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Abstract

We consider a scale discrete” wavelet approach on the sphere based on
spherical radial basis functions. If the generators of the wavelets have a
compact support, the scale and detail spaces are fimite~dimensional, so
that the detail information of a function is determined by only finitely
many wavelet coefficients for each scale. We describe a pyramid scheme
for the recursive determination of the wavelet coefficients: from level to
level, starting from an initial approximation of a given function: Basic
tools are integration formulas which are exact for functions up to a given
polynomial degree and spherical convolutions:
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1 Introduction

In the last years there is a growing interest in wavelet methods on spherical
surfaces. A number of papers from different groups have contributed, cf., e.g.,
(2], [1], [5], [6], [8]. [9], [11], [12], [14], [16], [17]. The basic "philosophy” of our
methods is the use of trial functions, which are axisymmetric, i.e., each of the
trial functions depend only on the spherical distance to a certain nodal point on
the sphere. This concept, of course, has close connection to the theory of radial
basis functions in Fuclidean spaces, for which we call the trial functions spher-
ical radial basis functions (for a recent survey, see [7]). The main reasons for
concentrating on this type of trial functions are: (i) they are simply structured
(just given as a one—dimensional function); (ii) they are an appropriate tool
for scattered data situations, which is often the case in real applications, e.g.,
in the geosciences, where the type and the position of measurements cannot
be chosen freely; (iii) they are well-suited for the solution of boundary-value
problems corresponding to spherical boundaries, since in many cases they can
be easily extended to a solution of a differential equation inside or outside the
sphere.

In the mean time, a series of papers have appeared, where the concept of
spherical radial basis functions and wavelets have been brought together, cf.
(5], [6], [8], [9], [17]. In this approach the wavelets are generated from a mother
wavelet (which is a spherical radial basis function) by "moving” the function
around the sphere (i.e., the corresponding nodal point is rotated according to
S0O(3)) and by a dilation operation. For the dilation there are two different ap-
proaches: in the continuous spherical wavelet theory (cf. [8], [9], [17]) one starts
with a special kernel which defines a spherical singular integral and uses the
free parameter of the kernel as a scale parameter. The scale discrete spherical
wavelet theory (see [6]) starts from a definition of dilation which is independent
of a special choice of a kernel, and can be applied to a large class of kernels.
This definition is based on the existence of a generator of a spherical radial basis
function, i.e., a function ¥4 : [0, 00) — R which is sampled at the integral points
to define via the Legendre transform a spherical radial basis function. By the
usual dilation applied to yp, i.e., v;(z) = 70(2772), one obtains new generators
v; which then generate new kernels representing different frequency bands.

An important feature of this way is, that if the mother wavelet is appropri-
ately chosen, the resulting scale and detail spaces have finite dimensions. This
is the reason, why it is possible to find exact reconstruction formulas based on
only finitely many wavelet coeflicients at each scale. Therefore, it is, of course,
enough to determine the wavelet transform at only these finitely many points at
each level. This is the starting point of this publication: what is developed here
is a pyramid scheme for the calculation of the wavelet transform. It turns out,
that once an initial approximation of a given function is found (which is in case
of a band-limited function very easy) the calculation of the wavelet coefficients
can be done recursively from level to level.” The major tools for this scheme
are integration formulas on the sphere that are exact up to a given polynomial
degree, and convolutions with spherical radial basis functions.

The outline of this paper is as follows: In Chapter 2 some preliminaries



are stated, including some results on exact integration over the sphere. In
order to keep the paper self-contained we present a short summary of scale
discrete spherical wavelet theory as developed in [6] in the third chapter. Then
the pyramid scheme for the recursive calculation of the wavelet transform is
described in detail in Chapter 4. A numerical example and some concluding
remarks are presented in Chapter 5

2 Preliminaries

In this chapter we summarize some basic notations and definitions used in this
paper.

2.1 Spherical Harmonics

If 2,y € R?. we write 2 -y for Iho Euclidean inner product and |z| = /z - @ for
the norm. We let Q = {& € R?| |¢] = 1} denote the unit sphere in R® The
standard surface measure on S) is denoted bv dw. On the space £*() we use
the inner product (£.G) 20y = [oF (MG (n)dw(n).

The spherical harmonics Y, of order n are defined as the everywhere on
the unit sphere Q twice continuously differentiable eigenfunctions of the Bel-
trami operator A® corrésponding to the eigenvalues —n{n +1),n = 0,1,

As it is well-known. the functions H, : R® — R defined by H,(x) = r*Y,(£),
@ = ré, r = |z|, are polynomials in cartesian coordinates which satisfy the
Laplace equation A, H,(z) = 0,2 € R?. Conversely, every homogeneous har-

monic polynomial of degree n when restricted to Q is a spherical harmonic of
order n. The linear space Harm, of all spherical harmonics of order n is of
dimension 2n + 1. Thus, there exist 2n + 1 linearly indépendent spherical har-

monics Yy, 1,. ... Yy 2041 [hroughout the remainder of thh paper we assume
this system Lo be oxthon(mndh/od in the sense of the £2%(Q)-inner product.
Harmg = &) _oHarm,, b > 0. denotes the space of all spherical harmonics

of order < b ( learly, its dimension is S _o(2n+ 1) = (b4 1)%. The system
{Yom In € Nog. m = 0.....2n+ 1} is known to be complete in £3(Q2). The
Fourier transform of a funtion F &€ £2(Q)is denoted FNn,m) = (F. Y, m )2y
n==0,1,...m=1,..2n+1

An outstanding result of the theory of spherical harmonics is the addition

theorem
2n41

e 2n 1
Z Yo (Y ) = TPH(g ), Lo € 8L
mo=1 o

where P, denotes the Legendre polvnomial of degree n. The addition theorem
is essential for our wavelet approach. since it relates the spherical harmonics on
{2 to a univariate function. viz. the Legendre polyvnomial. defined on [=1,1].

