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Abstract VII

Abstract

Properties of vapor-liquid interfaces play an important role in many processes, but cor-
responding data is scarce, especially for mixtures. Therefore, two independent routes
were employed in the present work to study them: molecular dynamics (MD) simula-
tions using classical force fields as well as density gradient theory (DGT) in combination
with theoretically-based equations of state (EOS). The investigated interfacial proper-
ties include: interfacial tension, adsorption, and the enrichment of components, which
quantifies the interesting effect that in many systems the density of certain components
in the interfacial region is much higher than in either of the bulk phases. As systematic
investigations of the enrichment were lacking, it was comprehensively studied here by
considering a large number of Lennard-Jones (LJ) mixtures with different phase be-
havior; also the dependence of the enrichment on temperature and concentration was
elucidated and a conformal solution theory for describing the interfacial properties of LJ
mixtures was developed. Furthermore, general relations of interfacial properties and the
phase behavior were revealed and the relation between the enrichment and the wetting
behavior of fluid interfaces was elucidated. All studies were carried out by both MD
and DGT, which were found to agree well in most cases. The results were extended to
real mixtures, which were studied not only by simulations but also in laboratory exper-
iments. In connection with these investigations, three literature reviews were prepared
which cover: a) simulation data on thermophysical properties of the LJ fluid; b) the
performance of different EOS of the LJ fluid on that simulation data; c) data on the
enrichment at vapor-liquid interfaces. Electronic databases were established for a) -
c). Based on c), a short-cut method for the prediction of the enrichment from readily
available vapor-liquid equilibrium data was developed. Last not least, an MD method
for studying the influence of mass transfer on interfacial properties was developed and
applied to investigate the influence of the enrichment on the mass transfer.





Kurzfassung IX

Kurzfassung

Grenzflächeneigenschaften von Flüssigkeiten, wie die Grenzflächenspannung und die Ad-
sorption, spielen eine wichtige Rolle in vielen technischen Anwendungen, entsprechende
Daten sind jedoch – insbesondere für Gemische – vergleichsweise rar. In der vorliegenden
Arbeit werden deshalb zwei unabhängige prädikative Methoden zu deren Untersuchung
eingesetzt: Molekulardynamik (MD) Simulationen auf der Basis klassischer Kraftfelder
sowie die Dichtegradiententheorie (DGT) in Kombination mit theoretisch basierten Zu-
standsgleichungen. Zu den untersuchten Eigenschaften gehören: Grenzflächenspannung,
Adsorption und die Anreicherung von Komponenten an der Grenzfläche, welche den
interessanten Effekt beschreibt, dass in vielen Systemen die Dichte einzelner Kompo-
nenten an der Grenzfläche höher ist als in den beiden Bulkphasen. Da systematische
Studien der Anreicherung nicht verfügbar sind, wurde sie in dieser Arbeit umfassend
anhand einer Vielzahl von Lennard-Jones (LJ) Mischungen mit unterschiedlichem Pha-
senverhalten untersucht; dies beinhaltet die Untersuchung der Abhängigkeit der An-
reicherung von Temperatur und Konzentration sowie die Entwicklung einer conformal
solution theory zur Beschreibung der Grenzflächeneigenschaften von LJ-Mischungen im
Allgemeinen. Weiterhin wurden allgemeine Beziehungen zwischen Grenzflächeneigen-
schaften und dem Phasenverhalten aufgestellt. Dabei wurde ein Zusammenhang zwi-
schen der Anreicherung und dem Benetzungsverhalten fluider Grenzflächen offengelegt.
Alle Studien wurden sowohl mit MD als auch DGT durchgeführt, deren Ergebnisse
in den meisten Fällen gut übereinstimmen. Die Untersuchungen wurden weiterhin auf
reale Mischungen ausgedehnt, welche neben Simulationen auch mittels Laborexperi-
menten erfolgten. Im Zusammenhang mit diesen Untersuchungen wurden ferner drei
elektronische Datenbanken erstellt: a) Simulationsdaten von thermodynamischen Stoff-
daten des LJ-Fluids; b) die Auswertung einer Vielzahl von Zustandsgleichungen des
LJ-Fluids anhand dieser Simulationsdaten; c) Daten über die Anreicherung an Dampf-
Flüssigkeit-Grenzflächen. Auf der Grundlage von c) wurde weiterhin eine short-cut Me-
thode zur Vorhersage der Anreicherung von Komponenten an Grenzflächen aus vielfäl-
tig verfügbaren Dampf-Flüssigkeit-Gleichgewichtsdaten entwickelt. Nicht zuletzt wurde
eine MD-Methode zur Untersuchung des Einflusses des Stofftransports auf Grenzfläche-
neigenschaften entwickelt und angewandt, um den Einfluss der Anreicherung auf den
Stofftransport zu untersuchen.
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1 Introduction 1

1 Introduction

Properties of vapor-liquid interfaces play a crucial role in many technological an natu-
ral processes. Experimental data on interfacial properties are in most cases limited to
the surface tension of pure substances [1, 381]. Hence, reliable and predictive models
for interfacial properties – especially for mixtures – are important. Molecular ther-
modynamics has become a well established alternative to experiments for predicting
thermophysical properties of fluids, including their interfacial properties. Furthermore,
applying molecular thermodynamics provides insight into the nanoscopic structure of
interfaces that is currently not accessible by experiments. Two independent routes from
molecular thermodynamics were employed in the present work: first, molecular dynam-
ics (MD) simulations based on classical force fields and, second, density gradient theory
(DGT) in combination with theoretically-based equations of state (EOS). Furthermore,
also measurements of the surface tension of mixtures were carried out with the pendant
drop method. The general aim of the present work is to establish relations between
nanoscopic and macroscopic properties of vapor-liquid interfaces.

In macroscopic models, the fluid interface is generally considered as a two-dimensional
boundary, where thermodynamic properties exhibit a discontinuous change, cf. Fig. 1
- left. On the nanoscopic scale, however, fluid interfaces are three-dimensional objects,
where thermodynamic properties continuously change over a small range from one bulk
phase value to the other, cf. Fig. 1 - right. This results in large gradients in the pressure,
density, and composition that influence the macroscopic behavior of the system. Due
to fluctuations present at fluid interfaces, the transition of thermodynamic properties
across fluid interfaces on the molecular level can currently only be studied by theoretical
methods [17, 168, 186, 573], e.g. molecular simulations, density gradient theory, or
density functional theory (DFT).

Vapor-liquid interfaces are characterized by large gradients of thermodynamic proper-
ties. In the interfacial region, which is generally only a few nanometers wide, the total
density usually changes smoothly from the value in one bulk phase to that in the other.
Unexpected effects are, however, observed for the individual component density profiles
in mixtures: they can exhibit a non-monotonic behavior with a maximum that can be
several times larger than the densities in the bulk phases, cf. Fig. 1 - right. This is
called enrichment [50] and is usually only observed for low-boiling components. This
interesting phenomenon has been reported since the early days of computational studies
on fluid interfaces of mixtures [91, 173, 192, 194, 195, 361, 362] and has been confirmed
since then by different independent theoretical methods [50, 116, 198, 205, 362, 445,
453, 459, 483, 624, 630, 705]. The enrichment describes a special feature of the sur-
face excess at the interface. The relative adsorption – as defined by Gibbs [211] – and
the enrichment both characterize the surface excess and are thereby related, but have
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Figure 1: Classical scheme of a vapor-liquid equilibrium of a phase ′ and a phase ′′ of a
mixture with i = 1 ..N components (left) and a zoom to the interface between
the two phases (right). The thickness of fluid interfaces is on the nanoscopic
scale. Density profiles ρi(z) of a component i in mixtures can exhibit a non-
monotonic transition across the interface with a distinct maximum. The
color indicates the total density.

different features. In particular, adsorption may be present without the presence of
an enrichment. Mixtures that exhibit an interfacial enrichment have been investigated
many times in the literature [32–34, 50, 56, 57, 130, 153, 184, 192–195, 328, 354, 361,
362, 373, 379, 390, 391, 412, 446, 483, 492, 501–504, 522, 533, 551, 552, 583, 634], but
no systematic evaluation of the phenomenon has been conducted so far.

Furthermore, no theoretical framework for the enrichment has been established yet
that would describe its dependence on the molecular interaction parameters, on the
temperature, and the composition or its relation to the phase behavior. Also the
relation between the relative adsorption and the enrichment is not yet fully under-
stood. Nevertheless, the enrichment has attracted much attention in the past, e.g. Refs.
[89, 121, 161, 173, 192, 361, 458], not least because it is believed to have an influence on
the mass transfer across the interface [159, 194, 199, 312, 328, 361, 488, 634] and might
therefore be important for many technical applications like fluid separation processes.
Nevertheless, a proof or refute for an influence of the enrichment on the macroscopic
mass transfer is still lacking.

In some studies, density profiles of vapor-liquid interfaces of mixtures were computed
from MD and DGT and compared [50, 116, 205, 362, 445, 446, 453, 459, 483, 705].
The results from the two methods usually agree qualitatively well, despite the fact
that MD simulations yield a picture of the interfacial region that is three-dimensional
and shows fluctuations, whereas DGT usually considers only a one-dimensional gradient
and does not take fluctuations into account. For a quantitative comparison, the different
approaches must be applied to the same fluid. This is not trivial, even for simple fluids, as
MD simulations are based on force fields, while DGT is based on an equation of state and
both should at least yield conformal descriptions of the bulk phases of the vapor-liquid
equilibrium (VLE). The molecular simulation (also called computer experiment) results
are considered as reference to which the DGT results are compared. Both molecular
simulation and DGT were used in the present work to systematically study vapor-liquid
interfacial properties. This approach was applied on two types of Lennard-Jones fluids:
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the classical Lennard-Jones fluid – including long-range interactions – and the Lennard-
Jones truncated & shifted fluid.

In the present work, vapor-liquid interfaces of pure fluids and mixtures were studied;
with a clear focus on the latter. Two different approaches for carrying out these studies
can be distinguished: in the first approach, model fluids are studied and the effect of
a variation of molecular interaction parameters on the properties of the interface and
the corresponding vapor-liquid equilibrium is elucidated. These systematic studies yield
generic insights on the interplay of the molecular interactions, the phase behavior, and
the interfacial properties that is subsequently generalized for selected properties to real
mixtures. In the second approach, real fluids are studied directly, which has obvious
advantages, but the drawback that it is difficult to gain generic insights as the findings
are primary restricted to the given system. Both approaches are complementary and
both were applied in the present work: in the chapters 2 - 6, studies on fluid interfacial
properties of Lennard-Jones model fluids are presented, whereas the chapters 7 - 9 focus
on interfacial properties of real fluids. The investigated properties include: the surface
tension, the relative Gibbs adsorption, the interfacial thickness, and the enrichment
of components, which quantifies the non-monotonicity of component density profiles
in mixtures, cf. Fig. 1 - right. Different characteristics of vapor-liquid interfaces are
thereby addressed: structuring effects at the interface, the relation of the phase behavior
and interfacial properties, the applicability of conformal solution theory to interfacial
properties, the wetting behavior at vapor-liquid-liquid fluid interfaces, the influence
of long-range interactions on interfacial properties, the mass transfer though vapor-
liquid interfaces, the relation of the relative adsorption and the enrichment, and the
generalization of the findings for the enrichment in a novel short-cut method for its
prediction. This work mainly addresses vapor-liquid interfaces, but also liquid-liquid
and gas-gas interfaces are briefly discussed.

Furthermore, several data repositories were established in the present work, which make
research data that is relevant in this field, but was previously tedious to access, readily
available in electronic form: a consolidated database of 35,000 data points of molec-
ular simulation results of thermophysical properties of the LJ fluid was compiled and
published [640]. It was used for a comparison of 20 different LJ EOS. Also the results
from all these EOS for each property and state point are made available in electronic
form [639]. Additionally, based on a comprehensive review of the literature on com-
ponent density profiles at vapor-liquid interfaces, the available data on the enrichment
was retrieved from the corresponding publications. The 2,000 data points on the en-
richment, to which the present work has contributed substantially, are readily available
in electronic form [627].

The present work is essentially a cumulative dissertation, which summarizes results from
work that has already published in scientific journals or are submitted for publication.
The Appendix contains an overview of the individual papers and the contributions of the
author. The state of the art and the scope of each study is presented at the beginning
of each chapter.

In chapter 2, homogeneous and interfacial properties of the Lennard-Jones truncated and
shifted (LJTS) fluid are studied. The PeTS equation of state from a previous work of our
group [249] is compared to computer experiment data and the best currently available
EOS for that fluid from the literature [662]. The vapor-liquid interface of the LTJS fluid
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is investigated in a wide temperature range. Results from three different approaches to
model the vapor-liquid interface are compared: molecular dynamics (MD) simulations,
DGT+PeTS EOS, and DFT. The DFT results are taken from Ref. [637]. The surface
tension, pressure and density profiles, including structuring effects at the interface, are
investigated. A new method for the examination of the oscillatory layering structure at
vapor-liquid interfaces is developed and tested on the results from the different methods.
It is shown that an oscillatory layering structure is present in the results from MD and
DFT.

A systematic study on the fluid interfacial properties of binary Lennard-Jones mixtures
by MD and DGT is carried out in chapter 3. As in chapter 2, the fluids are described
by the LJTS potential. The PeTS EOS was extended to mixtures and then used as
base in the DGT to predict interfacial properties of binary LJTS mixtures. The molec-
ular interaction parameters of the LJTS mixtures were used in MD and the EOS+DGT
without any adjustment. The following interfacial properties were studied: density pro-
files, surface tension, relative adsorption, enrichment, and interfacial thickness. Further-
more, the corresponding phase equilibrium properties were studied (isothermal phase
diagrams, Henry’s law constants, and characteristic lines in the p − T diagram). In
section 3.3, six binary LJTS mixtures are examined at a constant temperature, which
was chosen such that the high-boiling component 1 is subcritical while the low-boiling
component 2 is either subcritical or supercritical. Furthermore, the parameter ξ in the
combination rule for the unlike dispersive interaction was varied such that the resulting
mixtures showed three types of behavior: high-boiling azeotropic, ideal, and low-boiling
azeotropic. In section 3.4 and 3.5, a large number of different LJTS mixtures are inves-
tigated at constant liquid phase composition and temperature. By varying ξ and the
ratio of the dispersion energies of the two components ε2/ε1, a variety of types of phase
behavior is covered by the study. The results elucidate the influence of the liquid phase
interactions on the interfacial properties. The dependence of the interfacial properties
on the variables ξ and ε2/ε1 reveals regularities that are explained by conformal solu-
tion theory of the liquid phase. It is thereby shown that the interfacial properties of
the mixtures are dominated by the mean liquid phase interactions, whereas the vapor
phase has only a minor influence. In section 3.6, interfacial properties of two binary
LJTS mixtures are studied in detail: a highly asymmetric mixture (type III), which
exhibits vapor-liquid equilibria (VL1E and VL2E ), liquid-liquid equilibria (L1L2E ), a
three-phase equilibrium (VL1L2E ), and supercritical fluid-fluid equilibria (F1F2E ), and,
as a reference, an ideal mixture (type I). The focus of this study is on the relation of
the interfacial properties to the phase behavior of the mixture. It is shown that a direct
relation exists between the enrichment found at VL1 interfaces and the wetting behav-
ior at the VL1L2E three-phase line in the type III mixture. Based on the systematic
study on binary LJTS mixtures in chapter 3, conditions that favor strong enrichment
of components at vapor-liquid interfaces are identified. Also, the relation between the
enrichment and the relative Gibbs adsorption is elucidated.

While the chapters 2 and 3 consider the Lennard-Jones truncated and shifted (LJTS)
fluid, chapter 4 considers the classical ’full’ Lennard-Jones (LJ) fluid. The LJ fluid
is probably the most frequently studied model fluid in the literature. Accordingly, a
large number of computer experiment data and equations of state are available for
the LJ fluid. First, available simulation data (35,000 data points) of the LJ fluid is
reviewed and evaluated by different thermodynamic tests. Based on that assessment,
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a consolidated electronic database is established [640]. Subsequently, 20 Equations of
state for the LJ fluid are systematically assessed in section 4.3 and 4.4, by comparing
their results with the consolidated molecular simulation data. Also these results are
compiled in an electronic database [639], which enables a straightforward application of
the test procedure as a benchmark for the development of new LJ EOS. Furthermore,
to enable a meaningful comparison of the DGT results for the LJ and LJTS fluid,
a new LJ EOS is parametrized using the same framework that the PeTS EOS [249]
is built on. The parametrization of the new LJ EOS (presented in the Appendix)
is guided by the idea that its performance on the VLE properties should be in the
range of the mutual agreement of the best available computer experiment datasets,
while also homogeneous state properties are represented well. For the evaluation of
both the simulation data and the LJ EOS, a large variety of thermophysical properties
were considered: vapor pressure; saturated densities; enthalpy of vaporization; critical
properties; and thermal, caloric, and entropic properties at homogeneous state points. In
section 4.4, the comparison is extended to Brown’s characteristic curves and the second
and third virial coefficient. Overall, it was found that none of the available LJ EOS
meets the following two criteria: (1) it does not yield unphysical artifacts when used
for extrapolations, and (2) it describes data from computer experiments within their
statistical uncertainty in most fluid regions. The new LJ EOS developed in this work
yields good results for the LJ fluid, but does not outperform the best existing LJ EOS.
However, among the LJ EOS that show no artifacts in the unstable region, the LJ EOS
from the present work gives the best description of the molecular simulation VLE data.
It is therefore a good choice for applications within DGT. Furthermore, the rigorous
assessment of both simulation data and LJ EOS provides a conformal representation of
known quality in molecular simulation and the theory – especially regarding the VLE
properties.

In chapter 5, results of a study on the influence of the dispersive long-range interactions
on phase equilibria and interfacial properties in binary Lennard-Jones mixtures are
reported. As in chapters 2 and 3, MD simulations and EOS+DGT were used. To assess
the influence of the long-range interactions, properties of LJTS mixtures (cf. section
3.3) are compared with results from LJ mixtures. The results from the LJTS mixtures
and the LJ mixtures are compared applying the corresponding states principle.

The mass transfer through vapor-liquid interfaces of mixtures is of fundamental im-
portance in many technical processes, for example fluid separation techniques like dis-
tillation and absorption. The enrichment of components would be an insurmountable
obstacle to mass transfer according to Fickian theory. Hence, the enrichment is believed
to influence the mass transfer across interfaces. A new molecular simulations method is
therefore developed in this work to study a stationary mass flux through vapor-liquid
interfaces. It is presented in chapter 6 together with first results, in which the method
was applied to two different systems; one exhibiting a large enrichment at the interface
and the other exhibiting no enrichment. The results reinforce the assumption that the
enrichment acts as a hindrance to mass transfer through fluid interfaces.

While the chapters 2 - 5 are limited to properties of model fluids, the chapters 7 - 9
consider real substance mixtures. All three studies in the chapters 7 - 9 focus on the
interfacial structure and the surface excess – especially the enrichment of the low-boiling
component. Chapter 7 presents a combined study using molecular simulation, density
gradient theory as well as experiments on an exemplary chosen mixture (cyclohexane +
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CO2). Results for the enrichment predicted from MD and DGT from different mixtures
of the type solvent + supercritical solute are compared in chapter 8. In chapter 9, the
results from the previous chapters are brought together by developing an empirical model
for the prediction of the enrichment from bulk VLE properties solely. Literature data on
the enrichment is reviewed, digitalized, and compiled in an electronic database [627]. An
empirical model is proposed to establish a link between the nanoscopic enrichment and
macroscopic properties – namely vapor-liquid equilibrium data. The model parameters
were determined from a fit to the dataset on the enrichment in about 100 binary LJTS
model mixtures (presented in chapter 3) that exhibit different types of phase behavior.
The model is then tested on the entire set of other enrichment data available in the
literature (approximately 2,000 data points), which includes also mixtures containing
non-spherical, polar, and H-bonding components. It is shown that the model practically
predicts the enrichment within the uncertainty of the enrichment data, which enables
predictions of the enrichment at vapor-liquid interfaces from macroscopic data alone.

