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INTRODUCTION

In these notes we will discuss some aspects of a problem arising in car-
industry.

For the sake of clarity we will set the problem into an extremely simplified
scheme (see the appendix for details).

Suppose that we have a body which is emitting sound, and that the sound
is measured at a finite number of points around the body. We wish to determine
the intensity of the sound at an observation point which is moving.

In analytical terms: Let @, a bounded smooth domain in R3 , represent the

3‘\9 at which méasurements are made, and

body. Let Pl""’PM be points in R
let Q = Q(t), t€(0,T), be a path in space-time, which represents the

motion of the observation point.

The sound intensity u = u(x,t), x€ R3 t>0 is a solution of the wave
equation in the exterior of the body, satisfying zero initial conditions
(t =0 is the time at which the sound emission starts):

{ut{fnlz 0 4 in (R3\Q)MO,+®L
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We suppose that the values of u are approximately known at the points
Pl""’pM for a finite number of time values 0% tls ...s.tN

(0.2) u(Pyoty) = Ty v i= 1y oMy G = 1,0,

We want to determine u(Q(t),t), as t ranges over (0,T).

This problem is ill-posed in the sense of Hadamard. In fact, for any given
set of data (0.2), the solution u(Q(t),t) is not uniquely determined and
it is unstable. For instance we may find functibh§‘u satisfying (0,1) such
that “(Pi°t§> = 0 for all i's and j's and u(Q(t),fﬁ is arbitrarily large.

(See section 4, Remark 4.1.)



The treatment of an ill-posed problem requires the knowledge of extra
a-priori information. (See, for instance: Miller [4], Talenti [7].)

Let us qive an example:

Suppose that we want to determine, on the unit disk x2

+y2<:1, a harmonic
function u(x,y) which takes, within a given approximation, specified values
at a finite number of points (Xi’yi) inside the disk

m
(*) Eu(x;ay;) - £51° 5 6l

i=1 !

This is too an ill-posed problem. However, if it is known that the harmonic
function we are seeking satisfies a bound Tike the following

N

(**) / (U§+u ) dxdy = £2

\

<

x2+y2<1
then it can be shown that the set of harmonic functions satisfying both (*)
and (**) 1is bounded (for instance, with respect to the L2~metric). Moreover
an algorithm can be developed which produces a solution which may be consid-

ered the optimal one. In fact, it minimizes, up to a constant factor, the
maximal distance from any other harmonic function fulfilling (*) and (¥*).

This algorithm consists in solving the (regularized) least-squares problem

m
(***) S
i=1

2. 2,.2 2. 2 .
1" +e“/E f Ughuy, = min

Xy <l

among all harmonic functions u in the disk. An interesting feature of this
algorithm is that it can be reduced to a finite dimensional Teast-squares
problem. In fact a so called reproducing kernel can be used. Namely, if we
consider the Hilbert space H made of the harmonic functions u in the disk
having zero average and bounded Dirichlet integral (i.e. (**) holds for
some E < +e) with the scalar product

2,2

X +y<l
then it turns out that, in such a space, interior point values

Hou = u(x,y)



are bounded linear functionals. Thus there exists, and it is explicitly
determined, a function K(x,ys;&,n) (called the reproducing kernel) such
that K(x,y;=,+)€H for every (x,y) in the disk, and, for every u€H it
satisfies

u(x,y) = <K(x,y;-,-),u>H s x2+y2<:1.
Now it is readily seen that the minimizer u°® of (***) can be represented
as follows

UO(ng) = aO+ 2 a-K(X.i 5y-i;X9Y)

=1 !
and, therefore, we are led to a least-squares problem involving only the
0 (See, for details, Alessandrini [1]. See also:
Bergmann-Schiffer [2], for the origin of the reproducing kernels. For the

parameters ao,al,...,a

application of the reproducing kernels technique to ill-posed problem see:
Miller-Viano [5]. See also Secrest [6] for a prototype of this technique.)

Thus, coming back to the sound measurements problem, we need mainly two
things. First an a-priori Timitation which makes the set of admissible
solutions bounded. Second we will need an analogue of the reproducing kernel.

Here in the sequel we will examine some types of a-priori information which
may be available and are useful to our purposes. The construction of the
reproducing kernel, or some suitable substitute for it, will depend on the

type of a-priori information we choose. (See sections 1 and 2.)