The close connection between the orthogonal invariance and the addition
theorem is established by the Funk-Hecke formula for H € LY~1,1],

/71*1(5-77)14’”(‘ M) = BN PA(E - Q).
S



where

1
HNn) = '27r/ H (1) Pa(t)dt,
~1

n = 0,1,.... For more details about the theory of spherical harmonics the
reader is referred, for example, to [10].

2.2 Integration Formulas on the Sphere

In this chapter we study integration formulas for the approximate integration
of functions F-€ C(2). Of particular interest are those integration formulas
which are exact for all F' € Harmg_ . ;. where b € Ny is given.

,,,,,

Definition 2.1 4 system {(n;,w;)}iz1...nv C © x R with pairwisely distinct
n; €  and weights w; € R (we assume w; £ 0 for all e =1,..., N ) defines an
integration formula for the approzimation of [ F(n)dw(n), F € C(Q), by

1\7

I(F) = ) wiF(m).
=1

We call the formula exact of order b, if [ F(n)dw(n) = Zﬁlwif’(m) is valid
for all F € Harmg,. ..

Obviously, the system {(n;,w;)};=1...n defines an exact integration formula
of order b if and only if Y0V w; = 47 and

N
Zwi}’}z.m(m) =0forall n=1,...,0,m="1,...,2n+ 1.
1=1

Definition 2.2 Let Xy = {n1....,nn} C Q be a system of pairwisely distinct
points. We call Xy a fundamental system for Harmyg, s, if the matric

}"0,1(771) T Yoa(nw)
: . : (2.1)

Yoonpi(m) - Yoapi(nn)

is regular (that implies N = (b+ 1)2). Xy is called admissible in Harmg,_;, if
it contains a subset which forms a fundamental system for Harmg . .

It is not difficult to prove

Lemma 2.3 Let Xy = {m,...,nn} C Q be a system of pairwisely distinct
points.- Then the following three conditions are equivalent:

(i) Xy is admissible in Harmg .
(i1) The matriz (2.1) is of rank (b + 1)%,
(ii1) Forall ' € Harmg_ p satisfying F(n;) = 0.1 ="1,..., N, it follows FF = 0.



It is clear that if we have an Harmg__p~admissible system Xn = {m, ..., 9~}
¢ Q. then we can obtain an integration formula which is exact of order b, if the
weights w; solve the linear system

{ - o Yo () dw(n)
Yoalm) v Yoa(nn) wy .f&l 0 1(07 ]

Yoorer (i) 0 Yeogi(ny) wy [')

An argument in the opposite direction is given by

Theorem 2.4 Asswme that the system {(n; w;)}i=1. .~ defines an integration
formula which is exact of order 2b for a b € No. Then:

(i) For all .G € Harmg, . ».

. N
/Q F(nyGin)do(n) = Z’U,J,;F(?],j)(?( ;i)

1=
(i1) The system Xn = {mi.....nn} 18 admissible in Harme .

Proof. Part (i) follows if we can show that the function n ~— F(n)G(n)is a
member of Harmgp )
F and (i can be seen to be restrictions of polynomials in R”? of degree less or
equal b. Thus. the product £'GG can be recognized as restriction of a polynomial
of degree less or equal 2b in R®. But it is known (cf., e.g.. [4]) that any polyno-
mial of degree less or equal 2b restricted to the unit sphere 2 is an element of

In order to prove part (ii). let F € Harmg, satisfy F(n;) =0, 0= 1,...,.V.
Then we have for all n = 0,000 m = 1....,2n+ 1,

. N
FA(“”w m) = / 17(’77‘)}%{777,( Tl)dw( n)= Zu’i—F( ni)Ynnn,(”If) = 0.
JQ

1=1

Thus. £ = 0. and (ii) follows {from Lemma 2.3. O

2.3 Radial Basis Functions on the Sphere
Suppose that A & L[~ 1.1]. If € Qis fixed. then the function
05 € K(€ )

is called a spherical radial basis function. These functions depend only on the
spherical distance berween-a fixed 7 € Q and the argument £ € Q. Expanding



K in terms of spherical harmonics yields via the addition theorem and the
Funk—Hecke formula

oo 2n1

munzzzwfmwmmwmmm

n=0 m=1

Py SRR

n=0 r

i

The mapping K +— {K"(n)},=0.1.. is called the Legendre transform of K.
Of particular importance for this paper are band-limited kernels, i.e., radial
basis functions A" where only finitely many K”(n) are different from zero.

Theorem 2.5 et

b
. 2n+1 .
Ko=) “—h"n)h,

n=0

be a spherical radial basis functions with K™ (n) # 0 forn = 0,...,b and
KMNn) =0 forn >b. Assume further that the system Xn = {my,...,nn} C Q
is admissible in Harmg,. . Then

span{ K (m;) | ¢ =1,...,N} = Harmg,___s.

Proof. The inclusion *C” is clear. In order to prove the inclusion in the oppo-
site direction assume without loss of generality that the subset {ny,.. .,77(1)“)2}
forms a fundamental system in Harmg, ;. We shall show that the functions
K(m: )y..os K(ngpg1)2 ) are linearly independent.  Suppose therefore that

2 .
ngl) a; K (n;- ) = 0. By multiplying this equation with Y}, ,, and integrating

over () we obtain

Yoa(m) - You(nw) ay 0

Yo2p1(m) -+ Yoapp1(nn) an 0
But since the above matrix is regular. it follows that a1 = ... = ay = 0, as
required. O

For later use we introduce an abbreviation for a particular band-limited
kernel; namely the Shannon kernel SHy for a given b € Ny:

b
o+ 1
SHy = Y- = op, (2.2)

n=0

This kernel is the reproducing kernel of the space Harmg_ . 3, since

o SHy(n- ) € Harmg forall n e .

o F(n)=(F.SHy(n:))2q) forall '€ Harmy,__ 5, n € Q2

6



If F' e £2(Q) and K € £2[—1.1], we define the convolution of K and F by
(% 1) /1\ F(n)dw(n), &€ Q.

