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Abstract

The purpose of this paper is to present the state of the art in singular
optimal control. If the Hamiltonian in an interval [¢1, ¢2] is independent of the
control we call the control in this interval singular. Singular optimal controls
appear in many applications so that research has been motivated ‘since the
1950s. Often optimal controls consist of nonsingular and singular parts where
the junctions between these parts are mostly very difficult to find. One section
of this work shows the actual knowledge about the location of the junctions
and the behaviour of the control at the junctions. The definition and the
properties of the orders (problem order and arc order), which are importart
in this context, are given, too. Another chapter considers multidimensional
controls and how they can be treated. An alternate definition of the orders in
the multidimensional case is proposed and a counterexample, which confirmsa
remark given in the 1960s, is given. A voluminous list of optimality conditions,
which can be found in several publications, is added. A strategy for solving
optimal control problems numerically is given, and the existing algorithms are
compared with each other. Finally conclusions and an outlook on the future
research 1s given.

Key words: singular optimal control, Pontrjagin, Minimum Principle,
Hamiltonian, junction

1 Introduction

The most important theorem in the theory of optimal control is Pontrjagin’s Min-
imum Principle (theorem 2.1). But sometimes this theorem is useless. This is
especially the case if singular optimal controls appear. Inspired by applications in
aerospace the first investigations of such controls were done in the 1950s. Thereupon
many works were published in which singular optimal controls and their properties
were investigated. As well analytical methods as also numerical methods for solving
problems of such kind were given. In this work a digest of the state of the art is
given. This paper is especially adressed to people who try to solve problems which
might have a partially singular optimal control. Examining all the literature will
not be necessary any more.

In section 2 the fundamentals of the theory of optimal control which are needed
to understand this work are presented. A definition of singular controls is given.
Section 3 considers the junctions between singular and nonsingular parts of optimal
controls. While onedimensional controls are considered in this section, in section
4 multidimensional controls are examined. A counterexample which shows that a
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property of onedimensioral controls can’t be transfered to multidimensional con-
trols is given. Optimality conditions are treated in section 5. In section 6 the usual
numerical methods are listed. A strategy for chosing the method which fits most
to the considered problem is proposed. Finally in section 7 some supplements are
given and in section 8 conclusions are presented.

We declare that 0 is a natural number. The abbreviation f, is used for the partial
derivative of an arbitrary function f with respect to z.. If z is a vector and f a
scalar function then f, is the gradient written as a column vector, i. e. V; f. If f is
a vectorial function then f, is the Jacobian matrix. The (total) derivative of z with
respect to ¢ is denoted by z'(t). By H,(,k) we denote the k-th total time derivative
of H, (see section 3.2). Every integral is a Lebesqueian integral. The interior of a
set M is denoted by int M.

2 Fundamentals of the Theory of Optimal Control
2.1 The Bolza Problem

The following problem is called the Bolza problem:

(P) A system be given by

1) state z(t) € R® at time ¢ € [to,ts] =: T,

2) control u(t) € U{t) C R*, where u is piecewise continuous and U(#) is
compact for everyt € T,

3) state equation z/(t) = f(¢,z(t),u(t)) almost everywhere,

4) initial condition z(to) = zo and final condition z(t;) € Z # 0, where (tg,ty)
is fixed,

5) scalar functions g and L with suitable domain.

A pair (z,u) which satisfies the above conditions 1) to 4) is called admissible pair,
and u is called admissible control if condition 2) is satisfied.

The problem is:

Find an admissible pair (x,u) on T such that the functional

J(u) = g(z(ty)) + tffL(T,x(T),u(*r))dT bec¢omes minimal.

Here ¢ may also be a generalized parameter and need not be the time such that
systems with variable final time can be represented. If g = 0 we call (P) a Lagrange
problem while (P) is called a Mayer problem if L = 0.

2.2  Pontrjagin’s Minimum Principle
Before formulating the theorem we define the Hamiltonian:

Definition 2.1 H(u,z, A\ t) = L(t,z,u) + AT f(t,z,u) is called Hamiltonian,
where A(t) € R* holds.

Definition 2.2 Let (z*,u*) be a solution of a Bolza problem and u be an erbitrary
admissible control. Then AH(u,z* A\ t):= H(u,z* X\ ¢) — H(u*,z*, A t)
1

Sometimes the Hamiltonian is more generally defined. ‘as H(u,z, A t) =
MoL(t,z,u) + AT f(t,z,u), where )Xo is a constant. Some authors use constants
Ao < 0. The resulting Hamiltonian has in the case A\g = —1 the same absolute value
but a different sign. This has to be kept in mind as some theorems change in this
case. The Minimum Principle e. g: becomes a Maximum Principle.

The following theorem is often very useful when trying to solve Bolza problems:
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Theorem 2.1 (Pontrjagin’s Minimum Principle) ‘
Condition: Every fi (i = 1,..,n) is continuous in (t,z,;u). The derwatives -g;fi
and Vg f; exist and are continuous in (t,z,u) for every i. Further on g € Ccl. (P)

has a solution {z*,u*). Z'=R".

Statement: Then there exists an absolutely continuous function X © T — R™ with

the following properties:

a) ' = Hy and N = —H, along (z*,u"*)

b) H(u*(t), z*(t), A(t), t) = min{H (u,z*(t), A(t),t) | w € U(t)} for everyt € T

) A#£0on T )

d) A(t;)dz(ty) — dg = 0 (transversality condition) (2], [3], [4]

Definition 2.3 A triple (z*,u*, \) is called extremal, if (x*,u*) is admissible and
the equations ©' = Hy and X' = —H, hold along (x*,u").

We consider the following example for illustrating the definitions and theorems
given in this work:

Example 2.1 Let z'(t) = u(t) with the boundary conditions x(0) = 0 and z(2) =
~1, where ty = 0,ty = 2 and U = [~1,1] hold. The functional ] 22 () (u(t) + 1)dt
0

has to be minimized.
According to definition 2.1 the Hamiltonian is given by
H(u,z,\t) = 2% (u+ 1)+ X u. According to theorem 2.1 a) the differential equation
N(t) = —2x(t)(u(t) + 1) holds. Theorem 2.1 b) states that H is minimal for the
optimal control u*. This implies that the optimal control - if it exists - has the
following form:

+1 , if A+22<0

ur = =1 , ifA+z?>0

T, dfA+ri=0
If A+ x* disappears we get H, = 0, i. “e. there might be an extremum in the
interior of U = [~1,1]. But Pontrjagin’s Minimum Principle doesn’t help us to find
the optimal control. Such controls are called singular.

Another example is the Goddard problem (see e. g. [5]).

2.3 Singular Controls

In the above examples, which are both linear in u, we find that u* has values on the
boundaries of U if H,, does not disappear. If H, = 0, i. e. if H does not explicitly
depend on u, u* can't be determined so easily. This problem doesn’t matter if H,
has only isolated roots. A zero set of undetermined control values is neglectable.
But a serious problem occurs if H,, disappears on a whole interval. In this interval
we have to clarify how u* looks like. Conventional conditions don’t suffice in this
case.

This situation results in the following definitions:

Definition 2.4 Let (P) be given and Ty = [a,b] C T, where a < b. A control u
for which the property u(t) € { min U, maz U} holds in the interior of the whole
interval Ty 4s called bang bang control on 1.

The definitions of singularities are very different in literature. We propose the
following compromise (see e. g. [3], [6], [7] and [1]):
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Definition 2.5 Let (P) be given, (z*,u*, \) be an extremal and [a,b] C T (a<bh).
a) A control u* is called singular control in the sense of the Minimum Prin-
ciple on [a,b], if there exists a set W(t) C U(t) with several elements such that

AH(u,x*(t), A(t),t) =0 (1)

holds for every u € W(t) and every t € [a,b].
b) Let H be linear in u. Then u* is called singular control in the classical sense or
classically singular control on [0,b] if

Hy(u™(t), (1), A(t), ) = 0 (2)

holds for every t € Ja,b/.
¢) Let H be linear in the component ug of u. Then uj, is classically singular on [a,b]
if

Hy, (u”(8), 27 (1), A(t), 1) = 0 3)
holds for every t € Ja,b/.
d) Let H be non-linear in every component. of uw. Then u* is called classically
singular control on [a,b] if

det(Hyu)(u (), 27 (1), A1), 1) = 0 (4)

holds for every t € Ja,b/.
e) Let H be non-linear in uy. Then uy is called classically singular on [a,b] if

Huyyou,, (u'(£), 27 (), A(2),8) = 0 (5)
holds for every t € Ja,b/.

The expression purely singular is used if [a,b] = T In this work the designa-
tion singular refers to singularity in the classical sense. If H is linear in u resp. 7y
the equations (4) resp. (5) hold automatically. The following sections treat condi-
tions which are supposed to enable us to determine optimal controls which have a
singular part.

3 Junctions between bang bang and singular con-
trol

3.1 Introduction

Definition 3.1 A function g : [a,b] = R 1s called analytical on (a,b) if there
exists a point v € (a,b) in which g can be developed into a Taylor expansion.

It is called piecewise analytical if the following property holds: For every t, €
(a,b) there exist t; € (a,t.) and to € (t;,b) such that in every point of (t;,t.) and
(te,ta) g can be developed into o Taylor expansion which converges in the whole
associate interval.

In this section we restrict ourselves to the following linear problem:

(LP) z'(t) = fo(t,z(t)) + fi(t,z(t)) u(t) almost everywhere,
1) and 4) like in (P).
u(t) € [-K(t), K(t)] ¢ R, where K > 0 is an analytical function.

Minimize J(u) = g(z(ts)) + f![Lo(r,x(T)) + Ly (ryz(r))u(r)|dr, where

Q
the solution u* has to be piecewise analytical.
The functions fo, fi; Ly and L; are analytical in both arguments.
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We assume in this section that a solution exists and that in the singular control
part the control is situated in the interior of U(t) for almost every t.

Optimal controls often consist of nonsingular and sing:lar parts. The junctions
between these parts are a part of the research in singular optimal control theory.
But the examination of the junctions is not very advanced, which is one of the main
reasons for the difficulties in the investigations of singular optimal controls.

3.2 Problem and Arc Order

Definition 3.2 Let (LP) be given. Then ®(t) := H,(u(t),z(t), A(t),1) 15 called
switching function.

There are two concepts of order which resulted from ambiguous definitions given
for the order in the beginning. Unfortunately there are authors who do not discern
between these concepts. A first clarification was undertaken by Lewis ([8]) and later
on repeated by Powers ([9]), who used different names. We use the denomination
suggested by Powers. The names suggested by Lewis are given in brackets.

Definition 3.3 Let (LP) be given. Let &% be the first derivative with respect
tot of ® (resp. H,) to contain u explicitly, where after each differentiation 2’ is
replaced by f and N by —H,. Then q is called problem order (intrinsic order).
If there’s no such derivative, we define ¢ := +00.

Definition 3.4 Let (LP) be given. The are order (local order) of an ertremal
(z* u*, A) on a subinterval (t.,t4) is the smallest number p to satisfy

2p
< d d Hu> (u*, 2" X, 8) =0 (6)

du dt?P

for every t €t tq], where the derivatives are computed like i definition 3.5, If
there’s no such derivative, we define p := +0.

The denotation stresses that the problem order is given by the problem itself,
whereas the arc order depends on the chosen extremal. Different extremals of the
same problem can have different arc orders. Powers gives such an example ([9]).
By H,(,k) we will denote the k-th total derivative of H, with respect to f. It’s easy to
see that H{*) is a polynomial in u of order 2p—q)+1,i. e. H? is linear in . ([8))

Definition 3.5 We write H'" (u, 2, M 6) = A(z, \ t) + u B(z; A1),
alt) == A(x(t), A(t), &) and 3(¢) := B{z(t), A1), ).

We will now prove that p and ¢ are natural numbers, i. e. 2p and 2¢ are even.
Robbins was the first to give a proof for this: It's obvious that p > ¢ > 0 holds.
First we need a lemma, whose proof consists of easy calculations and can be found
in [5].

