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Abstract

Some inequalities for the Boltzmann collision integral are proved. These inequalities can be
considered as a generalization of the well-known Povzner inequality. The inequalities are used
to obtain estimates of moments of solution to the spatially homogeneous Boltzmann equation
for a wide class of intermolecular forces. We obtained simple necessary and sufficient conditions
(on the potential) for the uniform boundedness of all moments. For potentials with compact
support the following statement is proved: all moments of solution are bounded. by correspond-
ing moments of a certain Maxwellian A exp[—B(t)v?] for any ¢ > 0, if this condition is fulfilled
at t = 0, moreover B(t) = const for hard spheres. Estimate for a collision frequency are also
obtained.
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1. Introduction.

The Boltzmann equation differs from other classical nonlinear equations of mathe-
matical physics by its complexityv. A five fold collision integral makes it very difficult to
evaluate the right hand side of the equation even with a simple non-equilibrium distribu-
tion function.

The only exceptional case is the case of so-called Maxwell molecules, for which we can
at least calculate in the closed form all moments of the collision integral. This simplifi-
cation gives an opportunity to reduce the spatially homogeneous Boltzmann equation for
Maxwell molecules to an infinite, but recurrently solvable, set of ODE for moments of the
distribution function. This moment system of ODE makes it possible to apply different
analytical methods and to study in detail properties of solutions [1].

However, the Maxwell model plays for the Boltzmann equation (at least in the spatially
homogeneous case) almost the same role as equations with constant coefficients in the
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general theory of PDE. Analytical methods become much less efficient if we try to apply
them to other molecular models (for example, to hard spheres). At the same time one
can make precise calculations with the Boltzmann equation by using modern computers.
Therefore in the theory of this equation we need mostly qualitative results which can
be expressed by inequalities. A simple idea to generalize some methods, which were
previously used for Maxwellian molecules, is to derive from the Boltzmann equation a set
of differential inequalities for moments and then to study this set. Apparently the first
step in this direction was made (in other terms) recently by Wennberg [2], who constructed
a uniform upper bound for all moments of a spatially homogeneous solution in the case of
hard potentials with angular cut-off (see also an important previous result of Desvillettes
[3]). We use some ideas of [2] (the Povzner-type inequality and estimate of the loss term
by Hélder’s inequality) in the present paper.

The paper is organized as follows. In Sections 2-4 some useful inequalities for moments
of the Boltzmann collision integral with arbitrary intermolecular potential are derived.
To be more precise, in Section 2 we evaluate the integral of the Boltzmann collision
operator with any convex function of energy and obtain a very simple estimate for hard
spheres. In Section 2 we generalize this result to the case of arbitrary intermolecular forces.
The main result of this part is formulated (Theorem 1) and discussed in Section 4. We
note that these inequalities for the collision integral can be useful for different problems.
However, we consider their applications only to the spatially homogeneous case. First, in
Section 5, we generalize the above mentioned Wennberg’s estimate to a very wide class of
intermolecular forces including potentials with infinite radius of action. Simple necessary
and sufficient conditions for uniform boundedness of moments are proved in this Section
(Theorem 2). In Sections 6-7 we consider solutions with Maxwellian tails. The main
results of these Sections are formulated in Theorem 3 (hard spheres) and Theorem 4
(potentials with compact support). Roughly speaking, we proved the following fact: if all
moments of the initial condition are bounded by moments of the Maxwellian A exp(~Bv?),
then all time-dependent moments of the solution are bounded by moments of the other
Maxwellian A; exp(—Bjv?). This result is proved with B; = const for hard spheres and
with By = const - e7°* for an arbitrary potential with compact support.

2. First inequality.

Let f(v,t) be a time dependent distribution function in the velocity space, v € R3, 1 >
0. We consider the spatially homogeneous Boltzmann equation

(5{ = I(f, f) :Ra/ﬁ2 dwdnug (m %) {f(v ) f(w )= f(v)[(w)}, (1)
where
A N O o1
u=v-—w, u= [u‘7 ‘11] =1, Vo= §(V+W+ul‘1), W= 3(v+w~un).

The function g(u,cos ) is a differential cross section, 0 < § < x. In particular

2
g(u,cost) = %f = const (2)
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for hard spheres with diameter d,
glu.cos ) = w3 (cos ) (3)

. for particles interacting with power-like potential U(r) = const r™%, s > 1.
For any isotropic test function y*(v?) we put

<= () = [ dvflv,e(t). (4)
It follows from (1) that
< < >=D(fl) = —1~ /(ZV(‘IW‘/C(V)_/"(W)'II,A[1/5], (5)
ot 2

where we omitted irrelevant argument ¢. The linear operator A is defined by

Al = / dng (u, %?) [ (0" 2) 4 aplw 2) = ah(v?) = p(w?)]. (6)

52

Our goal in this and next Sections is to establish some upper and lower bounds for
2 P
Al]. Tt is well known that a simple and very useful inequality for

Arp = 'l’/’(’l’\ 2) 4 aplw ?) = 'z,’,‘(z,z“%) 4ap(w?) (7)

with (z) = =P was first obtained by Povzner [4]. One can find a derivation and ap-
plications of this inequality in the modern book [5]. Povzner’s inequality was improved
by Elmroth [6] and recently by Wennberg [2] who used it successfully to obtain some
important estimates for moments of solutions of the Boltzmann equation (see Section 5
for details).

