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Abstract
We investigate, both experimentally and theoretically, the static geometric properties of a
harmonically trapped Bose–Einstein condensate of 6Li2molecules in laser speckle potentials.
Experimentally, wemeasure the in situ columndensity profiles and the corresponding transverse
cloudwidths overmany laser speckle realizations.We compare themeasuredwidthswith a theory
that is non-perturbative with respect to the disorder and includes quantum fluctuations. Importantly,
for small disorder strengths wefind quantitative agreement with the perturbative approach ofHuang
andMeng, which is based on Bogoliubov theory. For strong disorder our theory perfectly reproduces
the geometricmean of themeasured transverse widths.However, we also observe a systematic
deviation of the individualmeasuredwidths from the theoretically predicted ones. In fact, the
measured cloud aspect ratiomonotonously decreases with increasing disorder strength, while the
theory yields a constant ratio.We attribute this discrepancy to the utilized local density
approximation, whose possible failure for strong disorder suggests a potential future improvement.

1. Introduction

Disorder is ubiquitous in nature, since there is no perfect order in any realistic physical system. Random
disorderedmedia have for long time been studied in terms of percolation and transport phenomena [1–3] or
anomalous diffusion [4]. The dirty boson problem first arose experimentally in the context of superfluid helium
in porous vycor glass, where it was shown that superfluidity can still persist despite the influence of disorder
[5, 6]. It amounts to understanding the emergence of coherence and order for ultracold bosonic atoms in the
presence of frozen disorder in the formof a static randompotential. Its importance and intriguing aspects stem
from the interplay of localization and interactions aswell as of disorder and superfluidity. Since the realization of
Bose–Einstein condensates (BECs) in 1995 [7, 8] the interest regarding the effects of disorder potentials on the
properties of ultracold quantum gases has substantially increased [9]. This was initiated by unavoidable
irregularities in the trapping potential induced bywire imperfections [10, 11]. However, ultracold quantum
gases became controllable to an unprecedented level of precision. For example, disorder can nowadays be
imposed thereon in a highly tunablemanner via laser speckles [12, 13], lightfields engineered by digital
micromirror devices [14, 15] or atomic impurities trapped in an optical lattice [16, 17]. Hence, they represent an
extremely promising platform for practically realizing Feynman’s quantum simulator [18], whichmimics the
physics of other quantummany-body systems [19, 20]. This especially applies tomany phenomena of
condensedmatter physics, which are inevitably influenced, or even caused, by various types of uncontrollable
disorder. For instance, the phenomenon of Anderson localization, originally used tomicroscopically describe
the absence of diffusion in the presence of disorder [21], was predicted for aflowof a dilute Bose gas through a
disordered region [22]. So far it was observed for non-interacting atoms in one dimension [23, 24] aswell as
presumably in three dimensions [25, 26].More recently, the so calledmany-body localization has been observed
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for interacting particles in disordered lattice systems and has attracted significant interest [27–29]. In this paper,
however, we aremore interested in analyzing the impact of disorder upon bosonicmany-body quantum systems
in the bulk. Therefore, we briefly review the literature on the homogeneous or trapped dirty boson problemboth
for aweak and a strong randompotential.

In order to quantitatively study aweakly interacting homogeneous Bose gas in a static randompotential,
Huang andMengworked out a Bogoliubov theory [30], where quantumand thermal fluctuations aswell as
disorder fluctuationswere assumed to be small. This approach treated the disorder perturbatively andwas
subsequently extended by others, either within the original framework of second quantization [31–34] orwithin
the functional integral approach including the replicamethod [35–37]. In particular, it was also demonstrated
that, despite the randomness of the potential, superfluidity persists and that its depletion is larger than the
condensate depletion since the bosons scattered by the disorder landscape represent randomly distributed
obstacles for themotion of the superfluid. An extension to the situationwhen the disorder correlation function
falls off with a characteristic correlation length, as in the case of aGaussian [32, 38–40], a Lorentzian [41], or laser
speckle disorder [42, 43] revealed that condensate and superfluid depletions decrease with increasing correlation
length.Note that, to the best of our knowledge, so far no prediction of theHuang–Meng theory has yet been
checked experimentally although it stems from1992. Finally, some subtleties regarding condensate deformation
and its quantumdepletion in external, and possibly random,weak potentials were resolved in [44, 45] using an
inhomogeneous Bogoliubov theory.

The dirty boson problemwas also studied non-perturbatively using various approaches. For a delta-
correlated disorder, either in the homogeneous case [46–51] or in a disordered trap [52–54], a paradigmatic
result is that an increase of the disorder strength at zero temperature leads to a first-order quantumphase
transition from a superfluid to a Bose-glass phase. In the latter, global phase coherence is destroyed and phase
coherence only persists locally due to the particle scatteringwith the disorder. On the other hand, non-
perturbative studies of dirty bosonswith afinite disorder correlation length are scarce. For instance, the
diffusionMonte-Carlo study in [55], where the disorder is implementedwithin a hard-spheremodel, concludes
for the homogeneous case that no quantumphase transition from a superfluid to a Bose-glass occurs. This result
is confirmed by the theoretical investigations of this paper, where the case of a disordered trap is studied for
concrete experimental parameters.

