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Abstract 

The purpose of this paper is to present the state of the art in singular 
optimal control. If the Hamiltonian in an interval [tl, ts] is independent of the 
control we call the control in this interval singular, Singular optimal controls 
appear in many applications so that research ha.5 been motivated since the 
1950s. Often Optimid controls consist of nonsingular and singular parts where 
the junctions between these parts are most,ly very difficult, to find. One section 
of this work shows t,he actual knowledge about. the location of the junctions 
and the behaviour of the control at t,he junct,ions. The definition and the 
properties of the orders (problem order and arc order), which are important 
in this context, <are given, too. Another chapter considers multidimensional 
controls and how they can be treated. An alternate definition of the orders in 
the multidimensional case is proposed and a count,erexample, which confirms a 
remark given in the 196Os, is given. A voluminous list of optimality conditions, 
which can be found in several publications, is added. A strategy for solving 
optimal cont,rol problems numerically is given, and the existing algorithms are 
compared with each other. Finally conclusions and an outlook on the future 
research is given. 

Key words: singular optimal cont,rol, Pontrjagin, Minimurn Principle, 
Hamiltoninn. junction 

1 Introduction 

The most important theorem in the theory of optimal control is Pontrjagin’s Min- 
imum Principle (theorem 2.1). But sometimes this theorem is useless. This is 
especially the case if singular optimal cont,rols appear, Inspired by applicat,ions in 
aerospace the first investigations of such controls were done in t,he 1950s. Thereupon 
many works were published in which singular opt,imal controls and their properties 
were investigated, :Is well analytical methods x also numerical methods for solving 
problems of such kind were given. In this work a digest of t,he state of the art is 
given. This paper is ccpecially adressed to people who t,ry to solve problems which 
might have a partially singular optimal cnnt,rol. Examining all t,lie literature will 
not be necessary any more. 
In section 2 the fundamentals of the theory of optimal control which are needed 
t,o undcrst~and this work are presented. A. definition of singular controls is given. 
Section 3 considers the ,junc‘tions hetwecn singular and nonsingular parts of opt~imal 
controls. While onedinir~Ilsiona1 controls are cunsidert3-l in this section, in sec.t,ion 
4 rnultidirnensiolI;L1 c-ont,rols are examined. .A count,erc~sampl~~ which shows that, a 
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property of onedimensional controls can’t be transfered to multidimensional con- 

trols is given. Optimality conditions are treated in section 5. In section 6 the usual 
numerical methods are listed. A strategy for chasing the method which fits most 
to the considered problem is proposed. Finally in section 7 some supplements are 
given and in section 8 conclusions are presented. 
We declare that 0 is a natural number. The abbreviation fZ is used for the partial 
derivative of an arbitrary function f with respect to x. If x is a vector and f a 
scalar function then fi is the gradient written as a column vector, i. e. V, f. If f is 
a vectorial function then fi: is the Jacobian matrix. The (total) derivative of x with 
respect to t is denoted by z’(t). By Hik) we denote the k-th total time derivative 
of H, (see section 3.2). Every integral is a Lebesqueian integral. The interior of a 
set M is denoted by int M. 

2 Fundamentals of the Theory of Optimal Control 

2.1 The Bolza Problem 
The following problem is called the Bolza problem: 
(P) A system be given by 
1) state 5(t) E IR” at time t E [to, tf] =: T, 
2) control u(t) E V(t) C IR”, where u is piecewise continuous and U(t) is 
compact for every t E T, 
3) state equation x’(t) = f(t, x(t), u(t)) almost everywhere, 
4) initial condition x(t,-,) = 50 and final condition x(tf) E 2 # 0, where (to&f) 
is fixed, 
5) scalar functions g and L with suitable domain. 
A pair (x, U) which satisfies the above conditions 1) to 4) is called admissible pair, 
and u is called admissible control if condition 2) is satisfied. 
The problem is: 

Find an admissible pair (x,u) on T such that the functional 

J(U) = g(x(tf)) f 7 L(7, X(T), U(T))& becomes minimal. 
hl 

Here t may also be a generalized parameter and need not be the time such that 
systems with variable final time can be represented. If g z 0 we call (P) a Lagrange 
problem while (P) is called a Mayer problem if L E 0. 

2.2 Pontrjagin’s Minimum Principle 

Before formulating the theorem we define the Hamiltonian: 

Definition 2.1 H(u, x, A, t) := t(t, 2, ,I~) + Xyt, 2, u) is culled Humiltonian, 
where A(t) E P holds. 

Definition 2.2 Let (x*, IL*) be a solution of a Bolza problem and IL be an arbitrary 
admissible control. Then AH(u, x,*, X, t) := H(u, x*, X, t) - H(u*, x+, X, t) 
ill 

Sometimes the Hamiltonian is more generally defined as H(u,x, X, t) := 
XoL(t, x, 21) + XTf@, x,u), where X0 is a constant. Some authors use constants 
Xc < 0. The resulting Hamiltonian has in the case X0 = -1 the same absolute value 
but a different sign. This has to be kept in mind as some theorems change in this 
case, The Minimum Principle e. g. becomes a Maximum Principle. 

The following theorem is often very useful when trying to solve Bolza problems: 
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Theorem 2.1 (Pontrjagin’s Minimum Principle) 
Condition: Every fi (i = 1, . . . . 71) is contirauo?ls in (t, x, u). The derivatives & .fi 

and 0, fi exist and are continuous in (t,x.u) for every i. Further 0~1 .(I E C’. (P) 
has a solution (x’, 1~~). 2 = R”. 
Statement: Then there exists an absoluteiv continuous functior& X : T -+ II%‘” with 
the folloukn,q pmperties: 
a) x’ = H,i and X’ = -Hz along (x*, ?L*) 
h) H(u*(t),s*(t),X(t):t) =min{H(~,x’(t),X(t),t) 1 ‘11 E U(t)} for every t E T\ 
c) X # 0 on T 
d) X(tf)dx(tf) - dg = 0 (trarwersality condition) 121, [5], [4] 

Definition 2.3 A triple (x*, u*, X) is called extrenaai, if (x”, u*) is admissible and 
the equations x’ = HA and X’ = -H, hold along (z*, u*). 

We consider the following example for illustrating the definitions and theorems 
given in this work: I 

Example 2.1 Let x’(t) = u(t) ,with the boundarg conditions ~(0) = 0 and z(2) = 

0 
has to be minirnized. 
According to definition 2.1 the Hamiltonian is given by 
H(u, 2, X, t) = x:“(u + 1) +X u. According to theorern 2.1 a) the diflerential equation 
A’(t) = -2x(t)(‘u(t) + 1) holds. Theorem 2.1 b) states that H is minimal for the 
optimal control IL*. This implies that the opti,rnal control - if it exists - has the 
follotuing form: 

+1 > 

{. 

if Xi-x” < 0 
,u* - - -1 . if X+x2 >o 

7 if x+x’=0 
If X + x’ disappdars we get H,, = 0, i. c. there might be an extrernum in the 
interior of IT z [- 1 9 11. But Pontrjagin’s Minimurn Principle doesn’t help us to firid 
the optimal control. Such controls are mlkd singular. 

Another example is the Goddard problem (see e. g. [5]). 

2.3 Singular Controls 

In the above examples, which are both linear in 11. we find that, II* has values on the 
boundaries of U if Ii-, does not, disappear. If H,, = 0, i. c. if H does not, explicitly 
depend 0x1 IL, ZL+ can’t bc determined so easily, This problem doesn’t matter if II,, 
11s only isolated roots. .-i. zero set, of undetermined control values is neglect,able. 
But, a serious problem occurs if H,, disappears on a whole interval, In this interval 
we have to clarify how II* looks like. Conventional condit,ions don’t, suffice in this 
cast. 
This sitnation results in t,lie following definitions: 

Definition 2.4 Let (P) be given and 1 ‘, = [a,b] c T, where a < b. A control ‘1~ 
for which thr: property [l(t) E { rnin II. max U ) holds in the interior of the whole 
rntwual T1 i.s call~ct bang bang control on T1. 

The definitinns of singularities arix verv differNit, in litcrat,nrrt. We propose t,ht? 
following 



3 JUNCTIONS 4 

Definition 2.5 Let (P) be given, (x*, u*, X) be an extremal and [a,b] c T (a<b). 
a) A control IL* is called singular control in the sense of the Minimum Prin- 
ciple on [a,b], if there exists a set W(t) c U(t) with several elements such that 

AH(u, x*(t), X(t), t) = 0 (1) 

holds for every u E W(t) and evey t E [a,b]. 
b) Let H be linear in u. Then u* is called singular control in the classical sense or 
classically singular control on [a,b] if 

H,(n*(t), x*(t), X(t), t) = 0 (2) 

holds for every t E ]a, b[. 
c) Let H be linear in the component uk of u. Then u; is classicaliy singular on [a,b] 
if 

H,,(u*(t),x*(t),X(t),t) = 0 (3) 
holds for every t E ]a,b[. 
d) Let H be non-linear in evey component of ‘u. Then u* is called classically 
singular control on [a, b] if 

det(H,,,,)(u’(t),x*(t),X(t),t) = 0 (4) 

holds for every t E ]a, b[. 
e) Let H be non-linear in uk . Then ilk is called classically singular on [a, b] if 

Huhuh(u*(t),x*(t),X(t))t) = 0 (5) 

holds for every t E ]a, b[. 

The expression purely singular is used if [a, b] = T. In this work the designa- 
tion singular refers to singularity in the classical sense. If H is linear in u resp. Ilk 
the equations (4) resp. (5) hold automatically. The following sections treat condi- 
tions which are supposed to enable us to determine optimal controls which have a 
singular part. 

3 Junctions between bang bang and singular con- 
trol 

3.1 Introduction 

Definition 3.1 A function g : [a, b] + I!% is called analytical on (a,b) if there 
exists a point r E (a, b) in which g can be developed into a Taylor expansion. 
It is called piecewise analytical if the following property holds: For euey t, E 
(a, b) there exist tl E (a, tC) and t2 E (tC, b) such that in every point of (tl, tC) and 
(tc, tz) g can be developed into a Taylor expansion which converges in the whole 
associate intervnl. 

In this section we restrict ourselves to the following linear problem: 

(LP) x’(t) = fo(t,x(t)) + fl(t,x(t)) u(t) almost everywhere, 
1) and 4) like in (P). 
u(t) E [-K(t), K(t)] c R, where K > 0 is an analytical function. 

Minimize J(u) = g(x(tf)) + y[L~(r,x(r)) f tl(r,x(r))n(r)]dr, where 

the solution u* has to be piecewise analytical. 
The functions fc, fl, Lo and L1 are analytical in both arguments. 
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We assume in this section that a solution exists and that in t,he singular c~~nt;r~l 
part thr control is sit,uated in the interior of Lr(t) for almost every t. 

Optimal controls often cQnsist, of nonsingular and sing;;lar parts. The junct,ions 
between these pat% are a part of t,he research in singular opbimal cont#rol theory. 
But the examination of the junctions is not very advanced, which is one of the main 
reasons for the difficulties in the investigations of singular opt,imal contIrols. 

3.2 Problem and Arc Order 
Definition 3.2 Let (LP) he given. Then a(t) := H,,(u(t), z(t)> A(t), t) is called 
switching function. 

There are two concepts of order which resulted from arnhiguous definitions given 
for t,he order in the beginning. Unfortunately there are authors who do not! discern 
between these c0ncept.s. X first, clarification was undertaken by Lewis ([8]) and later 
on repeated by Powers ([9]), 1 w 10 used different, names. We use the denomina.t,iotl 
suggested hy Powers. The names suggest4 by Lewis are given in brackets. 

Definition 3.3 Let (LP) be given. Let G(%il) be the first derivative ulith respect 

to t of @ (req’. H,,) to contain u explicitl~y, uiherc: ufier+ each differentiation 2’ is 
replaced by f and A’ by -H,. Then q is c*ailed problem order (intrinsic order). 
If there’s no s,uch derivative, we deji71~ y := +-cm. 

Definition 3.4 Let (LP) be given. Th arc order (locul order) of un extremnl 
(x’ < u* 1 A) on a s,nbintcrval (tC, t(l) is the smallest number p to satisf?) 

(&gH,L) (u*.s*.X,t) = 0 (6) 

for every t E]t,.t(j[, where the deriva~ive~s ILW cornputcd like in definition 3.3. If 
there’s no such derivative, we define p := +,x),. 

The denotation stresses that the problem order is given by the problem itself, 
whereas the arc order depends on the chosen extremal. Different cxtremals of t,hr) 
same problem can have different, arc orders. Powers gives such an example ([9]). 
By H,$“) we will denote the k-th total derivat.ive of H,, with respect t,o t. It’s easy t,o 
see t,hat, I$‘“) is a polynomial in u of order 2(11-y) + I, i. e. H,(izq) is linear in 1~. ([Cs]) 

Definition 3.5 Lt’c-: write: H!“‘)(u~ .c. A. t) =: :1(x, A, t) + u B(.c, A, t), 
o(t) := *-l(s(t), X(t). f) U?ld 3(f) := B(z(f), x(t)\t). 

I’Ct? will now prove t,hat, J) and (I are natural numbers, i. P. 2p and 2q are even. 
Robbins was the first to give a proof for this. It‘s ohvious t,hat, p > q > 0 holds. 
First we need a lemma, whose proof consists of easy calculations and can be found 
in [5]. 

Lemma 3.1 Let F’(.c. A) fmd G(s, Xl /IP .sc&r (I”-functif~ns, where s’ := HA cd 

A’ z= -H, hold. Then the follou:in~~ qualities hold: 

;;clr,. A) = -(CH~“S v;E; (71 

-$iY’Fi = C $F -+ [V(CH)“‘] 5’ CF 
( > 

(81 

(9) 
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where 

and 

hold. 

