
Mesh Deformation in the Context ofIsogeometric Analysis
Alexander Shamanskiy

Vom Fachbereich Mathematik der Technischen Universität Kaiserslauternzur Verleihung des akademischen Grades
Doktor der Naturwissenschaften (Doktor rerum naturalium, Dr. rer. nat.)
genehmigte Dissertation.

1. Gutachter: Prof. Dr. Bernd Simeon, Techische Universität Kaiserslautern2. Gutachter: Prof. Dr. Bert Jüttler, Johannes Kepler Universität Linz
Disputation: 11. September 2020

D 386

Alexander Shamanskiy

Mesh Deformation in the Context of
Isogeometric Analysis

Supervised by Prof. Dr. Bernd Simeon

2020

ii

Abstract

This thesis introduces a novel deformation method for computational meshes. It is based on the
numerical path following for the equations of nonlinear elasticity. By employing a logarithmic vari-
ation of the neo-Hookean hyperelastic material law, the method guarantees that the mesh elements
do not become inverted and remain well-shaped. In order to demonstrate the performance of the
method, this thesis addresses two areas of active research in isogeometric analysis: volumetric do-
main parametrization and fluid-structure interaction. The former concerns itself with construction
of a parametrization for a given computational domain provided only a parametrization of the do-
main’s boundary. The proposed mesh deformation method gives rise to a novel solution approach
to this problem. Within it, the domain parametrization is constructed as a deformed configuration
of a simplified domain. In order to obtain the simplified domain, the boundary of the target do-
main is projected in the L2-sense onto a coarse NURBS basis. Then, the Coons patch is applied
to parametrize the simplified domain. As a range of 2D and 3D examples demonstrates, the mesh
deformation approach is able to produce high-quality parametrizations for complex domains where
many state-of-the-art methods either fail or become unstable and inefficient. In the context of
fluid-structure interaction, the proposed mesh deformation method is applied to robustly update
the computational mesh in situations when the fluid domain undergoes large deformations. In com-
parison to the state-of-the-art mesh update methods, it is able to handle larger deformations and
does not result in an eventual reduction of mesh quality. The performance of the method is demon-
strated on a classic 2D fluid-structure interaction benchmark reproduced by using an isogeometric
partitioned solver with strong coupling.

iii

Zusammenfassung

Diese Dissertation führt eine neue Methode zur Verformung von Berechnungsgittern ein. Sie basiert
auf der Fortsetzungsmethode für die Gleichungen der nichtlinearen Elastizität. Durch den Einsatz
einer logarithmischen Variante des Neo-Hooke-Modells garantiert diese Methode, dass die Gitterele-
mente nicht invertiert werdern und wohlgeformt bleiben. Um die Leistungsfähigkeit der Methode
zu demonstrieren, behandelt die Dissertation zwei Bereiche der aktuellen Forschung in der isoge-
ometrischen Analysis: volumetrische Gebietsparametrisierung und Fluid-Struktur-Kopplung. Er-
sterer Bereich beschäftigt sich mit der Aufgabe zu einer gegebenen Parametrisierung des Gebi-
etsrandes eine konsistente Parametrisierung für das Gebietsinnere zu finden. Die vorgeschlagene
Methode zur Gittersverformung erlaubt einen neuartigen Ansatz für das Problem. Dabei wird die
Gebietsparametrisierung als verformte Konfiguration eines vereinfachten Gebietes konstruiert. Um
das vereinfachte Gebiet zu erhalten, wird der Rand des Zielgebietes im L2-Sinne auf eine gröbere
NURBS-Basis projeziert. Daraufhin wird die Coons-Fläche-Methode genuztz, um das vereinfachte
Gebiet zu parametrisieren. Wie ein breites Spektrum von 2D und 3D Beispielen demonstriert,
ist dieser Ansatz der Gitterverformung in der Lage hochwertige Parametrisierungen für komplexe
Gebiete zu erzeugen, auf denen viele häufig genutzte Methoden entweder scheitern oder instabil
und ineffizient werden. Im Bereich der Fluid-Struktur-Kopplung wird die vorgeschlagene Meth-
ode zur Gitterverformung genutzt, um das Berechnungsgitter auf robuste Weise in Situationen zu
aktualisieren, in denen das Gebiet des Fluids große Verformungen erfährt. Im Vergleich zu an-
deren oft genutzten Verfahren der Gitteraktualisierung ist sie in der Lage größere Verformungen
zu behandeln und vermeidet den Verlust der Gitterqualität. Die Performance der Methode wird
anhand eines klassischen 2D Benchmarks der Fluid-Struktur-Kopplung illustriert, welcher durch
einen isogeometrischen partitioniertem Löser mit Starker Kopplung implementiert wird.

iv

Acknowledgments

As numerous Ph.D. students before me, I have to admit that this thesis could not have come into
existence without the help and encouragement of many people. First and foremost, I am eternally
grateful to my supervisor Prof. Dr. Bernd Simeon. Before he gave me a chance to join his group,
I had come to know him as an inspiring teacher. As a supervisor, he let me try and learn to swim
on my own, but was always there whenever I felt like drowning. I deeply enjoyed the atmosphere
of honesty and calm professionalism that reigned during our discussions.

I would also like to thank many brilliant scientists whom I met through participating in the
European Union project MOTOR. Special thanks go to: Dr. Matthias Möller for leading the
project; Prof. Dr. Bert Jüttler and Dr. Angelos Mantzaflaris for introducing me to G+Smo,
my primary source of pride and frustration over the last three and a half years; Jochen Hinz for
countable but still enormous number of hours spent discussing parametrization techniques; and
Prof. Dr. Andreas Brümmer and Matthias Utri for giving me a sneak peek at real engineering.

Of course, I owe many thanks to all of my former and current colleagues at the Felix-Klein-
Zentrum: Clarissa Arioli, Felix Dietrich, Mané Harutyunyan, Doris Hemmer-Kolb, Kirsten Höffler,
Tobias Mantel, Dennis Merkert, Steffen Plunder and Aydar Uatay. I am especially indebted to my
former colleague Dr. Michael Helmut Gfrerer for always being ready to dive headfirst into long
discussions on any mathematical topic I happened to bring to him.

I also must thank Prof. Dr. Grigory Panasenko, Dr. Julia Orlik, Prof. Dr. Oleg Iliev and the
Fraunhofer ITWM for bringing me into the scientific world and letting me go when I decided it
would be best for us all.

At this point, I could have filled the next two pages describing all the ways in which my beautiful
wife Sofya supported and inspired me. It is only her explicit prohibition that kept me from doing
so. Instead, I would like to thank all of my family members and friends. Although many of them
live in Moscow, I could always rely on their support even from far away.

And finally, I thank you, careful reader, for being curious enough to go through the acknowl-
edgments. Your attention to details is what made me do my best when writing this thesis.

Support of this work by the DFG (German Research Council), BMBF (German Federal Ministry
of Education and Research) and European Union is gratefully acknowledged.

Stylistic remark

Throughout this work, I extensively use the personal pronoun I. The reasoning behind this practice,
which some in the mathematical community can find controversial, is two-fold. For one, I wanted
to make a process of reading this thesis a little bit more enjoyable for the readers by saving them
from excessive use of passive voice. One good way to do that is by writing in first person. But since
I am the sole author of this work and have no rights to use the royal we, writing in first person
means using I. For another, writing I instead of a vague we allows me to emphasize when a certain
idea, assumption or opinion belongs to me and not to the scientific community. This last point, I
believe, is essential when it comes to writing a thesis. Still, you will find the word we used from
time to time. Please note that this is not a stylistic inconsistency. In these situations, we has a
meaning of the reader and I. And away we go!

Contents

1 Introduction 1
1.1 Scope of this work . 2
1.2 Outline . 3

2 Foundations of Isogeometric Analysis 5
2.1 B-splines and NURBS . 5

2.1.1 B-splines . 5
2.1.2 Refinement . 7
2.1.3 NURBS . 8
2.1.4 Tensor-product NURBS . 11

2.2 Domain parametrization with NURBS . 13
2.2.1 Multi-patch models . 13
2.2.2 Domain parametrization problem: overview 14
2.2.3 Local refinement . 16

2.3 Isogeometric Galerkin method . 17
2.3.1 Model problem: Poisson’s equation . 17
2.3.2 Single-patch case . 18
2.3.3 Multi-patch case . 21
2.3.4 Numerical example: Poisson’s equation on a unit disk 22

2.4 Summary . 24

3 Single-patch domain parametrization 26
3.1 Problem setting . 26
3.2 Overview of existing methods . 27

3.2.1 Spring model . 28
3.2.2 Coons patch . 29
3.2.3 Optimization-based methods . 30
3.2.4 Elliptic grid generation . 33

3.3 Parametrization by mesh deformation . 34
3.3.1 Method description . 34
3.3.2 Domain simplification . 36
3.3.3 Nonlinear elasticity in a nutshell . 39
3.3.4 Newton’s method for nonlinear elasticity . 42
3.3.5 Incremental deformation . 46

3.4 Examples and comparison . 52
3.5 Summary . 58

v

vi CONTENTS

4 Fluid-structure interaction and mesh deformation 60
4.1 Benchmark description . 60
4.2 Structure modeling . 61

4.2.1 Equations of motion . 61
4.2.2 Time integration . 62
4.2.3 Partial benchmark CSM1: stationary deflection 64
4.2.4 Partial benchmark CSM3: elastic oscillations 65

4.3 Fluid modeling . 66
4.3.1 Incompressible Navier-Stokes equations . 66
4.3.2 Spatial discretization with IGA . 67
4.3.3 Time integration . 73
4.3.4 Partial benchmark CFD1: stationary flow . 75
4.3.5 Partial benchmark CFD3: vortex shedding . 77

4.4 Fluid-structure interaction . 79
4.4.1 FSI problem in ALE formulation . 80
4.4.2 Partitioned approach with strong coupling . 82
4.4.3 Construction of ALE mappings . 85
4.4.4 Partial benchmark ALE: mesh deformation 88
4.4.5 Benchmark FSI2: flow-induced structural vibrations 91

4.5 Summary . 96

5 Conclusion 98
5.1 Summary . 98
5.2 Outlook . 99

Bibliography 101

1 | Introduction

What comes to your mind when you hear the word innovation? In year 2020, the answer is very
likely to be some combination of machine learning, the Internet of things and mobile solutions.
Indeed, these fields have received a lot of attention over the last ten years and have changed the
way many people communicate, access information, manage their finances and entertain themselves.
In other words, innovation may seem something digital. But another less flashy innovation has been
happening in the industrial engineering at the same time. Our means of transport, energy sources
and buildings have become safer, cheaper and more efficient. Since these high-fidelity engineering
areas are heavily regulated and require precision and robustness, progress here tends to happen
slower (for example, it took Boeing, a major airplane manufacturer, eight years to develop its new
787 Dreamliner plane and two more years before its first commercial flight [1]) and often escapes
public attention. Still, products of industrial engineering form the backbone of our society, and
their failure can cause large economic damage and cost people lives.

In order to understand the complexity of modern engineering, one has to distinguish between
four product development stages: design, analysis, optimization and manufacturing. In a tradi-
tional development process, where physical prototyping plays a key role, a designed prototype is
first manufactured, then analyzed, and finally the analysis results are used to optimize the design.
If necessary, the sequence is repeated. It goes without saying that this process can be extremely
time and cost consuming. Luckily, computer technologies offer a wide range of tools that make it
possible to accelerate the development: computer aided design (CAD) for fast geometry modeling;
finite element (FEM) and finite volume (FVM) methods for accurate numerical simulation and
optimization, usually collectively referred to as computer aided engineering (CAE); and computer
aided manufacturing (CAM) for planning and automating the manufacturing process. CAD and
CAE form a digital prototyping loop, which renders manufacturing of a physical prototype unnec-
essary until a final testing stage. Together, these two technologies allow engineers to discover better
designs in less time and at lower costs.

Despite being around for more than fifty years, both CAD and CAE remain active fields of
research. For one thing, the insatiable demand of industry for efficiency and complexity keeps driving
the development of new methods and algorithms. For another, a new trend in CAx technologies seeks
to unify CAD and CAE, which historically have evolved separately. As a result, they tend to describe
the same object from different, often incompatible, points of view. In particular, CAD systems
often use non-uniform rational B-splines (NURBS) to model smooth surfaces of arbitrary shape,
whereas in CAE, objects are represented by piecewise linear computational meshes. Conversion
between the two formats is far from being fully automated and, according to [2], consumes more
than 65% of total digital prototyping time. As an attempt to breach this gap between CAD and
CAE, isogeometric analysis (IGA) was introduced in 2005 [3]. The core concept of IGA is to
eliminate the conversion step by performing numerical analysis directly on CAD models using the
underlying NURBS function spaces in CAE simulations. The idea got traction, and the last fifteen

1

2 CHAPTER 1. INTRODUCTION

years have witnessed a research boom in this field. IGA has been successfully applied to many
engineering problems, including structural mechanics [4, 5, 6], fluid dynamics [7, 8, 9], fluid-structure
interaction [10, 11, 12], electromagnetics [13, 14], topology optimization and phase-field problems
[15, 16]. Moreover, further research has shown that IGA offers more accuracy per degree of freedom
than standard high-order FEM due to high continuity of NURBS, although rates of convergence are
the same [17, 18].

Yet, despite all the progress, the original conversion problem has not been fully solved. While
IGA provides a straightforward and natural way to perform numerical simulations on simple tensor-
product NURBS objects like single-patch surfaces and volumes, real CAD models still represent a
serious challenge. One reason for that are the binary geometric operations that are used in CAD
software to create complex geometric objects as a union, intersection or difference of simple ones.
From the analysis point of view, these operations result in incomplete, or trimmed, objects which
require special treatment [19, 20] or alternative methods to circumvent them [21, 22]. Another
reason is that objects in CAD are often described only in terms of their surfaces. While this is
not a problem for thin structures like shells and membranes (hence a great success of IGA in these
applications [6, 23, 24]), a description of an object’s interior is necessary in many other applications,
for example, solid body mechanics or fluid dynamics. Construction of the interior description is a
challenging problem called volumetric domain parametrization [25, 26]. Unfortunately, existing
methods offer imperfect or incomplete solutions to the described problems, and creation of analysis-
suitable NURBS models from CAD data still requires lots of time consuming user intervention.

And yet, it would be unfair to say that IGA has done nothing to breach the gap between
CAD and CAE. For one, it has triggered a surge of research and software development in the CAE
community which is interested in deeper integration with CAD. For another, IGA has started a slow
process of raising awareness of the analysis needs among the CAD community. One can imagine
designers changing their traditional workflow to create analysis-suitable geometric models from the
beginning of the product development process. Unification of CAD and CAE cannot happen over
night, but IGA may be setting a right course for incremental progress towards it.

1.1 Scope of this work

This thesis addresses two at first sight unconnected areas of active research in IGA: volumetric do-
main parametrization and fluid-structure interaction. The former includes methods for constructing
NURBS description of an interior of a given computational domain provided only a description of
its boundary. This task usually involves two steps: first, the domain is segmented into a number of
topological hexahedra, called patches, and then a tensor-product NURBS parametrization for each
patch is constructed. I refer to this second step as a single-patch domain parametrization problem.
In comparison to the segmentation step, which is currently too complex to be fully automated [26],
it has received much more attention from the scientific community. As a result, a number of solution
approaches exist which range in their complexity, robustness and flexibility [25, 27, 28, 29].

In this work, I propose a novelmesh deformation approach to the single-patch domain parametriza-
tion problem, which offers great robustness and flexibility at medium complexity. Based on equa-
tions of nonlinear elasticity [30], it constructs a parametrization for the target domain as a deformed
configuration of a simplified domain [31]. Simplification is performed by means of L2-projection of
the domain’s boundary onto a coarse NURBS basis. After that, the simplified domain can be
parametrized using any computationally cheap method, for example, the Coons patch [27]. Finally,
a deformation mapping from the simplified domain onto the target domain is computed using the
so-called tangential incremental nonlinear elasticity (TINE) method. TINE is an efficient and robust

1.2. OUTLINE 3

deformation algorithm that numerically preserves bijectivity of the deformation mapping by em-
ploying a logarithmic variation of the neo-Hookean hyperelastic material law. As I demonstrate, the
proposed mesh deformation approach is able to construct high-quality parametrizations for complex
domains where many existing methods either fail or become unstable and inefficient.

The second area addressed in this thesis, fluid-structure interaction (FSI), studies the interac-
tion of a deformable structure with an internal or surrounding fluid flow. The interaction, when
sufficiently strong, causes deformation of both the structure and the domain occupied by the fluid.
One of the established approaches to tackle the motion of the fluid domain is based on the so-called
arbitrary Lagrangian-Eulerian (ALE) mappings [11, 32]. In its essence, an ALE mapping is a way to
update computational mesh in the fluid domain in response to the motion of the structure. What
links FSI to the mesh deformation approach for domain parametrization is a similarity between
TINE and the incremental linear elasticity (ILE) method (ILE is a state-of-the-art mesh update
method used in many FSI applications [33, 34, 35, 36, 37]). A naturally arising idea then is to apply
the TINE method in the FSI context. To that end, I have developed an isogeometric partitioned
FSI solver and reproduced a classic 2D benchmark problem [38]. On this benchmark, I compare
performance of TINE, ILE and other mesh update methods, including those based on harmonic
extension.

As it turns out, TINE is as powerful as ILE when it comes to an amount of deformation the
methods can handle before the computational mesh becomes invalid, or entangled. Both methods
are also much more powerful that other considered methods. However, I show that the ILE method
results in residual deformation of the computational mesh which accumulates over the course of
simulation. I refer to this effect as accumulated distortion. As I demonstrate, accumulated distortion
can significantly affect results of an FSI simulation. At the same time, the TINE method shows
no signs of accumulated distortion. Consequently, it allows to perform accurate simulations over
longer periods of time. However, there is a price to pay: TINE is roughly twice as computationally
expensive as ILE. Although both methods require only solution of a system of linear algebraic
equations of the same size per time step, it takes more time to assemble the TINE system.

1.2 Outline

This thesis is organized in five chapters. After this first introductory chapter, Chapter 2 describes
basic principles and methods of isogeometric analysis. It introduces NURBS—the core technology of
IGA—and gives a short overview of how NURBS can describe computational domains in an analysis-
suitable way. Next, the Galerkin isogeometric method is presented using Poisson’s equation as an
example. Finally, all introduced concepts are illustrated on a numerical example with a special
focus on the effect that different types of domain parametrization have on simulation accuracy.

Chapter 3 is devoted to the single-patch domain parametrization problem. After accurately
formulating the problem, the chapter proceeds to describing the state-of-the-art solution methods.
This includes the spring model, the Coons patch, different optimization-based methods and the
elliptic grid generation. Next, an idea of the mesh deformation approach is presented, followed by
the domain simplification technique. The bulk of the chapter deals with the TINE algorithm. To
explain it in details, a short introduction into the theory of nonlinear elasticity is provided. Then,
Newton’s method for equations of nonlinear elasticity, its incremental variation and, finally, the
TINE method are formulated. The chapter concludes with a comparison of the mesh deformation
method against the state-of-the-art methods on a range of 2D and 3D examples.

Chapter 4 focuses on applying the TINE method in the context of fluid-structure interaction.
First, it describes the benchmark geometry and the intended FSI simulation scenario. The next two

4 CHAPTER 1. INTRODUCTION

sections deal with the main components of the FSI system: time-dependent equations of nonlinear
elasticity and the incompressible Navier-Stokes equations. Numerical methods for each component
are presented, and implementation of the corresponding solvers are validated on partial benchmarks.
Then, the ALE formulation of the FSI system of equations is explained, followed by the partitioned
solution approach with strong coupling. After that, several state-of-the-art mesh deformation meth-
ods are formulated along with an FSI-variation of the TINE method and the Jacobian-based local
stiffening. All mesh deformation methods are compared on a simplified FSI-like benchmark. At
the end, the ILE and TINE methods are applied to solve the intended FSI benchmark, and the
simulation results are compared against the reference values.

Finally, Chapter 5 draws a conclusion to this thesis by summarizing the results and providing
an outlook on potential further research directions.

2 | Foundations of Isogeometric Analysis

The research I present in this work has been conducted in the framework of IGA. Depending on
the point of view, IGA can be considered a generalization or a special case of FEM. Regardless, the
main concept—first introduced in [3]—is to use the same NURBS function space both to describe
computational domains and to discretize in space partial differential equations. In this chapter, I
introduce B-splines and NURBS which constitute the core technology of IGA. This introduction
is based mainly on [39], where detailed definitions, proofs and computer implementations can be
found. Additionally, I have drawn inspiration from the following article [40], which provides a
very friendly, albeit less formal, overview of NURBS from the perspective of a CAD practitioner.
I then demonstrate how NURBS can describe 2D and 3D computational domains, and discuss
advantages as well as disadvantages of such a representation. Next, a Galerkin version of IGA is
presented—based on [2]—where NURBS play a role of a finite-dimensional function space in which
an approximate solution to a given PDE is sought. After illustrating all the introduced concepts on
a numerical example, I conclude this chapter by juxtaposing IGA and FEA and express my opinion
regarding their relative strengths and weaknesses.

2.1 B-splines and NURBS

2.1.1 B-splines

Our journey into the world of splines begins with the definition of a non-decreasing sequence of
knots ξi ∈ R, ξi 6 ξi+1, i = 1, . . . , k which form a knot vector Ξ = {ξ1, . . . , ξk}. Note that the knots
in Ξ do not need to have unique values. Let us say that a knot value has a multiplicity m if it is
shared by exactly m knots in Ξ.

Given the knot vector Ξ, we can define the ith B-spline1 basis function of degree p—denoted by
Bp
i (ξ)—by a recursive formula of de Boor as

B0
i (ξ) =

{
1 if ξ ∈ [ξi, ξi+1),
0 otherwise, (2.1)

Bp
i (ξ) =

ξ − ξi
ξi+p − ξi

Bp−1
i (ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Bp−1
i+1 (ξ). (2.2)

Due to the knot multiplicity, the quotient 0
0 may appear which is formally set to 0.

For a given knot vector Ξ and degree p, formulas (2.1–2.2) define n = k − p − 1 B-spline basis
functions which I collectively refer to as a B-spline basis. There are several important properties to
be mentioned.

• B-spline basis functions are polynomials of degree p between every two distinct knots; their
continuity at knot ξi is Cp−m, where m is of the knot multiplicity.

1B in B-spline probably means basis.

5

6 CHAPTER 2. FOUNDATIONS OF ISOGEOMETRIC ANALYSIS

• B-spline basis functions are linearly independent and form a basis in the space of degree-p
splines with the continuity implied by Ξ.

• B-spline basis functions are non-negative: Bp
i (ξ) > 0 ∀ξ.

• B-spline basis functions have local support: supp(Bp
i (ξ)) = [ξi, ξi+p+1). Between every two

distinct knots exactly p+ 1 functions are non-zero.

• B-spline basis functions form a partition of unity within [ξp+1, ξk−p), that is,∑n
i=1B

p
i (ξ) ≡ 1 ∀ξ ∈ [ξp+1, ξk−p).

The primary use of B-spline basis functions is to construct smooth objects of arbitrary shape.
When combined with a set of n control points ci ∈ Rd, d = 2 or 3, they define a B-spline curve
γγγ : [ξp+1, ξk−p)→ Rd as

γγγ(ξ) =

n∑
i=1

ciB
p
i (ξ). (2.3)

One can interpret a B-spline curve as a smooth blending, or approximation, of given control points.
Control points of a B-spline curve form a control polygon. From the non-negativity and the partition-
of-unity properties of B-spline basis functions, it follows that the B-spline curve lies in the convex
hull of its control points.

Let us study a couple of examples. Figure 2.1 depicts a quadratic B-spline basis generated with
a knot vector {0, 1, 2, 3, 4, 4, 5, 6, 7}. The basis functions are C1-continuous everywhere but at ξ = 4.
Due to multiplicity 2 of the knot value ξ = 4, functions2 B3, B4, and B5 are only C0-continuous.
Figure 2.1 also shows a B-spline curve generated using this basis, as well the corresponding control
points and the control polygon. Note the C0-kink caused by the knot multiplicity. Another promi-
nent property of the curve is its floating in space endpoints; that is, the endpoints do not coincide
with any of the control points. Specifically, they do not coincide with the first and the last control
points. The reason is that more than one basis function assumes a non-zero value at ξ = 2 and ξ = 5
(the beginning and the end of the parameter interval where the curve is defined). Consequently,
each endpoint is a linear combination of the neighboring control points. In practice, however, one
would like to directly control the position of the endpoints, and most often one would like them to
coincide with the first and the last control points.

0 1 2 3 4 5 6 7
0

0.25

0.5

0.75

1

Figure 2.1. Quadratic B-spline basis (left) and a B-spline curve generated using this basis, control
points and a control polygon (right).

The issue of floating in space endpoints can be solved by exploiting the knot multiplicity. Con-
sider a knot vector {0, 0, 0, 0.2, 0.4, 0.6, 0.8, 1, 1, 1}. Figure 2.2 shows the corresponding quadratic

2Where it is not necessary, I omit the superscript denoting a polynomial degree of B-spline basis functions.

2.1. B-SPLINES AND NURBS 7

B-spline basis. Due to multiplicity three of the knot value ξ = 0, all basis functions except for
the first one are zero at ξ = 0; the first basis function assumes a value of 1. The same happens
at ξ = 1, where only the last basis function is non-zero. As a result, the first and the last basis
functions have an exclusive control over the endpoints of the B-spline curve generated using this
basis. Consequently, the endpoints of the curve coincide with the first and the last control points,
see Figure 2.2. The knot vectors with multiplicity p + 1 of the first and the last knots are called
open knot vectors3, and I use only such knot vectors in this work. Note also that the considered
knot vector lies in the unit interval [0, 1]. Although this is knot4 necessary, for convenience I always
use knot vectors from the unit interval.

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Figure 2.2. Quadratic B-spline basis with an open knot vector (left) and a B-spline curve generated
using this basis, control points and a control polygon (right).

2.1.2 Refinement

One of the beautiful properties of B-splines is that one can enrich the underlying basis of a B-spline
curve without changing the geometry or the parametrization of this curve. Two key algorithms
exist: knot insertion and degree elevation. As the name suggests, knot insertion allows to add a
(not necessarily new) knot to the knot vector of the curve, see Figure 2.3. As a result, the number
of basis functions and control points increases by one. Although a new set of control points has to
be constructed based on the old set, only p new control points have to be computed, whereas the
rest remain the same. Therefore, knot insertion is a local operation. For a detailed description of
knot insertion algorithm, I refer to [39].

The fact that knot insertion does not alter geometry of the curve motivates its two main ap-
plications. The first is h-refinement which involves inserting new knots between every two unique
knot values. Often, a value ξnew = (ξi + ξi+1)/2 is inserted, decreasing the distance between every
two unique knots by half. This grants more control over the shape of the curve as well as increases
accuracy of the numerical methods built using the corresponding basis. Another application of
knot insertion is to intentionally introduce points with C0-continuity. This is useful for splitting a
B-spline curve into two independent curves.

Another refinement algorithm, degree elevation, increases the polynomial degree of a B-spline
curve by one. It does so by splitting the curve into Bézier segments using knot insertion, increasing
the polynomial degree of every segment, and then removing the excessive knots. Again, I refer to
[39] for the details. After the procedure, multiplicity of each knot in the knot vector is increased
by one. Note that the inverse algorithms for both knot insertion and degree elevation, namely knot

3The term open means that the corresponding B-spline curve may not close on itself. On the other hand, usual
knot vectors, like the one in Figure 2.1, are often used to model smoothly closed curves.

4Pun intended.

8 CHAPTER 2. FOUNDATIONS OF ISOGEOMETRIC ANALYSIS

removal and degree reduction, can be constructed but do not preserve the geometry exactly unless
the curve happens to lie in a span of the coarser basis.

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Figure 2.3. Knot insertion and degree elevation: original quadratic B-spline curve before refine-
ment and the corresponding B-spline basis (left); the basis and the curve after inserting a knot
ξnew = 0.5 (middle); the basis and the curve after degree elevation from quadratic to cubic (right).

The order in which h-refinement (or knot insertion in particular) and degree elevation5 are
applied affects the output. In particular, degree elevation applied after knot insertion results in a
larger number of points of reduced continuity than if the order is reversed, see Figure 2.4. This
motivates the concept of the so-called k-refinement. According to it, if one wishes to apply both h-
refinement and degree elevation, then degree elevation should be applied first. Note that although
k-refinement results in the smoothest B-spline basis, it preserves all existing points of reduced
continuity.

2.1.3 NURBS

Despite great flexibility of B-spline curves, one issue remains: they cannot represent conic sections.
NURBS 6 is a generalization of B-splines which fixes this issue. Geometrically, a NURBS curve
C(ξ) in Rd is defined as a projection of a B-spline curve Ĉ(ξ) from Rd+1: each point of the curve
Ĉ(ξ) is projected onto the plane xd+1 = 1 by a ray through the origin. This is accomplished by
defining each curve component by

(
C(ξ)

)
j

=

(
Ĉ(ξ)

)
j

W (ξ)
=

∑n
i=1

(
ĉi)jBi(ξ)∑n

i=1wiBi(ξ)
, j = 1, . . . , d, (2.4)

5In order to complete the picture, it is worth mentioning that degree elevation would be called p-refinement in the
FEM community.

6Non-uniform rational B-splines. NU in NURBS refers to non-uniform knot vectors, so only R is new with respect
to the previously defined B-splines.

2.1. B-SPLINES AND NURBS 9

where ĉi ∈ Rd+1 are control points of the B-spline curve, and wi = (ĉi)d+1 are the last components of
the control points which are called weights in the context of NURBS. Since the weights are assumed
to be positive, the weight function W (ξ) is positive as well due to the non-negativity property,
and the projection is well defined. All the refinement algorithms for the NURBS curve C(ξ) are
implemented by applying them to the corresponding B-spline Ĉ(ξ).

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Figure 2.4. k-refinement: original linear B-spline basis (top); result of applying h-refinement
followed by degree elevation (left column); degree elevation first, then h-refinement (right column).

Although the geometric definition gives us some intuition about NURBS, in practice one would
like to be blissfully ignorant of the projective nature of NURBS. To that end, let us define NURBS
basis functions Ni(ξ) and (projected) control points ci ∈ Rd as

Ni(ξ) =
wiBi(ξ)∑n
i=1wiBi(ξ)

, (ci)j = (ĉi)j/wi, j = 1, . . . , d, (2.5)

so that the curve C(ξ) can be rewritten as

C(ξ) =

n∑
i=1

ciNi(ξ). (2.6)

Unlike the projective definition (2.4), this representation of a NURBS curve is simple and coincides
with the representation of a B-spline curve (2.3). We can now choose control points ci in the same

10 CHAPTER 2. FOUNDATIONS OF ISOGEOMETRIC ANALYSIS

manner as we would do for a B-spline curve, and weights wi are chosen independently to alter the
shape of the resulting NURBS curve. Although from the algebraic point of view weights do not have
an explicit geometric interpretation, the following rule of thumb applies: the larger the weight is, the
stronger the resulting NURBS curve is pulled locally towards the corresponding control point. One
final remark: note that if all weights have the same value, then Ni(ξ) = Bi(ξ), and thus NURBS
become B-splines again. Hence in what follows, I only use the term NURBS unless it is necessary
to explicitly specify that we are dealing with B-splines.

Let us turn own attention back to the conic sections; the following method can be used to
generate conic arcs:

• an arc is modeled by a quadratic NURBS curve with three control points;

• the first and the last control points are the endpoints of the arc; location of the inner control
point defines the shape of the curve;

• weights of the first and the last control points are 1;

• a weight less than 1 for the inner control point generates an ellipse; a weight equal to 1
generates a parabola; a weight larger than 1 generates a hyperbola;

• the knot vector is {0, 0, 0, 1, 1, 1}.

The most common conic arc used in modeling is a circular arc. Since a circle is a special case of
an ellipse, the previously described method can be applied with the following specifications:

• the legs of the control polygon are of the same length;

• the cord connecting the first and the last control points meets each leg at angle θ equal to
half the angular extent of the desired arc;

• the weight of the inner control point equals cos θ.

Figure 2.5. Circle modeled by three 120◦ circular arcs joined into one quadratic NURBS curve
with a knot vector {0, 0, 0, 1/3, 1/3, 2/3, 2/3, 1, 1, 1}.

2.1. B-SPLINES AND NURBS 11

The described method can only produce circular arcs less then 180◦ in angular extent. To model
a complete circle, one usually combines three 120◦ or four 90◦ arcs. Figure 2.5 presents an example of
a radius one circle with its center at (0,0) modeled by three 120◦ circular arcs7. These three arcs are
represented by a single quadratic NURBS curve with the knot vector {0, 0, 0, 1/3, 1/3, 2/3, 2/3, 1, 1, 1}
and the combined control points.

2.1.4 Tensor-product NURBS

So far, we have only considered NURBS curves γγγ(ξ) : [0, 1] → Rd, which are univariate NURBS
objects. However, since our goal is to construct computational domains using NURBS, we need
to define multivariate NURBS objects as well. The most popular option is to use tensor-product
NURBS. Given two knot vectors Ξ and H from [0, 1] and two corresponding sets of NURBS basis
functions Ni(ξ), i = 1, . . . , n and Mj(η), j = 1, . . . ,m, a bivariate tensor-product NURBS function
G(ξ, η) : [0, 1]2 → Rd is defined as

G(ξ, η) =
n∑
i=1

m∑
j=1

cijNi(ξ)Mj(η), (2.7)

where cij ∈ Rd form a n×m array of control points. Image of mapping G is some domain Ω ⊂ Rd,
and G can be interpreted as a parametrization of this domain. Bivariate tensor-product NURBS
allow us to construct planar domains in R2 and two-dimensional hypersurfaces in R3, see Figure
2.6.