A simple idea of a further improvement of the Povzner-type inequalities is to estimate
not the quantity (7), but its average A[] (6). To do it let us consider an explicit form of
the integral (6) in spherical coordinates with a polar axis directed along vector u = v —w.
We denote

e un .
v=v], w=lwl, s = \/l — (vw/ow)?, = —— (8)
U ‘
and notice that |
p 2= ;;(UE +w? 4 ulv 4wl cos ),
O
W ;;(r 4w - ulv 4+ wlcos 7).
v+ wlt = (0 ) - d(vw)E, (9)

where 0 < 7 < 7 denotes the angle between vectors n and (v + w). In our coordinate
svstem the integral (6) reads

1 2
Alp] = / dug(u. ) / d[u( v 4l ?) — (%) = "zf,/V('zvz)Q)], (10)
1 0



where v and w ? are defined by (9) with

: : u(v 4w
cos 3 = ppg + \/l - ,UZ\/l —picosp, = “—(W":TE

Noting that

u(v+w) =0 —w’, ulv+w|eos = p(v? — w?) + 20w/l — p? scos o,

we obtain from (9)

~ v? +w? . : ot w?
v = 5 (1+1L,LL0+\/l—n—/.bz\/l—,ugscosap), v = 5 (1+ po),

. 02 -} w? - \ ) v2 + w? N
w = 5 (1 — jepeo — \/l — ILLQ\/l —pd scosp), wl= 5 (1= po),  (11)
v? — w?

g = ————=,
o=z + w?

Formulas (10)-(11) give an explicit representation of the integral A[)]. Now one can
easily prove the following estimates.
Lemma 2.1. If 1/(2) is a convex function, then

AL} < Al < ALT), (12
where
1
A_[Y] = /d:nb(u, ) {plav + (1 = 2)w?] + plaw? + (1 — 2)v?] — h(v?) — p(w?)},
0
blu, ) = 4rg(u, 1 —22), u=|v-w|, (13)
L 2 2 2 2 i
Al = [ dn {w [ s m} i [ - m} —p(v?) - fz/)(w2>} [ g, cos ),
21 - - 0
o 5 5 v — w? ,
Cos Y = fifip + \/1 — i \/1 — [5CoS Y, fig = el (14)
Proof. We put in (11)
)2 2
v’ =B, +Cscosp, w?=PB.—~Cscosp, By= : itw (14 ppo),

L

Lot 4wt o T ;
C = 5 \/l—p,z\/l—-;té s=1/1 = (vw/vw)?

and consider the inner integral in (9)

2

K(s) = /dgo['z/)(v\z) +p(w'?) = (v?) — p(w?))
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as a function of 0 < s < 1. For a proof of (12)-(14) it is sufficient to prove that K(0) <
K(s) < K(1) for any convex function »(z). First we consider the integral

2 2r
Ki(s) = /(//99[‘1,{[7(’0\2) ~(v?)] = /(,lgs{zji(lﬁ + C'scos ) — b (v?).
0 0

An elementary transformation gives

Ky(s) =2 / w-ff_—%w(&r + Cs7) 4+ (B — Csr) = 2¢(0?)].
N V = T
0

For smooth function v*(z) we obtain
[0 (By 4 Csr) = (By —Cst)] >0 (15)

since ' > 0 and ¥ (z) > 0 for any convex function. For the general case we can
use the fact that the convex function ¥(z) has almost everywhere a monotonically non-
decreasing derivative i (=) (see, for example, [7]). Therefore the equality (15) proves
that A1(0) < Ky(s) < K(1). Repeating the same considerations for

Kals) = [ doite®) = )],
0

one can conclude that,

K(0) < K(s) = Ky(s) + Ras) < K(1),

2 o2 2y 62 r
K(0) = 2r {z;f* {i + ! (1 -+ ;1.;/,0)} + {Li;li—(k — /L,I,LO).l —p(v?) = z,f*r("zuz)} ;

1S}

i 22 22
K(l)= /dap {z {Lj;ﬁ*—(l + cos 7)] + v [L*%L(l =08 7)} — p(v?) — z;f’('lLJQ)} ,
b s L

tto and cosy being defined in (14). Substituting the inner integral in (10) by A(0) and
changing variables to @ = (1 — p)/2, we just obtain the lower estimate (13). Then we
substitute K (1) into (10) and use a symmetry property

vl

1

=1 9

T 1 2

A(’[;,DF’I(/Z)FQ(C()S y) o= / dp /(/,:]75(//‘)19"1(003 ),

1 0

S

which 1s obviously valid for any =1 < po < 1 in (14). Tt results in the upper estimate
(14) and completes the proof.
As an example of estimates (12)-(14) we consider the case of hard spheres (2). Then
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3 2
u* 1w

Ce? b () — b (2) — b1
Ay = rd / dzib(z) = (0?) = (u?) | . (16)
If p(z) = 2", n=2,3,..., then we obtain the following simple inequality
2rd* ! 2%, 2 ‘ n—1 2rd? =t [n
(nk<A,2'n ,2n ‘ 2k, 2(n~k)
77+1ZU [v ]+n+1( )< n+1 - (/c)v « - (17)

which demonstrates an accuracy of our estimates.

Thus inequalities (12)-(14) are sufficiently simple and convenient for the case of isotropic
scattering, i.e. for g(u,cosfl) = g(u). The most important upper bound Ai[¢p] (14) is
still too complicated in general case. Therefore it is desirable to simplify the integral (14)
and to obtain approximate formulas like (16) for the case of non-isotropic scattering. We
consider this problem in Section 3.

3. Second inequality.

To study the integral (14) one can fix v and w and simplify notations omitting all

irrelevant alguments v w?, w = |v-—w|. Then we rewrite (14) as a function of iy =

(v~ w?)/(v? + w?)
1 2
Asl] = Flyo) = [ dpe [ dipgleos 1) (1) = ®(po)], (18)
100
+ 10? 0%+ w?
b)) = [ (1 +H)] + l (- u)]
cosy = ppg + \/1 - ;ﬂ\/l — pgcosp,  g(cosy) = g(u,cosv), (19)

tilda being omitted below.
The integral (18) is nothing but the one speed collision operator, its properties are
well — known from the linear transport theory [8]. In particular, for

1
o 2 ) » /
= ;)(Ln-P‘Zn(N)a Uy = In 11 ;/1 (]//L‘b(/’/)»l')‘hz(/ll)a (20)

we obtain 1
(o) = =3 gntnPralpo),  gn =27 / dpg(p)[1 = Pan(p)], (21)

n=1 4

where Py, (1) are Legendre’s polynomials (note that ®(z) in (18) is always even function).
Remark. To prove (21) it is sufficient to substitute (20) into (18) and use the addition
theorem for Py, (1).
If ¢ = const, then (18) can be written as

