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INTRODUCTION 

In these notes we will discuss some aspects of a problem arising in car- 

industry. 

For the sake of clarity we will set the problem into an extremely simplifie 

scheme (see the appendix for details). 

Suppose that we have a body which is emitting sound, and that the sound 

is measured at a finite number of points around the body. We wish to determ 

the intensity of the sound at an observation point which is moving, 

In analytical terms: Let 0, a bounded smooth domain in R3 3 represent the 

body. Let PI'.-*, PM be points in R3% at which measurements are made, and 
let Q zz Q(t), tE (O,T), be a path in space-time, which represents the 

motion of the observation point, 

The sound intensity u = u(x,t), XE R3 t>O is a solution of the wave 
equation in the exterior of the body, satisfying zero initial conditions 

(t :f 0 is the time at which the sound emission starts): 

[ Utf au - 0 , in ( R3\~~)x(0,+m), 

(0.1) 

‘i u(*,O) = U&“,O) = 0 ) on W3\,2 . 

We suppose that the values of u are approximately known at the points 

P1"".., PM for a finite number of time values OS tIl .,.A$ 

(04 ll(Pi,tj) ~~ij , i = I,...,M; j = 1 ,".3 N. ' 

We want to determine u(Q(t),t), as t ranges over (O,T), 

This problem is ill-posed in the sense of Hadamard, In fact, for any given 

set of data (0.2), the solution u(Q(t),t) is not uniquely determined and 

it is unstable. For instance we may find function>< u satisfying (0,I) such 

that u(Pi'tj) = 0 for all i's and j's and u(Q(t),$$ is arbitrarily large, 

(See section Li,, Remark 4,l.) 
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The treatment of an ill-posed problem requires the knowledge of extra The treatment of an ill-posed problem requires the knowledge of extra 

a-priori information. (See, a-priori information. (See, for instance: Miller [4], Talenti [71.) for instance: Miller [4], Talenti [71.) 

Let us give an example; Let us give an example; 

Suppose that we want to determine, on the unit disk x2+y2< 1, Suppose that we want to determine, on the unit disk x2+y2< 1, a harmonic a harmonic 

function u(x,y) which takes, within a given approximation, specified values function u(x,y) which takes, within a given approximation, specified values 

at a finite number of points (xi,yi) inside the disk at a finite number of points (xi,yi) inside the disk 

("1 ("1 ~ lU(Xi,Yi) - fi12 -< E2. ~ lU(Xi,Yi) - fi12 -< E2. 
i:l i:l 

This is too an ill-posed problem. However, This is too an ill-posed problem. However, if it is known that the harmonic if it is known that the harmonic 

function we are seeking satisfies a bound like the following function we are seeking satisfies a bound like the following 

(W) (W) 1 1 (u;+u;) dxdy 2 E2 (u;+u;) dxdy 2 E2 

x2tyL<l . x2tyL<l . 

then it can be shown that the set of harmonic functions satisfying both (*) then it can be shown that the set of harmonic functions satisfying both (*) 

and (**) is bounded (for instance, and (**) is bounded (for instance, with respect to the L'metric). with respect to the L'metric). Moreover Moreover 

an algorithm can be developed which produces a solution which may be consid- an algorithm can be developed which produces a solution which may be consid- 

ered the optimal one. ered the optimal one. In fact, it minimizes, In fact, it minimizes, up to a constant -factor, the up to a constant -factor, the 

maximal distance from any other harmonic ,function fulfilling (*) and (**). maximal distance from any other harmonic ,function fulfilling (*) and (**). 

This algorithm consists in solving the (regularized) least-squares problem This algorithm consists in solving the (regularized) least-squares problem 

(***) ’ IU(Xi’Yi)-fi12+c2/E2 I U~‘U~ (***) ’ IU(Xi’Yi)-fi12+c2/E2 I U~‘U~ = mi n = mi n 
i=l i=l 

x2+y2<1 x2ty2<1 

among all harmonic functions u in the disk. An interesting feature of this among all harmonic functions u in the disk. An interesting feature of this 

algorithm is that it can be reduced to a finite dimensional least-squares algorithm is that it can be reduced to a finite dimensional least-squares 

problem. In fact a so called reproducing kernel can be used, Namely, if we problem. In fact a so called reproducing kernel can be used, Namely, if we 

consider the Hilbert space H made of the harmonic functions u in the disk consider the Hilbert space H made of the harmonic functions u in the disk 

having zero average and bounded Dirichlet integral (i.e. (**) holds for having zero average and bounded Dirichlet integral (i.e. (**) holds for 

some E=c t-) with the scalar product some E=c t-) with the scalar product 

<u,v> = <u,v> = 
H H i i 

x2ty2<1 x2ty2<1 

uxvx 4 u v 5 uxvx 4 u v 5 
YY YY 

then it turn; out that, in such a space, interior point values then it turn; out that, in such a space, interior point values 