Finally, chapter 10 summarizes the present work. The Appendix provides additional
information and numeric values of the data discussed in the individual chapters in the
main body of this work.

In the chapters 2 - 6 that consider model fluids, all physical properties are conveniently
reduced using the Lennard-Jones potential parameters ε and σ as well as the mass of
the particle M and the Boltzmann constant kB [17]. All intensive properties indicate
the respective quantity per particle. In the case of binary Lennard-Jones mixtures (cf.
chapter 3, 5, and 6), the high-boiling component 1 is used as a reference throughout.
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2 Lennard-Jones Truncated & Shifted
Fluid: Equation of State and
Interfacial Properties

2.1 Introduction

The LJTS potential is probably the simplest and computationally least expensive poten-
tial that describes properties of simple fluids well [49, 251, 275, 360, 409, 576, 611, 687].
The vapor-liquid interfacial properties of the Lennard-Jones (LJ) and the LJTS fluid
have been investigated many times in the literature [31, 230, 397, 440, 507, 672, 687,
693, 698]. However, to the best of our knowledge, no systematic comparison between
the three different methods MD, DGT, and DFT has yet been conducted for this fluid or
any other fluid on a consistent basis (force field, EOS, and functional). The truncation
of the Lennard-Jones potential in the LJTS potential affects both the thermodynamic
bulk [148, 395, 611, 628, 672] and interfacial properties [31, 169, 170, 230, 507, 628, 706].
Only the LJTS potential is considered in this chapter.

The Perturbed Truncated and Shifted (PeTS) EOS [249] provides a foundation to
perform a comparison of interfacial properties obtained from different theoretical ap-
proaches in a rigorous way. The PeTS EOS provides an excellent description of the
LJTS fluid not only for stable but also for metastable states and interfacial properties
such as the surface tension. The vapor-liquid interface of the LJTS fluid is investigated
in detail here: the pressure and density profiles obtained with the three methods are
reported for temperatures covering the range between the triple point and the critical
point. Also, an empirical correlation for the density profiles is used – mainly for the
curve deconvolution (see below) – that was adopted from Vrabec et al. [687].

Besides the comparison of the three methods, a second focus of this work lies on the
investigation of the oscillatory layering structure [171, 520] on the liquid side of the
vapor-liquid density profiles, which has been investigated in the literature by integral
equation theory [75, 145, 170, 171, 369, 651, 653, 654, 675], density functional theory
[169, 170, 257, 697], and molecular simulations [145, 651, 653, 654] for some model
fluids. The vapor phase of a vapor-liquid interface can be regarded as an external field
[170] that causes a structuring of the molecules in the liquid phase – similar to what
is observed at wall-liquid interfaces. Evans and co-workers [170] have shown that the
density of an inhomogeneous fluid ρ(z) of a short-ranged potential decays from the liquid
surface into the bulk in the same way as the radial distribution function g(r) does for
r → ∞, i.e. either with exponentially damped oscillations or with a monotonic decay.
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The occurrence and magnitude of an oscillating decay at different state points is directly
related to the Fisher-Widom (FW) line [179], that describes the crossover between the
oscillatory and monotonic decay of the radial distribution function for short-ranged
potentials in the bulk fluid [170, 369, 520, 653]. The oscillatory decay occurs when the
repulsive forces dominate, whereas the monotonic decay occurs when attractive forces
dominate. The Fisher-Widom line of the LJTS fluid with a cut-off radius of 2.5σ has
been investigated in the literature [145, 369, 675] and its intersection point with the
vapor-liquid coexistence curve was found to be at about T /Tc = 0.9 and ρ/ρc = 1.9
[145, 170, 369, 675]. Density oscillations at vapor-liquid interfaces should therefore be
expected up to that temperature.

A new method for analyzing the oscillatory layering structure on the liquid side of vapor-
liquid interfaces based on a Fourier transform and curve deconvolution is proposed in
the present work. It is thereby shown that the density oscillations are found in molecular
simulation data of the LJTS fluid. To the best of our knowledge such oscillations have
been observed only for force fields that were trained for that feature [651, 653, 654].
The temperature dependency of the amplitude of the layering structure is investigated.
It decreases with increasing temperature until it vanishes at about T /Tc = 0.88 which
confirms predictions from the literature [145, 675].

This chapter is organized as follows: the equations and the performance of the PeTS
EOS [249] are briefly discussed, the employed theoretical methods (MD, DGT, and DFT)
are introduced, and then the results for the surface tension, the pressure profiles, and
the density profiles are presented and discussed. Subsequently, a new method for the
examination of the oscillatory layering structure at vapor-liquid interfaces is introduced
and applied to the results for the LJTS fluid from the different methods.
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2.2 Perturbed Truncated and Shifted (PeTS)
Equation of State

2.2.1 Theory

The perturbed truncated and shifted (PeTS) EOS was developed to describe the ther-
modynamic behavior of the LJTS fluid [249]. It is based on the perturbation theory of
Barker and Henderson [41]. The dispersion contribution in the PeTS EOS is modeled as
a series expansion in the density as proposed by Gross and Sadowski [223]. The PeTS-i
functional (see below) reduces to the PeTS EOS in the bulk and is also described in
detail by Heier et al. [249].

The PeTS EOS is given here in reduced units with respect to the potential parameters
and the Boltzmann constant. It uses the perturbation theory of Barker and Henderson
[41], which splits the residual free energy ãres into the free energy of a reference potential
aref and a part due to the perturbation ãpert

ãres ≡ ã − ãid = ãref + ãpert (1)

where ã = a/kBT is the free energy per particle and ãid is the free energy per particle
of the ideal gas. The LJTS potential is discretized with the modified step-square-well
potential proposed by Chen and Kreglewski [108]

u (r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∞ r < (1 − c1)
c2 (1 − c1) ≤ r < 1

−1 1 ≤ r < λ
0 r ≥ λ

(2)

which has three parameters: c1 and c2 which characterize the repulsive part and λ which
characterizes the attractive part. Only the repulsive part of the potential is used in the
following, i.e. the parameter λ is not used. The attraction is handled implicitly by the
PeTS EOS.

Using the approach of Barker and Henderson [41], the repulsive part of a potential can
be described by an effective hard sphere diameter d

d(T ) = ∫
1

0
(1 − exp(−u(r)

kBT
))dr. (3)

Applied to the potential Eq. (2) this yields

d (T ) = 1 − c1 exp(− c2

kBT
). (4)

Following this approach, the reference term in equation Eq. (1) is the free energy of the
hard sphere which is according to Boublík [67] and Mansoori et al. [407]

ãref = ãhs = 3η

1 − η +
η

(1 − η)2
(5)
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where η is the reduced packing fraction

η = π
6
ρd3 (6)

and ρ is the number density. According to Barker and Henderson [41], the perturbation
contribution in equation Eq. (1), which describes only dispersion here, is

ãpert = ã1 + ã2 (7)

up to second-order, where ã1 is the first-order dispersion contribution and ã2 the second-
order dispersion contribution. These contributions are given by Ref. [223] as

ã1 = −2πρ
1

T ∫
∞

1
u(r)g (r

d
) r2dr

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I1

(8)

and

ã2 = −πρ(1 + 8η − 2η2

(1 − η)4
)
−1

( 1

T
)

2 ∂

∂ρ
[∫

∞

1
u(r)2g (r

d
) r2dr]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I2

. (9)

In analogy to the approach of Gross and Sadowski [223], the integrals I1 and I2 in the
equations Eq. (8) and Eq. (9) are developed into a Taylor series as functions of the
packing fraction only

I1 =
6

∑
i=0

aiη
i (10)

I2 =
6

∑
i=0

biη
i (11)

for which 14 state independent parameters are used: ai and bi with i ∈ {0, 1, 2, 3, 4, 5, 6}.
Additionally, the parameters c1 and c2 characterize the repulsive part of the potential
Eq. (2).

The resulting 16 parameters were fitted to saturated liquid and vapor densities ρ′ and ρ′′
and vapor pressures ps of the LJTS fluid for temperatures T between 0.64 and 1.06 εk−1

B

[249]. The data was taken from Vrabec et al. [687]. The data from the metastable region
was not used for fitting. The resulting parameters are given in Table 1.
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Table 1: Parameters of the PeTS EOS and the DGT influence parameter.

Parameter Value Parameter Value Parameter Value

a0 0.690603404 b0 0.664852128 c1 0.127112544
a1 1.189317012 b1 2.10733079 c2 3.052785558
a2 1.265604153 b2 -9.597951213
a3 -24.34554201 b3 -17.37871193 κPeTS 2.7334
a4 93.67300357 b4 30.17506222
a5 -157.8773415 b5 209.3942909
a6 96.93736697 b6 -353.2743581

2.2.2 Comparison to Computer Experiment Data

Vapor-Liquid Equilibrium

In Fig. 2, the results of the PeTS EOS (solid lines) and the vapor-liquid equilibrium
(VLE) data of Vrabec et al. [687] (squares) are compared. The results from the PeTS
EOS are in very good agreement with the computer experiment data – since that was
used for the fitting. This can also be seen in Fig. 3, where the deviation of the results
obtained from the PeTS EOS from the simulation data of Vrabec et al. [687] is displayed.
Fig. 3 also includes the deviation of the results from the EOS of Thol et al. [662] from the
simulation data. In most cases, the deviations do not exceed the statistical uncertainty
of the simulation data. This holds for both EOS.

The PeTS EOS has an average absolute deviation (AAD) to such data [687] in the vapor
pressure δpsPeTS = 0.00026 and δρ′PeTS = 0.00091 and δρ′′PeTS = 0.00049 in the saturated
liquid and vapor density respectively [249].
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Figure 2: Saturated densities (left) and vapor pressure curve (right) of the LJTS fluid
obtained with the PeTS EOS (line) and with molecular simulation data from
Ref. [687] (squares).
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Figure 3: Deviations of results obtained with the PeTS EOS (squares) and the EOS
from Thol et al. [662] (triangles) from molecular simulation data of Vrabec
et al. [687] for the vapor pressure (top), saturated liquid density (middle)
and saturated vapor density (bottom) of the LJTS fluid.
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Homogeneous Stable States

Thol et al. [662] report simulation data for the pressure as a function of temperature
and density for homogeneous stable states for a wide range of conditions. That data,
even though it was not included in the fit, is represented well by the PeTS EOS, cf. Fig.
4. For given temperature and density, the relative deviation in the pressure is in most
cases below 5%. Three simulation data points of Thol et al. [662] are not included in
Fig. 4. They show very high deviations from both the PeTS EOS and the EOS of Thol
et al. [662] and are probably erroneous.

The EOS of Thol et al. [662] describes the simulation data, to which it was fitted, better
than the PeTS EOS. Still the predictions of the PeTS EOS for that data are good.
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Figure 4: Deviation of results for the pressure obtained with the PeTS EOS (squares)
and the EOS of Thol et al. [662] (triangles) from the simulation data of
homogeneous states of the LJTS fluid [662] plotted as a function of the
inverse temperature. All states given by Thol et al. [662] are used for the
comparison except for three state points as described in the text. The dashed
lines show the deviation of ±5%.

Homogeneous Metastable States

The results of computer experiment data for metastable states [249] are compared to
the results of the PeTS EOS and to those of the EOS of Thol et al. [662] in Fig. 5.
Besides the overall picture (left), Fig. 5 also contains a zoomed plot of the gas side
(right). The binodal as obtained from the PeTS EOS does not differ significantly from
that obtained from the EOS of Thol et al. [662]. The error bars of the simulation
results are mostly within symbol size. Only close to the spinodal on the liquid side of
the phase equilibrium the error bars are relatively large due to low particle numbers in
these simulations. While in the homogeneous region both EOS perform equally well,
there are important differences in the metastable region. The subcritical isotherms of
the EOS of Thol et al. [662] have two minima and two maxima whereas those from the
PeTS EOS have only one minimum and one maximum, so that only the latter can be
used together with DGT for studying properties of fluid interfaces. Also the spinodals
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found from both EOS differ significantly. The metastable region predicted by the EOS
of Thol et al. [662] is significantly smaller than that predicted by the PeTS EOS, i.e. the
spinodal predicted by the EOS of Thol et al. [662] encloses four of the state points for
which simulation results were obtained here, thereby erroneously predicting instability.
The simulation data for the metastable region confirms the results of the PeTS EOS.
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Figure 5: Thermal properties of the LJTS fluid: isotherms obtained with the PeTS
EOS (black solid line), the EOS of Thol et al. [662] (green dashed line),
and from MD simulations for T = 1.0 εk−1

B (squares), T = 0.9 εk−1
B (circles),

T = 0.8 εk−1
B (triangles), and T = 0.7 εk−1

B (diamonds). The thick solid line
is the binodal and the dotted line is the spinodal from the PeTS EOS. The
binodal from the EOS of Thol et al. [662] is practically identical with the
depicted one. The spinodal from the EOS of Thos et al. [662] is not shown
for clarity, but differs significantly. Symbols are simulation results from Ref.
[249].

In Fig. 6, results of the PeTS EOS (line) and the simulations (symbols) of µ − p − T
behavior are shown. In the µ − p projection of the phase space, equilibrium points are
given by the self-intersection of the isotherm. Vapor states are found on the almost ver-
tical part of the isotherm, where stable points are below the intersection and metastable
points are above it. Liquid states are on the other linear branch of the isotherm, where
pressures higher than that at the intersection indicate stable states and lower pressures
indicate metastable states. Unstable states are found on the curved part of the isotherm
connecting the vapor and liquid line. The latter can only be obtained from the PeTS
EOS. Simulation data and results from PeTS EOS agree very well.
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Figure 6: Chemical potential of the LJTS fluid as a function of pressure obtained
from the PeTS EOS (lines) and from molecular simulations (symbols) [249]
for T = 1.0 εk−1

B (squares), T = 0.9 εk−1
B (circles), T = 0.8 εk−1

B (triangles),
and T = 0.7 εk−1

B (diamonds). Vapor states are found on the steep branch
in the middle and coincide for all temperatures. The almost straight flat
branches correspond to liquid states and the curved branches, which can
only be determined by the EOS, correspond to unstable states. VLE points
are marked with filled symbols.

2.3 Vapor-Liquid Interfacial Properties

2.3.1 Modeling and Simulation of Interfacial Properties

The methods used for calculating the surface tension, density, and pressure profiles of
the planar interface from MD, DGT, and DFT are briefly described in the following.
The vapor-liquid interfacial properties were investigated in the temperature range from
T = 0.65 εk−1

B to 1.05 εk−1
B with an increment of ∆T = 0.05 εk−1

B . The upper and lower
bounds of that range are close to the critical point temperature and the triple tempe-
rature, respectively, of the LJTS fluid with a cut-off at 2.5σ. Table 2 reports literature
data [61, 148, 244, 442, 603, 611, 662, 667, 672, 687] for these temperatures. In the
present work, values of Vrabec et al. [687] for the critical point and van Meel et al. [442]
for the triple point are used.

2.3.1.1 Molecular Simulations

The molecular dynamics (MD) simulations were performed with the MD code ls1 mardyn
[506] in the NVT ensemble with 16,000 particles in a rectangular box. Periodic boundary
conditions were applied in all directions. In the studied scenario, the vapor phase coexists
with a liquid phase. The liquid slab is in the middle of the box, resulting in two vapor-
liquid interfaces, which are oriented perpendicular to the z-axis [706]. For the calculation
of the interfacial thickness and the oscillatory layering structure, only one side of the
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Table 2: Critical parameters (top) and triple parameters (bottom) of the LJTS fluid.
The bold values indicate the values that were used in the present work.

Tc / εk−1
B ρc /σ−3 pc / εσ−3

Dunikov et al. [148] 1.06 0.3173 0.097
Haye and Bruin [244] 1.08 – –
PeTS EOS 1.089 0.3092 0.102
Shi and Johnson [603] 1.08 0.3211 –
Smit [611] 1.09 0.317 –
Thol et al. [662] 1.086 0.319 0.101
Trokymchuk and Alejandre [672] 1.073 0.323 0.0908

1.186 0.319 0.1098
Vrabec et al. [687] 1.0779 0.319 –

Ttrip / εk−1
B ptrip / εσ−3

Bolhius and Chandler [61] 0.55 –
Toxvaerd [667] 0.62 –
van Meel et al. [442] 0.62 0.00271

liquid slab was taken into account. Also, only one side of the pressure and density
profiles is considered for the comparison with the other methods. The elongation of
the simulation box in the z-direction, i.e. normal to the interface, is lz = 80σ and in
the tangential direction at least lx = ly = 24σ. The pressure and density profiles were
calculated at N = 1,200 bins, each with a width of ∆z = 0.0667σ.

The equation of motion was solved by a leapfrog integrator [17]. The temperature
was kept constant by a slab-wise velocity scaling thermostat. A time step of ∆τ =
0.001σ

√
M/ε was used. The equilibration was conducted for 2 million time steps, while

the production ran for further 3 million time steps. The statistical errors given in
the present study are equal to three times the standard deviation of all sampled block
averages, each over 1 million time steps. Also the density and pressure profiles from
each state point were averaged over that block interval. Since the interaction potential
is truncated at 2.5σ, no long-range correction for the forces and the pressure is necessary.

The Lennard-Jones truncated and shifted potential uLJTS used for the molecular simu-
lations is [17]

uLJ(r) = 4ε [(σ
r
)

12

− (σ
r
)

6

] and (12)

uLJTS(r) =
⎧⎪⎪⎨⎪⎪⎩

uLJ(r) − uLJ(rc) r ≤ rc

0 r > rc ,
(13)

with uLJ being the full Lennard-Jones potential, ε and σ being the energy and size
parameter, respectively. The distance between two particles is denoted by r. The cut-
off radius rc of the potential was set to 2.5σ throughout this study.
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The surface tension was computed from the difference between the normal and the
tangential diagonal components of the overall pressure tensor [695], i.e. the mechanical
route

γMD = 1

2

∞

∫
−∞

(pN − pT)dz . (14)

Thereby, the normal pressure pN is given by the z-component of the diagonal of the
pressure tensor, and the tangential pressure pT was determined by averaging over the
x and y-components of the diagonal of the pressure tensor. The pressure calculation is
based on the method proposed by Irving and Kirkwood [325].

2.3.1.2 Density Gradient Theory

Density gradient theory [81, 82, 690] is a widely used framework for calculating surface
tensions for pure substances [91, 121, 455] and mixtures [78, 90, 305, 404, 456, 458, 477]
based on an EOS, especially for real substances. For a comprehensive introduction, we
refer to Ref. [455]. In density gradient theory, the free energy of the heterogeneous
system is developed around the free energy of the homogeneous system a0(ρ). For a
planar interface of a pure substance, the free energy can thereby be written as:

a(ρ,∇ρ) = a0(ρ) + 1/2 κ(dρ

dz
)

2

. (15)

To model fluid interfaces, density gradient theory only requires the free energy of the
bulk fluid and the so-called influence parameter κ, which describes the resistance to the
density gradient. In general, κ is a function of the substance, the temperature, and the
density [573] and can be related to the direct correlation function of the uniform fluid
via linear response theory [37, 121, 168, 428]. Nevertheless, in many applications, the
influence parameter is treated as a state-independent parameter [50, 305, 705], which is
also done in the present study.

Density profiles and the surface tension at the interface were calculated from the Euler-
Lagrange equation as

z − z0 = ∫
ρ

ρ0

√
κ

2∆Ω(ρ) dρ , (16)

γDGT = ∫ 2∆Ω dz . (17)

where ∆Ω is the grand thermodynamic potential defined as ∆Ω(ρ) = ρa0(ρ)−ρµs+ps and
a0(ρ) the homogeneous free energy at the local density ρ, µs the saturated bulk phase
chemical potential, and ps the saturated bulk pressure. The pressure profiles pN − pT(z)
were calculated from comparing the integrand of Eqs. (14) and (17) and identifying
2∆Ω(z) = pN − pT(z). This expression can also be derived in a rigorous way for DGT
[119, 231, 248, 511, 720].