It is convenient, at this stage, to introduce a slight change in the state-
ment of our problem. We want to replace the input and output pointwise
evaluations: U(Pi’tj) and u(Q(t),t) with weighted averages on neighbourhoods
of the points (Pi’tj)’ (Q(t),t), respectively. Let us denote
(0.4) v (X5t) = ; [ o, (x=y), (t-5)v(y,s) dyds

R™ x(0,w)

for any Tocally integrable function v on R3

(0.5) @,

x(0,»), where

() = h7(1x1/h), g () = b h(/m)

®, § being smooth, symmetric, non-negative, compactly supported, normalized



functions
+e0
(i.e.: f3m(1xf)dx=1, [ () dt = 1.)
R -0

In most of the following discussions, the parameter h will be kept fixed,
hence, when no ambiguity occurs, we are going to drop the subscript from

Vi VE v
h h

Our problem is then rephrased as follows:

(0. ) o x IU(Pi,t.)uﬁ..[z L@

i=1,....M J i

J=ly. 0N

It seems acceptable, from a physical point of view, to consider measurements
as averages rather than point values. Moreover we have the apparent mathemati-
cal advantage that for every fixed (x,t) in space-time, the mapping

U = u(x,t)

is a continuous linear functional, even if the topology of the ambient space
of 'u is very weak.

Let us now review some different possibilities regarding the a-priori
information.

We might assume that the function u satisfies the wave equation also in
with a source term f supported in QX(O,TO), (Ty=T):

U du=f in R x(0,+=),
(0.7)
3

L u(+,0) = up(+,0) =0 on R,
and that this source (which will be unknown) satisfies some bound. The
following limitation would be extremely convenient from the mathematical
point of view

(0.8) jooof ¢

fo(x,t)dxdt € ET E = constant < .
0 x (O,TO)



In fact, for every (x,t), the Tinear functional
LE(0x (0,7 ))3F = U(x,t)€R
is bounded and can be expressed, as an integral

u(xey) = [ wW(xstsy,s)f(y,s) dyds
L:X<O:9TQ)
where the kernel w(x,ti;y,s) can be explicitly computed. Such type of represen-
tation enables us to exploit a finite dimensional algorithm similar to the one
presented above for the harmonic functions problem. We will develop this
technique in section 1.

Now, it may be argued that the bound (0.8) may not be feasible concretely,
and that instead, the following assumption would be more realistic
(0.9) / Ifl < E

QX(O,TO)
where f 1s also allowed to be a distribution. We will show in section 3 a
procedure which enables us to apply the Lz—approach developed in section 1,
making use of the bound (0.9) rather than (0.8).

Finally we wish to mention a different assumption which does not require
information on the sound behaviour in the interior of the body:

(0.10) [ (1D u(x, )17+ u(x,t)) dxdt < E2.

(R3\Q)X(O,T)

This condition has an appealing physical interpretation. That is we are
assuming to know the total sound-energy spent in the time-interval (0,T).
Theoretically speaking, also in this case, there exists a kernel W(x,t;y,s)
such that, for every (x,t)€ (R3\~Q)X(O,T):

W(xstie,w) =0 in (Ro~q)x(0,T)

iW(xgt;~,O) = wq(x,t;-,O) =0 on R3\\Q

and, for every u satisfying (0,1) and (0.8) for some E <o,

u(x,t) = [ (Dyw(x,t;y,s)-Dyu(y,s)-kws(x,t;y,s)us(y,s)) dyds.

(R3<0)x(0,T)



This kernel might be used to reduce the problem to finite dimension as
before. In section 2 we give a more detailed discussion on this matter.
However, the structure of W will depend heavily on the shape of o, and
the numerical computation of the values of W seems to be a hard task.

Let us sketch a plan of the present notes.

We develop an algorithm, namely, fixed v€ (0,T) and Q = Q(t), we are able
to determine an approximation of u(Q,t) by solving a finite dimensional
linear system. Furthermore another finite dimensional algorithm is given
which yields an error estimate.

In section 2 an approach to the use of the bound (0.10) is made. Computations
are made on a one-space-dimension example.

become clear in section 1, see Remark 1.3):

Are the following M+N+1 linear functionals

2, NEL . L
L7(5x (O,TO)).)f U(Pi’tj) o 1= e My g = 1,0 0N,

LE(0x (0.T,)) 3 F > U(Q,7)

linearly independent?

