
Isogeometric Analysis for
Scaled Boundary Parametrizations

Clarissa Arioli

Vom Fachbereich Mathematik der Technischen Universität Kaiserslautern zur
Verleihung des akademischen Grades

Doktor der Naturwissenschaften
(Doctor rerum naturalium, Dr. rer. nat.)

genehmigte Dissertation.

1. Gutachter: Prof. Dr. Bernd Simeon, Technische Universität Kaiserslautern
2. Gutachter: Prof. Dr. Matthias Möller, Technische Universiteit Delft

Datum der Disputation: 25. August 2020

D386





Abstract

In this thesis, we present the basic concepts of isogeometric analysis (IGA) and we
consider Poisson's equation as model problem. Since in IGA the physical domain is
parametrized via a geometry function that goes from a parameter domain, e.g. the unit
square or unit cube, to the physical one, we present a class of parametrizations that
can be viewed as a generalization of polar coordinates, known as the scaled boundary
parametrizations (SB-parametrizations). These are easy to construct and are particu-
larly attractive when only the boundary of a domain is available. We then present an
IGA approach based on these parametrizations, that we call scaled boundary isogeo-
metric analysis (SB-IGA). The SB-IGA derives the weak form of partial di�erential
equations in a di�erent way from the standard IGA. For the discretization projection
on a �nite-dimensional space, we choose in both cases Galerkin's method. Thanks
to this technique, we state an equivalence theorem for linear elliptic boundary value
problems between the standard IGA, when it makes use of an SB-parametrization,
and the SB-IGA. We solve Poisson's equation with Dirichlet boundary conditions on
di�erent geometries and with di�erent SB-parametrizations.

Zusammenfassung

In dieser Arbeit stellen wir die Grundkonzepte der isogeometrischen Analysis (IGA)
vor und betrachten die Poisson-Gleichung als Modellproblem. Da in IGA das physi-
kalische Gebiet über eine Geometriefunktion parametrisiert wird, die von einem Pa-
rametergebiet (z.B. dem Einheitsquadrat oder -würfel) in das physikalische Gebiet
abbildet, präsentieren wir eine Klasse von Parametrisierungen, die als Verallgemeine-
rung von Polarkoordinaten angesehen werden können, die scaled boundary Parametri-
sierungen (SB-Parametrisierungen). Diese sind einfach zu konstruieren und besonders
attraktiv, wenn nur der Rand einem Gebiet verfügbar ist. Wir präsentieren weiterhin
einen IGA-Ansatz, der auf diesen Parametrisierungen basiert und den wir als scaled
boundary IGA (SB-IGA) bezeichnen. Die SB-IGA leitet die schwache Formulierung
anders her als die Standard-IGA. Für die Diskretisierungsprojektion auf einen endlich-
dimensionalen Raum wählen wir in beiden Ansätzen die Galerkin-Methode. Auf diese
Weise erhalten wir für lineare elliptische Randwertprobleme ein Äquivalenztheorem
zwischen dem Standard-IGA, wenn eine SB-Parametrisierung verwendet wird, und
dem SB-IGA an. Wir lösen die Poisson-Gleichung mit Dirichlet-Randbedingungen
auf verschiedenen Geometrien und mit verschiedenen SB-Parametrisierungen.
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1
Introduction

The �nite element method (FEM) is one of the most popular numerical methods used
to �nd approximate solutions of partial di�erential equations (PDEs), such as the heat
transfer equation, the equations of linear elasticity and the Navier-Stokes equations.
This technique discretizes the geometry into smaller sub-geometries called elements.
However, the geometry considered by the FEM is an approximation of the one given
by a computer-aided geometric design (CAGD). Such an approximation a�ects the
accuracy of the solution and leads to various numerical errors.
To minimize the discretization error, various attempts have been made in past, for
example in [36] a B-spline �nite element approach has been presented, and in [16]
Cirak et al. considered a subdivision surface scheme to model thin shell geometries
in the �nite element framework. With the motivation to combine the CAGD geome-
tries with the simulation approaches, Hughes et al. [32] introduced a new numerical
method, known as the isogeometric analysis (IGA).
As the name itself suggests, this technique provides an analysis framework for the
geometry generated by a CAGD, without making any geometrical approximation.
Usually, the geometries in CAGD are described with nonuniform rational B-spline
(NURBS) basis functions. The concept of IGA is to utilize the same NURBS func-
tions when solving the equation numerically, i.e. they are considered as basis for the
�nite-dimensional space. Since its appearance, IGA has been successfully applied to a
variety of problems, e.g. �uid-structure interactions [8, 30], electromagnetics [44, 64],
mechanical analysis of solids [23, 32] and structures [18, 37, 68], and shape optimiza-
tion problems [25, 65, 67]. At the same time the concept of IGA has already been
implemented using several numerical discretization methods, such as collocation [3],
boundary elements [53], �nite volumes [30] and, of course, isogeometric �nite elements
[32].
Apart from the inclusion of NURBS basis functions for the modeling and analysis in
IGA, other CAGD tools have been employed, for instance, T-splines [7], hierarchical
splines [62], locally re�ned B-splines [29], PHT-splines [66]. Furthermore, in 3D com-
puter graphics, smooth surfaces can also be represented through a subdivision surface.
Indeed, starting from a coarse polygon mesh, a smooth surface can be calculated as
the limit of an iterative process that subdivides each polygonal face into smaller faces
that better approximate the smooth surface. Subdivision surfaces o�er great �exi-
bility in capturing irregular topologies with high order smoothness. For this reason,
they are frequently used in geometric modeling and recently in IGA as well. In the
literature, we can �nd isogeometric analysis based on the Catmull-Clark subdivision
scheme [4, 46] or on Loop's subdivision scheme [34, 45].
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Chapter 1. Introduction

Another challenge in the IGA community is the development of analysis-suitable
parametrizations of the computational domain. Indeed, the accuracy of the analysis is
a�ected by the quality of the parametrization. In [70], they present a parametrization
of the computational domain by a planar B-spline surface from the given CAGD ob-
ject (four boundary planar B-spline curves). When the boundaries are more complex
a possible planar parametrization can be found in [69]. Several linear and nonlinear
parametrization methods can be found in [28]. Recently, a parametrization inspired
by large elastic deformation has been proposed in [52], where the desired domain is
modeled as a deformed con�guration of an initial simple geometry.

In this thesis, we investigate a special class of parametrizations that can be viewed as
generalizations of classical polar coordinates, the so-called scaled boundary parametriza-
tions (SB-parametrizations). These are easy to construct and are particularly attrac-
tive when only a boundary description of the computational domain is available. Given
the boundary of a star-shaped domain, �rst we pick a point, the scaling center, inside
the kernel of the domain, where the kernel is the set of all points from which the entire
boundary is visible. Then, a set of rays is constructed from the scaling center to the
boundary. The SB-parametrization presents two directions, the angular and the scal-
ing ones. As the names suggest, the �rst spans the angles formed by the rays, while
the second spans the distance from the scaling center to the boundary. We will focus
on standard Galerkin-based IGA in combination with such parametrizations and we
will address its connection to the scaled boundary IGA (SB-IGA).
The idea of the SB-IGA goes back to the scaled boundary �nite element method
(SB-FEM) [55, 56]. The main di�erences to standard Galerkin-based IGA are in the
derivation of the weak form of a problem and in the usage of the parametrization.
Indeed, instead of deriving the weak form in one step, the SB-IGA derives the weak
form �rst in the angular direction and then also in the scaling direction. Moreover,
these weak forms are derived directly on the parameter domain given by the scaled
boundary parametrizations and not on the physical domain, as in the other approach.
By means of the Laplace-Beltrami operator, it is possible to derive an equivalence of
the weak forms of these two approaches for linear problems.
The scaled boundary parametrizations have two drawbacks; namely, they can only be
applied to star-shaped domains and they have a singularity in the scaling center. The
�rst disadvantage can be overcome by dividing the domain into subdomains such that
each of them is star-shaped. The domain decomposition can be done with di�erent
techniques. For example, in [5] the creation of star-shaped subdomains is proposed via
two di�erent decompositions, the �rst based on the quadtree approach and the second
on the art gallery problem. Another possibility could be to increase the �exibility of
polar parametrization using circular arcs to connect the center with the points on
the boundary, as proposed in [35]. In this work we investigate the singularity in the
scaling center. Moreover, in the numerical solutions, we do not notice any singularity
when an appropriate quadrature rule is used in the numerical integration, i.e., when
the quadrature points are chosen inside the interval of quadrature. Some of these the-
oretical results can be found also in [2].

We validate our results with some numerical examples. As a model problem, we con-
sider Poisson's equation with Dirichlet boundary conditions, but the results can be
extended to other linear problems. We consider di�erent star-shaped domains and we
construct on each of them a standard tensor product parametrization, typically used
in IGA, and a scaled boundary parametrization. Since the scaling center determines
a unique SB-parametrization, we construct various SB-parametrizations by moving

2



Structure of the Thesis

the scaling center inside the kernel. In this way we want to study the in�uence of
the choice of the scaling center on the numerical results, i.e., comparing, for example,
the energy norm, the L2-error norm and the condition number of the sti�ness matrix.
Furthermore we compare the SB-parametrization with the standard parametrization
typically used in IGA. For our simulations we use an extension of the ISOGAT package
[63] implemented in MATLAB R©.

Structure of the Thesis

After this introductory chapter, we present in Chapter 2 the tools used in CAGD and
IGA, the B-splines and NURBS basis functions. Their de�nitions are given through
a recursive formula known as Cox-De Boor algorithm. We list their most important
properties that permit engineers and designers to use them widely. Given a set of
control points, we then de�ne the B-spline and NURBS geometries, such as curves
and surfaces. We conclude the chapter by showing di�erent re�nement techniques
that permit us to describe a curve with a new set of control points and knots without
changing its shape.
In Chapter 3, we give a summary of the main ideas behind isogeometric analysis. Given
a problem in the strong form, we show how to derive its weak form. The domain on
which we solve the problem will be parametrized by a geometry function that goes
from the parameter domain to the physical one. Afterward, the approximation of
the space where the analytical solution lives will be done through Galerkin's method,
using as basis functions the ones given by the parametrization. Hence, the isogeometric
analysis, as well as the �nite element method, leads to solve a linear system where
the sti�ness matrix is sparse. We also present some a priori error estimates for IGA.
In the end, we solve Poisson's equation with zero Dirichlet boundary conditions on
di�erent geometries.
In Chapter 4, we introduce the SB-parametrizations and the SB-IGA. Given a star-
shaped domain and a point in its kernel, we show how to construct a scaled boundary
parametrization. This parametrization will be used in the standard Galerkin-based
IGA and in the SB-IGA. We prove that the two approaches are equivalent both at
a weak analytical level and at a discrete level. Indeed, making use of the Laplace-
Beltrami operator, we show that these two approaches lead to the same weak form in
parametric coordinates. Moreover, with an equivalence theorem, we show that these
weak forms coincide when a Galerkin discretization is applied. We also investigate the
singularity of the parametrization in the scaling center. In the numerical simulations,
we solve Poisson's equations with zero Dirichlet boundary conditions and we compare
the results for di�erent parametrizations.
We conclude this thesis in Chapter 5, where we summarize the results and we give an
outlook on possible future research directions.

3





2
Foundations from Computational

Geometry

The nonrational B-splines and the nonuniform rational B-splines (NURBS) describe
geometries in computer-aided geometric design (CAGD) and also represent the nu-
merical solution in isogeometric analysis (IGA).
The word spline comes from the same root as splinter. Indeed, splines were thin strips
of wood used by boat builders to create and draw curves. These were bent and held
in place at a number of predetermined points, called ducks. Between the ducks, the
elasticity of the spline material caused the strip to take the shape that minimized the
energy of bending, thus creating the smoothest possible curve that �t the constraints.
The shape could be tweaked by moving the ducks. It was only after World War II that
the polynomial formula, known as the spline curve or spline function, was developed
by the mathematician I. J. Schoenberg [50]. A spline curve is a piecewise polynomial
curve whose pieces are smoothly joined together. Using a mathematical representation
of the surface of a boat or an airplane instead of a physical model saves thousands of
measurements in the design and construction process. In the aircraft industry, besides
their use in modeling designs, splines were also useful for plotting �ight trajectories.
During the 1960's, the French automatic engineers Pierre Bézier (at Renault) and
Paul de Casteljau (at Citröen) concurrently developed the NURBS, which were used
�rst in car design, then they became part of standard computer graphics packages. In
a digital system, the ducks used by boat builders are transformed into control points
that can be instantly weighted, moved and plotted to create any kind of curve.
However, at the end of the 90's, in the �eld of computer animation the use of NURBS
surfaces was replaced by the subdivision surfaces, built upon research by E. Catmull
and J. Clark examining the possibilities of recursive uniform B-Spline surfaces. For
instance, Pixar released its �rst feature-length �lm, Toy Story, in 1995. The animators
modeled the characters and props of the �lm using NURBS geometries. This process
was expensive, time-consuming and error-prone. In their next animated short, Geri's
Game (1997), Pixar used subdivision surfaces for modeling the characters.
While in the animation �eld the subdivision surface are preferred for their artistic
�exibility and speed, engineers and designers continue to favor NURBS because they
o�er the precise control over curvature they need for accurately manufacturing real-
life products. A bridge between these two worlds could be seen in the recent T-spline
and T-NURCCs [51].
Nevertheless, here we will not investigate the subdivision surfaces and T-splines. We
will instead consider B-spline and NURBS geometries.
This chapter is divided as follows. We �rst introduce the nonrational B-splines together
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Chapter 2. Foundations from Computational Geometry

with some relevant properties in Section 2.1, then we move to a more general setting
de�ning the NURBS in Section 2.2. Section 2.3 shows di�erent re�nement techniques,
which permit to model a B-spline curve in di�erent ways without changing its shape.

2.1 B-Splines

In this section we de�ne the nonrational B-spline basis functions, curves and surfaces.
We will also show their important properties. For the sake of brevity we drop the word
nonrational.
A spline function is a piecewise polynomial function. The term B-spline is short for
basis spline, since the B-splines are basis functions for spline functions, meaning that
all possible spline functions can be built from a linear combination of B-splines, and
there is only one unique combination for each spline function.

2.1.1 De�nition and Properties of B-Spline Basis Functions

The B-splines are piecewise polynomials of a certain degree p in a variable ξ. The
values of ξ where the pieces of polynomials meet are known as knots, denoted with
ξ1, ξ2, . . . , and sorted into a nondecreasing sequence. They have local support which
allows a quick evaluation and changes in one parameter a�ect only a part and not the
whole of the B-spline. They are also very �exible. The de�nition of B-splines is given
by a recursive formula, independently discovered by C. de Boor and M. Cox, and so
called Cox-De Boor recursion formula.

De�nition 2.1 (B-spline basis function). Given a knot vector Ξ := {ξ1, . . . , ξm+p+1}
with knots ξi ∈ [0, 1] and ξi ≤ ξi+1 ∀i, a B-spline basis function Mi,p(ξ) of degree p
(order p+ 1) is de�ned recursively for ξ ∈ [0, 1] and i = 1, . . . ,m. The starting points
are the piecewise constants for p = 0 (or characteristic functions)

Mi,0(ξ) =

{
1, if ξi ≤ ξ < ξi+1,

0, otherwise,

with the modi�cation that the last B-spline Mm,0 is de�ned also for ξm+1, i.e.,

Mm,0(ξ) =

{
1, if ξm ≤ ξ ≤ ξm+1,

0, otherwise.

For p > 0 the B-splines are de�ned as

Mi,p(ξ) =
ξ − ξi
ξi+p − ξi

Mi,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Mi+1,p−1(ξ), where ξ ∈ [0, 1],

with the same modi�cation for Mm,p. When there are repeated knots, some of the
denominators above may be zero. We adopt the convention that 0/0 is equal to zero.

The recursion formula has been modi�ed to allow for a de�nition of the B-splines over
the full interval of [0, 1] instead of only [0, 1).
We call the interval between two successive knots [ξi, ξi+1) the i-th knot-span. This can
have zero length, since knots do not need to be distinct. If the knots ξi are uniformly
distributed over Ξ, we call the knot vector uniform. If the �rst knot and the last one
have multiplicity p+1, i.e., ξ1 = · · · = ξp+1 and ξm+1 = · · · = ξm+p+1, the knot vector
is called open.

Remark 2.2. In [47] the recursive formula is de�ned for knots in R. We restricted
them to the interval [0, 1] for our isogeometric purposes later.
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2.1. B-Splines

There are many useful properties of the B-spline basis functions, which determine the
desirable geometric characteristics in B-spline curves and surfaces. Among them we
point out the following ones:

• local support property: Mi,p(ξ) = 0 if ξ is outside the interval [ξi, ξi+p+1),

• in any given knot-span [ξj , ξj+1) at most p+ 1 B-spline basis functions Mi,p are
nonzero,

• nonnegativity: Mi,p(ξ) ≥ 0 for all i, p, and ξ,

• partition of unity: for an arbitrary i-th knot-span,
∑m

i=1Mi,p(ξ) = 1 for all ξ ∈
[ξi, ξi+1),

• Mi,p(ξ) are p-times continuously di�erentiable (Cp-continuous) inside a knot-
span, while at inner knots of multiplicity k (k ≤ p) they are only Cp−k.

Here we only use B-spline basis functions on open knot vectors with inner knots of
multiplicity 1 ≤ k ≤ p.

