


general theory of PDE. Analytical methods become much less eficientj if we try to apply 
them to other molecular models (for example, to hard spheres). At the same time one 
can make precise ca.lculations with the Boltzmann equation by using: modern computers, 
Therefore in the theory of this equation we need mostly qualit,ative results wl~icl~ can 
be expressed by inequalities. A simple idea to generalize some methods, which were 
previously used for Maxwellian molecules? is to derive from the I3olt,zmann equation a set 
of differential inequalities for moments and then to study this set. Apparently the first 
step in this direction was rna,de (in other terms) recently by Wennberg [a], who constructed 
a uniform upper bound for all moments of a spatially homogeneous solution in the ca,sc of 
hard potentials with angular cut-off (see also an important previous result of Desvillett;es 
[3]), We use some ideas of [2] (the P ovzner-type inequality and estimate of the loss term 
by Hijlcler’s inequa,lity) in the present paper. 

The paper is organized as follows. In Sections 2-4 some useful inequalities for moments 
of the Boltzmann collision integral wit,11 arbitrary intermolecula,r potential ase derived, 
To be more precise, in Section 2 we evaluate the integral of the Boltzmann collision 
operator with any convex function of energy and obtain a. very simple estimate for hard 
spheres. In Section 2 we generalize this result to the ca,se oi’ arbitrary intermolecula,r forces. 
The main result of this pa.rt is formulated (Theorem I) and discussed in Section 4. We 
note that these inequalities for the collision integral ca,n be useful for different problems. 
However, we consider their applicakions only tJo the spa,tially homogeneous case, First, in 
Section 5, we generalize the above mentioned Wennberg’s estimate t,o it very wide class of 
intermolecu1a.r forces including potentia.ls with infinite radius of action. Simple necessary 
a.nd sufficient conditions for uniform boundedness of moments are proved in this Section 
(Theorem 2). In Sections 6-7 we consider solutions with Majxwellia,n tails. The main 
results of these Sections a,re formulated in Theorem 3 (hard spheres) and Theorem 4 
(potentials with compact support). Roughly speaking, we proved the following fact: if all 
moments of the initial condition are bouncled by moments of the Maxwellian fl exp( --Bt12), 
then all time-dependent moments of the solution are bounded by momentk of the other 
Maxwellian ill esp(-Blew”). This result is proved with 131 = const for ha,rd spheres and 
with & = const . eCQt for a,ri a,rbitrary potential with compajct support. 

2. First inequality. 

Let f(v, t) be a time dependent distribution function in the velocity spa,ce, v & R”: t 2 
0. We consider the spa,tia,lly homogeneous Boltzmann equa.tion 

I Y  llLil<, 

1 
u=v-w 7 ‘11 = (UI, 1111 = 1, v‘ = ;(v + w + l/,11), w‘ = T(V + w - 2111). 

The function g(21, cos 6) is 0 cliffcrcntial cross sect,ion, 0 5 0 < T. In particdar 
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where ,u‘ 2 and zu’ 2 are defined by (9) with 

cos 13 = il}lt + ~~&&os p, 

Noting that 

u(v + w) = 2 - tu2, .7lIV + w( cos p = p(v2 - 2u’L) + 2vto 
t’i- 

1 - 11 s cos $9, 

we obtrtin from (9) 

Formulas (lo)-( 11) g‘ :. Ivc an explicit representation of the integral A[$]. Now one can 
ciuily prove the following estimates. 