Lemma 3.1 Let F(x,)\) and G(x,\) be scalar C*-functions, where z' = Hy and
N = —H, hold. Then the following equalities hold:

%F(.zx,\) = ~(VH)'S VF (7)
(428
i(fVF) - \f(iF> +[V(VHYT] S VE (8)
dt dt
Liwrrsva) = (viF Cvas wvrsvic ()
dt- R dt T Sar '

[ 3
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where .
v (02 90 90 9y
S\ Oz 0z, AN AN,
and
g = O0pn Idn I (Idy, : nx n identity matriz)
T\ =Id, 0, I (0,0 nxn zero matriz)
hold.

With this lemma we can prove

Theorem 3.1 Let vy := (Ht(gk))u and vy, =0 for every k = 1,...,p— 1. If p is odd
then v, = 0. (Here p need not be the arc order.)

Proof: Generally vy = 0 holds as H is linear in u.
According to Lemma 3.1 (7) we get:

T = (HP) = (%(Hi(‘p_l)))“ = -(VI)"S V(). ~(product rule)
= ~[(VH)"].S V(HL V) = (VH)TS [V(HF )], =
= —[V(H)'S V(HE ™) — (VE)TS V[(HPV),] =
Using 3.1 (7) once again we get:
= —[VE)TS vEP )+ L1(HPY),] =
= —[V(H)]TS V(HP V) + L (v,1)

=7 = —[V(H)]"S V(HP), (10)
as %(7,,»1) = 0 holds by assumption.

In the case p = 1 we can immediately continue with equation (15) (p = 2v +
1, so v = 0), which then coincides with equation (10). If p > 1 further examinations
are necessary: Analogously to (10) we get

Yoot = = [V(H)]"S V(HP?). (11)
Deriving (11) with respect to t and using Lemma 3.1 (9) one gets:
s = ~[VEHOTS VHP™) ~ (VH)TS THE™) =0 (by ass) (12)
Analogously:
d

— oz = —[VHTS VHF) - [V(H)TS VEHPD) =0,
dt'?

where the last summand dissapears according to (11).
So we get according to Lemma 3.1 (9):

2
(ﬁ) Yoz = ~[VH)TS VHP™) = [VHD)]TS VHP™) =0 (by ass)

(13)
With induction we get for p > k > 1:

k
(c(l_if> Yok = =[VEHITS VHP ) = [VHENTS VHP™) =0 (14)

We now assume that p is odd, i. e. p has the shape p = 2v + 1, » € N. By (10)
and (12} we get:
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v = =[VHTS VEHP™) = [VHDTS VHT) =y (13)

= =[V(HI)"S V(HI™Y)

Hence for v € {1,2} we have shown (15). Else we get after applying (14) (v —2)
times (p ~ 3 = 2v — 2, (=1)""% = (~1)¥) the following equation:

Y = (=1 VHETS V(HY) (15)

(In [5] we find (-1)¥, which is an error.)
Now chose an arbitrary z € R**. Then 275z = 0 holds, as
Sz = (°n+1 s Z2ny TRy ey ~n) and 275z = 2121 F 2220y F o F Znfon = Znt121
Znps2 ..~ ZapZn = 0 hold. If we chose z = V(Hf/”) we get using (15) the equality
¥p = 0, which holds for every t, so v, = 0. q. e. d. ([5] and [10])

Corollary 3.1 If an (LP) with finite problem order q is given, then q is a positive
natural number. If additionally the arc order p of a solution is finite, then p is a
positive natural number, too.

The corollary is an immediate result of theorem 3.1.
We define:

Definition 3.6 An (LP) with solution (z* u*) and junction te-be given. Then
r > 0 be the smallest order of derivation such that u*'” ) is discontinuous in t. and
m > 0 be the smallest order of derivation such that /3“” (t.) = 0. does not hold.

Example 3.1 We consider example 2.1:

We have H(u,z,\t) = z%(u + 1)+ I, N = ~2z(u + 1) and ©' = u. Hence
() = 22(t) + A(t). So we get: &' (1) = 2x(t)x'(t) + N (t) = 2z(t)u(t) = 22(t)[u(t) +
1] = =2z(t) = ®"(1) = —22'(¢) = ~2u(4).

Hence our example has the odd problem order q = 1, which here coincides with the
arc order p. Furtheron we get o« = 0 and 3 = -2, thus m = 0. ‘As we don’t know
the solution we can’t compute r.

3.3 Junction Conditions

An important theorern in singular optimal control theory is

Theorem 3.2 (Generalized Legendre-Clebsch-Condition (GLC))

If (x*,u*, A) is an optimal extremal of (LP) then the following properties hold:
a) If the problem order q s finite then (—1)73(t) > 0 for every t-€ T.

b) If the arc order p is finite on (ty, ty) then (—=1)P3(t) > 0 for every t € (5, t).

The theorem was first proved by Robbins (1966). The original proof can be found
in {10], another proof can be read in [5]. The classical Legendre-Clebsch-Condition
states that H,, > 0 holds, which is here trivially satisfied as H is linear in u.

The GLC is also true for non-linear Bolza problems with sufficient differentiability,
where g is defined analogously and 3 is defined to be (H.‘f)(”)“, (see [10] and [8]).

Example 3.2 In example 2.1 we get (—=1)93(t) = (=1)P3(t) = 2 > 0. This is
satisfied for every extremal.

Definition 3.7 Let (P) be given.: A junction is called non-analytical junction
if the control u* is not piecewise analytical in any neighbourhood of the junction.
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The following junction condition was proved by McDanell and Powers in 1971.
A detailed version of the proof is given here once again because we need the proof
for further considerations.

Theorem 3.3 (1st Junction Cond. by McDanell and Powers (1971))

The optimal control u* of an (LP) be piecewise analytical in a neighbourhood of
the junction t.. The problem order q be finite and the strict GLC (—1)2- 3(t.) > 0
hold.

Then q+r is odd.

Proof: If we derive H with respect to every variable, then we get sums and
products consisting of derivates of the analytical functions fy, f1, Lo and L; as well
as derivatives of A with M = —H, and derivatives of u. Thus a and J are at least
continuous in a neighbourhood of t.. _

As u®) can only appear in o?) and ) for 0 < j <rifv<r—1, o and 3 are r
times continuously differentiable in t.: Analogously ® = H,, has exactly 2¢+r — 1
continuous derivatives with respect to ¢ in t., as Hy, (29+7) contains the term Buln),
which is discontinuous in £, according to definition 3.6 and condition f(t,) # 0. We
define
ki=2q+r. (16)
We chose a real number ¢ # 0 arbitrarily close to 0 such that ¢. + ¢ is situated in the
non-singular part and t, — ¢ is situated in the singular part. The sign of € is given
by the sequence of both parts. We use the denotations u, for the control in the
non-singular part and uy for the control in the singular part.  Another denotation
1S:
ulD(te) = lim vt +e), ulP(t.) == lim uD(t, —¢),
e—0 e—0

where each limes is taken in the associate domain.
We now develop ®(t. + ¢) into a Taylor expansion around t.: In the singular part

= 0 holds. Because of (16) we consequently get ®U)(t.) = 0 for every j =
0, ...,k — 1. Moreover we get 11m<1> )(te +€) # 0, where according to definitions 3.5

and 3.6 the equality ®*) = (E) fa + Bu] holds.
Thus according to the Taylor theorem we get the equation

B(t. +¢) = k{ +Z( )ﬁ” Ate) - u (t)

In the singular part (%) = o 4+ Bu, = 0 holds, hence a = —fu,.
Thus we get the following equation for the singular part:

ry d g i B - r r=1i 1
o= (%) <~ms>~—§(i)ﬁ< )l (18)

We substitute (18) in (17) and use the continuity of a(") in t.. The result is:

kl Z ( ) plr=1 (t.) - [ug)(tc) — ugi)(tc)} + O(Gk), (19)

If r > 0 we get by definition 3.6 for i = 0,1,...,r -1
uld (t) = uld (k) (20)

Thus in equation (19) only the summand for 7 = r is left, and we consequently
get for every r > 0 the equation

+ o(e®) (17)

B(te +€) = ka' Bt - [l () =l (k)] + ofeh). (21)
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We now define o := —sign®(t; + ).
= un(t) =0 K1) = uld(t) = o - KO(t,) for every i = 0,1,...,7 (22)

We now- develop a Taylor sum in the singular part and get
oK (te — €) = ulte — ) Z (=) [ EO(t) —uld(t)] +o(e)  (23)
Using (20), (22) and (23) we get:

oK (t, —¢€)~u(t, —€) = (=D [u(")(tc) - ugr)(tc)} +o(€") (24)

ol n
This is an important equation, to which we will refer later on.
We substitute equation (24) in (21):

D -t
€~q+r

k!

D(t, +€) = B(te) (—2"7‘! oK (t. —€) —u(t: —€) —o(e")] + o(e")

We summarize and get (€27 - o(e") = o(e*)):

eyl

Bt ) =

(=1)"B(te) [0 K (t, — €) = u(te —€)] + o(e*) (25)

In the non-singular part two cases appear, which we want to discern:
(1) ®(t, +¢) > 0= 0 =—=1, (ii) P(t. +¢) <0 =0 = +1. ‘
Thus according to equation (25) we get for ¢ sufficiently close to zero in each
case:
Q) (=)™ - Bt ) [~K(te =€) ~ulte —€)] >0 /- (=1)
(i) (=1)7 - €20 B(t,) [+ K (te ~€) ~ u(t. —€)] <0

Altogether the following unequation holds:
(=1)" - €2 3(t) [K(te —€) £ ult, —€)] <0 (26)

By assumption the GLC is strictly satisfied: (=1)7- 3(t.) > 0. We now multiply
unequation (26) with this positive term and g g,er

(=1)9F7 20 32 (4 ) [K (t, =€) T ulte = €)] <0 (27)

As |u(t)] < K(t) holds for every t and |u(t)l < K(t) holds almost everywhere
in the singular part (see (LP)), there exists an ¢ sufhuentl» close to 0 such that
K (t; —€) £ u(t. —€) > 0 holds. Two further terms in (27) are positive: €\* (29) = (eq)
and 3%(t.). The second term is different from zero because of the strict GLC.
Thus the unequation (27) gets the shape (~1)19*") . < 0, where w > 0 holds.
Consequently the sun: ¢ + r must be odd. q.e.d. {11]

The use of this theorem is demonstrated by:

Corollary 3.2 Under the assumptions of theorem 3.3 the following properties hold:
a) If q is even, then u™ is continuous in the junction.

b) If q is odd, then u* either has a jump in the junction or is continuously differ-
entiable in the junction.

[11]
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The corollary is an immediate result of theorem 3.3.

The assumed piecewise analyticity of the solution is a signifying disadvantage of
theorem 3.3 and corollary 3.2. Especially in the non-singular part this is often not
the case. That’s why McDanell and Powers proved ([11]) another junction condition
with essentially weaker requirements on u*.

Theorem 3.4 (2nd Junction Cond. by McDanell and Powers (1971))

An (LP) with finite problem order q be given, where we only require that the optimal
control is piecewise continuous in the singular part. If u* is such a solution with
junction t., then the following properties hold:

(i) If the one-sided limes of HEY in t., taken from the non-singular side, does not
disappear, v* is discontinuous in t,.

(1) If A= 0 and B # 0 in't;, then u* is discontinuous in t,.

(1) If u* is also piecewise continuous in the non-singular part and 8(t.) # 0 holds
and the one-sided limes of Hl(,w in t., taken from the non-singular side, disappears,
then u* is continuous in t,.

Corollary 3.3 An (LP) with finite problem order q be given. A solution u* with
Junction t, exist. If q is even and A = 0 and B(t.) # 0 then the junction is non-
analytical.

The proof of corollary 3.3 can also be found in [11].

Of course, the question arises if the assumption, that u* be piecewise analytical, in
theorem 3.3 and corollary 3.2 is really necessary. The answer is given by the Fuller
problem:

Example 3.3 (Fuller Problem)
ty

minimize + [ z3(t)dt (t; sufficiently large), where
0

oy =22, 21(0) =& # 0, zh=u, 22(0) =&, K =1

The Hamailtonian is H = %zf + A1T2 + Aou.

Hence we get N = —H, = (~x, ~—/\1)T.

Hy=X=>HY =X, = -\ > H? = N =z = HY =2 =2, > HY =
ThH = u.