Note that this operation is not commutative, since I and [ are defined on
different sets. Obviously, we have (K * F) n.m) = K"(n)F*n,m) for all
no=0,1,...m = 1....2n+ 1. If H € £*[~1,1] defines another radial basis
functions. we let the convolution of H and K be defined as

(1« K /H ORC-)dw(C), & e Q.

It is not difficult to see that (H * K)(£.n) depends again only on the inner
product of € and 7. so that we can write (H + K)(&-n) = (H « K)(§,n), Le.,
H x K is a spherical radial basis funiction. Obviously,

(H+ M) n)=H n)Kn), n & Np.
The iterated kernel K'?) is defined by K2} = K % K, yielding

(KCYA(n) = (K™ (n))%, n € No.

2.4  Dilation

An important feature of Euclidean wavelet theory is the operation of contraction
and dilation. There exists no obvious transition of this feature for functions
defined on the unit sphere. Here we overcome this difficulty by defining dilation
in the frequency space, i.e., we define the dilation of radial basis functions in
terms of their Legendre transform. As a matter of fact, we have to assume that
the radial basis functions under consideration are defined from a generator, i.e.,
a continuous version of the Legendre transform, which is evaluated (or sampled)
at all integral values. These ideas were recently pointed out in [6].

Definition 2.6 4 piccewise continuous function vy @ [0,00) — R s said to
satisfy an admissibility condition. if

2
2n 41 o
Z — < sup ['70(:1*)|> <00 (2.3)
N a r€lnn+1)
In this case. vy is called an admissible generator of the function T'y : [-1.1] — R
given by

o ,

AR ‘

Ty = e Yol n) Py, (2.4)

n==0 A

Le.. TH(n)y=pln) . n=0.1.....

Remark 2.7 /i) In many cases an admissible generator is monotonously de-
creasing and satisfics, in addition, the estimate 0 < yp(2) < 1, @ € [0,00).
Under these assumptions, condition (2.3) simply reduces to

i

“““““““ i"j“"“‘“i‘:()(”ﬂ“ <X (2.5)



(11) If yo has a compact support. (2.3) is fulfilled automatically.

Based on these preliminaries it is not hard to prove (cf. [6]) that if vo : [0, 00) —
R is an admissible generator, then Iy defined by (2.4) is an element of £2[—1, 1],
hence, To(n-) is an element of £*(§2) for every n € .

For a function vy satisfying the admissibility condition we introduce func-
tions v, : {0,00) — R in the following way

77(1) = D770(1) = 70(2-*‘7.‘7:)5 S [Oa OO), (26)
for 7 =0,1,.... Then we have that also v; satisfies (2.3) if vy does. Therefore,
Y :.])1"/]‘_1, j:1,2,..., (27)

provided that vy satisfies the admissibility condition (2.3). This gives rise to

Definition 2.8 Suppose that v : [0. 0] — R satisfies (2.3). For the generated
functions T € L2[~1.1], 7 =0, 1..... given by

n4+1
L= = — (kb
n=0

we let
Uj= Doy =Dilo, j=1,2,....
D; is called dilation operator of j-th level.
As an immediate consequence we obtain
Corollary 2.9 If I'y is generated by an admissible generator vy, then I'; =

D;To € L2[~1,1] for all j € N.

3 Scale Discrete Wavelets on the Sphere

In order to keep this paper self-contained, we give a short overview on scale
discrete spherical wavelets. For a more detailed discussion, see [6].

3.1 Scaling Function

In what follows, we concentrate on those admissible generators which: generate
scaling functions.

Definition 3.1 Let g : [0,00) — R satisfy the admissibility condition (2.3).
wo ts called generator of a scaling function if it satisfies the following properties:

(i) wol0) = 1,
(1t) o is monotonously decreasing,

(iii) @o s continuous at 0.



Under these requirements o and its dilates ; generate the scale discrete scaling
function {®;}. @, € L2[~1.1], j=0.1..... via

Qf’f(n) =@i(n), n=0,1,....
A straightforeward consequence is

Lemma 3.2 Let oo and its dilates ;. j € N. generate the scale discrete scaling
function {®;},®; € L2[~1.1]. j € N. Then, for F'€ L2(),

lim [[F = ®; % Fll 20y =0 (3.1)
I
and ‘
lim [[F = @' % Fllzaa) = 0. (3.2)
J=e0 :

It follows that the <I>(]2) + 7,7 =0.1,.... provide us with approximations of
Fat different scales. In terms of filtering {(bf“} may be interpreted as low-pass
filter. The corresponding convolution operators P; : L) — LYQ). j € No,
are given by

PiFy =o'k j=001,... . (3.3)

Accordingly. we understand the scale space V; to be the image of £*(2) under
the operator I’}

Vi= PLAQ)) = {0« Bl e £2(Q).

'
}

The scale spaces V; define a (seale discrete) multiresolution analysis of L2()
in the following sense:

Theorem 3.3 The scale spaces Vi satisfy the following stalements:

(1) Vo ...CV;C Vi CooC L)

(i) U V= L£20)
=0

(i) If a function (¢ € L2[~1.1] satisfies G(n) € V;, then D_(G(n) € Vi,
J=1.2....

One might expect, that there is some more structure in the multiresolution,
e.g.. Vo = {0} or the fact that all scale spaces V; are finite~dimensional with
certain conditions on the dimension. etc. But these properties are, in general,
not true. They depend on the special choice of the generator ¢ of a scaling
function and are discussed in more detail later on, when we restrict ourselves
to compactly supported generators .