H 3 u H 3 u - UP,Y) - UP,Y) 



are bounded linear functionals. Thus there exists, and it is explicitly 

determined, a function K(x,y;~,q) (called the reproducing kernel) such 

that K(x,y;~ )E H for every (x,y) in the disk, and, for every uE H it 

satisfies 

u(x,y) = ~K(x,y;*,+,u>~ , x2+y2.1. 

Now it is readily seen that the minimizer u" of (***) can be represented 

as follows 

U"( X,Y) = a0 + J, aiK(Xi >Yi ;X,J') 
i- 

and, therefore, we are led to a least-squares problem involving only the 

parameters ao)al,...,am. (See, for details, Alessandrini [ll. See also: 

Bergmann-Schiffer [Z], for the origin of the reproducing kernels. For the 

application of the reproducing kernels technique to ill-posed problem see: 

Miller-Viano [S]. See also Secrest [6] for a prototype of this technique.) 

Thus, coming back t(y the sound measurements problem, we need mainly two 

things. First an a-priori limitation which makes the set of admissible 

solutions bounded. Second we will need an analogue of the reproducing kernel. 

Here in the sequel we will examine some types of a-priori information which 

may he available and are useful to our purposes. The construction of the 

reproducing kernel, or some suitable substitute for it, will depend on the 

type of a-priori information we choose. (See sections 1 and 2.) 

It is convenient, at this stage, to introduce a slight change in the state- 

ment of our problem. We want to replace the input and output pointwise 

evaluations: U(F'i ,tj) and u(Q(t),t) with weighted averages on neighbourhoods 

of the points (P:,t,‘), (Q(t),t), respectivelv. Let us denote 

(04 ::,(x,t) = ^ i q,P-y>$,(t-s>v(w) dyds 

for any locally integrable function v on R3 x(O,m), where 

W) y,(X) = h-3~(lxl,‘tQ, if,(t) = h-‘;l(t/h) 

cy, VI being smooth, symmetric, non-negative, compactly supported, normalized 
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functions 

-b 
( i.e.: J' cp(Ixl) dx = 1, I +(t) dt = 1.) 

R3 
-co 

In most of the following discusSions, the parameter h will be kept fixed, 

hence, when no ambiguity occurs , we are going to drop the subscript from 
I._, - 
Vh 

:v=u 
h' 

Our problem is then rephrased as follows: 

To deternine ‘iri'(Q(t),t), tt: (O,T), where u(x,t) satisfies (0.1) and the _-.-- _ ..-.. "--__-.-_l-.".-. ______I --~"-.---."- _-.--.-.- 
averages ci(PiYtj) are prescribed within a given xproximation: -__"~~-"_"__l--- -_ -__l_l__- -----II. 

(0. ) 1: 
jz1 

II 

IG(Pi,"$ -zji7 '\ 2 
,**-> 

j 2: 1 3.'., 

It seems acceptable, from a physical point of view, to consider measurements 

as averages rather than point values, Moreover we have the apparent mathemati- 

cal advantage that for every fixed (x,t) in space-time, the mapping 

u - G(x,t) 

is a continuous linear functional, even if the topology of the ambient space 

of u is very weak, 

Let us now review some different possibilities regarding the a-priori 

information. 

We night assume that the function u satisfies the wave equation also in 

with a source term f supported in cx(O,To), (To&-T): 

f 11 in 

(0.7) 1 

.tt- AU = f IR3 x( o,+q, 

( u(*,O) = u.&"O) = 0 on R3, 

and that this source (which will be unknown) satisfies some bound. The 

following limitation would be extremely convenient from the mathematics 

point of view 

i f'(x,t)dxdt r; E2 , E = constant < M. 