De�nition 2.3 (B-spline space). The vector space of the B-spline basis functions of
degree p on the open knot vector Ξ is denoted by

S(Ξ, p) := span{Mi,p}i=1,...,m (2.1)

Note that dim(S(Ξ, p)) = m and Mi,p are actually a basis of S(Ξ, p), since they are
linearly independent.

Example 2.4 (Di�erent types of B-spline basis functions). An example of B-spline
basis functions with di�erent degrees and continuities is shown in Figure 2.1:

(a) Ξ = {0, 0, 1/3, 2/3, 1, 1}, p = 1,m = 4 : C0-continuity at all inner knots,

(b) Ξ = {0, 0, 0, 1/3, 2/3, 1, 1, 1}, p = 2,m = 5 : C1-continuity at all inner knots,

(c) Ξ = {0, 0, 0, 1/3, 2/3, 2/3, 1, 1, 1}, p = 2,m = 6 : C0-continuity at ξ = 2/3 and
C1-continuity at ξ = 1/3,

(d) Ξ = {0, 0, 0, 0, 1/3, 2/3, 1, 1, 1, 1}, p = 3,m = 6 : C2-continuity at all inner
knots.

De�nition 2.5 (Derivative of a B-spline basis function). The derivative of a B-spline
basis function can be computed as follows:

d

dξ
Mi,p(ξ) = M ′i,p(ξ) =

p

ξi+p − ξi
Mi,p−1(ξ)− p

ξi+p+1 − ξi+1
Mi+1,p−1(ξ). (2.2)

As a consequence of the partition of unity, we obtain the following property for the
B-spline derivatives:

m∑
i=1

M ′i,p(ξ) = 0 for all ξ ∈ [ξi, ξi+1], for an arbitrary i-th knot-span.
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(d) Cubic C2 B-spline basis functions

Figure 2.1. Di�erent types of B-spline basis functions
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2.1. B-Splines

2.1.2 B-Spline Geometries

The use of B-splines to de�ne curves and surfaces for CAGD was �rst proposed by
Gordon and Riesenfeld [27], who realized that de Boor's recursive B-spline evaluation
was the natural generalization of the de Casteljau algorithm. Indeed, B-spline curves
include Bézier curves as a proper subset.

De�nition 2.6 (B-spline curve). A p-th degree B-spline curve is de�ned by

γ(ξ) =
m∑
i=1

Mi,p(ξ)ci, 0 ≤ ξ ≤ 1, (2.3)

where ci ∈ Rd, d ≥ 1, are the control points and Mi,p the p-th degree B-spline basis
functions de�ned on the open knot vector

Ξ = {0, . . . , 0︸ ︷︷ ︸
p+1

, ξp+2, . . . , ξm, 1, . . . , 1︸ ︷︷ ︸
p+1

}.

The polygon formed by the {ci}i=1,...,m is called control polygon.

Remark 2.7. A more general de�nition follows when the knot vector is given as
Ξ = {a, . . . , a︸ ︷︷ ︸

p+1

, ξp+2, . . . , ξm, b, . . . , b︸ ︷︷ ︸
p+1

}. Hence, γ(ξ) is de�ned for a ≤ ξ ≤ b.

The properties of B-spline curves follow from those given in Section 2.1.1 for the
B-spline basis functions. We list here some of them:

• γ(ξ) is a piecewise polynomial curve, since theMi,p(ξ) are piecewise polynomials,

• endpoint interpolation: γ(0) = c1 and γ(1) = cm,

• strong convex hull property: the B-spline curve is contained in the convex hull
of its control polygon,

• local modi�cation scheme: moving the control point ci changes γ(ξ) only in the
interval [ξi, ξi+p+1),

• the continuity and di�erentiability of γ(ξ) follow from the one of the Mi,p(ξ).
Thus γ(ξ) is in�nitely di�erentiable in the interior of knot intervals and it is at
least p− k times continuously di�erentiable at a knot of multiplicity k,

• the control polygon represents a piecewise linear approximation to the curve.
This approximation is improved by knot insertion and degree elevation (see
Section 2.3). As a general rule, the lower the degree, the closer a B-spline curve
follows its control polygon (see Figure 2.2(c)),

• variation diminishing property: each hyperplane in Rn has at most as many
intersections with the B-spline curve as with the control polygon.

Example 2.8. Some of the properties of a B-spline curve are shown in Figure 2.2.

(a) Given the knot vector Ξ = {0, 0, 0, 0, 1/7, 2/7, 3/7, 4/7, 5/7, 6/7, 1, 1, 1, 1}, a cu-
bic (p = 3) curve is constructed and one control point is moved. Note that exactly
four pieces of the curve changed and this is the maximum number of pieces that
can change if the curve is cubic.

9
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(a) Local modi�cation scheme (b) C0-continuity and interpolation of the control
point at a knot of maximum multiplicity

control points
control polygon
p=1
p=2
p=3
p=4

(c) B-spline curves of di�erent degree, using the same
control polygon

Figure 2.2. Properties of B-spline curves

(b) A quadratic (p = 2) curve with knot vector Ξ = {0, 0, 0, 1/3, 1/3, 2/3, 1, 1, 1} is
considered. Since the knot 1/3 has multiplicity 2, the curve is only C0-continuous
and the control point related to that knot is interpolated.

(c) Fixed a control polygon with 5 control points, 4 di�erent B-spline curves of degree
p = 1, 2, 3, 4, are represented. The knot vectors are respectively:

• p = 1 : Ξ = {0, 0, 1/4, 2/4, 3/4, 1, 1},
• p = 2 : Ξ = {0, 0, 0, 1/3, 2/3, 1, 1, 1},
• p = 3 : Ξ = {0, 0, 0, 0, 1/2, 1, 1, 1, 1},
• p = 4 : Ξ = {0, 0, 0, 0, 0, 1, 1, 1, 1, 1}.

For p = 1 the curve coincides exactly with the control polygon. Moreover, the
higher the degree, the further the curve moves away from the polygon.

De�nition 2.9 (B-spline surface). A B-spline surface is obtained by taking a bidirec-
tional net of control points {di,j} ⊂ Rd, d ≥ 2, two open knot vectors Ξ, H, and the
products of the univariate B-spline functions Mi,p(ξ), Nj,q(η):

Γ(ξ, η) =

m∑
i=1

n∑
j=1

Mi,p(ξ)Nj,q(η)di,j , (2.4)

10



2.2. NURBS

with

Ξ = {0, . . . , 0︸ ︷︷ ︸
p+1

, ξp+2, . . . , ξm, 1, . . . , 1︸ ︷︷ ︸
p+1

},

H = {0, . . . , 0︸ ︷︷ ︸
q+1

, ηq+2, . . . , ηn, 1, . . . , 1︸ ︷︷ ︸
q+1

}.

The control points {di,j}i=1,...,m, j=1,...,n form the control net (or control mesh).

The properties of the tensor product basis functions (called also bivariate tensor
product B-splines) follow from the corresponding properties of the univariate basis
functions:

• Mi,p(ξ)Nj,q(η) = 0 if (ξ, η) is outside the rectangle [ξi, ξi+p+1)× [ηj , ηj+q+1),

• in any given rectangle [ξi0 , ξi0+p+1)× [ηj0 , ηj0+q+1) at most (p+ 1)(q + 1) basis
functions Mi,p(ξ)Nj,q(η) are nonzero,

• nonnegativity: Mi,p(ξ)Nj,q(η) ≥ 0 for all i, j, p, q, ξ, and η,

• partition of unity:
∑m

i=1

∑n
j=1Mi,p(ξ)Nj,q(η) = 1 for all (ξ, η) ∈ [0, 1]× [0, 1],

• all partial derivatives of Mi,p(ξ)Nj,q(η) exist inside the interior of the rectangles
formed by the ξ and η knot lines, where the function is a bivariate polynomial.
At a ξ knot (η knot) it is p−k (q−k) times di�erentiable in the ξ (η) direction,
where k is the multiplicity of the knot.

The B-spline surfaces have the following properties:

• the surface interpolates the four corner control points: Γ(0, 0) = d1,1, Γ(0, 1) =
d1,n, Γ(1, 0) = dm,1, Γ(1, 1) = dm,n,

• strong convex hull property: the B-spline surface is in the convex hull of its
control net,

• local modi�cation scheme: changing the position of the control point di,j a�ects
the surface only in the rectangle [ξi, ξi+p+1)× [ηj , ηj+q+1),

• the continuity and di�erentiability of Γ(ξ, η) follow from the ones of the basis
functions. In particular, Γ(ξ, η) is p− k (q − k) times di�erentiable in the ξ (η)
direction at a ξ (η) knot of multiplicity k.

We remark here that there is no known variation diminishing property for B-spline
surfaces [48].

Although B-splines can represent a large number of curves and surfaces, important
types like circles are excluded. Therefore, we next extend the theory to rational piece-
wise polynomials which are better suited to conics.

2.2 NURBS

NURBS is an acronym that stands for nonuniform rational B-splines and describes
weighted B-splines over nonuniformly spaced knot vectors. They are important for
IGA because they contain rational polynomials which allow to exactly represent conic
sections like disks and spheres.

11
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-1 0 1
-1

0

1

Figure 2.3. Representation of a circle as a NURBS curve

De�nition 2.10 (NURBS basis function). The de�nition of NURBS basis functions
Ri,p is based on B-spline basis functionsMi,p on a knot vector Ξ and additional weights
ωi > 0, i = 1, . . . ,m :

Ri,p(ξ) =
Mi,p(ξ)ωi∑m
j=1Mj,p(ξ)ωj

, i = 1, . . . ,m. (2.5)

Note that if ωi is constant for all i, then Ri,p(ξ) = Mi,p(ξ), i.e., NURBS basis functions
reduce to B-splines.

As already seen for B-splines in the previous section, it's also possible to de�ne ge-
ometries using NURBS, such as NURBS curves and NURBS surfaces. To avoid rep-
etition, the de�nition of those geometries will not be presented here, but it can be
easily derived substituting the B-spline basis functions with the NURBS functions in
the formulae (2.3) and (2.4).

Furthermore, all the properties of the B-spline functions, curves and surfaces hold
when a NURBS geometry is considered.

Example 2.11 (A circle as a NURBS curve). A standard example used to illustrate
the advantages of NURBS is the exact representation of a circle. In Figure 2.3 a
circle of radius 1 is shown. The knot vector of the quadratic NURBS basis functions is
Ξ = {0, 0, 0, 1/4, 1/4, 1/2, 1/2, 3/4, 3/4, 1, 1, 1}, weights are ω =

{
1,
√

2/2, 1,
√

2/2, 1,√
2/2, 1,

√
2/2, 1

}
and control points of the curve are

{ci}i=1,...,9 = {(1, 0), (1, 1), (0, 1), (−1, 1), (−1, 0), (−1,−1), (0,−1), (1,−1), (1, 0)}.

2.3 Re�nements

An important property of the B-spline and NURBS geometries is the possibility to
re�ne them without changing the shape. In our IGA context, this is crucial when
we solve an equation on a domain de�ned by NURBS. Indeed, the geometry is �xed
and it cannot change. A re�nement of the mesh, in terms of knot vectors and control
points, leads to a better approximation of the solution. While in the modeling and
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2.3. Re�nements

animation �eld, it is important because, instead of drawing the curve (surface), the
control polygon (net) is drawn. The subdivision scheme consists in a re�nement of the
control polygon that tends to a limit curve.
There are di�erent types of re�nements, below we see them described and applied to
a B-spline curve.

Knot insertion (or h-re�nement)

As suggested by the name of this re�nement, an additional knot is inserted in the
given knot vector.
Given a p-th degree B-spline curve γ(ξ) de�ned on Ξ as in (2.3), let ξ̄ ∈ [ξk, ξk+1)
and insert it into Ξ to form the new knot vector Ξ̄. Then a new set of m + 1 basis
functions M̄i,p(ξ) is provided and the curve γ has a representation on Ξ̄ of the form

γ(ξ) =

m+1∑
i=1

M̄i,p(ξ)c̄i,

where {c̄i} is the new set of control points. The new control points c̄i are computed
as a linear combination of the original control points ci, by imposing the following
system of linear equations

m∑
i=1

Mi,p(ξ)ci =
m+1∑
i=1

M̄i,p(ξ)c̄i.

We then obtain the following formula for the construction of the new control points:

c̄i = αici + (1− αi)ci−1, (2.6a)

where

αi =


1, i = 1, . . . , k − p,
ξ̄ − ξk

ξk+p+1 − ξ̄
, i = k − p+ 1, . . . , k,

0, i = k + 1, . . . ,m+ 1.

(2.6b)

Note that only p new control points must be computed. Details on how to obtain (2.6)
can be found in [11, 20, 47]. It is important to notice that the knot insertion is just a
change of the B-spline space S(Ξ, p) into S(Ξ̄, p), the curve is not changed.

The above discussion of knot insertion holds for B-spline curves. But since a NURBS
curve can be seen as a projection of 3D B-spline curves to 2D, the knot insertion for
NURBS curves is done as follows. Given a NURBS curve of degree p with knot vector
Ξ, control points {ci = (xi, yi)}i=1,...,m, and weights {ωi}i=1,...,m, the knot insertion is
done in three steps.

(1) First we convert the given NURBS curve in 2D to a B-spline curve in 3D, i.e.,
we consider the B-spline curve of degree p with knot vector Ξ and control points
{(wixi, wiyi, wi)}i=1,...,m.

(2) We insert a knot ξ̄ into Ξ and, using the algorithm in (2.6), we compute the new
control points {(Xi, Yi,Wi)}i=1,...,m+1.

(3) We project the new set of control points back to 2D to form the new set of control
points and weights for the given NURBS curve after the required knot has been
inserted, i.e., the new control points are {c̄i = (Xi/Wi, Yi/Wi)}i=1,...,m+1 and
the new weights {ω̄i = Wi}i=1,...,m+1.

13
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(a) Control polygon and B-spline curve before
and after (dashed) the knot insertion
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(b) B-spline basis functions before (in black) and
after (colored and dashed) the knot insertion

Figure 2.4. Example of knot insertion

The same procedure is applied when ci ∈ Rd, d ≥ 3.

Some of the important uses of the knot insertion algorithm are:

• subdividing curves and surfaces,

• adding control points in order to increase the �exibility in shape control,

• evaluating points and derivatives on curves and surfaces.

Indeed this evaluation could be very expensive when done with recursion formulae,
such as de Boor's algorithm. With a subdivision scheme this evaluation is done on
the limit curve (surface) of a sequence of successive re�nements of the control polygon
(net).
In Figure 2.4(a) a cubic B-spline curve, with knot vector Ξ = {0, 0, 0, 0, 1/2, 1, 1, 1, 1}
and control points {ci}i=1,...,5 = {(2, 2), (3.5, 2.5), (3, 1), (5, 0), (6, 2)}, is constructed.
Then ξ̄ = 1/4 is inserted once, so that Ξ̄ = {0, 0, 0, 0, 1/4, 1/2, 1, 1, 1, 1}. The re�ned
control polygon contains

{c̄i}i=1,...,6 = {(2, 2), (2.75, 2.25), (3.375, 2.125), (3.5, 0.75), (5, 0), (6, 2)},

where exactly p = 3 points are new. Since 1/4 is in the knot-span [0, 1/2), this
re�nement is a�ecting only the basis functions that are de�ned on that interval (see
Figure 2.4(b)).

More knots can be inserted at the same time. Note that if the knot inserted is already
present in Ξ, then its multiplicity is increased and the continuity of the basis functions
will be reduced. However each unique internal knot value shall appear no more than
p times otherwise the curve becomes discontinuous.

Degree elevation (or p-re�nement)

This re�nement elevates the degree of the B-spline basis functions such that the global
smoothness is preserved.
Let γ(ξ) a p-th degree B-spline curve de�ned on Ξ as in (2.3). Since γ(ξ) is a piecewise
polynomial curve, it is possible to elevate its degree to p+ 1 such that

γ(ξ) =
m̄∑
i=1

M̄i,p+1(ξ)c̄i.

14



2.3. Re�nements

(a) Control polygon and B-spline curve before
and after (dashed) the degree elevation
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(b) B-spline basis functions before (in black) and
after (colored and dashed) the degree elevation

Figure 2.5. Example of degree elevation

In this re�nement m̄, Ξ̄, and the new set of control points {c̄i} have to be computed.
More precisely in order to maintain the same continuity at inner knots, the multiplicity
of all distinct knots has to be increased by one for the new knot vector Ξ̄.
For more details on the computation of the new control points we refer to [47].

As an example, we consider the same cubic B-spline curve used in the knot insertion
example. In Figure 2.5 a degree elevation is performed once. The new knot vector is
Ξ̄ = {0, 0, 0, 0, 0, 1/2, 1/2, 1, 1, 1, 1, 1} and the B-spline basis functions have now degree
p+ 1 = 4. The re�ned control polygon is

{c̄i}i=1,...,7 = {(2, 2), (3.125, 2.375), (3.375, 2.125),

(3.312, 1.062), (4.5, 0.25), (5.25, 0.5), (6, 2)}.

Unlike the knot insertion, the degree elevation is a�ecting all the basis functions and
all the control points, except (by de�nition) the �rst one, c1 = c̄1, and the last one,
cm = c̄m̄.

Remark 2.12. Knot insertion and degree elevation work also for multivariate B-
splines and NURBS due to the tensor product structure.