3.2 Scale Discrete Wavelet Transform

The definition of the scale discrete scaling function now allows us to introduce
scale discrete wavelets on the sphere. We tepresent an £2(Q)-function F by a
two-parameter family (7;7),7 € No, n.€ 2, breaking up the function F' into
"pieces” at different locations and different levels of resolution. An essential
point is the definition of a mother wavelet and its dual wavelet starting from
their generators. This definition, of course, has to be done in close relation
to a given scaling function. The mother wavelet is then rotated and dilated
to establish the discrete version of the wavelet transform of a function. As a
matter of fact, we are able to prove a reconstruction formula.

Definition 3.4 Let @q be the generator of a scaling function (as defined by
Definition 3.1). Then the piecewise continuous functions vy, o : [0,00) — R
are said to be generators of the mother wavelet Vo € L*[~1,1] and the dual
mother wavelet Uy € L2[—=1,1], respectively, if both of them are admissible
generators and satisfy, in addition, the "refinement equation™

vola o) = (@o(2/2))° ~ (wol)), 2 € [0,00).

The functions Wo € L2[-1,1], Uy € L2[=1.1], defined via the Legendre coeffi-
cients U3 (n), U5 (n), given by

Vin) = o(n), n=0,1,...,
Uo(n) = 'zfyo(n,). n=0,1,...,

are called the mother wavelet and the dual mother wavelet, respectively.

Let us make a couple of simple observations concerning this definition.

Lemma 3.5 The generators vy, Vo ! [0,00) = R and their dilates ; = Dy,
vy = Djvg satisfy the following properties:

(i) ;(0)%;(0) = 0, j € N,
(i) hi(2)i(2) = (@ig1(2))? = (95(2))%. j € No, 2 € [0, 00),

J oL . .
(i) (2o(2))* + 5 E3(2)(2) = (pa01(2))%, T € No, 7 € [0,0).

w

It is natural — as it was done for the scaling function — to apply the
operators D; directly to the mother wavelet and its dual. In connection with
the rotation operator R, this will lead us to the definition of the wavelet ¥ .,
and its dual wavelet (Dj;n- More explicitly, we have

;= Dj¥o, ¥; = D;¥o. j € No, (3.4)
and
(Rqu";)({) = ?j;n(f) = \]g](’] : 5) . E S Qa (35)
(RU\IJJ)(E) = W_j;n(&) = \I}j(n‘S) B 5 € .



Putting together (3.4) and (3.5) we therefore obtain for £ €
\P‘i:n(f) = (HnD]\pO)(E)"
W) (B Dj¥o)(£).
Definition 3.6 Let ¥y, Uy € L£2[~1.1] be @ mother wavelet and its dual ac-

cording to a scaling function {®;} & L*[=1,1].  Then, for F e £*Q), the
discrete wavelet transforni at scale j € No and position n €  is defined by

1

W) (i) = (B ) 22 0)-

In analogy to the definition of the operator P;: L2(Q) — £2(€2) (cf. (3.3))

we consider now convolution operators (band—pass filters) R; : L2() — L),
7 € Np. defined by

RAF)=W;+«W; «F. (3.6)

R;(F) can be interpreted as a version of /' blurred to the scale j. It describes the
"detail behaviour™ of I at scale j. From Lemma 3.5, (iil), we can immediately
deduce that for J & Ny

J

'2 ~ 2 ) =

o + 30w = el (3.7)
J=0

Therefore, it follows that the operator Pyyy can be decomposed in the following

way

J
Prpi =P+ > R,

=0

This gives rise to introduce the detail space W; to be
Wi = R(LHQ) = {W: « ¥« F| Fel*M).

The space W, contains the “detail information” needed to go from an approxi-
mation at resolution j to an approximation at resolution 7 4+ 1. Note that

J
Vo + W, = Vi, o
0 j;) J J+1 (3.8)

Vi Viey -+ Wi

It is worth mentioning that the sum decomposition in general is neither direct
nor orthogonal.

Any function £ & £2(Q) can now be decomposed as follows: Starting
with Py (F) for some J we have Py(F) = Pyl F) + Zj][:() R;(F). In other
words. the partial reconstruction Ry (F) is nothing else than the difference
of two “smoothings™ Py (F) — Py F) at two consecutive scales:  Ry(F) =
Prpi(F) = Py F) {ef. Lemma 3.5).

Furthermore, we have

(PAEYy Mgy = FMNo @) Mnd; ) N (n),

. 3.0
CRAEVM ) = F o 08N (8 7 ). B9



The fomulas (3.9), therefore, give wavelet decompositions like (3.8) an interpre-
tation in terms of Fourier analysis by explaining how the frequency spectrum
of a function F € V; is divided up between the space V;_; and W;_;, which
enhances our understanding of what is meant by "smoothing” and "detail”.

Our definition of the discrete wavelet transform developed above enables us
to prove a reconstruction formula. In other words. it is possible to reconstruct
a function F € £2(Q) from its wavelet transform WT(F):

Theorem 3.7 (Reconstruction Formula) Let Uy resp. Uy be the mother wavelet
resp. the dual mother wavelet with respect to a scale discrete scaling function
®y. Then, for F € L2(Q),

Fo= q)gz) ¥ Pt Z /QWT(F)(]': 77)\f~Dj;,7(.‘)dw(n)5
=0

where the equality is understood in the L£2()-sense.

Up to now, the definition of the mother wavelet ¥y and its dual T, are quite
general. The only condition which has to be satisfied (besides the admissibility)
is the "refinement equation”

volx)vol(z) = (@1(2))? = (@o(2))’, 2 € [0,00), (3.10)

where g is the generator of a scale discrete scaling function.
Two choices for ¥y and g are immediately at hand. The P-scale discrete
wavelets are defined by

Yo(n) = ola) = \/[971(-'5)]2 ~ [wo(@)]?, @ € [0,20),
where the M-scale discrete wavelets can be obtained from

volz) = @i(z) = polz), x € [0,00),
wo(z) = i) + wol), x €[0,00).