Lemma 2.1. If q!)(z) is a convex function, then 

(-12) 

where 

A- [,$I = ] clxb( 21, :~){7/+w2+ (1 - .+J2] + 71)[mJ” + (1 - x)u”] - $(,u”) - $qw2)}, 
0 

71 = jv - WI, W 

Proof. We put in (11) 

‘V 
’ 2 = B+ + Cs cos v, *IU‘~ = Be - Cs cos y, B4 = 

c’= 
712 + IV2 

2 &qdq a-=~cy+zy 

a,ncl consider the inner integral in (9) 
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$+,"2 

A+M = nd2 ,{+ ; ILj2 / &7/(z) - 4’-,( u2) - $(w”) 
1 

. iw 
0 

If $‘(Z) = 2’1, 12 = 2, 3, . . . , then we obtain the folltiwillg simple inequali t-y 

2T(p n-1 2irtb” n-l c t12kt02(n-k) <= A[,@] + ?&.,, + t02n) 5 ___ 
72 

n, + 1 k.1 41 72 + 1 k.1 x: 

y2ktL,2(n-L) 
i iw 

which demonstrates an accuracy of our estimates. 
Thus inequalities (la)-( 14) are sufficiently simple and convenient for the case of isotropic 

scattering, i.e. for g(z~,cosH) = G(U). Th- e most important upper l~ouncl A+[,$] (14) is 
still too complicated in general case. Therefore it is desirable to simplify the integral ( 14) 
and to obt,ain approximate formulas like (16) for the case of non-isotropic scattering. We 
consider this problem in Section 3. 

3. Second inequality. 

To study the integral (1.4) one can fix v a,ncl w and simplify notations omitting all 
irreleva.nt arguments 212, eo2, 21 = Iv - WI. Then we rewrite (14) as a function of /LO = 
(,I? - d)/(t~2 + 202) 

A+[$] = F(po) = ] d/L j:cljj(cos~),q~6) - a+-))], (Is) 
-1 0 

Q(p) = ,$I v2 ; zu2(l + 16) + ,* *u2 ; ro2(l - p) ) 
L 1 [ 1 cos y = ppo + &q-qCOS~> ij(cosy) = g(ec,cosy), (19) 

tilcla being omitted below. 
The integral (18) is nothing but the one speed collision opera,tor, its properties are 