The PeTS EOS was employed here for calculating the free energy in Eqs. (16) and (17).
The DGT density profiles were calculated in a 20σ domain with finite ∆z = 0.01σ,
resulting in N = 2,000 bins.
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Using the PeTS EOS, the influence parameter κ for DGT is fitted here to surface tension
data of the LJTS fluid obtained from molecular dynamics simulation [687]. First, each
of the 18 data points for γMD(T ) provided by Ref. [687] was used to calculate the
influence parameter individually. The results are shown as symbols in Fig. 7. These κ
values reproduce the exact molecular simulation surface tension results. The error bars
of the surface tension from molecular simulations, specified by Vrabec et al. [687], are
transferred to error bars in κ, as shown in Fig. 7.
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Figure 7: Influence parameter κ of the DGT calculated from molecular simulation data
of the surface tension of the LJTS fluid [687]. The error bars are calculated
from the surface tension error bars [687]. The horizontal line shows the
chosen temperature-independent κPeTS value.

The horizontal line in Fig. 7 is an error weighted average of the influence parameters
with the value κPeTS = 2.7334 εσ5. This value is used in the following, since it is constant
within error bars for all but one single simulation data point (cf. Fig. 7). The resulting
numeric value κPeTS = 2.7334 εσ5 was used throughout the present work.

2.3.1.3 Density Functional Theory

The DFT results used for comparison in this study are taken from Ref. [637]. They
were computed using the following formalism.

The free energy in density functional theory is written as a sum of contributions [637]

A[ρ(r)] = Aid[ρ(r)] +Ahs[ρ(r)] +Adisp[ρ(r)], (18)

where the squared brackets indicate a functional dependency on the local density ρ(r)
and r is the location.

The PeTS-i functional from a previous work of our group is used in the density functional
theory [249]. To be consistent with the PeTS EOS, the PeTS-i functional uses the
white-bear version of fundamental measure theory (FMT) from Roth et al. [570], which
reduces in the bulk fluid to the Carnhan-Starling hard sphere EOS. The dispersion
contribution according to Sauer and Gross [588] is applied. Heier et al. [249] have
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fitted the parameter of the dispersion contribution to the surface tension value from
computer experiment at T = 0.8 εk−1

B . The equations and assumptions made in the
theory are summarized in the Supplementary Information of Refs. [249, 637].

DFT density profiles were calculated [671] by solving the Euler-Lagrange equation ob-
tained from functional minimization of the free energy.

The surface tension of a planar interface was calculated from

γDFT = ∫ (a[ρ(z)] + ps − ρ(z)µs) dz, (19)

where a[ρ(z)] is defined from Eq. (18) and

A[ρ(z)] = S ∫ a[ρ(z)] dz, (20)

with S being the area of the surface perpendicular to z. Calculations were performed
on a 20σ domain with finite ∆z = 0.01σ, i.e. N = 2,000 bins [637].

The DFT pressure profiles pN − pT(z) were calculated from comparing the integrand of
Eqs. (14) and (19) and identifying pN−pT(z) = a[ρ(z)]+ps−ρ(z)µs. Since any functional
can be derived in a gradient expansion, the arguments from [119, 231, 248, 511, 720]
also hold for this formula.

2.3.1.4 Empirical Correlation

A simple analytical function for the density profiles is required for the curve deconvo-
lution described below for the investigation of the oscillatory layering structure. Many
empirical functions have been proposed in the past [76, 180, 365, 561, 687]. Vrabec et
al. [687] came to the conclusion, that the hyperbolic tangent profile

ρ(z) = 1

2
(ρ′ + ρ′′) − 1

2
(ρ′ − ρ′′)tanh(2z

K
), (21)

originally proposed by van der Waals [691], matches the LJTS density profiles from
computer experiments best. The parameter K can be understood as a measure for the
interfacial thickness. Vrabec et al. [687] used a temperature dependent K-parameter,
defined by1

K = −1.720(Tc − T
Tc

)
1.89

+ 1.103(Tc − T
Tc

)
−0.62

. (22)

It is known [167, 397] that density profiles obey a different decay into both bulk phases,
which can be related to the bulk isothermal compressibility [45]. The decay towards the
gas bulk phase is therefore more rapid than to the liquid bulk phase. This feature is not
captured by the purely empirical correlation.

Also the density profiles from the empirical correlation were calculated on a 20σ domain
with finite ∆z = 0.01σ, i.e. N = 2,000 bins.

1In the publication of Vrabec et al. [687] is a misprint in Eq. (13) in the first term, which is corrected
here. [correspondence with the author]
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Vrabec et al. [687] also give a correlation for the surface tension of the LJTS fluid:

γ = 2.08 (1 − T /Tc)1.21, (23)

which is used for comparison. This power law is strictly only valid in the vicinity of
the critical point. However, it has been shown to be within the error bars of simulation
data in the whole temperature range [687, 702, 703].

2.3.1.5 Characterization and Comparison of Density Profiles

Density Profiles

Four types of density profiles are compared in this study:

1. Molecular dynamics simulations (MD)

2. Density gradient theory + PeTS EOS (DGT)

3. Density functional theory + PeTS-i functional (DFT)

4. Empirical correlation of the MD data (Corr)

where 4 is only used as a simple reference. The brackets indicate the corresponding
abbreviation used in the following. The origin on the z-axis of each density profile is
arbitrarily chosen such that z(ρ0) = 0 with ρ0 = ρ′′ + 0.5(ρ′ − ρ′′).

Average Difference to Computer Experiment

The average absolute deviation (AAD) between the density profiles from molecular sim-
ulations and those obtained via the theoretical route (DGT and DFT) or the empirical
correlation were calculated by:

δρj =
1

N

N

∑
i

∣ρMD(zi) − ρj(zi)∣ with j = DGT, DFT, Corr , (24)

where N is the number of bins on the z-axis. A piecewise cubic interpolation scheme is
used to calculate the density at corresponding z positions.

Also the differences between the empirical correlation [687] and molecular simulations
are reported for the sake of completeness.

Interfacial Thickness

We use the 90-10% definition for the effective interfacial thickness L90
10 according to

Lekner and Henderson [365]. It is defined as the distance between the points, where the
local density reaches 10% and 90% of the corresponding bulk densities:

L90
10 = z(ρ90) − z(ρ10) , (25)
ρ10 = ρ′′ + 0.1 (ρ′ − ρ′′) ,

ρ90 = ρ′′ + 0.9 (ρ′ − ρ′′) .
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2.3.2 Results for the Surface Tension

Fig. 8 shows the results for the surface tension γ of the LJTS fluid as a function of the
temperature obtained from the different methods. The molecular simulations results
stem from the present study as well as from Ref. [687]. Furthermore, results from DGT
and DFT using the PeTS EOS and PeTS-i functional, respectively, are shown. The
surface tension values from DGT and DFT lie within the error bars of the computer
experiment data for most temperatures. All methods agree within 5% up to T = 1.0 εk−1

B .
The surface tension values by molecular simulations from Vrabec et al. [687] and this
work are in good agreement. The numerical results for the surface tension from MD,
DGT, and DFT are reported in Table 3.
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Figure 8: Top: surface tension of the LJTS fluid as a function of the temperature.
Data obtained from molecular simulations (filled squares: Ref. [687], empty
squares: this work), DGT (circles), and DFT (triangles). The solid line
is an empirical correlation for the surface tension proposed in Ref. [687],
cf. Eq. (23). Bottom: relative deviation for the surface tension from the
empirical correlation: values by DGT (circles), DFT (triangles), MD from
this work (empty squares), and Vrabec et al. [687] (full squares) as a function
of temperature.
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Table 3: Surface tension data of the LJTS fluid from MD, DGT, and DFT.

T / εk−1
B γ / εσ−2

MD DGT DFT
0.65 0.670(7) 0.683 0.669
0.7 0.584(7) 0.586 0.579
0.75 0.486(11) 0.493 0.489
0.8 0.400(4) 0.403 0.402
0.85 0.312(15) 0.317 0.317
0.9 0.229(7) 0.235 0.235
0.95 0.152(7) 0.158 0.157

1 0.075(2) 0.088 0.085
1.05 0.025(4) 0.029 0.022

2.3.3 Results for the Pressure Profiles

Fig. 9 shows the pressure profiles obtained with MD, DGT, and DFT for T = 0.65 εk−1
B ,

0.85 εk−1
B , and 1.05 εk−1

B . The results from the different methods agree qualitatively
well, but clear differences can be identified. The maximum pressure position is shifted
between the methods and also the maximum pressure differs. Furthermore, a minimum
pressure occurs in DFT and MD but not in DGT.

The effect of the oscillatory layering structure on the pressure profiles is clearly noticeable
at low temperatures for DFT in the form of two shoulders on the right side of the pressure
difference peak. Also in the molecular simulation pressure profile this can bee seen, but
to a smaller extent than in the DFT results.
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Figure 9: Difference between normal and tangential pressure at the interface of the
LJTS fluid at T = 0.65 εk−1

B (top); T = 0.85 εk−1
B (center) and T = 1.05 εk−1

B

(bottom): molecular simulations (symbols), DGT (solid line), and DFT
(dashed line).
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2.3.4 Results for the Density Profiles

The obtained density profiles from DGT and DFT are individually compared with those
from computer experiment in Fig. 10.

Figure 10: Density profiles of the planar interface: results from molecular simula-
tions (symbols) are compared to (a) DGT and (b) DFT, which are in-
dicated as solid lines. The density profiles are compared at T / εk−1

B =
0.65 ( ); 0.7 ( ); 0.75 ( ); 0.8 ( ); 0.85 ( ); 0.9 ( ); 0.95 ( ); 1.0 ( ); 1.05 ( ).

The agreement between the computer experiment and both DFT and DGT is better
for lower temperatures while discrepancies increase towards the critical point. The
deviations are highest in the ’knee’ of the liquid and the vapor side of the density
profile where the curvature is highest. None of the theoretical methods stand out in
their capability of describing the computer experiment density profiles. The oscillatory
layering structure of the fluid on the liquid side, especially in the DFT density profile
at T = 0.65 εk−1

B and 0.7 εk−1
B will be discussed in detail below.

The density profiles from all employed methods and temperatures coincide at approxi-
mately z = −0.2σ through ρ = 0.31 ± 0.01σ−3 which is in very good agreement with the
critical density ρc = 0.318σ−3. This interesting finding was already reported by Bon-
giorno and Davis [63]. A further investigation of this phenomenon is out of the scope
of this work.

Fig. 11 shows the deviation of the density profiles at T = 0.65 εk−1
B (a), 0.85 εk−1

B (b), and
1.05 εk−1

B (c) respectively. Molecular simulations, which we consider as a reference, shows
stochastic fluctuations in the density throughout the profile. Therefore, the differences
to the empirical correlation (δρm(z) = ρCorr(z) − ρm(z) with m =MD, DGT, DFT) are
plotted, i.e. the baseline δρ = 0 corresponds to the empirical correlation.
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Figure 11: Deviation plots of density profiles at T = 0.65 εk−1
B (top), T = 0.85 εk−1

B

(center), and T = 1.05 εk−1
B (bottom). The baselines represent the empirical

correlation (Eq. (21) to Eq. (22)). The solid line indicates DGT, the dashed
line DFT, and symbols molecular simulations. δρ indicates the absolute
deviation between the empirical correlations and the different theoretical
methods.

The DGT and DFT density profiles essentially coincide close to the critical point. The
deviations between the theoretical methods and the computer experiment are of the
same order of magnitude as the deviations between the empirical correlation and the
computer experiment. This is remarkable, since DGT and DFT are predictions. At
T = 0.65 εk−1

B , the DFT density profile shows a strong oscillatory behavior compared
to the empirical correlation at z > 0 in Fig. 11 (a), which is a result of the oscillatory
layering structure at the interface. Such oscillations are expected in DFT density profiles
at T < TFW [145]. The oscillations are also present in the computer experiment (same
figure), but to a much smaller extent.

The average absolute deviation in the density profile with respect to the MD results
(cf. Eq. (24)) is shown in Fig. 12. The difference between the empirical correla-
tion and molecular simulation results remains rather constant in a broad temperature
range (0.65 < T /εk−1

B < 1) and increases close to the critical point, while the differences
between the theoretical methods (DGT and DFT) and molecular simulations increase
monotonically with the temperature. DGT is theoretically only valid in the limit of
slowly changing densities, i.e. close to the critical point [167, 168]. The increasing de-
viation with the temperature can therefore be attributed to the increasing differences
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Figure 12: Average absolute deviation of density profiles to molecular simulations re-
sults, cf. Eq. (24): circles indicate DGT, triangles DFT, and diamonds the
empirical correlation. Dotted lines indicate triple temperature and critical
temperature. Solid lines are a guide for the eye.

between the EOS and the LJTS force field approaching the critical point. Approaching
the critical point, DGT and DFT density profiles show a very similar deviation from
molecular simulations. This might be due to the classical scaling of the underlying EOS
compared to the expected Ising scaling of molecular simulations. The density profiles
average absolute deviation between the theory and the computer experiments δρj lies
about one order of magnitude higher than the AAD of the bulk saturated densities
between the PeTS EOS and the corresponding computer experiments, cf. section 2.2.

The temperature dependence of the 90-10% interfacial thickness, as defined by Eq. (25) is
shown in Fig. 13. The interfacial thickness increases monotonically with the temperature
approaching a pole at the critical temperature. The theoretical methods agree with each
other well at high temperatures, while they differ at lower temperatures. The 90-10%
interfacial thickness obtained from the theoretical methods is in the entire temperature
range smaller than that from molecular simulations.

This is probably due to the fact that molecular dynamics is a three-dimensional and
dynamical method, in which the resulting density profiles are gained by averaging over
the two dimensions parallel to the interface and the time. The breathing and moving of
the liquid slab normal to the interface and so-called capillary waves, i.e. fluctuations of
the liquid surface [267, 293, 513, 573, 713] lead to a broadening of the density profiles
[592, 598, 652, 653, 714]. These are shown in Fig. 14 as snapshots from molecular
simulations of one σ thick slices perpendicular to the interface at two temperatures. The
liquid surface has an undulation (parallel to the surface – here in x- and y-direction)
that increases with the temperature. DGT and DFT are static and one-dimensional
methods and therefore describe the density change at a perfectly planar interface or
through one point on the so-called intrinsic surface.
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Figure 13: Temperature dependency of the 90-10% interfacial thickness (cf. Eq. (25))
from molecular simulations (symbols), and DGT (solid line), DFT (dashed
line), and the empirical correlation (dashed-dotted line). Dotted vertical
lines indicate triple temperature and critical temperature. The ordinate
has a reciprocal scaling.

Figure 14: Snapshots of vapor-liquid interface from molecular simulations of the LJTS
fluid at (a) T = 0.65 εk−1

B and (b) T = 0.85 εk−1
B . The slice that is shown has a

width of ∆y = 1σ. The solid black line schematically indicates the intrinsic
surface from the current molecular configuration. The black dotted line
indicates the equidistant surface for the layering structure at the distance
λstruc from the intrinsic surface.
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2.4 Oscillatory Layering Structure at Vapor-Liquid
Interfaces

2.4.1 New Method for Analyzing the Oscillatory Layering
Structure at Vapor-Liquid Interfaces

For the analysis of the oscillatory layering structure on the liquid side of the vapor-liquid
interface, a Fourier transform [68] is applied. Thereby, the wavelength and average
amplitude of the oscillatory layering structure can be analyzed.

To extract the sinusoidal part of the density profile ρ(z), a Laplace filter [68] is applied
to the density profiles by double numerical differentiation. The Laplace filter suppresses
the average value of the signal and increases the sinusoidal part of the signal. To suppress
the high frequency noise in the MD density profiles, a Gaussian filter with a variance of
lλ = 0.04σ was applied to those profiles. The Fourier transform of ∇2ρ then reads

Rj(ω) =
∞

∫
0

∇2ρj(z)eizωdz , (26)

with ω being the angular frequency and j = MD, DGT, DFT, Corr. Only the density
profile for z > z0 was evaluated since an oscillatory layering structure is only expected
on the liquid side [169]. Since the Fourier transform spectra R(ω) contains information
on the shape of the density profile itself as well as on the oscillations that are of interest
here, a curve deconvolution scheme is applied [20]. The spectra Rj(ω) are approximated
by a linear combination of bell-shaped curves. The part of the Fourier transform that
results from the oscillations in the density profile Roscill(ω) can thereby be distinguished
from the part that results from the shape of the density profile Rshape(ω).

Rj(ω) = aj(T ) Roscill(ω) + kj(T ) Rshape(ω) (27)

In this linear combination, aj and kj are adjustable parameters for each spectrum. The
Fourier transform that describes the shape of the density profile Rshape is approximated
by eight Gaussian curves and the Fourier transform that describes the oscillatory layer-
ing structure Roscill by a single Gaussian curve. The deconvolution model parameters,
i.e. the frequency of each Gaussian curve, its mean value, and its variance are kept
constant throughout this work. The deconvolution model is parametrized in two steps:
first, by fitting Rshape(ω) to the Fourier transform of the empirical correlation Rshape

Corr

at T = 0.65 εk−1
B with k = 1, since the empirical correlation density profile Eq. (21) -

(22) has no oscillating content (RCorr(ω) = 0). Second, by fitting the frequency and the
variance of the Gaussian curve Roscill to the Fourier transform j = DFT at T = 0.65 εk−1

B

and a = 1. For other temperatures and density profile types j =DFT, DGT, MD only
aj and kj are adjusted by a least square fit. The peak Roscill(ω) in the spectrum can
thereby be identified as a result of the oscillatory layering structure in the interface.

The peak area A of the peak Roscill is calculated for all types of density profiles and
temperatures, since it is proportional to the average amplitude of the sinusoidal content
resulting from the oscillatory layering structure.
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2.4.2 Comparison of Results from different Methods

Fig. 15 shows the 2nd derivative of the density profile ∇2ρ(z) at T = 0.65 εk−1
B (top)

and T = 0.7 εk−1
B (bottom). While the gas side of the density profiles has a smooth

trend for all investigated methods (MD, DGT, DFT, and Corr), the liquid side of the
density profiles shows strong oscillations for DFT and damped oscillations for MD.
These oscillations are due to a layering structure of the dense liquid phase at a narrow
interface. The density profiles from DGT and the empirical correlation do not show this
feature at all.

Figure 15: Second derivative of density profiles ρ(z) at T = 0.65 εk−1
B and T = 0.7 εk−1

B :
results from molecular simulations (symbols), DGT (solid line), DFT
(dashed line), and the empirical correlation (dashed-dotted line).

The z-positions of the maxima and minima of DFT and MD agree well. We refer to this
phenomenon as ’oscillatory layering structure’. The DFT density profiles show a higher
amplitude of the oscillatory layering structure than those from molecular simulations.

The Fourier transform of ∇2ρ(z) for z > 0 is shown in Fig. 16 as a function of the
wavelength λ for the two lowest investigated temperatures T = 0.65 εk−1

B (top) and
T = 0.7 εk−1

B (bottom). The density profiles from the square gradient model in DGT,
cf. Eq. (15), can not contain any oscillation for a pure substance due to the simplified
description of the repulsion between molecules. The density profiles from the empirical
correlation can not contain any oscillation for mathematical reasons, cf. Eqs. (21)
and (22). Accordingly, the spectra RDGT and Rcorr can be used to identify Rshape as
the long bow in Fig. 16, which increases monotonically with λ. Following the curve
deconvolution ansatz in Eq. (27), the peak at λstruc ≈ σ in the Fourier transform of DFT
and MD (Fig. 16) can be attributed to the oscillatory layering structure on the liquid
side of the interface. The wavelength of the oscillations in the DFT density profiles can
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Figure 16: Fourier transform R of the second derivative of density profiles as a function
of the wavelength λ at T = 0.65 εk−1

B and T = 0.7 εk−1
B : molecular simulations

(blue), DGT (orange), DFT (red), and the empirical correlation (pink).
λstruc indicates the wavelength from the oscillatory layering structure.

also be examined visually in Fig. 15 to be approximately one σ. The wavelength of the
layering structure for both MD and DFT is almost constant over all temperatures even
though the amplitude decreases with increasing temperature.