An-affirmative answer is given, provided certain geometrical conditions are
satisfied, and provided the support size h of the averagings is sufficiently
small.

Section 5

contains an appendix in which details on the applied problem are
given. A modified mathematical model is presented and briefly discussed.



1. The rmzwncﬁomn:

For notation's convenience let us introduce a renumbering of the points
AvA“ﬁ.v“

J
Av*,ﬂ@v, i=1,. .M, 3=1,...,N = Avgud_v. 1T = 1,...,L = MeN.
We will also denote
Awoﬂmov = (Q,1).

We are now concerned with the following problem:

(I) To determine mAvouwovu when u is a solution of (0.7) satisfying

L
(1.1) (Pt - T8 s e
1=1

2

and the following information on the source f is given

supp £ < @x[0,T,]
(1.2)

Recall that u(x,t) = crﬂx,ﬁv denotes an average of u in a neighbourhood of
(x5t) as defined in (0.4).

The following lemma provides a useful representation of such averages.

Lemma 1.1
Let u be the solution of (0.7) then for every (x,t)€ %w x (0,e)
(1.3) u(x,t) = f w(x,tsy,s)f(y,s) dy ds

Qx Ao,%ov

where the kernel w is given by

-1

(1.4) w(x,tsy,s) = (4n) i _N_.,H 6:Ax-k:Nve:Aﬁ;m-_N_v dz .



Proof: Combine Kirchhoff's retarded potential formula (see, e.g.: Courant-
Hilbert [37)

(1.5) Uxet) = (40 [zt f(z,te12ex1) dz
[z-x|<t

and (0.4).

Remark 1.1

For every (x,t)e€ R3 x (0,0), w(x,t;+,+) is a bounded smooth function, in
particular it belongs to LZ(Qx (O,TO)), thus the functional

L2 (2% (0,T))3F  — T(x,t)

is bounded. Thus we get that the set of admissible values of ﬁ(QO,tO) under
the constraint (1.2) is bounded:

Iu(QO,tO)l éIIW(QO,tO;',-)H L2(' (0.1 ))E
QX I

In this sense, we may say that Problem (I) is stable.

Remark 1.2

For computational purposes it may also be noteworthy that the kernel
w o= wW(x,ty,s5) depends only on Ix=y| and on (t-s).

1.1 An Algorithm

An approximate solution to (I) can be found by an optimization procedure

balancing between requirements (1.1) and (1.2), namely determining an
Lz(ﬁx (O,TO)) function f which minimizes the functional
L -t ~
J i f o 1Ellu(P],t])‘ Uy |

24*32/E2 i f2

QX(O,TO)

(again we refer to [ 4], [7 ] for a more precise Justification). The
following theorem guarantees the existence and uniqueness of such a
minimizer, and gives a finite dimensional algorithm for determining it.



Let us introduce the following notation:

(1.6) My = [ w(P],t];y,s)w(Pm,tm;y,s) dyds; T,m = 0,1,...,L
Qx(O,TO)

(A o A
(1.7) A = : : » LxL symmetric matrix,

AL ALL

N~ ~ T

(1.8) u = (ul,. ,uL)
Theorem 1.1

The regularized least-squares problem

L
(1.9) () = AUy -1 ES [ 6P = min,
1=1 Ox(0,T.)
0
has a unique solution £ in LZ(Qx (O,TO)) which can be represented:
. L
(1.10) fx,t) = = by W(Py,ty5x,t)
1=1

T

is the solution of the linear system

where the vector b = (bl""’bl)

(1.11) (A+e2/E% )b = W,

Note: Our goal is the evolution of U(Po,to). We will obtain it as follows

L

0
=~ f w(PO,tO;y,s)f (y,s) dyds = E Aj1bys

1=1

T 15 given by (1.11). Therefore, denoting
Aoy = (Agpa-oshg ) s we get

a+ele? ny Iy - T,

T

EKPO,tO) ~ A?O>(

where d = <d1""’dL) is determined by

. 2.2 A
(1.11) (A+eS/EC 1)d = Alo)

and this system can be solved once for all.



Proof of Theorem 1.1

2
Observe that J : L%(ax Aouaovv¢‘w is-a non-negative quadratic functional,

moreover 1t is continuous and strictly convex, therefore it has a unique
point of minimum.