Thus the Fuller problem has the even problem order q = 2, which coincides with the
arc order. Furtheron we get A =0 and B = 1, thus m = 0. Hence the strict GLC
holds: (~1)48(t) = (~1)* -1 =1 > 0. According to corollary 3.8 every junction
is non-analytical.. This means that every assumption of theorem 3.8 and corollary
3.2a) is satisfied except the piecewise analyticity of the solution.

The optimal control u* has exactly one junction t., where the control is at first bang
bang and then singular. It’s easy to prove that u* is discontinuous in t., thusr =0,
but this means that g + r 15 even.

Consequently in theorem 3.3 and corollary 8.2a) piecewise analytical controls are
needed.

[11), [12]
We consider again example 2.1:

Example 3.4 We know already that ¢ = 1 holds and the GLC is strictly satisfied.
If there exists a piecewise analytical solution, then r is even according to theorem 3.3
respectively corollary 8.2b). Consequently u* is either discontinuous or continuously
differentiable in the junction, if one exists. Assuming that a junction exists we get
according to theorem. 3.4(1) or (i) that u* is discontinuous in the junction. Part
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(111) and corollary 3.3 are not applicable.

Thus ¢ = 1, r = 0, m =0 holds. Hence these parameters could be derived without
knowledge of the solution. Consequently the question arises if there’s a general
connection between ¢, r and m.

3.4 McDanell’s Conjecture

McDanell and Powers examined a possible connection between the three parameters
in their publication ([11]). But their proof contained an error. As up to now it was
neither possible to prove their theorem completely nor to disprove it completely,
the following conjecture is left:

Conjecture 3.1 (McDanell’'s Conjecture)

An (LP) with m > 2 and optimal control u* which is piecewise analytical in the
neighbourhood of a junction t. be given. The parameters q, v and m be finite. Then
the following properties hold:

(i) If m < r then g +r+m is odd.

[ () If m > r then —sign[3U™ (t.+) - 3™ (t,=)] = (=1)7F"t™ |

For m = 0 we have the already proved theorem 3.3:
For m = 1 the conjecture was proved by Bell and Boissard (1979) and by Bortrins
(1983).
Form =2, 7 = 0 and ¢ = 1 Pan and Bell gave a counterexample in 1987. That’s
why part (i) has only been put into brackets in this paper. The validity of part (i)
is also being doubted.
If the conjecture was true this would not be a big help. The fact that this criterion
was investigated during the last 20 years without any big success shows how less
advanced the research in this section is.
We will give a short sketch of the actual knowledge about McDanell’s conjecture.

Lemma 3.2 An (LP) with finite problem order q be given.

Then the functions o« and 3 are continuous.

If there exists a junction t. of an optimal solution, then ¢ and 3 have at least r
continuous derivatives in t.. If additionally m = 0, then ® has exactly 2q + 7~ 1
continuous derivatives in t,.

A proof for this lemma has already been given at the beginning of the proof of
theorem 3.3.

Definition 3.8 An (LP) with q < 400 be given and
H,(LQQ) (w,z, A 1) = Az, A\ t) +uB(z, A t). Then we define:

%A(r.},t} = ag(x, \t) + u a,(z, X t) and (28)
(at

1 ; /
-(i—r—B(‘z:,,\‘t) = oz M t) +u by, M t). (29)
828

Lemma 3.3 An (LP) with optimal extremal (z*,u*, \) and ¢ = 1 be given.. Then
y = b().

The explicitly written proof is very long. We refer to Bell and Boissard ([13]).

The following lemma completes lemma 3.2.

Lemma 3.4 Let (x* u*, \) be an optimal extremal of an (LP) with ¢ = 1, where i,
is a junction. Further on'm > 1 hold and 37" be continuous in t.. Then alrty)
s continuous mn t,.
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Again we refer to Bell and Boissard ([13]).

Corollary 3.4 Let (x*,u*,A) be an optimal extremal of an (LP) with q = 1, where
te 15 a junction. If m > 1+ 1 then a1 is continuous in t..

It’s easy to see that lemma 3.4 can be applied ([13]).

Remark 3.1 Now Bell and Boissard ([13]) assert that in the case ¢ = 1, m > r+1
McDanell’s proof ([11]) can be used.. But this is wrong, because the existence of
almt™) and B(r+™) in t, is needed for this argumentation. This shows the following
constderation:

We start like in the proof of theorem 3. 3 and define ¢, k, o, un and ugi) in the

same way. Analogously we define ﬁn , ﬂs , asl and as).

McDanell and Powers propose in their proof:  "The proof is similar to that for
Theorem 1 [= theorem 3.3 in this paper]; however, in order to obtain a nontrivial
term in the Taylor series expansion for ®(t. + ¢), -one must consider higher order
terms..” ([11]). The unequation that follows afterwards will be considered later in
this remarlc

In order to achieve a suitable analogon for equation (21) of the shape

k+m
(k +m)!
one has to start in (17) with

Bt +¢) = g, - [ugﬂ(tc) ~u(s’”)(tc)] ( rtm ) + o™y (30)

r

k+m Gj j=2q ] 2(] ( ; )
— = (7-2q) - j—2g=—1i ¢ k-+m
"t =3 G [a] Y+ 3 (7)Ao b (tc>}+o<e )
j= i=

(31)

in the non-singular part. Here (81) is a Taylor series expansion for ® around

tc in the nonsingular part.. The series is considered up to the (k + m)-th summand.
Mind that 29 = a +u 3 holds. Analogously to (18) we get in the singular part

J i
all) = E —Bou,] = Z( >/3(] NG (32)

1=0

forevery j=r,r+1,..,7r+m.
In the proof of theorem 3.3 we now substitute (18) in (17). In order to be able to
do this also here, we need the (r+ m)-times continuous differentiability of a in t,.
Then we get:

k+m J 2qg

B(t + ¢ Z Z ( A ) (897200 (¢l (1) = 89279 (1)l (1)
+ o(ek+m)

An index transformation j — 3 + k results in:

m

249 = Ty ,Z(M])[““"“(tc)u;’(tc)~ﬂ£’"+f'“i><tc>u§“<tc>}
+ O(€k+m> (33)

We have 8 (t.) = B (t.) = 0 for every v =0,1,...,;m = 1. ‘ '
In order to be able to argue like in the proof of theorem 3.8 with ugf)(tc) = ugl)(tc)
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Vi= 0,1...,r ~ 1 we need the (r + m)-times continuous diﬁer@ntiability of B in t.
In equation (338) derivation orders of u which are greater than or equal v appear
plurally. For j < m in (33) the following properties hold:

If i<, then uli(t) = V(L)
If i>r thenr+j—i<j<m=grt=9()=0

Thus only for j = m a non-disappearing summand in (33) appears. For j =m
we get:

If 1<, then uﬁf)(tc;) =ulV(t,)
If i>rothenr+j—i<j=m= Ut () =0

Hence only the summand for i = r is left:

Bt +€) = —— BN () - |l (1) - ug”(m] ( : J: " > +o(e" ™) (34)
This 1s the already mentioned equation (30).
Equation (24) can be taken over directly. We insert it in (34):

62(1+r+ m

e i A

. (=1)"r!

e [0K (t. —€) — u(te =€) = o(eN)] + o(eFt™)

We summarize and get:

2
ﬁuqu m

Dt +e€) = (r+m)!1B () (-1 [0 K (t, —€) —u(t-=€)] +o(e* ™) (35)

{k 4+ m)im!
Again we continue analogously with the distinction of the cases ®(t. +¢) > 0
(=0 =-1) and ®(t, +¢) <0 (= o =--1). The result is:

(=) MM (VK (t, =€) £u(te, —€)] <0 (36)

for € sufficiently close to Q.

This coincides with the unequation (4.19) in the publication by Mc. Danell and
Pwowers ([11]) with the only exception that McDanell and Powers use ﬁﬁlm) (t.)
instead of 30 (t,). Under the additional assumption that 3 is (r + m) times con-
tinuously differentiable in t. this is irrelevant.

Hence we see that o and 3 have to be (r + m) times continuously - differentiable
in t. such that the proof by McDanell and Powers can be applied. . The assertion
by Bell and Boissard that the continuity of o™V in t. suffices for the McDanell-
Powers-proof is consequently wrong. It’s only true, if m < 1 holds, which obviously
contradicts m > r + 1 > 1 whereby corollary 8.4 can’t be applied (the continuity of
B would result from m > v+ 1). Apparently this error has not been mentioned
yet in literature.

Another not yet considered problem is the following fact: If m > r, then Blm)
could be discontinuous in t., if the (r +m) times continuous differentiability of 3 15
not assumed. It's imaginable that then 30 (t.—) = 0 and 3™ (t.+) # 0 (or vice
versa) holds. This also aggravates the treatment of singular control problems.

We summarize our cognitions and get
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Theorem 3.5 An (LP) with optimal extremal {z*,u*, ), which have the junction
tc, be given, where the parameters q, v and m be finite. © Further on « and 3 be
(r +m) times continuously differentiable in t..

Then g +r + m is odd.

Proof: We start with equation (36). Now we can continue similarly as described
by McDanell and Powers ([11]): A Taylor series expansion for 3 around ¢, in the
singular part results in:

Blte =€) = (=)™ (m}) T B (k) + o(e™) (37)

In the singular part of a neighbourhood of t, the function 8 must not disappear
identically, as ﬁﬁm) {t.) = 0 would hold then. Because of the assumed continuity of
8™ in t, the equality 8™ (t.) = 0 would hold then, which obviously contradicts
the definition of m. Thus there exists a sufficiently small, i. e. sufficiently close to
0 situated, € such that 3(t. — ¢) # 0 holds. Because of the continuity of 3 there
exists a set of such values for € which has measure greater than zero. We denote
this set by £. The intersections of £ with arbitrarily small neighbourhoods of 0
mustn’t have measure zero either, as in £ there exist values sufficiently close to zero
and every element of £ is interior point of £ because of the continuity of 3.

As the GLC holds here, we get the unequation (—1)?8(¢t. — ¢) > 0. Consequently
for a set of sufficiently small values for € which has measure greater than zero the

unequation
ém(_ 1)q+mﬁ(m) (tc) >0

holds becausc of (37). Muitiplying the left side with (36) we get:
(=D (2,) P [K (b — €) £ u(te — €)] < 0.

This tmplies:
(=) (b, — €) £ u(t, —€)] < 0. (38)

As almost everywhere in the singular part
ju(r)] < K(r) (39)

holds and £ has measure greater than zero, there exists an e € &, such that
K(t, —€) £ u(t, — €} > 0 holds. Consequently from (38) we get: (—1)2t7+™ < (.
Thus ¢ +r+m is odd. q. e: d.

Thus under the strict differentiability assumiptions in this theorem both cases of
Mec Danell’s Conjecture reduce to ¢ + r + m being odd.
The assumption of (r+m) times differentiability is very restrictive, as especially
for large values of m the appearance of (¥ (i > r) in 31) becomes more and more
probable with increasing j > r. Hence a quest for weaker assumptions is necessary.

In 1979 Bell and Boissard managed to prove the validity of McDanell’s Conjec-
ture for g =1, m = 1:

Theorem 3.6 An (LP) with piecewise analytical solution u* and junction t. be
given, where ¢ = 1 and m =1 hold. Then the following properties hold:

(1) If r > 0 then r 1s odd.

(i) If r =0 then sign[f'(t.+) 3 (t.=)] = -1

The proof can be found in [13].
Hence Bell and Boissard made a step towards the clarification of the conjecture.
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The next step is to concern the other cases for m = 1, 1. e. extremals and problems
which satisfy m = 1 and ¢ > 1. In fact Richard Bortrins managed to prove the
validity of McDanell’s Conjecture for these cases in 1983. For explaining this we
need more properties:

Definition 3.9 Let f,g: G = R*,z = f(z) resp. g(z) be differentiable functions,
where G C R™ 1s open and non-empty.

a) We define the Lie bracket in the following way:

[£,9(5) = 92 (2)£(2) — f2(£)9() (fs 9o: Jacobi matrices)

b) In this paper we introduce the abbreviation: < fg > (z) := [f, g](z)(€ R").