Fuo) = F(1)+ o[®(1) = ®(p0)], o0 =4rg = const. (22)
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This formula is convenient for an even convex function ®(x) since ¢(0) < ®(1) and
[(1) < 0. Let us try to estimate the difference [F'(yp) — F'(1)] in the general case. Using
the expansion (20) we obtain

f /[() Z (]n(In - —1)’2/7(/1'0)]» (23)
e

Suppose that a, > 0 for all n = 1,2,... and
1
o=2r /(;//1.‘(](;1.‘) < 00, (24)
4

then all terms in (23) are non-negative (|P,(1)] < 1) and

Fpo) = F(Ly < g/l [®(1) — o))y lgl] = supgn < 20, (25)
n>1

The condition (24) is not valid for long range potentials. However in this case one can
o o
easily estimate (23) for a polynomial case

N
= > anPolpt)s @y =0

n=0
Then
Fpo) = 1'(1) < Hlgnl] [@(1) = ®(po)]s  lgnl] = 2, gu- (26)

Thus we do obtain simple expressions (25), (26) for upper bounds of (19) provided
that all coefficients a,, in (20) are non-negative. Let us check this condition for the most
important case ¢ (z) = z? (p > 1) in (18). Then ([9], p.837)

P . P

8(v* +w)P[U'(p+ )?
(dn+Dl(p+2n+2)0(p+1—2n)

!
| 1) , R
= M /"l-l’il‘“pﬂpm(l ) =
dn 41 . ‘

(27)
0

so that a sign of a, is defined by

o =1 [r] 2n-1
Pp+1) - H (p— k) = {HU’ B k)} (=1l H (k= p),
k

T(]) + | — 27?) L==0 Le==0) 7:[7)]—}-‘1,

where [p] denotes an integer part of p (the second formula makes sense only for p < 2n—1).
Hence, the condition @, > 0 is fulfilled for 1> = =P if (1) p = 2.3,... 15 an integer number
or (2)2m+1<p< < 2m + 2 for certain integer m > 0. The coeflicients a,, are negative if
2m < p<2m+ 1 and 2n > p+ 1.

If coefficients @, are partly negative, then we put

Glp) = b (p) —d_(p) = v an Py (1) — [(1,,]!1,2 1), (2

o
—
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where the sum ¥ (¥ ) is taken over such n > 1, that a, > 0 (a, < 0). We also assume
that o < oo and

¢ (1) ~ @4 (p) ; ,
1< A= 5 , < 2
U M o) ®(p) < (1), (29)
then the sum (23) can be estimated by
F(#O Z 4n l — Py :“0) + ||9H Z I(’n 1 - ]Zn(:“O)]
n=1 n=1
1
1311 = sup |27 [ dug(p) P ().

n> 2

Noting that

(e}

> an[l = Poa(p)] = ©(1) — &(p),

Z |an|[L — Pon(p)] = 2[@-(1) = 4 ()] = [®(1) — @(0)] < (2A = D)[D(1) — ®(p)]
we obtain

o) = F(1) < [0+ (27 = DIl [8(1) - (po)).

Collecting some inequalities of this Section we can formulate the following lemma.
Lemma 3.1. Let the function F'(up) be defined by (18), ¢g(x) > 0.
[i] If

/
=Y anPulp), @20 /dug(ﬂ)(l - p*) < oo, (30)
n=0 1

then

F(po) < F(L)+lgnl[[(1) = @(po)],  [lgn]| = max {% / dpg(p)[l —Pzn(u)]}- (31)

n<N
21
[i] If
[2¢] O L
=Y wPulp), X lanl < oo o =21 [dug(p) < oo, (32)
n=0 n=0 1
and the conditions (29) are fulfilled, then
Fpo) < F(1) + [o+ (24 = D]|g|[1{@(1) = D(po)], (33)
where A is defined by (29);
1
131l = sup2x [ dug() Paalp)] < o (34)
n>1
= “1

(o0



Proof. All necessary estimates were already proven above in this section.

Corollary. If in (18)
N AN S e A

b =0, = 5 + — ) P> 1 (35)
and o < oo, then there exists a number A > 1 such that
. Fo(po) < Fu(1) 4+ 2A0[®,(1) = $,(10)], (36)

simultaneously for all p > 1. Moreover, this inequality with A =1 is valid for all p
satisfying the condition 2m + 1 < p < 2m + 2 with certain integer m > 0 (in particular,
for all integer p = 2,...).

Proof. According to (27), the condition 2m + 1 < p < 2m + 2 garantees that all
@, > 0 and therefore A = 1 in (33). Using the inequality (34), we just obtain (36) with
A=1 I2m <p<2m+1(m=1,...), then X = A(p) in (29) and (33). What we need is
to prove that there exists A = sup \(p). To this goal we note that a,, < 0 in (26) only for

p>1

sufficiently large n > (p + 1)/2. Therefore & (u) — &, (p) for p — oo (we define O (1)
similarly to (28)) and A(p) — 1 since ®,(p) is sufficienly smooth at g = 1. It completes
the proof of the inequality (36).

One wore simple inequality for (1) (18) can be obtained for any convex function
O(y). We rewrite (18)

¢

Fuo) = [ dug(p)

=1 0
and then estimate the inner integral

2T

deA{ @ (jepo + /1 = p /1 — pfcosp) — Pluo)} <

Q

<2 { @ (jugeo + /1 — gL — i)+ ®ppo — /1 — p2\1 = ) — 20 (ju0)} (38)
by using convexity arguments similarly to the proof of Lemma 1. Noting that py =
(v?— w?)/(v? 4 w?). we obtain

R , _N
ve 4w - - .
gl e = L=ty = ] = 5 ) o
Tw —+ ,:,u ) " ) 3 | 7 1 n " 2 .«v
[T ) = o5 ke ) (9)

and formulate the resulting inequality in terms of the function v (v?).
Lemma 3.2. For any conve
valid

—
9

function () the following estimate of Ay[

/2

dOG(0)Y {0 [(v cos @ + wsin 0)*]+




+1p[(w cos § — vsin )*] = h(v?) — ()}, (40)
where

G(0) = 27 sin 20[g(u, cos 20) + g(u, — cos 20)].