Even though a Gaussian filter was applied to the MD density profiles, as described above,
to suppress stochastic fluctuations, the Fourier transform from MD density profiles show
noise at about λ < 0.7σ. Due to the applied narrow filter width, an interference of the
filter with the band at λstruc can be excluded.

The Fourier transforms were deconvoluted as described above and the obtained peak
due to the oscillatory layering structure at λstruc was integrated. This results in the
peak area A, which is proportional to the average amplitude of the density oscillations
in each density profile. The peak area A is plotted in Fig. 17 for MD and DFT in
the entire temperature range between the triple and critical temperature of the LJTS
fluid. The relative peak area with respect to that in the spectrum of the MD results
at T = 0.65 εk−1

B is plotted. DFT and molecular simulations density profiles have their
maximum peak area at low temperatures close to the triple point as expected [145, 169,
369, 653]. This is due to an increased structuring of particles at the rapidly changing
density with respect to z at the interface at lower temperatures. The peak area of Roscil

decreases monotonically with the temperature for these types of density profiles. While
the temperature dependency of A agrees well between DFT and MD, the magnitude
differs significantly. The maximum relative peak area at T = 0.65 εk−1

B is about 6.69 for
DFT. The relatively high amplitude in the DFT density profiles compared to the MD
results is mainly due to the fact that MD density profiles are averaged over two spatial
coordinates (x and y), cf. Fig. 14.

Surface fluctuations are present in molecular simulations [267, 713] and smear the oscil-
latory layering structure in the density profiles due to the spatial and time averaging.
This results in a much lower amplitude of the layering in the MD density profiles. The
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Figure 17: Temperature dependency of the relative peak area of Roscill at λstruc calcu-
lated by the curve deconvolution: molecular simulations (squares) and DFT
(triangles). The dashed line is a ∝ 1/T extrapolation for the MD results
to higher temperatures. The normalization is done with respect to AMD

at T = 0.65 εk−1
B . The error bars from molecular simulations are estimated

from the signal-to-noise ratio in the Fourier transform, cf. Fig. 16. The
dotted lines indicate the triple temperature, the temperature T /Tc = 0.88
at which the Fisher-Widom (FW) line crosses the dew line [145], and the
critical temperature respectively. Solid lines are a guide for the eye.

layering at the intrinsic surface (black solid line) is visible in Fig. 14 but decreases with
an increasing temperature. It is therefore likely that the layering at the intrinsic sur-
face is more pronounced than the layering in the time and space-averaged MD density
profiles. The influence of surface fluctuations, i.e. capillary waves, has been discussed
in the literature numerous times [69, 169–171, 174, 454, 651–653, 669]. Hence, capillary
waves that are present in 3D molecular simulations but are not captured by DGT and
DFT lead to a Gaussian broadening of the interface, which also smears the oscillatory
layering structure. It is expected that capillary wave fluctuations reduce the amplitude
of the oscillatory layering structure, but their wavelength and temperature decay re-
mains unchanged – the decay is expected to be exponential with the surface roughness
[169, 653, 669]. This is in line with our finding that the oscillatory layering structure in
computer experiment is much less prominent than that in DFT while the wavelength is
the same, i.e. neither capillary waves nor the temperature affects the wavelength of the
layering structure.

The error bars shown for molecular simulations in Fig. 17 were estimated from the
signal-to-noise ratio, i.e. the average noise peak height at 0 < λ < 0.7σ and the peak
height at λ = 1σ. Only data points for which the numerical value exceeds the correspond-
ing error bar are plotted in Fig. 17, which is only the case for the three temperatures
T /εk−1

B = 0.65, 0.7, and 0.75. Hence, the oscillatory layering structure in the molecu-
lar simulations can only be detected with the applied method up to a temperature of
T ≃ 0.75 εk−1

B . The shown dashed line is an extrapolation for the MD results with a
simple 1/T function that also nicely reproduces the temperature dependency of A for
DFT.
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The dotted vertical line in Fig. 17 indicates the temperature T /Tc = 0.88, where the
Fisher-Widom (FW) line for the LJTS fluid intersects the dew line according to Refs.
[145, 369, 675]. This is in very good agreement with the temperature decay and vanishing
of the oscillatory layering structure for DFT and MD results found in this work.

2.5 Conclusions

The vapor-liquid interface of the Lennard-Jones truncated and shifted (LJTS) fluid was
investigated in the present work by molecular simulations, density gradient theory, and
density functional theory. The PeTS (perturbed truncated and shifted) EOS and PeTS-i
functional, developed in a previous work of our group [249, 637], were applied.

Equations of state from the literature for the LJTS fluid [302, 662] cannot be used in
interfacial theories due to lacking accuracy [302] or unphysical behavior in the unstable
region [662]. An Equation of state for the LJTS fluid was therefore developed based on
perturbation theory [249]: the perturbed truncated and shifted (PeTS) EOS. It gives
similar results for the vapor-liquid equilibrium (VLE) as the best existing EOS for the
LJTS fluid, that of Thol et al. [662], but shows no unphysical behavior in the metastable
or unstable region.

The PeTS EOS has a simple structure and was parameterized only to VLE data [249].
That data is well described by the PeTS EOS. But the PeTS EOS also predicts ac-
curately molecular simulation results in the metastable region, as well as data on ho-
mogeneous stable states, including states far above the critical point. The PeTS EOS
was applied in a DGT and a DFT approach for modeling the surface tension of the
vapor-liquid interface. The DGT influence parameter κ is found to be constant within
the error bars of the molecular simulations data. The DFT interaction averaging diam-
eter is only fit to one surface tension value. The resulting surface tension of the LJTS
fluid calculated by DGT and DFT lies within the error bars of the molecular simulation
results.

DGT and DFT describe the interfacial properties, i.e. the density and pressure profiles
and the surface tension, of the LJTS fluid from molecular simulations similarly well.
The results for the surface tension from DGT and DFT lie mostly within the error bars
of the molecular simulations results. It is thereby shown that the use of a very accurate
EOS in density gradient theory or functional in density functional theory leads to good
agreement between those theoretical methods and molecular simulations regarding the
interfacial structure.

However, the comparison of molecular simulations, density gradient theory, and density
functional theory reveals some significant differences, i.e. DGT does not generate the
drop in the pressure profile on the vapor side of the interface [714] and the oscillatory
layering structure on the liquid side of the density profile.

The post-processing method that was developed here for the investigation of the os-
cillatory layering structure reveals that density oscillations, as predicted by DFT, are
also present in the molecular simulations density profiles for the LJTS fluid, however,
with a lower amplitude. The decay of the amplitude of the oscillatory layering structure
with an increasing temperature is found to be in very good agreement with predictions
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for the Fisher-Widom line by Dijkstra and Evans [145]. The amplitude of the density
oscillations decreases with an increasing temperature while the wavelength stays con-
stant. Since the MD density profiles are smeared by surface fluctuations which are not
present in DFT, the density oscillations are significantly smaller in their amplitude, as
also discussed in Ref. [170, 652, 653]. Investigating the influence of a Gaussian convo-
lution on the DFT density profiles, which considers the temperature-dependent surface
fluctuation amplitudes and the statistical distribution of interface positions, could be
helpful for future work.

The fact that density profiles from different temperatures seem to coincide at the critical
density, if the origin of the spatial axis is set to the density of the rectilinear diameter
at each temperature might be an interesting topic for future systematic investigations.
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3 Binary Mixtures of Lennard-Jones
Truncated & Shifted Fluids:
Molecular Simulation and Density
Gradient Theory

3.1 Introduction

In the present work, a systematic study of interfacial properties of mixtures of Lennard-
Jones truncated and shifted (LJTS) fluids was carried out. The PeTS EOS [249] (cf.
section 2.2) was used to describe the LJTS fluid within DGT. The PeTS EOS describes
the properties of the LJTS fluid well both for stable and metastable fluid states [249].
Also the results for the density profiles in the interfacial region obtained by the PeTS
EOS in combination with DGT agree well with those from MD simulations of the LJTS
fluid, cf. section 2.3 [637]. For this purpose, the influence parameter κ of the DGT was
adjusted to results from the surface tension from MD simulations of the LJTS fluid.
Remaining differences between the results from MD and those from DGT probably
mainly stem from the fact that fluctuations occur in MD but not in DGT, cf. chapter
2.

In the present work, the PeTS EOS [249] was applied for the first time to mixtures.
The extension is based on van der Waals one-fluid theory. The molecular interaction
parameters of the LJTS model were simply adopted in the PeTS EOS, including those
in the combination rule. The results from both approaches are compared for phase
equilibria and interfacial properties of the studied mixtures.

As outlined in introduction, a maximum of the component density in the interfacial
region is observed in many cases for the low-boiling component in mixtures, which can
reach values several times larger than the largest value of the two bulk densities of that
component [50, 635], cf. Fig. 1. This is called enrichment. Significant enrichment has
been reported for water + CO2 mixtures, where the component density of CO2 were
reported to be up to 7 times higher at the interface than in the bulk phases [354, 373,
391, 504]. In water + alcohols mixtures [305], as well as alkanes + dimethylformamide
mixtures [589], component densities were found which were up to 10 times higher than
the highest corresponding component density in the bulk phase. Only minor enrichments
are reported for mixtures of alkanes [87, 533], mixtures of poly(dimethylsiloxane) + acid
gases [604], mixtures of carbon dioxide + sulfur dioxide, mixtures of carbon dioxide +
hydrogen sulfide [77, 78], mixtures of acetone + nitrogen and of acetone + oxygen [153],
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and mixtures of R32 and R290 [184]. Overall, a strong enrichment is reported in many
cases where the VLE exhibits a wide-boiling behavior [50, 56, 379, 459, 483, 492, 504,
583, 634, 705]. No systematic evaluation of the phenomenon of interfacial enrichment
has been conducted so far to elucidate its dependency on the type of the mixture. This
is done in the present work.

This chapter reports on results from four studies on binary LJTS mixtures. First, the
employed simulation methods and theory are introduced in section 3.2. Then, the four
studies are subsequently discussed: (1) six binary LJTS mixtures were studied at one
temperature but in the entire composition range (section 3.3). (2) 90 LJTS mixtures
were studied at constant temperature and liquid phase composition (section 3.4). (3) A
conformal solution theory for interfacial properties of vapor-liquid interfaces is developed
and applied to the data from (2) (section 3.5). (4) Two binary LJTS mixtures were
studied in a wide temperature and composition range (section 3.6). While (1) - (3)
are restricted to vapor-liquid equilibria and interfaces, (4) also considers vapor-liquid-
liquid, liquid-liquid, and fluid-fluid equilibria and interfaces. The four studies focus on
different aspects of fluid interfaces, but all contribute to a comprehensive understanding
of interfacial properties of simple fluid mixtures.
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3.2 Modeling and Simulation

3.2.1 Binary Lennard-Jones Truncated & Shifted Mixtures

The Lennard-Jones truncated and shifted (LJTS) potential with a truncation radius of
2.5σ is a simple and computationally efficient intermolecular potential that still gives a
reasonable picture of the behavior of simple fluids. Therefore, it is often used as a model
fluid for studies of physical phenomena and the development of methods in molecular
simulations [50, 154, 272–274, 626, 636, 637, 662].

The LJTS potential uLJTS used for the molecular simulations in this work is

uLJ(r) = 4ε [(σ
r
)

12

− (σ
r
)

6

] and (28)

uLJTS(r) =
⎧⎪⎪⎨⎪⎪⎩

uLJ(r) − uLJ(rc) r ≤ rc

0 r > rc.
(29)

with uLJ being the full Lennard-Jones potential, ε and σ being the energy and size para-
meter, respectively. The distance between two particles is denoted by r. The truncation
radius rc of the potential is set to 2.5σ throughout this chapter. The truncation of
the potential has an influence on the fluid’s thermodynamic bulk [148, 395, 611, 672]
and interfacial properties [31, 169, 170, 230, 507, 706]. Since the interaction potential is
truncated at 2.5σ, no long-range correction for the forces and the pressure is necessary.

In the present study binary LJTS mixtures were investigated. The high-boiling com-
ponent (i.e. the component with the higher boiling point) is labeled with ’1’ and the
low-boiling component (the component with the lower boiling point) with ’2’. The size
parameter of both components is the same in all mixtures, i.e. σ1 = σ2 = σ. Also the
mass of both components is the same.

The modified Lorentz-Berthelot combination rules are employed [52, 394] for the mod-
eling of the interaction between unlike LJTS particles:

σij =
σi + σj

2
, (30)

εij = ξ
√
εiεj . (31)

Here, indices i and j stand for the interaction of two particles of the same component
and ij for the cross interaction between the different components, and ξ is a state-
independent interaction parameter. The binary interaction parameter ξ12 is often ad-
justed to VLE data of the binary mixture and found to be state-independent in many
cases [594]. The goal of the present work is to carry out a systematic study of the influ-
ence of the molecular interactions on the interfacial properties. Hence, binary systems
were considered in this work with different values for the interaction parameters ξ and
ε2.
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3.2.2 Extending the PeTS EOS to Mixtures

The PeTS EOS was developed to model the thermodynamic properties of the LJTS fluid
[249], cf. chapter 2. It is based on the perturbation theory of Barker and Henderson
[41], which splits the free energy per particle ã = a/kBT into the ideal gas contribution
ãid, the free energy of a hard sphere potential ãhs and a perturbation ãpert contribution
due to dispersion, i.e.

ã = ãid + ãhs + ãpert . (32)

The perturbation contribution is modeled as a sum of first- and second-order contribu-
tions, i.e. ãpert = ã1 + ã2. In analogy to the approach of Gross and Sadowski, [223, 249]
these are developed in a Taylor series as functions of the packing fraction η. The PeTS
EOS was fitted to vapor-liquid equilibrium simulation data of the LJTS fluid and de-
scribes the vapor pressure and the saturated densities well [249], cf. chapter 2.

The PeTS EOS was extended in the present work to binary mixtures based on the van
der Waals one-fluid theory [367], which is known to perform well as long as the size
parameters σ1 and σ2 of both components are similar [222, 237, 605].

The free energy of the hard sphere fluid mixtures is [67, 223, 407]

ãhs = ζ−1
0

⎛
⎝

3ζ1ζ2

(1 − ζ3)
+ ζ3

2

ζ3(1 − ζ3)2
+ (ζ

3
2

ζ2
3

− ζ0) ln(1 − ζ3)
⎞
⎠

, (33)

where ζn is defined as

ζn =
π

6
ρ

2

∑
i=1

xid
n
i with n = 0, 1, 2, 3 . (34)

In Eq. (34) ρ is the total density of the mixture, xi is the mole fraction of the component
i and di the temperature dependent effective hard sphere diameter of component i.
Considering that the packing fraction is η = ζ3, the total density of the mixture can be
calculated from

ρ = 6

π
η (

2

∑
i=1

xid
3
i )

−1

. (35)

The temperature-dependent diameter di is calculated according [41, 108] to:

di = σi(1 − c1 exp (−c2εi
kBT

)) , (36)

where c1 and c2 are universal constants of the pure component PeTS EOS [249], cf.
chapter 2. The first and second-order dispersion term are given by [223]

ã1 = −2πρ
6

∑
k=0

akη
k

2

∑
i=1

2

∑
j=1

xixj(εij/kBT )σ3
ij , (37)

ã2 = −πρ(1 + 8η − 2η2

(1 − η)2
)
−1 6

∑
k=0

bkη
k

2

∑
i=1

2

∑
j=1

xixj(εij/kBT )2σ3
ij. (38)

In the series expansion in η (first sum in both terms) ak and bk are also universal
constants of the pure component PeTS EOS [249]. The numeric values of the constants
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c1, c2, ak and bk were adjusted to VLE data of the pure LJTS fluid. The equations are
presented here for binary mixtures, but in a way that the extension to multicomponent
mixtures is straightforward. For a comprehensive description of the implementation of
the equations and derivatives see Ref. [223].

For the calculation of the cross interaction parameters σij and εij in Eq. (37) - (38) the
modified combination rules of Lorentz and Berthelot were used – exactly in the same
way as they were used in the molecular simulations, i.e. Eq. (30) and (31) also apply
for the PeTS EOS.

3.2.3 Density Gradient Theory for Binary Mixtures

Density gradient theory (DGT) can be applied for the calculation of interfacial properties
of pure components [81, 82, 91, 121, 455] and mixtures [78, 90, 159, 305, 404, 456, 458,
477]. It only requires a free energy model of the fluid and the numbers for the binary
influence parameters κij, which describe the influence of the density gradients on the
free energy. For an introduction into DGT we refer the reader to Refs. [125, 455, 573].

In DGT, the free energy of the heterogeneous system is expanded in a Taylor series
in the density derivative with respect to the spatial coordinate normal to the interface
∇mρ, m = 1, 2, .. and usually truncated after the square gradient term. The free energy
density â = A/V can thereby be written for a planar interface of a binary mixture with
the components i and j as:

â(ρ,∇ρ) = â0(ρ) +
2

∑
i=1

2

∑
j=1

1/2 κij∇ρi∇ρj (39)

where â0(ρ) is the free energy per volume of the homogeneous system at the local
density and ρ indicates the vector of the number densities ρi and ∇ρ the vector of the
corresponding gradients. The influence parameters κij generally depend on density and
temperature [37, 121, 573]. However, in many applications they are treated as state-
independent parameters [50, 305], which is also done in the present work.

In the remainder of this work, the following notation is used: κ1 and κ2 stand for the
pure component influence parameters and κ12 stands for the cross-interaction influence
parameter. The influence parameter of the pure LJTS fluid has been determined in
Ref. [249] and is adopted here. This leads to: κ1 = 2.7334σ5ε as well as to κ2 =
κ1

ε2
ε1
. It was shown in Refs. [249, 637] that this leads to an excellent description of

the pure component interfacial tension of the pure LJTS fluid, but a slight systematic
underestimation of the interfacial thickness predicted from molecular simulation [628,
637], cf. chapter 2. The cross-interaction influence parameter was calculated in the
present work from

κij =
√
κiκj . (40)

In the literature, often an additional adjustable parameter is used in Eq. (40) to handle
particularly complex and asymmetric mixtures [377, 504]. This was not done in the
present work.

The equilibrium density profiles ρi(z) in the planar interface were computed by min-
imizing Eq. (39). For solving the DGT equation for both components in the entire
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interfacial domain, the numerically robust stabilized DGT (sDGT) algorithm proposed
by Mu et al. [477] as well as the classical reference density method [91] were employed.
The results from both methods were found to agree perfectly. The domain length was
set to 30σ and a spatial discretization of 0.02σ was used.

The surface tension γ was calculated from [91, 573]

γ = ∫
2

∑
i=1

2

∑
j=1

κij∇ρi∇ρj dz . (41)

Results obtained by DGT in combination with the PeTS EOS are referred to in the
following as ’results from DGT’ for brevity.

3.2.4 Molecular Simulations

Direct Vapor-Liquid Equilibrium Simulations

The molecular simulations were performed with the MD code ls1 mardyn [506] in the
NVT ensemble with N = 16,000 particles. The simulation volume contained two phases,
a slab of a first phase in the middle, surrounded by two slabs of a second phase. Periodic
boundary conditions were applied, such that two fluid interfaces were obtained, which are
planar, if the fluctuations are neglected. The interfaces were perpendicular to the z-axis.
The elongation of the simulation box normal to the interface was 80σ and the thickness
of the phase in the centre of the simulation box was about 40σ, which is large enough to
exclude finite size effects [706]. The elongation in the directions parallel to the interface
was at least 20σ. For the initialization, the bulk phase compositions were estimated with
the PeTS EOS to ensure a stable simulation and fast equilibration. The equilibration
was carried out for 2,500,000 time steps. The production was executed for 7,500,000 time
steps to reduce statistical uncertainties. Density and pressure profiles were computed
in block averages of 500,000 time steps during the production phase, resulting in 15
sampling points for each state point. The pressure and density profiles were calculated
at N = 1200 bins, each with a width of ∆z = 0.0667σ. The equation of motion was
solved by a leapfrog integrator [176] with a time step of ∆τ = 0.001 σ

√
M/ε. The

statistical error was estimated to be twice the standard deviation of all block averages.
The equilibrium densities and pressures were calculated as an average over the respective
phases excluding the area close to the interface, i.e. the area where the first derivative
of the density with respect to the z-coordinate deviates from zero significantly.

