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Abstract

During the last couple of years, there has been a variety of publications on the topic of
minimum quantity constraints. In general, a minimum quantity constraint is a lower bound
constraint on an entity of an optimization problem that only has to be fulfilled if the entity is
“used” in the respective solution. For example, if a minimum quantity qe is defined on an
edge e of a flow network, the edge flow on e may either be 0 or at least qe units of flow.
Minimum quantity constraints have already been applied to problem classes such as flow, bin
packing, assignment, scheduling and matching problems. A result that is common to all these
problem classes is that in the majority of cases problems with minimum quantity constraints
are NP-hard, even if the problem without minimum quantity constraints but with fixed lower
bounds can be solved in polynomial time. For instance, the maximum flow problem is known
to be solvable in polynomial time, but becomes NP-hard once minimum quantity constraints
are added.
In this thesis we consider flow, bin packing, scheduling and matching problems with minimum
quantity constraints. For each of these problem classes we provide a summary of the
definitions and results that exist to date. In addition, we define new problems by applying
minimum quantity constraints to the maximum-weight b-matching problem and to open
shop scheduling problems. We contribute results to each of the four problem classes: We
show NP-hardness for a variety of problems with minimum quantity constraints that have
not been considered so far. If possible, we restrict NP-hard problems to special cases that
can be solved in polynomial time. In addition, we consider approximability of the problems:
For most problems it turns out that, unless P=NP, there cannot be any polynomial-time
approximation algorithm. Hence, we consider bicriteria approximation algorithms that allow
the constraints of the problem to be violated up to a certain degree. This approach proves to
be very helpful and we provide a polynomial-time bicriteria approximation algorithm for at
least one problem of each of the four problem classes we consider. For problems defined on
graphs, the class of series parallel graphs supports this approach very well.
We end the thesis with a summary of the results and several suggestions for future research
on minimum quantity constraints.



iv

Im Laufe der letzten Jahre sind zahlreiche Veröffentlichungen erschienen, die sich mit
dem Thema Minimum-Quantity-Bedingungen befassen. Allgemein beschreibt eine Minimum-
Quantity-Bedingung eine untere Schranke, die sich auf ein Objekt eines Optimierungsprob-
lems bezieht. Diese untere Schranke muss nur dann erfüllt sein, wenn eine Lösung das
jeweilige Objekt “nutzt”. Wenn zum Beispiel eine Minimum-Quantity qe für eine Kante e
eines Flussnetzwerks definiert ist, darf der Fluss auf dieser Kante entweder 0 oder mindestens
qe Flusseinheiten betragen.
Minimum-Quantity-Bedingungen wurden bereits auf Problemklassen wie Fluss-, Behälter-,
Assignment-, Scheduling- und Matchingprobleme angewendet. Für all diese Problemklassen
gilt, dass die meisten Probleme mit Minimum-Quantity-Bedingungen NP-schwer sind, selbst
wenn die Probleme ohne Minimum-Quantity-Bedingungen aber mit festen unteren Schranken
in polynomieller Zeit lösbar sind. Das Maximaler-Fluss-Problem ist bekanntermaßen in poly-
nomieller Zeit lösbar, wird aber durch das Hinzufügen von Minimum-Quantity-Bedingungen
NP-schwer.
In dieser Arbeit betrachten wir Fluss-, Behälter-, Scheduling- und Matchingprobleme
mit Minimum-Quantity-Bedingungen. Für jede dieser Problemklassen fassen wir die
bisherigen Definitionen und Ergebnisse zusammen. Außerdem wenden wir Minimum-
Quantity-Bedingungen auf das Maximum-Weight b-Matching-Problem und auf Open-Shop-
Scheduling-Probleme an. Wir tragen zu jeder der vier Problemklassen neue Ergebnisse
bei: Wir zeigen für mehrere bisher nicht betrachtete Probleme mit Minimum-Quantity-
Bedingungen, dass diese NP-schwer sind. Wenn möglich, schränken wir NP-schwere
Probleme weiter ein, um Spezialfälle zu erhalten, die in polynomieller Zeit gelöst werden
können. Außerdem betrachten wir die Approximierbarkeit der Probleme: Für die meisten
Probleme stellt sich heraus, dass diese, sofern nicht P=NP gilt, nicht in polynomieller Zeit ap-
proximiert werden können. Daher untersuchen wir auch die bikriterielle Approximierbarkeit,
bei der Nebenbedingungen zu einem gewissen Grad verletzt sein dürfen. Dieser Ansatz
erweist sich als sehr nützlich und wir sind in der Lage für mindestens ein Problem jeder
Problemklasse einen bikriteriellen Approximationsalgorithmus mit polynomieller Laufzeit
anzugeben. Für Probleme, die auf Graphen definiert sind, unterstützen seriell-parallele
Graphen diesen Ansatz besonders gut.
Abschließend fassen wir die Ergebnisse dieser Arbeit zusammen und schlagen einige Ansätze
vor, die den Ausgangspunkt für die zukünftige Forschung in diesem Gebiet bilden könnten.
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Chapter 1

Introduction

1.1 Objectives

During the last couple of years, there has been a variety of publications on the topic of
minimum quantity constraints. In general, a minimum quantity constraint is a lower bound
constraint on an entity of an optimization problem that only has to be fulfilled if the entity is
“used” in the respective solution. If the entity is not used, the lower bound constraint can
be ignored. For example, minimum quantity constraints can be applied to edges of flow
networks: If a minimum quantity qe is defined on the edge e, the edge flow on e may either
be 0 or at least qe units of flow.
Minimum quantities have been applied to a variety of problem classes such as flow [14,
23, 25, 31, 32, 44, 45, 47, 48], bin packing [45], assignment [33], scheduling [21, 45] and
matching problems [2, 3, 10, 26, 39]. A result that is common to all these classes is that
most problems that are solvable in polynomial time become NP-hard after adding minimum
quantities.
The objective of this thesis is to continue the research on the topic of minimum quantities and
to provide new algorithmic and complexity results. We provide an overview of previous work
and results related to minimum quantities and contribute to the topic by improving several of
these results and by defining and analyzing new problems with minimum quantities. Our
analysis usually starts with classifying problems regarding the complexity classes P and NP.
Depending on this classification we search for exact algorithms that run in polynomial time,
exact pseudo-polynomial-time algorithms or polynomial-time approximation algorithms or
approximation schemes. The implementation and benchmarking of algorithms is not within
the scope of this thesis.



2 Introduction

1.2 Structure of the thesis

The thesis has been structured as modular as possible by reducing the interdependencies
between the chapters to a minimum. Chapter 1 introduces the topic of minimum quantities
and provides basic definitions and results from complexity theory and from graph theory that
are used in the subsequent chapters. The introductory sections on complexity theory and on
graph theory are partly similar to the corresponding contents of [45].
Each of the following chapters focuses on a specific class of optimization problems. These
chapters can be read independently from each other and are structured as follows:

• Chapter 2: Bin Packing problems

• Chapter 3: Scheduling problems

• Chapter 4: Matching problems

• Chapter 5: Flow problems

Each of the chapters 2, 3, 4 and 5 has its own introduction and conclusion. This structure
supports the modularity of the thesis. The introduction to each of the problem-specific
chapters provides an overview of previous work on the respective problem. Finally, chapter 6
provides an overall conclusion.

1.3 Complexity theory fundamentals

This section summarizes basic definitions and results from complexity theory as well as
notation conventions that are used throughout this thesis.
We assume that the reader is familiar with complexity theory and combinatorial optimization
in general. Otherwise, we refer the reader to [16] for a comprehensive introduction to the
classes P and NP and to NP-completeness, including a list of NP-complete problems. In
addition, an introduction to the class of strongly NP-complete problems can be found in
[15]. Moreover, [12] provides an overview of combinatorial optimization in general. For the
sake of convenience, we do not discuss complexity theory in terms of languages and Turing
machines, but use definitions that refer to problems instead.
As the notion of strong NP-hardness is crucial throughout the thesis, we summarize the
corresponding definitions and results here. The authors of [16] define two functions that
are associated with every decision problem: Length[I] describes the length of an encoded
problem instance I and Max[I] corresponds to its largest numerical value, such as the capacity
of a bin in the bin packing problem or the capacity of an edge in a flow problem. The results
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given in [16] remain valid for all functions Length[I] and Max[I] that are “polynomially
related” to the ones used in [16]. We refer the reader to [16] for further information on the
formal definitions of the functions Length[I] and Max[I].
In [16] the following definition is given:

Definition 1.3.1 (number problem [16]). A decision problem Π is a number problem if there
exists no polynomial p so that Max[I] ≤ p(Length[I]) for all instances I of Π.

Note that most problems in this thesis are in fact number problems.
As usual, in this thesis problem instances are assumed to be encoded in binary. In particular,
the space required for their representation is logarithmical in the size of the numerical values
of the problem instance. Unless specified otherwise, “log” denotes the logarithm function
with base 2 throughout this thesis.
Before we proceed with defining strong NP-completeness, we introduce the following
notation [16]:

Notation 1.3.2. Given a polynomial p (over the integers), Πp denotes the restriction of the
decision problem Π to instances for which Max[I] ≤ p(Length[I]).

With the above definitions we are now ready to define strong NP-completeness:

Definition 1.3.3 (strong NP-completeness [16]). A decision problem Π is strongly NP-
complete if it belongs to NP and there exists a polynomial p (over the integers) such that Πp

is NP-complete.

Instead of applying Definition 1.3, we use reductions from already known strongly NP-
complete problems in order to show strong NP-completeness. These reductions are called
pseudo-polynomial transformations and are formally defined in [16].
The previous definitions only deal with decision problems. The notion of search problems, as
given in [16], generalizes decision and optimization problems. Note that the above definition
of NP-completeness requires membership in NP, which consists only of decision problems.
So, as usual, we refer to search problems as NP-hard if there is an NP-complete (or, by
transitivity, an NP-hard) problem that Turing-reduces to the given problem [16]. The notion
of strong NP-completeness can be generalized to strong NP-hardness in an obvious way.
Given that we focus on optimization problems, we state the following results in terms of
NP-hardness.

Definition 1.3.4 (pseudo-polynomial-time algorithm [15]). A pseudo-polynomial-time al-
gorithm is an algorithm that runs in time bounded by a polynomial in the two variables
Length[I] and Max[I].
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The following theorem shows how strong NP-hardness and the existence of pseudo-
polynomial algorithms are related:

Theorem 1.3.5 ([15]). If a problem is strongly NP-hard, it cannot be solved by a pseudo-
polynomial algorithm, unless P=NP.

If, conversely, there is a pseudo-polynomial algorithm for a problem, we usually refer to
the problem as weakly NP-hard. If it is not clear whether a problem is weakly or strongly
NP-hard or if this distinction is not relevant in a certain context, we simply refer to the
problem as NP-hard. The term weak NP-completeness is used analogously.
There is also a connection between the approximability of a problem and its complexity, as
Theorem 1.3.8 shows. We first need the following definitions:

Definition 1.3.6 (polynomial-time α-approximation algorithm [33]). Given a maximization
problem, a polynomial-time α-approximation algorithm requires a number of steps that is
polynomially bounded in the encoding size of the given instance of the problem to achieve
the following: If there is a feasible solution to the given instance, the algorithm computes a
feasible solution with objective value at least 1

α times the optimal objective value. Otherwise,
the algorithm outputs infeasibility of the given instance. For a minimization problem the
definition of a polynomial-time α-approximation algorithm works analogously.

Note that, according to this definition, a polynomial-time α-approximation algorithm can
be used to determine if there is a feasible solution to the given problem instance.

Definition 1.3.7 (fully polynomial-time approximation scheme [16]). For a given problem, a
family of algorithms consisting of a polynomial-time (1+ ϵ)-approximation algorithm Aϵ for
every fixed ϵ > 0 is called a polynomial-time approximation scheme (PTAS). If, in addition,
the running time of every Aϵ is polynomially bounded in the encoding size of the input
instance and in 1

ϵ , the family of algorithms is called a fully polynomial-time approximation
scheme (FPTAS).

Theorem 1.3.8 ([16]). Let a strongly NP-hard problem be given. If there is a two-variable
polynomial q so that for all instances I of the problem the optimal objective value is bounded
by q(Length[I], Max[I]), then, unless P=NP, there cannot exist any FPTAS for the problem.

For the problems that we consider in the following chapters the objective functions are
bounded by such a polynomial in Length[I] and Max[I]. Hence, if the problems are strongly
NP-hard, Theorem 1.3.8 can be applied.
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We obtain an alternative approach to approximation by allowing a certain relaxation of
the constraints:

Definition 1.3.9 (polynomial-time (α, β)-approximation algorithm [33]). By a polynomial-
time (α, β)-approximation algorithm for a maximization problem we mean an algorithm
that, for any given instance of the problem, achieves the following in a number of steps that
is polynomially bounded in the encoding length of the respective instance: If the instance
admits a feasible solution, the algorithm computes a solution that violates a certain given
subset of the constraints by at most a factor β ≥ 1 and the objective value of which is at least
1
α times as large as the objective value of an optimal solution that satisfies the constraints
strictly. If the instance does not admit a feasible solution, the algorithm outputs infeasibility
of the instance. An analogous definition can be applied to the case of minimization problems.

In some cases we do not specify α and β and simply refer to (α, β)-approximation algo-
rithms as bicriteria approximation algorithms.
We have already pointed that an α-approximation algorithm according to Definition 1.3.6
can be used to find out if there is a feasible solution to a given problem instance. Note that
the same holds for polynomial-time (α, β)-approximation algorithms according to Definition
1.3.9.
Some authors allow bicriteria (or multicriteria) approximation algorithms to generate ap-
proximate solutions even if the underlying instance does not admit any feasible solution
[28, 35, 36, 42]. A similar approach is used in [24]: Dual approximation algorithms allow
a certain degree of infeasibility of the solution while its objective value is required to be
(super-)optimal.

Remark 1.3.10. Our analysis regarding the existence of bicriteria approximation algorithms
for several problems in the following chapters is based on Definition 1.3.9. Using one of
definitions used in the previously mentioned publications might lead to different results.

Unless specified otherwise, β in Definition 1.3.9 refers to the minimum quantity con-
straints and, if applicable, capacity constraints of the respective problem. In the case of flow
problems, for example, it refers to the minimum quantity and capacity constraints defined
on the edges, while it refers to the minimum quantity constraints defined on the load of the
machines in scheduling problems. Note that we do not allow (α, β)-approximation algorithms
for flow problems to generate solutions that violate the flow conservation constraints.

Throughout this thesis we assume N to consist of the non-negative integers. We denote
the set of strictly positive integers by N+. Analogously, we denote the sets of strictly positive
rational and real numbers by Q+ and R+, respectively.
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1.4 Graph theory fundamentals

In this chapter we provide a brief overview of the notation we use regarding problems on
graphs and of two classes of graphs that prove to be helpful for solving problems with
minimum quantity constraints.
A graph G is given by a set of nodes V and a set of directed or undirected edges E. We
use the notation G = (V,E). If our analysis involves multiple graphs, we sometimes use the
notation V(G) and E(G) in order to point out that these sets of nodes and edges belong to the
graph G. If there is exactly one undirected edge e ∈ E connecting the nodes v1,v2 ∈ V , we
sometimes denote it by (v1,v2) or equivalently by (v2,v1). Analogously, if a directed edge
e ∈ E points from node v1 to node v2, we sometimes refer to it as (v1,v2). We denote the set
of edges that are incident to exactly one node in a set of nodes V′ ⊆ V by δ(V′) ⊆ E. In a
directed graph, we denote the subset of δ(V′) consisting of those edges pointing to one of the
nodes in V′ by δ−(V′) and the subset of edges starting at one of the nodes in V′ by δ+(V′).
For a single node v we denote these sets by δ(v), δ−(v) or δ+(v), respectively. Sometimes,
in order to highlight the graph that we are referring to, we add the name of the graph, e.g.
δ+G(V′).
Given a graph G = (V,E) and a subset of the nodes V′ ⊆ V , we denote the subgraph of G
that consists of the nodes V′ and of the edges {e = (v1,v2) ∈ E |v1,v2 ∈ V′} by G

[
V′

]
. We call

G
[
V′

]
the subgraph of G induced by V′.

We now provide the definitions of two classes of graphs: Series parallel graphs and graphs
with bounded treewidth. Series parallel graphs are defined as follows:

Definition 1.4.1 (series parallel graph [6]). A series parallel graph is a triple (G, s, t) with
G = (V,E) a graph and s, t ∈ V such that one of the following cases holds:

• G has two nodes, s and t, and one edge between s and t.

• There are series parallel graphs (G1, s1, t1), . . . , (Gr, sr, tr), such that (G, s, t) can be
obtained by a parallel composition of these graphs: G is obtained by taking the disjoint
union of G1, . . . ,Gr, identifying all nodes s1, . . . , sr to s, and identifying all nodes
t1, . . . , tr to t.

• There are series parallel graphs (G1, s1, t1), . . . , (Gr, sr, tr), such that (G, s, t) can be
obtained by a series composition of these graphs: G is obtained by taking the disjoint
union of G1, . . . ,Gr, identifying for i = 1, . . . ,r−1, node ti with node si+1 and letting
sB s1 and tB tr.

Sometimes these graphs are also referred to as two-terminal series parallel graphs.
Note that there might me more than one sequence of compositions to construct a given series
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parallel graph. A sequence of compositions can be represented by a so-called binary sp-tree.
Every leaf node corresponds to a single-edge graph and the root node corresponds to the
graph to be constructed. The nodes in between correspond to series parallel graphs that are
obtained by series and parallel compositions. A binary sp-tree can be computed efficiently
[6]:

Lemma 1.4.2. Given a series parallel graph, a corresponding binary sp-tree can be com-
puted in polynomial time.

Note that the number of series parallel graphs that occur during the sequence of composi-
tions is bounded by O(|E(G)|) if G denotes the series parallel graph to be constructed.
In the context of directed graphs (in particular, in the context of flow networks), the edges of
series parallel graphs are directed from the source to the sink. Note that this implies that the
graph is acyclic.

Treewidth-bounded graphs are the second class of graphs that we briefly introduce in
this section. A comprehensive introduction to treewidth and related results can be found in
[4] and in [29]. Graphs for which the treewidth is bounded by a constant are particularly
interesting because problems on such graphs can often be solved in polynomial time using a
dynamic programming approach, even if the problem is NP-hard in general [7].

Definition 1.4.3 (tree-decomposition [4]). A tree-decomposition of a graph G = (V,E) is a
pair D = ({Xi|i ∈ I} ,T = (I,F)) with {Xi|i ∈ I} a family of subsets of V, one for each node of
T, and T a tree such that

a)
⋃

i∈I Xi = V .

b) For all edges (v,w) ∈ E, there exists an i ∈ I with v ∈ Xi and w ∈ Xi.

c) For every node v ∈ V the subset of nodes {i ∈ I|v ∈ Xi} of T induces a subtree of T .

Alternatively, we can use one of the following equivalent properties instead of property c):

c’) If v ∈ Xi and v ∈ Xk for some v ∈ V , then we have v ∈ X j for all j ∈ I for which node j
is on the unique path from i to k in T .

c”) For all i, j,k ∈ I: If j is on the unique path from i to k in T , then Xi∩Xk ⊆ X j.
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Based on this structure we can define two properties, one of which is related to a given
tree-decomposition and the other one to the underlying graph:

Definition 1.4.4 (width of a tree-decomposition [4]). The width of a tree-decomposition D
as defined above is width(D)Bmax

i∈I
|Xi| −1.

Definition 1.4.5 (treewidth [4]). Given a graph G, its treewidth is
tw(G)Bmin{width(D) |D is a tree-decomposition of G}.

For graphs with bounded treewidth a tree-decomposition can be computed in linear time
as the following theorem shows [5, 29]:

Theorem 1.4.6. Given a graph G, there is an algorithm that computes a tree-decomposition
of G that has width t = tw(G) in 2O(t3) · |V(G)| steps.

In most cases we will use “nice” tree-decompositions that have a special structure:

Definition 1.4.7 (nice tree-decomposition [29]). A nice tree-decomposition is a tree-decomposition
where a root of the corresponding tree T can be chosen in such a way that T is a rooted
binary tree and each node i of T corresponds to one of the following types:

• Leaf node: If i does not have any child nodes, then it is called a leaf node.

• Insert node: If i has exactly one child node j and Xi = X j∪{v} for some v < X j, then it
is called an insert node.

• Forget node: If i has exactly one child node j and Xi = X j \ {v} for some v ∈ X j, then it
is called a forget node.

• Join node: If i has exactly two child nodes j1 and j2 and Xi = X j1 = X j2 , then it is
called a join node.

In the following we use the notation given in [29]: We denote the union of Xi and of all
X j, where j is a descendant of i, by Vi. For each i the set Vi induces a subgraph Gi BG[Vi].
We set Ei B E(Gi).
A nice tree-decomposition can be computed from a given tree-decomposition in polynomial
time, as the following theorem shows [29]:

Theorem 1.4.8. Given a tree-decomposition D for some graph G with treewidth t where T
denotes the corresponding tree, we can construct a nice tree-decomposition D′ for G that
fulfills width(D’) ≤ width(D) and |V(T ′)| ≤ width(D) · |V(T )| and where T ′ denotes the binary
tree of D′ in polynomial time.
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The following result from [43] shows that we can even determine a nice tree-decomposition
in linear time if the treewidth is bounded by a constant t:

Theorem 1.4.9. There is an algorithm that constructs a nice tree-decomposition of width t
and size O(|V(G)|) for a graph G with treewidth at most t in linear time.

We provide one more result from [29]:

Lemma 1.4.10. Let a graph G = (V,E) and a nice tree-decomposition be given, where T
denotes the binary tree.

• Let i ∈ V(T ) an insert node and j its child node in T so that Xi = X j∪{v}. The graph
Gi can be constructed from G j by adding the node v and all edges that are incident to
it in G. In particular, v is not adjacent to any node in V j \X j.

• Let i ∈ V(T ) a forget node and j its child node in T so that Xi = X j∪{v}. Then Gi and
G j are identical.

• Let i ∈ V(T ) a join node and j1 and j2 its child nodes in T so that Xi = X j1 = X j2 . For
v ∈ V j1 \Xi, w ∈ V j2 \Xi we have that (v,w) < E.

Series parallel graphs are closely connected to the notion of treewidth as the following
lemma shows [8]:

Lemma 1.4.11. Series parallel graphs have treewidth at most 2.

We end this section by providing the definition of complete binary trees:

Definition 1.4.12 (complete binary tree [13]). Let h be a positive integer. A complete binary
tree of height h is a binary tree for which the following holds:

• All leaf nodes have distance h to the root node.

• All non-leaf nodes have exactly two child nodes.





Chapter 2

Bin packing problems

2.1 Introduction

The bin packing problem is a well-known problem in combinatorial optimization. An instance
of the decision version of the problem is given by a set of items of different sizes, a bin
capacity b and a number k. The problem is to decide whether all items fit into at most k bins
without exceeding the capacity b for any of the bins. This problem is known to be strongly
NP-complete [16].
Generalized optimization versions of this problem are defined in [33] and in [45], where
minimum quantity constraints are applied to the bins. In [33] the so-called generalized
assignment problem with minimum quantities (GAP-MQ) is defined. In [45] a special case
of GAP-MQ, the generalized bin packing with minimum quantities (GBPMQ), is defined.
The formal definitions of GAP-MQ and GBPMQ as well as a summary of the results from
[33] and [45] are given in the next section.

2.2 Basics and Definitions

The following definition of the generalized assignment problem with minimum quantities is
given in [33]:

Definition 2.2.1 (generalized assignment problem with minimum quantities (GAP-MQ)). An
instance of GAP-MQ is given by n items, m bins, bin capacities b1, . . . ,bm ∈ N and minimum
quantities q1, . . . ,qm ∈ N with q j ≤ b j for all j = 1, . . . ,m. An item size si, j ∈ N and a profit
pi, j ∈ N are associated with assigning item i to bin j for all i = 1, . . . ,n and j = 1, . . . ,m. The
task is to find an assignment of a subset of the items to a subset of the bins that maximizes
the sum of the profits and for which the space used in each bin j is 0 or between q j and b j.
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Additionally, the following special cases of GAP-MQ are defined in [33]:

Definition 2.2.2 (seminar assignment problem (SAP)). The seminar assignment problem
consists of all instances of GAP-MQ, where si, j = 1 for all i = 1, . . . ,n and j = 1, . . . ,m.

Definition 2.2.3 (participant maximization problem (PMP)). The participant maximization
problem consists of all instances of GAP-MQ, where pi, j = si, j = 1 for all i = 1, . . . ,n and
j = 1, . . . ,m.

In [33], GAP-MQ is shown to be strongly NP-hard and non-approximable in polynomial
time (unless P=NP), even in the case of unit profits or if pi, j = si, j for all i, j. This still holds if
the item sizes do not depend on the bins the items are packed into. The non-approximability
result even holds if we restrict the problem definition to only one bin. On the other hand,
polynomial solvability is shown for the special case where profits do not depend on the
bins and the maximum bin capacity and the number of different item types are fixed. If the
number of bins is fixed and there is some δ > 1 so that q j ≥ δsi, j for all i, j, then there is a
polynomial-time algorithm that computes a solution for which the minimum quantities are
violated by at most a factor 1−1/δ, the capacities are violated by at most a factor 1+1/δ
and the value of the solution is at least as large as the value of an optimal feasible solution
to the problem. For δ = 2, computational results of an implementation of the algorithm are
provided. According to these results, the minimum quantities and capacities are, on average,
violated only by a rather small factor compared to the theoretical bounds. If the number of
bins is fixed, there is a pseudo-polynomial dynamic program for GAP-MQ.
SAP is strongly NP-hard and there is no PTAS (unless P=NP), even if pi, j ∈ {0,1} for all i, j.
However, if the number of bins is fixed, it can be solved in polynomial time.
If only unit sizes and unit profits are allowed, the problem becomes easier: PMP is weakly
NP-hard and a FPTAS as well as a greedy 2-approximation algorithm are shown.

In [45], another variant of GAP-MQ is considered:

Definition 2.2.4 (generalized bin packing problem with minimum quantities (GBPMQ)).
The generalized bin packing problem with minimum quantities consists of all instances of
GAP-MQ, where si, j = si for some si ∈ N for all i = 1, . . . ,n and j = 1, . . . ,m.

Note that SAP and PMP are special cases of GBPMQ so that all the above hardness results
regarding SAP and PMP also apply to GBPMQ. On the other hand, GBPMQ is a special case
of GAP-MQ so that all (positive) solvability and approximability results regarding GAP-MQ
also apply to GBPMQ. Note that according to [33] GAP-MQ cannot be approximated in
polynomial time unless P=NP, even for unit profits and if there is only one bin. Such an
instance of GAP-MQ can be interpreted as instances of GBPMQ with unit profits and one



2.3 Complexity Results & Algorithms 13

bin. Hence, unless P=NP, GBPMQ with unit profits and one bin is also inapproximable in
polynomial-time. Trivially, the minimum quantities and capacities are uniform in this case.
We conclude that GBPMQ with unit profits, uniform minimum quantities and uniform bin
capacities is also inapproximable in polynomial time, unless P=NP.
In [45] SAP (and thus GBPMQ) is shown to remain strongly NP-hard even if the minimum
quantities and capacities are restricted to certain special cases. Additionally, the so-called
restricted generalized bin packing problem with minimum quantities (RGBPMQ) and the
restricted seminar assignment problem (RSAP) are defined: In these variants of GBPMQ and
SAP each item may be assigned only to a subset of the bins. This restriction is characterized
by so-called feasibility graphs. The feasibility graph is a bipartite graph where the nodes
are partitioned into the sets I (corresponding to items) and B (corresponding to bins). If
an item i may be packed into bin j, then there is an edge connecting node i and node j in
the feasibility graph. Note that if the feasibility graph is the complete bipartite graph, the
problem corresponds to GBPMQ or SAP, respectively. Thus, RGBPMQ and RSAP are
generalizations of GBPMQ and SAP. In [45] it is shown that if the feasibility graph is a
tree, the problem remains NP-hard and inapproximable, unless P=NP. Approximating RSAP
remains strongly NP-hard, even if the maximum number of items that are feasible for each
bin is bounded by 3 and the profits pi, j are restricted to values in {0,1} for all i, j. RGBPMQ
can be solved in polynomial time if it is restricted to those instances where the feasibility
graph is a tree, the degree of each of its nodes is bounded by a fixed value k and all pi, j

are bounded by a fixed polynomial in the number of edges of the feasibility graph. In the
following we assume RPMP to be defined analogously, i.e. it is a variant of PMP where the
feasible assignments of items to bins are given by a feasibility graph.

2.3 Complexity Results & Algorithms

We begin this section by proving polynomial-time solvability for a special case of GBPMQ
using a dynamic program. Afterwards we use this dynamic program in order to show the
existence of a polynomial-time (1,1+ ϵ)-approximation algorithm for GBPMQ with uniform
minimum quantities, uniform capacities and with profits that do not depend on the bin. As
mentioned in the introduction, unless P=NP, there is no polynomial-time approximation for
this problem that guarantees feasibility of the solution.

Theorem 2.3.1. Given a fixed integer k > 0, GBPMQ with uniform minimum quantities and
uniform bin capacities can be solved in polynomial time if the profits do not depend on the
bins and there are at most k different item sizes.
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Proof. We prove the theorem by providing a dynamic program that runs in polynomial time.
Assume that an instance of GBPMQ as specified in the theorem is given by n items with profit
pi and item size si for each item i. Additionally, there are m bins with uniform minimum
quantities q and uniform bin capacities b. W.l.o.g. we assume n ≥ m.
We classify the items by their respective sizes. By assumption, there are at most k such
classes. W.l.o.g. we assume that there are exactly k classes, otherwise empty dummy classes
can be created. Let 0 ≤ nc ≤ n denote the number of items with size sc for all c ∈ {1, . . . ,k}.
We denote the powerset of the set of items by A, where each set of items in A is represented
by a k-tuple:

AB
{
a ∈ Zk

∣∣∣0 ≤ ac ≤ nc for all c ∈ {1, . . . ,k}
}

We define the following set where each element corresponds to a feasible packing of one bin:

A1 B

a ∈ A
∣∣∣∣ k∑

c=1

acsc ∈ {0}∪ [q,b]


The dynamic program iteratively computes the value f (a, j) ∈ {0,1} for all a ∈ A and 1≤ j≤m.
If f (a, j) = 1, this indicates that there is a feasible solution on j bins that uses exactly the
items corresponding to a. If f (a, j) = 0, then there is no such solution. For all a ∈ A, we
initialize the dynamic program for j = 1 by setting

f (a,1)B

1 a ∈ A1

0 else

We iteratively increase j (until we reach j = m) and compute f (a, j) for all a ∈ A in each
iteration as follows:

f (a, j)B max
a′ ∈A1

f
(
a−a′, j−1

)
The correctness of the computation (i.e. f (a, j) = 1 if and only if there is a feasible solution
on j bins that uses exactly the items corresponding to a) follows by induction: The base case
is j = 1 and the correctness follows by construction.
For the induction step, we assume that f (a, j−1) has been computed correctly for all a ∈ A.
In order for a feasible packing that consists of the items corresponding to a to exist on j bins,
there must be a feasible packing corresponding to some a′ that fits into one bin and a feasible
packing of the items given by a−a′ into exactly j−1 bins (i.e. f (a−a′, j−1) = 1). This is
exactly how the dynamic program determines f (a, j).
Note that if f (a, j−1) = 1, then f (a, j) = 1 since the empty packing is contained in A1. Thus,
it is sufficient to consider the combinations of items for which there is a feasible solution on
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m bins in order to determine an optimal solution. The value we obtain from packing a set of
items corresponding to some a = (a1, . . . ,ak) is computed by selecting the ac items with the
highest profits from each class c and summing up the profits. By comparing the values of all
combinations of items corresponding to some a ∈ A for which a feasible packing exists on
m bins, an optimal solution can be found. The algorithm computes an optimal solution in
polynomial time:

• Grouping the items by size and sorting them by decreasing profit within each group
can be done in O(n logn) steps.

• For computing A1, it is necessary to check for all possible combinations of items
whether packing the respective items into one bin is feasible regarding the minimum

quantity and the bin capacity. There are
k∏

c=1
(nc+1) combinations of items, so A1 can

be computed in O(nk) and A1 contains at most
k∏

c=1
(nc+1) elements.

• The computational complexity of determining one specific value f (a, j) (if all val-
ues required for the computation have already been computed) is O(nk). There are

m
k∏

c=1
(nc+1) possible combinations of a and j. So for computing all f (a, j) we require

at most O(n2k+1) steps (considering that m ≤ n).

• Determining the value of a solution given by a vector a as described above can be done

in O(n) if the items have been sorted. There are at most
k∏

c=1
(nc+1) combinations of

items for which a feasible packing exists. So finding an optimal solution requires at
most O(nk+1) steps.

All in all, we get that the computational complexity of the algorithm is O(n2k+1). Given that
k is assumed to be fixed, this is polynomial in the size of the problem. �

We now present a bicriteria (α, β)-approximation algorithm for GBPMQ. In this case, the
factor β refers to the minimum quantity constraints and to the bin capacity constraints. The
idea of the algorithm consists of rounding item sizes and clustering small items in order to
obtain a limited number of different item sizes. Then the above dynamic program is applied
to this simplified instance of the problem.

Theorem 2.3.2. For a fixed precision parameter ϵ > 0 and an instance of GBPMQ with
uniform minimum quantities, uniform bin capacities and with profits that do not depend on
the bin, there is a polynomial-time (1,1+ ϵ)-approximation algorithm.
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Proof. We prove the claim by providing the algorithm. As usual, let n and m denote the
number of items and bins, respectively, and let the item profits and sizes be given by pi and
si for i ∈ {1, . . . ,n}. The values q and b denote the minimum quantity and the capacity of the
bins. Note that we are especially interested in small values of ϵ. Hence, w.l.o.g. we assume
ϵ ≤ 1 in the following. If ϵ > 1 at the beginning of the algorithm, we update ϵ by setting
ϵ B 1. We set σB 3√(1+ ϵ)−1 so that (1+σ)3 = 1+ ϵ. Note that this implies σ < 1.
The algorithm distinguishes the two cases q ≤ σ2 b and q > σ2 b separately. In each of the cases
a threshold for distinguishing “large” and “small” items is defined and the small items are
clustered. Afterwards the sizes of the large items and the cluster items are rounded. These
new items as well as a new minimum quantity q′ and a new capacity b′ are used as an input
for the dynamic program from 2.3.1.

• Case 1: q ≤ σ2 b
We partition the items into large and small items, where L denotes the set of large
items and S denotes the set of small items:
LB

{
i ∈ {1, . . . ,n}

∣∣∣∣si ≥
σ
2 b

}
S B

{
i ∈ {1, . . . ,n}

∣∣∣∣si <
σ
2 b

}
If there are any small items we partition them into sets Cr ⊆ S for r ∈ {1, . . . ,g} for
some integer g in such a way that for each of these sets (possibly except for one)
the sum of the respective item sizes is in

[
σ
2 b,σb

)
. The items are partitioned by non-

increasing order of the profit densities pi/si, i.e. if i1 ∈ Cr1 and i2 ∈ Cr2 and r1 < r2

then pi1/si1 ≥ pi2/si2 .
For each of the sets Cr we create a corresponding cluster item cr.
We set scr B

∑
i∈Cr

si ∈
[
σ
2 b,σb

)
and pcr B

∑
i∈Cr

pi. Note that if r1 < r2 then pcr1
/scr1

≥

pcr2
/scr2

by construction. By C B {c1, . . . ,cg} we denote the set of cluster items.
Set kB

⌈
log1+σ

2
σ

⌉
. This implies (1+σ)k σ

2 ≥ 1. In addition, since σ < 1, we have k ≥ 2.
Additionally we define the following intervals and values:

• Ih B
[
(1+σ)h−1σ

2 b, (1+σ)hσ
2 b

)
∩Z =

[⌈
(1+σ)h−1σ

2 b
⌉
,
⌈
(1+σ)hσ

2 b
⌉
−1

]
for all 1 ≤ h ≤ k−1

• Ik B
[
(1+σ)k−1σ

2 b, (1+σ)k σ
2 b

]
∩Z =

[⌈
(1+σ)k−1σ

2 b
⌉
,
⌊
(1+σ)k σ

2 b
⌋]

• th B
⌈
(1+σ)h−1σ

2 b
⌉

for all 1 ≤ h ≤ k

We now round the sizes of the items in L and C as follows:
If si ∈ Ih for some i ∈ L∪C and 1 ≤ h ≤ k, set s′i B th. By construction, it is possible
that scg <

σ
2 b. In this case, set s′cg

B scg .
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Set q′ B
⌈

q
(1+σ)2

⌉
and b′ B

⌊
(1+σ)2b

⌋
. Note that the items sizes s′i and s′cg

are integral.
Hence, rounding q′ and b′ to integral values does not affect the set of feasible solutions.

• Case 2: q > σ2 b
As in case 1, all items are partitioned into small and large items. However, the defini-
tions of the sets S and L are different:
LB

{
i ∈ {1, . . . ,n}

∣∣∣∣si ≥
σ2

4(1+σ)2 b
}

S B
{
i ∈ {1, . . . ,n}

∣∣∣∣si <
σ2

4(1+σ)2 b
}

This time, small items are clustered so that the sizes of the cluster items are in[
σ2

4(1+σ)2 b, σ2

2(1+σ)2 b
)

and we obtain at most one cluster item cg for which scg <
σ2

4(1+σ)2 b.
Again, small items are clustered by non-increasing order of pi/si. The algorithm
continues analogously to case 1: We set kB

⌈
log1+σ

4(1+σ)2

σ2

⌉
, which implies

(1+σ)k σ2

4(1+σ)2 ≥ 1. Furthermore, since σ < 1, we have k ≥ 2. We define the following
intervals and values:

• Ih B
[
(1+σ)h−1 σ2

4(1+σ)2 b, (1+σ)h σ2

4(1+σ)2 b
)
∩Z =

[⌈
(1+σ)h−1 σ2

4(1+σ)2 b
⌉
,
⌈
(1+σ)h σ2

4(1+σ)2 b
⌉
−1

]
for all 1 ≤ h ≤ k−1

• Ik B
[
(1+σ)k−1 σ2

4(1+σ)2 b, (1+σ)k σ2

4(1+σ)2 b
]
∩Z =

[⌈
(1+σ)k−1 σ2

4(1+σ)2 b
⌉
,
⌊
(1+σ)k σ2

4(1+σ)2 b
⌋]

• th B
⌈
(1+σ)h−1 σ2

4(1+σ)2 b
⌉

for all 1 ≤ h ≤ k

Again, if si ∈ Ih for some i ∈ L∪C and 1 ≤ h ≤ k, set s′i B th. If scg <
σ2

4(1+σ)2 b, set
s′cg
B scg . The new minimum quantity q′ and the new capacity b′ are defined as in case

1.