Note that, until now, it has remained a challenge to test all these theoretical predictionswithin a concrete
experimental setup. Thismotivated us to investigate within an experiment-theory collaboration the static cloud
shape of a BEC in a disordered trap and its changewith increasing disorder strength. In section 2we introduce
the underlying experimental setup, where the disorder is realized by laser speckles andwhere the harmonically
trapped BEC consists ofmolecules of fermionic 6Li atoms. Subsequent section 3 develops a corresponding
theoretical description, which is non-perturbative with respect to disorder and includes quantumfluctuations.
Finally, section 4 presents themeasured cloudwidths as a function of the laser speckle strength and discusses
how they can be explained both qualitatively and quantitatively by the developed theory. Althoughwe have
achieved a quite significant level of agreement between themeasurements and the theory, we also note that some
experimental results indicate certain limitations of our theoretical approach, which needs to be refined for future
studies.

2. Experimental setup

In the following, relevant components of the experimental setup are presented. First, we give an overview of the
sequence for the creation ofmolecular BECs. Subsequently we focus on statistical properties of the optical
speckle potential, its interactionwith lithiummolecules and a novelmethod for calibrating the disorder
strength. Finally, we describe how to load the quantum gas into a disordered trap, themeasurement protocol as
well as the data analysis.

2.1. Creation ofmolecular Bose–Einstein condensates
Ageneral overview of our experimental setup is given in [56]. In short, we prepare quantumdegenerate gases
of neutral, fermionic 6Li atoms in an equalmixture of the two lowest-lying Zeeman substates = -m 1 2,J∣

= ñm 1I and - ñ1 2, 0∣ of the electronic ground state S2
1 2, wheremJ andmI are themagnetic quantum

numbers of the electronic and nuclear spin, respectively. Amagnetic Feshbach resonance centered at 832 G [57]
is utilized to tune the s-wave scattering length between atoms of opposite spin to a4510 0 at 763.6 G, where a0
denotes theBohr radius. At thismagneticfield, the interatomic interaction potential features amolecular state
with binding energy m=E k 1.5 Kb B [58], where kB denotes theBoltzmann constant. SuchFeshbachmolecules
formduring cooling once the sample temperature approaches E kb B [59] and they interactwith scattering length

a2706 0 [60].Molecular BECsof typically (4.3± 0.2)× 105molecules are created by forced evaporative cooling

2

New J. Phys. 22 (2020) 033021 BNagler et al



in a superpositionof optical andmagnetic potentials. Anoptical dipole trap confines the cloud radially, which
corresponds to the x- and z-direction infigure 1, with trap frequencies w w p= ´, 2 195 Hz, 129 Hzx z( ) ( ). The
weaker axial confinement, along the y-direction infigure 1, is provided by amagnetic saddle potential forwhich
wehave w p= ´2 22.6 Hzy . After evaporation, the atomic sample is held for 500 ms at a constant trapdepth of

´ k500 nK B to ensure thermal equilibration, before studying its properties in a disordered potential.

2.2.Optical speckle potential
The optical speckle potential is realized by passing aGaussian laser beam through a holographic diffusive plate
(EdmundOptics 47-991) and imaging the light onto the position of the atoms. The beam is derived from a
frequency-doubledNd:YVO solid-state laser (Coherent Verdi V18)withwavelength l = 532 nm.We control
its power irradiated onto the atomic sample bymeans of an acousto-opticmodulator in a proportional-integral-
derivative control loop. After passing through the diffuser, the beamwaist is enlarged to =w 29 mm by a
telescope tomatch the free aperture of the imaging objectivewith numerical aperture 0.29 and focal
length =f 98.8 mm.

The speckle grain size or correlation length is characterized by thewidth of the intensity autocorrelation
function d d= +C I Ir r r r( ) ( ) ( ) [12], where I r( ) is the intensity at the point r and the bar denotes averaging
over a region that encompasses a large number of speckle grains. For aGaussian beamwithwaistw, the
autocorrelation function in the image plane takes on the shape of aGaussian

d
d
s

= + -C Ir
r

1 exp , 12
2

2

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥( ) ( )

with the diffraction-limited width s l p= =f w 576 nm( ) for =w 29 mm. Along the beampropagation axis
the grain size is expected to be larger by a factor of 4f/w=13.6 [61]. A speckle is called fully developed if the
phases of contributing partial waves are distributed uniformly across the interval [0, 2π) [12]. In this case, dark
regions aremore abundant than speckle grains of any higher intensity [62] and one can show that the probability
density of the intensity follows an exponential law [12]

= -P I
I

I

I

1
exp . 2⎜ ⎟⎛

⎝
⎞
⎠( ) ¯ ¯ ( )

Both the intensity autocorrelation and probability distribution aremeasured in a test setup featuring an optical
beampath for projection of the laser speckle that is identical to the one used in the experiment. It includes a
microscope at the intended atomic cloud positionwhich images the speckle onto aCCDcamera. Themeasured
intensity probability distribution, shown infigure 2, is exponential. Thus, we conclude that the speckle is,
indeed, fully developed. Themeasured correlation length s = 750 nmm is larger than theoretically expected,
which is in part due to a truncation of theGaussian beamby thefinite aperture of the objective. Taking this into
account, a numerical simulation of the speckle provides a correlation length of 650 nm. The remaining deviation
is attributed to potential aberrations of our optical system.