+

It both cases it is not difficult to prove that the admissibility condition is sat-
isfied by the generators.

3.3  Examples

Besides the conditions of Definition 3.1 there are no restrictions on the generator
o, so that many choices are at our disposal. We first mention some possibilities
of globally supported generators ¢p:

(1) wolz)=(14+ )% s>1
(i) @o(z) = (1+23)7% s> 1/2
(iil) po(x)=e€e""",r>0

(iv) pola) = e=relrtl) s

12



The choice (iii) vields the Abel-Poisson kernel. whereas the generator (iv) gen-
erates the Gaul—~Weierstrafl kernel.

If o is chosen to be compactly supported, we get two advantages for our
multiresolution analysis: the scale spaces and the detail spaces have finite di-
mensions, and for the reconstruction the wavelet transform WT(F)(7; 1) is only
tequired at finitely many points 7.

The simplest choice for a compactly supported ¢p is
v e L for e 0.1
(V) wol) = 0 for ae[l.x)

The so defined Shannon scaling function and Shannon wavelets show strong
oscillations. They can be reduced. if ¢y is smoothed out as

1 for »€[0,h)
(vi) wola) =< (v =1)/(h=1) for 2 €[h. 1) [ he(0,1)
0 for &€ [l.x)

which vields the de la Vallé Poussin scaling function. The perhaps best choice
(from our numerical experiences) is if o is chosen to be the cubic polynomial
on the interval [0, 1], that satisfies ¢o(0) = 1, ¢o/(0) = 0, po(1) = 0, @o/(1) = 0,
e,
. (L= 2%)(L=22) for »re]
(vil) pola) =9 | s :
0 for @ €]
Numerical tests show, that the unpleasent oscillations. that are still existent in
the de la Vallé Poussin scaling functions. are suppressed by this choice.
Of course other possibilities for ¢y can be found. A graphical impression
of the scaling functions and the corresponding P-wavelets corresponding to the
compact generators are given in the pictures below.

Figure 3.1: Scaling functions @;(cos ¢/} (left) and P-wavelets W;(cos ) (right)
for the generator (v).

3.4 Exact Fully Discrete Wavelet Transform

We are now interested in fully discrete wavelet approximation. For this purpose
we want to show that when using band-limited wavelets. we do not need the

13
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Figure 3.2: Scaling functions ®;(cos?) (left) and P-wavelets ¥;(cos ) (right)
for the generator (vi) with h = 0.5.
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Figure 3.3: Scaling functions ®;(cos ) (left) and P-wavelets ¥;(cos ) (right)
for the generator (vii).

wavelet transform WT(F)(7;n) at all rotates n € Q. It suffices to know the
wavelet transform only at a finite set of rotates for each scale j. As a matter of
fact, the reconstruction can be formulated in terms of simply structured sum
representations. More explicitly, the reconstructed function can be expressed in
each scale as a linear combination of finitely many dual wavelets ¥ ;( n ). M €
Q.

Since we do not want to hide the substantial ideas behind a technical over-
head, we make the following assumptions:

(i) The generator g of the scaling function satisfies suppyo = [0,1] and
wo(l)=0.

(i1) The generators vo; ¥y of the mothe}* wavelet and the dual rqother wavelet,
respectively, satisfy suppwg, suppwo C [0,2] and ¥o(2) = ¥o(2) = 0.

Remark 3.8 Note that all the presented generators of the band-limited scaling
functions satisfy assumption (i). If o and o are constructed to generate the
P~ or M-wavelets, respectively, then requirement (ii) is also fulfilled.

14



An immediate consequence of these assumptions is
suppi; = [0,27].
suppyr;j, suppy; C [0,2-’“].
pi(27) = L«’J'('Z‘FH) — L‘ij(‘Z‘Wl) - 0.
Hence, we have
Lemma 3.9 (i) nder the given assumptions the scaling functions and the
wavelets satisfy for all' n &€
bi(n-) € Harmgy 91,

V(- ), \ifj(n-) € Harmg o412y

(it) The scale spaces and detail spaces fulfil

Vio= Harmg 54,

Wi C Harmy  g41_4-

Next we want to show, that B;(F) can be exactly determined. if the wavelet
transform is known at only finitely many points. Assume therefore that the
system {(n/.w!)}iz1. v, € 2 X R defines an integration formula that is exact
of order 27t2 — 2. Then it follows — since WT(F)(j; ) and ¥;(#- ) are in
Harmg,  g41-y - that for all F € £3(Q) and all £ € Q

R;(F)

I

[ W) i) €)dstn)
N,

i

S oWt WTE) G )W ().

=1
We summarize our results in
Theorem 3.10 Let the generators ¢p. Vo, U @ [0.00) — R satisfy the assump-
tions stated at the beginning of this section. Assume further that there is given

nee nf eneterme $ V1. T o YV ; vha Tnes
a sequence of systems {X;}j=01... ‘\;), = {(n). w] )}'L:L;;w%‘ tl//f,zclz defines an
ezact integration formula of order 22%% =2 for each §. If '€ L*(Q), then

R ~\"] ) o
P& = (0« )+ 33wl WTRIGin) 8, (8). €€ Q.

J=011=1

;s . (2
Remark 3.11 Notice that under our assumptions <I>g )= ;};Po, so that

00 . | -
(@« F)€) = — | Fly)de(n)

RV

forall £ € Q. Hence, for F & L2Q) with foFin)de(n) =0,

oo N

jape. Z Z 117’7\\‘”[‘( 1)(/ 77{)@‘1‘;7;,7'

ge=Ur=1

L5



4 Pyramid Scheme

Now we are able to describe the main results of this paper.