After applying the transformations from case 1 or case 2, respectively, we solve the instance
consisting of the items in L∪C, their respective profits pi and adjusted sizes s′i and m bins
with minimum quantity q′ and capacity b′. Let I denote the original instance of the problem
and let I′ denote the instance that we have just created. Let an arbitrary but fixed optimal
solution to I be given. Let load( j) (for some 1 ≤ j ≤ m) denote the sum of the sizes of the
items that are packed into bin j in the optimal solution to I that we are considering and let
load′( j) be defined analogously for the solution to I′ that we construct in the following.
According to our definition, an (α, β)-approximation must return infeasibility of the given
instance if there is no feasible solution to the instance. However, since an empty packing is a
feasible solution to every instance of MWBMMQ, infeasibility can never occur.
We now show that there is a feasible solution to I′ that induces a (possibly infeasible) solution
to I that is at least as good as an optimal solution to I: Given such a solution to I′, we
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have load′( j) ∈ {0} ∪ [q′,b′] for all bins j. Expanding the large items that are used in the
solution to their original (instead of their rounded) sizes and replacing the cluster items
by their associated small items increases the load in each of the bins to at most (1+σ)b′.
By definition of q′ and b′, we obtain a packing where load( j) ∈ {0} ∪

[
q

(1+σ)2 , (1+σ)3b
]
⊆

{0} ∪
[ q

1+ϵ , (1+ ϵ)b
]

for all bins, which yields the claim. In order to show the existence of
such a solution to I′, we consider each of the two cases of the algorithm separately:

• Case 1: q ≤ σ2 b
First of all, note that s′i ≥

si
1+σ ≥

σ
2(1+σ)b ≥

q
1+σ ≥

q
(1+σ)2 for all i ∈ L. Considering the

integrality of s′i , we obtain s′i ≥
⌈

q
(1+σ)2

⌉
= q′, i.e. one large item is sufficient to fulfill

the minimum quantity constraint of a bin in I′.
We now construct a feasible solution to I′ as claimed: First of all, we pack the large
items (with their adjusted sizes s′i) into the same bins as in the fixed optimal solution to
I that we are considering. We obtain a solution in which load′( j) ∈ {0}∪ [q′,b] for all
bins j. If there are any bins without large items, we use the cluster items (if there are
any) to fill these bins. We process the empty bins one by one and pack the cluster items
one after another so that load′( j) ∈ [b, (1+σ)b] until all cluster items have been packed
or until there are no bins without large items and into which we can pack a cluster
item without exceeding (1+σ)b are left. We always schedule cluster items ordered
by non-increasing profit densities pcr/scr . If any unused cluster items and bins j with
large items for which load′( j) < b remain, we continue packing cluster items into these
bins until load′( j) ≥ b and as long as this does not cause the load of any of the bins
to exceed (1+σ)b. Note that every cluster item has size in

[
σ
2 b,σb

)
, so this is in fact

possible. Due to the integrality of the item sizes we obtain load′( j) ≤
⌊
(1+σ)2b

⌋
= b′.

We obtain one of the following cases:

a) All cluster items have been packed and all bins are feasible regarding q′ and b′.
In this case we have in fact created a feasible solution to I′. Since all the large
items that are packed in the optimal solution to I as well as all small items
(represented by the respective cluster items) are packed, the value of the solution
we have created is at least as good as an optimal solution to I.

b) All cluster items have been packed and some bins are infeasible regarding
q′ or b′.
Note that by construction at each point in time there is at most one bin that
is infeasible and it can only be infeasible with respect to q′, as the load never
exceeds b′. Assume that such a bin j′ exists once all cluster items have been
packed.
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If there is no other bin with strictly positive load, then the optimal solution to I
that we have started with, did not contain any large items. Furthermore, as the
sum of the sizes of the cluster items is smaller than q′, the sum of the sizes of the
corresponding small items must be smaller than q, so the optimal solution to I
we have considered cannot contain any small items either. This implies that the
optimal solution to I must have been empty. Thus, an empty packing is a feasible
solution to I′ which is as good as the optimal solution to I.
If there is another bin j with strictly positive load, then by construction it is
feasible with respect to q′ and we have load′( j) ≤ (1+σ)b. Moving all items from
bin j′ to bin j yields load′( j′) = 0 and load′( j) < (1+σ)b+ q′ ≤ (1+σ)b+ q ≤
(1+σ)b+ σ2 b < (1+σ)2b. Considering the integrality of load′( j) we obtain
load′( j) ≤

⌊
(1+σ)2b

⌋
= b′.

Again, the same large items that are packed in the optimal solution to I, that we
are considering, as well as all small items are packed. Hence, the value of the
solution we have created is at least as good as an optimal solution to I.

c) Some cluster items could not be packed.
There cannot be any bin j for which load′( j) < b: Assume that there is a bin j for
which load′( j) < b and let cr denote the next cluster item that would be packed
by the above procedure if there was enough space left. By construction we have
that load′( j)+ scr < b+σb = (1+σ)b. As we are packing cluster items as long
as we can do so without the load on any of the bins exceeding (1+σ)b, the fact
that cr was not packed contradicts our assumption. So for all bins j we have
load′( j) ∈ [b, (1+σ)b], which implies feasibility of the solution regarding q′ and
b′ (Once again, we take the integrality of load′( j) and b′ into account).
By construction, there are no empty bins left. In an optimal solution to I, load( j)≤
b for all j. This implies that the sum of the sizes of the cluster items (and thus of
the corresponding small items) in the solution we have created is at least the sum
of the sizes of the small items in the optimal solution to I that we are considering.
Recall that small items have been clustered by non-increasing order of pi/si.
Furthermore, the above construction of a solution to I′ packs cluster items by
non-increasing order of pcr/scr . All in all, we get that the profit from cluster
items in the solution to I′ we have created is at least as good as the profit from
small items in an optimal solution to I. By construction, the large items in both
solutions are identical. So we have in fact created a feasible solution to I′ that is
at least as good as an optimal solution to I.
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• Case 2: q > σ2 b
Let loads( j) and loadl( j) denote the sum of the sizes of small and large items, respec-
tively, that are packed into bin j in the optimal solution to I that we are considering.
The values load′s( j) and load′l( j) are defined analogously for the solution to I′ that
we are constructing. As in case 1, we begin constructing a feasible solution to I′

by packing the large items into the same bins as in the optimal solution to I that we
are considering. Hence, load′l( j) ≥ loadl( j)

1+σ for all bins j. Afterwards we fill all bins j

for which loads( j) > 0 with cluster items, so that load′s( j) ∈
[

loads( j)
1+σ −

σ2

2(1+σ)2 b, loads( j)
1+σ

)
.

Note that the length of the interval is σ2

2(1+σ)2 b, which implies that all cluster items are
smaller than the length of the interval. Thus, if there are enough cluster items available,

it is always possible to find such a packing. We have that
g∑

i=1
sci ≥

n∑
i=1

si
1+σ ≥

m∑
j=1

loads( j)
1+σ .

This implies that there are enough cluster items to fill the bins as described. We con-
tinue packing cluster items until load′s( j) ∈

[
loads( j), loads( j)+ σ2

2(1+σ)2 b
)

for all bins j
for which loads( j) > 0 or until all cluster items have been packed. Once again, as the
length of the interval exceeds the size of the cluster items, we can find such a packing.
As in case 1, cluster items are always packed by non-increasing order of pcr/scr .
We now consider the feasibility of this solution regarding q′ and b′:
If load( j) = 0 for some bin j, we have load′( j) = 0 by construction.
If load( j) > 0, we obtain
load′( j) ∈

[
loadl( j)

1+σ +
loads( j)

1+σ −
σ2

2(1+σ)2 b, loadl( j)+ loads( j)+ σ2

2(1+σ)2 b
]
=[

load( j)
1+σ −

σ2

2(1+σ)2 b, load( j)+ σ2

2(1+σ)2 b
]
⊆

[
q

1+σ −
σ2

2(1+σ)2 b,b+ σ2

2(1+σ)2 b
]
. We have that

q
1+σ −

σ2

2(1+σ)2 b > q
1+σ −

σ
(1+σ)2 q = (1+σ)q

(1+σ)2 −
σq

(1+σ)2 =
q

(1+σ)2 and

b+ σ2

2(1+σ)2 b < (1+σ)b (since σ
2(1+σ)2 < 1).

Taking the integrality of load′( j) into account we get that load′( j) ∈
[
q′,b′

]
.

The profit from large items in the solution to I′ is the same as in the optimal solution
to I. By construction, all cluster items have been packed or load′s( j) > loads( j) for all j
(or both). In the first case it is immediately clear that the solution to I′ is at least as
good as the optimal solution to I. The argumentation regarding (super-)optimality of
the solution in the second case is the same as in “c) Some cluster items could not be
packed.” above.
All in all, we have shown that the solution we have created is in fact feasible with
respect to I′ and its value is at least as good as the value of an optimal solution to I. We
have already seen that this solution to I′ induces a bicriteria solution to I that fulfills
the claim.
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All the steps necessary for creating the instance I′ based on the input instance I such as
clustering items and rounding item sizes can clearly be done in polynomial time. Note that k
only depends on ϵ, so for ϵ > 0 fixed, k can also be assumed to be fixed. Then according to
Theorem 2.3.1, I′ can be solved in polynomial time. �

2.4 Conclusion

In this chapter we have given an overview of previous work regarding bin packing problems
with minimum quantities. Furthermore, we have provided a dynamic program and a bicriteria
approximation algorithm that are both polynomial for certain special cases of GBPMQ.
In particular, we have shown polynomial solvability of the following special case of GBPMQ:

• GBPMQ where the minimum quantities are uniform, the capacities are uniform, the
profits do not depend on the bins the number of different item sizes is bounded by a
constant (Theorem 2.3.1)

In addition, we have shown the existence of a polynomial-time (1,1+ ϵ)-algorithm (where
ϵ > 0 is arbitrary but fixed) for the following special case:

• GBPMQ where the minimum quantities are uniform, the capacities are uniform, the
profits do not depend on the bins and the number of different item sizes is bounded by
a constant (Theorem 2.3.2)





Chapter 3

Scheduling problems

3.1 Introduction

Scheduling problems occur in all kinds of processes, where similar activities are carried out
by a number of persons or machines, possibly in parallel, and the objective is to minimize
the time needed. There is a variety of parameters by which a scheduling problem can be
characterized. An overview of problem definitions, their computational complexity and
algorithms can be found in [9]. Practically speaking, idle times of machines or personnel are
usually to be avoided, since costs for maintenance and salaries, respectively, are incurred
even during idle times. Hence, utilizing the available resources as efficiently as possible is
usually desirable. This makes scheduling problems natural candidates for adding minimum
quantities. Furthermore, technical restrictions might enforce minimum quantities. Scheduling
problems with minimum quantities have already been considered in [21] and in [45]. We
summarize the definitions and the most important results from these publications in the next
section.

3.2 Basics and Definitions

In [45], minimum quantities are applied to scheduling problems where either the sum of
completion times or the makespan (i.e. the maximum completion time) are minimized. The
problems are defined as follows:

Definition 3.2.1. Pq j||Cmax and Pq j||
∑

Ci are given by n ∈ N jobs with processing times
pi ∈ N for i ∈ {1, . . . ,n} and m ∈ N identical parallel machines with corresponding minimum
quantities q j ∈ N for j ∈ {1, . . . ,m}. If all minimum quantities are identical, we denote the
problems by Pq||Cmax and Pq||

∑
Ci, respectively. In order for a solution to be feasible, every
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machine j that processes at least one job must process at least q j units of work.
Let Ci denote the completion time of job i in a specific schedule.
Given an instance of Pq j||Cmax, the task is to find a feasible solution that schedules the jobs
on a subset of the machines in such a way that Cmax B

n
max
i=1

Ci is minimized. For Pq j||
∑

Ci

the objective function to be minimized is
n∑

i=1
Ci.

More generally, this can be considered an extension of the three-field notation [20]:
Minimum quantities are a property of the machine environment that can be added to arbitrary
scheduling problems. For example, we denote the scheduling problem consisting of a fixed
number of m identical machines with minimum quantity q and where the makespan is
supposed to be minimized by Pmq||Cmax. For m = 2 the problem is denoted by P2q||Cmax. In
this thesis we consider the following machine environments:

• Identical parallel machines, where the processing time of each job i is given by an
integer pi as in Def. 3.2.1.

• Uniform parallel machines, where a processing requirement pi is defined for every job
i and for every machine j the speed of the machine s j is given. The processing time of
job i on machine j is pi

s j
.

• Unrelated parallel machines, where the processing time of each job i on machine j is
given by an integer pi, j.

The three-field notation denotes the above machine environments by P, Q and R, respectively.

Remark 3.2.2. If a scheduling problem is defined on uniform machines in this thesis,
minimum quantity constraints refer to the sum of processing times pi

s j
on the respective

machines.

In the following we denote the sum of processing times of jobs that are scheduled on
machine j by load( j). In particular, if the machine environment consists of uniform machines,
load( j) refers to the sum of all pi

s j
for which job i is scheduled on machine j. We refer to a

machine j as active if load( j) > 0, else we refer to it as inactive. If a machine processes a job
at a certain point in time, we call it busy at that point in time, else we refer to it as idle at that
point in time.
If there are no release dates, precedence constraints or other constraints that might cause idle
times between the processing of jobs, then, unless specified otherwise, we assume that all
jobs are processed consecutively on each machine without any idle times between two jobs,
so that machine j becomes idle after load( j) time units.
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In the following section we also consider the lateness minimization problem with minimum
quantities as defined in [21]. We use the “delivery time model” that is also used in [21] in
order to ensure that the objective function can only attain positive values so that our definition
of approximation algorithms is well-defined for these problems.

Definition 3.2.3. Pq j||Lmax is given by n ∈ N jobs with processing times and delivery times
pi, di ∈ N for i ∈ {1, . . . ,n} and m ∈ N machines with corresponding minimum quantities
q j ∈ N for j ∈ {1, . . . ,m}. We denote the lateness of a job i (i.e. the point in time at which a
job or the output of the job is delivered) by Li BCi+di.
The task is to schedule the jobs on a subset of the machines in such a way that LmaxB

n
max
i=1

Li

is minimized. Every machine j that processes at least one job must process at least q j units
of work in order for the schedule to be feasible.
If all minimum quantities are identical, we denote the problem by Pq||Lmax.

We also generalize the idea of open shop problems. Let us first consider the following
definition [9]:

Definition 3.2.4 (open shop scheduling). There are n jobs and m machines. Every job i
consists of a set of m operations oi, j with processing times pi, j for i ∈ {1, . . . ,n} and j ∈
{1, . . . ,m}. Each job can only be processed by one machine at a time. Operation oi, j has to
be processed on machine j. Given an objective function f that is nondecreasing regarding
the completion times of the jobs, the problem is to find a feasible schedule that minimizes f .
The problem is denoted by O|| f .

Applying minimum quantities to this problem definition would not yield any interesting
results, since the load that is processed by each machine is already determined by the
respective instance. Thus, an instance would either be infeasible if the load assigned to at
least one machine was less than the respective minimum quantity or the minimum quantities
would not have any effect. Hence, we generalize the problem by assuming that there are m
groups of parallel identical machines instead of m machines. Each operation oi, j must be
processed on one of the machines in machine group j. Now it is no longer a priori clear how
much load is scheduled on each of the machines and minimum quantity constraints become
non-trivial. We now provide the formal definition of the problem:

Definition 3.2.5 (open shop scheduling with minimum quantities). Oq j|| f is given by n ∈ N
jobs and m ∈ N machine groups. Each machine group j consists of c j ∈ N identical machines
with corresponding minimum quantities q j ∈ N. Every job i consists of a set of m operations
oi, j with processing times pi, j ∈ N for i ∈ {1, . . . ,n} and j ∈ {1, . . . ,m}. Each job can only be
processed by one machine at a time and operation oi, j must be processed by a machine in
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machine group j. In order for a solution to be feasible, every machine that processes at least
one job must process at least q j units of work, where j denotes the machine group of the
machine. Given an objective function f that is nondecreasing regarding the completion times
of the jobs, the problem is to find a feasible schedule that minimizes f . The problem is
denoted by Oq j|| f . If all minimum quantities are identical, we denote the problem by Oq|| f .

We now briefly summarize the previous work on scheduling problems with minimum
quantity constraints: First of all, note that Pq||Cmax is strongly NP-hard, since this already
holds for P||Cmax [15] and P||Cmax is the subproblem of Pq||Cmax consisting of those instances
for which q = 0. In addition, P2||Cmax is weakly NP-hard, which implies that P2q||Cmax and
Pmq||Cmax are also at least weakly NP-hard. On the other hand, P||

∑
Ci can be solved in

polynomial time [21] and it is not immediately clear, whether this also holds for Pq||
∑

Ci.
In [45] it is shown that, unless P=NP, P2q||Cmax cannot be approximated with a ratio better
than 2 in polynomial time. Obviously this also holds for Pmq||Cmax and Pq||Cmax and implies
that there cannot be any PTAS for these problems. Assuming the existence of a (1+ ϵ)-
approximation for P||Cmax for some ϵ > 0, it is shown how this algorithm can be turned into
a (1+ ϵ + 1

β , β)-approximation for Pq||Cmax, where β ≥ 1 is an arbitrary upper bound on the
ratio by which a minimum quantity constraint may be violated. Setting βB 1 and considering
the existence of a (4

3 −
1

3m )-approximation algorithm for P||Cmax and a FPTAS for Pm||Cmax,
it is then concluded that a (7

3 −
1

3m )-approximation for Pq||Cmax and a (2+ ϵ)-approximation
for Pmq||Cmax exist [45]. In addition, a pseudo-polynomial algorithm for Pmq||Cmax is given
in [45], which implies weak NP-hardness of the problem. The analysis of makespan mini-
mization problems in [45] is concluded by providing a polynomial-time algorithm for the
case that preemption of jobs is allowed. With respect to minimizing the sum of completion
times it is shown that P2q||

∑
Ci is (at least weakly) NP-hard.

In [21] it is shown that given a value ϵ > 0, a (2+ ϵ)-approximation exists for Pq|ri|Cmax, i.e.
in the presence of release dates. Furthermore, the existence of a 4-approximation algorithm
and a 5-approximation algorithm is shown for Pq j||Cmax and for Pq j|ri|Cmax, respectively.
The pseudo-polynomial dynamic program for Pmq||Cmax from [45] is extended in order to be
applicable to Pmq j||Cmax as well. Moreover, a polynomial-time algorithm for Pq j|pi = p|Cmax

is provided. Minimum quantities are also applied to lateness minimization in [21]. It is
shown that for every ϵ > 0 there is a (3+ ϵ)-approximation algorithm for Pq|di,ri|Lmax, a 5-
approximation algorithm for Pq j|di|Lmax and a 6-approximation algorithm for Pq j|di,ri|Lmax.
In addition, [21] covers the minimization of the weighted sum of completion times. It is
shown that there is an approximation algorithm for Pq j|ri|

∑
wiCi, for which the approxima-

tion ratio depends on the number of machines. Moreover, a (24− 12
m )-approximation is shown

for Pq j||
∑

wiCi. The analysis of minimizing the sum of completion times is concluded by
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proving that, unless P=NP, P2q||
∑

Ci cannot be approximated with a ratio better than 3
2 in

polynomial time, which implies that there cannot be any PTAS. Finally, a generic dynamic
program for scheduling problems with minimum quantities is outlined in [21].

3.3 Complexity Results & Algorithms

We begin our analysis of scheduling problems with minimum quantities by generalizing
one of the results from [45]. As we have already mentioned in the previous section, it is
shown in [45] that if there is a (1+ ϵ)-approximation for P||Cmax for ϵ > 0, then there is a
(1+ ϵ + 1

β , β)-approximation for Pq||Cmax for an arbitrary β ≥ 1. We extend this result to the
case where release dates are given and where the minimum quantities are not necessarily
identical for all machines.

Theorem 3.3.1. If there is a (1+ ϵ)-approximation for P|ri|Cmax for some fixed ϵ > 0, then
there is also a (1+ ϵ + 1

β , β)-approximation for Pq j|ri|Cmax for every fixed β ≥ 1.

Proof. Let an instance I of Pq j|ri|Cmax be given and let OPT denote the makespan of an

optimal solution to I. W.l.o.g. we assume that
n∑

i=1
pi ≥

m∑
j=1

q j for m ≥ 1, else we iteratively

remove the machine with the highest minimum quantity from the instance until the statement

holds. If
n∑

i=1
pi < q j for all j, then there is no feasible solution to the problem. By assumption

there is a (1+ ϵ)-approximation for P|ri|Cmax. For k ∈ {1, . . . ,m} we create instances Ik of
P|ri|Cmax, where the jobs and release dates are identical to those in I and there are k identical
machines. Given some solution Ik, let S j denote a schedule on machine j. If job i is
contained in schedule S j, we denote this by i ∈ S j in the following. We apply Algorithm 1.
We claim that the algorithm is polynomial in the size of the input instance and that its output
is a schedule that violates the minimum quantities by a factor at most β and for which the
makespan is at most (1+ ϵ + 1

β )OPT.
First of all, we show that all steps of the algorithm are well-defined and that it finishes after
a number of steps that is polynomially bounded in the size of the input instance. Note that
S 1 is always assigned to machine 1 in line 11: We have that

∑
i∈S 1

pi ≥
∑

i∈S j

pi and q1 ≤ q j for

all j ≥ 2. If
∑

i∈S 1

pi < q1 in some iteration k ≤ m, this would contradict
n∑

i=1
pi ≥

m∑
j=1

q j. If the

algorithm refers to some machine j, then this machine always exists in the initial instance
I, since by construction of the algorithm we have j ≤ d ≤ k ≤ m (except for line 21, where
d = k+1 in order to stop the algorithm).
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Algorithm 1 Reschedule Pq j|ri|Cmax

1: Input: Instances Ik for k ∈ {1, . . . ,m}
2: for all k = 1, . . . ,m do
3: Apply the (1+ϵ)-approximation for P|ri|Cmax to Ik, i.e. to an instance with k machines
4: Let tk denote the makespan of the output schedule
5: Let S d for d ∈ {1, . . . ,k} denote the schedule on machine d
6: Empty all machines and reorder them by non-decreasing q j

7: Reorder the schedules S j so that
∑

i∈S j1

pi ≥
∑

i∈S j2

pi for j1 < j2

8: Set jB 1 and dB 1
9: while d ≤ k do

10: if
∑

i∈S d

pi ≥
q j
β then

11: Schedule S d on machine j
12: Set dB d+1 and jB j+1
13: else

14: if
{

d′ ∈ {d+1, . . . ,k}
∣∣∣∣ d′∑
r=d

∑
i∈S r

pi ≥
q j
β

}
, ∅ then

15: Set d′ Bmin
{

d′ ∈ {d+1, . . . ,k}
∣∣∣∣ d′∑
r=d

∑
i∈S r

pi ≥
q j
β

}
16: Schedule S d on machine j

17: Schedule the jobs i ∈
d′⋃

r=d+1

S r in arbitrary order without idle times

between two jobs on machine j starting at tk
18: Set dB d′+1 and jB j+1
19: else

20: Schedule the jobs i ∈
k⋃

r=d+1

S r in arbitrary order without idle times

between two jobs on machine 1 starting at tk
21: Set dB k+1 and jB j+1
22: end if
23: end if
24: end while
25: end for
26: Output: Among the m schedules determine the one with the smallest makespan.

Note that for every machine j at most one of the blocks in the lines 11 - 12, in the lines
15 - 18 or in the lines 20 - 21 of the algorithm is executed once. Hence, the lines 11 and 16
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are well-defined, because no jobs have been scheduled on the respective machine j before.
We now show that line 17 is well-defined. Once line 17 is processed, schedule S d for some
d ≥ 2 has been assigned to machine j in line 16. Since all schedules finish after at most tk
time units, machine j is idle after tk. Hence, we can in fact schedule the jobs without idle
times between two jobs after tk on machine j.
The argument for showing that line 20 is well-defined is similar: We have already seen that
S 1 is always scheduled on machine 1 in line 11. Afterwards j is increased and no other jobs
are scheduled on machine 1 before line 20 is executed. Hence, machine 1 is idle after tk
and we can schedule the jobs on machine 1 without idle times between two jobs after tk as
assumed by the algorithm. For the remaining steps of the algorithm it is clear that they are
well-defined.
We now provide a polynomial upper bound on the number of steps the algorithm requires.
First of all, we consider the lines 10 - 23 of the algorithm: Every time, this part of the
algorithm is executed, at most n jobs are scheduled, which requires at most O(n) steps.
Assuming that the sum of processing times in each of the schedules S j has already been
computed in line 7, the lines 14 and 15 can be executed in O(m). The if-condition in line 10
can be evaluated in constant time O(1). The same holds for increasing the variables d and
j. So all in all, executing the lines 10 - 23 requires at most O(m+n) steps. The while-loop
starting in line 9 ends after at most m iterations. Therefore, the lines 9 - 24 require time at
most O(m2+mn). By assumption, the approximation algorithm that is used in line 3 can be
executed in polynomial time. Let T denote an upper bound on the number of steps required
by the approximation algorithm. Executing the lines 4 - 8 and line 26 requires at most
O(n+m logm) steps. Thus, the lines 3 - 24 can be executed using at most O(m2+mn+T )
steps. The for-loop in line 2 is executed at most m times. This yields the overall bound
O(m3+m2n+mT ) on the number of steps the algorithm requires. W.l.o.g. we can assume
m ≤ n, so the number of steps is also bounded by O(n3+nT ).
We now show that the solution that the algorithm returns fulfills load( j) ≥ q j

β for all active
machines j: For machines that are processed in the lines 11, 16 and 17 of the algorithm this
follows directly from the conditions in the lines 10 and 14, respectively. Machine 1 might
be processed by the algorithm in line 20. If so, it is already feasible regarding q1, because
schedule S 1 has been scheduled on machine S 1 in line 11. Hence, load( j) ≥ q j

β for all active
machines j.
The output of an arbitrary iteration k of the algorithm is also feasible with respect to the
release dates: All jobs that are scheduled during the time interval [0, . . . , tk] are scheduled
according to one of the schedules S d, which are feasible regarding the release dates. Note
that tk ≥ ri for all i. Hence, the remaining jobs, which are scheduled after tk, have already
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been released.
We still have to show that the makespan of the resulting schedule is in fact at most
(1+ ϵ + 1

β)OPT. For an arbitrary optimal solution to I let k′ denote the number of active
machines. Then the makespan of an optimal solution to Ik′ is also OPT. Hence, we have
tk′ ≤ (1+ ϵ)OPT. In order to show the claim it is sufficient to show that the algorithm outputs
a schedule with makespan at most (1+ ϵ + 1

β )OPT in iteration k = k′. We consider three types
of machines separately. Note that for each machine j that is active in the resulting schedule
exactly one of the following cases is true:

• j = 1:
Schedule S 1 is processed by machine 1 and finishes after at most tk′ ≤ (1+ ϵ)OPT
time units. It is possible that additional jobs for which the sum of processing times is
less than q j

β are scheduled on machine 1 after tk′ without idle times in line 20 of the
algorithm. Note that q j for any j ≤ k′ is a lower bound on OPT: By definition of k′

there is an optimal solution to I in which exactly k′ machines are active. W.l.o.g. these
are the machines with the k′ smallest minimum quantities. Hence, all jobs on machine
j are finished before tk′ +

q j
β ≤ (1+ ϵ + 1

β )OPT.

• j ≥ 2 and jobs are scheduled on machine j in line 11 of the algorithm:
A schedule S d for some d that finishes after at most tk′ ≤ (1+ ϵ)OPT time units is
scheduled on machine j.

• j ≥ 2 and jobs are scheduled on machine j in lthe lines 16 and 17 of the algorithm:
A schedule S d for some d that finishes after at most tk′ ≤ (1+ ϵ)OPT time units is
scheduled on machine j. Afterwards all jobs from the schedules S r for r ∈ {d+1, . . . ,d′}

are scheduled without idle times after tk′ . We claim that
d′∑

r=d+1

∑
i∈S r

pi <
q j
β . Assume that

his is not the case. By construction we have
∑

i∈S d

pi ≥
∑

i∈S d′
pi. Hence, we also have

d′−1∑
r=d

∑
i∈S r

pi ≥
q j
β . If d′ = d+1, then

∑
i∈S d

pi >
q j
β , which contradicts the fact that machine

j is not processed in line 11 of the algorithm. If d′ > d+1, this contradicts the choice

of d′ in line 15. Hence we have that
d′∑

r=d+1

∑
i∈S r

pi <
q j
β . So all jobs on machine j have

been completely processed before tk′ +
q j
β . As in the first case we argue that q j for

some j ≤ k′ is a lower bound on OPT and thus all jobs on machine j are finished before
(1+ ϵ + 1

β )OPT.

�
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We obtain a similar result for Pq j||Lmax:

Theorem 3.3.2. If there is a polynomial-time (1+ ϵ)-approximation for P||Lmax for some
ϵ > 0, then there is also a polynomial-time (1+ ϵ + 1

β , β)-approximation for Pq j||Lmax for
ϵ > 0 for every fixed β ≥ 1.

Proof. We show the proof by reusing most of the algorithm and the argumentation from the
proof of 3.3.1. In Algorithm 2 only those lines are depicted that differ from the respective
lines of Algorithm 1. We denote the instance of Pq j||Lmax by I and create m instances Ik

of P||Lmax where k indicates the number of machines that is available in Ik. As before,

we assume w.l.o.g. that
n∑

i=1
pi ≥

m∑
j=1

q j. The number of steps required by the operations in

Algorithm 2 that differ from those in Algorithm 1 is clearly polynomially bounded in the
size of the I. So by the same argument as in the proof of Theorem 3.3.1 we get that that the
number of steps required by Algorithm 2 is polynomially bounded in the size of I.
The lines 11 and 16 of the algorithm are well-defined, because no jobs have been scheduled
on the respective machine j yet. The sum of processing times to be scheduled in the lines 17
und 20 of the algorithm is at most q j

β . Regarding line 20 this is obvious from the algorithm.
For line 17 this has been shown in the proof of Theorem 3.3.1. Machine j is idle before q j

β ,
thus the lines 17 and 20 are also well-defined.
The claim that the minimum quantity constraints are violated by at most a factor β follows
by the same argument as in the proof of Theorem 3.3.1.
In order to show that the algorithm is in fact a (1+ ϵ + 1

β , β)-approximation, we assume that
there is an optimal solution to I with value OPT that uses k′ active machines. Again, we
have tk′ ≤ (1+ ϵ)OPT because an optimal solution to Ik′ also has objective value OPT. We
distinguish two cases:

• A job is assigned in line 11 or in line 16:
By construction, the lateness of the jobs in S d is at most (1+ ϵ)OPT if the schedule
starts at 0. We have that q j

β ≤
OPT
β for all j ≤ k′, so shifting the schedule to starting time

q j
β increases the lateness of the jobs to at most (1+ ϵ + 1

β )OPT.

• A job is assigned in line 17 or in line 20:
We have already shown that jobs are scheduled in such a way by the lines 17 and 20
that they are completed before q j

β . Hence, they are completed at most q j
β time units

later than in an optimal solution and their lateness becomes at most (1+ 1
β )OPT.
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Algorithm 2 Reschedule Pq j||Lmax

3: Apply the (1+ ϵ)-approximation for P||Lmax to Ik

· · ·

11: Schedule S d on machine j starting at
q j

β

· · ·

16: Schedule S d on machine j starting at
q j

β

17: Schedule the jobs i ∈
d′⋃

r=d+1

S r in arbitrary order without idle times

between two jobs on machine j starting at 0

· · ·

20: Schedule the jobs i ∈
k⋃

r=d+1

S r in arbitrary order without idle times

between two jobs on machine 1 starting at 0

�

Note that schedules S d for d ≥ 2 could also be scheduled starting at 0 in line 11. However,
this would not improve the approximation ratio of the algorithm, so we have decided not to
add another distinction of cases to the algorithm.
We obtain the following corollary:

Corollary 3.3.3. For all ϵ > 0 there is a polynomial-time (2+ ϵ)-approximation algorithm
for Pq j|ri|Cmax and Pq j||Lmax and a (3+ ϵ)-approximation algorithm for Pq j|ri|Lmax.

Proof. Let an arbitrary ϵ > 0 be given. According to [22], there is a PTAS for P|ri|Lmax.
So in particular, for every fixed ϵ > 0 there is a polynomial-time (1+ ϵ)-approximation
algorithm for P|ri|Cmax (i.e. all di = 0) and for P||Lmax (i.e. all ri = 0). Applying Theorem
3.3.1 and Theorem 3.3.2 with βB 1, yields the claim that there is a polynomial-time (2+ ϵ)-
approximation algorithm for Pq j|ri|Cmax and Pq j||Lmax for every fixed ϵ > 0.
Let an instance of Pq j|ri|Lmax be given and let OPT denote its optimal value. If we relax
the problem by omitting the release dates, it becomes an instance of Pq j||Lmax for which we
can find a schedule with maximal lateness at most (2+ ϵ)OPT, as we have just seen. The
schedule is feasible with respect to the minimum quantities but it might be infeasible with
respect to one or more release dates. We shift the schedule so that it starts at rB

n
max
r=1

ri in
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order to ensure that all jobs have been released. Note that OPT ≥ r, which implies that the
maximal lateness increases to at most (3+ ϵ)OPT. �

Note that this is a significant improvement of the approximation ratios given in [21].
We now turn our attention to minimizing the sum of completion times and show a bound on
the best fixed approximation ratio we can obtain in polynomial time:

Theorem 3.3.4. Unless P=NP, P2q||
∑

Ci cannot be approximated with a ratio 2− ϵ in
polynomial time for any ϵ > 0.

Proof. Assume that there is a (2− ϵ)-approximation for P2q||
∑

Ci for some ϵ > 0. Let
k′ B

⌈
4
ϵ

⌉
. We show that the approximation could be used to solve PARTITION in polynomial

time, which is not possible unless P=NP.

Let an instance of PARTITION be given by n integers pi ≥ 1. Set BB 1
2

n∑
i=1

pi. We interpret

these integers as the processing times of n jobs. We set kBmax{n,k′} and create 2k jobs with
processing time B+1. Note that k ∈ O(n), since k′ is fixed. We set qB B+k(B+1). Note that
the sum of all processing times is 2B+2k(B+1) = 2q. By construction, a feasible schedule
that uses both machines exists if and only if there is a feasible solution to the instance of
PARTITION that we are considering. Furthermore, such a schedule induces a solution to
PARTITION. An optimal schedule on two machines is outlined in Figure 3.3.1. Note that
in an optimal schedule the jobs must be processed in order of non-decreasing processing
times on each machine. Thus, the jobs that correspond to integers from the instance of
PARTITION are processed first. They are indicated by the grey rectangles. The dashed
rectangle represents additional jobs of length B+1.

M1 B B+1 B+1

M2 B B+1 B+1

0 q

Fig. 3.3.1 An optimal solution on two machines

Analogously, an optimal solution on one machine is depicted in Figure 3.3.2.
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M1 2B B+1 B+1 B+1

M2

0 q

Fig. 3.3.2 An optimal solution on one machine

We now compare the optimal sum of completion times on one machine to the optimal
sum of completion times on two machines. Note that we can calculate the sum of completion
times of the jobs with length B+1 exactly. However, the sum of completion times of the
jobs corresponding to the integers from the instance of PARTITION depends on the specific
instance. We calculate a lower bound on the optimal sum of completion times on one
machine, which we denote by OPT1, and an upper bound on the optimal sum of completion
times on two machines, which we denote by OPT2. In order to calculate the lower bound on
OPT1, we only consider the completion times of the jobs with length B+1:

OPT1 ≥ (B+1)
2k∑
i=1

i+4Bk = (B+1)(2k2+ k)+4Bk = 2Bk2+5Bk+2k2+ k

The following reasoning leads to the above bound: If we simply schedule 2k jobs of length
B+ 1 on one machine, then the first job has completion time B+ 1, the second job has

completion time 2(B+1) and so on. This is reflected by the term (B+1)
2k∑
i=1

i. In the presence

of the small jobs from the instance of PARTITION, the point in time at which the jobs
with length B+1 start being processed is 2B. This means that the completion time of each
of the big jobs increases by 2B and there are 2k such jobs, which leads to the term 4Bk.
Analogously we determine an upper bound on OPT2:

OPT2 ≤ Bn+2

(B+1)
k∑

i=1

i+Bk

 = Bn+ (B+1)(k2+ k)+2Bk ≤ Bk2+4Bk+ k2+ k

We now show correctness of the first inequality by constructing a feasible schedule for which
this upper bound on the sum of completion times holds. Then this is obviously also an
upper bound on OPT2. Recall that in order for a feasible solution on two machines to exist,
a solution to PARTITION must exist. Given a solution to PARTITION, we schedule the
jobs corresponding to the integers of the first partition on the first machine and the jobs
corresponding to the integers of the second partition on the second machine without idle
times. This yields a schedule with n jobs that have completion times at most B. Hence,
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the sum of completion times for these jobs is at most Bn. Processing k jobs of length B+1

beginning at B yields a sum of completion times (B+1)
k∑

i=1
i+Bk for the respective jobs. We

schedule k jobs of length B+1 on each of the two machines so that we have to consider this
bound twice. Hence, we have established the first inequality. The last inequality follows
from k ≥ n.
We are now ready to prove a lower bound on the ratio by which the two values differ:

OPT1

OPT2
≥

2Bk2+5Bk+2k2+ k
Bk2+4Bk+ k2+ k

= 2−
3Bk+ k

Bk2+4Bk+ k2+ k
> 2−

4Bk
Bk2 = 2−

4
k
≥ 2− ϵ

We have already stated that there is a feasible solution on two machines if and only of there
is a solution to the instance of PARTITION. In this case, every solution on one machine is
worse than an optimal schedule on two machines by a factor that exceeds 2− ϵ. Hence, a
(2− ϵ)-approximation algorithm would return a schedule on two machines and by doing so
solve the given instance of PARTITION. Thus, a polynomial-time (2− ϵ)-approximation
algorithm cannot exist unless P=NP. �

We now show that there is in fact a 2-approximation algorithm for Pq||
∑

Ci which is the
best possible approximation ratio we can obtain according to the previous theorem. In order
to show the claim, we need the following result from [11]:

Lemma 3.3.5. Let m′ and m′′ be two positive integers such that m′ < m′′. The sum of
completion times of a set of jobs scheduled with the SPT list scheduling algorithm on m′

machines is smaller than or equal to m′′
m′ times the sum of completion times of the same jobs

scheduled with the SPT list algorithm on m′′ machines.