As already mentioned in Section 2.1.2, the control polygon represents an approxima-
tion to the corresponding curve. This approximation is improved when a re�nement is
performed. In Figure 2.6 we consider the same cubic B-spline curve with knot vector
Ξ = {0, 0, 0, 0, 1/2, 1, 1, 1, 1} as before and we apply di�erent re�nements.

• Figure 2.6(a): 5 knots are inserted into the knot vector Ξ. At the beginning 1/4,
then 1/4 together with 4/5 and at the end 1/2 with 2/3. The �nal knot vector
is Ξ̄ = {0, 0, 0, 0, 1/4, 1/4, 1/2, 1/2, 2/3, 4/5, 1, 1, 1, 1}.

• Figure 2.6(b): the degree elevation is applied 5 times in a row to the same curve.

We can observe that, when applying multiple knot insertions, the control polygon is
getting closer to the curve faster than when applying multiple degree elevations. This
is true only if the inserted knots are distributed enough along the initial knot vector.
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control points
control polygon
curve
1 knot insertion
3 knot insertions
5 knot insertions

(a) Multiple knot insertions

control points
control polygon
curve
1 degree elevation
2 degree elevations
3 degree elevations
5 degree elevations

(b) Multiple degree elevations

Figure 2.6. Successive re�nements (knot insertions on the left and degree elevations on
the right) are performed on the same curve. The control polygon better approximates
the curve after more re�nements.

k-re�nement

A series of knot insertions and degree elevations can also be carried out. It is important
to notice that the re�nement strategies do not commute, i.e., the order in�uences the
result. For this reason when a series of re�nements has to be done, it is better to
�rst perform the degree elevation and secondly the knot insertion, since in this way a
maximal continuity in the inner knots could be achieved. This di�erence is shown in
the following example. k-re�nement means that p-re�nements are carried out before
any h-re�nement steps.

Example 2.13 (Comparison of the combination of di�erent re�nement strategies).
With the example in Figure 2.7, we want to show that it is convenient to apply �rst
the degree elevation re�nements and then the knot insertions. We start with the linear
(p = 1) B-spline basis functions on the knot vector Ξ = {0, 0, 1, 1}.

(a) First we insert the knots 1/3 and 2/3 in the knot vector, secondly we elevate
the degree. This leads to Ξ̄ = {0, 0, 0, 1/3, 1/3, 2/3, 2/3, 1, 1, 1}. The �nal spline
space S(Ξ̄, 2) has degree 2, dimension m̄ = 7 and C0-continuity in the interior
knots.

(b) First we perform a degree elevation and then we insert the knots 1/3 and 2/3.
The �nal knot vector is Ξ̄ = {0, 0, 0, 1/3, 2/3, 1, 1, 1}. In this case the �nal spline
space S(Ξ̄, 2) has still degree 2, but dimension m̄ = 5 and C1-continuity in the
interior knots.
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p = 2 p = 2

(a) (b)

Figure 2.7. Comparison of a series of re�nements in di�erent order, when the starting
knot vector is the same. (a) Knot insertion followed by degree elevation results in
seven piecewise quadratic basis functions that are C0 at internal knots. (b) Degree
elevation followed by knot insertion results in �ve piecewise quadratic basis functions
that are C1 at internal knots.
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3
Isogeometric Analysis

The main idea of isogeometric analysis is to bridge the gap between CAGD and �-
nite element method (FEM). To do so the same functions for the description of the
geometry in the design process and for the structural analysis are employed. Thus
ensuring that the geometry in the analysis process is always exactly represented. The
key ingredient of IGA are spline basis functions and geometries, already introduced
in the previous chapter. Based on [17, 32], we introduce the main concept of IGA and
summarize the major properties.
In Section 3.1 we de�ne a boundary value problem in its strong form and we refor-
mulate it in the weak form. Moreover, with Galerkin's method we approximate the
space on which the analytical solution of the problem lives. In Section 3.2 we set the
basis functions for this approximation space that are obtained via a parametrization
of the domain on which we solve the problem. Finally, in Section 3.3 we use IGA to
solve Poisson's equation with Dirichlet boundary conditions on di�erent domains.

3.1 Strong and Weak Form of a Boundary Value Problem

We start here with the de�nition of a boundary value problem. We restrict our atten-
tion to linear elliptic partial di�erential equations (PDEs) of second order, in particular
to Poisson's equation.

De�nition 3.1 (Strong form of a boundary value problem). Let L be an operator
acting on an unknown function u : Ω ⊂ Rd → R and let f : Ω→ R be a given source
term. A boundary value problem is given in the strong form by

Lu = f in an open bounded domain Ω, (3.1a)

together with boundary conditions on the boundary ∂Ω

u = 0 on a Dirichlet boundary ∂ΩD ⊂ ∂Ω, (3.1b)

∂nu = 0 on a Neumann boundary ∂ΩN ⊂ ∂Ω, (3.1c)

where ∂ΩD ∩ ∂ΩN = ∅ and ∂ΩD ∪ ∂ΩN = ∂Ω.

Remark 3.2. For ease of presentation we have considered zero boundary conditions.
In a more general setting the boundary conditions can be written as follows:

u = gD on ∂ΩD,
∂nu = gN on ∂ΩN .
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In our model problem the operator L will be a linear uniformly elliptic di�erential
operator of second order.

De�nition 3.3 (Poisson's equation). Let Lu = div(∇u) =: ∆u be the Laplace opera-
tor acting on u, then Poisson's equation is given by

−∆u = f in Ω,
u = 0 on ∂ΩD,

∂nu = 0 on ∂ΩN .
(3.2)

On the boundary ∂Ω may rule Dirichlet boundary conditions on ∂ΩD or Neumann
conditions on ∂ΩN . We call u a classical solution if it satis�es (3.2) pointwise and is
an element of C2(Ω) ∩ C1(Ω̄) where Ω̄ is the closure of Ω. In case of ∂ΩD = ∂Ω, a
classical solution is a member of C2(Ω) ∩ C(Ω̄).

From now on we consider ∂ΩD = ∂Ω.

To �nd a solution to the above boundary value problem, we reformulate it through its
weak, or variational, form. The solution needs not satisfy the PDE pointwise anymore
but weakly in an integral over multiplications with test functions. The weak form will
also serve as a starting point for the discretization process.

De�nition 3.4 (Weak form of a boundary value problem). We say that u ∈ V is a
weak solution of the boundary value problem (3.1) if

u ∈ V : a(u, v) = l(v) ∀v ∈ V, (3.3)

where v are called test functions, the space V = H1
0 (Ω) := {v ∈ H1(Ω), v = 0 on ∂Ω}

is a Hilbert space consisting of all functions v ∈ L2(Ω) that possess weak and square-
integrable �rst derivatives and that vanish on the boundary, a(·, ·) : V × V → R is
the bilinear form associated to the operator L, and l(·) is a linear form de�ned as the
standard L2-scalar product, l(v) := 〈v, f〉.

To obtain the bilinear form a associated to L and thus the weak form of the problem,
we multiply the strong form with test functions from V and we use integration by
parts.

Example 3.5 (Weak form for Poisson's equation). Consider the strong form of Pois-
son's equation with zero Dirichlet boundary conditions{

−∆u = f in Ω,
u = 0 on ∂Ω.

To obtain the corresponding weak form, we consider a test function v ∈ V, we multiply
it by the strong form and we integrate over the domain Ω, i.e.,∫

Ω
−∆u v =

∫
Ω
f v.

Then integrating by parts and using the boundary conditions we obtain∫
Ω
∇u∇v =

∫
Ω
f v.

Poisson's problem in the weak form now reads:

�nd u ∈ V such that a(u, v) :=

∫
Ω
∇u∇v =

∫
Ω
f v =: l(v) ∀v ∈ V.
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3.1. Strong and Weak Form of a Boundary Value Problem

We now make some further assumptions and we introduce the properties of the bilinear
form that we need, to show that the weak equation has a solution.

De�nition 3.6. A bilinear form a : V × V → R on a Hilbert space V with norm || · ||
is

• bounded (or continuous) if there exists a constant M < ∞ such that a(u, v) ≤
M ||u|| ||v|| ∀u, v ∈ V ,

• coercive if there exists a constant α > 0 such that a(v, v) ≥ α||v||2 ∀v ∈ V,

• symmetric if a(u, v) = a(v, u) ∀u, v ∈ V.

The Lax-Milgram lemma is central to show whether elliptic partial di�erential equa-
tions can be uniquely solved.

Lemma 3.7 (Lax-Milgram lemma). For a Hilbert space V, a bounded, coercive bilinear
form a : V × V → R, and a linear functional l ∈ V∗, there exists a unique solution
u ∈ V of

a(u, v) = l(v) ∀v ∈ V. (3.4)

Proof. See [24, Theorem 1, pages 297�299].

For Poisson's boundary value problem in the Example 3.5, the norm of the space
V is the standard L2-norm on Ω, i.e. || · || := || · ||L2(Ω). Moreover we see that
|a(u, u)| = ||∇u||2 and by the Cauchy�Schwarz inequality |a(u, v)| ≤ ||∇u|| ||∇v||.
With Lemma 3.7 we conclude that Poisson's equation has a unique solution.

To solve the PDEs numerically, di�erent techniques are available and can be imple-
mented in an isogeometric framework, such as Galerkin's method, collocation methods
and so on. In this work we consider and present only the Galerkin approach. For col-
location methods in IGA we refer to [49].

3.1.1 Galerkin's Method

Galerkin's method consists of constructing a �nite-dimensional approximation of the
space V, denoted Vh. Strictly speaking, this will be a subset such that

Vh ⊂ V. (3.5)

We can now write a variational equation of the form of (3.3) also in the �nite-
dimensional space:

uh ∈ Vh : a(uh, vh) = l(vh) ∀vh ∈ Vh. (3.6)

The �nite-dimensional nature of the function space Vh leads to a coupled system of
linear algebraic equations. Indeed if K = dim(Vh) and Vh := span{φi : i = 1, . . . ,K},
then any function in Vh has a basis representation and in particular uh =

∑K
i=1 uiφi

with coe�cients ui ∈ R. Upon inserting uh into the weak form (3.6) and testing with
vh = φj for j = 1, . . . ,K, one obtains the linear system

Au = r, (3.7)

where u = (u1, . . . , uK)T is the vector of solution coe�cients, A is the sti�ness ma-
trix with entries Ai,j = a(φi, φj) for all i, j = 1, . . . ,K, and r is the right-hand side
vector with components ri = l(φi), i = 1, . . . ,K. Since the matrix A inherits the
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Chapter 3. Isogeometric Analysis

properties of the bilinear form a, it is straightforward to show that A is symmetric
positive de�nite, and thus the numerical solution u or uh, respectively, is well-de�ned.
Furthermore the assumptions for the Lax-Milgram Lemma 3.7 are also ful�lled, which
directly implicates the existence of a unique solution in Vh.

The assembling of the system and thus the choice of the space Vh will be shown
in the next section where the isogeometric approach is presented. In general, a basis
of locally supported functions is attractive. Indeed, we have that a(φi, φj) = 0 for
most i 6= j and so the linear system is sparse.

3.2 The Geometry Function

The root idea behind isogeometric analysis is that the basis used to exactly model
the geometry will also serve as basis for the solution space of the numerical method.
In CAGD and IGA the domain Ω ⊂ Rd of the problem (3.3) is parametrized by a
geometry function F, which maps a reference or parameter domain Ω0 ⊂ Rd onto the
physical domain Ω of the problem:

F : Ω0 → Ω, F(ξ) = x =

 x1
...
xd

 , (3.8)

see Figure 3.1. Below we will apply B-splines (or NURBS) to de�ne F, but for the
moment the geometry function is simply an invertible C1-mapping from the parameter
domain to the physical one. In our framework, d = 2 or d = 3 and Ω0 = [0, 1]d is the
unit square or unit cube, respectively. However, we have in general Ω0 ⊂ Rz, z ≤ d.
We stick in this work to z = d.

Since the problem is posed over the physical domain, it is necessary to use a change of
variables to state it over the parameter domain. Integrals over Ω can be transformed
into integrals over Ω0 by means of the following integration rule∫

Ω
ι(x) dx =

∫
Ω0

ι(F(ξ))|det DF(ξ)| dξ, (3.9)

where DF is the d× d Jacobian matrix, DF(ξ) = (∂Fi/∂ξj)i,j=1,...,d.

Q

0

1

Ω0 = [0, 1]2

1

η

ξ

F F(Q)

y

x

Ω

Figure 3.1. Parametrization of a physical domain Ω ⊂ R2. The parameter domain is
denoted by Ω0 and corresponds to the unit square [0, 1]2.
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3.2. The Geometry Function

Once the problem is solved over Ω0, it is then transported over Ω again through
F. It is common to call these operations push forward and pull back, i.e., we say that
an isogeometric map F between manifolds can pull back something to the parameter
domain Ω0 or push it forward onto the physical domain Ω. The mapping F is modi-
fying also the bilinear form a and the linear form l of the problem. It can be shown
that for û := u ◦ F ∈ V̂ := {v̂ ∈ H1(Ω0), v̂ = 0 on F−1(∂Ω)} a change of basis yields
equivalent weak formulations:

u ∈ V : a(u, v) = l(v) ∀v ∈ V (3.10)

⇐⇒ û ∈V̂ : â(F)(û, v̂) = l̂(F(v̂)) ∀v̂ ∈ V̂, (3.11)

where the transformed bilinear and linear forms are obtained via the rule in (3.9). Since
the Jacobian is bounded, the transformed operators are still bounded and coercive.
Thus, by Lax-Milgram, the transformed problem (3.11) has a unique solution û that
has the form û = u ◦ F.

From now on, we use the convention that a hatˆ indicates something de�ned on the
parameter domain Ω0.

Example 3.8 (Transformed weak form for Poisson's equation). As already seen in
the Example 3.5, the following Poisson's boundary value problem{

−∆u = f in Ω,
u = 0 on ∂Ω,

(3.12)

is equivalent to �nd u ∈ V such that∫
Ω
∇u · ∇v dx =

∫
Ω
f v dx ∀v ∈ V, (3.13)

where V = {v ∈ H1(Ω), v = 0 on ∂Ω}.
Next assume that a parametrization of Ω is available as in (3.8). For the di�erenti-
ation, the chain rule applied to u(x) = u(F(ξ)) =: û(ξ) yields, using a row vector
notation for the gradient ∇u,

∇x u(x) = ∇ξ û(ξ) ·DF(ξ)−1. (3.14)

Using the integration rule in (3.9), the integrals in the weak form (3.13) satisfy

a(u, v) =

∫
Ω
∇u · ∇v dx =

∫
Ω0

(∇ûDF−1) · (∇v̂DF−1) |det DF| dξ = â(F)(û, v̂)

(3.15)
and

l(v) =

∫
Ω
fv dx =

∫
Ω0

f̂ v̂ |det DF|dξ = l̂(F)(v̂). (3.16)

The weak form in the parametric coordinates is then∫
Ω0

(∇ûDF−1) · (∇v̂DF−1) |det DF| dξ =

∫
Ω0

f̂ v̂ | det DF| dξ . (3.17)

In IGA the geometry function F is expressed in terms of a spline geometry, here
we consider a bivariate tensor product B-splines for d = 2 and a trivariate one for
d = 3. Using the notation from the previous chapter we can write for the case d = 2
(corresponding to the one in Figure 3.1)

F(ξ, η) =
m∑
i=1

n∑
j=1

Mi,p(ξ)Nj,q(η)di,j , (3.18)
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Chapter 3. Isogeometric Analysis

where di,j ∈ R2 are the control points forming the control net associated to the
parametrization. We remind that, in order to work with the unit square as parameter
domain, the knot vectors Ξ and H are open, ξ1 = · · · = ξp+1 = 0 and ξm+1 = · · · =
ξm+p+1 = 1, analogously η1 = · · · = ηq+1 = 0 and ηn+1 = · · · = ηn+q+1 = 1.

In d = 3 dimensions a trivariate tensor product B-splines is generated analogously,
which results in

F(ξ, η, θ) =

m∑
i=1

n∑
j=1

l∑
k=1

Mi,p(ξ)Nj,q(η)Lk,r(θ)di,j,k (3.19)

with an additional set of univariate B-splines Lk,r and control points di,j,k ∈ R3. The
same treatment seen for Ξ and H will be considered for the knot vector Θ , i.e. Θ is
open, θ1 = · · · = θr+1 = 0 and θl+1 = · · · = θl+r+1 = 1.

When applying Galerkin's method, the isogeometric analysis uses as basis functions
for the �nite-dimensional space the spline functions that describes F. The space Vh is
then spanned by the push-forward of the spline basis functions of the geometry func-
tion F onto the physical domain Ω. On the parameter domain the �nite-dimensional
space is spanned by V̂h = span {ψi}i=1,...,K , where ψi = Mj,pNk,q in the planar case
and ψi = Mj,pNk,qLω,r in the spatial case. The total number of degrees of freedom
(DoF) is accordingly K = mn or K = mnl, respectively. Then for the physical domain
we obtain

Vh = span{φi}i=1,...,K with φi = ψi ◦ F−1.