Note that the objects in Figure 2.6 have two co-existing grid-like structures associated to them:
one formed by the control points, called a control net, and another formed by the isoparametric
lines corresponding to unique knot values from the knot vectors Ξ and H, which I refer to as an
isogeometric mesh. In its essence, the isogeometric mesh is very similar to computational meshes
used in the standard finite element analysis. When restricted to any of the isogeometric mesh
elements, mapping G is just a multivariate polynomial function. The crucial distinction from
FEM is that G is smooth between the elements. Therefore, elements of the isogeometric mesh are
connected smoothly, whereas in FEM, the connection is only C0-continuous.

Figure 2.6. Examples of tensor-product NURBS objects: a planar domain (left), a two-dimensional
surface in R3 (middle) and a volumetric domain. Control points and control nets are shown in black,
isogeometric meshes in blue.

When working with tensor-product NURBS, it is convenient to have an ability to distinguish
7This is the smallest NURBS model of a circle.

12 CHAPTER 2. FOUNDATIONS OF ISOGEOMETRIC ANALYSIS

between different sides of the domain. To that end, I use the cardinal directions: south for G(ξ, 0),
north for G(ξ, 1), west for G(0, η) and east for G(1, η).

By introducing yet another set of NURBS basis functions Lk(ζ), k = 1, . . . , l with a knot vector
Z ⊂ [0, 1], we can define a trivariate tensor-product NURBS function G(ξ, η, ζ) : [0, 1]3 → Rd as

G(ξ, η, ζ) =

n∑
i=1

m∑
j=1

l∑
k=1

cijkNi(ξ)Mj(η)Lk(ζ), (2.8)

where control points cijk ∈ Rd form a n × m × l array. Trivariate tensor-product NURBS let us
construct volumetric domains [0, 1]3 → R3, see Figure 2.6. In what follows, I only consider planar
and volumetric domains and do not work with NURBS surfaces.

Compact tensor-product NURBS notation

In order to treat both cases of d = 2 and d = 3 simultaneously and to shorten the notation, I
use a dimension-agnostic notation. I denote a point in the parametric domain [0, 1]d by ξξξ and a
tensor-product NURBS basis function [0, 1]d → R by Ni(ξξξ). For d = 2 and d = 3, Ni(ξξξ) is defined
as

Ni(ξξξ) = Ni(ξ)Mj(η), (2.9)
Ni(ξξξ) = Ni(ξ)Mj(η)Lk(ζ), (2.10)

respectively, with the following renumbering:

i = (j − 1)n+ i, (2.11)
i = (k − 1)nm+ (j − 1)n+ i. (2.12)

The total number of basis functions is n = n×m for d = 2 and n = n×m× l for d = 3. With this
notation, formulas (2.7) and (2.8) for tensor-product NURBS shorten to

G(ξξξ) =
n∑
i=1

ciNi(ξξξ). (2.13)

Both the extended and the shortened notations can be used interchangeably, which, hopefully,
causes no confusion.

It is also convenient to distinguish between the interior and the boundary basis functions. I call
Ni(ξξξ) an interior basis function if it is zero on the boundary of [0, 1]d. I call Ni(ξξξ) a boundary basis
function if it is not an interior one. I use I and B to denote the sets of indices corresponding to the
interior and the boundary basis functions, respectively. The two sets do not overlap, so (2.13) can
be rewritten as

G(ξξξ) =
∑
i=I

ciNi(ξξξ) +
∑
i=B

ciNi(ξξξ). (2.14)

Note that since open knot vectors are used to construct G, only the first and the last basis functions
in each parametric direction belong to the boundary set. In other words, the layer of boundary basis
functions has a thickness of one.

2.2. DOMAIN PARAMETRIZATION WITH NURBS 13

2.2 Domain parametrization with NURBS

The biggest advantage of tensor-product NURBS, and at the same time their greatest weakness, is
their simplicity. This simplicity stems from a natural “structuredness” inherent to tensor product
and opens the door for some straightforward and efficient implementations. However, it also puts
a restriction on what output tensor-product NURBS can produce. So in practice, tensor-product
NURBS are augmented by additional techniques or even replaced by alternative spline technologies.
In the following, I give a short overview of various approaches to geometry modeling in IGA and
outline a general pipeline I stick to when working with tensor-product NURBS.

2.2.1 Multi-patch models

Due to their structure, tensor-product NURBS cannot produce topologically complex objects. If
mapping G is a diffeomorphism8, its image Ω is diffeomorphic to a unit square (for d = 2) or to
a unit cube (for d = 3). Therefore, Ω has zero holes and four sharp corners in 2D or eight in 3D.
By relaxing the bijectivity requirement on the boundary, domains with holes can be constructed,
see Figure 2.7. Additionally, domains with different number of corners can be constructed if the
smoothness requirement on the boundary is relaxed, see Figure 2.7 again. Still, both options
are essentially tricks; the former is not universally applicable whereas the latter leads to a worse
performance of numerical methods built upon it.

Figure 2.7. Left: an example of a domain with one hole constructed by “gluing” together the west
and the east sides of the domain along the red line; the parametrization is not uniquely invertible
along the gluing line. Right: an example of a domain with no corners; the inverse mapping is not
differentiable at the red points.

A not-so-elegant but robust way to construct topologically non-trivial domains is to use the
so-called multi-patch (MP) approach. In accordance to it, domain Ω is constructed as a union of
several subdomains9 Ωi called patches,

Ω̄ =

k⋃
i=1

Ω̄i. (2.15)

Each patch is a tensor-product NURBS object. The most natural and simple in practice case is
when the patches have matching interfaces, which is characterized by the following conditions:

• the patches do not overlap: Ωi ∩ Ωj = ∅ ∀i 6= j;
8A diffeomorphism is a bijective mapping such that it and its inverse are differentiable.
9Here, Ω̄ denotes a closure of the domain Ω, and ∂Ω denotes its boundary.

14 CHAPTER 2. FOUNDATIONS OF ISOGEOMETRIC ANALYSIS

• if two patches Ωi and Ωj are adjacent, that is, ∂Ωi ∩ ∂Ωj = Γij 6= 0, then the interface Γij
consists of entire sides of the patches;

• parametrizations Gi and Gj of the adjacent patches Ωi and Ωj coincide on Γij .

In practice, matching interfaces mean two patches share the NURBS basis and the control points
at the boundary. Figure 2.8 shows an example of a multi-patch domain with matching interfaces.

One disadvantage of the matching-interface property is its non-local nature. If three or more
patches in a row have matching interfaces, parametrizations in the corresponding direction for all
patches have to coincide. This chain effect can place a rather inconvenient restriction on the freedom
in geometric modeling. Because of that, the de facto industrial standard in CAD are MP models
with non-matching interfaces. This can mean either that the patches coincide geometrically at
the neighboring sides but are free to have different parametrizations, or that they do not coincide
geometrically at all and may have small overlaps or gaps in between, see Figure 2.8. The latter is
a common approach in CAD modeling which results in the so-called non-watertight models. From
the perspective of numerical analysis, however, the non-matching interfaces are not desirable since
they require special treatment to connect patches [41, 42]. In this work, I opt for easier numerical
methods instead of easier geometric modeling and only use MP models with matching interfaces.

Figure 2.8. Examples of multi-patch models. Bold blue lines show the borders of each patch.
Left: matching interfaces. Center: non-matching interfaces with matching geometry. Right: non-
matching geometry (an exaggerated non-watertight model).

Although I exclusively use multi-patch models in this work, I would also like to mention that
there exist alternative spline technologies that allow to overcome the topological restrictions of
tensor-product NURBS. These include—but are not limited to—Catmull-Clark subdivision surfaces
[43], triangular splines [44] and U-splines10 [45]. All mentioned spline technologies have successfully
been applied to in the context of IGA; however, they are not as commonly used as the multi-patch
tensor-product NURBS approach.

2.2.2 Domain parametrization problem: overview

The MP approach is a powerful and convenient tool for creating geometric objects of arbitrary
shape and complexity. In practice, however, one often has to solve a reverse problem: given a
domain Ω, how to construct a (possibly multi-patch) tensor-product NURBS model of it? I refer
to this a domain parametrization problem. Its solution involves a segmentation step, where a multi-
patch structure for the domain is created, followed by the construction of a tensor-product NURBS
parametrization for each patch, see Figure 2.9. In that, the domain parametrization problem is
similar to reverse engineering [46], where a geometric model of an existing object is reconstructed

10Unstructured splines.

2.2. DOMAIN PARAMETRIZATION WITH NURBS 15

from a set of measured surface data, for example, a point cloud. The reconstructed geometric model
is often a multi-patch tensor-product NURBS description of the object’s surface. In the domain
parametrization problem, however, only the description of the domain’s boundary is available,
whereas the parametrization has to be constructed for the interior of the domain as well, making it
more akin to the problem of quadrilateral and hexahedral mesh generation [47].

Figure 2.9. Domain parametrization pipeline. From left to right: point cloud or any other non-
NURBS representation of the domain’s boundary; NURBS representation of the domain’s boundary;
multi-patch structure of the domain’s parametrization; multi-patch NURBS parametrization of the
domain.

Of the two steps constituting the parametrization problem, the segmentation step is the least
susceptible to a full automation. It turns out that to split a domain into a reasonably small number
of well-shaped patches in a way a human would do is not a trivial task. Several fully automated
methods are available, including the medial axis decomposition11[48, 49] and the cross-field method
[50]. However, these methods tend to be complex and, occasionally, unstable. A commonly accepted
approach to segmentation is to employ interactive semi-automated methods which make use of some
manually provided a priori knowledge about the domain. In [26], a systematic segmentation pipeline
is described which implements this approach. It is worth noting that the segmentation step may also
include a reverse engineering sub-step for acquiring a suitable NURBS description of the domain’s
boundary which facilitates or dictates the segmentation. This may be necessary if a given NURBS
boundary description is not clean or watertight, or if the boundary is given in an alternative geometry
format, say, a point cloud or a triangulated surface. In this work, I perform segmentation manually.

In comparison to the segmentation step, the single-patch parametrization step is straightforward
and has received much more attention from the scientific community. It has a well-defined standard
setting: given four boundary NURBS curves in the planar case or six boundary NURBS surfaces
in the volumetric case, construct a tensor-product NURBS function which matches the boundary
description. As we will see, this boils down to allocation of the interior control points in a right way.
In Chapter 3, I describe of the most popular state-of-the-art solution approaches to the single-patch
parametrization step as well as propose a novel approach which yields superior results for complex
domains.

Alternative parametrization strategies

The described above domain parametrization pipeline aims at converting an arbitrary CAD object
into an IGA-suitable multi-patch parametrization which explicitly resolves the object’s boundary.
At the current state of technology, this pipeline is far from being fully automated and requires

11Also known as skeleton decomposition.

16 CHAPTER 2. FOUNDATIONS OF ISOGEOMETRIC ANALYSIS

a hefty deal of manual work (mostly at the segmentation step). For the sake of completeness, I
would like to mention alternative approaches to treating complex CAD objects in IGA. One of these
approaches, the immersed boundary method [22], overlays the domain with a Cartesian grid and
resolves the boundary implicitly by integrating over the cut elements. The Cartesian grid is created
as a single tensor-product NURBS patch, and one can easily treat domains with arbitrary topology
using this method. Figure 2.10 presents a simplified example of this approach. Another method uses
parametrizations with trimmed patches [19, 20]. The idea is to mimic the CAD modeling process
where Boolean operations, such as union or subtraction, are used to create complex objects. Instead
of constructing a new multi-patch parametrization with a boundary-fitted mesh for the object, the
existing patches are used, and the implied interfaces are treated implicitly at the integration step,
see Figure 2.10. Both methods have to deal with cut elements along the domain boundary, so
carefully designed integration rules are required to avoid numerical instabilities.

Figure 2.10. Left: immersed boundary method. Right: trimmed patch constructed by subtracting
of a circle from a rectangle. Computational domains’ boundaries are marked with red.

2.2.3 Local refinement

Figure 2.11. Left: propagating local refinement with tensor-product NURBS. Right: true local
refinement with THB-splines.

Another problem of the tensor-product NURBS technology is that it does not support local refine-
ment. The idea of local refinement is to increase the simulation resolution in a certain area by
reducing the size of mesh elements in this area only. In this way, local refinement allows to improve
the simulation accuracy where it is necessary without significantly increasing the total number of
degrees of freedom. This idea can be naively implemented in IGA by means of knot insertion. How-
ever, if a new knot value is inserted in one parametric direction, then a whole new isoparametric line
appears which splits an entire row of elements. This effect defies the idea of introducing only local
changes to the mesh, see Figure 2.11. To overcome this problem, several generalizations of NURBS

2.3. ISOGEOMETRIC GALERKIN METHOD 17

were developed; among them, THB-splines12 [51, 52]. A THB-basis is constructed by combining
subsets of bases from different levels of refinement. The basis functions are then slightly modified
(truncated) so that the resulting basis possesses such properties as the non-negativity, partition-
of-unity and linear independence. An example of local refinement with THB-splines is depicted in
Figure 2.11. Alternative spline technologies which support local refinement are T-splines13 [53, 54],
LR B-splines14 [55] and already mention U-splines and triangular-based splines.

2.3 Isogeometric Galerkin method

In the previous sections, I have introduced NURBS and described various ways they can be used to
model computational domains. In what follows, I demonstrate how NURBS can be applied to solve
PDEs using Galerkin method. In order to keep the discussion concise, I do that on an example of
Poisson’s equation. However, the described procedure is applicable to any linear elliptic PDE with
the properties of coercivity and continuity. After that, I present a numerical example which studies
the effect that domain parametrizations have on accuracy of the numerical simulation.

2.3.1 Model problem: Poisson’s equation

Let Ω ⊂ Rd be a computational domain where Poisson’s equation is to be solved:

−∆xu = f in Ω. (2.16)

Here, function f : Ω→ R is a given source term, u : Ω→ R is an unknown solution and ∆x is the
Laplace operator. The subscript x indicates differentiation with respect to the spacial coordinates
x ∈ Ω rather than the parametric coordinates ξξξ. The domain’s boundary ∂Ω is split into a Dirichlet
part ∂ΩD and a Neumann part ∂ΩN , where the corresponding boundary conditions are set:

u = uD on ∂ΩD, (2.17)
∇xu · n = g on ∂ΩN . (2.18)

A function u ∈ C2(Ω) ∩ C0(Ω̄) is called a classical solution if it satisfies the system (2.16–2.18).
Recall that a Sobolev space of order r is defined by

Hr(Ω) = {w | Dαααw ∈ L2(Ω), |ααα| 6 r}, (2.19)

where Dααα(·) is a differentiation operator in the sense of distributions. In order to apply the isoge-
ometric Galerkin method, one has to transform the strong form (2.16–2.18) into a weak form, also
known as a variational formulation. To that end, let us define the solution and the weighting spaces
as

V = {w ∈ H1(Ω) | w = uD on ∂ΩD}, (2.20)

V0 = {w ∈ H1(Ω) | w = 0 on ∂ΩD}, (2.21)

12Truncated hierarchical B-splines.
13The term comes from the fact that this technology allows computational meshes to have T-junctions. Although

T-splines are the de facto industrial standard in CAD when it comes to local refinement, they are a rather inelegant
solution.

14Locally refined B-splines.

18 CHAPTER 2. FOUNDATIONS OF ISOGEOMETRIC ANALYSIS

respectively. The function values on ∂ΩD are prescribed in the sense of traces. After multiplying
(2.16) by a weighting function w ∈ V0, integrating over Ω and applying integration by parts to the
left-hand side, we acquire the weak form of (2.16–2.18):

find u ∈ V such that
∫
Ω

∇xu∇xw
Tdx =

∫
Ω

fwdx +

∫
∂Ω

gwds ∀w ∈ V0. (2.22)

Here, ∇x is the gradient operator which returns a row-vector containing all partial derivatives. The
notation is generalized by defining a bilinear form a(u,w) =

∫
Ω∇xu∇xw

Tdx and a linear form
l(w) =

∫
Ω fwdx +

∫
∂Ω gwds. Then formulation (2.22) becomes

find u ∈ V such that a(u,w) = l(w) ∀w ∈ V0. (2.23)

The bilinear form a(u,w) is symmetric. Moreover, it is continuous, that is, there exists a constant
C > 0 such that

a(u,w) 6 C||u||V ||v||V , (2.24)

and coercive, which means that there exists a constant α > 0 such that

a(w,w) > α||w||V . (2.25)

According to the Lax-Milgram theorem, from the continuity and coercivity it follows that there
exists a unique solution to the variational problem (2.26–??).

2.3.2 Single-patch case

The Galerkin method of finding an approximate solution to the infinite dimensional problem (2.23)
involves replacing V and V0 by their finite dimensional subspaces Vh ⊂ V and V0,h ⊂ V0 and solving
the following finite dimensional variational problem:

find uh ∈ Vh such that a(uh, w) = l(w) ∀w ∈ V0,h, (2.26)

where uh is a numerical approximation of the exact solution u. Here, the subscript h refers to the
discrete nature of the involved objects.

In IGA, Vh and V0,h are constructed using NURBS. Let us assume for now15, that Ω is a
single-patch domain, which parametrization G : [0, 1]d → Ω is constructed using tensor-product
NURBS basis functions Ni : [0, 1]d → R. Let x denote a point in Ω, and let us define functions
Ni on Ω as Ni(x) = Ni(G

−1(x)). A linear span of Ni(x) defines a physical NURBS space N (Ω) =
span(Ni(x), i = 1, . . . , n) ⊂ H1(Ω). We search for uh as an isogeometric solution from N (Ω), that
is, as a linear combination

uh(x) =
n∑
i=1

yiNi(x) (2.27)

with unknown coefficients yi ∈ R. Each coefficient yi corresponds to a basis function Ni, which in
turn corresponds to a control point ci of the mapping G. Thus, the control net of G also visualizes
the structure of degrees of freedom yi.

15The multi-patch case is consider below.

2.3. ISOGEOMETRIC GALERKIN METHOD 19

Note that Ni are well-defined in Ω only if the parametrization G is locally invertible. This leads
to the following condition on the Jacobian determinant of G:

J(G) = det∇ξξξG > 0. (2.28)

I refer to this as the bijectivity constraint and say that parametrizations satisfying this constraint
are valid.

The space N (Ω) can be considered a basic, or minimal, physical space associated with the
parametrization G. By applying h-refinement and degree elevation in various combinations, this
space can be enriched. I denote the refined space by N p

r , where p is the achieved polynomial degree
and r is the h-refinement level measured from the space N p

0 . Following the k-refinement concept,
degree elevation is applied before h-refinement.

The isogeometric solution uh has to belong to Vh ⊂ V so that it satisfies the Dirichlet boundary
condition (2.17). Assume that ∂ΩD consists of one or more entire sides of the tensor-product NURBS
patch that represents Ω16. In this case, we can isolate a subset of the NURBS basis functions which
form ∂ΩD. I denote the set of indices corresponding to these functions by D. Correspondingly, only
functions Ni, i ∈ D are responsible for resolving the prescribed boundary solution uD. Note that
uD may not belong to the space N (∂ΩD) = span(Ni(x)|∂ΩD , i ∈ D), in which case the Dirichlet
boundary condition (2.17) can only be satisfied approximately, that is,

uD(x) ≈
∑
i∈D

yiNi(x)|∂ΩD . (2.29)

Assume that yi, i ∈ D are known. Then we can rewrite (2.27) as

uh(x) =

n∑
i=1

yiNi(x) =
∑
i∈D

yiNi(x) +
∑
i∈F

yiNi(x), (2.30)

where F denotes a set of indices corresponding to free coefficients yi, i ∈ F as opposed to the fixed
coefficients yi, i ∈ D. We can now define the discrete function spaces Vh,0 and Vh as

V0,h = span(Ni, i ∈ F) and Vh =
∑
i∈D

yiNi + Vh,0. (2.31)

Note that V0,h contains functions from N (Ω) for which yi = 0 ∀i ∈ D, so w = 0 on ∂ΩD ∀w ∈ V0,h.
Similarly, w ≈ uD on ∂ΩD ∀w ∈ Vh. Both spaces contain functions that are Cp−1-smooth where p
is the polynomial degree of the underlying parametrization G17.

Having defined Vh and V0,h, we can now construct a system of linear algebraic equations for the
finite-dimensional variational problem (2.26). Since the problem, it suffices to test it with the basis
of V0,h to determine if it holds for every function from V0,h. This leads to the following system of
equations:

a(uh, Ni) = l(Ni), i ∈ F . (2.32)

16This assumption is not too restrictive in practice.
17Of course, the smoothness of the tensor-product patch may vary depending on the parameter dimension if

different polynomial degrees are chosen, or even within one dimension if different knot multiplicities are used. Thus,
the smoothness of the generated physical NURBS spaces may vary as well. In the most cases, however, I use tensor-
product NURBS which have the same polynomial degree p in every dimension and have multiplicity one for the inner
knots. The resulting physical NURBS spaces are uniformly Cp−1-smooth.

20 CHAPTER 2. FOUNDATIONS OF ISOGEOMETRIC ANALYSIS

After plugging in the expanded representation of uh (2.30) and using the linearity and the symmetry
of a(u,w), we get∑

j∈D
yja(Ni, Nj) +

∑
j∈F

yja(Ni, Nj) = l(Ni), i ∈ F . (2.33)

Let us define the matrices A =
(
a(Ni, Nj)

)
i,j∈F and AD =

(
a(Ni, Nj)

)
i∈F ,j∈D and the vectors

y =
(
yi
)
i∈F , yD =

(
yi
)
i∈D and b =

(
l(Ni)

)
i∈F . Then the linear system (2.33) can be rewritten in

a matrix form as

Ay = b−ADyD. (2.34)

A is called the stiffness matrix, and AD is called the elimination matrix (because it eliminates
Dirichlet degrees of freedom yi, i ∈ D from the linear system). After solving matrix equation
(2.34) for y, the isogeometric solution uh can be constructed. Since the stiffness matrix A inherits
properties of the bilinear form a(u, v), it is symmetric positive definite. Therefore, the solution
vector y is well-defined, and so is the isogeometric solution uh.

Dirichlet degrees of freedom

In this work, I use the elimination strategy to enforce Dirichlet boundary conditions strongly. To
that end, the coefficients yi, i ∈ D, responsible for resolving the prescribed boundary solution uD,
are determined before the rest of the coefficients yi, i ∈ F and are treated as fixed. I compute yi,
i ∈ D by projecting uD in L2-sense onto N (∂ΩD). This is achieved by solving an auxiliary matrix
equation MDyD = uD. Here, MD is a projection mass matrix and uD is a right-hand side vector.
Their entries are defined as

(MD)ij =

∫
∂ΩD

NiNjds, i, j ∈ D and (uD)i =

∫
∂ΩD

NiuDds, i ∈ D. (2.35)

A-priori error estimate

I recite the main result regarding the accuracy of the isogeometric solution uh as given in [2]. Recall
that the norm associated with a Sobolev space Hr(Ω) is given by

||u||2r =
∑
|ααα|6r

(
Dααα,Dαααu

)
Ω
. (2.36)

Then the fundamental error estimate for elliptic problems expressed as a bound on the difference
between the exact solution u and the isogeometric solution uh takes the form

||u− uh||m 6 Chβ||u||r. (2.37)

Here, h is a characteristic length scale related to the element size in the isogeometric mesh, β =
min(p+ 1−m, r−m) where p is the polynomial order of the mapping G, and C is a constant that
does not depend on u or h. Of particular interest here is the term hβ . The order of convergence β
defines the behavior of the error as we refine the mesh. For example, if we refine the mesh uniformly
and reduce h to h/2, we can expect the error to reduce by a factor 1/2β .

2.3. ISOGEOMETRIC GALERKIN METHOD 21

Linear system formation

It is convenient to compute the entries to the stiffness matrix A by transforming the integrals from
the spatial coordinates x to the parametric coordinates ξξξ. Concretely,

(A)ij = a(Ni, Nj) =

∫
Ω

∇xNi∇xN
T
j dx =

∫
[0,1]d

∇ξξξNi∇ξξξG−1
(
∇ξξξNj∇ξξξG−1

)T
J(G)dξξξ. (2.38)

Here, we again rely on the fact that G is bijective in order to transform the basis function gradients
with respect to ξξξ to the gradients with respect to x. Note that the gradients with respect to
the parametric coordinates ξξξ can be efficiently computed using specialized NURBS algorithms,
described for example in [39]. On [0, 1]d, integration can be performed element-wise using the
standard Gaussian quadrature. The same assembly method is applied to the entries of the loading
vector b.

Although the higher smoothness of NURBS function spaces is good in some situations, it is
a disadvantage when it comes to linear system formation. This is because each NURBS basis
function of degree p has a support spanning (p + 1)d elements, which is a lot in comparison to 2d

elements in the case of FEM. Because of that, an element-wise assembly procedure can be extremely
computationally expensive, especially for high polynomial degrees p. Concretely, a local stiffness
matrix on each element has dimension (p+ 1)2d, and each of its entries is computed using (p+ 1)d

Gauss points (if standard Gaussian quadrature is used). This results in the computational cost of
assembling the global stiffness matrix A being O(N(p + 1)3d) FLOPs, where N is a total number
of degrees of freedom. In order to reduce the required computational effort, alternative assembly
paradigms are necessary, like the row-wise assembly with the specially designed quadratures [56].
Another solution is to replace the Galerkin version of IGA with the collocation methods which are
viable in IGA due to the high smoothness of the NURBS function spaces [57]. In this work, I do
not use NURBS spaces of degree larger than three, so the computational cost of matrix assembly
remains manageable.

2.3.3 Multi-patch case

Let Ω be a two-patch domain consisting of two subdomains Ω1 and Ω2, each being an image of
its own tensor-product NURBS mapping Gk : [0, 1]d → Ωk, k = 1, 2. On each patch, a physical
NURBS space N (Ωk) is defined in the same way as for the single-patch case. The isogeometric
solution uh is constructed patch-wise as

uh(x) =

{
u1
h(x) =

∑n1
i=1 y

1
iN

1
i (x) if x ∈ Ω1,

u2
h(x) =

∑n2
i=1 y

2
iN

2
i (x) if x ∈ Ω2,

(2.39)

where Nk
i ∈ N (Ωk) and yki ∈ R. Usually, the solution is required to be at least continuous at the

interface Γ between the patches:

u1
h = u2

h on Γ. (2.40)

The continuity condition (2.40) is easy to achieve with matching interfaces. To that end, it suffices
to identify the degrees of freedom ykΓ that correspond to the interface basis functions on both patches
and enforce y1

Γ = y2
Γ. This is equivalent to “gluing” together the interface basis functions from both

sides of the interface, forming new inter-patch C0-smooth basis functions as illustrated in Figure
2.12. When the linear system is assembled, matrix entries corresponding to the glued interface basis
functions are summed. The approach is directly extendable for an arbitrary number of patches.

22 CHAPTER 2. FOUNDATIONS OF ISOGEOMETRIC ANALYSIS

Figure 2.12. Left: two-patch domain with a matching interface. Right: NURBS bases in the
cross-interface parametric direction of the two patches. Interface degrees of freedom and C0-smooth
inter-patch basis function are marked red.

It is also possible to connect the patches in a C1-smooth fashion [58, 59]. In that case, the
solution patches should satisfy the conditions

u1
h = u2

h on Γ, (2.41)

∇xu
1
h · n = ∇xu

2
h · n on Γ, (2.42)

which result in more constraints on the interface degrees of freedom yki . These constraints, however,
cannot be satisfied by a similar gluing trick and involve computation of a global C1-smooth subspace
of N (Ω1) ∪N (Ω2).

2.3.4 Numerical example: Poisson’s equation on a unit disk

This section presents a numerical example of solving Poisson’s equation on a disk with particular
emphasis placed on the effect that the domain parametrization has on the solution accuracy. The
simplicity of the chosen geometry allows a number of different parametrizations to be constructed
and compared. All simulations have been performed using the open-source C++ library G+Smo
[60], which implements most of geometric routines needed in IGA. A parallel implementation based
on OpenMP has been used for the linear system assembly. The assembled linear systems have been
solved using Pardiso [61], an efficient parallel direct linear solver.

The computational domain Ω is a radius one disk centered at the origin. Figure 2.13 shows
four quadratic NURBS parametrizations of the domain Ω used for comparison. The first one is
a single-patch (SP) parametrization with four degenerated corner points. Another single-patch
parametrization belongs to a class of the so-called scaled boundary (SB) parametrizations [62]. Being
a generalization of polar coordinates, this class of parametrizations is very suitable for domains with
rotational symmetries. The SB parametrization is constructed by mapping the south side of the
parametric domain to the disk center. The north side is mapped onto the boundary curve built of
four 90◦ NURBS circular arcs. The west and the east are mapped onto one of the rays connecting
the boundary curve to the disk center. Since the boundary is constructed as four curves connected
in a C0 fashion, there are four rays between the connection points and the disk center along which
the parametrization is only C0-smooth. All degrees of freedom corresponding to the disk center are
unified resulting in a special central basis function and eliminating the discontinuity.

Two other parametrizations are multi-patch. The first, labeled MP1, consists of five patches:
four for each patch of the boundary curve and one central hub-patch. The second multi-patch
parametrization, labeled MP2, is acquired by splitting each patch of the MP1 parametrization into
four, resulting in 20 patches total. The idea is to check if such an excessive number of patches has
any influence on the solution accuracy.

2.3. ISOGEOMETRIC GALERKIN METHOD 23

Figure 2.13. Parametrizations of the disk used in the example. From left to right: single-patch
(SP), scaled boundary (SB), multi-patch with 5 patches (MP1), multi-patch with 20 patches (MP2).
Every parametrization has been uniformly refined several times in order to better depict its structure.

As a reference solution for error analysis, a manufactured solution

u∗ = cos(6π(x2 + y2)) (2.43)

is used (see Figure 2.14), which satisfies the following system:

−∆xu = −∆xu
∗ in Ω, (2.44)

u = u∗ on ∂ΩD, (2.45)
∇xu · n = 0 on ∂ΩN . (2.46)

Here, the Dirichlet part of the boundary ∂ΩD is one of the four NURBS circular arcs. Due to the
symmetry of the manufactured solution u∗, any arc can be chosen. The rest of the boundary is the
Neumann part ∂ΩN . Such an unusual choice of boundary conditions should make the comparison
of different parametrizations as fair as possible. If the Dirichlet boundary condition was set on
the entire boundary, the corresponding boundary degrees of freedom would be excluded from the
simulation due to the elimination strategy. Any parametrization with ill-shaped or degenerated
elements on the boundary (for example, the SP parametrization) would benefit from it. On the
contrary, the chosen setting is designed to be challenging for every parametrization.

Figure 2.14. Manufactured solution u∗.

The quantities of interest are the L2- and H1-norms of the error eh = uh − u∗, as well as the
condition number of the stiffness matrix

κ(A) =
λmax(A)

λmin(A)
. (2.47)

24 CHAPTER 2. FOUNDATIONS OF ISOGEOMETRIC ANALYSIS

Particular focus is placed on the behavior of these quantities for different parametrizations as they
are uniformly h-refined. Since quadratic NURBS are used, the error estimate (2.37) predicts that
||eh||L2 = O(h3) = O(N−3/2) and ||eh||H1 = O(h2) = O(N−1). For the condition number, we can
expect that κ(A) = O(h−2) = O(N) since Poisson’s equation is a second order elliptic PDE [63].

The simulation results are presented in Figure 2.15. The observed convergence rates for the L2-
andH1-norms coincide with the predictions. There is hardly any difference between the parametriza-
tions in terms of the L2-norm. With respect to the H1-norm, the MP2 parametrization has a
marginally larger error which can be explained by an excessive number of patches. Apart from that,
the domain parametrization has a negligible effect on the accuracy of the solution in the presented
example.

10
0

10
5

10
-5

10
0

10
5

10
5

10
0

10
3

10
6

Figure 2.15. Left: L2-norm and H1-norm of the error for different parametrizations. Right:
condition number of the stiffness matrix for different parametrizations.

The situation is different, however, when it comes to the condition number. For both multi-patch
parametrizations, the observed growth rate of the condition number coincides with the prediction.
On the other hand, the condition number grows roughly as h−3 for the the SP and SB parametriza-
tions. The most likely reason is the degenerated elements that these parametrizations possess. For
a sufficiently large number of degree of freedom N , both MP parametrizations have the lowest
condition number, whereas the SP parametrization has the highest.

The results of this numerical example suggest the following conclusion. Although a domain
parametrization may not have a significant effect on accuracy of the numerical simulations, it can
affect the condition number of the corresponding stiffness matrix. The condition number, in turn,
has an effect on the solution process. In particular, high condition numbers make iterative linear
solvers inefficient unless a suitable preconditioner is used. On the other hand, the condition number
does not affect the solution time if a direct linear solver is used. However, high values of condition
number reduce the solution accuracy in the floating-point arithmetic. In light of that, multi-patch
parametrizations with well-shaped patches should be preferred for complex domains over single-
patch parametrizations.

2.4 Summary

In this chapter, I have given a brief introduction into IGA and a global overview of the-state-of-art
in the area of analysis-suitable geometric modeling. In particular, I have focused on the multi-patch

2.4. SUMMARY 25

tensor-product NURBS approach and discussed its most prominent advantages and disadvantages.
I have also described the isogeometric Galerkin method and illustrated it on a numerical example
for Poisson’s equation. As a conclusion, I recapitulate the main properties of IGA. While doing it,
I also juxtapose IGA with FEM in order to put each property into perspective.