Figure 1. Schematic illustration of the experimental setup. Ultracold samples (red ellipsoid) are trapped in a superposition of optical
dipole trap (blue cylinder) andmagnetic saddle potential (yellow surface). Information is extracted by absorption imagingwith
resonant light (red arrow) along one of the short axes of the dipole trap. The optical speckle beam (green volume) propagates in
opposite direction (green arrow) and produces randomly distributed, anisotropic grains (green ellipsoids).
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Since the atomic transition of lithium,which is affected themost by the laser speckle, is the far detunedD2
line at 671 nm, the interactionwith the lightfield is dominated by the optical dipole force [63]. The
corresponding potential reads

p
w w w w w

= -
G

-
+

+
u

c
Ir r

3

2

1 1
, 3

2

0
3

0 0

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

with the speed of light c, the natural linewidth pG = ´2 5.87 MHz [64], the speckle laser frequencyω=
2πc/λ, and the atomic transition frequencyω0. Asω>ω0, the potential is repulsive andwe define the disorder
strength as themean potential u induced by themean intensity Ī . Spontaneous scattering is negligible
(<10−3 s−1) for all intensities used in our experiments. The polarisability of 6Li2molecules is twice that of
unbound atoms [65] and, therefore, themolecules experience double the dipole potential. Themaximal disorder
strength formolecules we can achieve with the available laser power is =u k 356 nKB¯ .

Another relevant characteristic of optical speckle is the spatial dependence of itsmean intensity Ī . Due to the
finite scattering angleϑ of the diffusive plate, the lightfield in the image plane extends over a range far greater
than the diffraction-limited spot size and its envelope is described by aGaussian beam shapewithwaist J=w fs

[12]. In our setup, we have J = 0.5 and therefore we obtain m=w 862 ms , which is larger than the typical size
m300 m of an ultracold atomic cloud. For a precise calibration of themean intensity it is therefore crucial not

only to know the speckle waist but also the cloud’s position therein. Other calibrationmethods are restricted to
attractive potentials [66] or rely onmeasurements of themomentumdistribution [67] and are, thus, not
applicable to our system.

Wehave developed a novelmethod, which enables us to align the speckle center to the atomic cloud and
infer thewaist simultaneously. It is based on rotating the speckle pattern as awhole andmeasuring the resulting
displacement of an atomic cloudwithin the speckle, see figure 3.Our diffusive plate is attached to amotorized
rotary stage (Thorlabs K10CR1/M). Spinning this stage causes the emerging speckle pattern to revolve around
its principal axis in the image plane. For the alignment procedure, we create amolecular BEC and linearly ramp
the speckle laser power to itsmaximumvalue during 50 ms. The sample is held for100 ms in the potential
rotatingwith angular velocityω=20° s−1 before being released from the trap and imaged along the speckle
principal axis after 11 ms time offlight. Since the disorder strength around the envelope center at x=y=0 is
large enough to drag the cloud alongwith itsmotion, the displacement of the atomsΔs is approximately the
distance traversed by the speckle wD = +d x y x y t, 2 2

i( ) during the illumination time ti. The value
=t 136 msi takes into account theweighted rampduration and the time offlight. For increasing distance from

the center, the decrease inmean intensity will eventually lead to a decline ofΔs, althoughΔd continues to grow.
Wemodel this situation by assumingΔs to be, up to a constant factor, given by the product ofΔd and the
envelope function:

D µ D = D -
+

s x y d x y
I x y

I
d x y

x y

w
, ,

,

0, 0
, exp 2 . 4

2 2

s
2

⎛
⎝⎜

⎞
⎠⎟( ) ( )

¯ ( )
¯ ( )

( ) ( )

In order to inferws, we scan the relative position of the quantumgas with respect to the speckle potential across
the x- or y-axis. For each position, wemeasureΔy orΔx for clockwise () and anticlockwise ( ) rotation and
evaluateD = D - Dy y ydiff   , whereD » -Dy y  , orDxdiff in order to increase the signal strength. The result
of such ameasurement is shown infigures 3(b) and (c), where each data point is the average over 10 repetitions
for each rotational direction. Fromfits according to (4) along the respective axes we extract m=w 808 38 mxs, ( )

Figure 2.Characterization of the optical speckle. (a)Probability distribution of the speckle intensity. The orange line is afit to the data
according to (2). The inset shows a m m´15 m 15 m section of the speckle intensity distribution. (b)Autocorrelation function of the
speckle intensity. Data points represent a cut through the central section of the two-dimensional function, which is depicted in the
inset. The orange line is a fit to the data according to (1). For the beamwaist and aperture chosen, the shape of the autocorrelation
function is well described by aGaussian.
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and m=w 884 63 mys, ( ) , which agrees with m=w 862 ms within less than 10%deviation.Note that the smaller
displacement along y compared to x is due to an additional confining potential that is not turned off during time
offlight. As a possible cause for the ellipticity we identify a slight astigmatism induced by the acousto-optic
modulator. For further experiments, we shift the peak of the speckle envelope to the atomic cloud position in
order to achieve an almost homogeneous randompotential with about 6%variation of Ī across the typical
cloud size.