The projection step of Galerkin's method then boils down to inserting ûh =
∑
ûiψi

and v̂h = ψj , j = 1, . . . ,K, into the weak form

ûh ∈ V̂h : â(F)(ûh, v̂h) = l̂(F(v̂h)) ∀v̂h ∈ V̂h. (3.20)

3.2.1 Assembling the System

It is now clear that the spline functions span the �nite-dimensional space in IGA. As
already seen in Section 3.1.1, the variational equation in the �nite-dimensional space
leads to the linear system (3.7). It is important to notice that the sti�ness matrix
A is sparse. Thus, for many combinations of i and j in the K ×K sti�ness matrix,
Ai,j = a(φi, φj) = 0. This is an outcome of the properties of the spline functions seen
in the previous chapter, that is the maximum number of functions with support on
any given element (knot-span, rectangle and so on) is always �xed by the order of the
polynomial. So for each element in the patch, the maximum number of functions that
are not identically equal to zero throughout the patch is the same regardless of which
element is under consideration. Let us denote this number of local shape functions by
ne. We build a ne×ne element sti�ness matrix, Ae, by posing a problem over a single
element. This matrix is dense and it is common to call it local sti�ness matrix.
The process of building the global sti�ness matrix and the right-hand side vector is
called assembly. Instead of looping through all of the global functions, taking global
integrals to build A one entry at a time, we will loop through the elements, building
local sti�ness matrices as we go. Every entry of each of these local sti�ness matrices
will then be added to the appropriate spot in the global one. In this way we need not
expend e�ort integrating functions over regions in which we know a priori that they
are zero.
The actual computation of each entry of the local sti�ness matrix and of the right-
hand side vector is performed by quadrature rules. A Gaussian quadrature rule is
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3.2. The Geometry Function

used to compute numerical integration. We refer to [31, 33] for additional details on
numerical integration.

Once Galerkin's method has been applied and an approximation uh has been obtained,
it is fair to query how good the approximation is.

3.2.2 A Priori Error Estimates

We use some abbreviations for the standard norms

|| · ||∞ := ess sup
x∈Ω

| · (x)|,

|| · || := || · ||L2(Ω) =

(∫
Ω
| · (x)|2 dx

)1/2

,

|| · ||E :=
√
a(·, ·), the energy norm,

|| · ||p := || · ||Hp(Ω),

where Hp(Ω) is a Sobolev space de�ned as the subset of functions f ∈ L2(R) such
that f and its weak derivatives up to order p have a �nite L2-norm. For more details
on Sobolev spaces see [12].
For boundary value problems with su�ciently regular exact solution and data, stan-
dard error estimates from FEM ([38, 57]) are also valid for IGA:

||u− uh||E ≤ Chp+1−m ||u||p+1, (3.21)

||u− uh|| ≤ Chσ ||u||p+1, (3.22)

where σ = min {p+ 1, 2(p+ 1−m)}, 2m is the order of the di�erential operator L
from which a(·, ·) is derived, and p is the degree of the B-spline/NURBS basis functions
considered.
Since we consider L as a linear uniformly elliptic di�erential operator of second order
we have m = 1 and σ = min {p+ 1, 2p} = p+ 1, thus

||u− uh||E ≤ Chp ||u||p+1, (3.23)

||u− uh|| ≤ Chp+1 ||u||p+1. (3.24)

The technical details of the process to obtain these error estimates in isogeometric
analysis can be found in [6, 19], where they prove a sequence of lemmas leading up
to an approximation result that includes also the gradient DF of the mapping. The
term depending on the geometry function presents no problem because it does not
change as the mesh is re�ned and thus does not a�ect the rate of the convergence.
Without going through all the lemmas proved in [6], we recall here the �nal result for
the global error estimate. Let k and l be integer indices such that 0 ≤ k ≤ l ≤ p+ 1,
and let u ∈ H l(Ω), then

nel∑
e=1

|u−Πku|2Hk(Ωe) ≤ C
nel∑
e=1

h2(l−k)
e

l∑
i=0

||DF||2(i−l)
∞ |u|2Hi(Ωe), (3.25)

where Πku is the optimal interpolate and he is the element size in the physical domain.
The constant C depends on p and the shape (but not size) of the domain Ω, as well
as on the shape regularity of the mesh.
So the isogeometric analysis solution obtained using NURBS of degree p has the
same order of convergence as we would expect in a FEM setting using classical basis
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Chapter 3. Isogeometric Analysis

functions with a polynomial of degree p. This is a strong result and it is independent
of the order of continuity that the mesh possesses. Indeed in the following section an
L-shape geometry with di�erent parametrizations will be considered. It will be evident
that, even though the continuity of the meshes is di�erent, the order of convergence
results the same.

3.3 Examples

In this section we consider two di�erent geometries, an L-shape and a disk. On both of
them Poisson's equation with zero Dirichlet boundary conditions is going to be solved
with the standard Galerkin isogeometric analysis. We solve the partial di�erential
equation by an extension of the ISOGAT package [63].
We recall here the problem: {

−∆u = f in Ω,
u = 0 on ∂Ω.

(3.26)

3.3.1 L-Shape

We consider a B-spline surface, as in (2.4), with p, q = 2, knot vectors

Ξ = {0, 0, 0, 1, 1, 1}
H = {0, 0, 0, 0.5, 0.5, 1, 1, 1},

and control points

{(−1.00, 1.00) (−1.00, 0.00) (−1.00,−1.00) (0.00,−1.00) (1.00,−1.00);
(−0.60, 1.00) (−0.55, 0.00) (−0.50,−0.50) (0.00,−0.55) (1.00,−0.60);
(0.00, 1.00) (0.00, 0.50) (0.00, 0.00) (0.50, 0.00) (1.00, 0.00)}.

The surface generated, our physical domain Ω, is represented in Figure 3.2 (right).

We consider as right-hand side the function

f = 2π2 sin (πx) sin (πy).

The analytical solution of (3.26) is then

u(x, y) = sin (πx) sin (πy).

The re�nements in the ISOGAT code are performed by using the knot insertion tech-
nique and they are restricted to global h-re�nement. So in the middle of each nonempty
knot-span a knot is inserted and the new control points are calculated. See Figure 3.3
for the control points on the L-shape domain after one re�nement. In Figure 3.4 the
approximate solution and the distribution of the absolute error after two re�nements
are shown. Such an error plot, however, contains little information on the conver-
gence of the method. In order to study the convergence and the quality of di�erent
parametrizations, we introduce another geometry map that generates the same L-
shape as B-spline surface. This time we construct a parametrization that is globally
C1-continuous, note indeed that the �rst parametrization had a C0-edge in the interior
of the domain, the one connecting the corners (−1,−1) and (0, 0). To do so we change
the knot vector H into {0, 0, 0, 0.5, 1, 1, 1} and the control points into

{(−1.00, 1.00) (−1.00,−1.00) (−1.00,−1.00) (1.00,−1.00);
(−0.65, 1.00) (−0.70, 0.00) (0.00,−0.70) (1.00,−0.65);
(0.00, 1.00) (0.00, 0.00) (0.00, 0.00) (1.00, 0.00)},
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Figure 3.2. Geometry description of the L-shape: control point grid (left), physical
domain with image of the knot lines (right)
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Figure 3.3. Geometry description of the L-shape after one global h-re�nement: control
point grid (left), physical domain with image of the knot lines (right)
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Figure 3.4. Numerical solution (left) and absolute error (right) after two re�nements
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Figure 3.5. Geometry description of the L-shape in order to get a globally C1-
continuous parametrization: control point grid (left), physical domain with image of
the knot lines (right).

see Figure 3.5 for the new control point grid.

To compare the two parametrizations we �rst calculate the energy norm

||uh||E =
√

uTAu

of the numerical approximation. In Figure 3.6(a) we have plotted the energy norm
for several re�nement steps versus the mesh size h. In the numerical simulation we
consider h as one over the square root of the number of degrees of freedom, i.e.,

h = (#DoF)−1/2. (3.27)

Both numerical solutions tend to the same maximum value when re�ning the grids.
This con�rms the theoretical result that ||uh||E → ||u||E from below for any conver-
gent Galerkin projection method [31]. As seen in the previous section, the convergence
estimates feature a factor depending on the geometry function F, i.e. the parametriza-
tion has an in�uence on the accuracy. We can observe that the �rst parametrization
behaves better especially in the case of coarse meshes with bigger mesh size. This is
also con�rmed by Figure 3.6(b), where we have plotted the L2-error norm ||u−uh|| of
both parametrizations for several re�nement steps. As expected both the geometries
show optimal convergence rates of order three for the global L2-error. However, the
error is slightly smaller in the C0-parametrization.
As another measure of the parametrization quality we can consider the condition
number of the sti�ness matrix. Figure 3.7 shows the behavior of the condition num-
ber of the sti�ness matrix arising from the two parametrizations. When decreasing
the mesh size, the �rst parametrization demonstrates the lowest condition number
with a growth rate of 1/h2. While the second parametrization has bigger condition
numbers with a growth rate of 1/h3. This is an e�ect of the two singularities in the
corner (−1,−1) and (0, 0) of the second parametrization, as depicted in Figure 3.8.
There the determinant of the Jacobian of the geometry function has been plotted.
This comes from the fact that these two control points are present in the control net
with multiplicity two.

3.3.2 Unit Disk

The disk geometry belongs to the class of conic intersections that can only be described
by rational splines and not by polynomial splines. We consider a disk that has radius
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Figure 3.6. Comparison of the two di�erent parametrizations for the L-shape domain:
on the left the energy norm ||uh||E and on the right the L2 error norm ||u− uh||
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parametrizations for the L-shape geometry: on the left the �rst parametrization, on
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(a) Control point grid as de�ned at the �rst iteration
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(b) Control point grid at the second iteration. An h-re�nement has been performed.

Figure 3.9. Geometry description of the disk: control point grid (left), physical domain
(right)

1 and is centered in (0, 0). This unit disk can be described using a NURBS surface
with p, q = 2, knot vectors

Ξ = {0, 0, 0, 1, 1, 1},
H = {0, 0, 0, 1, 1, 1},

weights ω = {1,
√

2/2, 1,
√

2/2, 1,
√

2/2, 1,
√

2/2, 1} and control points

{(−1, 0) (−1,−1) (0,−1);
(−1, 1) (0, 0) (1,−1);
(0, 1) (1, 1) (1, 0)},

as in Figure 3.9(a) (left). The physical domain Ω is represented in Figure 3.9(a) (right).
The control point grid after one global h-re�nement is depicted in Figure 3.9(b) (left).
We consider as right-hand side function f = 1, then the analytical solution of (3.26)
is

u(x, y) =
1− x2 − y2

4
.

The numerical solution and the absolute error after two re�nements are shown in
Figure 3.10, while in Figure 3.11 the energy norm, the L2-error norm and the condition
number of the sti�ness matrix are plotted for several re�nement steps. Also in this
case the L2-error norm has the expected order 3. Another noticeable aspect are the
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Figure 3.10. Numerical solution (left) and absolute error (right) on the disk after two
re�nements when right-hand side function f = 1

four singularities of the Jacobian DF that arise for this particular geometry function
(see the determinant of the Jacobian in Figure 3.12). The singularities lie on the
circle line and are marked by black dots in Figure 3.9(a) on the right. However, in
our numerical simulations, the quadrature for evaluating the integrals of the weak
form associated to (3.26) remained stable and did not su�er from the singularities,
even in close proximity. Indeed the Gauss-Legendre quadrature uses as quadrature
points only points inside the parameter domain [1]. Hence, since the singularities lie
on its boundary, they do not a�ect the quadrature. Due to these four singularities the
condition number grows with rate 1/h3 (Figure 3.11(b)).

We now change the right-hand side function

f = 3π

(
2 sin

(
3

2
πR

)
+ 3πR cos

(
3

2
πR

))
, with R = x2 + y2. (3.28)

The analytical solution is then

u(x, y) = cos

(
3

2
πR

)
.

The numerical solution and the absolute error after three re�nements are shown in
Figure 3.13, while in Figure 3.14 the energy norm, the L2-error norm and the condition
number of the sti�ness matrix are plotted with respect to the size h of the mesh. As
expected the order of convergence of the L2-error norm is 3 (Figure 3.14(b)). Since
we only changed the right-hand side function, the condition number of the sti�ness
matrix is the same and it increases as in Figure 3.11(b).
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Figure 3.11. Energy norm ||uh||E , L2-error norm ||u − uh|| and condition number of
the sti�ness matrix for the disk geometry when right-hand side function f = 1
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Figure 3.13. Numerical solution (left) and absolute error (right) on the disk after three
re�nements when right-hand side function f as in (3.28)
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4
Scaled Boundary Isogeometric Analysis

In isogeometric analysis the parametrization of the computational domain plays a
crucial role. In Chapter 3 we have seen how this parametrization can be written using
tensor product B-splines. In this chapter we introduce a class of parametrizations that
can be viewed as a generalization of classical polar coordinates, the scaled boundary
parametrizations (SB-parametrizations). These are easy to construct and especially
attractive if only a boundary description of the domain is available. Indeed, classically,
objects in CAGD are de�ned by a boundary representation (B-Rep), where only the
surfaces of the objects with their corresponding edges and nodes are stored. In order
to construct the interior mesh, it appears then easier and faster to build a beam of
rays from the surface to a center previously chosen. Based on this parametrization
we introduce the scaled boundary isogeometric analysis (SB-IGA). Our approach is
inspired by the scaled boundary �nite element method (SB-FEM) [55, 56] and its
extension to IGA [13, 39, 43], which both rely on the B-Rep format in CAGD [58].
Moreover we explain the relation between the standard Galerkin-based IGA, presented
in the previous chapter, and the SB-IGA. The majority of what will be discussed in
the next sections can be found also in [2].
In Section 4.1 we present the SB-parametrizations and we observe an important prop-
erty, the multiplicative structure of their Jacobian. Then, in Section 4.2 we present
the scaled boundary isogeometric analysis. Considering an SB-parametrization as ge-
ometry function also in the standard IGA, we compare the two methods at a weak
analytical level and at a discrete level for a linear problem. Furthermore, we state
an equivalence theorem between the two approaches. Afterwards, in Section 4.3 we
analyze the singularity in the scaling center. We conclude the chapter with some
numerical examples in Section 4.4. We solve Poisson's equation with zero Dirichlet
boundary conditions with SB-IGA on di�erent star-shaped domains. We consider and
compare the numerical results for di�erent SB-parametrizations.

4.1 Scaled Boundary Parametrizations

In this section we introduce the idea behind a scaled boundary parametrization and
we show some of its properties.

As seen in Section 3.2, the goal of a parametrization is to �nd a geometry function
F that goes from a parameter domain Ω0, typically the unit square or the unit cube,
into the physical domain Ω ⊂ Rd, d = 2, 3.

We consider now the case d = 2, so Ω ⊂ R2 and Ω0 = [0, 1]2. An SB-parametrization
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0

1

Ω0 = [0, 1]2

1

η

ξ

F

η

Ω

ξ

x0

γ

γ

Figure 4.1. Scaled boundary parametrization of a physical domain Ω ⊂ R2, where
only the boundary curve γ is available. The parameter domain is denoted by Ω0 and
corresponds to the unit square [0, 1]2.

can be constructed as follows. We �rst assume that Ω is a star-shaped domain and
that only its boundary is available. This is described by a B-spline curve γ

γ(η) :=
n∑
j=1

Nj,q(η)cj , (4.1)

where Nj,q are the univariate B-splines of degree q with open knot vector

H = {0, . . . , 0︸ ︷︷ ︸
q+1

, ηq+2, . . . , ηn, 1, . . . , 1︸ ︷︷ ︸
q+1

}.

We require also η ∈ [0, 1] for the independent variable and we consider a closed curve
with γ(0) = γ(1). This can be achieved by an open knot vector and control points
c1 = cn.

Next, we pick a point x0 ∈ Ω, the scaling center, from which all points inside the
domain are visible and we connect it with the boundary through rays that emanate
from it, see Figure 4.1. A ray from the scaling center to a control point cj can be
parametrized as

(1− ξ)x0 + ξcj , ξ ∈ [0, 1]. (4.2)

Replacing the control point cj by any point on the boundary curve (4.1), we obtain,
by the partition of unity,

(1− ξ)x0 + ξγ(η) = (1− ξ)
n∑
j=1

Nj,q(η)x0 + ξ

n∑
j=1

Nj,q(η)cj

=
2∑
i=1

n∑
j=1

Mi,1(ξ)Nj,q(η)di,j = F(ξ, η), (4.3)

where M1,1(ξ) = 1 − ξ, M2,1(ξ) = ξ are the linear B-splines depending only on the
parameter ξ and di,j are control points de�ned as d1,j := x0, d2,j := cj , j = 1, . . . , n.

The bivariate parametrization F(ξ, η) maps the unit square to the physical domain
with multiple control point d1,j := x0, j = 1, . . . , n, in the scaling center and the other
control points d2,j := cj , j = 1, . . . , n, inherited from the boundary curve. That is to
say, the left vertical edge of the unit square collapses into the scaling center, while the

36



4.1. Scaled Boundary Parametrizations

right vertical edge is mapped into the boundary, see Figure 4.1. The lower and upper
edges are mapped inside the domain as the same ray from the scaling center to the
curve. In order to solve an equation on this parametrized domain, it will be necessary
to impose some periodic conditions along this ray.
Note that the geometry function in (4.3) features the same structure of the geometry
function expressed in terms of a bivariate tensor product B-splines in (3.18), where
only m = 2 linear B-splines are considered in the ξ-direction and n B-splines in the
η-direction. The ξ-direction is also called scaling or radial direction.