'2 x &To) 



In fact, for every (x,t), the linear functional 

L"i"2x (O,To))> f --+ ;(x,t)E IR 

is bounded and can be expressed, as an integral 

U(x,y) = 1 w(x,t;y,s)f(y,s) dyds 
~:x(o,r,) 

where .the kernel w(x,t;y,s) can be explicitly computed. Such type of represen- 

tation enables us to exploit a finite dimensional algorithm similar to the one 

presented above for the harmonic functions problem. We will develop this 

technique in section 1. 

Now, it may be argued that the bound (0.8) may not be feasible concretely, 

and that instead, the following assumption would be more realistic 

(04 
r 

s:x~O,-ro) 
If1 s E 

where f is also allowed to be a distribution. We will show in section 3 a 

procedure which enables us to apply the L2-approach developed in section 1, 

making use of the bound (0.9) rather than (0.8). 

Finally we wish to mention a different assumption which does not require 

information on the sound behaviour in the interior of the body: 

(0.10) i 
(R3+(O,T) 

(lDxu(x,t)12 + u;(xJ)) dxdt I E*. 

This condition has an appealing physical interpretation. That is we are 

assuming to know the total sound-energy spent in the time-interval (0,T). 

Theoretically speaking, also in this case, there exists a kernel W(x,t;y,s) 

such that, for every (x,t)E (R3~;)x(0,T): 

, ;2 
y-y ,Ay)W(x,t;.,~) = 0 in (lR3~~!)x(0,T) 

i OS" 
jW(x,t;* ,O) == Ws(x,t;*,O) = 0 on 

and, for every u satisfying (0,l) and (0.8) for some E<m, 
.-. 
u(x,t) = i 

(R3 
(D~y~~(x,t;y,~)~Dy~(y,s)~Ws(x,~;y,~)us(y,s)) dyds. 

qx(o,r) 
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This kernel might be used to reduce the problem to finite dimension as 

before, In section 2 we give a more detailed discussion on this matter. 

However *, the structure of W will depend heavily on the shape of R, and 

the numerical computation of the values of W seems to be a hard task. 

Let us sketch a plan of the present notes. 

In section 1 we treat the problem assuming that the bound (0.8) is available. ----."- -_.... -- 
We develop an algorithm, namely, fixed TE (0,T) and Q = Q(T), we are able 

to determine an approximation of ~(Q,T) by solving a finite dimensional 

linear system, Furthermore another finite dimensional algorithm is given 

which yields an error estimate. 

In section 2 an approach to the use of the bound (0.10) is made. Computations ~--_ 
are made on a one-space-dimension example. 

In section 3 it is shown how we may use the methods developed in section 1 __l--_lll. 
when the bound (0.9) (or (0.10)) is available. 

Section 4 contains a discussion on the following issue (its interest will -_,__-_-__-_ 
become clear in section 1, see Remark 1.3): 

Are the following M*N+1 linear functionals ..-._ . - .._. -_ .--___- 

L$x (OJ,))~ f -+Yi(Pi,tj) , i = l,...,M; j = 1 N 3"') , 

12(:: x (O,T[])) 3 f --- -+ u(Qd 

linearly independent? 

An affirmative answer is given, provided certa‘in geometrical conditions are 

satisfied, and provided the support size h of the averagings is sufficiently 

stml 1 L 

Section!? contains an appendix in which details on the applied problem are 

given, A modified mathematical model is presented and briefly discussed. 





Proof: -__-II Combine Kirchhoff's retarded potential formula (see, e.g.: Courant- 

Hilbert 131) 

( w u(x,t) = (411-p I D-xl-' f(z,t-lz-xl) dz 
Iz-x1-d 

and (0.4). 

Remark 1.1 ---- 

For every (x,t)E R3 x (0,~)) w(x,t;* ,*) is a bounded smooth function, in 

particular it belongs to L*(s~x (O,To)), thus the functional 

L2@ x (O,To))s f -+ Ti(x,t) 

is bounded. Thus we get that the set of admissible values of u(Qo,to) under 

the constraint (1.2) is bounded: 

1.~7(Q,,t,) I 6 Ilw(Qo,to;~ $9) II 
L2(:9x (",To))E 

In this sense, we may say that Problem (I) is stable. 

Remark 1.2 .--I -_..._ ".~-.l.ll.. 

For compu-tational purpases ,it may also be noteworthy that the kernel 

w :: w(x,t;y,s) depends only on lx-y1 and on (t-s). 