Let f be the minimizer, let f° be its projectionova the finite dimensional
“(2x (0.T,)) generated by W(Pqatyieae) 1= 1oo..,L. Thus

subspace of L 15
0 L
f =1 +f" where

m
f(x,t) = = byw(Pystysese)

and, for every 1 =1,...,L,

[ WPtz £ 0
:xmouﬁov

Therefore we have

beoqqov
in fact, by Lemma 1.1,
- 0
C:uquﬁ.ﬁv = R‘ EA_U;_uﬁ‘_w.u.v f = .\; Eﬁv.duﬁgw.q.v o
sxﬂo,qov nonvqov

It
—
<o

Consequently: ﬁ% = 0y Or, as is the same, f

Now note that:

0

L
Lﬁﬁv = ;A% v =3 V b .\. EA_U

and thus the coefficients UH,...uUr arefound by the minimization of
the following L-dimensional quadratic functional (recall (1.6))

Lo |
sl zA b -T2 eZE? x oA

b
151 pep Mmoo 1=l 1M

b

1°m*

The associated "Euler's equation" is, in matrix form, (recall (1.7), (1.8)):

A% - AT+ e2/E%AD = 0
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or, as-is the same,

2.2

(1.12) A((A+e“/EC I)b-T) =0

note that (A~+a2/E2 I) is a positive definite L xL matrix, hence invertible.
Thus b = (A~+g2/E2 I)_lﬁ yields a solution of (1.12), and this completes
the proof.

Remark 1.3: Note that in the above proof we did not need the invertibility

of the matrix A defined in (1.6), (1.7). The matrix A is invertible if and

only if the functions w(P],t];-,-) 1 =1,...,L are Tinear independent
elements of LZ(QX (O,TO)). This matter is treated in section 4.

Here, let us just observe that it would be advantageous to know that A is
invertible, in fact, in such a case the condition number of the matrix

A+ e2/E2 ]

does not diverge as (aZ/Ez)-+O , and thus the numerical solution of (1.11) (or
(1.11)") will be manageable also for small values of EZ/EZ.

1.2 Anerror estimate

Let us denote by u1 the sound intensity produced by the (unknown) source

Y which yields the "true" solution of problem (1). Let u® be the solution
of (0.7) when f = 9 is the minimizer of the regularized least-squares
problem (1.9). Note that, by (1.9), and, obviously assuming that fl fulfills
(1.1), (1.2), we get

o I 1.
(= luO{P]gt})--ul(P1,t1)]£+~a jE8 et g2
1=1 ax(0,T.)
0
L .
IO I G A L e N T
1=1 QX(O,TO)

VAV /A

Note also that the following number is finite (recall Remark 1.1)

- 2
lu(P_,t )
(1.13) % - s up °.9

feLlé(ox (0,7))

NWorelEl o f

Qx(O,TO)

m Ry
s Iu(P1,t1

1=1
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Therefore, picking f = f0~f1, we get

1

(1.14) TP aty) = U (P st ) € 2V2 e

which yields an estimate of the error made by replacing the "true" solution

ul(PO,tO) with the one obtained via the regularized least-squares algorithm.

The following theorem indicates how to compute the number .

Theorem 1.2

Let the point (Po,to) ge in the cone of influence of Ox (O,TO), then there
exists a function in L7(0x (O,TO)) which yields the maximum of the quotient
in (1.13). This maximizing function is uniquely determined up to a constant
factor, and it can be represented as a linear combination of the functions

W(P]ﬁtog'a') 4 1 = Ogl,.«.,L»

Proof: Note that the number u in (1.13) is non-zero, in fact, if (Po,to) is
in the cone of influence of ax (O,To) (that is: there exists (y,s)€Qx (O,TO)
such that IPO~yl = tO~S), then we may find a source f in LZ(QX (O,TO)) such

that UKPO,tO)izO. Therefore the variational problem

WPyt )17
(1.15) ) = sup
- 2 2,2 2
ZTU(PyL )T+ et E i f
1=1 ax(0,7T,)
1s equivalent to
Lo 2. 2.2 2
(1.16) £ u(Pt )17 +e%/ES [ f7 = dinf
1=1 mx(O,TO)

under the constraint

(1.17) ‘U(Po,to) = constant # 0.