¢) If f is i times (i € N\ {0}) differentiable, then we define recursively:

< fig > (x) = [f, < f7rg >)(x), < fP9 > (z) = g(x)

d) For (m — 1) times (m > 2) differentiable functions f; : G = R* (i = L,...,m) we
write:

< flfg.,.fm >i=< fi < fooofm >>, where < fo, >:= fi

Theorem 3.7 (Properties of the Lie bracket)

a) [f, 9] = —lg, f] antisymmetry

b) [f,h]+ [g,h] = [f + g, hl, M, g) = [M.g] = [f, Ag) for every X € R bilinearity
Corollary 3.5 [f, f] = 0-and [f,0] = 0 for every f

The properties are easy to prove.
The following example shows that in general no associative Jaw holds for the Lie
bracket.

Example 3.5 Let f(z) =z, g(x) = z%, h(x) = logz.
[[fyglvh] = ‘E(l - QlOgJ,‘), [fs [gvh]] = -2z

The following theorem in not new. Nevertheless a proof is given here as none
was found in the literature during the research for this paper.

Theorem 3.8 (Jacobi identity)
Let f.g,h: G — R* be twice continuously differentiable functions and G C R™ be
open and non-empty. Then the following identity holds for every x € G

< fgh > (x) =< gfh > (x)+ < hgf > (x) (40)
Proof: The function f,, is triple subscripted and has the shape:
grad fy grad[(fi)e (@) - grad[(fi)s.)(z)
grad fa , e .
fm: = - =
grad f /| grad[(fu)e )(x) - grad[(fu)e,](z)

Mind that grad fi is a line vector, whereas (a;);=1, . » denotes a column vector. We
have:

(fel2)g(x))s = fralx)g(x) + frlx)ge(x), a8
e <§: Ui)l)umj(l)) - (97'&(1 il(f,-)x, (x)gj(ar)>
=1....n J=

Jr ] N
4 N e=lyn

m¢mmmm+ﬂmMmz<iwmmmmumu> B

_]::1

i=loan

J=1

+ (72 (fi)xj(JT){]I‘(I(ifjj'(.F)>
=10
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Further on frrgh = frzhg can be proved by using the theorem by H. A.
Schwartz.
If we now apply definition 3.9 to < fgh > and < gfh >+ < hgf > and use the
above properties we get the Jacobi identity. q. e. d.

Our further considerations will be made for the following Mayer problem. This
is no restriction at all as we will soon see.

Problem 3.1 (MLP) We define:

2t = fe(t) + g@(®)ult) and (41)
Jw) = Flo(ty) (42)

Ezcept this the (MLP) coincides with the (LP) (with the changed denominations).
Theorem 3.9 Every (LP) can be transformed into an (MLP) and vice versa.

The proof is easy and can e. g. be found in {7].
The following lemma is helpful for our further work.

Lemma 3.5 (Gabasov and Kirillova 1972) An (MLP) with piecewise analytical
solution u and finite problem order q be given. Then the following identities hold:

HPY = A< fHy > (n)+u< gf* g > (2)) (43)
HEHD = 2T(c 20415 (1) 4 u < gf2g > (z) +

+u < faf* 7 g > (z) +ud < g fH g > (2) +

+u' < gf* g > (x)) (44)
d . , . 32—

Z(HED)) = A< fgf*7 g > (2) +u < g* 7 g > (2) (45)
<gffg> = 0 foreveryke {0,1,...,2¢ — 2} (46)
Hl(Lk) = A\ « frg > for every k € {0,1,...,2¢ =~ 1} (47)

Proof: We have: H = ATf +uXTg, A7) = - AT f, —uXTg,, 2’ = f + ug.
First we show (47). For this we use an in [6] given sketch-of a proof.
Property (47) can be shown by induction:
k=0:H = H,=\Tg=x" < fO% >
k — k+1: (In [6] this part is only represented by ”...”).
Let H = 2T < f¥g > be proved for a k € {0,1,...,2¢ — 2}. Then we get by the
assumption of the induction:

u

H(k+1) :%(/\T <f'°g >):(,\'r)’<fkg>+/\7w <f'“'g >, x =

= (=ATf—uNTg) < frg >+ T < fhg >, (f+ug) =
=M< frg>, f-fo< o) +urT(< ffg>a 9= 0. < fig>) =
=A[f, < fFrgs]+udT(g, < fFg >) = 2T < fFlg > 4udT < gffg >

As k + 1 < 2q¢ holds, u mustn’t explicitly appear in HEY . We get:
Mo<gffg>=0for ke {0,1,..,29 -2}

As the respresentation of Hl(tk) as a function with the variables z, A and u is used
for the determination of ¢, the factor of AT must disappear. Thus we get:

<gffg>=0forke{0,1,..,2¢~2}.
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Thus if the induction is completed, (46) will also be shown. We further get:

HED =\ < fitlg >

u

Hence the induction is complete and (47) is proved.
Thus we get: H2 " = AT < £24-1g > Consequently:

HEO = ATy < fhtg> AT < f2lg >, 0l =
= (=M f, —urTg) < f2 g > 42\ < f20 g >, (f+ug) =
A< f207 g >y f= fo< 97 g > +
fu(< A7 g >, g—ge < fH7Ng>)) =
= AT(< f2g > +u < gf*"'g >). This is (43).

We derive the result:

HEAHD = (AT < s g0T < f2ag s o' v /AT < gf? g >

S ((% ((H(’>)>) (48)

We consider:

d. ‘
E;(AT <gfftlg >)

= (Y <gff"lg> 4\l <gff g >, 0l =
= (=NTfo—udTgy) < gf* g > +AT < gf* g >0 (f+ug) =
= M(<gff g, f—fa<gf*lg>+
+u(< gf* g >, 9= g, < gfP Mg >)) =
= A« fof* "ty > 4u < g f* g >). This is (45).

—
—
£
o
=
~—
&
~—
it

We substitute the result in (48):

HEHD = (AT < f2 s AT < 2y > 2" + /AT < gf* g > +

+ud(< fgfP g > tu < g g >) =

= (=ATf, = udTg,) < f29g > 40T < f2g >, (f +ug) +
+u' AT < gf* 1 g > dudT(< fof* T g > du< g fH g >) =

= A< g5, f = fo <> 4u< [Pl >0 9 - uge < 29 >) +
+u AT < gf* 7 g s 4udT(< fgf2 i g > +u < gt fH g >) =

= A< Py s qu< gffg > +u< fof g >+
+ut < gty s u < gfP g )

This is (44). q. e. d.

Mind that (H,(LkJrl)\,l =\ < gfkg > holds for k € {0,1,...,2¢ ~ 1}. Thus the
problem order q is given by:
(i) < gflg >=0for every i € {0,1.....,2¢ ~ 2} and (ii) < gf*""1g ># 0.
If ¢ coincides with the arc order p, then AT < ¢f*9~!¢ > must not disappear on the
considered interval. In other words:
p#Fqe AL <gf¥ g >ina part of the analysed extremal.
Pontrjagin’s Minimum principle (theorem 2.1) excludes A = 0.

The following lemma and its corollary were proved by Richard Bortrins in 1983,
see [14].
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Lemma 3.6 Let f,g: R™ — R" be functions of the class C™ 1. Then the following
identity holds for j € {0,1,...,m} and k € {j,j + 1,...,m}:

J R
0=ZX4V(§)<f@ﬂ”g>—@hﬁ<ﬁgx<f“%>] (49)
i=0

Corollary 3.6 Let f,g:R" — R™ be functions of the class C™*1,
a) Let g € N\ {0} such that 2¢ <m and < gf'g >=0 fori € {0,1,...,2q ~ 2} holds.
Then:

0= <gf*g>-q<fgf* " 'g> (50)
b) Let ¢ € N\ {0;1} such that 2¢ —1 < m and < gf'g >=0 fori € {0,1,...,2¢~ 2}
holds. Then:

0= <g*fr7lg> (51)

Lemma 3.6 is proved by induction.” The proof of corollary 3.6 uses Lemma 3.6,
the Jacobi Identity (theorem 3.8) and the properties of the Lie Bracket (theorem
3.7). [14]

Remark 3.2 Bortrins ([14]) remarks without proof that part o) of corollary 8.6, i.
e. (50), results for ¢ =1 in lemma 3.8. This has the following reason:
For g = 1 corollary 3.6 says that

0=<gf%¢>~ < fgfg> (52)

holds. According to lemma 8.5 we get for q = 1:

HPHD = AT(< e (2)+u<gfig> (z)+u< fgfg> (z) +
+u < g’ fg> (x) +u' < gfg > (z)) (53)
LHED)) = AT(< fafo > (5) +u< g fo > () (54
d
<: EB:bo-Fubu)

As HY = g +uay +u'B + u(by + uby) = ag + u(ay + by) + u?by + u'B maust
hold, we can read from (53) and (54):

ao =A< fig> by =AT < g’ fg> B=\ <gfg>,
aw =X < gf?g>bo = AT < fgfg>

Thus (52) means that a,, = by holds. ¢q. e. d.

Now we can show that McDanell’s conjecture also holds for ¢ > 1, m = 1. But
we need an additional assumption.

Theorem 3.10 (Richard Bortrins 1983) An (MLP) with piecewise analytical so-
lution u* and junction t, be given. The problem order q and the arc order p be finite
and g = p > 1 hold. Further onm =1 hold. Then g+ r + 1 is odd.

A sketch of a proof is given in [14].
Hence McDanell’s conjecture has been proved for m = 1, p== ¢ > 1. Concerning
part (i) this is obvious. Part (ii) (r = 0) has been proved because 8™ = 3’ is
continuous in t, under the assumptions of theorem 3.10. ([14])
No counterexample is known for m = 1, 1 < ¢ < p yet.
Now we've finished the discussion of the case m = 1. A transfer to larger values
of m is - if it’s possiblé at all - not possible without additional assumptions. This
shows the following counterexample:
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Example 3.6 (Counterexample by Pan and Bell (1987))
Pan- Guo-Lin and D. J. Bell constructed the following problem.:

L 2
2
minimize J(u) = / (1:2 + —) (25 + 26)* (1 + u)dt > 0, where

. 2
~1
- r 3. 1 1
K =1 2y =zu a(-1) = flete )= Lol =5
: 1
zh = u =y, 22(~1) = J(e - eV, z(1) = -3
An optimal solution starts nonsingular with u* = ~1 on [~1,0[ and ends singular

with u* = 0 on ]0,1]. The control u* is optimal as J(u*) = 0 holds. As u* 1s
discontinuous in the junction t. = 0 we get r = 0. Deriving the switching function
we get g =1 and m = 2(> r). Hence case (1) of McDanell's conjecture is relevant.
Further on we get:

32(04) = =9, 39 (0=) = 3 = ~sign[B (t.4)8M (t.~)] = 1

But this contradicts McDanell’s conjecture, as (—1)7H ™ = (=1)1 102 = 1 holds.

[15]

Let’s summarize the results: The validity of McDanell’s: conjecture has been
proved in the following four cases:

m = 0 (theorem 3.3)

aand 3 are (r+m) times continuously differentiable in the junction (theorem
3.5)

e ¢=1and m =1 (theorem 3.6)
¢ ¢g=p>1and m =1 (theorem 3.10)

The general validity of case (ii) was disproved by a counterexample by Pan and
Bell. In 1993 Bell ({12)) published evidences according to which the construction
of a problem with an optimal solution that satisfies (¢,mm;r) = (1,2,3) might be
possible. This would contradict part (i) of the conjecture, as g+ r+ m is even in
this case. The construction of such a counterexample has not been possible yet.
Apparently McDanell’s conjecture has to be rejected for problems with optimal
solutions that satisfy m > 1. A proof of the conjecture with more restrictive as-
sumptions might be possible. But one mustn't forget that the conjecture is not very
helpful for the solution of singular optimal control problems. The question arises,
whether the examination of the properties of the parameters ¢, r'and m won’t prove
to be an impasse.

3.5 The Location of the Junctions

For a long time it has been supposed that there’s a connection between the location
of the junctions and the boundary conditions of the problem:. But no proof could
be made. In 1995 such a connection was proved by Ruxton and Bell ([16])." They
considered the following problen:

by .
Problem 3.2 (LQP) mimimize [ 2?7 Cxdt subject to
to
&= Az 4 bu, x(ty) = Zo, T(ty) =y
where U(t) = [-1,1] C RV, ty fized, b € R" and A,C € R,
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Two problems of kind (LQP), who have both partially singular optimal controls
and only differ in the final state z(t;) are considered. The following assumptions
are made:

» The optimal control consists of exactly two parts, where one is nonsingular
(and constant) and the other one singular, independent of the sequence. The
junction is t..

o For one choice of z(t;) the optimal control u* is known on whole T". The
corresponding extremal be (z*;u*, A*). - The control u* is called reference
control.

e For an arbitrary choice of the final state Z(ts) the corresponding optimal
control be @(t) (variational control) with junction £, and extremal (Z,,\).
Then 4 switches to the same bound [u*(t)| = £1 as the reference control but
at t, where t. = ¢, only if Z(t;) = z*(t;)

The question is: If we know (z*,u*, A\*), Z(ts), z*(t¢) and t;, are we able to compute
£s?