}n (Id, : n x n identity matrix) 
}n (0, : n x n zero matrix) 

With this lemma we can prove 

Theorem 3.1 Let Yk := (Hik’) and Tk zs 0 for every k = 1, . . . . p - 1, If p is odd 
then ^/P G 0. (Here p need not bl the arc order.) 

Proof: Generally 70 G 0 holds as H is linear in ‘IL, 
According to Lemma 3.1 (7) we get: 

^rp I (HP’), zz (“(Hip-‘) 1)~ = -[(VHITs V(H!~-l’)l~L ‘(product rule) 
= -[(VH)T],,S .(HYp-l’) - (VH)? [V(H(r-‘))I = 
= -[V(H,,)]‘S V(Hb-‘)) - (VH)‘% V[(H+U; = 
Using 3.1 (7) once again we get: 
= -[V(H,,)]?‘S V(H?-“)) i- -$[(H:P-l)),] = 

= -[V(H#S V(H?-“) + $(yp-i) 

=+ ̂ il, = -[V(H,JTS V(H$‘-I)), 

as &(yP-r) = 0 holds by assumption. 

In the case p = 1 we can immediately continue with equation (15) (p = 2v + 
1, so v = 0), which then coincides with equation (10). If p > 1 further examinations 
are necessary: Analogously to (10) we get 

-yp-l = -[v(Hu)]Ts V(Hpy. 
Deriving (11) with respect to t and using Lemma 3.1 (9) one gets: 

(11) 

-$,eI = -[V(Hp))]?S V(H;:-‘)) - [V(H,)]?S V(Hjf’-‘)) = 0 (by ass.) (12) 

Analogously: 

gyp-2 = -[V(H;‘))]?S O(Hp-3)) - [V(H#-S O(H!;-“1) = 0, 

where the last summand dissapears according to (11). 
So we get according to Lemma 3.1 (9): 

( > f 
2 

yp--2 = -[V(H,‘:))ITS V(H,(F-“1) - [V(H,(:))]TS V(HjFP2)) = 0 (by ass.) 

(13) 
With induction we get for p > k > 1: 

d 

0 

k 

dt 
“fp-k = -[V(H:;“))]?S V(Hp-“-I’) - [V(H;“-‘))I’5 V(H$+“)) = 0 (14) 

We now assume that p is odd, i. e. p has the shape p = 2u + 1, v E N. By (10) 



Hence for I) E {I, 2) we have shown (15) Else we get, after applying (14) (U - ‘2) 
times (p - 3 = 21) I- 2, (-l)“-’ = (-1)“) the following equation: 

yp = (-l)“+‘[V(N,IL”‘)]TS O(rr,lv’) (15) 

(In [5] we find (-l)“, which is an error.) 
Now chose an arbitrary z E lRzn. Then z’rSz = 0 holds, as 
5’2 = (zn+l, ...,zz~~: -zl, . . . . -zn) and _x*Sz = z~z,,+~+z~z,,+z+...+~~,~z.L,~-~,,~~zI- 
i&+222--.*. -Z2,r& = 0 hold. If we chostt t = O(i&“)), we get, rising (15) t,he equality 
*ip = 0, which holds for every t, so yr, E 0. q. e. d. ([5] and [lo]) 

Corollary 3.1 If an (LP) with finite problem order q is given, then q is a positive 
natural number. If additionally the arc order p of a solution is finite, then p is a 
positive naturul ,n,umber. too. 

The corollary is an immediate result of theorem 3.1. 
We define: 

Definition 3.6 An (LP) with solution (x’. IL*) and junction, t,. be given. Than 
r 2 0 be the smallest order of derivatiorl such that IL *ir) i,s discontinuous in t,: and 
rn > 0 be the srnablest order of derivation ,surh that 13 (nL)(t,) .= 0 does not hold. 

Example 3.1 We consider ezan$e 2.1: 
We have H(~L, x:, X, t) = Z’(U + 1) + X’u, A’ = --2z(u + 1) and 3:’ = U. IJence 
9(t) = x2(t) 4 X(t). so we get: 4’(t) = ‘Ls(t)s’(t) +x’(t) = 2x(t)u(t) - 2z(t)[n(t) + 
I] = -2x(t) =+ (a”(t) = -22’(t) = --(L.tL(t), 
Hence our ezamplr? has the odd problem order q = 1, which here coincides with the 
arc order p. Furtheron ‘we get a E 0 and 3 G -2, thus nl = 0. As we don’t know 
the solution we can’t co,mpute r. 

3.3 Junction Conditions 

An important theorem in singnlar optimal cont,rol t,heor;v is 

Theorem 3.2 (Generalized Legendre-Clebsch-Condition (GLC)) 
If (z* : (L*, X) is an optimal estremal of (LP) thcrl, the following properties hold: 

a) If the problem order q is finite then (-1)(/3(t) 1 0 for mm-y t E T. 

b) Zf the m-c order p is finite on (tclT It,) then (--l)"J(t) > 0 for ewy t E (t,,, tb). 

The theorem was first proved by Robbins (1966). The original proof can be found 
in [lo], another proof can be read in [5]. The classical Legrtndrc.-C:lebscl1-Conrlition 
stwtes that H lit, 2 U holds, which is here trivially satMk1 as Ei is linear in U. 
The GLC is also trnc for non-linear Bolza problems with sufficient, differentiability, 
where (1 is dctined an;tlogori.~l~ and 3 is defined to be (F1~~2q’)I, (see [lo] and [S]). 
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The following junction condition was proved by McDanrll and Powers in 1971. 
A detailed version of the proof is given here once again because we need the proof 
for further considerations. 

Theorem 3.3 (1st Junction Cond. by McDanell and Powers (1971)) 
The optimal control u* of an (LP) be piecewise analytical in a neighbourhood of 

the junction t,. The problem order q be finite and the strict GLC (-1)q /3(tc) > 0 
hold. 
Then q + r is odd. 

Proof: If we derive H with respect to every variable, then we get sums and 
products consisting of derivates of the analytical functions fo, fl, LO and L1 as well 
as derivatives of X with X’ = -H, and derivatives of u. Thus (Y and /3 are at least 
continuous in a neighbourhood of t,. 
As u(“) can only appear in a(j) and@)forO<j<rifv<r-l,Qandparer 
times continuously differentiable in t,. Analogously cf, z H,L 11~ exactly 2q + T - 1 
continuous derivatives with respect to t in t,, as HL2’l+‘) contains the term /3. UC’), 
which is discontinuous in t, according to definition 3.6 and condition p(tc) # 0. We 
define 

k := 2q + T. (16) 
We chose a real number E # 0 arbitrarily close to 0 such that t, + E: is situated in the 
non-singular part and t, - e is sit,uated in the singular part. The sign of E is given 
by the sequence of both parts. We use the denotations u, for the control in the 
non-singular part and u, for the control in the singular part. Another denotation 
is: 

4%) := 1% u(qt, f E), @(tc) := JS uqt, - f), 
where each limes is taken in the associate domain. 
We now develop @(tc + e) into a Taylor expansion around t,: In the singular part 
@ G 0 holds. Because of (16) we consequently get a(j) (tc) = 0 for every j = 
0, . . . . k - 1. Moreover we get li+h~@(~)(& + E) # 0, where according to definitions 3.5 

and 3.6 the equality Cp ck) E (5)’ [(t. + au] holds. 
Thus according to the Taylor theorem we get the equation 

qt, f E) = ; 
[ 
“(f‘)&.) + 2 ( ; ) /3(‘-i’(tc). Q(t(.) -I- o(2) (17) 

i=o 1 
In the singular part +c2q) G N + /?u, E 0 holds, hence Q z --,&L~. 

Thus we get the following equation for the singular part: 

Jr) = d (,,)’ (-pus) = - k ( ; ) /P-i) ujiz) (18) 
i=O 

We substitute (18) in (17) and use the continuit,y of GE(~) in t,. The result is: 

@(b + E) = $ f: ( :’ ) LPi)(tc) [U;)(t’) -7&t,)] + o(&. (19) 
. 2=0 

If r > 0 we get by definition 3.6 for i = 0, 1, . . . . r - 1 

tQ(tc) = up&) (20) 

Thus in equation (19) only the summand for i = r is left, and we consequently 
get for every r > 0 the equation 

qtc + E) = $ j9(tc) [u;‘(t) - ?$(t,)] + o(2). (21) 
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We now define D := -sign+(t, f ic). 

=3 u,,(t) = 0 ' K(t) =+ lP)(f ) = cr 1 K(i)(t,:) for every i = 0, 1, . ..- r n ‘C (22) 

FVe now develop a Taylor sum in the singular part and get 

crK(t, - E) - u(t, - t) = 2 y p)(t,:) - 7L&i)(tc)] f O(C) (23) 
r=cl 

Using (20): (22) and (23) we get: 

(-l)“f’ 
oK(tC - t) - u(t, - c) = - [7L;;‘(tc) - .ILbl.)(t)] + O(EC) (24) 7,! 

This is an important equation, to which we will refer later on. 

We substitute equation (24) in (21): 

‘q-i-r 
qtc + E) = +t,) y [CrK(t, - E) - u(t, - E) - o(fT)] + o(2) 

We summarise and get, (~‘9 . o(E’) = o(F~)): 

@(t, + t) = arcs [cTIi”(fiY - F) - qt, - F)] + O(fk) (25) 

In the non-singular part two cases appcar~ which we want, to discern: 
(i) @(tc + E) > 0 * 0 = -1, (ii) @(t, + E) < 0 =S a = fl. 

Thus according to equation (25) we get for F sufficiently close to zero in each 
case: 
(i) (-1)“ . f’)‘I 3(f,.) [-I<(t,. - t.) - n(f, -I F)] > 0 / I(-l) 
(ii) (-1)’ czq 1 d(tc) [+K(t, - E) - lL(tc - f)] < 0 

Altogether the following unequation holds: 

(-.I)“ $7 .I?(&) [K(f,. - t-) -ir lL(& - t)] < 0 (261 

By assumption the GLC is strictly satisfied: (-1)” ij(tc.) > 0. We now multiply 
unequation (26) with this posit,ivr term and get: 

(-l)“+’ g9 . J”(fc) [IC(f, - E) -i: n(t, -- E)] < 0 (27) 

As lu(t)/ < I<(t) holds for t‘vcrv f and Ill( < K(t) holds almost. everywhere 
in the singular part (see (LP)), there exists au F sufficiently close to 0 such that 
K(t, -- F) iu(t, - c) > 0 holds. Two furt,her terms in (27) are positive: ,(‘q) = (@)2 
and d”(tc). The second term is different from zero because of the strict, GLC. 
Thus t,he unequation (27) gets the shape (-l)(‘/‘+“) ~j < 0, where w > 0 holds. 
Ckmsequent ly the suni (1 i- 13 must, be odd. q.e.d. [ll] 

The use of this thrmern is demonstrat r‘d by: 

Corollary 3.2 Chtler the mmmptions of theot‘tm %.,7 the foilozuin~g pr~pc~ties hold: 
a) If q is f:l!f'lI, the71 II,- is ~or~ti?LllolLs in the Junc'tiorl. 

h) If q is odd, fhen 11" eithei~ has II jump i71 thr Jurwtion 01' is (:07LtirL1~01LSi?l di&*- 

Pntidh: in thri Jw~~ctiorL. 

illI 
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The corollary is an immediate result of theorem 3.3. 

The assumed piecewise analyticity of the solution is a signifying disadvantage of 
theorem 3.3 and corollary 3.2. Especially in the non-singular part this is often not 
the case. That’s why McDanell and Powers proved ([ll]) another junction condition 
with essentially weaker requirements on IL*. 

Theorem 3.4 (2nd Junction Cond. by McDanell and Powers (1971)) 
An (LP) with finite problem order q be given, where we only require that the optimal 
control is piecewise continuous in the singular part. If u* is such a solution with 
junction t,, then the following properties hold: 
(i) If the one-sided limes of HP’) in t,, taken from the non-singular side, does not 
disappear, U* is discontinuous in t,. 
(ii) If A = 0 and B # 0 in t,, then ‘II* is discontinuous in t,. 
(iii) If u* is also piecewise continuous in the non-singular part and p(tc) # 0 holds 
and the one-sided limes of HP’) in t,, taken from the non-singular side, disappears, 
then u* is continuous in t,. 

Corollary 3.3 An (LP) with finite problem order q be given. A solution u* with 
junction t, exist. If q is even and A z 0 and a@,) # 0 then the junction is non- 
analytical. 

