a
global curve network and generate normal information along those curves. Then, they
compute each surface individually such that it interpolates the boundary curves and the
normal vectors along those curves to obtain G1-continuity.

Yoo [83] presents an approach that utilizes a global implicit surface to generate
a quad-mesh in addition to sample points that are then interpolated by one B-spline
surface per quad. Smoothness between individual B-splines is obtained by also inter-
polating the normal vectors of the implicit surface along the surface boundaries.

Zhao et al. [85] introduce a numerical approach for point cloud approximation.
First, they approximate the data using a set of B-spline surfaces with no continuity
constraints, even allowing different knot vectors. Then, the control points are adjusted
by numerical methods to also obtain approximately C0 and G1-continuous transitions.

Closely related to the task of approximating data is the interpolation problem, where
the vertices of a given (quad-)mesh are to be interpolated by a number of smooth surface
patches. These approaches need to deal with the same continuity constraints and can be
adapted to also allow data approximation. Most of these methods express the control
points of the B-spline as linear combinations of the mesh vertices. Eck and Hoppe [17]
show how to modify such an interpolation method and use it within the context of a
least squares approximation.

Hahmann et al. [31] describe a localized method to interpolate quad-meshes by
using 2 × 2 bi-cubic Bézier patches per quad. Their algorithm consists of three steps,
calculating control points around corners and edges first to ensure G1-continuity there,
before defining the interior control points. However, this method cannot be applied to
arbitrary meshes which is then addressed by a more general approach by Bonneau and
Hahmann [7] using a similar idea of a localized construction to obtain 2× 2 bi-quartic
Bézier patches per quad.

Yoshihara et al. [84] show how to make use of an interpolation method for data
approximation. They approximate the data with a Catmull-Clark subdivision surface.
The control structure is then projected onto its limit surface to obtain a dense quad-
mesh. Vertices of that mesh are interpolated using an approach by Fan and Peters [19]
which computes a model of 3× 3 bi-cubic Bézier patches per quad.

Fan and Peters also present an improved version of that algorithm [20] where they
construct either a single bi-cubic Bézier patch or a B-spline surface with at most two
inner double knots per quad, depending on the valence of the surrounding vertices. This
construction even provides C2-continuity along regular edges, i.e., edges that connect
vertices with valence 4.

A more formal approach to the problem of constructing smooth splines has been
proposed by Mourrain et al. [55]. They provide a detailed analysis and in-depth theo-
retical background on the dimensionality and bases of the space of smoothly connected
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splines. While they look at general splines defined over arbitrary topologies, Blidia et
al. [6] provide a similarly thorough investigation of spline spaces on quad-meshes with
4-split elements.

Most of the above mentioned methods can be used to generate very good, smooth
B-spline surfaces with certain restrictions, e.g., the spline order is often fixed and by
using Bézier patches they already define the knot vector and number of control points.
The approach proposed in this chapter aims to provide a more general solution for data
approximation and does not impose restrictions on the topology of the quad-mesh, the
order of the B-splines, or the used knot vectors.

5.4 Method

In this chapter, it is assumed that the input is given in the form of a triangular surface
mesh. Furthermore, a quad-mesh, partitioning the data into individual cells, and a
parameterization of each quad-cell are required. Sections 2.1 and 2.2 cover these steps
when starting with only a mesh.

5.4.1 Nonlinear Constraints

Existing methods that achieve G1-continuity have only limited degrees of freedom
when control points are computed and impose constraints to knot vector and order,
e.g., [20, 72]. This section discusses pointwise G1-constraints that do not have any of
these restrictions for the cost of only approximate G1-continuity.

Without loss of generality, let Sa and Sb be two B-spline surfaces meeting at
Sa(1, t) = Sb(0, t), t ∈ [0, 1]. Similar to [49], the G1-error along the shared boundary
curve is defined as

ra,b(t) =

∥∥∥∥ na(1, t)

‖na(1, t)‖
− nb(0, t)

‖nb(0, t)‖

∥∥∥∥ , (5.1)

where na and nb are the normal vectors of the two surfaces. Figure 5.1 provides an
illustration of the G1-error at a point on the shared boundary between two surfaces.

The B-spline basis functions and their derivatives are piecewise polynomial func-
tions. Hence, it can be expected that the G1-error between two points on the boundary
with ra,b(t1) = ra,b(t2) = 0 is sufficiently small as long as |t1 − t2| is small. Enforcing
G1-constraints of the form ra,b(ti) = 0 with ti = i/(nG1 − 1) in nG1 discrete points
along shared boundary leads a low overall G1-error on that boundary.

A set of B-spline surfaces with approximate G1-continuity can be found by adding
these constraints to the C0-continuous system, given by 2.14. Let Γ be the set of all
index tuples (a, b) of surfaces that are supposed to be joined with G1-continuity. Then,
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Figure 5.1: The G1-error ra,b at a point on the boundary of two B-spline surfaces is
defined as the length of the difference vector between the unit-normal vectors ña and
ñb.

the following problem has to be solved:

minimize (1− λ)ÊLS + λÊTP (5.2)

s.t. Gb̂ = 0

ra,b(ti) = 0 ∀(a, b) ∈ Γ, i = 1, ..., nG1 .

The G1-constraints can be reformulated as (ra,b(ti))
2 = 0. This allows for a more

efficient implementation as it negates the outer square root introduced by taking the
norm in Equation (5.1).

As stated in [60], a perfect G1-continuous construction may not always be possible
in a general setting. Furthermore, nonlinear constraints can be hard to handle for some
numerical solvers. This can be addressed by reformulating (5.2) into

minimize (1− λ′)
(

(1− λ)ÊLS + λÊTP

)
+ λ′

∑
(a,b)∈Γ

nG1∑
i=1

ra,b(ti) (5.3)

s.t. Gb̂ = 0.

This does not anymore guarantee G1-continuity in any point, but allows for a more
robust implementation.

Note that due to the nonlinearity of the G1-constraints, such a system needs to
be solved with nonlinear solvers, e.g., NLopt [39]. The computational complexity is
far higher than for linear systems, which makes this approach impractical on a global
scale. However, Section 5.4.2 discusses a local construction scheme in which only
small neighborhoods are considered.
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Figure 5.2: Control points and G1-continuity. The figure shows the control points
relevant for ensuringG1-continuity of a B-spline control mesh with 8×8 control points.

5.4.2 Local Multi-step Algorithm

The first derivatives of B-spline surfaces along their boundaries only depend on two
rows of control points, i.e., bi,j , with one index being in {1, 2, nc−1, nc}. Hence, inner
control points can be chosen freely without affectingG1-continuity. Control points that
have an influence on the derivatives along a surface boundary are called G1-relevant
control points for that boundary. At corner points of a surface where two boundary
curves meet, both tangents in u and v direction are defined by only three control points,
i.e., the control point in that corner as well as the neighboring control point in each
direction. The first inner control points in each corner, the so-called twist points, play
a special role. They do not have an impact on the normal vector in the corner itself but
along both boundaries in a neighborhood around the corner; therefore, they must be
chosen to ensure compatibility with both neighboring surfaces. These classifications
are illustrated in Figure 5.2. As shown in Section 5.5, using these points alone already
produces good results. If the goal is exactG1-continuity, it is also necessary to consider
the so-called curvature points, i.e., the second control point from each corner on the
boundary, as they are also a part the G1-compatibility constraints discussed in [60].

The main idea of the local algorithm is similar to other approaches [7, 20, 31, 72]
that construct a global result by performing various local computations in subsequent
phases. Here, instead of computing only individual control points in a phase, entire
surfaces are computed to approximate small subsets of the data. Relevant control points
of these surfaces are used in the final result, while the rest is discarded and re-computed
in the next step. The individual phases are:

1. Corner Phase
For each corner of the quad-mesh, a B-spline approximation of the incident cells
is computed while ensuring G1-continuity around that corner. The G1-relevant
control points around the corner are stored for the final result. Without loss of
generality, let the control points of the surrounding B-spline surfaces be aligned
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Figure 5.3: Phases of control point computation. The individual images highlight the
control points used in subsequent phases.

such that b0,0 is associated with the corner currently being considered. Then, the
points b0,0, b0,1, b1,0, and b1,1 of all these surfaces are kept.

2. Boundary Phase
For each boundary between any two quad-cells, a G1-continuous B-spline ap-
proximation of those cells is constructed. The G1-relevant control points around
the end points of the boundary are set as the result of the last phase (corner
phase). All other control points can be chosen freely again. The G1-relevant
control points along the shared boundary are kept for the final result.

3. Interior Phase
For each cell of the quad-mesh, a final B-spline approximation is performed,
considering all G1-relevant control points already known from the previous two
phases. The interior control points are used to finalize the global result.

The specific spline approximation algorithms used in the individual phases can be
chosen freely. Here, the objective function and constraints from Section 5.4.1 are used
to demonstrate the viability of this approach. Section 5.3 provides a discussion of
other viable algorithms. These methods can also be used in this local framework. To
assess the quality of the resulting surface approximation, where only approximate G1-
continuity is achieved, evaluation criteria are described in Subsection 5.4.3.

A B-spline surface computed by the interior phase is the final approximation of the
corresponding quad-cell. To compute a surface in this phase the results of the corner
and boundary phases affecting that cell are needed. Only the data of the neighboring
quad-cells needs to be known at this time. This means that the individual phases do not
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Figure 5.4: Final B-spline control meshes. The figure shows the contributions of con-
trol points produced by the three phases. Control point colors indicate the phases that
generated them, see Figure 5.3.

need to be completed for the entire quad-mesh before starting surface computation in
the final phase. This fact makes it possible to apply this approach even when only parts
of the data can be loaded into memory at once.

5.4.3 Quality Evaluation

Depending on the application it might suffice if the constructed B-spline model passes
a visual inspection. However, for a formal evaluation, well-defined quality criteria are
desirable.

A good error measure to evaluate a spline approximation is the distance to the
original object/surface. Here, the approximation error of each data point is defined
as the distance to the closest point on the B-spline surface, given by (2.6). Due to the
iterative scheme described in Section 2.3.1, it can be expected to find the closest surface
point approximately by evaluating the B-spline at the parameter values of the data point,
i.e., by evaluating (2.7). To obtain the most accurate result for evaluation purposes,
it is also possible to compute the closest surface points by numerically solving the
nonlinear Equation (2.6) which yields optimal parameter values (u, v). The distances
are measured between the B-splines and the given data points, which are the vertices
of the input mesh. When these data points are obtained via a more complex pipeline,
pre-processing steps can add additional error which has to be considered separately.

The approximation error of the whole surface can either be analyzed via statistical
measures of the individual errors or qualitatively by plotting the error values, color-
coded onto the B-spline surfaces, see Figure 5.5a. When the goal is to smooth out
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irregularities in the original data, the plot will show higher errors in these irregular
regions. To understand where data points are above or below the approximating B-
splines, a signed error value is computed. The sign is defined by the scalar product
between the error vector of a data point and the normal vector at its closest point on the
B-spline surface.