Using the abbreviations du = i — u*, ér = # — z* and 6A = X — \* the following
theorem holds ([16)):

Theorem 3.11

Lt =0 v (U-RARAT RABT) ;

b -1 AT )T e

Q) =exp X (), Q=Q'= ( Q“ Q” ) € R22 where Qij € RV
Q21 Q22

a) bang/singular case with t. > t,. The following equation holds:

Or1(r)ba(ts) + Ora(r)oA(t) = / exp (A(F — 1)) bou(r) dr (55)

te

b) singular/bang case with t. > t.. The following equation holds:

<

Qr2(f:) OX(to) = exp (A(t, — t5)) 6z (ts) + /ezp(A(fc = T1))bdu(r)dr (56)

te

If the final costate variation dA(tf) resp. the initial costate variation §A(ty) is
calculable then ¢, may be calculated as a function of x(t;) ([16]).
Although the theorem is only applicable to a very special type of problems it gives
hope that more theoremis of that kind can be proved in the future.

4 Multidimensional Controls

4.1 = Introduction

In section 3 we restricted ourselves to one-dimensional controls. In pratice however
more complicated systems can have several independent control variables. This re-
sults in additional problems:

The anyway very difficult treatment of the junctions e. g. becomes even more com-
plicated, as e. g. the problem order need not be an integer any more (we will soon
see that).



4 MULTIDIMENSIONAL CONTROLS 21

Further on it’s posssible that a control is only singular in certain components, where
junctions need not refer to all control components either.

This section shows some properties of multidimensional controls, that might be
helpful for the treatment of such problems.

4.2  Mixed-linear-nonlinear Problems

Here we consider problems with the Hamiltonian

Hu,z, A\ t) = 0O(z,\t) +w(z,\ v +o(w,z, A t),

where v = (v,w)

In such cases we treat the linear and the nonlinear part seperately as far as
possible. Thus singularity means that H, = w = 0 and Hyy = 0ww = 0 hold.
Hence we get equations in the linear control variables and equations in the nonlinear
control variables. [7]

4.3 Controls with Singular and Nonsingular Components

Definition 4.1

Let (P) be given.

a) The Hamiltonian H be linear in u and at least-one component of H, be zero.
Then u is called singular of rank §{i{|H,, = 0}.

b) The Hamaltonian H be nonlinear in u and rkHy,, be not mazimal.  Then u is
called singular of rank (s —rkHy,).

If the rank of singularity is marimal, @ e. “equal to s, then wu is called totally
singular. (¢f. [10])

In [10] a possibility to eliminate nonsingular control components in order to
create Hamiltonians with totally singular controls is described. In this work this
will be substantiated and further developed:

a) nonlinear case:

For simplification we use Einstein’s convention to sum over every index that appears
more than once in a summand.

In the nonsingular case we assume that H, = 0 holds along the considéred interval
of time. If u is in the interior of U this is satisfied because of theorem 2.1.

Thus we get s equations. Because of the nonlinearity we get in the singular case
detH = 0, thus p = rkH,, <s.

If we make a linear transformation of the control variables by u = Zv, where Z
is a regular s x s-matrix, and define- H(v, 2, A, t) = H(Zv,x X t), then we get
HY) = H, 2k, as u; = z;;v;. Hence HY = ZTH,,. Further on we get:

(HY - Volm e e oL SRR & L SRR '3
(Hm;)k,j - (Huu)iuf'ik"«uj - ~M(Huu)iu~uj = H =7 HuuZ

v

As Hy,, 1s symmetrical according to the theorem by H. A. Schwartz, we can make
a principal axis transformation such that

T [ C 0
2 2 “( 00

holds; where € is a regular p x p-(diagonal)-matrix. Now we. use the matrix Z,
built by orthonormal eigenvectors, for the described transformation u= Zv. Then

H? = ZTH, = 0 holds and
o o C 0
PIN; - ( 0 0 '

(57)
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We 'write v = (Vnon, Using); Where v,,,(t) € R?, and interpret v,,, as the nonsin-
gular part and vsin, as the singular part. Then we get:

HY =0 (58)
Hi())nonvvxon = C (59)

As we assume the existence of a solution and C is regular, the implicit function
theorem. allows us to resolve equation (58) such that we get a function v,,, =
Y (Vsing, T, A, t). This way we can reduce the dimension of the control space from s
to s — p, and we get a new Hamiltionian

H(Usinga z, A, t) = H0(¢(Using, z, A, t)7 Vsingy T, A, t)-
Now we can continue with this function without problems, as:

HI = (HO )T'l/)x +H2 =(58) Hg = H:c - _,,>\l

Vron

Hy = (HY )Tys+ HY =58y H) = Hy = &'

Ynon

Further on we get ‘H
is totally singular.
The method once again in a short version:
(i) Make a principal axis transformation:

T (7 C 0
2= (€ 0)

= 0 and Hy,,,,v.:n, = 0. Hence the transformed problem

Vaing

and define H(v,z, A\, t) := H(Zv,x, A\, t).

(i) If C'is a ¢ x p-matrix then resolve the equation system (HD )i=1.., = (0)i=1,...,
w.r.t. (v1, ., 0,) T Result: (v1, 0, 0,)T = (041, Vs, 2, AL E

(iil) The new Hamiltonian is

HVps1s oy Usy T, A 1) 1= HO((0pn1, o0y v, 2, A, 1), Upply ooy Uy T, Ay t)

with the totally singular control (v,41, ..., vs)-

The set U(t) of admissible control values is transformed correspondingly.

b) linear case:

We use the restriction |ug ()] < Ki(t) > 0 (cf. (LP)).

The control be singular of rank s — p(> 0). W. L. 0. g. exactly the last s ~ p com-
ponents of H, dissappear: Hy = (*,...,*,0,...,0)T. Thus u,, ..., 4, are nonsingular
and u,41, ..., us are singular. We have:

ug(t) = —Kg(t) - sign Hy, (u(t), z(t), A(t),t) for k=1,...,p
As Hy, doesn’t depend on u any more, we have the répresentation

(Ur,uy) = (x, A t),
with which we proceed like in the nonsingular case. Hence we define:

H(Upt1, s Usy T, A ) 1= H{p(z, A t)vup+17~~a Us, T, A, t)

4.4 Problem Order and Other Concepts

In case of multidimensional controls we have the situation that H{" is now a vector
in R® and (Hl(tk))u i1s an s x s-matrix. The different controls can appear primarily
in each component of H %) for different values of k. Apparently only Robbins ([10],
1967). as well as Bell and Jacobson ([3],1975) have examined such problems up
to now. Robbins proposed a definition for the order, but at this time there was
no distinction between problem order ‘and arc order.” Today the definition would
probably be the following:
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Definition 4.2 Let (P) be given.- Then

q:=min{k >0 | H?® has at least one component in which a component of

u appears explicitly. }

is called problem order of (P).
Further on (z, )\, t) be an extremal of (P) and [a,b] C T (a < b). Then
p:=min{k >0 | (HE®), (u(t),z(t),\(t),t) has at least one component which

does not dissappear for any t €la,b[.}

is called arc order of (z,\t) w. r. t. (P).
The derivatives are computed as described in definition 3.5.

The generalized definition 4.2 is consistent with the definitions 3.3 and 3.4.
Now a new concept for the treatment of the order in the case of multidimensional
controls will be introduced.

Definition 4.3 Let (P) be given. The matriz Q = (gij)i,j=1.....s. where the control
u; appears explicitly in H,, for the first time in the 2q;;-th total derivative with
respect to t, 1. e. in Hif"", 15 called problermn order matriz.

Further on (z,u, ) be an extremal and [a,b] C T (a < b) be a qwven interval. Then
we call P = (pij)ij=1,

.....

pij = min{k > ()|(Hl(tfk))u‘. (w(t), 2(£), A(£), 1) # 0 for every t €la, b[}-

It is ¢ = min{g;;|¢,7 = 1....,s} and p = min{p;;(¢,j = 1,...,s}. In the onedi-
mensional case the matrices become the usual orders.
It’s easy to see the validity. of the following theorem:

Theorem 4.1 The diagonal elements of Q and P are natural numbers.

Proof: As the diagonal elements refer to only one control component we can
proceed analogously like in the proof of theorem 3.1 with (Hf/f))ui for qi; resp. pu
and receive the desired result. q. e. d.

The remaining elements of Q and P need not be natural. If one starts in the
proof of theorem 3.1 with v, = (Hff))”j, one would get instead of (15) the relation

Yo = (=) HVHITS VHY) (60)

Thus here we don’t have the shape z7 Sz any more. Hence the proof can be applied
to the diagonal elements of the matrices and only to these.

Robbins ([10]) as well as Bell and Jacobson ([3]) point out that in the multidi-
mensional case non-natural orders can appear, and at least Robbins means probably
the todays arc order. But examples are not given. Robbins points out that such
extremals (with odd 2p) are not optimal however.

Non-natural problem orders on the other hand are independent of extremals and
can indeed appear, as the following hitherto unknown counterexample shows, which
is also important in another respect.
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Example 4.1

2
minimize J(u) = /(xf + 22 = 1)%dt, where
0

Ty = u1z2,21(0) = 0,25 = uaz1,22(0) = 1
uy (), ue(t) € [=1,1] piecewise continuous
We get H = A\juizy + douemy + (22 + 12 - 1)%.

= A = =duz — 2(22 + 23 ~ 1) - 221 and Ny = ~\juy — 2(2? + 22 ~ 1) - 224
The transversality condition results in:

A(2) = (0,0)" (61)
We get: Hy = (Aza, Xox))7.

*)\2112232 — 4(.’17% + .’L‘% - 1);12'1172 + Al’ll.gil,‘l
*‘-/\1U1£L‘1 - 4(23% + JJ% - 1).‘1711‘2 + /\Q’Uq.’l?g
—4(x? + 22 = Dz1zs + (M1 ~ Aazp)us
~4(z? + 22 ~ Dryas + Mazz — \izp)ug

g

u

I}

(62)

Thus qi1a = go1 = % holds.  Hence all elements of Q) outside the diagonal are non-~
natural!
Further on we get:

—4(2(17111.1.1‘2 + 2$2U2I1)$11‘2+
+[~4(2? + 22 - Durzd] — 4(2? + 74 = Dugzi+
+[—)\2ng1 — 4(.’[% + Zg - 1).’1)% + AturTs + \urza+
+4(z? + 22 = )22 — Auaz; Jus + (\171 — Aoz )ub

“4(2171“1.’132 + 2I2U2$1)I12§2+
+[—4(2? + 2% - Vurzd] — 4(z? + 22 — Duazi+
H=Auize ~ 4(2? + 13 — )22 + Aaugzi + Aougwi+
+4(l‘f + ."l?g — I)I% - /\111,1.’172]11.1 + (Agza — Aizy)u)

Thus we get the following matriz:

~8x?r3+ ~8z122 ~ 4(z? + % — Vai+
+ [~4(a? + 2} = V)zd] + +(=4XAuamy) + 22 u1 T2+
+2\uszy + [—4(z? + 25 - 1)(a} + 553)]
(Ht(;))u =
~8x2z2 ~ 4(2? + 2% ~ V)ri+ —8riz3+
+(—4Aiuyze) + 2husz + [*4(x% + a3~ 1)23%] +
+ [~4(z? + 23 - 1)(z] + z3)] +2Xu1 1
(63)
Consequently .
o-(11) (64

holds. Thus theorem 4.1 has been validated.
Now we construct an optimal solution. A very simple solution would be vy = uy = 0.
But it’s not the only one:

(i))0<t< g Cour(t) = +1, us(t) = ~1
z1(t) = sint, 22(¢) = cost
/\/1 = )\2, )\,2 = —-/\1
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(ii) g <t<2 ¢ owt) =us(t) =0

oy (t) = La2(t) =0

Al =X, =0
Using the transversality condition (61) we get: Ay = Ay = 0.
As generally J(u) > 0 holds and along the constructed extremal J = 0 holds, we
have an optimal solution. If we insert this extremal in (H,(‘l))u (see (62)) then we
get the zero matriz Thus pi; > + holds for every i,j € {1,2}. If we insert the
extremal in (H'), (see (63)) then we get at 10, 5[

(00,20, M0).0) = -5’ tcost (|1 )

Hence at [0, Z] the problem order matriz of the considered optimal solution is

11
r=(11)
and consequently p = 1.