2.3.Molecular Bose–Einstein condensates in a disordered trap
In order to load themolecular BEC into the disordered potential, the speckle potential is linearly ramped to its
final value u/kB within the interval 0, 356 nK[ ] during 50 ms. After an additional hold time of 100 ms weprobe
the systemby performing resonant high-intensity absorption imaging [68] on the transition = -m 1 2,J∣

= ñ « = - = ñm P m m1 , 3 2, 1I J I
2

3 2∣ along the z-axis and, therefore,measuring the in situ atomic column
density in the x–y plane.We repeat thismeasurement about 140 times for each sampled disorder strength.
Before every iteration, themicroscopic details of the randompotential experienced by the cloud are altered by
rotating the speckle plate. This procedure enables us to average observables overmany disorder realizations and,
therefore, conformwith the theoreticalmodel as described in the subsequent section 3. From a semi-classicalfit
[69] to integrated density profiles without disorder we estimate the temperature to be 70 nK, which amounts to
about 25%of the non-interacting critical temperature for the onset of trappedmolecular BEC. As thisfit does
not account for the quantumdepletion of the BEC, the determined temperature has to be considered as an upper
bound.

Figure 4 depicts exemplary density profiles for different disorder strengths. The impact of increasing
disordermanifests itself in the formof emerging density fluctuations and an alteration of the cloud shape, which
is characterized by the spatial extension along the principal axes. Since the healing length x = 270 nm of the
BEC in the trap center is smaller than all correlation lengths, thewave function resolves the finest structures of
the speckle potential [70]. These are, however, not visible in the recorded density distributions due to the limited
resolution of our imaging setup, which amounts to m2.2 m. In order to extract thewidths and simultaneously
reduce the noise introduced by the fluctuations, we integrate the 2D columndensity profiles from figure 4(a)
along the y-direction andfit aGaussian function fromwhichwe get the 1/e half-widths ax. Analogously, we
obtain ay fromGaussianfits of the density profiles integrated along the x-direction. Although the interaction
strength is quite large, this ansatz is well suited to describe the integrated profiles even for the largest explored
disorder strength, as illustrated infigures 4(b) and (c).

Figure 3. In situmeasurement of the speckle waist. (a)Themotion (blue arrows) of the rotating potential (green) combinedwith the
Gaussian envelope of the specklemean intensity causes the spatial dependence of the cloud displacement Ds x y,( ). (b) and (c) show
Dxdiff andDydiff for different speckle positions along the x- and y-axis, respectively. Orange curves arefits to the data according to (4),
whereas green lines denote Dd2 .
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3. Theory

Let us consider a weakly interacting Bose gas atT=0 in the ground state in an external trapping potentialU r( )
with the addition of a disorder potential u r( ).We assume that the disorder is homogeneous after the ensemble
average, i.e. á ñ = á ñu ur( ) . Otherwise, any non-homogeneity of the average can be absorbed intoU r( ). Since the
correlation length ismuch smaller than the spatial extension of the cloud in x- and y-direction, we conclude that
á ñu matches the spatial average u . Themaximal value of the gas parameter in our experimental setup is

=n a0 0.017s
3( ) , where n 0( ) denotes the clean-case particle density in the trap center, see (6) below. Comparing

with the typical gas parameters for weakly interacting 87Rb gas of about 0.0007 [71] and for a strongly interacting
4He of about 0.24 [72], we conclude that our experiment is in an intermediate regime, where quantum
fluctuations have to be accounted for.Hence, the ground state wave function y r( ) satisfies the extendedGross–
Pitaevskii equation that includes the quantum-fluctuation corrections of Lee et al [73] on themean-field level
[74]

y y y my y
p

y-  + + - + + =

m

U u g ar r r r r r r r
2

40

3
0, 5s

2
2 3 3 2 4

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

where as is the s-wave scattering length and p= g a m4 s
2 denotes the interaction strength. The ground state

chemical potentialμ is taken to be independent of the disorder realization. This leads to a distribution of the total
number of particles for different realizations of the disorder. The value ofμ isfixed by the requirement that on
average one has

ò y
p

y= á ñ = +


N n n ar r r r rd , with
8

3
, 6s

3 2 3 2 3
3

( ) ( ) ( ) ( ) ( )

where the second termof the particle density n r( ) accounts for the quantumdepletion of the condensate [74].
Averaging the condensate wave function overmany disorder realizations gives yá ñr( ) that satisfies the

average of (5)

y y y m y

y
p

y

-  á ñ + á ñ + á ñ - á ñ

+ á ñ + á ñ =


m

U u

g a

r r r r r r

r r

2
40

3
0. 7s

2
2

3 3 2 4
⎡
⎣⎢

⎤
⎦⎥

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

Let us definej y y= - á ñr r r( ) ( ) ( ) to be the part of y r( ) thatfluctuates due to disorder. It obeys já ñ =r 0( ) ,
j y yá ñ = á ñ - á ñr r r2 2 2( ) ( ) ( ) and satisfies

Figure 4. (a) 2D columndensity profiles for =u kB 0, 54, and 327 nK (from left to right). (b) and (c)Density profiles for
=u k 326 nKB integrated along y- and x-direction, respectively. Orange lines arefits of Gaussian functions to the data.
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j j y y mj

y y
p

y y

-  + + - á ñ -
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g a

r r r r r r r r
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From the previous two equations one observes that the averages and the fluctuations aremutually coupled.
Moreover, yá ñr( ) depends on yá ñu r r( ) ( ) and higher-order averages like yá ñr 3( ) and yá ñr 4( ) . The latter signals
the necessity to deal with an infinite hierarchy of averages of increasing order. In order to use analytical tools, we
will introduce several simplifying approximations.