The proof of corollary 3.3 can also be found in [ll]. 
Of course, the question arises if the assumption, that u* be piecewise analytical, in 
theorem 3.3 and corollary 3.2 is really necessary. The answer is given by t,hc Fuller 
problem: 

Example 3.3 (Fuller Problem) 

minimize i 7 xf (t)dt (t f suficiently large), where 

x’1 = 22, Xl(i) = (1 # 0, x; = 11, x2(0) = [2, K =: 1 
The Hamiltonian is H = fx: + Xlxz f XTU. 
Hence we get X’ = -Hz = (-xl, --XI)~. 
H, zz X2 j f$) rz A; zz -X1 j HL2) = -,j; = xl j H,!3) = xi rz x2 j H;:) = 
x; = u. 
Thus the Fuller problem has the even problem order q = 2, which coincides with the 
arc order. Furtheron we get A E 0 and B z 1, thus-m = 0. Hence the strict GLC 
holds: (-l)“@(t) = (-1)2 . 1 = 1 > 0. According to corollary 3.3 every junction 
is non-analytical. This means that every assumption of theorem 3.3 and corollary 
3.2a) is satisfied except the piecewise analyticity of the solution. 
The optimal control IL* has exactly one junction t,, where the control is at first bang 
bang and then singular. It’s easy to prove that u+ is discontinuous in t,, thus r = 0, 
but this means that q + T is even. 
Consequently in theorem 3.3 and corollary 3.2a) piecewise analytical controls are 
needed. 
IllI, L1.u 

We consider again example 2.1: 

Example 3.4 We know already that q = 1 holds and the GLC is strictiy satisfied. 
If there exists a piecewise analytical solution, then T is even according to theorem 3.3 

respectively corollary 3.2b). Consequently u* is either discontinuous or continuously 
differentiable in the junction, if one exists. Assuming that a junction exists we get 
according to theorem 3.4(i) or (ii) that ‘II* is discontinuous in the junction. Part 
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(iii) nnd corollary 3.3 are not a&icable. 
Thus q = 1, I‘ = 0, rn = 0 hnlds. Hence these parametew codd he derived withovt 
knowledge of the solution. Consequently the question arises if there’s a yeThera 
connecteon between q, I’ and 117,. 

3.4 McDanell’s Conjecture 

McDanell and Powers examined a possible connection between the three parameters 
in their publication (Ill]). But their proof contained an error. AS up to 110~ it w~az 
neither possible t,o prove their theorem completely nor to disprove it completely, 
the following conjecture is left: 

Conjecture 3.1 (McDanell’s Conjecture) 
An (LP) with nz > 2 and optimal control u* which is piecewise malytical in the 

neighbourhood of a junction t, be given. The purameters q, r arbd rn be finite. Then 
the following properties hold: 
(i) If nx 5 r then (I + T -t- rn is odd. 
[ (ii) If m > r then -sign[O ‘““‘(tc+) ‘p)(tc-)] = (+7+-L ] 

For nt = 0 we have the already proved theorem 3.3. 
For rn = 1 the conject,ure was proved by Bell and Boissard (1979) and by Bot%rins 
(1983). 
For ~1, = 2, I’ = 0 and q = 1 Pan and Bell gave a counterexample in 1987. TM’s 
why part, (ii) has only been put into brackets in this paper. The validity of part (i) 
is also being doubted. 
If the conjecture was true this would not, be a big help. The fact t,hat, this criterion 
was investigated during the last 20 years without any big success shows how less 
advanced the research in this section is. 
We will give a short sket,ch of the actual knowledge about, McDanell’s conjecture. 

Lemma 3.2 An (LP) with finite probbrn order q be given. 
Then the functions (Y and p are continuous. 
If there esists a junction t, of an optimal solution, then cy a,nd 11‘ bane at least I 
continuous derivatives in t,. lf additionally 1~ = 0, then @ has exactly 2q + T - 1 

I continuous derivatives in t,. 

A proof for this lemma has already been given at the beginning of the proof of 
theorem 3.3. 

Definition 3.8 .411 (LP) 7&h q < i-cc be giaen md 

HL2’)(u, x:, A, t) = .-l(s, A, t) +- t&(x, A, t). Then we define: 

$4(x. A, t) = no(s\ A. t) i- 1~ q,(:c, A, t) and (28) 

&‘.. A, t) = b()(J. A. t) + ‘IL ht,(s, A, t). (29) 

Lemma 3.3 A4n (LP) with optimal mtrenial (:I:*, IL.*, A) and (I = 1 he given. ?‘h~?L 

(L,, =_ ho. 

‘I”hc csplicit,ly writren proof is vrry long. WC refer to Bell and Boissard ([13]). 

The follou:irig lt~xnnia mriplctcs lcmrna 3.2. 
I 

Lemma 3.4 Cc‘t (,r.‘* IL* . A) hi fm opti~mnl f:xtrrmd 0j on (LP) with (I =I 1, 7uhere t,. 
is a j~anction. Purthw on rn > 1 hold and ;j ir-“) be continuous in t,. The71 (Y(‘+” 
is contin~uous in t,” 

1 
I 
! / I 



Boissard ([13]). 

Corollary 3.4 Let (x”, u*, X) be an optimal extremal of 
t, is a junction. If m > r + 1 then N(~+‘) is continuous 

an (LP) with q = 
in tc. 

1, where 

It’s easy to see that lemma 3.4 can be applied ([13]). 

Remark 3.1 Now Bell and Boissard ([13]) assert that in the case q = 1, m > r + 1 
McDanell’s proof ([ll]) 
~(‘f~~) and PC’+“) in t, 

can be used. But this is wrong, because the existence of 
i s needed for this argumentation. This shows the following 

consideration: 
We start like in the proof of theorem 3.3 and define e, k, CT, 2~2) and IL:) in the 
same way. Analogously we define pt’, /3!“‘, crc’ and crc). 
McDanell and Powers propose in their proof: “The proof is similar to that for 
Theorem 1 [= theorem 3.3 in this paper]; however, in order to obtain a nontrivial 
term in the Taylor series expansion for cP(tC + E), one must consider higher order 
terms . . ” ([ll]). The unequation that follows afterwards will be considered later in 
this remark. 
In order to achieve a suitable analogon for equation (21) of the shape 

ek+m +P(tc f 6) = (k + m)! . /P)(tc) ’ [u;)(tc) - up)(t)] ( r ;” ) f c@+y (30) 

one has to start in (17) with 

k+m 

@(tc+E) = 2 ; 

[ 

N(j-2q)(tc) + ‘2 ( j ; 2q ) /j~-W) (tc) . u;)(tc)] +o(r”+m) 

i=O 

(31) 
in the non-singular part. Here (31) 2s a Taylor series expansion for @ around 

t, in the nonsingular part. The series is considered up to the (k e m)-th svmmand. 
Mind that @(‘q) = a + u/3 holds. A na ogously 1 to (18) we get in the singular part 

,(j) - dj ,(j) - dj 9 9 - ,,[-p&] = -& ( ; ) pbj-i) .@ - ,,[-p&] = -& ( ; ) pbj-i) .@ (32) (32) 
2=0 2=0 

for every j = r, r + 1, . . . . r + m. for every j = r, r + 1, . . . . r + m. 
In the proof of theorem 3.3 we now substitute (18) in (17). In order to be able to In the proof of theorem 3.3 we now substitute (18) in (17). In order to be able to 
do this also here, we need the (r + m)-times conti&ous differentiability of a in t,. do this also here, we need the (r + m)-times continuous differentiability of a in t,. 
Then we get: 

An index transformation j -+ j + k results in: 

m 

‘(tc+e) = 2 

e O(Ek+y (33) 

We have Pp’(tc) = /5’L”‘(tc) = 0 for every u = 0,l . . ..‘m - 1. 
In order to be able to argue like in the proof of theorim 3.3 with &?(t,) = u$i)(t,) 
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‘di = 0, l..., I‘ - 1 WC need the (r + m)-times continuous differentiability of 0 in t,. . 
ln equation (33) derivation orders of IL which are greater thall or equal r awear 

plurally. For j < m in (33) the followitug properties hold: 

If i cc r, then ~i,l’(t,) = u’,“‘(k-) 

1. i 2 r, then r i- j -. i 5 j < m, 5 j$‘-+-j-‘) ( tc) ;= 0 

Thus only for j = m a non-disappearing swnmand in (XI) appears. For j = III 

we get: 

If i < r, then uci) (t :) = n ‘C ll$ (tc) 

If i > r, then r + j - i < j = *VI =S /~(Ti-J-Lli(tc) = 0 

Hence only the summand for i = r is left: 

tkfnl 
(5 (t c. + t) = F-y,,! C-3 “““‘@<.) [uj:‘/f,J - @(tc) ] ( r’ 1, m ) .+ ()(py (N) 

This is the already mentioned equation (30). 

Equation (24) can he taken over directl!y. We insert it in 134): 

f”~-“r-tnL 

wk” $- F) = (k + 7n)!r!971,! (I‘ -+ nl)! ;J”“W 

- qqJK(t:. I- E) - n(t, - E) - O(fF)] + lQ-+“‘) 

We swnmarize and get: 

+?q+nz 
aqt,+e) = (k-+ ,ll)!n1!(r+nl)!g(“r)(t,i(--l)‘[aK(t,.-c)--zi(t,-t)]4o(r”.’”’) (35) 

Again we continue nnalogously ,with the distinction of the cases (a(& + C) > 0 
(3 a = -1) and !D(tc -t E) < 0 (3 a -= -tl). The result is: 

(--l)“~‘)~+‘~~,~(“~j(tr)[l~jfi. I- f) I u(t,. -e)] < 0 (36) 

for e suficiently close to 0. 
This coincides with the unequation (4.19) in the publication by MC Dane11 and 
Pwowers ([l I]) with the only exception that McDanell and Powers use fip’ (tc) 
instead of @‘“)(tC). CJnder the additional nssumption that 3 is (r + m) times co71- 

tinuously diflerentiable in t, this is iwelrwant. 
Hcncc we see thut (1 rml 3 bane to he (r i- II?,) t%mes contanrwusly di~ercntiablr: 
in t,. such that the pmof by MrDanell and f’owrs (:a71 br: applied. The assertion 
by Bell and Boissard that the continuity of (I('~-') in t, su~ices for the McDanell- 
Powers-proof is consequently IiJTO?lg. It’.s only true, if m 5 1 holds, which obviously 
contradicts m > I’ + 1 > 1 ,whereby corollary 3.4 can’t be applied (the continuity of 
:3(r-t-1) would result frum m > r + I). :ipparentl?y this error h,as rwt been mentioned 
!Jef i71 ~itemt’wf’. 

.4nother not yPt considered problem is thr follo~wing fact: If m > r, then ij(““) 
could be iLisconti9luou.s in t,. if the (r + rtl) times continuous dl~~f’r!renticlbilit?J of i-l ,is 
not assumed. It’s ima~ginahle that theri CjinL!(ti,-.-) = 0 and ,-lc’lL)(fi.+) -# 0 (or rrice 
r~crsa) holds. ‘l%i.c dso qip~~atr:.s fhfa treatrnenf of .ri7up~la1~ control yrobkms. 

‘i\‘tx stlInu~xiz~~ 0111‘ cvpitions xid get 
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Theorem 3.5 An (LP) with optimal extremal jx*, u*, X), which have the junction 
t,, be given, where the parameters q, r and m be finite. Further on (Y and p be 
(T + m) times continuously differentiable in t,. 
Then q + r + m is odd. 

Proof: We start with equation (36). Now we can continue similarly as described 
by McDanell and Powers ([ll]): A Taylor series expansion for /? around t, in the 
singular part results in: 

@(tc - E) = (-e)“(m!)-‘/3(“)(tc) + o(P) (37) 

In the singular part of a neighbourhood oft, the function [j must not disappear 
identically, as 0:“’ (tJ = 0 would hold then. Because of the assumed continuity of 
p(,) in t, the equality p?’ (tc) = 0 would hold then, which obviously contradicts 
the definition of m. Thus there exists a sufficiently small, i. e. sufficiently close to 
0 situated, E such that p(t, - E) # 0 holds. Because of the continuity of p there 
exists a set of such values for t: which has measure greater than zero. We denote 
this set by E. The intersections of & with arbitrarily small neighbourhoods of 0 
mustn’t have measure zero eit,her, as in E there exist values sufficiently close to zero 
and every element of & is interior point of E because of the continuity of p. 
AS the GLC holds here, we get the unequation (-1)“/3(& - t) > 0. Consequently 
for a set of sufficiently small values for t: which has measure greater than zero the 
unequation 

,m(-l)q+m$‘7’)(tc) > 0 

holds because, of (37). Multiplying the left side with (36) we get: 

C-1) q+‘+‘“(~“‘+“)“[~‘“‘(tc)]“[K(tc - E) f u(tc - E)] < 0. 

This implies: 
(-l)“+‘+““[K(& - t-) f u(t, - E)] < 0. 

As almost everywhere in the singular part 

(38) 

IU(~)I < I((71 (39) 

holds and t‘ has measure greater than zero, there exists an c E t’, such that 
K(t, - E) f u(tc - E) > 0 holds. Consequently from (38) we get: (-l)q+‘+m < 0. 
Thus q + T + m is odd. q. e. d. 

Thus under the strict differentiability assumptions in this theorem both cases of 
MC Danell’s Conjecture reduce to (I + r + m being odd. 
The assumption of (r f m) times differentiability is very restrictive, as especially 
for large values of m the appearance of uci) (i 4 r) in /3(,i) becomes more and more 
probable with increasing j > r. Hence a quest for weaker assumptions is necessary. 

In 1979 Bell and Boissard managed to prove the validity of McDanell’s Conjec- 
ture for q = 1, m = 1: 

Theorem 3.6 An (LP) with piecewise analytical solution IL* und junction t, be 
given, ,where q = 1 and rrt = 1 hold. Then the following properties hold: 
(i) If T > 0 then r is odd. 
(ii) If r = 0 the n sign[/Y(t,+)jY(tC-)] = -1 

The proof can be found in [13]. 
Hence Bell and Boissard made a step towards t,he clarification of the conjecture. 