4.1 Introduction

We first summarize our assumptions made for the generators o, %o, o and
the systems X;:

(i) suppgo = [0, 1], and (1) = 0.
(il) suppiwo = suppio = [0.2], and ¥p(2) = ¥o(2) =

(i) X; = (77z W )}l 1N, ] = 0,1,..., is a sequence of systems such that
the integratlon formula defined by AX is exact of order 2712~ 2. (It follows
then from Theorem 2.4 that {n}}i=1,..~, is admissible in Harmg _ gi+1_1.)

...,

What we are going to show in this chapter is the following. Starting from a
J € N, there exist vectors @/ € R™, j = J,J = 1,...,0 (of course dependent on
a given function F' € £%(Q)), such that

() WI(F)(5: )= S ad U (nd- ). j = J, J—1.....0.
(ii) The vector @’ is obtainable from a/*!.

(iii) The vectors a’ satisfy in addition
Gk 1= Z(IJ(I),.H 7)1 )y 3 =0,....J.

Hence, we end up with the following pyramid scheme for the decomposition of
an L2(Q)-signal F:

F @) ———— -1 0
WT(F)(J: YWT(F)J = 1; ) WT(F)(0; )

The reconstruction from the wavelet coefficients WT(F){7; nf) can then be
performed as described before:

Rj(F)=1V,+ WI(F ZMWT (Gin)¥(nl ). (4.1)

That means that the reconstruction of the signal I can be written as

16



WT(F) ) WT(E) 1) WT(F)(2; %)

( | |

Ro(F) Ri(F) 1 (F)

N N s N

Po(F Y+ P )+ Py(F)——+

We have seen that the wavelet transform WT(F)(y; ) is given by the num-
bers af,.. (U\ . Therefore it is also possible to reconstruct the signal only by

the use of the numbers a .rather than using the wavelet coefficients of F. Since

{(771-., X )}2:1“_,“ v, C iefmeb an integration formula that is exact of order 20129,
we can rewrite (4.1) as

RiF) = Zw;"\\“r< FYGm )W)

= Lu Z(lk Uk 77}”&1’(77?')

121 A=1

= L”AZ” W)
A-1 1=1

= L(I;\/\p 7]( ( (Iu., ,])
k=1

= Z”k ,+\11 ’lk' ).

The decomposition and reconstruction can thus be simplified to

P (1’./ (1J~1. e e e (1.0
and
a” al a
| i |
Ro(F) Ry(F) Ryl F)

In this case the reconstruction of the signal is not performed with ¥; but
with W; « W;. It turns ont later on that the vectors ¢/ do not depend on the



special choice of ¢y, Wy or lZvo This means that with the second variant one can
reconstruct the signal with respect to different wavelets just by the knowledge
of the vectors a’.

4.2  The Evaluation of the First Step

The pyramid scheme starts from the vector a”’. where the (1.;»7 have to satisfy
the equation

Ny
Gppx F = a0 ) (4.2)
=1
Theorem 4.1 Let F € £L*(Q), and J € Ny. Then there exists a vector a’ €
RN such that (4.2) is fulfilled.

Proof. From our assumptions we know that ®} (n) # 0forn =0,...,2/*1 — |
and @4, ,(n) = 0 for n > 27+1 Thus, the assertion follows immediately from
Theorem 2.5, since ® ;14 * F' € Harmy ,41-y and {9 };=1,..n, is admissible

in Harmgy gr41_4. |

Nect we turn to the question, how the aZJ can be determined. We present
two ways:
If Fis band—limited such that

FMNnym) =0 forall n>2" m=1,...2n+1, (4.3)

then it is easy to find a possible choice of af, since we have ®;41( -£), F €
Harmg . 5741y, so that by Theorem 2.4

Ny
By F = /Q F(m)®ysa(n dw(n) = > w] F(n))®yp1(n- ).
i =1 .
In other words, we have
al =w!/F(n!) for i=1,...,Ny. (4.4)

If F does not satisfy condition (4.3), then the numbers a/ can still be
obtained since (4.2) is satisfied if and only if

Ny
(Dyyq* F‘)(mj) = Z(L}’@JH(U;I : 77}{), k=1,....Ny,
=1

what follows from the fact that {77;71}i:1,l.“NJ is admissible in Harmg os41_4.
Hence. all possible choices of a/ are the solutions of the linear system

®ppr(ni -nd) o Pk, oni) af (@1 * F)(n)

I

Spp(ni-nd,) o Qumnd, k) af, (@41 % F)(1%,)

18



Notice that the right hand side of this equation is given by convolutions of
the scaling function and F. so that there is still the problem of numerical
integration. Of course. in many applications it is enough to satisfy (4.2) only
approximately, so that one can often avoid the solution of a linear system of
equations in the first step. A sufficiently exact integration formula (as it was
in principle done for the band-limited case) is often adequate for the first step.

Next we want to show. that if the vector ¢’ satisfies (4.2) then the wavelet
transform WT(F)(.J; ) is given by

Ny ;
WI(F)J: ) =Wy F = al Wy ). (4.5)

1=1
But this is a consequence of
Theorem 4.2 Let F € L3Q). K E} ‘,2[—~L 1] with K™(n) # 0 for n =
0,..., N, and K™n) = 0 forn > N+ 1. Assune jmz‘hn that nyy o v € Q
and that

M
KxF =Y aK(n). (4.6)

If H € L2~ 1.1] is another kernel with H™(n) = 0 for all n > N + 1. then

M
H+ = aiH(n: ).