• The IGA approach to describe geometry with NURBS allows to exactly represent many classes
of geometrical objects, especially those coming from CAD. Piecewise linear approximations
traditionally used in FEM provide a much lower degree of geometric accuracy. The higher
geometric accuracy of IGA often results in better accuracy of numerical solutions solution of
PDEs.

• In IGA, an exact solution of a given PDE is approximated by an element-wise polynomial
function of degree p which is Cp−1-smooth between the elements. In FEM, the approxima-
tion is only is C0-smooth between the elements. The higher smoothness of the numerical
approximation yields more accuracy per degree of freedom and is especially beneficial in the
eigenvalue problems [4].

• The higher smoothness of the NURBS function spaces makes the element-wise assembly of
the stiffness matrix prohibitively expensive for high polynomial degrees. As a consequence,
the traditional FEM software structure can not be efficiently reused in IGA. When developing
novel IGA software, special emphasis has to be placed on alternative assembly strategies.

• The history of FEM software development is nearly fifty-year-long. In comparison, the whole
concept of IGA is only fifteen years old, and IGA is still an active research field. This means
that there is still a lack of robust software. Moreover, many operations that may be considered
straightforward in FEM are time-consuming and require manual work.

3 | Single-patch domain parametrization

One of the most commonly encountered problems in IGA reads as follows: given a parametrization
of the domain’s boundary, how can one construct a consistent parametrization of its interior? This
chapter deals with a core building block of this problem - construction of single-patch domain
parametrizations. After defining the problem setting, I describe the start-of-the-art in the field and
study a number of most used solutions in details. For the sake of simplicity, I restrict the discussion
to a case of planar domains, however, all of the methods can be straightforwardly generalized to
a volumetric case. I then propose an alternative solution approach to this problem based on the
stationary equations of nonlinear elasticity which proves to be especially efficient for domains with
complex geometry. Finally, I compare performance of the proposed approach against the existing
approaches on a range of two-dimensional and three-dimensional examples.

3.1 Problem setting

Let Ω ⊂ R2 be a simply connected domain which boundary ∂Ω is given by a union of four NURBS
curves1 γγγS(ξ), γγγN (ξ), γγγW (η) and γγγE(η) : [0, 1]→ R2, such that

γγγS(0) = γγγW (0), γγγS(1) = γγγE(0), γγγN (0) = γγγW (1), γγγN (1) = γγγE(1). (3.1)

Moreover, let the oppositely lying curves, namely γγγS(ξ) and γγγN (ξ) as well as γγγW (η) and γγγE(η), share
the same NURBS bases. Under these assumptions, the four boundary curves imply a tensor-product
NURBS parametrization2 G(ξ, η) : [0, 1]2 → Ω,

G(ξ, η) =

n∑
i=1

m∑
j=1

cijNi(ξ)Mj(η) =

n∑
i=1

ciNi(ξξξ) =
∑
i∈B

ciNi(ξξξ) +
∑
i∈I

ciNi(ξξξ), (3.2)

such that

G(ξ, 0) = γγγS(ξ), G(ξ, 1) = γγγN (ξ), G(0, η) = γγγW (η), G(1, η) = γγγE(η). (3.3)

The structure of G is largely dictated by the parametrization of the boundary curves. Concretely,
the NURBS bases Ni, i = 1, . . . , n and Mj , j = 1, . . . ,m are defined by the pairs of oppositely lying
curves. The boundary control points ci, i ∈ B are the control points of the boundary curves,
namely the four sets {ci1}ni=1, {cim}ni=1, {c1j}mj=1 and {cnj}mj=i come from γγγS , γγγN , γγγW and γγγE ,
respectively. What is left to define are the interior control points ci, i ∈ I, and this is the essence
of the single-patch domain parametrization problem in IGA, see Fig 3.1.

1First letters of the words West, East, South and North are used as the indices.
2I remind the reader of the alternative notation for tensor-product NURBS parametrizations introduced in (2.13)

and (2.14).

26

3.2. OVERVIEW OF EXISTING METHODS 27

Additionally, in order to be suitable for IGA, G has to be bijective. This means that the
following condition on its Jacobian determinant must hold:

J(G) = det∇ξξξG > 0. (3.4)

Enforcing the bijectivity constraint (3.4) represents the main source of complexity of the single-patch
domain parametrization problem.

Figure 3.1. Single-patch domain parametrization problem: given four boundary NURBS curves
(blue), construct a tensor-product NURBS parametrization of the domain. The known boundary
control points (black) imply a grid-like structure for the unknown inner control points (red) which
location has to be defined.

I would like to conclude the definition of the problem by noticing that the assumption of shared
basis for the oppositely lying boundary curves is not too restrictive in practice. It can be easily
satisfied by applying knot insertions and degree elevation. In the worst case, both curves can be
reparametrized by fitting the given curves using new curves with the same NURBS basis. Although
the reparametrization often preserves the shape of the boundary curves only up to a certain toler-
ance, it is justified in many applications. Moreover, the reparametrization of the boundary curves
is often advisable in order to achieve relative uniformity of the parametrization, that is,

||γγγ′(ξ)|| ≈ const . (3.5)

Property (3.5) later translates into uniformly sized elements of the resulting domain parametrization.

3.2 Overview of existing methods

Due to ubiquity of the single-patch domain parametrization problem, there exists a plethora of
solution approaches which vary widely in their complexity and applicability. They can nevertheless
be split into two general categories: linear and nonlinear. The former comprises methods which
involve various types of interpolation or require solution of one linear system at most. Due to their
simplicity, these methods are not able to take constraint (3.4) into account. The linear methods
are computationally inexpensive but produce good-quality parametrizations only for rather simple
domains. The latter category includes methods which involve solving nonlinear optimization prob-
lems or PDEs. These methods are more complex and can handle domains with nontrivial geometry.
The nonlinear methods enforce constraint (3.4), either explicitly or implicitly. Despite their seeming
superiority, the nonlinear methods often rely on the linear methods to produce a starting point for
an iterative solution procedure.

28 CHAPTER 3. SINGLE-PATCH DOMAIN PARAMETRIZATION

In the following, I describe the most commonly used linear and nonlinear methods. Although
there exist many variations of linear methods, I present only two of them which I have used exten-
sively throughout this work: the spring model [25] and the Coons patch [27]. After that, I describe
nonlinear methods: the optimization-based methods with various mesh quality measures [25, 28]
and elliptic grid generation which is based on solution of the inverse Laplace equation [29].

3.2.1 Spring model

The spring model mimics a mechanical system obtained by replacing each edge of the NURBS
control net with a linear elastic spring. The corresponding equilibrium state defines the location of
the interior control points:

cij =
1

4
(ci−1j + ci+1j + cij−1 + cij+1), i = 2, . . . , n− 1, j = 2, . . . ,m− 1. (3.6)

. An alternative and sometimes neater way to write formula (3.6) is using a mask3:

cij =
1

4

 0 1 0
1 · 1
0 1 0

 . (3.7)

In this form, it is directly visible that the spring model is very similar to a discrete version of the
Laplace PDE. Formulas (3.6) and (3.7) define a linear system which has to be solved in order to
find the interior control points.

Figure 3.2. Spring model applied to a simple domain (left) and to a complex domain (right). The
parametrization of the complex domain has folds - a typical sign that the bijectivity constraint (3.4)
is violated.

As all linear methods, the spring model does not enforce the bijectivity constraint (3.4). So in
general, one can expect that it produces bijective parametrizations only for rather simple domains,
like the one in Figure 3.1. Still, as Figure 3.2 shows, the resulting parametrization is barely bijective
since min J(G) is very close to zero. This is indicated by a congestion of the isoparametric lines
next to the eastern side. When applied to a more complex domain, the spring model produces
parametrizations with folds - characteristic regions where the mapping G is not unique invertible,
see Figure 3.2.

Although it is hard to formalize a notion of simple or complex domains, I can provide the
following rule of thumb: if the domain’s boundary contains prominent concave regions, the domain

3A mask is also known as a stencil in the FDM lingo.

3.2. OVERVIEW OF EXISTING METHODS 29

is considered complex, and the linear parametrization methods are likely to produce an invalid
parametrization. Note that the parametrizations from Figure 3.2 have problems exactly next to the
concave parts of the boundary.

3.2.2 Coons patch

Given the boundary curves γγγS , γγγN , γγγW and γγγE , the bilinearly blended Coons patch defines the
domain parametrization G : [0, 1]2 → Ω as

G(ξ, η) = (1− ξ)γγγW (η) + ξγγγE(η)

+ (1− η)γγγS(ξ) + ηγγγN (ξ) (3.8)

− (1− ξ ξ)

(
γγγS(0) γγγN (0)
γγγS(1) γγγN (1)

)(
1− η
η

)
.

This operation is also know as the transfinite interpolation, first introduced in [64]. I refer to formula
(3.8) as the continuous Coons patch which operates directly on the curves4. Since in this work I
assume that γγγS , γγγN , γγγW and γγγE are NURBS curves, it would be convenient to define the Coons
patch as an operation acting on the control points cij . For i = 1, . . . , n and j = 1, . . . ,m, the
discrete version of (3.8) defines cij as

cij = (1− (i− 1)/(n− 1))c1j + (i− 1)/(n− 1)cnj

+ (1− (j − 1)/(m− 1))ci1 + (j − 1)/(m− 1)cim (3.9)

− (1− (i− 1)/(n− 1) (i− 1)/(n− 1))

(
c11 c1m

cn1 cnm

)(
1− (j − 1)/(m− 1)

(j − 1)/(m− 1)

)
.

I refer to formula (3.9) as the discrete Coons patch. For NURBS, formulas (3.8) and (3.9) are
equivalent [27].

Figure 3.3. Coons patch applied to a simple domain (left) and to a complex domain (right). The
method produces far better parametrization for the simple domain than the spring model. For the
complex domain, the output is still unusable.

Just like the spring model, the Coons patch does not enforce the bijectivity constraint (3.4).
Nevertheless, it provides a better parametrization for the simple domain from Figure 3.1 than the
spring model. For the complex puzzle piece domain, it still produces a parametrization with folds,
see Figure 3.3.

4The continuous Coons patch works for any parametric curves, not only NURBS.

30 CHAPTER 3. SINGLE-PATCH DOMAIN PARAMETRIZATION

Although formula (3.9) allows to directly compute the interior control points, it is instructive
to observe that, according to [27], the Coons patch can be rewritten using a mask as

cij =
1

4

 −1 2 −1
2 · 2
−1 2 −1

 . (3.10)

Of course, solving the corresponding linear system is a far more computationally expensive way to
compute the interior control points than the explicit formula (3.9). Still, it offers a valuable insight
that the Coons patch and the spring model are very similar methods. In fact, both are just examples
of a more general method

cij =

 α β α
β · β
α β α

 . (3.11)

Here, a condition 4α+ 4β = 1 has to hold so that the mask (3.11) defines an affine combination of
the surrounding control points. Other linear solution methods for the parametrization problem can
be constructed by varying the parameters α and β. They would all, however, require a solution of
a linear system.

3.2.3 Optimization-based methods

Methods based on nonlinear optimization seek to find a domain parametrization G which is optimal
with respect to some quality measure. Most used are the geometric quality measures which have a
form

q(G) =

∫
[0,1]2

m(G)dξdη, (3.12)

where m(G) is a local quality measure depending only on G. By contrast, the so-called analysis-
aware quality measures [25] may also depend on a numerical solution uh to a particular PDE that is
being solved using G. With the analysis-aware quality measures, the idea is to construct a perfect
parametrization for a given problem. In this overview, however, I only consider geometric quality
measures since they produce generally optimal parametrizations which should perform equally well
for any encountered PDE. Moreover, all other considered categories of parametrization approaches
are “analysis-unaware”, which makes the comparison fair.

Interior control points ci are found by solving the following optimization problem:

min q(G) subject to (3.13)

J(G) > C in [0, 1]2, (3.14)

G = ∂G on ∂[0, 1]2. (3.15)

Here, ∂G is the parametrization of the domain boundary defined by the boundary curves γγγS , γγγN ,
γγγW and γγγE and condition (3.3). The bijectivity constraint (3.4) is explicitly enforced since most
of the quality measures do not guarantee it. The constant C should ideally be larger that 0 in
order to make sure that G is bijective. However, a concrete value of C is problem-dependent and
hard to choose. In practice, C is often set to 0 which results in barely bijective parametrization.
Optimization problem (3.13–3.15) is a general nonlinear non-convex problem. It is usually solved

3.2. OVERVIEW OF EXISTING METHODS 31

using a black-box optimizer, for example, by providing the gradient and Hessian information to an
implementation of Newton’s method [65].

The most commonly used local quality measures are based on entries of the first fundamental
form g(G), which is defined as

g(G) =

(
g11 g12

g12 g22

)
= ∇ξξξGT∇ξξξG. (3.16)

Here, I consider only three quality measures: area-orthogonality, Liao and Winslow. This list is,
of course, not extensive. Additionally, a linear combination of any quality measures defines a new
one. However, I would like to keep this discussion concise since the optimization-based methods for
domain parametrization are not the main scope of this work.

The area-orthogonality (AO) local quality measure is defined as

mAO(G) = g11g22. (3.17)

In my opinion, the relation between the name and the definition is not obvious. Since it is entry
g12 that is responsible for the local skewness of the mapping, it would make more sense to minimize
mAO(G) = g2

12 in order to construct a parametrization with orthogonal mesh lines (which I refer to as
locally orthogonal). However, an optimization problem (3.13–3.15) with such a quality measure does
not converge. By contrast, local quality measure (3.17) results not only in a converging optimization
problem but also in a locally orthogonal parametrization, see Figure 3.4. In my experience, the AO
quality measure provides bijective parametrizations even without the bijectivity constraint (3.14),
however, no proof is available.

The Liao quality measure, defined as the Frobenius norm of g(G), measures overall complexity
of the parametrization:

mL(G) = g2
11 + g2

22 + 2g2
12. (3.18)

Its minimization results in simple, or “flat”, parametrizations which are often prevented from be-
coming invalid only by constraint (3.14). If the constant C in the constraint is too low or zero,
the resulting parametrization is barely bijective with characteristic regions of congested mesh lines,
see Figure 3.4. On the other hand, a too high C could prevent the optimization problem from
converging. In either case, I find the Liao quality measure rather unpractical.

Finally, the Winslow quality measure is defined as

mW (G) =
tr(g)

J(G)
=

(
√
λ1 −

√
λ2)2

√
λ1λ2

+ 2, (3.19)

where λ1 and λ2 are the eigenvalues of g. mW (G) is minimal when λ1 = λ2, which means that
G is a conformal mapping, that is, a composition of scaling and rotation. A unique property of
the Winslow quality measure is that its unique minimizer is a bijective mapping [25]. However, the
isogeometric solution acquired by solving optimization problem (3.13–3.15) using NURBS may not
possess the same property if the number of degrees of freedom is too low. Figure 3.4 shows the result
of minimizing the Winslow quality measure. An apparent property of the resulting parametrization
is that the mesh lines tend to spread away from each other next to protruding regions of the domain
boundary, and congest together next to concave regions.

32 CHAPTER 3. SINGLE-PATCH DOMAIN PARAMETRIZATION

Figure 3.4. Results of applying the optimization-based methods: area-orthogonality (top), Liao
(middle) and Winslow (bottom). The Liao measure yields barely bijective parametrizations. The
AO and Winslow measures grant bijective parametrizations.

Disadvantages of the optimization-based approach

Overall, the optimization-based approach to the single-patch domain parametrization problem is
extremely powerful due to a variety of quality measures to choose from, and because it leverages
such a well-developed field as nonlinear constrained optimization. It is also one of the most widely
adopted parametrization methods. Having said that, I would like to point out two significant
drawbacks of this approach. First, an initial guess for the optimization loop is required. If the
initial guess is chosen poorly, the optimization problem may converge only to a local minimum,
or show a very low convergence rate, or even not converge at all. Moreover, the Winslow quality
measure (3.19) requires a bijective initial guess−constructing which is a nontrivial task on its own.

Secondly, at least in my experience, the optimization-based methods tend to be computationally
expensive. Even for simple domains, the optimization loop takes about 20–40 iterations to converge
with appropriately chosen values for the absolute and relative tolerances. For complex domains,

3.2. OVERVIEW OF EXISTING METHODS 33

the number of iterations can become even larger. Of course, the number of iterations depends on a
particular implementation of the nonlinear optimization solver. However, the two implementations
that I have tested, namely a Python implementation based on the state-of-the-art nonlinear opti-
mization library IPOPT [66] and a Matlab implementation using the fmincon function, require a
very similar number of iterations to converge. The reason behind such slow convergence may be a
complicated nature of the non-convex bijectivity constraint (3.14). During the solution process, it
was typical for the objective function q(G) to decrease in a non-monotonous way. It is possible that
by using a specialized optimization solver instead of a general one the number of iterations can be
significantly reduced.

3.2.4 Elliptic grid generation

Elliptic grid generation (EGG) is an example of a PDE-based approach to the single-patch domain
parametrization problem. Let G(ξ, η) = (x(ξ, η), y(ξ, η))T be an unknown parametrization of the
domain Ω. The idea behind elliptic grid generation is to characterize G by imposing Laplace’s
equation on its inverse G−1(x, y) = (ξ(x, y), η(x, y))T :

∆xξ = 0 in Ω, (3.20)
∆xη = 0 in Ω, (3.21)

(ξ, η)T = ∂G−1 on ∂Ω. (3.22)

Here, the Dirichlet boundary condition (3.22) makes sure that G−1 maps ∂Ω onto ∂[0, 1]2. Note that
although system (3.20–3.22) is a simple linear problem, one cannot solve it using the isogeometric
Galerkin method since G is unknown. Because of that and because one is not usually interested in
the inverse mapping G−1, problem (3.20–3.22) is inverted for x and y. The resulting system reads

g22xξξ − 2g12xξη + g11xηη = 0 in [0, 1]2, (3.23)

g22yξξ − 2g12yξη + g11yηη = 0 in [0, 1]2, (3.24)

(x, y)T = ∂G on ∂[0, 1]2. (3.25)

Problem (3.23–3.25) is a complex coupled system of nonlinear PDEs. On the bright side, it is set in
a geometrically simple domain—the parametric unit square [0, 1]2. Problem (3.23–3.25) is usually
solved using Newton’s method, to which end it has to be linearized. I refer to [29] for details.

It can be shown that the solution of (3.23–3.25) is equal to the unique minimizer of the Winslow
quality measure (3.19) and is, therefore, guaranteed to be bijective. Just like for the Winslow-based
optimization, the numerical approximation obtained by solving the system using NURBS may not
be bijective if the corresponding NURBS basis is not fine enough. Despite their equivalence, I
recommend using elliptic grid generation instead of the Winslow-based optimization since, at least
in my experience, an iterative solution method (for example, Newton’s method) for problem (3.23–
3.25) requires a much smaller number of iterations to converge. In the performed numerical tests, it
ranged from three to four for simple domains and from eight to ten for complex domains. Thus, EGG
is computationally cheaper than the optimization-based methods but is still much more expensive
that the linear methods5. Note that, much like the optimization-based methods, EGG requires an
initial guess for Newton’s method. To that end, the spring model or the Coons patch can be used.

5In this comparison, I implicitly assume that the complexity of iterations for EGG and optimization is roughly the
same for both methods. This is justified because iteration of both methods boil down to solution of linear systems
which size depends mainly on the number of control points.

34 CHAPTER 3. SINGLE-PATCH DOMAIN PARAMETRIZATION

3.3 Parametrization by mesh deformation

All the parametrization methods introduced above seem to struggle when applied to complex do-
mains. In this section, I propose a novel PDE-based method to the single-patch domain parametriza-
tion problem which uses equations of nonlinear elasticity. I refer to it as the mesh deformation
approach. Although the proposed approach is nonlinear, it is far less computationally expensive
than the optimization-based methods and is able to produce high-quality parametrizations for com-
plex domains. After outlining the main idea of the approach, I provide a short introduction into
continuum mechanics which is necessary to describe further details. Then, I formulate an efficient
and robust algorithm for solving the equations of nonlinear elasticity as well as several variations
of this algorithm. The content of this section is mainly based on [31].

3.3.1 Method description

The idea of the mesh deformation method is to avoid constructing a parametrization for a complex
domain Ω right away. Instead, one could simplify Ω and obtain a domain Ω0 which is, hopefully,
simple enough so that it can be parametrized using an inexpensive method, for example, the Coons
patch. After that, the simplified domain Ω0 is deformed in such a way that its boundary coincides
with the boundary of the target domain ∂Ω. The resulting deformed configuration of Ω0 defines a
parametrization G of Ω, see Figure 3.5.

Figure 3.5. Idea of the mesh deformation method: construct a parametrization for the simplified
domain (left) and deform it. The resulting deformed configuration of the simplified domain defines
a parametrization for the target domain (right).

Concretely, by simplifying a given domain Ω, I understand changing control points of the corre-
sponding boundary curves γγγS , γγγN , γγγW and γγγE in a certain way. This yields new boundary curves
γγγ0
S , γγγ

0
N , γγγ

0
W and γγγ0

E which together define a simplified domain Ω0. What is important is that the
new curves inherit NURBS bases of the original boundary curves. Let G0 : [0, 1]2 → Ω0 denote a
parametrization of the simplified domain Ω0. Since boundary curves of Ω0 and Ω share the same
NURBS basis, so do parametrizations G0 and G:

G0(ξξξ) =
n∑
i=1

c0
iNi(ξξξ) and G(ξξξ) =

n∑
i=1

ciNi(ξξξ). (3.26)

Here, the core assumption is that Ω0 is so simple that construction of a bijective parametrization G0

is trivial. In Section 3.3.2, I describe a particular approach I suggest using for domain simplification;
for now, let us assume that c0

i are known.

3.3. PARAMETRIZATION BY MESH DEFORMATION 35

The next step is to construct a deformation mapping D : Ω0 → Ω. D can be arbitrary but it
has to fulfill the following two conditions. First, it has to map the simplified domain’s boundary
∂Ω0 onto the original domain’s boundary ∂Ω. In particular,

D(∂G0(ξξξ)) = ∂G(ξξξ) (3.27)

has to hold. Second, D has to be bijective: J(D) = det∇xD > 0. If D is available, we can define
G as

G = D ◦G0. (3.28)

Note that if both G0 and D are bijective, then G is bijective since J(G) = J(D)J(G0) > 0.

To characterize the deformation mapping D, I suggest using an isogeometric displacement field
uh : Ω0 → R2 such that for any point x ∈ Ω0

D(x) = x + uh(x). (3.29)

The displacement field uh is constructed using the NUBRS basis of G0:

uh(x) =

n∑
i=1

diNi(x). (3.30)

The displacement control points di can be chosen arbitrarily as long as the corresponding defor-
mation mapping is bijective and (3.27) holds. The boundary control points are predetermined by

di = ci − c0
i ∀i ∈ B. (3.31)

In order to determine the interior control points, I propose solving equations of nonlinear elasticity
as described in Sections 3.3.4 and 3.3.5. Once the displacement field uh is constructed, we can plug
it (3.30) and the parametrization of the simplified domain (3.26) into the composition (3.28) to
obtain the parametrization for the target domain:

G(ξξξ) = G0(ξξξ) + u(G0(ξξξ)) =
n∑
i=1

(c0
i + di)Ni(ξξξ). (3.32)

One could argue that the mesh deformation method just replaces a complicated problem of
domain parametrization by a no less complex problem of computing a bijective deformation mapping
with large displacements. Luckily, as I demonstrate in the following, the deformation mapping D
can be computed in an efficient and robust way by applying the ideas from the continuation methods
theory to the equations of nonlinear elasticity.

The proposed mesh deformation approach is not entirely new. Similar ideas are used to generate
curvilinear meshes from piecewise linear triangulations in [67], however, only small deformations
are considered. In [68], the mesh deformation approach is applied to construct volumetric meshes
consisting of a T-spline surface layer and a core of Lagrangian elements. However, the best of
my knowledge, the mesh deformation approach has not been applied to construct tensor-product
NURBS parametrizations before [31].

36 CHAPTER 3. SINGLE-PATCH DOMAIN PARAMETRIZATION

3.3.2 Domain simplification

The choice of the simplified domain Ω0 is a rather empirical step which directly affects the quality
of the resulting parametrization G. Ideally, Ω0 should be simple enough−so that it is possible to
construct a bijective parametrization G0 using a linear method such as the Coons patch−and yet
geometrically close enough to Ω−so that the complexity of computing the deformation mapping D
does not eclipse the complexity of the original parametrization problem for Ω. All possible choices
of Ω0 form a spectrum with a quadrilateral spanned by the four corners of the target domain Ω,
called the corner-quad, on one end and Ω itself on another. In the following, I describe a basic
simplification procedure which allows to generate a range of domains lying along this spectrum.

The simplification procedure involves projecting the boundary curves γγγS , γγγN , γγγW and γγγE onto
a coarse NURBS basis6 in the L2-sense. Since a coarse basis can only produce objects of limited
complexity, the projection is a simplified version of the original curve. After that, I re-express the
simplified curve in terms of the original basis. To that end, I either apply the refinement algorithms
such as knot insertion and degree elevation or project the simplified curve back onto the original
basis in the L2-sense. This step preserves the shape, either exactly or accurately enough, and makes
sure that the original and simplified boundaries share the same basis. One more important aspect:
since it is sometimes convenient to preserve the location of the four corners of Ω, I simplify each of
the boundary curves separately and fix the location of their end points.

Concretely, let γγγ(ξ) : [0, 1]→ R2 be one of the boundary curves,

γγγ(ξ) =
n∑
i=1

ciNi(ξ), (3.33)

with n control points ci and a NURBS basis consisting of n basis functions Ni of degree p. Addition-
ally, letm NURBS basis functions of degree q form a coarse NURBS basis used for the L2-projection.
Then, I construct a coarse simplification γ̃γγ0 of γγγ,

γ̃γγ0(ξ) =

m∑
i=1

c̃0
iMi(ξ), (3.34)

by solving the following linear system:

MC̃0 = Γ, (3.35)

c̃0
1 = c1, (3.36)

c̃0
m = cn. (3.37)

Here, M is a m × m projection mass matrix defined for the basis functions Mi(ξ) in a manner
similar to (2.35). C̃0 is a m× 2 matrix containing unknown coordinates of the control points, and
ΓΓΓ is a m× 2 which entries are defined as

(ΓΓΓ)ij =

1∫
0

(γγγ)jMidξ, i = 1, . . . ,m, j = 1, 2. (3.38)

Boundary conditions (3.36–3.37) are included to make sure that the endpoints of γγγ and γ̃γγ0 coincide.
A nice property of the L2-projection is that it minimizes the distance between points of the original
and the simplified curves corresponding to the same parametric value, namely between γγγ(ξ) and

6This means that a basis with relatively few elements.

3.3. PARAMETRIZATION BY MESH DEFORMATION 37

γ̃γγ0(ξ). This in turn minimizes the prescribed boundary displacement (3.31), making it easier to
compute the deformation D.

Next, the coarse simplification γ̃γγ0 is re-expressed in terms of the original NURBS basis Ni. The
result is a fine simplification γγγ0,

γγγ0(ξ) =

n∑
i=1

c0
iNi(ξ), (3.39)

with n control points c0
i . This step can be performed by applying knot insertion and degree elevation

if the polynomial degree q of the coarse simplification is lower than the degree p of the original curve,
and if the knot vector of the coarse simplification is a subset of the knot vector of the original curve.
If either of this conditions does not hold, it is easier to project γ̃γγ0 in the L2-sense onto the original
basis by solving a linear system similar to (3.35–3.37). Although the projection may slightly alter
the shape of γ̃γγ0 if it does not lie in the span of the original NURBS basis, it preserves the overall
simplicity of the curve.

I use the southern boundary curve γγγS of the puzzle piece domain from above to demonstrate the
performance of the described simplification procedure. The original curve is quadratic with n = 17
control points. In order to study the effect that a pair of parameters (q,m) has on the simplified
shape, γγγS has been simplified using several coarse bases with varying parameters. Figure 3.6 shows
the results.

Figure 3.6. Example of applying the simplification technique to the southern boundary curve of
the puzzle piece domain. The original curve has a polynomial degree p = 2 and n = 17 control
points. Coarse bases with various pairs of parameters (q,m) have been used for the simplification.

Once the entire boundary of the target domain Ω is simplified, I apply the Coons patch to
parametrize the obtained simplified domain Ω0. For the Coons patch to produce a bijective
parametrization, Ω0 has to be simple enough. In the considered puzzle piece example, coarse
NURBS bases with parameters (q = 1,m = 2), (q = 2,m = 3) and (q = 3,m = 4) produce
sufficiently simple geometries. Other choices result in Ω0 being too complex for the Coons patch
to succeed, see Figure 3.7. Among the three acceptable pairs of parameters, the first one, namely
(q = 1,m = 2), corresponds to replacing the original domain Ω with the corner-quad. If the corner-
quad is convex, the Coons patch always produces a bijective parametrization G0. The case when
the corner-quad is not convex may indicate that Ω is too complex and should not be parametrized
using a singe patch. Although (q = 1,m = 2) almost always produces a suitable simplified domain,
there often exist better options. In particular, pairs (q = 2,m = 3) and (q = 3,m = 4)7 generate
a domain which is still simple enough for the Coons patch to succeed, but is much closer to the

7Both generate very similar simplified domains, so from now one I only consider the former one.

38 CHAPTER 3. SINGLE-PATCH DOMAIN PARAMETRIZATION

original shape than the corner-quad produced by (q = 1,m = 2). This choice seems to represent
a reasonable trade-off in complexity between the initial construction of the simplified domain and
the ensuing deformation step.

Figure 3.7. Parametrizations of various simplified domain constructed using the Coons patch. The
simplified domains have been produced using coarse bases with various pairs of parameters (q,m).

Although a pair of parameters (q = 2,m = 3) generates a simplified domain which can be
parametrized using the Coons patch, a congestion of mesh lines in the narrow middle part of the
domain indicates that the resulting parametrization G0 is barely bijective. Because of that, the
Coons patch can sometimes be replaced by other parametrization approaches. Ideally, they should
be computationally inexpensive, or at least not more expensive than the ensuing deformation step.
As such, the spring model or EGG can be applied. Although the former, just like the Coons
patch, does not guarantee bijectivity of the result, it can sometimes produce a better output than
the Coons patch. In contrast to that, EGG always produces a bijective parametrization, so its
relatively high computational cost is justified. Finally, a recursive approach may be employed
where the mesh deformation method itself is used to construct a parametrization for the simplified
domain8. To that end, the already simplified domain has to be further simplified. For the considered
(q = 2,m = 3) domain, I have used the corner-quad produced by the coarse basis (q = 1,m = 2) as
a simplified domain, and the resulting parametrization has turned out to be the best with respect
to the overall uniformity of the mesh, see Figure 3.8. Note that this double-deformation procedure
is not equivalent to deforming the corner-quad directly into the target domain (see Section 3.4 for
examples).

8I am aware of the ouroborus situation caused by using the not yet introduced domain deformation step in order
to implement the domain simplification step. Nevertheless, here is a good place to mention this possibility.

3.3. PARAMETRIZATION BY MESH DEFORMATION 39

Figure 3.8. Simplified domain (q = 2,m = 3) for the puzzle piece example. Comparison of four
different parametrization techniques: Coons patch, spring model, EGG and mesh deformation from
the corner-quad.

3.3.3 Nonlinear elasticity in a nutshell

The following is a brief introduction into solid mechanics based on [30]. Here, the focus lies on
the ingredients necessary for describing the deformation algorithm I use to deform the simplified
domain Ω0 into the target domain Ω. The presented theory describes the behavior of a three-
dimensional elastic body. When applied to the planar case, it corresponds to the so-called plain
strain formulation of 2D elasticity.

Let a solid body in its initial undeformed state occupy a domain Ω0 ⊂ R3, which is referred
to as a reference configuration. Assume that the body undergoes a deformation D, after which it
occupies a domain Ω ⊂ R3. Then Ω is called a deformed configuration of the body. In the context
of solid mechanics, one refers to a point x̂ ∈ Ω0 as a material point. Behavior of the solid body is
described by studying the motion of material points that comprise it9. For each material point x̂,
its position x = D(x̂) in the deformed configuration Ω is expressed in terms of the differentiable
displacement vector field u : Ω0 → R3 such that D(x̂) = x̂ + u(x̂). Note that u can describe a rigid
body motion (a combination of translation and rotation) which in fact includes no deformation. The
information about whether Ω is actually deformed or not is contained largely in the deformation
gradient F : Ω0 → R3×3 defined as

F = ∇x̂D = I +∇x̂u. (3.40)

9This approach is called the Lagrangian framework, as opposed to the Eulerian framework which is used, for
example, in fluid dynamics. Within the Eulerian framework, one does not follow the motion of material points, but
instead focuses on what happens in fixed spatial points.