The next step is t,o concern the other cases for rn = 1, i. e. extrernals and problems 
which satisfy 171 = 1 and q > 1. In fart Richard Bortrins managed to prove the 
validity of McDancll’s Corl,ject,ure for t,hesc cases in 1983. For explaining this we 
need more properties: 

Definition 3.9 Let f, g : G -+ W. z F+ f (r\ resp. g(x) be difiererbtiable f~ncti07t~, 

whert? G c !I%‘” is open llnd non-empty. 
a) We define the Lie bracket in the following wny: 
[f,g](x) := g%(x)f(x) - fz(x)g(z) (fz, g,; Jacobi matrices) 
b) In this paper we introduce the abbreviation: < fg > (x) := [f,g](x)(E R”). 
c) If f is i times (i E N \ (0)) d’ff P erentiuble, then we define recursively: 
< p.9 > (s) := [f> < f’-lg >](z), < f”g > (4 := g(z) 
d) For(m-1) t’ zmes //IL 2 2) diflerentiablc functions fi : G + iw” (i = 1, . . . . m) we 
write: 
< fi f2..,fnt >:=< fl < f2...ftn >>, where < f,,, >:= f,,, 

Theorem 3.7 (Properties of the Lie bracket) 
0) [f, g] = -[g, f] antisylmrnetq 

b) [f, h] -t- [g: h] = [f + g, h,], X[f, g] = [Xf, g] = [f, Xg] for em-y X E IR bihearity 

Corollary 3.5 [f, j] = 0 and [j, 01 = 0 for every f 

The properties are c;tsy to prove. 
The following example shows that in general no associative law holds for t,he Lie 
bracket. 

Example 3.5 Let f(x) = 2, g(s) = r2, h(a) = logz. 
[if, 91, 4 = 41 - 2 1 ogz), [f, [g, It]] = --2T 

The following theorem in not new. Nevertheless a proof is given here as none 
wva~ found in the lit,erat,ure during t,he research for this paper. 

Theorem 3.8 (Jacobi identity) 
Let f, g, h : G + IF?.” be twice continuousl~y dijj%!rentiable functions and G c EP be 

open and non-empty. Then the following identity holds for euery z E G: 

< f{]h > (2) =< gfh > (.r)+ < hgf > (x) (40) 

Proof: The function frz is triple subscriptM n.nd has the shape: 

. 

have: 
(fr(x)g(x)), = 
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Further on fz5gh = fzzhg can be proved by using the theorem by H. A. 
Schwartz. 
If we now apply definition 3.9 to < fgh > and < gfh > -t- < hgf > and use the 
above properties we get the .Jacobi identity. q. e. d. 

Our further considerations will be made for the following Mayer problem. This 
is no restriction at all as we will soon see. 

Problem 3.1 (MLP) We define: 

x’(t) = f(x(t)) + g(x(t))u(t) and (41) 

J(1J) = Jwf)) (42) 

Except this the (MLP) coincides with the (JP) (with the changed denominations). 

Theorem 3.9 Every (LP) can be transformed into an (MLP) and vice versa. 

The proof is easy and can e. g. be found in [7]. 
The following lemma is helpful for our further work. 

Lemma 3.5 (Gabasov and Kirillova 1.972) An (MLP) with piecewise anahytical 
solution u and finite problem order q be given. Then the following identities hold: 

= XT(< fQg > (Lx) f Ii,< gfQ-1g > (LIT)) (43) 
z ,p(< fQf’ g > (x) -t- u < gf2Q > (x) + 

fu < fgf2q-l g > (x) + IL2 < g2f2@g > (XT) f 
+u’ < gf2q-lg > (x)) (44) 

= A’(< fgfQ-1 g > (x) + IL < g2 f +lg > (2)) (45) $((H:‘q))u) 
< gfkg 3 = OforeveryIcE{O,1,...,2q-2) (46) 

Hik’ =I A’ < fkg > for every k E (0, 1, . . . . 2q - 1) (47) 

Proof: We have: H = X”‘f + uXTg, (XT)’ = -XTfz - uXTge, 2’ = f + ug. 
First we show (47). For this we use an in [6] given sketch of a proof. 
Property (47) can be shown by induction: 
k xz 0 : Hi’) = H, = XTg = X7’ < fog > 
/C + Ic + 1: (In [6] t,his part is only represented by “...“). 
Let H(“) = XT < f”g > be proved for a k E {O,l, . . . . 2q - 2). Then we get by t,he ’ u 
assumption of the induction: 

H(“+‘) = %(X7. < f”g >) = (A’)’ < f”g > +XT < f”g >z 2’ = u 
= (-XTfz - nx’g,) < fkg > +A” < fkg >z (f + ug) = 
= A’(< f”g >:r f - fz < fkg >) -I- cP(< fkg >Z g - gz < f”g >) = 
= XT[f, < f”g >] + d[g, < fkg >] = A’ < fk+lg > +uXT < gfkg > 

As /C + 1 < 2q holds, u mustn’t explicitly appear in HLk+‘). We get: 

XT < gfkg >= 0 for Ic E (0, 1, . . . . 2q - 2) 

As the respresentation of HI:) as a function with the variables 2, X and u is used 
for the determination of q, the factor of XT must disappear. Thus we get: 

< gfkg >= 0 for !C E (0, 1, . . . . 2q - 2). 
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Thus if the induction is completed, (46) will also be shown. We further get: 

H(““‘) z ,jT < fk+lg > . u 

17 

Hence the induction is compke and (~7) is proved. 
Thus we get: HP”‘““) = A” < f”q-‘g ,. Consequently: 

jpl) = (,p)’ < fWg > +A’ < fWg >z ?&-’ = 

= (-XTfz - ux’g,) < fQ--lg > +A“ < f2@g >z (f -i- 719) = 

= XT(< fQ-%g >z f - f+ < f-g > e 
+N< f -g >z g - g+ < f”q-‘g >)) = 

= A*(< f2q!g > +u < gf2q’-‘g >)* This is (43). 

Lye derive t~he result: 

$((al”“).) = $(XT < gf+-lg >) 
= (pj < gf+lg > j-/j“ < gfX”-‘-lg >z 2’ = 
= (-XTfz - UXTgs) < gf2q-lg > +A’ < gf+g >z (f + ‘Ml) = 
= A“(< gfW g >r f - fr < gf2”-lg > -I- 

+u(< gfQ-lg >r 9 .- g7 < gfQ--lg >)) = 
f; ,A’(< fgf”q..-‘g > +u < g’f’*-‘g >). This is (45). 

We substitute the result in (48): 

Hp+‘) = (A“)’ < fQg > +x7’ < f2”g 2, x’ -+ lL’XT < gf2’J^“5g > + 
+uXT(< fgf2q-lg > +u < g2f2q---‘g >) = 

= (-x”‘fz - dg:,) < fQg > i-x”’ < f2Qg >r (f i- ug) + 
+u’x7‘ < gf2”-l g > +%X’(< fgfQ-lg > +u < g2f2”--lg >) = 

= XT@ f 3qg >J f - fs < f Qg > -Pu < f ‘Lllg >r g - ug, < f Qg >) 4 
i-u’X7’ i gf2%g > tuX’(< fgfyq > +u < g2f2q--lg >) = 

= A“(<: pi-1 g > i-u < qf2”g > fu < fgf2”-l 
$-IL’ < g’f?Wg > +tlf < gfQ-1g >) 

g>f 

This is (44). q. t3. d. 

SIind t,hat (H/!+‘)\,, = A’ < gf “,g > holds for k E (0, 1, ..I, 2q -- 1). Thus the 
problem order q is given by: 
(i) < gf’g >- 0 for ever\- i E {II, 1, . . ..2q .-. 2} and (ii) < gf”‘---lg ># 0. 
If q coincides with the arc order p+ then A”‘ < gf’Q--’ g > must not. disappear on the 
considered interval. In o&r words: 
p # /I w x I < gf’“-’ g > in ~1 part, of the analysed cxtremal. 
Pontrjagin’s 1liriimum principle (theorem 2.1) excludes X := 0. 

The following lemma and its corollary were proved by H,ich;trd Bortrins in 1983, 
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Lemma 3.6 Let f,g : IRn + IEn be functions of the class Cmfl. Then the following 
identity holds for j E (0, 1, . . . . m} and k E {j, j + 1, . . . . m}: 

0 = 2(-l)” ( j ) < figfk-ig > -(-l)j[< fjg >,< f”-jg >] (4% 
i=O 

18 

Corollary 3.6 Let f, g : IF --F IF be functions of the class Cm+‘. 
a) Let q E N\ (0) such that 2q 5 m and < gfig >= 0 for i E (0, 1, . . . . 2q - 2) holds. 
Then: 

0 = < gf2qg > -q < fgf2@g > (50) 
b)LetqEN\{O;l} such that 2q - 1 < m and < gfig >= 0 for i E: (0, 1, . . . . 2q - 2) 
holds. Then: 

0 = < g2f2Q-lg > (51) 

Lemma 3.6 is proved by induction. The proof of corollary 3.6 uses Lemma 3.6, 
the Jacobi Identity (theorem 3.8) and the properties of the Lie Bracket (theorem 
3.7). [14] 

Remark 3.2 Bortrins ([14]) remarks without proof that part a) of corollary 3.6, i. 
e. (50), results for q = 1 in lemma 3.3. This has the following reason: 
For q = 1 corollay 3.6 says that 

0 =< gf2g > - < fgfg > (52) 

holds. According to lemma 3.5 we get for q = 1: 

Jp+‘) = u XT@ f3g > (z) 4 u < gf2g > (2) + u < fgfg > (x) + 

+u” < g2fg > (Lx) + u’ < gfg > (x)) (53) 

= XT& fgfg > (2) + 21 < g2fg > (z)) (54) 

dB = b. + ubU 
= dt > 

As H(2q+‘) = uo + mu -I- u’B f u(bo + ub,) = a0 i- ~(a,, + bo) + u2bll + u’B must u 
hold, we can read from (53) and (54): 

ao=XT<f3g>,b,=XT<g2fg>,B=X7’<gfg>, 

a,=X’<gf2g>,bo=XT<fgfg> 

Thus (52) means that a, = bo holds. q. e. d. 

Now we can show that McDanell’s conjecture also holds for q > 1, m = 1. But 
we need an additional assumption. 

Theorem 3.10 (Richard Bortrins 1983) An (MLP) with piecewise analytical so- 
lution IL* and junction t, be given. The problem order q and the arc order p be finite 
and q = p > 1 hold. Further on m = 1 hold. Then q + r + 1 is odd. 

4 sketch of a proof is given in [14]. 
Hence McDanell’s conjecture has been proved for m = 1, p = q > 1. Concerning 
part (i) this is obvious. Part (ii) (T = 0) has been proved because p(m) = 0’ is 
continuous in t, under the assumptions of theorem 3.10. ([14]) 
No counterexample is known for m = 1, 1 < q < p yet. 
Now we’ve finished the discussion of the case m = 1. A transfer to larger values 
of m is - if it’s possible at all - not possible without additional assumptions. This 
shows the following counterexample: 
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Example 3.6 (Counterexample by Pan and Bell (1987)) 
Pan Guo-L,in und D. J. Bell constructed the following problem: 

iln optimal solution starts nonsingular with u* 2 -1 on [-I, O[ and ends singular 
with IL* 3 0 on 10, I]. The control U* is optimal as ,J(n*) = 0 holds. As IL* is 
discontinzlous in the junction t, = 0 we get T = [I. Deriving the switching fihrdio7& 
we get q = 1 and m = 2 (> r), Hence case (ii) of McDanell’s conjecture is relevmt. 
H&her on we get: 

3’“)(0+) = -9, $L’)(O-) = 3 =+ -sign[~j(l’L)(t,+)3(11)(t,-)j = 1 

But this contradicts McDn71ell’,~ co7+cturc, ILS (-- l)9-t-“$-‘rL = (- 1) ‘io-t2 = - 1 holds. 
[l-151 

Let’s summa&e the results: The validity of McDanell’s conjecture has been 
proved in t,he following four cases: 

e na = 0 (theorem 3.3) 

a ck and i;l are (r f m) times continuously differentiable in the junction (theorem 
3.5) 

* (I = 1 and m = 1 (theorem 3.6) 

0 q = p > 1 and VI, = 1 (theorem 3.10) 

The general validity of case (ii) was disproved by a counterexample by Pan and 

Bell. In 1993 Bell (1121) published evidences according to which the construction 
of a problem with an optimal solution that, satisfies ((I, 711, T) = (1,2,3) might be 
possible. This would contradict part (i) of the conjecture, as q f r f rn is even in 
this case. The construction of such a counterexample has not, been possible yet. 
Apparently McDanell’s conjecture h;ls to be rejected for problems with optimal 
solutions that, satisfy m > 1. A proof of the coriject,urc with mm restrictive as- 
sumptions might be possible. But* one mustn’t forget that the corljecture is not very 
helpful for the solution of singular optimal ront,rol problems. The yuestion arises, 
whether the examination of the properties of the parameters q$ r and m won’t prove 
to be an impasse. 

3.5 The Location of the Junctions 

For a long time it 1~~ been supposed that there’s a connection betwem the location 
of the junctions and the tmmiary rondit,ions of the prot~lern. But no proof ~oultl 

Ruxton and Bell ([16]). ‘They 
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Two problems of kind (L&P), who have both partially singular optimal controls 
and only differ in the final state z(tf) are considered. The following assumptions 
are made: 

a The optimal control consists of exactly two parts, where one is nonsingular 
(and constant) and the other one singular, independent of the sequence. The 
junction is t,. 

e For one choice of z(tf) the optimal control u* is known on whole T. The 
corresponding extremal be (z*, v.L*, X”). The control U* is called reference 
control. 