First, we are going to use the cumulant expansionmethod [75–77], where in theGaussian approximation all
the cumulants of higher than second order are neglected. The general expansionmethod and the approximation
procedure are outlined in appendix A. In thismannerwe have, for instance, y y yá ñ » á ñá ñ -r r r33 2( ) ( ) ( )
yá ñr2 3( ) and y y yá ñ » á ñ - á ñr r r3 24 2 2 4( ) ( ) ( ) . Such a procedure truncates the hierarchy of the disorder

averages of increasing order and enables an approximate but essentially non-perturbative treatment of the
disorder up to the second cumulant order. Thus, applying the cumulant expansion to (7) leads to

y m y y y

y
p

y y

-  á ñ + - + á ñ - á ñ á ñ

+ á ñ + á ñ - á ñ =


m

U g g

u
g

a

r r r r r

r r r r

2
3 2

40

3
3 2 0, 9s

2
2 2 2

3 2 2 2 4

( ) ( ( ) ( ) ( ) ) ( )

( ) ( ) ( ( ) ( ) ) ( )

while the normalization condition (6) becomes

ò y
p

y y y= á ñ + á ñá ñ - á ñ


N ar r r r rd
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3 2 . 10s

3 2 3 2 2 3
3

⎡
⎣⎢

⎤
⎦⎥( ) ( ( ) ( ) ( ) ) ( )

Secondly, we assume that all the disorder-averaged quantities vary in spacemuchmore slowly than their
fluctuations do. The smaller the correlation lengthwith respect to the other characteristic lengths of the system,
the better this assumption is justified. Therefore, in order to determine yá ñu r r( ) ( ) and yá ñr 2( ) from (8)we
employ the local density approximation (LDA) by treating yá ñr( ) , yá ñr 2( ) , etc, alongsidewithU r( ) as constant
background quantities yá ñ, yá ñ2 , andU, respectively, that will at the end of calculation be restored to their
original values at the spatial point r. Of course, yá ñr( ) and yá ñr 2( ) have to be determined in conjunctionwith (9)
and (10). In this way, (8) under LDAdescribes thefluctuations of a spatially infinite condensate in afixed self-
consistent locally determined background. Thefinal resulting equation, after applying the cumulant expansion
aswell, is given in appendix B.

Furthermore, according to the experimental data, the correlation length of the disorder potential in the
propagation direction is about one order ofmagnitude larger than that in the transverse speckle plane.Hence,
wewill consider the scenario of a quasi two-dimensional disorder that is constant along the z-axis and has a
Gaussian correlation function in the transverse x–y plane. After a lengthy but straightforward calculation, which
is sketched in appendix B, we obtain
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where e = = +^^  m k k mk 2 2x yk
2 2 2 2 2( ) ( ) ( ) denotes the transverse free-particle dispersion, = +V Ur r( ) ( )

m yá ñ - + á ñu g r3 2( ) has the role of an effective potential and y y y= á ñ á ñ - á ñ
p

V ar r r r3 2
g

sQ
160

3
3 2 2 2( ) ( ) ( ( ) ( ) )

is a correction due to quantum fluctuations. The quantity á ñ ^u u k, c ( ) is the Fourier transformof the second-
order cumulant of the disorder potential á ñ - ¢ º á ¢ ñ = á ¢ ñ - á ñ^ ^ ^ ^ ^ ^u u u u u u ur r r r r r, ,c c

2( ) ( ) ( ) ( ) ( ) . Hadwe
considered higher-order cumulants, theywould have aswell contributed to (11) and (12). The set of
equations (9)–(12) has to be solved upon specifying the total number of particles as well as the external and the
disorder potential.

In accordance with the experimental situation, we assume that the Bose gas is trapped in an external
harmonic potential

w w w= + +U
m

x y zr
2

, 13x y z
2 2 2 2 2 2( ) ( ) ( )

whereωx,ωy, andωz are the corresponding trapping frequencies. In addition, we consider the isotropic 2D
speckle disorder that has aGaussian correlation function of the underlying electric field in the transverse plane
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whereσ is the correlation length. Since the resulting speckle potential is proportional to the square of the field,
i.e. µ u r r 2( ) ∣ ( )∣ , it does not have aGaussian distribution.However, due to theGaussian character of the field
 r( ), all potential correlation functions can be expressed via sums of products of the field correlation function
(14) [78]. Hence, wefind

g
s
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r r
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2 2 2
2

2

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ∣ ( )∣ ( ) ( )

where á ñ = á ñ^u u r( ) is the average speckle potential value. In the transverse k̂ -plane, we get

ps
s

á ñ = á ñ -^
^u u uk

k
, exp

4
. 16c

2 2
2 2⎛

⎝⎜
⎞
⎠⎟( ) ( )