In order to establish a statistical measure for overall approximation quality, the root
mean square (RMS) error is computed, given by

ERMS =

√√√√ 1

np

np∑
i=1

d2
i ,

with np being the total number of data points and di denoting the approximation error
of the i-th data point. Furthermore, the maximum error is measured as reference. To
enable a meaningful comparison between data sets of different sizes, the error is ex-
pressed as a percentage of the “diameter” of the data set, defined as the largest distance
between any two data points, see [17, 84].

The input mesh might already exhibit undesirable geometric behavior, e.g., exten-
sive variation of normal vectors resulting from an isosurfacing method, like the March-
ing Cubes method. These effects have an impact on statistical quality measures and
color plots. Since they are typically a byproduct of an earlier step in the data process-
ing pipeline, they generally do not reflect the proper geometry of an original object.
A good spline approximation scheme eliminates or greatly reduces such undesirable
irregularities, but, numerically, this smoothing effect impacts error computation. Ul-
timately, a user must interpret quantitative error values and compare results with the
input.

In addition to the actual approximation error, smoothness is evaluated in the form
of tangent plane continuity. In a surface model composed of B-spline surfaces with
non-degenerate control points and knot vectors, the only regions where discontinuities
in first derivatives can occur are along the boundary curves between individual surfaces.
Based on Equation (5.1), the normal vectors of two adjacent surfaces along their shared
boundary curve are considered. The G1-error is defined as the angle between these
vectors. These values are computed along all surface boundaries. The result is then
color-coded and visualized on the surface enabling an interactive visual assessment of
the result, see Figure 5.5b.

To calculate meaningful measures that summarize the G1-error of the entire model
via a single number, the average G1-error is computed by integrating the G1-error of
the entire surface model and dividing it by the total length of all boundary curves.
Let Ca,b(t) be the shared boundary curve between B-spline surfaces Sa and Sb. Since
Ca,b(t) is usually not parameterized by arc length, the parameter interval [0, 1] can get
distorted in R3. Therefore, simply computing a G1-error in the parameter domain by
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using the integral ∫ 1

0
ra,b(t)dt

does not generally yield an acceptable result for the error along the curve. Hence, the
local errors are integrated along the curve in R3. The definition of ra,b(t) is formally
extended to the 3D setting by

ra,b(Ca,b(t)) = ra,b(t).

Then, the integral along a curve parameterized over [0, 1] is reformulated using∫
Ca,b

g(Ca,b)ds =

∫ 1

0
ra,b(Ca,b(t))‖Ċa,b(t)‖dt.

The result is normalized through division by the length of all boundary curves

L =
∑

(a,b)∈Γ

∫ 1

0
‖Ċ(t)‖dt.

Hence, the average G1-error of the surface model is

EG1 =
1

L

∑
(a,b)∈Γ

∫ 1

0
ra,b(t)

∥∥∥Ċa,b(t)∥∥∥ dt.
As an upper error bound, the maximumG1-error among all points on the surface model
is computed as well.

5.5 Results

This section covers the results of applying the proposed method to several synthetic
and real-world data sets. To evaluate the quality of the resulting B-spline models, the
approximation and G1-errors are measured as described in Section 5.4.3. The B-spline
models are of order k = 3, have 6 × 6 control points per surface, and use a uniform
knot vector with multiple end knots, i.e., τ = (0, 0, 0, 0, 1/3, 2/3, 1, 1, 1, 1). The ex-
periments have shown that the choice of λ = 0.05 for the smoothness term leads to
good results.

The results are compared to models that are only C0-continuous. These models
are obtained by minimizing (5.2) without G1-constraints. Since no deformations are
imposed by theG1-continuous transitions, the weight of the smoothness term is reduced
to λ = 0.01.
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(a) Approximation error shows surface areas above
or below original data.

(b) G1-error shows how much normal vectors differ
on surface boundaries.

Figure 5.5: Error visualization. Error values mapped onto the surface support a quali-
tative evaluation of an approximation.

Furthermore, the results are also compared to theG1-exact construction by Fan and
Peters [20], see Section 2.3.2. Due to the restrictions imposed by exact G1-continuity,
the model uses the required minimal number of 8×8 control points per B-spline surface
and the knot vector τ = (0, 0, 0, 0, 1/3, 1/3, 2/3, 2/3, 1, 1, 1, 1). Since the resulting
surface model is G1-continuous by construction, its G1-error is zero everywhere.

The initial meshes were obtained by using the Marching Cubes algorithm to extract
isosurfaces from given binary 3D volume images. A Laplacian smoothing operation
was applied to compensate for discretization effects and artifacts resulting from the
piecewise linear interpolation underlying the Marching Cubes method. Quad-meshes
were constructed using the method by Eck and Hoppe [17], see Section 2.1. The test
data consists of several synthetically generated models with different geometry and
topology and two real-world, application-driven data sets. The first real-world data set
is a stone particle used in composite materials. It has simple topology. A researcher’s
main interest in this case is the geometry of the surface. The second real-world data set
consists of two steel fibers found in fiber-reinforced concrete. The fibers’ surfaces are
quite smooth, and the primary interest here is the overall shape and connectivity of ob-
jects. Both data sets were given as 3D images, generated via scanning the objects with
micro-computed tomography at the Fraunhofer Institute for Industrial Mathematics.
Figures 5.6-5.8 show the initial meshes, the resulting B-spline approximations (includ-
ing the subdivisions into individual surfaces), and color plots visualizing approximation
error.

The results provided in Table 5.1 show that the proposed method provides a good
trade-off between an accurate reconstruction of the data and tangent plane continuity
along shared boundaries. Approximation error values compare well to those of the
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Approximation Errors
C0-Method Local G1-Method G1-Method

Object RMS[%] Max[%] RMS[%] Max[%] RMS[%] Max[%]
Sphere 0.004 0.025 0.006 0.032 0.048 0.359

Cube 0.092 1.330 0.154 1.883 1.050 6.176

Spring 0.013 0.110 0.015 0.127 0.219 1.191

Torus 0.006 0.046 0.008 0.055 0.074 0.418

As. Torus 0.007 0.074 0.005 0.034 0.060 0.399

Tanglecube 0.007 0.080 0.007 0.077 0.168 1.306

Stone 0.041 0.737 0.066 0.891 0.430 2.445

Fibers 0.002 0.018 0.001 0.031 0.024 0.361

(a)

G1-Errors
C0-Method Local G1-Method G1-Method

Object Avg[◦] Max[◦] Avg[◦] Max[◦] Avg[◦] Max[◦]
Sphere 0.522 2.305 0.006 0.048 0 0

Cube 3.795 83.955 0.009 0.112 0 0

Spring 3.132 30.640 0.007 0.108 0 0

Torus 1.271 9.482 0.005 0.059 0 0

As. Torus 2.786 11.181 0.005 0.091 0 0

Tanglecube 3.436 21.076 0.011 0.207 0 0

Stone 7.000 84.278 0.007 0.099 0 0

Fibers 5.133 31.278 0.016 0.292 0 0

(b)

Table 5.1: Approximation (a) and G1-error values (b) for test data sets of a C0-
continuous approximation method (left), the novel local method (middle), and the G1-
continuous method by Fan and Peters (right).
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models with only C0-continuity. The comparison also shows that even though the G1-
continuous models consist of more control points, satisfying the restrictions needed for
exact G1-continuity severely limits the available degrees of freedom when approximat-
ing a dense set of points. As a consequence, the RMS error is about a factor of 10
higher than for the presented local method.

5.5.1 Complexity

When computing control points in a local neighborhood around corners and boundaries
of the quad-mesh, B-spline surfaces are constructed for all incident quad-cells, even
though only a subset of the control points is contributing to the final result. The benefit
of this approach becomes evident when considering the computational complexity of
the algorithm. Assume that t(n) describes the computational cost needed to perform a
G1-continuous approximation with n B-spline surfaces. Let V,E, F be the number of
corners (vertices), boundaries (edges), and cells (faces) of the quad-mesh.

In the quad-meshes used in this chapter, no corner had a valence above 8. In theory
that number could be reduced even more by applying optimization algorithms to gen-
erate a more even distribution of valence values. Let nv be the highest valence of any
corner in the quad-mesh. The largest systems that has to be solved during the B-spline
computation consists of at most nv surfaces, i.e., the computational cost for the first
phase is at most V · t(nv).

During the boundary phase only pairs of neighboring quad-cells are considered.
Assuming the potential speed-up resulting from having already a number of fixed con-
trol points from the first phase is neglected, the computational cost of the boundary
phase is E · t(2).

Finally, in the interior phase, every G1-relevant vertex is considered to be a given
constant. Hence, a solution must be found for only (nc − 4)2 unknown control points.
To provide a more intuitive upper bound of the method, the computational cost of the
final phase is simply expressed as F · t(1).

This leads to a total computational cost of at most V · t(nv) + E · t(2) + F · t(1).
Solving a global system would have a cost of t(F ). If it were possible to define a system
that scales linearly, i.e., t(F ) = F · t(1), it would be computationally cheaper to solve
the system globally. Unfortunately, to the author’s knowledge, such an approach does
not exist yet. Usually, t(n) is at least in Ω(n log n) or worse. Note that the same
argument also holds for memory requirements. The total amount of memory required
to represent the systems of equations for several small systems is by far less than the
amount required for a global system.

Besides having a lower runtime and memory complexity, the presented approach
can also make use of parallel computing. In practice, this means that the computation
can be sped up at the cost of higher memory requirements, allowing the system to adapt
its performance to the available hardware.
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(a) Triangle mesh (753 774
vertices)

(b) B-spline model (130 sur-
faces)

(c) Approximation error

(d) Triangle mesh (48 600
vertices)

(e) B-spline model (60 sur-
faces)

(f) Approximation error

(g) Triangle mesh (861 858
vertices)

(h) B-spline model (538 sur-
faces)

(i) Approximation error

Figure 5.6: Sphere (top), cube (middle), and spring (bottom). These examples share a
simple topological situation. However, their geometric complexity varies. The sphere
has constant curvature while the cube consists of several flat surfaces. The spring con-
sists of regions of strongly varying curvature. Errors are highest close to edges and
regions of changing curvature.
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(a) Triangle mesh (426 224
vertices)

(b) B-spline model (180 sur-
faces)

(c) Approximation error

(d) Triangle mesh (151 954
vertices)

(e) B-spline model (248 sur-
faces)

(f) Approximation error

(g) Triangle mesh (383 718
vertices)

(h) B-spline model (452 sur-
faces)

(i) Approximation error

Figure 5.7: Torus (top), asymmetric torus (middle), and tanglecube (bottom). Even
with increasing topological complexity, the proposed method still produces high-
quality results. Errors are highest in regions where structures transition from strong
to weak surface bending.
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(a) Triangle mesh (240 468
vertices)

(b) B-spline model (234 sur-
faces)

(c) Approximation error

(d) Triangle mesh (439 464
vertices)

(e) B-spline model (718 sur-
faces)

(f) Approximation error

Figure 5.8: Stone (top) and fibers (bottom). Sharp features are smoothed out. The
overall approximation error is still low, and important shape characteristics are well-
preserved.
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(a) No. of quads: 258
RMS error: 0.037%
Max error: 0.262%
Avg G1: 0.014◦

Max G1: 0.171◦

(b) No. of quads: 224
RMS error: 0.033%
Max error: 0.205%
Avg G1: 0.005◦

Max G1: 0.079◦

Figure 5.9: Impact of quad-mesh. (a) Quad-mesh created automatically; (b) quad-mesh
generated manually with cell boundaries in principal curvature directions.