Theorem 3.3.6. There is a polynomial-time 2-approximation algorithm for Pq j||
∑

Ci.

Proof. First of all, we show that if there is a feasible solution to a given instance of Pq j||
∑

Ci

with m′ active machines for some m′ ≤ m, then the shortest processing time list scheduling
algorithm (SPT, [19]) can be used to generate a schedule that is feasible regarding the
minimum quantities if we apply the algorithm to the same instance where the number of
machines is restricted to the

⌈
m′
2

⌉
machines with the smallest minimum quantities.

More specifically, we run SPT for
⌈

m′
2

⌉
machines, choose the

⌈
m′
2

⌉
machines with the lowest

minimum quantities from the instance of Pq j||
∑

Ci and order them by non-decreasing
minimum quantities. We assign the partial schedules on the individual machines returned
by SPT to these

⌈
m′
2

⌉
machines in such a way that load( j1) ≤ load( j2) for j1 < j2. We claim

that this solution is feasible with respect to the minimum quantities. Set qB q⌈
m′
2

⌉. Assume

that there is a machine j′ ∈
{
1, . . . ,

⌈
m′
2

⌉}
for which load( j′) < q j′ . If j′ =

⌈
m′
2

⌉
, then the sum
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of all processing times is strictly less than q
⌈

m′
2

⌉
, which contradicts the fact that there is

a feasible solution on m′ active machines,
⌈

m′
2

⌉
of which have minimum quantity at least

q. Hence, j′ <
⌈

m′
2

⌉
. We remove the job that was scheduled last on each of the machines{

j′+1, . . . ,
⌈

m′
2

⌉}
and denote the set consisting of these jobs by J1. After the removal of these

jobs we have load( j) ≤ load( j′) < q j′ ≤ q j for all j ∈
{
j′+1, . . . ,

⌈
m′
2

⌉}
. The first inequality

follows from the fact that if this was not the case, then SPT would have scheduled another
job on machine j′. Unless j′ = 1, there are machines {1, . . . , j′−1}. By construction we have
load( j) ≤ load( j′) < q j′ ≤ q for j < j′. We remove the jobs that are scheduled on the machines
{1, . . . , j′−1} and denote the set consisting of these jobs by J2. For the remaining schedule
we have load( j) ≤ q j for all j , j′ and load( j′) < q j′ . This implies that every feasible schedule
consisting of these jobs can contain at most

⌈
m′
2

⌉
−1 active machines. In a feasible solution

to the initial instance of Pq j||
∑

Ci on m′ machines the jobs in J1 can make at most
⌈

m′
2

⌉
− j′

of the machines
{⌈

m′
2 +1

⌉
, . . . ,m′

}
active. In addition, the jobs in J2 can make at most j′−1

of the machines
{⌈

m′
2 +1

⌉
, . . . ,m′

}
active. So all in all, a feasible schedule can contain at

most
⌈

m′
2

⌉
− 1+

⌈
m′
2

⌉
− j′ + j′ − 1 = 2

⌈
m′
2

⌉
− 2 < m′ active machines, which contradicts our

assumption. So the solution we have created using SPT on
⌈

m′
2

⌉
machines must in fact be

feasible.
If m′ denotes the number of available machines, let SPTm′ denote the value of a solution
created by SPT list scheduling, let OPTm′ denote the optimal sum of completion times
without minimum quantities and let OPTm′

q j
denote the optimal sum of completion times with

minimum quantities. Furthermore, let OPT denote the value of an optimal solution to the
given instance of Pq j||

∑
Ci. We obtain the following result:

SPT
⌈

m′
2

⌉
≤

m′⌈
m′
2

⌉SPTm′ ≤ 2SPTm′ = 2OPTm′ ≤ 2OPTm′
q j

(1)

The first inequality follows from Lemma 3.3.5 and the equality holds because SPT finds an
optimal solution to P||

∑
Ci [19]. The last inequality follows from the fact that the problem

without minimum quantity constraints is a relaxation of the same problem with minimum
quantity constraints.
W.l.o.g. we can assume that there is a feasible solution to the instance of Pq j||

∑
Ci that we

are considering, since infeasibility of the instance can be checked easily. Then there is an
optimal solution on m′ active machines for some m′ ∈ {1, . . . ,m} and OPTm′

q j
= OPT.

We have shown that SPT finds a schedule that is feasible regarding the minimum quantities
if we restrict the number of machines to

⌈
m′
2

⌉
. Furthermore, we have seen in (1) that the

sum of completion times of this schedule is at most twice the optimal value. Thus, applying
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SPT to all possible numbers of machines m′ ∈ {1, . . . ,m} and choosing the best among all
feasible schedules is in fact a 2-approximation algorithm for Pq j||

∑
Ci. Since SPT is a

polynomial-time algorithm, the number of times SPT is executed is polynomially bounded
and selecting an optimal solution is possible in polynomial time, the algorithm we have
presented is in fact a polynomial-time approximation algorithm. �

We now show that there is a polynomial-time bicriteria (α, β)-approximation algorithm for
Pq||Cmax. Note that if we consider scheduling problems, the factor β refers to the minimum
quantity constraints regarding the load of the machines. In order to prove the claim, we reuse
a result from Chapter 2.

Theorem 3.3.7. For every ϵ > 0 there is a polynomial-time (1+ ϵ,1+ ϵ)-approximation
algorithm for Pq||Cmax.

Proof. Note that every instance of Pq||Cmax can be interpreted as an instance of GBPMQ
(Definition 2.2.4): For each machine we create a corresponding bin and for each of the
n jobs we create an item i, the size si of which corresponds to the processing time of the
respective job. We define unit profits for the jobs. We reuse the minimum quantity q and set
the bin capacity to some value b ≥ q. Then there is a feasible solution to the given instance
of Pq||Cmax with makespan at most b if and only if there is a feasible packing with profit n.

Set pB
n∑

i=1
pi. Clearly, for the optimal makespan OPT we have OPT ∈

[
q, p

]
. Furthermore,

the optimal objective value of the instance of GBPMQ that we have created is n for all
b ∈

[
OPT, p

]
.

In Theorem 2.3.2 a (1,1+ ϵ)-approximation algorithm for GBPMQ is given. If we apply this
algorithm to the above instance of GBPMQ with b ∈

[
OPT, p

]
, it returns a packing with value

n and minimum quantities and bin capacities that are violated by at most a factor (1+ ϵ). Let
APP(b) denote the value of the solution the bicriteria approximation algorithm returns if b is
the bin capacity in the respective input instance.
We perform a binary search on

[
q, p

]
in order to find the smallest value b ∈

[
q,OPT

]
⊆

[
q, p

]
for which APP(b) = n where the search strategy is based on the assumption that APP(b)
is monotonously increasing in b. This assumption clearly holds for b ∈

[
OPT, p

]
where

APP(b) = n. On the other hand, there might be b1 < b2 <OPT so that APP(b2) <APP(b1) ≤ n.
However, the binary search still produces the desired output in this case: It starts with
evaluating the endpoints of the interval

[
q, p

]
where APP(p) = n. Then two cases are possible:

During the binary search some value b′ < OPT with APP(b′) = n is found. In this case the
binary search ends with some b ≤ b′ < OPT with APP(b) = n. Otherwise, the binary search
iteratively approaches OPT until it ends with b = OPT and APP(b) = n.
Hence, we have found an approximate solution to GBPMQ that induces a corresponding
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schedule with load( j) ∈ {0} ∪
[ q

(1+ϵ) , (1+ ϵ)b
]
⊆ {0} ∪

[ q
(1+ϵ) , (1+ ϵ)OPT

]
for all machines j.

Note that APP(b) = n, i.e. all items are packed, which implies that all jobs are scheduled.
Each execution of the approximation algorithm runs in polynomial time and the binary search

finishes after at most O(log
n∑

i=1
pi) iterations. So all in all, we can find an approximate solution

in polynomial time. �

In fact, it is not always necessary to consider the complete interval
[
q, p

]
when looking

for an optimal makespan, as the following lemma shows:

Lemma 3.3.8. Given a feasible instance of Pq||Cmax, set αBmax
{

n
max
i=1

pi,
1
m

n∑
i=1

pi,q
}

. Let

OPT denote the makespan of an optimal solution. Then OPT ∈ [α,3α].

Proof. It is clear that α is a lower bound on OPT, so we only have to show that OPT ≤
3α. Assume that there is a feasible instance of Pq||Cmax for which OPT > 3α and let a
corresponding solution be given. This implies that there is at least one machine j for which
load( j) = OPT > 3α. We now apply Algorithm 3.

Algorithm 3 Improve makespan
1: Input: An optimal schedule with makespan OPT > 3α
2: while a machine j for which load( j) = OPT exists do
3: Find jobs assigned to machine j so that their sum of processing times

is in [α,2α). Denote the set of these jobs by J j.
4: if an inactive machine j′ exists then
5: Move the jobs in J j from machine j to machine j′ ◃ Then load( j′) ∈ [α,2α)

and load( j) ∈ [α,OPT)
6: else
7: if there is a machine j′′ , j with load( j′′) ≤ 2α then
8: Move one job from machine j to machine j′′ ◃ Then load( j′′) ∈ [q,3α)

and load( j) ∈ [2α,OPT)
9: else

10: STOP ◃ This contradicts α ≥ 1
m

n∑
i=1

si

11: end if
12: end if
13: end while

We first assume that the algorithm reaches line 10 at some point: This implies that there
is a machine j for which load( j) = OPT > 3α and all other machines are active and have

load at least 2α. Hence,
n∑

i=1
pi > 2mα. However, this contradicts α ≥ 1

m

n∑
i=1

pi, which holds by
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definition. Thus, the algorithm can never reach line 10.
Then each iteration of the while-loop decreases the number of machines for which load( j) =
OPT by one. Thus, the algorithm terminates after at most m iterations of the while-loop and
we have load( j) < OPT for all machines. Note that feasibility of the schedule is maintained
throughout the algorithm, since α ≥ q. Hence, the algorithm returns a feasible schedule with
a makespan that is strictly better than OPT. This contradicts optimality of the input schedule.
Thus, OPT ≤ 3α. �

We can also use the idea of turning an instance of Pq||Cmax into an instance GBPMQ in
order to obtain the following result:

Theorem 3.3.9. Pq||Cmax can be solved in polynomial time if the number of different pro-
cessing times is bounded by some constant k.

Proof. We transform a given instance of Pq||Cmax into an instance of GBPMQ as described
in the proof of Theorem 3.3.7 with bin capacity b, which is again a variable on which we
perform a binary search. Note that the instance of GBPMQ that we have created meets the
requirements for applying the dynamic program outlined in Theorem 2.3.1. This allows us to
solve this instance in polynomial time. If the dynamic program returns a solution with value
n for some bin capacity b, then this solution induces a schedule with makespan at most b. If
the value of the solution is less than n, then there is no schedule with makespan at most b. As
in the proof of Theorem 3.3.7, we perform a binary search on the interval of possible values
the makespan can attain in order to find the smallest value b for which the dynamic program

returns a packing with value n. Again, the binary search ends after at most O(log
n∑

i=1
pi) steps

so that we can in fact compute an optimal schedule in polynomial time. �

We now show that Pq||
∑

Ci can also be solved in polynomial time if the number of
processing times is bounded by a constant.

Theorem 3.3.10. Pq||
∑

Ci can be solved in polynomial time if the number of different
processing times is bounded by a constant.

Proof. We provide a dynamic program similar to the one given in Theorem 2.3.1 in order to
solve the problem in polynomial time. Let the number of processing times be bounded by
k. We group the jobs by their processing times and count the number of jobs in each group.
For a group of jobs c ∈ {1, . . . ,k} let pc denote the corresponding processing time and let nc

denote the number of jobs in that group. Since k is an upper bound on the number of different
processing times, there are at most k groups. We assume w.l.o.g. that there are exactly k such
groups. Otherwise, we create empty dummy groups.
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We denote the set of all possible sets of jobs by A, where each set of jobs is represented by a
k-tuple:

AB
{
a ∈ Zk

∣∣∣0 ≤ ac ≤ nc for all c ∈ {1, . . . ,k}
}

Furthermore, we define the set A1 which consists of those tuples representing sets of jobs
which are either empty or for which the sum of processing times is at least q, i.e. each
element corresponds to a feasible assignment of jobs to one machine:

A1 B

a ∈ A
∣∣∣∣ k∑

c=1

ac pc ≥ q or a = 0


Let f (a, j) for some a ∈ A and some j ∈ {1, . . . ,m} denote the value of an optimal solution
that schedules the jobs indicated by a in such a way that at most j machines are active. If
there is no such solution, we use the convention f (a, j) =∞. Let OPT(a) indicate the optimal
sum of completion times if the jobs indicated by a ∈ A are assigned to one machine. OPT(a)
can be computed by scheduling the jobs in the order of non-decreasing processing times. We
initialize f for all a ∈ A as follows:

f (a,1)B

OPT(a) if a ∈ A1

∞ else

We iteratively increase j (until we reach j = m) and compute f (a, j) for all possible a ∈ A in
each iteration as follows:

f (a, j)B min
a′ ∈A1

(
f
(
a−a′, j−1

)
+ f (a′,1)

)
Note that once we reach j = m, it is actually sufficient to compute f (a,m) for a = (n1, . . . ,nk),
since all jobs have to be scheduled in order for the solution to be feasible.
We show by induction on j that the algorithm is correct, i.e. f (a, j) is in fact the value of
an optimal solution we obtain from scheduling the jobs corresponding to a on at most j
machines: For the base case j = 1, the correctness of f (a,1) follows by construction.
For the induction step we assume that f (a, j−1) has been computed correctly for all a ∈ A.
Given a set of jobs, the value of an optimal assignment of these jobs to j machines can then
be determined by minimizing the sum of the value obtained from scheduling a subset of
these jobs on j−1 machines and the value obtained from scheduling the remaining jobs on
one machine. This is exactly how f (a, j) is defined.
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Note that f (a, j) ≤ f (a, j− 1), since 0 is contained in A1. So once the above dynamic
program has computed all the values f (a, j), the optimal sum of completion times is given by
f (a,m) for a = (n1, . . . ,nk).
We conclude the proof by showing that the number of steps required by the algorithm is
polynomial in the size of the instance. The argumentation is similar to Theorem 2.3.1:

• Grouping the jobs by their processing times can be done in O(n logk) steps.

• For computing A1, it is necessary to check for all possible combinations of jobs

whether the corresponding sum of processing times is at least q. There are
k∏

c=1
(nc+1)

combinations of jobs, so A1 can be computed in O(nk). This implies that A1 contains

at most
k∏

c=1
(nc+1) elements.

• Assuming that all values required for the computation are already known, the compu-
tational complexity of determining f (a, j) for one specific combination of a and j is

O(nk). There are (m−1)
k∏

c=1
(nc+1)+1 such computations of f (a, j).

• So all in all, the number of steps required by the algorithm is bounded from above by
O(mn2k).

�

Remark 3.3.11. Note that the above dynamic program is very generic. We have used the fact
that Pq||

∑
Ci is a minimization problem. By exchanging min for max in the calculation of

f (a, j) and∞ for −∞ in the initialization step of f (a,1), this would also work for a maximiza-
tion problem. Furthermore, the polynomial run time of the algorithm relies on the polynomial
solvability of P||

∑
Ci on one machine. Note that we can neglect the minimum quantity here,

since we filter out infeasible solutions during the initialization of f (a,1). Furthermore, the
dynamic program is based on the assumption that there are no interdependencies between
jobs that are scheduled on different machines, i.e. once each job is assigned to a specific
machine, we can optimize all machines individually. Note that this would not be the case
in the presence of precedence constraints. The requirement to have a bounded number of
processing times could be expressed more generally by requiring that the number of different
values of each job property (such as processing time, weight, release date, etc.) is bounded.
Then the number of possible combinations of these properties is also bounded. Finally, we
require the machines to be identical. So all in all, the above dynamic program might work
for all scheduling problems that fulfill the following properties (We say “might”, since we
have not given a formal definition of what a scheduling problem is in general and in order to
exclude pathological cases.):
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• There are n identical machines with minimum quantity q.

• The number of different values of each job property is bounded.

• The problem can be solved in polynomial time if there is only one machine.

• There are no interdependencies between jobs that are scheduled on different machines.

From the previous observation we obtain the following corollary:

Corollary 3.3.12. Pq||
∑

wiCi can be solved in polynomial time if the number of different
processing times and the number of different job weights are bounded.

Proof. The first, the second and the fourth property that Remark 3.3.11 requires are fulfilled
by assumption. The third property is fulfilled, since 1||

∑
wiCi can be solved in polynomial

time [46]. �

We now return to the general case of Pq||
∑

Ci with an arbitrary number of different
processing times. In [45] it is shown that P2q||

∑
Ci (and thus Pq||

∑
Ci) is at least weakly

NP-hard. We now show that Pq||
∑

Ci is even strongly NP-hard:

Theorem 3.3.13. Pq||
∑

Ci is strongly NP-hard.

Proof. We show that there is a reduction from 3-PARTITION, which is known to be strongly
NP-hard [16]. Let an instance of 3-PARTITION be given by 3n integers pi and an integer

B so that
3n∑
i=1

pi = Bn and B
4 < pi <

B
2 . The task is to partition these integers into n blocks

where the sum of the integers in each block is B. Note that due to the sizes of the integers it
is clear that if such a partitioning exists, then every block of the partition contains exactly
three elements. Trivially, 3-PARTITION can be solved in polynomial time if n is fixed.
Hence, we can assume w.l.o.g. that n ≥ 5. We create an instance of Pq||

∑
Ci as follows: We

create n machines with minimum quantity qB 3Bn+B+1. For each of the integers pi given
by 3-PARTITION we create a job i ∈ PB {1, . . . ,3n} and interpret pi as the corresponding
processing time. In addition, we create n jobs i ∈ AB {3n+1, . . . ,4n} with processing times
pi B 3Bn+1. We claim that the following equivalence holds:
There is a feasible solution to the given instance of 3-PARTITION if and only if in every
optimal solution to the instance of Pq||

∑
Ci all n machines are active (which implies that the

load on each of these machines is q = 3Bn+B+1).
Assume that in every optimal solution to the instance of Pq||

∑
Ci all n machines are active.

As the set of feasible solutions is non-empty by construction, there is at least one such
solution on n active machines. Note that in order for a machine to be active, at least one job
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from A has to be scheduled on this machine. If this was not the case and there were only jobs
from P scheduled on some machine j, then we would have load( j) ≤ Bn < 3Bn+B+1 = q.
As there are n active machines and exactly n jobs in A, exactly one job from A is scheduled
on each of the machines. In order for the solution to be feasible, the sum of processing times
of the jobs from P on each machine has to be at least B. By construction, this is only possible
if the sum of processing times of the jobs from P is exactly B on each machine. Obviously,
this schedule induces a solution to 3-PARTITION.
We now show the other direction of the claim and assume that there is a feasible solution
to the given instance of 3-PARTITION. First of all, note that in this case there is always
a feasible schedule with n active machines, which is obtained by assigning all blocks of
integers (i.e. of jobs in P) according to the solution to 3-PARTITION to different machines
and adding one job from A to each machine. We now show that in this case a schedule with
less than n active machines cannot be optimal. Let OPT denote the value of an optimal
schedule and let OPT<n denote the value of an optimal solution if we restrict the number of
available machines to at most n−1. We show that OPT < OPT<n. We first establish an upper
bound on OPT. As we have already seen, a solution on n machines schedules three jobs from
P and one job from A on each machine. Furthermore, in order for the solution to be optimal,
the jobs must be scheduled in the order of non-increasing processing times. The schedule on
an arbitrary machine j is depicted in Figure 3.3.3, where the white rectangles represent jobs
from P and the grey rectangle represents a job from A.

M j

0 C1 C2 C3 = B C4 = q

Fig. 3.3.3 The structure of a partial solution on one machine j

The actual sum of completion times depends on the processing times of the jobs in P, i.e.
on the instance of 3-PARTITION.
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For determining an upper bound on the sum of completion times, we solve the following
LP. It is easy to see that the maximum is attained for p1 = p2 = p3 =

B
3 .

maximize: 3p1+2p2+ p3

subject to:
3∑

i=1

pi = B

pi ≤ pi+1 i = 1,2

pi <
B
2

i = 1,2,3

pi >
B
4

i = 1,2,3

Hence, we obtain the following upper bound on the sum of completion times on one machine:
4∑

i=1
Ci ≤

B
3 +

2B
3 +B+3Bn+B+1 = 3Bn+3B+1. Thus, OPT cannot exceed 3Bn2+3Bn+n.

We now consider OPT<n. Given that there are at most n−1 machines and n jobs in A with
processing time 3Bn+1, at least one machine processes two jobs from A. We would like
to derive a lower bound on OPT<n, so we can ignore the completion times of the jobs in P
and only focus on the completion times of the jobs from A. Every job j ∈ A has completion
time C j ≥ 3Bn+1 and there is at least one job j ∈ A for which C j ≥ 2(3Bn+1). Thus, we
have that OPT<n ≥ (n−1)(3Bn+1)+2(3Bn+1) = 3Bn2+3Bn+n+1. So all in all, we have
OPT ≤ 3Bn2+3Bn+n < 3Bn2+3Bn+n+1 ≤ OPT<n. Hence, we have shown that if there is
a feasible solution to the given instance of 3-PARTITION, then in every optimal solution to
the instance of Pq||

∑
Ci all n machines must be active.

Thus, solving the instance of Pq||
∑

Ci either returns a solution on less than n active machines,
i.e. there is no solution to 3-PARTITION, or it returns a schedule on n active machines which
induces a solution to 3-PARTITION. This shows the claim. �

We now turn our attention to scheduling problems with minimum quantities on unre-
lated machines, in particular Rq||Cmax and Rq||

∑
Ci. Note that for unrelated machines the

processing time of job i on machine j is given by some pi, j. More information on scheduling
problems on unrelated machines can be found in [9]. Note that we already know that Rq||Cmax

and Rq||
∑

Ci are strongly NP-hard because P||Cmax and Pq||
∑

Ci are both strongly NP-hard
([16] and Theorem 3.3.13, respectively). For P||Cmax and Pq||

∑
Ci there are polynomial-time

fixed-ratio approximations ([45] and Theorem 3.3.6, respectively). Thus, we are interested in
finding fixed-ratio approximations for Rq||Cmax and Rq||

∑
Ci as well. However, we now show

that, unless P=NP, such approximations cannot exist. In order to show the inapproximability,
we require the following definition and remark:
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Definition 3.3.14 (3-bounded 3-dimensional matching problem (3DM-3) [33]). Let X, Y , Z
be sets with |X| = |Y | = |Z| = n. Let T ⊆ X×Y ×Z and each element of X∪Y ∪Z appears at
most three times as a coordinate of T . The 3-bounded 3-dimensional matching problem is to
find a maximum cardinality subset M ⊆ T so that no two elements agree in any coordinate.

Remark 3.3.15. In [33], several complexity results due to [27] and [40] are summarized.
The most important one in our context is the fact that there is an ϵ > 0 for which it is NP-hard
to decide, whether a given instance of 3DM-3 has a maximum matching of size n or whether
all matchings have size at most n(1− ϵ) (hard gap at location 1).

We are now ready to show the claim:

Theorem 3.3.16. For α > 1 fixed, there cannot be any polynomial-time α-approximation
algorithm for Rq||Cmax and Rq||

∑
Ci, unless P=NP.

Proof. We show the claim using a reduction from 3DM-3. Let an instance of 3DM-3 as
described in Definition 3.3.14 be given. Let mB |T |. For each element in T we create a
corresponding machine with minimum quantity q = 3 and for each element in X∪Y ∪Z we
create a corresponding job. We obtain m machines and 3n jobs. For some machine j we
denote the corresponding element in T by T j =

{
x j,y j,z j

}
. If some job i corresponds to one

of the coordinates of T j, we denote this by i ∈ T j. For now, let k be a variable integer. We
define the processing times as follows:

pi, j B

1 if i ∈ T j

kn else

Assume that M ⊆ T is a feasible solution to 3DM-3 for which |M| = n. We assign job i to
machine j if i ∈ T j. Obviously, we obtain a feasible schedule with value 3n (for Rq||Cmax) or
6n (for Rq||

∑
Ci), respectively. Now assume that there is no feasible solution to 3DM-3 for

which |M| = n: Then in every feasible schedule there is at least one job i that is assigned to
a machine j so that pi, j = kn. Thus, the ratio of the value of a feasible schedule if |M| = n
to the value of a feasible schedule if |M| < n is at least k

3 (for Rq||Cmax) or k
6 (for Rq||

∑
Ci),

respectively. Now assume that there is an α-approximation for one of the problems. If we
set kB 6α+1, the approximation algorithm must return a schedule in which all jobs i are
assigned to machines j so that pi, j = 1 if and only if there is a feasible solution to 3DM-3 for
which |M| = n. In particular, this would allow us to determine in polynomial time if there is a
solution with value n to a given instance of 3DM-3, which is NP-hard according to Remark
3.3.15. �



46 Scheduling problems

Note that the above proof can be easily adapted to other scheduling problems on unrelated
machines.
In [45] it is shown that Pq|pmtn|Cmax can be solved in polynomial time. We give now give a
more general result.

Theorem 3.3.17. Let Pq|pmtn| f (Ci) be a scheduling problem with minimum quantities where
f (Ci) is an arbitrary objective function that only depends on the completion times of the
jobs (In particular, this implies regular objective functions). If P|pmtn| f (Ci) can be solved in
polynomial time, then Pq|pmtn| f (Ci) can also be solved in polynomial time.

In order to prove the claim, we show that we can first solve the problem without minimum
quantities and then reschedule the jobs in order to fulfill the minimum quantities. Let an
instance of Pq|pmtn| f (Ci) be given. As usual, n denotes the number of jobs and m denotes

the number of machines. Set p B
n∑

i=1
pi and m′ B min

{
m,

⌊ p
q

⌋}
. Trivially, m′ is an upper

bound on the number of active machines a solution to the problem instance can use. We now
solve the given instance of Pq|pmtn| f (Ci) without the minimum quantities, i.e. P|pmtn| f (Ci),
on m′ machines. By assumption, this can be done in polynomial time. Let Cmax denote the
maximal completion time in that schedule. We determine all the different points in time tk
at which a job begins, ends or is preempted. We order these points in time in increasing
order 0 = t0 < t1 < · · · < tr =Cmax. Note that the number of different points in time at which
jobs begin or end is bounded from above by 2n. Furthermore, the number of preemptions is
polynomially bounded in the size of the instance of P|pmtn| f (Ci) (and thus, in the size of the
instance of Pq|pmtn| f (Ci)) since the schedule is the output of a polynomial-time algorithm.
Hence, r is polynomially bounded in the size of the input instance of Pq|pmtn| f (Ci). Based
on these points in time we define intervals Tk B [tk−1, tk] for all k ∈ {1, . . . ,r}. For each Tk, let
Jk denote the set of jobs that are processed during this interval. Note that |Jk| ≤ m′ for all
k ∈ {1, . . . ,r}. The intervals Tk and the corresponding sets of jobs Jk are used as an input for
Algorithm 4.
The algorithm works as follows: For some machine j ∈ {1, . . . ,m′} we denote the set of
time periods during which the machine is idle by I j. The algorithm starts with m′ inactive
machines so that we have I j = [0,Cmax] for all j ∈ {1, . . . ,m′} in the beginning. The algorithm
successively schedules load p

m′ on each machine. In order to do so, the time intervals Tk

during which some machine j is idle are identified. Among these time intervals an interval
for which |Jk| is maximal is selected. This is necessary in order for the algorithm to be
well-defined, as we will see in the proof of the claim. A fraction of an arbitrary job from
Jk is selected and scheduled on machine j. Subsequently, I j and Jk are updated. If we still
have load( j) < p

m′ after scheduling the job, a job from another time interval Tk during which
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machine j is idle and for which |Jk| is maximal is scheduled. This procedure is repeated
until load( j) = p

m′ . If processing the selected job on machine j during the complete time
interval Tk would cause load( j) to exceed p

m′ , the interval Tk is split. Therefore, we have to
differentiate two cases (lines 5-9 and lines 10-15 of the algorithm). Once load( j) = p

m′ , the
algorithm processes machine j+1 or terminates if all machines have been processed.

Algorithm 4 Reschedule Pq|pmtn| f (Ci)
1: Set I j B [0,Cmax] for all j ∈ {1, . . . ,m′}
2: Set jB 1 ◃ The machine that is currently processed by the algorithm
3: while j ≤ m′ do
4: Among the time intervals for which I j∩Tk = Tk, select one for which |Jk| is maximal
5: if tk − tk−1 >

p
m′ − load( j) then

6: Split Tk into Tk1 B
[
tk−1, tk−1+

q
m′ − load( j)

]
and Tk2 B

[
tk−1+

q
m′ − load( j), tk

]
7: Schedule one job i from Jk1 on machine j during Tk1

8: Set I j B I j \Tk1 and Jk1 B Jk1 \ {i}
9: Set jB j+1

10: else
11: if tk − tk−1 =

p
m′ − load( j) then ◃ The condition implies that we have

load( j) = p
m′ after scheduling job i in line 14

12: Set jB j+1
13: end if
14: Schedule one job i from Jk on machine j during Tk

15: Set I j B I j \Tk and Jk B Jk \ {i}
16: end if
17: end while

We need two auxiliary results:

Lemma 3.3.18. Once the execution of the if-block (lines 5 - 16) starts, we always have
I j∩Tk = Tk or I j∩Tk = ∅ for all j and all k.

Proof. We show the claim by induction on the number of times the if-block is executed. Let
us consider the first execution of the if-block as the base case. Since I j B [0,Cmax] for all
j ∈ {1, . . . ,m′} and Tk ⊆ [0,Cmax] for all k, it is clear that I j∩Tk = Tk for all j and all k.
For the induction step, we assume that the statement is true before the if-block is executed in
some iteration. If the if-case is true, then the interval Tk is split and we get that I j∩Tk1 = ∅

and I j∩Tk2 = Tk2 . If the else-case applies, we get that I j∩Tk = ∅ at the end of the if-block.
Nothing changes regarding the other intervals Tk′ with k , k′. Furthermore, the intervals Tk
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and I j do not change before the next start of the if-block, so the statement also holds in the
next iteration. �

Lemma 3.3.19. Once machines 1, . . . , j have been completely processed, we have that
max

k
|Jk| ≤ m′− j.

Proof. Once again, we show this claim by induction on j. For j = 0, i.e. before the algorithm
starts, this statement obviously holds by construction. For the induction step, we assume
that the statement holds after the previous iteration in which machine j was processed, i.e.
max

k
|Jk| ≤ m′− j. If max

k
|Jk| ≤ m′− j−1, then the claim also holds for machine j+1, since

|Jk| never increases during the execution of the algorithm. Else, we have that max
k
|Jk| =m′− j

after iteration j. Recall that the algorithm assigns load p
m′ to each machine. Thus, load jp

m′ has
already been assigned by the algorithm once iteration j+1 starts and the remaining load still
to be assigned is (m′− j) p

m′ . Now assume that
∑

k:|Jk |=m′− j
(tk − tk−1) > p

m′ , i.e. the sum of the

lengths of the intervals Tk, for which |Jk| attains the maximum, exceeds p
m′ at the beginning

of iteration j+1. This yields the following contradiction, where the left-hand side of the
inequality is a lower bound on the unscheduled load according to the assumption and the
right-hand side is the actual unscheduled load at the beginning of iteration j+1:

(m′− j)
∑

k:|Jk |=m′− j

(tk − tk−1) > (m′− j)
p

m′

Hence, we have that
∑

k:|Jk |=m′− j
(tk − tk−1) ≤ p

m′ . Once the algorithm processes machine j+1,

the algorithm schedules load p
m′ from those time intervals Tk for which |Jk| is maximal, i.e.

|Jk| = m′− j. Since the sum of the lengths of these time intervals is at most p
m′ , one job is

removed from all these sets |Jk| so that max
k
|Jk| drops to m′− j−1, which shows the claim.

�

We are now ready to show the correctness of Theorem 3.3.17:

Proof of Theorem 3.3.17. First of all, we show that all steps of the algorithm are in fact
well-defined. This is the case if an interval Tk for which I j ∩Tk = Tk and |Jk| ≥ 1 always
exists in line 4 of the algorithm .
Assume that this is not the case: If I j∩Tk , Tk for all k, then according to Lemma 3.3.18 we
have I j∩Tk = ∅ for all k. Note that

⋃
k

Tk = [0,Cmax]. If I j∩Tk = ∅ for all k, then machine j

is busy during the whole interval [0,Cmax]. Since Cmax ≥
p

m′ and the algorithm schedules at
most load p

m′ on each machine and continues with machine j+1 afterwards or terminates,
I j∩Tk = ∅ for all k is not possible. So, by Lemma 3.3.18, there is at least one k for which
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I j∩Tk = Tk.
We assume that |Jk| = 0 holds for all k for which I j∩Tk = Tk. This implies that |Jk| > 0 only
for those time intervals, for which I j∩Tk = ∅. By construction, these are exactly the time
intervals during which machine j is busy. We have that load( j) < p

m′ , because otherwise the
algorithm would already have moved to machine j+1. Hence, once the algorithm finished
processing machine j−1, the sum of the lengths of the intervals Tk for which |Jk| ≥ 1 was at
most load( j) < p

m′ . Furthermore, according to Lemma 3.3.19, we had max
k
|Jk| ≤ m′− j+1.

So once the algorithm had scheduled load ( j−1) p
m′ on the first j−1 machines, the remaining

load still to be assigned was at most (m′− j+1)load( j) < (m′− j+1) p
m′ . This contradicts the

fact that in total there is load p to be scheduled. Thus, in line 4 of the algorithm some k for
which I j∩Tk = Tk and |Jk| ≥ 1 must always exist. Hence, the algorithm is in fact well-defined.
The algorithm schedules load p

m′ ≥ q on each machine, so the schedule we obtain is in fact
feasible regarding the minimum quantities.
We now consider optimality of the solution created by Algorithm 4: By construction, m′ is an
upper bound on the number of machines that can be active in a feasible solution to the problem
with minimum quantities. We use an optimal solution to the problem without minimum
quantities on m′ (not necessarily active) machines as an input to Algorithm 4. Trivially, the
objective value of this solution is a lower bound on the optimal objective value of a solution
to the initial instance of Pq|pmtn| f (Ci). Algorithm 4 maintains the completion times of the
jobs, which implies that it also maintains the objective value of the solution. Hence, the
output of Algorithm 4 is in fact an optimal solution to the instance of Pq|pmtn| f (Ci).
We now consider the number of steps required in order to compute an optimal solution to
Pq|pmtn| f (Ci): By assumption, P|pmtn| f (Ci) can be solved in polynomial time. Furthermore,
as we have already noted, r is polynomially bounded in the size of the input instance of
Pq|pmtn| f (Ci). This implies that the intervals Tk and the corresponding sets Jk can also
be created in polynomial time. Once these inputs have been computed, Algorithm 4 is
applied: Each iteration of the while-loop can be processed in polynomial time. The number
of iterations of the while-loop per machine is bounded by the number of time intervals Tk

because each interval is processed at most once for each machine. The algorithm starts with
r time intervals. If a time interval is split, the number of time intervals increases by one. In
every iteration in which a time interval is split we also set jB j+1. Thus, the number of
time intervals at the end of the algorithm is bounded by r+m′ which implies that the number
of iterations of the while-loop is bounded by m′(r+m′). Therefore the overall number of
steps that is necessary for computing an optimal solution to Pq|pmtn| f (Ci) is polynomially
bounded. �



50 Scheduling problems

According to [37] Q|pmtn|
∑

Ci can be solved in polynomial time. Hence, this also holds
for P|pmtn|

∑
Ci and using Theorem 3.3.17 we obtain the following result:

Corollary 3.3.20. Pq|pmtn|
∑

Ci can be solved in polynomial time.

Furthermore, according to [38], P|pmtn|Cmax can be solved in polynomial time. Hence,
we obtain the following corollary from Theorem 3.3.17:

Corollary 3.3.21. Pq|pmtn|Cmax can be solved in polynomial time.

Note that polynomial solvability of Pq|pmtn|Cmax has already been shown in [45]. How-
ever, the definition of preemption in [45] differs from ours, as it is assumed that preemptions
only take place at integral points in time, while we allow preemptions to take place at arbitrary
points in time.
Having shown that many scheduling problems with minimum quantities that allow preemp-
tion stay polynomially solvable with minimum quantities, one might ask if this also holds for
other machine environments, such as uniform machines. According to [37], Q|pmtn;ri|Cmax

can be solved in polynomial time. However, we now show that the problem becomes NP-hard
once we add minimum quantities:

Theorem 3.3.22. Qq|pmtn|Cmax is NP-hard.

Proof. We show the claim using a reduction from PARTITION. Let an instance of PARTI-

TION be given by n integers pi for i ∈ {1, . . . ,n} for which
n∑

i=1
pi = 2B. We assume w.l.o.g that

pi ≤ B for all i ∈ {1, . . . ,n}. We create an instance of Qq|pmtn|Cmax: For each of the integers
pi we create a corresponding job and a corresponding machine that both use the index i.
The processing requirement of job i and the speed of machine i are both pi, i.e., it takes one
time unit to process job i on machine i. In addition, we create job n+ 1 with processing
requirement pn+1 B B+1 and machine n+1 with speed 2B+1. Each of the machines has
minimum quantity q = 1.
We claim that there is a feasible solution to PARTITION if and only if the optimal solution
to the instance of Qq|pmtn|Cmax is Cmax = 1.
Assume that there is a feasible solution to the instance of PARTITION that is given by P1

and P2 so that P1
⋃̇

P2 = {1, . . . ,n}. Schedule all jobs i ∈ P1 on the corresponding machine
i. Schedule all jobs i ∈ P2 as well as job n+ 1 on machine n+ 1. Recall that for uniform
machines load( j) and the minimum quantity refer to the sum of all pi

s j
for which job i is

scheduled on machine j. We now have load(i) ∈ {0,1} for all machines i ∈ {1, . . . ,n+1} which
is a feasible and optimal solution to Qq|pmtn|Cmax of makespan 1.
Let an optimal solution to Qq|pmtn|Cmax with Cmax = 1 be given. If machine n+ 1 was
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inactive, then job n+1 would be processed with speed at most B on the machines i ∈ {1, . . . ,n}.
Since job n+1 can be processed only on one machine at each point in time and its processing
requirement is B+1, its total processing time would be at least B+1

B > 1. This contradicts
Cmax = 1. Therefore, machine n+1 must be active. For the minimum quantity of machine
n+ 1 to be fulfilled and for load(n+ 1) (and hence Cmax) not to exceed 1, the processing
requirements on machine n+ 1 must be exactly 2B+ 1. This leaves a sum of processing
requirements B to be scheduled on the machines i ∈ {1, . . . ,n}. Since Cmax = q = 1, all active
machines must be busy during the time interval [0,1]. Hence, we have that B∑

i∈P
pi
= 1 for some

P ⊆ {1, . . . ,n}. This implies that
∑
i∈P

pi = B, so we have found a solution to PARTITION.