The considered optimal control function u is totally singular on T'. Here a part of
the singular control is situated on the boundary of U. But changing the set U to
[1=¢,1+ €] (6 > 0) is possible without problems.

Further on (»1)p(fI‘(L2)>u(ll(ﬂ,;’L‘(t), A(t).t) is positive semidefinite on [0, ], as the
eigenvalues are 0 and 8sin” t cos® t.

This looks like a multidimensional GLC. Indeed such a theorem can be proved.

Theorem 4.2 (Generalized Legendre Clebsch Condition (GLC))

A (P) with analytical functions f and L be given and (z*,u*, A) be an optimal
extremal with arc order p < +o0o on [a,b] C T (a < b). Then p € N and along
(x* (1), u*(t}, A(t)) the matriz (=1)F - (Hffm)u is positive semidefinite for every t €
Ja, bl.

(see [3] and [10])

This shows that indeed odd values for 2p allow t6 conclude that nonoptimality
appears, as Robbins discovered. Mind that the onedimensional GLC for am orders
((=1)P (Ht(fp)) > 0) doesn’t result in the positive definiteness of (-1 )p(H,(L ), but
merely in its positive semidefiniteness, as counterexample 4.1 has shown.

Basically the onedimensional GLC also only consists of a statement with the arc
order, as in the case p = ¢ both statements are identical and in the other case the

unequation (»1)Q(HSL2Q)),1 >0 i3 trivially satisfied.

5 Optimality Conditions for Singular Controls

5.1 Introduction

The purpose of this section is to present conditions for the optimality of a singular
control. We restrict ourselves to purely singular controls, i. e. controls which are
singular on the whole interval. Although optimal controls often consist of singular
and nonsingular parts, this is no essential restriction, as optimal controls are also
optimal in any subinterval if the associate boundary conditions are given. The
determination of optimal purely singular control segments can furthermore bear
informations on the location of junctions, if e. g. a criterion excludes the optimality
of singular controls in certain time segments.

Because of scarcity of room we forgo the proofs of the quoted theorems.

Srinvibk B
daiserslauter@)
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5.2 Determination of the Singular Control

First of all we describe ways to determine the singular control without taking care
of optimality. We restrict our considerations to linear Mayer problems of the shape
(MLP).

The control we consider is supposed to be singular on the whole interval 7. Thus
in the interior of T the identity H = 0 must hold per def. for every k € N.
Thereby we get basically infinitely many equations, which shouldn’t be left unused.
We could use them e. g. for the attempt to determine the singular control. But the
question is how many independent equations we have. In lemma 3.5 we’ve already
seen that in case of finite problem order g the equation H&k) = AT < f¥g > holds
for every k € {0,1,...,2¢ — 1}.

Theorem 5.1 An (MLP) with associate extremal (z*,u*,)\) be given, where u*
be purely singular.  The problem order q be finite and be equal to the arc order p on
[a,b] C T (a <b). Then {< f¥g> [k =0,1,...,2¢— 1} are linear independent along
the extremal (on whole T).

The proof uses lemma 3.5 and can be found in [7].
Using this theorem we get the following interesting result:

Corollary 5.1 An (MLP) with associate extremal (x*,u*,\) be given, where u*
be purely singular and ¢ = p < +o0 hold on whole T. Then 2q < n holds.

The proof can be found in [7].

The statement of corollary 5.1 appéars only at first sight to contradict example
2.1, in which 2¢ = 2 > 1 = n holds. But example 2.1 is not a Mayer problem. If
we transform it into'a Mayer problem, then the dimension n increases by 1 and the
corollary is confirmed.

By lemma 3.5 we know that
HEO = \T(< f21g > (2) +u < gf*"'g > (2))

holds if g < +4o00. Thus in segments with ¢ = p we can determine the singular
control from the equation Hf,zq) =0 as
2q
<gf*ig > (z)

But for high orders the usage of {(65) is very expendable and nurnerically unusable
as the differentiation is an ill-posed problem.
If ¢ < p < 400 then we have besides HE =0 (k=0,1,...,2¢ — 1) additionally the
following equations: :

HF =0for ke {2¢,2¢+1,..,2p - 1} (because of the singularity)
(H®), =0 for k€ {2¢,2¢ +1,...,2p — 1} (because of the definition of p)

u

Of course, HY") = 0 also holds for k > 2p. (7]

Therewith we have possibilities to find candidates for singular controls. On
these candidates we then apply optimality conditions like the GLC in order to e. g:
exclude certain candidates.

Example 5.1 In example 2.1 the singular control can be determined in the de-
scribed way. If we use the (optimality) condition XA # 0 (see theorem 2.1) then we
get 1 =0 and u = 0 in case of singularity.
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5.3 First and Second Variation of J

The computation of the variations is at length described in [3]. We simply quote
the results. At first we construct another in comparision to (P) slightly changed
problem:

Problem 5.1 By (P2) we mean a problem of kind (P) mit free final time ty,
where z*, f,g,L € C? holds and additionally the final condition Y(z(ty), t;) =0
(€ R?) has to be satisfied. Here x* is the state function which belongs to the optimal
piecewise continuous control u*.

We consider (P5y) with optimal admissible pair (z*;u*) and construct. a one-
parameter family of control vector functions u(.,¢) such that u(.,0) = u*(.). The
associate family of state vector functions is denoted by x(.,;¢€), where analogously
2(.,0) = z*(.) holds. Incase of variable final time we write t(e). Further on we use
the denotations dz 1= x.de, 8z’ := §(z') = (z'). de, 62z = §(6x), &5 1= (tf)ele=0,
N 1= Tele=o and B 1= u,|.=0. By v € R” we denote an arbitrary constant vector:
Mind that 1 and 3 are functions of ¢ and X is independent of e.

Thus the optimal trajectory (i, e. the case ¢ = 0) can be described by:

dty =€pde, 0x = nde (66)

Definition 5.1 As J is n our considerations a- function of ¢ we can (under the
assumption of sufficient differentiability) develop. J into a Taylor expansion:

J(€) = JO) + Jy e+ Jay € + o(€?) (67)

Here Jy (= %J(O)) is called the first variation of J and Jy is called the second
variation of J.

By means of the calculus of variations we get:

NEnB) = (g +vTv + H)|i=t, & + (g5 + vy, /\7\)(:1:’5,: +n)] $t:1,] +
ty
& [l 00T+ (68)
to
. 1 ¢2 ¢ !
Joo= 5P G e, GG H(ty) +

] &S y i
+5 e+ Nt @y ,x, (258 +nlts)) +

1 N
+ [5(}}' ~ H,x )& + H E(x'¢ + r;)} +
fi:ff
ty
+ / (};,ﬂ‘HumJ’THWH 312-;37‘Hm3> dt (69)
i

where ®(z(ts),tr) = (9 + v )|,

The formula for the first variation is also valid for non-optimal extremals.
With (68) and (69) we can prove Pontrjagin’s Minimum Principle (theorem 2.1).
Necessary for the minimality of J is the non-negativity of Jy for every variation; i.
e. for every family (z(.,¢),u(.,€)) of admissible pairs satisfying u(.,0) =u*(.) and
x(.,0) = z*(.), whereas the so called strong positivity (for every variation), which
will be defined later on, is sufficient - always under the assumption J; = 0.
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Theorem 5.2 A (P3) be given. Let (z*,u*, \) be an extremal which satisfies J; = 0
and Jz > 0 for every variation.
Then the set of variations which satisfy £ = 0, n = 0 and 8 = 0 minimizes J,.

Proof: If £; =0, n =0 and 8 =0 holds, then J, = 0 holds; whereas generally
Ja > 0 holds in case of the given extremal. q. e. d.

Hence we get the following problem:

Problem 5.2 ((AMP) = acessory minimum problem)
minimize Jo among all variations &, 0, 8, which satisfy

n = (fen+ fuB)lmo (70)
n(te) = 0 (71)
0 = Wt,ff + '/)z, ' (xlgf + 77)] e=0,t=t, (72)

As the optimum (z*,u*) is reached with £ = 0, 7 = 0 and 8 = 0, the seeked
solution of (P3) is consequently also a solution of (AMP).
The conditions (70}, (71) and (72) are necessary for the admissibility of each pair
(z(.,€)),u(.,€)). Now we need the following abbreviations:

Q= Hyy, C = Hyyy R:= Hy,, Qf = Qxf®f7 A= fp, Bi=fu, D= 1/11, (73)

Instead of n we will now write z and instead of 3 we choose u. Hence from (70) we
get,

¢’ = Ar + Bu, (74)
from (71)
z(to) =0 (75)
and from (72)
Dz(ty) =0 (76)

in case of fixed final time. Considering the (AMP) we minimize the second variation
and denote it as new cost function J{u(.)]: Further on we now assume that £; =0
holds, i. e. we fix the final time. According to (69) we get:

ty
Jofu()] = -;—zT(tf)Qfa:(tf) 4 / (-;—a:TQx +uTCr + %UTRU) i ()
to
Hence the (AMP) consists of the minimization of (77) under the conditions (74),
(75) and (76).

5.4 Kelley, Jacobson and
Generalized Legendre-Clebsch-Condition

Sometimes one finds in literature the following theorem:

Theorem 5.3 (Kelley Condition)
Let (z*,u*, ) be an optimal extremal of a (Pa) with fized final time, where v is
singular on whole T'. Then

(HPYo (u* (), 2(8), A(t), 1) is negative semidefinite for every t € [to, tf]- [3]

The Kelley Condition is now only a special case of the GLC (seé section 3).
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Definition 5.2

a) Jo[u())] is called non-negative if its value is non-negative for every admissible
u(l).

b) Jofu()] is called positive definite if Jo[u(.)] > 0 (€ R) holds for every admissible
u(.) with u(.) # 0 (0: zero function).

¢) Jo[u(.)] is called strongly positive if there exists a k > 0 such that J [u()] >
kl|u()||> holds for every admissible u(.), where ||.|| is a suitable norm in the set of
the bounded piecewise continuous functions.

We've already considered the GLC. Let’s add that in the proof of the GLC the
assumption, that we have a so called normal problem, is used, which is e. g. not
required in case of Pontrjagin’s Minimum Principle. (see [3] and [17])

Another condition is still missing:

Theorem 5.4 (Jacobson Condition)

Let (P3) be given with free final point and fized final time ty. Further on (z*,u*, A)
be an extremal such that Jo[u(.)] is non-negative for every admissible variation u(.)
and J; = 0 holds. The control u* be singular on whole T . Then the following
property holds along (x*, u*, \):

Hyp fu + fTW £, is positive semidefinite for every t €]to, ty], (78)
where — W' = Hyp + fTW + W fo, W(ts) = (9(z5))a,z, (79)

holds and W is'a symmetrical and continuously differentiable n x n matriz function.
Regarding the proof we refer to [3].
Now we wiil use the denotations u and r for the control and the state again and
not for the variations any more.

Example 5.2 Jacobson ([18]) constructed the following problem.:

[ or Lo |
minimize J = /J:“dt - ;;S;z:(?)‘j for a given 'S > 0, where
/ 2
o= u,z0)=1U=[-11)

We get H, = X. Thus the nonsingular control appears if A\ # 0 ‘and is given by
u = —sign \. The singular control satisfies:

u= A =zxz= 0

The GLC 1s always satisfied. Jucobson considers the following admissible control:
u(t) = =1 for t € [0,1] and u(t) = 0 for t €|1,2], hence J(u) = % The matriz
function W in the Jacobson Condition is then given by W(t) = =S4 2(2—t).
Property (78) is equivalent to t < 2 = %S This condition is independent of the
extremal, i. e. the optimal control may only be singular up to t =2 — éS‘ Henee
Jacobson’s candidate is not optimal.