Proof. We estimate (37) by the inequality (38), then substitute ®(u) by %(z) (19)
and use formulas (39). Putting p = cos 20 in (37) we obtain the final result (40).

Remark. This lemma shows that one can use the simple Kac equation to estimate
integrals (5) for a convex function 1(z). Moreover it is possible to use (40) for a simpli-
fied proof of Lemma 3.1 (with a convex function ®(u)!) changing Py, (cos ) to cos 2n6.
However we prefer more general result without using a convexity.

4. Estimates for moments of the collision term.

It is convenient to put together some relevant estimates from Sections 2-3 and for-
mulate the result in terms of equalities (4)-(6). We assume that A[¢] is defined by the
equality (6), g(u, ) > 0 and

1
/d,ug (u, 1)(1 = p?) < oo. (41)
21

We also assume that ¥(z) has a continuous derivative ¥ (z), z > 0, to garantee a
convergence of the integral (6) for long range potentials. Then the followmg theorem is
valid.

Theorem 1. [i] If ¢)(z) is a convex function, then

Alp] > /01 daeb(u, ) {v{ev? + (1 = 2)w?] + Plew? + (1 = 2)v?] — 4 (v?) — p(w?)},

blu,2) = 2rg(u,1 = 2z), u=|v—-w|; ‘ (42)
/2

Alp] < / dOG(u, 0){¢[(vcos 0 + wsin 0)*] 4 P[(vsind —wcos 0)*] — h(v?) — p(w?)},

G(u,0) = 27 sin 20[g(u, cos 20) 4+ g(u, — cos 26)]. (43)

[ii] Tf ¥(2) is a convex function and

1

1 ‘
/(lm/’ [: tu] Po(p) >0, n=1,...5 z>0, (44)
2 -

then ‘ o
ARE] < gu[ih (02 4+ %) +9(0) = B(v?) — ()] -
L 2 2 02 2
o (Z/L.Q(Uaﬂ){1/«’(’l’2+’w2)+'¢‘()’“d’[ Oy )] w[ s <1-u>}},

21

10



1
Ge = gu(u) = sup {g]n =2 / dpgluc)[l = Py ()] fn=1,...; a, > O} .
-1

(1] If ¢4(z) = 27 and

L
o=2r / dig(u, i) < oo, (46)
1
then there exists such number A > 1 that for all p > 1
A[e?) < =X, (07 4+ )P + 200 [(0F + )P = 0¥ — P, (47)
; T4 p\? L= p\"
Ay = Ay lu) = ‘27r/dug(u,;z) [l - ( 5 > - < 5 > } , (48)

this inequality with A = 1 being valid for all p such that 2m — 1 < p < 2m for a certain
integer number m = 1,2, .. ..

Proof. Inequalities (42) and (43) are taken from Lemma 2.1 and Lemma 3.2. The
inequality (45) was proven in Lemma 3.1. Moment estimates (47) can be easily obtained
by substitution ¢(z) = z¥ into (18)-(19) and using the inequality (36). It completes a
proof of the theorem.

Remark. If g(u.p) does not depend on p (isotropic scattering), then (47) is valid
even with A = 1/2. In this special case it is more convenient to use directly Lemma 2.1
with simple formulas (16), where d = d(u) for "soft spheres™.

In order to apply the theorem to the Boltzmann equation (1) with long range potentials
we consider (45) with ¥(z) = 2™, m =1,2,.... Then

A[:m] S g*[("UQ NE w'z)m - ,U'Zm. o Zm} o \m(U 4w )m (49)

where A, is defined by (48),

1
JT— 121;;\' { /(//1(/ ()1~ ]>n(,1/)]}
-1

P
B, = max { sup —lﬂ———!L([—Q}, (50)

1<n<m 0<u<l I — ILI,‘Z

Putting

we obviously obtain ¢,(u) < B, o (u) (41).
Moreover |
Aplu) = Ap(u) = _»;(7(2)(11.), P> 2, (h1)

since dA,/dp > 0. Therefore we obtain from (49) a simple estimate

s . 1 b N e P ey Do Yy P Vg e
A < 30(2)(1/,) {213,7»\;[(_ pP ) T ™) = (07 w“)’”} ,oome=2,30000, (52)

where B, (50) depends only on number m. It is clear that B, > By = 3/2.

11



On the other hand, it follows from (42) that

m—1 1
2m > Z ( ) 2k 2 (m~k) a4 IU?k 2(m=—k) pim me] /(Z;ITQ(U, ;F):l?k(l n m)m—k.
¢ 0

Let v > w, then

Ap?™] > —p?m VZV_:I ( > { <%>zk} [1 B <%>2(m~k)} /Id;tb('u,fl?)l’k(l S L

0
1
> —pim /(l:{:b(u, )l —=a™ = (1—2)"].
0
Using the elementary inequality

m=—2

=" (=)t =l =) Y [ (1= 2 < 2(m — Da(l - 2)

k=0
and a definition (42) of b(u, x), we obtain a lower bound

m—=1 . ; :
A > - 5 o (u)max(v?™ w™), m=1,.... (53)

<

Using (52), (53) one can easily prove the following statement.
Corollary 1. Moments (5) of the Boltzmann collision integral (1) satisfy inequalities

D(fl*") > dvdw f(v) f(w)uo® (u)v® (54)

L

D) € =2 = 1)(2B, = 1) [ dvdwf(v) f(w)ur® (w)wot -

—% /dvdw/( )/(W)uam(u)v?“, u=|v-w|, n=2.3,..

4

g (55)

where o3 (u) and B, are defined in (41) and (50).
Proof. It is sufficient to substitute (52) and (53) into (5) and use elementary inequal-
ities

n=1
o , n\ .o
max(z,y) <4y, (v+y)"—a"—y"=> <k>:z:1‘y”*l‘ <
k=1

<202 = (2 4 y e e >0, y>0, n=2,3,....