* For an arbitrary choice of the final state ft(tf) the corresponding optimal 
control be n(t) ( variational control) with junction ti, and extremal (3, U, 3). 
Then U. switches to the same bound Iu*(t)l = fl as the reference control but 
at fC where t, = CC only if Z(tf) = x*(tf) 

The question is: If we know (z*, u*, X’), I, z’(tf) and tf: are we able to compute 
ff ? 
Using the abbreviations 6~. = G - u*, Sz = Z - z* and SX = i - X” the following 
theorem holds ([ 161) : 

Theorem 3.11 

Let R = bbT y zz 
( 

(I - R)A + RAT RAzT 
1 

, 

bTb’d ( (3:: $3) &,iyi...,y=;;“: Q(.) = expX(.), Q = Q-’ = 

a) bang/singular case with fr > t,. The following equation holds: 

b) singular/bang case with t, > &. The foilowing equation holds: 

QIZ(G) SX(to) = ezp (A(& - tf)) 6z(tf) f J ezp(A(tl, - T)) b&(T) dr (56) 
tc 

If the final costate variation sL!(t,) resp. the initial costate variation 6X(to) is 
calculable then & may be calculated as a function of z(t/) ([16]). 
Although the theorem is only applicable to a very special type of problems it gives 
hope that more theorems of that kind can be proved in the future. 

4 Multidimensional Controls 

4.1 Introduction 
In section 3 we restricted ourselves to one-dimensional controls. In pratice however 
more complicated systems can have several independent control variables. This re- 
sults in additional problems: 
The anyway very difficult treatment of the junctions e. g. becomes even more com- 
plicated, as e. g. the problem order need not be an integer any more (we will soon 
see that,). 



4 .tTULTIDIhfE~~SIONriL CONTR,OLS 21 

Further on it,‘s posssikle that a control is only singular in certain components, where 
junctions need not refer to all control components either. 
This section shows some properties of multidimensional controls, that, might, be 
helpful for the treatment of such problems. 

4.2 Mixed-linear-nonlinear Problems 

Here we consider problems with the Hamiltonian 

H(PS, 5. A, t) = 0(2,X,t)+w(z,X,t)v+CT(‘IU,L,X,t), 

where ZL = (u,w) 

In such cases we treat the linear and the nonlinear part seperately as far as 
possible. Thus singularity means that H,, = ti = 0 and H,,,,, = c,,,~,~ = 0 hold. 
Hence we get equations in the linear control variables and equations in the nonlinear 
control variables. [7] 

4.3 Controls with Singular and Nonsingular Components 
Definition 4.1 
Let (P) be given. 
u) The H(mCltoninn H be linear %n 1~ and at least one component of H,, be zero. 
Then u is ccdled singular of rank :{i/H,,, = 0). 
0) The Hamiltonian H be nonlinear in 11 and ,rkH,,,, be not mazimul. Then ‘11 is 
called singular of rank (s - rkH,,,,). 

If the rank of singularity is mazinzal, i. c. equal to s. then u is called totally 
singular. (cf. [l II]) 

In [lo] a possibility to eliminate nonsingular control components in order t,o 
create Hamilt,onians with totally singular controls is described. In t,his work this 
will be substantiated and further developed: 
a) nonlinear case: 
For simplification we use Einstein’s convention to sum over every index that appears 
more than once in a summand. 
In the nonsingular CRSC WC assume t,hat H,, = 0 holds along the considered int,ervn,l 
of time. If u is in the interior of I.,’ this is satisfied because of theorem 2.1. 
Thus we get, .s equat,ions. Because of the nonlinearit,y we get, in the singular ca~c 
detH,,, = 0, t,hus p := rkH,,,, < s. 
If we make a linear transformation of thr control variables by 11 = ZU, where Z 
is a regular .s x s-matrix, and define H”(c:, X, A, t) := H(Zv, .c7 X. t), t,hen we get, 
H,Sb = -H )L, -lik, as IL< ‘= ‘ij l’,). Hence HE = ZT H,, Fmther on we get: 

(H,O,,)k,~ = (HutiJtp~t~~:I,J z -k/~(Huu)ip~p~ * Hi;,, rz z7‘tJuuz 

As H,,,, is symmet,rical according t,o the t,hcorcm by H. A. Schwartz: we can make 
a principal axis transf(~rnnat,ion such that 

Z’I‘HUI1 Z = 
c 1 

C” 0 
0 (, 

(57) 

holds, whcrc C“ is il regular p x /t( cliagoIlal)-rnat.rix. Now we use the matris %, 
built, by, oxthonormal r>igcnvrctors, fcor the tlcsc~ribetl transforIrlation 11 = Xv. Then 
I-l;; := %“H,, = 0 hold< and 

Hi?,, = 
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We .write v = (v,,,, using), where unon(t) E l@’ , and interpret, w,,, as the nonsin- 
gular part, and v,ing as the sirigular part. Then we get: 

H,onon = 0 (58) 

~~dh?n = c (59) 

As we assume the existence of a solution and C is regular, the implicit function 
theorem allows us to resolve equation (58) such that we get a function v,,,, = 
$+hlg 3 2, X, t). This way we can reduce the dimension of the control space from s 
to s - p, and we get a new Hamiltionian 

%~+qr&W := H”(~,(~singrx,X,t),w,i,g,x,X,t). 

NOW we can continue with this function without problems, as: 

U, = (H:n,,)ll$z + H,” =(58) H,” = H, = -X’ 

?!A = (H~m,,)T$~ + Hz =(58) Hz = HA = 2’ 

Further on we get F&,, = 0 and Y-LVJingU,+ = 0. Hence t,he transformed problem 
is totally singular. 
The method once again in a short version: 
(i)M k p’ p 1 a e a rinci a axis transformation: 

77-u 7- I: * 11z1z/c5 - fl 
\ “> 0 0 

and define HO(v,z, X, t) := H(Zv,x, X, t). 
(ii) If C is a I; x pmatrix then resolve the equation system (H~,Jizl,,.,,, = (O)i,,,...,, 
w. r. t. (VI, . . . . wP) T. Result: (~1, . . . . ,u~)~ = $(w~+~, . . . . ?/,,x, X, t) 
(iii) The new Hamiltonian is 

WV p+l>-.rvs,x,&t) :=H”(~(wp+l,...,w,:,x,X,t),~p+l,...,ws,x,X,t) 
with the totally singular control (vp+l, . . . . u,). 
The set U(t) of admissible control values is transformed correspondingly. 
b) linear case: 
We use the restriction l~k(t)I < Kk(t) > 0 (cf. (LP)). 
The control be singular of rank s - p(> 0). W. 1. o. g. exactly the last s - p com- 
ponents of H,, dissappear: H,, = (*, . . . . *, 0, . . . . O)*. Thus ~1, . . . . up are nonsingular 
and uP+l, . ..! IL, are singular. We have: 

I = -Kk(t) . sign H,,, (u(t), x(t), x(t), t) for k = 1, . ..) p 

As H,, doesn’t, depend on u any more, we have the representation 

(WY ..., up) = tics, A t), 

with which we proceed like in the nonsingular case. Hence we define: 

~FI(~p+lr...r~srx,kt) := H(~(x,X,t),~p+l,...;~~stx,X,t) 

4.4 Problem Order and Other Concepts 

In case of multidimensional controls we have the situation that H,I”) is now a vector 
in IP and (H(“)) U is an s x s-matrix. The different controls can appear primarily 
in each compinent of H,!k) for different values of k. Apparently only Robbins ([lo], 
1967) as well as Bell and Jacobson ([3],1975) have examined such problems up 
to now. Robbins proposed a definition for the order, but at this time there was 
no distinction between problem order and arc order. Today t,he definition would 
probably be the following: 



Definition 4.2 Let (P) bc given. Then Definition 4.2 Let (P) bc given. Then 

q := min{k 2 0 / q := min{k 2 0 / H, H, c2') has at least one component in which a component of (21;) has at least ow component in which a component of 
u appears explicitly.} u appears explicitly.} 

is called problem order of (P). is called problem order of (P). 
Further on (x. A, t) he a71 estremal of (P) n~,d [a, h] c ?’ (a < h). Then Further on (x. A, t) he a71 estremal of (P) n~,d [a, h] c ?’ (a < h). Then 

p := min{k 2 0 p := min{k 2 0 / (H~“)),,(u(t),x(jt). x(t).t) h / (H~“)),,(u(t),x(jt). x(t). t) h as at least one component which as at least one component which 

does not d&appear for any t E]a, b[.} does not d&appear for any t E]a, b[.} 

is culled arc order of (2, A, t) w. r, t. (P). is culled arc order of (2, A, t) w. r, t. (P). 
The derivatives are computed as described in definition 3.3. The derivatives are computed as described in definition 3.3. 

The gencralized definition 4.2 is consistent with the definitions 3.3 and 3.4. The gencralized definition 4.2 is consistent with the definitions 3.3 and 3.4. 
Now a new concept, for the treatment of the order in the case of multidimensional 
controls will be introduced. 

Definition 4.3 Let (P) be given. The matrix Q = (rlij)i,-;=,,,,,,8, ,where the control 
SUi appears explicitly in H,,, for the first t’ tme in the 2qil-th total derivative kth 

respect to t, i. e. in HZ:‘j : is called problem order matrix. 
Further on (x, u, X) be an extremal and [a3 b] c X ( u < b) be u given interval. Then 
We cd P = (Pij)i,Jd,..,s arc order matrix. them 

pij = min{k 2 Ol(H,,, (2k))tLi(u(t),~:(t).X(t),t) f 0 for cwery t ~]a, b[}. 

It is (I = min{q;jlil j = 1, . . . . s} and p = min{pi$, j = 1, . . . . s}. In the onedi- 
mensional case the matrices become the usual orders. 
It’s easy to see the validit,y of the following theorem: 

Theorem 4.1 The diagonal elements of c,! and P are natural numbers. 

Proof: As the diagonal elements refer t,o only one control component> we can 
proceed analogously like in the proof of theorem 3.1 with (HJLf)),,, for qii resp. piL 
and receive the desired result. q. e. d. 

The remaining elements of & and P need not be natural. If one starts in t.he 
proof of theorem 3.1 with yI, = (U!:‘),,, . one would get inst,ead of (15) t,he relst,ion 

*VP = (-l)““[V(H$]9 D(H,1;‘) (60) 

Thus here WC don’t, have the shape z TSz any more. Hence the proof can be applied 
to the diagonal elemcnt,s of the matrices and only to t,hese. 

Robbins ([IO]) ~~‘is well ;LS Bell and ,Jacubson ([3]) point out, that, in the multidi- 
mensional case non-natural orders can appear, and at least R.obblns means probably 
the todays arr order. But esm~plm are not, given. Robbins points out, that, such 
extremals (with odd 2,~) are not opt,imal however. 
Non-natural problem nrdcrs on the other hand are independent, of extramals and 
ran indeed appear. as thr followin, LT hit,herto unknown countcrcxaInple shows: which 
is also important in anothctr respect. 
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Example 4.1 

2 

minimize J(u) = I (2: f xi - 1)2dt, where 

Thus q12 = q21 = f holds. Hence all elements of & outside the diagonal are non- 
natural! 
Further on we get: 

-4(2xlulxz + 2x2uzx1)2122+ 
+[-4(x? + x; - l)ulx;] - 4(x? f x; - l)u2xTf 

+[-X2u2x1 - 4(x? f x; - 1)xf + X1UlX2 f x1u1x2+ 

+4(x? f x; - 1)x; - X21125&2 + (XIX1 - X252)?4 

-4(2qu1s2 + 222u221)qx2+ 
+[-4(x? + x; - l)u& - 4(x? f x; - l)u259 

+[-xlulxz - 4(x? f x; - 1)x; f x2u2z1 + XzUzX1f 

+4(x? f x; - 1,x: - X~?L,Q]U~ + (X$Q - x~x~)u; 

J 
0 

x; = 21122,x1 (0) = 0, x; = 212x1, zz(O) = 1 

ul(t), w(t) E [-1, l] piecewise continuous 

We get H = Xlulxz + X2u251 i- (CJ$ i- xi - 1)2. 
=5 xl, = --x2212 - 2(x; + x; - 1) .2x1 and A; = --X1ul - 2(x: -I- xi - 1) . 2x2 
The transuersality condition results in: 

X(2) = (O,O)T (61) 

We get: H, = (X~X~,&LC~)~. 

HL1) = 
( 

-x2u252 - 4(x? + x; - 1)x,x2 + x*uzxl 
--x1u121 - 4(x? + x; - l)XlXZ + x2u152 1 

IX -4(x? +x; - 1)x1x2 + (XIX1 - X~X~)U~ 
-4(x? f x; - 1)X1X2 + (X2x2 - XlXl)Ul (62) 

Thus we get the following matrix: 

1 

-8x2x2+ -8x:x; - 4(x;L f x; - 1)x:+ 
+ [-4(x? + x2 - l 22 1)x?] f +(-4h2q) + 2X1u1z2+ 

+2X1212x2 

(H(“)). = 
+ [-4(x7 i-x: - 1)(x? +x$)1 

,I 
-8x:x; - 4(x: + x; - 1)x;+ 

+(-~XI~I~S) f 2&u221+ 
+ [-4(x? + x; - 1)(x? -I- x;)] 

Consequently 

-8x2x2+ 
[-4( x’4 + x2 - ‘2 2 1)x?] + 

+2A221151 

(63) 

&= 
(. 1 

1 3 
j 1 (64) 

holds. Thus theorem 4.1 has been v&dated. 
Now we construct an optimal solution. A very simple solution would be u1 =I u2 z 0. 
But it’s not the only one: 

(i)OQd- : 
2 

Ul(t) = +1, u2(t) = -1 

x1(t) = sin t, x2(t) = cost 
A\ = x2, x; = -A, 
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(ii) 5 < t c 2 : - Ill(t) = us(t) = 0 

x,(t) = 1,x2(t) = 0 
xi = A,, = 0 

lising thr transversdity condition (61) we get: x1 z & E 0. 
As generally J(u) 2 0 holds and along the constructed extremal J = 0 holds, we 

hoot? an optinmt solution. If we insert this extrernal in (Hl(dl))ll (see (62)) then we 
get the zero matrix. Thus pij > f holds for every i, j E {1,2}. If we insert the 

extremal in (H,(F)),, (see (63)) then we get at IO, c[: 

(H(‘)),(u(t),x(t),X(t),t) = -8sin’tcos”t : i Zl 
( > 

Hence at [0, $1 the problem order matrix of the considered optimal solution is 

1 1 
p= 1 1 ( 1 

und consequently p = I. 
The considered optimal control function u is totally singular on T. Here a part of 
the singular control is situated on the boundary of U. But changing the set CT to 
[I - F, 1 f E] (F > 0) is possible without problems. 
Further 071 (-l)“(rI!;“‘),,(?l(t), x(t). x(t). t) is positive semidefinite 071 [0, 51, as the 
eigenvalues are 0 and 8 sin” t cos’ t. 