=1
Proof. Forall n = 0.....N.m = 1..... 2n 4 1. we get from (4.6) by multipli-
cation with Y, ,, and integration over 2 that

Ko (o, Sn 30 l - 1/1 ;T nm 1 )
(/Q( Vo FY () (n)dw(n) Za o V(7 (n)dw(n)

=1
so that by the Funk-Hecke formula
M
KN ENnom) (1) La Yoom (1)

Since KN(n) # 0 it follows that

{nom) Ln!in m )

Therefore we get for &€ O

No2n1
(Hx FYE = >3 HY)FNnom)Y, m(6)
=0 =1
N 2n41
= L Z ]{A (n) L” }n m 7/z R m(f)
nz() e
s ~ 2 1
== L i 2_, "ﬁ_j:_ /\ n)Pn(’]I . f)
rez=()
"
o Z:(‘I,,H(?}; E)
=1



as required. ]

4.3 The Pyramid Step
Starting from a’ € RNV with

N,
ppx F =) al®s(n),

=1
we shall show now. how ¢’/~! € RN7~1 can be constructed so that

Ny

Sye = > al eyl ). (4.7)
=1

'3 ¢ Qis admissible in

-1

Since @; x I' € Harm, o, and {ni]”l,...,n;{,:
J=1

Harmg . 57y, the existence of a; ™" is clear. Furthermore, we know from The-

orem 4.2 that
N,

Oy F =l

=1

so that we finally end-up with the equation

Ny Ny
Z (L;]"ld?,](n;]“’l- ) = Z(L;ICDJ(UiJ- ). (4.8)
=1 1=1

Theorem 4.3 A solution a’ =1 € RN-1 of equation ({.8) is given by

Ny :
al ™t = wl™S el SHy (] T, (4.9)
1=1

where the Shannon kernel SHqys_y is defined by (cf. (2.2))

27 =1
; 2n+1
.S HQ.]“}‘ = Z ,17[‘ —P’I’L‘

n=0

JooJd=1

If the integration weights w; . w: ™" are all positive, then the solution (4.9) is

characterized to minimize the discrete norm

1\”J——l l ( J_l)z (4 10)
Z wiJ"]‘ a; .

=1

under all solutions of ({.8).
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Proof. On R™7 and RN/-1, respectively, we introduce

NJ »
((ft‘.,zj)NJY = Z‘ll)‘?(.l’;g‘},‘. o, 3 € RNJ, Jo=J =10, (4.11)

1==1
which defines an inner product in RV, if all the weights are positive. We let

gt e RNI-1 and phmm ¢ RN be given by

2™ = }'31‘,77(7);?), = 1o Ny =00 2l m=1 2041,

e

for 7 = .J ~ 1. J. Then wesee that for nt = 0... 2 om0 20

- J o doame gt
Ny — ZU oy Z;
N

- Z ”‘;'] Yn,m( 77;'])}'777,1‘771/( 77‘;‘1 )

=1

= /Q h rn‘m ( n ) Yn,/"m,/( n )d‘*"( n )

({l’_.l.n.m o J.n/,ml)

= ("'7»,.)21("771,771/-

Similarly, it follows that

(;‘I_J«er.m . 7»1.7?/.172/) i

£ Ny, — (‘)77,,711“’777,.771,1-

The sets
span{a’ M | n =00 0020 =L =10 2n4 1) g=d =1L, (4.12)

are subspaces of R/ and RV/~1, respectively. which are isomorphic via the

~lonm Jonom
,

canonical basis change ¢’ —_—

Now, equation (4.8) can be transformed as follows:

A\"l T »VJ
STal et =S dl el
=) =1

is equivalent to

Ny

o | Ny
/Q ST al e Y O de(n) = /QL(‘I,.‘,J@.7('7;;]~r;)ﬁ*’,l,_,,,(ll)dw(n)
) =1 V=]

forall n = 0,.... 27 lom o=l 2n + 1. Hence, using the Funk-Hecke
formula, we can write

,\7‘}'_“1 ,\“‘] i
®hn) > al Y ! = @50y el Vi)
i=1 =1
for all n = 0..... 20~ lom o= 1,....2n 4+ 1. Since d(n) # 0 forall n =

0.....27 — 1. we may also write

Niyy Ny
Z rl;-]“‘?}‘,,;(z/;]*l‘) = Zzz‘;‘]ﬁ,,”;(z;;]}. noe= 0., 2 =120+ L
=1 E



which shows, that there is no dependence on the scaling function anymore. If

we introduce (we may without ioss of generality assume that all the weights are
different from zero)

S CRTIERTE SR S Ry T Y
T i e A
we end up with the equations ‘
e J=1 J=1m, o nd T 4.1
((l 3 & ’HTVL)NJ_I - ((1 s L nm)NJ) (413)

forn=0,....,27 -1, m=1,....2n + 1. A solution of (4.13) is given by

279212041

i Z Z (fl,‘ls$J’7I’771)NJ'TJ_LR’M7

n=0 m=1
since for n/ = 0,...,27 ~ 1, ms/=1,...,2n/+ 1 it holds

2721 2n41
~ =1 J=1,ntml o .]n m J 1,nm o J=1nrm?t
(@ e N, = > > (a vy (2 \ & INJ_y

n=0 m=1
~=J _J.n/,m/)

= (a”,z e

Therefore we obtain after simple manipulations

J-1 . 1 J 1x J 1
@y = W oay
221 2nt1 ;
e 2 : 2 : ] Jnm o Jd=1nm
= wk ]\/j:l'k
n=0 m=

271 2n41 N
J=1 J Ty Jyvs J=1
= w7 DS S wlal Y e (]
n=0 m=1:=1
Ny ooo29=1 2041

- wg—l\;a S Y Ym0 Wam(n ™)

n=0 m=1

J
= w){”]‘ ZG{SHQJ_l(n;’ . ng“l),

which proves the first part of the theorem.