Estimates (54), (55) are especially convenient for longe range potential since the cross-
section 0¥ (u) is always finite (otherwise the integral over unit sphere (6) diverges even
for differentiable function 1(z)). However these estimates can be improved in the case of
potentials with finite radius of action. In this case a total cross section (46) is finite and
we can apply the inequality (47) and obtain the following result.

12
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Corollary 2. If the condition (46) is fulfilled, then for any py > 1 and for all p > py

D(f|v*) < Ao /([V(ZW‘/"(’L“)_/’“(W)u[(v2 4 w?)P = P ]

—= [ dvdw f(v) f(w)ul,, () (v +w)P. u=|v—wl, 56
2 ) 2 (

where A > 1 and A, (1) < o are defined in Theorem 1 [il1].

Proof. We substitute (47) into (5) and use the fact that A,(u) (48) is a monotone
function of p > 1.

Inequalities (54)-(56) will be used below to estimate moments of the distribution func-
tion f(v,t).

5. Moments of the solution.

We consider the Boltzmann equation (1) with initial condition

Do = fo(V), /deo(V) =1, /dV'L‘Q‘/})(V) = ko, Hy = / dv fo(v)In fo(v)  (57)

and assume that there exists a solution f(v,t) of the Cauchy problem (1), satistying

conservation laws and H-theorem (see [5] for a review of existence theorems)

/(va(v. t)y =1, / dvf(v,t)v? = Fy, / dv f{v,t)In f(v,t) < Hy. (58)
Moreover we assume formally that all integer moments of the solution

m.(1) = /dvf(iv,t)'zfz", n=12.... (59)
are finite. Our aim is to estimate upper and lower bounds of m,(¢). This problem was
recently considered by Wennberg [2] (see also the previons paper of Desvilletes [3]) who
obtained such estimates for hard spheres and power-line potentials with angular cut-off.
Wennberg's results are based on his version of the Povzner inequality for Ay (z). Using
the stronger inequality (55) and following the same ideas one can easily generalize the
results of [2] to a very wide class of intermolecular potentials. To be more precise we
assume that

ey < ue®(u) < cut ooy (60)

for certain ¢y 53 > 0 and 0 <~y < 1.
Theorem 2. If ¢#)(u) (41) satisfies the condition (60), then all moments (59) of the
solution f(v, 1) of the Cauchy problem (1), (37) satisfy mequalities
() <L — e T =0 3 (61)

i

where the constants m>. \, depend only on n, Iy, Hy, . ey 95 1Euo®(u) < ey, then

i

My () 2 my(0) exp

o1
- ct;;[} L=l oo (62)

L
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Remark. Inequalities similar to (61) were first obtained by Wennberg [3] for a special

case

1
glu, 1) = w’hp), /d,uh(y),oo, 0< <.
el

He also noted that they are not valid for pseudo-Maxwell molecules (3 = 1).
Proof. Noting that (5)
dmy,(t)

2 = D(fh)

(63)

and using the lower estimate (54) we immediately obtain the second inequality (62). To
prove (61) we merely repeat Wennberg’s arguments [2]. First we apply the Arkeryd result

[10]
/dwf(wa‘t){v —~w[" = q(7y, Fo, Ho)v"

to a negative term in (55) and obtain
/dVde(V,i)f(W,t) 150(2)(11,)’102" > clq/(va(v,*[;)vg”'ﬂ,

Then we note that A
[ av v,y = fma (o] 7

because of the Holder inequality and the normalization condition mg(t) = 1 (58).

To estimate a positive term in (55) we note that w < 1 + w?, v*71 < 1 4 p?"

u <14 v-+1w. Therefore
/dvdwf(v, 1) f(w, t)[eau + es]wv™ ™t < (es + 3er) (L -+ E)[L + m,(1)].

Substituting (65)-(67) into (55) and (63) we obtain a differential inequality

Iy
(ZZ < An(l + Tn‘n) - Dm}{*ﬁ/?n? no=2

with )
/471, o ('2”'.—1 - ])(2Bﬂ - 1)((3 + SCQ)(] + ,EQ), D = 3(31(].

9 =2n/vy
m, (1) = {y (iDtﬂ
v

A substitution

results in the inequality

dy ; 2n v An
dt Tayll+yl 21, v’ T

One can easily prove (see Lemma 6.3 in Section 6 for details) that

y(t) = yu(1 — ™),

14

(64)

(65)

(66)

and

(67)

(68)

(69)



where y. is a unique positive root of algebraic equation ay.(l + y°) = 1. Hence, the
moments (65) satisfy inequalities (61) with A, = A,, m* = (y.)7**"7. It completes the
proof.

Conditions (60) has a clear physical meaning. If (¥ () (41) is finite, then the upper
bound in (60) is almost trivial. This condition is fulfilled for any physically relevant
intermolecular potential U(r), where r > 0 denotes a distance between two particles.
Under some natural restrictions on the potential U(r) the lower bound in (60) is equivalent
to an asymptotic inequahity

cr(g)(u.) > cm““g, =00, fF=1=-v>0.

If U(r) — oo as r — 0, then, roughly speaking, we obtain for u — co

o (u) ~ constri(u),  Ulrg) = e

where m 1s a mass of particle, ry is a minimal distance between two particles with given
relative energy T = mu®/4. Assuming that
@ .
Ulr)y~—, 70, (72)

7,5 !

we obtain

dar \° , .
ro A < 2) ; 0(2)(11) ~ constu™VS 1w 0.
mu

Hence, the first condition in (60) with v = 1 —4/s > 0 is fulfilled for a wide class of
potentials with asymptotic behaviour (72), where s > 4. In the opposite case 5 < 4 the
inequalities (62) are valid.