In some cases it will be advantageous to write the geometry function in a more compact
form:

F(ξ, η) = x0 + ξ(C ·N(η)− x0), (4.4)

where the matrix C := (c1, . . . , cn) ∈ R2×n contains the control points of the bound-
ary curve and for all η the vector N(η) := (N1,q(η), . . . , Nn,q(η))T ∈ Rn the B-splines.
This compact form is the usual notation for the geometry function in the SB-IGA
[14, 15, 43].

Finally, we extend the bivariate spline parametrization in (4.3) and we apply both
knot insertion and degree elevation in the radial direction, which maintain the rays
that emanate from the scaling center but leads to a more general formulation

F(ξ, η) =

m∑
i=1

n∑
j=1

Mi,p(ξ)Nj,q(η)d̄i,j . (4.5)

The multiple control point in the scaling center is still present here, i.e., d̄1,j = x0 for
j = 1, . . . , n, and for the control points of the boundary curve d̄m,j = cj , j = 1, . . . , n.
The other extra control points d̄i,j , i = 2, . . . ,m− 1, j = 1, . . . , n, are computed from
the steps of knot insertion and degree elevation seen in Section 2.3. In this way, we
obtain a �ner parametrization that still preserves the scaled boundary idea and it
possesses a discretization in both ξ and η that can be used as isogeometric mesh for
a numerical simulation.

For the case d = 3 the construction of the geometry function with a scaled boundary
parametrization is quite similar. We now have Ω a star-shaped solid and the unit cube
as a parameter domain, Ω0 = [0, 1]3, and only the surface of the solid is given. This is
parametrized by a B-spline surface

Γ(η, θ) :=

n∑
j=1

l∑
k=1

Nj,q(η)Lk,r(θ)dj,k, (4.6)

where now dj,k are control points in R3. Following the same steps of the case d = 2
we obtain

F(ξ, η, θ) = (1− ξ)x0 + ξ Γ(η, θ) =
2∑
i=1

n∑
j=1

l∑
k=1

Mi,1(ξ)Nj,q(η)Lk,r(θ)di,j,k, (4.7)

where x0 ∈ R3 and di,j,k ∈ R3 are the new control points de�ned as d1,j,k = x0 ∀j, k,
and d2,j,k = dj,k, j = 1, . . . , n, k = 1, . . . , l. So the scaling center is always a multiple
control point.
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Also in this case it is possible to write a general formulation after re�ning the mesh
in the scaling direction. We obtain then

F(ξ, η, θ) =
m∑
i=1

n∑
j=1

l∑
k=1

Mi,p(ξ)Nj,q(η)Lk,r(θ)d̄i,j,k, (4.8)

with d̄1,j,k = d1,j,k = x0 ∀j, k, and d̄m,j,k = d2,j,k, j = 1, . . . , n, k = 1, . . . , l. The
other control points d̄i,j,k, i = 2, . . . ,m − 1, j = 1, . . . , n, k = 1, . . . , l, are derived
from the algorithms of knot insertion and degree elevation.

For more details and examples of SB-IGA for the three-dimensional case we refer
to [15].

We now want to study the regularity and smoothness of the SB-parametrization.
For this purpose, it is convenient to consider the compact form in (4.4). The Jacobian
of the geometry function reads

DF(ξ, η) = (C N(η)− x0 | ξC N′(η)) =

(
C1 N(η)− x0,1 C1 N′(η)

C2 N(η)− x0,2 C2 N′(η)

) (
1 0

0 ξ

)
.

(4.9)
Here we used the notation C1 := C(1, :) ∈ R1×n and C2 := C(2, :) ∈ R1×n for the
�rst and for the second row of C, respectively. Furthermore xT0 = (x0,1, x0,2) and the
derivative with respect to η is written as N′ = ∂N/∂η.
The determinant of the Jacobian is given by

det DF(ξ, η) = ξ J(η), (4.10)

where

J(η) := C1 N(η) C2 N′(η)−x0,1 C2 N′(η)−C1 N′(η) C2 N(η)+x0,2 C1 N′(η). (4.11)

We observe a multiplicative structure in the Jacobian. This allows a direct analysis
of the parametrization in terms of regularity and smoothness. Clearly, in the scaling
center where ξ = 0, the parametrization F becomes singular. For the derivative in
η-direction, we have ∂F(ξ = 0, η)/∂η = 0. It is possible to determine the smoothness
and the regularity of the parametrization directly from the ones of the boundary
curve. If γ is of class Ck, then F is of class Ck as well. If γ possesses points of reduced
smoothness, e.g. its knot vector has a multiple knot such that a certain control point
cj lies on the curve, then the ray (1−ξ)x0 +ξcj , ξ ∈ [0, 1], which runs from the scaling
center to cj , will maintain the smoothness and it will form a C0-edge in the interior.
Furthermore, if γ is injective, the parametrization will also be injective except for the
scaling center.

We remark that the boundary curve, as well as the boundary surface in the case d = 3,
could be expressed in terms of NURBS basis functions, instead of B-splines. The con-
struction of a scaled boundary parametrization when NURBS are considered stays
the same. Moreover, all the properties discussed so far, including the multiplicative
structure of the Jacobian, are preserved. The so-called multi-degree polar splines have
been introduced to circumvent the singularity in the scaling center [61]. That frame-
work, however, leads to a di�erent type of splines, while we stick here to standard
tensor product B-splines.
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4.2 Scaled Boundary IGA and Galerkin-Based IGA

In the previous chapter we have seen how the standard IGA proceeds to solve a partial
di�erential equation. In the �rst step the weak form of the problem is obtained from
the strong form using a test function and the integration by parts. When considering
a domain whose parametrization is a scaled boundary parametrization, it is possible
to derive the weak form in another way. In the context of IGA, this leads to the scaled
boundary isogeometric analysis.

As seen in Section 4.1, an SB-parametrization presents two independent variables (or
three in the case d = 3). Using the terminology of the polar coordinates, the variable
η de�nes the so-called angular or circumferential direction, while the variable ξ de�nes
the scaling or radial direction. For ξ = 1 the variable η describes exactly the boundary
curve. The idea of the scaled boundary isogeometric analysis is to derive the �nal weak
form in two steps. In the �rst step a Galerkin projection is considered with respect
to the circumferential coordinate η, that is the weak form is derived from the strong
form only in the η-direction and so the test function will depend only on η and the
integration is only performed with respect to η as well. Then, the weak form is also
considered in the ξ-direction.

In this section we consider a scaled boundary parametrization F, as in 4.4, and we
use it in the standard IGA and in the SB-IGA as geometry function. Besides how the
weak form is derived, another di�erence between these two methods is the moment
when the transformation F is used. For standard IGA the transformation F is applied
to the weak form, while in the SB-IGA to the strong form at the beginning. More
details will be shown later.

For the ease of presentation, we consider, as model problem, Poisson's equation with
zero Dirichlet boundary conditions (see Example 3.8 for the de�nition of the problem
in the strong and weak forms and its transformation under F). However, our results
can be generalized to linear elliptic PDEs with the usual properties of coercivity and
continuity. For our purposes, it is now advantageous to adopt a general viewpoint from
di�erential geometry, where the Laplace operator is extended to operate on functions
de�ned on surfaces in Euclidean space and on Riemannian manifolds, see Berger [10].
We de�ne the metric tensor or �rst fundamental form

g(ξ) := DF(ξ)TDF(ξ), (4.12)

which has determinant det g = (det DF)2. The transformed weak form from (3.17)
then reads ∫

Ω0

∇ûg−1(∇v̂)T |det g|1/2 dξ =

∫
Ω0

f̂ v̂ |det g|1/2 dξ (4.13)

for test functions v̂ = v◦F. In terms of regularity and smoothness, the parametrization
F is here required to be of class C1 and to be injective almost everywhere, which means
that singularities in sets of measure zero, such as points, are admitted.
Corresponding to the weak form (4.13), there is a strong form that makes use of the
Laplace�Beltrami operator. Like the standard Laplacian, this operator is de�ned as
the divergence of the gradient in parametric coordinates, and it reads

∆ξû = |det g|−1/2
d∑

k=1

∂

∂ξk

(
|det g|1/2∇ûg−1

)
. (4.14)

Note that ∆ξ is typically used to express PDEs on surfaces as in [21], but its de�nition
holds for any kind of parametric coordinates.
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−∆u = f in Ω

−∆ξû = f̂ in Ω0

∫
Ω∇u · ∇v dx =

∫
Ω fv dx ∀v ∈ V

∫
Ω0
∇ûg−1(∇v̂)T |det g|1/2 dξ =

∫
Ω0
f̂ v̂ |det g|1/2 dξ ∀v̂ = v ◦ F ∈ V̂

F−1

F

F−1

F

Figure 4.2. From the problem in the strong form in Cartesian coordinates (top corner),
we derive the weak form in parametric coordinates (bottom corner) with two di�erent
approaches: in blue the route taken by standard IGA (approach (a)), in green the one
by SB-IGA (approach (b)).

For the strong form of Poisson's equation with respect to the metric g and expressed
in the coordinates ξ, this implies the representation

−∆ξû = f̂ in Ω0, (4.15a)

i.e.,

−
d∑

k=1

∂

∂ξk

(
| det g|1/2∇ûg−1

)
= |det g|1/2f̂ in Ω0. (4.15b)

Obviously, the Laplace�Beltrami operator takes into account twice-di�erentiable func-
tions, so the parametrization F now has to be of class C2 and injective almost every-
where, in order to hold in all Ω0.

Based on this general framework provided by di�erential geometry, there are two ways
to derive the weak form (4.13) in parametric coordinates ξ. We start with the strong
form (3.12) in Cartesian coordinates x, then we have the following choices.

(a) First, we derive the weak form in x (3.13) and then we apply the transformation
to it, obtaining the weak form in ξ (4.13).

(b) First, we apply the transformation to the strong form to get the strong form in
parametric coordinates ξ (4.15). Then we proceed with the weak form (4.13).

The two approaches are summarized in Figure 4.2. Option (a) is the approach taken
in the standard Galerkin-based IGA, while option (b) is the one taken by the scaled
boundary IGA. In the latter, as already said, the weak form will not be considered
directly in all independent variables, but it is split into two steps, with the �rst one
along the angular direction and the second one in the scaling direction. From a the-
oretical point of view, both (a) and (b) lead to the same weak form in parametric
coordinates. Moreover, we remark that IGA for Poisson's boundary value problem
(3.12) can be interpreted as solving the transformed PDE (4.15) with the Laplace�
Beltrami operator on the unit square or unit cube.

Also the discretization on the �nite-dimensional space Vh is done in di�erent ways.
In the standard IGA a Galerkin projection is applied to the weak form 4.13. While in
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the SB-IGA we �rst consider a discretization of the weak form in η, that generates an
ODE in ξ, and then we apply a second discretization to the weak form in ξ. Anyway
both discretization approaches leads to a linear system, as seen in Section 3.1.1.

In the following, we analyze the two approaches in details. We will assemble the sti�-
ness matrices of the linear systems and we will observe that the SB-parametrization
leads to a sti�ness matrix which is the tensor product of low-rank structures. Our pur-
pose is to state a theorem about the equivalence of the two discretization approaches.

4.2.1 Galerkin-Based IGA

We consider Ω in the case d = 2 parametrized by the geometry function F, as given in
(4.4), and Jacobian DF, as in (4.9). When writing the weak form from the Cartesian
coordinates (x, y) to the parametric coordinates (ξ, η), we need the inverse of the
metric tensor g de�ned in (4.12). We obtain

g−1(ξ, η) =DF−1(ξ, η)DF−T (ξ, η)

=
1

(det DF)2

(
ξ 0

0 1

)(
bT1 (η)

bT2 (η)

)(
b1(η) | b2(η)

)(ξ 0

0 1

)

=
1

J(η)2

(
bT1 (η)b1(η) bT1 (η)b2(η)/ξ

bT2 (η)b1(η)/ξ bT2 (η)b2(η)/ξ2

)
,

(4.16)

where

bT1 (η) := (C2N
′(η), −C1N

′(η)), bT2 (η) := (−C2N(η) + x0,2, C1N(η)− x0,1).
(4.17)

Then inserting (4.16) into (4.13), the left-hand side becomes, omitting the arguments
ξ, η for a compact notation,∫

Ω0

∇ûDF−1 DF−T (∇v̂)T |det DF|dξdη =

=

∫ 1

0

∫ 1

0

1

J

(
ξ ûξ v̂ξ bT1 b1 + ûηv̂ξ bT2 b1 + ûξ v̂η bT1 b2 +

1

ξ
ûηv̂η bT2 b2

)
dξdη,

(4.18)

where ·ξ = ∂(·)/∂ξ and ·η = ∂(·)/∂η.

Remark 4.1 (Singularity of the integral). We notice that the integral∫ 1

0

∫ 1

0

1

ξ
ûηv̂ηb

T
2 b2 dξdη (4.19)

has a singularity for ξ = 0. However, the weak form (4.18) is equivalent to the left-
hand side of the weak form in physical coordinates (3.13). Since u, v ∈ H1(Ω), the
integrals in the weak form (3.13) are well-de�ned and �nite, hence also the integrals
(4.18) and so (4.19) are �nite.

For the numerical solution, a Galerkin projection on a �nite-dimensional space is con-
sidered, i.e. (4.18) and the corresponding transformed right-hand side are evaluated by
inserting approximations ûh and v̂h, which are tensor product B-splines. To compute
an entry in the sti�ness matrix we consider

ûh(ξ, η) =
∑
i

∑
j

Mi(ξ)Nj(η)Ui,j , v̂h(ξ, η) = Mk(ξ)N`(η), (4.20)
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where we have omitted the degrees of the B-splines, and we insert (4.20) into (4.18).
For the �rst integral, it follows∫ 1

0

∫ 1

0

1

J(η)
ξ ûh,ξ(ξ, η)v̂h,ξ(ξ, η) bT1 (η)b1(η) dξdη =

=
∑
i

∑
j

(∫ 1

0
ξ M ′i(ξ)M

′
k(ξ) dξ ·

∫ 1

0

1

J(η)
Nj(η)N`(η) bT1 (η)b1(η) dη

)
Ui,j .

(4.21)

Similarly, the three other integrals become:

∑
i

∑
j

(∫ 1

0
Mi(ξ)M

′
k(ξ) dξ ·

∫ 1

0

1

J(η)
N ′j(η)N`(η) bT2 (η)b1(η) dη

)
Ui,j , (4.22a)

∑
i

∑
j

(∫ 1

0
M ′i(ξ)Mk(ξ) dξ ·

∫ 1

0

1

J(η)
Nj(η)N ′`(η) bT1 (η)b2(η) dη

)
Ui,j , (4.22b)

∑
i

∑
j

(∫ 1

0

1

ξ
Mi(ξ)Mk(ξ) dξ ·

∫ 1

0

1

J(η)
N ′j(η)N ′`(η) bT2 (η)b2(η) dη

)
Ui,j . (4.22c)

The two-dimensional integration can thus be carried out as the product of two one-
dimensional integrations, which is a great computational advantage and an important
consequence of the multiplicative structure of the Jacobian DF.

For the right-hand side we obtain∫
Ω0

f̂ v̂h | det DF| dξdη =

∫ 1

0

∫ 1

0
ξMk(ξ)N`(η)J(η)f̂(ξ, η) dξdη. (4.23)

The separation of variables that we observe in (4.21)�(4.22) is a special case of the
so-called low-rank tensor approximation that has been introduced by Mantza�aris
et al. [42, 41]. In this approach, low-rank approximations of the integral kernels are
computed to provide a compact, separated representation of the integrals in IGA. In
our case, there is no need to compute an approximation. Instead, the parametrization
provides directly a low-rank tensor representation.

4.2.2 Scaled Boundary IGA

In the SB-IGA, we start considering the strong form of the problem in parametric
coordinates (4.15) for the case d = 2. We insert (4.16) into (4.15) and we obtain

− ∂

∂ξ

(
1

J

(
ξbT1 b1ûξ + bT2 b1ûη

))
− ∂

∂η

(
1

J

(
bT1 b2ûξ +

1

ξ
bT2 b2ûη

))
= ξJf̂ . (4.24)

Then, the weak form is considered only in the circumferential direction η, that is a
Galerkin projection with respect to the circumferential coordinate η is derived, using
the given representation of the boundary curve in terms of the B-splines N(η). We set

û(ξ, η) = NT (η)U(ξ), v̂(ξ, η) = NT (η)V, (4.25)

where U(ξ) ∈ Rn is the solution depending on the radial parameter ξ and the varia-
tions V ∈ Rn are arbitrarily chosen with the periodic constraint V1 = Vn. We remind
that the quantities J,b1 and b2 depend only on η and not on ξ. We insert û in (4.24),
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4.2. Scaled Boundary IGA and Galerkin-Based IGA

we multiply by v̂ and integrate with respect to η. This yields, omitting the arguments
ξ, η for a compact notation,

−
∫ 1

0
VTN

1

J
bT1 b1N

TUξ dη −
∫ 1

0
VTN

1

J
ξ bT1 b1N

TUξξ dη

−
∫ 1

0
VTN

1

J
bT2 b1N

′TUξ dη −
∫ 1

0
VTN

∂

∂η

(
1

J

(
bT1 b2ûξ +

1

ξ
bT2 b2ûη

))
dη

=

∫ 1

0
VTN ξJf̂ dη.

(4.26)

The fourth integral of equation (4.26) is integrated by parts, using the property V1 =
Vn for the variations of a periodic curve. This results in

−
∫ 1

0
VTN

∂

∂η

(
1

J

(
bT1 b2ûξ +

1

ξ
bT2 b2ûη

))
dη

=

∫ 1

0
VTN′

1

J
bT1 b2N

TUξ dη +

∫ 1

0
VTN′

1

J

1

ξ
bT2 b2N

′TU dη.