Note that the norm

m SO
e = (= |a(p1,to)|3_+g8/E2 [ gl
1=l ghx(O’To)

is equivalent to the LZ(Qx (O,TO))~norm, and it gives rise to a Hilbert space



”
structure over L°(2x (0,T,)).

Thus, solving the problem (1.16), (1.17) corresponds to find the unique projection
of the origin 0€ Lz(Qx (O,TO)) onto the closed affine variety defined by
(1.17) with respect to the [l lll-metric.

Therefore we have proved the existence of a maximizer of (1.15), and that
it is uniquely determined by a constant factor.

The reduction to finite dimension follows the method already used in Theorem 1.1.

Remark 1.4

: T
Let us see how u can be determined. Let ¢ = (co,...,cL) be such that

o L
f(z,t) = mEOcmW(Pm,tm;x,t)

15 the maximizer. By (1.16), (1.17) we get

L R

L
20 | i |
Tzl nSOA”(AM re st . Akm m = A A k=001

f

here % 15 a Lagrange multiplier. Multiplying both members by Cy and adding
with respect to k from 0 to L, we get

f L
TR = A
om m
10

We may rewrite the above system as follows (note the change in the first

summation)

L L L L

s A A c kel E ZAk = A H( A

¢ )A
Tk m® m -0 m ok n=0 om’m

ok? ko= 0,1,...,L;

Oor, as 1s the same,
4 2,05 T
(A" + e /E"A)c = AAO-+AO(:AO s

where
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oo AoL]
F- I L ((LH1)x(L+1))
’ |
AL e ALLJ
and
N T
AO = (AOO RN AoL) .
Now: Agc = Apz, and- thus
(R +e2/E% By = A(1nd)A, -
Moreover we may normalize ¢ in such a way that: A(1+u2) = 1, which means
T
? Ac
*Ji? = Agc 5 1)2 o %9_)‘.___]_,_“.
1+n 1-=Ac
0
where ¢ is the solution of
A(R+ E:?./'E2 Ic = AO'
Note that: AO = ﬁ(l,O,...,O)T, therefore ¢ can be found as the solution of



2. The bounded energy approach

2.1 The theoretical method

We start with some definitions and with two simple lemmas. Let us denote

(2.1) D= (RO<2)x(0,T).

We define X as the space of all weak solutions u of (0.1) such that

2
t

2

(2.2) <Us U, H_Mc:m = [ (u ) dxdt < .

%

Axvﬁv;§_oxcmx,ﬁv_

In this section we will make use of a slightly different definition of

(2.3) u(x,t) = f ©, (x=y )y (t=s)u(y,s) dyds
D

where are the same functions defined in the introduction (see (0.4)).

O 5P
h R

Lemma 2.1

The space (X,<»,*> is a Hilbert space.

)

Proof: Note that for every u€ X, by the initial condition u(-,0) = 0, we

have

2

(2.4) J Ul (xotydxdt  (T2/2) [ ub(x,t) dxdt

D D
and thus, on X, the IH Sobolev norm on 0 and the X-norm are equivalent.
Now, from the weak formulation of (0.1), we have that u€ X if and only if
FLmIHva and
Asﬁm >x6v: = 0
3

S

for every @€ ow (R

linear subspace of H

~2)x[0,T)). It follows immediately that X is a closed

HA@VU and thus the Temma is proved.
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There exists a function
W:?DxDos R,

satisfying the following properties

(1) W(ix,ty+,-)€X , for every (x,t)eD,
(i1)  for every ue X

Ulx,t) = <W(x,tye,-), (50 )>y

Proof: It suffices to note that for every (x,t)€ D the functional

XU = u(x,t)

is continuous, in fact

tu(x,t)! f;llwh(x~m)mh(t~w)n > full 2,

lu(x,t)l = (T/VE) Hmh(x~‘)wh(tw»}ﬂ 2 [Tull i
L7 (D)

We easily infer from the above Temmas that we may mimic the procedure
already used in section 1 in order to get a Teast-squares algorithm and an
error estimate for the following problem.

(11) To determine u(P .t ), where u is a solution of (0.1) satisfying
L
(2.5) 5
1=1

2

>

— ~ 2
lu(Pq,tﬂ )= Upl™ = e

(2.6) guiﬂnxulz = IlulligEZ‘

There is however in this case a main disadvantage: The kernel W is not
explicitly defined as it was w (recall (1.4)).