40 CHAPTER 3. SINGLE-PATCH DOMAIN PARAMETRIZATION

Here, I is a 3 × 3 identity matrix. The determinant of F−denoted10 by J−is a local measure of
relative volume change between the deformed and the reference configurations. If J > 1, the body
expends locally, whereas J < 1 means that it contracts locally. For a special case of an incompressible
material, J ≡ 1 must hold. Since the self-penetration is excluded in order to remain consistent with
the everyday physical intuition, the deformation D must be bijective, and the condition J > 0 has
to hold. In what follows, two more geometric objects describing the deformation D are important:
the Green-Lagrange strain tensor E : Ω0 → R3×3 defined as

E =
1

2
(FTF− I) (3.41)

and the right Cauchy-Green tensor C : Ω0 → R3×3 defined as

C = FTF. (3.42)

Both tensors are symmetric.
The behavior of a solid body is defined by the internal forces arising in it in response to the

deformation caused by external forces. The body is called elastic if it returns to the reference
configuration once the external forces vanish. According to Cauchy’s theorem, the internal forces
can be characterized by a 3 × 3 symmetric tensor σσσ called the Cauchy stress tensor. Concretely,
the force acting on a given surface within or on the boundary of the body if equal to σσσ · n, where
n is the surface normal. The Cauchy stress tensor describes the internal forces in the deformed
configuration. It is convenient, however, to be able to express these forces with respect to the
reference configuration as well. To that end, the first Piola-Kirchhoff stress tensor P is introduced,
which is related to the Cauchy stress tensor σσσ by

P = JσσσF−T . (3.43)

Note that P is not symmetric. Because of that, a symmetric tensor S, called the second Piola-
Kirchhoff stress tensor, is defined as

S = JF−1σσσF−T . (3.44)

The difference between the Piola-Kirchhoff and Cauchy stress tensors is the first example of the
two ways to describe the deformation of a solid body: either in the reference or in the deformed
configuration. In order to stress the difference, I use x̂ and x to denote coordinates in the two
configurations. Since the deformed configuration is usually not known a priori, it is convenient to
study the deformation of an elastic body with respect to the reference configuration.

So far, I have not mentioned the relation between the stress tensors P, S or σσσ and the displace-
ment field u. This relation, which describes exactly what forces arise in the body in response to
the deformation, is the center point of solid mechanics and is called the material law. The material
law is chosen according to a particular application. When modeling an elastic body, two popular
choices are the St. Venant-Kirchhoff material law

S = λ tr(E)I + 2µE (3.45)

and the neo-Hookean material law, a particular variation of which is

S = λ ln JC−1 + µ(I−C−1). (3.46)
10Each object introduced in this subsection depends on u, which is a primary independent variable. I explicitly

remind the reader of this dependence when it is necessary or in order to avoid confusion. For example, I write F(u).
When it is possible, though, I shorten the notation and write simply F.

3.3. PARAMETRIZATION BY MESH DEFORMATION 41

Both material laws include the Lamé parameters λ and µ which are constitutive parameters de-
scribing physical properties of the material. They can be computed from Young’s modulus E and
Poisson’s ratio ν of the material as

λ =
νE

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
. (3.47)

The St. Venant-Kirchhoff material law is linear in E, whereas the neo-Hookean material law is
nonlinear. What is more, due to the presence of ln J , the neo-Hookean material law explicitly
preserves bijectivity of the deformation since J is not allowed to be negative. I rely on this property
in Subsections 3.3.4 and 3.3.5 to compute deformation mappings which can be used to construct
bijective parametrizations for Ω.

Having introduced all the necessary tools, I can formulate the local balance equations of linear
momentum that define the equilibrium state of an elastic body. The actual balance of forces is
achieved in the deformed configuration, where the equations take form

divxσσσ(u) = g in Ω. (3.48)

Unfortunately, the deformed configuration is not known beforehand, so the equations (3.48) have
to be reformulated in the reference configuration. This is achieved using the first Piola-Kirchhoff
stress tensor, and the result is

divx̂ P(u) = g in Ω0. (3.49)

I refer to these equations as the stationary equations of nonlinear elasticity. Here, g is a volumetric
force acting on the body. I assume that g is the same with respect to the reference and the deformed
configurations. Most often, g represents the gravitation. By solving equations (3.49), the unknown
displacement field u can be found. Equations (3.49) are nonlinear with two sources of nonlinearity:
geometric, coming from the strain tensors E or C, and material, if the material law is nonlinear.
Both sources manifest themselves through the structure of the corresponding linearized system used
in the iterative solution procedure.

Additionally, equations (3.49) have to be equipped with suitable boundary conditions. Usually,
it is a combination of Dirichlet and Neumann boundary conditions:

u = uD on ∂ΩD0 and P(u) · n = f on ∂ΩN0 . (3.50)

Here, uD is a prescribed boundary displacement, and f is a prescribed surface load. A function
u ∈ C2(Ω0)∩C0(Ω̄0) satisfying (3.49–3.50) is called a classical solution of the stationary equations
of nonlinear elasticity.

Linear elasticity

Equations (3.49) can model large deformations. However, when only small deformations are con-
sidered, the equations can be simplified. Concretely, if the equations of nonlinear elasticity are
linearized at u = 0, then the Green-Lagrange strain tensor E reduces to the linear strain tensor εεε,

εεε =
1

2

(
∇x̂u +∇x̂uT

)
, (3.51)

both the St. Venant-Kirchhoff and the neo-Hookean material laws reduce to Hooke’s law

σσσ = λ tr(εεε)I + 2µεεε, (3.52)

42 CHAPTER 3. SINGLE-PATCH DOMAIN PARAMETRIZATION

and equations (3.49) become the equations of linear elasticity :

−divx̂σσσ(u) = g in Ω0. (3.53)

In Section 3.3.5, I describe how, quite counter-intuitively, equations (3.53) can be used to compute
large bijective deformation suitable for constructing isogeometric parametrizations.

3.3.4 Newton’s method for nonlinear elasticity

Equipped with the theory of nonlinear elasticity, we can tackle the domain deformation step of the
mesh deformation method. In order to deform the simplified domain Ω0 into the target domain
Ω, I propose solving the stationary equations of nonlinear elasticity (3.49) with the neo-Hookean
material law (3.46) and no volumetric force. Condition (3.31) on the boundary control points for the
isoparametric displacement field translates into a prescribed boundary displacement displacement
uD. The resulting system reads

−divx̂ P(u) = 0 in Ω0, (3.54)
u = uD on ∂Ω0. (3.55)

In order to solve the system (3.54–3.55) using the isogeometric Galerkin method, we need to
rewrite it in a weak from. Let V = {w ∈ H1(Ω0)3 | w = uD on ∂Ω0} be the trial solution space
and the weighting function space V0 be defined as {w ∈ H1(Ω0)3 | w = 0 on ∂Ω0}. Additionally,
let : denote the Frobenius inner product. Then the weak form of the system (3.54–3.55) is

find u ∈ V such that R(u,w) =

∫
Ω0

S(u) : δE(u)[w]dx̂ = 0 ∀w ∈ V0. (3.56)

Here, R(u,w) is called the residual, and δE(u)[w] = 1
2

(
F(u)T∇x̂w + ∇x̂wTF(u)

)
is called the

variation of the Green-Lagrange strain tensor.
Equation (3.56) is nonlinear in u. One way to solve it by using Newton’s method. For a

sufficiently smooth function f(x) : R → R, Newton’s method successively computes increasingly
better approximations xs to a root of f as

xs+1 = xs − f(xs)

f ′(xs)
. (3.57)

When applying Newton’s method to compute roots of a functional such as R(u,w), there exists
two alternatives: R can be discretized first and then linearized, or vice versa. Here, I opt for the
latter option as a more illustrative one. The Taylor expansion at R(u,w) with the displacement
increment ∆u yields

R(u + ∆u,w) = R(u,w) +DR(u,w) ·∆u + o(||∆u||), (3.58)

where the directional derivative DR(u,w) ·∆u is computed as

DR(u,w) ·∆u =

∫
Ω0

(
∇x̂∆uS(u) : ∇x̂w + C(u)δE(u)[∆u] : δE(u)[w]

)
dx̂. (3.59)

Here, C = 2 dSdC is the forth order elasticity tensor whose components, in case of the neo-Hookean
material law, are given by

Cabcd = λ(C−1)ab(C
−1)cd + (µ− λ ln J)

(
(C−1)ac(C

−1)bd + (C−1)ad(C
−1)bc

)
. (3.60)

3.3. PARAMETRIZATION BY MESH DEFORMATION 43

For the St. Venant-Kirchhoff material law, the components of C are given by

Cabcd = λδabδcd + µ
(
δacδbd + δadδbc

)
, (3.61)

where δij is the Kronecker delta. Note that DR(u,w) ·∆u is a symmetric bilinear form with respect
to ∆u and w.

With all the necessary tools defined, we can formulate Newton’s method for problem (3.54–
3.55). Let u0 ∈ V be an initial guess. Given an intermediate solution us ∈ V at iteration s > 0, a
displacement increment ∆us+1 ∈ V0 is computed as a solution to the following weak problem:

find ∆us+1 ∈ V0 such that DR(us,w) ·∆us+1 = −R(us,w) ∀w ∈ V0. (3.62)

After that, the next intermediate solution us+1 ∈ V is defined as us + ∆us+1. Note that all inter-
mediate solutions satisfy the Dirichlet boundary condition (3.55), so the increment displacements
have to be zero on the boundary.

The procedure continues until the convergence criteria

||∆us||L2 < εabs or
||∆us||L2

||us||L2

< εrel (3.63)

are met. The last solution us is accepted as a solution to the original system (3.54–3.55).

Discretization and linear system assembly

Weak problem (3.62) is discretized using the isogeometric Galerkin method. Although the process
is ideologically similar to the isogeometric discretization of Poisson’s equation 2.3.2, I briefly outline
it here, as described in [30] and [69]. The isogeometric solution uh =

∑n
i=1 diNi(x) is constructed

using the NURBS basis functions associated with the parametrization G0 of the reference domain
Ω0. Here, di = (d1

i , d
2
i , d

3
i)
T are the displacement control points which are split into two parts:

unknown control points and fixed Dirichlet control points. The corresponding indices i are collected
in sets F and D. Components of the unknown control points are arranged dimension-wise into a
vector y ∈ R3|F|:

y =
(
d1

1, . . . , d
1
|F|, . . . , d

3
1, . . . , d

3
|F|
)T
. (3.64)

Similarly, components of the Dirichlet control points are arranged into a vector yD ∈ R3|D|. It is
convenient to introduce vector-valued basis functions Nk

i which uniquely correspond to each degree
of freedom dki , k = 1, 2, 3. Nk

i are defined as

N1
i =

 Ni

0
0

 , N2
i =

 0
Ni

0

 and N3
i =

 0
0
Ni

 . (3.65)

With Nk
i , the isogeometric solution can be rewritten as uh =

∑n
i=1

∑3
k=1 d

k
iN

k
i . The linear span of

Nk
i , i ∈ F defines the discrete weighting function space V0,h ⊂ V0. The discrete trial solution space
Vh is defined as uD + V0,h.

First, let us discretize the weak problem (3.56):

find uh ∈ Vh such that R(uh,w) =

∫
Ω0

S(uh) : δE(uh)[w]dx̂ = 0 ∀w ∈ V0,h. (3.66)

44 CHAPTER 3. SINGLE-PATCH DOMAIN PARAMETRIZATION

Since the residual is linear in w, it is enough to test this equation with every Nk
i , i ∈ F . It

is convenient to test triples N1
i , N2

i and N3
i together. To that end for each scalar-valued basis

function Ni, I form an auxiliary matrix Bi(y,y
D) defined11 as

Bi(y,y
D) =



F11Nix F21Nix F31Nix

F12Niy F22Niy F32Niy

F13Niz F23Niz F33Niz

F11Niy + F12Nix F21Niy + F22Nix F31Niy + F32Nix

F12Niz + F13Niy F22Niz + F23Niy F32Niz + F33Niy

F11Niz + F13Nix F21Niz + F23Nix F31Niz + F33Nix

 . (3.67)

Here Nix, Niy and Niz are components of the gradient ∇x̂Ni = (Nix Niy Niz) = ∇ξξξNi∇ξξξG−1
0 , and

Fij are components of the deformation gradient F(y,yD):

F(y,yD) =

 F11 F12 F13

F21 F22 F23

F31 F32 F33

 = I +∇x̂uh = I +∇ξξξuh∇ξξξG−1
0 . (3.68)

Additionally, I use the Voigt notation which allows to write symmetric second order tensors as
vectors and forth order tensors with minor symmetries as matrices. Concretely, the second Piola-
Kirchhoff stress tensor S is a symmetric 3 × 3 tensor and can be rewritten as a vector with 6
elements:

SV = (S11, S22, S33, S12, S23, S13)T . (3.69)

The elasticity tensor C is a 6× 6× 6× 6 forth order tensor and can be rewritten as a 6× 6 matrix:

CV =



C1111 C1122 C1133 C1112 C1123 C1113

C2211 C2222 C2233 C2212 C2223 C2213

C3311 C3322 C3333 C3312 C3323 C3313

C1211 C1222 C1233 C1212 C1223 C1213

C2311 C2322 C2333 C2312 C2323 C2313

C1311 C1322 C1333 C1312 C1323 C1313

 (3.70)

Now that all the components are ready, we can proceed with the discretization. The result
of testing the weak problem (3.66) with each triple (N1

i ,N
2
i ,N

3
i), i ∈ F is a system of nonlinear

equations:

Ri(y,y
D) =

∫
Ω0

Bi(y,y
D)TSV (y,yD)dx̂ = 0. (3.71)

Here, Ri(y,y
D) is a vector with three elements.

In a similar fashion, we can obtain a discretization of the directional derivative DR(uh,w) ·∆uh.
The discrete displacement increment ∆uh =

∑n
i=1

∑3
k=1 ∆dkiN

k
i belongs to the space V0,h, so

the corresponding vector of Dirichlet degrees of freedom ∆yD is zero. The result of evaluating
DR(uh,N

k
i) ·Nl

j for k, l = 1, 2, 3 is collected in a symmetric 3× 3 matrix

Kij
T (y,yD) =

∫
Ω0

Bi(y,y
D)TCV (y,yD)Bj(y,y

D)dx̂ + I

∫
Ω0

∇x̂NiS(y,yD)∇x̂N
T
j dx̂. (3.72)

11Whenever I explicitly write that a certain object depends on y and yD, it means that the object depends on the
isogeometric solution uh corresponding to the degrees of freedom y and yD.

3.3. PARAMETRIZATION BY MESH DEFORMATION 45

Finally, all partial matrices Kij
T (y,yD) for i, j ∈ F are combined into a global matrix KT (y,yD) ∈

R3|F|×3|F|, called a tangent stiffness matrix. Additionally, partial matrices Kij
T (y,yD) for i ∈ F ,

j ∈ D are combined into an elimination matrix KDT (y,yD) ∈ R3|F|×3|D|, and vectors Ri(y,y
D),

i ∈ F are combined into a vector R(y,yD) ∈ R3|F|, called a residual vector.
Using the tangent stiffness matrix and the residual, we can formulate a discrete version of

Newton’s method (3.62): in order to solve a nonlinear equation R(y,yD) = 0, choose an initial
guess y0 ∈ R3|F|. Then for s > 0, compute an update ∆ys+1 ∈ R3|F| as a solution of the linear
system

KT (ys,yD)∆ys+1 = −R(ys,yD)−KDT (ys,yD)∆yD. (3.73)

Define ys+1 = ys + ∆ys+1. Continue until convergence. Note that both matrices KT and KDT and
the residual vector R have to be reassembled at every iteration of Newton’s method.

Initial guess for Newton’s method

Newton’s method is known to converge quadratically to the solution within a certain area around it.
In my experience, provided a good initial guess, it requires around 5–8 iterations to converge with a
relative tolerance of 10−6. Of course, providing a good initial guess often is the most complex step
when applying Newton’s method. If the neo-Hookean material law (3.46) is used, every intermediate
solution us, including the initial guess u0, has to be bijective, that is, has to satisfy J(us) > 0.
Otherwise, the stress tensor S(us) for the neo-Hookean material law (3.46) can not be evaluated
since it contains ln J(us), and the linear system for (3.62) can not be assembled.

Figure 3.9. Simplified domain Ω0 and the result of deforming it using linear elasticity (right).
Characteristic mesh folds indicate that the linear elasticity system does not produce a bijective
displacement field which can be used as an initial guess for Newton’s method.

A popular strategy to construct an initial guess is to solve a linear elasticity problem

−divx̂σσσ(u0) = 0 in Ω0, (3.74)

u0 = uD on ∂Ω0. (3.75)

A weak form of (3.74–3.75) reads

find u0 ∈ V such that
∫
Ω0

σσσ(u0) : εεε(w)dx̂ = 0 ∀w ∈ V0. (3.76)

In order to discretize the weak form (3.76), the same method as for the nonlinear elasticity can be
conveniently applied. Concretely, the corresponding linear system can be obtained by assembling

46 CHAPTER 3. SINGLE-PATCH DOMAIN PARAMETRIZATION

linear system (3.73) with the St. Venant-Kirchhoff material law and the initial solution vector
y0 = 0. Unfortunately, if the prescribed displacement uD is large, the solution of (3.74–3.74) may
be not bijective like it happens for the puzzle piece example, see Figure 3.9. To overcome this
problem, the incremental loading approach described in the next section can be used.

3.3.5 Incremental deformation

If the prescribed boundary displacement uD is too large to handle in one step, the incremental
loading approach can be applied. It consists in replacing problem (3.54–3.55) by a sequence of
problems

−divx̂ P(ui) = 0 in Ω0, (3.77)

ui =
i

N
uD on ∂Ω0 (3.78)

for a range of loading steps i = 1, . . . , N . At each step, the problem is solved using Newton’s
method. Incremental solution ui at the i-th loading step provides an initial guess for Newton’s
method at the next step. Concretely, let Vi = {w ∈ H1(Ω0)3 | w = i

NuD on ∂Ω0}, i = 1, . . . , N be
a sequence of trial solution spaces for different loading steps. At the i-th step, iterations of Newton’s
method usi ∈ Vi → us+1

i ∈ Vi advance the solution within Vi. An increment ∆us+1
i ∈ V0 such that

us+1
i = usi + ∆us+1

i is found as a solution to the following weak problem:

find ∆us+1
i ∈ V0 such that DR(usi ,w) ·∆us+1

i = −R(usi ,w) ∀w ∈ V0. (3.79)

Loading level i determines what vector of Dirichlet degrees of freedom yD is used when assembling
the linear system (3.73). I call this a type-A update, or simply a Newton iteration. Type-A updates
continue until the convergence criteria are met, and the last intermediate solution usi is accepted as
the incremental solution ui for (3.77–3.78) at the step i.

Figure 3.10. Incremental loading approach with N = 6 loading steps. Reference configuration
(top-left) and deformed configurations corresponding to ui, i = 2 (top-right), 4 (bottom-left) and 6
(bottom-right).

3.3. PARAMETRIZATION BY MESH DEFORMATION 47

Incremental solution ui belongs to Vi, whereas an initial guess u0
i+1 for Newton’s method at the

step i+1 should belong to Vi+1. In order to construct it, I use a type-B update ui ∈ Vi → u0
i+1 ∈ Vi+1

which advances the solution from Vi to Vi+1, that is, to the next trial solution space. I also
refer to a type-B update as a diagonal Newton step (DNS). An increment ∆ui+1 ∈ V1 such that
u0
i+1 = ui + ∆ui+1 is found as a solution to the weak problem:

find ∆ui+1 ∈ V1 such that DR(ui,w) ·∆ui+1 = −R(ui,w) ∀w ∈ V0. (3.80)

The difference between Newton iterations and DNS updates is that the DNS increments are not
zero on the boundary. Therefore, the corresponding vector of Dirichlet degrees of freedom ∆yD in
(3.73) is not zero and is accounted for by the elimination matrix KDT . I say that the DNS increment
∆ui has a stepsize of 1/N meaning that ∆ui advances the displacement on the boundary ∂Ω0 by
a 1/N -th part of uD. The incremental loading approach is initialized with an initial displacement
u0 = 0, and the incremental solution uN at the last step is accepted as the solution to the original
system (3.54–3.55). An example of the incremental loading approach with N = 6 loading steps is
presented in Figure 3.10. The overall procedure is illustrated schematically in Figure 3.11. I would
like to point out that the incremental loading approach for nonlinear elasticity problems can be
interpreted in terms of the continuation methods theory for general nonlinear problems [70], also
known as the numerical path following. In particular, the type-B update is an example of applying
the so-called tangential continuation. Alternatively, incremental loading can be seen as pseudo-time
stepping.

TINE: tangential incremental nonlinear elasticity

I refer to the described above algorithm as full incremental loading. Its disadvantage is its high
computational cost. If S is an average number of iterations that Newton’s method requires to
converge at each loading step, then the algorithm requires NS iterations to compute the solution
u, each involving solution of a linear system. This is justified in applications where the deformation
history is of interest; in the considered case, however, only the final displacement u = uN is
important. Moreover, first N − 1 loading steps together can be considered as just an elaborate way
to construct an initial guess u0

N for the last loading step, that is, for the original Newton’s method
for the problem (3.54–3.55).

Here, I propose an alternative way to construct the initial guess u0
N which is a shortcut to full

incremental loading. I call it tangential incremental nonlinear elasticity (TINE). It consists of N
diagonal Newton steps uTINE

i ∈ Vi → uTINE
i+1 ∈ Vi+1 which quickly take the solution right to the last

loading level. The resulting displacement uTINE
N ∈ VN is then used as an initial guess for Newton’s

method at the last loading step. TINE with Newton’s method allows to compute the solution u in
only N + S iterations. The difference between the proposed algorithm and full incremental loading
is illustrated in Figure 3.11.

Figure 3.11. Full incremental loading (blue) and Newton’s method with TINE (red).

48 CHAPTER 3. SINGLE-PATCH DOMAIN PARAMETRIZATION

Even more computationally efficient is to use the TINE method as a stand-alone deformation
algorithm, which is justified for several reasons. First, the displacement uTINE

N is close enough to the
solution u so that the final application of Newton’s method results only in rather small corrections.
More precisely, my numerical experiments show that uTINE

N converges to u quadratically as the
number of incremental steps N grows, namely ||u− uTINE

N ||L2 = O(N−2), see Figure 3.12. Second,
solving the system (3.54–3.55) was never a goal in itself. Instead, it is just one of the ways to define
a deformation mapping D to use in the mesh deformation method for domain parametrization. To
that end, any bijective displacement field of good quality can be used. So if uTINE

N is close to u,
that is good enough. In my experiments, it suffices to use from 5 to 10 loading steps to ensure the
bijectivity of uTINE

N . At this stage, uTINE
N is often visually indistinguishable from u.

1 4 16 64 256 1024
10

-6

10
-4

10
-2

10
0

Figure 3.12. Convergence analysis for the TINE and ILE mesh deformation methods.

Bijectivity and adaptivity

Although the neo-Hookean material law (3.46) guarantees that the solution u of the system (3.54–
3.55) is bijective, special care is required to achieve this property in practice. The directional
derivative DR(u∗,w) ·∆u (3.59) can only be evaluated for a bijective displacement u∗. However,
both Newton iterations (3.79) and diagonal Newton steps (3.80) can produce an increment ∆u such
that u∗+∆u is not bijective. The problem can be overcome by adaptively scaling ∆u. If J(u∗) > 0,
due to the continuity of J there exists a scaling coefficient t ∈ [0, 1] such that

J(u∗ + t∆u) > 0. (3.81)

In practice, I determine t by consecutively testing values tk = 1/2k until (3.81) is satisfied.
The implementation of adaptivity differs slightly for Newton iterations and DNS. For a Newton

iteration, the increment is determined solely by the weak problem (3.79) and can be scaled freely;
after that, the algorithm can proceed to the next Newton iteration. On the other hand, the step
size hi of the DNS increment ∆ui is predefined by the number of incremental steps N . Scaling the
DNS increment changes the step size to thi and−since all updates of the boundary displacement
have to add up to uD−requires changing the subsequent step sizes. One way to do it is to proceed
with step sizes of 1/N , scaling it to fulfill (3.81) if necessary. The final step size

hN∗ = 1−
N∗−1∑
i=1

hi (3.82)

makes sure that all step sizes add up to 1.

3.3. PARAMETRIZATION BY MESH DEFORMATION 49

Another possibility is to apply a greedy step size strategy where the algorithm starts with the
first DNS step size h1 equal to 1. If the resulting displacement is not bijective, h1 is iteratively
halved until (3.81) is satisfied. The method proceeds with the step sizes

hi = 1−
i−1∑
j=1

hj (3.83)

which are also iteratively halved if necessary.
Unfortunately, both described adaptive strategies suffer from two drawbacks. The first is stalling,

which means that the adaptive strategies sometimes tend to produce too small step sizes by iterative
halving. The second drawback is the instability caused by the logarithm in the neo-Hookean material
law (3.46). If J(u∗) is positive but too close to zero, which often happens in an attempt to satisfy
(3.81), S(u∗) becomes large, and the corresponding directional derivative (3.59) “pushes” the solution
too strongly away from the boundary J(u) = 0 of the feasible region. The solution is then likely to
cross the boundary of the feasible region at another point, and the whole procedure repeats. This
behavior is similar to the interior-point methods used in constrained optimization [65].

In contrast to that, the non-adaptive strategy with uniform step sizes 1/N seems to be very
robust. If N is large enough, neither stalling nor unstable behavior occurs. In light of that,
my preferred “adaptive” strategy is to double N consecutively until the bijective displacement is
successfully computed.

Lastly, I would like to remark on ways to test the bijectivity condition J(u) > 0. A solution
which takes into account the NURBS nature of the isogeometric solution uh is to express J(uh) as
a NURBS function [25]. If all coefficients in a NURBS expansion of J(uh) are positive, then the
displacement uh is bijective. Unfortunately, this condition is only sufficient and not a necessary
one. This may often lead to a false detection of the bijectivity violation. In practice, I resort to a
much less elegant solution of sampling J(uh) at the Gaussian quadrature points associated with uh.

ILE: incremental linear elasticity

I have introduced the TINE method as a simplification of the full incremental loading approach
to solution of the nonlinear problem (3.54–3.55). However, TINE is in its essence very similar to
another mesh deformation technique which has been successfully applied in many fluid-structure
interaction (FSI) applications [11, 34, 36]. Often referred to as a mesh update strategy based
on linear elasticity, it involves solving a linear elasticity problem formulated in the last known
configuration of the fluid domain with the Dirichlet boundary condition prescribed by the motion of
the fluid-structure interface. The resulting displacement field is used to update the computational
mesh in the domain occupied by the fluid to the next time step. I call this technique incremental
linear elasticity (ILE).

When applied to domain parametrization, ILE takes the following form. At each loading step
i = 1, . . . , N , a displacement increment ∆uILE

i : Ωi−1 → R3 is computed by solving the following
linear system:

−divxσσσ(∆uILE
i) = 0 in Ωi−1, (3.84)

∆uILE
i =

1

N
uD on ∂Ωi−1. (3.85)

Here, domain Ωi−1 is a deformed configuration of the initial simplified domain Ω0. Once ∆uILE
i

is found, the next deformed configuration Ωi is defined as Ωi−1 + ∆uilin. At i = 1, the procedure

50 CHAPTER 3. SINGLE-PATCH DOMAIN PARAMETRIZATION

is initialized with a simplified domain Ω0. After i steps, the displacement field uILE
i : Ω0 → R3 is

defined as a sum of all already computed increments:

uILE
i =

i∑
j=1

∆uILE
j . (3.86)

Note that when assembling a system of linear algebraic equations for problem (3.84–3.85), NURBS
basis functions Nj are defined for x ∈ Ωi−1 as Nj(x) = Nj(G

−1
i−1(x)). The parametrization Gi−1 of

the deformed configuration Ωi−1 is constructed as D(uILE
i−1) ◦G0. The final displacement field uILE

N

is used to construct the parametrization G of the target domain Ω.
To the best of my knowledge, none of the published research where the ILE method is described

provides an explanation for why the resulting displacement uILE
N is bijective. Nevertheless, it is

empirically confirmed by various FSI applications where the method has been successfully applied.
Figure 3.13 shows the result of applying ILE to the puzzle piece example. I compare it against
the baseline parametrization constructed using TINE. Note that the two parametrization are sur-
prisingly similar. I say that this similarity is surprising because the linear elasticity model uses
the Hooke’s law (3.52) which is much closer related to the St.Venant-Kirchhoff law (3.45) than to
the neo-Hookean law (3.46). Thus, one could expect that the result of the ILE mesh deformation
resembles the solution of the nonlinear system (3.54–3.55) with the St. Venant-Kirchhoff material
law depicted in Figure 3.14. However, this is not the case. In particular, the St. Venant-Kirchhoff
material law results in a not bijective displacement field. Despite the similarity of the ILE and TINE
results, they are not the same. Concretely, the displacement field uILE

N does not converge to the so-
lution u of the system (3.54–3.55) as the number of steps N grows. However, uILE

N seems to converge
linearly to a certain limiting bijective displacement field uILE, that is, ||uILE − uILE

N ||L2 ∼ O(N−1),
see Figure 3.12. Therefore, just like TINE, ILE can be used as a stand-alone mesh deformation
technique suitable for constructing domain parametrizations.

Figure 3.13. Comparison of parametrizations constructed using incremental linear elasticity (ILE,
blue) and tangential incremental nonlinear elasticity (TINE, red).

To sum up, ILE is an at least empirically robust mesh deformation strategy which is very
attractive due its simplicity. It goes without saying that implementation of a linear elasticity
solver poses a far less formidable challenge than implementation of a nonlinear elasticity solver. In
comparison to TINE, ILE requires a bit more incremental steps to compute a displacement field
suitable for the domain parametrization. However, this is compensated by the fact that a linear
elasticity system is faster to assemble than a linearized nonlinear elasticity system, so the total
computational effort is roughly the same.

3.3. PARAMETRIZATION BY MESH DEFORMATION 51

Figure 3.14. Result of solving the nonlinear system (3.54–3.55) with the St. Venant-Kirchhoff
material law. The corresponding parametrization of the target domain Ω is not bijective.

Material parameters

So far, I have not focused on the material parameters. With the material laws considered in this
work, the material behavior can be characterized by two constants. One popular choice is the pair
consisting of Young’s modulus and Poisson’s ratio. Although the role of each of these parameters
can be better understood by studying the material laws where they appear, I can vaguely say that
Young’s modulus defines the overall stiffness of the material whereas Poisson’s ratio defines the
resistance of the material to volumetric changes. Physically meaningful values for Poisson’s ratio
lie in the interval [0, 0.5], where 0 corresponds to no resistance to volumetric changes, and 0.5
corresponds to an absolutely incompressible material.

In the considered problems (3.54–3.55) and (3.84–3.85), no volumetric or surface force is applied,
so Young’s modulus does not affect the resulting displacement field. On the other hand, Poisson’s
ratio proves to be of great importance. A material with high Poisson’s ratio resists volumetric
changes which means that J(u) remains close to 1. This means that if the parametrization G0 of
the simplified domain Ω0 is bijective, then it is likely to remain bijective after the deformation D.
As a result, high values of Poisson’s ratio “increase” the bijectivity of the parametrization G of the
target domain Ω. Another benefit of high Poisson’s ratio is the preservation of the parametrization
uniformity. If the computational mesh corresponding to the parametrization G0 is uniform, it
remains so also after the deformation, provided that Poisson’s ratio is high enough, see Figure
3.15. In practice, I have successfully used values for Poisson’s ratio between 0.45 and 0.49. Values
higher than 0.49 lead to an ill-conditioned numerical system unless a special displacement-pressure
formulation for (nearly) incompressible behavior is used. Although a fully incompressible material
may seem advantageous, it would require Ω and Ω0 to be of the same volume. This condition is
hard to achieve in practice.

Poisson’s ratio also has an effect on the minimal number of incremental steps Nmin necessary
to compute a bijective displacement field when the neo-Hookean material law is used. As Poisson’s
ratio approaches 0.5, Nmin tends to grow in a hyperbolic fashion, see Figure 3.16. To compute
a bijective displacement field for the puzzle piece example, the TINE mesh deformation strategy
requires at least 10 steps for Poisson’s ratio of 0.49. If Newton’s method is used afterwards, 15
steps are required. Such behavior is not observed for the ILE technique because it does not use
the logarithmic neo-Hookean material law (3.46). Just two steps are already enough to compute a
bijective displacement field. However, this field may not be of high quality, meaning that it may
have highly non-uniformly sized elements, see Figure 3.16. Therefore a larger number of incremental
steps is advisable.

52 CHAPTER 3. SINGLE-PATCH DOMAIN PARAMETRIZATION

Figure 3.15. Left: result of the TINE-based mesh deformation with Poisson’s ratio of 0.2. Right:
comparison with the baseline parametrization (red) computed with Poisson’s ratio of 0.45. Elements
of the baseline parametrization are more uniformly sized.

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

Figure 3.16. Left: dependence of the minimum number of incremental steps Nmin on Poisson’s
value ν. Right: result of the ILE-based mesh deformation with N = 2 and ν = 0.49.

Although several other combinations of material parameters can be used to describe the material
behavior, I find the pair of Young’s modulus and Poisson’s ratio particularly suitable for this appli-
cation since it allows to control the mesh deformation using only one parameter, namely Poisson’s
ratio, which reduces the complexity of the method. Moreover, this single parameter defines the
resistance to the bijectivity violation−a crucial property for any parametrization technique.

3.4 Examples and comparison

In this section, I demonstrate the performance of the mesh deformation approach to the single-patch
domain parametrization problem. First, I consider a couple of two-dimensional single-patch exam-
ples and compare the mesh deformation approach with the state-of-the-art techniques. Generally, a
fair comparison is hard to conduct because it is unclear which quality measure to use for compari-
son. Many techniques seek to optimize a parametrization with respect to a certain quality measure,
like the optimization-based methods considered in Section 3.2.3. In this case, it would be unfair to
use any of these measures for comparison because the corresponding optimal parametrization would
certainly be preferred. Another popular method to compare different parametrizations is to use
them to solve a given PDE and to judge about the parametrization quality by the accuracy of the
solution, like I do in Section 2.3.4. This method is not flawless either since the PDE can be tailored
to be “easier” for some parametrization, for example by placing a particularly hard to resolve region
of the solution in an area with small-sized elements.