well - known from the 1inea.r transport theory [8]. In pxticular, for 

we obtain 
IX? 1 

F(po) = - c gnGL~2,(~~0), gn = 297 
n=l s 

~~~l9hO[~ - ~z?ddl, i21) 
-1 

where P,,(LL) a,re Legendre’s polynomials (note that a(/~) in (18) is always even function). 
Remark. To prove (21) it is sufficient to substitute (20) into (13) and llse the addition 

t,lieorem for P2, (~6). 
If g = const, then (IS) ca,n be written a.s 

F(po) = F(1) + a[@(l) - (li(/~~)], a = 47rg = const. (22) 





where the sum C‘ ” (C ) is taken over such 17. 2 I, tha,t CI,, > 0 ((L,, < 0). We also ass,m~e 
that cr < 00 and 

t>hen the sum (23) can be estimated by 

c 4 - &L(P)] = Q,(l) - Q(p), 
‘7) = 1 

5 IGl[l - -hL(P)] = q@+(l) - Q+(p)] - p(1) - @q/6)] < (2X - l)[!D(l.) - a>(p)] 
TL=l 

we obtain 

YPO) - Jv) 5 [at (2X - 1)llil1] [Q(l) - @(/lo)]. 

Collecting some inequalities of this Section we can formulate the followilJg lemma. 
Lenwna 3.1. I,et the function .F(po) be defined by (18), g(p) > 0. 
[i] If 

Q(P) = -g- ~&rL(p), 

1 

Cl, > 0; 
s hdP)(1 - 2) < 00, (30) 

n=O -1 

then 





+?/‘[(w cos B - ‘1) sintl)“] - $(U”) - $(~d)}, (40) 
where 

G(B) = 27r sin 28[9(‘n, cos 36) + g(?~: - cos 20)]. 

Proof. We estima.te (37) by the inequality (35), t,l len substitute @(I-L) by G(z) (19) 
and use formulas (39). Putting ~1 = cos 20 in (37) we obtain the final result (30). 

Remark. This lemma. shows that one can use the simple Iiac equation to estimate 
integrals (5) for a convex function $(z). M oreover it is possible to use (40) for a sirnpli- 
fiecl proof of Lemma 3.1 (with a convex function a(/~)!) changing P~,(cos 8) to cos 2120. 
However we prefer more general result without using a. convexity. 

4. Estimates for moments of the collision term. 

It is convenient to put together some relevant estimates from Sections 2-3 and for- 
mulate the result in terms of-eqditics (d)-(6). We assume that A[$] is clciinecl by the 
equality (6), g(u, r(i) > 0 and 

a(“)(u) = 27t i d/lg(2L;p)(l - /?) < cm. (41) 
-11 

We also a.ssurne that g(z) 1 -tas a continuous derivative $1‘ (z), 2 > 0: to garantee a 
convergence of the integral (6) for long range potentia,ls. Then the following theorem is 
valid. 

Theorem 1. [i] If $(z) is a, convex function, then 
\  I  

, x){,t1,[m2 + (1 - x)20”] + $[xd + (1 - 

b(,u, x) = 27rg(U, 1 - 2x), 21 = Iv - 

A[7/1] < / d&2(16, e){$[(zJ cos I9 + ,tu sin f9)“] + ,$J[( ‘u sir! 0 -- 10 
.I 
0 

( ‘f’(tL, 0) = 2n sin 20[g(26, cos 28) + g(,lh, - , 

7J”) - ?i-)(W”)}, 

(42) 

2/+12) - ‘1(@J2)}) 

(43) 

[ii] IC ‘JJ( 5) is a convex function and 

t lien 





On the other hand, it follows from that 

m-l 

0 
yr 

tj2kt02(m-k) tj2kt02(m-k) + tLj2kv2(m-k) I t12m + tLj2kv2(m-k) I t12m 

kzzl 

- 7u2”L] 1 d.mJ(~U, x):r:“(I - n,)nt-h-. 

b 

Let u 2 20, then Let u 2 20, then 

A[v2”] > -v2m i’;‘) [ 1 - (;,i”] [ 1 - ( ym-“)] i d26(%1, :z?)x”(l - :q+k 

1 

2 -vzm 
i’ 

dzb(71, ~$1 - xnz - (1. - :zT)~], 
il 

Using the elernen t ary inequali t)y 

m-2 

1. - drn - (1 - x)772 = x( 1 - x) c [x” + (1 - x)“] 2(m - 1)x(1 - 2:) 
k=O 

ant1 a, definition (42) of b( we obtain a lower bound 

A[v2”] 2 -qd2)(u) max(v2n’, Wan), m. = I,.,. . m. = I,.,. . (53) (53) 