X.2 An Algorithm --^-_ _-- _-m---k ..." .-..., ".-.-- 

An approximate solution to (I) can be found by an aptimization procedure 

balancing between requirements (1.1) and (1.2), namely determining an 

L'((lx (0,To)) f unction f which minimizes the functional 

L 
J: f+ 1 I~(Pl,t,)-ij112+~2/E2 / f* 

i=l iix(O,To) 

(again we refer to [ 41, [7 ] for a more precise justification). The 

following theorem guarantees the existence and uniqueness of such a 

minimizer, and gives a finite dimensional algorithm for determining it. 







- 11 - 

0 r ) as is the same, 

(1.12) A((A+&' I)b-';j) = 0 

lence invertible. note -that (A+ <.2/E* I) is a positive definite L x L matrix, t- 

Thus b = (A+ ,-"/E2 1)-I: yields a solution of (1.X?), and this complet 

the proof. 

:es 

Remark 1.3: 8ote that in the above proof we did not need the invertibil 

of the matrix A defined in (1.6), (1.7). The matrix A is invertible if 

only if the functions w(P,,t,;=,.) 1 = l,...,L are linear independent 

elements of L'(s~x (O,To)). This matter is treated in section 4. 

Here, let us just observe that it would be advantageous to know that A 

invertible, in fact, in such a case the condition number of the matrix 

A + ,,2/E2 I 

does not diverge as (K'/E*)+O , and thus the numerical solution of (1. 

(1.11)') will be manageable also for small values of CC'/E'. 

1.2 An error estimate ~-- .-._ ---.."____"- ___._- 

Let us denote by u' the sound intensity produced by the (unknown) sours 

,f' which yields the "true" solution of prob‘lem (I). Let u" be the solut 

of (0.7) when f = f" is the minimizer of the regularized least-squares 

problem (1.9). Note that, by (2.9), and, obviously assuming that fI ful 

(X-l), (1,2), we get 

I.. 
( '1 fl I u" ( P, 1 t ; ) -. "6.". ( P, , t , ) I 2 + ,+* / ,fO-fl,y 

cx( O,T,) 

1. _"_ 
:' 2(,~11~~1(P,,~~,)-~11z+_:2,E~ 1 IfY)I'2 

c!x(O,T,) 

s 2\r;TE; . 

Note also that the following number is finite (recall Remark 1.1) 

(1.13) LIZ = sup 
!u(Po,to)12 

fE L*(Qx (O,To)) ! li$P,,t,)12+&'E2 I f* 
l=l Qx(O,To) 

i ty 

and 

is 

11) (or 

:e 

;ion 

fills 



Therefore, picking f = f"-f', we get 

(1.14) l~~(P,,t,)-ul(Po,to)l I 2\/2 11 E 

which yields an estimate of the error made by replacing the "true" Salk 

ul(PoYtn) with the one obtained via the regularized least-squares algor 

The following theorem indicates how to compute the number 1-1. 

- 12 - 

&ion 

-ithm. 

Theorem 1.2 -.--.----.-. 

,L th en there Let the point (Po,to) be in the cone of influence of RX (O,Tc 

exists a function in L'(Qx (O,T,j) which yields the maximum of the quotient 

in (1,‘13). This maximizing function is uniquely determined up to a constant 

factor, and it can be represented as a linear combination of the functions 

wp, A,,; * 90) , 1 = O,l,.".,Lb 

Froof: ----.. Note that the number 11 in (1.13) is non-zero, in fact- 

in the cone of influence of 62 x (O,T,) (that is: there exists (.y,s)Eix 

8, if (P_,t,) is 

.- PJ,) 
such that IPo-yl = to-s), then we miy find a source f in L2@x (O,To)) such 

i... 
that u(Po,to)+ 0. Therefore the variational problem 

_.I 
lu(Po'to)12 

(1.15) -T_---- ~-~-~_l~_ = sup 

1 lii(P,Jzl)12 
l=l 

+,2/E2 / f2 
i2x(O,To) 

is equivalent to 

L 
(1.16) 

2 * ' t lu-(P&J1 + E /E J f2 = inf 
l=l h?x(O,To) 

under the constraint 

(1.17) C(P,,t,) = constant * 0. 