5.5.2 Impact of the Quad-mesh

The error visualizations indicate that the quality of the approximation depends on the
quadrilateral partition of the data. Strong variations in curvature or multiple fine details
within a single surface lead to a higher approximation error. This behavior suggests
that a partition with a limited amount of surface complexity per cell is desirable.

Figure 5.9 provides a comparison between an automatically generated quad-mesh
and one that has been manually constructed. In both cases, each B-spline surface is
defined by 6 × 6 control points. The manually constructed quad-mesh is designed in
such a way that individual surfaces only contain curvature situations that can be handled
easily. Even though the automatically generated quad-mesh has a higher number of
surfaces, the quality of the B-spline approximation is worse than the approximation
based on the manually created quad-mesh.

5.5.3 Conclusions

This chapter presented an approach for surface approximation that works locally. Given
a point set and a quadrilateral base mesh, the algorithm computes a smooth B-spline
surface model that closely approximates the input. The direct comparison shows that
it offers a good trade-off between a purely C0-continuous algorithm and an exact G1-
continuous scheme. The method is demonstrated using nonlinear pointwise constraints.
Approximation specific steps and continuity constraints can easily be exchanged by
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other algorithms. The main contribution is the local approach, making it possible to
locally use other approximation methods that usually could not be applied due to data
size or memory limitation.

In addition, meaningful ways to analyze the resulting B-spline approximation qual-
ity were discussed. Statistical measures are computed which can be used to trigger a
re-computation with different parameters to improve an approximation. The colored
surface quality visualizations are effective to ensure that desired approximation quality
criteria are met.

Due to the locality of the algorithm, not all data needs to be present in memory
simultaneously. For each B-spline surface to be computed, the method only requires
the data of the incident cells. Thus, it is possible to merge computation results pro-
duced during different phases. This enables the processing of data sub-sets prior to
progressing to other data parts and thereby minimizes expensive I/O operations.

The presented algorithm does not rely on a specific choice of continuity constraints.
Any G1-continuous method can be used for the local surface construction. The method
can utilize B-splines of any order and it can be generalized to arbitrary dimensions.
Knot vectors do not necessarily need to consist of uniformly spaced knot values. How-
ever, for a quad-mesh of general topology, they must be equal for all B-spline surfaces
and all dimensions.

5.6 Core Reference

• D. Mosbach, K. Schladitz, B. Hamann, and H. Hagen: A local approach for
computing smooth B-spline surfaces on arbitrary quadrilateral base meshes. to
be published in ASME Journal of Computing and Information Science in Engi-
neering.
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Chapter 6

Feature Driven Viewpoint
Placement for Model Based Surface
Inspection

6.1 Abstract

The goal of visual surface inspection is to analyze an object’s surface and detect defects
by looking at it from different angles. Developments over the past years have made it
possible to partially automate this process. Inspection systems use robots to move
cameras and obtain pictures that are evaluated by image processing algorithms.

However, the task of automation is intrinsically tied to the application and the envi-
ronment of the inspection. Setting up these systems or adapting them to new models is
primarily done manually by a trained expert. A key challenge is to define camera view-
points, i.e., position and orientation of the camera, from which the images are taken.
The number of viewpoints should be as low as possible while still guaranteeing an in-
spection of the desired quality. System engineers define and evaluate configurations
that are improved based on a time-consuming trial and error process leading to a suf-
ficient, but not necessarily optimal, configuration. With the availability of 3D surface
models, the system configuration can be done virtually.

This chapter presents a new, scalable, approach to determine a small number of
well-placed camera viewpoints for optical surface inspection planning. The initial
model is approximated by B-spline surfaces. A variety of meaningful geometric fea-
ture functionals is defined and used for an adaptive, non-uniform surface sampling that
is sparse in geometrically low-complexity areas and dense in regions of higher com-
plexity. This sampling is accomplished by subdividing the B-spline surface model into
segments for which the selected feature functional falls bellow a user-defined threshold.
The presented approach is applicable to solid objects with a given 3D surface model. It
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makes camera viewpoint generation independent of the resolution of the triangle mesh
and it improves previous contributions with respect to the number of viewpoints and
their relevance.

Results from applying the method to objects of varying geometric and topological
complexity are shown and analyzed. Computational cost of the algorithm is low and the
resulting distribution of viewpoint candidates can easily be steered by a low number of
meaningful parameters. Furthermore, an in-depth analysis of the feature functionals is
provided, highlighting their respective strengths and making suggestions for favorable
use-cases.

The main contributions of this chapter can be summarized as follows:

• A novel algorithm to compute viewpoint candidates for visual surface inspection.

• Introduction of various geometric feature functionals on which the non-uniform
surface sampling is based.

• Validation of the presented approach by applying it to sample objects of varying
complexity.

• Analysis and comparison of the introduced feature functionals with respect to
computational cost, intuition, and stability.

6.2 Introduction

With the abundance of various sensing methods, almost every produced object under-
goes a quality assurance process. Because of their availability and application versa-
tility, optical sensors are commonly utilized, both as a support, as well as a primary
sensing device. When it comes to surface quality inspection, they are especially useful
as there are many advanced machine vision tools available (e.g. [8, 23, 40]). Moreover,
they enable the possibility of inspecting both optical and spatial properties of the object.
Over the years, significant effort has been put into inspection process automation. An
in-depth analysis of the topic and various ways to automate machine vision tasks have
already been covered by literature [4].

One widely known, but rarely emphasized or discussed, fact is that the overall
visual inspection automation is inextricably connected to the application and the en-
vironment of the inspection, thus requiring an expert approach at the point of image
acquisition system design and hardware configuration. The design of the system affects
the acquired images and consequently enables or hinders the machine vision algorithms
analyzing the given images.

The expert approach is required when a decision concerning the hardware place-
ment is needed. The system design is an iterative process consisting of four steps:
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assessment of the product geometry and its reflection properties, construction of a pro-
totype configuration, verification using several machine vision algorithms and configu-
ration adjustment. It is a process which works well, given a low geometric complexity
of the surface. An increase in complexity makes the system design more tedious and
harder to evaluate in terms of inspection completeness and accuracy, thus raising the
need of developing an automated design (planning) tool. With general shift of the in-
dustry towards more flexible production lines producing small size batches of geomet-
rically strongly varying objects, this challenge becomes more relevant. For example,
additive manufacturing (3D printing) is one important application, where no adaptive
inspection solution yet exists.

During the assessment phase, an engineer will observe the product from various an-
gles, learning about the object’s characteristics (features) such as visible or potentially
occluded surfaces (geometry) and light response behaviour. Based on the observed
features and own experience, the engineer will infer the initial acquisition system con-
figuration, relative to the inspected object, and introduce further refinement. Even for
an expert, this process is often based on trial and error and requires many iterations
and tests. As a consequence, setting up an inspection system manually can take days
or even weeks until it meets the required quality criteria. The described process can be
translated into more formal steps: 1) read object features, 2) consider potential con-
figurations, 3) choose the most promising configuration (based on object features and
expert knowledge). The first two steps belong to object space exploration and the third
to optimization. Once a set of optimal viewpoints is determined, the physical system
prototype has to be configured. Cameras must be placed either statically or dynami-
cally using a manipulator. In case of a manipulator, an additional path planning step is
required for viewpoint traversal. Figure 6.1 illustrates this pipeline.

Visibility of a defect and probability of detection depend on the relative angles
between camera, surface, and the illumination [26]. An image of a free form object is
likely to exhibit a large variation of those angles, making it challenging to heuristically
ensure every part of the object is inspected from a proper position.

In this chapter, the object space exploration is considered to be the main challenge.
An approach to solving it is proposed based on a 3D model of the object, using its
geometric features as viewpoint planning criteria. The obtained viewpoint candidate
set is derived directly from the specific object features which are to be inspected. It has
a controllable distribution for areas of varying complexity. The impact of the viewpoint
candidate sets is further evaluated using a next best view greedy algorithm.
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Figure 6.1: Overall pipeline. A set of viewpoint candidates gets produced by placing
virtual cameras and directing them at certain pivot points on the objects surface. From
these candidates, a lower number of optimal viewpoints get selected so that the object
is still sufficiently covered. Then, a camera path is planned considering the degrees of
freedom of the used inspection system. Finally, the physical inspection system carries
out the inspection by moving the camera along the computed trajectory and taking
pictures at the selected viewpoints.

6.3 Related Work

The need for automated inspection planning tools has been recognized for over 30
years and a significant amount of effort has been put into researching it. Early work of
Cowan and Kovesi [10] present an analytical approach, suggesting that for each surface
polygon, a 3D solution space should be formed by solving inspection requirements
posed as analytic constraints. The optimal solution is then reached through intersection
of all obtained solution spaces. Their work focuses on a low complexity surface patch,
since such an approach is computationally expensive.

Sakane et. al. [67, 68] use uniformly and adaptively tessellated spheres for solution
space discretization and further evaluate the sphere facets by two criteria: reliability for
recovering the surface normal vectors and detectability of the surface by camera and
illuminators. The size of the viewpoint candidate sets is briefly commented on, stating
that the desired number of viewpoint candidates should be manually chosen to balance
the trade-off between planning complexity and accurate inspection representation.

Tarabanis et. al. contribute to the inspection planning field through their work on
the MVP (machine vision planner) system [76, 75], where the use of viewpoint candi-
date sets is recognized as the generate-and-test approach to inspection planning. The
survey considers objects containing only polyhedral features and the authors state a
clear need for the development of planning algorithms capable of handling complex
surfaces. They are inclined towards the synthesis approach, stating that the viewpoint
candidate approach might have the following drawbacks: computational costs of the
combinatorial search over finely tessellated (spherical) parameter spaces, use of a tes-
sellated sphere for viewpoint visibility evaluation, and overall scalability of the ap-
proach.

Tarbox and Gottschlich [77], too, use a densely sampled viewing sphere, explicitly
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stating they have no apriori preference on viewpoint placement. The camera viewing
distance d is fixed to an arbitrary number and the viewpoints are uniformly distributed
over the sphere’s surface. It is assumed that the visible parts of the object are always
within the acceptable depth of field. The main incentive for using dense sampling is to
increase the likelihood of the discovery and coverage of regions which are difficult to
sense by introducing redundancy. For meshes containing 1 000 - 2 500 vertices, they
produce a set of 15 000 viewpoint candidates which is then used for the evaluation of
the proposed optimization algorithms. They stress discrete surface representation as a
major drawback of the sensor planning algorithms because the allowed shapes of the
surfaces are restricted.