Using (52), (53) Using (52), (53) one ca,n easily prove the following sta.ternent. one ca,n easily prove the following sta.ternent. 
Corollary 1. Moments (5) of the Roltmnann collision integral (I) satisfy inequalities COrollary 1. Moments (5) of the Roltzmann collision integral (1) satisfy inequalities 

D(flv21a) > -q / clvclwf(v)f(w)7,a(2)(7r)v2~ (5‘4) 

D(.flv”“) < -(T-1 - 1)(2B, - 1) 
.i 

dvdwf(v)f(w),tn(“)(7r)Pr!v2~-~- 

-; / ~zvczw,~(v).f’(w)71~‘2)!lr)l!““, 11=/v-w\, n=2,3,..., (55) 

where d2) (71) and I?,, are clcGned in (41) and (50). 
Proof. It is sufficient t,o substitute (52) and (53) into (5) and use elementary inequal- 

D(flv21a) 2 -q / clvclwf(v)f(w)7,a(2)(7r)v2~ (5‘4) 

D(.flv”“) < -(T-1 - 1)(2B, - 1) / dvdwf(v)f(w),tn(“)(7r)Pr!v2~-~- 
J 

-; / ~zvczw,~(v).f’(w)71~‘2)!lr)l!““, 11=/v-w\, n=2,3,..., (55) 

where d2) (71) and I?,, are clched in (41) and (50). 
Proof. It is sufficient t,o substitute (52) and (53) into (5) and use elementary inequal- 

ities 
IL--l 

ina,x(z, 2~) 5 s + w, (x $ y)” - x:n - y’” = 
n 

>li! k=l 
~ :l:kf-k < 

5 2( a”-’ - 1) ( ,x~/~IJ’~-~/~ $ y1/2xn-1/2), x 2 0, y >_ 0, n = 2,3, . . . . 

Estinmtes (54)) (55) ase especially convenient for longe rmge potential since the cross- 
c;cction d2)(u) is a.lwa.ys finite (otherwise the integral over unit sphere (6) diverges even i 
for diRerentiable funct,ion ~/J(Z)). T-1 owever these estimates cm be improved in the case of 
pot,entials with finite radius of action. In this case a tota. cross section (46) is finite and 
we can a,pply the inequality (47) and obtain the following result. 





Remark. Inequalities similx to (61) were first obtained by Wennberg [3] for a special 
CaSe 

1 

g(21, 11) = 2Ph(/L), 
i’ 

&LIZ(p), co, 0 5 p < 1. 
-11 

He also noted that they a,re not vaIlid for pseudo-Maxwell molecules (13 = 1). 
Proof. Noting that (5) 

g-g = ~(j‘pp) (63) 
I I 

and using the lower estima.te (54) we immedia.tely obtain the second inecpali t;y (62). To 
prove (61) we merely repeat Wennberg’s arguments [a]. First we a.pply the Arkeryd result 

PO1 

J 
cZwf’(w, t)jv - WIT 2 y(y, E”, N&9 

to a negative term in j.55) and obta.in 

J 
dvcZwf(v, t)f(w; 1) ?ro(2)(‘l~&12n 2 c1q J cZvf(v: %)%,27L+y. 

Then we note that 

J dvj(v, t)?P+Y 2 [mn(t)]1++T3 

(64) 

(65) 
639 

because of the Hijlder inequality and the normalization condition rr~~(t) = 1 (58). 
To estimate a positive term in (55) we note tha,t zu < 1 + ,102, ,u~“-’ < 1 + r>2n, and 

II 5 1 + 2~ + IO. Therefore 

J dvdwf(v, t)j(w,t)[c~lL + c+d7L-1 5 (c3 t 3c,)(l + I-;:“)[1 + rnli(-l)]. (67) 

Substit:uting (65)-(67) into (55) and (63) we obtain a, differential inequality 

2 <: A,,( 1. $ 7-n,,) - Dm;+-i’2n~, 12. = 2,. . . (68) 

with 

A, = (P-’ - 1)(2& - l)(Q $ i&)(1. + E,), D = fqq. 

A substitut,ion 

ii 11 

-277,/y 

m,,(f) = y !“ut (69) 
Y 

results in the inequality 

t/y 
-$- + “Y[l + :@I 2 1, b- 2n 7 Al, 

7 ’ 
0 = IyJF’ 

One call ea,sily prove (see Lemlna, 6.3 in Section 6 I’oI* details) tha,t 

(70) 

y(l) 2 y*(l - fat), (71) 
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1. . 



for a certain 8 > 0, then there exists 0 < 0, < 8, , 

F(Q*,t) = /‘rlv/(v:t)e~*u2 < ix), 