I't seems to us that a numerical algorithm which, given the domain D,
produces approximate values of W might be feasible. Incidentally let us
remark that, for the purpose of the least-squares algorithm and of the error
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estimate, it would suffice to determine the numbers

By = <W(P],t1;-,-),W(P t ;-,-)>X, T,m = 0,1,...,L.

Im m*m

Note also:that:

By = W(P1,t1;a,~)!(Pm,tm> = g ®h<Pm*y)wh(tm“S)w(P1’t]3y’5) dyds..

In the following paragraph we show how W can be determined in a one-

space-dimension setting.

2.2 A one-space-dimension example

Here we consider solutions u = u(x,t) of the two dimensional wave equation

SO0 = 0, (ot €' = [ LU(L+e)1X(0.T)
(2.7) W

N

u(x,0) = uf(ng) = 0, XE (=, =1YU(L,+e),

We will Took for a function T(x,t;y,s) such that for every (x,t)€ D’
F(x,tyeye) ds a solution of (2.7) satisfying

. D SRS 3o i 5

(2.8) u(x,t) = {) (55 TOOT3y,8) o uly,s) +0 T{Xat5y,5) sy Ulyss)) dyds

for every u which is a solution of (2.7).

averaging of T

W' (x,tsy,s) = [ wh(x«z)wh(t~1)ﬁ(z,r;y,s) dzdr
D

The domain p' is disconnected, and it is easily seen that T(x,t;y,s) = 0 if
x-and y have opposite sign. Furthermore, by symmetry

TX,t3y,s) = T(IxI,tylyl,s).

Thus we need only to determine I such that (2.8) holds for every u, solution
of ((2.7), vanishing for x<0. Let u be any of such functions.

Let: v(s) = u(l,s), and, fixed (x,t)e€p', x>1,

Tet: a(s) = T(x,t51,8), s€(0,T).
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By the initial conditions we have

vI(0+) = v(0+) = a' (0+) = a(0+) =0
Moreover we note

{ v(s-(y-1)) sz (y-1)
u(y,s) =
\ 0 s < (y-1)

J a(s-(y=1)) s = (y-1)
I{x,t3y,5) =

| 0 s < (y-1) .

Therefore we get from (2.8)

Vt-(x-1)) = [ 2 v (s=(y-1))e' (s-(y-1)) dyds

ley<1+T
y-les<t
T 2T~z T

= [ vz (z) dz [ dpo=2 [ (T-z)v'(2)a'(2) dz
0 z 0

T
-2 [T (2 2 d

that is, by the arbitrariness of v, we obtain

§ S20(T-z)a' (2)1" = 6(z=t+(x~1)),z € (0,T)
)
L ¢

(0 = a(0) = 0
Consequently
100 o] AF 0< e (x1) <2< T
a(z) = % 2 )

i 0 otherwise .

And finally

L 1og [$_(tmg Y L)y g wys 0 and 0<t-(IxI-1)<s=(1yl-1)<T.
T(x,t3y,8) = X
|

0 otherwise -
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3. A treatment of the distribution source case

In this section we are considering the case in which u is a solution of (0.7)
satisfying (1.1) and the source f is a distribution fulfilling (0.9)
supported in @ x [0,T,1.

We may assume with no significant Toss of generality that the averaging

kernels O ﬁh in (0.5) are such that
? o, (x) = [%nh<s—y>nh<y) dy
(3.1) | R
Y oo
| @h(tz = J; zh(tws)rh(s) ds
where T Ch have the same properties than those stated for @

respectively.

Let us assume, for simplicity's sake, that

supp n,. = {x€ R3 “Ixl<h} o, supp ¢, = [~h,h].
h > h

Here, for any locally integrable function v on R3x (0,2), we define

(3.2) V(x,t) = [ o (ey)e (t-s)v(yss) dyds
x(0,)

Note that such definition of averaging can be naturally extended to
distributions. Note also that

(%)Y (x,t) = V(x,t)

where (X)V denotes the iterated averaging (3.2), and v is the averaging
defined in (0.5).