Therefore, we can determine whether there is a solution to PARTITION by solving the
instance of Qq|pmtn|Cmax. If so, the solution to Qq|pmtn|Cmax induces a solution to PARTI-
TION, which implies NP-hardness of Qq|pmtn|Cmax. �

Note that Theorem 3.3.22 implies that Theorem 3.3.17 cannot be extended to uniform
machines.
We now consider open shop problems with minimum quantities as defined in Definition 3.2.5,
in particular Oq j||Cmax and Oq j||

∑
Ci. Note that instances of Oq j|| f for which m j = 1 and

q j = 0 for all machine groups j are actually instances of O|| f , where f denotes an arbitrary
objective function. In addition, an instance of Oq j|| f where j = 1, i.e. if there is only one
machine group, is actually an instance of Pq|| f . Hence, Oq j|| f is at least as hard as O|| f and
Pq|| f . In particular, we obtain the following result:

Corollary 3.3.23. Oq j||Cmax and Oq j||
∑

Ci are both strongly NP-hard and unless P=NP,
there is no polynomial-time approximation with a fixed ratio better than 2.

Proof. For Oq j||Cmax strong NP-hardness follows from the fact that P||Cmax (and thus
Pq||Cmax) is strongly NP-hard [15]. Inapproximability with a fixed ratio better than 2
is shown in [45] for Pq||Cmax.
In Theorem 3.3.13 we have shown that Pq||

∑
Ci is strongly NP-hard, so this also applies to

Oq j||
∑

Ci. Inapproximability with a fixed ratio better than 2 follows from Theorem 3.3.4. �

In certain cases, open shop problems can be solved in polynomial time. We show that this
is possible for unit size operations on the one hand and the case that preemption is allowed
on the other hand. In order to do so, we require the following result from [18]:
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Theorem 3.3.24. Let an instance of O|pmtn|Cmax be given. Set T j B
n∑

i=1
pi, j and Li B

m∑
j=1

pi, j. An optimal schedule can be computed in polynomial time and we have Cmax =

max
{

m
max

j=1
T j,

n
max
i=1

Li

}
.

Theorem 3.3.25. Oq j|pmtn|Cmax can be solved in polynomial time.

Proof. Let an instance I of Oq j|pmtn|Cmax be given and let c j denote the number of machines
in machine group j (cf. Definition 3.2.5). We show that we can solve Oq j|pmtn|Cmax in
polynomial time in two steps:

• Step 1: Solving m instances of Pq|pmtn|Cmax

Recall that every job i consists of j operations and operation oi, j must be processed
by a machine in machine group j. For a fixed machine group j, we create an instance
of Pq|pmtn|Cmax by interpreting all operations oi, j as jobs that have to be processed
on c j identical machines with minimum quantity q j. We denote this instance of
Pq|pmtn|Cmax by I j. According to Corollary 3.3.21, Pq|pmtn|Cmax can be solved
in polynomial time. We apply a polynomial-time algorithm to all instances I j for
j = 1, . . . ,m. Let OPT j denote the optimal makespan of I j.

• Step 2: Solving one instance of O|pmtn|Cmax

Let the individual machines in machine group j be denoted by ( j,k) for k ∈
{
1, . . . ,c j

}
.

We now split every operation oi, j into c j operations: For each operation oi, j,k where
i ∈ {1, . . . ,n}, j ∈ {1, . . . ,m} and k ∈

{
1, . . . ,c j

}
, pi, j,k is the processing time of job i on

machine ( j,k) in the solution to I j that we have computed in step 1. Note that pi, j,k = 0
is possible.
We create an instance of O|pmtn|Cmax consisting of the machines ( j,k) for j ∈ {1, . . . ,m}
and k ∈

{
1, . . . ,c j

}
as defined above (without minimum quantities) and n jobs. Each

job i consists of the operations oi, j,k with processing times pi, j,k as defined above. For
some machine ( j,k), the operations oi, j,k for i = 1, . . . ,n are the ones that have to be
processed by this machine. We denote this instance of O|pmtn|Cmax by I′. According
to Theorem 3.3.24 we can solve I′ in polynomial time.

We claim that this solution to I′ is actually an optimal (and feasible) solution to I, the initial
instance of Oq j|pmtn|Cmax. We show feasibility of the solution first: By construction, the
load that is scheduled on each machine ( j,k) in this solution to I′ equals the load on the
respective machine in the solution to I j. Since this schedule was feasible with respect to
the minimum quantities q j, so is the solution to I′. Let T ′j,k and L′i be defined regarding I′
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as in Theorem 3.3.24. Then, according to the theorem, the solution we have computed for

I′ has makespan OPT′ =max
{

m
max

j=1

c j
max
k=1

T ′j,k,
n

max
i=1

L′i

}
. We now consider the initial instance

I. Let OPT denote the optimal makespan of I. Obviously
m

max
j=1

OPT j is a lower bound on

OPT. By construction we have that
m

max
j=1

c j
max
k=1

T ′j,k ≤
m

max
j=1

OPT j. Another lower bound on

OPT is given by
n

max
i=1

m∑
j=1

pi, j and we have
n

max
i=1

m∑
j=1

pi, j =
n

max
i=1

m∑
j=1

c j∑
k=1

pi, j,k =
n

max
i=1

L′i . Hence, we

get that OPT′ =max
{

m
max

j=1

c j
max
k=1

T ′j,k,
n

max
i=1

L′i

}
≤max

 m
max

j=1
OPT j,

n
max
i=1

m∑
j=1

pi, j

 ≤ OPT, which

yields optimality of the solution. We find the optimal solution in polynomial time, as we can
solve Pq|pmtn|Cmax and O|pmtn|Cmax in polynomial time according to Corollary 3.3.21 and
Theorem 3.3.24. �

We conclude our analysis of open shop problems with the following theorem:

Theorem 3.3.26. Oq j|pi, j = 1|Cmax can be solved in polynomial time.

Proof. Let an instance of Oq j|pi, j = 1|Cmax with n jobs and m machine groups be given. Then
the sum of processing times that every machine has to process is n. As before, let c j denote

the number of machines in machine group j. Set qB
m

max
j=1

q j and m′ Bmin
{⌊

n
q

⌋
,

m
min
j=1

c j

}
. In

every feasible schedule there is at least one machine group that uses at most m′ machines.
Therefore, we have that

⌈
n

m′
⌉

is a lower bound on Cmax. Furthermore, since the sum of
the processing times corresponding to the (unit size) operations of each job is m and the
operations of the same job cannot be processed concurrently, m is another lower bound on
Cmax. We set tBmax

{⌈
n

m′
⌉
,m

}
and show how to create a solution with optimal makespan

Cmax = t.
We create a solution for machine group j= 1 on m′ ≤ c1 machines. Schedule q≥ q1 operations
on each of the m′ machines in such a way that none of the machines becomes idle before
the last operation on the respective machine has been processed. By construction we
have m′q ≤ n. Hence, we can in fact schedule at least q operations on each machine. If
there are any operations left, schedule them on arbitrary machines in such a way that
|load( j1)− load( j2)| ≤ 1 for all j1, j2 ∈ {1, . . . ,m′}. The resulting schedule on machine group
j = 1 is obviously feasible and its makespan is

⌈
n

m′
⌉
≤ t. Based on this schedule we now create

schedules for the machine groups j = 2, . . . ,m using a simple permutation approach: If an
operation oi,1 is processed on the kth machine of machine group j = 1 for some k ∈ {1, . . . ,m′},
then it is also processed on the kth machine of all other machine groups. Hence, in order to
define a schedule on all machine groups, it is sufficient to provide the point in time at which
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the processing of each operation begins. Since m′ ≥ c j for all j, there are enough machines in
each machine group in order for this to be well-defined. Furthermore, the sum of processing
times on each machine is at least q so that such a schedule is feasible regarding all minimum
quantities because q ≥ q j for all j. Let ti, j denote the point in time at which the processing of
operation oi, j starts. For j = 1 these values are already known and ti,1 ≤ t−1 for all i. Set
ti, j B ti,1+ j−1 (mod t) for all i ∈ {1, . . . ,n} and j ∈ {2, . . . ,m}. Hence, ti, j ≤ t−1 for all i and
all j and the completion time of all jobs is at most t, which implies optimality of the schedule.
We still have to show that there is no point in time at which two operations oi, j′ and oi, j′′ for
j′ , j′′ are concurrently processed. By construction it is sufficient to show that ti, j′ , ti, j′′ .
Note that by construction ti, j = ti,1+ j−1 (mod t) also holds for j = 1. For j′, j′′ ∈ {1, . . . ,m}
we have that | j′− j′′| ≤ m− 1 ≤ t− 1. Hence ti,1 + j′ − 1 (mod t) = ti,1 + j′′ − 1 (mod t) for
j′ , j′′ is not possible. �

3.4 Conclusion

In this chapter we have given a summary of the existing research on the topic of scheduling
problems with minimum quantities and we were able to contribute further results.
In particular, we have shown strong NP-hardness of the following problems:

• Pq||
∑

Ci (Theorem 3.3.13)

• Oq j||Cmax and unless P=NP, there is no polynomial-time approximation with a fixed
ratio better than 2 (Corollary 3.3.23)

• Oq j||
∑

Ci and unless P=NP, there is no polynomial-time approximation with a fixed
ratio better than 2 (Corollary 3.3.23)

We could show (at least weak) NP-hardness of the following problem:

• Qq|pmtn|Cmax (Theorem 3.3.22)

Furthermore, we have seen that there cannot be any polynomial-time fixed-ratio approxima-
tion algorithm for these problems, unless P=NP:

• Rq||Cmax (Theorem 3.3.16)

• Rq||
∑

Ci (Theorem 3.3.16)
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On the other hand, the following problems can be solved in polynomial time:

• Pq||Cmax if the number of different processing times is bounded by a fixed integer k
(Theorem 3.3.9)

• Pq||
∑

wiCi if the number of different processing times and the number of different job
weights are bounded by fixed integers (Corollary 3.3.12)

• Pq|pmtn| f (Ci) where f (Ci) is an arbitrary objective function that only depends on
the completion times of the jobs if P|pmtn| f (Ci) can be solved in polynomial time
(Theorem 3.3.17)

• Pq|pmtn|
∑

Ci (Corollary 3.3.20)

• Pq|pmtn|Cmax (Corollary 3.3.21)

• Pq||
∑

Ci if the number of different processing times is bounded by a constant
(Theorem 3.3.10)

• Oq j|pmtn|Cmax (Theorem 3.3.25)

• Oq j|pi, j = 1|Cmax (Theorem 3.3.26)

In addition, we were able to provide several polynomial-time approximations for NP-hard
problems:

• If there is a (1+ ϵ)-approximation for P|ri|Cmax for some fixed ϵ > 0, then there is also
a (1+ ϵ + 1

β , β)-approximation for Pq j|ri|Cmax for every fixed β ≥ 1 (Theorem 3.3.1)

• If there is a (1+ϵ)-approximation for P||Lmax for ϵ > 0, then there is also a (1+ϵ+ 1
β , β)-

approximation for Pq j||Lmax for ϵ > 0 for every fixed β ≥ 1 (Theorem 3.3.2)

• For every ϵ > 0 there is a polynomial-time (2+ ϵ)-approximation algorithm for
Pq j|ri|Cmax (Corollary 3.3.3)

• For every ϵ > 0 there is a polynomial-time (2+ ϵ)-approximation algorithm for
Pq j||Lmax (Corollary 3.3.3)

• For every ϵ > 0 there is a polynomial-time (3+ ϵ)-approximation algorithm for
Pq j|ri|Lmax (Corollary 3.3.3)
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• There is a polynomial-time 2-approximation algorithm for Pq j||
∑

Ci (Theorem 3.3.6),
which is the best possible fixed approximation ratio we can obtain in polynomial time
(Theorem 3.3.4)

• For every ϵ > 0 there is a polynomial-time (1+ ϵ,1+ ϵ)-approximation algorithm for
Pq||Cmax (Theorem 3.3.7)



Chapter 4

Matching problems

4.1 Introduction

Matching problems are a broad area within combinatorial optimization and are historically
closely tied to the development of polyhedral theory in the context of integer programming
[41]. Some well-known examples of this class of problems are the maximum-weight match-
ing problem and the perfect matching problem. We define matching problems with minimum
quantities based on the maximum-weight b-matching problem. It consists of an undirected
graph where each edge has a weight and each node v has a capacity bv. The task is to find a
maximum-weight multi-set of edges so that each node is matched by at most bv edges [12].
We generalize this problem by adding a minimum quantity qv on each node.
This model could be applied to the following example in intermediary trade: Assume that
there is a set of suppliers and buyers of a certain commodity and a broker in between who
wants to maximize his brokerage which depends linearly on the number of units sold. Each
supplier has a limited supply and each buyer has a limited demand. Up to this point, this
scenario could be modelled as an instance of the maximum-weight b-matching problem
where the edge weights are uniformly one. Now assume that in addition some of the suppliers
will only sell if a certain minimum number of units is sold. Analogously, some of the buyers
will only buy if they receive at least a certain number of units. This might be motivated
by transportation cost or administration overhead. This is where the minimum quantity
constraints come into play that allow us to incorporate these additional requirements into the
model.
A similar problem is defined in [2]. We provide the definitions from this article in the next
section and use some of its results to complement our analysis.
Parts of this chapter have been presented at the conference OR 2018 in Brussels and the
abstract has been published in the conference program [30].
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4.2 Basics and Definitions

In this section we apply the idea of minimum quantities to the maximum-weight b-matching
problem. The new problem definition we obtain is the basis for our analysis in the following
section.
We use notation conventions that are commonly used in literature: Given a graph G = (V,E),
a matching vector m ∈ N|E| and some edge e = (v1,v2) ∈ E that connects the nodes v1 and v2,
we denote the matching on this specific edge by me or by m(v1,v2). For a set of edges E′ ⊆ E
we use the notation m(E′)B

∑
e∈E′

me.

The maximum-weight b-matching problem is defined as follows:

Definition 4.2.1 (maximum-weight b-matching problem [12]). Let G = (V,E) be an undi-
rected graph and b ∈ Z|V |. A vector x ∈ Z|E| is a b-matching if x is nonnegative and x(δ(v))≤ bv

for all v ∈ V . Given a vector w ∈ R|E|, the maximum-weight b-matching problem is to find a
b-matching x such that wT x is maximized.

A polynomial-time algorithm to solve the maximum-weight b-matching problem is given
in [12] so that the following result is obtained:

Theorem 4.2.2 ([12]). For any graph G = (V,E), b ∈ Z|V | and w ∈ R|E|, a maximum-weight
b-matching can be found in strongly polynomial time.

Furthermore, a variant of b-matchings with additional lower bounds on x(δ(v)) is defined
as follows:

Definition 4.2.3 ([a′,a′′]-matching [12]). Let G = (V,E) be a graph, a′ ∈ Z|V |, a′′ ∈ Z|V | and
w ∈ R|E|. An [a′,a′′]-matching is a nonnegative vector x ∈ Z|E| such that a′v ≤ x(δ(v)) ≤ a′′v for
all v ∈ V .

The problem of finding a feasible [a′,a′′]-matching with maximum weight is referred to
as the maximum-weight [a′,a′′]-matching problem. Based on Theorem 4.2.2, the polynomial
solvability of the maximum-weight [a′,a′′]-matching problem is derived in [12]:

Theorem 4.2.4 ([12]). The maximum-weight [a′,a′′]-matching problem can be solved in
strongly polynomial time.

We now generalize Definition 4.2.1 by incorporating the concept of minimum quantities:

Definition 4.2.5 (maximum-weight b-matching problem with minimum quantities (MWB-
MMQ)). Let G = (V,E) be an undirected graph, qv ∈ N and bv ∈ N+ ∪ {∞} for v ∈ V . A
vector m ∈ N|E| is a b-matching with minimum quantities qv if for all v ∈ V qv ≤ m(δ(v)) ≤ bv

or m(δ(v)) = 0. Given a vector w ∈ Q|E|, the maximum-weight b-matching problem with
minimum quantities is to find a b-matching with minimum quantities that maximizes wT m.



4.2 Basics and Definitions 59

In addition, we define a generalization of MWBMMQ by allowing constraints on the
edges.

Definition 4.2.6 (maximum-weight edge-constrained b-matching problem with minimum
quantities (MWECBMMQ)). In addition to the properties and constraints given in Definition
4.2.5, let minimum quantities qe ∈ N and capacities be ∈ N+∪{∞} for all e ∈ E be given. In
order for a matching to be feasible, we require qe ≤ me ≤ be or me = 0 for all e ∈ E.
We call this problem the maximum-weight edge-constrained b-matching problem with
minimum quantities (MWECBMMQ).

Note that for an edge e = (v1,v2) we can assume w.l.o.g. that be ≤max
{
bv1 ,bv2

}
.

In the following, we mainly focus on MWBMMQ. However, considering MWECBMMQ
will allow us to apply several results to flow problems in Chapter 5.
In Definition 4.2.5 we have adjusted the admissible range for some of the input values
compared to Definition 4.2.1: As we require nonnegativity of x, we define bv to be positive.
If we had bv = 0 for some v ∈ V , the node v and the edges incident to it could be deleted
from the graph. Hence, w.l.o.g. we require bv to be strictly positive. Additionally, as we
evaluate the performance of algorithms with respect to the encoding size of a given problem
instance, we restrict w to rational numbers so that there is a finite representation of each
problem instance. A similar problem is defined in [2]:

Definition 4.2.7 (maximum-weight many-to-one matching problem with lower quotas
(WMLQ) [2]). Let G = (V,E) be an undirected, bipartite graph where V = A∪̇P and q, b ∈N|P|.
A vector m ∈ {0,1}|E| is a feasible assignment if qv ≤ m(δ(v)) ≤ bv or m(δ(v)) = 0 for all v ∈ P
and m(δ(v)) ≤ 1 for all v ∈ A. Given a vector w ∈ Q|E|, the maximum-weight many-to-one
matching problem with lower quotas is to find a feasible assignment of maximum weight.
If we = 1 for all e ∈ E, the problem is referred to as MLQ.

The above definition is motivated by the problem of assigning applicants to posts where
each applicant can be assigned to at most one post and the overall utility of the assignment is
supposed to be maximized. The article [2] also generalizes the above definition by omitting
the bipartiteness:

Definition 4.2.8 (generalized maximum-weight many-to-one matching problem with lower
quotas (GWMLQ) [2]). Let G = (V,E) be an undirected graph and q, b ∈ N|V |. A vector
m ∈ {0,1}|E| is a feasible assignment if qv ≤ m(δ(v)) ≤ bv or m(δ(v)) = 0 for all v ∈ E. Given
a vector w ∈ Q|E|, the generalized maximum-weight many-to-one matching problem with
lower quotas is to find a feasible assignment of maximum weight.
If we = 1 for all e ∈ E, the problem is referred to as GMLQ.
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In [2] GWMLQ is shown to be solvable in polynomial time if bv ≤ 2 for all nodes v or if
the problem is restricted to instances of bounded treewidth.

Note that the above definitions of WMLQ and GWMLQ differ from our definition of
MWBMMQ, as they assume that each edge is used only once, while MWBMMQ allows a
multi-set of edges to be selected. Still, there is a relationship between WMLQ and
MWBMMQ, as the following remark shows:

Remark 4.2.9. Given an arbitrary instance of WMLQ, we can transform it into an equivalent
instance of MWBMMQ by extending the vectors q and b, which are only defined for v ∈ P,
to the nodes in A. We set qv B 0 and bv B 1 for all v ∈ A. Since each edge is incident to at
least one node v for which bv = 1, a feasible solution to this instance of MWBMMQ uses
each edge at most once, despite MWBMMQ allowing a multi-set of edges to be selected.
Thus, the sets of feasible solutions to these instances of WMLQ and MWBMMQ and the
values of the respective solutions are the same, which implies that WMLQ is a special case
of MWBMMQ.

Apart from [2], there are several other publications on matching problems with minimum
quantities [3, 10, 26, 39]. The authors of these papers consider practical applications such
as the assignment of residents to hospitals or the assignment of students to universities. In
this regard they are similar to [2]. However, instead of assuming a numerical value for
each individual assignment (where the goal is to maximize the overall value), these models
assume that there are ordered lists of preferences. In some models only the preferences of
the residents or students are considered, others also take the preferences of the hospitals or
universities into account. Furthermore, some authors allow students to be assigned multiple
times while others allow students to be assigned only once. The task is to find matchings
that are Pareto optimal and strategy-proof. The authors of the above papers show that these
matching problems are usually NP-hard. Since matching problems with ordinal preferences
are not considered in this thesis, we do not elaborate on the results of the above papers in
more detail.

Notation 4.2.10. Unless specified otherwise, we depict instances of MWBMMQ as graphs
where the labels next to each node v ∈ V specify qv and bv. Edges are labeled with their
weights. If the edge weights are uniformly 1, we usually omit the edge labels.

In the following, unless specified otherwise, we assume that all graphs are simple, i.e.
there are no loops or parallel edges. Note that if the graph contains parallel edges, then for
MWBMMQ we obtain an equivalent instance by removing all edges except for the ones that
maximize we for each set of parallel edges. This simplification step can be carried out in
polynomial time.
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4.3 Complexity Results & Algorithms

We now provide complexity results regarding MWBMMQ and present algorithms for solving
or approximating MWBMMQ and variants of the problem efficiently. We begin by consider-
ing the complexity of MWBMMQ on general graphs. We prove its complexity by showing a
reduction to the 3-bounded 3-dimensional matching problem (3DM-3, cf. Definition 3.3.14
and Remark 3.3.15).

Theorem 4.3.1. Let ϵ > 0 be a parameter for which it is strongly NP-hard to decide whether
an instance of 3DM-3 has a solution with value n or whether all feasible solutions have value
at most (1− ϵ)n. Then this also holds with respect to MWBMMQ, even on bipartite graphs
with we = 1 on all edges e ∈ E and qv = bv ≤ 3 for all v ∈ V.

Proof. Let an instance of 3DM-3 be given as specified in Definition 3.3.14. We now create
an instance of MWBMMQ as follows: For all elements xi ∈ X, yi ∈ Y and zi ∈ Z (i = 1, . . . ,n)
we create nodes vxi , vyi and vzi and for each element t j ∈ T ( j = 1, . . . ,m) we create a node vt j .
For each t j = (x f ,yg,zh) the edges (vt j ,vx f ), (vt j ,vyg) and (vt j ,vzh) are added. For all nodes
vxi , vyi and vzi we set qB bB 1 and for all nodes vt j we set qB bB 3. Note that each vt j

is incident to exactly three edges. The other nodes have degree at most m. An example for
n = 2 and m = 4 is given in Figure 4.3.1 .

vx1

1,1

vx2

1,1

vy1

1,1

vy2

1,1

vz1

1,1

vz2

1,1

vt1

3,3

vt2

3,3

vt3

3,3

vt4

3,3

Fig. 4.3.1 An example of the reduction from 3DM-3 to MWBMMQ

We show that every feasible solution M ⊆ T with value z to the given instance of 3DM-3
corresponds to a feasible solution to the instance of MWBMMQ as constructed above that
has value 3z, and vice versa:
We transform a solution M ⊆ T to the instance of 3DM-3 into a solution to the instance of
MWBMMQ by matching all edges that are incident to the nodes vt j for which t j ∈ M.
Conversely, given a solution to MWBMMQ, we create a solution M to 3DM-3 by selecting
those elements t j ∈ T for which vt j is matched.
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We now show that the solutions that we obtain from the transformations described above are
in fact feasible. We first consider the case of transforming a feasible solution to 3DM-3 into
a solution to MWBMMQ: By construction, the constraints q and b are fulfilled regarding
all nodes vt j , since vt j is either unmatched or matched by three edges. Assume that there is
some node vxi , vyi or vzi that is matched more than once by M′: W.l.o.g. we call this node vxi .
Then, by construction, there are two elements in M that agree in the coordinate xi, which
contradicts feasibility of M.
Conversely, let a feasible solution to the instance of MWBMMQ be given and we create a
solution to 3DM-3 as described above. We have to show that none of the elements t j ∈ M
agree in any coordinate. Recall that we create exactly one node for each of the coordinates
given by the instance of 3DM-3. Hence, if two elements in M agree in some coordinate,
then the node corresponding to this coordinate is matched (at least) twice in the solution to
MWBMMQ. Since the coordinates of the elements of t j corresponds to one of the nodes vxi ,
vyi or vzi for which bv = 1, this contradicts feasibility of the b-matching.
Hence, we have shown that the transformation described above works in both directions. We
now consider the value of both solutions. Note that in every feasible solution to the instance
of MWBMMQ the following holds:

• Every edge is incident to some node vxi , vyi and vzi . Hence, every edge can be used at
most once in a feasible matching.

• Every edge is incident to some node vt j .

• Every node vt j is either unmatched or matched by three edges.

• None of the nodes vt j are adjacent to each other.

From these observations we conclude that the value of every solution to the given instance of
MWBMMQ is exactly three times the number of matched nodes vt j . Furthermore, according
to the transformation described above, a node vt j is matched if and only if t j ∈ M. This yields
the claim that the value of the solution to MWBMMQ is exactly three times the value of the
corresponding solution to 3DM-3.
All in all, the correspondence between the solutions and their respective values of 3DM-3 and
MWBMMQ has been established. Thus, MWBMMQ has the same hard gap as 3DM-3. �
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The existence of the hard gap directly yields the following corollary regarding the
approximability of MWBMMQ:

Corollary 4.3.2. There is an ϵ > 0 so that it is strongly NP-hard to approximate MWBMMQ
within a factor larger than 1− ϵ (where ϵ is defined as above), even on bipartite graphs with
we = 1 on all edges e ∈ E and qv = bv ≤ 3 for all v ∈ V. In particular, there is no PTAS for
MWBMMQ.

Remark 4.3.3. Alternatively, we could have shown the above result using a result from [2].
The authors show that MLQ (and thus WMLQ) is APX-complete using a reduction from the
maximum independent set problem and, according to Remark 4.2.9, WMLQ is a special case
of MWBMMQ.

In addition to the above result on general graphs, we now show that it is NP-hard to
approximate MWBMMQ on series parallel graphs and on complete binary trees. In order
to show NP-hardness of MWBMMQ on series parallel graphs, we use a reduction from
PARTITION [16]:

Theorem 4.3.4. It is NP-hard to approximate MWBMMQ on series parallel graphs and on
bipartite graphs, even if we = 1 on all edges e ∈ E and qv = bv for all v ∈ V.

Proof. Let an instance of PARTITION be given by n integers si ∈ N (i = 1, . . . ,n) where
n∑

i=1
si = B.

We create a graph with node set V = {s, t,v1, . . . ,vn}, where each vi corresponds to the
respective integer si, and there are edges connecting each vi with s and t. We set we B 1 for
all edges e ∈ E, qvi B bvi B si for i = 1, . . . ,n, qs B bs B B/2 and qt B bt B B+1.
An example for n = 5 is given in Figure 4.3.2. It is obvious that we have created a series
parallel graph. Since all edges that are used in a matching are incident to one of the nodes vi,

it follows that
n∑

i=1
bvi =

n∑
i=1

si = B is an upper bound on the maximum value of every feasible

matching. Furthermore, we get that the minimum quantity qt = B+1 cannot be achieved by
any feasible matching. Thus, the edges that are incident to t are never used in any feasible
matching and we can restrict our further analysis to the edges incident to s. In fact, these
nodes have been added for technical reasons in order for the graph to be series parallel. This
implies that every feasible b-matching has value either B/2 or 0.
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v1 s1, s1 v2 s2, s2 v3 s3, s3 v4 s4, s4 v5 s5, s5

s

B
2 ,

B
2

t

B+1,B+1

Fig. 4.3.2 An example of the reduction from PARTITION to MWBMMQ on a series parallel
graph

Every b-matching with weight B/2 induces a solution to PARTITION if we group the
integers of the given instance of PARTITION based on whether the corresponding node is
matched. Vice versa, a solution to PARTITION induces a b-matching with weight B/2 if
we match exactly those nodes that correspond to the integers that are in the first partition.
Now assume that there is some α-approximation with α ≥ 1. If a solution to PARTITION
exists, then there is also a b-matching with weight B/2 as we have just seen. In this case
the α-approximation returns a matching with value at least B/2α > 0. Due to the minimum
quantity constraint on node s this implies that the matching actually has weight B/2 so that it
induces a solution to PARTITION. If, on the other hand, there is no solution to PARTITION,
then there is also no matching with weight B/2. As we have seen, the only feasible matching
in this case is an empty matching. Hence, in this case the approximation returns an empty
matching. Therefore, an α-approximation algorithm for MWBMMQ on series parallel graphs
would solve PARTITION, which implies NP-hardness. �

As already stated above, the node t and the edges incident to it are never used in any
feasible matching. Thus, the proof still works for the remaining tree if we omit the node t
and the edges incident to it. Thus, we obtain the following result:

Corollary 4.3.5. It is NP-hard to approximate MWBMMQ on trees, even if we = 1 on all
edges e ∈ E and qv = bv for all v ∈ V.

Note that while approximating MWBMMQ on bipartite graphs is NP-hard, WMLQ
(which, by definition, implies bipartiteness of the graph) can be approximated in polynomial
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time according to [2]. The approximation factor of the algorithm given in [2] depends on the
instance of the problem. On the other hand, it is shown in [2] that deciding whether there is a
solution with OPT> 0 is NP-hard for GMLQ on bipartite graphs. In particular, approximating
GMLQ on bipartite graphs is NP-hard.

We now show that approximating MWBMMQ on complete binary trees is NP-hard (cf.
Definition 1.4.12):

Theorem 4.3.6. It is NP-hard to approximate MWBMMQ on complete binary trees, even if
qv = bv for all v ∈ V.

Proof. As before, we use a reduction from PARTITION.

Let an instance of PARTITION be given by n integers si (for i = 1, . . . ,n) where
n∑

i=1
si = B.

We create an instance of MWBMMQ on a complete binary tree based on this instance of
PARTITION. Set

hB 2
⌈
logn−1

2

⌉
+1

n′ B 2h

Then by definition of h we have

logn = 2
(
logn−1

2

)
+1 ≤ h < 2

(
logn−1

2
+1

)
+1 = logn+2

and thus

n ≤ n′ < 4n

Expressed less technically, n′ is the smallest odd power of 2 that is at least as large as n.
We create a complete binary tree with n′ leaf nodes. Note that in this case the height of the
tree is h. The leaf nodes are called vi (i = 1, . . . ,n) and ai (i = 1, . . . ,n′−n). The nodes ai are
referred to as artificial nodes. The nodes vi correspond to the integers si given by the instance
of PARTITION. The root node is named r and the remaining nodes between the root and the
leaves are referred to as t j for some j. We now define the minimum quantities and capacities
on the nodes as well as the weights on the edges.
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If wu,v denotes the weight of the edge connecting the nodes u and v, we set

wu,v B

1 if u = vi or v = vi for some i ∈ {1, . . . ,n}

0 else

That is, the weights of the edges incident to the leaf nodes corresponding to the integers
given by the instance of PARTITION are 1, the remaining edge weights are 0.

The minimum quantities qv and the capacities bv are defined as follows:

qv B bv B


si if v = vi for some i ∈ {1, . . . ,n}
B
2 if v = t j for some j and the depth of t j is even or v = r

B
if v = t j for some j and the depth of t j is odd or v = ai for some
i ∈ {1, . . . ,n′−n}

An example of the construction is given in Figure 4.3.3 and in Figure 4.3.4. Note that the
height of the tree that we have constructed is always odd, which implies that the depth of the
leaf nodes’ parents is even and their minimum quantities and capacities are uniformly B/2.
Thus, due to the minimum quantities and upper capacities of the artificial nodes ai, which
are uniformly B, none of the edges incident to them can ever be matched in any feasible
matching. Their only purpose is to fill the complete binary tree structure.
We now show that there is a feasible solution to this instance of MWBMMQ with a strictly
positive value if and only if there is a solution to the instance of PARTITION. In this case the
solution to MWBMMQ induces a solution to PARTITION.
We can check in polynomial time whether any binary subtree T ′ induced by selecting some
node and all its descendants fulfills

∑
vi∈V(T ′)

bvi = B/2, i.e. whether the sum of the capacities

of its (non-artificial) leaf nodes vi is B/2. If so, we have already found a feasible solution to
PARTITION. Hence, in the following we can assume w.l.o.g. that no such subtree exists.
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Fig. 4.3.3 An example of the construction of an instance of MWBMMQ on a complete binary
tree with eight leaf nodes, five of which are artificial nodes.
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Fig. 4.3.4 The above example continued: Illustration of an optimal solution to MWBMMQ,
assuming that s1+ s3 = B/2 = s2 (unlike before, the edge labels describe the matching, not
the edge weights)
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We first show how, given a feasible solution to PARTITION, a feasible solution to the
instance of MWBMMQ with strictly posive value can be created.
Let an index set M ⊆ {1, . . . ,n} with

∑
i∈M

si ≤ B/2 be given. Recall that the height h of the

binary tree is always odd, so h = 2k+1 for some k ∈ N. We show by induction on k how a
matching can be constructed so that the following properties hold:

1. If i ∈ M then m(δ(vi)) = si, else m(δ(vi)) = 0.

2. m(δ(r)) =
∑

i∈M
si

3. All minimum quantity constraints and capacity constraints (possibly) except for the
minimum quantity constraint of the root node r are fulfilled.

For k = 0 the binary tree consists of the root node and two leaf nodes and by construction we
have s1+ s2 = B. W.l.o.g. 1 ∈ M. Setting m(v1,r)B s1 and m(v2,r)B 0 yields the claim.
We now assume that the claim has already been shown for some k and we show the claim
for k+1. We denote this binary tree of height h = 2(k+1)+1 by T . The tree is shown in
Figure 4.3.5: The leaf nodes with thick borders represent complete binary trees of height
h = 2k+ 1. For the sake of simplicity, only the root nodes r j are displayed. We denote
the respective subtree induced by r j and its descendants by T j and the set of its leaf nodes

by L j. Let M j B
{
i ∈ M |vi ∈ L j

}
for all j ∈ {1,2,3,4}. Note that

4⋃
j=1

M j = M. By assump-

tion,
4∑

j=1

∑
i∈M j

si =
∑

i∈M
si ≤ B/2, which implies

∑
i∈M j

si ≤ B/2 for all j ∈ {1,2,3,4}, i.e. we can

apply the induction hypothesis to these subtrees of height h = 2k+ 1. Hence, there is a
matching in each of the four subtrees T j which fulfills the properties specified above. In
particular, the minimum quantity constraints and the capacity constraints regarding all nodes

in the subtrees T j, possibly except for the root nodes r j, are fulfilled. Since
4⋃

j=1
M j = M,

the first property also holds for T . Furthermore, we have m(δ(r j)) =
∑

i∈M j

si ≤ B/2. Setting

md B B/2−m(δ(r j)) for d ∈ {1,2,3,4} yields a matching where m(δ(r j)) = B/2 = br j for all
j ∈ {1,2,3,4}, m(δ(t1)) = B−m(δ(r1))−m(δ(r2)) and m(δ(t2)) = B−m(δ(r3))−m(δ(r4)). Set-
ting m5Bm(δ(r1))+m(δ(r2)) and m6Bm(δ(r3))+m(δ(r4)) yields a solution which is feasible

for all nodes (possibly) except for r and where m(δ(r)) =
4∑

j=1
m(δ(r j)) =

4∑
j=1

∑
i∈M j

si =
∑

i∈M
si,

which yields the claim.
Now assume that a feasible solution to PARTITION exists: Choosing M in such a way that∑
i∈M

si = B/2 and applying the above procedure yields a matching for which m(δ(r)) =
∑

i∈M
si =

B/2, so it is also feasible regarding the root node r. Furthermore, m(δ(vi)) = si for all i ∈ M.
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By construction, the edges incident to the leaf nodes have weight 1, which implies that the
matching has weight

∑
i∈M

si = B/2 > 0. Hence, if a solution to PARTITION exists, then there

is a feasible solution to the instance of MWBMMQ with strictly positive value as claimed.
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Fig. 4.3.5 A complete binary tree of height h = 2(k+1)+1. The leaf nodes with thick borders
represent complete binary trees of height h = 2k+1.

Conversely, we now assume that there is a feasible matching m with strictly positive
value. This implies that at least one of the leaf nodes is matched. We apply a simplification
that will prove to be useful in the following argumentation:
We check (in polynomial time) whether there is any subtree T ′ that is induced by selecting
some node r′ , r and all its descendants and that fulfills the following conditions:

• The induced subtree T ′ has odd height, which is equivalent to r′ having even depth in
the initial tree and which implies qr′ = br′ = B/2.

• If we denote the restriction of the matching m to the edges in T ′ by m′, then m′(δ(r′)) =
B/2 holds.

• At least one leaf node of T ′ is matched by m′.

If there is any subtree that fulfills the above properties, we select a minimal subtree T ′ (i.e.
one that does not contain any real subtree that fulfills these properties) and the corresponding
matching m′. Note that m′ is a feasible matching in T ′ with strictly positive value and that
T ′ structurally differs from the initial tree only regarding its height. Thus, even if a subtree
T ′ has been selected, we continue denoting the tree by T , its root node by r and the matching
by m. If there is no subtree that fulfills these conditions, we continue with the initial tree.
In the following we assume w.l.o.g. that no such subtree exists (*).
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Once again, let h = 2k+1 for some k ∈ N denote the height of T . We show by induction on
k that if there is a matching m in the complete binary tree for which m(δ(r)) ≤ B/2 holds
(i.e. the minimum quantity on r is relaxed) and that fulfills the constraints regarding all
descendants of r, then

m(δ(r)) =


0 or B/2 if

n∑
i=1

m(δ(vi)) = 0
n∑

i=1
m(δ(vi)) if

n∑
i=1

m(δ(vi)) > 0

For k = 0, i.e. for the binary tree consisting of one root node and two leaf nodes, the claim
follows immediately.
We now assume that the claim has been shown for some value k. For the induction step
we consider Figure 4.3.5 again. As in the previous induction, we denote the subtrees with
root nodes r j and height h = 2k+1 by T j. If we restrict the matching to the edges of one of
these subtrees, then m(δ(r j)) ≤ B/2 and the matching is still feasible for all descendants of
r j so that the induction hypothesis can be applied to the respective subtree. We denote the
restriction of m to one of the subtrees by m|T j .