Note that the norm 

Ill 
lllflll = ( 1 l~(Pl,to)12+c2/E2 j f2)l" 

l=l nx(O,To) 

is equivalent to the L~(SIX (O,Ta))-norm, and it gives rise to a tiilbert space 
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* 

structure over L'(s,x (0,To)). 

Thus, salving the problem (1.16), (1.17) corresponds to find theunique projection 

of the origin OE L'(t;x (O,To)) onto the closed affine variety defined by 

(1.17) with respect to the III III -metric. 

Therefore we have proved the existence of a maximizer of (1.15), and that 

it is uniquely determined by a constant factor. 

The reduction to finite dimension follows the method already used in Theorem 1.1. 

\ 
Remark 1.4 ___.-~-- 

Let us see how ;I can be determined. Let c = (c~,...,~L)~ be such that 

L 
fO(z,t) = 1 c,,,w(Pm,tn,;x,t) 

m=O 

is the maximizer. By (1.16), (1.17) we get 

L L < 1.. 
z: " A! kA1 mcm -i- c2/l:' z: A r 

‘1 21 pzo 
m~:o kn,+,l, .z A Aok, k = O,l,. . . ,L; 

here +, is a Lagrange multiplier. Mu'ltipl,ying both members by ck and adding 

wi,th respect to k from 0 to I.., we get 

2 -1.1. . .^_. 1 is -' I, ~,ly+l mCm * 

We may rewrite the above system as follows (note the change in the first 

summati on ) 

L 
: A A c +- c2/E2 : A c 

L 

1:(-j mq) lk lm m nl=o km m = lAok+ (mfgAon,~m)Aok. k = 0,1,...,L; 

or, as is the same, 

(ii2+&E2-!)c = "Ro+A;cAo , 

where 

1 

* 
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A A 
00 *** OL 1 

..-. 
A= : 

I 

. 
3 ((L+X)x(L+l)) 

A OL *** ALl. i 
and 

A o :ct (/loo . . I) Ao,_!7. 

Now: A;c = ,I,&*, and thus 

(/:'2. -+. &$ A)c z J(l+i,2)A, . 

Moreover we may normalize c in such a way that: x(1+,*) = 1, which means 

,1* AiC 
---'-7 l+L,2 = A;c , p* = ----. 

l-A& 

where c is the solution of 
-I -_ 
A(A&E* 1)c = Ao. 

Note that: A0 = ‘A(l,O,..., O)'> therefore c can be found as the solution of 

(hL&E2 1)c = (l,O,...,OjC 

* 





Lemma 2. . ..- - -___. 2 

There exists a function 

w : 

satisfying the following properties 

W(x,t;*,*) E: x , for every (x,t)C D, 

(ii) for every uE X 

Proof: It suffices to note that for ever,y (x,t)E: D the functic Inal -. 

x3 II -* i"(x,t) 

is continuous ) in fact 

We easily -infer from the above lemmas that WC may mimic the procedure 

already used .in section 1 in order to get a least-squares algorithm and an 

error estimate for the following problem. 

(II) To determine G-(P --- -.ll- .---- --- o,to), where u j-5 _a_ solution fl (0.1) satisfying 

L -" 
P5) z lu(Pl,t,)-;i,12 S E2, 

lr--1 

(24 
6 

u;+ IDxul* = /lull ; s E* ' 

There is however in this case a main disadvantage: The kernel W is not 

explicitly defined as it was w (recall (1.4)). 

It seems to us that a numerical algorithm which, given the domain '0, 

produces approximate values of W migh-t be feasible. Incidentally let us 

remark that, for the purpose of the least-squares algorithm and of the error 
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3. A treatment of the distribution source case --~____ 
* 

In this section we are considering the case in which u is a solution of (0.7) 

satisfying (1.1) and the source f is a distribution fulfilling (0.9) 
-.- 

supported in Q x [O,TolS 

We may assume with no significant loss of generality that the averaging 

kernels q,, $Jh in (0.5) are such that 

; (2h(x) = 1 "&"-Y)-:,.,(Y) dy 

(3.1) i 
Is 

I 

i q,,(t) = 'i" i+(t--s)<ph(s) ds 
- LX> 

where ~1 
h' 

?:‘,~ have the same properties than those stated for vh' $h" 

respectively. 

Let us assume, for simplicity's sake, that 

supp Uh = CxE X3 /Ix1 ;h1 , SUQI-’ :; h = [-h,hl. 