3.4. EXAMPLES AND COMPARISON 53

In light of that, I have opted for the global ratio of the Jacobian determinant

JR(G) =

max
ξξξ∈[0,1]2

J(G(ξξξ))

min
ξξξ∈[0,1]2

J(G(ξξξ))
(3.87)

as a rather impartial measure which is not, at least explicitly, optimized by any of the parametriza-
tion technique. JR(G) measures uniformity of the parametrization and reacts to violation of bijec-
tivity.

After the comparison, I briefly consider a range of multi-patch and 3D examples to show that
the mesh deformation approach is not limited to a 2D single-patch scenario. The implementation of
the mesh deformation approach is based on the G+Smo library [60] and an additionally developed
module with linear and nonlinear elasticity solvers.

2D male rotor

The first example is a profile of a twin screw compressor’s male rotor, studied in [71]. This is a
deceptively simple geometry with a clear square-shaped structure, so most of the parametrizations
techniques can be expected to perform well. Each side is given by a quadratic NURBS curve with
26 control points. Apart from the mesh deformation approach, I have tested the Coons patch, the
spring model, the optimization-based approach with the AO quality measure and the elliptic grid
generation technique.

For the mesh deformation approach, I have constructed two simplified domains using coarse
NUBRS bases with parameters (q = 1,m = 2) and (q = 3,m = 5). I refer to the resulting
simplified domains as the linear and the cubic. The mesh deformation step has been performed
using Newton’s method starting from an initial guess provided by the TINE method (I refer to this
as the TINE+Newton’s method). For Poisson’s ratio, I have chosen a value a value ν = 0.49.

Figure 3.17. 2D male rotor: mesh deformation approach (TINE+Newton’s method, N=5, ν=0.49,
simplified domain q = 1, m = 2).

The results are presented in Figures 3.17–3.20. The Coons patch has failed to construct a
bijective parametrization. On the other hand, the output of the spring model is a bijective but
highly non-uniform parametrization with JR(G) = 58.12. The AO-optimization and EGG perform
well and produce high quality parametrizations with JR(G) equal 3.4 and and 5.83, correspondingly.
The most uniform parametrizations are produced by the mesh deformation approach with JR(G) =
1.33 for the linear simplified domain and JR(G) = 2.46 for the cubic one. The former required

54 CHAPTER 3. SINGLE-PATCH DOMAIN PARAMETRIZATION

N = 5 and the latter N = 3 loading steps. The difference can be explained by the fact that the
cubic simplified domain is geometrically closer to the original. Still, the former parametrization is
more uniform, probably because it has inherited this property from the simplified domain due to
the high value of Poisson’s ratio.

Figure 3.18. 2D male rotor: mesh deformation approach (TINE+Newton’s method, N=3, ν=0.49,
simplified domain q = 3, m = 4).

Figure 3.19. 2D male rotor: Coons patch (left) and spring model (right).

Figure 3.20. 2D male rotor: AO-optimization (left) and EGG (right).

3.4. EXAMPLES AND COMPARISON 55

2D puzzle piece

The second example is the already familiar to the reader puzzle piece. It is a fairly complex
geometry which, arguably, lies at the very edge of the class of domains for which a single-patch
parametrization should be attempted. Its boundary is given by a quadratic NURBS curve, each
side having 33 control points. The mesh deformation approach is compared only against the AO-
based optimization approach and the EGG technique.

Similarly to the 2D male rotor example, I have constructed two simplified domains using coarse
NURBS bases with parameters (q = 1,m = 2) and (q = 2,m = 3). I refer to them as the linear do-
main and the quadratic. The mesh deformation step has been performed using the TINE+Newton’s
method with Poisson’s ratio of ν = 0.49.

The results are presented in Figures 3.21–3.23. The EGG technique has produced a barely
bijective parametrization with JR(G) = 395.83. The AO-optimization has resulted in a good-
quality parametrization with JR(G) = 8.46. The most uniform parametrizations are again produced
by the mesh deformation approach. The linear simplified domain has required N = 13 loading steps
and the resulting parametrization has the global ratio of the Jacobian determinant JR(G) = 3.86.
For the quadratic simplified domain, the numbers are N = 8 and JR(G) = 5.85. Judging solely by
the numbers, the parametrization produced from the linear simplified domain is superior. However,
the quadratic simplified domain is much closer to the target shape and had to be deformed less.
The corresponding parametrization thus appears more visually attractive.

Figure 3.21. 2D puzzle piece: mesh deformation approach (TINE+Newton’s method, N=13,
ν=0.49, simplified domain q = 1, m = 2).

Figure 3.22. 2D puzzle piece: mesh deformation approach (TINE+Newton’s method, N=10,
ν=0.49, simplified domain q = 2, m = 3 parametrized using the mesh deformation approach
(TINE+Newton’s method, N = 5, ν = 0.49, simplified domain q = 1, m = 2)).

56 CHAPTER 3. SINGLE-PATCH DOMAIN PARAMETRIZATION

Figure 3.23. 2D puzzle piece: AO-optimization (left) and EGG (right).

2D multi-patch female rotor

The next example is a 2D profile of the twin screw compressor’s female rotor, a counterpart to the
male rotor presented above. Although a single-patch parametrization of this domain is possible (for
example, using the mesh deformation approach), I would not recommend it because the domain’s
boundary has no corners. As a result, any single-patch parametrization would have four degenerated
corners, see Figure 3.24. As I show in Section 2.3.4, parametrizations with degenerated elements
are not desirable in numerical simulations.

Figure 3.24. 2D female rotor: single-patch parametrization constructed using the mesh deforma-
tion approach (TINE+Newton’s method, N=8, ν=0.48, simplified domain q = 2, m = 3).

A better choice would be to construct a multi-patch parametrization. In order to make use of the
domain’s symmetries, I have chosen a multi-patch structure with two central hub patches and six
symmetric patches around them, see Figure 3.25. To apply the mesh deformation approach, I have
constructed a simplified domain as a union of the corner-quads corresponding to each patch. The
mesh deformation has been performed using the TINE+Newton’s method with Poisson’s ratio of
0.48 and N = 5 incremental loading steps. Note that instead of deforming each patch separately, I
have deformed the entire simplified domain as a single elastic body. This has caused the inter-patch
interfaces to assume more natural shapes dictated by the boundary. Such a simultaneous multi-
patch parametrization technique is advantageous in comparison to those parametrization techniques
that can only construct parametrizations for each patch separately, like the Coons patch or EGG.

3.4. EXAMPLES AND COMPARISON 57

Figure 3.25. 2D female rotor: multi-patch parametrization constructed using the mesh deforma-
tion approach (TINE+Newton’s method, N = 5, ν = 0.48). Simplified domain (left), result of mesh
deformation (middle), comparison of the multi-patch structure for the simplified and the resulting
parametrizations (right).

3D puzzle piece

Next, I present a three-dimensional single-patch example, see Figure 3.26. With the six compat-
ible boundary surfaces available, the mesh deformation approach can be applied in the same way
as in the two-dimensional case. The simplified domain has been constructed by projection on a
coarsest quadratic NURBS basis. After that, the deformation step has been performed using the
TINE+Newton’s method with Poisson’s ratio of ν = 0.46 and N = 10 loading steps. The cross-
section presented in Figure 3.26 shows the internal structure of the resulting parametrization.

Figure 3.26. 3D puzzle piece: single-patch parametrization constructed by the mesh deformation
approach (TINE+Newton’s method, N = 10, ν = 0.46, simplified domain q = 2, m = 3 in both
directions). Simplified domain (left), result of mesh deformation (middle) and the domain cross-
section (right).

3D male and female rotors

The 3D puzzle piece above is a rather artificial example. In practice, a complex object rarely has a
convenient cuboid structure with six non-trivial boundary surfaces. A single-patch parametrization
is thus inconvenient or even impossible, so a multi-patch structure for the object has to be created.
The resulting patches often have simple shapes and can be parametrized using linear methods such

58 CHAPTER 3. SINGLE-PATCH DOMAIN PARAMETRIZATION

as the Coons patch, whereas an application of the mesh deformation approach would an obvious
overkill.

Figure 3.27. 3D male and female rotors constructed by helical extrusion of the 2D cross-sections.

Another common case with 3D objects, especially in engineering applications, is when the geo-
metric complexity is concentrated in just two dimensions. The object is then defined by its cross-
section and is extruded along a guiding line. In this case, the parametrization problem is reduced
from 3D to 2D where it is reasonable to apply the mesh deformation approach. After that, the
resulting control points of the cross-section are copied along the extrusion direction [72]. One ex-
ample of such objects would be the already introduced rotors of the twin screw compressor, see
Figure 3.27. Note that NURBS can model the helical curve exactly which is a huge advantage when
dealing with objects which have to be modeled with a very high degree of accuracy.

3.5 Summary

I have dedicated this chapter to the single-patch domain parametrization problem. I have described
several state-of-the-art parametrization techniques including the spring model, the Coons patch,
the optimization-based methods and the elliptic grid generation (EGG) technique. The former two
are linear and are only suitable for simple geometries. The latter two are nonlinear and, at least
in theory, can produce bijective parametrizations for complex geometries. However, among the
optimization-based methods, only the area-orthogonality quality measure provides a robust way to
construct high-quality parametrizations. Unfortunately, this approach tends to be rather computa-
tionally costly. On the other hand, the EGG technique is an efficient method which always produces
bijective parametrizations. The disadvantage of EGG is that the resulting parametrizations tend
to have highly non-uniformly sized elements, especially if the domain’s boundary contains concave
regions.

After describing the state-of-the-art, I have proposed a novel domain parametrization approach
based on mesh deformation. Within this approach, a parametrization for the target domain is
constructed as a deformed configuration of a simplified geometry. The domain simplification is
achieved by means of L2-projection of the target domain’s boundary on a coarse NURBS basis.
The resulting simplified domain can be parametrized by any technique which is computationally
inexpensive and grants a bijective result, for example, the Coons patch, EGG or even the mesh de-
formation approach applied recursively. Once the simplified domain is parametrized, it is deformed

3.5. SUMMARY 59

using the stationary equations of nonlinear elasticity with the neo-Hookean material law that pre-
serves the bijectivity of the deformation mapping. In order to solve the equations efficiently, I have
proposed the tangential incremental nonlinear elasticity (TINE) algorithm. The TINE algorithm
can either be used to efficiently construct high-quality initial guesses for Newton’s method or as a
stand-alone method to solve the equations of nonlinear elasticity. The computational cost of the
mesh deformation approach based on the TINE algorithm is comparable to the EGG technique.

Apart from the simplified domain, two important parameters of the mesh deformation approach
are Poisson’s ratio in the material law and the number of incremental steps used for the TINE defor-
mation algorithm. High values of Poisson’s ratio help to preserve the bijectivity of the deformation
mapping and to inherit the element size distribution from the simplified domain. As a disadvantage,
they increase the minimal necessary number of incremental steps. The necessary number of steps is
not known beforehand and has to be determined by trial and error in each particular case but rarely
exceeds ten. Although adaptive algorithms for automatic determination of the incremental step size
are available, they result in an unstable behavior, so a uniform step size should be preferred.

The TINE algorithm has also been compared to the incremental linear elasticity (ILE) method,
which is used in many fluid-structure interaction applications as a mesh update method. When
applied to the domain parametrization problem, the ILE algorithm yields bijective parametriza-
tions similar (but not exactly equal) to the TINE-based mesh deformation approach. However, no
explanation for why ILE produces bijective parametrizations is available, so further research has to
be conducted. Still, the ILE-based mesh deformation approach is a robust way (at least empirically)
to construct bijective parametrizations for complex domains. It is especially attractive due to its
simplicity and relatively low computational cost.

Finally, I have compared the mesh deformation approach against the state-of-the-art parametriza-
tion techniques on two two-dimensional single-patch examples. In both examples, the proposed
approach has produced parametrizations of the highest quality with respect to the element size
uniformity. Additionally, I have demonstrated that the mesh deformation approach is applicable to
multi-patch and three-dimensional problems.

4 | Fluid-structure interaction and mesh
deformation

In Chapter 3, I have proposed a domain parametrization technique based on mesh deformation. To
perform mesh deformation, I have developed the tangential incremental nonlinear elasticity (TINE)
algorithm which allows to efficiently solve the stationary equations of nonlinear elasticity with the
neo-Hookean material law. I have observed that the TINE algorithm is similar, both ideologically
and in terms of the result, to the incremental linear elasticity (ILE) algorithm used as a mesh update
method in various fluid-structure interaction (FSI) applications [11, 33, 34, 35, 36, 37]. Inspired and
intrigued by this similarity, I have decided to apply TINE in an FSI simulation scenario as a mesh
update method. My goal is to compare TINE against the ILE method in its “native environment”
and to find whether the TINE method can offer any advantages in FSI simulations.

To that end, I have selected a classic FSI benchmark [38] and have set off to reproduce it. In order
to implement an FSI solver, I have chosen the Arbitrary Lagrangian-Eulerian (ALE) formulation
of FSI [11, 32] and the partitioned approach with strong coupling [73]. In what follows, I provide a
description of the chosen benchmark. After that, I formulate standard mathematical models which
define motion of an elastic structure and a viscous fluid as well as numerical algorithms that can be
used to discretize them. I then focus on the fluid-structure coupling and methods for updating the
computational mesh in the fluid domain. I compare several state-of-the-art mesh update methods
and the TINE method in a simplified FSI-like setting and study how they react to the Jacobian-
based local stiffening. Finally, I perform the simulation of the FSI benchmark, compare the results
against the reference values and study the effect of different mesh update methods.

4.1 Benchmark description

The following benchmark problem is taken from [38]. It studies a flow of a viscous incompressible
fluid a 2D channel as the fluid interacts with a submerged structure. The channel is a rectangle
[0, 2.2]×[0, 0.41]. The structure consists of a rigid disk B0.05(0.2, 0.2) and an elastic beam [0.2, 0.6]×
[0.19, 0.21]\B0.05(0.2, 0.2) attached at its left end to the boundary of the disk. Figure 4.1 illustrates
the setting; note that the geometry is intentionally non-symmetric.

The top and the bottom walls of the channel are impermeable for the fluid. The fluid enters the
channel through the left wall with a prescribed velocity and exits through the right wall freely. The
presence of the submerged structure changes the flow of the fluid and, in response, the fluid exerts a
certain force on the structure. Thus, this is a fluid-structure interaction problem. Depending on the
prescribed inflow velocity, this fluid force can result in a noticeable deformation of an elastic part of
the structure. The deformation of the structure alters the shape of the flow channel, the flow itself
and, as a consequence, the force exerted on the structure by the fluid. Such systems with a two-way
interaction between the components are called coupled systems. To model such a system, one has

60

4.2. STRUCTURE MODELING 61

to model the behavior of its components subject to certain coupling conditions. In the next three
sections, I first formulate models for each individual component, namely for the elastic structure
and the fluid, and then describe the coupling.

Figure 4.1. Top: initial configuration of the computational domain. Bottom: close-up on the
immersed structure.

4.2 Structure modeling

In this section, I deal with the theory of motion of an elastic body. Building upon the introduction
into solid mechanics given in Section 3.3.3, I formulate the time-dependent equations of nonlinear
elasticity, as described in [30]. After that, I outline time integration schemes that can be used to
solve these equations numerically. Finally, I validate my implementation of the time-dependent
nonlinear elasticity solver on partial benchmarks.

4.2.1 Equations of motion

Let Ω0 ⊂ R3 be a reference configuration of an elastic body. Assume that the body undergoes a
deformation over the period of time [0, T] described by a displacement field u(x̂, t) : Ω0×(0, T)→ R3.
Then the motion of the body in the presence of a volumetric load g(x̂, t) is governed by the local
conservation equations of linear momentum:

ρü = divx̂ P(u) + ρg in Ω0 × (0, T). (4.1)

For brevity, I refer to (4.1) as the equations of motion. Here, ü stays for the second derivative in time
of u. The density ρ is assumed to be constant throughout the reference configuration. Furthermore,
let the body be fixed on the portion of the domain boundary and be subject to a surface load on
the rest of the boundary:

u = 0 on ∂Ω0D × (0, T) and P(u) · n = ρf on ∂Ω0N × (0, T). (4.2)

Finally, the equations of motion (4.1) are equipped with suitable initial conditions for the displace-
ment u and velocity u̇:

u(·, 0) = u0 in Ω0 and u̇(·, 0) = u̇0 in Ω0. (4.3)

62 CHAPTER 4. FLUID-STRUCTURE INTERACTION AND MESH DEFORMATION

A function u(·, t) ∈ C2(Ω0)∩C0(Ω̄0) satisfying (4.1–4.3) is called a classical solution of the equations
of motion.

In order to apply the isogeometric Galerkin method, I rewrite the equations of motion (4.1) in
a weak-in-space form. Since the Dirichlet boundary condition (4.2) is homogeneous, both the trial
solution and weighting functions spaces can be defined as V0 = {w ∈ H(Ω0)3 | w = 0 on ∂Ω0D}.
Then the weak-in-space form of (4.1) takes the following form:

find u(·, t) ∈ V0 such that ∀w ∈ V0

ρ

∫
Ω0

üTwdx̂ +

∫
Ω0

S(u) : δE(u)[w]dx̂ = ρ

∫
Ω0

gTwdx̂ + ρ

∫
∂Ω0N

fTwdŝ. (4.4)

I discretize the weak problem (4.4) in space similarly to the stationary case. To that end, I use the
NURBS basis functions corresponding to the parametrization G0 of the reference domain Ω0. The
time-dependent isogeometric solution uh is defined as

uh(x̂, t) =
3n∑
I=1

dI(t)NI(x̂). (4.5)

Here, NI : Ω0 → R3 are the vector-valued NURBS basis functions (3.65), dI(t) ∈ R are time-
dependent degrees of freedom and I is a linear index corresponding to the dimension-wise ordering
(3.64). Similarly to the stationary case, unknown degrees of freedom dI(t), I ∈ F form a vector of
unknowns y(t). Due to the homogeneous Dirichlet boundary condition, vectors of Dirichlet degrees
of freedom yD and ∆yD are always zero, so I omit them in what follows. Linear span of basis
functions NI , I ∈ F defines a discrete function space V0,h ⊂ V0. Upon replacing u by uh in the
weak form (4.4) and testing it with the basis of V0,h, we obtain the following system of ordinary
differential equations of second order:

Mÿ + R(y) = L. (4.6)

Here, M is a |F| × |F| mass matrix, R(y) is a residual vector from (3.73) and L ∈ R|F| is a loading
vector. Entries MIJ and LI of M and L are computed as

MIJ = ρ

∫
Ω0

NT
I NJdx̂ and LI = ρ

∫
Ω0

NT
I gdx̂ for I, J ∈ F . (4.7)

Initial conditions (4.3) for the equations of motion translate into initial conditions for the ODE
(4.6). If u0 and u̇0 are nontrivial, they can be projected on the discrete space V0,h using the mass
matrix M in order to obtain initial degrees of freedom y and y0.

4.2.2 Time integration

In order to solve numerically ODE (4.6), let us split the time period [0, T] into N time steps
∆t = T/N . The displacement vector y(t) has to be computed at discrete time moments ti = i∆t,
i = 1, . . . , N . In general, there exist two groups of methods for solving ODE (4.6), namely explicit
and implicit integration schemes. Explicit schemes compute the solution at time ti+1 using only
quantities at time ti (and maybe before). As a result, only a system of linear algebraic equations
has to be solved at every time step. Therefore, explicit methods can be very efficient, especially
if the mass matrix M is replaced by a diagonal lumped mass matrix. The disadvantage of explicit

4.2. STRUCTURE MODELING 63

schemes is the limitation on the time step due to a stability criterion. Explicit schemes are ideal for
impact problems, such as car-crash analysis, where a very short period of time needs to be resolved
using a large number of small time steps.

On the contrary, implicit methods replace the time derivatives using not only quantities which
are known at time ti but also the yet unknown quantities at time ti+1. Since the ODE (4.6) is
nonlinear, implicit schemes require solving a system of nonlinear algebraic equation at every time
step, for example using Newton’s method described in Section 3.3.4. On the other hand, implicit
methods can be constructed is such a way that they are unconditionally stable, thus the time step
is not limited. Because of that, they are better suited for simulating phenomena happening over
extended periods of time, like low-frequency structural vibrations in FSI.

In this work, I use the most popular implicit time integration scheme for elasticity problems— the
Newmark method. For the description of the scheme, let a denote the vector of discrete accelerations
ü and s denote the vector of discrete velocities u̇. With this notation, ODE (4.6) at time ti has the
form

Mai + R(yi) = Li, (4.8)

where the subscript i indicates that the relevant quantity has to be computed at time ti. At time
t0 = 0, initial displacements y0 and velocities s0 are given by the initial conditions (4.3). Initial
accelerations a0 can be computed from

a0 = M−1
(
−R(y0) + L0

)
. (4.9)

The Newmark method is based on the following approximations for displacements and velocities at
time ti+1:

yi+1 = yi + ∆tsi +
∆t2

2

(
(1− 2β)ai + 2βai+1

)
, (4.10)

si+1 = si + ∆t
(
(1− γ)ai + γai+1

)
. (4.11)

The parameters β ∈ [0, 0.5] and γ ∈ [0, 1] are constants which determine the behavior of the
method. An optimal choice is β = 0.25 and γ = 0.5, when the Newmark method becomes second-
order accurate in time. However, the Newmark method was originally developed for linear problems.
Special care is required when applying it to nonlinear problems.

In order to implement the Newmark method, it is convenient to re-express the accelerations ai+1

and velocities si+1 in terms of the displacements yi+1:

ai+1 = α1(yi+1 − yi)− α2si − α3ai, (4.12)
si+1 = α4(yi+1 − yi) + α5si + α6ai. (4.13)

Here, the auxiliary constants α∗ are defined as

α1 =
1

β∆t2
, α2 =

1

β∆t
, α3 =

1− 2β

2β
, (4.14)

α4 =
γ

β∆t
, α5 = 1− γ

β
, α6 = (1− γ

2β
)∆t. (4.15)

After inserting (4.12) into (4.8), we obtain the following system of nonlinear algebraic equations
which has to be solved at every time step:

Z(yi+1) = M
(
α1(yi+1 − yi)− α2si − α3ai

)
+ R(yi+1)− Li+1 = 0. (4.16)

64 CHAPTER 4. FLUID-STRUCTURE INTERACTION AND MESH DEFORMATION

To that end, Newton’s method is used. Provided an intermediate solution ysi+1 for time ti+1, the
update ∆ys+1

i+1 is computed by solving the following linear system:(
α1M + KT (ysi+1)

)
∆ys+1

i+1 = −Z(ysi+1). (4.17)

Here, the tangent stiffness matrix KT (ysi+1) is assembled in exactly the same way as in the station-
ary case (3.73), which allows one to reuse an already implemented solver for stationary nonlinear
elasticity. The update ∆ys+1

i+1 is used to define the next intermediate solution ys+1
i+1 as ysi+1 +∆ys+1

i+1 .
Iterations of Newton’s method at each time step continue until convergence, and the last interme-
diate solution ysi+1 is accepted as a solution yi+1 at time ti+1. As an initial guess y0

i+1 at time
ti+1, the displacements vector yi from the previous time step can be used. If the time step is small
enough, this provides a good initial guess which allows Newton’s method to converge within a few
iterations. Once yi+1 is found, ai+1 and si+1 are computed from formulas (4.12–4.13).

4.2.3 Partial benchmark CSM1: stationary deflection

I validate my implementation of the isogeometric nonlinear elasticity solver on partial benchmarks
from [38]. The first benchmark, CSM1, is a stationary deflection test for the elastic beam attached
to the rigid disk, see Figure 4.1. It involves solving the stationary equations of nonlinear elasticity

−divx̂ P(u) = ρg in Ω0 (4.18)

with the St. Venant-Kirchhoff material law (3.45) and the following boundary conditions:

u = 0 on ∂Ω0D and P(u) · n = 0 on ∂Ω0N . (4.19)

Here, ∂Ω0D is the left end of the beam (the one attached to the sphere), and ∂Ω0N is the rest
of the beam’s boundary. For the geometry, I use a quadratic two-element1 single-patch NURBS
parametrization, see Figure 4.2, which I uniformly h-refine for the analysis. The following pa-
rameters are used: density ρ = 103 kg·m−3, Poisson’s ratio ν = 0.4, Young’s modulus E =
1.4 × 106 kg·m−1·s−2 and gravitational acceleration g = (0, 2)T m·s−2. The quantity of interest
is displacement of the beam’s right end midpoint denoted by A.

Figure 4.2. Benchmark CSM1 and CSM3: reference configuration of the beam (bottom) with
the parametrization structure (red), equilibrium deflection state (middle) and maximum deflection
state during elastic oscillations (top).

The simulation results are presented in Table 4.1, where I report the refinement level, the number
of degrees of freedom, the horizontal and vertical displacement ux(A) and uy(A) of the point A and

1A single-element parametrization is also possible. However, this two-element parametrization shares the basis on
the boundary with the parametrization of the surrounding fluid domain.

4.2. STRUCTURE MODELING 65

the computational time2. The results are in perfect agreement with the reference values from [38].
Figure 4.2 illustrates the deformed state of the beam.

h-lvl #DoF Tcomp ux(A) [10−2 m] uy(A) [10−2 m]
5 4420 1.6s -0.7172 6.602
6 17028 5.4s -0.7183 6.608
7 66820 21s -0.7186 6.609
8 264708 1m26s -0.7187 6.610
Ref 435776 N/A -0.7187 6.610

Table 4.1. Benchmark CSM1: simulation results.

4.2.4 Partial benchmark CSM3: elastic oscillations

Benchmark CSM3 is a time-dependent simulation of the elastic beam oscillating in the presence of
an external volumetric force. It involves solving the equations of motion

ρü = divx̂ P(u) + ρg in Ω0 in Ω0 × [0, T] (4.20)

for T = 10s with the St. Venant-Kirchhoff material law (3.45), boundary conditions (4.19) and the
following initial conditions:

u(·, 0) = 0 in Ω0 and u̇(·, 0) = 0 in Ω0. (4.21)

I use the same geometry parametrization and parameter values as for CSM1 and perform temporal
discretization using the Newmark method with β = 0.25 and γ = 0.5. As before, the quantity of
interest is the displacement of the point A. However, it varies with time in this simulation. Since
the displacement components ux(A) and uy(A) are expected to behave periodically, they can each
be described accurately enough using just three numbers: the mean and the amplitude, defined as

umean =
1

2
(umax + umin) and uamp =

1

2
(umax − umin), (4.22)

and the frequency defined as 1/τ , where τ is the length of the oscillation period. The last oscillation
period is used to compute the values.

h-lvl ∆t [s] #DoF Tcomp ux(A) [10−2 m] uy(A) [10−2 m] Freq [s−1]
4 0.01 1188 3m34s -1.4537±1.4530 6.4518±6.4684 1.0989
5 0.01 4420 14m8s -1.4630±1.4634 6.4737±6.4904 1.0989
6 0.01 17028 52m1s -1.4645±1.4645 6.4763±6.4945 1.0989
7 0.01 66820 3h21m -1.4645±1.4650 6.4765±6.4947 1.0989
7 0.005 66820 6h34m -1.4303±1.4304 6.3604±6.5159 1.0995
Ref 0.005 98820 N/A -1.4305±1.4305 6.3607±6.5160 1.0995

Table 4.2. Benchmark CSM3: simulation results.

2This is not CPU but real time. Of course, the real time is a poor measure of the algorithm performance since it
varies highly between different machines. My intention here is to give some perspective on how much time different
simulations described in this chapter take. All the simulations were performed on a Dell XPS15 (2017 edition) laptop
with a 2.8GHz Intel Core i7-700HQ CPU. The implementation is based on G+Smo with Eigen as a linear algebra
back-end and the Intel-MKL distribution of Pardiso [61] as a direct linear solver. The linear system assembly and
solution are implemented in parallel and run on 8 hyper-threads.

66 CHAPTER 4. FLUID-STRUCTURE INTERACTION AND MESH DEFORMATION

The results of CSM3 are presented in Table 4.2, including the h-refinement level, the time step
∆t in seconds, the number of degrees of freedom, the computational time and the displacement of
the point A. The results are once again in perfect agreement with the reference values. As Figure
4.3 depicts, the behavior of ux(A) and uy(A) shows no signs of energy loss over time. Overall, my
implementation of the nonlinear elasticity solver seems to be robust and accurate.

0 1 2 3 4 5 6 7 8 9 10
-0.03

0

0.03

0.06

0.09

0.12

Figure 4.3. Benchmark CSM3: displacement of the point A.

4.3 Fluid modeling

This section deals with modeling of the fluid behavior. First, I give a brief introduction into the
finite element method for incompressible flow problems, based mainly on [74]. I introduce the
incompressible Navier-Stokes equations (INSE) and show how they can be spatially discretized
using IGA. Then, I describe two time-integration schemes, one requiring a solution of a system of
nonlinear algebraic equations at every time step, and another that tries to avoid doing that while
still retaining a relatively high accuracy in time. Finally, I validate my implementation of the
isogeometric INSE solver on partial benchmarks.

4.3.1 Incompressible Navier-Stokes equations

Let Ω ∈ R3 be a domain occupied by a flowing fluid. The motion of the fluid over a time period
[0, T] is governed by the local conservation equations for linear momentum and mass:

ρv̇ + ρ∇xv · v = divxσσσ + ρg in Ω× [0, T], (4.23)
ρ̇+ divx(ρv) = 0 in Ω× [0, T]. (4.24)

Here, v : Ω → R3 is a vector field describing the velocity of the fluid at a point of space x ∈ Ω.
ρ ∈ R is the fluid density, σσσ : Ω → R3×3 is a stress tensor describing the internal forces arising in
the fluid, and g : Ω → R3 denotes an external volumetric force. In this work, I assume that the
fluid is an incompressible Newtonian fluid. This means that the fluid behavior is characterized by
the incompressibility condition ρ = const and the constitutive law

σσσ(v, p) = −pI + ρν(∇xv +∇xvT). (4.25)

Here, p : Ω → R is a pressure field and ν ∈ R is the kinematic3 viscosity of the fluid. After
plugging the incompressibility condition and the constitutive law (4.25) into the general equations
(4.23–4.23), we obtain a simplified system:

ρv̇ + ρ∇xv · v = ρν∆xv −∇xp+ ρg in Ω× [0, T], (4.26)
divx v = 0 in Ω× [0, T]. (4.27)

3Do not confuse with the dynamic viscosity µ = ρν (also known as the absolute viscosity).

4.3. FLUID MODELING 67

I refer to this system as the incompressible Navier-Stokes equations (INSE), or simply the Navier-
Stokes equations. The system has two unknowns−the velocity v and the pressure p. The latter is
defined only up to an additive constant. The second term on the left in (4.26) is called the advection
term, and the first term on the right is called the diffusion term. Note that the system is nonlinear
because of the advection term.

In comparison to the equations of nonlinear elasticity, I use the subscript x instead of x̂ to
underline that the spatial differentiation is performed with respect to the spatial coordinates in Ω
and not with respect to the material points of the fluid. The difference becomes more prominent
once we allow the fluid domain to move as, for example, in FSI simulations.

To complete the system of the Navier-Stokes equations, one has to supply it with the appropriate
initial and boundary conditions. Being first-order in time, the Navier-Stokes equations require initial
conditions only for the velocity:

v(·, 0) = v0 in Ω. (4.28)

Note that the pressure requires no initial conditions. In fact, pressure is an algebraic variable because
its time derivative does not enter the equations. From this point of view, the incompressible Navier-
Stokes equations are a system of differential-algebraic equations (DAE). In practice, however, many
time-integration schemes seem to be oblivious to this fact but still perform well.

In this work, I distinguish between three types of boundary conditions: no-slip, inflow and do-
nothing. Accordingly, let the boundary ∂Ω be split into three parts ∂Ωns, ∂Ωin and ∂Ωout. The
first two types of boundary conditions, namely the no-slip and the inflow, are defined as

v = 0 on ∂Ωns × [0, T] and v = vin on ∂ΩD × [0, T]. (4.29)

The no-slip condition models an impermeable boundary, whereas the inflow condition specifies
the velocity at which the fluid enters the domain. Note that vin can be time-dependent. When
necessary, I refer to the both conditions combined as the Dirichlet boundary condition v = vD, and
I use ∂ΩD to denote the union ∂Ωns ∪ ∂Ωin. Finally, the do-nothing boundary condition

σσσ(v, p) · n = 0 on ∂Ωout × [0, T] (4.30)

models a free flow of the fluid from the domain. The do-nothing condition is a natural condition for
the weak formulation of the INSE and as such requires no special treatment to enforce it. Moreover,
it has an added benefit of setting a zero base value for the pressure, thus solving the problem that the
pressure is defined only up to an additive constant. A pair (v(·, t), p(·, t)) ∈ C2(Ω)∩C0(Ω̄)×C1(Ω)
that satisfies the equations (4.26–4.27) as well as the initial and boundary conditions (4.28–4.30) is
called a classical solution of the incompressible Navier-Stokes equations.

4.3.2 Spatial discretization with IGA

In this section, I describe spatial discretization of the incompressible Navier-Stokes equations using
the isogeometric Galerkin method. To that end, I first introduce the Oseen equations which are
auxiliary linear equations appearing in many solution approaches to the INSE. Using the Oseen
equations as an example, I discuss saddle-points problems and mixed isogeometric elements that can
be used to solve them. After that, I consider the steady-state Navier-Stokes equations and discretize
them using mixed isogeometric methods. In order to solve the resulting system of nonlinear algebraic
equations, I formulate the Picard and Newton’s linearizations of the INSE and describe the assembly
of the corresponding linear systems.