Sheng et al. [70, 71] focus on inspecting objects consisting of surfaces with promi-
nent differences in orientation or having low degree of waviness. They take the flat
patch growing approach by first splitting the surface into sub-patches, calculating the
bounding box of each sub-patch and finally placing the viewpoint candidate at a fixed
distance along the normal of the largest bounding box side.

Prieto et al. [65] discretize a 3D model described by NURBS into voxels, split
the object into sub surfaces representing simple patches, and, for each patch, find a
viewpoint which can be used on the surface in a sweeping manner (also known as
view swaths). While such an approach works well on simple objects, it struggles when
applied on free form or highly complex surfaces.

Scott [69] suggests an alternative model-based approach using geometric informa-
tion of the object. A viewpoint candidate is created for each vertex of the mesh, which
is stated to be the optimal point for surface description. Due to the high resolution and
geometric complexity of some discrete models, the first step is to perform a curvature
sensitive resampling. After an additional decimation step, the final viewpoint candidate
set is created. A good decimation level is heuristically determined to be 32 times lower
than the target model. The method achieves good results for a set covering approach
(e.g., a model of ca. 36 000 vertices is resampled to 702 vertices and decimated to 72
viewpoint candidates). The introduced geometry-based exploration principles provide
the foundation for the feature driven approach presented in this chapter.

In his work on underwater inspection path planning, Englot [18] creates a viewpoint
candidate set using random sampling of the mesh primitives, where each primitive is
used as a pivot point for a viewpoint. The viewpoints are generated until each facet of
the model has reached an arbitrary level of redundancy (number of different viewpoint
candidates from which a facet can be observed), resulting in ca. 2 500 and 1 300 view-
point candidates from approximately 131 000 and 107 000 vertex meshes respectively.

Gronle and Osten [28] agree with [69] on generating one viewpoint candidate per
mesh vertex. Instead of sampling down the triangulation, they reduce the cardinality of
their viewpoint candidate sets using an octree. Each leaf contains a group of neighbor-
ing candidates from which random viewpoints get selected while others with similar
orientation get deleted.
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Jing [38] employs a mesh dilation by a maximum depth field within which a cam-
era can operate. Such an approach resembles the tesselated sphere, but with higher
correlation to the model geometry. The viewpoint candidates are obtained by sampling
the dilated surface until a predefined number of viewpoint candidates is reached. Their
orientation is calculated based on the distance d to the original object primitives, where
each primitive has an attraction force of 1/d2.

Beside discrete solutions, recent work by Mavrinac et al. [48] and Mohammadikaji
et al. [50] shows a rise in continuous optimization, which does not require the gener-
ation of a viewpoint candidate set. It is a possible alternative to inspection planning
and enables the discovery of a truly optimal solution at the cost of higher computa-
tional requirements. Due to the different nature of the general approach, an in-depth
comparison is beyond the scope of this thesis.

The viewpoint candidate set generation itself has not received much attention as
a solemn research focus so far. While it is present in the available literature, various
approaches and their impact to the selected final viewpoints are not discussed. Re-
searchers mostly approach it in a way to obtain any kind of reasonable search space
before proceeding onto the optimization which is the focus of their work. The ob-
tained viewpoint candidate set is assumed to be dense enough to contain the optimal
viewpoints and is thus deemed adequate. While such approaches offer a rather clean
shortcut to tackling the optimization problem, they also inherently impose an optimiza-
tion handicap due to the fact that viewpoint candidates are mostly not generated based
on geometric features of the model. The object space exploration approaches used so
far are reasonable and good in terms of implementation simplicity. However, they also
do not revise different possibilities or modifications which could produce both more
meaningful and application-specific results, as well as reduce cardinality of the gen-
erated viewpoint candidate set. Existing solutions have not considered uneven object
space sampling by concentrating the viewpoint candidates in areas which might appear
challenging during the inspection based on various criteria. Such a modification is cru-
cial due to the fact that the optimization problem at hand is a set covering problem and
thus NP-hard. As such, it requires a combinatorial approach to solve it. This work aims
to decrease the combinatorial complexity challenge by providing an adaptive method
for feature driven placement of viewpoint candidates. The results are meaningful and
application-specific viewpoint sets of suitable size for the subsequent optimization pro-
cess.

6.4 Method

The novel strategy, presented in this section, finds viewpoint candidates by subdividing
a continuous model of parametric surfaces into smaller segments, leading to an adaptive
and feature-based sampling of the object.
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Figure 6.2: Generating viewpoint candidates. Discrete data is approximated by a B-
spline model. Surfaces are subdivided according to a user-defined geometric feature
functional (e.g., curvature). Viewpoint candidate pivot points are placed at the centers
of each subdivided segment. The cameras are positioned on the line defined by the
normal vectors of the surface.

Here, a viewpoint candidate is defined to be a pair of 3D vectors, one of them
describing the camera position in world coordinates, the other being the view direction
of the camera.

The approach uses a parametric surface representation, in particular it is designed
for (but not limited to) objects described by B-spline surfaces. While those surfaces
are often an intermediate product of the virtual design process, they are rarely available
to inspection system engineers. Hence, it is assumed that only a triangulated surface
mesh of the object of interest is given. This can either be a digitally designed model
or a result of a 3D reconstruction of a physical object. Due to the use of lasers, 3D
scanning tools produce output in the form of point clouds; a conversion to a triangle
mesh can easily be achieved by a variety of freely available tools and algorithms, e.g.,
[9]. If the model is given only in such a discrete format, the first step is to compute a
network of continuous B-spline surfaces approximating the original data.

Using B-splines makes the subsequent steps fully independent of the resolution of
the input mesh and supports the computation of analytically describable measurements
on the surfaces without undesirable discretization effects. Given a model, the user needs
to specify a so-called feature functional E that measures the relevance of a surface re-
gion with respect to certain application-specific features. It should be designed in such a
way that it has high values for regions that need to be densely covered by viewpoint can-
didates and low values in less relevant regions. Let S be a parametric surface, parame-
terized over a rectangular region Ω0 = [umin, umax]× [vmin, vmax] ⊂ R2. A point on the
surface is denoted by S(u, v) ∈ R3 and the notation S(Ω) = {S(u, v)|(u, v) ∈ Ω} is
used to describe the segment of the surface corresponding to the region Ω ⊆ Ω0. The
value of the feature functional for the entire surface is denoted by E(S) and the value
of the segment corresponding to a parameter region Ω by E(S,Ω).

In order for the algorithm to converge, the values of the E(S,Ω) need to converge
to zero as Ω converges to a point. To obtain a stable subdivision behavior with respect
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to the chosen termination threshold, the value of the feature functional computed for
a part of a region needs to be smaller than the value computed for the region itself,
i.e., for two parameter regions Ω,Ω′ ⊆ Ω0, it is required that E(S,Ω′) < E(S,Ω) if
Ω′ ⊂ Ω.

For functionals that are defined as integrals over some function f of the form

E(S,Ω) =

∫∫
Ω
f(S, u, v)dudv,

it follows that
E(S,Ω) = E(S,Ω′) + E(S,Ω′′)

when Ω′∪Ω′′ = Ω and Ω′∩Ω′′ = ∅. In this case, E is said to be additive, which means
that partitioning a surface segment leads to a partitioning of the evaluated values. This
leads to a monotonic decrease when the surface is subdivided. When the function f has
a regular distribution of values, the value of E will decrease approximately exponen-
tially with respect to the depth of the subdivision.

The chosen measurement is used to steer the placement and distribution of view-
point candidates by recursively subdividing regions with high values until a predefined
threshold is met. Once the surface network is subdivided, a viewpoint candidate is
computed for each segment of the subdivided model.

Assuming that the initial input is a triangle mesh model, the individual steps can be
summarized as follows:

1. Generate a representation of the object with a finite number of B-spline surfaces.

2. Subdivide the B-spline surfaces with respect to a user-defined functionalE(S,Ω)
and an associated threshold value t.

3. Place viewpoint candidates in R3 based on the subdivision of the model.

Figure 6.2 illustrates this process. The generation of the B-spline surface model
is described in detail in Chapter 2. Subsection 6.4.1 covers the subdivision of such a
model. The computation of the viewpoint candidates is explained in Subsection 6.4.2.
Subsection 6.4.3 introduces a variety of possible and practical feature functionals. A
method to select optimal viewpoints from the list of candidates is discussed in Subsec-
tion 6.4.4.

6.4.1 Subdivision of the Model

This section describes the feature-based subdivision approach for a given B-spline
model consisting of ns surfaces Si : Ω0 → R3, i = 1, ..., ns defined over a rectangular
parameter region Ω0 ⊂ R2. Let E(S,Ω) be the given functional that measures how
prominent a feature of interest occurs within the segment of S restricted to Ω ⊂ Ω0.
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(a) Subdivision in parameter space (b) B-spline surface in R3

Figure 6.3: Subdivision of a single B-spline surface using thin-plate energy as fea-
ture functional. Plotting the integrand value of Equation (2.10) in the parameter space
Ω0 = [0, 1]× [0, 1] illustrates how the approach leads to a deeper subdivision in areas
with high values (a). (b) shows the surface S(Ω0) and its subdivision into segments in
R3.

The goal is to subdivide each surface into segments, such that E, evaluated for any of
these segments, is below a given threshold t. Since the presented recursive approach
considers each surface individually, it can be applied in parallel to all B-spline surfaces
of the model.

The B-spline surfaces are subdivided in parameter space. The subdivision method
is inspired by the work of Nouanesengsy et al. concerning analysis-driven refinement
[56]. Initially, for each B-spline surface S, the given functional E is evaluated for the
entire surface. If its value is larger than t, the parameter domain is subdivided into
four equal-size rectangles. The procedure continues recursively for each subregion.
Once the value of E evaluated for a segment falls below t, the corresponding parameter
region does not get subdivided any further. Algorithm 1 summarizes this procedure.
Figure 6.3 demonstrates the subdivision of a single surface based on thin-plate energy.

Choosing the Subdivision Threshold

Finding a good subdivision threshold value depends on the understanding of the in-
spection requirements and intuition behind the used subdivision criteria. For example,
a measurement that computes a maximum incidence angle for a segment is easily un-
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Algorithm 1 Recursive Subdivision
function SUBDIVIDESURFACE(S,Ω, E, t)

if E(S,Ω) > t then
(Ω1,Ω2,Ω3,Ω4)← SPLIT(Ω)
return

⋃4
i=1 SUBDIVIDESURFACE(S,Ωi, E, t)

else
return {S(Ω)}

end if
end function

function SPLIT(Ω = [u0, u1]× [v0, v1])
uc ← u0+u1

2
vc ← v0+v1

2
Ω1 ← [u0, uc]× [v0, vc]
Ω2 ← [uc, u1]× [v0, vc]
Ω3 ← [u0, uc]× [vc, v1]
Ω4 ← [uc, u1]× [vc, v1]
return (Ω1,Ω2,Ω3,Ω4)

end function

derstood, while an integral of principal curvatures requires the user to have specialized
training in geometry in order to interpret the resulting values.