Nowwe aim for an approximate semi-analytic variational solution of the coupled set of equations (9)–(12).
As no obvious energy functional exists, we cannot rely upon the standard variational procedure of [79, 80],
which has been so successful in the realmof ultracold quantum gases. Instead, we follow [81, 82], where a similar
variational solution is worked out directly on the basis of the underlying equations ofmotionwithin a so-called
cumulant approach. To this end, we use aGaussian ansatz for the disorder-ensemble averaged condensate wave
function

y
p

á ñ = - - -
A

w w w

x

w

y

w

z

w
r exp

2 2 2
, 17

x y z x y z
3 4

2

2

2

2

2

2

⎛
⎝
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⎞
⎠
⎟⎟( ) ( )

as this reduces the complexity of the problem (9)–(12) to determining only five unknownparameters: the
condensate widthswx,wy, andwz, the normalization constantA, whose square quantifies the number of bosons
in the condensate, and the chemical potentialμ. Next, wemultiply (9) by yá ñr( ) , yá ñx r2 ( ) , yá ñy r2 ( ) , and

yá ñz r2 ( ) , respectively, and integrate over thewhole space. This provides four algebraic equations for the
unknowns. Thefifth equation is given by the normalization condition (10).

As a first result, we show infigure 5 how the condensate fractionA2/Nmonotonously decreases with
increasing disorder strength u , which equals á ñu , for the typical experimental parametersmentioned in
section 2. For vanishing disorder we obtain a quantumdepletion of 9% for themolecular BEC,which ismuch
larger than for the usual atomic counterparts. Furthermore, in the range of experimentally accessible disorder
strengths, i.e. up to =u k 356 nKB , the condensate fraction only drops down to 62%. Even formuch larger
values of the disorder strength, our theory shows that the condensate fraction never decreases below 45%.With
this we conclude that a significant part of themolecular Bose gas remains globally phase coherent despite the
mutual impact of both quantumdepletion and disorder fluctuations. Thus, as the condensate fraction is far
fromvanishing, a quantumphase transition from a superfluid to a Bose-glass does not occur for any disorder
strength.

In the followingwe focus our analysis to the cloudwidths, which are directly accessible observables. To this
end, wefirst have to calculate the cloud density profile, that is the integrand of (10). Thenwefind the 1/e half-
widths along the x-, y- and z-axis of the density profile. In the subsequent sectionwe compare the obtained
theoretical cloudwidthswith the corresponding experimental ones.

4.Measurement of the cloud shape in a disordered trap

A comparison of ourmeasurements of the cloudwidths along the x- and y-axis for different disorder strengths
with theoretical predictions is presented infigure 6. According to section 3, our theory provides the

Figure 5.Condensate fraction as a function of disorder strength for the experimental parameters.
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disorder-ensemble averaged density profiles and their correspondingwidths non-perturbatively with respect to
disorder, including the quantumfluctuations. On the other hand, in the experiment we determine for each
disorder realization the projected density profile and its widths. From themeasuredwidth distributionswe
obtain their average values and standard deviations, respectively. Thus, the experimental and theoretical
procedures to obtain the cloudwidths are not exactly the same.However, we have carefully checked that an
additional analysis of the experimental data in the samemanner as in the theoreticalmodel would lead, for all
practical purposes, to the same quantitative results for the averagewidths. Namely, according to the upper plot
offigure 6(b), the cloudwidths extracted from the averaged density profiles in the range of the considered
disorder strengths turn out to deviate only up to 2% from the averages of the individual cloudwidths. This
deviation is smaller than the statistical error of 5% for extracting the averagewidths.

Infigure 6(a)wefind that the geometricmean of the experimentallymeasuredwidths a ax y , i.e. the cross-
section area of the cloud in the imaging plane, is well reproduced by our theory. Additionally, our calculations
reveal that thewidth az in the propagation direction also displays qualitatively the same growth.Hence, the cloud
steadily expandswhile the disorder strength is increased. The corresponding particle number of 4.5×105 is
determined from thewidths in the clean case, i.e. for =u 0, and is used in the subsequent calculations for all
disorder strengths. Its agreement with the experimentallymeasured value (4.3±0.2)×105 a posteriori justifies
the necessity to include quantumfluctuations in ourmodel. Hadwe neglected quantum fluctuation effects, the
theoretically inferred particle numberwould have been 6.5×105, which is about 45% larger than in the
experiment.

In addition, for small disorder strengths thefinal equations for the unknown parameterswx,wy,wz,A, andμ
are solved perturbatively up to the second order in u . Such an approach could be considered as an extension of
the homogeneous dirty boson theory ofHuang andMeng [30] to the trapped scenario.Wefind that the
geometricmean of themeasured transverse widths is reproduced quite well for u/kB up to about 30 nK, see the
green dashed curves infigure 6(a). To the best of our knowledge, this represents thefirst experimental
verification of theHuang–Meng theory from1992.