We assume that the first case
n∑

i=1
m(δ(vi)) = 0 holds for T , i.e. none of the leaf nodes is

matched. Consequently, none of the leaf nodes of any of the subtrees T j is matched and thus
m|T j(δ(r j)) ∈ {0,B/2} for all j ∈ {1,2,3,4}. Due to the constraints on the nodes r j, we conclude
that md ∈ {0,B/2} for all d ∈ {1,2,3,4}. This implies that md ∈ {0,B/2,B} for d ∈ {5,6}. By
assumption we have m(δ(r)) ≤ B/2 and thus m5+m6 = m(δ(r)) ∈ {0,B/2}, which proves the
first case of the claim.
We now assume that the second case, i.e.

n∑
i=1

m(δ(vi)) > 0, holds for T . This implies that at

least one leaf node of T (and thus of T j for at least one j ∈ {1,2,3,4}) is matched. We assume
w.l.o.g. that there is at least one matched leaf node in the left branch starting at r (i.e. in the
subtrees T1 or T2). Let L j denote the set of leaf nodes of T j. We prove the claim by showing
that m5 = m(δ(L1∪L2)) and m6 = m(δ(L3∪L4)). We distinguish two cases that can occur in
the left branch of the tree containing T1 and T2:

Case 1 Exactly one of the subtrees T1 and T2 contains at least one matched leaf node.
W.l.o.g. we assume that T1 contains at least one leaf node that is matched. Then
according to the induction hypothesis we have m|T1(δ(r1)) = m(δ(L1)) > 0. On the
other hand, according to (*) we have m|T1(δ(r1)) < B/2. Thus, we get 0 < m1 =

B/2−m|T1(δ(r1)) < B/2. Due to the upper capacities on r and r2 and the minimum
quantity on t1 we get that m2 > 0 and m5 > 0. By assumption T2 does not contain
any matched leaf nodes. This implies that m|T2(δ(r2)) ∈ {0,B/2}. So the only possible
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value for m2 is B/2. Due to the constraints on t1 we get that m5 = B−m1 −m2 =

B− (B/2−m|T1(δ(r1)))−B/2 = m|T1(δ(r1)) = m(δ(L1)) = m(δ(L1∪L2)).

Case 2 Both subtrees T1 and T2 contain at least one matched leaf node.
By assumption and by (*) we get that 0 < m1 = B/2−m|T1(δ(r1)) < B/2 and 0 <
m2 = B/2−m|T2(δ(r2)) < B/2. In order for the constraints on t1 to be fulfilled, we
get that m5 = B− (B/2−m|T1(δ(r1)))− (B/2−m|T2(δ(r2))) = m|T1(δ(r1))+m|T2(δ(r2)) =
m(δ(L1))+m(δ(L2)) = m(δ(L1∪L2)).

For the right-hand side of the tree that contains the subtrees T3 and T4 these cases apply
analogously so that we obtain m6 = m(δ(L3∪L4)) if we apply Case 1 and Case 2 to T3 and
T4. Additionally, a third case is possible:

Case 3 None of the subtrees T3 and T4 contains any matched leaf node.
We have already shown that m5 > 0. Taking into account that m(δ(r)) ≤ B/2 by
assumption, this implies that m6 < B/2. Considering the capacity and minimum
quantity constraints on t2, r3 and r4 as well as the fact that by assumption m|Ti(δ(ri)) ∈
{0,B/2} for i ∈ {3,4}, we get that m6 = 0 = m(δ(L3∪L4)).

Hence, we can conclude that m(δ(r)) =m5+m6 =m(δ(L1∪L2))+m(δ(L3∪L4)) =
n∑

i=1
m(δ(vi)),

which shows the second case of the claim and ends our induction.
By assumption there is a feasible matching m with a strictly positive value, hence we get

that m(δ(r)) =
n∑

i=1
m(δ(vi)) > 0. Note that this matching also fulfills the minimum quantity

constraint on r. Therefore, we get that
n∑

i=1
m(δ(vi)) = m(δ(r)) = B/2. By construction, in

order for the matching to be feasible, every leaf node vi is either unmatched or matched by
qvi = bvi = si. Hence, the matched leaf nodes induce a solution to PARTITION.
We have shown that every solution with strictly positive value induces a solution to PARTI-
TION and vice versa. Now assume that there is an approximation algorithm for MWBMMQ
on complete binary trees. If the instance of PARTITION that we consider is solvable, then
there is a solution to the instance of MWBMMQ with strictly positive value. So the ap-
proximation algorithm also returns a solution with strictly positive value, which induces
a solution to PARTITION, as we have just seen. Conversely, if there is no solution to the
instance of PARTITION, then the only feasible solution to the instance of MWBMMQ
is an empty matching, which is returned by the approximation algorithm. Therefore, an
approximation algorithm for MWBMMQ on complete binary trees would solve PARTITION,
which completes the proof. �
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Note that none of the above theorems 4.3.1, 4.3.4 and 4.3.6 requires the integrality of the
matching x. So we would obtain the same results if we changed Definition 4.2.5 by requiring
only m ∈ Q|E|.

Remark 4.3.7. Note that all hardness results concerning MWBMMQ also apply to MWECB-
MMQ as it is a generalization of MWBMMQ.

Having shown NP-hardness of MWBMMQ (and of MWECBMMQ) and several variants
of the problem, we now focus on solving or approximating variants of MWBMMQ (and of
MWECBMMQ) in (pseudo-)polynomial time.
Be begin by showing how MWBMMQ can be solved in polynomial time in a straightforward
way if the number of nodes is bounded:

Theorem 4.3.8. For graphs where V(G) ≤ k for k ∈ N fixed, MWBMMQ can be solved in
polynomial time.

Proof. We select a subset of the nodes V′ ⊆ V and create an instance of the maximum-weight
[a′,a′′]-matching problem on G(V′) by interpreting each minimum quantity as a fixed lower
bound (as described in Definition 4.2.3). According to 4.2.4, this instance can be solved
in polynomial time. By trying all possible V′ ⊆ V and choosing a solution that maximizes
the weight, we find an optimal solution to the initial problem. Since the number of possible
subsets of V is bounded by 2k and k is a constant, the overall runtime of this procedure is
also polynomial. �

We now show that MWBMMQ can be solved in polynomial time on paths and cycles.

Theorem 4.3.9. MWBMMQ can be solved in polynomial time on paths.

Proof. Let an instance of MWBMMQ on a path consisting of n nodes be given. We provide
a dynamic program that solves the problem in polynomial time.
Let G denote the graph and let V(i, j)B {i, i+1, . . . , j} ⊆ V for i ≤ j and i, j ∈ {1, . . . ,n}. Anal-
ogously, we denote the subpath induced by V(i, j) by G(i, j)BG[V(i, j)] and its edge set by
E(i, j)B E(G(i, j)).
In order to construct the dynamic program, we require two values that we compute and store
during the execution of the dynamic program.
The first value M(i, j) is the value of a maximum-weight [q,b]-matching in G(i, j) in the sense
of Definition 4.2.3. According to Theorem 4.2.4, this value can be computed in polynomial
time. We compute M(i, j) for all subpaths of G, which implies that n(n−1)/2 computations
of M(i, j) are necessary: There is one path of length n−1, two paths of length n−2 and so
on. Hence, the number of tuples (i, j) for which we have to compute M(i, j) is polynomially
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bounded in the size of the input instance.
The second value we require is the optimal solution to MWBMMQ on G(1, j), which we
denote by M( j). Set M(0)B 0. Note that according to this definition, M(n) is the optimal
value we are looking for.
The dynamic program works as follows: We first compute all M(i, j) as defined above.
For j ∈ {1, . . .n} we successively compute

M( j)Bmax
{

M(1, j),max
2≤i< j

(M(i, j)+M(i−2)),max
1≤i< j

M(i)
}
.

In fact, this computes the optimal solution to MWBMMQ on G(1, j) as defined above:
First of all note that once we compute M( j) for some j, all values used in the above equation
are already known. An optimal solution on G(1, j) can be structured in one of the following
three ways: Firstly, it is possible that all nodes {1, . . . , j} are matched. In this case, all
the minimum quantity constraints must be satisfies and thus the matching corresponds to
M(1, j). Secondly, node j might be matched but there is at least one node in G(1, j) that
is not matched. Note that in this case, node j− 1 must be matched as well. Let i be the
node with the smallest index for which all nodes in G(i, j) are matched. We can neglect the
case i = 1 because this implies that all nodes are matched and we have already considered
this case. Then node i−1 ≥ 1 is unmatched and thus an optimal solution on G(i, j) is the
sum of two partial solutions that can be optimized independently: The value of an optimal
matching on G(i, j) that matches all nodes is exactly M(i, j). The optimal solution on the
graph G(1, i−2) is M(i−2). Note that G(1, i−2) =G(1,0) for i = 2 is an empty graph and
we have defined M(0) = 0. Since we do not know the node with the smallest index for which
all nodes in G(i, j) are matched, we try all possible values i and choose the maximum among
the corresponding solutions. This case is reflected by the second term. Thirdly, the node j
might not be matched in an optimal solution on G(1, j). So the optimal solution on G(1, j)
is the maximum optimal solution on the subpaths G(1, i) where i < j that have already been
computed in previous steps and where M(i) is the corresponding objective value.
All in all, we have shown inductively, that the value of an optimal solution is in fact M(n).
We have already pointed out that we can compute all M(i, j) in polynomial time. Furthermore,
M( j) for a specific value of j can be computed in polynomial time and j ∈ {1, . . . ,n}. So all
in all, the dynamic program runs in polynomial time. �
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From the above algorithm we can easily derive a polynomial algorithm for solving
MWBMMQ on cycles:

Corollary 4.3.10. MWBMMQ can be solved in polynomial time on cycles.

Proof. Let an instance of MWBMMQ on a cycle be given. Trivially, in an optimal solution
either all nodes are matched or there is at least one node that is unmatched. Assuming that
all nodes are matched, we can find an optimal solution in polynomial time according to
Theorem 4.2.4. If at least one node is unmatched, then the value of an optimal solution on
the cycle is the same as on the path that we obtain by removing the respective node and the
two edges incident to it. There are n such paths for which we have to compute an optimal
solution. Choosing the optimum among these n+1 solutions yields an optimal solution to
MWBMMQ on the given cycle. �

Applying a result regarding GWMLQ from [2], we obtain the following result:

Theorem 4.3.11. MWBMMQ can be solved in polynomial time if bv ≤ 2 for all v ∈ V.

Proof. According to [2], GWMLQ can be solved in polynomial time if bv ≤ 2 for all v ∈ V .
Given an instance of MWBMMQ for which bv ≤ 2 for all v ∈ V , an edge can be used at most
twice in each feasible solution. We transform the instance of MWBMMQ into an equivalent
instance of GWMLQ by creating an additional edge e′ = (v,w) for each edge e = (v,w) of the
original graph. Now every feasible solution to the instance of MWBMMQ can be mapped to
a feasible solution to the instance of GWMLQ that has the same objective value and vice
versa. Thus, applying the algorithm given in [2] induces an optimal solution to the instance
of MWBMMQ. �

We now show for MWECBMMQ that an optimal solution can be found in pseudo-
polynomial time if we restrict our analysis to graphs of bounded treewidth:

Theorem 4.3.12. Let a fixed integer t ≥ 1 be given. MWECBMMQ can be solved in pseudo-
polynomial time on graphs for which the treewidth is at most t.

Proof. We show that an optimal solution can be computed using the following dynamic
program. As we have already seen, with the treewidth being bounded from above by a
constant, a nice tree-decomposition can be computed in linear time (Theorem 1.4.9).
For calculating and storing the intermediate solutions of the dynamic program, we require
the following values for each node i of the tree-decomposition:
By val(1)

i (x) where x ∈ N|Xi| and xvk ∈ [0,bv] for vk ∈ Xi we denote the value of a maximum-
weight b-matching m in Gi that fulfills:
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• m(δ(vk)) = xvk for all vk ∈ Xi

• m(δ(vk)) ∈ {0}∪ [qvk ,bvk] for all vk ∈ Vi \Xi

• me ∈ {0}∪ [qe,be] for all e ∈ Ei

Hence, the vector x describes m(δ(vk)) for the nodes vk ∈ Xi in the respective intermediate
solution m. The minimum quantity constraints for these nodes may be violated at this point
in time. For the nodes vk ∈ Vi \Xi we require the minimum quantity and capacity constraints
to be fulfilled by the intermediate solution. The constraints on the edges always have to be
fulfilled.
We define val(2)

i (x) just as val(1)
i (x) except for the additional constraint that the matching m

may not use any edge e = (v,w) where v,w ∈ Xi.
The dynamic program computes these values along the tree-decomposition, starting at the
leaf nodes and moving towards the root node. The computation of a value at some node i of
the tree-decomposition requires that the values have been computed for all child nodes of the
respective node.
Once the dynamic program considers some node i of the tree-decomposition, all the edges
that are incident to the nodes in Vi \Xi in the original graph G have already been considered.
This explains why we require the minimum quantity constraints of these nodes to be fulfilled
when computing val(1)

i (x) and val(2)
i (x). For the nodes in Xi further edges might be considered

in subsequent steps, so that the minimum quantity constraints might be fulfilled once the
dynamic program terminates even if they are violated in an intermediate solution. For
each node i of the tree-decomposition all values val(1)

i (x) and val(2)
i (x), where x ∈ N|Xi| and

xv ≤ bv for all v ∈ Xi, must be computed. We describe the computation of val(1)
i (x) and

val(2)
i (x) for each node type in the tree-decomposition. For the complexity analysis we use

the notation n B |V(G)| and bmax B max
v∈V(G)

bv. Note that |Xi| ≤ t+ 1 for all nodes i of the

tree-decomposition.

• Leaf node
For the leaf nodes of the nice tree-decomposition we have that |Xi|=1. Let vk ∈ Xi.
Obviously, Gi does not contain any edges so that xvk = x = 0 is the only value of x
for which a feasible intermediate solution m with m(δ(vk)) = xvk = 0, i.e. an empty
matching, exists. To indicate that there is no feasible matching for some vector x, we
use the value −∞.

val(1)
i (x)B val(2)

i (x)B

0 if x = 0

−∞ else
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The computation of val(1)
i and val(2)

i for a fixed value x can be carried out in constant
time. Considering all possible values of x yields the computational complexity O(bmax).

• Insert node (Xi = X j∪{v} for some i, j,v)
Set f B

∣∣∣X j
∣∣∣ = |Xi| − 1 ≤ t and gB

∣∣∣∣{vk ∈ X j | (v,vk) ∈ E(Gi)
}∣∣∣∣ ≤ f ≤ t. Let

{
v1, . . . ,vg

}
denote the nodes in Gi that are incident to v and

{
vg+1, . . . ,v f

}
those that are not.

For an insert node i, val(1)
i

 x
xv

 can be decomposed into a matching on the edges

connecting the nodes in X j with v and a matching in G j. For the edges in Gi that are
incident to v we try all feasible matchings m ∈ Ng where m(δ(v)) = xv. For 1 ≤ k ≤ g
we denote the matching on the edge ek = (v,vk) by mk and the respective edge weight
by wk. In addition, we use the notation Ik B {0}∪ [qek ,bek].
Maximizing the sum of both partial matchings yields:

val(1)
i

 x
xv

 = val(1)
i



x1
...

xg

xg+1
...

x f

xv


B max

m∈Ng:
mk ∈ Ik for all 1≤k≤g∧
mk≤ xk for all 1≤k≤g∧

g∑
k=1

mk= xv



g∑
k=1

mkwk + val(1)
j



x1−m1
...

xg−mg

xg+1
...

x f





There are at most (bmax+1) f+1 feasible values for

 x
xv

 ∈ N f+1. For a fixed value

 x
xv

,
we consider a maximum over at most (bmax+1)g matchings m. If both

 x
xv

 and m are

fixed, the above term can be evaluated in constant time, since it is the sum of g+ 1
terms, g ≤ t and t is fixed by assumption. Taking into account that g ≤ f ≤ t, we obtain
the computational complexity O(b2t+1

max ).

By definition, for determining val(2)
i we only have to consider matchings in Gi in which

none of the edges connecting two nodes in Xi is used. Hence, the node v cannot be
matched, i.e. m(δ(v)) = 0, since in Gi it is only adjacent to nodes in Xi.
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So we can derive val(2)
i from val(2)

j in the following way:

val(2)
i

 x
xv

B
val(2)

j (x) if xv = 0

−∞ else

This computation can be performed in constant time for a fixed value

 x
xv

 ∈ N f+1.

Considering all possible values of

 x
xv

 yields the computational complexity O(bt+1
max).

• Forget node (Xi = X j \ {v} for some i, j,v)
Set f B |Xi| =

∣∣∣X j
∣∣∣−1 ≤ t and gB

∣∣∣∣{vk ∈ Xi | (v,vk) ∈ E(G j)
}∣∣∣∣ ≤ f ≤ t.

In one of the previous iterations we have computed val(1)
j for all relevant values.

Note that Gi = G j. The set of matchings that we consider for computing val(1)
i is a

subset of those matchings we have considered for val(1)
j . Since v < Xi, we require

m(δ(v)) ∈ {0}∪ [qv,bv]. Thus, we can compute val(1)
i using the values for val(1)

j in the
following way:

val(1)
i (x)B max

xv ∈{0}∪ [qv,bv]
val(1)

j

 x
xv


For a fixed value x ∈ N f , we consider the maximum over at most bmax + 1 values.
There are at most (bmax+1)t values for x to be considered, so the overall complexity
of computing val(1)

i for a fixed i is O(bt+1
max).

The computation of the values of val(2)
j considered only matchings that do not use any

edges that connect two nodes in X j. In particular, the matchings did not use any edges
e = (v,w) where w ∈ X j, since v ∈ X j. On the other hand, in order to compute val(2)

i ,
edges e = (v,w) where w ∈ Xi = X j \ {v} may be used by the intermediate solution, since
v < Xi. Thus, by decomposing a matching in Gi into a matching on the edges connecting
node v with one of the nodes in Xi and a matching that does not use any edges that
connect two nodes in X j we can reuse the values of val(2)

j for the computation of val(2)
i .

As for the insert node, let
{
v1, . . . ,vg

}
denote the nodes in Gi that are incident to v and{

vg+1, . . . ,v f
}

those that are not. Again, for some matching m, we denote the matching
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on ek = (v,vk) by mk and the respective weight by wk. Let Ik be defined as before.

val(2)
i



x1
...

xg

xg+1
...

x f


B max

m∈Ng∧ xv ∈{0}∪ [qv,bv]:
mk ∈ Ik for all 1≤k≤g∧

mk≤ xk for all 1≤k≤g∧
g∑

k=1
mk≤ xv



g∑
k=1

mkwk + val(2)
j



x1−m1
...

xg−mg

xg+1
...

x f

xv−
g∑

k=1
mk




The complexity of this computation can be determined similarly as the complexity of
determining val(1)

i of an insert node: Since g ≤ f ≤ t, the maximum is created over at
most (bmax+1)t matchings m and at most bmax+1 values xv. So for fixed x, val(1)

i (x)
can be computed in O(bt+1

max). There are at most (bmax+1)t values x for which val(2)
i

has to be determined, so overall we obtain O(b2t+1
max ).

• Join node (Xi = Xr = Xs for some i,r, s, where Xr and Xs are the child nodes of Xi)
Set f B |Xi| ≤ t+1 and gB |E(G[Xi])|.
In order to compute the values of val(1)

i , we note that every matching in Gi can
be decomposed into three edge-disjoint matchings: Two matchings in Gr and Gs

respectively, where none of the edges in E(G[Xi]) is used and where the constraints
on all nodes that are not in Xi are satisfied and a matching m in G[Xi]. For an edge
ek ∈ E(G[Xi]) we denote the matching and the weight on the edge by mk and wk

respectively. Again, we set Ik B {0}∪ [qek ,bek].

val(1)
i (x)B max

m∈Ng∧y, z ∈ N f :
mk ∈ Ik for all 1≤k≤g∧

m(δ(v))+yv+zv=xv for all v ∈ Xi

 g∑
k=1

mkwk + val(2)
r (y)+ val(2)

s (z)


Note that G is assumed to be simple. Hence, the number of edges g is bounded
from above by f ( f −1)/2 ≤ t(t+1)/2. This implies that the number of matchings m
to be considered when determining the above maximum is bounded from above by
(bmax+1)t(t+1)/2. For a given matching m, there are at most (bmax+1)t+1 combinations
of y and z to be considered. So all in all, the maximum is created over at most
(bmax+1)(t+2)(t+1)/2 values. Considering up to (bmax+1)t+1 values for x, we obtain an
overall complexity of O

(
b(t+4)(t+1)/2

max

)
.

For the computation of val(2)
i recall that none of the edges in Xi may be used in the
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respective matchings. Since Xi = Xr = Xs, this also holds for val(2)
r and val(2)

s . By
definition, Vr ∩Vs = Xi. This enables us to reuse the values val(2)

r and val(2)
s :

val(2)
i (x)B max

y∈ N f :
yv≤xv for all v ∈ Xi

(
val(2)

r (y)+ val(2)
s (x− y)

)

For x fixed, the maximum is created over at most (bmax+1)t+1 values of y and there
are at most (bmax + 1)t+1 possible values for x to be considered, so we obtain the
computational complexity O

(
b2t+2

max

)
.

Once all these values have been computed for all nodes of the tree-decomposition, an optimal
solution can be determined in the following way, where r is the root node of the binary tree
and f B |Xr| ≤ t+1:

OPTB max
x∈N f :

xv ∈{0}∪[qv,bv] for all v∈Xr

max
{
val(1)

r (x),val(2)
r (x)

}
This value can be computed in O

(
bt+1

max

)
. We summarize our complexity considerations as

follows:

• A nice tree-decomposition of the input graph can be computed in linear time and
its number of nodes is linearly bounded in the number of nodes of the input graph
(Theorem 1.4.9).

• As the dynamic program moves through the tree-decomposition, all values val(1)
i and

val(2)
i for each node i of the tree-decomposition can be computed in pseudo-polynomial

time (as shown above).

• Once we have reached the root node, we can determine an optimal solution in pseudo-
polynomial time.

All in all, we can conclude that the complexity of the above dynamic program is in fact
pseudo-polynomial. The correctness of the algorithm follows from the reasoning provided
for each of the cases. �

Remark 4.3.13. A similar dynamic program for GWMLQ is given in [2]. The dynamic
program solves GWMLQ in time O

(
T +b3(t+1)

max |E|
)
, where T denotes the time required for

computing a tree-decomposition of width t. The authors assume that there are no parallel
edges, so w.l.o.g. bmax is bounded from above by |V |. Given that the tree-decomposition can
be computed in linear time, they obtain a polynomial-time dynamic program for GWMLQ if
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the treewidth of the underlying graph is bounded. Note that the dynamic program is even
linear if we restrict it to those instances of GWMLQ for which bmax is bounded by a constant.
On the other hand, the dynamic program for MWBMMQ given in the previous proof cannot
be polynomial unless P=NP (Corollary 4.3.5).

Remark 4.3.14. Note that an instance of RSAP as defined in Chapter 2 can easily be
transformed into an instance of WMLQ (Definition 4.2.7) and vice versa. The same holds for
RPMP and MLQ (Definition 4.2.7). Thus, all results regarding WMLQ also apply to RSAP
and all results regarding MLQ apply to RPMP (and vice versa).

In particular, this allows us to apply the results from Remark 4.3.13 and we obtain the
following corollary:

Corollary 4.3.15. RSAP (and thus RPMP) can be solved in polynomial time if the treewidth
of the corresponding feasibility graph is bounded by a constant. If, in addition, the maximum
capacity max

v∈V
bv is bounded by a constant, RSAP (and thus RPMP) can be solved in linear

time.

From the proof of theorem 4.3.12 we also get the following corollary:

Corollary 4.3.16. Let fixed integers b, t ≥ 1 be given. MWECBMMQ can be solved in linear
time on graphs for which the treewidth is at most t and for which the maximum capacity
max
v∈V

bv is bounded by b.

Proof. Given the additional assumption that max
v∈V

bv is bounded, we consider the computa-

tional complexity of the algorithm given in the proof of theorem 4.3.12 again:

• A nice tree-decomposition of the input graph can be computed in linear time (Theorem
1.4.9).

• For each of the nodes of the tree-decomposition we compute val(1)
i and val(2)

i . The
number of nodes of the tree-decomposition is linearly bounded in the number of nodes
of the input graph (Theorem 1.4.9). The computations at each of the nodes requires
O(1) steps.

• Once we have reached the root node, an optimal value can be computed in time O(1).

�



4.3 Complexity Results & Algorithms 81

Note that trees have treewidth one and that series parallel graphs have treewidth at
most two (Lemma 1.4.11). Combining the existence of a pseudo-polynomial dynamic
program with NP-hardness of the problem (Theorem 4.3.4 and Corollary 4.3.5) yields weak
NP-hardness of the problem:

Corollary 4.3.17. MWBMMQ is weakly NP-hard on trees and on series parallel graphs.

We continue examining the solvability of MWBMMQ on graphs with a special structure
and consider series parallel graphs. Recall that we have already shown NP-hardness on this
type of graphs (Theorem 4.3.4). We now show that there is a polynomial-time bicriteria
(α, β)-approximation for an arbitrary ϵ > 0 even for MWECBMMQ (Definition 4.2.6). In
this case, β refers to the minimum quantity and capacity constraints defined on the nodes and
on the edges:

Theorem 4.3.18. For ϵ > 0 fixed, there is a polynomial-time (1, 1+ ϵ)-approximation for
MWECBMMQ on series parallel graphs.

Proof. The following proof gives a dynamic program that finds an approximate solution as
described in the claim. Note that by definition of MWECBMMQ, negative edge weights
are allowed. However, this does not create any ambiguity regarding our definition of the
approximation ratio: Since an empty matching is a feasible solution with value 0, the optimal
objective value is always non-negative.
By definition, every series parallel graph G can be constructed by a sequence of series and
parallel compositions of series parallel graphs. Note that there might be multiple possible
ways of constructing the given series parallel graph. In the following we assume that an
arbitrary but fixed way of constructing the given graph is chosen. Our proof of the quality of
the algorithm does not rely on this choice. In order to achieve a polynomial complexity of
the algorithm, we only consider a subset of all feasible matchings during each construction
step of the series parallel graph. The subset of matchings to be considered by the algorithm
is characterized by the sets JG′,s and JG′,t, where G′ denotes the subgraph of G constructed
in the current iteration and s and t denote its terminals. For each tuple (a,b) ∈ JG′,s× JG′,t

the algorithm determines whether there is a matching m in G′ that fulfills certain conditions
and for which m(δ(s)) = a and m(δ(t)) = b. If so, one such matching is chosen to be stored.
Each of the matchings stored for a certain subgraph can be unambiguously identified by a
corresponding tuple (a,b). In addition, there is a value function WG′ : JG′,s× JG′,t→ Q that
corresponds to the value of the partial solution, i.e. the weight of the matching. The crucial
step of the algorithm is the cleansing step that is carried out after each parallel composition.
The set of possible solutions that is stored for the next iteration is narrowed down to certain
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representatives. Due to this step, the complexity of the algorithm remains polynomial.
Let an instance of MWECBMMQ be given on a graph G = (V,E).
Set

• bmax Bmax
i∈V

bi

• σB n√1+ ϵ −1 where n = |V |

• kB
⌈
log1+σ bmax

⌉
=

⌈
n log1+ϵ bmax

⌉
This implies k ∈ O(n logmax

i∈V
bi), so it is polynomial in the size of the given instance of

MWECBMMQ. In addition, we define the following intervals and values:

• I0 B {0}

• Ii B
[
(1+σ)i−1, (1+σ)i

)
∩Z =

[⌈
(1+σ)i−1

⌉
,
⌈
(1+σ)i

⌉
−1

]
for all 1 ≤ i ≤ k−1

• Ik B
[
(1+σ)k−1, (1+σ)k

]
∩Z =

[⌈
(1+σ)k−1

⌉
,
⌊
(1+σ)k

⌋]
• p0 B 0

• pi B
⌈
(1+σ)i−1

⌉
for all 1 ≤ i ≤ k

• pk+1 B
⌊
(1+σ)k

⌋
This allows us to denote the intervals Ii using the values p j:

• I0 = {p0} = {0}

• Ii =
[
pi, pi+1−1

]
for all 1 ≤ i ≤ k−1

• Ik =
[
pk, pk+1

]
We make the following observations regarding the above definitions:

• The intervals Ii might be empty for some 2 ≤ i ≤ k.

• We have {0,1, . . . ,bmax} ⊆
k⋃

i=0
Ii.

• For all 1 ≤ i ≤ k for which Ii , ∅ we have maxIi
minIi

≤ 1+σ.

We now describe how the algorithm works for each of the three possible situations which
are the basic one-edge graph K2, the series composition and the parallel composition. We
assume that graph G′ with terminal nodes s and t is the graph to be constructed in the current
iteration. We use the same index for each series parallel graph and its respective source and
sink, i.e. the terminals of graph Gi are denoted by si and ti.
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• G′ = K2

We set JG′,s B JG′,t B {pi | i = 0, . . . ,k+1} so that
∣∣∣JG′,s

∣∣∣ = ∣∣∣JG′,t
∣∣∣ ≤ k+2 < (k+1)2. The

first inequality follows from the fact that some of the pi might coincide and the second
inequality holds since k ≥ 1. We denote the (only) edge of the graph by e = (s, t). We
define the value function as follows:

WG′(a,b)B


a ·we if a = b∧a ≤min{bs,bt} · (1+σ)

∧ a ∈ {0}∪
[ qe

1+σ , (1+σ)be
]

−∞ else

There are at most (k+2)2 values to be computed.

• Parallel composition
Let G′ be constructed from G1 and G2 where s1 and s2 as well as t1 and t2 are identified.
Assume that G1 and G2 and the respective JG1,s1 , JG1,t1 , JG2,s2 , JG2,t2 , WG1 and WG2

have been considered in a previous iteration.
For the parallel composition, we compute a preliminary output J′G′,s, J′G′,t and W′G′(a,b).
The final output is computed in the subsequent cleansing step. We compute J′G′,s
and J′G′,t by an element-wise addition (Minkowski sum): J′G′,s B JG1,s1 + JG2,s2 and
J′G′,t B JG1,t1 + JG2,t2 . For each element in J′G′,s× J′G′,t, the value function is defined as
follows:

W′G′(a,b)B



max
{
WG1(a1,b1)+WG2(a2,b2)

∣∣∣∣ (a1,b1) ∈ JG1,s1 × JG1,t1

∧ (a2,b2) ∈ JG2,s2 × JG2,t2

∧a = a1+a2

∧b = b1+b2
}

if a ≤ (1+ ϵ)bs∧b ≤ (1+ ϵ)bt

−∞ else

By construction, for each tuple (a,b) ∈ J′G′,s× J′G′,t there is a pair of tuples (a1,b1) ∈
JG1,s1 × JG1,t1 and (a2,b2) ∈ JG2,s2 × JG2,t2 , respectively, so that a = a1 + a2 and b =
b1+b2. So the set over which the maximum is determined, is non-empty and the above
value is well-defined.
We now consider the cleansing step that has to take place after each parallel composi-
tion. We first give the reasoning regarding why this is necessary: As stated before, for
G′ = K2 it is clear that

∣∣∣JG′,s
∣∣∣ = ∣∣∣JG′,t

∣∣∣ < (k+1)2. However, for the parallel composition
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this no longer holds: If
∣∣∣JG1,s1

∣∣∣ ≤ (k+1)2 and
∣∣∣JG2,s2

∣∣∣ ≤ (k+1)2, the best upper bound

we can give for
∣∣∣∣J′G′,s∣∣∣∣ (or

∣∣∣∣J′G′,t∣∣∣∣, respectively) as constructed above is (k+ 1)4. A

subsequent parallel composition might increase the number of stored values to (k+1)6

and so on. Assuming a series parallel graph that is composed of n−2 parallel com-
positions of paths of length 2, we would have to store up to (k+1)2(n−2) values with
the graph containing n nodes. Even if we neglected values larger than (1+ ϵ)bmax

(since these cannot occur in the solution that we are looking for), we would store up to
min

{
(k+1)2(n−2), (1+ ϵ)bmax

}
values, which would yield a non-polynomial runtime. In

order to avoid this, we reduce the values to be stored to at most (k+1)2 representatives
after each parallel composition. The cleansing step works as follows:
For each non-empty set (J′G′,s× J′G′,t)∩ (Ii× I j) we choose a representative tuple (ai,b j)
for which the following condition holds:

W′G′(ai,b j) ≥W′G′(a,b) for all (a,b) ∈ (J′G′,s× J′G′,t)∩ (Ii× I j)

If there are multiple tuples satisfying this condition, an arbitrary representative is
chosen.
We define the set XG′ to be the union of all these representatives:

XG′ B
{
(ai,b j) | i, j = 0, . . . ,k

}
From this set XG′ we derive JG′,s and JG′,t using the following projections:

JG′,s B {a | (a,b) ∈ XG′ for some b}

JG′,t B {b | (a,b) ∈ XG′ for some a}

The set XG′ contains at most (k+ 1)2 values, which implies that JG′,s and JG′,t also
contain at most (k+1)2 values as claimed. The value function can be restricted to the
relevant definition range: WG′ BW′G′ |JG′,s×JG′,t

. For the subsequent analysis it is worth
noting that if JG1,s1 , JG1,t1 , JG2,s2 and JG2,t2 contain the value 0, then this also holds for
J′G′,s and J′G′,t. Since I0 = {0}, this implies that JG′,s and JG′,t also contain the value 0.

• Series composition
Let G′ be constructed from G1 and G2 where t1 and s2 are identified.
As before, we assume that G1 and G2 and the respective JG1,s1 , JG1,t1 , JG2,s2 , JG2,t2 ,
WG1 and WG2 have been considered in a previous iteration.
Set JG′,sB JG1,s1 and JG′,t B JG2,t2 . Trivially, this implies

∣∣∣JG′,s
∣∣∣ = ∣∣∣JG1,s1

∣∣∣ and
∣∣∣JG′,t

∣∣∣ =



4.3 Complexity Results & Algorithms 85

∣∣∣JG2,t2

∣∣∣. Recall that for G′ = K2 and for the parallel composition we have already shown
that the cardinalities of the sets JG′,s and JG′,t, that are produced as the output of the
respective iteration, are bounded from above by (k+1)2. By construction, this bound
inductively also holds for the series composition. Thus, we can conclude that after each
iteration of the algorithm the cardinalities of JG′,s and JG′,t are bounded from above by
(k+1)2. This result is an important input for the subsequent complexity analysis. The
value function regarding G′ is given by

WG′(a,b)B

max
{
WG1(a,b1)+WG2(a2,b)

∣∣∣∣b1 ∈ JG1,t1 ∧a2 ∈ JG2,s2 ∧b1+a2 ∈ {0}∪
[ qt1

1+ ϵ
, (1+ ϵ)bt1

]}
Note that t1 and s2 are the same node in G′ so that it is sufficient to check the feasibility
of b1 + a2 regarding qt and bt. The value WG′(a,b) is well-defined for each (a,b) ∈
JG′,s× JG′,t: In order for the above set, over which the maximum is determined, to be
non-empty, we have to show that there is a pair of values (a2,b1) ∈ JG1,t1 × JG2,s2 for
which b1+a2 ∈ {0}∪

[ qt1
1+ϵ , (1+ ϵ)bt1

]
.

In order to show this, we first have to prove that the value 0 is contained in JG′,s and
JG′,t after each iteration. For the parallel composition we have already seen that if the
input sets JG1,s1 , JG1,t1 , JG2,s2 and JG2,t2 of the underlying graphs contain the value 0,
then so do JG′,s and JG′,t. For the series composition we get by construction that if
JG1,s1 and JG2,t2 contain 0, then this also holds for JG′,s and JG′,t. As the composition
of series parallel graphs starts on K2, where we define JG′,s and JG′,t to contain 0 we
inductively obtain the claim.
We conclude that the above maximum is created over a non-empty set, as it contains at
least the value WG1(a,0)+WG2(0,b). Furthermore, by construction, for all tuples (a,b)
to be considered, a ∈ JG1,s1 and b ∈ JG2,t2 , which implies that WG1(a,b1)+WG2(a1,b)
is always well-defined.

We continue with the above dynamic program until G′ =G. The approximate value we are
looking for and which we denote by ALG is determined as follows:

ALGBmax
{
WG(a,b)

∣∣∣∣ (a,b) ∈ JG,s× JG,t

∧a ∈ {0}∪
[ qs

1+ ϵ
, (1+ ϵ)bs

]
∧b ∈ {0}∪

[ qt

1+ ϵ
, (1+ ϵ)bt

] }
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Since the tuple (0,0) is always contained in the set over which the maximum is determined,
this value is well-defined.
Note that WG′(a,b) is in fact the value of the matching that corresponds to the tuple (a,b)
and that the algorithm has stored. For K2 this is obvious. During the parallel and series
compositions we combine two edge-disjoint matchings and add their values, which is reflected
in the computation of WG′ . So inductively, the claim follows.
Having outlined the dynamic program, we are now ready to show the theorem in three steps:

1. ALG ≥ OPT, where OPT denotes the optimal value of the given instance.

2. If m denotes the matching computed by the dynamic program, then for all v ∈ V(G) we
have that m(δ(v)) ∈ {0} ∪

[ qv
1+ϵ , (1+ ϵ)bv

]
. Furthermore, for all e ∈ E(G) we have that

me ∈ {0}∪
[ qe

1+σ ,be
]
. Hence, the constraints on the nodes and edges are violated by at

most a factor 1+ ϵ.

3. The dynamic program runs in polynomial time.

ad 1. We introduce the following notation for the subgraphs Gi that occurs during the series
parallel composition of G:

• wGi denotes the weight-vector w restricted to the edges of Gi.

• mOPT denotes an (arbitrary but fixed) optimal solution to the given instance of
MWECBMMQ.

• mOPT
Gi

denotes the restriction of mOPT to the edges of Gi.

• mALG
Gi

denotes the matching corresponding to a certain partial solution that the
algorithm computes for Gi.

• degGi
(v) for some v ∈ V(Gi) denotes the degree of node v in Gi.