Defining the subdivision threshold manually requires technical knowledge about
the expected values for differently shaped surfaces. This can be mitigated by evaluating
the feature functionals for all individual surfaces and calculating the average value

tavg =
1

ns

ns∑
i=1

E(S). (6.1)

The user defines a percentage of the average to control the amount of viewpoint candi-
dates. For example, choosing t = 0.5tavg leads to a subdivision of the surface network
until the values of each patch are below half of the overall average feature value. Al-
ternatively, if the feature functional has the additivity property, it is possible to express
the threshold as a percentage of the total value over the entire object.

A suitable subdivision threshold can also be chosen interactively in real time. In this
scenario, it is necessary to pre-compute the subdivision for a small threshold t1, e.g., a
lower bound for the range of considered thresholds. Depending on the complexity of the
feature functional, computing this fine subdivision can be time-consuming. However,
when all intermediate steps and evaluated measurements are stored in a tree structure,
the tree can be cut back in real time for any threshold t2 > t1. This makes it possible
for the system engineer to adjust a slider in a graphical user interface and interact with
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a visual representation of the subdivided model to determine the best threshold for a
specific application scenario.

Modifications

If the used feature functional is additive, it allows for a potential speed-up of the process
by starting with a fine subdivision of all surfaces. The subdivision tree is then computed
backwards, i.e., by merging individual surface segments as long as the value of the
merged patch stays below the subdivision threshold. The computational speed-up is
due to the fact that E only has to be evaluated for the deepest subdivision level. The
values of the combined segments can be obtained by adding the values of the individual
segments.

Furthermore, the algorithm can be extended to handle multiple functionals describ-
ing different features of interest, e.g., both curvature and surface area. For this purpose,
the feature functional and threshold parameter must be replaced by a list of functional-
threshold pairs. All functionals are evaluated, and when one exceeds its corresponding
threshold the evaluated segment is subdivided.

Iterative Subdivision

The goal of the recursive subdivision is to generate a sufficient sampling of the model
with respect to the features of interest. Alternatively, a global approach guided by a de-
sired number of viewpoint candidates can be chosen. This approach becomes necessary
when external constraints limit the amount of allowed viewpoint candidates.

Let tn be a given number of maximum viewpoints for the entire model. Instead
of individually subdividing each surface until the measurement reaches the subdivision
threshold, the feature functional is evaluated for all surface segments and the segment
where it is maximal is subdivided. This procedure is repeated until the desired amount
of segments is reached. Algorithm 2 summarizes this approach.

Algorithm 2 Iterative Subdivision

function SUBDIVIDEMODEL({S1, S2, ..., Sns}, E, tn)
S ← {S1, S2, ..., Sns}
while |S| < tn do

(S′,Ω′)← argmax
S,Ω:S(Ω)∈S

E(S)

(Ω1,Ω2,Ω3,Ω4)← SPLIT(Ω′)
S ← S \ S′(Ω′) ∪ {S′(Ω1), S′(Ω2), S′(Ω3), S′(Ω4)}

end while
end function
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6.4.2 Computing the Viewpoint Candidates

After the subdivision phase, one viewpoint candidate is placed per surface segment
of the subdivided model. First, a pivot point is chosen, i.e., the point that determines
the camera viewing direction. Then, the actual camera position is calculated via a
user-defined distance d. This distance is manually determined by a system engineer
according to the inspection set-up requirements. That way, the viewpoint candidate
generation approach assures compliance with the camera’s depth-of-field constraints at
generation time.

The approximated center of the segment is used as a pivot point. It can be obtained
by evaluating the surface at the center point of its respective parameter domain. The
camera position is computed by moving away from the surface in the direction of the
surface normal, given by

n(u, v) =
∂uS(u, v)× ∂vS(u, v)

‖∂uS(u, v)× ∂vS(u, v)‖
.

The position of the camera is defined as

CdS,Ω = S(uc, vc) + n(uc, vc) · d, (6.2)

where (uc, vc) is the center of the parameter domain Ω. For a rectangular region
Ω = [u0, u1]× [v0, v1], it is given by uc = (u0 + u1)/2 and vc = (v0 + v1)/2. The
view direction of the camera is the reversed normal vector. Figure 6.4 illustrates this
concept.

6.4.3 Feature Functionals

The feature functional E is essential for the distribution of the viewpoint candidates.
In order to produce high quality results, tailored to specific applications, it needs to be
defined in a way that identifies areas of interest by assigning them high values while at
the same time giving low values to areas that do not contain the desired features. It is
up to the system engineer to either choose or define a functional applicable to their use
case. A good functional should be intuitive and easy to compute.

As discussed in Section 6.4, the values of E(S,Ω) need to converge towards zero
as Ω converges to a single point to ensure termination of the subdivision. The follow-
ing subsections introduce a number of fundamental feature functionals that satisfy this
property. They are suitable candidates for a variety of shapes, as they highlight com-
mon geometric features of interest. The modularity of the algorithm allows it to be
easily extended with custom functionals as long as they also satisfy the convergence
property.

Some of the presented feature functionals are defined as integrals. For implemen-
tation purposes, those can be evaluated numerically. Trapezoidal rules have proven to
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(a) (b)

Figure 6.4: Computing the viewpoint candidate for a surface segment. (a) illustrates a
subdivision of a surface in parameter space. The image S(Ωi) of the highlighted region
is shown in (b). Evaluating the surface at the center of Ωi yields the pivot point for
this segment. The camera position is obtained by moving away in the direction of the
surface normal at that point.

be an adequate method, as for a sufficiently dense sampling of the surface, the error
becomes neglectably small [2].

Curvature

In the context of surface inspection, the placement of viewpoint candidates should be
focused around highly curved parts of the object. The high surface variation in those
regions usually requires an inspection from several directions, while flat regions can be
covered with a single or only a few viewpoints.

Commonly used terms to describe curvature are the principal curvatures κ1 and
κ2. At any given point on the surface, these are the normal curvature values in the
directions in which the surface has its lowest and highest bending, respectively. Com-
bined, they define the mean curvature H = (κ1 + κ2)/2 and the Gaussian curvature
K = κ1κ2. More detailed information on differential geometry and curvature can be
found in literature [12].

Individually, these terms are not suited to separate flat and curved regions, as both
can become zero in non-flat regions, i.e., if one of the principal curvatures is zero while
the other has a value other than zero (Gaussian curvature) or if κ1 = −κ2 6= 0 (mean
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curvature). This can be resolved by directly considering the principal curvatures. The
surface integral given by

Eκ(S) =

∫∫
S
κ2

1 + κ2
2 dS (6.3)

is a meaningful measurement to describe the total bending of a surface S [30]. It is
equal to zero if and only if S is a flat surface. To compute the integral with respect to a
parameter region Ω, it can be rewritten as

Eκ(S,Ω) =

∫∫
Ω

(κ2
1(u, v) + κ2

2(u, v)) ‖∂uS(u, v)× ∂vS(u, v)‖ dudv. (6.4)

B-splines are parametric surfaces with well-defined first and second derivatives ev-
erywhere. Hence, it is possible to analytically evaluate κ1 and κ2 at any point and
numerically compute the entire integral.

For implementation purposes, it is useful to express the integrand of Equation (6.4)
in terms of Gaussian and mean curvature:

κ2
1 + κ2

2 = 4H2 − 2K.

Evaluating this term requires less operations, asH andK can be obtained directly from
the coefficients of the first and second fundamental forms which are straightforward to
compute at any point of a B-spline surface [12].

Thin-plate Energy

Computing the integral of the principle curvatures numerically yields precise and in-
tuitive results at the price of high computational cost. However, it can be sped up
immensely by approximating Equation (6.3) using the thin-plate energy, as described
in Section 2.3.

This is done by generalizing the thin-plate energy term, see Equation (2.10), to
arbitrary parameter regions Ω. The resulting feature functional for a B-spline surface S
is defined as

ETP(S,Ω) =

∫∫
Ω
‖∂uuS(u, v)‖2 + 2 ‖∂uvS(u, v)‖2 + ‖∂vvS(u, v)‖2 dudv

=
∑

σ∈{x,y,z}

bTσMΩbσ. (6.5)

Analogously to Equation (2.11), the matrix MΩ ∈ Rn2
c×n2

c is given by

MΩ =

∫∫
Ω

(∂uuN(u, v))T (∂uuN(u, v))

+ 2(∂uvN(u, v))T (∂uvN(u, v))

+ (∂vvN(u, v))T (∂vvN(u, v))dudv.
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After computingMΩ, evaluatingETP(S,Ω) requires the calculation of computationally
inexpensive matrix-vector products.

The coefficients of the matrix MΩ only depend on the used knot vector τ , the order
k of the B-spline and the evaluated parameter region Ω. Assuming that all B-spline sur-
faces in the model have the same order and knot vector, MΩ only needs to be computed
once per subregion Ω ⊆ Ω0 that is considered during a subdivision step. The matrices
for individual subregions can be precomputed and saved up to a predefined maximum
subdivision depth allowing for them to be reused on different models with same order
and knot vector.

Maximum Deviation From Average Normal

An alternative approach to obtain a subdivision into mostly flat surface segments is to
aim at a low variation of normal vectors within each patch. Finding the maximum angle
between normal vectors at any two arbitrary surface points is a non trivial task. A more
practical solution is to calculate the average normal of a surface segment and compute
the maximum angle between any normal vector on the segment and this average normal.
This is a modification to the approach used by Sheng et al.[70] who apply this concept
in the discrete case of triangulated surfaces.

In the continuous setting of B-splines, the average normal vector of a surface seg-
ment is given by

ñavg(S,Ω) =

∫∫
Ω n(u, v) ‖∂uS(u, v)× ∂vS(u, v)‖ dudv∫∫

Ω ‖∂uS(u, v)× ∂vS(u, v)‖ dudv

with normalization

navg(S,Ω) =
ñavg(S,Ω)

‖ñavg(S,Ω)‖
.

The functional to measure maximum normal deviation is then defined as

END(S,Ω) = max
(u,v)∈Ω

cos−1
(
navg(S,Ω) · n(u, v)

)
.

Maximum Incidence Angle

While this work focuses on geometric properties of the target objects, it can also utilize
additional knowledge from material science. Some properties like surface roughness
or reflection behavior require a restriction of the angle under which the surface of the
object is inspected. This is achieved by introducing a functional that measures the
maximum deviation between the surface normal at any point of the segment and a ray
that originates from a camera placed according to Equation (6.2) at distance d:

EIA(S,Ω) = max
(u,v)∈Ω

cos−1

(
n(u, v) ·

CdS,Ω − S(u, v)

‖CdS,Ω − S(u, v)‖

)
.
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More complex constraints like a range between minimum and maximum angle or devi-
ation from an optimal angle can be modeled in a similar way.