Furthermore, we observe infigure 6(b) that the averages of both transverse widthsmonotonously increase
with the disorder strength in the experiment, as well as in the theoretical description. For small enough disorder
wefind again an agreement with the extendedHuang–Meng-like theory.However, we have also to note that the
present theory does not reproduce quantitatively the dependence of the individual widths for larger disorder
strengths. The smaller width in x-direction is systematically underestimated theoretically, while the larger one in
y-direction is overestimated. For the largest disorder strength the relative differences with respect to the
measured values is about 12% for bothwidths. This noticeable discrepancy is attributed to the fact that the cloud
aspect ratio turns out to decrease with increasing disorder strength, while our LDA-based theory predicts a
constant aspect ratio, the same as in the clean-case, see the inset offigure 6(a). A physical explanation of this
finding is that the disorder potential tends, on average, tomake the cloud isotropic as the correlation lengths in
both x- and y-direction coincide. Thus, the transverse isotropic disorder competes with the anisotropic trap and,
by increasing its strength, the cloud becomesmore andmore circular. At the same time, the disorder counteracts
the trap confinement and tends to spread out the cloud, which also explains the abovementioned disorder-
induced cloud expansion. In our theoreticalmodel, the cloud inevitably inherits the trap anisotropy due to the

Figure 6.Comparison ofmeasurement results (points)with non-perturbative theory (gray solid curves) andwith perturbative results
(green dashed curves). Error bars denote the standard deviation. (a)Geometricmean of thewidths á ña ax y as a function of the
disorder strength. Inset displays the cloud aspect ratio. Upper plot shows the relative deviation between the geometricmean of the
widths as extracted from averaged density profiles and á ña ax y . (b)Dependence of the averages á ñax and á ñay of the individual cloud
widths along the x-axis (blue points) and y-axis (orange points) on the disorder strength. Upper plot shows the relative deviation
between the cloudwidths along the x- or y-axis, as extracted from averaged density profiles, and á ñax (blue triangles) or á ñay (orange
triangles), respectively.
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applied LDA.Hence, in order to capture themeasured behavior, onemust go beyond the present LDAby, for
instance, including systematically the gradients of the confining potentialU r( ) and of the disorder-ensemble
averages yá ñr( ) and yá ñr 2( ) . However, that wouldmake the calculations considerablymore numerically
demanding.

Beyond the so far presented comparison of the data common to both experiment and theory, further
experimentalmeasurements (theoretical considerations) can provide additional insights into the disordered
Bose gas, that are currently not accessible to theory (experiment). Let us substantiate this conclusion by
mentioning exemplarily the following two points.

First, we can easily extract theoretical values for disorder-ensemble averaged condensate widths, which elude
any experimental observation as the condensate density is notmeasurable with the current setup. Forweak
disorder the condensate widths are closely following the cloudwidths. In addition, for the largest experimentally
accessible disorder strength =u k 356 nKB the condensate widths turn out to be still 91%of the cloudwidths
in both x- and y-direction. This finding is in linewith the result from figure 5 that the condensate fraction
remains to be above 60% in the performed experiment, even despite the presence of quite strong disorder.

Secondly, we examine the fluctuations of the cloudwidths and their dependence on the disorder strength,
since they are naturally accessible in the experiment. For all the strengths, the distributions of thewidths can be
well approximated by aGaussian, see figure 7(a). The obtained distributions are compared based on the ratio of
their standard deviation to the respective average value, normalized to the relative fluctuations in the clean case.
With increasing disorder strength, the relative fluctuations increase approximately linearly for both transverse
directions, as shown infigure 7(b). Notably, the smaller width in x-direction turns out to bemore sensitive to the
disorder variations than the larger one in y-direction. This is not unexpected, since the cloud ismuch narrower
in x-direction and, hence,more disturbed by the laser speckle potential landscape. Note that the cloud sizemay
vary not only due to different disorder realizations, but also due to thefluctuating particle number. Similarly as
in the clean case Thomas–Fermi limit, wefind that in the presence of disorder thewidths are closely
proportional toN1/5. Therefore, we also present the relative fluctuations ofN1/5, given by the triangles in
figure 7(b). The respective distribution is nearly constant and clearly excludes the possibility that the cloud
widthsfluctuate due to a change of the number ofmolecules.

5. Conclusion

Within a theory-experiment collaborationwe have performed a detailed case study of the dirty boson problem
by analyzing the cloud shape of amolecular BEC in a disordered trap. The geometricmean of the experimentally
measured transverse cloudwidths, which corresponds to the cross-section area of the cloud in the imaging
plane, turned out to perfectly agreewithin the error bars with a theory, which is non-perturbative with respect to
disorder and includes quantum fluctuations.However, the experimentallymeasured and theoretically
calculated individual cloudwidths display deviations, whichwe attributed to the theoretical limitations of
treating the harmonic confinement within LDA. Furthermore, we also investigated the fluctuations of the
measured cloudwidths and showed that they do not stem fromparticle number fluctuations, but only depend
on the disorder strength. This experimental observation goes beyond the scope of the present theory, which only
considers disorder-ensemble averaged quantities, without their corresponding fluctuations. Thus, we conclude
that the performed experiment on amolecular BEC in a disordered trap paves theway and asks for amore
refined theory in future studies.