68 CHAPTER 4. FLUID-STRUCTURE INTERACTION AND MESH DEFORMATION

Oseen equations

The Oseen equations are a system of linear partial differential equations which can be considered a
generalization of the advection-diffusion equation. They have the following form:

−ν∆xv +∇xv · b + cv +∇xp = g in Ω, (4.31)
divx v = 0 in Ω, (4.32)

where b : Ω → R3 is a given divergence-free advective velocity and c in the reaction term cv is a
non-negative scalar. Let us rewrite the equations in a weak form. To that end, let us define the
velocity trial solution space V, velocity weighting function space V0 and the pressure space Q as

V = {w ∈ H1(Ω)3 | w = vD on ∂ΩD}, V0 = {w ∈ H1(Ω)3 | w = 0 on ∂ΩD} (4.33)

and Q = {q ∈ L2(Ω) |
∫
Ω

qdx = 0}. (4.34)

Then the weak form of the Oseen equations reads:

find (v, p) ∈ V ×Q such that∫
Ω

(
ν∇xv : ∇xw + (∇xv · b)Tw + cvTw + p divx w

)
dx =

∫
Ω

gTwdx ∀w ∈ V0, (4.35)

∫
Ω

divx vqdx = 0 ∀q ∈ Q. (4.36)

Let us define bilinear forms a(v,w) =
∫

Ω

(
ν∇xv : ∇xw + (∇xv · b)Tw + cvTw

)
dx and b(v, q) =∫

Ω divx vqdx and a linear form l(w) =
∫

Ω gTwdx. Then the variational problem (4.35–4.36) can be
cast into the following abstract form:

find (v, p) ∈ V ×Q such that a(v,w) + b(w, p) = l(w) ∀w ∈ V, (4.37)
b(v, q) = 0 ∀q ∈ Q. (4.38)

Variational problems of the form (4.37–4.38) are called saddle-point problems since their solution
(v, p) is also a solution of the constrained optimization problem

J(v) =
1

2
a(v,v)− l(v)→ min, (4.39)

b(v, q) = 0 ∀q ∈ Q. (4.40)

If we introduce an associated Lagrangian

L(v, p) = J(v) + b(v, p), (4.41)

then each solution (v, p) of (4.39–4.40) satisfies the following property:

L(v, q) 6 L(v, p) 6 L(w, p) ∀(w, q) ∈ V ×Q. (4.42)

In other words, (v, p) is a saddle point of the Lagrangian (4.41). In light of that, one may choose
to interpret the pressure p as a Lagrange multiplier associated with the incompressibility constraint
div v = 0.

4.3. FLUID MODELING 69

The existence and uniqueness theorem for an abstract saddle-point problem (4.37–4.38) states
that the problem has a unique solution if the following two conditions are satisfied. First, a(v,w)
has to be coercive (2.25). Second, b(v, q) has to satisfy the famous Ladyshenskaya-Babuška-Brezzi
condition, also known as the inf-sup condition, which requires that there exists a constant β > 0
such that

inf
q∈Q,q 6=0

sup
w∈V,w 6=0

b(w, q)

||w||V ||q||Q
> β. (4.43)

The inf-sup condition can be seen as a generalization of the coercivity condition for bilinear forms
with arguments from different spaces.

For the Oseen equations, coercivity of a(v,w) follows from the divergence-free property of the
advective velocity b and the non-negativity of the scalar c in the reaction term. In [74], it is shown
that the bilinear form b(v, q) on the spaces V and Q satisfies the inf-sup condition. Therefore, the
variational formulation (4.35–4.36) is well-posed and has a unique solution.

Another important property of (4.35–4.36) is that the bilinear form a(v,w) is not symmetric
due to the advection term. This fact makes the numerical treatment of the problem more complex.
Concretely, let us introduce the Reynolds number Re,

Re =
vL

ν
, (4.44)

where v ∈ R is the characteristic speed of the flow, L ∈ R is the characteristic length associated with
the fluid geometry, and ν is the kinetic viscosity. If the viscosity ν is relatively low, the contribution
of the diffusion term is dwarfed by the advection term in both the INSE and Oseen equations. In
this case, the fluid flow is said to be advection dominated. For advection-dominated flows, the finite
element methods based on the continuous Galerkin method tend to produce solutions with spurious
oscillations. This effect can be mitigated by introducing additional stabilization terms into the weak
form, see [11, 74]. One example would be the SUPG stabilization. It is hard to pinpoint exactly
how high the Reynolds number must be before the stabilization becomes necessary. In this work,
I have performed simulations with Re 6 200 and have observed no signs of spurious oscillations.
Therefore, I do not use any type of stabilization.

Mixed isogeometric elements

In order to apply the isogeometric Galerkin method to the weak problem (4.35–4.36), I use NURBS
basis functions associated with the parametrization of the domain Ω to construct discrete function
spaces V0,h ⊂ V0, Vh = vD+V0,h andQh ⊂ Q. Since different discrete space are used for velocity and
pressure, the approach falls under the category of mixed finite elements. The discrete spaces cannot
be chosen arbitrarily because they have to satisfy the inf-sup condition (4.43), lest the Galerkin
method becomes unstable.

By applying h-refinement and degree elevation in various combinations, different discrete spaces
can be constructed. The mathematical analysis conducted in [75] suggests two types of stable
mixed isogeometric elements Vh/Qh. The first type are the Taylor-Hood elements (TH) which are
well-known in the classical finite element analysis. The Taylor-Hood elements are constructed by
choosing a discrete pressure space N p

r (2.29) and then applying degree elevation once to obtain a
discrete space N p+1

r for velocity. I denote the TH mixed elements by N p+1
r /N p

r . The second type of
stable mixed elements are the subgrid elements (SG) denoted by N p

r+1/N
p
r . This time, the velocity

space N p
r+1 is obtained from the pressure space N p

r by applying h-refinement once.

70 CHAPTER 4. FLUID-STRUCTURE INTERACTION AND MESH DEFORMATION

Let NI(x), I = 1, . . . , 3n denote vector-valued NURBS basis functions for velocity and Mi(x),
i = 1, . . . ,m denote scalar-valued NURBS basis functions for pressure. Then the isogeometric
solution (vh, ph) ∈ Vh ×Qh can be written as

vh(x) =

3n∑
I=1

vINI(x) and ph(x) =

m∑
i=1

qiMi(x), (4.45)

where vI and qi are degrees of freedom for the velocity and pressure, respectively. As always,
unknown degrees of freedom vI , I ∈ F are collected into a velocity vector of unknowns y ∈ R|F|,
Dirichlet degrees of freedom dI , I ∈ D are collected into a Dirichlet velocity vector yD ∈ R|D|, and
all pressure degrees of freedom are collected into a pressure vector z ∈ Rm. Upon testing the weak
form (4.35–4.36) with the bases of V0,h and Qh, we obtain the following linear system:(

A BT

B 0

)(
y
z

)
=

(
L−ADyD

0

)
. (4.46)

Here, A is a |F|× |F| velocity matrix, B is a m×|F| coupling matrix, AD is a |F|× |D| elimination
matrix, and L is a loading vector with |F| elements. Their elements are computed as

AIJ = a(NI ,NJ), BiJ = b(NJ ,Mi) and LI = l(NI). (4.47)

The block-matrix in (4.46), which I denote by K and refer to as the saddle-point matrix, inherits
the saddle-points structure from the weak form (4.35–4.36). Since the bilinear form a(v,w) is
not symmetric, neither are matrices A and K. Moreover, K is indefinite. All these properties of
the linear system (4.46) make it challenging to solve numerically. Most of general iterative linear
solvers perform poorly when applied to (4.46); only iterative solvers and preconditioners designed
specifically for saddle-point problems can be efficient [76]. A good alternative is to use a direct linear
solver if the size of the problem permits. In this work, I have successfully applied the PardisoLU
linear solver. In comparison to standard direct and iterative solvers from Eigen4, I have achieved
relative speed-ups of up to ten times.

Steady-state incompressible Navier-Stokes equations

After studying isogeometric discretization of the Oseen equations, we are ready to tackle the incom-
pressible Navier-Stokes equations. In order to focus on the spacial discretization, it is convenient to
consider first a steady-state flow case. If all data in the INSE equations (4.26–4.27) do not depend on
time and if the Reynolds number Re is sufficiently low, the equations yield a steady-state solution.
This solution can be found by solving the steady-state Navier-Stokes equations

−ρν∆xv + ρ∇xv · v +∇xp = ρg in Ω, (4.48)
divx v = 0 in Ω. (4.49)

In comparison to the time-dependent Navier-Stokes equations (4.26–4.27), equations (4.48–4.49) do
not include the acceleration term. As shown in [74], equations (4.48–4.49) have a unique solution,
granted that Re is low enough. On the contrary, the solution becomes unstable for high values of
Re and should be computed instead using the time-dependent Navier-Stokes equations.

Using the same function spaces V, V0 and Q as for the Oseen equations, we can write the weak
form of the steady-state Navier-Stokes equations (4.48–4.49) in the following way:

4A C++ linear algebra library which G+Smo is based on.

4.3. FLUID MODELING 71

find (v, p) ∈ V ×Q such that∫
Ω

(
ρν∇xv : ∇xw + ρ(∇xv · v)Tw + p divx w

)
dx =

∫
Ω

ρgTwdx ∀w ∈ V0, (4.50)

∫
Ω

divx vqdx = 0 ∀q ∈ Q. (4.51)

Let us define the diffusion bilinear form d(v,w) =
∫

Ω ρν∇xv : ∇xwdx and the advection trilinear
form n(v,u,w) =

∫
Ω ρ(∇xv · u)Twdx. Then we can rewrite the variational problem (4.50–4.51) in

the following form:

find (v, p) ∈ V ×Q such that
d(v,w) + n(v,v,w) + b(w, p) = l(w) ∀w ∈ V0, (4.52)
b(v, q) = 0 ∀q ∈ Q. (4.53)

Here, the bilinear form b(w, q) and the linear form l(w) are defined in the same way as for the
Oseen equations. Problem (4.52–4.53) can be called a nonlinear saddle-point problem. In order to
solve it, one has to linearize the nonlinear advection form n(v,v,w). In what follows, I describe
two common methods to do that: the Picard iteration and Newton’s method.

Picard iteration

The Picard iteration is an iterative method for solving the weak formulation of the steady-state
Navier-Stokes equations (4.52–4.53) that overcomes the nonlinearity in the advection term n(v,v,w)
by “freezing” the advective velocity. Concretely, let (vs, ps) be a solution at the s-th iteration. Then
the next solution (vs+1, ps+1) is computed by solving the following linear problem:

find (vs+1, ps+1) ∈ V ×Q such that

d(vs+1,w) + n(vs+1,vs,w) + b(w, ps+1) = l(w) ∀w ∈ V0, (4.54)

b(vs+1, q) = 0 ∀q ∈ Q. (4.55)

Problem (4.54–4.55) is an Oseen-type problem with an advective velocity b = vs and a zero reaction
term. Since the assumptions for the existence and uniqueness theorem are satisfied, the problem has
a unique solution. By defining a bilinear form aP (vs+1,w) = d(vs+1,w) + n(vs+1,vs,w), we can
cast the problem (4.54–4.55) into an abstract saddle-point problem form (4.37–4.38). The ensuing
discretization with mixed isogeometric elements and matrix assembly happen in the same way as
for the Oseen equations. The Picard iteration can be initialized with v0 = 0. Note that the velocity
matrix AP corresponding to the discretization of aP depends on the current solution vs and has to
be reassembled at every iteration. The Picard iteration continues until convergence.

From the perspective of the general theory of iterative schemes for nonlinear problems, the Picard
iteration is a simple fixed-point iteration method. As such, it has a larger convergence radius than
Newton’s method but converges slower to the solution because it is a first-order method.

Newton’s method for steady-state problems

Application of Newton’s method to the weak formulation of the steady-state Navier-Stokes equations
(4.52–4.53) follows the same steps as for the stationary equations of nonlinear elasticity described

72 CHAPTER 4. FLUID-STRUCTURE INTERACTION AND MESH DEFORMATION

in Section 3.3.4. Let us define the residual R(v, p,w, q) as

R(v, p,w, q) =

(
d(v,w) + n(v,v,w) + b(w, p)− l(w)

b(v, q)

)
. (4.56)

The Taylor expansion at R(v, p,w, q) with the velocity increment ∆v and pressure increment ∆p
yields

R(v + ∆v, p+ ∆p,w, q) = R(v, p,w, q) +DR(v, p,w, q) ·
(

∆v
∆p

)
+ o(||∆v||, ||∆p||), (4.57)

where the directional derivative is computed as

DR(v, p,w, q) ·
(

∆v
∆p

)
=

(
d(∆v,w) + n(∆v,v,w) + n(v,∆v,w) + b(w,∆p)

b(∆v, p)

)
. (4.58)

Then Newton’s method for a nonlinear problem R(v, p,w, q) = 0 assumes the following from: given
an intermediate solution (vs, ps) ∈ V ×Q, find an update (∆vs+1,∆ps+1) ∈ V0 ×Q such that

d(∆vs+1,w) + n(∆vs+1,vs,w) + n(vs,∆vs+1,w) + b(w,∆ps+1) = l(w)−
−d(vs,w)− n(vs,vs,w)− b(w, ps) ∀w ∈ V0, (4.59)

b(∆vi+s, q) = −b(vs, q) ∀q ∈ Q. (4.60)

After that, the next solution (vs+1, ps+1) ∈ V × Q is defined as (vs + ∆vs+1, ps + ∆ps+1). This
update form of Newton’s method can be simplified by moving all terms with vs from the right-hand
side to the left, adding n(vs,vs,w) to each side of equation (4.59) and exploiting the linearity
of all the forms. After doing that, one obtains a next-solution form of Newton’s method: given
(vs, ps) ∈ V ×Q, find the next solution (vs+1, ps+1) ∈ V ×Q such that

d(vs+1,w) + n(vs+1,vs,w) + n(vs,vs+1,w) + b(w, ps+1) = l(w)+

+ n(vs,vs,w) ∀w ∈ V0, (4.61)

b(vs+1, q) = 0 ∀q ∈ Q. (4.62)

The next-solution form of Newton’s method is an Oseen-type problem with an advective velocity
b = vs and a tensor-valued reaction c = ∇vs. Since ∇vs is not necessarily nonnegative, the
existence and uniqueness theorem for the Oseen equations cannot be applied. Nevertheless, by
defining a bilinear form aN (vs+1,w) = d(vs+1,w) + n(vs+1,vs,w) + n(vs,vs+1,w) and a linear
form lN (w) = l(w) +n(vs,vs,w), we can cast the variational problem (4.61–4.62) into an abstract
saddle-point problem form (4.37–4.38) and then discretize it using mixed isogeometric elements.
Note that the variational problem (4.61–4.62) yields a velocity field from V, which means that the
Dirichlet vector yD is not zero and has to be eliminated from the system. The velocity matrix AN

corresponding to the discretization of aN and the loading vector LN corresponding to lN depend
on the current solution vs and, therefore, have to be reassembled at every iteration. Iterations of
Newton’s method continue until predefined convergence criteria are met.

As mentioned above, Newton’s method has a smaller convergence radius, but converges to the
solution faster than the Picard iteration. This fact does not antagonize the two methods but rather
makes them perfectly complementary to each other. Concretely, if Newton’s method struggles to
converge from an initial guess v0 = 0, a few steps of the Picard iteration can be performed first.
This should provide an approximate solution lying in the convergence radius of Newton’s method,
from where Newton’s method is used to finish the solution process.

4.3. FLUID MODELING 73

4.3.3 Time integration

Let us come back to the time-dependent Navier-Stokes equations (4.26–4.27). Using the function
spaces V, V0 and Q, we can rewrite them in a weak form:

find (v(·, t), p(·, t)) ∈ V ×Q such that∫
Ω

(
ρv̇Tw + ρν∇xv : ∇xw + ρ(∇xv · v)Tw + p divx w

)
dx =

∫
Ω

ρgTwdx ∀w ∈ V0, (4.63)

∫
Ω

divx vqdx = 0 ∀q ∈ Q. (4.64)

After defining an acceleration bilinear form m(v̇,w) =
∫

Ω ρv̇
Twdx, we can cast the variational

problem (4.63–4.64) into a more concise form:

find (v(·, t), p(·, t)) ∈ V ×Q such that
m(v̇,w) + d(v,w) + n(v,v,w) + b(w, p) = l(w) ∀w ∈ V0, (4.65)
b(v, q) = 0 ∀q ∈ Q. (4.66)

In order to solve the variational problem (4.65–4.66), I first discretize it in time, then in space. For
the time discretization, I use a one-step θ-scheme: given the solution (vi, pi) ∈ V × Q at time ti,
find the next solution (vi+1, pi+1) ∈ V ×Q by solving the following variational problem:

m(vi+1,w)−m(vi,w)

∆t
+ θ
(
d(vi+1,w) + n(vi+1,vi+1,w)

)
+

+(1− θ)
(
d(vi,w) + n(vi,vi,w)

)
+ b(w, pi+1) = θli+1(w) + (1− θ)li(w) ∀w ∈ V0, (4.67)

b(vi+1, q) = 0 ∀q ∈ Q. (4.68)

The parameter θ ∈ [0, 1] defines the behavior of the method. With value θ = 0, (4.67–4.68) becomes
the explicit Euler scheme; although the corresponding system (4.67–4.68) is linear, the explicit Euler
scheme requires very small time steps, lest the system becomes unstable. For any other value of
θ, the system (4.67–4.68) is nonlinear due to the advection term n(vi+1,vi+1,w). Value θ = 1
corresponds to the implicit Euler scheme which is known to be unconditionally stable, so time steps
of any size can be used. A disadvantage of the implicit Euler scheme is that it is a first-order
time-discretization scheme which can inaccurate and too dissipative. Often, an optimal choice is
θ = 0.5, which results in the second-order Crank-Nicolson scheme.

Note that the θ-scheme is applied only to velocity v in equation (4.67). In contrast to that, the
bilinear form b(w, p) is always evaluated at time ti+1, that is, it enters the equations fully implicitly.
This guarantees that the solution of (4.67–4.68) is divergence-free. Additionally, observe that the
pressure pi at time ti is not used in equations (4.67–4.68), which is a manifestation of the DAE
nature of the incompressible Navier-Stokes equations. One can say that pressure has no history.

Newton’s method for time-dependent problems

If θ 6= 0 is chosen, one has to solve a nonlinear problem (4.67–4.68) at every time step. To that end,
Newton’s method can be used. For the sake of brevity, I omit the derivation and directly formulate
the next-solution form of Newton’s method for (4.67–4.68). First, solution (vi, pi) ∈ V ×Q at time
ti is used as an initial guess (v0

i+1, p
0
i+1) ∈ V × Q for the solution at time ti+1. Then, given an

74 CHAPTER 4. FLUID-STRUCTURE INTERACTION AND MESH DEFORMATION

intermediate solution (vsi+1, p
s
i+1) ∈ V × Q at time ti+1, the next solution (vs+1

i+1 , p
s+1
i+1) ∈ V × Q is

computed by solving the linear system

m(vs+1
i+1 ,w) + ∆t

[
θ
(
d(vs+1

i+1 ,w) + n(vs+1
i+1 ,v

s
i+1,w) + n(vsi+1,v

s+1
i+1 ,w)

)
+

+ b(w, ps+1
i+1)

]
= m(vi,w) + ∆t

[
θ
(
li+1(w) + n(vsi+1,v

s
i+1,w)

)
+

+ (1− θ)
(
li(w)− d(vi,w)− n(vi,vi,w)

)]
∀w ∈ V0, (4.69)

∆tb(vs+1
i+1 , q) = 0 ∀q ∈ Q. (4.70)

Here, equation (4.70) is multiplied by ∆t for the sake of symmetry. I refer to (4.69–4.70) as the
Newton scheme. Iterations of the Newton scheme at each time step continue until the convergence
criteria are met. If the time step size ∆t is small, solution (vi, pi) ∈ V × Q at time ti provides a
good initial guess for the next moment of time, so the Newton scheme can converge fast. Still, it
requires at least 3–4 iterations per time step which is quiet numerically expensive.

Weak problem (4.69–4.70) is discretized using mixed isogeometric elements. The result is the
following matrix equation:(

M + ∆tθAN (ysi+1,y
D
i+1) ∆tBT

∆tB 0

)(
ys+1
i+1

zs+1
i+1

)
=

(
∗
0

)
, (4.71)

where

∗ = Myi + ∆t
[
(1− θ)

(
LN (yi,y

D
i)−AN (yi,y

D
i)si

)
+ θLN (ysi+1,y

D
i+1)−

−ADN (ysi+1,y
D
i+1)yDi+1

]
−MD(yDi+1 − yDi). (4.72)

Let us examine the saddle-point problem (4.71). Here, M ∈ R|F|×|F| is a mass matrix (4.6), and
MD ∈ R|F|×|D| is a corresponding mass elimination matrix. Equations (4.71–4.72) reuse the velocity
matrix AN and the loading vector LN from the next-solution form of Newton’s method for the
steady-state Navier-Stokes equations. In order to underline that AN and LN are assembled using
a particular velocity field v∗∗, I include the corresponding vector of unknowns y∗∗ and the Dirichlet
vector yD∗ into the formulas. Finally, I account for the possibility of time-dependent Dirichlet
boundary conditions. To that end, I include the last term in equation (4.72) which eliminates
the acceleration-Dirichlet degrees of freedom. [77]. Correct treatment of time-dependent Dirichlet
boundary conditions is crucial in FSI simulations.

IMEX schemes

Applying Newton’s method at each time step can be rather numerically expensive. To avoid that,
one can use the so-called implicit-explicit schemes (IMEX). IMEX schemes replace the nonlinear
advection term n(vi+1,vi+1,w) in (4.67) by a linear term n(vi+1,v∗,w), where the surrogate ad-
vective velocity v∗ is constructed using velocity at time ti or earlier. Then, given the solution
(vi, pi) ∈ V × Q at time ti, the solution (vi+1, pi+1) ∈ V × Q at time ti+1 is found by solving the
linear system

m(vi+1,w) + ∆t
[
θ
(
d(vi+1,w) + n(vi+1,v∗,w)

)
+ b(w, pi+1)

]
= m(vi,w)+ (4.73)

+ ∆t
[
θli+1(w) + (1− θ)

(
li(w)− d(vi,w)− n(vi,vi,w)

)]
∀w ∈ V0,

∆tb(vi+1, q) = 0 ∀q ∈ Q. (4.74)

4.3. FLUID MODELING 75

Here, equation (4.74) is again multiplied by ∆t for symmetry. In comparison to the Newton method,
IMEX schemes only require a solution of one linear system per time step. The price to pay is that
IMEX schemes usually have to use a smaller time step to achieve the accuracy of Newton’s method.

The simplest option for the surrogate advective velocity is v∗ = vi. In this work, however, I use
a linear extrapolation of the two previous time steps:

v∗ = vi +
∆ti+1

∆ti
(vi − vi−1) = 2vi − vi−1 (if ∆ti+1 = ∆ti). (4.75)

The system (4.73–4.74) is discretized using mixed isogeometric elements. The result is the matrix
equation(

M + ∆tθAP (yi+1,y
D
i+1) ∆tBT

∆tB 0

)(
yi+1

zi+1

)
=

(
∗
0

)
, (4.76)

where

∗ = Myi + ∆t
[
(1− θ)

(
L−AP (yi,y

D
i)si

)
+ θL−ADP (yi+1,y

D
i+1)yDi+1

]
−

−MD(yDi+1 − yDi). (4.77)

Equation (4.76) has the same structure as (4.71). The sole exception is that the velocity matrix AP

from the Picard’s iteration for the steady-state Navier-Stokes equations is used instead of AN , and
the loading vector L (4.46) from the Oseen equations replaces LN .

4.3.4 Partial benchmark CFD1: stationary flow

I validate my implementation of the incompressible Navier-Stokes solver on partial benchmarks
CFD1 and CFD3 from [38]. The first benchmark, CFD1, is a steady-state flow test in the flow
channel Ω from Section 4.1. It involves solving the steady-state Navier-Stokes equations

−ρν∆xv + ρ∇xv · v +∇xp = ρg in Ω, (4.78)
divx v = 0 in Ω (4.79)

with the following boundary conditions:

v = 0 on ∂Ωns, v = vin on ∂Ωin and σσσ(v, p) · n = 0 on ∂Ωout. (4.80)

Here, ∂Ωin is the left wall of flow channel, ∂Ωout is the right wall of flow channel, and ∂Ωns is the
rest of the fluid domain boundary, including the boundary of the submerged structure. The inflow
velocity profile vin is specified by

vin =

(
vmax

(
2

0.41

)2
y(0.41− y)

0

)
, (4.81)

where vmax ∈ R is the maximum inflow velocity.
For the geometry, I use a quadratic multi-patch NURBS parametrization consisting of seven

patches. The corresponding NURBS space is refined for the analysis using uniform h-refinement
and degree elevation. Additionally, I apply h-refinement twice around the submerged solid in the
direction perpendicular to the boundary5. The thickness of the refined boundary layer amounts to

5This additional refinement is necessary to better resolve sharp velocity gradients appearing in the boundary layer
because of the no-slip condition. Since the gradient is directed orthogonally to the boundary, it is enough to apply
refinement only in one direction. Of course, this is not a true local refinement. Still, since the additional isoparametric
lines close on themselves, the non-local nature of such refinement is not a problem.

76 CHAPTER 4. FLUID-STRUCTURE INTERACTION AND MESH DEFORMATION

20% of the corresponding parameter direction. Figure 4.4 shows an example of the corresponding
isogeometric mesh. For the simulation, the following parameters are used: density ρ = 103 kg·m−3,
kinematic viscosity ν = 10−3 m2·s−1, gravitational acceleration g = (0, 0)T m·s−2 and maximum
inflow velocity vmax = 0.3 m·s−1. Such parameter values translate into the Reynolds number

Re =
2vmax/3 · 0.1

ν
= 20. (4.82)

Here, an average inflow velocity 2vmax/3 is a characteristic velocity, and diameter 0.01 of the rigid
disc is a characteristic length. Re=20 is a relatively low value, so one can expect a steady-state flow.
A quantity of interest is the net force exerted by the fluid on the submerged structure, including
both the rigid disc and the elastic beam. Let us denote the boundary of the submerged solid by
∂Σ0. Then the net fluid force can be computed as

(FD, FL)T =

∫
∂Σ0

σσσ(v, p) · ndx. (4.83)

The horizontal component FD is called the drag, whereas the vertical component FL is called the
lift.

Figure 4.4. Multi-patch structure of the fluid domain and the isogeometric mesh corresponding
to the third level of uniform h-refinement and the second level of boundary layer refinement.

The equations have been solved using Newton’s method, and the solution fields are illustrated
in Figure 4.5. The simulation results are summarized in Table 4.3, which includes the mixed
element type, the number of degrees of freedom, the computational time and the resulting drag and
lift. Overall, the results seem to be very close to the reference values. Unfortunately, I was not
able to continue refining the analysis due to memory limitations. The results show that the subgrid
elements, although resulting in the same number of degrees of freedom as the Taylor-Hood elements,
tend to require about 25% more computational time. Moreover, the accuracy of the corresponding
solution is marginally smaller. In light of that, the Taylor-Hood elements should be preferred over
the subgrid elements if possible.

Element #DoF Tcomp FD [N] FL [N]
TH N 3

4 /N 2
4 36972 7.9s 14.3193 1.11969

SG N 2
5 /N 2

4 36972 9.4s 14.3257 1.11983
TH N 3

5 /N 2
5 145354 33s 14.3096 1.11942

SG N 2
6 /N 2

5 145354 41s 14.3137 1.11949
TH N 3

6 /N 2
6 590304 2m26s 14.3038 1.11927

SG N 2
7 /N 2

6 590304 3m3s 14.3065 1.11930
Ref 11225600 N/A 14.2929 1.11905

Table 4.3. Benchmark CFD1: simulation results.

4.3. FLUID MODELING 77

Figure 4.5. Benchmark CFD1: steady-state velocity and pressure fields.

4.3.5 Partial benchmark CFD3: vortex shedding

Benchmark CFD3 is a simulation of a time-dependent flow through the channel Ω. It involves
solving the time-dependent Navier-Stokes equations

ρv̇ + ρ∇xv · v = ρν∆xv −∇xp+ ρg in Ω× [0, T], (4.84)
divx v = 0 in Ω× [0, T], (4.85)

for T = 10s with boundary conditions (4.80) and the initial conditions

v(·, 0) = 0 in Ω. (4.86)

In order to comply with the initial conditions and to implement a smooth warm-up phase, the inflow
velocity profile vin (4.81) is made time-dependent:

vin(t) =

{
vin

1−cos(πt/2)
2 if t < 2s,

vin if t > 2s.
(4.87)

I use the same geometry parametrization as in CFD1 but apply boundary layer refinement only once.
Despite having shown that the Taylor-Hood elements are superior with respect to both accuracy
and numerical cost, I use the subgrid elements in this simulation. This choice is motivated by the
fact that, for some reason, the TH elements result in an unstable behavior when combined with
direct linear solver PardisoLU. On the other hand, the SG elements combined with PardisoLU show
no signs of unstable behavior which allows me to keep a relative speed-up of x5 when compared to
linear solvers from the Eigen library.

For temporal discretization, I use both the Newton and IMEX schemes with θ = 0.5 and time
step size ∆t between 0.1s and 0.0025s. I use the same parameter values for density ρ, kinematic

78 CHAPTER 4. FLUID-STRUCTURE INTERACTION AND MESH DEFORMATION

viscosity ν and gravitational acceleration g as in CFD1. For the maximum inflow velocity, I use a
value vmax = 3 m·s−1, which corresponds toRe = 200. With such a relatively high Reynolds number,
the flow becomes unstable, and the intentional asymmetry of the geometry promotes development
of the effect called vortex shedding. Vortex shedding is an oscillating flow occurring past a bluff
body which results in oscillating drag and lift forces, see Figures 4.6 and 4.7. In this simulation,
the quantities of interest are the mean, the amplitude and the frequency of both drag and lift.

Figure 4.6. Benchmark CFD3: fully developed vortex shedding.

Element ∆t [s] #DoF Tcomp FD [N] FL [N] Freq [s−1]
SG N 2

4 /N 2
3 0.01 8050 26m50s 419.24±8.1925 14.459±430.74 4.1666

SG N 2
4 /N 2

3 0.005 8050 38m1s 419.25±8.3475 16.687±435.78 4.1666
SG N 2

5 /N 2
4 0.01 29880 2h10m 440.06±5.7390 -8.415±436.84 4.3478

SG N 2
5 /N 2

4 0.005 29880 3h5m 440.11±5.815 -9.969±439.57 4.3956
SG N 2

6 /N 2
5 0.005 117346 16h58m 439.18±5.685 -12.086±438.06 4.3956

Ref 0.005 707152 N/A 439.45±5.6183 -11.893±437.81 4.3956

Table 4.4. Benchmark CFD3: simulation results for the Newton scheme.

The results of CFD3 are presented in Tables 4.4 and 4.5, including the mixed element type,
the time step size, the number of degrees of freedom, the computational time and the values for
drag and lift. The results show that both the Newton and IMEX schemes converge to the reference
solution. However, the former produces accurate results already with the SG N 2

5 /N 2
4 element and

a time step of 0.01s, whereas the latter requires a much finer spatial and temporal resolution to
achieve comparable accuracy. On the other hand, the Newton scheme is approximately three times
more computationally expensive than the IMEX scheme. In light of that, the IMEX scheme can
be more attractive than the Newton scheme for FSI simulations where time steps in the range
0.0005− 0.0025s are typically used.

4.4. FLUID-STRUCTURE INTERACTION 79

Element ∆t [s] #DoF Tcomp FD [N] FL [N] Freq [s−1]
SG N 2

4 /N 2
3 0.01 8050 7m2s 428.27±5.0645 12.168±471.71 6.6666

SG N 2
4 /N 2

3 0.005 8050 10m58s 420.19±9.798 27.0480±451.65 4.1666
SG N 2

5 /N 2
4 0.01 29880 37m50s 448.29±5.15 49.5708±460.93 7.6923

SG N 2
5 /N 2

4 0.005 29880 55m29s 442.68±3.3155 18.7685±351.07 8.6956
SG N 2

5 /N 2
4 0.0025 29880 1h26m 440.29±6.2665 -10.6275±448.60 4.3956

SG N 2
6 /N 2

5 0.005 117346 4h36m 442.57±3.242 25.119±359.45 8.6956
SG N 2

6 /N 2
5 0.0025 117346 6h10m 439.98±6.1255 -11.701±448.09 4.3956

Ref 0.005 707152 N/A 439.45±5.6183 -11.893±437.81 4.3956

Table 4.5. Benchmark CFD3: simulation results for the IMEX scheme.

1 2 3 4 5 6 7 8 9 10

435

440

445

450

0 1 2 3 4 5 6 7 8 9 10

-500

-300

-100

100

300

500

Figure 4.7. Benchmark CFD3: drag and lift over time for the Newton and IMEX schemes with
the finest spatial and temporal resolution.