This looks like a multidimensional GLC. Indeed such a theorem (WI be proved. 

Theorem 4.2 (Generalized Legendre Clebsch Condition (GLC)) 
A (P) with analytical functions f and L be given and (x*, ‘IL*, X) be an optimal 

extremal with arc order p < too 071 [a. b] c T (a < b). Then p E N and along 
(s*(t), u*(t)? A(t)) the mutrix (-1)” * (Hlil’“‘),, is positive semidefinite for every t E 
]a. b[, 

(see [3] and [lo]) 

This shows that indeed odd values for 211 allow t,o conclude that nonoptimality 
appears, as R.obbins discovered. Mind that the onedimensional GLC for arc orders 
((-l)l.I(H,?P))~ > 0) I ( oesn‘t, result in the positive definiteness of ( -1)“(H$i2”)),, but- 
merely in its positive semidefiniteness, as counterexample 4.1 has shown. 
Basically the onedimensional GLC also only consists of a statement wit,h the arc 
order. as in the case 2, = 0 both statements are identical and in the other case the 
uneqtlation (-l)q(Hpqi),, > 0 is trivially satisfied. 

5 Optimality Conditions for Singular Controls 

5.1 Introduction 

l% purpose of t,his sWt,ion is to present condit,ions for the optimality of a singular 
control. IVe rt5trict ourselves t,o purely singular controls, i. I:. controls which are 
singular on the whole interval. Although optimal cont,rols often consist of singular 
and nonsingular parts. this is no essential restriction, as optimal u)ntrols are idS0 

opt,irnal in any subint crval if the ;lssociate boundary conditions are givexl. The 
drterIriination of optimal purely singular control segment,s Can furthermore bear 
informations on t,he location of junctions, if (5. g. it criterion exclntles the optimality 
of singular rontrols in cWtairi t,imr segments. 
LlrC3llsr Of S(‘iWCitv of room V.-C forgo the proofs of the> (jUotP(i throrcms. 
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5.2 Determination of the Singular Control 

26 

First of all we describe ways to determine the singular control without taking care 
of optimality. We restrict our considerations to linear Mayer problems of the shape 
(MLP). 
The control we consider is supposed to be singular on the whole interval T. Thus 
in the interior of T the identity Hik’ = 0 must hold per def. for every k E N. 
Thereby we get basically infinitely many equations, which shouldn’t be left unused. 
We could use them e. g. for the attempt to determine the singular control. But the 
question is how many independent equations we have. In lemma 3.5 we’ve already 
seen that in case of finite problem order q the equation H$“’ = XT < fkg > holds 
for every Ic E (0, 1, . . . . 2q - 1). 

Theorem 5.1 An (MI;P) with associate extremal (x*, u*, X) be given, where u* 
be purely singular. The problem order q be finite and be equal to the arc order p on 
[a, b] c T (a < b). Then {< f”g > Jk = 0, 1, . . . ,2q - 1) are linear independent along 
the extremal (on whole T). 

The proof uses lemma 3.5 and can be found in [7]. 
Using this theorem we get the following interesting result: 

Corollary 5.1 An (MLP) with associate extremal (x*, u*, X) be given, where u* 
be purely singular and q = p < +oo hold on whole T. Then 2q 5 n holds. 

The proof can be found in [7]. 

The statement of corollary 5.1 appears only at first sight to contradict example 
2.1, in which 2q = 2 > 1 = n holds. But example 2.1 is not a Mayer problem. If 
we transform it into a Mayer problem, then the dimension n increases by 1 and the 
corollary is confirmed. 

By lemma 3.5 we know that 

HP*) = XT(< f2qg > (x) + u < gf2q-1g > (x)) 

holds if q < -i-co. Thus in segments with q = p we can determine the singular 
control from the equation HP’) E 0 as 

< f”qg > (x) 
u = - < gf2q-‘g > (x) (65) 

But for high orders the usage of (65) is very expendable and numerically unusable 
as the differentiation is an ill-posed problem. 
If q < p < +oo then we have besides HF’ = 0 (k = 0, 1, . . . . 2q - 1) additionally the 
following equations: 

HJ:) = 0 for Ic E {2q, 2q + 1 , . . . . 2p - l} (because of the singularity) 

(Hck)), = 0 for k E {2q, 2q + 1 u 1 ..*> 2p - 1) (because of t,he definition of p) 

Of course, Hik) = 0 also holds for Ic 2 2~. [71 

Therewith we have possibilities to find candidates for singular co&rols. On 
t,hese candidates we then apply optimality conditions like the GLC in order to e. g. 
exclude certain candidates. 

Example 5.1 In example 2.1 the singular control can be determined in the de- 
scribed way. If we use the (optimality) condition X # 0 (see theorem 2.1) then we 
get x1 G 0 and u 
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5.3 First and Second Variation of .J 
The computation of the variations is at length described in [a]. We simply quote 
the results. At first we construct another in comparision to (P) slightly changed 
problem: 

Problem 5.1 B!y (P2) we mean a problem of kind (P) mit free final time tf, 
where .z*, fq 9, L E /I’” holds alid additionally t/&e final condition q)(x(t/), tf) = 0 
(E IF) has to be satisfied. Here x:’ is the state function which belonys to the optimal 
piecewise continuous control IL*. 

We consider (P,) with optimal admissible pair (x*, Al*) and constructr a one- 
parameter family of control vector functions u(., E) such that u(., 0) = $A*(.). The 
associate family of state vector fun’ct,ions is denoted by z(.! E), where analogously 
x( ., 0) = z* (.) holds. In caSe of variable final time we write tf (c). FWher on we use 
the denotations n‘x := s, dr, 6%’ := 6(z’) -1 (x’), tk, fi”z := fi(6z), Er := (tf)tlrcf), 
71 := J,I,=~ and B := U, Ir--O. By v E II@’ we denote an arbitrary constant vector. 
Mind that 11 and ;3 are functions of t and X is independent of F. 
Thus the optimal t,rajcctory (i. e. the c,ase t = 0) can be described by: 

dt f = (f tit-, 6s = 11 de (66) 

Definition 5.1 As .7 is in our considerations a function of F we cau (under the 
assumption of suficient differentiability) develops J into a Taylor expansion: 

tJ(t) = J(0) f 97, F + tJz F’ + o(e’) (67) 

Here tJ1 (= $J(O)) ,’ 1s called the first variation of J and LJz is called the second 
variation of J. 

By means of the calculus of variations we get: 

tJ,(E, 7~9) = k/t -t- ~“a i H)[M, Er + [(.qz + v?‘& -. X”‘)(z’f$ + I/)] lf-t, + 

-!- 
.I 

[(Hz + (X’)‘)rj + H,,J]dt (68) 

to 

Tht) formula for t lirl first, variation is also valid fcx non-optimal estremals. 
1Vit.h (6X) ;tncl (69) WV ran promo Pontrjagin’s Ilinimum Principle (theorem 2.1). 
Necessary for t.he rninimalit,v of .I is the non-nc~g;lt,i~it~ of ,.Jz for pvcry variation, i. 
e. for every family (s( .1 F). IL(., F)) of admissiblt~ pairs satisfying ,i~( ,, 0) = IL* (.) and 
.c( ., 0) = s* (.), whmm th so called strong positiyity (for every variation), which 
will be defined later on, is sufficient I always undrr the assunlption J1 = 0. 



Theorem 5.2 A (Pz) be given. Let (x*, u*, X) be an extremal which satisfies .]I = 0 
and tJz > 0 for every variation. 
Then the set of 7lariations which satisfy <f = 0, rj z 0 and /3 z 0 minimises Jz. 

Proof: If ef = 0, q E 0 and p f 0 holds, then J2 = 0 holds, whereas generally 
52 > 0 holds in case of the given extremal. q. e. d. 

Hence we get the following problem: 

Problem 5.2 ((AMP) = acessory minimum problem) 
minimize JZ among all variations Ef , r), p, which satisfy 

7’ = (fdl+fuP)l,,o (70) 
77(to) = 0 (71) 

0 = [&Ef + &I . (x’Ef + 41 Ir+t, (72) 

As the optimum (2”) u*) is reached with If = 0, 7 s 0 and p s 0, the seeked 
solution of (Pz) is consequently also a solution of (AMP). 
The conditions (70), (71) and (72) are necessary for the admissibility of each pair 
(XC., ~)),u(., t-J). N ow we need the following abbreviations: 

Q := Hz,, C := H,,, R := H,,, Qf := +zfzl, A := fz, B := fu, D := &, (73) 

Instead of 77 we will now write x and instead of p we choose U. Hence from (70) we 
get, 

x’==Ax+Bu, (74) 

from (71) 
x(to) = 0 (75) 

and from (72) 
Dz(tf) = 0 (76) 

in case of fixed final time. Considering the (AMP) we minimize the second variation 
and denote it as new cost function Jz[u( .)I. Further on we now assume that [f = 0 
holds, i. e. we fix the final time. According to (69) we get: 

ff 
1 ? 

J2Wl = 5x WQpW + J( 1 T 1 T 2x Qx+u*Cx+~u Ru dt (77) 
to 

Hence the (AMP) consists of the minimization of (77) under t)he conditions (74), 
(75) and (76). 

5.4 Kelley, Jacobson and 
Generalized Legendre-Clebsch-Condition 

Sometimes one finds in literature the following theorem: 

Theorem 5.3 (Kelley Condition) 
Let (x*, IL*, A) be an optimal extremal of a (Pz) with fixed final time, where u is 

singular on whole T. Then 

(H~‘)),(u*(t)~x*(t), X(t), t) is negative semidefinite for every t E [to, tf]. PI 

The Kelley Condition is now only a special case of the GLC (see section 3). 
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Definition 5.2 
a) Jz [IL(.)] is called non-negative if its unlne is non-negative for every adnkss~ible 
71(.). 
b) Jz[u(.)] is called positive definite if ,12[77[.)] > 0 (E IR) h:?lds for every udrnissiblc 

lL(.) with u(.) # 0 (0: zero function). 

c) Jz[u(.)] is called strongly positive if there mists a k > 0 such that J2 [1~(.)] 2 

kIlu(.)1/2 holds for every admissible u(.), where /I.I/ is a suitable norm in the set of 

the bounded piecewise continuous functions, 

We’ve already considered the GLC. Let’s add that in the proof of the GLC the 
assumption, that we have a so called normal problem, is used, which is e. g. not, 
rrquired in case of Pontrjagin’s Minimum Principle. (see [3] and [17]) 
Another Condition is still missing: 

Theorem 5.4 (Jacobson Condition) 
Let (Pz) be given with free final point and fixed final time tf. Fzhrther on (x* T u*, A) 

be an extremal s7~h that ,Jz [u(.)] is non-negative for ewry admissible variation U( .) 
and J1 = 0 holds. The control IL* be .singuler o’n whole 7’. Then the following 
property holds alomg (s*. IL*, A) : 

H,,,f,, + fzl$“fll is positive semidrfinite for every t E]to, t/[, (78) 

where - W’ = H,, + f:Lt + Il’fs, CV(t,) = (g(x/)),,,, (79) 

holds md LY is a ,symmetrical 071~1 contin7mdy difj%rentiath 11 x 7~ nkatriz functio7h 

Regarding the proof we refer to [3]. 

Now we ~51 use t,he denotations u and s for t,he control and the state again and 
not for the variations any more. 

Example 5.2 ,Jacobson ([la]) . mnstructed the following problem: 

‘2 

J 

1 
minimize ,J = x’dt - -S.c(Z)’ for n given S > 0, where 

2 

2’ = it, x(0) = 1. Cf Ez [-1. I] 

We get H,, = A. Thus the nonsingular c*ontrol appears if X # 0 and is given by 
u = -sign A. The skgular control scztisfies: 

lL% x E sz 0 

The GLC is always satisfied. ,Jacobso,n considers the following admissible control: 
u(t) = -1 for t E [O, l] and IL(~) = 0 for t ~]1,2], hence ,I@) = 4. The matrix 
fwnction TV’ in the .Jacob,son Condition is then given by K‘(t) = -S + 2(2 - t). 
Property (78) is q7u7mlent to t < 2 - $S. This condition is independent of the 

eztremal, i. e. the optimal control may onhy be singular ‘7~1~ to t = 2 - 4,~. Hence 
,JacobsoT?s candidate is not optimal. 
Gerald M. Ander.son ([lGj) instances another admissible control for 0 < S < I: 

/L(t) = -1 for t E [O. 11, v(t) = 0 for t El1 ,2 II S] a71d u(t) = 1 for t El2 - S, 21. 