If the potential {/(r) has a hard core, i.e. U(r) — oo as r = dyin, then particles
with large relative speed v — o0 interact like hard spheres with diameter dpi,. Therefore
v = 11in (60) for this case,

Thus we proved for a wide class of intermolecular potentials U(r) (including power-like
potentials (3) for s > 4 without cut-off and potentials with compact support satistying
conditions (60)) that all moments of the solution to the Boltzmann equation (1) are
uniformly bounded for all # > 0. This result is mainly interesting for slowly decreasing
(with |v| — o) initial conditions with finite number of moments at ¢ = 0.

However such initial conditions are not tvpical for applications of the Boltzmann equa-

tion. Usually we have a distribution function with the Maxwellian tail and need to esti-
mate a possible growth of the tail. The above obtained estimates (61) are too rough for
this problem. Therefore we shall construct some more precise estimates in Section 6 for

a special case of hard spheres.
6. Solutions with Maxwellian tails.
We consider the Boltzmann equation (1) for hard spheres (2) with the initial condition

(57). Our goal in this Section is to prove the following theorem.
Theorem 3. If



for a certain § > 0, then there exists 0 < 0, < 6, such that for all + > 0

F(0.1) = / dv f(v, 1) < oo, (74)

Proof. First we note that

oo Ln

F(z)= /(lvf(v)e“’2 = Z Tmy,, my, = /dvf(v)vgn

!
n=0 n.

Therefore F'(z) is an analytic function for |z| < R, where

(75)

My ) 1/n
n! )

R™" = lim sup (

To prove the theorem it is sufficient to estimate moments my(t) to the solution by
inequality

my(t) < Q(n)a"n!, [Q(n)]l/” -1,
for certain @ > 0, provided that (73)

m,(0)

n!

1/n
lim sup [ } =ag< 0L

All necessary estimates are given below in Lemmas 6.1-6.4 provided that all moments
my(t) of integer and half-integer orders p = 1,3/2,2,... are continuously differentiable
functions of t € R*.

Lemma 6.1. Moments

Q%]

m,(1) = / dvi(v, o, p=3/2,2,5/2,... (76)

satisfy the following set of inequalities

1 dm, 9 =y n—1 1.,
- < Mgy foMn— e — m “/2”, n=1,2.3,...; 77
o dt ~ nJrlk_Z:1 Jo) L k q‘n+1 " ’ (77)
1 dmpg1/0 4 by l
— < 2 My M=k M 7919+ mami, » =
o di — 2n 43 kZ::l o)L g 172412 ! ]
2n~1 1/(2n g A s
—-([,,)Z n _377’12’&‘1'//(22 +1)7 q=q(l, Eo, Ho)/o, n=1,2,3,...; (78)

where ¢(1, Eo, Hp) is defined in (64).
Proof. The above obtained inequality (12), (16) for hard spheres results in

L dm, - 1

o dt T p+1

[ dvaw fv,t) (s, D)y = wix

: 1 .
X {[(02 4 w?)*P P 1027’] (p—1)(v*" + wzp)} =5Fr—-5", p=1 (79)

2

16



Using Carleman’s estimate (64) with v = | for the collision frequency and Holder’s
imequality (66) we obtain
p — | p—1

L ! ]+l/ ;> ‘&
ST > gt Mopi/2 = §———1M 30
po= 1‘) +1 p1/2 /] Tl ' (8 )

.

that is just the negative term in (77)-(78). To get the positive term in (77) it is sufficient
to use a trivial estimate |[v —w| < v+ w in (79) for p = n. The positive term in (78)
follows from inequalities

EV o Wl[(’l)2 + w'))vﬂ-l/'z - ‘UQn-H o wzzH-IJ S

n-=1
S (U—HU) {( +w )1/2 L (77) ngwz(n»k) i ’1‘2”{('02 4 w‘z)l/‘z o 'l,'} T ‘l.(.?zn[('lﬁz 4 w2)1/2 . 'IU]} S

k=1 k

n=1
9 5 n L ) . 5,
<2007 4 w”) E (A) Vg n=k) (v 4 w) [0 0 4w ).
k=1 '

It completes the proof.
We assume t}mt mo( ) = L nn(t) = Ly = const. The first (n = 1) equation (78)

1 :
myjg < f[amo—}-]—n—z-] (81)
2 a
with appropriate o > 0.
Let us change variables in (77), (78) putting
my(t) = AD(p +1/2)a’z,(7), 7= Aovat, p=1,3/2,2,... (82)

with certain positive constants A and «.
Moreover we estimate my; by the inequality (81) with o = a'/2, then

Loy Lo \ £ :
my () < 3(’11/‘{1 + AL(3/2)71],  ADL(3/2)z = =0 (83)
L (

Thus we obtain the following set of inequalities for z,(7):

dz, 2 =X\ T(k+ DI n—k+1/2)
k=1 :

dr n+1 & Fin+1/2)
g AT 2] (84)
dz, o1 il SN\ TR+ 3/ (n = &+ 1/2)
2 e D] it SRl e ks
dr = 2043 [h ?_;l (A) (1) St kot
F(3/2) 0+ 1/2) Loy :
: ~ In —(A + 3/ )2 1= 39
T gy et TR (8)



2n=1 R
_ﬁq2n 3 [F(?? + l)]o +1 i 7T,+1) n+1;;la N2

The inequalities can be simplified by using some estimates for gamma-function.
Lemma 6.2. It follows from (84), (85) that

dz, , BT

*—"‘“< ax =z oSl T R “)vn 2n o

dr 41<I}~]§17;\—1( kg on b 3A ) (86)
dZn+1/2

dr
YR 2 ——4 (
+ A( + > +1/2
Proof. We note that [9]

. I
S 2‘/7.(1 - 671—1) 1<]}{§X Al(3k+13n—k) + gzlzn+
<k<n=] .