Here, for any locally integrable function v on iR3x (O,cm), we define * 

(3*2) Y(x,t) = I i‘h(x-y)~h(t-s)v(y,s) dyds 

iR3 x(O,m) 

Note that such definition of averaging can be naturally extended to 

distributions. Note also that 

(Y)"(x,t) = Y'(x,t) 

where (z)" denotes the iterated averaging (3.2), and u is the averaging 

defined in (0.5). 

Now we observe that 4; has the following properties 

L 
U) 

2 

1=1 
1: !(~)"(P,'t,)-;;,i 5 c?, 
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' (2 - A@ = f: in IR3 x (0,m) 
(ii) { nt2 

' v 
I. \I(*, -h) - $,(*,-h) = 0, on lR3, 

(iii) supp fvcCh x [-h,To+hl, 

where 

(3.3) I" = CxE R3 I d(x,Q)<h), 

and finally, by (0.9) and Young's inequality 

(iv) i (fv(x,t))2dxdt i j $(x)$(t)dxdt E2 

!:h x (-h,To+h) IR4 

5: C h-4 E2 - 

Therefore, if we allow the following slight changes: 

a) a replacement of the averaging kernels: 

'!+, '+, -+ ~',""', 3 

b) a replacement of the a-priori bound: 
b 

E2 -+ C h-4E2 , 

c) a time shift: 

t --) t+t1 , 

d) a widening of the source support: 

-L? x [ (1 , To ] -+ 3" x [0,To+2hl, 

then we see that z satisfies the conditions stated in Problem (I) and the 

methods of section 1 can be used. 

Remark 3.1 -._.----_- -._... 

A similar reduction to the L2-source approach can be made under the bounded 

energy setting of Problem (II). 

* 

L 
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Let us denote 

2d = min id(P,,Q) 11 = O,l,...,LI. 

Consider X to be a CL(R3) function such that 

OiX,l; X =_ 1 on ?iz 0 outside Q~, 

IDiXl :: Ckd-k , k = 1,2,... 

(here b7d is the domain defined-in (3.3) with h replaced by d). Then let us 
t define 

1 

'X(x)u(x,t) for (x,t)~ (R3\ n)x [O,T) 

I)( x ;t ) = 
0 for (x,t)E RX [O,T). 

where u satjsfies (0,l) and (2.5), (2.6). 

Note that 

1' 2 
(..-. :" -... - /p f g in R3 x (O,T), 

; it2 

i 
I 

\:(*,O) f v,(-,O) = 0 on R3 , 

wt1 e t-e 

1 -(<~xX(x)u(x,t)+2DxX(x) . Dxu(xJ), for (x,t)E (,id~::)x(O,T), h 
g(s,t.) :; { 

i 0 elsewhere. 
u 

Now it is reasonable to assume that the supports of the averaging functions 

",l(P,-*)$h(t,-*) Y 1 = O,l,...,L 

do not irltersect sldx (0,T). Therefore it turns out that 

T-(P@,) = $P,J,) , 1 = O,l,...,L, 

and, on the other hand, we have 

Cd :r g ) 5: C2d-2( 1 2 l/2 u51/2 +Cld-'( i ID~uI~)~'~ 
(a? %)x(O,T) lR3 x(O,T) R3 x(O,T) 

thus, recalling (2.4), we get by (2.6) 

i g2 s (C;d-4T2/2 + C:d-')E'. 

(s:"YI)x(O,T) 
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Therefore, once again, we are dealing with a solution of the wave equation 

v 5 with source g, which (with the due changes) satisfies the conditions D_ 
of Problerm (I). 

4. The linear independence of the averaging functionals -----.--.--_l - 

For any point (P,,t,), 1 = O,l,..., L, we consider the (characteristic) cone 

of dependence of (P,,t,): 

c, = t(x,t)EIR3 x (O,T)/ lx-P1 I = t,-tl. 

The following lemma tells under which conditions the unbounded functionals 

L'(w (0,To))Sf + u(P,,t,), 1 = O,l,...,L 

are linearly independent. Here u denotes the solution of (0.7). 

Lenma 4. 1 -__11-- 

Let (P,J)' 1 = O,l,... ,I be in the cone of influence of RX (0,To) (that is: 

C, II (SIX (O,To))+ 6, for every 1). 