Now we observe that U has the following properties

]
(1) s Y.ty ) =Tl < 6,
5 RSP



Y v v 3

1 (;.’;?.-Ax)u = f, in R~ x (0500)
(i1) 3ot

|

L M(+,-h) = ¥ (+s-h) =0, on R,
(1) supp £V x [-h,T_+h1,
where

.h 3

(3.3) 2 = {x€ R [ d(x,2)<h},

and finally, by (0.9) and Young's inequality
(iv) i (F(x,t))%dxdt < [ no(x)cd(t)dxdt £°
ghx(-h,TO+h) R

Therefore, if we allow the following slight changes:

a) a replacement of the averaging kernels:
(Dhswh - nh,Ch ’
b) a replacement of the a-priori bound:
2 s chTte?
c) a time shift:
t = t+h
d) a widening of the source support:
Tx 10,71 » T % 10,7 4201,

then we see that U satisfies the conditions stated in Problem (1) and the
methods of section 1 can be used.

A similar reduction to the L2~source approach can be made under the bounded
energy setting of Problem (II).
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Let us denote

2d = min {d(P;,2) | 1 = 0,1,...,L}.

‘]5

3

Consider X to be a CJ(R”) function such that

0sX=1; X=1 on 2=0 outside Qd,

oM < cd® L k= 1.2,
X k

(here o is the domain defined “in (3.3) with h replaced by d). Then let us
define

K(x)u(x,t)  for (i) e (RO @) x [0,T)

v(X,t) =
0 for  (x,t)eax[0,T).

where u satisfies (0,1) and (2.5), (2.6).
Note that

po 2

Py av=g in B« (0,7),

ﬂi 3t{ X

L u(+,0) = v (+:0) =0 on R,
where

[, X(x)u(x,t) +2D X(x) + Du(x,t)), for (x,t)e (aXa)x(0,7),
g(x,t) = {
| 0 elsewhere.

Now it is reasonable to assume that the supports of the averaging functions
O (Py=)p(t=2) w1 =0,1,...L

do not intersect de (0,T). Therefore it turns out that
“{J(p],t]) = U(P1,t]) ; T =0,1,...,L,

and, on the other hand, we have

( oo e o A e [ w2
(09Na)x(0,7) R (0,7) R x(0,T)
thus, recalling (2.4), we get by (2.6)
foo" s (chate  BaThEl

(Qd\Q)X(O,T)
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Therefore, once again, we are dealing with a solution of the wave equation
vs With source g, which (with the due changes) satisfies the conditions
of Problem (I).

4. The linear independence of the averaging functionals

For any point (P1,t]), 1 =20,1,...,L, we consider the (characteristic) cone
of dependence of (P],t]):

C, = ((x»t)€ RS x (0,T)| 1x-P

1 =t

.-t}

1=

The following lemma tells under which conditions the unbounded functionals

L2 % (0.T))3F > u(Pyoty)s 1= 0,1,..00L

are linearly independent. Here u denotes the solution of (0.7).

Lemma 4.1

Let (P1,t]), 1 =0,1,...,L be in the cone of influence of Qx (O,TO) (that is:
C]n (Qx (O,TO))¢ ¢, for every 1).
Then there exists a number o> 0 and points (Q1,51)€s?x (O,TO), 1 =0,1,...,L,

sych that

(Q1,s1)6 C], for every 1 = 0,1,...,L
and
d((Q],S])ng)g oy for-every 1,m, T+m.

Remark 4.1

We infer that, for every 1 =0,1,...,L, we may find a source f, supported
in-a small neighbourhood of (P],t]), such that u(P],t]) takes an arbitrary
value, while, for every m=% 1,

u(Pm,tm) = 0.

That s, the pointwise evaluation functionals

L73 F = u(Pysty)

are Tinearly independent.
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Proof of Lemma 4.1: Note that, if 1#m, then c]rwcm is either empty or a
2-D manifold. On the other hand, for every 1, c1n (5x (O,TO)) is a non-empty
3-D manifold. Thus the set

Y= N (% (0,T )N (U C

)
1 ma1 m

1s the non-empty union of 3-D manifolds. Pick any (Q],s]) in Z], the
number

min {min d((Q],s]),C
1=0,. 00,0 m#l

m)}

will be positive.

Theorem 4.1

Let (Py,ty)€ (R3~\§ﬂx(0,T) be as in Lemma 4.1. Then there exists a number
hO:>O, such that for every h:ﬁho the linear functionals

L5 % (0,T,)) 2 F — U (Paty)s 1= 0u1,00l

are linearly independent.