Area

Surface area itself can also be used as subdivision criterion. It makes sure that at least
one viewpoint candidate gets generated per predefined maximum amount of area. This
is especially useful in cases where features of interest cannot be expressed by simple
mathematical functions or in a prototyping process where specific feature functionals
are not yet determined. Moreover, inspection pipeline characteristics such as a narrow
camera frustum might impose limiting factors on the amount of the surface that can be
processed from a single viewpoint. A subdivision by area will always ensure a certain
sampling resolution of the surface.

The surface area is given by

EA(S) =

∫∫
S

1dS. (6.6)

To obtain the feature functional for arbitrary segments, (6.6) is rewritten as

EA(S,Ω) =

∫∫
Ω
‖∂uS(u, v)× ∂vS(u, v)‖ dudv.

For complex objects, this functional can be used in combination with other geometric
feature functionals like curvature to control sampling rate sparsity in flat regions.

Region of Interest

Engineers and inspectors working with production lines can usually predict where de-
fects will occur based on their experience. Even if the inspection is already automated,
this kind of knowledge can be obtained by analyzing the distribution of previously de-
tected defects.

If this information is available, the application scientist can define a region of in-
terest (ROI), either directly by using a brush tool on the surface or freely in 3D world
coordinates (e.g., by defining a bounding sphere or bounding box) to highlight regions
of the object at which the viewpoint candidate distribution needs to be more intense.
With

fROI(x, y, z) =

{
1, if (x, y, z) ∈ ROI
0, otherwise

,

the ROI-functional is defined as the surface area that is inside the region of interest:

EROI(S,Ω) =

∫∫
Ω
fROI (S(u, v)) ‖∂uS(u, v)× ∂vS(u, v)‖ dudv
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Besides highlighting regions where errors are expected, this functional can also
be used to focus on critical parts of the object in which surface defects have a higher
significance.

6.4.4 Selecting Final Viewpoints

After a set of viewpoint candidates is computed, a list of optimal viewpoints needs to be
selected with the requirement of keeping the number as low as possible while covering
the desired parts of the object. For that purpose, the initial mesh model of the object
is used to evaluate the viewpoints. Let F be a set containing the nF surface primitives
(triangles) of the mesh and let a set of viewpoint candidates V = {v1, ..., vnvpc} be
given. The goal is to find a set of optimal viewpoints O ⊆ V which sufficiently covers
the object. To represent the coverage relation between viewpoints and the faces of the
mesh, a visibility matrix A ∈ {0, 1}nF×nvpc is constructed, with coefficients aij = 1 if
and only if viewpoint vj covers the i-th triangle fi ∈ F .

Since all sets are discrete and finite, the task is equivalent to the Set Coverage
Problem [73] and can be written as

min

nvpc∑
i=1

cixi, ci =
1∑nF

i=1 aij
(6.7)

s.t. Ax ≥ b(F ).

The binary variables xi indicate whether the i-th viewpoint candidate is selected, i.e.,
O = {vi ∈ V |xi = 1}. The vector b(F ) ∈ {0, 1}nF controls which surface primitives
need to be covered by the inspection system. Using b(F ) = (1, ..., 1)T is equivalent to
requiring full coverage.

The next best view approach is frequently used to solve this problem [28, 38, 69].
To evaluate the viewpoint candidate sets reasonably, the same approach is used here.
That way, comparable results are obtained and the strengths of the presented approach
can be discussed. The visibility matrix is built using ray tracing to create the correlation
between the primitives and the viewpoints which can observe them. The starting view-
point is chosen by finding the triangle covered by the least amount of viewpoints. From
the set of viewpoints that observe this triangle, the viewpoint which observes the largest
part of the object is chosen. Further viewpoints are chosen iteratively by always choos-
ing the viewpoint that observes the most uncovered triangles. The process is repeated
until all the primitives are covered or there are no more viewpoints available.

6.5 Results

The presented method is applied to models of varying complexity to demonstrate the
viability of the approach as well as to highlight the differences between the feature
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functionals introduced in Subsection 6.4.3. To enable a meaningful comparison, the
subdivision thresholds are chosen to generate approximately the same magnitude of
viewpoint candidates.

Each result picture shows the subdivided models including glyphs to mark pivot
points and normal directions. When using integral-based functionals, the used subdivi-
sion threshold t is given in relation to the average threshold tavg as defined by Equation
(6.1). For the measurements that are evaluating angles, the threshold is provided as
fixed value in degrees. The number of viewpoint candidates generated by the recursive
subdivision is denoted by nvpc. All shown B-spline models are of order k = 3 and use
uniform knot vectors with multiple ends, see Equation (2.1).

Figure 6.5 shows the results from applying the recursive subdivision to a cylinder
geometry (stretched in one dimension). Top and bottom are each realized by a single
B-spline surface while the mantle is modeled by four surfaces. Due to the stretching
in x-direction, two of these surfaces are relatively flat, while the other two surfaces are
highly bent. The respective sizes of the object in x, y, and z directions are 80, 20, and
20 units in world coordinates.

The spring model shown in Figure 6.6 is geometrically more difficult. Its minimum
bounding box has length and width equal to 15, and height equal to 20 world units.
Like the cylinder, it consists of one individual circular surface at the top and bottom,
respectively. Instead of a smooth mantle, it consists of more complex surfaces with
high variation in curvature along its side. This part is divided into four slices along the
circumference, each being split into three individual B-spline surfaces along its height.
As long as the goal of the viewpoint placement is only unconstrained coverage, this
model can still easily be processed by a human inspector, while the curvature behavior
along the mantle introduces difficulties to most automatic methods. However, once
constraints, e.g., coverage under restricted angles, are factored in, the complexity of
this task increases drastically for human operators, necessitating an automated solution.

In Figure 6.7, the recursive subdivision is demonstrated on a geometrically and
topologically more challenging object. The data itself had been obtained from a 3D vol-
umetric image and the B-spline representation with 452 surfaces was computed fully
automatically using the surface reconstruction approach discussed in Chapter 2. Di-
mensions of the object are 72 world units in x, y, and z direction respectively. Setting
up an inspection system for this model manually would take considerable effort. In this
example the boundaries of the individual B-spline surfaces are not aligned with any
features of the object. Hence, some surfaces can cover both curved and flat parts. The
curvature-based criteria are able to handle this scenario especially well, leading to a
dense placement of viewpoint candidates around highly bent areas.

In some cases, several types of geometric features are relevant and need to be con-
sidered for the placement of viewpoint candidates. As discussed in Subsection 6.4.1,
the recursive subdivision approach can evaluate several functionals and compare them
with their respective thresholds at each step. Figure 6.8 demonstrates this modification
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(a) Thin-plate energy
t = 0.4tavg, nvpc = 42

(b) Curvature
t = 0.4tavg, nvpc = 36

(c) Max. normal deviation
t = 45◦, nvpc = 36

(d) Max. incidence angle
t = 60◦, d = 20, nvpc = 48

(e) Area
t = 0.3tavg, nvpc = 48

(f) Region of interest
t = 0.5tavg, nvpc = 45

Figure 6.5: Application of the recursive subdivision to a cylinder model. The
curvature-based functionals (a), (b), (c) yield a higher sampling where surface bend-
ing is high. However, using the thin-plate energy also leads to a subdivision of the top
and bottom surfaces. Likewise, the incidence angle (d) produces the desired sampling
of the curved areas while also subdividing flat regions to provide sufficient coverage
under the given angle constraints. The subdivision by area (e) provides a good overall
coverage while the region of interest (f) places the viewpoint candidates primarily on
the highlighted region.
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(a) Thin-plate energy
t = 0.2tavg, nvpc = 194

(b) Curvature
t = 0.2tavg, nvpc = 194

(c) Max. normal deviation
t = 70◦, nvpc = 482

(d) Max. incidence angle
t = 85◦, d = 20, nvpc = 326

(e) Area
t = 0.2tavg, nvpc = 224

(f) Region of interest
t = 0.5tavg, nvpc = 86

Figure 6.6: Application of the recursive subdivision approach to the spring model.
The subdivisions for thin-plate energy (a) and curvature (b) are identical for equiva-
lent thresholds. However, the normal deviation (c) shows less stable results. While the
subdivision for the given threshold is finer than for the other curvature-based measure-
ments, choosing a slightly higher threshold would cause no subdivision at all. Using
the incidence angle (d) is also less stable as the middle part of the object does not get
subdivided at all. As in the case of the cylinder model, the area measurement (e) leads
to a evenly distributed sampling while the region of interest (f) subdivides only the
highlighted part of the model.
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(a) Thin-plate energy
t = 0.75tavg, nvpc = 1400

(b) Curvature
t = 0.75tavg, nvpc = 1325

(c) Max. normal deviation
t = 30◦, nvpc = 1571

(d) Max. incidence angle
t = 35◦, d = 130, nvpc = 1379

(e) Area
t = 0.75tavg, nvpc = 1406

(f) Region of interest
t = tavg, nvpc = 1361

Figure 6.7: When applying the recursive subdivision to more complex models, differ-
ences between used functionals become more distinctively visible. Using the thin-plate
energy (a) leads to a higher refinement on curved regions, but also on some of the flat re-
gions as they still contain planar distortions. Measuring curvature directly (b) provides
a more accurate placement of viewpoint candidates around the thin and highly curved
parts of the object, while still moderately refining the outer surfaces with medium bend-
ing. Similar results are obtained using the normal deviation (c) and incidence angle (d)
functionals. A regular sampling is obtained when considering surface area (e). The
region of interest functional (f) leads to a high intensity of viewpoint candidates in the
highlighted part.



82 6.5. RESULTS

(a)
t(TP) = 0.4t

(TP)
avg

t(ROI) = 0.8t
(ROI)
avg

nvpc = 66

(b)
t(TP) = 0.05t

(TP)
avg

t(ROI) = 0.1t
(ROI)
avg

nvpc = 55

Figure 6.8: Combining feature functionals for the recursive subdivision. Both models
are subdivided using both thin-plate energy (TP) and region of interest functional (ROI),
ensuring an adequate overall coverage based on surface bending while also focusing on
a highlighted region.

on selected examples.
Figure 6.9 shows results of the iterative subdivision (Algorithm 2) applied to a

single B-spline surface. This model is 19 world units wide and long while having
a height of 11.8 units. It combines a variety of curvature situations within a single
surface. In contrast to the recursive approach that focuses on coverage of the object
with respect to given objectives, the iterative approach gives the user direct control over
the number of viewpoint candidates. Furthermore, it allows for an intuitive comparison
of the used feature functionals, as similarities and differences can easily be spotted in
the visualizations.