Proof. Fird we note that 

Therefore F( 2) is an analytic function for Ix/ < R, where 

R-l = lim sup . 

To prove the theorem it is sufficient to estima.tc molnents nzn(%) to the solution 1.1~ 
inequality 

r&(t) < &(n)c17Lr2!, [Q(n)]“” -3 1, 

for certa,in Q > 0, provided tha,t (73) 

= a0 < Q-l. 

All necessary estimates are given below in Lemmas 6.1-6.4 provided that all moments 
n?,,,(t) of integer and half-integer orders p = 1,3/Z, 2,. . . are continuously differentiable 
functions of -t E R+. 

Lelxxxa 6.1. Moments 

m,(t) = 
s 

dvf(v, t)v2P, p = 3/2,2,5/z,. . . (76) 

satisfy the following set of inequalities 

12 - 1. 
n7,k+1/2n27L-fi - q-112 1+-l /2?? 

n+1 ‘?I , 17. = 1,2,:3,. * . ; (77) 

I dv2 n+1/2 < ,I 
\ - 

cr cll‘ - 212.+:3 
mk+1/2112,,~i; + m1/2fn1,,+1/2 + m~p?z,, 

I 
212 - 1. llp/P~+~) 

-cl212 $3 7,+1/i ! q=q(l,Eo,Ho)/a, r1 = 1.;2,3,...; 

where q( 1 i ~5’0, Ho) is defined in (64). 
Proof. The above obta,ined inequality (la), (16) for hxcl spheres results in 

V-S) 



(S2) 



The inequalities can be simplified by using some estindes for ga,mlna.-function. 
Lemma 6.2. It follows from (M), (S5) that 

-n+1/2 il --,-& 
5 71+; , 

Proof. We note that [9] 

12 -f 

2qn + 3/2) n-l / \ 

= (72 + l)l?(12. + I./Z) r-zI \K/ 

I zr I 1 I- 
= yl, + 1 ;;’ _“” 1’ 

272 + 3 L&I \k) ryn.+q - 
SI?(n + 2) n-1 

= (271, + 3)r(?, t 1) k=l xO 
,12 B(F + 3/2, ?I - k + l/2) k 

It, gives the above estima,tes (86), (S7) for sums in (S/4), (S5). To 
est,imatc other terms in (S4), (85) by some obvious incyua.lities: I’(p + l/2) 2 1 fol 

1. - 
5 





t 
2 C 

.i 
cltl esp[-(1 + Byz)(t - tl)] = .3/* 1 - .‘I (96) 

0 
[ e\> c-z)] 

If y(O) 2 y*, then for a similar reason y(t) 2 y* for a.ll t > 0. Therefore the formula, 
(96) is correct also for this case. To complete the proof we need only to re-formulate the 
la,st inequalities in terms of r(t) (95). 

Thus, to obtain a, desirable estimate ~(7) < 1 for a solution of (90) it is sufficient j;o 
satisty the following conditions (p = 13/2,2,. . .): 

o<z,‘g, O<z,“Il 

where ,zz a,re defined by equations (see (90)) 

Lqz;, . . . ) o;-1,2) $ z; = ,\A-(‘-*I”“)J-,:!‘+1/21’ 

We note that A > 0 is still a, free parameter.To satisty the second inequahty it is 
sufficient to choose A in such a way that 

XA-(1-1'2p) > 9 2 1 + masF,, 13 = :3/2,2,. . * 

since PSp = r/5 and f$ < 8 for p 2 2 if’ max(zT, . . . , $1/Z) < l.Thus we ohhin a 

condition A < min [l, (X/9)“i2], X = 4/3 which garantces that z; 5 1 for all p 2 3/2. 
However q 5 1 in (64) since 

Therefore to fulfil the second condition (97) it is suficient to put 

A = (q/27)"'". (9s) 

The result car1 be formulatecl in the following way. 
Leinnia 6.4. Let; mO = 1, ml = Eo, 772,(t) for 11 = :3/2,2,. . . Aisfy inequalities (77)) 

(7s) wit,11 q 6 1 for t > 0 a,nd initial inequalities 

mT'(o) 5 !4/27)"'%", p = 1,:3/2:2,... (99) 

for certa,in c1 > 0. Then the inequalities 

mp(t) <: (q/27)3'2a", p = 1,3/2,2>... uw 

1701d for all t > 0. 
Proof. We reduce (77): (78) to (S6), (S7) by Lemma 6.2. Then we apply Lemma 

6.3 (92) to the first inequality for p = 3/ 2. The constant A s&i&es ecplit,y (9s). The 