We show by induction that for each G′ the algorithm stores at least one solution mALG
G′

corresponding to a tuple (a,b) ∈ JG′,s× JG′,t, for which the following holds:

a) WG′(a,b) ≥ mOPT
G′ wG′

b) For v ∈ {s, t} the following holds:

mOPT
G′ (δ(v))

(1+σ)degG′ (v) ≤ mALG
G′ (δ(v)) ≤ (1+σ)degG′ (v)mOPT

G′ (δ(v))

Note that if (a,b) denotes the tuple corresponding to mALG
Gi

, we always have mALG
Gi

(δ(s))=
a and mALG

Gi
(δ(t)) = b.
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The algorithm always starts with some graph G′ = K2, which is the base case of the
induction. We have deg(s) = deg(t) = 1. In this case JG′,s = JG′,t = {pi | i = 0, . . . ,k+1}.
If e denotes the edge of G′, we have mOPT

e ∈ Ii for some i.
If i = 0 (i.e. mOPT

e = 0), then mALG
e = p0 fulfills a) and b).

Else, qe ≤ mOPT
e . We differentiate the following cases:

• If mOPT
e = pi, then mALG

e = pi fulfills a) and b).

• If mOPT
e ≥ pi+1 and we ≥ 0 then mALG

e = pi+1 fulfills the claim: Note that mOPT
e ≤

mALG
e = pi+1 ≤ (1+σ)mOPT

e , which yields b). Since mOPT
e is feasible, we have

that mOPT
e ≤ min{bs,bt} and mOPT

e ∈
[
qe,be

]
. Hence, pi+1 ≤ min{bs,bt} · (1+σ)

and pi+1 ∈
[
qe, (1+σ)be

]
. This implies WG′(pi+1, pi+1) = pi+1we ≥ mOPT

e wG′ =

mOPT
e we, i.e. property a).

• If mOPT
e ≥ pi + 1 and we < 0 then mALG

e = pi fulfills the claim: We have that
mOPT

e
1+σ ≤ mALG

e = pi < mOPT
e , which implies property b). By assumption, mOPT

e

is feasible. Thus, we have that mOPT
e ≤ min{bs,bt} and mOPT

e ∈
[
qe,be

]
. Hence,

pi ≤min{bs,bt} and pi ∈
[ qe

1+σ ,be
]
. As before, we have that WG′(pi, pi) = piwe >

mOPT
e wG′ = mOPT

e we, which implies property a).

For the induction step we have to consider the parallel and the series composition:
We consider the series composition first. As before, G′ is constructed from G1 and
G2 where t1 and s2 are identified. We assume that the properties a) and b) hold for
all previous iterations. Thus, there are (at least) two solutions mALG

G1
and mALG

G2
, for

which a) and b) hold. We assume that these solutions correspond to the tuples (a1,b1) ∈
JG1,s1 × JG1,t1 and (a2,b2) ∈ JG2,s2 × JG2,t2 . Since JG′,s = JG1,s1 and JG′,t = JG2,t2 , we
have that (a1,b2) ∈ JG′,s× JG′,t. We show that mALG

G′ corresponding to (a1,b2) fulfills
a) and b). We already know that the following holds:

WG1(a1,b1)+WG2(a2,b2) ≥ mOPT
G1

wG1 +mOPT
G2

wG2 = mOPT
G′ wG′ (1)

The inequality follows from the assumption that a) holds for the results from previous
iterations. Since mOPT

G′ is the union of the edge-disjoint matchings mOPT
G1

and mOPT
G2

,
the equality also holds. In order to show property a), it is sufficient to prove that
WG1(a1,b1)+WG2(a2,b2) is contained in the set over which the maximum is determined
during the calculation of WG′(a1,b2). We show that a2 + b1 ∈ {0} ∪

[ qt1
1+ϵ , (1+ ϵ)bt1

]
,

which yields the claim. By assumption, the following equations hold:

mOPT
G1

(δ(t1))

(1+σ)degG1
(t1) ≤ mALG

G1
(δ(t1)) = b1 ≤ (1+σ)degG1

(t1)mOPT
G1

(δ(t1)) (2)
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mOPT
G2

(δ(t1))

(1+σ)degG2
(t1) ≤ mALG

G2
(δ(t1)) = a2 ≤ (1+σ)degG2

(t1)mOPT
G2

(δ(t1)) (3)

In the second equation we have used the fact that t1 = s2. Adding (2) and (3) and using
the fact that degG1

(t1) < n and degG2
(t1) < n yields

mOPT
G1

(δ(t1))+mOPT
G2

(δ(t1))

(1+σ)n ≤ b1+a2 ≤ (1+σ)n(mOPT
G1

(δ(t1))+mOPT
G2

(δ(t1)))

By definition, (1+σ)n = 1+ ϵ and mOPT
G1

(δ(t1))+mOPT
G2

(δ(t1)) = mOPT
G′ (δ(t1)).

As a result we get

mOPT
G′ (δ(t1))

1+ ϵ
≤ b1+a2 ≤ (1+ ϵ)mOPT

G′ (δ(t1))

Since mOPT
G′ is a feasible solution in G′, we have that mOPT

G′ (δ(t1)) ∈ {0}∪
[
qt1 ,bt1

]
and

thus also a2 + b1 ∈ {0} ∪
[ qt1

1+ϵ , (1+ ϵ)bt1

]
. We have established the fact that the term

WG1(a1,b1)+WG2(a2,b2) is considered when calculating WG′(a1,b2), so we obtain
WG′(a1,b2) ≥WG1(a1,b1)+WG2(a2,b2). Together with (1), this yields property (a).
By assumption we have

mOPT
G1

(δ(s1))

(1+σ)degG1
(s1) ≤ mALG

G1
(δ(s1)) ≤ (1+σ)degG1

(s1)mOPT
G1

(δ(s1))

mOPT
G2

(δ(t2))

(1+σ)degG2
(t2) ≤ mALG

G2
(δ(t2)) ≤ (1+σ)degG2

(t2)mOPT
G2

(δ(t2))

We use the fact that node s1 in G1 equals node s in G′ and that degG1
(s1) = degG′(s1).

The same argument holds for t2 and t. We obtain the following:

mOPT
G′ (δ(s))

(1+σ)degG′ (s) ≤ mALG
G′ (δ(s)) ≤ (1+σ)degG′ (s)mOPT

G′ (δ(s))

mOPT
G′ (δ(t))

(1+σ)degG′ (t)
≤ mALG

G′ (δ(t)) ≤ (1+σ)degG′ (t)mOPT
G′ (δ(t))

So we have also established property (b).

We now consider the parallel composition. By assumption, there are two solutions
mALG

G1
and mALG

G2
and the corresponding tuples (a1,b1) and (a2,b2) that fulfill a) and

b). By construction, for the graph G′ the tuple (a1 + a2,b1 + b2) is considered by
the algorithm before the cleansing step, i.e. W′G′(a1+a2,b1+b2) is determined. We
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show that by the end of the iteration, a solution and the corresponding tuple (a,b) ≈
(a1+a2,b1+b2) that fulfill a) and b), are stored by the algorithm.
As for the series composition, it is clear that (1) also holds for the parallel composition.
We begin by proving that W′G′(a1+a2,b1+b2) ≥WG1(a1,b1)+WG2(a2,b2). In order to
do so, it is sufficient to show that the first case of the case differentiation for determining
W′G′(a1+a2,b1+b2) applies, i.e. a1+a2 ≤ (1+ ϵ)bs and b1+b2 ≤ (1+ ϵ)bt. Then the
set over which the maximum is determined contains WG1(a1,b1)+WG2(a2,b2). By
assumption and taking into account that s1 in G1, s2 in G2 and s in G′ are the same
node, the following holds:

mOPT
G1

(δ(s))

(1+σ)degG1
(s) ≤ a1 = mALG

G1
(δ(s)) ≤ (1+σ)degG1

(s)mOPT
G1

(δ(s))

mOPT
G2

(δ(s))

(1+σ)degG2
(s) ≤ a2 = mALG

G2
(δ(s)) ≤ (1+σ)degG2

(s)mOPT
G2

(δ(s))

Summation of these terms and using mOPT
G1

(δ(s))+mOPT
G2

(δ(s)) = mOPT
G′ (δ(s)) yields:

mOPT
G′ (δ(s))

(1+σ)max{degG1
(s) ,degG2

(s)}
≤ a1+a2 ≤ (1+σ)max{degG1

(s) ,degG2
(s)}mOPT

G′ (δ(s)) (4)

We only consider the second inequality of (4) and use the fact that the degree of the
nodes in G is bounded from above by n:

a1+a2 ≤ (1+ ϵ)mOPT
G′ (δ(s)) ≤ (1+ ϵ)bs

Analogously we get that b1+b2 ≤ (1+ ϵ)bt. Using (1), we have shown the following:

W′G′(a1+a2,b1+b2) ≥ mOPT
G′ wG′

Once the first part of the iteration has been completed for all tuples in J′G′,s × J′G′,t,
the cleansing step follows. By construction, a representative (a,b) from J′G′,s× J′G′,t is
stored in JG′,s× JG′,t for which WG′(a,b) =W′G′(a,b) ≥W′G′(a1+a2,b1+b2). So (a,b)
fulfills a).
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Furthermore, (a,b) ≈ (a1+a2,b1+b2) or more specifically:

a1+a2

1+σ
≤ a ≤ (1+σ)(a1+a2) (5)

b1+b2

1+σ
≤ b ≤ (1+σ)(b1+b2)

We combine (4) and (5):

mOPT
G′ (δ(s))

(1+σ)max{degG1
(s) ,degG2

(s)}+1
≤

a1+a2

1+σ
≤ a ≤ (1+σ)(a1+a2) ≤

(1+σ)max{degG1
(s) ,degG2

(s)}+1mOPT
G′ (δ(s))

Note that max{degG1
(s) , degG2

(s)}+1 ≤ degG1
(s)+degG2

(s) = degG′(s), so we obtain

mOPT
G′ (δ(s))

(1+σ)degG′ (s) ≤ a ≤ (1+σ)degG′ (s)mOPT
G′ (δ(s))

By the same argument we get

mOPT
G′ (δ(t))

(1+σ)degG′ (t)
≤ b ≤ (1+σ)degG′ (t)mOPT

G′ (δ(t))

Recall that a = mALG
G′ (δ(s)) and b = mALG

G′ (δ(t)). So we have also shown property b).
This completes the induction.
Property 1, i.e. the quality of the approximation, now follows in a straightforward way:
By the above induction, properties a) and b) hold for the graph G′ =G. Hence, there is
a tuple (a,b) ∈ JG,s× JG,t for which the following holds:

• WG(a,b) ≥ mOPT
G wG

• qs
1+ϵ ≤ a ≤ (1+ ϵ)bs or a = 0

• qt
1+ϵ ≤ b ≤ (1+ ϵ)bt or b = 0

The second and the third statement follow from property b), using that degG(s)
and degG(t) are bounded from above by n (G is a simple graph), mOPT

G is feasible,
mALG

G δ((s)) = a and mALG
G δ((t)) = b. This implies that during the computation of

the value ALG as defined above WG(a,b) is considered. Thus, ALG ≥ WG(a,b) ≥
mOPT

G wG = OPT.
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ad 2. We show inductively that for all tuples (a,b) for which WG′(a,b) > −∞ the correspond-
ing matching mALG

G′ fulfills

mALG
G′ (δ(v)) ∈ {0}∪

[ qv

1+ ϵ
, (1+ ϵ)bv

]
for all v ∈ V(G′) \ {s, t} (6)

As the base case we consider G′ = K2. In this case V(G′) \ {s, t} is empty, so the claim
always holds. For the induction step, we show that the parallel and series composition
maintain this property.
We consider the series composition first. Assume that WG′(a,b) > −∞. By definition
we have that WG′(a,b) =WG1(a,b1)+WG2(a1,b) for some b1 ∈ JG1,t1 and a2 ∈ JG2,s2 .
This implies that WG1(a,b1) > −∞ and WG2(a1,b) > −∞. So, by assumption, the
corresponding matchings fulfill (6). Hence the only non-terminal node in G′, for which
we have to show (6), is t1 = s2. By definition of WG′(a,b), we have that
mALG

G′ (δ(t1)) = b1+a2 ∈ {0}∪
[ qt1

1+ϵ , (1+ ϵ)bt1

]
, which yields the claim.

For the parallel composition we assume again that WG′(a,b) > −∞. We have that
WG′(a,b) =WG1(a1,b1)+WG2(a2,b2) for some (a1,b1) ∈ JG1,s1 × JG1,t1 and (a2,b2) ∈
JG2,s2 × JG2,t2 . Once again, we have that WG1(a1,b1) > −∞ and WG2(a2,b2) > −∞, so
(6) holds for the corresponding matchings in G1 and G2. For the parallel composition,
the set of non-terminal nodes in G′ is exactly union of the sets of non-terminal nodes
in G1 and G2 (s = s1 = s2 and t = t1 = t2). So (6) also holds for G′.
Using the lower bound for ALG, that we have just shown in 1., and taking into account
that we can always choose an empty matching as a trivial feasible solution with value 0,
we get that ALG ≥OPT ≥ 0 > −∞ always holds. By construction, ALG =WG(a,b) for
some (a,b). Applying the result of the above induction to the corresponding matching
m, we get that (6) holds for all non-terminal nodes of G. By construction of ALG,
the constraints of the terminal nodes are violated by at most a factor 1+ ϵ. Hence we
obtain m(δ(v)) ∈ {0}∪

[ qv
1+ϵ , (1+ ϵ)bv

]
for all v ∈ V(G).

As we have just seen, ALG > −∞. Assume that for the corresponding matching m
we had me < {0} ∪

[ qe
1+σ , (1+σ)be

]
for some e ∈ E(G): At some point the algorithm

considers the graph G′ = K2, consisting of e and its end nodes. Then we would have
WG′(me,me) = −∞. By construction of the algorithm we inductively get that this would
also imply ALG=−∞, which yields a contradiction. Hence, me ∈ {0}∪

[ qe
1+σ , (1+σ)be

]
for all e ∈ E(G).

ad 3. We now show that the algorithm runs in polynomial time. As an input we assume a
series parallel graph G as well as a sequence of series and parallel compositions for
constructing G. Given a series parallel graph, such a sequence can be computed in
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polynomial time (Lemma 1.4.2).
Once a sequence of compositions has been determined, the algorithm can be applied.
We first consider the computations regarding the one-edge graphs K2. The number of
such graphs to be considered is polynomially bounded in the encoding size of G, as
there are at most |E(G)| such graphs. For each of these graphs, at most (k+2)2 values
are computed in polynomial time. As already stated, k is polynomial in the encoding
size of the given instance of MWECBMMQ.
Once all base graphs K2 have been considered by the algorithm, the graph G can be
constructed iteratively by series and parallel compositions. Note that according to
Lemma 1.4.2 the sequence of series and parallel compositions can be represented
as a binary sp-tree, where the leaf nodes correspond to the one-edge graphs. Hence,
the number of non-leaf nodes, i.e. the number of series and parallel compositions, is
bounded by O(|E(G)|). Recall that we have already established the fact that

∣∣∣JG′,s
∣∣∣ and∣∣∣JG′,t

∣∣∣ are bounded from above by (k+1)2 for each subgraph G′.
For each iteration in which a series composition is considered we have to compute
WG′ for at most (k+ 1)4 tuples. Each of these computations consists of computing
the maximum over a set with at most (k+1)4 elements. All in all, the computational
complexity of each such iteration is in O(k8).
For each parallel composition we have to compute W′G′ for up to (k+1)8 tuples (J′G′,s
and J′G′,t both have up to (k+1)4 elements). In this case, a maximum over a set with
up to (k+ 1)8 elements has to be computed, which yields an overall computational
complexity of O(k16) of this step. Once all values for W′G′ have been computed, the
cleansing step takes place. Each set (J′G′,s× J′G′,t)∩ (Ii× I j) contains at most (k+1)8

values. Thus, finding a representative maximizing W′G′ for each of these sets can be
achieved in O(k8) and there are (k+1)2 such sets, which yields a complexity of O(k10).
The subsequent projection of the tuples can be done in O(k2). So all in all, we get that
the computational complexity of each such iteration is in O(k16).
After all iterations have been completed, ALG is determined by computing the maxi-
mum over a set with at most (k+1)4 elements, which can be done in O(k4). All in all
we obtain the computational complexity O(k16 |E(G)|).

Note that according to Definition 1.3.9, an (α, β)-approximation has to return infeasibility of
the given instance if there is in fact no feasible solution to the instance. However, since an
empty matching is a feasible solution to every instance of MWECBMMQ, infeasibility can
never occur. �
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4.4 Conclusion

In this chapter we have generalized the notion of maximum-weight b-matchings by apply-
ing the concept of minimum quantities (Definition 4.2.3) and we have called this problem
“maximum-weight b-matching problem with minimum quantities” (MWBMMQ). As ex-
pected, this generalization makes a polynomially solvable problem NP-hard.
Specifically, the following variant of MWBMMQ is strongly NP-hard:

• MWBMMQ on bipartite graphs with uniform edge weights (Corollary 4.3.2)
On the other hand, there is no polynomial approximation algorithm unless P = NP
(Theorem 4.3.4).

We could show at least weak NP-hardness of (even approximating) the following problems:

• MWBMMQ on series parallel graphs with uniform edge weights (Theorem 4.3.4 and
Corollary 4.3.17)
A polynomial (1,1+ϵ)-approximation exists even for MWECBMMQ (Theorem 4.3.18)

• MWBMMQ on trees with uniform edge weights (Corollary 4.3.5 and Corollary 4.3.17)

• MWBMMQ on complete binary trees (Theorem 4.3.6 and Corollary 4.3.17)

Note that according to Remark 4.3.7, MWECBMMQ is at least as hard as MWBMMQ.
Furthermore, we could show that given a value ϵ > 0 for which it is strongly NP-hard to
decide whether an instance of 3DM-3 has a solution with value n or whether all feasible
solutions have value at most (1− ϵ)n, this also holds for MWBMMQ. The statement even
holds on bipartite graphs with we = 1 on all edges e ∈ E and qv = bv ≤ 3 for all v ∈ V (Theorem
4.3.1).
Conversely, we could show polynomial solvability for the following variants:

• MWBMMQ on graphs where V(G) ≤ k for k ∈ N fixed (Theorem 4.3.8)

• MWBMMQ on paths (Theorem 4.3.9)

• MWBMMQ on cycles (Corollary 4.3.10)

• MWBMMQ on graphs where bv ≤ 2 for all v ∈ V (Theorem 4.3.11)

In the following case, we could show pseudo-polynomial solvability:

• MWECBMMQ on graphs for which the treewidth is at most t for fixed t ≥ 1 (Theorem
4.3.12)
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From the previous result we concluded that the following problem can be solved in linear
time:

• MWECBMMQ on graphs where the treewidth and the maximum capacity are both
bounded from above (Corollary 4.3.16)

Furthermore, we could show linear-time solvability for the following problem defined in
Chapter 2:

• RSAP (and RPMP) where the treewidth of the corresponding feasibility graph and the
maximum bin capacity are bounded by constants (Corollary 4.3.15)



Chapter 5

Flow problems

5.1 Introduction

Flow problems are another natural candidate for applying minimum quantities: As pointed
out in [25] and [45], flow problems with minimum quantities could, for example, be applied
to water supply and sewerage networks. If the rate of flow through the pipes or sewers is too
low, this might lead to stagnating fresh water being contaminated over time or the sewers
being clogged. Hence, it might be desirable to determine a flow so that edges are either
unused or there is at least a certain rate of flow on them. It might be due to these obvious
use cases that, among the classes of optimization problems with minimum quantities that
are within the scope of this thesis, most previous publications focus on flow problems with
minimum quantities.
In the next section we give an overview of these publications and provide the formal defini-
tions. In the subsequent section we contribute additional results regarding the minimum-cost
flow problem with minimum quantities and the maximum flow problem with minimum quan-
tities. Furthermore, we consider generalized flow problems with minimum quantities and
analyze the relationship between non-generalized flow problems with minimum quantities
and generalized flow problems with minimum quantities.

5.2 Basics and Definitions

We begin this chapter by providing the relevant definitions that we use in the following.
Unless specified otherwise, we assume that the graphs in this chapter are simple, i.e. there
are no loops or parallel edges. Given a graph G = (V,E) and a flow f : E→ N, we use the
following notation: We denote the flow on some edge e = (v1,v2) ∈ E by fe. Since the graphs
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in this chapter are usually simple, every edge can be identified by its end points. This allows
us to use the alternative notation f (v1,v2) = fe. For a set of edges E′ ⊆ E we use the notation
f (E′)B

∑
e∈E′

fe.

First of all, we give a generic definition of flow problems with minimum quantities. In order
to make the definition as comprehensive as possible, we already incorporate the notion of
generalized flows. In a generalized flow network, the input of an edge does not necessarily
equal its output, i.e. there might be a gain or a loss regarding the input. This is represented
by a multiplier on each edge. More information on generalized flow problems can be found
in [1] and [34]. Furthermore, the authors of [48] have already considered a similar version of
the generalized minimum cost flow problem with minimum quantities.

Definition 5.2.1 (generalized flow network with minimum quantities). A generalized flow
network with minimum quantities is given by a directed graph G = (V,E), where V denotes
the set of nodes and E denotes the set of directed edges. There are two dedicated nodes s and
t that we refer to as the source and the sink. Minimum quantities qe ∈ N and upper capacities
be ∈ N are defined for all e ∈ E. In addition, a multiplier µe ∈ Q+ is defined on all edges. In
order for a flow f : E→ N,e 7→ fe to be feasible, we require µe fe ∈ N, fe ∈ {0}∪

[
qe,be

]
for

all e ∈ E and
∑

e∈δ+(v)
fe−

∑
e∈δ−(v)

µe fe = 0 for all v ∈ V \ {s, t}.

If the multipliers µe are uniformly one, we usually omit the multipliers as well as the prefix
“generalized” and refer to the flow network as a “flow network with minimum quantities”.

We allow edge capacities be = 0 for technical reasons. Trivially, adding or removing
these edges does not affect the set of feasible flows.
There are different possibilities to define integrality of generalized flows. The authors of [34]
propose the following variants:

• An integral amount of flow enters each edge.

• An integral amount of flow enters each edge and each node.

• An integral amount of flow enters and leaves each edge.

Our definition corresponds to the third variant which is the most restrictive one.

Remark 5.2.2. While some authors allow edges to point to the source or to start at the sink,
we assume δ−(s) = δ+(t) = ∅ in the following. Note that we can make this assumption w.l.o.g:
Given a flow network where δ−(s) , ∅ holds for the source node s, we introduce a new node
s′ and an edge e′ = (s′, s). We set qe′ B 0, be′ B

∑
e∈δ+(s)

be and (if edge costs are relevant)

ce′ B 0. If the flow network is a generalized flow network, we set µe′ B 1. Furthermore
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we add the constraint
∑

e∈δ+(s)
fe−

∑
e∈δ−(s)

fe = 0. We make s′ the dedicated source of the new

flow network for which δ−(s′) = ∅ holds by construction. If δ+(t) , ∅ for the sink node t,
we transform the flow network analogously. It is easy to see the equivalence of both flow
networks.

In this thesis we mainly consider two flow problems with minimum quantities. The first
one is a generalization of the minimum-cost flow problem:

Definition 5.2.3 (generalized minimum cost flow problem with minimum quantities). The
generalized minimum cost flow problem with minimum quantities (GMCFMQ) is given by a
generalized flow network with minimum quantities as defined in Definition 5.2.1, edge costs
ce ∈ Q for all e ∈ E and a flow value F ∈ N. In order for a flow f to be feasible, it must fulfill
the constraints given in Definition 5.2.1 and

∑
e∈δ+(s)

fe = F. The task is to find a feasible flow

f that minimizes
∑

e∈E
ce fe.

If the multipliers µe are uniformly one, we usually omit the multipliers and refer to the
problem as the minimum cost flow problem with minimum quantities (MCFMQ).

The second problem we analyze is a variant of the maximum flow problem:

Definition 5.2.4 (generalized maximum flow problem with minimum quantities). The gener-
alized maximum flow problem with minimum quantities (GMFMQ) is given by a generalized
flow network with minimum quantities as defined in Definition 5.2.1. In order for a flow f
to be feasible, it must fulfill the constraints given in Definition 5.2.1. The task is to find a
feasible flow f that maximizes

∑
e∈δ+(s)

fe, i.e. the amount of flow leaving s.

If the multipliers µe are uniformly one, we usually omit the multipliers and refer to the
problem as the maximum flow problem with minimum quantities (MFMQ).

Problems similar to MCFMQ and MFMQ have already been analyzed in other publica-
tions: MCFMQ (or a similar problem) has been considered in [25, 31, 32, 44, 45], while
MFMQ (or a similar problem) has been considered in [14, 23, 25, 47]. We now give a brief
summary of these publications and point out if the definitions of the respective problems
differ from the definitions we use. Unless specified otherwise, we summarize the other
publications based on the terminology presented above, even if the terminology used by the
authors differs.
A variation of MCFMQ was first defined in [44]: The authors allow minimum quantities,
edge capacities and edge costs as well as edge flows to be (positive) real numbers instead
of natural numbers, which is required according to the definition we use. Furthermore,
minimum quantities are only defined on the edges starting at the source node. The problem
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is shown to be NP-hard on series parallel graphs using a reduction from SUBSET SUM.
The same reduction can also be used to show NP-hardness of MCFMQ. Besides proving the
complexity of the problem, the authors provide a branch-and-bound algorithm and analyze
its performance.
The problem MCFMQ is further analyzed in [31, 32]. The definition in these papers co-
incides with ours. In [31], strong NP-hardness of MCFMQ is shown. Furthermore, the
authors prove that unless P=NP, there cannot be any polynomial-time g(|I|)-approximation
for MCFMQ, where |I| is the encoding length of a given instance of MCFMQ and g is an
arbitrary polynomial function. Both results hold even on bipartite graphs and if a feasible
solution is guaranteed to exist. In [32] the same authors show that unless P=NP, there cannot
be any polynomial-time g(|I|)-approximation for MCFMQ on series parallel graphs.
In [45] a dynamic program for MCFMQ with pseudo-polynomial running time on series
parallel graphs, which was initially given in [31], is shown to be flawed and is subsequently
fixed. In addition, it is shown that unless P=NP, MCFMQ cannot be approximated in polyno-
mial time even for uniform minimum quantities. The definition of MCFMQ in [45] is the
same as the one used in this thesis.
Finally, the authors of [25] provide a pseudo-polynomial dynamic program for the special
case of MCFMQ where the minimum quantities are uniform, which has a better complexity
than the one covering the general case given in [45]. Furthermore, NP-hardness of MCFMQ
with uniform minimum quantities on series parallel graphs and on extension-parallel graphs
is shown.
In [23] a problem similar to MFMQ is introduced. The definition differs from ours, as the
edge flows may attain positive real numbers. In addition, the definition includes a circulation
edge from the sink to the source, which is simply a technical difference regarding the repre-
sentation of the problem. A reduction from SUBSET SUM is used to show that the problem
is NP-hard. The reduction given in the paper could also be used to show NP-hardness of
MFMQ. In the following, the authors provide a mixed integer linear program formulation.
An approach combining Lagrangean relaxations and variable fixing is suggested. In addition,
a heuristic for finding an approximate solution is proposed and the performance of several
variants of that heuristic is compared. It is shown that the quality of the solution computed by
the heuristic decreases as the percentage of edges on which a non-trivial minimum quantity
constraint is defined increases.
Another approximate heuristic, which is based on the Edmonds-Karp algorithm, is proposed
in [14] and compared to the one given in [23]. It is shown that the algorithm proposed by the
authors is able to find a positive flow in several graphs, where the algorithm from [23] failed
to find a positive flow. However, the solution generated by the algorithm can be considerably
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worse than an optimal solution. The authors of [14] use the same definition of the problem
that was given in [23].
The authors of [47], who define MFMQ as we do, show strong NP-hardness of approximating
MFMQ on bipartite graphs and NP-hardness of MFMQ with uniform minimum quantities.
Furthermore, a pseudo-polynomial dynamic program for MFMQ on series parallel graphs is
provided. A polynomial-time (2− 1

q )-approximation algorithm is shown for the case that the
minimum quantities are uniformly q. Finally, the authors show that MFMQ can be solved in
polynomial time if the underlying graph is series parallel and the minimum quantities are
uniform.
In [25], the authors apply minimum quantities to the multi-commodity maximum flow
problem, where different commodities have to be sent through a flow network. For each
commodity there is a dedicated source and a sink and the task is to maximize the sum of
the flows for each commodity. The authors also consider the special case where there is
just one commodity, which coincides with our definition of MFMQ. The authors provide an
approximation algorithm for MFMQ with identical minimum quantities that is at least as
good as the one given in [47]. If the minimum quantities fulfill certain conditions and the
underlying graph is series parallel, the multi-commodity maximum flow problem with mini-
mum quantities is shown to be solvable in linear time. Polynomial or even linear algorithms
are provided for several special cases of MFMQ on series parallel graphs and on pearl graphs
with uniform minimum quantities. On the other hand, it is shown that MFMQ is NP-hard on
pearl graphs in general. Finally, the authors show that MFMQ is strongly NP-hard and unless
P=NP, no polynomial-time g(|I|)-approximation exists.
The application of minimum quantity constraints to generalized flow problems has been
considered in [48]: The authors define the “minimal-cost network flow problem with variable
lower bounds” (MCNF-VLN). The definition varies from ours in several ways: The definition
given in [48] also allows fixed lower bounds on the edges, while we only allow minimum
quantity constraints. For the source node a maximum supply is given and for the sink node a
minimal demand is defined. In our model of MCFMQ the demand of the sink node is uncon-
strained, while an exact supply is specified for the source node. The authors of [48] do not
restrict the flow to integral values. A mixed integer linear programming (MILP) formulation
of MCNF-VLN is given and MCNF-VLN is shown to be NP-hard. The remainder of the
paper focusses on computational results.
As we have just seen, there is a variety of different definitions of flow problems with minimum
quantities. Unless specified otherwise, in this thesis we consider the problems MCFMQ and
MFMQ as defined in Definition 5.2.3 and Definition 5.2.4. However, in some cases we also
consider the variant where the edge flow may attain positive real values (which also includes
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omitting the constraint µe fe ∈ N), while the remaining definition of the respective problem is
unchanged. We refer to these variants as MCRFMQ and MRFMQ.
The following table summarizes the variants of flow problems with minimum quantities that
we consider in this thesis:

Problem Objective function Integral flow? Generalized flow?
GMFMQ Maximum flow Yes Yes
MFMQ Maximum flow Yes No
MRFMQ Maximum flow No No
GMCFMQ Minimum-cost flow Yes Yes
MCFMQ Minimum-cost flow Yes No
MCRFMQ Minimum-cost flow No No

In the beginning of this chapter, we have pointed out that unless specified otherwise, all
graphs are assumed to be simple. Note that we can do so w.l.o.g.: If a graph contains a
loop or a parallel edge, the edge can be replaced by a path of length two. If the minimum
quantities, capacities and (if relevant) edge costs and multipliers on the edges of the path
are chosen appropriately, this transformation does not affect the solution to the respective
problem instance. The transformation can be carried out in polynomial time and the size of
the new problem instance is polynomially bounded in the size of the initial problem instance.

5.3 Complexity Results & Algorithms

We begin this chapter by showing that every instance of MFMQ or MCFMQ can be reduced
to a matching problem with minimum quantities:

Theorem 5.3.1. Every instance of MFMQ or MCFMQ can be reduced to an instance of
MWECBMMQ (Definition 4.2.6) in polynomial time.

Proof. Let an instance I of MFMQ or MCFMQ on a directed graph G = (V,E) be given. Let
n denote the number of nodes and let k denote the number of edges. Set BBmax

e∈E
be+1.

We create an instance I′ of MWECBMMQ as follows: Replace every node v ∈ V \ {s, t}
by v− and v+, set δ(v−)B δ−(v), δ(v+)B δ+(v) and introduce a new edge ev = (v−,v+). We
denote the new set of nodes by V′, the set of additional edges by E′ and the new graph by
G′ = (V′,E ∪E′). Set qe B 0 and be B kB for all e ∈ E′. For all e ∈ E reuse the minimum
quantities and capacity constraints from G. Set qv B bv B kB for all v ∈ V′ \ {s, t}.
If the original instance is an instance of MFMQ, set weB 1 for all e ∈ δ(s) = δ−(s) and weB 0
for all e ∈ E \δ(s). Set qs B qt B 0 and bs B bt B kB.
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If the original instance is an instance of MCFMQ, introduce an additional node s′ and an
edge es = (s′, s) in E′. Set qes B bes B 1. Set we B −ce for all e ∈ E, wes B kB

(
max
e∈E
|ce|+1

)
and we B 0 for all e ∈ E′ \ {es}. Set qt B bt B F, qs B bs B F +1 and qs′ B bs′ B 1.
We claim that we can solve I by solving I′.
Figure 5.3.1, Figure 5.3.2 and Figure 5.3.3 illustrate the transformation of an instance of
MFMQ or MCFMQ, respectively, into an instance of MWECBMMQ. Let the following
instance of MCFMQ be given and let the required flow value be F. Note that by dropping
the flow requirement and the costs, it can be interpreted as an instance of MFMQ.

s v1 v2 t

v3

q1,b1,c1 q2,b2,c2 q3,b3,c3

q4,b4,c4q5,b5,c5

Fig. 5.3.1 Input instance MCFMQ /MFMQ; The edge labels represent the minimum quanti-
ties, capacities and costs

We obtain the following instance of MWECBMMQ from applying the transformation to
the instance of MFMQ shown in Figure 5.3.1:

s

0,kB

v−1

kB,kB

v+1

kB,kB

v−2

kB,kB

v+2

kB,kB

t

0,kB

v−3

kB,kB

v+3

kB,kB

q1,b1,1 q2,b2,0 q3,b3,0

q4,b4,0q5,b5,0

0,kB,0 0,kB,0

0,kB,0

Fig. 5.3.2 Reducing MFMQ to MWECBMMQ, output instance; The edge labels represent
the minimum quantities, capacities and weights on the respective edge; The node labels
represent the minimum quantities and capacities on the respective node

Likewise, applying the transformation to the instance of MCFMQ shown in Figure 5.3.1
yields the following instance of MWECBMMQ:
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s

F +1,F +1

v−1

kB,kB

v+1

kB,kB

v−2

kB,kB

v+2

kB,kB

t

F,F

s′

1,1

v−3

kB,kB

v+3

kB,kB

q1,b1,−c1 q2,b2,−c2 q3,b3,−c3

q4,b4,−c4q5,b5,−c5

0,kB,0 0,kB,0

0,kB,0

1,1,wes

Fig. 5.3.3 Reducing MCFMQ to MWECBMMQ, output instance; The edge labels represent
the minimum quantities, capacities and weights on the respective edge; The node labels
represent the minimum quantities and capacities on the respective node

We now show that an optimal solution to the instance I′ of MWECBMMQ as constructed
above induces an optimal solution to the instance I of MCFMQ or MFMQ, respectively.
We first consider MFMQ. We show how a feasible solution to I can be transformed into a
feasible solution to I′ and vice versa. Let a feasible solution f to I be given and let fe and me

denote the flow or matching on some edge e. For all edges e ∈ E∪E′ set

me B

 fe if e ∈ E

kB− f (δ−(v)) if e = (v−,v+) ∈ E′

By construction, this is a feasible matching: The edge constraints are obviously fulfilled on
all e ∈ E. Since f (δ−(v)) ≤ kB for all v ∈ V , the edge constraints are also fulfilled for all e ∈ E′.
Furthermore, the node constraints are fulfilled on s and on t. We now consider the nodes
v ∈ V′ \ {s, t}. Let ev ∈ E′ be the edge connecting v− and v+ for some node v ∈ V \ {s, t}: By
construction we have m(δ(v−)) =m(δ(v−)\{ev})+kB− f (δ−(v)) and m(δ(v−)\{ev}) = f (δ−(v)).
Hence, we obtain m(δ(v−))= kB. Likewise, we have m(δ(v+))=m(δ(v+)\{ev})+kB− f (δ−(v))
and m(δ(v+) \ {ev}) = f (δ+(v)) by construction. By assumption, f is a feasible flow and, since
v < {s, t}, the flow conservation constraints are fulfilled. Hence, f (δ−(v)) = f (δ+(v)), which
yields m(δ(v+)) = kB. This implies m(δ(v)) = kB for all v ∈ V′ \ {s, t}.
Vice versa, let a feasible solution m to the instance I′ of MWECBMMQ be given. For all
edges e ∈ E set fe B me. By construction, all edge constraints are fulfilled. Let v ∈ V \ {s, t}
and ev = (v−,v+) ∈ E′. We have m(δ(v+) \ {ev}) = f (δ+(v)) and m(δ(v−) \ {ev}) = f (δ−(v)) by
construction. We show that the flow conservation constraints are fulfilled by proving that
m(δ(v+) \ {ev}) = m(δ(v−) \ {ev}): If m(δ(v+) \ {ev}) = m(δ(v−) \ {ev}) = 0, the claim holds. We
assume w.l.o.g. that 0 < m(δ(v+) \ {ev}). Since m is feasible, we have m(δ(v+)) = kB. Note
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that by construction m(δ(v+) \ {ev}) ≤
∑

e∈δ(v+)\{ev}
be =

∑
e∈δ+(v)

be < kB.