6.5.1 Viewpoint Set Optimization

This section briefly presents the result of the subsequent optimization step where a
small number of viewpoints is chosen to solve the set covering problem (6.7). The
viewpoint candidate sets obtained by applying the recursive subdivision with differ-
ent feature functionals are processed with the next best view approach as explained in
Subsection 6.4.4. The results are given in Table 6.1. While the time for the viewpoint
candidate generation is only dependent on the properties of the B-splines, the selection
step utilizes the original mesh for the raytracing and verification. Hence, the times de-
pend on the number of triangles as well as the number of viewpoint candidates. The
machine used to compute these results is equipped with an Intel(R) Core(TM) i7-4790
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(a) Thin-plate energy (b) Curvature (c) Max. normal deviation

(d) Max. incidence angle (e) Area (f) Region of Interest

Figure 6.9: Applying the iterative subdivision constrained by the number of total view-
points highlights the differences between the presented feature functionals. The num-
ber of iterations is limited to 101 leading to 304 viewpoint candidates in total. The
curvature-based measurements (a), (b), and (c), as well as the incidence angle func-
tional (d) focus the subdivision primarily on curved regions. Small differences can
be observed on those areas with only moderate bending as the individual functionals
prioritize them differently. The area measurement (e) provides a regular, feature inde-
pendent sampling. Using the region of interest (f), subdivisions occur only in segments
that contain parts of the highlighted region.
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CPU @ 3.60GHz and uses 16 gigabyte of DDR3 RAM.

6.5.2 Feature Functional Evaluation

As the presented results demonstrate, a good overall functional that provides satisfying
results for all types of geometries is difficult to define. However, the fundamental func-
tionals used here have proven to effectively focus the viewpoint candidate placement
around the desired features. When a system engineer has a good idea of what charac-
teristics the viewpoint candidates should be focused on, the recursive subdivision will
provide the desired result.

The thin-plate energy provides good results for most situations. It is also the fastest
of the presented functionals and can be evaluated in real time, even for larger objects.
As a consequence it allows the operator to find a good subdivision threshold interac-
tively, e.g., by adjusting a slider and observing the changes in the visualization. Using
the thin-plate energy, however, can also cause subdivisions in some flat areas. While
the subsequent viewpoint optimization for inspection purposes is an NP-hard problem,
a few additional viewpoints are usually not an issue. This effect is further analyzed in
Subsection 6.5.3.

Using curvature as subdivision criterion produces dense sampling of highly curved
regions without subdividing flat areas at all. Because it requires a high amount of
elementary computations, it cannot be evaluated in real time. The bending at any point
on the surface segment contributes to the evaluated value leading to slight averaging
effects, i.e., singular occurrences of a high surface bending will not necessarily trigger
a subdivision of a mostly flat surface piece if the threshold is chosen high enough.

When this effect is not desired, the deviation from the average normal can provide
better results. This functional is more susceptible to local spikes, leading to very high
subdivision levels around them. However, the subdivision threshold should be modified
carefully, as minor changes can drastically increase or reduce the amount of generated
viewpoint candidates. Subsection 6.5.5 analyzes this behavior in more detail.

The maximum incidence angle functional is more practically relevant, as it ensures
that the entire segment assigned to a viewpoint can be inspected under a certain an-
gle. However, as Figure 6.6d shows, the intermediate viewpoint placement evaluation
during individual steps can lead to strong fluctuations of the subdivision depth.

Using subdivision by surface area provides regular sampling. It ensures that no
segment is larger than the given threshold. It does not highlight any particular properties
of the object on its own. However, it is a good supplement for any other criteria that
focus on high subdivisions around specific features, e.g., the region of interest.

In fact, the region of interest functional is the most interactive of the presented
subdivision criteria. It allows users to highlight important features manually without
the need to formally define and implement a measurement. On more complex models,
the features of interest and the regions they are occurring in might be detected using a
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Viewpoint Candidate Generation Viewpoint Set Optimization
Feature Functional Threshold SD [s] nvpc nopt RT [s] NBV [s]
Thin-plate 0.4tavg 0.001 42 16 49.553 0.522
Curvature 0.4tavg 12.518 36 10 41.187 0.427
Normal Deviation 45◦ 2.848 36 10 41.323 0.424
Incidence Angle 60◦ 4.317 48 22 56.680 0.579
Area 0.3tavg 2.950 48 24 61.570 1.031

(a) Cylinder (21 800 mesh primitives, 6 surfaces, 16× 16 control points).

Viewpoint Candidate Generation Viewpoint Set Optimization
Feature Functional Threshold SD [s] nvpc nopt RT [s] NBV [s]
Thin-plate 0.2tavg 0.005 194 13 267.68 189.91
Curvature 0.2tavg 79.921 194 13 269.43 181.01
Normal Deviation 70◦ 20.835 482 9 647.22 610.15
Incidence Angle 85◦ 25.189 326 9 408.50 359.29
Area 0.2tavg 17.253 224 13 312.95 205.01

(b) Spring (51 800 mesh primitives, 14 surfaces, 20× 20 control points).

Viewpoint Candidate Generation Viewpoint Set Optimization
Feature Functional Threshold SD [s] nvpc nopt RT [s] NBV [s]
Thin-plate 0.75tavg 0.008 1 400 36 2 614.64 249.02
Curvature 0.75tavg 16.696 1 325 32 2 556.78 270.60
Normal Deviation 30◦ 2.134 1 571 32 3 103.06 289.86
Incidence Angle 35◦ 3.021 1 379 33 1 771.99 234.97
Area 0.75tavg 1.883 1 406 38 2 613.49 268.04

(c) Tanglecube (82 672 mesh primitives, 452 surfaces, 6× 6 control points).

Table 6.1: Results of the viewpoint candidate generation based on the recursive sub-
division for different feature functionals and set optimization with goal of maximum
coverage. The computational time is caused primarily by three key steps of the process
which are measured individually: Application of the recursive subdivision algorithm
(SD), computation of the visibility matrix via raytracing (RT), and performing the next
best view algorithm (NBV). The number of viewpoint candidates is given by nvpc while
nopt denotes the number of viewpoints chosen during the selection step.
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Intuition Computational Meeting
Functional of Values Cost Design Objectives Additivity

Thin-plate Energy −− + + + + yes
Curvature − −− ++ yes

Normal Deviation ++ − ++ no
Incidence Angle ++ − ++ no

Area + − ++ yes
Region of Interest + − + + + yes

Table 6.2: Qualitative overview over different aspects of the presented feature function-
als. The intuition of values describes how easy it is for a human operator to understand
the values obtained by evaluating the given functional. Computational cost is important
when the system has to be set up interactively or close to real time. How well a func-
tional meets the design objective determines to which extend the results and the user’s
expectations will align. Fulfilling the additivity property leads to a stable behavior with
respect to modifications of the subdivision threshold.

domain specialized tool.
In general, all of the curvature related functionals lead to a good overall viewpoint

candidate placement and ensure that the object is covered from all angles with a rela-
tively low amount of viewpoints. They automatically summarize the object’s geometric
complexity into meaningful values freeing the user of the need to specify complex prop-
erties manually. The remaining measurements are tailored for specific situations and
do not necessarily aim at full coverage of the object in highly bent areas. This can be
compensated by combining them with one of the curvature-based criteria.

Table 6.2 provides a summarized overview over the strengths and weaknesses of the
discussed criteria. The following subsections will further discuss individual aspects.

6.5.3 Curvature Computation Approach

While the thin-plate energy is a widely used functional in variational design to approx-
imate surface bending, it is important to keep in mind that it has been motivated by the
physics of deformations. Therefore, it does not accurately model the actual geometric
properties of the object. A simple example can be constructed by considering a para-
metric surface S◦ with rectangular parameter region Ω◦ = [umin, umax] × [vmin, vmax]
modeling a flat disk. It is clear that κ1 = κ2 = 0 everywhere which means that there is
no geometric curvature. Hence,Eκ(S◦,Ω◦) = 0. However, the mapping from a rectan-
gular region to a circular object has to include planar distortions, i.e., second derivatives
do not vanish everywhere, implying that ETP(S◦,Ω◦) 6= 0.

Figure 6.10b demonstrates this effect. It shows the symmetrical cylinder model
consisting of 6 individual B-spline surfaces with a colorplot of the thin-plate energy
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(a) Model with isolines (b) Thin-plate energy (c) Curvature

Figure 6.10: Analysis of the stretched cylinder. (a) shows the model with isolines
corresponding to the individual knots τi of the B-spline surfaces. Planar distortion can
be observed on the top surface, caused by forcing a quadrilateral surface into an elliptic
shape. As consequence the thin-plate energy (b) does not vanish. (c) shows that the
curvature values conform with the expected result.

FF Top/Bottom (2×) Long Sides (2×) Short Sides (2×)
ETP(S) 18.83% 2.95% 28.22%
Eκ(S) 0% 0.41% 49.59%

Table 6.3: Distribution of feature functional (FF) values on the cylinder model shown
in Figure 6.10. While the curvature functional shows the desired distribution, using the
thin-plate energy will cause a subdivision of the flat surfaces on the top and bottom
before considering the slightly curved side surfaces.

integrand
‖∂uuS(u, v)‖2 + 2 ‖∂uvS(u, v)‖2 + ‖∂vvS(u, v)‖2

on the surface. Since the top and bottom surfaces have ellipsoidal shapes, their second
derivatives do not vanish - especially close to the curved boundaries. At the same time,
the surfaces on the side with almost no bending are described by a close to uniformly
distributed grid of B-spline control points. Hence, there is only little thin-plate energy.
Applying one of the presented subdivision approaches leads to a subdivision of the top
and bottom before considering these two side surfaces. However, as Table 6.3 shows,
the most energy is located at the highly curved surfaces at the ends, which means that
the design objective (i.e., subdivision of highly curved regions) is still met.

The exact curvature measured by κ2
1 + κ2

2 is shown in Figure 6.10c. Like the thin-
plate energy, it has a low value on the long side surfaces and a high value on the strongly
curved ends. However, it vanishes on both the top and the bottom, which is in alignment
with the expected result when aiming for a curvature-based subdivision.
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(a) Model with isolines (b) Thin-plate energy (c) Curvature

Figure 6.11: Analysis of the spring model. The isolines (a) of the B-splines indicate
less distortion in planar regions than for the cylinder in Figure 6.10. Although this still
causes low nonzero values for the thin-plate energy there, the color plot (b) shows that
they can be neglected. The distribution is almost identical to the curvature shown in
(c).

The cylinder model has a relatively simple curvature situation (at least one principal
curvature is zero at any point) causing the differences to be distinctively visible. In fact,
the value distributions are more aligned when considering a more complex example.

Figure 6.11 shows the thin-plate energy and curvature functional values for the
spring model. They are summarized in Table 6.4, highlighting that there are still planar
distortions causing nonzero values of thin-plate energy on the flat top and bottom. How-
ever, compared to the high values occurring on the sides, they are almost neglectable.
A qualitative comparison of the color plots of the integrands of ETP(S) (Figure 6.11b)
and Eκ(S) (Figure 6.11c) on the surface leads to the conclusion that both functionals
behave similarly for this model.