condition (99) for p = 1 and the estimate A = (q/27)3/2 < l/2 guarantee that the constant 
cl s&i&es (89). Therefore (100) is correct for p = ‘3,’ 2. By induction on p = 2,. . . we 
repeat the same argument,s a,nd complete the proof. 
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The collision frequency V( v, -C) in the Boltzmann equat,iou (1) [or hard spheres reads 

r&t) = n 
./ 

dwf(w + v,t)lwJ. 

We note tha.t for any fixed vo E R” the fimc~~ion ,f(v + vg, t) satisfies the sa.me 
Boltzmann equation (1) with initial condition ,&o = .fo(v +vo). Therefore the inequa.lity 
(102) follows directly from ( 103). 

Corollary. The entropy a,ssumption (73) in Theorem 3 can be replxed by a wea.ker 
a.ssumption 

/ hf”(W)lV - WI 2 Co/VI, 

then all above obtained estimates are valid for q = 7-l/’ cg in formulas (77)-( 100). 
It is clear tha,t estimates similar to (102) can be proved for a wide class of potentials 

wit,h compact support, by using the inequa,lity (56). ~Jnfortunately this inequa,lity is not 
enough for a similar proof of Theorem 3 in the general case. However a weaker result can 
be easily obtained. 

Theorem 4. Let .f(v? 1) be a solution of the Boltzmann equation (I) for the potentia,l 
with compact support. If the initial condition .fo(v) satisfies the inequalit,y 

s dvf(v)eQU” < cm 
for a, certain 13 > 0, then there exist 0 < 0, < 0 and LY > 0, such that for a,11 t > 0 

.I 
tlvf(v, t) exp[0,eFNtv2] < cm. (104) 

Proof. The proof is based on the simplest estimate of A[z”] in (6). Noting that 

v ‘2P + 2(1‘2p 5 (v‘” + ti2)P, $2 + w‘” = t? + 202, 

for p > 1 and therefore 
v’2p f 711’2p < (v2 f w2)P, 

we immediately obtain from (5)-(6) the inequalit,y 

dm, 
~ < ; / clvtlwf‘(v, t)f(w, t)u[(v2 + ,w”y - u2p - w2P], 

c1t 
1’ 2 1 (105) 

where a = const 046) for pot’entials with compact support. 
Then we repeat first steps of the proof of Theorem 3 almost without any changes. 

The only difference is that we substitute the estimate (li’), (16) Iby hard spheres by the 
simplest inequality (105). Following the proof of Lemma 6.1 we obtain in general case 
not, t,he inequalities (77)) (78)) but8 weaker estima,tcs 
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an a priori estimate 
there exists a global solution of the Cauchy problem for spa.tia~lly homogeneous Boltzmann 
equation (potentials with compact support) in the class of distribution functions with 
Maxwellian tails. This class is defined by the only condition: there exists such number 
0 > 0 that 

s 
dvf(v) exp(Bv”) < cm. 

Remark 2. It is clear that the results of Sections 6-7 can be a,lso formulated in 
the following way : if there exist positive constants A a,ncl U such that VT+(O) are less 
than corresponding moments of the Maxwellian A exp( -8,u”), then there exist a constant 
AI > 0 and a function RI(t) > 0, such that nz,(t) are bounded by corresponding moments 
of the Maswellian Al exp[-&(t)v2] f or any t > 0. Moreover, Bl(1) = R,(O) = const for 
hard spheres, and W,(t) = &(O)exp(--cut) f or a general potentiaj with compact support. 
Constants B,(O) and Q depend only on the total cross s&ion 0 and initial condition 
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