Gerald M. Anderson ([19]) instances another admissible control for 0 < S < 1:
w(t) = —1 fort € [0.1), u(t) =0 for t €]1,2~ S] and u(t) =1 for t €]2 = 5,2].

The Jacobson Condition is satisfied for this candidate and we get J{u) = %u é{’” <

1

5_;" N
Anderson adds an explanation why the Jacobson Condition is more meaningful

than the GLC in example 5.2. In the proof of the Jacobson Condition (see [3]) the
following control variation is used:

I

3(t) = Tifte [ty t+4]

|
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This is called a Single Pulse Control Variation (SPCV) whereas in the proof of the
GLC a Double Pulse Control Variation (DPCV) is used:

ﬁ(t) = +Tifte [tl,tl + A}
=T if t € [tg, b2 + A
,B(t) = Qelse; t; + A<ty

w
=
I

We will denote these variations here as dug and dup.
If 2’y = u* + dug holds, where (z*,u*) is an arbitrary admissible pair, then we get
here: zg(t) = z*(t) + dzg(t) with

dzs(t) =0 for t <1, dzs(t) =Tt —t1) for ty <t <t + A,

dzs(t) =TAfort >t + A =25(2)=2"(2)+TA
On the other hand z; = u* + dup = zp(t) = £*(t) + dzp(t) holds with

Szp(t) = Ofort <ty dzp(t) =T(t—1t)fort; <t <t +A,
drp(t) = TAforty+A <t <ty
Sep(t) = T(A =t+1ty) forts <t <ty + A,
drp(t) = Ofort>ty+A
= 1p(2) = 2"(2).

Hence the Mayer term is invariant with respect to a DPCV but not with respect
to a SPCV. Thus the Jacobson Condition is so to speak more sensitive than the
GLC in example 5.2.

However Jacobson and Anderson apparently overlooked the fact that u is singular iff
A = 0 holds, which is an obvious contradiction to Pontrjagin’s Minimum Principle
(theorem 2.1). Hence an optimal control can’t have a singular part.

5.5 More Necessary Conditions

At first we define a general Mayer Problem:

Problem 5.3 (MP) be a special case of (P), where intU(t) # O for every t,
Z = R® and U(t) C R hold. The functional, that has to be minimized, be J{u) =
g(z(ts)) and the functions f and g be piecewise analytical. Again we're looking for
a piecewise continuous control.

We first consider the following theorem for Mayer Problems, which are of course
not only in the linear case equivalent to Bolza Problems.

Theorem 5.5 (Skorodinskit 1979) An (MP) with optimal controlu* and respective
extremal (x*,u*, ) be given such that the following properties hold:
u(t) € intU(t) for every t € [a,b[C T (a < b) (80)
and Hyy(u*, 2%, X, t) = 0 for every t € [a, b[. (81)
Then the following property holds along the extremal for every p € R and t € [a, b{:

d , 0
St = (1) =3 (G(Fw) ) ~9* et <0 52

The proof uses DPCVs and can be read in [20]. Skorodinskii also proved the
following corollary:
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Corollary 5.2 Under the assumptions of theorem 5.5 the following properties hold:
a) (Hf[)))u <0 and (%;H > 0 along the extremal for every t € [a, b[.
b) Ift=r ¢ {a,bl and %;H > 0 then

. d.¢ 2 2
3G Hw), | @)
s H o H R

=T

¢) Let t = v € [a,b[ and the properties (Hf,?”)vu =0 or 5‘%;;]{ =0 hold along the
extremal for every t € [a,b]. Then the following identity holds:

<%(Huu)> ) (u*(r), 2* (1), A(r),7) =0

Regarding the proof we again refer to [20]. The statement (H ,(L:Z))u < 0 in part a)
of corollary 5.2 is the Kelley Condition (theorem 5.3).
From the theory of differential equations we know the following lemma ([21]):

Lemma 5.1 (Gronwall Lemma)
t

If ®(t) = h{t) + ] k(T)®(r)dr holds on [a,b] (a < b); h,k € C%([a.b]), k >0, then:
0

¢ t
S(t) < h(t) + [ k{r)h{7T)exp k,(s)ds> dr
b/ 7'/

For the next theorem we need another definition and some lemmas;

Definition 5.3 Let u and 4 be two admissible controls of a (P).-Then we define:
E:= {t € T|u(t) #u(t)}, di(u, ) = ME) (\: Lebesque measure)

Sometimes we will need the following assumption:

Assumption 5.1 (with respect to (P))

(i) f,g,L € C°; f.,g: and L, exist and be continuous.

(ii) There exist an M € R such that for every u € U(t), z € R* and every t € T
the following inequality holds:

1 f (@ u )] < M([lx]l + 1) (83)
By ||.|| we mean the euklidean norm in R™. [1]

Lemma 5.2 (Mayne 1973)

Let (z.u) and (,4) be two arbitrary admissible pairs for (P) under the assumption
5.1. Let Au = u—1 and Az = 1 — . Then there exists a ¢ € RY such that
Azt < ¢ dy(u, ) foreveryteT.

Regarding the proof we refer to [22].

Lemma 5.3 Let (x*.u*, \) be an optimal extremal for (P) under the assumption
5.1. Let Au=u~—u* and Az =z — " and

ty
+ / (AH + [HF(u* + Qw2 A t) + (W) (1] Az(b) dt,

to
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where AH = H(u,z*, A\t) — H(u*,z*, A\, t). Then AJ > G for every admissible
pair (x,u) of (P) with sufficiently small dy (u,u*). In other words: There ezists a
d > 0 such that for every (P)-admissible pair (z,u) that satisfies dy(u,u*) < d the
inequality AJ > 0 holds.

Regarding the proof we refer to [1].- As Pontrjagin’s Minimum Principle, which is
not helpful in the singular case, is a first order condition, it appears to be suggesting
to look for a second order property.

Theorem 5.6 (Gift’s Second Order Minimum Principle (1993))

Let (z*,u*) be an optimal pair of (P) under the assumption 5.1, where u* be
smgular in the sense of the Minimum Principle (see definition 2. 5) on whole T.
Further on dtH exist. Then the following properties hold:

a) AHT - AHy > 0 for every admissible pair (z,u) with u(t) € W and sufficiently
small dzﬁerence sup E — inf E > 0 and for every t € T.

b) If (P) is linear in scalar v and H € C? holds, then HL H,\ > 0 holds along the
optimal extremal for every t € T.

Here we used the abbreviations

AH; = Hy(u,z* A\ t) — Hy(u*, 2%, \,t) and

AH)y = Hy(u,z*, A\ t) — Hy\(u*,z*, A\, 1)

The theorem was proved in [1]. In [23] Zhou claims to have a counterexample for
theorem 5.6. But this counterexample is incorrect. Zhou uses u* = 0 as optimal
control and u = 1 as variation. But this means that sup F — inf E is not sufficiently
small but has maximum size.

Another necessary condition is:

Theorem 5.7 (Kalinin 1985)

Condition: Let (P) with final condition p;(z(tf)) < 0 (1 <i < 5), ¢i(z(ty)) =0
(s +1 < i< m), fized final time t; and cost function J(u) = wo(z(ts)) be given.
Here f,p; € C* (0 < i < m) hold and U(t) be open and non-empty for everyt € T.
For this problem there exist an optimal pair (z*,u*); where u* be singular on whole
T and additionally to the piecewise continuity also leftsided or rightsided continuous
in the discontinuity points. Further on ¢;(2*(ty)) = 0 also hold for 1 <i < s.
Statement: Then for every t € T and every with respect to the above problem ad-
missible control u with

HE(w* 2% ¢, Ju <0 for 0< i <s, HI (2%, hu =0 for s+1 < i <m (84)
the following inequality holds:

min{uT[qu(u*,x*,wa,t)fu(t,a:*,u*) +
T I 2w ) O () fu b, ¥ u)u| o € Au®)} >0,

where ¥;(t) € R" (0 < i <m) and 4(t) € R* (a'e A(w*)), te T,
are solutions of

w; = ~Hy(u™, 2%, v, 1), (tf (pi)e(z™(ts))
Tﬁ; = —er(u*,"lf*,lf)a, U}a tj' Zal ))
1=0

and W, (t), t € T,a € A(u™), are n x n-matrices and solutions of

__ff(tvl‘*vu‘()lpﬂt - \p&fﬂi(t,l‘*au‘:) - HJ::I:(U*az*vwaut)v

m

Wo(ty) = Z i (9i)az (27 (ts))-
1=0
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Further on
Alu™) =

m
{a e R Z ] =1, ;> 0,0 <0 < s Hy(u 2% 0q,t) =0VEE T}

i=0

The proof can be found in [24]. An example is given there, which shows that
condition (84) is really needed.
Another necessary condition is given in [25]. But this one has the disadvantage
that a partial differential equation has to be solved, which is generally different for
each extremal. Thus this condition is only useful if certain candidates-are to be
excluded.

5.6 Sufficient Conditions

We consider again (Py). With the denotations of (73) we get from (74), (75) and
(77) as the second variation of an unbounded (P3), i. e with D =0:

t;
w . 1.
Jolu()] = é—zT(tf)sz(tf) + / (%mq Qr+u¥Cr+ -2—uTRu> dt- (85)
to
where ' = Az + Buand z(ty) =0 (86)

According to the Legendre-Clebsch-Condition R(¢) > 0 holds for optimal controls.
The matrix functions @, C, R; 4 and B are continuous on T, and )¢ is constart.
We may assume that H,g € C? holds (see (P2)) and consequently @, R and Q;
are symmetrical.

Definition 5.4 The dynamical system (86) with respect to (Py) s completely
controllable on [ty t'], where to < t' <t;, of

tl
/ 5t ) B(o) BT (o) 6T (o) do > 0

fo

with (.—%w(t,a) = A (ti o), Y(o,0) =1 (identity matriz).
The system is called completely controllable if it is completely conitrollable on [fg,t']
for every t' €lto,tf]. [3]

Definition 5.5 Let M be a symmetrical n X n-matriz. We write
a) M >0, if M is positive definite.
b) M >0, if M is positive semidefinite.

Definition 5.6 The second variation Jy[u(.)] according to (85) is called

a) nonsingular, if R(t) > 0 holds for every t € T'.

b) totally singular, if R(t).= 0 holds for-every t € T.

¢) partially singular, if R(t) > 0 holds for everyt e T. [3]

Mind that we're talking about singularity of the second variation and not of
the control. The case R{t) < 0 need not be considered because of the Legendre-
Clebsch-Condition.

The strong positivity of Jo[u(.)] is sufficient for optimality. If J>[u(.)] is nonsingular
there exists a very helpful theorem ([3]):
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Theorem 5.8

Condition: The system (86) be completely controllable and Jo[u(.)] according to (85)
be nonsingular.

Statement: Jo[u(.)] is strongly positive <=> There exists an n x n-matriz function
S(.) on T which satisfies the Riccati Equation:

-8 = Q+SA+ATS—(C+ BTS)TR(C + BTS) (87)
Sty) = Qy (88)

A nonsingular second variation can only exist in the nonlinear case as otherwise
R = 0 would hold.
A similar condition like theorem 5.8 can’t be constructed in the totally singular case
for the following reason ([26]):

Theorem 5.9
Condition: (P2) have a sohition u*.
Statement: A totally singular second variation Jo[u(.)] is never strongly positive.

In the case of a totally singular second variation the Riccati Equation is not
applicable, as R~! doesn’t exist.
As the space of all piecewise continuous control functions is infinite dimensional, we
can’t assume the equivalence of the positive definiteness and the strong positivity
any more, as the first one is necessary but not sufficient for the second one. An
example is given in [3].

Some conditions which are sufficient for non-negativity or positive definiteness
of the second variation J>[u(.)] are given in [3]. A sufficient condition is given in
[27].

5.7 The Solution of Example 2.1

2
The functional has the property J(u) = [ 2(¢)(u(t) + 1)dt > 0, as u(t) > —1 holds.
0

A purely singular control would not satisfy the final condition 2(2) = —1. A purely
nousingular control appears not to be optimal. Hence we've got a junction. We
already know that the control must be discontinuous in the junction. The sequence
bang-bang — singular is not optimal as we would get = # 0 in the singular control
part and we’ve seen before that in optimal singular control parts £ = 0 must hold.
But with singular — bang-bang we get J(u*) = 0 if:
w () =0,if0<t<1 ; uw(t)==1,if 1<t <2
=Sz () =0,if0<t<] 5 ()= —t+1,ifl<t<2

The junction ¢, = 1 is given by the boundary conditions and the continuity of the
state.