(4.27)

Since (4.26) must hold for all variations V, we generate a strong form for the vector
U(ξ). Moreover we perform the integration with respect to η obtaining a system of
ordinary di�erential equations (ODEs) for U(ξ). For this purpose, we introduce a
notation that is common in the SB-FEM and SB-IGA. We de�ne

E :=

∫ 1

0

1

J(η)
N(η)bT1 b1N

T (η) dη, G :=

∫ 1

0

1

J(η)
N′(η)bT1 (η)b2(η)NT (η) dη,

K :=

∫ 1

0

1

J(η)
N′(η)bT2 b2N

′T (η) dη, S(ξ) := −
∫ 1

0
N(η)J(η)f̂(ξ, η) dη.

(4.28)

Then (4.26) becomes

ξEUξξ + (E−G + GT )Uξ −
1

ξ
KU = ξS(ξ). (4.29)

This way we obtain a system of ODEs in the scaling direction ξ, with boundary
conditions U(ξ = 1) = 0 and periodicity condition U1(ξ) = Un(ξ). Moreover, in the
scaling center we have the conditions

U1(ξ = 0) = U2(ξ = 0) = . . . = Un(ξ = 0), (4.30)

i.e., the solution is the same in all components.

There are several options for the numerical treatment of the system of ODEs (4.29)
in the scaling direction, as proposed in [14, 15, 43]. Besides an analytical approach
that is based on the solution of an eigenvalue problem with a Hamiltonian matrix,
see Section 4.3 below, there is also the possibility of using collocation or standard
Galerkin projection with respect to the ξ-variable. The latter is based on a weak form
in ξ, which possesses the same structure and the same separation property as shown
in (4.21)�(4.22). To this end, we multiply (4.29) by a vector of test functions

W(ξ) ∈ Rn, (4.31)

where W(ξ = 1) = 0 and we integrate it with respect to ξ. This gives∫ 1

0
ξWTEUξξ dξ +

∫ 1

0
WT (E−G + GT )Uξ dξ

−
∫ 1

0

1

ξ
WTKU dξ =

∫ 1

0
ξWTS(ξ) dξ.

(4.32)
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From integration by parts we obtain∫ 1

0
ξWTEUξξ dξ = −

∫ 1

0
(ξWT

ξ + WT )EUξ dξ + ξWTEUξ|10,

where the last term vanishes due to the boundary conditions. Furthermore,∫ 1

0
WTGTUξ dξ = −

∫ 1

0
WT

ξ GTU dξ + WTGTU|10

holds. Here, the last term vanishes due to the boundary conditions for ξ = 1 and
due to the property (4.30) for ξ = 0, considering that, for U(0) = (1, 1, . . . , 1)Tα with
some α ∈ R, the di�erentiation of the partition of unity N(η)T (1, 1, . . . , 1)T = 1 yields

GTU(0) =

∫ 1

0

1

J(η)
N(η)bT2 (η)b1(η) N′(η)T

 1
...
1


︸ ︷︷ ︸

=0

α dη = 0.

Overall, the weak form of (4.29) thus can be written as∫ 1

0
ξWT

ξ EUξ dξ +

∫ 1

0
WT

ξ GTU dξ+
∫ 1

0
WTGUξ dξ

+

∫ 1

0

1

ξ
WTKU dξ = −

∫ 1

0
ξWTS(ξ) dξ.

(4.33)

For the Galerkin projection, we insert approximations

Uh(ξ) =
m∑
i=1

Mi(ξ)

Ui,1...
Ui,n

 and Wh(ξ) = e`Mk(ξ), k = 1, . . . ,m, (4.34)

where e`, ` = 1, . . . , n, stands for the standard basis in Rn.
We can now compute an entry of the sti�ness matrix of the linear system. This com-
putation will be done in the following section, where we state an equivalence theorem
between the two approaches.

4.2.3 Equivalence Theorem

Thanks to the derivation shown in Section 4.2.1 and 4.2.2, we now state a theorem
about the equivalence of the scaled boundary isogeometric analysis and the stan-
dard Galerkin-based IGA, when a scaled boundary parametrization of the domain is
available. This equivalence is valid for a linear problem and it is proved on Poisson's
boundary value problem. In a more general nonlinear problem setting, however, the
two approaches might di�er since the diagram in Figure 4.2 might not commute. An
important implication of this theorem is immediately clear: the standard convergence
results of [6] hold also for the SB-IGA if combined with a Galerkin projection in radial
direction. Moreover, in a speci�c implementation, the degrees of freedom used in both
approaches are identical up to a permutation.

Theorem 4.2 (Equivalence theorem). Let Ω ∈ R2 be a star-shaped domain where only
its boundary curve is available, γ(η) =

∑n
j=1Nj(η)cj. Consider a scaled boundary

parametrization for this domain such that the geometry function F : Ω0 = [0, 1]2 → Ω
is de�ned as in (4.5), and a linear problem, w.l.o.g. Poisson's boundary value problem
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4.2. Scaled Boundary IGA and Galerkin-Based IGA

in (3.12). Consider the weak form, induced by the scaled boundary representation,
generated in the standard isogeometric analysis (left-hand side in Equation (4.18) and
right-hand side in Equation (4.23)), and apply a Galerkin projection with the numerical
approximation

ûh(ξ, η) =
m∑
i=1

n∑
j=1

Mi(ξ)Nj(η)Ui,j . (4.35)

Then, the resulting discretized system is equivalent to the discretization of the weak
form generated in the scaled boundary isogeometric analysis (Equation (4.33)) by
means of the Galerkin projection in (4.34).

Proof. We insert the discretization Uh(ξ) and Wh(ξ) (4.34) into the weak form (4.33).
For the �rst integral we obtain:∫ 1

0
ξWT

ξ EUξ dξ ≈
∫ 1

0
ξeT`M

′
k(ξ)E

m∑
i=1

M ′i(ξ)(Ui,1, . . . , Ui,n)T dξ =

=

m∑
i=1

n∑
j=1

(∫ 1

0
ξM ′k(ξ)M

′
i(ξ) dξ

∫ 1

0

1

J(η)
N`(η)Nj(η) bT1 (η)b1(η) dη

)
Ui,j .

(4.36a)

Similarly, the other three integrals become:∫ 1

0
WT

ξ GTU dξ ≈
∫ 1

0
eT`M

′
k(ξ)G

T
m∑
i=1

Mi(ξ)(Ui,1, . . . , Ui,n)T dξ =

=
m∑
i=1

n∑
j=1

(∫ 1

0
M ′k(ξ)Mi(ξ) dξ

∫ 1

0

1

J(η)
N`(η)N ′j(η) bT2 (η)b1(η) dη

)
Ui,j ,

(4.36b)

∫ 1

0
WTGUξ dξ ≈

∫ 1

0
eT`Mk(ξ)G

m∑
i=1

M ′i(ξ)(Ui,1, . . . , Ui,n)T dξ =

=

m∑
i=1

n∑
j=1

(∫ 1

0
Mk(ξ)M

′
i(ξ) dξ

∫ 1

0

1

J(η)
N ′`(η)Nj(η) bT1 (η)b2(η) dη

)
Ui,j ,

(4.36c)

∫ 1

0

1

ξ
WTKU dξ ≈

∫ 1

0

1

ξ
eT`Mk(ξ)K

m∑
i=1

Mi(ξ)(Ui,1, . . . , Ui,n)T dξ =

=

m∑
i=1

n∑
j=1

(∫ 1

0

1

ξ
Mk(ξ)Mi(ξ) dξ

∫ 1

0

1

J(η)
N ′`(η)N ′j(η) bT2 (η)b2(η) dη

)
Ui,j .

(4.36d)

We observe that the contribution to the sti�ness matrix that corresponds to the un-
known Ui,j is exactly the same as in (4.21)�(4.22).

The source term in (4.33) is evaluated via

−
∫ 1

0
ξWTS(ξ) dξ ≈ −

∫ 1

0
ξ eT`Mk(ξ)

(
−
∫ 1

0
N(η)J(η)f̂(ξ, η) dη

)
dξ =

=

∫ 1

0

∫ 1

0
ξMk(ξ)N`(η)J(η)f̂(ξ, η)dη dξ ,

(4.36e)

which is again identical to the classical IGA discretization of the right-hand side
(Equation (4.23)).

45



Chapter 4. Scaled Boundary Isogeometric Analysis

4.3 The Singularity in the Scaling Center

In this section we investigate the singularity of the parametrization in the scaling
center in the case d = 2. It must be underlined that we do not notice a singularity in
the solution of Poisson's equation. Indeed, such an elliptic boundary value problem
exhibits a regular behavior, with the maximum principle bounding the solution of the
strong form. Coercivity and continuity of the bilinear form in the weak formulation,
on the other hand, yield bounds and stability estimates in the energy and H1-norms.
To better understand the singularity at ξ = 0, we consider the boundary value problem
generated by the SB-IGA. In its original form, the scaled boundary �nite element
method, which provides the basic idea for the SB-IGA, is a semi-analytical method
where the boundary value problem with respect to ξ is solved exactly [54]. We adopt
here this approach since it o�ers insights into the nature of the singularity. For a more
general treatment of singularities in IGA see [59, 60].
We start considering the system of ODEs in the scaling direction (4.29) as homoge-
neous system (writing Uξ = U′)

ξ2EU′′ + ξ(E−G + GT )U′ −KU = 0, (4.37)

with a symmetric positive de�nite matrix E ∈ Rn×n, a symmetric positive semi-
de�nite matrix K ∈ Rn×n, and a matrix G ∈ Rn×n. Next, we introduce the new
variables

y(ξ) :=

(
U(ξ)
Z(ξ)

)
where Z := ξEU′ + GTU. (4.38)

The second order system of ODEs is thus transformed to a �rst order system

ξy′ = −Hy, (4.39)

with the matrix

H :=

(
E−1GT −E−1

−K + GE−1GT −GE−1

)
. (4.40)

H ∈ R2n×2n is a Hamiltonian matrix, i.e., it becomes a symmetric matrix when
multiplied by the skew-symmetric matrix J,

J =

(
0 In
−In 0

)
⇒ (JH)T = JH, (4.41)

where In is the n-by-n identity matrix.

The characteristic polynomial d(λ) = det(λI2n−H) is an even function, which means
that the eigenvalues of H are such that λn+i = −λi, i = 1, . . . , n, with Reλi ≥ 0, and
the corresponding eigenvectors are Φi. Hence the solution of (4.39) in the homogeneous
case is a linear combination of terms ciξλiΦi + cn+iξ

−λiΦn+i. Since the solution is
�nite in ξ = 0, one concludes that cn+i = 0, i = 1, . . . , n, which cancels the unstable
part.
In practice, the numerical solution of the eigenvalue problem for H is only feasible for
relatively small dimensions. But our interest here lies on the insight that we obtain
from it. The singularity in the scaling center thus loses its threat. However, the ques-
tion remains what happens if we apply a discretization with respect to ξ and do not
utilize the eigenvalue solution.

We concentrate next on the Galerkin-based IGA and we discuss the practical treat-
ment of the singularity in the scaling center. We have already seen that analytically,
see Remark 4.1, and with the just shown semi-discretization approach, there is no
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4.3. The Singularity in the Scaling Center

singularity in the treatment of the integrals. Also in the numerical experiments that
we performed so far, we did not observe instabilities nor singular sti�ness matrices. A
possible explanation can be given in the following way.
Consider the bilinear form (4.18) in parametric coordinates. The fourth term in the
integral is the critical one and it contains the factor 1/ξ. With the separation of
integrals seen in (4.21)�(4.22), this term is written as the product of a well-de�ned
integral with respect to η times the integral∫ 1

0

1

ξ
Mi(ξ)Mk(ξ) dξ . (4.42)

We use linear B-splines and analyze the contribution of the �rst element integrated
from 0 to h, where h is the mesh size. The integral (4.42) then yields for Mi = Mk =
M1,1(ξ) = 1− ξ∫ h

0

1

ξ
(1− ξ/h)(1− ξ/h) dξ =

∫ h

0

(
1

ξ
− 2

h
+

ξ

h2

)
dξ .

Obviously, the problematic integral is the one containing 1/ξ, while the other terms
are not critical. In a numerical implementation a quadrature rule is applied in order
to approximate numerically the integral, so it is used instead of exact integration. If
for example we apply the midpoint rule, we get∫ h

0

(
1

ξ
− 2

h
+

ξ

h2

)
dξ

.
= h

(
1

ξ
− 2

h
+

ξ

h2

)∣∣∣∣
ξ=h/2

=
1

2
. (4.43)

The evaluation is thus independent of h, and the contribution of this integral to the
sti�ness matrix is always well-de�ned.
The above reasoning applies also to B-splines of higher degrees and to higher order
quadrature rules, as long as the nodes of the quadrature rule are in the interior of
the interval. Indeed, if we take quadrature points {qr}r=1,...,R and quadrature weights
{wr}r=1,...,R on the interval [0, 1], the quadrature rule reads∫ h

0

1

ξ
Mi(ξ)Mk(ξ) dξ

.
= h

R∑
r=1

wr

h qr
Mi(h qr)Mk(h qr). (4.44)

Using the fact that the B-splines are bounded by 1, we can state that∣∣∣∣∫ h

0

1

ξ
Mi(ξ)Mk(ξ) dξ

∣∣∣∣ ≤ R∑
r=1

|wr|
qr

<∞, (4.45)

if the points are chosen in the interior of the interval, i.e., qr > 0∀r. In this way, we
can conclude that the computation itself of the sti�ness matrix in Galerkin-based IGA
is not a�ected by the singularity.

When using Galerkin-based IGA in combination with an SB-parametrization, the
property (4.30) in the scaling center is not enforced and holds only approximately
as the discretization converges. In this context it turns out that enforcing (4.30) via
n − 1 additional constraints U1,j = U1,1 for j = 2, . . . , n, for the unknowns (4.35)
is bene�cial and can be implemented in the same fashion as a Dirichlet boundary
condition or a periodicity condition. The constraints imply that

ûh(0, η) =

m∑
i=1

n∑
j=1

Mi(0)Nj(η)Ui,j =

m∑
i=1

n∑
j=1

Mi(0)Nj(η)U1,1 = U1,1. (4.46)
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Moreover, M1(ξ)
∑n

j=1Nj(η) = M1(ξ) is the basis function around the scaling center
that is then actually used in the Galerkin projection. The same approach, but with
a di�erent justi�cation, can be found in [26, 59], where it is shown that, in this way,
the �nite-dimensional subspace used in the Galerkin projection is still in H1(Ω), in
opposition to the approach without enforcing (4.30).

In the next section we validate the previous theoretical results with some examples.
In particular, we will notice that even if the Jacobian of the sti�ness matrix has
a singularity, we do not observe any problem in the computation of the integrals,
thanks to the quadrature rule. Furthermore, having demonstrated that the SB-IGA
is equivalent to the standard Galerkin-based IGA with an SB-parametrization, the
SB-IGA inherits the properties of stability and convergence of the standard IGA. For
instance, we observe the same convergence rate.
It will be also shown that for some geometries, an SB-parametrization is much easier to
construct, since the construction of rays going from the scaling center to the boundary
curve is more natural than the mesh grids used for the standard parametrization.
However, the condition number might grow faster.

4.4 Examples

We now solve Poisson's equation with zero Dirichlet boundary conditions on di�erent
geometries using the scaled boundary isogeometric analysis. We will consider also the
same geometries as in Section 3.3, but only the boundary curve will be the same, the
mesh inside the domain will be generated starting from a scaling center and connecting
it to the control points on the boundary. For our simulations we used an extension
of the ISOGAT package [63], with the precaution to add a set of periodic conditions
together with the Dirichlet boundary conditions. Indeed, the geometry function F (see
Figure 4.1) maps the left edge of Ω0 into the scaling center, the lower and upper edges
into the same ray in the physical domain Ω and the right edge into ∂Ω. That is, the
control point of the scaling center is repeated multiple times and so the numerical
solution computed there should coincide. At the same time the control points that
run along the center and the ones associated to the lower and upper edges should
coincide, as well as the numerical solution computed there. This implies the imposition
of periodic boundary conditions on the left, on the top, and on the bottom edges of
the parameter domain. At last the Dirichlet boundary conditions are considered along
∂Ω and so in the numerical solutions computed in the control points associated to the
right edge.
In this section we will also investigate the in�uence of the choice of the scaling center
on the numerical results. To do so we compute and compare the energy norm ||uh||E ,
the L2-error norm ||u − uh|| and the condition number of the sti�ness matrix with
respect to the mesh size h = (#DoF)−1/2. All the geometries that we consider in
our examples are star-shaped, since this property is required in order to construct an
SB-parametrization as presented in Section 4.1.