For a curvature-based subdivision, these comparisons indicate that using Eκ(S)
yields more accurate results as it always exactly meets the design objective. On more
complex models, the difference becomes less significant. While it can lead to some
additional viewpoint candidates in unintended regions, ETP(S) still prioritizes highly
bent regions leading to the indented subdivision there. However, evaluating Eκ(S)
requires a large number of operations, while ETP(S) can be computed by simply evalu-
ating the matrix-vector product in Equation (6.5). Hence, at the cost of some accuracy,
thin-plate energy can be used in real time, allowing a user to interactively modify the
subdivision threshold. On the other hand, if the viewpoint candidates do not need to be
generated interactively and time is not a critical factor, using the curvature functional is
preferable.
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FF Top/Bottom (2×) Lower S. (4×) Middle S. (4×) Upper S. (4×)

ETP(S) 0.27% 8.46% 8.16% 8.25%
Eκ(S) 0 8.71% 7.65% 8.64%

Table 6.4: Feature functional (FF) values on individual surfaces of the spring model.
The partition into top/bottom, lower surfaces, middle surfaces, and upper surfaces is
consistent with Figure 6.11. The distribution of values of thin-plate energy and curva-
ture mostly coincide, as the low thin-plate energy values on the top and bottom surface
are almost neglectable.

6.5.4 Intuition Behind Feature Functional Values

An important aspect for the usability of any method is how easy it is for the operator
to understand and control the parameters. While the principles behind the feature func-
tionals can be understood fairly easily, choosing a good termination threshold requires
some knowledge of the expected values.

To a user, the integral values evaluated for the thin-plate energy or curvature are just
numbers with no intuitive meaning. Instead of defining a fixed number as threshold, it
is easier to normalize those values and set the threshold to a percentage of the total or
average measurement. This is possible since all presented integral measurements can
be summed up to a “total” value for the entire object.

The measurements for area and the region of interest are somewhat more intuitive.
If the operator has a feeling for the dimensions of the objects, it is possible to define
a fixed number of maximum area for the subdivision. However, since those measure-
ments are also integral-based, the approach of using an average value also proves viable
here.

While a threshold for the maximum angle-based measurements could also be cho-
sen in relation to their average, it is actually more intuitive to set a fixed number for
those functionals. The evaluated values are angles, which might already be explicitly
determined by external constraints. Even if not, it is fairly intuitive for a user to under-
stand the meaning of a maximum angle when setting up the parameters for the system.

6.5.5 Stability

To apply the recursive subdivision, a termination threshold needs to be chosen. Unless
already given by some external constraints, a system engineer would usually determine
this value experimentally.

Besides the intuition of the expected values, it is also important to be aware of the
stability of the used feature functionals. In an optimal setting, small changes to the
threshold value only add or remove a low amount of viewpoint candidates. However,
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in some cases, a small variation of the threshold can make the difference between sub-
dividing a surface several times and no subdivision at all (e.g., Figures 6.6c and 6.6d).

Such behavior is analyzed by applying the iterative subdivision, i.e., always sub-
dividing the surface with the highest feature value until a certain number of iterations
has been done (Algorithm 2). Plotting the highest occurring feature functional value
in relation to the number of iterations enables visual analysis of the stability behavior.
Figure 6.12 demonstrates this approach for three individual surfaces. Each surface gets
processed with 100 iterations of the subdivision approach. The plots show the behavior
of all presented feature functionals except the region of interest, as it is just a restricted
variety of the area measurement. Computing the recursive subdivision with a threshold
value t corresponds to finding the first intersection between the graph and the horizontal
line y = t.

Due to the partition of values when splitting a surface, the integral-based criteria
show a monotonous decrease that becomes almost exponential when the surface has a
regular geometry. This leads to a stable behavior when choosing a threshold, as well as
a fast convergence of the recursive method.

The angle-based functionals measure the maximum deviation of any normal vec-
tor from the average normal or a ray originating at the camera, respectively. However,
when subdividing the surface, both the average normal and the camera position, are re-
computed, possibly introducing significant jumps. As a consequence, sudden increases
in the evaluated maximum deviation can occur. It is clear that these jumps do not occur
anymore when the surface gets subdivided into sufficiently small segments. However,
for surfaces with high frequency wiggles (e.g., Figure 6.12d), it will take many iter-
ations until this criterion is met. For smoother surfaces, these functionals converge
almost with the same rate as the integral-based measurements (see Figure 6.12a).

6.5.6 Conclusions

The presented method provides an adaptive and intuitive solution for object space ex-
ploration by generating desirable viewpoint candidates in sufficient numbers. It allows
skilled system engineers to factor in expert knowledge, while at the same time produc-
ing viable results when used with the default settings. The experiments have shown that
the thin-plate energy functional leads to well-distributed viewpoint candidates requiring
little computational effort.

As the results show, objects can be fully covered with a small number viewpoint
candidates. Thus, the subsequent NP-hard problem of selecting optimal viewpoints has
to be solved only for a small input. The subdivision threshold, and with it the density
of the surface sampling, can be chosen interactively. By pre-computing the subdivision
to a certain depth, the operator can modify the threshold and evaluate the impact on the
results in real time.

The use of B-splines makes the approach independent of the resolution of a discrete
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(a) Surface with isolines (b) Integral-based criteria (c) Max. angle-based criteria

(d) Surface with isolines (e) Integral-based criteria (f) Max. angle-based criteria

(g) Surface with isolines (h) Integral-based criteria (i) Max. angle-based criteria

Figure 6.12: Analysis of the stability and convergence behavior of the presented func-
tionals. Three selected surfaces (a), (d), (g) of different geometric complexity are con-
sidered. For each surface, 100 subdivision steps are performed. Each plot shows the
highest measured value on the y-axis with respect to the number of performed sub-
divisions nsd on the x-axis. The integral-based values (b), (e), and (h) are given as
percentage of the total value measured for the entire surface, as it always equals the
sum of all segments. Since the decrease is close to exponential, a logarithmic scale is
used. Angle driven functionals (c), (f), (i) are given as absolute values. They can be
related to the recursive subdivision by finding the first intersection between the plotted
graphs and a vertical line representing the subdivision threshold y = t.
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representation as a single B-spline surface can model surface triangulations of various
resolution. The analytic and continuously differentiable B-spline representation allows
for the computation of various measurements. A user can easily factor in application-
specific constraints or define new features to be focused on during inspection.

The overall pipeline for setting up inspection systems has existed for years and in
many variations. Despite the desperate need to do so, full automatization for arbitrary
objects has not yet been achieved. While the work presented here addresses one sin-
gular aspect of the inspection pipeline, it provides researchers and engineers with a
powerful and adaptable solution, with the potential for further innovations. Continuous
development of this approach will lead to smart inspection systems capable of adapting
to new products within minutes, making production and inspection systems truly agile.

6.6 Core Reference

• D. Mosbach, P. Gospodnetić, M. Rauhut, B. Hamann, and H. Hagen: Feature
driven viewpoint placement for model based surface inspection. to be published
in Machine Vision and Applications.



Chapter 7

Conclusions

Gaining knowledge from raw data is an intricate process. The contributions presented
in this thesis provide various improvements throughout the processing pipeline, starting
with pre-processing, creating B-spline models of large and topologically challenging
data, and finally using such models in an application scenario. The proposed methods
improve existing solutions in terms of efficiency, hardware restrictions, and quality of
the results.

The hybrid algorithm for quantile filtering, presented in Chapter 3, is a powerful
tool for the processing of high-resolution 3D CT image data. Quantile filters are com-
monly used for gray value mathematical morphology. The median filter in particular is
one of the most frequently used algorithms for image denoising. For large filter masks,
existing solutions only allow to choose between high memory requirements or long
runtimes. The proposed hybrid algorithm offers a trade-off by allowing to tune the per-
formance to the available hardware, i.e., gaining additional speed, even on machines
with limited memory. The presented results showed that, in 3D, the hybrid approach
outperforms both reference methods for most practically relevant filter sizes.

When it comes to extracting a B-spline surface model from a volume image, even
data without noise can pose a challenge. An example is the reconstruction of cellulose
fibers, discussed in Chapter 4. Difficulties arise from the complex surface topology
caused by the physical processing of the material. Standard approaches fail to partition
the surface data into a low number of quadrilateral cells, suited for the construction of
a B-spline model. This thesis proposed a solution based on splitting the geometry and
topology processing into individual pipelines. The method was applied to several fibers
which were extracted from scans of a wood-based insulation material. Triangulated
surfaces of those fibers ranged from 423 628 to 1 203 844 triangles. Resulting B-spline
models consisted of 236 to 676 surfaces, providing a good representation while robustly
dealing with holes, cuts, and chunks of excess material.

Chapter 5 introduced a novel approach for the approximation of triangular meshes
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with smooth B-spline surface models. Contrary to most existing solutions, the pro-
posed method does not impose restrictions to knot vectors or spline orders. All control
points are free variables which are successively computed during a local multi-phase
construction process. Approximate tangent plane continuity is achieved by augment-
ing standard minimization problems with nonlinear terms. Through its local design,
the algorithm is not hindered by the higher computational complexity that these addi-
tional terms cause. This makes the method viable for large or even incomplete data.
Various measurements were discussed to evaluate the quality of B-spline models. Re-
sulting models were shown for several objects with varying complexity. Their quality
was compared with models obtained by a C0-continuous and G1-continuous method.
This comparison indicated that the novel method improves data approximations with
smooth surfaces on average by a factor of 10 at the cost of having small discontinuities
in normal vectors of less than 1 degree.

An important use-case of accurate B-spline models was demonstrated in Chapter
6. Based on those models, a novel, purely virtual method was presented to setup vi-
sual inspection systems. These systems utilize robots to take pictures from pre-defined
camera positions. Finding good viewpoints automatically removes the need for the time
intensive manual configuration by experts. The focus of this work was the initial gener-
ation of viewpoint candidates. Through the definition of various feature functionals, the
method is able to perform a non-uniform sampling of given objects with respect to user-
defined criteria. Results were shown for various test objects. In all cases, a low amount
of viewpoint candidates was computed using the proposed method. From those, a set of
final viewpoints, optimal for the inspection system, was chosen via a greedy approach.
The in-depth analysis of the feature functionals showed that thin-plate energy makes a
good choice as it can be computed in real-time and provides a good overall distribution
of viewpoints with a focus on highly curved regions.

Creating B-spline models from scanned data and gaining the desired insight is a
complex task. Many factors impact the viability and efficiency of available strategies
and solutions usually have to be tailored specifically for the target application. This
thesis proposed several novel methods to deal with difficulties that can arise at vari-
ous stages of this process. Besides discussing new algorithms, it also covered efficient
approaches that do not require high-end hardware. Many aspects of the discussed so-
lutions are highly flexible and can easily be modified to handle new challenges. The
presented contributions improve virtual processing of real-world data. They have the
potential to impact almost all scientific fields and lead to new advances.
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