The constructed control is obviously optimal. The way we solved the problem is
exemplary for the general treatment of problems with possibly singular parts. First

we try to gain as many cognitions as possible from known conditions, then we hope
to find the solution by considering specialties of the problem.

6 Numerical Methods

6.1 Proposal of a strategy

We restrict ourselves to problems which are linear in u.  Different methods for
determining- optimal controls with possibly singular part have been developed so
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far. The BFGS and the DFP methods from nonlinear optimization e. g. were taken
over. These decay methods are, like other decay methods, also applicable to purely
nonsingular and nonlinear problems.

Trying to attain a solution numerically we first try to determine the structure of
the solution, i. e. the sequence of the bang bang and the singular parts, where
we also determine for the bang bang segments on which boundary the solution is
situated. In example 2.1 the structure of the considered solution is consequently
(s,~1), where s represents the singular part. In subsection 5.2 we've seen that
often the singular controls can be determined as functions w = (¢, x,A) or even
w =Yt x).

Often the junctions are unknown and we only get conditions S;(z(t;)) = 0 which
must be satisfied: We get them e. g. for singular parts from the equations H,([') = (.
They can also be a result of the boundary condtitions and the continuity of the
state.

We start at a known junction #x, e. g. to or ty, which are also considered here as
junctions, and integrate forward and backward until the conditions S;(z(t;)) =0
are satisfied. That’s why these conditions are also called stopping conditions. A
stopping condition of the kind S;(z(t;)) = z(t;) — z; is called completely specified.
Else it’s called incompletely specified. In the case S; = 0 the stopping condition is
missing,.

Hence we start at ¢ (to <t < ... <ty < t, = ty) and solve the differential
equations. As initial value x(;) or A(tx) can serve. Here four types of problems
are distinguished according to Fraser-Andrews ([28]):

4) Some initial values of the differential equations are needed.  (appears
if u = (¢, z,\) with incompletely specified A(tg) or u = (¢, x) with
incompletely specified x(ti) occurs)

b) No initial values dre needed but some junctions haven’t got a stop-
ping condition. (appears if © = ¥(t,r) with completely specified z(tx)
occurs but S; = 0 for at least one j)

¢) No initial values-are needed and all junctions have got a stopping
condition. (appears if u = (t,r) with completely specified z(tx) occurs
and S; # 0 for-every j)

d) A representation u = (£, z) or u = ¥(t,x, A) is not possible, where-
fore x can’t be determined by integration.

Fraser-Andrews examines in [29] different methods and comes to the conclusion that
NOC shooting and constrained parametrization are the best methods. He proposes
([28]) to treat the four types in the following way:

a} NOC shooting with the #; as additional minimization parameters

b) treat as optimization problem (degenerate case of a))

¢) integration until S; = 0 and determine #; from it

d) constrained parametrization with the ¢; als additional minimization
parameters

Based on this and on experiences of the authors a general strategy for the numerical
solution of optimal control problems is proposed. The strategy is represented in
figure 6.1.1. The diagram is also applicable to problems with purely nonsingular
optimal control.. Of course, if one reaches the point "ready” in the diagram it
can’t be excluded that no suitable solution has been obtained. For this case further
methods are listed in this section.

If the optimal solution has infinitely many discontinuity points, like e. g. in the
Fuller Problem (example 3.3), the arcs are called "chattering arcs” and finitely
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Figure 6.1.1: Strategy for the numerical solution of optimal control problems
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many discontinuity points are chosen for numerical treatment (see [28]).
Constrained Parametrization means that the constraint u(t) € [a,b] is treated
with the ansatz u(t) = 3(a+b)+1(b—a) sinv(t), where v(t) is an expansion in finitely

m
many orthogonal functions, like e. g. Tschebyscheff polynomials: v(t) = - a;T;(t)
j=0
(m: order of the expansion) (see [29])
The named methods and some others are treated in section 6.2. Two types of
methods are distinguished: the direct methods, where first the differential equations
and the boundary conditions are satisfied and then the costs are lessened, and the
indirect methods, which start with optimality conditions and then try to satisfy the
boundary conditions. ([30])

6.2 The Methods
6.2.1 BFGS and Other Decay Methods

The decay methods were taken over from nonlinear optimization. A detailed de-
scription of these methods and remarks how to implement them on coniputers are
given by Edge and Powers in [31] and [32]. A part of the algorithm of every decay

method is a linear search. The following theorem holds ([33]):

Theorem 6.1 (Dizon 1971) If an exact linear search is made then DFP and BFGS
method generate the same directions for searching.

Especially in case of singular controls DFP and BFGS method have proved to
be the best decay methods, where the experience shows that the BFGS method
often has a bLetter convergence than the DFP method if non-exact linear search is
made ([32]). The gradient method is problematical in the singular case ([31]).

If junctions appear the gradient method is unuseful, whereas the BFGS method is
at least useful for the determination of the structure. That’s enough for the task
the method has in the proposed strategy.

6.2.2 Maurer’s Method and the NOC Shooting

Both methods are shooting methods and belong to the indirect methods.

Maurer’s Method In the middle of the 70s Maurer ([34]) developed a method
to determine junctions numerically. It's applicable to problems of the kind (MLP)
with final condition r(z(t;)) = 0 (¢ R®) and ¢ = 1. Further on we assume the
following basic structure:

nonsingular on [tg. t,]. singular on [t;, ¢, and nonsingular on [ty t7].

Moreover we need a representation u = (t,x,\) (or u = (t;z)) for the singular
control.

The method converts the problem into a two point boundary value problem (tpbvp),
which can be solved by the multi shooting method ([35]). which was developed by
Bulirsch, Stoer and Deufihard, who used ideas of Keller.

Newton’s method, which is used in the algorithm, can be replaced by the modified
Newton’s method ([36]) which is less sensitive to bad initial approximations. In [37]
a Fortran program for the multi shooting method is given. Some propositions on
the solvability of the tpbvp are given in [34] and [35]. Often there’s a stabilizing
effect if some differential equations or boundary conditions are omitted, which is
unfortunately not always possible (see [34] and [28]). If several singular subarcs
appear then the corresponding equations and conditions are added to the tpbvp for
each singular subare. {[34])

Maurer's method is non applicable if the optimal control is not piecewise analytical
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in & neighbourhood of the junction-and in the rare cases with odd ¢ (here ¢ = 1)
and a control which is continuous in the junction ([28]).

NOC Shooting Classical indirect methods start with an estimation of A(tp),
which is problematical, as the methods are very sensitive to bad initial values and
the costates A often can’t be illustrated ([38]). The NOC shooting starts with the
initial controls, which are easier to estimate, and is less sensitive to bad initial values.
The method is described in [38] and is applicative to problems of the kind (P) with
final condition r(z(ty)) = 0 and cost function J = g(z(ty)), where z(t) € R® and
u(t) € R* holds. The equations z’ = f and X' = —H, must be stable with respect
to forward integration. Further on H should be unimodal and convex.

In [30] the trajectory of a sattelite that leaves an earth orbit and enters a mars orbit
was optimized.

The last step of the NOC shooting algorithm is a finite-dimensional minimization.
The recursive quadratic programming technique is recommended for this ([39]).
For NOC shooting the structure must be known or derivable from a more general
structure: The switching times should be initially well approximated. Although the
method is less sensitive because of the usage of the control instead of the costates
A, good initial values should be chosen nevertheless. For s > 1 the control problem
may also contain more complicated minimizations. [28]

6.2.3 - The Method by Fraser-Andrews for the Determination of the
Structure

m
The method starts with the ansatz 3 a;Pi(t), where the P; are orthogonal func-
i=0
tions. Then the interval [to,ts] is partitioned iteratively and a minimization over
{aili = 1,...,m}, the interval length and eventually t; is done. The method is

described in [28].

6.2.4 = Other Methods
The e-method by Bell and Jacobson ([3]) transforms the problem (P) into a (nor-

ty
mally) nonsingular one by adding the perturbance term %ei [ uTudt to the func-
to
tional J(u) and decreasing ¢ stepwise:
As expected the method shows numerical instability for € — 0 ({40]). The e-method
was used among others for computations which were made for chemical reactors.

It’s analogous to a method in fluid dynamics. ([41])

Iterative Dynamic Programming by Rein Luus ([41]) is a direct method for
the problem:

minimize g(z(ty)), where ' = f(z,u), z(to) = 2o € R*,
a < ut) < B, ty fixed

The control u is approximated as step function and a grid of possible state values
is constructed through which a minimal way is searched.

The method is also able to find several optima (local and global). It’s an alternative
if it’s difficult to apply other methods. In case of nonlinear systems another method
should be chosen for validation. The advantage of Iterative Dynamic Programming
is the easy programmability and the fact that the costate equations A’ = ~H, need
not be integrated. [41]
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Further methods are the modified quasilinearizatior technique by Aly and Chan
([42]), which is an extension of the quasilinearization technique by Baird ([43]) and
can only be used for problems with purely singular optimal controls, and the con-
trol averaging technique by Virendra Kumar ([44]), which reduces optimal control
problems to fixed point problems.

For the methods treated in section 6 almost no convergence property is known.

7 Supplements

Singular optimal controls have appeared in many applications like ecology, aero-
space, theoretical biology, chemical engineering, epidemiology, robotics and econ-
omy (cf. e. g. 5] and [45] to [52]).

The set of all points in R™ that are states with respect to singular controls is some-
times called singular surface. In [53] a problem of kind (P) is considered, where the
free final time instead of the functional J is to be minimized:

In [54] Jacobson gives switching strategies for quadratic problems. In [55] it’s proved
that the singular controls need not be unique in case of linear Lagrange problems.
The author J. Grasman considers in [56] also non-unique singular solutions and uses
so called nearly singular problems.

A condition for the existence of weak solutions if generalized controls are considered
is proved in [57]. Especially the case of singular optimal controls is treated.

In [58) Frangoise Lamnabhi-Lagarrigue treats a unification of the definition of the
arc order. At this a definition is given, which is also applicable to problems with
final constraints. Lie-brackets are used for this.

A connection between optimal controls, especially singular ones,; and the rank of a
certain matrix is derived in [59].

A geometric treatment of singular optimal controls is given in [60]. A maximum
principle of higher order is treated in [61]. Numerous interesting and useful cogni-
tions, which were only partially given in this work, are due to Gabasov and Kirillova

([6])-

8 Conclusions

Analytical and numerical methods for the treatment of optimal controls which have
singular parts were treated. The state of the art was presented. But the present
theory is not sufficient for having a satisfying general concept for solving the prob-
lems. Often considerations which' are specific for the problem ‘are necessary.. A
unification of these considerations has not been possible yet.

The GLC and the Jacobson Condition appear to be the most helpful optimality
conditions, with which many candidates can be excluded.. But we have seen that
these conditions are only necessary conditions. The almost complete lack of suffi-
cient conditions is a big problem. Hence we're now able to determine admissible
partially singular controls which satisfy every imaginable necessary condition, but
we often can’t clarify if the considered control is indeed optimal. - Cases, like in
example 2.1, where the optimality can be proved by giving & bound for the costs,
are rather rare. Often a control is found, which is presumed to be relatively close
(w. r. t.-costs) to the optimun, if one exists.

In this connection one will often use numerical methods. Here we can be content
with the existing methods. Numerous numerical treatments of practial problems
show this. The most difficult part-appears to be the determination of the junctions.
This is also true w. r. t. theoretical aspects. Until 1995 nothing was known about
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the location of the junctions. The junction conditions were not very helpful. The
fact that in 1995 the first theorem about-a connection between the location of the
junctions and the boundary conditions could be proved gives hope that more knowl-
edge will be gained about this matter in the future.

The main activities concerning singular optimal controls took place in the 1960s
and the 1970s. But research on this topic is still active. The manifold applications
will put forward the investigation of singular optimal controls. A property which
is for singular controls as helpful as Pontragin’s Minimum Principle is in the whole
theory of optimal control is desirable.
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