Then there exists a number D>O and points (Q,,s~)Es'~x (O,To), 1 = O,l,...,L, 

such that 
F 

(0, 'sl) E C, y for every 1 = O,l,...,L 

and t 
d((Q,,s,)3C,T,)2 (,, for every l,m, 1 *m. 

Kenrark 4 I1 

We infer- that, for every 1 = O,l,... ,L, we may find a source f, supported 

in a small neighbourhood of (P,,t,), such that u(P,,t,) takes an arbitrary 

value, while, for every in+ 1, 

u(P,,t,) = 0. 

That is, the pointwise evaluation functionals 

L23 f -+ u(P l'?) 

are linearly independent. 

Y 
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5. Appendix -~_-~~ 

Our problem originates from the following car-industry issue. 

Law regulations prescribe an upper noise-level for cars. Standard measure- 

ments are made as follows: As the car goes at prescribed speeds on a straight 

road, the sound is measured at a point on the side of the road. 

The distance from the road and the height on the ground of such a point are 

also prescribed. 

It would be desirable to forecast such car-noise from laboratory experiments. 

Simulations are made with a car kept steady in an acoustic chamber. Sound 

measurements are taken at points around the car body, 

, 

We assume that noise-sources in the car are the same in the laboratory and 

on the road. The only difference comes then from the motion. 

Let y = x+x'(t), tE (O,T), be the translation in space which represents 

the motion of the car on the road (actually, since the road is straight 

we may assume: x'(t) = x(t)x', where Xis a function and x0 is a constant 

vector). Let u be the sound intensity in the laboratory and let v be the 

sound-intensity on the road. Let f = f(x,t) be the sound-source inside the 

car, that is: supp fc'3j;x [O,To]. We obtain: 

i #;2 

1 

(ii-T- Ax)u(x,t) = f(x,t), in R3 x (O,T), 
(5.1) 1 

1 U(x,O) = LqX’O) = 0 ) on 1R3 , 

( -2 
j(i"-z- hX)v(x,t) = f(x-xo(t),t), in R3 x (O,T), 

(5.2) ) nt, 
jj 1:(x,0) ff 'jt(x,O) = 0 , on R3. 

The information on laboratory measurements is schematized by 

(54 : Iii(P,'t,)-:,I - 2 < c2 , 
"1 zl 

Moreover we assume the following bound on the source (see Introduction and 

Section 3): 

(54 I 
IWLT~) 

f*(x,t) dxdt 2 E2. 



Note : _..._~ The presence of the ground should be taken into account. That is 

equations (5.1), (5.2) should hold only in the half space 

Rg = '(xI+x3) 1 (XpLp R3, x3>OI. Moreover a boundary condition 

at x1 = 
cl 0 should be added. However, for the sake of clarity we will 

'3 continue to consider u, v as solutions in all of space. Note also that 

if homogeneous Dirichlet or Neumann conditions at x3 = 0 hold, then we 

may introduce suitable symmetrizations which extend the solutions to all 

of space. 

Our goal will be the determination of 

(5*5) Y(Q,t) a q fixed, tE (0,T). 

Now we see that 

(5.6) T(Q,t) = I w(Q,t;x,s)f(x-x'(s),s) dxds 

R3 x (0,T) 

where w is the kernel defined in (1.4) (recall Lemma l.l), 

Therefore, since by (5,1), (5.2), (5.3) we have on the source f the same 

information as in Problem (I), we may adapt to the present case the 

algorithms developed in section 1, And precisely we see the following: 
”  
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? 
(i) The least-squares alqorithm qiven in Theorem 1.1 mav be applied as . 
it is, 

* 

For every fixed ,[-f (O,T) an approximate value of <(O.T\. can be obtain 

L .". 
v(Q,,i-) 2: 2: bl 

1-l 
i' 

-tE. (@To) 
w(Q,~~;x,t)w(Pl,tl;x-x'(t),t) dxdt 

x-x0(t) E a2 

where b = (bl,... $bL)' is given by (1.11). 

(-ii) An error estimate can be developed as the one given in oaraoraoh 

We will just have to reulace at all stpnc. the fllnrtinnal 
r-- -“- *-“““‘““-’ 

L2(~x (O,To)) 2 f - -$Po,to) 

with the functional 

1.2. 



h 

L'(::x (&To))3 f -+ ;(Q, 

given by (5.6), which is too lin 
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iear and bounded. 
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