The position of the phase in the middle of the simulation box fluctuates. This fluctu-
ation would result in a smearing of the averaged density profiles. To avoid this, the
individual density profiles from one block average were shifted before the averaging.
The shift was carried out such that the z-axis origin was set to the position, where
ρtot = ρ′′tot + 0.5(ρ′tot − ρ′′tot), where ρtot is the total number density ρtot = ρ1 + ρ2.

The surface tension was computed from the deviation between the normal and the tan-
gential diagonal components of the overall pressure tensor [325, 695], i.e. the mechanical
route

γ = 1

2 ∫
∞

−∞
(pN − pT) dz. (42)
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The normal pressure pN is thereby given by the z-component of the diagonal of the
pressure tensor, and the tangential pressure pT is determined by averaging over x- and
y-components of the diagonal of the pressure tensor. The interfacial area S of each
planar fluid interface is given by the cross section of the simulation volume normal to
the z-axis.

Henry’s Law Constant Simulations

Henry’s law constants H2,1 of the low-boiling component 2 in the solvent 1 were de-
termined in the NpT ensemble with 1372 solvent particles using Widom’s test particle
method [712]. The simulations were performed with the program ms2 [575]. In the sim-
ulations, the residual chemical potential µ∞2 of the solute is sampled, which is directly
related to the Henry’s law constant by [607]

H2,1 = ρ′kBT exp(µ∞2 /kBT ) , (43)

where ρ′ is the saturated liquid density of the solvent and T is the temperature. Each
simulation run consisted of 300,000 time steps for equilibration and 1,000,000 time steps
for production. The time step was set to ∆τ = 0.001σ

√
M/ε. 5200 trial insertions were

carried out per time step. The statistical uncertainty of the Henry’s law constant is
estimated to be three times the standard deviation of the ten block averages (the block
size was 100,000 time steps).

3.2.5 Definition of Interfacial Properties

The relative adsorption and enrichment of the low-boiling component 2 and the inter-
facial thickness are used here to characterize the vapor-liquid interfaces. Both the MD
simulations and the DGT calculations yield the component density profiles ρi(z) for
both the high-boiling and low-boiling component i = 1, 2 at the planar interfaces.

On the basis of the density profiles of both components, the relative adsorption defined
by Gibbs [211] can be computed by the symmetric interface segregation according to
Telo da Gama and Evans [194, 692] as

Γ
(1)
2 = − (ρ′2 − ρ′′2)∫

∞

−∞
[ρ1(z) − ρ′1
ρ′1 − ρ′′1

− ρ2(z) − ρ′2
ρ′2 − ρ′′2

]dz , (44)

where ρ′1, ρ′′1 and ρ′2, ρ′′2 are the component densities at saturation in the two coexisting
bulk phases ′ and ′′, respectively. Γ

(1)
2 is the relative adsorption of component 2 at the

interface with respect to component 1.

A further property for describing the interfacial excess is the interfacial enrichment E2

of the low-boiling component 2, which was introduced by Becker et al. [50] as the ratio
between the maximum local density of component 2 in the interfacial region and the
larger of the component densities in the two bulk phases ρ′2, ρ′′2 ,

E2 =
max (ρ2(z))
max (ρ′2,ρ′′2)

. (45)

The enrichment E2 thereby quantifies the non-monotonicity of the density profiles at the
interface. By definition, the enrichment assumes values equal to or larger than unity.
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For the MD results, the numerator and denominator from Eq. (45) were computed for
each block averaged density profile. The bulk densities in the denominator were obtained
from a spatial averaging in the corresponding regions, while the maximum value in the
denominator is simply the maximal ρ2 value of the bins in the interfacial region. This
can cause artefacts for the evaluation of molecular simulations density profiles, which are
superimposed by a random noise: consider the extreme case that the density is uniform
in both phases as well as in the interface, i.e. ρ2(z) = const. Then, obviously E2 = 1.
But, due to the fluctuations, the evaluation of Eq. (45) in the way that we have just
described will always lead to E2 > 1 as the maximal value of the bins in the interface is
selected, which will be larger than the averaged values for the bulk phases ρ′2 ,ρ′′2 . The
results from the previous studies [628, 630, 635], indicate that values below E2 = 1.1
cannot be discerned for E2 = 1 in the case of molecular simulations data.

Both the enrichment E2 and the relative adsorption Γ
(1)
2 quantify the interfacial excess,

but they do not contain the same information. The relative adsorption Γ
(1)
2 quantifies

the interfacial excess in the sense of Gibbs [211]. It can not only be obtained from
the interfacial density profiles but also from data on the concentration-dependence of
the surface tension, i.e. from macroscopic data. The relation is given by the Gibbs
adsorption equation Γ

(1)
2 = −(∂γ/∂µ2)T . It has been shown many times [16, 25, 33,

34, 50, 116, 354, 361, 441, 445, 483, 522, 624, 659, 692] that Γ
(1)
2 computed via Eq.

(44) from the interfacial density profiles ρi(z) is in good agreement with data obtained
from the interfacial tension using the Gibbs adsorption equation. While Γ

(1)
2 is an

integral measure of the interfacial excess, the enrichment E2 simply quantifies the non-
monotonicity of the interfacial density profile, i.e. the relative peak height of ρ2(z).
E2 is therefore dimensionless, whereas Γ

(1)
2 has the dimension number of particles per

unit area. Furthermore, a relative adsorption Γ
(1)
2 > 0 may be present when there is

no enrichment (E2 = 1), e.g. if the two component density profiles are shifted relative
to each other [50, 630, 635]. But an enrichment E2 > 1 will in general result in an
adsorption Γ

(1)
2 > 0.

To describe and compare the thickness of fluid interfaces, the 90-10% definition for the
effective interfacial thickness L90

10 according to Lekner and Henderson [365] is used, which
is the distance between the points where the total number density ρtot(z) = ρ1(z)+ρ2(z)
reaches 10% and 90% of the total bulk densities respectively:

L90
10 = z(ρtot

90 ) − z(ρtot
10 ) , (46)

ρtot
10 = ρ′′tot + 0.1 (ρ′tot − ρ′′tot) ,

ρtot
90 = ρ′′tot + 0.9 (ρ′tot − ρ′′tot).

The origin on the z-axis of the interfacial profiles from both MD and DGT shown in the
following was arbitrarily chosen such that ρtot(z) = 0 at ρtot = ρ′′tot + 0.5 (ρ′tot − ρ′′tot).

For the MD results, the enrichment E2, the relative adsorption Γ
(1)
2 , and the interfacial

thickness L90
10 were calculated from each block averaged density profile. The reported

value was computed from the mean of the block averages; the statistical uncertainty was
estimated to be three times the standard deviation of all sampled block averages.
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3.3 Study of Six Binary LJTS Mixtures

In this section, six binary LJTS mixtures were investigated at a single temperature. The
temperature and the molecular interaction parameters were chosen such that different
types of phase behavior were obtained: mixtures where the low-boiling component is
subcritical and mixtures where it is supercritical. Furthermore, the study comprises
mixtures with high-boiling and low-boiling azeotropic phase behavior. All mixtures
were studied by molecular simulation and DGT.

The focus of the present study lies on the interfacial adsorption and enrichment and
its dependency on the mixture type and the composition. Conditions that favor the
enrichment are thereby identified. The obtained vapor-liquid equilibrium and interfacial
properties are discussed in detail.

3.3.1 Specification of LJTS Mixtures A - F

For component 1, ε1 = 1 and σ1 = 1 in all mixtures. The low-boiling character of the
component 2 is obtained by decreasing the dispersion energy with respect to component
1. Two different low-boiling components are investigated: ε2/ε1 = 0.9 and ε2/ε1 = 0.5.
The resulting vapor pressure curves are shown in Fig. 18. They were calculated with
the PeTS EOS, which has been shown to reproduce the LJTS vapor-liquid equilibrium
very well [249], cf. section 2.2. The temperature for which the simulations of the present
work were carried out is constant and indicated in Fig. 18 by a vertical dashed line. For
that temperature, the component 2 with ε2/ε1 = 0.9 is subcritical (dashed line), while
the component 2 with ε2/ε1 = 0.5 is supercritical (dotted line).

Figure 18: Vapor pressure curves for the three pure LJTS fluids that were considered
in the present study. The temperature for which all simulations of the
present work were carried out (T = 0.77 εk−1

B ) is indicated by vertical dotted
line. The high-boiling component 1 is the solid curve. The low-boiling
components differ in the their dispersion energies: dashed line: ε2/ε1 = 0.9,
dotted line: ε2/ε1 = 0.5. Critical points are indicated by stars.

Slightly different critical points are reported in the literature for the LJTS fluid with a
cut-off at 2.5σ [61, 148, 244, 442, 603, 611, 662, 667, 672, 687]. We adopt the values of
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Vrabec et al. [687] for the critical point of the LJTS fluid: Tc = 1.0779 εk−1
B ; ρc = 0.319σ−3.

The temperature is chosen to be T = 0.77 εk−1
B throughout this study, which corresponds

approximately 0.7 Tc. For a discussion of the influence of the temperature on vapor-
liquid interfacial properties of the pure LJTS fluid, see section 2.3.

The binary interaction parameter in the Berthelot combination rule (31) was varied
here as: ξ12 = 1, 1.2 and 0.85. These choices in combination with the varied dispersion
energy result in six binary LJTS mixtures that were investigated in this study. They are
summarized in Fig. 19 using sketches of the phase diagrams at the studied temperature.
In three of the mixtures, component 2 is subcritical, and in the three others, it is
supercritical, resulting in a critical point of the mixture. This depends on the choice
of ε2/ε1. The parameter ξ12 is used to control the deviations from Raoult’s law. For
ξ12 = 1 the mixture is almost ideal, the value of ξ12 = 1.2 causes negative deviation from
Raoult’s law and ξ12 = 0.85 causes positive deviation from Raoult’s law. The six systems
are labeled A to F. For the subritical systems, this leads to a low-boiling azeotrope and
a high-boiling azeotrope, respectively.

p
p

p

x2 x2

2 1
/e e

0.50.9

12
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A D
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Figure 19: Sketches of the isothermal phase diagrams of the six studied binary mixtures
1 + 2 at the considered temperature. The different choices of the ratio of
the LJTS dispersion energies ε2/ε1 and the binary interaction parameter
ξ12 lead to different types of phase behavior (A - F).

3.3.2 Results and Discussion

3.3.2.1 Vapor-Liquid Equilibria

Fig. 20, panels A - F show the binary phase diagrams of the six investigated mixtures,
for the studied temperature T = 0.77 εk−1

B . The numerical results for the phase equilibria
of the six studied systems obtained by MD and the PeTS EOS are given in the Appendix.
The solid lines are the PeTS EOS and the symbols are the computer experiments. The
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error bars are only shown where they exceed the symbol size. The left column shows
the subcritical (A - C) and the right column the supercritical mixtures (D - F).
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Figure 20: Vapor-liquid equilibria of the binary LJTS mixtures A - F at T = 0.77 εk−1
B .

Symbols are MD results and the lines are the PeTS EOS.

The molecular simulation results and those from the PeTS EOS agree generally very
well, even though the parameters were simply transferred from the force field to the
EOS and no adjustment was made. For mixture C some deviations in the pressure are
observed, especially in the vicinity of the low-boiling azeotrope. For the supercritical
mixtures D - F the equation of state overestimates the pressure close to the critical point
compared to the computer experiment which is, however, a general feature of classical
EOS.

The mixtures D and F show particularly wide two-phase regions. Table 4 shows the
partition coefficients at infinite dilution

K∞
2 = lim

x′2→0

x′′2
x′2

(47)

that were found from an extrapolation of the results of the PeTS EOS. The numbers of
K∞

2 are high for wide-boiling mixtures. For mixtures D and F, high numbers of K∞
2 are

found. For the azeotropic mixture B, the number for K∞
2 is below 1, meaning that the

component 2 is enriched in the liquid and not in the vapor phase contrary to all other
mixtures that were studied here.
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Table 4: Partition coefficient K2 and interfacial enrichment of low-boiling component
E2 at infinite dilution of the low-boiling component (x′2 → 0) in the six inves-
tigated binary mixtures from DGT+PeTS EOS.

System K∞
2 E∞

2

A 1.8 1.00
B 0.2 1.00
C 8.8 1.53
D 22.8 2.39
E 4.8 1.32
F 87.8 2.90

3.3.2.2 Interfacial Properties

The vapor-liquid interface was investigated for all VLE state points shown in Fig. 20
by MD and DGT. The state points of the LJTS mixtures are specified in the following
by the liquid phase composition x′2. The numerical values for the surface tension γ,
the relative adsorption Γ

(1)
2 , the enrichment E2, and the interfacial thickness L90

10 for all
studied mixtures and state points are presented in the Appendix.

Density Profiles

In Figs. 21 and 22, results for density profiles from MD and DGT are compared. Fig. 21
shows results for two state points of the mixture C, Fig. 22 is similar, but for the mixture
D. The shown state points are at low concentrations x′2.

The density of the high-boiling component ρ1(z) changes monotonously from the vapor
to the liquid phase, while the density of the low-boiling component ρ2(z) exhibits a
maximum at the interface in all four cases shown in Figs. 21 and 22. Overall, the
results from MD and DGT are in good agreement. The density maximum is predicted
by both MD and DGT, but its height is slightly larger for DGT than for MD. As already
discussed by Becker et al. [50] and Werth et al. [705] this is due to fluctuations at the
interface that are present in MD but not in DGT. Such fluctuations might also be the
reason for the slightly shifted position of the density maximum in both interfacial profiles
of the mixture C shown in Fig. 21. Also, some differences in the interfacial thickness are
observed: the MD density profiles are broader than those from DGT in all cases shown
in Figs. 21 and 22. This can also be attributed to these fluctuations [637]. Considering
the fact that the parameters ε2/ε1 and ξ12 of the LJTS force field model were simply
adopted in the EOS and no mixture data was used for the adjustment of both methods,
the results agree remarkably well. Good agreement was also observed for the other state
points of the mixtures C and D as well as for all other studied mixtures (not shown).

Figs. 23 and 24 show the density profiles for the mixtures A - F for all studied state
points. Since MD and DGT results agree very well in all cases, only the DGT results are
shown here (the corresponding plots for the MD results are presented in the Appendix).

An enrichment of the low-boiling component, i.e. a maximum in the corresponding
density profile, is observed not only in the mixtures C and D but also in the mixtures E
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Figure 21: Comparison of the component density profiles in the interface of the binary
LJTS mixture C at x′2 = 0.28 mol mol−1 (top) and x′2 = 0.1 mol mol−1 (bot-
tom). Symbols: MD simulation; lines: DGT + PeTS EOS. Red: component
1 (high-boiling); blue: component 2 (low-boiling).

Figure 22: Comparison of the component density profiles in the interface of the binary
LJTS mixture D at x′2 = 0.27 mol mol−1 (top) and x′2 = 0.1 mol mol−1 (bot-
tom). Symbols: MD simulation; lines: DGT + PeTS EOS. Red: component
1 (high-boiling); blue: component 2 (low-boiling).

and F (cf. Fig. 24). No enrichment of the low-boiling component is found in the quasi
ideal mixture A and in mixture B that exhibits a high-boiling azeotrope (cf. Fig 23).
No enrichment of the high-boiling component 1 is found in any of the six investigated
mixtures.
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Figure 23: Density profiles of the binary LJTS mixtures A, B, and C at T = 0.77 εk−1
B .

Results from DGT. Dashed lines: high-boiling component 1; solid lines:
low-boiling component 2. The color indicates the liquid phase composition.
Triangles indicate the position of the density maximum. Grey points indi-
cate the z-coordinate, where the density of the high-boiling component 1
reaches 97% of the bulk value, cf. Eq. (48).
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Figure 24: Density profiles of the binary LJTS mixtures D, E, and F at T = 0.77 εk−1
B .

Results from DGT. Dashed lines: high-boiling component 1; solid lines:
low-boiling component 2. The color indicates the liquid phase composition.
Triangles indicate the position of the density maximum. Grey points indi-
cate the z-coordinate, where the density of the high-boiling component 1
reaches 97% of the bulk value, cf. Eq. (48).
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Surface Tension, Relative Adsorption and Enrichment

Fig. 25 shows the surface tension (top), interfacial adsorption (middle), and enrichment
of the low-boiling component 2 (bottom) as a function of the liquid phase composition
x′2 for all six studied mixtures. The panels on the left show the results for the three
subcritical mixtures A, B, and C; the panels on the right the three supercritical mixtures
D, E, and F. The surface tension of the pure components 1 and 2 calculated by MD and
DGT agree very well, since the influence parameter for the pure LJTS fluid was fitted
to such data [249, 637]. The pure low-boiling component has a lower surface tension
than the high-boiling component due to the reduced dispersion energy.

Figure 25: Interfacial properties of the binary mixtures A, B, C (left plots) and D, E, F
(right plots). Plots show the interfacial tension (top row), relative adsorp-
tion (middle row), and interfacial enrichment of the low-boiling component
(bottom row) as a function of the liquid phase composition x′2. The tem-
perature is T = 0.77 εk−1

B . Symbols: MD; lines: DGT.

The surface tension of the ideal mixture A decreases linearly with increasing mole frac-
tion x′2. The surface tension of mixture B, which exhibits a high-boiling azeotrope, has a
maximum, which is found close to the azeotropic composition, cf. Fig. 20 - middle. The
surface tension of mixture C shows a minimum of the surface tension, again close to the
azeotropic composition, cf. Fig. 20 - bottom. The results for the surface tension from
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DGT agree almost always within the error bars with the MD results. This is remarkable
as in the model development no data on interfacial properties of mixtures was used.

The relative adsorption Γ
(1)
2 of the low-boiling component 2 (cf. Fig. 25 - middle) is

zero for infinite dilution of component 2. In the ideal mixture A, starting at x′2 = 0, the
relative adsorption of component 2 increases linearly with the mole fraction x′2, which is
in good agreement with the expectations from the Gibbs adsorption equation since the
surface tension decreases monotonously. The relative adsorption Γ

(1)
2 of component 2 in

mixture B, which has a high-boiling azeotrope, exhibits a minimum. On the contrary, the
relative adsorption of component 2 in mixture C, which has a low-boiling azeotrope, ex-
hibits a maximum. The composition at which the relative adsorption Γ

(1)
2 is zero – which

also corresponds to the extrema in the surface tension according to the Gibbs adsorption
equation – has been called aneotropic concentration [434]. The component adsorbing at
the interface therefore changes from 2 to 1 upon passing through the aneotropic point
with increasing x′2. No proof has been found yet, that the aneotropic and azeotropic
point must coincide [184], nevertheless the aneotropic concentration agrees well with
the azeotropic concentration for both mixtures B and C (cf. Figs. 20 and 25). This
has already been reported in the literature for mixtures with a low-boiling azeotrope,
e.g. Refs. [133, 184, 194, 195, 435]. A further interesting finding is that the curves
for the relative adsorption Γ

(1)
2 (x′2) of the three investigated mixtures have a common

intersection point at approximately x′2 = 0.6 mol mol−1. The relative adsorption results
from DGT and MD agree within the MD error bars for all three mixture A, B, and C
until this intersection point. Beyond this intersection point, the results from MD show
an increasing scattering and increasing error bars, which is likely due to the fact that
only few particles of component 1 are present.