Proof: The above statement is equivalent to say that the functions

w(P],t1;-,-), 1 =0,1,...,L given by (1.4) are linearly independent elements

Moreover, since such functions are continuous, we may replace LZ(QX (O,TO))
with C(ox (O,TO)). Thus the theorem will remain proved once we have shown
that the matrix

M= {w(P],t1;Qm,sm)}, Tom=0,1,...,L

is invertible. Here the points (Q_,s_) are those found in Lemma 4.1.
m’>~m

Making use of (0,5), (1.4) and of Lemma 4.1 the following estimates can
be obtained by rather lengthy, but straightforward, computations:
. < -1
W(P],tT,Q1,S1) 2 Clh , for every 1,
and, if hééhl = min d(PT,Q)/2, then
1
~ ‘ - -5 RN
Of;w(P],t1,Qm,sm):¥C2 h " (max{0,h-p})”, for every l,m, 1%m,

here Cl, C? are constants independent of h.
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Therefore, if h < min{hl,p} then the matrix M is diagonal and positive
definite. Note also that, by continuity, if p<:h1, then we may find ¢>0
such that for h§;p+ag;h1 M is still invertible. Thus the theorem is proved
when

1 1f hlﬁép

{ pto if h1>p.



- 25 -

Our problem originates from the following car-industry issue.

Law regulations prescribe an upper noise-level for cars. Standard measure-
ments are made as follows: As the car goes at prescribed speeds on a straight
road, the sound is measured at a point on the side of the road.

The distance from the road and the height on the ground of such a point are
also prescribed.

It would be desirable to forecast such car-noise from laboratory experiments.
Simulations are made with a car kept steady in an acoustic chamber. Sound
measurements are taken at points around the car body.

We assume that noise-sources in the car are the same in the laboratory and
on the road. The only difference comes then from the motion.

Let y = x+xo(t), t€ (0,T), be the translation in space which represents
the motion of the car on the road (actually, since the road is straight

we may assume: xo(t) = A(t)xo, where A is a function and x° is a constant
vector). Let u be the sound intensity in the laboratory and let v be the
sound-intensity on the road. Let f = f(x,t) be the sound-source inside the

car, that is: supp feax [O,TO]. We obtain:

N 3 D
(g s U0t) = Fl6t), 0 B x (0,7), gy

(5.1) 3t gy
\ n3
L u(x,0) = t(x,O) =0 , on R,
o2 ;
(= A (X t) = f(x=x (t),t), in R% x (0,T),
(5.2) %(ntz X 0
i v(x,0) = \).E(X,O) =0 5 0N R3.
The information on laboratory measurements is schematized by
L
(5.3) z IU(PW st“])"u]lz s 82.
1=1

Moreover we assume the following bound on the source (see Introduction and
Section 3):

[ fx,t) dxdt = EC

(5.4)
2x(0,7,)
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Note: The presence of the ground should be taken into account. That is

equations (5.1), (5.2) should hold only in the half space

Ri = {(Xl‘XZ’X3)| (xl,x2)€ R3 , x3>»0}. Moreover a boundary condition
at Xy = 0 should be added. However, for the sake of clarity we will
continue to consider u, v as solutions in all of space. Note also that,
if homogeneous Dirichlet or Neumann conditions at Xy = 0 hold, then we
may introduce suitable symmetrizations which extend the solutions to all

of space.

Our goal will be the determination of

(5.5) v(Q,t) q fixed, t€ (0,T).

Now we see that

(5.6) v(Qst) = [ w0, t5x,5)F(x=x2(s),s) dxds
rR3 < (0,1)

where w is the kernel defined in (1.4) (recall Lemma 1.1).

Therefore, since by (5.1), (5.2), (5.3) we have on the source f the same
information as in Problem (I), we may adapt to the present case the
algorithms developed in section 1. And precisely we see the following:

(i) The least-squares algorithm given in Theorem 1.1 may be applied as
it is.

For every fixed v€ (0,T) an approximate value of v(Q,t), can be obtained
by

v(Qyt) = ¥ b, { w(Q,T;x,t)w(P],t?;x-xo(t),t) dxdt
0

b )T s given by (1.11).

(11) An error estimate can be developed as the one given in paragraph 1.2.
We will just have to replace at all steps the functional

2 . —
L7(ax (O,TO));yf - u(PO,tO)

with the functional
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Lz(x‘z‘,x (O,TO)) 3f = v(Q,1)

given by (5.6), which is too Tinear and bounded.
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