Hence, 0 < m(δ(v+) \ {ev}) < kB. In order for m(δ(v+)) = kB to hold, we must have mev =

kB−m(δ(v+) \ {ev}), which implies 0 < mev < kB. Then, in order for the minimum quantity
constraint on v− to be fulfilled, we must have m(δ(v−)) = kB, which implies m(δ(v−) \ {ev}) =
kB−mev = kB− (kB−m(δ(v+) \ {ev})) = m(δ(v+) \ {ev}), which yields the claim. Hence, for
MFMQ we have shown how a feasible solution to I can be transformed into a feasible
solution to I′ and vice versa.
Note that exactly the edges in δ(s) have weight 1 and all other edges have weight 0. Hence,
the transformation maintains the objective value and a solution to I is optimal if and only if
the corresponding solution to I′ is optimal. This shows the claim regarding MFMQ.
We now consider MCFMQ: Let G denote the graph corresponding to I, the instance of
MCFMQ, and let G′ denote the graph corresponding to I′, the instance of MWECBMMQ.
In order to transform a solution to I into a solution to I′ and vice versa, we use the same
transformations that we have used for MFMQ. In addition, we set mes B 1 if we transform a
feasible solution to I into a solution to I′. We show that given an optimal solution m to I′ we
can either conclude infeasibility of I or derive an optimal solution to I.
In order to do so, we first show that there is a feasible solution to I′ with mes = 1 if and only
if there is a feasible flow with flow value F in G:
Let a solution m to I′ with mes = 1 be given. Then we have m(δ(s) \ {es}) = F. From our
analysis of MFMQ we know that transforming the matching on the edges E′ \ {es} into a
corresponding flow as described above yields a feasible s-t-flow with flow value F, i.e. a
feasible solution to I. Thus, if there is a feasible solution m to I′ for which mes = 1, then
there is a feasible solution to I.
Conversely, we have already seen for MFMQ how a feasible solution f to I can be turned into
a matching m that is feasible for all nodes except for s and s′ and where m(δ(s) \ {es}) = F.
Setting mes = 1 as described above yields the claim.
Hence, we have shown for MCFMQ that there is a feasible solution to I′ with mes = 1 if and
only if there is a feasible solution to I.
We now show, that if a feasible solution to I exists, then mes = 1 in every optimal solution m
to I′ and m induces an optimal solution to I:
Let two feasible matchings m′,m′′ in G′ be given. Then we have∑
e∈E∪E′\{es}

m′ewe−
∑

e∈E∪E′\{es}
m′′e we =

∑
e∈E∪E′\{es}

(m′e−m′′e )we ≤
∑

e∈E∪E′\{es}

∣∣∣m′e−m′′e
∣∣∣ |we| ≤

B
∑

e∈E
|ce| < kB

(
max
e∈E
|ce|+1

)
= wes . This implies that every feasible matching with mes = 1

is better than every feasible matching with mes = 0. As we have already seen, if there is
a feasible solution to I, then there is a feasible solution to I′ with mes = 1. Hence, every
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optimal solution to I′ must have mes = 1.
Let an optimal solution m to I′ be given. Then mes = 1, as we have just seen. We claim that
applying the above transformation yields an optimal s-t-flow f in G. We have

∑
e∈E

fece =

−
∑

e∈E
mewe = −

∑
e∈E∪E′\{es}

mewe. Assume that f is not optimal, i.e. there is another s-t-flow

f ′ for which
∑

e∈E
f ′e ce <

∑
e∈E

fece. We create a feasible solution m′ to I′ by applying the above

transformation to f ′. In particular we set mes B 1.
Then we have −

∑
e∈E∪E′\{es}

m′ewe = −
∑

e∈E
m′ewe =

∑
e∈E

f ′e ce. However, this implies

wes +
∑

e∈E∪E′\{es}
m′ewe > wes +

∑
e∈E∪E′\{es}

mewe, which contradicts optimality of m. Hence, f

is also optimal. �

The previous theorem implies that MWECBMMQ is at least as hard as MFMQ and
MCFMQ. On the other hand, we obtain the following corollary from the previous theorem:

Corollary 5.3.2. Let a fixed integer r ≥ 1 be given. MFMQ and MCFMQ can be solved in
pseudo-polynomial time on graphs for which the treewidth is at most r.

Proof. Note that if the treewidth of a given flow network G is bounded by r, then the
treewidth of the graph G′ constructed in the proof of Theorem 5.3.1 is bounded by 2r: We
obtain a tree-decomposition of G′ from a tree-decomposition of G by replacing every node
v by the respective v− and v+ (or s by s and s′) in all Xi. Hence, the claim follows from
Theorem 5.3.1 and Theorem 4.3.12. �

As we have already mentioned, the authors of [47] show that MFMQ can be solved on
series parallel graphs in polynomial time if the minimum quantities are uniform. We extend
this result to the case that the number of different minimum quantities is bounded by a fixed
integer r:

Corollary 5.3.3. For a fixed integer r, MFMQ can be solved in polynomial time on series
parallel graphs if the number of different minimum quantities is bounded by r.

Proof. We show that the complexity of the dynamic program given in [47] (with a small
adaptation) remains polynomial.
Let G = (V,E) denote the series parallel graph corresponding to the instance of MFMQ and
set mB |E|. W.l.o.g. we assume that there are exactly r different minimum quantities. Else,
we add dummy minimum quantities that do not occur in the graph. Let {q1, . . . ,qr} be the set
of different minimum quantities.
The dynamic program provided by the authors of [47] successively computes sets S G′(k) for
series parallel subgraphs G′ of G along a decomposition of G. These sets contain the values
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of feasible s-t-flows in G′ for which the flow is positive on exactly k edges (i.e. fei ∈
{
qei ,bei

}
for the respective edges ei).
The dynamic program works as follows:

• G′ = K2

Let qe ∈ {q1, . . . ,qr} and be denote the minimum quantity and the capacity on the single
edge e of G′. The only change we make to the dynamic program given in [47], is using
the edge-specific minimum quantity qe in the following computation (instead of the
uniform minimum quantity):

S G′(k)B


{0} if k = 0[
qe,be

]
if k = 1

∅ if k > 1

• Series composition
The series composition is the same as the one provided in [47]. Let G′ be the series
composition of G1 and G2. Then S G′(k) can be computed as follows:
S G′(k)B

⋃
0≤k1,k2≤k
k1+k2=k

S G1(k1)∩S G2(k2)

• Parallel composition
The parallel composition is also the same as the one in [47]. Let G′ be the parallel
composition of G1 and G2. Then S G′(k) can be computed as follows, where “+”
denotes the element-wise sum (Minkowski sum):
S G′(k)B

⋃
0≤k1,k2≤k
k1+k2=k

S G1(k1)+S G2(k2)

Once the sets S G(k) have been determined for all k ∈ {1, . . . ,m}, the maximum flow of the
instance of MFMQ is given by max

k∈{1,...,m}
maxS G(k).

As in [47], correctness of the algorithm follows by construction. We still have to show that
the complexity of the algorithm is polynomial. The argumentation works analogously to
[47], but in addition, we take the different structure of the sets S G′(k) into account and show
that the complexity of the algorithm remains in fact polynomial. Set BB

∑
e∈E

be. Let pG′( j)

denote the number of edges in some subgraph G′ of G that have minimum quantity q j. Set

IG′ B

 r∑
j=1

c jq j

∣∣∣∣0 ≤ c j ≤ pG′( j) for all j = 1, . . . ,r
. Note that pG′( j) ≤ m for all j. Hence,

we have that |IG′ | ≤ (m+1)r. Furthermore, note that for all graphs G′ the elements of IG′ are
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linear combinations of the different minimum quantities that occur in G. The sets IG′ only
differ in the ranges of the coefficients c j.
We claim that for every G′ all S G′(k) can be expressed as S G′(k) =

⋃
i∈IG′ (k)

[i,UG′(k, i)] for

some IG′(k) ⊆ I and some UG′(k, i) ∈ [i, . . . ,B]. Note that the intervals are not required to be
disjoint.
If G′ = K2 where e is the edge in G′, then the claim holds: If k = 0, set IG′(0)B {0} ⊆ I and
UG′(0,0) = 0. If k = 1, IG′(1)B {qe} ⊆ I and set UG′(1,qe) = be. If k > 1, set IG′(k)B ∅ ⊆ I.
If G′ is the series composition of G1 and G2 and the statement holds for G1 and G2, then it is
obvious that the intersection maintains this property and the statement also holds for G′.
Let G′ be the parallel composition of G1 and G2 and let the statement be true for G1 and
G2. We have that pG′( j) = pG1( j)+ pG2( j) for all j ∈ {1, . . . ,r}. Hence, if i1 ∈ IG1 and
i2 ∈ IG2 , then i1 + i2 ∈ IG′ . Furthermore, the sum of the maximum flow through G1 and
the maximum flow through G2 can never exceed B, which implies max

k∈{1,...,m}
maxS G1(k)+

max
k∈{1,...,m}

maxS G2(k) ≤ B. Hence, given arbitrary 0 ≤ k1,k2,k ≤ m for which k = k1 + k2

and arbitrary intervals
[
i1,UG1(k1, i1)

]
⊆ S G1(k1) and

[
i2,UG2(k2, i2)

]
⊆ S G2(k2), we have

that
[
i1+ i2,UG1(k1, i1)+UG2(k2, i2)

]
can be represented as claimed. Since S G′(k) is the

Minkowski sum of S G1(k1) and S G2(k2), the statement holds for G′.
The claim now follows by induction. This implies that every S G′(k) can be represented as
the union of at most (m+1)r intervals.
We now consider the number of steps required to compute S G′(k) for all k ∈ {1, . . . ,m} for a
given G′: If G′ = K2, then S G′(k) can be computed in constant time for k fixed. Computing
S G′(k) for all k ∈ {1, . . . ,m} requires time O(m). Now assume that G′ is the parallel or
series composition of G1 or G2 and that S G1(k1) and S G2(k2) have been computed for all
k1, k2 ∈ {1, . . . ,m}. Then for k1, k2 fixed, S G1(k1)∩S G2(k2) or S G1(k1)+S G2(k2), respectively,
can be computed in O(m2r): The intersection and the Minkowski sum process each pair of
intervals from S G1(k1) and S G2(k2). Each of the sets S G1(k1) and S G2(k2) consists of at most
(m+1)r intervals and for processing a pair of intervals only the endpoints of the intervals
are required. In particular, the length of the intervals does not matter in terms of complexity,
as long as the endpoints of the intervals remain polynomially bounded in the size of the
input instance, which holds by construction. Hence, considering all 0 ≤ k1,k2 ≤ k for which
k1 + k2 = k for k fixed requires O(km2r) steps and computing S G′(k) for all k ∈ {1, . . . ,m}
requires at most O(m2r+2) steps. The dynamic program terminates after at most m parallel or
series compositions. Thus, it finishes after at most O(m2r+3+m) = O(m2r+3) steps (including
initializing the dynamic program for all G′ = K2). Finally, max

k∈{1,...,m}
maxS G(k) has to be

computed. For k fixed, determining maxS G(k) requires at most O(mr) steps for comparing
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UG(k, i) for all i ∈ IG(k). Considering all k ∈ {1, . . . ,m} increases the number of steps required
toO(mr+1). We assume that a decomposition (i.e. an sp-tree) of G has already been computed,
else it can be computed in polynomial time (Lemma 1.4.2). Hence, the overall complexity
of determining an optimal solution is O(m2r+3 +m+mr+1) = O(m2r+3), which is in fact
polynomial due to r being fixed by assumption. �

We have shown that there are polynomial-time bicriteria (α, β)-approximation algorithms
for all classes of problems that we have considered in this thesis so far. We now show that
unless P=NP, this is not possible for MCFMQ and MCRFMQ, using a similar reduction as
the one given in [32]. If we consider flow problems, the approximation factor β refers to the
minimum quantity and capacity constraints defined on the edges of the graph.

Theorem 5.3.4. MCFMQ and MCRFMQ are NP-hard and unless P=NP, there cannot be
any polynomial-time bicriteria approximation algorithm for these problems, even on series
parallel or on bipartite graphs.

Proof. Let an instance of PARTITION be given by n sizes si ∈N (i= 1, . . . ,n) where
n∑

i=1
si = B.

Create an instance of MCFMQ or MCRFMQ as follows: Set V B {s, t}, EB {e1, . . . ,en}where
ei = (s, t) for all i ∈ {1, . . . ,n}, qei B bei B si for all i ∈ {1, . . . ,n}, cei B 0 for all i ∈ {1, . . . ,n}
and F B B

2 .
It is obvious that there is a feasible solution with flow value F if and only if a feasible solution
to the given instance of PARTITION exists. By Definition 1.3.9, a bicriteria approximation
algorithm returns an approximate solution if there is a feasible solution to the given instance,
else it returns infeasibility of the instance. Hence, a bicriteria approximation algorithm for
MCFMQ or MCRFMQ would solve PARTITION. This yields the claim. �

Note that different definitions of bicriteria approximation algorithms exist that might lead
to different results (Remark 1.3.10).
Even though a polynomial-time bicriteria approximation algorithm for MCRFMQ does not
exists, such an algorithm exists for MRFMQ on series parallel graphs. In order to show this
claim, we require the following lemma:

Lemma 5.3.5. For every instance of MRFMQ there is an integral optimal solution.

Proof. Let an instance I of MRFMQ and an arbitrary optimal flow f be given. If f has flow
value 0, a zero-flow with fe = 0 for all edges e is an integral optimal solution to I. Else, we
remove all edges from the graph corresponding to I for which fe = 0. Let E′ denote the set
of remaining edges. We interpret the minimum quantities on the remaining edges as fixed
lower bounds, i.e. we require fe ≥ qe for all e ∈ E′. We denote this instance by I′. Note that
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f restricted to the edges in E′ is an optimal solution to I′ (Otherwise, this would contradict
optimality of f in I). By definition of MRFMQ, all lower bounds and edge capacities are
integral. Then there is an integral solution f ′ to I′ that has the same flow value as f : This
follows either from the fact that the problem can be formulated as an integer program with
a totally unimodular matrix or from the results regarding the maximum flow problem with
lower bounds given in [1]. Obviously, f ′ is also a feasible solution to I. �

We now show the existence of a bicriteria approximation algorithm for MRFMQ on
series parallel graphs. The outline of the algorithm and the proof are similar to Theorem
4.3.18 but several adjustments are included.

Theorem 5.3.6. For ϵ > 0 fixed, there is a polynomial (1, 1+ ϵ)-approximation algorithm for
MRFMQ on series parallel graphs.

Proof. We provide a dynamic program that finds an approximate solution as described in
the claim. As in the proof of Theorem 4.3.18, we assume that an arbitrary but fixed way of
constructing the graph (i.e. an sp-tree) is given. Again, in order to achieve a polynomial
complexity of the algorithm, we only consider a subset of all feasible flows during each
construction step of the series parallel graph. Each partial solution is identified by the flow
value through the respective graph G′, where G′ denotes the subgraph of G constructed in
the current iteration. The flow values to be considered by the algorithm are characterized by
the set J. For each value a ∈ J, the algorithm determines whether there is an s-t-flow with
flow value a through G′ that fulfills certain conditions. If so, one such flow is chosen to be
stored. In addition, there is a function WG′ : J→ {0,1} that indicates for each value in a ∈ J
whether the algorithm has stored an intermediate solution with flow value a. The crucial step
of the algorithm is the cleansing step that is carried out after each parallel composition. The
cleansing step ensures that the complexity of the algorithm remains polynomial.
Let an instance I of MRFMQ be given on a graph G = (V,E).
Set

• fmax B
∑

e∈E
be

• σB m√1+ ϵ −1 where m = |E|

• kB
⌈
log1+σ fmax

⌉
+1 =

⌈
m log1+ϵ fmax

⌉
+1

This implies k ∈ O(m log
∑

e∈E
be), so it is polynomial in the encoding size of I.
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In addition, we define the following intervals and values:

• I0 B {0}

• I1 B
[
(1+σ)0, (1+σ)1

]
= [1, (1+σ)]

• Ii B
(
(1+σ)i−1, (1+σ)i

]
for all 2 ≤ i ≤ k

• p0 B 0

• pi B (1+σ)i for all 1 ≤ i ≤ k

This allows us to denote the intervals Ii using the values pi:

• I0 = {p0} = {0}

• I1 =
[
1, p1

]
• Ii = (pi−1, pi

]
for all 2 ≤ i ≤ k

We make the following observations regarding the above definitions:

• We have {0}∪
[
1, fmax

]
⊆

k−1⋃
i=0

Ii. Note that fmax is an upper bound on the optimal flow

value.

• For all 1 ≤ i ≤ k, we have max Ii
inf Ii
≤ 1+σ.

We now describe how the algorithm works for each of the three possible situations, which
are the basic one-edge graph K2, the series composition and the parallel composition. We
assume that the graph G′ with terminal nodes s and t is the graph to be constructed in the
current iteration. We use the same index for each series parallel graph and its respective
source and sink, i.e. the terminals of graph Gi are denoted by si and ti.
We set JB {pi | i = 0, . . . ,k−1} and WG′(p0)B 1 for all subgraphs G′ of G that are considered
by the algorithm. In addition, we set J′B J+ J (Minkowski sum). We associate the zero-flow
with the flow value p0 = 0 for all graphs G′.

• G′ = K2

We denote the (only) edge of the graph by e= (s, t) and define WG′ for all {pi | i = 1, . . . ,k−1}
as follows:

WG′(pi)B

1 if pi ∈
[
qe, (1+σ)be

]
0 else
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• Series composition
Let G′ be constructed from G1 and G2 where t1 and s2 are identified.
We assume that WG1 and WG2 have been determined in a previous iteration. For each
i ∈ {1, . . . ,k−1} set WG′(pi)Bmin

{
WG1(pi),WG2(pi)

}
. If WG′(pi) = 1, store the union

of the (edge-disjoint) partial flows that have been stored for pi in G1 and G2 as the
corresponding flow in G′.

• Parallel composition
Let G′ be constructed from G1 and G2 where s1 and s2 as well as t1 and t2 are identified.
Assume again that WG1 and WG2 have been determined in an earlier iteration. For each
element a ∈ J′, W′G′ is defined as follows:
W′G′(a)Bmax

{
min

{
WG1(pi1),WG2(pi2)

}
| pi1 , pi2 ∈ J∧ a = pi1 + pi2

}
By construction, for each value a ∈ J′ there is at least one pair of values pi1 , pi2 ∈ J so
that a = pi1 + pi2 . Hence, the set over which the maximum is determined is non-empty
and the above value is well-defined. In order to reduce the number of values stored,
we omit W′G′ after the iteration and only store WG′ (which is defined on J instead of
J′). Recall that we have already set WG′(p0) = 1. For all i ∈ {1, . . . ,k−1} the function
WG′ is defined as follows:
WG′(pi)Bmax

{
W′G′(a)

∣∣∣∣a ∈ J′∩ (Ii∪ Ii+1)
}

If WG′(pi) = 1 for some pi, then by construction there are pi1 , pi2 ∈ J for which
WG1(pi1) =WG2(pi2) = 1 and a = pi1 + pi2 . If there are multiple such tuples (pi1 , pi2), an
arbitrary tuple is selected. Note that J ⊆ J′ and J∩ Ii , ∅ for all i ∈ {1, . . . ,k−1}. Hence,
WG′(pi) is well-defined. We scale the edge flows of the (edge-disjoint) partial solutions
that are associated with pi1 in G1 and with pi2 in G2 by a factor pi

a and associate the
resulting flow through G′ with pi ∈ J. Note that this step scales the flow up or down by
a factor at most 1+σ.

Once a series or a parallel composition is considered by the algorithm, we require WG1

and WG2 to be defined for all values pi in order for all steps of the algorithm to be well-
defined. This is in fact the case: For G′ = K2 we have that WG′ is defined for all values pi by
construction. If G′ is the series or the parallel composition of G1 and G2 and WG1 and WG2

are defined for all values pi, then so is WG′ . Hence, the claim follows by induction.
The dynamic program continues until G′ = G. The approximate objective value that we
denote by APP is given by APPBmax

{
pi ∈ J

∣∣∣∣WG(pi) = 1
}
.

We introduce the following notation for an arbitrary subgraph G′ that occurs during the series
parallel composition of G:
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• Given an arbitrary but fixed optimal solution to the given instance of MRFMQ,
f OPT
G′ denotes the flow value through G′ and f OPT

G′,e denotes the flow on e ∈ E (G′) in
the given solution. According to Lemma 5.3.5 all edge flows can be assumed to be
integral.

• For some pi ∈ J, f ALG
G′,pi,e

denotes the flow on e ∈ E (G′) corresponding to the partial
solution returned by the algorithm with flow value pi in G′.

We claim that for all subgraphs G′ of G considered by the algorithm the following holds:

1. If f OPT
G′ ∈ Ii for some i ∈ {0, . . . ,k−1}, then WG′(pi) = 1.

2. If WG′(pi) = 1 for some pi ∈ J, then f ALG
G′,pi,e

∈ {0} ∪
[

qe

1+σ|E(G′)| , (1+σ)|E(G′)|be

]
for all

e ∈ E(G′).

Note that both parts of the claim hold for i = 0 for all subgraphs G′ of G, since WG′(p0) = 1
and the zero-flow on the respective graph is associated with p0 by construction. Hence we
only have to show the claim for i ∈ {1, . . . ,k−1}. We show the claim by induction:
The algorithm always starts with some graph G′ = K2, which is the base case of our induction.
We show the first part of the claim:
We have |E(G′)| = 1. Let e denote the single edge of G′. We have qe ≤ f OPT

G′,e = f OPT
G′ ≤ be and

qe ≤ f OPT
G′,e ≤ pi ≤ (1+σ) f OPT

G′,e ≤ (1+σ)be. This implies WG′(pi) = 1 and yields the first part
of the claim.
We now assume WG′(pi) = 1. Recall that i ≥ 1. By construction, this implies f ALG

G′,pi,e
= pi ∈[

qe, (1+σ)be
]
. Hence, the second part of the claim is also fulfilled.

For the induction step we consider the series composition first:
We show the first part of the claim: Let G′ be constructed from G1 and G2 and f OPT

G′ = f OPT
G1
=

f OPT
G2
∈ Ii for some i ∈ {1, . . . ,k−1}. We assume that the claim holds for pi in G1 and G2, i.e.

WG1(pi) =WG2(pi) = 1. Hence, WG′(pi) =min
{
WG1(pi),WG2(pi)

}
= 1. This yields the first

part of the claim.
For proving the second part of the claim, we assume that WG′(pi) = 1 for some i ≥ 1. Then,
by construction, WG1(pi) =WG2(pi) = 1. Hence, the assumption holds for the edge flows
associated with pi in G1 and in G2:

f ALG
G1,pi,e ∈ {0}∪

[ qe

1+σ|E(G1)|
, (1+σ)|E(G1)|be

]
for all e ∈ E(G1)

and analogously

f ALG
G2,pi,e ∈ {0}∪

[ qe

1+σ|E(G2)|
, (1+σ)|E(G2)|be

]
for all e ∈ E(G2).



112 Flow problems

Since E(G′) = E(G1) ∪̇E(G2), this implies

f ALG
G′,pi,e ∈ {0}∪

[ qe

1+σ|E(G′)|
, (1+σ)|E(G′)|be

]
for all e ∈ E(G′).

Thus, we have established the second part of the claim.
We now consider the parallel composition and we begin by showing the first part of the claim:
Let G′ be constructed from G1 and G2 and f OPT

G′ ∈ Ii for some i ∈ {1, . . . ,k − 1}. Then
f OPT
G′ = f OPT

G1
+ f OPT

G2
where f OPT

G1
∈ Ii1 and f OPT

G2
∈ Ii2 for some i1, i2 ∈ {0, . . . ,k−1}. According

to the induction hypothesis the claim holds regarding f OPT
G1

in G1 and f OPT
G2

in G2, respectively,
i.e. WG1(pi1) = WG2(pi2) = 1. Since pi1 ∈ Ii1 , f OPT

G1
∈ Ii1 and pi1 ≥ f OPT

G1
, we have f OPT

G1
≤

pi1 ≤ (1+σ) f OPT
G1

. Analogously, we have f OPT
G2
≤ pi2 ≤ (1+σ) f OPT

G2
. This implies f OPT

G′ ≤

pi1 + pi2 ≤ (1+σ) f OPT
G′ . Hence, if f OPT

G′ ∈ Ii, then pi1 + pi2 ∈ Ii ∪ Ii+1. Note that we have
i ∈ {1, . . . ,k−1}, which implies that Ii+1 is well-defined. By construction, pi1 + pi2 ∈ J′ and

W′G′(pi1 + pi2) = 1. Thus, we have WG′(pi) =max
{
W′G′(a)

∣∣∣∣a ∈ J′∩ (Ii∪ Ii+1)
}
=

W′G′(pi1 + pi2) = 1.
We now show the second part of the claim. Assume that WG′(pi) = 1 for some i ∈ {1, . . . ,k−1}.
Then there is some value a ∈ J′ ∩ (Ii ∪ Ii+1) for which W′G′(a) = 1. We have a = pi1 + pi2

for some pi1 , pi2 ∈ J with WG1(pi1) =WG2(pi2) = 1. By assumption, the claim holds for the
partial solutions associated with pi1 , pi2 ∈ J:

f ALG
G1,pi1 ,e

∈ {0}∪
[ qe

1+σ|E(G1)|
, (1+σ)|E(G1)|be

]
for all e ∈ E(G1)

and analogously

f ALG
G2,pi2 ,e

∈ {0}∪
[ qe

1+σ|E(G2)|
, (1+σ)|E(G2)|be

]
for all e ∈ E(G2).

The flow in G′ associated with pi is computed by the algorithm by scaling the edge flows of
the solutions associated with flow value pi1 in G1 and pi2 in G2 up or down to pi, i.e. by a
factor at most 1+σ. Hence, we obtain

f ALG
G′,pi,e ∈ {0}∪

[ qe

1+σ|E(G1)|+1 , (1+σ)|E(G1)|+1be

]
for all e ∈ E(G1)

and analogously

f ALG
G′,pi,e ∈ {0}∪

[ qe

1+σ|E(G2)|+1 , (1+σ)|E(G2)|+1be

]
for all e ∈ E(G2).
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We have that E(G′) = E(G1) ∪̇E(G2), |E(G1)| ≥ 1 and |E(G2)| ≥ 1, which implies |E(G′)| ≥
|E(G1)|+1 and |E(G′)| ≥ |E(G2)|+1, which implies

f ALG
G′,pi,e ∈ {0}∪

[ qe

1+σ|E(G′)|
, (1+σ)|E(G′)|be

]
for all e ∈ E(G′).

Thus, we have established the second part of the claim. This completes the induction.
Once the algorithm has computed WG, the approximate solution is determined. We have
f OPT
G ∈ Ii for some i ∈ {0, . . . ,k−1}. Hence, from the previous induction we get that APP =

max
{

pi ∈ J
∣∣∣∣WG(pi) = 1

}
≥ pi ≥ f OPT

G . Since WG(APP) = 1, we get that f ALG
G,APP,e ∈ {0} ∪[ qe

1+σ|E(G)| , (1+σ)|E(G)|be
]

for all e ∈ E(G). By construction, (1+σ)|E(G)| = (1+σ)m = 1+ ϵ.

Thus, we get f ALG
G,APP,e ∈ {0}∪

[ qe
1+ϵ , (1+ ϵ)be

]
for all e ∈ E(G).

We have shown that the algorithm determines a flow through G for which the flow value
is at least the optimal flow value. By construction, the approximate solution violates the
minimum quantity constraints and the capacity constraints by a factor at most 1+ ϵ. We still
have to show that the flow conservation constraints are fulfilled, i.e.

∑
e∈δ+(v)

fe−
∑

e∈δ−(v)
fe = 0

for all v ∈ V \ {s, t}. This follows by induction: For the base case G = K2 the claim holds,
since V \ {s, t} = ∅. For the series and the parallel composition, let G′ be the composition
of G1 and G2 and let the claim hold for all v ∈ V(G1) \ {s1, t1} and for all v ∈ V(G2) \ {s2, t2}.
The parallel composition does not change the set of non-terminal nodes. Hence, the claim
holds for the parallel composition and scaling all edge flows by the same factor does not
affect the flow conservation constraints. The series composition by the algorithm does not
affect the flow conservation constraints regarding the non-terminal nodes in G1 and G2.
However, the terminal nodes t1 and s2 are merged and become a non-terminal node in G′. By
construction, the union of partial solutions from G1 and G2 only takes place if the outflow of
t1 and the inflow of s2 are both pi for some pi ∈ J and such partial solutions exist. Hence, the
flow conservation constraint is also fulfilled for the non-terminal node t1 (= s2) in G′. This
completes the induction and shows that the flow conservation constraints are fulfilled for all
non-terminal nodes in G.
Note that according to our definition, an (α, β)-approximation has to return infeasibility of
the given instance if there is no feasible solution to the instance. However, since a zero-flow
is a feasible solution to every instance of MRFMQ, infeasibility can never occur.
Hence, we have shown that the above algorithm is in fact a (1, 1+ ϵ)-approximation.
We now consider the complexity of the algorithm. The complexity analysis is similar to the
one in Theorem 4.3.18:
As an input we assume a series parallel graph G as well as a sequence of series and parallel
compositions for constructing G. Given a series parallel graph, such a sequence can be
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computed in polynomial time and the number of subgraphs of G that occur during this
sequence of compositions is bounded by O(|E|) (Lemma 1.4.2).
By construction J = {pi | i = 0, . . . ,k−1}, J′ = J+ J and WG′(p0) = 1 for all subgraphs G′ of
G that are considered by the algorithm. Hence, initializing J, J′ and WG′ for all G′ requires
at most O(|E|+ k2) steps.
Once a sequence of compositions has been determined, the above algorithm can be applied.
We first consider the one-edge graphs K2: There are |E| such graphs and k− 1 values are
computed in constant time for each of them. Hence, processing all one-edge graphs requires
a number of steps bounded by O(|E|k).
Once all one-edge graphs have been considered by the algorithm, the graph G can be
constructed iteratively by series and parallel compositions. As we have already noted, the
number of these iterations is bounded by O(|E|):
For each iteration in which a series composition is considered we have to compute WG′

for k−1 values (since WG′(p0) has already been initialized) and each computation can be
processed in constant time. Hence, the computational complexity of each such iteration is in
O(k).
For each parallel composition the algorithm computes W′G′(a) for a specific a ∈ J′ in a
number of steps bounded by O(k2). Hence, determining W′G′(a) for all a ∈ J′ requires a
number of steps bounded by O(k4). Once all values for W′G′ have been computed, WG′ is
computed for k−1 values. Note that every element of J′ is considered at most twice during
the computation of WG′: If a ∈ J′∩ Ii+1 is considered during the computation of WG′(pi),
then it is also considered when WG′(pi+1) is determined (unless i = k−1). Hence, the number
of steps required for determining the value of WG′ for all pi is bounded from above by O(k4).
For each pi a partial flow is stored, which might require rounding the edge flows. Hence,
storing the partial solutions requires O(|E|k) steps. Thus, the complexity of each iteration
that processes a parallel composition is bounded from above by O(|E|k4).
After all iterations have been completed, APP is determined by computing the maximum
over a set with k values, which implies that the complexity of this step is in O(k).
All in all, we obtain the computational complexity O(|E|2 k4). As k is polynomial in the
encoding size of the instance, so is the complexity of the algorithm.

�

We now consider the generalized flow problems GMFMQ and GMCFMQ and show how
they can be transformed into the non-generalized flow problems MFMQ and MCFMQ.
Techniques for transforming generalized flow problems without minimum quantity constraints
into non-generalized flow problems without minimum quantity constraints have already been
considered by other authors: In particular, the authors of [17] present a scaling technique
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that transforms generalized flow problems that have an incidence matrix that does not have
full row rank into non-generalized flow problems.

Theorem 5.3.7. An instance I of GMFMQ can be transformed into an equivalent instance
I′ of MFMQ in polynomial time. Likewise, GMCFMQ can be transformed into an equivalent
instance of MCFMQ in polynomial time.

Proof. Let an instance I of GMFMQ or GMCFMQ be given. Let G = (V,E) denote the
respective graph. We show how the instance of GMFMQ or GMCFMQ can be transformed
into an equivalent instance of MFMQ or MCFMQ. The transformation replaces every edge
e ∈ E with flow multiplier µe by a series parallel graph without flow multipliers. In order
to ensure that the outflow of the respective series parallel subgraph is exactly µe times the
inflow, special edges are added that allow additional inflow into or outflow out of the series
parallel subgraph. At this point minimum quantity constraints are essential to ensure that the
inflow and outflow on these special edges is exactly the amount of flow that would be added
or removed by the multiplier µe in G. Hence, the transformation would not work without
minimum quantity constraints.
We now describe the steps that have to be carried out for every edge of G. Let an arbitrary
edge e = (v1,v2) ∈ E as shown in Figure 5.3.4 be given. Let µe =

ye
ze

. We assume that all
fractional edge multipliers are given in simplest form so that ye and ze are relatively prime.

v1 v2
qe,be,µe,ce

Fig. 5.3.4 Input edge GMFMQ / GMCFMQ; The edge labels represent the minimum quanti-
ties, capacities, multipliers and costs

For each edge e we apply the following steps. Unless specified otherwise, we consider an
input instance of GMCFMQ. The same reasoning holds for GMFMQ (except for the edge
costs and the flow value constraint

∑
e∈δ+(s)

fe = F).

1. Remove the edge e from the graph.

2. Set ke,1 B
⌊
logbe

⌋
.

3. If ze ≥ 2, set ke,2 B
⌊
log(ze−1)

⌋
.

4. If ze ≥ 2, set ke,3 B
⌊
logze

(yebe)
⌋
.

5. Create nodes ae,1, ae,2 and ae,3.
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6. Create nodes ge,l1 for all 0 ≤ l1 ≤ ke,1.

7. If ze ≥ 2, create nodes he,l2,l3 for all 0 ≤ l2 ≤ ke,2 and all 1 ≤ l3 ≤ ke,3.

8. Define the demand of the above nodes to be 0.

9. Create an edge e′ = (v1,ae,1) with qe′ B qe, be′ B be and (if applicable) ce′ B ce.

10. Create edges e′ = (ae,1,ge,l1) for all 0 ≤ l1 ≤ ke,1 with qe′ B be′ = 2l1 and ce′ = 0.

11. Create edges e′ = (t,ge,l1) for all 0 ≤ l1 ≤ ke,1 with qe′ B be′ B 2l1(ye−1) and ce′ = 0.

12. Create edges e′ = (ge,l1 ,ae,2) for all 0 ≤ l1 ≤ ke,1 with qe′ B be′ B 2l1ye and ce′ = 0.

13. If ze = 1, create an edge e′ = (ae,2,ae,3) with qe′ B 0, be′ B yebe and ce′ = 0.

14. If ze ≥ 2, create edges e′ = (ae,2,he,l2,l3) for all 0 ≤ l2 ≤ ke,2 and all 1 ≤ l3 ≤ ke,3

with qe′ B be′ B 2l2zl3
e and ce′ = 0.

15. If ze ≥ 2, create edges e′ = (he,l2,l3 , t) for all 0 ≤ l2 ≤ ke,2 and all 1 ≤ l3 ≤ ke,3

with qe′ B be′ B 2l2zl3−1
e (ze−1) and ce′ = 0.

16. If ze ≥ 2, create edges e′ = (he,l2,l3 ,ae,3) for all 0 ≤ l2 ≤ ke,2 and all 1 ≤ l3 ≤ ke,3

with qe′ B be′ B 2l2zl3−1
e and ce′ = 0.

17. Create an edge e′ = (ae,3,v2) with qe′ B 0, be′ B yebe and ce′ = 0.

18. If I is an instance of MCFMQ and F is the required flow value, then the same flow
value is required in I′.

In addition, we create a node t′ and an edge e = (t, t′) with qeB 0, beB
∑

e′∈δ+G(s)
be′ and ceB 0.

We defined the demand of t to be 0.
The following figures show the output for the above edge as well as the nodes s, t, and

t′ and the edges incident to those nodes, assuming ke,1 = 3, ke,2 = 2 and ke,3 = 2. The first
figure shows the case ze = 1, the second figure shows the case ze ≥ 2. For the sake of clarity,
most edge labels are omitted.
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v1 ae,1 ae,2 ae,3 v2

t t′

ge,1

ge,0

ge,2

ge,3

2l1ye

2l1

2l1(ye−1)

Fig. 5.3.5 Example output graph MFMQ / MCFMQ for the case ze = 1; The edge labels
represent the minimum quantities (which coincide with the capacities for these edges) and
refer to the dotted edges.

Note that we have in fact created an instance of MFMQ or MCFMQ according to our
Definitions 5.2.3 and 5.2.4: All flow multipliers have been removed and there are bounded
minimum quantities and capacities on all edges. If the transformation has been applied to an
instance of MCFMQ, costs are defined for all edges. Furthermore, there is a dedicated source
s and a dedicated sink t′, while the demand of all other nodes is 0. The minimum quantities
and edge capacities are integral and the edge costs are rational by construction. We denote
the instance of MFMQ or MCFMQ that we obtain by applying the above transformation by
I′ and the underlying graph by G′ = (V′,E′).
We begin our analysis by considering the size of the flow network that we obtain and the
number of steps we require to create it: Let n = |V | and m = |E|. If ze ≥ 2, we create at most
3+ (logbe+1)+ (logze

(yebe))(log(ze −1)+1) ≤ 4+ logbe+ (logye+ logbe)(logze+1) addi-
tional nodes for each edge e ∈ E. Furthermore, we create one additional sink node t′. Trivially,
this upper bound also holds for the case ze = 1. Hence, |V′| ≤ p1(n,m, logye, logbe, logze) for
a polynomial function p1. As G′ does not contain any loops or parallel edges, we also have
|E′| ≤ p2(n,m, logye, logbe, logze) for a polynomial function p2.
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v1 ae,1 ae,2 ae,3 v2

t t′

ge,1

ge,0

ge,2

ge,3

he,1,1

he,0,2

he,0,1

he,1,2

he,2,1

he,2,2

2l2zl3−1
e (ze−1)

2l2zl3−1
e

2l2zl3
e

2l1ye

2l1

2l1(ye−1)

Fig. 5.3.6 Example output graph MFMQ / MCFMQ for the case ze ≥ 2; The edge labels
represent the minimum quantities (which coincide with the capacities for these edges) and
refer to the dotted edges.

We now consider the size of the minimum quantities, capacities and edge costs in G′:
In order to simplify our analysis, we define the values qmax B max

e∈E
qe, bmax B max

e∈E
be,

cmax B max
e∈E

ce, ymax B max
e∈E

ye, zmax B max
e∈E

ze, q′max B max
e′∈E′

qe′ , b′max B max
e′∈E′

be′ and c′max B

max
e′∈E′

ce′ . In addition, we set valmax B max {qmax,bmax,cmax,ymax,zmax,F} and val′max B

max
{
q′max,b

′
max,c

′
max,F

}
.

Note that the edge costs in I′ are either 0 or correspond to the ones in I. Hence, c′max ≤

cmax. Since all edges e′ ∈ E′ with qe′ > be′ can be removed w.l.o.g., we obtain q′max ≤ b′max.
We now consider b′max: By construction, b′e can attain one of the following values for some
e′ ∈ E′:

• be for some e ∈ E, which is bounded from above by bmax (cf. step 9 of the transforma-
tion).
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• 2l1 , 2l1(ye−1) and 2l1ye for some e ∈ E, where l1 ≤ logbe, so that b′max is bounded from
above by bmaxymax (cf. steps 10 - 12 of the transformation).

• yebe for some e ∈ E, which is bounded from above by bmaxymax (cf. steps 13 and 17 of
the transformation).