The enrichment E2, cf. Eq. (45), for the three subcritical mixtures A, B, and C is shown
as a function of the mole fraction x′2 in Fig. 25 - bottom. A significant enrichment of
the low-boiling component is only found in the mixture C, i.e. the mixture with the
low-boiling azeotrope. At the vapor-liquid interface of that mixture, the component
density ρ2 is up to 1.5 times higher than the highest of the bulk component density (the
liquid phase in this case). The enrichment E2 is highest at infinite dilution of the low-
boiling component and decreases with an increasing mole fraction x′2. The DGT results
for the enrichment E2 of the mixture C are higher than those from MD. DGT predicts
no enrichment, i.e. E2 = 1 for both mixtures A and B, while the molecular simulations
show a slight enrichment in those two mixtures at low mole fractions of component 2 in
the liquid phase. This is due to the fact that the fluctuations of the density ρ2 in the
MD results become more important at low concentrations x′2. Since the maximum of a
fluctuating curve divided by its average value must be larger than unity Eq. (45) always
predicts an enrichment E2 ≥ 1 and this artifact from the fluctuations becomes more
important at low concentrations x′2. In principle, other definitions of the enrichment
could be applied to avoid such problems. But we prefer to keep the simple definition by
Eq. (45) as the artifacts mentioned above are generally not important. The enrichment
of the low-boiling component E2 converges to unity at higher mole fractions x′2 for all
subcritical mixtures A, B, and C.

Fig. 25 - right panel shows the predicted surface tension γ (top), interfacial adsorption
Γ
(1)
2 (middle), and enrichment of the low-boiling component E2 (bottom) for the mix-

tures D, E, and F as a function of the mole fraction of the low-boiling component 2 in
the liquid phase x′2. The surface tension of all three mixtures for which the low-boiling
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component is supercritical decreases almost linearly with x′2, except in the vicinity of the
critical point, where the surface tension goes to zero. The decay of the surface tension
becomes steeper with a decreasing binary interaction parameter ξ12. The results for the
surface tension γ of the mixtures D, E, and F (Fig. 25 - right panel) from DGT agree
almost always within the error bars with the MD results, as for the mixtures A, B, and
C (cf. Fig. 25 - left panel).

The relative adsorption of the low-boiling component Γ
(1)
2 as a function of the mole

fraction x′2 in mixture D, E, and F is shown in Fig. 25 - right panel. Starting at infinite
dilution of the low-boiling component 2, the relative adsorption Γ

(1)
2 of the low-boiling

component 2 increases with the mole fraction x′2. For mixture F, close to the critical
point, i.e. approximately at the composition x′2 where the surface tension decay changes
from a linear decay to a non-linear decay, the relative adsorption exhibits a maximum
for all three mixtures and then decreases to zero at the critical point. The steepness of
Γ
(1)
2 increases with a decreasing binary interaction parameter ξ12, which goes in line with

the decay of the surface tension. This is again consistent with the expectations from
the Gibbs adsorption equation. The agreement between the MD and DGT results for
the relative adsorption is better in the linear-decay regime of the surface tension than
close to the critical point. Close to the critical point only the trends are consistently
predicted by both methods.

The enrichment of the low-boiling component E2, cf. Eq. (45), in mixture D, E, and F
is shown in Fig. 25 - right panel as a function of the mole fraction x′2. In the mixture
D, the component density ρ2 is up to 2.1 times higher in the interface than in the bulk
liquid phase, cf. Fig. 24. Such values have also been reported in the literature for
supercritical systems, e.g. ethanol + CO2 [50] and toluene + CO2 [705]. The mixture F
shows a maximum enrichment of the low-boiling component of up to 2.8. The mixture
E on the other side has only a slight enrichment of up to 1.3. All three mixtures D,
E, and F, for which the low-boiling component is supercritical, have a monotonously
decreasing enrichment E2 with increasing mole fraction x′2, which goes to unity at the
critical point. This has already been reported by Becker et al. [50] and Werth et al.
[705]. An interesting fact is that the relative steepness of the surface tension observed for
the mixtures D, E, and F seems to correlate with the relative steepness of the interfacial
enrichment. Furthermore, the numeric values of the enrichment differs significantly
among the investigated mixtures D, E and F, whereas the numeric values of the relative
adsorption Γ

(1)
2 lie in the same range for these mixtures (cf. Fig. 25). The agreement

between the MD and DGT results for the interfacial enrichment is very good for the
mixture E, while for the mixtures D and F only the trend of the composition dependency
of the enrichment is predicted consistently by both methods.

All six studied LJTS mixtures show the highest enrichment E2 at low concentrations of
component 2. The enrichment at infinite dilution E∞

2 was computed by DGT, as the
corresponding numbers are difficult to obtain from molecular simulations due to large
statistical uncertainties if only few particles of component 2 are present. The resulting
numeric values of E∞

2 for the mixtures and conditions studied in the present work are
listed in Table 4. For the ideal mixture A, E∞

2 is basically unity, i.e. there is almost no
enrichment. However, this does not hold in a mathematical sense. A closer inspection of
the DGT results for this system shows a slight positive number of 1.001. The high-boiling
azeotropic mixture B has no enrichment, i.e. E∞

2 = 1 to the last digit. The enrichment
of the low-boiling component at infinite dilution E∞

2 from the six investigated LJTS
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mixtures is plotted as a function of the partition coefficient at infinite dilution K∞
2 in

Fig. 26. For K∞
2 > 1 the enrichment is found to increase fairly linearly with ln(K∞

2 ).

Figure 26: Enrichment of the low-boiling component 2 at infinite dilution E∞
2 com-

puted from DGT as a function of the the partition coefficient at infinite
dilution K∞

2 , cf. Eq. (47), for the six investigated LJTS mixtures A - F.
The temperature is T = 0.77 εk−1

B . Line: linear fit of the data for mixtures
with positive partition coefficients.

Relative Adsorption and Enrichment of the High-Boiling Component

For the sake of completeness the relative adsorption Γ
(2)
1 and enrichment E1 of the high-

boiling component 1 at the interface are shown in Fig. 27 for the three investigated
subcritical mixtures A, B, and C. The high-boiling component 1 shows no enrichment
in the DGT results. The MD results show a slightest enrichment, which is due to the
numerical artifact as discussed above.

Interfacial Thickness

Fig. 28 shows the interfacial thickness L90
10 as a function of the mole fraction of the low-

boiling component in the liquid phase x′2 as obtained from the MD and DGT data using
Eq. (46). Fig. 28 - top shows the results of the interfacial thickness of the mixtures A,
B, and C and Fig. 28 - bottom of the mixtures D, E, and F.

The interfacial thickness for the ideal mixture A follows a linear trend with increasing
x′2. The mixture B exhibits a minimum in the interfacial thickness. Mixture C has a
maximum in the interfacial thickness. Comparing these findings to the results for the
surface tension, shows that wider interfaces of a Lennard-Jones mixture have a lower
surface tension, while narrower interfaces have higher surface tension.

The interfacial thickness L90
10 of the mixtures D, E, and F, where the low-boiling compo-

nent is supercritical, exhibits a pole at the critical point, because the interface becomes
infinitely broad.

The density profiles in MD are broader than those from DGT which is in line with
the results from the pure LJTS substance, cf. chapter 2. This has been attributed to
fluctuations at the interface that are present in MD as a dynamical method but not in
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Figure 27: Relative adsorption (top) and interfacial enrichment (bottom) of the high-
boiling component of the mixtures A, B, and C as a function of the liquid
phase composition x′2. The temperature is in all cases T = 0.77 εk−1

B . Sym-
bols: MD; lines: DGT. Black corresponds to system A, blue to system B
and red to system C.

DGT [637]. Such deviations of results for the interfacial thickness obtained by DGT
and MD have also been reported in the literature for other substances [50, 705]. The
results obtained in the present work show that the trend of the composition dependency
of the interfacial thickness is predicted consistently by both methods. Increasing the
interfacial thickness predicted by DGT by about 15% would lead to a good agreement
between MD and DGT for all six investigated mixtures.

3.3.2.3 Detailed Discussion of the Density Profiles

While the density profiles of the mixtures A and B are similar (cf. Fig. 23), the structure
of the fluid interfaces in the mixtures C, D, E, and F (cf. Fig. 23 and 24) have unique
attributes which are discussed in the following. To illustrate these attributes, we use the
’knee on the liquid side of the density profiles’ of the high-boiling component 1, which is
defined as the z-coordinate z1,97 where the density ρ1(z) reaches 97% of the liquid bulk
density ρ′1:

ρ1,97(z1,97) = ρ′′1 + 0.97 (ρ′1 − ρ′′1). (48)

For the subcritical mixtures A (Fig. 23 - top) and B (Fig. 23 - middle), the density
profiles of the low-boiling component 2 have a similar composition dependency, while
differences in the density profiles of the high-boiling component 1 are found. In the ideal
mixture A (Fig. 23 - top), the knee on the liquid side of the density profiles of the high-
boiling component z1,97 moves slightly monotonously to the right with increasing x′2.
This results in a slight positive adsorption of the low-boiling component with respect to
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Figure 28: Interfacial thickness of the mixtures A, B, and C (top) and mixtures D,
E, and F (bottom) at T = 0.77 εk−1

B . Symbols: MD; lines: DGT. Black
corresponds to systems with ξ12 = 1; blue to systems with ξ12 = 1.2 and red
to systems with ξ12 = 0.85.

the high-boiling component (cf. Fig. 25 - middle) and an increasing interfacial thickness
with an increasing mole fraction x′2 (cf. Fig. 28 - top).

The high-boiling component 1 in mixture B (cf. Fig. 23 - middle) behaves differently,
i.e. its liquid phase knee z1,97 moves first left with increasing mole fraction x′2 and
than back right. The turning point can be estimated to be the azeotropic composition.
This results in a minimum in the composition dependency of the interfacial thickness
(cf. Fig. 28 - top) and a negative adsorption of the low-boiling component until the
azeotropic composition (cf. Fig. 25 - middle).

The mixture C, that exhibits a low-boiling azeotrope, shows a completely different
interfacial behavior (cf. Fig. 23 - bottom) than the mixtures A and B. The density
profiles of the low-boiling component exhibit a maximum at low mole fractions x′2. The
z-position of the maximum shifts right with increasing x′2, which goes in hand with a
significant broadening of the interface (cf. Fig. 28 - top). The liquid phase knee z1,97

of the high-boiling component 1 in mixture C (Fig. 23 - bottom) shows the opposite
behavior as in the mixture B (Fig. 23 - middle), i.e. it moves first right with increasing
x′2 and than left, which is the reason for a positive relative adsorption of the low-boiling
component 2 (cf. Fig. 25 - middle) and a maximum of the composition dependency of
the interfacial thickness (cf. Fig. 28 - top).

The density profiles of mixture D (cf. Fig. 24) show a strong enrichment of the low-
boiling component 2, central in the interfacial region. Its maximum position stays
at a constant z-position throughout the investigated composition range in contrast to
the mixture C. The interfacial thickness in mixture D monotonously increases and the
enrichment decreases with increasing mole fraction of the low-boiling component in the
liquid phase x′2, cf. Fig. 28 and 25, respectively.

For the mixture E, the z-position of the enrichment slightly shifts right with increasing
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x′2, similar to mixture C (both have an elevated cross interaction, i.e. ξ12 = 1.2). The
interfacial thickness of mixture E monotonously increases with increasing mole fraction
x′2, cf. Fig. 28 - bottom. The density profiles of mixture E in Fig. 24 furthermore
reveal, that this broadening is dominated by the low-boiling component on the vapor
side of the interface (z < 0), while it is dominated by the high-boiling component on the
liquid side of the interface (z > 0).

While the low-boiling component’s bulk liquid densities are higher than the bulk vapor
densities in the mixtures D and E, i.e. ρ′2 > ρ′′2 (cf. Fig. 24 - top and middle), this
inverts for the mixture F (Fig. 24 - bottom). It is shown in section 3.4 and in chapter 9
that the relation of the densities ρ′2 and ρ′′2 is of general importance for the enrichment
at vapor-liquid interfaces in a given mixture.

The mixture F, which exhibits a particularly wide-boiling phase envelope (K∞
2 = 87.8),

shows a large enrichment of the low-boiling component 2 at the interface. The z-position
of that maximum is about one σ left of the center of the interface at low x′2 and shifts
further left with increasing x′2. Also in the mixture F, the interfacial thickness increases
monotonously with increasing x′2 (cf. Fig. 28 - bottom). This broadening is mainly
located on the vapor side of the interface (z < 0).

The density profiles of the high-boiling component show the interesting feature of a
common intersection point in all three supercritical mixtures D, E, and F (cf. Fig.
24). This common intersection point is one of the most noticeable features in the
density profiles of the mixtures where the low-boiling component is supercritical. This
phenomenon has already been reported for pure substance density profiles [63, 637], cf.
chapter 2. The density at the intersection point for pure substance density profiles was
identified as the critical density, which can be attributed to the law of the rectilinear
diameter. In the three subcritical mixtures A, B, and C (cf. Fig. 23), no common
intersection points of the density profiles are observed. The density ρ1 at the intersection
point of the mixtures D and E are slightly below the corresponding critical density.
Common intersections are also found at fluid interfacial density profiles in other systems
in this work: section 3.6.4.4 reports on different types of common intersection points
in a type III mixture and chapter 7 reports on common intersection points in density
profiles in the system cyclohexane + CO2.

3.3.3 Conclusions

In this section, interfacial and bulk properties of six binary Lennard-Jones truncated and
shifted mixtures were examined with molecular simulations and density gradient theory
in combination with the PeTS EOS. The cross-interaction influence parameter in DGT
is calculated by a geometric mixing rule. Six types of mixtures were investigated – all at
the same temperature. Their phase behavior was set by the ratio of the two component’s
dispersion energies and the binary cross interaction parameter in the modified Lorentz-
Berthelot combination rules.

The agreement of the results from MD and DGT+PeTS for both bulk and interfacial
properties is found to be excellent. The DGT results for the surface tension and relative
adsorption agree within the MD error bars. Slight deviations between the MD and DGT
results for the enrichment are observed, but the trends are consistently predicted from



3.3 Study of Six Binary LJTS Mixtures 57

both methods. Significant deviations between MD and DGT are only found for the
interfacial thickness, but the trends still agree well between both predictions. These
deviations are attributed to surface fluctuations that broaden the interface present in
MD but not in DGT [637].

A significant enrichment of the low-boiling component at the interface is found for
mixtures where the low-boiling component is supercritical or that exhibit a low-boiling
azeotrope. The local density of the low-boiling component at the interface is found
to be up to three times the value in the bulk phase. Enrichment is in all cases only
found for the low-boiling component. Furthermore, the enrichment is found to decrease
monotonously with the mole fraction of the low-boiling component in the liquid phase in
all investigated mixtures, i.e. the highest enrichment is found at infinite dilution of the
low-boiling component. The magnitude of the enrichment is found to be related to the
width of the phase boundary. Strong enrichment is therefore favored in mixtures that
exhibit a wide boiling phase boundary, which reinforces observations in previous studies
[50, 705]. The numeric values of the relative adsorption of the low-boiling component
are similar in the investigated mixtures, although the enrichment of the low-boiling
component differs significantly among the mixtures.

The present study focuses on the influence of dispersive interactions on interfacial prop-
erties. Future work could benefit from an extension to H-bonding molecules and polar
interactions [101, 102, 225, 358].
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3.4 Comprehensive Study of Binary LJTS mixtures

In this section both molecular dynamics simulation and density gradient theory are
used to conduct a comprehensive study of binary Lennard-Jones truncated and shifted
(LJTS) mixtures, regarding their vapor-liquid equilibrium and interfacial properties.

While the global phase behavior of Lennard-Jones mixtures or mixtures of other simple
spherical molecules has been investigated several times in the literature [139, 339, 344,
426, 538], no systematic study of the global behavior of interfacial properties is available.

We have therefore carried out such a study using both molecular dynamics simulation
and DGT. The focus lies on the interfacial adsorption and enrichment and its depen-
dency on the molecular interactions. The studied fluid is described by the Lennard-Jones
truncated and shifted (LJTS) potential. The PeTS EOS [249, 635] (Perturbed Lennard-
Jones truncated and shifted) is used to describe the LJTS fluid within DGT. The planar
vapor-liquid interface of 90 binary LJTS mixtures was investigated at constant tempe-
rature (T = 0.77 εk−1

B ) and constant liquid phase composition (x′2 = 0.05 mol mol−1). The
temperature is 0.7 of the critical temperature of the high-boiling component.

The 90 investigated mixtures were obtained by varying the dispersion energies of the
two components ε2/ε1 and the binary interaction parameter ξ in the modified Berthelot
combination rule [52]. The size parameter of both components was the same and was
not varied in this work. For the planar interfaces of these mixtures the surface tension,
interfacial thickness, relative adsorption, and enrichment of the low-boiling component
were determined, such that a large body of data for elucidating the influence of the
different interactions on the interfacial properties became available.

All interfacial properties of different studied mixtures were found to have common regu-
larities regarding their ξ, ε2/ε1 dependency. Using a CST, it is then shown in section 3.5
that these regularities can be explained in terms of the mean liquid phase interactions,
i.e. the internal energy. This methodology is used to correlate the interfacial properties
as functions of the internal energy of the liquid phase. CST has been applied to bulk
properties (static [366, 367, 393, 406, 408, 463] and transport [462]) but to the best of
our knowledge not to interfacial properties.

By computing the Henry’s law constants of the investigated LJTS mixtures, the results
and the physical insight from the interfacial properties behavior are furthermore put
into relation with the gas solubility of the low-boiling component in the high-boiling
component.

3.4.1 Specification of Binary LJTS Mixtures

90 binary LJTS mixtures were investigated in the present work. The high-boiling compo-
nent is denoted as component 1 and the low-boiling component as 2. The size parameter
of both components is the same for all investigated mixtures, i.e. σ1 = σ2 = σ. Also the
mass of both components is the same. Component 1 is considered as reference com-
ponent here and is the same for all mixtures with ε1 = 1 and σ1 = 1. The low-boiling
character of component 2 is obtained by varying the dispersion energy with respect to
component 1 between ε2/ε1 = 0.5 and 0.95 with a decrement of 0.05. The critical points
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of the high-boiling component 1 and the ten different low-boiling components 2 are
shown in Fig. 29 together with the vapor pressure curves of component 1 and two of
the pure components 2 with the highest and lowest dispersion energy ratio ε2/ε1. The
results shown in Fig. 29 were calculated with the PeTS EOS, which is known to repro-
duce the LJTS vapor-liquid equilibrium very well [249, 635], cf. chapter 2. Throughout
the present study, the temperature is T = 0.77 εk−1

B , which corresponds to approximately
0.7 of the critical temperature of the pure component 1 (cf. dashed line in Fig. 29).

Figure 29: Vapor pressure curves for the pure LJTS fluids that were considered in
the present work. The temperature for which all simulations of the present
work were carried out is T = 0.77 εk−1

B and is indicated as vertical dotted line.
The high-boiling component 1 is indicated in red; the different low-boiling
components 2 in black. The low-boiling components 2 with the lowest
(ε2/ε1 = 0.5) and highest (ε2/ε1 = 0.95) dispersion energy used in this study
are indicated as black lines. For clarity only two out of the 10 low-boiling
components’ vapor pressure curves are shown. Stars indicate the critical
points of all 11 investigated pure substances. The empty stars indicate the
critical points of the low-boiling fluids with ε2/ε1 = 0.55, 0.6, ..0.85, 0.9.

The modified Lorentz-Berthelot combination rules were employed [52, 394] for describing
the interactions between unlike LJTS particles:

σ12 =
σ1 + σ2

2
, (49)

ε12 = ξ
√
ε1ε2 , (50)

where the indices 1 and 2 indicate the interaction of two particles of the same component
and the double index 12 the cross interaction between different components. The value
of ε12 describes the cross affinity between the two components which is systematically
varied by varying ξ. The binary interaction parameter ξ is used as adjustable parameter,
which is considered to be state-independent. For the modeling of real fluid mixtures, its
number is often obtained from a fit to experimental data [594]. The present work does
not aim at reproducing the phase behavior of selected real mixtures. We are interested in
studying the influence of the molecular interactions on the interfacial behavior of LJTS
mixtures. Therefore, the binary interaction parameter is varied in the range ξ = 0.85
and 1.25 with a decrement of 0.05. This results in 90 binary LJTS mixtures as shown
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in Fig. 30.
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Figure 30: Overview of the investigated binary LJTS mixtures in the plane of the bi-
nary interaction parameter ξ and the ratio of the dispersion energies of the
low and high-boiling component ε2/ε1. Circles indicate the 90 mixtures that
were investigated in the present work. Squares mark the mixtures investi-
gated in section 3.3 [635]. The stars indicate Lennard-Jones parameters of
models of real binary mixtures proposed by Vrabec et al. [686] for argon +
krypton, argon + methane, krypton + xenon, and methane + krypton.