Figure 7. (a)Exemplary distributions of the cloudwidths in y-direction for =u k 0B and 356 nK. Dashed lines areGaussian fits to
the data. (b)Relativefluctuations of widths and particle number normalized to the relative fluctuationswithout disorder.
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AppendixA. Cumulant expansionmethod

Here, we introduce the basics of the cumulant expansionmethod and provide some examples that are used in
our calculations. Let X1, X2,K, Xn denote random variables. Their respectivemoments (averages) are defined
by themoment generating function
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while the cumulants are defined by the cumulant generating function
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where the prime sign denotes that the termwith n n=1 2 =K= n = 0n is excluded from the summation [75].
Moments can be expressed by cumulants of equal and lower orders and vice versa. For convenience, we note the
following lowest-order examples:
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In theGaussian approximation the cumulants of higher than second order are neglected, so that (A.5) and (A.6)
reduce to

á ñ » á ñá ñá ñ + á ñá ñ + á ñá ñ + á ñá ñ
= á ñá ñ + á ñá ñ + á ñá ñ - á ñá ñá ñ

X X X X X X X X X X X X X X X

X X X X X X X X X X X X

, , ,

2 , A.7
c c c1 2 3 1 2 3 3 1 2 2 1 3 1 2 3

3 1 2 2 1 3 1 2 3 1 2 3 ( )

á ñ » á ñá ñá ñá ñ + á ñá ñá ñ + á ñá ñá ñ
+ á ñá ñá ñ + á ñá ñá ñ + á ñ á ñ
+ á ñá ñá ñ + á ñ á ñ + á ñá ñá ñ
+ á ñ á ñ = á ñá ñ + á ñá ñ
+ á ñá ñ - á ñá ñá ñá ñ

X X X X X X X X X X X X X X X X

X X X X X X X X X X X X

X X X X X X X X X X X X

X X X X X X X X X X X X

X X X X X X X X

, ,

, , , ,

, , , ,

, ,

2 , A.8

c c

c c c c

c c c c

c c

1 2 3 4 1 2 3 4 3 4 1 2 2 4 1 3

2 3 1 4 1 4 2 3 1 4 2 3

1 3 2 4 1 3 2 4 1 2 3 4

1 2 3 4 1 3 2 4 1 2 3 4

2 3 1 4 1 2 3 4 ( )

where (A.3) and (A.4)were invoked to get thefinal results. As a special case, we obtain the approximations of the
cubic and quarticmoments of a random variable
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For the sake of generality, we note thatwithin theGaussian approximation the following recursive relation holds

á ñ = á ñá ñ + - á ñ - á ñ á ñ- - X X X k X X X k1 , 2, A.11k k k
1 1 1

1
1
2

1
2

1
2( )( ) ( )

where á ñ =X 11
0 .

Appendix B.Non-perturbative treatment of the disorder

Here, we briefly go through themain steps of our non-perturbative account of the disorder potential in a theory
that also contains the quantumfluctuations corrections. Of course, the same procedure is applicable to a simple
Gross–Pitaevskii equation [83]. Under the approximationsmentioned in themain text, (8) becomes
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where now there is only a transverse spatial dependence due to the assumed two-dimensional character of the
disorder and due to the LDA.Hence, we are here effectively solving the problemof a homogeneous two-
dimensional disordered Bose gas. An extension to three dimensions is straightforward. Note that the cumulant
expansion has also been used.Multiplying the previous equationwith ¢̂u r( ) and averaging produces

j j y

j j m j
y j y j j j

p
y j y j j

y j j j

-  á ¢ ñ + á ¢ ñ + á ¢ ñ - á ñ á ñ

+ á ¢ ñ - á ñá ñ - á ¢ ñ

+ á ñ á ¢ ñ + á ñ á ¢ ñ - á ñá ñ + á ¢ ñ

+ á ñ á ¢ ñ + á ñ á ¢ ñ - á ñá ñ

+ á ñá ¢ ñ + á ¢ ñ - á ñá ñ =

^ ^ ^ ^ ^ ^ ^

^ ^ ^ ^ ^ ^ ^

^ ^ ^ ^ ^ ^

^ ^ ^ ^

^ ^ ^ ^


m

u U u u u u

u u u u u

g u u u u

a u u u

u u u

r r r r r r

r r r r r r r

r r r r r r

r r r r

r r r r

2

3 3

40

3
4 6

4 3 0, B.2

s

2
2 2

2 2 2 3

3 2 3 2 2 2

3 4 2 2

( ) ( ) ( ) ( ) ( ( ) ( ) )

( ( ) ( ) ( ) ( ) ( ) ) ( ) ( )
{ ( ) ( ) ( ( ) ( ) ) ( ) ( )

[ ( ) ( ) ( ( ) ( ) )

( ) ( ) ( ( ) ( ) )]} ( )

which reduces after the cumulant expansion to
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which simplifies after the cumulant expansion to
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Note that in the last termwe replaced já ¢ ñ^ ^u r r, c( ) ( ) with já ¢ ñ^ ^u r r, c( ) ( ) , which should be exact in the
homogeneous case. The obtained two coupled equations (B.3) and (B.5) can then be rewritten as
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due to spatial homogeneity after the disorder averaging. In the transverse k̂ -plane onefinds
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where e = = +^^  m k k mk 2 2x yk
2 2 2 2 2( ) ( ) ( ) denotes the transverse dispersion, so that
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Integration over the entire k̂ -plane of the previous equationsfinally yields
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The obtained cumulants are homogeneous across the entire ^r -space and depend parametrically on y yá ñ á ñ, 2

andU. In a trapped system according to the LDA,we get
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by restoring the explicit spatial dependence of y yá ñ á ñr r, 2( ) ( ) andU r( ). The last two equations correspond to
(11) and (12) of themain text.
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