4.4 Fluid-structure interaction

In this section, I apply the fluid and structure models introduced in Sections 4.2 and 4.3 to the fluid-
structure interaction problem. The main source of complexity in FSI is that the domain occupied by
the fluid changes over time. One way to account for this effect is by defining a deformation mapping
for the fluid domain, called an arbitrary Lagrangian-Eulerian (ALE) mapping [11, 32]. Here, I
first introduce an ALE formulation of the FSI problem and describe the partitioned approach to
its solution. Then, I discuss several state-of-the-art approaches to construct ALE mappings and
propose the TINE method as an alternative. Additionally, I introduce the Jacobian-based local
stiffening which can augment all of the approaches. After that, I compare different ALE approaches
in a simplified FSI-like scenario. Finally, I validate my implementation of the isogeometric FSI
solver on the benchmark from Section 4.1 and study the performance of different ALE approaches.

80 CHAPTER 4. FLUID-STRUCTURE INTERACTION AND MESH DEFORMATION

4.4.1 FSI problem in ALE formulation

Assume that the fluid domain6 Ωf moves in the sense that its boundary ∂Ωf (or just a part of the
boundary denoted by Γ) changes sufficiently smoothly over time. Let Ωf (t) denote the fluid domain
and Γ(t) denote a moving part of its boundary at time t. At time t = 0, the initial configuration of
the domain is denoted by Ωf

0 = Ωf (0), and the initial configuration of the deforming boundary is
denoted by Γ0 = Γ(0). Assume further, that the motion of the domain’s boundary is given in terms
of the displacement field uf (t) : ∂Ωf

0 → R3 such that

Γ(t) = Γ0 + uf (t) and uf (t) = 0 on ∂Ωf
0 \ Γ0. (4.88)

Displacement field uf defines a mapping Df (t) : ∂Ωf
0 → ∂Ωf (t) which can be extended to Ωf

0 to
describe the motion of the domain’s interior. This extension should be at least invertible; ideally, it
should be a diffeomorphism. In the context of fluid dynamics, this extension is called an arbitrary
Lagrangian-Eulerian7 (ALE) mapping. Since an extension of a particular boundary displacement
is not unique, an ALE mapping can be defined arbitrarily. Several methods exist to construct
ALE mappings, which I discuss in Section 4.4.3. Because an ALE mapping can be interpreted as
a deformation of the computational mesh8, some of these methods we have already encountered in
Chapter 3, for example, the ILE and TINE methods.

Assume that an ALE mapping Df is given or can be constructed. Similarly to the elasticity
theory in Section 3.3.3, its gradient Ff and the Jacobian determinant Jf are defined by9

Ff = ∇x̂Df = I +∇x̂uf and Jf = det Ff . (4.89)

Then the motion of the fluid in the moving domain Ωf (t) over the period of time [0, T] can be
described by the Navier-Stokes equations pulled back into the stationary initial configuration Ωf

0 :

ρfJf v̇ + ρfJf∇x̂v · (Ff)−1(v − u̇f) = divx̂(Jfσσσfx̂(v, p)(Ff)−T) + ρfg in Ωf
0 × [0, T], (4.90)

divx̂(Jf (Ff)−1v) = 0 in Ωf
0 × [0, T], (4.91)

where the fluid stress tensor is computed in Ωf
0 as

σσσfx̂(v, p) = −pI + ρfνf
(
∇x̂v(Ff)−1 + (Ff)−T∇x̂vT

)
. (4.92)

Assume that the motion of the fluid domain is caused by interaction with an elastic body. Let
the elastic body in its initial configuration occupy the domain Ωs

0, such that ∂Ωs
0∩∂Ωf

0 = Γ0. Then
Γ0 is called an FSI interface. The motion of the elastic body is described by the time-dependent
equations of nonlinear elasticity (4.1):

ρsüs = divx̂ P(us) + ρsg in Ωs
0 × [0, T]. (4.93)

6In this section, I use the superscripts f and s to indicate that a certain object is related to the fluid or to the
structure.

7To understand the origin of the term, observe that an ALE mapping is just a deformation of the initial configu-
ration of the fluid domain Ωf

0 . However, unlike in the elasticity theory, this deformation is not necessarily associated
with the motion of fluid material points. In particular, u̇f 6= v. Still, it is a mapping between the initial and de-
formed configurations of the fluid domain or, in other words, a transformation between the Lagrangian and Eulerian
frameworks.

8In what follows, I even use the terms ALE mapping and mesh deformation interchangeably.
9Just as in the elasticity theory, the subscript x̂ indicates that the differentiation is performed with respect to

coordinates x̂ in Ωf
0 .

4.4. FLUID-STRUCTURE INTERACTION 81

Since the motion of the elastic body drives the motion of the fluid domain, the following condition
holds:

uf = us on Γ0 × [0, T]. (4.94)

In this sense, the ALE mapping Df is just a continuous extension of the structural deformation Ds

into the fluid domain.
The physical interaction between the fluid and the structure is described by the coupling condi-

tions

v = u̇s on Γ0 × [0, T], (4.95)

P(us) · n = Jfσσσfx̂(v, p)(Ff)−T · n on Γ0 × [0, T]. (4.96)

Here, condition (4.95) is called the kinematic continuity ; it is a form of the no-slip condition which
assures that the fluid stays attached to the structure. Note that from (4.94), it follows that v = u̇f

on Γ0. Condition (4.96) is called the dynamic continuity ; it maintains the balance of forces on the
FSI interface.

Together, equations (4.90–4.96) describe the interaction between the fluid and the structure,
and I refer to them as the ALE-FSI system. Note that the ALE-FSI system is formulated in the
stationary domain Ωf

0 ∪Ωs
0. Therefore, standard finite element or isogeometric Galerkin methods for

problems in stationary domains can be used to solve it. In that, the ALE-FSI system follows the same
idea as the nonlinear elasticity equations (3.49), which are formulated in the reference configuration
Ωs

0 instead of the a priori unknown deformed configuration Ωs. Of course, this implicit treatment
of motion comes at a price of increased complexity and highly nonlinear structure of the ALE-FSI
system. The system is completed by an appropriate choice of the initial and boundary conditions
for its components.

Solution approaches: monolithic vs partitioned

There are two ways to solve the ALE-FSI system (4.90–4.96) which are known as the monolithic
and partitioned approaches. In a nutshell, the monolithic approach treats the system as a whole
whereas the partitioned approach deals with each component (the fluid, the structure and the ALE
mapping) separately and achieves coupling by exchanging information between the components.
Using an abstract notation fi, si and ai to denote the solution of each component at time ti, the
approaches can be schematically illustrated by the diagrams in Figure 4.8.

Figure 4.8. Monolithic approach to the FSI problem: the system is discretized and solved as a
whole (left). Partitioned approach to the FSI problem: each component is treated separately, and
the coupling is achieved by exchanging information between the components.

With the monolithic approach, all equations (4.90–4.96) are discretized together in space and
time. The result is a system of nonlinear algebraic equations which has to be solved at each time

82 CHAPTER 4. FLUID-STRUCTURE INTERACTION AND MESH DEFORMATION

step, for example, using Newton’s method. Because of the coupling and the ALE mapping, the
linearization of the ALE-FSI system is more complex than linearizations of the Navier-Stokes and
the nonlinear elasticity equations. In particular, the existing individual solvers cannot be reused,
which is the main disadvantage of the monolithic approach. Moreover, the system of linear algebraic
equations resulting from the linearization includes the degrees of freedom for each unknown, namely
for the velocity, pressure, and displacement of the structure and the fluid domain. As a result, this
large linear system sometimes requires prohibitively much computer memory to solve. On the other
hand, the monolithic approach is known for its stability and accuracy and can be much more efficient
than the partitioned approach. Nevertheless, I do not use the monolithic approach in this work.

In contrast to the monolithic approach, the partition approach seeks to reuse the existing solvers
for individual components as much as possible. To that end, the ALE-FSI system (4.90–4.96) is split
into three subsystems, one for each component. To achieve coupling, the subsystems are iteratively
solved at each time step in a certain sequence. After each iteration, the information is exchanged
between them via the boundary conditions on the FSI interface. Under certain conditions, this
iterative procedure converges to the solution of the original system. Among advantages of the
partitioned approach are implementation simplicity, a huge parallelization potential and smaller
memory requirements (in comparison to the monolithic approach). The main disadvantage is a
nasty nature of the iterative coupling which may have stability issues and a low convergence rate.
Even though special techniques for accelerating convergence exists, the partitioned approach can be
too slow or even fail. Still, the partitioned approach is a good starting point for FSI neophytes like
myself. It allows one to quickly implement a minimal viable version of an FSI solver and leaves a
lot of freedom to experiment with the individual components.

4.4.2 Partitioned approach with strong coupling

Let us dive into details. As I mention above, the partitioned approach splits the ALE-FSI system
(4.90–4.96) into three subsystems. Let us denote these subsystems by F (for the fluid), S (for the
structure) and A (for the ALE mapping). Each subsystem is described below.

The fluid subsystem F consists of the Navier-Stokes equations in the ALE formulation (4.90–
4.91) and kinematic continuity condition (4.95). Since the subsystems in the partitioned approach
are independent, they no longer have to be formulated in the same stationary domain Ωf

0 ∪ Ωs
0. In

particular, we can push the fluid subsystem forward into the deformed domain Ωf (t):

ρf v̇ + ρf∇xv · (v − u̇f) = ρfνf∆xv −∇xp+ ρfg in Ωf (t)× [0, T], (4.97)

divx v = 0 in Ωf (t)× [0, T], (4.98)
v = u̇s on Γ(t)× [0, T]. (4.99)

This much simpler formulation is equivalent to the original. Moreover, apart from subtraction
of the ALE velocity u̇f from the advective velocity in the advection term, equations (4.97–4.98)
are identical to the Navier-Stokes equations (4.26–4.27) in the stationary domain. Therefore, any
standard Navier-Stokes solver can be applied with only minor modifications required.

Assume that the fluid solution fi = (vi, pi) and the ALE solution ai+1 = ufi+1 are known. Let
us approximate the ALE velocity u̇fi+1 by

u̇fi+1 =
ufi+1 − ufi

∆t
. (4.100)

Then the following procedure is used to compute the next fluid solution fi+1 = (vi+1, pi+1). First,
the initial configuration of the fluid domain Ωf

0 is deformed using the ALE displacement ufi+1 to

4.4. FLUID-STRUCTURE INTERACTION 83

obtain the deformed configuration Ωf
i+1. Since the ALE displacement is constructed using the

NURBS basis associated with the parametrization Gf
0 of Ωf

0 , this step amounts to moving the
control points of Gf

0 in the direction specified by the control points of ufi+1. The result is the
parametrization Gf

i+1 of Ωf
i+1. After that, equations (4.97–4.99) are solved in Ωf

i+1 for one time
step using vi as an initial condition and treating u̇fi+1 as fixed. As a result, one obtains the fluid
solution fi+1 = (vi+1, pi+1) that takes the ALE solution ai+1 into account. In other words, this is
a one-way coupling between the ALE and fluid subsystems, which I denote by

fi+1 = F(fi,ai+1). (4.101)

Note that all isogeometric objects like v∗, p∗ and uf∗ can be easily mapped from Ωf
0 to Ωf

i+1 because
they share the same NURBS basis. When assembling the linear system for equations (4.97–4.98),
the parametrization Gf

i+1 is used to push forward the NURBS basis functions.
The structure subsystem S consists of equations of nonlinear elasticity (4.93) and the dynamic

continuity condition (4.96). Provided the structure solution si = (usi , u̇
s
i), fluid solution fi+1 =

(vi+1, pi+1) and ALE solution ai+1 = ufi+1, the subsystem computes the next solution si+1 =
(usi+1, u̇

s
i+1). To that end, equations (4.93) are solved for one time step with the initial conditions

si. The force Jfσσσfx̂(v, p)(Ff)−T exerted by the fluid on the structure along the FSI interface is
computed using fi+1, pi+1 and ufi+1 and is treated as fixed. In this way, a one-way coupling between
the fluid and the structure is achieved:

si+1 = S(si, fi+1). (4.102)

Finally, the ALE subsystem A computes the ALE solution ai+1 = ufi+1 provided ai and si+1.
Assuming that ufi = usi on Γ0 holds already, the task of the ALE subsystem is to update the ALE
displacement field ufi → ufi+1 such that ufi+1 = usi+1 on Γ0. In other words, this is a one-way
coupling between the structure and the ALE mapping:

ai+1 = A(ai, si+1). (4.103)

I described concrete ways to implement an ALE update in Section 4.4.3.

Iterative coupling

After explaining each subsystem, we can formulate the iterative coupling algorithm for the parti-
tioned approach. Assume that at time ti−1, the solutions ai−1, fi−1 and si−1 are known. The goal of
the algorithm is to iteratively compute increasingly better predictions aji , f ji and sji for the solution
at time ti. The algorithm is initialized with

a0
i = ai−1, f0

i = fi−1, s0
i = si−1. (4.104)

Then for j > 0, the subsystems are solved in the following sequence:

aj+1
i = A(a0

i , s
j
i) −→ f j+1

i = F(f0
i ,a

j+1
i) −→ sj+1

i = S(s0
i , f

j+1
i). (4.105)

The described algorithm is called the Fluid-Dirichlet-Structure-Neumann (FDSN) algorithm [78].
If the coupling loop (4.105) is executed once per time step, the coupling is called weak since the
coupling conditions (4.95–4.96) are satisfied only approximately. The partitioned approach with
weak coupling is known to be unconditionally unstable. On the other hand, if the coupling loop

84 CHAPTER 4. FLUID-STRUCTURE INTERACTION AND MESH DEFORMATION

(4.105) is executed until convergence, the coupling is called strong. Note that with strong coupling,
the individual solvers for each subsystem have to be restarted from the initial conditions ai−1, fi−1

and si−1 at each iteration. The FDSN algorithm with strong coupling is illustrated schematically
in Figure 4.9.

Figure 4.9. Fluid-Dirichlet-Structure-Neumann iterative coupling algorithm for the partitioned
approach.

The convergence of the FDSN algorithm is defined in terms of the displacement of the FSI
interface Γ. Concretely, let the interface displacement and the interface residual be defined as

uΓ,j+1
i = (us,j+1

i − us,ji)|Γ0 and rj+1
i = uΓ,j+1

i − uΓ,j
i . (4.106)

Then one says that the FDSN algorithm has converged after j + 1 iterations if

||rj+1
i ||L2(Γ0) < ε. (4.107)

The convergence rate of the FDSN algorithm depends on the ratio between the fluid and structure
densities [78]. If the ratio is close to one, that is, ρs ∼ ρf , then the convergence rate is lowest.
In this case, the fluid domain and the structure together behave similarly to an elastic body that
oscillates around the equilibrium state. In order to increase the convergence rate, several acceleration
techniques can be applied, for example, the Aitken relaxation method described in the next section.

Aitken relaxation

The main idea of the Aitken relaxation method is to increase the convergence rate of the iterative
coupling algorithm by improving the interface displacement uΓ,j+1

i using data from the two previous
iterations [73]. For j > 2, the corrected interface displacement ũΓ,j+1

i is computed as

ũΓ,j+1
i = uΓ,j

i + ωj+1r
j+1
i = (1− ωj+1)uΓ,j

i + ωj+1u
Γ,j+1
i , (4.108)

where ωj+1 is a relaxation parameter. For j > 2, ωj+1 is computed from the recursive formula

ωj+1 = −ωj
(rji , r

j+1
i − rji)L2(Γ0)

||rj+1
i − rji ||2L2(Γ0)

, (4.109)

with ω1 = ω2 = 1. Thus, the first two iterations of the iterative coupling algorithm are not corrected.
Note that the interface residual rj+1

i is defined for the not yet corrected interface displacement
uΓ,j+1
i . After the relaxation step, the corrected interface displacement ũΓ,j+1

i is used as an input
for the ALE subsystem at the next coupling iteration.

4.4. FLUID-STRUCTURE INTERACTION 85

4.4.3 Construction of ALE mappings

Let us now turn our attention to construction of ALE methods, or in other words, to fluid mesh
deformation. Due to arbitrariness of ALE mappings, one has freedom to choose any method that
is sufficiently fast or robust. One crucial requirement is that the chosen method produces bijective
ALE mappings, that is, the condition

Jf (Df) = det(I +∇x̂uf) > 0 (4.110)

must hold. Here, I describe two most popular options, namely the harmonic extension [32, 78, 79, 80]
and the incremental linear elasticity (ILE) [11, 33, 34, 35, 36, 37]. Additionally, I propose using
the TINE method introduced in Chapter 3 as a mesh update method. After that, I describe the
Jacobian-based local stiffening [36] which can be used to improve all of the discussed methods.

Harmonic extension

As I explain above, the ALE displacement field uf is a continuous extension of the structure dis-
placement field us into the fluid domain. The simplest way to construct uf is by means of the
harmonic extension (HE). Given the interface displacement uΓ

i (or corrected interface displacement
ũΓ
i) at time ti, the ALE displacement field ufi is computed by solving Laplace’s equation in the

initial configuration of the fluid domain Ωf
0 for every displacement component:

∆x̂ufi = 0 in Ωf
0 , (4.111)

ufi = uΓ
i on Γ0, (4.112)

ufi = 0 on ∂Ωf
0 \ Γ0. (4.113)

The interface displacement serves as a Dirichlet boundary condition on the FSI interface Γ0, while
the prescribed displacement is zero at the rest of the boundary. Note that the method does not
require information about uf at the previous time step.

Harmonic extension is the cheapest method to compute the ALE displacement. However, it is
not designed to preserve bijectivity of the ALE mapping and, therefore, can only handle rather small
deformations. Moreover, in the vicinity of the domain’s corners, the solution of Laplace’s equation
locally behaves like rπ/ω, where r is the distance to the corner and ω is the angle. For reentrant
corners (ω > π), the solution does not belong to H1(Ωf

0) since the derivatives tend to infinity. As
a consequence, the corresponding ALE mapping loses its bijectivity.

One possible improvement of the HE method is to use the bi-harmonic equation

∆2
x̂ufi = 0 in Ωf

0 . (4.114)

The resulting bi-harmonic extension produces smoother displacement fields and does not have prob-
lems at the reentrant corners [32]. However, equation (4.114) is rather numerically costly to solve.
One either has to use C1-conforming elements, or mixed elements with an auxiliary variable q to
replace the bi-harmonic equation with two Laplace’s equations:

∆x̂ufi = ∆x̂qi, ∆x̂qi = 0 in Ωf
0 . (4.115)

Due to its complexity, I do not consider the bi-harmonic mesh deformation technique in this work.
In the future, however, I would like to implement it and compare against other mesh deformation
techniques.

86 CHAPTER 4. FLUID-STRUCTURE INTERACTION AND MESH DEFORMATION

Rather surprisingly, I have not encountered an incremental variation of the HE method. By this
I understand the following algorithm. Assume that the ALE displacement ufi at time ti is known.
It is used to construct a deformed configuration of the fluid domain Ωf

i = Ωf
0 +ufi . In the deformed

domain, Laplace’s equation

∆x(∆ufi+1) = 0 in Ωf
i , (4.116)

∆ufi+1 = uΓ
i+1 − uΓ

i on Γi, (4.117)

∆ufi+1 = 0 on ∂Ωf
i \ Γi (4.118)

is solved, which yields the displacement increment ∆ufi+1. Then at time ti+1, the ALE displacement
ufi+1 is constructed as ufi + ∆ufi+1. Note that the incremental harmonic extension method (IHE)
is not equivalent to the HE method because the increments are computed in the deformed domain.
In this, the IHE method is similar to the incremental linear elasticity method.

Linear elasticity

Another commonly used mesh deformation technique is the already familiar to us incremental
linear elasticity method (ILE). In the context of FSI, it has the structure similar to the IHE method.
Concretely, given the ALE displacement ufi at time ti, the following system is solved in the deformed
configuration of the fluid domain Ωf

i to compute the displacement increment ∆ufi+1:

divxσσσ
s(∆ufi+1) = 0 in Ωf

i , (4.119)

∆ufi+1 = uΓ
i+1 − uΓ

i on Γi, (4.120)

∆ufi+1 = 0 on ∂Ωf
i \ Γi. (4.121)

Here, σσσ is the Cauchy stress tensor computed using Hooke’s law (3.52). Then the next ALE
displacement ufi+1 is defined as ufi + ∆ufi+1. The ILE method is essentially the state-of-the-art
method in the FSI applications. It is known for being able to handle large deformations while still
remaining relatively computationally inexpensive.

For the sake of completeness, let us also study a non-incremental version of the linear elasticity
mesh deformation technique. The displacement field ufi at time ti is computed by solving the
equations of linear elasticity in the initial configuration of the fluid domain Ωf

0 :

divx̂σσσ
s(ufi) = 0 in Ωf

0 , (4.122)

ufi = uΓ
i on Γ0, (4.123)

ufi = 0 on ∂Ωf
0 \ Γ0. (4.124)

I refer to this as the linear elasticity (LE) method. Although one can only expect this method to
perform well for small deformations, it is still interesting to compare it with other mesh deformation
techniques.

Nonlinear elasticity

In addition to the described above mesh deformation techniques, I propose using the tangential
incremental nonlinear elasticity method (TINE) with the neo-Hookean material law (3.46) to con-
struct ALE mappings. When applied within the mesh deformation approach to the single-patch

4.4. FLUID-STRUCTURE INTERACTION 87

domain parametrization problem, the TINE method is able to handle large prescribed boundary
deformations. Therefore, it can be expected to perform well in the FSI context as well. Concretely,
it assumes the following form when used as a mesh update method: given the displacement field ufi
at time ti, compute a tangent displacement increment ∆ufi+1 by solving the following variational
problem in Ωf

0 (originally defined in (3.62)):

DP (ufi ,w) ·∆ufi+1 = −P (ufi ,w). (4.125)

Here, test functions w belong to the space (H1
0 (Ωf

0))d, and ∆ufi+1 should satisfy the following
boundary conditions:

∆ufi+1 = uΓ
i+1 − uΓ

i on Γ0 and ∆ufi+1 = 0 on ∂Ωf
0 \ Γ0. (4.126)

After that, define ufi+1 as ufi + ∆ufi+1.

Local stiffening

Most of the fluid mesh deformation happens along the FSI interface Γ0, where the non-zero Dirichlet
boundary condition on uf is set. On the other hand, elements in the vicinity of the stationary
boundary ∂Ωf

0 \Γ0 undergo almost no deformation. Therefore, their contribution into processing of
the applied interface displacement uΓ

i is negligible. If the deformation could be redistributed away
from the FSI interface towards the stationary boundary, the mesh could undergo larger deformations
without becoming invalid. This is the idea behind local stiffening, which locally changes the way
different elements react to the deformation.

One of the simplest ways to implement local stiffening is to drop the Jacobian determinant
det∇ξξξG of the domain parametrization G when transforming the integrals from the physical to the
parametric domain during matrix assembly:∫

Ω
(· · ·)dx =

∫
[0,1]d

(· · ·) det∇ξξξGdξξξ →
∫

[0,1]d
(· · ·)dξξξ. (4.127)

This Jacobian-based local stiffening was first proposed in [34]. For elasticity problems, (4.127) can
be interpreted as a local change of Young’s modulus

E → E

det∇ξξξG
, (4.128)

which makes elements with low values det∇ξξξG stiffer and elements with high values softer. There-
fore, the former elements undergo smaller deformation and are less likely to become invalid.

The Jacobian-based local stiffening acts differently depending on whether the chosen mesh de-
formation method is formulated in the initial configuration Ωf

0 or in the deformed configuration Ωf
i

of the fluid domain. Namely, if the integrals for matrix assembly are computed in Ωf
0 , the local

stiffening is based only on the initial parametrization G0. However, in the case of Ωf
i , the local

stiffening takes into account also the already applied deformation Df since it is based on the Ja-
cobian determinant of G = Df ◦G0. This effect has both advantages and disadvantages. From
one point of view, if a particular element becomes ill-shaped after the deformation, its value of
det∇ξξξG decreases. As a result, this element receives more stiffening, which prevents it from be-
coming even more ill-shaped or invalid. On the other hand, this deformation-aware local stiffening
essentially makes the material properties deformation-dependent and can cause irreversible plastic

88 CHAPTER 4. FLUID-STRUCTURE INTERACTION AND MESH DEFORMATION

deformation. As I show later, this irreversible deformation accumulates over time and can affect
the simulation results.

Regardless if the local stiffening is deformation-aware or not, the initial parametrization G0

has a major contribution in how much stiffening each element receives. Let us consider the fluid
domain parametrization from Figure 4.4. In order to reduce the numerical cost of computing the
ALE mapping, I choose to deform only three patches adjacent to the FSI. Figure 4.10 shows the
distribution of det∇ξξξG0. Although only elements on the left side of the right trapezoidal patch
receive significant local stiffening, it is enough to stiffen the fluid mesh around the beam end, which
is the most vulnerable region of the mesh.

A more advanced local stiffening technique [37] does not drop the Jacobian determinant but
changes the degree in which it enters the integrals:∫

Ω
(· · ·)dx =

∫
[0,1]d

(· · ·) det∇ξξξGdξξξ →
∫

[0,1]d
(· · ·)(det∇ξξξG)1−χdξξξ. (4.129)

Here, χ > 0 is called the stiffening degree. The higher the stiffening degree is, the more local
stiffening is achieved. Too high stiffening degrees, however, may result in a lot of mesh distortion.
Since this technique is a generalization of the simple Jacobian dropping (4.127), I also refer to it as
the Jacobian-based local stiffening.

Figure 4.10. Patches of the initial parametrization G0 of the fluid domain which are used to
compute the ALE mapping.

4.4.4 Partial benchmark ALE: mesh deformation

In order to test and compare the HE, IHE, LE, ILE and TINE mesh deformation methods, I
use a simplified FSI-like scenario inspired by the original FSI benchmark from Section 4.1. It
involves deforming the fluid domain in response to free oscillations of the elastic beam; no fluid flow
is considered. Although this mesh deformation scenario is artificial, it mimics real deformations
occurring in FSI simulations well enough.

In the fluid domain, only three patches adjacent to the FSI interface are deformed. In order
to drive the deformation, I use the periodic motion of the elastic beam from benchmark CSM3
in Section 4.2.4. In order to regulate the magnitude of the fluid mesh deformation, I introduce
a loading level l in the gravitational acceleration g = (0, l)T m/s2. With values l ∈ [1.5, 2], the
deformation magnitude is comparable to deformation magnitudes in the ensuing FSI simulation.
For the mesh deformation methods based on elasticity theory, I use Poisson’s ratio of 0.4.

In order to simplify the data exchange between the solvers, I use matching parametrizations for
the beam and the fluid domain. As a result, it is enough to transfer the displacement control points

4.4. FLUID-STRUCTURE INTERACTION 89

from the beam solver to the ALE solver in order to set the boundary condition uf = us on the FSI
interface. For the simulation, I refine both parametrizations three times using uniform h-refinement.
Figure 4.11 shows the fluid computational mesh in its initial and in a typical deformed states.

Figure 4.11. Benchmark ALE: fluid mesh in its initial state (left). Fluid mesh deformed with the
TINE method (l = 2, χ = 2.3, middle). Distortion of the fluid mesh accumulated after 18 oscillation
periods with the ILE method (l = 2, χ = 3, right).

The first test considers mesh deformation over one period of oscillations. The goal is to study
how much mesh deformation each method can handle, first on its own and then with the Jacobian-
based local stiffening. The results of the test are presented in Figure 4.12. According to the results,
all methods perform poorly without local stiffening and can only handle loading levels of around
0.4-0.5. As a rule, the fluid mesh becomes invalid at the reentrant corners at the beam’s end, where
mesh elements tend to deform too much and develop angles larger than π.

With local stiffening, all methods can handle increasingly higher loading levels as the stiffening
degree χ grows. The growth is similar for all methods until χ ≈ 2, when the HE, IHE and LE
methods reach a plateau at l = 1.8, 1.9 and 1.5, respectively. In contrast to that, the ILE and
TINE methods continue to grow until χ ≈ 3 and can reach maximal loading level of l = 2.8 and
3, respectively. For χ > 3.5, all method show reduction in maximal achievable loading levels. This
effect can be explained by an excessive mesh distortion introduced by the local stiffening. Judging
by the test results, the ILE and TINE methods show similar behavior when combined with the
Jacobian-based local stiffening and can handle much larger deformations than other methods.

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6
0

0.5

1

1.5

2

Figure 4.12. Benchmark ALE: maximal achievable loading level lmax vs the stiffening degree χ
for different mesh deformation methods (left). Computational time per oscillation period for each
method in comparison to the beam solver (right).

It is worth comparing the computational complexity of each method. Figure 4.12 shows compu-
tational time consumed by each mesh deformation method during one oscillation period. According

90 CHAPTER 4. FLUID-STRUCTURE INTERACTION AND MESH DEFORMATION

to it, the harmonic extension methods take about 1s − 2s, the linear elasticity methods take 3s,
and the TINE method requires 5s, making it the most expensive method. Although all methods
require a solution of only one linear system per step, the complexity of nonlinear elasticity equations
significantly increases the assembly time for the TINE method.

The second test studies the long-term effects of local stiffening on the fluid mesh. To that end, I
perform the simulation over a period of time [0, 20s], which includes roughly 22 oscillation periods.
The quantity of interest is the ALE norm ||uf (·, t)||L2 . Ideally, a mesh deformation method should
return the fluid mesh into its initial state once no interface displacement is applied. That means
that the ALE norm should be close to zero at the end of each oscillation period. Figure 4.13 shows
the behavior of the ALE norm over time for the ILE and TINE methods with the loading level l = 2
and the stiffening degree χ = 3. To put the values into perspective, I plot the relative deformation
defined as

RelDef(t) =
||uf (·, t)||L2

max
t∈[0,T]

||uf (·, t)||L2

. (4.130)

With the TINE method, the ALE norm behaves periodically and returns to zero at the end of each
oscillation period. In contrast to that, with the ILE method the ALE norm at the end of each
period grows monotonously. I call this effect accumulated distortion. The state of the fluid mesh
after 18 oscillation periods is illustrated in Figure 4.11; the simulation can not continue beyond that
because the mesh becomes invalid.

In order to study and compare the accumulated distortion effect for all mesh deformation meth-
ods, I plot values of relative deformation at the end of each oscillation period in Figure 4.13. From
the plot it is clear that only methods based in the deformed configuration of the fluid domain,
namely IHE and ILE, suffer from accumulated distortion. Moreover, the magnitude of accumulated
distortion seems to grow as the stiffening degree χ increases. As I mention above, accumulated
distortion is caused by the nature of the Jacobian-based local stiffening applied in the deformed
configuration. It is analogous to making the material properties deformation-dependent which turns
the material behavior inelastic.

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

Figure 4.13. Benchmark ALE: relative deformation over time for the ILE and TINE methods
(l = 2, χ = 3, left). Accumulated distortion over time for different methods with a varying stiffening
degree χ (l = 2, right).

Based on the two performed tests, the following conclusions can be made:

• with the chosen parametrization of the fluid domain, none of the considered methods can
handle mesh deformations occurring in the FSI simulation without local stiffening;

• with the Jacobian-based local stiffening, all methods can handle rather large deformations;
however, the ILE and TINE methods are able to handle significantly larger deformations;

4.4. FLUID-STRUCTURE INTERACTION 91

• the IHE and ILE methods combined with the Jacobian-based local stiffening result in the
accumulated distortion effect; the effect becomes more prominent for high stiffening degrees;

• the TINE method is almost twice as expensive as the ILE method and thrice as expensive as
the HE method.

4.4.5 Benchmark FSI2: flow-induced structural vibrations

In this section, I validate my implementation of the isogeometric FSI solver and compare perfor-
mance of various mesh deformation methods on the benchmark FSI2 from [38]. FSI2 is a time-
dependent simulation of a viscous fluid flow interacting with an elastic beam. It involves solving
the ALE-FSI system (4.90–4.96) over the time interval [0, 15s] on the geometry specified in Section
4.1. The initial and boundary conditions for the structure and fluid coincide with the conditions
used in the benchmarks CSM3 (Section 4.2.4) and CFD3 (Section 4.3.5).

For the fluid domain, I use the same seven-patch geometry parametrization as in CFD1 and
CFD3, see Figure 4.4. Similarly to the ALE benchmark in Section 4.4.4, I allow only three patches
adjacent to the FSI interface deform and keep the rest fixed. For the beam, a matching parametriza-
tion is used. For analysis, I apply uniform h-refinement to both parametrizations equal number of
times. In order to construct the subgrid mixed elements, I keep the pressure space one level of
h-refinement coarser. I perform time integration using the IMEX scheme with θ = 0.5 for the fluid
and the Newmark method with β = 0.5 and γ = 1 for the structure. Although parameter values
β = 0.25 and γ = 0.5 would, in theory, grant better temporal accuracy, in my experience they lead
to an unstable behavior of the FDSN iterative coupling algorithm.

For the simulation, the following parameter values are used: fluid density ρf = 103 kg·m−3, fluid
kinetic viscosity νf = 10−3 m2·s−1, maximum inflow velocity vmax = 1.5 m·s−1, structure density
ρs = 104 kg·m−3, structure Young’s modulus E = 1.4× 106 kg·m−1·s−2, structure Poisson’s ratio
νs = 0.4 and gravitational acceleration g = (0, 0)T m·s−2. The corresponding Reynolds number is
Re = 100, which leads to an unstable flow and the development of vortex shedding. The resulting
periodic drag and lift forces make the elastic beam oscillate, see Figures 4.16 and 4.17. These
oscillations grow in amplitude until they reach a fully developed periodic regime. Figures 4.14 and
4.15 show behavior of the drag and lift forces and the displacement of the beam end point A over
time.

h-lvl ∆t [s] FD [N] FL [N] usx(A) [10−3m] usy(A) [10−3m] Fr [1/s]
4 0.01 153.77±31.80 2.44±140.04 -6.91±6.43 0.71±53.84 1.92
4 0.0025 168.85±50.58 1.96±163.94 -10.59±9.56 0.65±67.32 1.90
5 0.01 182.76±43.01 0.04±183.17 -9.30±8.54 1.22±62.26 1.92
5 0.0025 198.29±62.12 0.39±195.79 -12.72±11.39 1.09±74.16 1.92
6 0.0025 197.28±59.57 0.49±205.43 -12.56±11.26 1.13±73.48 1.92
Ref 0.001 208.83±73.75 0.88±234.2 -14.58±12.44 1.23±80.6 2.0

Table 4.6. Benchmark FSI2: simulation results with the TINE method.