The liquid phase composition is prescribed by setting x′2 = 0.05 mol mol−1 throughout
this study. This composition was chosen based on the experience from our previous
studies, which showed that the enrichment is strongest at low concentrations of the
low-boiling component in the saturated liquid phase [50, 628, 634, 635].

The binary interaction parameter ξ and the ratio of the dispersion energies ε2/ε1 is not
only used in the MD simulations, but the same number is also used in the PeTS EOS, and
therefore also in the DGT calculations. It has been shown before that no adjustments
are necessary: the phase behavior and interfacial properties that are obtained from both
methods match well, when the same numbers for ξ and ε2/ε1 are used in MD and DGT,
cf. section 3.3 [628, 635].

3.4.2 Results and Discussion

3.4.2.1 Vapor-Liquid Equilibria

The vapor-liquid equilibrium of LJTS mixtures (cf. Fig. 30) was investigated here
at T = 0.77 εk−1

B with both MD simulations and the PeTS EOS. The MD simulations
were carried out for a liquid phase mole fraction of the low-boiling component 2 of
x′2 = 0.05 mol mol−1. The numerical values of the VLE data at x′2 = 0.05 mol mol−1 and
T = 0.77 εk−1

B obtained from MD and the PeTS EOS are reported for all 90 mixtures
in the Appendix (vapor pressure, gas phase composition, and saturated densities). The
PeTS EOS was used to calculate the isothermal phase diagrams of all 90 mixtures.
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Figure 31: Selection of isothermal p − x phase diagrams of binary LJTS mixtures at
T = 0.77 εk−1

B for different binary interaction parameter ξ and ratio of the
dispersion energies of both components ε2/ε1. The phase diagrams were
calculated by the PeTS EOS [249, 635]. Columns have constant binary
interaction parameter as indicated at the top; rows have constant ratio of
the dispersion energies as indicated on the right. Corner A is top left,
corner B bottom right, see text.
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Representative results for 30 systems are shown in Fig. 31. For all mixtures the high-
boiling component 1 is the same. Its vapor pressure is ps = 0.0104 εσ−3 at T = 0.77 εk−1

B .
The low-boiling component 2 in the mixtures varies. Results for different values of ε2/ε1

are shown in the different rows of the matrix depicted in Fig. 31. For high values of ε2/ε1,
the component 2 is subcritical, for small values of ε2/ε1, it is supercritical. The critical
temperature of the pure component 2 is Tc = 0.77 εk−1

B for ε2/ε1 = 0.71. In the columns of
the matrix shown in Fig. 31, results for different choices of ξ are presented. For ξ = 1 the
mixtures are almost ideal in the sense of Raoult’s law. For ξ > 1 attractive interactions
prevail and the mixtures tend to form high-boiling azeotropes, while for ξ < 1 repulsive
interactions prevail and the mixtures tend to form low-boiling azeotropes. Decreasing
ξ below the lowest value that was studied in the present work (ξ = 0.85) leads to a
liquid-liquid phase split at T = 0.77 εk−1

B . As studying liquid-liquid equilibria was out
of the scope of this study, only mixtures with ξ > 0.85 were studied here. The critical
pressures of the mixtures with small values of ε2/ε1 show an interesting behavior: they
remain almost constant upon lowering ξ and increase only sharply for the lowest value
of ξ shown in Fig. 31.

Qualitatively, the bubble lines of the mixtures in the ξ, ε2/ε1-plane differ more than the
dew lines. This can be interpreted as a consequence of the fact that the interactions
in the liquid phase are dominating the VLE behavior compared to a minor influence of
the vapor phase. This is evident, since the self interactions and cross interactions have
a stronger impact in the dense liquid phase.

The results for the Henry’s law constants of all 90 investigated mixtures at T = 0.77 εk−1
B

that were obtained from the MD simulations as well as from the PeTS EOS are shown in
Fig. 32 as a function of the binary interaction parameter ξ and the ratio of the dispersion
energies ε2/ε1. The numeric values are reported in the Appendix. The results from the
computer experiment and the theory are found to be in good agreement for all mixtures.
As expected, the Henry’s law constant H2,1 increases steadily with decreasing ratio of
dispersion energies ε2/ε1 as well as with decreasing values of ξ.

The plot of H2,1 over ε2/ε1 and ξ shown in Fig. 32 has some interesting features.
First, moving along the diagonal connecting the corner points (ε2/ε1 = 0.5, ξ = 0.85,
labeled here as corner A) and (ε2/ε1 = 0.95, ξ = 1.25, labeled here as corner B), the
Henry’s law constant first increases only weakly but then steeply. This is due to the
fact that towards corner B the mean dispersive interactions in the liquid phase become
less attractive, which decreases the solubility of the low-boiling component 2 in the
high-boiling component 1.

Furthermore, the surface H2,1 = H2,1(ε2/ε1, ξ) has a remarkably simple shape. The
traces of the level curves in the ε2/ε1, ξ-plane can be approximated by segments of
root functions (cf. Fig. 32), which results in an approximately radial symmetry of the
function H2,1 =H2,1(ε2/ε1, ξ) in the investigated range of ε2/ε1 and ξ. As only a segment
of the function is plotted in Fig. 32, the curvature can only be seen by inspecting the
traces of the isolines. Going from corner A to corner B in a straight line follows the
gradient of that function.

Fig. 33 shows the difference of the number density of the low-boiling component be-
tween the bulk vapor and bulk liquid phase ∆ρ2 = ρ′2 − ρ′′2 at x′2 = 0.05 mol mol−1 and
T = 0.77 εk−1

B as a function of the binary interaction parameter ξ and the ratio of the
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Figure 32: Henry’s law constant H2,1 of binary LJTS mixtures 1 + 2 at T = 0.77 εk−1
B

as a function of the binary interaction parameter ξ and the ratio of the
dispersion energies ε2/ε1. Results from MD: blue points; results from the
PeTS EOS [249, 635]: orange points. The surface is a linear interpolation
of the EOS results. The color of the surface is coded by its height.

dispersion energies ε2/ε1. The difference of the number density of the low-boiling com-
ponent ∆ρ2 was calculated for all 90 LJTS mixtures using both MD simulation and the
PeTS EOS. The computer experiments and the EOS have a distinct offset which van-
ishes in corner B, but the qualitative behavior of the results from both methods agrees
well.

The deviations show that the VLE behavior of LJTS mixtures is not described perfectly
by the PeTS EOS, but in assessing the deviations it has to be considered that ∆ρ2 is a
very sensitive property. The same symmetry as for the Henry’s law constant (cf. Fig.
32) is also found for ∆ρ2(ε2/ε1, ξ) (Fig. 33) but the trends are inverse: ∆ρ2 is low where
H2,1 is high. This is not unexpected since both properties express the tendency of the
low-boiling component to portion on both phases.

An interesting feature of ∆ρ2(ε2/ε1, ξ) is the zero crossing line of ∆ρ2 close to corner
B. In a wide range of investigated mixtures ∆ρ2 > 0, i.e. the the low-boiling component
accumulates in the liquid phase. Vice versa, for ∆ρ2 < 0 the low-boiling component has
a preferential residency in the vapor phase.

3.4.2.2 Vapor-Liquid Interfaces

Planar vapor-liquid interfaces were investigated by both MD and DGT at T = 0.77 εk−1
B

and x′2 = 0.05 mol mol−1. Besides the density profiles, the interfacial enrichment (cf. Eq.
(45)), relative adsorption (cf. Eq. (44)), interfacial tension (cf. Eq. (41) and (42)), and
interfacial thickness (cf. Eq. (46)) were investigated for all 90 binary LJTS mixtures (cf.
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Figure 33: Difference in the bulk number density of the low-boiling component
∆ρ2 = ρ′2 − ρ′′2 at T = 0.77 εk−1

B and x′2 = 0.05 mol mol−1 as a function of
the binary interaction parameter ξ and the ratio of the dispersion energies
ε2/ε1. Results from MD: blue points; results from the PeTS EOS [249, 635]:
orange points. The surface is a linear interpolation of the EOS results. The
color of the surface is coded by its height position. The black line indicates
the trace of the zero crossing line ∆ρ2 = 0 from the EOS results.

Fig. 30). Density profiles are shown in Fig. 34, the enrichment in Fig. 35, the relative
adsorption in Fig. 36, the surface tension in Fig. 37, and the interfacial thickness in
Fig. 38.

The prescribed liquid phase composition is exactly matched in DGT, but not by MD
due to fluctuations. The mole fraction of the low-boiling component in the liquid phase
obtained from the MD simulations is in the range x′2 = 0.05 .. 0.07 mol mol−1. The nu-
meric values of the interfacial properties from both MD and DGT as well as the actual
liquid phase composition in MD are reported in Table 5. The error bars of the MD sim-
ulation results are not shown in the plots in Figs. 35 - 38 for clarity, but the statistical
uncertainties are reported in Table 5.
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Table 5: Interfacial properties of the investigated binary LJTS mixtures. Results from
MD and DGT+PeTS EOS. The temperature is T = 0.77 εk−1

B . The DGT
results are calculated at the liquid phase composition x′2 = 0.05 mol mol−1.
The exact MD liquid phase composition is given in the 2nd column. The other
columns are from left to right: the surface tension, the relative adsorption,
the enrichment of the low-boiling component 2, and the interfacial thickness.
The number in the parentheses indicates the statistical uncertainty in the last
decimal digit.

ε2/ε1 x′2 γ / εσ−2 Γ
(1)
2 / σ−2 E2 L90

10 / σ

MD DGT MD DGT MD DGT MD DGT
ξ = 0.85

0.5 0.058(2) 0.23(3) 0.263 0.30(3) 0.248 1.71(3) 2.05 4.08(9) 3.24
0.55 0.058(1) 0.26(3) 0.287 0.28(2) 0.231 2.10(3) 2.53 3.8(1) 3.10
0.6 0.063(3) 0.28(2) 0.310 0.23(4) 0.207 2.3(2) 3.09 3.53(9) 2.96
0.65 0.062(2) 0.32(2) 0.330 0.18(4) 0.181 2.1(1) 2.91 3.37(8) 2.84
0.7 0.061(1) 0.32(2) 0.349 0.18(2) 0.156 1.92(8) 2.53 3.3(1) 2.76
0.75 0.063(2) 0.34(2) 0.365 0.15(3) 0.133 1.66(8) 2.20 3.16(7) 2.68
0.8 0.062(2) 0.35(2) 0.379 0.15(3) 0.112 1.6(1) 1.93 3.08(8) 2.62
0.85 0.061(1) 0.36(1) 0.392 0.15(2) 0.094 1.57(7) 1.70 3.03(8) 2.56
0.9 0.065(2) 0.38(2) 0.403 0.11(4) 0.077 1.3(1) 1.51 2.95(4) 2.52
0.95 0.064(1) 0.39(2) 0.413 0.11(4) 0.063 1.29(9) 1.34 2.91(5) 2.48
ξ = 0.9

0.5 0.059(4) 0.27(2) 0.305 0.22(3) 0.195 2.16(5) 2.53 3.63(9) 2.96
0.55 0.059(3) 0.30(1) 0.326 0.23(2) 0.172 2.3(1) 2.83 3.44(7) 2.86
0.6 0.059(1) 0.31(2) 0.346 0.18(2) 0.149 2.0(1) 2.45 3.27(9) 2.76
0.65 0.062(1) 0.34(2) 0.363 0.14(3) 0.128 1.74(7) 2.13 3.19(7) 2.66
0.7 0.061(2) 0.35(2) 0.378 0.12(2) 0.108 1.6(1) 1.87 3.09(6) 2.60
0.75 0.062(2) 0.37(2) 0.391 0.11(3) 0.090 1.46(8) 1.65 3.02(6) 2.54
0.8 0.062(1) 0.38(2) 0.402 0.09(2) 0.074 1.38(6) 1.47 2.93(6) 2.50
0.85 0.063(2) 0.38(3) 0.413 0.10(1) 0.060 1.3(1) 1.32 2.89(4) 2.46
0.9 0.065(2) 0.40(2) 0.422 0.07(3) 0.048 1.20(7) 1.19 2.83(5) 2.44
0.95 0.066(1) 0.42(2) 0.429 0.03(3) 0.037 1.09(6) 1.09 2.80(4) 2.42

ξ = 0.95

0.5 0.057(1) 0.30(2) 0.337 0.20(3) 0.152 2.22(5) 2.53 3.43(7) 2.78
0.55 0.059(1) 0.33(2) 0.355 0.17(2) 0.131 1.90(7) 2.19 3.27(8) 2.70
0.6 0.061(3) 0.34(2) 0.372 0.14(2) 0.111 1.7(1) 1.91 3.14(9) 2.62
0.65 0.061(1) 0.36(3) 0.386 0.13(1) 0.092 1.53(8) 1.68 3.05(8) 2.56
0.7 0.062(2) 0.37(3) 0.399 0.11(3) 0.076 1.4(1) 1.49 3.01(8) 2.50
0.75 0.061(1) 0.37(2) 0.410 0.10(2) 0.062 1.38(3) 1.34 3.00(5) 2.46
0.8 0.064(2) 0.40(2) 0.419 0.09(2) 0.049 1.21(8) 1.22 2.87(8) 2.44
0.85 0.065(1) 0.41(2) 0.428 0.05(3) 0.038 1.11(8) 1.12 2.84(7) 2.40
0.9 0.067(2) 0.42(2) 0.435 0.04(3) 0.028 1.07(6) 1.04 2.74(6) 2.38
0.95 0.067(1) 0.42(2) 0.442 0.07(2) 0.019 1.12(4) 1.00 2.76(7) 2.36
ξ = 1

0.5 0.059(2) 0.32(2) 0.361 0.17(3) 0.119 1.82(8) 2.04 3.25(9) 2.66
0.55 0.062(1) 0.34(2) 0.377 0.14(3) 0.100 1.55(8) 1.78 3.13(7) 2.60
0.6 0.062(1) 0.36(1) 0.392 0.10(2) 0.082 1.43(7) 1.57 2.99(7) 2.52
0.65 0.062(2) 0.37(2) 0.404 0.11(2) 0.067 1.35(1) 1.40 2.95(6) 2.48
0.7 0.065(1) 0.39(3) 0.415 0.07(4) 0.053 1.12(7) 1.27 2.87(6) 2.44

continued on next page
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ε2/ε1 x′2 γ / εσ−2 Γ
(1)
2 / σ−2 E2 L90

10 / σ

MD DGT MD DGT MD DGT MD DGT
0.75 0.065(2) 0.41(2) 0.424 0.06(2) 0.041 1.13(5) 1.16 2.81(5) 2.42
0.8 0.066(2) 0.41(2) 0.433 0.04(3) 0.031 1.09(6) 1.08 2.81(6) 2.38
0.85 0.067(2) 0.43(3) 0.440 0.02(5) 0.022 1.05(7) 1.02 2.72(7) 2.36
0.9 0.068(2) 0.43(2) 0.446 0.05(3) 0.013 1.08(6) 1.00 2.72(8) 2.36
0.95 0.068(2) 0.45(2) 0.452 0.02(3) 0.006 1.08(7) 1.00 2.73(4) 2.34

ξ = 1.05

0.5 0.059(2) 0.36(2) 0.380 0.15(3) 0.094 1.6(1) 1.71 3.13(6) 2.58
0.55 0.061(1) 0.36(2) 0.395 0.13(3) 0.076 1.44(7) 1.51 3.01(8) 2.50
0.6 0.063(1) 0.38(2) 0.407 0.09(2) 0.061 1.25(6) 1.36 2.92(7) 2.46
0.65 0.064(1) 0.40(2) 0.418 0.07(2) 0.048 1.17(6) 1.23 2.84(6) 2.42
0.7 0.065(2) 0.41(2) 0.428 0.07(3) 0.036 1.13(6) 1.14 2.80(4) 2.40
0.75 0.067(2) 0.42(3) 0.436 0.06(2) 0.026 1.11(7) 1.07 2.76(9) 2.38
0.8 0.067(1) 0.43(2) 0.443 0.02(2) 0.017 1.08(5) 1.02 2.73(6) 2.36
0.85 0.067(1) 0.44(2) 0.449 0.03(1) 0.010 1.08(3) 1.00 2.69(4) 2.34
0.9 0.068(2) 0.45(2) 0.455 0.04(4) 0.003 1.11(9) 1.00 2.70(9) 2.32
0.95 0.069(1) 0.45(2) 0.460 -0.01(2) -0.003 1.07(4) 1.00 2.63(5) 2.32
ξ = 1.1

0.5 0.061(1) 0.37(2) 0.396 0.08(3) 0.073 1.38(7) 1.49 3.05(5) 2.50
0.55 0.063(2) 0.39(2) 0.409 0.07(2) 0.058 1.24(9) 1.34 2.93(7) 2.44
0.6 0.065(2) 0.41(2) 0.420 0.06(3) 0.044 1.12(7) 1.22 2.86(6) 2.42
0.65 0.065(2) 0.41(2) 0.430 0.04(3) 0.033 1.08(5) 1.13 2.77(8) 2.38
0.7 0.066(1) 0.42(3) 0.438 0.01(3) 0.023 1.04(5) 1.06 2.77(4) 2.36
0.75 0.067(2) 0.43(2) 0.445 0.03(3) 0.014 1.08(4) 1.02 2.73(6) 2.34
0.8 0.068(1) 0.44(2) 0.452 0.01(2) 0.007 1.07(4) 1.00 2.67(5) 2.32
0.85 0.069(1) 0.46(2) 0.457 -0.02(4) 0.000 1.04(6) 1.00 2.68(6) 2.32
0.9 0.070(1) 0.46(2) 0.462 -0.01(3) -0.006 1.07(3) 1.00 2.65(5) 2.30
0.95 0.070(2) 0.47(2) 0.466 0.01(3) -0.011 1.09(4) 1.00 2.63(7) 2.30

ξ = 1.15

0.5 0.063(2) 0.38(3) 0.409 0.07(2) 0.057 1.2(1) 1.33 2.89(3) 2.44
0.55 0.063(1) 0.40(2) 0.421 0.09(3) 0.043 1.17(6) 1.22 2.85(7) 2.40
0.6 0.065(1) 0.40(2) 0.431 0.07(2) 0.031 1.11(4) 1.13 2.82(7) 2.38
0.65 0.066(1) 0.43(2) 0.439 0.04(2) 0.021 1.08(5) 1.06 2.77(4) 2.36
0.7 0.068(2) 0.43(2) 0.447 0.00(5) 0.013 1.04(5) 1.02 2.71(7) 2.34
0.75 0.068(1) 0.45(3) 0.453 0.01(3) 0.005 1.06(5) 1.00 2.68(5) 2.32
0.8 0.069(1) 0.45(2) 0.459 0.00(3) -0.001 1.06(3) 1.00 2.64(7) 2.30
0.85 0.070(2) 0.46(1) 0.464 0.01(3) -0.007 1.09(6) 1.00 2.65(8) 2.30
0.9 0.070(1) 0.46(2) 0.468 -0.02(2) -0.012 1.05(5) 1.00 2.65(7) 2.30
0.95 0.071(1) 0.47(2) 0.472 -0.05(2) -0.017 1.04(4) 1.00 2.62(5) 2.28
ξ = 1.2