4.4.1 Unit Disk

A disk suggests itself as a very suitable geometry for testing the scaled boundary
approach. Indeed, it is a star-shaped domain whose kernel coincides with the domain
itself, where we call kernel the set of all points from which the entire boundary is
visible.
Our physical domain Ω will be the disk with radius 1 and center (0, 0). As seen in
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Figure 4.3. L2-error norm for three di�erent SB-parametrizations of the unit disk when
the right-hand side function f = 1

Section 4.1, only the boundary curve of the domain is available and it is �xed by
certain degree, knot vector, weights and control points. In our case the boundary of
the unit disk is a NURBS curve with degree q = 2, knot vector

H = {0, 0, 0, 0.25, 0.25, 0.5, 0.5, 0.75, 0.75, 1, 1, 1},

weights ω = {1,
√

2/2, 1,
√

2/2, 1,
√

2/2, 1,
√

2/2, 1} and control points

{cj}j=1,...,9 = {(1, 0), (1, 1), (0, 1), (−1, 1), (−1, 0), (−1,−1), (0,−1), (1,−1), (1, 0)}.

To construct the SB-parametrization we start picking a scaling center x0 and then we
connect it with the boundary ∂Ω, that is the circumference of the disk. We start with
the problem {

−∆u = 1 in Ω,
u = 0 on ∂Ω,

whose solution on the unit disk and center in (0, 0) is

u(x, y) =
1− x2 − y2

4
.

The �rst and obvious choice for the scaling center would be the center of the disk, and
so x0 = (0, 0). In this case the numerical solution is already exact at the �rst iteration,
since the analytical solution is contained in the space generated by the basis functions
of this mesh. When moving the scaling center, the numerical solution needs couple of
re�nements to get an error of the size of the machine precision. In Figure 4.3 we have
plotted the L2-error norm for several re�nement steps versus the mesh size h. Three
di�erent scaling centers have been considered: the centroid of the disk, a random point
inside the disk and a point on the boundary. In Figure 4.4 the condition number of the
sti�ness matrix arising from the three di�erent SB-parametrizations has been plotted
for several re�nement steps. We can see that, when the scaling center lies on the
boundary, the condition number is the highest and its growth rate is of order 1/h4.
Inside the domain, the condition number is slightly smaller when the scaling center is
the centroid, but, in both cases, it grows with rate 1/h3. Even though this example
gives already an insight on which choice for the scaling center could be bene�cial, we
change the right-hand side of the problem, in order to get more information also on
the behavior of the L2-error and energy norms.
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Figure 4.4. Condition number of the sti�ness matrix for three di�erent SB-
parametrizations of the unit disk when the right-hand side function f = 1. When
the scaling center is on the boundary of the disk the condition number is higher and
grows as 1/h4, instead of 1/h3 as in the other cases.

We now consider as right-hand side of the problem

f = 3π

(
2 sin

(
3

2
πR

)
+ 3πR cos

(
3

2
πR

))
, with R = x2 + y2,

then the analytical solution is

u(x, y) = cos

(
3

2
πR

)
.

Then we pick a point x0 inside the kernel of Ω. We construct for this example �ve
di�erent SB-parametrizations based on �ve di�erent scaling centers depicted in Figure
4.5:

(D.1) the centroid of the disk (0, 0),

(D.2) a point inside the domain preserving an axial symmetry (0.6, 0),

(D.3) a random point inside the domain (−0.6,−0.4),

(D.4) a random point on the boundary (−0.35, 0.94),

(D.5) a control point lying on the boundary (0,−1).

In the scaling direction we consider B-splines of degree p = 2, so that we have the
same degrees in both directions, as done in the numerical examples for the stan-
dard Galerkin IGA (Section 3.3). The knot vector in the scaling direction is then
Ξ = {0, 0, 0, 1, 1, 1} and the control points on one ray contains a control point of
the boundary, the scaling center and one inner control point computed with a de-
gree elevation re�nement. The SB-parametrization is then the tensor product of the
NURBS boundary curve with the B-splines in the scaling direction, as seen in Equa-
tion (4.5). Here the control points are ordered such that the scaling center is repeated
9 times. We report now the control points only for two of our �ve cases, the other ones
can be easily generated in the same way. In Figure 4.6 the control point grid and the
physical domain with the image of the knot lines for these two cases have been plotted.
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Figure 4.5. Five di�erent points chosen as scaling center for the unit disk. The pink
area represents the kernel of the domain, that for this geometry coincides with the
domain itself.

(D.1)
{
d̄i,j
}
i=1,...,3, j=1,...9

=

{(0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0)

(0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0);

(−0.5, 0.0) (−0.5,−0.5) (0.0,−0.5) (0.5,−0.5) (0.5, 0.0)

(0.5, 0.5) (0.0, 0.5) (−0.5, 0.5) (−0.5, 0.0);

(−1.0, 0.0) (−1.0,−1.0) (0.0,−1.0) (1.0,−1.0) (1.0, 0.0)

(1.0, 1.0) (0.0, 1.0) (−1.0, 1.0) (−1.0, 0.0)}.

(D.5)
{
d̄i,j
}
i=1,...,3, j=1,...9

=

{(0.0,−1.0) (0.0,−1.0) (0.0,−1.0) (0.0,−1.0) (0.0,−1.0)

(0.0,−1.0) (0.0,−1.0) (0.0,−1.0) (0.0,−1.0);

(−0.5,−0.5) (−0.5,−1.0) (0.0,−1.0) (0.5,−1.0) (0.5,−0.5)

(0.5, 0.0) (0.0, 0.0) (−0.5, 0.0) (−0.5,−0.5);

(−1.0, 0.0) (−1.0,−1.0) (0.0,−1.0) (1.0,−1.0) (1.0, 0.0)

(1.0, 1.0) (0.0, 1.0) (−1.0, 1.0) (−1.0, 0.0)}.

To compare the di�erent parametrizations we analyze, for several re�nement steps,
the energy norm, the L2-error norm and the condition number of the sti�ness matrix,
as done in Section 3.3 for the standard IGA examples. In Figure 4.7 we have plotted all
these quantities for several re�nement steps. Regarding the energy norm, all numerical
solutions tend from below to the same maximum value, as expected. Moreover this
value coincides with the one obtained when we solved this equation on the disk with
the standard Galerkin IGA (Figure 3.14(a)). The parametrization of the case (D.1)
presents a faster convergence with respect to the others, but after three re�nements
they have all reached the same reference value. The same happens when we look at the
L2-error norm. The parametrization (D.1), i.e., when the scaling center is the centroid,
presents always the smallest error. Then the parametrizations (D.2) and (D.3), i.e.,
when the scaling center is a random point inside the disk, follow. While the cases
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(a) Case (D.1): the scaling center is the centroid of the disk.
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(b) Case (D.5): the scaling center is a control point on the boundary.

Figure 4.6. Geometry description of the unit disk using an SB-parametrization: control
point grid (left), physical domain with image of knot lines (right)
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Figure 4.7. Comparison of the energy norm, L2-error norm and condition number for
the �ve di�erent SB-parametrizations of the unit disk. From these plots we get an
idea on where it is better to put the scaling center. For this geometry the best choice
results in its centroid.

(D.4) and (D.5), i.e., when the scaling center lies on the boundary curve, have always
the biggest errors and there are no evident di�erences between these last two cases.
The convergence rate for the global L2-error is of order between three and four for all
the geometries, while in the standard IGA it was almost three (Figure 3.14(b)). So far
the best choice for the scaling center is given by the centroid, this is also con�rmed
when looking at the condition number of the sti�ness matrix. Indeed, as shown in
Figure 4.19(b), the condition number grows with an order of 1/h3 when x0 is inside
the domain and with an order of 1/h4 when it is on the boundary. However, for the
case (D.4) (a random point on the boundary curve), there is not a clear growth rate
for the condition number within 7 iterations. The in�uence of the parametrization on
the accuracy can also be seen in the determinant of the Jacobian of the geometry
function (Figure 4.8), where the singularity in the scaling center is depicted by a zero
value and, the farther we move the scaling center from the centroid, the bigger the
maximum value of the determinant is.

Unlike the standard Galerkin IGA, where we needed spline basis functions of degree
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(c) Case (D.4)

Figure 4.8. Determinant of the Jacobian of the geometry function for the SB-
parametrization of the unit disk
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Figure 4.9. Degree 1 in the scaling direction and degree 2 on the boundary curve: L2-
error norm for the �ve di�erent SB-parametrizations of the unit disk. The convergence
is of order 2.

two in both directions, the SB-IGA can construct the disk using degree q = 2 only on
the boundary curve and degree p = 1 in the scaling direction. However, the order of
convergence for the L2-error norm will be smaller. Indeed, in this case, the convergence
is of order 2, see Figure 4.9. But we did not observe any di�erence from the case
p = q = 2 regarding the energy norm and the condition number of the sti�ness
matrix. Nevertheless, using degree 1 in the scaling direction is slower in approximating
numerically a solution with a cosine function inside. Indeed, the error stays high also
at the seventh iteration and, to reach the error values obtained with B-splines of degree
2 in the scaling direction, we would have needed more expensive computational costs.

We claim here that for the disk the best choice for the scaling center is the centroid
of the kernel, that in the disk coincides with the centroid of the domain. Moreover,
for this geometry a SB-parametrization is preferable to the standard parametrization
in IGA.
We now consider another star-shaped domain, the L-shape, and we will see if the
previous sentences are also true for this kind of geometry.

4.4.2 L-Shape

We consider the L-shape domain seen in Section 3.3.1. In particular, only the boundary
curve is available. In this case the boundary is a B-spline curve with degree q = 2,
knot vector

H = {0, 0, 0, 0.125, 0.125, 0.25, 0.25, 0.5, 0.5, 0.625, 0.625, 0.75, 0.75, 1, 1, 1}

and control points

{cj}j=1,...,13 = {(−1, 1), (−1, 0), (−1,−1), (0,−1), (1,−1),

(1,−0.5), (1, 0), (0.5, 0), (0, 0), (0, 0.5), (0, 1), (−0.5, 1), (−1, 1)}.

Then we pick a point x0 inside the kernel of Ω. We choose now seven di�erent scaling
centers depicted in Figure 4.10:

(L.1) the centroid of the kernel (−0.5,−0.5),
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Figure 4.10. Seven di�erent points chosen as scaling center for the L-shape domain.
The pink area represents the kernel of this geometry.

(L.2) the centroid of the domain (−1/6,−1/6),

(L.3) a random point inside the domain (−0.8,−0.7),

(L.4) the southwest corner of the kernel (−1,−1),

(L.5) a point on the south boundary edge of the kernel (−0.2,−1),

(L.6) a point on the left boundary edge of the kernel (−1,−0.6),

(L.7) the northeast corner of the kernel (0, 0).

For the �rst three cases, (L.1),(L.2),(L.3), we construct an SB-parametrization as
already done before. We choose for the scaling direction degree p = 2, in order to have
the same degrees as in the standard IGA example for the L-shape. So the knot vector
in the scaling direction is again Ξ = {0, 0, 0, 1, 1, 1}. The SB-parametrization is then
the tensor product of the B-spline boundary curve with the quadratic B-splines in the
scaling direction. Dirichlet boundary conditions and periodic conditions are imposed
as before. We report now the control points only for one of the �rst three cases, whose
control point grid and the physical domain with the image of knot lines are in Figure
4.17(a).

(L.1)
{
d̄i,j
}
i=1,...,3, j=1,...13

=

{(−0.50,−0.50) (−0.50,−0.50) (−0.50,−0.50) (−0.50,−0.50)

(−0.50,−0.50) (−0.50,−0.50) (−0.50,−0.50) (−0.50,−0.50)

(−0.50,−0.50) (−0.50,−0.50) (−0.50,−0.50) (−0.50,−0.50) (−0.50,−0.50);

(−0.75, 0.25) (−0.75,−0.25) (−0.75,−0.75) (−0.25,−0.75)

(0.25,−0.75) (0.25,−0.50) (0.25,−0.25) (0.00,−0.25)

(−0.25,−0.25) (−0.25, 0.00) (−0.25, 0.25) (−0.50, 0.25) (−0.75, 0.25);

(−1.00, 1.00) (−1.00, 0.00) (−1.00,−1.00) (0.00,−1.00)

(1.00,−1.00) (1.00,−0.50) (1.00, 0.00) (0.50, 0.00)

(0.00, 0.00) (0.00, 0.50) (0.00, 1.00) (−0.50, 1.00) (−1.00, 1.00)}.

We construct the other cases di�erently, since the periodic conditions should not be
imposed. The only conditions that we will then impose are the Dirichlet boundary
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(a) Case (L.1): the scaling center is the centroid of the kernel of the L-shape.
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(b) Case (L.4): the scaling center is the southwest corner of the L-shape.
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(c) Case (L.5): the scaling center is on the south boundary edge of the kernel.

Figure 4.11. Geometry description of the L-shape using a SB-parametrization: control
point grid (left), physical domain with image of knot lines (right)
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Figure 4.12. Case (L.4) when periodic conditions are also imposed. Determinant of
the Jacobian of the sti�ness matrix plotted on the parameter domain. In the dark
blue area the determinant has value zero.

conditions on the boundary of the domain. Indeed, if we impose periodic conditions
when the scaling center is on the edges of the kernel and also on the boundary of the
domain, the sti�ness matrix is singular. Moreover, the determinant of the Jacobian is
zero in a set with positive measure, and so the geometry function is not invertible, see
Figure 4.12. This distinction of cases was not necessary in the disk geometry, because
the disk does not present any corner. It is however necessary, if we choose as scaling
center a point on the boundary of a domain that presents a corner or a crack for
example, or in general if the boundary is straight for a �nite distance either side of
the center. The two straight segments on the boundary passing through the scaling
center are known as side faces, and no discretization is there required. Geometries of
this type can be found for example in [9, 22, 40].

The size of the knot vectors and the number of control points for the cases (L.5) and
(L.6) are the same and we report here the data for (L.5). Same for (L.4) and (L.7),
we write the ones for (L.4). Their control point grids are in Figure 4.17(b),4.17(c).

(L.4) p = q = 2, H = {0, 0, 0, 0.25, 0.25, 0.5, 0.5, 0.75, 0.75, 1, 1, 1},
Ξ = {0, 0, 0, 1, 1, 1},

{
d̄i,j
}
i=1,...,3, j=1,...9

=

{(−1.00,−1.00) (−1.00,−1.00) (−1.00,−1.00) (−1.00,−1.00) (−1.00,−1.00)

(−1.00,−1.00) (−1.00,−1.00) (−1.00,−1.00) (−1.00,−1.00);

(0.00,−1.00) (0.00,−0.75) (0.00,−0.50) (−0.25,−0.50) (−0.50,−0.50)

(−0.50,−0.25) (−0.50, 0.00) (−0.75, 0.00) (−1.00, 0.00);

(1.00,−1.00) (1.00,−0.50) (1.00, 0.00) (0.50, 0.00) (0.00, 0.00)

(0.00, 0.50) (0.00, 1.00) (−0.50, 1.00) (−1.00, 1.00)}.

(L.5) p = q = 2, H = {0, 0, 0, 0.25, 0.25, 0.5, 0.5, 0.625, 0.625, 0.75, 0.75, 1, 1, 1},
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Ξ = {0, 0, 0, 1, 1, 1},
{
d̄i,j
}
i=1,...,3, j=1,...11

=

{(−0.20,−1.00) (−0.20,−1.00) (−0.20,−1.00) (−0.20,−1.00)

(−0.20,−1.00) (−0.20,−1.00) (−0.20,−1.00) (−0.20,−1.00)

(−0.20,−1.00) (−0.20,−1.00) (−0.20,−1.00);

(0.40,−1.00) (0.40,−0.75) (0.40,−0.50) (0.15,−0.50)

(−0.10,−0.50) (−0.10,−0.25) (−0.10, 0.00) (−0.35, 0.00)

(−0.60, 0.00) (−0.60,−0.50) (−0.60,−1.00);

(1.00,−1.00) (1.00,−0.50) (1.00, 0.00) (0.50, 0.00)

(0.00, 0.00) (0.00, 0.50) (0.00, 1.00) (−0.50, 1.00)

(−1.00, 1.00) (−1.00, 0.00) (−1.00,−1.00)}.

We solve on these di�erent parametrizations of the L-shape domain the same problem
as in Section 3.3.1, that is{

−∆u = 2π2 sin(πx) sin(πy) in Ω,
u = 0 on ∂Ω,

whose exact solution is
u(x, y) = sin(πx) sin(πy).

We compare the energy norm, the L2-error norm and the condition number of the
sti�ness matrix in Figure 4.13. As already observed before, the energy norm of all the
parametrizations tends to the same maximum value, that coincides with the one ob-
tained using the standard IGA (Figure 3.6(a)). The fastest parametrization in reaching
this value is the case (L.7) (the northeast corner of the kernel), followed by the case
(L.2)(the scaling center in the centroid of the domain). The same happens for the
L2-error norm, where the case (L.7) presents always the smallest error. The conver-
gence has the expected order three in all the parametrizations. Due to presence of the
singularity, the condition number has a growth rate of 1/h3. In general, we can say
that for this geometry the best choice is when the scaling center is in the northeast
corner of the kernel, i.e., the inner concave corner of the geometry. Regarding the
other cases, it seems that the farther the scaling center is from this northeast corner
of the kernel, the slower the error decreases. From the determinant of the Jacobian
of the sti�ness matrix we do not gain any new information, since the maximum value
changes without following a particular behavior, see Figure 4.14.