15—
1)z Hi““, n=1,.... (87)

I'(z41) ==zI(2),

Therefore

'k + 1)1 (n—k+1/2)
()6

‘/2) S (Z)B(i” +ln~k+1/2) =

+
\
o
~—
?N
H

_ SV (1= 8)] < ¢
n+1/d8 B

8 ”2_:1 n\ L'k +3/2)[(n-k+1/2) -
2n+3 o \k [(n+1) =
- 8'(n -+ 2) ”il
- (2n +3)I( 77+1

k:l

( ) (k+3/2,n —k+1/2) =

8(n+1) /
= 2T /61.9.51/2(1 L)V (1= )] < AB(3/2,1/2) = 2%
6]

It gives the above estimates (86), (87) for sums in (84), (85). To complete the proof
we estimate other terms in (84) (85) by some obvious inequalities: I'(p + 1/2) > 1 for
p>3/2, (n—=1)/(n+1) >1/3 forn > 2 and

SR ]
S S
+
Orf o=

AT(3/2)0(n 4+ 1/2) o T
2n+3H'n+1) ~ 2n+3

IV

T
<—-,
5,

for n > 1. Lemma 6.2 is proved.
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We note that inequalities (86), (87) are valid for any positive A and a. The next step
is to choose A and a in such a way that the inequality z,(f) < 1, p = 1.3/2,2,..., holds
for all ¢ > 0 if it is fulfilled for ¢ = 0. First we restrict @ by the condition

a > Fymax(24 — 1, AT(3/2)), (88)
then i : ;
0 ) “0 :
= e O 1 —~> < L 89
Aal'(3/2) — 2A < * /)T (89)

Let us now combine (86) and (87) and consider simplified inequalities

dz, , .
[ Y 1+<y7
\/,",51... Jor -2)) ,>*~\4 77 ?,
dr = ].( ) y #p—1/2) P
A=q/3 a,=1/2p, Foso=8 max (zyz,3:1), 90
1/ 2 / P pra 151:5[7;]( ; ;;-A,+5), ( )
/7;/3: 7T/5, P = ;/2,2,5/2. .

A solution of differential inequalities (90) can be estimated by the following lemma.
Lemma 6.3. If 2(t) satysfies the inequality

(_[]:T < B4 - Clatti/a, (91)
428

with certain positive constants B, (. ¢, then
(1) < max[x(0), v, (92)

where x. is a unique positive root of the algebraic equation

B+, = i/, (93)

moreover ('
() <l —e 77 f= gl (94)

q

Remark. In this Section we need only the ino( uality (92). The second inequality
(94) is necessary to complete the proof of Theorem 2 in ‘w( {ion 5.
Proof. Changing variables in (91) we obtain

: e ‘ :
o(t) = ly(t/q)]™ ((—/Yf +y[l+ By = (95)

We note that there exists a unique number y, > 0, such that
vl + By!] = C.
I{y <y then y, > 0. Therefore y({) > y(0) for all + > 0if y(0) < y.. Moreover
y(1) < y.in this case and
?‘ t
1y > / dtyexp {*‘ / dr{l + Byi(7)}| >
0 i
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t
> C/dtl exp[—(1+ Byl)(t — t1)] = y. {l ~ exp <~;l>} (96)
0 *

If ¥(0) > y., then for a similar reason y(t) > y. for all + > 0. Therefore the formula
(96) is correct also for this case. To complete the proof we need only to re-formulate the
last inequalities in terms of z(t) (95).

Thus, to obtain a desirable estimate z(r) < 1 for a solution of (90) it is sufficient to
satisty the following conditions (p = 3/2,2,...):

0<2 <1, 0<2 <1 (97)

where 27 are defined by equations (see (90))

Fp(:f, Ve 72;—1/2) -+ 3; o /\A—(l—l/Qp)(z*)]_H/gp

p

We note that A > 0 is still a free parameter.To satisty the second inequality it is
sufficient to choose A in such a way that

/\A~(1—1/2p) >9 > 1+ Hl‘d.XFp, P o= 3/272, R

since Iy = n/5 and F, < 8 for p > 2 if 1‘nax(zf,...,:;~1/2) < 1.Thus we obtain a
condition A < min[1, (A/9)*%], X = ¢/3 which garantees that zp < 1forall p > 3/2.
However ¢ <1 in (64) since

1
hm [ dw f(w)|v —w| = mg = 1.
[v|~co |V] dw [(w)] | 0

Therefore to fulfil the second condition (97) it is sufficient to put
A= (q/21)%. (98)

The result can be formulated in the following way.
Lemma 6.4. Let my = 1, my = Ey, my(t) for p = 3/2,2, ... satisfy inequalities (77),
(78) with ¢ < 1 for ¢ > 0 and initial inequalities

m,(0) < (q/21)%a?, p=1,3/2,2,... (99)
for certain @ > 0. Then the inequalities
mp(t) < (q/27 %P, p=1,3/2,2,... (100)

hold for all £ > 0.

Proof. We reduce (77), (78) to (86), (87) by Lemma 6.2. Then we apply Lemma
6.3 (92) to the first inequality for p = 3/2. The constant A satisfies equality (98). The
condition (99) for p = 1 and the estimate A = (¢/27)*?* < 1/2 guarantee that the constant
a satisfies (89). Therefore (100) is correct for p = 3/2. By induction on p = 2,... we
repeat the same arguments and complete the proof.
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Theorem 3 follows directly from Lemmas 6.1 and 6.4 since the condition (73) guaran»
fees that there exists @ > 0 such that inequalities (99) are satisfied. Then (100) shows
that the integral (74) with 6. = a~! converges for all ¢ > 0.

Remark. The function

(1) = =[sup 0]

L):‘
where supremum is taken over all 0, > 0 satisfying (74) for any fixed ¢ > 0, is called the
tail temperature. Its properties for Maxwell molecules were studied in detail in [1]. Tt is
also known [11] that (1) is a monotonically non-decreasing function of ¢ for hard spheres
and potentials with compact support.

7. Generalizations.

The result of Section 6 can be generalized in different ways. First we prove a simple
inequality for the collision frequency and generalize Theorem 3 to a wider class of initial
conditions.