The simulation results with the TINE method are presented in Table 4.6, including the h-
refinement level, the time step size, the frequency of oscillations as well as the mean and amplitude
values for the drag, lift and displacement of beam end point A. Additionally, Table 4.7 contains data
regarding the numerical cost of the simulation. Overall, my results seem to undershoot the reference
values by about 10%, which is not terrible given that the reference values have been computed using
three times as many degrees of freedom and with a much smaller time step size. Nevertheless, my

92 CHAPTER 4. FLUID-STRUCTURE INTERACTION AND MESH DEFORMATION

implementation is more than capable of reproducing the qualitatively correct behavior of the system,
and I can use it to study mesh deformation techniques. The simulation accuracy can be improved
by increasing the temporal and spatial resolution10.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
125

150

175

200

225

250

275

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-270

-180

-90

0

90

180

270

Figure 4.14. Benchmark FSI2: drag and lift.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-0.025

-0.02

-0.015

-0.01

-0.005

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-0.075

-0.05

-0.025

0

0.025

0.05

0.075

Figure 4.15. Benchmark FSI2: displacement of the beam point A.

10To that end, however, a computer cluster would be more appropriate than a laptop.

4.4. FLUID-STRUCTURE INTERACTION 93

Figure 4.16. Benchmark FSI2: fully developed oscillation regime. Velocity and pressure of the
fluid for the maximal upward beam deflection.

Figure 4.17. Benchmark FSI2: fully developed oscillation regime. Velocity and pressure of the
fluid for the maximal downward beam deflection.

94 CHAPTER 4. FLUID-STRUCTURE INTERACTION AND MESH DEFORMATION

Let us now focus on the fluid mesh deformation. Out of five mesh deformation methods con-
sidered in Section 4.4.3, only the ILE and TINE methods were able to handle the deformations
occurring in the simulation. For successful simulations, I have used the stiffening degree χ = 2.5
and Poisson’s ratio νm = 0.4. Although a precise lower limit for the necessary stiffening degree is
hard to determine due to an extremely high numerical cost of the simulation, I have found that
both methods fail with χ = 2. This means that χ = 2.5 is a reasonable, not excessively high value.
The HE, IHE and LE methods with χ = 2.5 were only able to handle the fluid mesh deformation
until t = 8s.

Figure 4.18. Benchmark FSI2: fluid mesh with the ILE method during the last oscillation period.

Figure 4.19. Benchmark FSI2: fluid mesh with the TINE method during last oscillation period.

Although both the ILE and TINE methods are able to handle large deformations occurring
during the simulation, their performance with respect to the fluid mesh quality differs substantially.
Similarly to the simplified FSI-like scenario in Section 4.4.4, the TINE method shows no signs of
accumulated distortion. Even at the end of the simulation, the fluid mesh retains its initial quality,
see Figure 4.19. In contrast to that, the ILE method results in noticeable mesh quality deterioration
over the course of the simulation. Figure 4.18 shows the corresponding fluid mesh at the end of the
simulation. Despite staying valid, the severely distorted mesh affects the results of the simulation.
The simulations with the ILE and TINE method show the same behavior until t ≈ 10s, after

4.4. FLUID-STRUCTURE INTERACTION 95

which the ILE simulation starts to shows signs of damping, see Figures 4.14 and Figures 4.15. It
is quite likely that the simulation would fail soon if it continued beyond 15s. Figure 4.20 compares
behavior of the ALE displacement norm for the ILE and TINE methods. Note that for the latter,
the norm eventually stabilizes and behaves periodically. However, this stable behavior comes at
a price of increased computational cost. The TINE mesh deformation method consumes roughly
twice as much computational time as the ILE method. When considered from the perspective of
total numerical effort required for the FSI simulation, this translates into about a 10% increase in
computational time. Figure 4.21 presents a breakdown of computational time for the simulations
with the ILE and TINE methods.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2

4

6

Figure 4.20. Benchmark FSI2: ALE displacement norm.

h-lvl ∆t[s] #DoF-ALE #DoF-Flow #DoF-Beam Tcomp
4 0.01 2624 6838 1188 2h13m
4 0.0025 2624 6838 1188 8h17m
5 0.01 10368 26334 4420 9h26m
5 0.0025 10368 26334 4420 1d11h
6 0.0025 41216 103342 17028 5d18h
Ref 0.001 N/A 304128 N/A N/A

Table 4.7. Benchmark FSI2: computational cost with the TINE method.

Figure 4.21. Benchmark FSI2: computational time breakdown with the ILE method (left) and
the TINE method (right).

96 CHAPTER 4. FLUID-STRUCTURE INTERACTION AND MESH DEFORMATION

4.5 Summary

In this chapter, I have studied mesh deformation appearing in fluid-structure interaction (FSI)
problems. In particular, I have considered an arbitrary Lagrangian-Eulerian (ALE) formulation of
FSI. In the ALE formulation, motion of the fluid domain is described by an ALE mapping, which
can be interpreted as a deformation of a computational mesh in the fluid domain. Among the
state-of-the art methods for constructing ALE mappings are the harmonic extension method and
the incremental linear elasticity (ILE) method, which appears in Chapter 3 in the context of the
mesh deformation approach to domain parametrization. All methods can be enhanced by means of
the Jacobian-based local stiffening, which redistributes the deformation and allows the fluid mesh
to withstand larger deformations. The core idea of the chapter is to investigate a possibility and
potential advantages of using the tangential incremental nonlinear elasticity (TINE) method, which
was introduced in Chapter 3, to construct ALE mappings.

The performance of all mesh deformation methods has been first studied on an idealized FSI-like
benchmark with no fluid simulations involved. Instead, the motion of the fluid domain is driven
purely by free oscillations of an elastic beam. Despite being computationally inexpensive, this
setting mimics well the fluid domain motion happening in real FSI simulations. I have found that
without local stiffening, all methods perform similarly poorly and can handle only small deformation
before the fluid mesh becomes invalid. On the other hand, with local stiffening the performance
of all methods can be greatly improved. The ILE and the TINE methods benefit more than other
methods from the local stiffening and can handle substantially larger deformations. Unfortunately
for the ILE method, however, I have observed that it results in an irreversible deformation of the fluid
mesh which accumulates over time. I refer to this effect as accumulated distortion. As the stiffening
degree increases, the rate of distortion accumulation grows. On the contrary, the TINE method
has shown no signs of accumulated distortion. However, it is roughly twice as computationally
expensive as the ILE method.

After that, I have compared all mesh deformation methods on a classic FSI benchmark—vortex
shedding past a flexible beam. To that end, I have developed an isogeometric FSI solver based on the
partitioned approach with strong coupling. The FSI solver includes subsolvers for the incompressible
Naiver-Stokes equations and for the time-dependent equations of nonlinear elasticity. The former is
based on mixed isogeometric elements and uses the one-step IMEX θ-scheme for time integration;
the latter uses the Newmark method for time integration. I have validated both subsolvers as well
as the overarching FSI solver on several benchmarks and have obtained results which are in good
agreement with the reference values.

Of all considered mesh deformation methods, only the ILE and TINE method are able to handle
motion of the fluid domain in the FSI simulation. However, just like on the simplified benchmark, the
ILE method has resulted in the accumulated distortion effect which has been substantial enough to
significantly alter the simulation results. As a result, the simulation with ILE method has produced
a damped oscillatory behavior of the system and was dangerously close to failing. In contrast to
that, the TINE method again has shown no signs of accumulated distortion. The simulation with
TINE method has successfully reproduced a fully developed periodic behavior of the system and
was able to maintain it for an extended period of time. Since the TINE method is roughly twice as
expensive as the ILE method, it results in a 10% increase in the total computational time required
for the FSI simulation.

Overall, the TINE method appears to be a good options for FSI simulations where large de-
formations are expected. Its ability to deform the fluid mesh without introducing accumulated
distortion is definitely worth a 10% increase in total computational time in comparison to the ILE
method. Nevertheless, the ILE method is not necessarily bad; its poor performance in this work has

4.5. SUMMARY 97

been largely caused by a high stiffening degree. It is possible that with a different parametrization
of the fluid domain, less local stiffening would be necessary, and the ILE method would result in
less accumulated distortion. On the other hand, the parametrization of the fluid domain that I
have used in this work is easy to construct and has few patches. If a mesh deformation method
can operate even on such a “naive” parametrization, it is a strong benefit. In other words, the main
advantage of the TINE method over the ILE method may be its more modest requirements on the
domain parametrization.

5 | Conclusion

5.1 Summary

In this work, I have developed a novel mesh deformation method which allows computational meshes
to withstand large deformations without experiencing quality deterioration. The proposed method,
called TINE (tangential incremental nonlinear elasticity), is based on numerical path following
applied to the equations of nonlinear elasticity. By employing a logarithmic variation of the neo-
Hookean hyperelastic material law, it preserves mesh elements from becoming inverted. Moreover,
the TINE method is surprisingly inexpensive; it only requires solution of a linear system of algebraic
equations per deformation step. In addition to its superior qualities, the method is quite flexible
and can be further augmented by tuning Poisson’s ratio of the underlying material model or by
means of local stiffening.

Although all mesh-based numerical methods for solving partial differential equations can benefit
from the proposed mesh deformation method, it has been primarily developed and applied in the
context of isogeometric finite elements. One of the areas of active research in IGA is volumetric
domain parametrization which concerns itself with the following problem: how does one construct
a parametrization for a given computational domain provided only description of its boundary? In
this work, I have proposed a new solution approach to this problem based on the TINE method
where a parametrization for the target domain is constructed as a deformed configuration of a
simplified domain. I refer to this as a mesh deformation approach.

To obtain the simplified domain, the boundary of the target domain is first projected in the
L2-sense onto a coarse NURBS basis. Then, the resulting domain can be parametrized using any
computationally inexpensive method. Although the Coons patch or elliptic grid generation often
suffice, for some domains I have obtained the best results by applying the mesh deformation approach
recursively. At the deformation step, Poisson’s ratio used in the material law plays a crucial role.
It defines resistance of the material to volumetric changes and, thus, affects the extent to which the
mesh elements change in size after the deformation. With values close to 0.5, the deformed mesh
largely inherits the element size distribution of the initial mesh. However, high values of Poisson’s
ratio also make the displacement-only formulation of nonlinear elasticity numerically unstable. In
practice, values between 0.45 and 0.49 are optimal. I have compared the mesh deformation approach
to elliptic grid generation and the optimization-based methods on two 2D single-patch examples. For
both examples, it has produced superior parametrizations. In terms of computational complexity,
the mesh deformation approach is about twice as expensive as elliptic grid generation but is more
than five times cheaper than the optimization-based methods. The approach is not bound to a 2D
single-patch scenario and can also be applied to construct 3D and multi-patch parametrizations.

Experiments with the mesh deformation approach have revealed that the TINE method shows
behavior similar to one of the state-of-are-art mesh update methods in fluid-structure interaction
(FSI): the incremental linear elasticity (ILE) method. In order to study the performance of the TINE

98

5.2. OUTLOOK 99

method in the context of FSI, I have reproduced a classic 2D benchmark using an isogeometric
partitioned solver with strong coupling. The results of the benchmark compare well against the
reference values. Using the benchmark, I have compared the TINE method against other mesh
updates methods, including ILE and harmonic extension. Additionally, I have studied the effect of
the Jacobian-based local stiffening on all mesh update methods. According to the results, all mesh
update methods perform similarly without local stiffening and can handle only small deformations.
However, provided enough local stiffening, all methods can handle much larger deformations, but
only the ILE and TINE methods can handle deformations arising in the benchmark.

Although similar in their short term behavior, the ILE and TINE methods demonstrate different
behavior in the long run. In particular, the ILE method with the Jacobian-based local stiffening
results in accumulation of mesh distortion over the course of time. This effect can significantly
change the simulation results. The rate of distortion accumulation increases with higher degrees of
local stiffening. In contrast to that, no signs of accumulated distortion have been observed using
the TINE method. Therefore, TINE allows to perform FSI simulations over longer periods of time
without affecting the results. Regarding the computational cost, the TINE method is roughly twice
as expensive as the ILE method but leads only to a small increase in the total computational time
for the FSI simulation.

5.2 Outlook

Throughout this thesis, I have often juxtaposed the proposed TINE mesh deformation method
and the well-known in the scientific community ILE method. While behavior of the former can
be explained by the theory of nonlinear elasticity and continuation methods, the surprisingly good
behavior of the latter method is not so well understood. Why are its results similar to solutions of
the equations of nonlinear elasticity with the neo-Hookean material law? Why are they not similar
to solutions of the equations of nonlinear elasticity with the St. Venant-Kirchhoff material law?
Why does the ILE method seem to prevent mesh elements from becoming inverted? An attempt to
answer these questions could represent an interesting research direction.

The mesh deformation approach has proven to be a robust and efficient method to construct
domain parametrizations. Although it can be applied in the multi-patch scenario, the segmentation
step (which provides the multi-patch structure of the domain) currently has to be performed manu-
ally. However, it may be possible to combine the mesh deformation approach and the segmentation
step in the following way: first, the target domain is simplified. Next, the segmentation step is
performed on the simplified domain. Finally, the segmented simplified domain is deformed, which
grants a multi-patch parametrization for the target domain. If applying the segmentation step to
the simplified domain is easier that to the target domain, the described approach can be effective.

In this work, I have compared several mesh update method for FSI problems. However, I have
omitted the bi-harmonic extension method due to its complexity. According to the literature, it
is able to handle large deformations but tends to be extremely computationally expensive. To
obtain a full picture of all mesh update methods, it would be interesting to include the bi-harmonic
extension method into the comparison. Another promising direction related to FSI is development
of alternative local stiffening methods. Although the Jacobian-based local stiffening is used in many
FSI application, it is chiefly responsible for the accumulated distortion effect which I have studied
in this work. Alternative local stiffening methods may solve the problem of accumulated distortion
for the ILE method. It would also be interesting to implement a monolithic FSI solver based on
the TINE mesh update method. To the best of my understanding, the ILE method is only viable
in the partitioned approach. Therefore, the TINE method may be unrivaled.

100 CHAPTER 5. CONCLUSION

Finally, another area where mesh deformation effects are relevant is shape optimization. Here,
each iteration of the optimization loop yields an update of the domain’s boundary. This updates
need to be extended into the domain’s interior in order to update the computational mesh and
compute the next iteration. It would be interesting to study the nature of the boundary updates
and find out if the field of shape optimization can benefit from the TINE method.

Bibliography

[1] D. Turim and D. Gates. Building the 787 dreamliner: a timeline. Seattle Times, 2009.

[2] J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. Isogeometric analysis: toward integration of
CAD and FEA. John Wiley & Sons, 2009.

[3] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and
Engineering, 194:4135–4195, 2005.

[4] J. A. Cottrell, A. Reali, Y. Bazilevs, and T. J. R. Hughes. Isogeometric analysis of structural
vibrations. Computer Methods in Applied Mechanics and Engineering, 195(41-43):5257–5296,
2006.

[5] T. Elguedj, Y. Bazilevs, V. M. Calo, and T. J. R. Hughes. B-bar and F-bar projection meth-
ods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order
NURBS elements. Computer Methods in Applied Mechanics and Engineering, 197(33-40):2732–
2762, 2008.

[6] J. Kiendl, K.-U. Bletzinger, J. Linhard, and R. Wüchner. Isogeometric shell analysis with
Kirchhoff–Love elements. Computer Methods in Applied Mechanics and Engineering, 198(49-
52):3902–3914, 2009.

[7] Y. Bazilevs and T. J. R. Hughes. NURBS-based isogeometric analysis for the computation of
flows about rotating components. Computational Mechanics, 43(1):143–150, 2008.

[8] A. Tagliabue, L. Dede, and A. Quarteroni. Isogeometric analysis and error estimates for high
order partial differential equations in fluid dynamics. Computers & Fluids, 102:277–303, 2014.

[9] B. S. Hosseini, M. Möller, and S. Turek. Isogeometric analysis of the Navier–Stokes equations
with Taylor–Hood B-spline elements. Applied Mathematics and Computation, 267:264–281,
2015.

[10] Y. Bazilevs, V. M. Calo, Y. Zhang, and T. J. R. Hughes. Isogeometric fluid–structure interac-
tion analysis with applications to arterial blood flow. Computational Mechanics, 38(4-5):310–
322, 2006.

[11] Y. Bazilevs, K. Takizawa, and T. E. Tezduyar. Computational fluid-structure interaction:
methods and applications. John Wiley & Sons, 2013.

[12] M.-C. Hsu, D. Kamensky, Y. Bazilevs, M. S. Sacks, and T. J. R. Hughes. Fluid–structure
interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation.
Computational Mechanics, 54(4):1055–1071, 2014.

101

102 BIBLIOGRAPHY

[13] A. Buffa, G. Sangalli, and R. Vázquez. Isogeometric analysis in electromagnetics: B-splines
approximation. Computer Methods in Applied Mechanics and Engineering, 199(17-20):1143–
1152, 2010.

[14] D. M. Nguyen, A. Evgrafov, and J. Gravesen. Isogeometric shape optimization for electromag-
netic scattering problems. Progress In Electromagnetics Research, 45:117–146, 2012.

[15] H. Gómez, V. M. Calo, Y. Bazilevs, and T. J. R. Hughes. Isogeometric analysis of the Cahn–
Hilliard phase-field model. Computer Methods in Applied Mechanics and Engineering, 197(49-
50):4333–4352, 2008.

[16] L. Dedè, M. J. Borden, and T. J. R. Hughes. Isogeometric analysis for topology optimization
with a phase field model. Archives of Computational Methods in Engineering, 19(3):427–465,
2012.

[17] Y. Bazilevs, L. Beirao da Veiga, J. A. Cottrell, T. J. R. Hughes, and G. Sangalli. Isogeometric
analysis: approximation, stability and error estimates for h-refined meshes. Mathematical
Models and Methods in Applied Sciences, 16(07):1031–1090, 2006.

[18] T. J. R. Hughes, J. A. Evans, and A. Reali. Finite element and NURBS approximations of
eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied Mechan-
ics and Engineering, 272:290–320, 2014.

[19] H.-J. Kim, Y.-D. Seo, and S.-K. Youn. Isogeometric analysis for trimmed CAD surfaces.
Computer Methods in Applied Mechanics and Engineering, 198(37-40):2982–2995, 2009.

[20] R. Schmidt, R. Wüchner, and K.-U. Bletzinger. Isogeometric analysis of trimmed NURBS
geometries. Computer Methods in Applied Mechanics and Engineering, 241-244:93–111, 2012.

[21] C. S. Peskin. The immersed boundary method. Acta Numerica, 11:479–517, 2002.

[22] D. Schillinger, L. Dede, M. A. Scott, J. A. Evans, M. J. Borden, E. Rank, and T. J. R.
Hughes. An isogeometric design-through-analysis methodology based on adaptive hierarchical
refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer
Methods in Applied Mechanics and Engineering, 249:116–150, 2012.

[23] J. Kiendl, Y. Bazilevs, M.-C. Hsu, R. Wüchner, and K.-U. Bletzinger. The bending strip method
for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Com-
puter Methods in Applied Mechanics and Engineering, 199(37-40):2403–2416, 2010.

[24] J. Kiendl, F. Auricchio, L. Beirão da Veiga, C. Lovadina, and A. Reali. Isogeometric collocation
methods for the Reissner-Mindlin plate problem. Computer Methods in Applied Mechanics and
Engineering, 284:489–507, 2015.

[25] J. Gravesen, A. Evgrafov, D.-M. Nguyen, and P. Nørtoft. Planar parametrization in isogeo-
metric analysis. In International Conference on Mathematical Methods for Curves and Surfaces
2012, pages 189–212. Springer, 2014.

[26] M. Pauley, D.-M. Nguyen, D. Mayer, J. Špeh, O. Weeger, and B. Jüttler. The isogeometric
segmentation pipeline. In Isogeometric Analysis and Applications 2014, pages 51–72. Springer,
2015.

BIBLIOGRAPHY 103

[27] G. Farin and D. Hansford. Discrete Coons patches. Computer Aided Geometric Design,
16(7):691–700, 1999.

[28] S. K. Khattri. Grid generation and adaptation by functionals. Computational & Applied
Mathematics, 26(2):235–249, 2007.

[29] J. Hinz, M. Möller, and C. Vuik. Elliptic grid generation techniques in the framework of
isogeometric analysis applications. Computer Aided Geometric Design, 2018.

[30] P. Wriggers. Nonlinear finite element methods. Springer Science & Business Media, 2008.

[31] A. Shamanskiy, M. H. Gfrerer, J. Hinz, and B. Simeon. Isogeometric parametrization in-
spired by large elastic deformation. Computer Methods in Applied Mechanics and Engineering,
363:112920, 2020.

[32] T. Richter. Numerical methods for fluid-structure interaction problems. Institute for Applied
Mathematics, University of Heidelberg, Germany, 2010.

[33] T. E. Tezduyar, M. Behr, S. Mittal, and A. A. Johnson. Computation of unsteady incom-
pressible flows with the stabilized finite element methods: space-time formulations, iterative
strategies and massively parallel implementations. In ASME Pressure Vessels & Piping Con-
ference 1992, pages 7–24. American Society of Mechanical Engineers Digital Collection, 1992.

[34] T. E. Tezduyar, S. Aliabadi, M. Behr, A. A. Johnson, and S. Mittal. Parallel finite-element
computation of 3D flows. Computer, 26(10):27–36, 1993.

[35] A. A. Johnson and T. E. Tezduyar. Mesh update strategies in parallel finite element computa-
tions of flow problems with moving boundaries and interfaces. Computer Methods in Applied
Mechanics and Engineering, 119(1-2):73–94, 1994.

[36] K. Stein, T. E. Tezduyar, and R. Benney. Mesh moving techniques for fluid-structure interac-
tions with large displacements. Journal of Applied Mechanics, 70(1):58–63, 2003.

[37] T. E Tezduyar and S. Sathe. Modelling of fluid–structure interactions with the space–time
finite elements: solution techniques. International Journal for Numerical Methods in Fluids,
54(6-8):855–900, 2007.

[38] S. Turek and J. Hron. Proposal for numerical benchmarking of fluid-structure interaction
between an elastic object and laminar incompressible flow. In Fluid-Structure Interaction,
pages 371–385. Springer, 2006.

[39] L. Piegl and W. Tiller. The NURBS book. Springer, 1997.

[40] P. J. Schenider. NURB curves: a guide for the unitiated. Develop, 25, 1996.

[41] W. Dornisch, G. Vitucci, and S. Klinkel. The weak substitution method—an application of
the mortar method for patch coupling in NURBS-based isogeometric analysis. International
Journal for Numerical Methods in Engineering, 103:205–234, 2015.

[42] C. Hofer and I. Toulopoulos. Discontinuous Galerkin isogeometric analysis of elliptic problems
on segmentations with non-matching interfaces. Computers & Mathematics with Applications,
72(7):1811–1827, 2016.

104 BIBLIOGRAPHY

[43] D. Burkhart, B. Hamann, and G. Umlauf. Isogeometric finite element analysis based on
Catmull-Clark subdivision solids. In Computer Graphics Forum, pages 1575–1584. Wiley On-
line Library, 2010.

[44] N. Jaxon and X. Qian. Isogeometric analysis on triangulations. Computer-Aided Design, 46:45–
57, 2014.

[45] D. C. Thomas, L. Engvall, S. K. Schmidt, K. Tew, and M. A. Scott. U-splines: splines over
unstructured meshes. https://coreform.com/usplines, 2018.

[46] T. Varady, R. R. Martin, and J. Cox. Reverse engineering of geometric models—an introduc-
tion. Computer-Aided Design, 29(4):255–268, 1997.

[47] R. Schneiders. Algorithms for quadrilateral and hexahedral mesh generation. In Proceedings
of the VKI Lecture Series on Computational Fluid Dynamic. VKI Lecture Series, 2000.

[48] H. J. Fogg, C. G. Armstrong, and T. T. Robinson. Enhanced medial-axis-based block-structured
meshing in 2-D. Computer-Aided Design, 72:87–101, 2016.

[49] J. Xu, F. Chen, and J. Deng. Two-dimensional domain decomposition based on skeleton
computation for parameterization and isogeometric analysis. Computer Methods in Applied
Mechanics and Engineering, 284:541–555, 2015.

[50] N. Kowalski, F. Ledoux, and P. Frey. A PDE based approach to multidomain partitioning
and quadrilateral meshing. In Proceedings of the 21st International Meshing Roundtable, pages
137–154. Springer, 2013.

[51] A.-V. Vuong, C. Giannelli, B. Jüttler, and B. Simeon. A hierarchical approach to adaptive local
refinement in isogeometric analysis. Computer Methods in Applied Mechanics and Engineering,
200(49):3554–3567, 2011.

[52] C. Giannelli, B. Jüttler, and H. Speleers. THB-splines: the truncated basis for hierarchical
splines. Computer Aided Geometric Design, 29(7):485–498, 2012.

[53] Y. Bazilevs, V. M. Calo, J. A. Cottrell, J. A. Evans, T. J. R. Hughes, S. Lipton, M. A. Scott,
and T. W. Sederberg. Isogeometric analysis using T-splines. Computer Methods in Applied
Mechanics and Engineering, 199(5-8):229–263, 2010.

[54] M. R. Dörfel, B. Jüttler, and B. Simeon. Adaptive isogeometric analysis by local h-refinement
with T-splines. Computer Methods in Applied Mechanics and Engineering, 199(5-8):264–275,
2010.

[55] K. A. Johannessen, T. Kvamsdal, and T. Dokken. Isogeometric analysis using LR B-splines.
Computer Methods in Applied Mechanics and Engineering, 269:471–514, 2014.

[56] F. Calabro, G. Sangalli, and M. Tani. Fast formation of isogeometric galerkin matrices by
weighted quadrature. Computer Methods in Applied Mechanics and Engineering, 316:606–622,
2017.

[57] F. Auricchio, L. Beirão da Veiga, T. J. R. Hughes, A. Reali, and G. Sangalli. Isogeometric
collocation methods. Mathematical Models and Methods in Applied Sciences, 20(11):2075–2107,
2010.

https://coreform.com/usplines

BIBLIOGRAPHY 105

[58] A. Collin, G. Sangalli, and T. Takacs. Analysis-suitable G1 multi-patch parametrizations for
C1 isogeometric spaces. Computer Aided Geometric Design, 47:93–113, 2016.

[59] K. Birner, B. Jüttler, and A. Mantzaflaris. Approximation power of G1-smooth isogeometric
splines on volumetric two-patch domains. https://hal.inria.fr/hal-02275654/document,
2018.

[60] B. Jüttler, U. Langer, A. Mantzaflaris, S. Moore, and W. Zulehner. Geometry + simulation
modules: implementing isogeometric analysis. In Proceedings in Applied Mathematics and
Mechanics, pages 961–962. Wiley, 2014.

[61] D. Kourounis, A. Fuchs, and O. Schenk. Towards the next generation of multiperiod optimal
power flow solvers. IEEE Transactions on Power Systems, PP(99):1–10, 2018.

[62] C. Arioli, A. Shamanskiy, S. Klinkel, and B. Simeon. Scaled boundary parametrizations in
isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 349:576–594,
2019.

[63] D. Braess. Finite elements: theory, fast solvers, and applications in solid mechanics. Cambridge
University Press, 2007.

[64] W. J. Gordon and C. A. Hall. Construction of curvilinear co-ordinate systems and applications
to mesh generation. International Journal for Numerical Methods in Engineering, 7(4):461–477,
1973.

[65] J.-F. Bonnans, J. C. Gilbert, C. Lemaréchal, and C. A. Sagastizábal. Numerical optimization:
theoretical and practical aspects. Springer Science & Business Media, 2006.

[66] A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1):25–57,
2006.

[67] M. Harmel, R. A. Sauer, and D. Bommes. Volumetric mesh generation from T-spline surface
representations. Computer-Aided Design, 82:13–28, 2017.

[68] P.-O. Persson and J. Peraire. Curved mesh generation and mesh refinement using Lagrangian
solid mechanics. In 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum
and Aerospace Exposition, page 949, 2009.

[69] L. M. Bernal, V. M. Calo, N. Collier, G. A. Espinosa, F. Fuentes, and J. C. Mahecha. Isogeo-
metric analysis of hyperelastic materials using PetIGA. In Procedia Computer Science. Elsevier,
2013.

[70] P. Deuflhard. Newton methods for nonlinear problems: affine invariance and adaptive algo-
rithms. Springer Science & Business Media, 2011.

[71] A. Shamanskiy and B. Simeon. Isogeometric simulation of thermal expansion for twin screw
compressors. IOP Conference Series: Materials Science and Engineering, 425:012–031, 2018.

[72] M. Aigner, C. Heinrich, B. Jüttler, E. Pilgerstorfer, B. Simeon, and A.-V. Vuong. Swept volume
parameterization for isogeometric analysis. In IMA International Conference on Mathematics
of Surfaces, pages 19–44. Springer, 2009.

https://hal.inria.fr/hal-02275654/document

106 BIBLIOGRAPHY

[73] U. Küttler and W. A. Wall. Fixed-point fluid-structure interaction solvers with dynamic re-
laxation. Computational Mechanics, 43(1):61–72, 2008.

[74] V. John. Finite element methods for incompressible flow problems. Springer, 2016.

[75] A. Bressan and G. Sangalli. Isogeometric discretizations of the Stokes problem: stability
analysis by the macroelement technique. IMA Journal of Numerical Analysis, 33(2):629–651,
2013.

[76] M. ur Rehman, C. Vuik, and G. Segal. A comparison of preconditioners for incompressible
Navier–Stokes solvers. International Journal for Numerical methods in fluids, 57(12):1731–
1751, 2008.

[77] P. Benner and J. Heiland. Time-dependent Dirichlet conditions in finite element discretizations.
ScienceOpen Research, pages 1–18, 2015.

[78] M. R. Dörfel. Fluid-structure interaction: a differential-algebraic approach and acceleration
techniques for strong coupling. VDI Verlag, 2011.

[79] T. Richter and T. Wick. Finite elements for fluid–structure interaction in ALE and fully Eule-
rian coordinates. Computer Methods in Applied Mechanics and Engineering, 199(41-44):2633–
2642, 2010.

[80] Y. Wu and X.-C. Cai. A fully implicit domain decomposition based ALE framework for three-
dimensional fluid–structure interaction with application in blood flow computation. Journal of
Computational Physics, 258:524–537, 2014.

Academic Curriculum Vitae

2000-2010 Complete secondary education
State secondary school №315, Moscow
Specialization: mathematics and physics

2010-2015 Specialist in mathematics
Department of Mechanics and Mathematics, Moscow Lomonosov State University
Thesis: On Application of Differential Equations to the Solution of

Audio-Information Transmission Problem

2016-2020 Doctor rerum naturalium (Dr. rer. nat.)
Department of Mathematics, Technical University of Kaiserslautern
Dissertation: Mesh Deformation in the Context of Isogeometric Analysis

Wissenschaftlicher Lebenslauf

2000-2010 Vollständige allgemeine Mittelschulbildung
Staatliche Mittelschule №315, Moskau
Schwerpunkt: Mathematik und Physik

2010-2015 Spezialist für Mathematik
Fachbereich Mechanik und Mathematik, Lomonossow-Universität, Moskau
Diplomarbeit: On Application of Differential Equations to the Solution of

Audio-Information Transmission Problem

2016-2020 Doktor der Naturwissenschaften
Fachbereich Mathematik, Technische Universität Kaiserslautern
Doktorarbeit: Mesh Deformation in the Context of Isogeometric Analysis

	Introduction
	Scope of this work
	Outline

	Foundations of Isogeometric Analysis
	B-splines and NURBS
	B-splines
	Refinement
	NURBS
	Tensor-product NURBS

	Domain parametrization with NURBS
	Multi-patch models
	Domain parametrization problem: overview
	Local refinement

	Isogeometric Galerkin method
	Model problem: Poisson's equation
	Single-patch case
	Multi-patch case
	Numerical example: Poisson's equation on a unit disk

	Summary

	Single-patch domain parametrization
	Problem setting
	Overview of existing methods
	Spring model
	Coons patch
	Optimization-based methods
	Elliptic grid generation

	Parametrization by mesh deformation
	Method description
	Domain simplification
	Nonlinear elasticity in a nutshell
	Newton's method for nonlinear elasticity
	Incremental deformation

	Examples and comparison
	Summary

	Fluid-structure interaction and mesh deformation
	Benchmark description
	Structure modeling
	Equations of motion
	Time integration
	Partial benchmark CSM1: stationary deflection
	Partial benchmark CSM3: elastic oscillations

	Fluid modeling
	Incompressible Navier-Stokes equations
	Spatial discretization with IGA
	Time integration
	Partial benchmark CFD1: stationary flow
	Partial benchmark CFD3: vortex shedding

	Fluid-structure interaction
	FSI problem in ALE formulation
	Partitioned approach with strong coupling
	Construction of ALE mappings
	Partial benchmark ALE: mesh deformation
	Benchmark FSI2: flow-induced structural vibrations

	Summary

	Conclusion
	Summary
	Outlook

	Bibliography