If all the weights w,iJ“1 and w; are positive, then the bilinear forms (4.11)
are in fact positive definite and the 2/™™, j = J—1,J, form orthonormal bases
of the subspaces (4.12), so that we know from standard arguments in linear
algebra, that a’/~! minimizes the norm (4.10). C

This theorem shows, how a’/~! can be computed from a”, so that (4.7) is
p ‘

fulfilled. An application of Theorem 4.2 again gives us
WIS =1 )= Y el (g1,

Of course, this scheme (Theorem 4.3 and Theorem 4.2) can be applied recur-
sively to get all the a”’.....a% and hence WT(F)(J; ),..., WT(F)(0; ).
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4.4 The Complete Algorithms

Now, we summarize our results and give a complete description of the al-
gorithms for decomposition and reconstruction. We assume therefore that
F e £2(Q)is band-limited and that J is chosen in such a way that F(n,m) = 0
forall n > 2941 m = 1,....2n+ 1. (If I is not band-limited, the initial step
can be performed as described before.) Furthermore we suppose that the re-
quirements (i)—(iii) stated at the beginning of Section 4.1 are satisfied.

Decomposition:

Initial Step:
forkﬁ 1 to ;‘\;do
(zk = w; a3 (03
enddo
for k=11t Ny do
WT(F)J:in) = Z}‘\;ﬁ alWy(nl - nd)
enddo

Pyramid Step:
for j = J = 1 downto 0 do
for k= 1to N; do
a = fzz::r‘ Sy (™)
enddo
for k= 1to V; do
W) () = 2o ¥, On - )
enddo
enddo

As already mentioned, there are two possibilities for the reconstruction. It
is possible to reconstruct the signal from the «] (in which case the calculation
of WT(F){(j: ) is not necessary) or from the WT(F)(j; 7).

Reconstruction with the «/:

Po(f) = = FN0.1)
for 3= 0 to ]do
Ri(F) = Y*‘ l’(qjj*\y¥>(7]"}')
I‘«"]’,H(I):P Fi+ R (F)
enddo



Or, alternatively.

Reconstruction with WT(F)(s; 77,’)

Po(f) = S=F"0,1)

for j =0toJ do
Rj(F) = 22wl WI(F)(js 8- )
Pit1(F) = F;(F) + B;(F)

enddo

5 Numercal Example and Conclusions

As a numerical example we present the wavelet decomposition and reconstruc-
tion of the gravitational potential of the earth. Our calculations are based on
the OSU-model (cf. [13]) which gives a series expansion of the earth’s gravi-
tational potential in terms of spherical harmonics. We have used the data up
to a polynomial degree of 180. The systems X; are chosen as described in [3].
The applied P-wavelets are based on the generator ¢o(z) = (1 — 2%)(1 — 2z)
(example (vii) of Section 3.3). The pictures below show the reconstruction of
the signal F' for the levels 7, 5, and 3. The degrees of longitude range from 170°
west up to 190° east.

Figure 5.1 R7(F).

Let us finally make some concluding remarks.

o First of all it is obvious that all what was done before can also be done
in the higher dimensional case.

o For the question what type of wavelet one should use, a first answer is,
that the oscillations of the Shannon and the de la Vallé Poussin wavelet
cause oscillations in the reconstructions R;(F"). If the wavelets are built
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Hm‘,ﬁﬂ:mu JM. NWJA Nﬁv.

Figure 5.3: Rs(I').

according to po(a) = (1 — 23)(1 — 22) (example (vii) of Section 3.3),
oscillations were suppressed.

The numerical effort of one pyramid step
This effort can be dras

J+ 1= jisof order N;N;iy.

tically reduced by two methods. The first possibility
is to use gridded pointsystems and then to apply FFT-methods. To
make. this statement more concrete we introduce spherical coordinates
[0, 7] < [0.27) ~ R” by (¥: co-latitude, A: longitude)

¢

sin 1 cos A
(F.A) == | sindsin A |
cos 1

J

We assume that for each j the svstem X; = {(n/,,w!,)} is given by

N = =l Lpowhere 0 S0y < o<y <




T, A = 2rn(k—1)/L; and L; is a power of 2. We suppose further that the
corresponding integration weights w! , depend only on the co-latitude, i.e.

w!, = w!. The pyramid step can then be written as

Ty41 Lyga

J J+1 oy J+1
@ g = Wy Z Z “i/,k/SHwH—l(ni,k Mk )s
=1 kr=1

where i = 1.....1;, k = 1,..., L;. If we introduce the vectors

al = (aly,..alg),
Szj,_ztl_*j = (SH21+1—1(77£,1 ) 7714‘:—11)’ e "SH21+1~1(03,1 'Uf;ffjjﬂ ))s
it is obvious that the pyramid step can be written as
Ty41
o=l 3w
=1

where * means the cyclic discrete convolution and ¢ = 1,...,7;. Thus
applying a FFT method for the discrete convolution the numerical effort
can be reduced.

In [3] there is described a pointsystem with corresponding integration
weights with an equiangular distribution of the ¥;. Using a Gauf§ quadra-
ture rule in north-south direction, the numbers T; can be reduced, cf.,
e.g., [15]. ‘

A complete different idea for making the pyramid step more efficient is the
use of a panel-clustering method. One takes advantage of the localizing
structure of the kernel SHy;41_1. The kernel is splitted into a near field
and a far field component. The far field component is then approximated
by Legendre polynomials up to a given low degree. For the evaluation
one uses for points near at the evaluation position the exact near field of
the corresponding kernel. For the remaining points, the approximated far
fields are glued together, what is via the addition theorem no problem. A
numerical realization of this idea is under development.

o Two possible applications of the described wavelet decompostion and re-
construction should be mentioned: we are interested in data compression,
particularly for representations of the gravitational field of the earth. An-
other application is, that for the evaluation of the signal at a certain point,
only those wavelet coeflicients that are near to the point under consider-
ation have to be taken into account. which gives the possibility for the
combination of global and local models of the earth’s gravitational field.
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