• 2l2zl3
e , 2l2zl3−1

e (ze −1) and 2l2zl3−1
e for some e ∈ E, where l2 ≤ log(ze −1) < logze and

l3 ≤ logze
(yebe), so that b′max is bounded from above by bmaxymaxzmax (cf. steps 14 - 16

of the transformation).

•
∑

e∈δ+G(s)⊆E
be, which is bounded from above by mbmax (cf. the construction of the edge

e′ = (t, t′) ∈ E′.).

We summarize our observations. Let |I| and |I′| denote the encoding sizes of I and I′.

• From the above analysis we get that q′max ≤ b′max ≤mbmaxymaxzmax and we have already
seen that c′max ≤ cmax. Hence, val′max ≤ mval3max, i.e. the largest numerical value in I′

is bounded by a polynomial in the largest numerical value of I and in |I|.
In particular, the encoding size of val′max is polynomially bounded in |I|.

• |V′| ≤ p1(n,m, logye, logbe, logze) for a polynomial p1 and
|E′| ≤ p2(n,m, logye, logbe, logze) for a polynomial p2.
In particular, the number of edges and nodes (and of the corresponding numerical
values such as minimum quantities, edge capacities and edge costs) of G′ is bounded
by a polynomial in |I|.

Combining these two observations, we conclude that I′ can be computed in a number of
steps that is polynomially bounded in |I|.
We now claim that we obtain an optimal solution f to I by solving I′ and setting f (v1,v2)B
f ′(v1,ae,1) for all e = (v1,v2) ∈ E, where f ′ denotes an optimal solution to I′. We first show
that we can transform a feasible solution to I′ into a feasible solution to I that has the same
objective value.
The following observation will be useful for proving this claim:
Given a feasible flow f ′ in G′ the following holds: Let e = (v1,v2) ∈ E. If the flow on one of
the edges (ae,1,ge,l1), (t,ge,l1), (ge,l1 ,ae,2) is strictly positive for some e ∈ E and 0 ≤ l1 ≤ ke,1,
then the flow on all these edges is strictly positive due to the flow conservation constraints.
In particular, by construction we have that ye

∑
e′∈δ+G′ (ae,1)

f ′e′ =
∑

e′ ∈δ−G′ (ae,2)
f ′e′ . By the same

argument we get that 1
ze

∑
e′ ∈δ+G′ (ae,2)

f ′e′ =
∑

e′ ∈δ−G′ (ae,3)
f ′e′ . Note that this trivially holds for the case
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ze = 1. Combining these observations with the fact that f ′(v1,ae,1) =
∑

e′ ∈δ−G′ (ae,1)
f ′e′ yields the

following equality:

µe f ′(v1,ae,1) =
ye

ze

∑
e′ ∈δ−G′ (ae,1)

f ′e′ =
ye

ze

∑
e′ ∈δ+G′ (ae,1)

f ′e′

=
1
ze

∑
e′ ∈δ−G′ (ae,2)

f ′e′ =
1
ze

∑
e′ ∈δ+G′ (ae,2)

f ′e′

=
∑

e′ ∈δ−G′ (ae,3)

f ′e′ =
∑

e′∈δ+G′ (ae,3)

f ′e′

= f ′(ae,3,v2)

We show feasibility of f in G and consider the flow integrality constraints first:
Let v ∈ V \ {s, t}. Then the following holds:

f (δG(v)) = f (δ−G(v))− f (δ+G(v)) =
∑

e= (v1,v)∈δ−G(v)

µe fe−
∑

e= (v,v2)∈δ+G(v)

fe

(∗)
=

∑
e= (v1,v)∈δ−G(v)

µe f ′(v1,ae,1)−
∑

e∈δ+G(v)

f ′(v,ae,1)

(∗∗)
=

∑
e∈δ−G(v)

f ′(ae,3,v)−
∑

e∈δ+G(v)

f ′(v,ae,1)

(∗∗∗)
=

∑
e′ ∈δ−G′ (v)

f ′e′ −
∑

e′ ∈δ+G′ (v)

f ′e′

(∗∗∗∗)
= 0

We obtain the above equalities as follows:

* follows by construction of f .

** follows from the previous observation that µe f ′(v1,ae,1) = f ′(ae,3,v2) for all e ∈ E.

*** follows by construction: For some v ∈ V \{s, t}, the set of inbound edges in G′ is exactly
the set

{
(ae,3,v) ∈ E′

∣∣∣∣e ∈ δ−G(v)
}
. Analogously,

{
(v,ae,1) ∈ E′

∣∣∣∣e ∈ δ+G(v)
}

is the set of
outbound edges of v.

**** follows from the fact that f ′ is feasible in G′.

Hence, we have shown that f is feasible regarding the flow integrality constraints for all
nodes v ∈ V \ {s, t}. We now consider the minimum quantities and edge capacities: According
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to step 9 of the construction, we have qe′ = qe and be′ = be on e′ = (v1,ae,1) ∈ E′ for all e ∈ E.
It follows by construction that feasibility of f ′ implies feasibility of f regarding the minimum
quantities and edge capacities. Thus, for GMFMQ we have established feasibility of f . For
GMCFMQ we still have to show that f has flow value F. However, it is easy to see that this
is in fact the case: As f ′ is feasible with respect to the flow value F, we have

f (δ+G(s)) =
∑

e∈δ+G(s)

fe =
∑

e∈δ+G(s)

f ′(s,ae,1) = f ′(δ+G′(s)) = F.

Hence, we have shown feasibility of f for both problems, GMFMQ and GMCFMQ. As a
byproduct of the proof we have seen that both solutions have the same flow value. Hence,
for GMFMQ both solutions have the same objective value. It is easy to see that this also
holds for GMCFMQ: Non-zero edge costs are only defined on the edges e′ =

(
v,ae,1

)
∈ E′.

By construction we have f ′e′ = f ′
(
v,ae,1

)
= fe and c′e′ = ce. Hence, we have shown that we

can in fact transform a feasible solution to I′ into a feasible solution to I that has the same
objective value.
Conversely, we now show that every feasible solution to I induces a feasible solution to I′

that has the same objective value:
Let a feasible solution f to I be given and let G′ be constructed as above. For every edge
e ∈ E for which fe > 0 find values αe,l1 ∈ {0,1} for all 0 ≤ l1 ≤ ke,1 so that

fe =
∑

0≤ l1≤ke,1

αe,l12l1 .

Such a representation exists, since ke,1 =
⌊
logbe

⌋
≥

⌊
log fe

⌋
. Hence, the vector consisting of

all αe,l1 is simply the representation of fe in the numeral system with base 2. Note that fe ∈N
is necessary in order for the above representation to exist. This is the case due to Definition
5.2.1.
If ze ≥ 2, find values βe,l3 ∈ {0,1, . . . ,ze−1} for all 1 ≤ l3 ≤ ke,3 so that

µe fe =
∑

1≤ l3≤ke,3

βe,l3zl3−1
e . (1)

By construction we have ke,3 =
⌊
logze

(yebe)
⌋
. This implies ke,3 − 1 =

⌊
logze

(yebe)
⌋
− 1 =⌊

logze
(µebe)

⌋
≥

⌊
logze

(µe fe)
⌋
. Hence, such a decomposition of µe fe exists. Note that the

vector consisting of all βe,l3 is the representation of µe fe in the numeral system with base ze.
We require µe fe ∈ N in order for the above representation to exist. Again, this is in fact the
case due to Definition 5.2.1.
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We decompose each βe,l3 by choosing λe,l2,l3 ∈ {0,1} for all 0 ≤ l2 ≤ ke,2 and all 1 ≤ l3 ≤ ke,3

so that the following equality holds:

βe,l3 =
∑

0≤ l2≤ke,2

λe,l2,l32l2 (2)

By construction we have ke,2 =
⌊
log(ze−1)

⌋
≥

⌊
log(βe,l3)

⌋
. This implies the above decompo-

sition exists for some λe,l2,l3 ∈ {0,1}. Once again, the vector consisting of all λe,l2,l3 is the
representation of βe,l3 in the numeral system with base 2.
Combining the equations (1) and (2) yields the following equation:

µe fe =
∑

0≤ l2≤ke,2
1≤ l3≤ke,3

λe,l2,l32l2zl3−1
e

Note that this implies
ye fe =

∑
0≤ l2≤ke,2
1≤ l3≤ke,3

λe,l2,l32l2zl3
e .

We are now ready to construct a solution f ′ to I′. For each e ∈ E we create the corresponding
flow f ′ in G′ as follows:

• Set f ′(v1,ae,1)B fe.

• For all 0 ≤ l1 ≤ ke,1: If αe,l1 = 1, set f ′(ae,1,ge,l1) B 2l1 , f ′(t,ge,l1) B 2l1(ye − 1) and
f ′(ge,l1 ,ae,2)B 2l1ye, else set f ′(ae,1,ge,l1)B f ′(t,ge,l1)B f ′(ge,l1 ,ae,2)B 0.

• Let ze = 1: For e′ = (ae,2,ae,3) set f ′e′ B µe fe = ye fe.

• Let ze ≥ 2: For all 0 ≤ l2 ≤ ke,2 and all 1 ≤ l3 ≤ ke,3: If λe,l2,l3 = 1, set f ′(ae,2,he,l2,l3)B
2l2zl3

e , f ′(he,l2,l3 , t)B 2l2zl3−1
e (ze−1) and f ′(he,l2,l3 ,ae,3)B 2l2zl3−1

e , else set f ′(ae,2,he,l2,l3)B
f ′(he,l2,l3 , t)B f ′(he,l2,l3 ,ae,3)B 0.

• Set f ′(ae,3,v2)B µe fe.

In addition, set f ′(t, t′)B f (δ+G(s)).
We claim that the f ′ is in fact feasible in G′. Once again, we consider the flow conservation
constraints first. Let v ∈ V′ \ {s, t′}.



5.3 Complexity Results & Algorithms 123

• Let v ∈ V \ {t}, i.e. v corresponds to one of the nodes in G: By construction, the
following holds:

f ′(δG′(v)) =
∑

e′ ∈δ−G′ (v)

f ′e′ −
∑

e′ ∈δ+G′ (v)

f ′e′

=
∑

e∈δ−G(v)

f ′(ae,3,v)−
∑

e∈δ+G(v)

f ′(v,ae,1)

=
∑

e∈δ−G(v)

µe fe−
∑

e∈δ+G(v)

fe

= 0

• Let v = ae,1 for some e = (v1,v2) ∈ E: By construction, we have

f ′(δG′(ae,1)) =
∑

e′ ∈δ−G′ (ae,1)

f ′e′ −
∑

e′ ∈δ+G′ (ae,1)

f ′e′

= f ′(v1,ae,1)−
∑

0≤ l1≤ke,1

f ′(ae,1,ge,l1)

= fe−
∑

0≤ l1≤ke,1

αe,l12l1

= fe− fe

= 0.

• Let v = ge,l1 for some e = (v1,v2) ∈ E and 0 ≤ l1 ≤ ke,1:

f ′(δG′(ge,l1)) =
∑

e′ ∈δ−G′ (ge,l1 )

f ′e′ −
∑

e′ ∈δ+G′ (ge,l1 )

f ′e′

= f ′(ae,1,ge,l1)+ f ′(t,ge,l1)− f ′(ge,l1 ,ae,2)

If αe,l1 = 1, we have f ′(ae,1,ge,l1) = 2l1 , f ′(t,ge,l1) = 2l1(ye−1) and f ′(ge,l1 ,ae,2) = 2l1ye.
Thus, we obtain f ′(δG′(ge,l1)) = 0.
If αe,l1 = 0, we have f ′(ae,1,ge,l1)= f ′(t,ge,l1)= f ′(ge,l1 ,ae,2)= 0, which trivially implies
f ′(δG′(ge,l1)) = 0.
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• Let v = ae,2 for some e = (v1,v2) ∈ E:
For ze = 1 the following holds by construction:

f ′(δG′(ae,2)) =
∑

e′ ∈δ−G′ (ae,2)

f ′e′ −
∑

e′ ∈δ+G′ (ae,2)

f ′e′

=
∑

0≤ l1≤ke,1

f ′(ge,l1 ,ae,2)− f ′(ae,2,ae,3)

= ye

∑
0≤ l1≤ke,1

αe,l12l1 − ye fe

= ye fe− ye fe

= 0

For ze ≥ 2 we have

f ′(δG′(ae,2)) =
∑

e′ ∈δ−G′ (ae,2)

f ′e′ −
∑

e′ ∈δ+G′ (ae,2)

f ′e′

=
∑

0≤ l1≤ke,1

f ′(ge,l1 ,ae,2)−
∑

0≤ l2≤ke,2
1≤ l3≤ke,3

f ′(ae,2,he,l2,l3)

= ye

∑
0≤ l1≤ke,1

αe,l12l1 −
∑

0≤ l2≤ke,2
1≤ l3≤ke,3

λe,l2,l32l2zl3
e

= ye fe− ye fe

= 0

• Let v = he,l2,l3 for some e = (v1,v2) ∈ E, 0 ≤ l2 ≤ ke,2 and 1 ≤ l3 ≤ ke,3 (i.e. ze ≥ 2):

f ′(δG′(he,l2,l3)) =
∑

e′ ∈δ−G′ (he,l2,l3 )

f ′e′ −
∑

e′ ∈δ+G′ (he,l2,l3 )

f ′e′

= f ′(ae,2,he,l2,l3)− f ′(he,l2,l3 , t)− f ′(he,l2,l3 ,ae,3)

If λe,l2,l3 = 1, we have f ′(ae,2,he,l2,l3)= 2l2zl3
e , f ′(he,l2,l3 , t)= 2l2zl3−1

e (ze−1) and f ′(he,l2,l3 ,ae,3)=
2l2zl3−1

e . This implies f ′(δG′(ge,l1)) = 0.
If λe,l2,l3 = 0, we have f ′(ae,2,he,l2,l3) = f ′(he,l2,l3 , t) = f ′(he,l2,l3 ,ae,3) = 0. Thus, we
obtain f ′(δG′(he,l2,l3)) = 0.
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• Let v = ae,3 for some e = (v1,v2) ∈ E: For ze = 1 the following holds by construction:

f ′(δG′(ae,3)) =
∑

e′ ∈δ−G′ (ae,3)

f ′e′ −
∑

e′ ∈δ+G′ (ae,3)

f ′e′

= f ′(ae,2,ae,3)− f ′(ae,3,v2)

= µe fe−µe fe

= 0

For ze ≥ 2 we have

f ′(δG′(ae,3)) =
∑

e′ ∈δ−G′ (ae,3)

f ′e′ −
∑

e′ ∈δ+G′ (ae,3)

f ′e′

=
∑

0≤ l2≤ke,2
1≤ l3≤ke,3

f ′(he,l2,l3 ,ae,3)− f ′(ae,3,v2)

=
∑

0≤ l2≤ke,2
1≤ l3≤ke,3

λe,l2,l32l2zl3−1
e −µe fe

= µe fe−µe fe

= 0.

• Let v = t: So far, we have seen that f ′(δG′(v)) = 0 for all v ∈ V′ \ {s, t, t′}. Furthermore,
by construction we have f ′(δ−G′(t

′)) = f ′(t, t′) = f (δ+G(s)) and f (δ+G(s)) = f ′(δ+G′(s)),
which implies f ′(δ−G′(t

′)) = f ′(δ+G′(s)). Trivially, we have
∑

v∈V′
f ′(δG′(v)) = 0.

All in all, we obtain

0 =
∑
v∈V′

f ′(δG′(v)) =
∑

v∈V′\{s,t,t′}

f ′(δG′(v))+ f ′(δG′(t′))+ f ′(δG′(s)))+ f ′(δG′(t)

=
∑
v∈V′

f ′(δG′(v)) =
∑

v∈V′\{s,t,t′}

f ′(δG′(v))+ f ′(δ−G′(t
′))− f ′(δ+G′(s)))+ f ′(δG′(t)

= f ′(δG′(t))

Hence, we have shown that f ′ fulfills the flow conservation constraints for all v ∈ V′ \ {s, t′}.
As we have already noted, f (δ+G(s)) = f ′(δ+G′(s)). Hence, if I is an instance of MCFMQ with
flow value F, then we immediately obtain f ′(δG(s)) = F, i.e. f ′ is feasible with respect to
the flow value constraint.
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We now consider the minimum quantities and edge capacities. Let e′ ∈ E′.

• If e′ = (v1,ae,1) for some e ∈ E, we have qe′ = qe and be′ = be. Since fe is feasible with
respect to qe and be, so is f ′e′ = fe with respect to qe and be.

• If e′ ∈
{
(ae,1,ge,l1), (t,ge,l1), (ge,l1 ,ae,2)

}
for some e ∈ E and 0 ≤ l1 ≤ ke,1, we either have

f ′e′ = qe′ = be′ or f ′e′ = 0, i.e. the minimum quantity and edge capacity constraints are
fulfilled.

• If ze = 1 and e′ = (ae,2,ae,3) for some e ∈ E, we have qe′ = 0 and be′ = yebe. Hence,
qe′ = 0 ≤ f ′e′ = ye fe ≤ yebe = be′ .

• If ze ≥ 2 and e′ ∈
{
(ae,2,he,l2,l3), (he,l2,l3 , t), (he,l2,l3 ,ae,3)

}
for some e ∈ E, 0 ≤ l2 ≤ ke,2

and 1 ≤ l3 ≤ ke,3, we either have f ′e′ = qe′ = be′ or f ′e′ = 0, i.e. the minimum quantity
and edge capacity constraints are fulfilled.

• If e′ = (ae,3,v2) for some e ∈ E, we have qe′ = 0 and be′ = yebe. By construction,
f ′e′ = µe fe. Thus, qe′ = 0 ≤ f ′e′ = µe fe ≤ ye fe ≤ yebe = be′ , i.e. the minimum quantity
and edge capacity constraints are fulfilled.

• If e′ = (t, t′), we have qe′ = 0 and be′ =
∑

e∈δ+G(s)
be. We have qe′ = 0 ≤ f ′e′ = f (δ+G(s)) =∑

e∈δ+G(s)
fe ≤

∑
e∈δ+G(s)

be = be′ .

Hence, we have shown that all minimum quantity and edge capacity constraints are fulfilled
by f ′ in G′.
For both objective functions, maximum flow and minimum cost flow, the objective value
of f and f ′ is the same by the same argument as before. Hence, we have shown that every
feasible flow f in G induces a feasible flow f ′ in G′ that has the same objective value.
All in all, we have shown that for every feasible solution to I there is a feasible solution to
I′ that has the same objective value and vice versa. In particular, an optimal solution to I′

induces an optimal solution to I. Hence, we obtain an optimal solution to I by determining
an optimal solution f ′ to I′ and applying the transformation f (v1,v2)B f ′(v1,ae,1) for all
e = (v1,v2) ∈ E. �

Remark 5.3.8. Note that the transformation given in Theorem 5.3.7 is a pseudo-polynomial
transformation as defined in [16]. Hence, solving GMFMQ is at most as hard as solving
MFMQ and solving MFMQ is at least as hard as solving GMFMQ. In particular, the
transformation retains strong NP-hardness of the original problem. On the other hand, since
MFMQ is a special case of GMFMQ, solving GMFMQ is at least as hard as solving MFMQ
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and solving MFMQ is at most as hard as solving GMFMQ. Hence, we conclude that solving
MFMQ is as hard as solving GMFMQ and analogously, solving MCFMQ is as hard as
solving GMCFMQ.

We now show how the treewidth of the input graph G and the output graph G′ of the
transformation given in the proof of Theorem 5.3.7 are related:

Theorem 5.3.9. Let a graph G = (V,E) with flow multipliers as defined in Definition 5.2.1
be given. Let G′ = (V′,E′) denote the graph that we obtain from applying the transformation
given in the proof of Theorem 5.3.7 and let k = tw(G). Then we have tw(G′) ≤max {k+1,5}.

Proof. Let a tree-decomposition D = ({Xi|i ∈ I} ,T = (I,F)) with width(D) = k of G be given.
We show how to create a tree-decomposition D′ =

({
X′i

∣∣∣i ∈ I′
}
,T ′ = (I′,F′)

)
of G′ with

width(D′) ≤max {k+1,5}. In order to do so, we apply the following steps:

• For every edge e= (ve,1,ve,2) ∈ E: Find a tree-decomposition D′e =
({

Xi
∣∣∣i ∈ Ie

}
,Te = (Ie,Fe)

)
with minimal tree-width of the subgraph of G′ induced by the nodes
ve,1, ve,2, ae,1, ae,2, ae,3, ge,l1 , he,l2,l3 (for all 0 ≤ l1 ≤ ke,1, 0 ≤ l2 ≤ ke,2 and 1 ≤ l3 ≤ ke,3),
as defined in Theorem 5.3.7. We denote this induced subgraph by G′e = (V′e,E

′
e). Note

that G′e is series parallel. Hence, the treewidth is at most 2 (Lemma 1.4.11). By
definition, this implies max

i∈Ie
|Xi| ≤ 3 for all e ∈ E.

• For every edge e = (ve,1,ve,2) ∈ E and i ∈ Ie: Create the set X′i as follows: X′i B
Xi∪

{
ve,1,ve,2, t

}
. In particular, we have

∣∣∣X′i ∣∣∣ ≤ 6 for all e ∈ E and i ∈ Ie.

• For every i ∈ I: Create X′i by setting X′i B Xi∪{t}. In particular, we have
∣∣∣X′i ∣∣∣ ≤ k+2.

• For every e = (ve,1,ve,2) ∈ E: Select an arbitrary i1 ∈ I for which ve,1,ve,2 ∈ X′i1 and an
arbitrary i2 ∈ Ie. Create a connecting edge e′e = (i1, i2). Note that there is at least one
i1 ∈ I for which ve,1,ve,2 ∈ Xi1 (and thus in X′i1) since D is a tree-decomposition of G.
Denote the set of all these edges by Fc.

• Create a node it and the corresponding set X′it B {t, t
′}. Hence,

∣∣∣∣X′it ∣∣∣∣ = 2.

• Create an edge e′t = (i, it) for an arbitrary i ∈ I.

• Set I′ B I
⋃

e∈E
Ie

⋃
{it}

• Set F′ B F
⋃

e∈E
Fe

⋃
Fc

⋃{
e′t
}

• Set D′ B
({

X′i |i ∈ I
} ⋃

e∈E

{
X′i

∣∣∣i ∈ Ie
}⋃{

X′it
}
,T ′ = (I′,F′)

)
=

({
X′i |i ∈ I′

}
,T ′ = (I′,F′)

)
.
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Before we prove the correctness of the claim, we illustrate the construction by the fol-
lowing example: Assume that there are e1 = (ve1,1,ve1,2) and e2 = (ve2,1,ve2,2) in E. Then, by
construction, G′ contains the subgraphs G′e1

and G′e2
. The corresponding tree-decompositions

are denoted by Te1 and Te2 . Let i1 ∈ Ie1 and i2 ∈ Ie2 . Then we have ve1,1,ve1,2 ∈ X′i1 and
ve2,1,ve2,2 ∈ X′i2 by construction. The nodes i′1, i

′
2 ∈ I are chosen so that ve1,1,ve1,2 ∈ X′i′1

and
ve2,1,ve2,2 ∈ X′i′2

and the edges e′e1
= (i1, i′1) and e′e2

= (i2, i′2) are added to the tree-decomposition
of G′. In addition, the node it, for which X′it = {t, t

′}, and an edge connecting it to an arbitrary
node from I are added. Figure 5.3.7 illustrates these construction steps:

i′1

i′2

iti1

i2

e′e1

e′e2

e′t

T

Te2

Te1

Fig. 5.3.7 Example tree-decomposition of G′; For Te1 and Te2 only the node connecting the
respective tree to T is depicted. The dotted circles mark the subtrees Te1 , Te2 and T of T ′.

We claim that D′ is in fact a feasible tree-decomposition of G′:

• Claim 1: T ′ is a tree.
The construction of T ′ begins with T = (I,F), which is a tree by construction. We
iteratively add additional trees Te and every Te is connected to T by exactly one edge
e′e ∈ Fc. Hence, the resulting graph is also a tree. Finally, the node it is added and
connected to the graph by the edge e′t . Thus, T ′ is in fact a tree.
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• Claim 2:
⋃

i∈I′ X′i = V′.
By construction, for an arbitrary node v ∈ V we have v ∈ X′i for some i ∈ I ⊂ I′. The
remaining nodes in V′ \V are exactly the nodes ae,1, ae,2, ae,3, ge,l1 , he,l2,l3 for all e ∈ E
and for all corresponding values l1, l2, l3, as well as the node t′. By construction, each of
the nodes ae,1, ae,2, ae,3, ge,l1 , he,l2,l3 is contained in some X′i for i ∈ Ie ⊂ I′. In addition,
we have t′ ∈ X′it and it ∈ I′. This shows the claim.

• Claim 3: For all edges e = (v,w) ∈ E′, there exists an i ∈ I′ with v,w ∈ X′i .
By construction, we have two types of edges in E′: On the one hand, there are edges
that are incident to t and on the other hand there are edges that connect two nodes
within the same induced subgraph G′e for some e ∈ E. Note that there is no edge
e = (v,w) ∈ E′ where v , t and w , t and v ∈ V

(
G′e

)
for some e ∈ E and w < V

(
G′e

)
.

We first consider the case that e is incident to t. W.l.o.g. v = t. Then w ∈ X′i for some
i ∈ I′, as we have already seen. By construction, t is contained in every set X′i so that
the claim is fulfilled in this case.
In the second case we have v,w ∈ V

(
G′e

)
for some e ∈ E. By construction, D′e is a

tree-decomposition of G′e. Hence, v,w ∈ X′i for some i ∈ Ie ⊂ I′. Hence, the claim
holds.

• Claim 4: For every node v ∈ V the subset of nodes
{
i ∈ I′|v ∈ X′i

}
of T ′ induces a subtree

of T ′.
Let T ′(v) denote the induced subgraph. Since T ′ is a tree, it is clear that T ′(v) cannot
contain any cycles, so we only have to show connectedness of T ′(v). We consider the
different cases that can occur:

• Case 1: v ∈ V \ {t}
For some v ∈ V \ {t}, e ∈ E and i ∈ Ie we have that v ∈ X′i if and only if e ∈ δG(v) by
construction. In particular,

{
i ∈ Ie|v ∈ X′i

}
= Ie if e ∈ δG(v) and

{
i ∈ Ie|v ∈ X′i

}
= ∅

if e < δG(v). For some v ∈ V \ {t} and i ∈ I we have v ∈ Xi if and only if v ∈ X′i .
Furthermore, v < X′it = {t, t

′}.

All in all, we get
{
i ∈ I′|v ∈ X′i

}
=

{
i ∈ I

⋃
e∈E

Ie
⋃
{it}

∣∣∣∣v ∈ X′i

}
= {i ∈ I|v ∈ Xi}

⋃
e∈δG(v)

Ie.

Hence, T ′(v) is the subgraph of T ′ induced by the nodes {i ∈ I|v ∈ Xi} and by the
nodes of the trees Te for which e ∈ δG(v). Note that the subgraph of T ′ induced
by the nodes of Te is again Te.
Since T is a subgraph of T ′ and I is the set of nodes of T , the subgraphs of T ′

and of T induced by {i ∈ I|v ∈ Xi} are the same. As D is a tree-decomposition of
G, the subgraph T (v) of T induced by {i ∈ I|v ∈ Xi} is in fact a tree.
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Connectedness of T ′(v) follows if we can show that every Te for e ∈ δG(v) is
connected to T (v) in T ′(v). Let an arbitrary edge e = (v,ve,2) ∈ δG(v) be given
(or e = (ve,1,v), analogously). By construction, there are two nodes i1 ∈ I and
i2 ∈ Ie that are connected by the edge e′e = (i1, i2) in T ′. Furthermore, the node i1
is chosen in such a way that v ∈ X′i1 , which implies that i1 ∈

{
i ∈ I′|v ∈ X′i

}
. As we

have seen, i2 ∈ Ie implies i2 ∈
{
i ∈ I′|v ∈ X′i

}
. Hence, the nodes i1 and i2 exist in

T ′(v) and so does the edge e′e = (i1, i2). Hence, every Te for e ∈ δG(v) is in fact
connected to T (v) and thus T ′(v) is connected.

• Case 2: v = t
By construction we have v ∈ X′i for all i ∈ I′. Hence, T ′(v) = T ′, which is a tree
by construction.

• Case 3: v = t′

By construction t′ is only included in X′it . Thus, T ′(v) contains only the node it.

• Case 4: v ∈ V′e \V for some e ∈ E
Note that V′e \V consists of the nodes ae,1, ae,2, ae,3, ge,l1 , he,l2,l3 for
0 ≤ l1 ≤ ke,1 , 0 ≤ l2 ≤ ke,2 and 1 ≤ l3 ≤ ke,3, since ve,1,ve,2 ∈ V .
These nodes only occur in the respective subgraph G′e and v ∈ X′i implies i ∈ Ie.
Hence,

{
i ∈ I′|v ∈ X′i

}
=

{
i ∈ Ie|v ∈ X′i

}
. Furthermore, for v ∈ V′e \V and some i ∈ Ie

we have v ∈ Xi if and only if v ∈ X′i . Combining these two observations we get{
i ∈ I′|v ∈ X′i

}
= {i ∈ Ie|v ∈ Xi}. Hence, the subgraph Te(v) of Te induced by the

nodes {i ∈ Ie|v ∈ Xi} is exactly T ′(v). Since De is a tree-decomposition of G′e, the
subgraph Te(v) (and thus T ′(v)) is in fact a tree.

We have already seen that
∣∣∣X′i ∣∣∣ ≤ k+2 if i ∈ Ie for some e ∈ E,

∣∣∣X′i ∣∣∣ ≤ 6 for i ∈ I and
∣∣∣∣X′it ∣∣∣∣ = 2.

Hence, tw(G′) ≤ width(D′) =max
i∈I′

∣∣∣X′i ∣∣∣−1 ≤max {k+1,5}. �

In our definition of GMFMQ and GMCFMQ, respectively, we have restricted our analysis
to instances for which a finite upper capacity bound is defined on all edges. We conclude this
section by showing how instances of MFMQ and MCFMQ, where the upper capacity bound
for some edges is undefined (i.e. be =∞) can be handled:
Let an instance I of MFMQ or MCFMQ be given and set m B |E|. For MFMQ we can
check in polynomial time if there is an s-t-path without any edge capacity constraints. For
MCFMQ we can check in polynomial time whether there is a cycle without any edge capacity
constraints and for which the sum of edge costs is negative. If so, the objective value of the
respective instance of MFMQ or MCFMQ is unbounded. Else, let Eb be the set of edges
with a finite upper capacity constraints and let Eu be the edges for which be =∞. For MFMQ
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set BBmax
{

max
e∈Eb

be,max
e∈Eu

qe

}
. For MCFMQ set BBmax

{
max
e∈Eb

be,max
e∈Eu

qe,F
}

. Note that in

both cases B is well-defined and finite: If we had be =∞ for all e ∈ E, then MFMQ would be
unbounded. By definition of MCFMQ, a finite flow value F is always defined. Set be B mB
for all e ∈ Eu. We call this instance I′ and claim that the optimal objective values of I and
I′ are identical. Since we are adding additional constraints in order to create I′, an optimal
solution to I′ cannot be better than an optimal solution to I. Hence, it is sufficient to show
that an optimal solution to I′ is at least as good as an optimal solution to I.
Let an optimal solution f to I be given. We use the flow f as a baseline to create an updated
flow f ′ which is a feasible solution to I′ and which has the same objective value as f . We
initialize f ′ by setting f ′ B f and update the flow in order to obtain a flow that is feasible
regarding the updated edge capacities. The given flow f can be decomposed into at most m
cycles and s-t-paths. Let such a decomposition be given and let EP denote the set of edges
on a path (or cycle) P of the decomposition and fP the flow value on that path (or cycle) of
the decomposition. Note that if the decomposition of f contains a cycle C for which fC > B,
then EC ⊆ Eu. For all cycles C with fC > B we created an updated flow by setting f ′C B B.
For MFMQ this does not affect the objective value, since the s-t-flow remains unchanged.
For MCFMQ there is no cycle C for which the sum of the edge costs is negative and for
which EC ⊆ Eu. Hence, reducing the flow on C does not increase the objective value.
By construction f ′e ≥ qe for all e ∈ E and f ′e ≤ be for all e ∈ Eb.
Note that we have reduced the flow to at most B on each of the cycles of a given decomposition.
However, an edge might occur in multiple paths and cycles of a composition, so that we still
have to show that f ′e ≤ be for all e ∈ Eu. For MFMQ we have that every s-t-path contains at
least one edge e ∈ Eb by assumption. Hence f ′P ≤ B for all s-t-paths P. For MCFMQ we have
that f ′P ≤ F ≤ B for all s-t-paths P. Now consider an arbitrary edge e ∈ Eu. The edge is part
of at most m cycles or s-t-paths of the above decomposition of f , each of which has a flow
value at most B in the updated solution f ′. Hence, the flow on the respective edge is at most
mB, which implies f ′e ≤ mB = be for all e ∈ Eu.
Note that the above procedure works for MRFMQ and MCRFMQ as well.

5.4 Conclusion

In this chapter we have provided definitions for several flow problems with minimum
quantities, some of which had already been considered in earlier publications in similar form.
We have pointed out the differences between the definitions used in these publications and
we have given an overview of the respective results. Based on this we were able to provide
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further insights regarding flow problems with minimum quantity constraints. In order to
do so, it proved to be helpful that we were able to show that MFMQ and MCFMQ can be
reduced to MWECBMMQ (Theorem 5.3.1).
For the following problems we could show that, unless P=NP, there cannot be any polynomial-
time bicriteria approximation algorithm, even on series parallel or on bipartite graphs:

• MCFMQ and MCRFMQ (Theorem 5.3.4)
The proof of the theorem also shows NP-hardness of the problems, however, this has
already been shown before.

Conversely, in the following case, we could show pseudo-polynomial solvability:

• MFMQ and MCFMQ on graphs for which the treewidth is at most r for fixed r ≥ 1
(Corollary 5.3.2)

The following problem can be solved in polynomial time:

• MFMQ on series parallel graphs if the number of different minimum quantities is
bounded by r for fixed r ≥ 1 (Corollary 5.3.3)

In addition, we could establish the following approximability result:

• For ϵ > 0 there is a polynomial (1, 1+ ϵ)-approximation algorithm for MRFMQ on
series parallel graphs (Theorem 5.3.6)
In order to show the claim, we first had to show that for every instance of MRFMQ
there is an integral optimal solution (Lemma 5.3.5).

In addition to the above results, we could show a polynomial-time transformation between
generalized flow problems with minimum quantities and (non-generalized) flow problems
with minimum quantities, which implies that both classes of problems have the same com-
putational complexity (Theorem 5.3.7). As we have pointed out in Remark 5.3.8, the
transformation given in Theorem 5.3.7 is in fact a pseudo-polynomial transformation. Hence
it retains strong NP-hardness.
Finally, in Theorem 5.3.9 we could show that if the transformation given in Theorem 5.3.7 is
applied to a graph for which the treewidth is bounded by a constant k, then the treewidth of
the output graph is bounded by max {k+1,5}.



Chapter 6

Conclusion

6.1 Summary of the results

In this thesis we have considered the application of minimum quantity constraints to four
classes of problems: Bin packing problems, scheduling problems, matching problems and
flow problems. For each of these classes of problems we have provided a summary of
the definitions and results that existed to date. We have defined additional problems with
minimum quantity constraints that, to the best of our knowledge, had not been considered
before. In particular, we have applied minimum quantity constraints to the maximum-weight
b-matching problem and to open shop scheduling problems. A detailed summary of our
contribution regarding the respective problem class can be found at the end of each chapter.
Hence, we will not repeat the results in detail in this chapter.
As expected based on previous results, we could show that most problems become NP-hard
if minimum quantity constraints are added. Hence, we have restricted the problems in order
to find special cases that can be solved in polynomial or even linear time. For problems
defined on graphs such as matching and flow problems, applying a fixed upper bound on
the treewidth of the graph has proven to be helpful. For scheduling problems that allow
preemption and that can be solved in polynomial time we have shown that these problems
remain polynomially solvable even with identical minimum quantities. For several problems
we were able to provide algorithms with a pseudo-polynomial running time.
In addition, we have considered approximability of the problems: For most problems we
could show that, unless P=NP, there cannot be any polynomial-time approximation algorithm
or that the approximation ratio cannot exceed certain bounds. Hence, we have considered
bicriteria approximation algorithms that allow the constraints of the problem to be violated
up to a certain degree. This approach has proven to be very helpful and we were able to
provide a polynomial-time bicriteria approximation algorithm for at least one problem of
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each of the four problem classes that we have considered. For problems defined on graphs,
the class of series parallel graphs supports this approach very well. In order to ensure a
polynomial running time of the algorithms, we have used different technical approaches such
as rounding, clustering and restricting the set of partial solutions to certain representatives.
All in all, this thesis is a comprehensive summary of the current state of research on minimum
quantity constraints and can be used as a starting point for further research.

6.2 Ideas for future research

In this section we would like to give some ideas that might be covered by future research.
First of all, the idea of minimum quantity constraints could obviously be applied to new
classes of problems or to additional problems within the problem classes that we have covered
in this thesis. In particular, further research might be dedicated to applying minimum quan-
tity constraints to scheduling problem by considering additional combinations of machine
environments, objective functions and other constraints. Moreover, other shop scheduling
problems, such as flow shop or job shop scheduling problems, could be defined and analyzed.
The definition of bin packing problems with minimum quantity constraints could be extended
to classes of items: For example, the model could be defined in such a way that the items of
each class that are packed into a specific bin have to fulfill the respective minimum quantity
constraint on the bin. The bin capacity could be defined as an upper bound on the sum of the
sizes of all items that are packed into the respective bin. Different minimum quantities could
be defined on the same bin for the different classes of items. Analogously, classes of jobs
could be added to the existing definitions of scheduling problems. We also assume that there
is some potential for further research regarding multi-commodity flow problems.
As we have seen, bicriteria approximation algorithms are a helpful approach for tackling
problems with minimum quantities. Hence, trying to develop additional polynomial-time
bicriteria approximation algorithms seems like a promising topic for future research. In
particular, we have shown that for every ϵ > 0 there is a polynomial-time (1+ ϵ,1+ ϵ)-
approximation algorithm for Pq||Cmax. It remains open, whether a similar result is possible
for Pq||

∑
Ci.

Throughout this thesis we have focused on the theoretical analysis of the problems. Hence,
designing efficient implementations of the algorithms presented in this thesis and measuring
their performance in practical applications might be an interesting topic for future research.
In addition, there might be algorithms with exponential running time that still prove to be
efficient in practice.
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