The ,J~~b.sorr C~n.ditic~l is scltisfid for- this ~c~ndidate and 7l:r gc?t ,I( IL) = 5 --- +S” < 

I 
.i 

.-Ix~~wso~~ ;~t-fds an explall;ttion why the ,Jncobson C’ondit,ion is more meaningful 
than the GLC in csnmplc 5. 2. In the proof of thtl Sxot~~n Condition (see [3]) the 
following control variation is ust4: 

.3(t) = 0 if t $ ifi. I1 -)-- A] 5 7‘ 

J(t) = r if t E :tlt tl -+ 11 
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This is called a Single Pulse Control Variation (SPCV) whereas in the proof of the 
GLC a Double Pulse Control Variation (DPCV) is used: 

/3(t) = +lT if t E [ti, ti -I- A] 
P(t) = -l? if t E [tz, t2 -t- A] 

P(t) = 0 else; ti + A < t2 

We will denote these variations here as &us and 62113). 
If zrk = u* + bus holds, where (x*, u*) is an arbitrary admissible pair, then we get 
here: xs(t) = x*(t) + Sxs(t) with 

6xs(t) = 0 for t < ti, 6xs(t) = r(t - tl) for tl < t 5 tl -I- A, 

6x$(t) = PA for t > tl + A 3 zs(2) = ~“(2) + IA 

On the other hand X$ = U* f 6~0 3 x~(t) = x*(t) -t- 62D(t) holds with 

SxD(t) = Ofortst 1, ho(t) = r(t - t1) for t1 < t 5 t1 + A, 
6xD(t) = rh for ti f A < t 5 t2, 

6xD(t) = I’(A - t + t2) for t2 < t < t2 -t A, 

6xg(t) = Ofort>tZ+A 

=+’ 2D(2) = x*(2). 

Hence the Mayer term is invariant with respect to a DPCV but not with respect 
to a SPCV. Thus the Jacobson Condition is so to speak more sensitive than the 
GLC in example 5.2. 
However Jacobson and Anderson apparently overlooked the fact that u is singular iff 
X = 0 holds, which is an obvious contradiction to Pontrjagin’s Minimum Principle 
(theorem 2.1). Hence an optimal control can’t have a singular part. 

5.5 More Necessary Conditions 

At first we define a general Mayer Problem: 

Problem 5.3 (MP) be a special case of (P), where int U(t) # @ for every t, 

Z = IP and U(t) c IL% hold. The functional, that has to be minimized, be J(u) = 
g(x(tf)) ~3rd the functions f and g be piecewise analytical. Again we’re looking for 

a piecewise continuous control. 

We first consider the following theorem for Mayer Problems, which are of course 
not only in the linear case equivalent to Bolza Problems. 

Theorem 5.5 (Skorodinskii 1979) An (MP) with optimal control u* and respective 

extremnl (x*, u*, X) be given such that the following properties hold: 

u(t) E int U(t) for every t E [a, b[C T(a < b) (80) 
and H~Lu(u*rx*,X,t) = 0 for eveqt E [a, b[. (81) 

Then the following property holds along the extrernal for every p E IR and t E [a, b[: 

S(t,p) := (HC2)),, - 3p 
a4 

11 -P’~H<O (82) 

The proof uses DPCVs and can be read in [20]. Skorodinskii also proved the 
following corollary: 
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Corollary 5.2 Under the assumptions of fheorem 5.5 the following properties hold: 
n) (H{i”),, < 0 and &H 2 0 along the nxtrernal for every t E [a, h[. 
b) If t = T E ((I, b[ and &H > 0 then 

c) Let t = I- E [a, b[ and the properties (Hj:‘),, = 0 or &H = 0 hold along the 
extremal for every t E [a, b[. Then the folloulirag identity holds: 

(, ) $(H,,,,) (1~*(7)~~*(r)~X(7-),7-) = 0 
1‘ 

Regarding the proof we again refer to [20]. The statement, (HIJLZ))I, 5 0 in part a) 
of corollary 5.2 is the Kelley Condition (theorem 5.3). 
From the theory of differential equations we know the following lemma ([al]): 

Lemma 5.1 (Gronwall Lemma) 

If (a(t) = h(t) + ,; k(7)@@& holds on [a b] (a < b); h, k E CO([a, b]), k 2 0, then: 
0 

t 

G(t) < h(t) + k(7)h(r)cxp 

For the next. theorem we need another dcfinit,ion and some lc~mmas. 

Definition 5.3 Let u and ti be two admissible controls of a (P). Then we define: 
E := {t E T j u(t) # c(t)}. dl(u, li) := X(E) (X: Lebesqve meas?+) 

Sometimes we will need the> following assumption: 

Assumption 5.1 (with respect to (P)) 
(i) f,!AL E co; fz,gz and L, exist and be continuous. 
(ii) There exist an M E Iw such that for suery u E U(t), x E iw’” and every t E T 
the following inequality holds: 

[if(x. rr.f)/l <: J\((lj:r// + 1) (83) 

By //.// we mean the euklidean norm in R” ill 

Lemma 5.2 (Mayne 1973) 
Let (x, u) and (2. ii) be two arbitrary admissible paivs for (P) 1Lnder the assumption 
5. 1. Let 1111 := u - ti, and 1.x :== x - .i-. Then them exists a c E W+ such that 
!lLL.r(t)ll 5 c tll(u. fi) for r’uflry t E T. 

Regarding the proof WV refer to [22]. 

Lemma 5.3 Let (x*, II*, A) be m optimal mtremal for (P) under the assumption 
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where AH = H(u,z*, X,t) - H(u*,x*, X, t). Then AJ 2 G for every admissible 
pair (x, u) of (P) with suficiently small dl (u, u*). In other words: There exists a 
d > 0 such that for every (P)- d a missible pair (x, u) that satisfies dl(u, 2~‘) < d the 
inequality AJ 2 0 holds. 

Regarding the proof we refer to [l]. As Pontrjagin’s Minimum Principle, which is 
not helpful in the singular case, is a first order condition, it appears to be suggesting 
to look for a second order property. 

Theorem 5.6 (Gift’s Second Order Minimum Principle (1993)) 
Let (x*,u*) be an optimal pair of (P) under the assumption 5.1, where u’ be 

singular in the sense of the Minimum Principle (see definition 2.5) on whole T. 
Further on &Hz exist. Then the following properties hold: 
a)AHz.AHA>Of or every admissible pair (2,~) with u(t) E W and sufficiently 
small difference sup E - inf E > 0 and for evemJ t E T. 
b) If (P) is linear in scalar u and H E C2 holds, then HTzH,,x 2 0 holds along the 
optimal extremal for every t E T. 
Here we used the abbreviations 
AH, := Hz(u,x*, X,t) - H,(u*,x*,X,t) and 
AH, := Hx (u, x* ,.A,t) - HX(,u*,x*,X,t) 

The theorem was proved in [l]. In [23] Zhou claims to have a counterexample for 
theorem 5.6. But this counterexample is ‘incorrect. Zhou uses u* E 0 as optimal 
control and u s 1 as variation. But this means that sup E - inf E is not sufficiently 
small but has maximum size. 
Another necessary condition is: 

Theorem 5.7 (Kalinin 1985) 
Condition: Let (P) with finni condition cpi(x(tp)) 5 0 (1 < i 5 s), cpi(x(tf)) = 0 
(S + 1 5 i I m), fixed final time tf and cost function J(u) = po(x(tf)) be given. 
Here f, (Pi E C2 (0 < i < m) hold and U(t) be open and non-empty for every t E T. 
For this problem there exist an optimal pair (x*,u*), where u* be singular on whole 
T and additionally to the piecewise continuity also leftsided or rightsided continuous 
in the discontinuity points. Further on qi(x:‘(tf)) = 0 also hold for 1 5 1: 5 s. 
Statement: Then for every t E T and every with respect to the above problem ad- 
missible control u with 

HT(u*,x*,$i,t)u<O forO<i Is, HIT(u*,x*,$ti,t)u=O fors+l <i<rn (84) 

the following inequality holds: 

min{~~r[HZ1l(u*,x*,~,,t)f,,(t,x*,~*) + 

+f,T(4 xc, u*)*.(l(t)fU(t , x*, u*)]u 1 n E A(u*)} > 0, 

where &(t) E IV (0 5 i < m) and ga(t) E IR” (a E A(u*)), t E T, 

are solutions of 

and Q,(t), t E T:a E A(u*), are n x n-matrices and solutions of 
‘I!:, = -f,‘(t,x*,u*)$in - Qikolfz(t,x+,u*) - H,Z(u*,x*,~,,t), 

171 
@a(tf) = ~CYi((f&(Z*@f)). 

i=O 
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condition (84) is really needed. 
Another necessary condition is given in [%I. But this one has the disadvantage 
that a partial diffcrent,ial equation has t,o be solved, which is generally different, for 
each exkernal. Thus this condition is only useful if certain candidates are to be 
excluded. 

5.6 Sufficient Conditions 

We consider again (Pz). With the denotations of (73) we get from (73), (75) and 
(77) as the second variation of an unbounded (Pz)? i. e. with D I 0: 

tf 

J2[71(.)] = +v,)Qrz(ff) + /i ;,‘,, + u?‘Cx + $Ru 
1 

clt (85) 

to 
whcrc .d = .-ls i- Bu and z(t0) = 0 (86) 

According to the Legendrt!-Clrbsch-Condition R(t) > 0 holds for optimal controls. 
The mat,rix functions &, C, 12, .A and B are continuous on T, and Q, is constant,. The mat,rix functions &, C, 12, .A and B are continuous on T, and Q, is constant,. 
We may assume that, H, g E C” holds (see (Pz)) and consequently Q, R and Qf We may assume that, H, g E C” holds (see (Pz)) and consequently Q, R and Qf 
are symmetrical. are symmetrical. 

Definition 5.4 The d~ynarnical system (Xl;) with respect to (Pz) is completely Definition 5.4 The d~ynarnical system (Xl;) with respect to (Pz) is completely 
controllable on [to, t’], where to < t’ 5 tf, if controllable on [to, t’], where to < t’ 5 tf, if 

t’ t’ 

J J $(t’, 0) B(o) B“(a) ,$?-(t’, ~7) do > 0 $(t’, 0) B(o) B“(a) ,$?-(t’, ~7) do > 0 

fs1 fs1 

with sy(t. a) = .-l(t)<‘l(t. 0); G(n, a) = 1 (identity matrix). with sy(t. a) = .-l(t)<‘l(t. 0); G(n, a) = 1 (identity matrix). 
The system is called completely controllable if a’t is completely controllable on [to, t’] The system is called completely controllable if a’t is completely controllable on [to, t’] 
fo7' every t' E]to.tf]. [3] fo7' every t' E]to.tf]. [3] 

Definition 5.5 Let ;If be a symmetrical 71 x u-matrix. We write Definition 5.5 Let ;If be a symmetrical 71 x u-matrix. We write 
a) ,I1 > Oj if 121 is pmitiue definite. a) ,I1 > O! if 121 is po,sitiue definite. 
b) .\l > 0, if M is positive semidefinite. b) .\I > 0, if M is positive semidefinite. 

Definition 5.6 The second variation J~[IL(.)] acco&iny to (85) is called Definition 5.6 The second variation J~[IL(.)] acco&iny to (85) is called 
a) nonsingular, if R(t) > 0 holds for euery t E T. a) nonsingular, if R(t) > 0 holds for euery t E T. 
bj totally singular. if R(t) = 0 holds for evwy t E T. bj totally singular. if R(t) = 0 holds for evwy t E T. 
C) partially sin~gnlar. if R(t) ) 0 holds for eue7~y t E 7’. C) partially sin~gnlar. if R(t) ) 0 holds for eue7~y t E 7’. PI PI 

Mind that we‘re talking about, singularity of the st~corid variation and not of Mind that we‘re talking about, singularity of the st~corid variation and not of 
t,lie control. ‘I% case R(t) t,lie control. ‘I% case R(t) < 0 need not, 1~1 considerrd because of the Legendrc- < 0 need not, 1~1 considerrd because of the Legendrc- 
Clebs~h-Condition. Clebs~h-Condition. 
The strong positivity of J~[u(.)] The strong positivity of J~[u(.)] is suficicnt for optiniality. If J~[u( .)] is nonsingular is suficicnt for optiniality. If J~[u( .)] is nonsingular 
t.herc exists a vttr>’ lic:lphil thr>orr>m ([3j): t.herc exists a vttr>’ lic:lphil thr>orr>m ([3j): 
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Theorem 5.8 
Condition: The system (86) be completely controllable and Jz[u(.)] according to (85) 
be nonsingvlar. 
Statement: J~[u(.)] is strongly positive c There exists an n x n-matrix f?lnction 
S(.) on T which satisfies the Riccati Equation: 

-S’ = Q + SA + ATS - (C f BTS)TR-l(C + BTS) (87) 
SW = Qr (88) 

A nonsingular second variation can only exist in the nonlinear case as otherwise 
R s 0 would hold. 
A similar condition like theorem 5.8 can’t be constructed in the totally singular case 
for the following reason ([26]): 

Theorem 5.9 
Condition: (Pz) have a solution u*. 
Statement: A totally singular second variation &[u(.)] is never strongly positive. 

In the case of a totally singular second variation the Riccati Equation is not 
applicable, as R-l doesn’t exist. 
As the space of all piecewise continuous control functions is infinite dimensional, we 
can’t assume the equivalence of the positive definiteness and the strong positivity 
any more, as the first one is necessary but not sufficient for the second one. An 
example is given in [3]. 