Unlike the disk, for the L-shape domain we did not observe any big di�erence in using
an SB-parametrization instead of the standard one. But, since the L-shape has straight
lines, we can construct this geometry using only linear B-spline basis functions in both
the directions. We now compare the two techniques for p = q = 1 in Figure 4.15. We
have considered three di�erent scaling centers, the ones that performed better in the
previous example, and the standard IGA parametrization with an internal C0-edge.
This last gives better results than the SB-parametrizations. However, since the ana-
lytical solution is a product of sine functions, B-spline basis functions of degree only
1 are not really suited to solve the problem. Indeed also after 8 iterations the L2-error
norm has a value around 10−4.

In general we can claim that, for the L-shape domain, the best choice for the scaling
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Figure 4.13. Comparison of the energy norm, L2-error norm and condition number
for the seven di�erent SB-parametrizations of the L-shape. For this geometry the best
choice results in the northeast corner of the kernel.
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(c) Case (L.7)

Figure 4.14. Determinant of the Jacobian of the geometry function for the SB-
parametrizations of the L-shape

61



Chapter 4. Scaled Boundary Isogeometric Analysis

10 -2 10 -1

h

0

0.5

1

1.5

2

2.5

3

3.5

4

E
ne

rg
y 

no
rm

standard IGA
SB-IGA: center [-0.5,-0.5]
SB-IGA: center [-1.0,-1.0]
SB-IGA: center [0.0,0.0]

(a) Energy norm ||uh||E

10 -2 10 -1

h

10 0

10 2

10 4

10 6

10 8

C
on

di
tio

n 
nu

m
be

r

standard IGA
SB-IGA: center [-0.5,-0.5]
SB-IGA: center [-1.0,-1.0]
SB-IGA: center [0.0,0.0]

1/h 3

1/h 2

(b) Condition number of the sti�ness matrix aris-
ing from the parametrization

10 -2 10 -1

h

10 -4

10 -3

10 -2

10 -1

L2
 e

rr
or

standard IGA
SB-IGA: center [-0.5,-0.5]
SB-IGA: center [-1.0,-1.0]
SB-IGA: center [0.0,0.0]

h2
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Figure 4.15. p = q = 1: comparison of the energy norm, L2-error norm and condition
number of the sti�ness matrix on the L-shape domain between the standard Galerkin
IGA and the SB-IGA

center of an SB-parametrization is not a special point such as a centroid, but the north-
east corner of the kernel. Moreover, for this geometry the standard parametrization
is slightly better than a scaled boundary one.

4.4.3 Wedge-Shape

As �nal example, we consider a wedge-shape domain as in Figure 4.16. This domain
combines straight segments with curved ones, that is, two straight lines are connected
at one extremity, while the other ones are connected with a curve. It is clear that, for
this geometry, it is much easier to construct an SB-parametrization than a standard
one. As boundary curve of the domain we consider a B-spline curve of degree q = 2,
with knot vector

H = {0, 0, 0, 1/11, 1/11, 3/11, 3/11, 5/11, 6/11, 7/11, 8/11, 9/11, 10/11, 1, 1, 1}
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Figure 4.16. Seven di�erent points chosen as scaling center for the wedge-shape do-
main. The pink area represents the kernel of this geometry.

and control points

{cj}j=1,...,13 ={(−2, 0), (−2,−1), (−2,−2), (−1,−2), (0,−2), (1.4,−1.6),

(1.4,−1), (1.2,−0.6), (0,−0.4), (0, 0.2), (−1, 1), (−1.6, 1), (−2, 0)}.

Now, we choose seven di�erent points inside the kernel of the domain. These are
depicted in Figure 4.16:

(W.1) the centroid of the domain ≈ (−0.63,−0.77),

(W.2) the centroid of the kernel ≈ (−1.03,−1.11),

(W.3) a random point inside the domain (−1.5,−0.25),

(W.4) the southwest corner of the kernel (−2,−2),

(W.5) a point on the left boundary edge of the kernel (−2,−1),

(W.6) a point on the south boundary edge of the kernel (−0.3,−2),

(W.7) the northeast corner of the kernel (0,−0.4).

The construction of the SB-parametrization depends on where the scaling center is
located. If it is inside the domain (cases (W.1), (W.2), (W.3), (W.7)), Dirichlet bound-
ary conditions and periodic conditions are imposed. If it is on the boundary of the
domain (cases (W.4), (W.5), (W.6)), we have two side faces that do not need a dis-
cretization and only Dirichlet boundary conditions are imposed, as we have already
seen for the L-shape domain. In these last three cases the dimension of the knot vector
H is 12, 14, 14, respectively.
In all the cases we choose degree p = 2 in the scaling direction. So the knot vector
in this direction is Ξ = {0, 0, 0, 1, 1, 1}. We report now the control points for three of
these seven cases, whose control point grids and physical domains with the image of
knot lines are in Figure 4.17.
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(W.1) H = {0, 0, 0, 1/11, 1/11, 3/11, 3/11, 5/11, 6/11, 7/11, 8/11, 9/11, 10/11, 1, 1, 1},{
d̄i,j
}
i=1,...,3, j=1,...13

=

{(−0.63,−0.77) (−0.63,−0.77) (−0.63,−0.77) (−0.63,−0.77)

(−0.63,−0.77) (−0.63,−0.77) (−0.63,−0.77) (−0.63,−0.77)

(−0.63,−0.77) (−0.63,−0.77) (−0.63,−0.77) (−0.63,−0.77) (−0.63,−0.77);

(−1.32,−0.39) (−1.32,−0.89) (−1.32,−1.39) (−0.82,−1.39)

(−0.32,−1.39) (0.38,−1.19) (0.38,−0.89) (0.28,−0.69)

(−0.32,−0.59) (−0.32,−0.29) (−0.82, 0.11) (−1.12, 0.11) (−1.32,−0.39);

(−2.00, 0.00) (−2.00,−1.00) (−2.00,−2.00) (−1.00,−2.00)

(0.00,−2.00) (1.40,−1.60) (1.40,−1.00) (1.20,−0.60)

(0.00,−0.40) (0.00, 0.20) (−1.00, 1.00) (−1.60, 1.00) (−2.00, 0.00)}.

(W.4) H = {0, 0, 0, 1/7, 2/7, 3/7, 4/7, 5/7, 6/7, 1, 1, 1},{
d̄i,j
}
i=1,...,3, j=1,...9

=

{(−2.00,−2.00) (−2.00,−2.00) (−2.00,−2.00) (−2.00,−2.00)

(−2.00,−2.00) (−2.00,−2.00) (−2.00,−2.00) (−2.00,−2.00) (−2.00,−2.00);

(−1.00,−2.00) (−0.30,−1.80) (−0.30,−1.50) (−0.40,−1.30)

(−1.00,−1.20) (−1.00,−0.90) (−1.50,−0.50) (−1.80,−0.50) (−2.00,−1.00);

(0.00,−2.00) (1.40,−1.60) (1.40,−1.00) (1.20,−0.60)

(0.00,−0.40) (0.00, 0.20) (−1.00, 1.00) (−1.60, 1.00) (−2.00, 0.00)}.

(W.5) H = {0, 0, 0, 1/9, 2/9, 3/9, 4/9, 5/9, 6/9, 7/9, 8/9, 1, 1, 1},{
d̄i,j
}
i=1,...,3, j=1,...11

=

{(−2.00,−1.00) (−2.00,−1.00) (−2.00,−1.00) (−2.00,−1.00)

(−2.00,−1.00) (−2.00,−1.00) (−2.00,−1.00) (−2.00,−1.00)

(−2.00,−1.00) (−2.00,−1.00) (−2.00,−1.00);

(−2.00,−1.50) (−1.50,−1.50) (−1.00,−1.50) (−0.30,−1.30)

(−0.30,−1.00) (−0.40,−0.80) (−1.00,−0.70) (−1.00,−0.40)

(−1.50, 0.00) (−1.80, 0.00) (−2.00,−0.50);

(−2.00,−2.00) (−1.00,−2.00) (0.00,−2.00) (1.40,−1.60)

(1.40,−1.00) (1.20,−0.60) (0.00,−0.40) (0.00, 0.20)

(−1.00, 1.00) (−1.60, 1.00) (−2.00, 0.00)}.

For the test problem on the wedge-shape domain we use a manufactured solution, a
bump function with center in (−1,−1) and radius r = 1/2:

u?(x, y) =

exp

(
− 1

1− d2

)
, with d =

√
(x+ 1)2 + (y + 1)2

r
, for |d| < 1,

0, elsewhere.
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(a) Case (W.1): the scaling center is the centroid of the wedge-shape.
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(b) Case (W.4): the scaling center is the southwest corner of the kernel.
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(c) Case (W.5): the scaling center is on the left boundary edge of the kernel.

Figure 4.17. Geometry description of the wedge-shape domain using an SB-
parametrization: control point grid (left), physical domain with image of knot lines
(right)
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Figure 4.18. Case (W.1): numerical solution (left) and absolute error (right) on the
wedge-shape domain after three re�nements

The function u? obviously ful�lls the system

{
−∆u = −∆u? in Ω,

u = 0 on ∂Ω.
(4.47)

In Figure 4.18 we plot the numerical solution and the absolute error for the case (W.1).
For all the other cases they are similar.
Figure 4.19 depicts the simulation results. All the parametrizations show optimal
convergence rates of order three for the global L2-error norm. The best choice seems
to be the case (W.1), i.e., when the scaling center is in the centroid of the domain.
It is important to notice that, even though the case (W.2) has the closest point to
the center of the bump function, this is not the best choice. This guarantees us that
the position of the bump function in the domain does not in�uence the results that
we have obtained. As expected the energy norm of all the parametrizations converges
to the same value. The condition number has a growth rate of 1/h3, except for the
last case (W.7), where it has rate 1/h4. However we cannot explain why the condition
number of this last case behaves di�erently. We can just observe that the determinant
of the Jacobian has bigger values in this last case. Moreover, there is not a general
trend regarding the determinant, since the smallest maximum value is for the case
(W.5). In Figure 4.20 these determinants have been plotted for four cases.

We construct for the wedge-shape domain also a standard parametrization, in order
to solve the problem (4.47) with the standard Galerkin IGA and compare it with the
results just obtained. It has to be said that the construction of such parametrization
for a wedge-shape domain is less natural than a scaled one. Indeed, it was trickier
to construct, since the usage of open knot vectors leads up to associate the curved
segment to only one edge of the parameter domain. While the two straight lines
are associated to the remaining three edges of the parameter domain. We consider
degree two in both directions, p, q = 2, and knot vectors Ξ = {0, 0, 0, 1, 1, 1} and
H = {0, 0, 0, 1/7, 2/7, 3/7, 4/7, 5/7, 6/7, 1, 1, 1}.
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Figure 4.19. Comparison of the energy norm, L2-error norm and condition number
for the seven di�erent SB-parametrizations of the wedge-shape. For this geometry the
best choice results in the centroid of the domain.
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(b) Case (W.5)
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(c) Case (W.6)
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(d) Case (W.7)

Figure 4.20. Determinant of the Jacobian of the geometry function for the SB-
parametrizations of the wedge-shape

The control points are

{(−2.00,−0.50) (−2.00,−1.00) (−2.00,−1.50) (−2.00,−1.85)

(−2.00,−2.00) (−2.00,−2.00) (−1.50,−2.00) (−1.00,−2.00) (−0.50,−2.00);

(−2.00,−0.25) (−1.80, 0.00) (−1.50,−0.25) (−1.00,−0.83)

(−1.00,−1.20) (−0.40,−1.30) (−0.05,−1.50) (0.20,−1.80) (−0.25,−2.00);

(−2.00, 0.00) (−1.60, 1.00) (−1.00, 1.00) (0.00, 0.20)

(0.00,−0.40) (1.20,−0.60) (1.40,−1.00) (1.40,−1.60) (0.00,−2.00)}.

In Figure 4.21 the control point grid and the physical domain with image of knot lines
have been plotted. The errors and the condition number of the sti�ness matrix are in
Figure 4.22. The energy norm converges to the same value seen in Figure 4.19(a) for the
SB-parametrization. While the condition number has the same convergence rate, 1/h3.
This rate derives from the fact that a singularity occurs in the parametrization. Indeed,
in the construction of the standard parametrization a control point had multiplicity
two, the corner (−2,−2). Moreover, in other two points there is a singularity, as
depicted in Figure 4.23, where we have plotted the determinant of the Jacobian of the
sti�ness matrix. These points are the control points (−0.5,−2) and (−2,−0.5). The
L2-error norm has the expected convergence rate of order three. If we compared the
value at the mesh-size h ≈ 5 ·10−3, we can see that the L2-error norm for the standard
parametrization is approximately 2 · 10−4, that was one of the value obtained in one
of the worst cases for the SB-parametrization at that mesh-size. Indeed, the best case
had error equal to circa 2 · 10−5 for h ≈ 5 · 10−3.

68



4.4. Examples

-2 -1 0 1
-2

-1

0

1

-2 -1 0 1
-2

-1

0

1

Figure 4.21. Geometry description of the wedge-shape using a standard parametriza-
tion: control point grid (left), physical domain with image of knot lines (right)
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(b) Condition number of the sti�ness matrix aris-
ing from the parametrization
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Figure 4.22. Energy norm, L2-error norm and condition number for the standard
parametrization of the wedge-shape
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Figure 4.23. Determinant of the Jacobian of the geometry function for the standard
parametrization of the wedge-shape

4.4.4 Summary

In the previous examples we have constructed di�erent SB-parametrizations moving
the scaling center in the kernel of the domain. Then we have compared for which
center the L2-error norm had smaller values. We did not notice a general rule for
the choice of the scaling center. However, we can observe that, if the centroid of the
domain is inside the kernel, this can be a good scaling center. In two of our examples
it was the best choice, while for the L-shape domain we could achieve good results
even if it was not the best. Furthermore, points on the edges of the kernel that are
also on the boundary of the domain should be avoided, since the errors are larger and
the condition number of the sti�ness matrix could have a larger growth rate.

All the geometries that we have considered were star-shaped, as it was required
by the SB-IGA. However, to overcome this limitation, new strategies have been re-
cently proposed. For example, in [35] they propose to increase the �exibility of a polar
parametrization by considering circular arcs that connect the center with the points
on the boundary of the domain. Another option would be to divide the initial domain
into patches such that each subdomain is star-shaped. In [5] the domain decomposi-
tion is done with two techniques, the �rst one is based on the quadtree decomposition
and the second one on the art gallery problem.
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5
Conclusion

Finally, we conclude this thesis with a summary of the main points. We have intro-
duced the basic concepts of isogeometric analysis, focusing on the usage of a Galerkin
projection method for the discretization step. We have seen that the physical domain
is parametrized through a geometry function that goes from the parameter domain,
e.g. the unit square or the unit cube, to the physical one. We also gave some insights
on a priori error estimates. We presented an interesting class of parametrizations not
so widely used in IGA, the scaled boundary parametrizations. These can be seen as
a generalization of the classical polar coordinates and they are particularly attractive
since objects in CAGD are usually de�ned by a boundary representation, where only
the information related to the boundary is stored. Indeed, an SB-parametrization con-
structs the mesh inside the domain considering the rays going from a chosen point in
the kernel to points on the boundary. We de�ned then the geometry function for such
parametrizations and we studied a standard Galerkin-based IGA in combination with
them. At the same time, we introduced the scaled boundary IGA that di�ers from a
standard approach in the derivation of the weak form of the problem. However, for a
linear problem we showed that these methods lead to the same weak form in paramet-
ric coordinates and we stated an equivalence theorem also for the discretized linear
system, having used a Galerkin projection in the �nite-dimensional space. Further-
more, we studied the singularity of the parametrization in the scaling center. Actually,
we noticed that there is no singularity in the treatment of the integrals of the weak
form, both analytically and with a semi-discretization approach. Moreover, also in
the numerical integration, the computation of the sti�ness matrix is not a�ected by
the singularity when a quadrature rule with quadrature points inside the interval of
integration is chosen.
In the numerical examples, we have solved Poisson's equation with zero Dirichlet
boundary conditions on three di�erent star-shaped geometries: the unit disk, an L-
shape and a wedge-shape domain. We parametrized them with an SB-parametrization
and with the standard tensor product of B-splines and NURBS. We compared the re-
sults looking at the energy norm, the L2-error norm and the condition number of
the sti�ness matrix. We noticed that, for domains that present a natural behavior in
being parametrized using a scaled boundary approach, an SB-parametrization per-
forms better, while on the L-shape, for example, the standard parametrization shows
better results. Furthermore, the convergence rate for the L2-error norm follows the
expected theoretical results for both approaches. Even if we considered di�erent SB-
parametrizations moving the scaling center in the kernel, we could not get a real
answer to which position gives better numerical results. However, we observed that
when the centroid of the domain was inside the kernel, it could perform better than
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the other centers. This situation does not always happen, so we suggest to choose as
scaling center the center of the kernel of the domain. Indeed, from our experience, this
point was a reasonable choice and it achieved good numerical results.
There are still many extensions to this work that can be developed. One possibility
could be the usage of collocation methods instead of Galerkin methods for the dis-
cretization step, as well as a combination of these two techniques. Moreover, we have
so far considered solely star-shaped domains. The next step would be to solve the
problem with SB-IGA on more complicated geometries that are not star-shaped and
that, therefore, require to be subdivided into star-shaped subdomains. At the same
time, di�erent linear equations can be taken into account, such as parabolic equations.
Also nonlinear problems could be of interest, however the equivalence theorem proved
in this thesis might be not valid anymore.
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