Lemma 7.1. If mo(t) = 1, then the collision frequency

vvi) =0 / dw f(w.1)]|v — w| (101)
in the Boltzmann equation (1) for hard spheres satisfies the inequality
v(v.t) > 77V2(v,0). (102)

Proof. We note that (z) = U2 ls ob\lousl\ a convex function. Therefore we
obtain by the inequality (12) with A+[ 212) for hard spheres (16) the following lower
estimate for mq ,():

L dmyy

—~(v -+ u)}

(\J[‘—

> / dvdw f(v.t) f(w,t)|v —w| { Vi

o dt T

Using obvious inequalities
STy 9 o )
v = wiVer+w? > (v—w)’,  |v-wllv+w)<(v+w)
we get a simple expression
3 dmy s N 4
L Z momy = Tmy . mg =10 my = Ey.

o dt

Noting then (my/2); is always non-negative for m?,, < Fy/7 one can easily conelude
S 1727t ) 5 1/2 h
that
myga(t) > min{my ., (0), (E/7 )]/ b

2 7 R ~ i N
Moreover If > my,, {a special case of (66)), therefore we obtain an estimate

1
myp(t) 2 —=myn(0). (103)
N&i

.’)1



The collision frequency v(v,t) in the Boltzmann equation (1) for hard spheres reads

v(v, 1) = a/dwf(w +v,f)|wl.

We note that for any fixed vo € R? the function f(v + vg,t) satisfies the same
Boltzmann equation (1) with initial condition fii=o = fo(v +vg). Therefore the inequality
(102) follows directly from (103).

Corollary. The entropy assumption (73) in Theorem 3 can be replaced by a weaker
assumption

./dvvfo(vv)|v— w| > colvl,

then all above obtained estimates are valid for ¢ = 7-/%¢; in formulas (77)-(100).

It is clear that estimates similar to (102) can be proved for a wide class of potentials
with compact support by using the inequality (56). Unfortunately this inequality is not
enough for a similar proof of Theorem 3 in the general case. However a weaker result can
be easily obtained.

Theorem 4. Let f(v,t) be asolution of the Boltzmann equation (1) for the potential
with compact support. If the initial condition fo(v) satisfies the inequality

/dvfo(v)eouz < oo
for a certain 6 > 0, then there exist 0 < #, < # and « > 0, such that for all ¢t >0
/dvf(v,t)exp[&*e““tvg] < 00, (104)
Proof. The proof is based on the simplest estimate of A[zF] in (6). Noting that
0w < (0w )P, vt w? =0t w?,

for p > 1 and therefore
0 4w < (v wE)p,

we immediately obtain from (5)-(6) the inequality

dm,
dt

< %/dv(lwf(va tf(w, ul(v® + )P — o™ =], p>1 (105)

where o = const (46) for potentials with compact support.

Then we repeat first steps of the proof of Theorem 3 almost without any changes.
The only difference is that we substitute the estimate (12), (16) for hard spheres by the
simplest inequality (105). Following the proof of Lemma 6.1 we obtain in general case
not the inequalities (77), (78), but weaker estimates

Ldm, ."“=2(n
_ < Z 3 mH%vnn_k.,

o dt Pt

1 Cln?,H_l/z nol

Z TMEL1 Myl + 1M1 mn+1 4 mymy.
o

k=1
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Then we use the same substitution (82) with A = 1 and repeat the proof of Lemma
6.2. It results in inequalities

dey V
2+ 1) max (Zraqg Zae )
dr = ( + )'lgl\fgn( k+1-~n A,>,

Ay . 7 B ) ,
Intl/z < =(2n + 3)(1 = &y1) max (g1 zneik)+
dr 2 S 1<k<n

o
/

i l B lL‘O ;
Fonm g <l + ——> Tpdtf2y = L2000
D 2 a .

which replace inequalities (86), (87). Then we again use an assumption (88) (it is sufficient
to choose a < /7 /2Ey) and replace (90) by a simpler inequality

dzy , o
A ¢ 4(p+1) max ( enepgr/e) T, P =2 5/2,. ... 7

dr 1<E<[p] 1

(12’3/2 T

We assume that the constant @ in (82) (with A = 1) is chosen in such a way that
m,(0) < T(p+1/2)a”, p=1,3/2,..., (107)

then z,(0) < 1in (106). A standard estimate for z3;5(7) (106) results in

s3/2(7) < e’ {:3/2(()) -+ i—(l - f:“t)] <exp KZL + %) T} .

For p > 2 we put

: 1 : T
(7)) = y,(7)exp [f <p - 3> 7‘} o214+ T
then ; |
aYy ; : - : ;
7} < dp+ l)12}2‘[\;)](3/1»‘1/:1»—1\%1/'2) - [,d (p ~ 5) - l] YUps
We note that
pp(0) < 1o n(m) <1 ygpa(r) <1
and choose 3 = 9. Then 4(p+ 1) < F(p—=1/2) =1 for all p > 2. Therefore
yp(T) <y 0) < 1y ope= 1320000
Hence, inequalities
777-[)(1) . 1(1) L 1,/2)(’1»1)57)(7') <T(p+ 1/'.3)('1['760(”&1/'2”, v ()(y\/(‘[_\ P = L*}/‘Z R

are valid for any ¢ > 0 if thev are valid at 1 = 0. To complete the proof we use the formula
is chosen in such a way that
m(0) < T(p+1/2)a"s p=1.3/2.....
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Remark 1. Theorem 4 can be considered as an a priori estimate which shows that
there exists a global solution of the Cauchy problem for spatially homogeneous Boltzmann
equation (potentials with compact support) in the class of distribution functions with

Maxwellian tails. This class is defined by the only condition: there exists such number
0 > 0 that

/dvf(v)exp(@vQ) < 0.

Remark 2. It is clear that the results of Sections 6-7 can be also formulated in
the following way : if there exist positive constants A and B such that m,(0) are less
than corresponding moments of the Maxwellian A exp(— Bv?), then there exist a constant
Ar > 0 and a function By(t) > 0, such that m,(t) are bounded by corresponding moments
of the Maxwellian Ay exp[—Bi(t)v?] for any ¢ > 0. Moreover, B (t) = B1(0) = const for
hard spheres, and By(t) = B;(0) exp(—at) for a general potential with compact support.
Constants By(0) and « depend only on the total cross section o and initial condition
fo(v).
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