Some conditions which are sufficient for non-negativity or positive definiteness 
of the second variation 52 [u(.)] are given in [3]. A sufficient condition is given in 
P71* 

5.7 The Solution of Example 2.1 

The functional has the property J(U) = [ x”(t)(u(t) f 1)dt > O! as u(t) 2 -1 holds. 

A purely singular control would not satisfy the final condition z(2) = -1. A purely 
nonsingular control appears not to be optimal. Hence we’ve got a junction. We 
already know that the control must be discontinuous in the junction. The sequence 
bang-bang + singular is not optimal as we would get z # 0 in the singular control 
part and we’ve seen before that in optimal singular control parts z z 0 must hold. 
But with singular + bang-bang we get J(u*) = 0 if: 

21*(t)=O,ifO<t<l ; u*(t) = -1, if 1 < t 5 2 
*z*(t)=O,ifOst<l ; x*(t) = -t + 1, if 1 < t 2 2 

The junction t, = 1 is given by the boundary conditions and the continuity of the 
state. 
The constructed control is obviously optimal. The way we solved the problem is 
exemplary for the general treatment of problems with possibly singular parts. First 
we try to gain as many cognitions as possible from known conditions, then we hope 
to find the solution by considering specialties of the problem. 

6 Numerical Methods 

6.1 Proposal of a strategy 

We restrict ourselves to problems which are linear in u. Different methods for 
determining optimal controls with possibly singular part have been developed so 
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far. The BFGS and t,he DFP methods from nonlinear optimization ei. g. were taken 
over. These decay methods are, like other decay rnethods, also applicable t,o purely 
nonsingular and nonlinear problems. 
Trying to att,ain a solution numerically we first, try to determine the structure of 
the solution, i. e. the sequence of the bang bang and the singular parts, where 
we also determine for the bang bang segments on which boundary the solution is 
situated. In example 2.1 the structure of the clmsidered solution is consequently 
(s, -l), where s represents the singular part. In subsection 5.2 we’ve seen that 
often the singular controls can be determined as funcGons u = u/(t, X, A) or even 
7L = t+!(t, 2T). 
Often the junctions are unknown and we only get, conditions S.j(z(tj)) = 0 which 
must be satisfied. We get, them e. g. for singular parts from the equations H,, (VI = () 

They can also be a result of the boundary condtitions and the continuity of the 
state. 
We start at a known junction tl;. ct. g. to or tf, which are also considered here ;ls 
junctions, and integrate forward and backward until the conditions Sj (X(tj)) =: c) 
<are satisfied. That’s why these conditions are also called stopping conditions. A 
stopping condition of the kind Sj(z(t,)) = z(t,) - j 5 is called completely specified. 
Else it’s called incompletely specified. In the case Sj E 0 the stopping condition is 
missing. 
Hence we start at tk (to < tl < < fll.-.l < t,, = tf) and solve the differential 
equations. As initial value z(tk) or X(fk) can serve. Here four types of problems 
are distinguished according to Fraser-Andrews ([%I): 

a) Some initial values of the differential equations are needed. (appears 
if u = 4]:(t, 2. X) with incompletely specified X(tk) or u = ‘@(t, X) with 
incompletely specified z(tk) occurs) 
b) No initial values are needed but, some junctions haven’t got, a stop- 
ping condition. (appears if u = $,~(t..r) wit,h completely specified z(tk) 
occurs t)llt, Sj ES 0 for at lea& ant? j) 
c) No init,ial values are needed and all junctions have got, a stopping 
condition. (appears if u = u~(t. J;) wit,h complet,ely specified z(tk) occurs 
and Sj $ 0 for every j) 
d) A representation u = G(t, z) or 71 = ~‘r(t. x, A) is not possible, where- 
fore z can’t be determined by int,egration. 

Fraser-Andrews examines in [29] different methods and comes to the conclusion that 
NOC shooting and constrained ‘aratnrtrization are t.he best, methods. He proposes 
([%I) to treat the four t‘ypcs in the following way: 

a) NOC shooting with the tj as additional minirnization parameters 
b) t~rcat as optimization problem (degenerale case of a)) 
c) int,egration until Sj = 0 and determine tj from it, 
d) const,rained parametrizat ion with the t, als additional mirlirnizrtt,ion 
parameters 

i ” Based on this and on experiences of the authors ii genera1 strat,egy for the mimerical 
solution of opt,imal control problems is proposed. The strategy is represented in 

I figure 6.1.1. The diagram is also applicable to problems with purely nonsingular 
optima1 control. Of (‘ourse, if one reaches thr point, “ready” in the diagram it, 
c,an’t btl r3cludrti that no suitablr solut,ion has twf2i obt,aintYl. For this ca,se furt,hPr 
mclthods art’ list,ed in this section. 

If the optimal solution has infinitely many discontinuity point,s, like e. g. in the 
Fuller Problem (c>xaniple 3.3). the arcs arr called “chat~trring arcs” and finitely 
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Figure 6.1.1: Strategy for the numerical solution of optimal control problems 

by the method of 

Determine singular 

control as described 
in subsection 5.2 

I I 
ctions! ,,/ 

cl ready 



many discontinuity points are chosen for numerical treatment, (see [28]). 
Constrained Parametrization ~rleans that t>he constraint, IL(~) E [u, b] is treated 
with the an&j! u(t) = i(a+h)f+(h-n) sin l!(t), w 1 iere v(t) is an expansion in finitely 

,I). 
many ort,hogonal functions, like P. g. Tschebgscheff polynomials: r,(t) = c (LjTj(t) 

(rn: order of the expansion) (see [29]) 
The named methods and some others are treated in section 6.2. Two types of 
methods are distinguished: the direct methods, where first the differential equations 
and the boundary conditions are satisfied and then the costs are lessened, and the 
indirect, methods, which start with optimality conditions and then try to satisfy the 
boundary condit,ions. ([30]) 

6.2 The Methods 

6.2.1 BFGS and Other Decay Methods 

The decay methods were t.aken over from nonlinear optimization. X detailed de- 
scriplion of these met,hods and remarks how to implement them on computers arc 
given by Edge and Powers in [31] and j321. A part, of the algorithm of every decay 
method is a linear search. The following &orcm holds ([33]): 

Especially in cz~se of singular controls DFP and BFGS met.hod havtb proved t*o 
be the best decay methods, where the experience shows that, the BERGS method 
often has a Letter convergence than the DFP method if non-exact, linear search is 
made ((321). The gradient method is problematical in the singular cxx ([31]). 
If junctions appear the gradient method is unuseful, where* the BFGS method is 
at* least useful for the determinat,ion of t#he structure. That’s enough for the tnsk 
the method has in t,ht! proposed strategy. 

6.2.2 Maurer’s Method and the NOC Shooting 

Both methods are shooting methods and belong to t>he indirect methods. 

Maurer’s Method In t,he middle of the 70s Maurer ([34]) developed a method 
to determine junctions numerically. It’s applicable to problems of the kind (MLP) 
with final condition r(t(tf)) = 0 (E R”) and g .= 1. E’llrt,hcr on wt’ assumt~ the 
following basic structure: 
nonsingular on [to, t I[ ( singular on [il \ f2[ and nonsingular on [tz, tf]. 

1loreover w~p xiccd a reprrscntation 1~ = ~(t. s, A) (or )L = c!:(t,~)) for the singular 
collt~rol. 

The method converts the problem into a two point, boundary valur problem jtpbvp) I 
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in a neighbourhood of the jurlction and in the rare cases with odd q (here q = 1) 
and a control which is continuous in the junction ([28]). 

NOC Shooting Classical indirect methods start with an estimation of X(to), 
which is problematical, as the methods are very sensitive to bad initial values and 
the costates X often can’t be illustrated ([38]). The NOC shooting starts with the 
initial controls, which are easier to estimate, and is less sensitive to bad initial values. 
The method is described in [38] and is applicative to problems of the kind (P) with 
final condition r(z(tf)) = 0 and cost function J = g(z(tr)), where z(t) E IP and 
u(t) E IP holds. The equations 2’ = f and X’ = -Hz must be stable with respect 
to forward integration. Further on H should be unimodal and convex. 
In [30] the trajectory of a sattelite that leaves an earth orbit and enters a mars orbit 
was optimized. 
The last step of the NOC shooting algorithm is a finite-dimensional minimization. 
The recursive quadratic programming technique is recommended for this ([39]). 
For NOC shooting the structure must be known or derivable from a more general 
structure. The switching times should be initially well approximated. Although the 
method is less sensitive because of the usage of the control instead of the cost,ates 
X, good initial values should be chosen nevertheless. For s > 1 the control problem 
may also contain more complicated minimizations. [28] 

6.2.3 The Method by F’raser-Andrews for the Determination of the 
Structure 

The method starts with the ansatz E @iPi( where the Pi are ort,hogonal func- 
i=o 

tions. Then the interval [to, tf] is partitioned iteratively and a rninimization over 
{aili = 1, .‘.) m}, the interval length and eventually tf is done. The method is 
described in [28]. 

6.2.4 Other Methods 

The e-method by Bell and Jacobson ([3]) transforms the problem (P) into a (nor- 
tf 

mally) nonsingular one by adding the perturbance term 4~ s U~U dt to the func- 
to 

tional J(U) and decreasing ch stepwise. 
As expected the method shows numerical instability for E -+ 0 ([40]). The e-method 
was used among others for computations which were made for chemical reactors. 
It’s analogous to a method in fluid dynamics. ([41]) 

Iterative Dynamic Programming by Rein Luus ([41]) is a direct method for 
the problem: 

minimize g(z(tf)), where z’ = f(z,u), z(to) = z. E iw”, 

N < u(t) 5 j3, tf fixed 

The control IL is approximated as step function and a grid of possible state values 
is constructed through which a minimal way is searched. 
The method is also able to find several optima (local and global). It,‘s an alt,ernat,ive 
if it’s difficult to apply other methods. In case of nonlinear systems another method 
should be chosen for validation. The advantage of Iterative Dynamic Programming 
is the easy programmability and the fact that the costate equations X’ = -Hz need 
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Further methods are the modified quasilinearizatior technique by Aly and Chan 
([42])) which is an extension of the quasilirlcarizatioll technique by Baird ([43]) and 
can only be used for problems with purely singular optimal controls, and the con- 
trol averaging technique by Virendra Kumar ([44]), which reduces optimal control 
problems to fixed point problems. 

l?or the methods t,reated in section 6 almost no convergence property is known. 

7 Supplements 

Singular optimal controls have appeared in many applications like ecology, aero- 
space, theoretical biology, chemical engineering, epidemiology, robotics and econ- 
omy (cf. e. g. [5] and [45] to [52]). 
The set of all points in IF!?” t,hat, are states with respect> to singular controls is some- 
times called singular surface. In [53] a problem of kind (P) is considered, where the 
free final time instead of the functional ,I is to be minimized. 
In [54] Jacobson gives switching strategies for quadratic problems. In [55] it,‘s proved 
that, the singular controls need not be unique in case of linear Lagrange problems. 
The author J. Grasman considers in [56] also non-unique singular solutions and WCS 

so called nearly singular problems. 
A condition for the existence of weak solutions if generalized controls are considered 
is proved in [57]. Especially t,htt case of singular optimal controls is t,reated. 
In [58] Franqoise Lamnabhi-Lagarrigue t,reats a unification of the definition of t,he 
arc order. At this a definition is given, which is also applicable t,o problems with 
final constraints. Lie-bracket,s are used for this. 
A connection between optimal controls, especially singular ones, and the rank of a 
certain matrix is derived in [59]. 
A geometric treatment of singular optimal controls is given in [60]. A maximum 
principle of higher order is treated in [61]. Xurnerous interesting and useful cogni- 
tions. which were only partially given in this work, are due t,o Gabasov and Kirillova 
([W. 

8 Conclusions 

Analytical and numerical methods for the treatment, of optimal controls which have 
singular parts were treated. The state of the art was prcsent,ed. But. t,he present 
theory is not; su%cient for having a satisfying general concept for solving t,he prob- 
lems. Often considerations which are sptbcific for the problem are necessary. A 
unification of t,hese considerations has not been possible yet. 
The GLC and the Jacobson Condition appear to be t8he most, helpful opt,imality 
conditions, wit,h which many candidates can be excluded. But, we have seen that, 
these condit,ions are only necessary condit,ions. The almost, complrt,e lack of suffi- 
cient conditions is a big problt~m. Hence we’re now able to dc~tcrminc admissible 
partially singular controls which satisfy every imaginable necessary condition, but, 
we often can‘t clarify if the considered control is indeed opt.imal. Cases, like in 
example 2.1, where the optimality can be proved by giving a bound for the costs, 
are rather rare. Often a cont>rol is found. which is presurncd to be relat,ively close 
(w. r. t. costs) to thr‘ optimtirn, if one exists. 
In this connc~ction one tvill often use nurncrical nlethods. Hcrc WY can be content 
with t,he c>sisting mt~thods. .Yurnerous nurncrical treatments of pract,ial problems 
show t>his. The most difficult part, appears to brl the determination of t,he junct,ions. 
This is also true w. r, t. thcorptiral aspects. I’ntil 1995 nothing was known about 
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the location of t,he junctions. The junction conditions were not very helpful. The 
fact that in 1995 the first theorem about a connection between the location of the 
,junctions and the boundary conditions could be proved gives hope that more knowl- 
edge will be gained about this matter in the future. 
The main activities concerning singular optimal controls took place in the 1960s 
and the 1970s. But research on this topic is still active. The manifold applications 
will put forward the investigation of singular optimal controls. A property which 
is for singular controls as helpful as Pontragin’s Minimum Principle is in the whole 
theory of optimal control is desirable. 
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