0.5 0.064(2) 0.39(2) 0.420 0.07(3) 0.043 1.13(8) 1.23 2.87(9) 2.40
0.55 0.067(2) 0.42(2) 0.431 0.02(3) 0.031 1.07(6) 1.13 2.78(5) 2.38
0.6 0.066(2) 0.43(2) 0.440 0.06(2) 0.021 1.12(5) 1.07 2.76(6) 2.34
0.65 0.067(1) 0.43(2) 0.447 0.01(2) 0.012 1.06(3) 1.02 2.71(4) 2.34
0.7 0.069(1) 0.45(2) 0.454 0.00(2) 0.004 1.05(3) 1.00 2.69(5) 2.32
0.75 0.069(1) 0.45(2) 0.460 0.01(2) -0.002 1.08(3) 1.00 2.67(4) 2.30
0.8 0.070(1) 0.47(3) 0.465 0.00(3) -0.008 1.08(4) 1.00 2.63(5) 2.30
0.85 0.070(2) 0.46(3) 0.469 -0.03(2) -0.013 1.05(4) 1.00 2.61(5) 2.28
0.9 0.070(1) 0.48(3) 0.473 -0.03(1) -0.018 1.06(3) 1.00 2.58(7) 2.28

continued on next page
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ε2/ε1 x′2 γ / εσ−2 Γ
(1)
2 / σ−2 E2 L90

10 / σ

MD DGT MD DGT MD DGT MD DGT
0.95 0.070(1) 0.48(2) 0.476 -0.03(3) -0.022 1.06(3) 1.00 2.62(7) 2.28

ξ = 1.25

0.5 0.065(1) 0.41(2) 0.430 0.05(3) 0.032 1.09(4) 1.15 2.80(5) 2.36
0.55 0.067(1) 0.42(2) 0.439 0.02(2) 0.021 1.06(3) 1.08 2.79(8) 2.32
0.6 0.067(1) 0.43(2) 0.447 0.02(1) 0.012 1.06(2) 1.03 2.70(4) 2.30
0.65 0.069(1) 0.45(2) 0.454 0.00(3) 0.004 1.05(3) 1.00 2.65(7) 2.30
0.7 0.069(1) 0.45(2) 0.460 0.02(2) -0.003 1.09(4) 1.00 2.63(4) 2.28
0.75 0.070(1) 0.47(2) 0.465 0.01(3) -0.008 1.07(3) 1.00 2.61(8) 2.30
0.8 0.070(1) 0.48(2) 0.470 -0.02(1) -0.014 1.06(2) 1.00 2.61(6) 2.28
0.85 0.071(1) 0.48(2) 0.474 -0.01(2) -0.018 1.07(4) 1.00 2.62(7) 2.28
0.9 0.070(1) 0.49(2) 0.477 -0.03(2) -0.022 1.07(3) 1.00 2.59(6) 2.28
0.95 0.071(1) 0.49(2) 0.481 -0.04(1) -0.024 1.06(4) 1.00 2.58(8) 2.28

Density Profiles and Enrichment

Selected results for the density profiles are shown in Fig. 34. The plot is organized in
the same way as Fig. 31, i.e. the selected systems are the same. The density profiles
are plotted as a function of the spatial coordinate z normal to the planar interface. For
clarity, only the DGT density profiles are shown here. It was already shown in section 3.3
that the density profiles of LJTS mixtures predicted by MD and DGT+PeTS agree very
well. This is confirmed in this study. It can be seen from Fig. 34 that the enrichment
of the low-boiling component E2, i.e. the relative hight of the peak in ρ2(z), generally
increases with decreasing ε2/ε1 and decreasing ξ. Details become clearer in Fig. 35,
where E2 is plotted as a function of ε2/ε1 and ξ. The layout of the plot is similar to
that in Figs. 32 and 33.

In contrast to the density profile of the low-boiling component 2, which dramatically
changes in the ξ, ε2/ε1-plane, the density profile of the high-boiling component 1 remains
fairly similar among the different mixtures, as already discussed in our previous work
[635]. No enrichment of the high-boiling component 1 is observed in any mixture.

Starting in corner A, no enrichment of the low-boiling component 2 is found. The
enrichment increases with a decreasing ∆ρ2 towards the corner B (cf. Fig. 33). The
density profiles in the region of the ξ, ε2/ε1-plane where ∆ρ2 is close to zero show a
particularly high enrichment. A significant enrichment of the low-boiling component
is found for mixtures that exhibit a low solubility of the low-boiling component in
component 1, i.e. large Henry’s law constants (cf. Fig. 32).

The predictions for the enrichment E2 from the computer experiments and the theory
are found to be in good qualitative agreement for all investigated mixtures. DGT
overestimates the enrichment predicted by MD for mixtures close to corner B. Such an
overestimation of the enrichment E2 by DGT compared to MD results was also reported
previously by Becker et al. [50] and Stephan et al. [634, 635] for mixtures where the
low-boiling component is supercritical. The enrichment predicted by MD in corner A
is slightly above unity, while DGT predicts no enrichment, i.e. E2 = 1, in that region.
As already discussed in section 3.3, the deviation of the MD results from E2 = 1 is
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Figure 34: Selection of density profiles at planar vapor-liquid interfaces calculated by
DGT: local density of the low-boiling component 2 (black line) and high-
boiling component 1 (red line) as a function of the spatial coordinate z
normal to the interface in the plane of the binary interaction parameter ξ
and the ratio of the dispersion energies ε2/ε1. Columns have constant binary
interaction parameter as indicated on the top; rows have constant ratio of
the dispersion energies as indicated on the right. The temperature is always
T = 0.77 εk−1

B and the liquid phase concentration is x′2 = 0.05 mol mol−1.
Corner A is top left, corner B bottom right, see text.

attributed to the fluctuations in connection with the definition of the enrichment (cf.
Eq. (45)).

Again, the same symmetry as in the plots shown in Figs. 32 and 33 (Henry’s law
constant H2,1 and density difference ∆ρ2) is also found for E2(ε2/ε1, ξ).

In the corner A (high mean dispersive interactions), practically no enrichment E2 is
found, while strong enrichment is found in corner B. Starting in corner A and going to
corner B on a straight line, the enrichment E2 remains around unity for a while, and
then increases sharply. Interestingly, there is a drop in E2, before corner B is reached.

The position of the line of the maximal enrichment E2 in the ξ, ε2/ε1-plane, as indicated
in Fig. 35, is in very good agreement with the zero crossing line of the difference of the
number density of component 2 ∆ρ2 = 0, cf. Fig. 33. I.e. it corresponds to mixtures
for which the density of the component 2 is equal in both phases. For mixtures on
that line, any adsorption of the low-boiling component at the interface must result in
an enrichment for geometric reasons. In contrast, for mixtures with ∆ρ2 ≠ 0 a relative
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Figure 35: Enrichment E2 of the low-boiling component 2, as defined by Eq. (45), at
the interface as a function of the binary interaction parameter ξ and the ra-
tio of the dispersion energies ε2/ε1 at T = 0.77 εk−1

B and x′2 = 0.05 mol mol−1.
Results from MD: blue points; results from DGT: orange points. The sur-
faces are linear interpolations of the respective results. The color of the
surfaces is coded by its height position. The black line indicates the trace
of zero crossing line ∆ρ2 = 0 from the DGT results (see Fig. 33). The
corners A and B to which the text refers are indicated.

adsorption can also arise from a relative shift of ρ2(z) with respect to ρ1(z). Even
though the predicted magnitude of the enrichment by MD and DGT differs slightly, the
position of the maximum line in the ξ, ε2/ε1-plane agrees perfectly.

Relative Adsorption

Fig. 36 shows the relative adsorption Γ
(1)
2 of the low-boiling component at the vapor-

liquid interface, as defined by Eq. (44), as a function of the binary interaction parameter
ξ and the ratio of the dispersion energies ε2/ε1. Again results from both MD and DGT
are shown. The predictions from the computer experiment and the theory are found to
be in good agreement for all investigated mixtures. The MD results show some scattering
due to fluctuations in the simulations, while results from the theory are smooth. The
symmetry that was observed in the previous plots of this type is also observed here.
In contrast to the enrichment E2, the relative adsorption increases steadily when going
from corner A to corner B. The relative adsorption of the low-boiling component 2
is negative close to the corner A, i.e. high mean attractive interactions, and positive
elsewhere. The zero crossing line of the relative adsorption (black line in Fig. 36)
is roughly identical with the line that separates mixtures with high-boiling azeotropes
from zeotropic mixtures, cf. Fig. 31. Hence, the relative adsorption Γ

(1)
2 is negative

for mixtures with high-boiling azeotropes, while it is positive for other mixtures, which
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Figure 36: Relative adsorption Γ
(1)
2 of the low-boiling component 2, as defined by

Eq. (44), at the interface as a function of the binary interaction para-
meter ξ and the ratio of the dispersion energies ε2/ε1 at T = 0.77 εk−1

B and
x′2 = 0.05 mol mol−1. Results from MD: blue points; results from DGT: or-
ange points. The surfaces are linear interpolations of the respective results.
The color of the surfaces is coded by its height position. The black line
indicates the trace of the zero crossing line Γ

(1)
2 = 0 from the DGT results.

reinforces findings for the relative adsorption in Ref. [184, 434, 435, 512, 635].

Furthermore, the relative adsorption dependency on ξ and ε2/ε1 can be split into two
characteristic regions: one region exhibiting a non-linear regime and one region exhibit-
ing a linear regime. Going from corner A to corner B, the relative adsorption exhibits
first a convex increase, whereas approaching corner B Γ

(1)
2 increases linearly. This can

only be seen in the results obtained from DGT, since the MD results are superimposed
by significant scattering. The breakup between the linear and non-linear regime of Γ

(1)
2

corresponds well with the region where the enrichment of the low-boiling component is
close to unity and the region of significant enrichment. This indicates again [50, 635],
that the enrichment and the relative adsorption contain different information and it is
emphasized that both should be discussed. Relative adsorption may occur even if there
is no enrichment, but an enrichment will in general result in an adsorption.

Surface Tension

Fig. 37 shows the surface tension as a function of the binary interaction parameter ξ and
the ratio of dispersion energies ε2/ε1. The results from both MD and DGT are shown.
The predictions from the computer experiments and the theory agree remarkably well
for all investigated mixtures, i.e. the DGT results mostly lie within the MD error bars
(cf. Table 5). Only slight systematic deviations are found in corner B, where the DGT
results overestimate those from computer experiments. The same type of symmetry
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Figure 37: Interfacial tension γ, as defined by Eq. (41) and (42), as a function of the
binary interaction parameter ξ and the ratio of the dispersion energies ε2/ε1

at T = 0.77 εk−1
B and x′2 = 0.05 mol mol−1. Results from MD: blue points; re-

sults from DGT: orange points. The surfaces are linear interpolations of the
respective results. The color of the surfaces is coded by its height position.
The black dot indicates the surface tension γ1 of the pure component 1 at
T = 0.77 εk−1

B according to Stephan et al. [637], cf. chapter 2. The black
line indicates the crossing line of γ = γ1 from the DGT results.

as for the properties discussed above (cf. Figs. 32, 33, 35, 36), is also observed for
γ(ε2/ε1, ξ).

Going from corner A to corner B, the surface tension decreases steadily. It is found
that the line, for which the surface tension of the mixture equals the surface tension of
the pure component 1 (cf. Fig. 37) is in good agreement with the line for which the
relative adsorption is zero (cf. Fig. 36). This is related to the Gibbs adsorption equation
which relates the surface excess to the concentration dependence of the surface tension.
Adding component 2 to the pure component 1 in corner A, i.e. the region of mixtures
with the highest mean dispersive interactions, leads to an increase of the surface tension.
This is a typical finding for mixtures with a high-boiling azeotrope [133, 184, 635]. For
mixtures with a low-boiling azeotrope, on the other hand, adding component 2 usually
results in a decreased surface tension [133, 184, 635], which is also found in our data.

Interfacial Thickness

Fig. 38 shows the interfacial thickness L90
10 as defined by Eq. (46) as a function of

the binary interaction parameter ξ and the ratio of dispersion energies ε2/ε1 for both
MD and DGT. The predictions from the computer experiments and the theory agree
qualitatively very well, but are shifted significantly. The interfacial thickness predicted
from DGT is systematically lower than that from the computer experiments. This could
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Figure 38: Interfacial thickness L90
10, as defined by Eq. (46), as a function of the binary

interaction parameter ξ and the ratio of the dispersion energies ε2/ε1 at
T = 0.77 εk−1

B and x′2 = 0.05 mol mol−1. Results from MD: blue points; results
from DGT: orange points. The surfaces are linear interpolations of the
respective results. The color of the surfaces is coded by its height position.

be caused by fluctuations that are present in MD but not in DGT [50, 635, 637], but
it could also be caused by differences between the PeTS EOS and the LJTS force field.
The latter hypothesis is supported by the fact that in a recent study, no such differences
were observed for the LJ fluid [628], cf. chapter 5.

On average, the DGT underestimates the MD interfacial thickness by approximately
-15%, which is in line with results reported earlier for the corresponding pure substances,
cf. chapter 2, as well as for selected LJTS mixtures in the entire composition range, cf.
section 3.3.

Again, a symmetric behavior is found for L90
10(ε2/ε1, ξ). Going from corner A to corner B ,

the interfacial thickness increases steadily. This is in line with the decay of the surface
tension, since broader and smoother density profiles result in a lower surface tension.
The interfacial thickness is almost twice as high in corner B as in corner A.

3.4.3 Conclusions

The vapor-liquid equilibrium and interfacial properties (Henry’s law constant, vapor
pressure, composition, surface tension, relative adsorption, interfacial thickness, and
enrichment) of binary Lennard-Jones mixtures were determined for a broad range of
mixtures of different types (zeotropic, low-boiling azeotrope, high-boiling azeotrope;
subcritical, supercritical) by MD and EOS+DGT. The study was carried out at constant
temperature and liquid phase composition. The results from MD and EOS+DGT were
found to be in good agreement. The relation of both the VLE bulk properties and the
interfacial properties with the underlying molecular interactions was investigated.
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The interfacial enrichment, which is assumed to have an influence on the mass transfer
through interfaces, is found to be particularly high for Lennard-Jones mixtures that have
low numbers for ε2/ε1 and for ξ. Furthermore, the enrichment exhibits a maximum for
mixtures with ∆ρ2 = ρ′2 − ρ′′2 = 0, which forces all adsorption at the interface into an
enrichment.

The comparison of Figs. 32, 34 - 38 shows that all investigated bulk and interfacial
properties exhibit a regular behavior when plotted as a function of ε2/ε1 and ξ. For
all properties, a symmetry is found. It is shown in the Appendix that this symmetry
is likewise observed for the vapor pressure and vapor phase composition at constant
temperature and liquid phase composition. The symmetry is also found in the matrix
diagram of the density profiles in Fig. 34. This interesting regularity can be explained
by a conformal solution theory, as presented in the following section.
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3.5 Conformal Solution Theory of Fluid Interfaces

3.5.1 Modeling the Regularities of VLE and Interfacial
Properties

The regularity of the properties of the studied binary LJTS mixtures (see previous sec-
tion) can be explained with a conformal solution theory (CST) of the liquid phase. The
regularity is thereby put into direct relation with the underlying molecular interactions.
The employed CST is adopted from the literature and therefore only outlined here. For
brevity, a mixture n is defined by its coordinates in the ξ, ε2/ε1-plane as

an = (ξn, (ε2/ε1)n). (51)

Our starting hypothesis is that the observed regularity is due to the mean dispersive
interactions in the liquid phase. To validate this assumption, the configurational con-
tribution of the internal energy u′config of the saturated liquid phase is studied, where
the total internal energy u′ is the sum of the kinetic energy contribution u′kin and the
configurational contribution u′config. For a pairwise additive intermolecular potential v,
the configurational internal energy for a given point in the configurational space r is
u′config(r) = ∑Nk=1∑Nk>l v(rkl), where N is the number of particles and rkl the distance
between two particles k and l. The configurational internal energy u′config of a binary
mixture can be calculated from rigorous statistical mechanics from the pair potential v
and the radial distribution function (RDF) g(r) [237, 262, 406]:

u′config =
U ′

config

N
= 1

2
ρ′

2

∑
i=1

2

∑
j=1

x′ix
′
j

∞

∫
0

gij(r)vij(r)r24π dr , (52)

where ρ′ is the total number density and x′i the mole fraction of component i, N the
total number of particles, gij the radial distribution function between two components
i and j, and vij the pair potential energy. To compute and evaluate u′config for a given
mixture an at a given T = 0.77 εk−1

B and x′2 = 0.05 mol mol−1, the conformal solution
theory of Leland and co-workers [177, 366, 367] is applied here, which goes back to the
original work of van der Waals [406, 690] and Longuet-Higgins [393]. The CST of Leland
and co-workers was developed to provide a statistical-mechanical framework to compute
excess thermodynamic functions of mixing, from the intermolecular potentials and the
radial distribution functions of the pure components [366, 393, 572]. The properties of
the studied mixture are thereby approximated by those of a hypothetical pure fluid,
indicated with the index 00.

The main assumptions of the employed conformal solution theory, cf. Eqs. (52) - (56),
are summarized here briefly. In Eq. (52) 4πρ′g(r)dr = n′(r)dr can be identified [262]
as the mean number of particles n′ in a range between r and r + dr. The configura-
tional internal energy u′config is obtained by integrating n′(r) ⋅ v(r) over all r ranges and
weighted by the respective mole fraction; the factor 1/2 ensures that each pair interac-
tion is only counted once. In general the three radial distribution functions g11, g12, and
g22 are a function of the type of both components (ε, σ), the composition, the tempe-
rature, the density, and the distance r between two particles [279, 364, 406, 420], i.e.
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gij = gij(εij, σij, x, T , ρ, r). It is known that the RDF is only weakly depending on the
composition and the dispersion energies of the components [364, 420].

For the one-fluid CST, the properties of a mixture are approximated by those of a hy-
pothetical pure fluid. The molecular interactions of that hypothetical fluid are to be
conformal to those of the pure components that constitute the mixture, i.e. their pair po-
tentials vij must be described [237] by the same mathematical function vij = εij v(r/σij).
The hypothetical pure fluid – in our case a spherical Lennard-Jones pair potential – is
then characterized by the two interaction parameters σ00 and ε00 and a single radial
distribution function g00 = g00(r̃,T ,ρ) [366, 406]. The central assumption in the ’one-
fluid’ CST is that the radial distribution functions gij(r) scale with the respective size
parameter σij, i.e.

gij(r/σij) = g00(r̃/σ00) , (53)

which includes a coordinate transformation [237] r → r̃. Thereby, the internal energy of
the liquid phase of a binary mixture can be written as

u′config = u′config,00 =
1

2
ρ′

2

∑
i=1

2

∑
j=1

x′ix
′
j εij σ

3
ij

∞

∫
0

g00(r̃) v00(r̃) r̃24π dr̃ . (54)

By identifying
2

∑
i=1

2

∑
j=1

x′ix
′
j εij σ

3
ij = ε00 σ

3
00 , (55)

Eq. (54) can then be written as

u′config,00 = ε00 σ
3
00 ⋅

1

2
ρ′

∞

∫
0

g00(r̃) v00(r̃) r̃24π dr̃ . (56)

Eq. (55) is the well-known first mixing rule of the van der Waals one-fluid theory, which
is also used for modeling LJTS mixtures with the PeTS EOS, cf. section 3.2.2. Since
σij = σ1 = 1 holds for the entire present study, a second mixing rule is obsolete here. The
LJTS potential of the reference component 1 is used in Eq. (56), i.e. v00 = vLJTS.

As the dependency of ρ′ on ξ or ε2/ε1 can be neglected here in a good approxima-
tion, only the first term ε00 σ3

00 in Eq. (56) depends on the mixture an. The resulting
configurational internal energy u′config depends evidently directly on the chosen combi-
nation rule. In accordance with the MD, EOS, and DGT calculations, the modified
Lorentz-Berthelot combination rule, cf. Eq. (49), was also employed for the CST.

A correlation for the radial distribution function of the Lennard-Jones fluid g00 = gLJ

was adopted from Morsali et al. [476]. They propose an empirical correlation of the
Lennard-Jones RDF as a function of the temperature and the density gLJ = gLJ(r̃,T ,ρ).
Morsali et al. [476] developed an RDF correlation for the full Lennard-Jones fluid,
whereas the present study investigates the Lennard-Jones truncated and shifted fluid.
This is incorporated by employing a corresponding state principle, i.e. the Lennard-
Jones RDF from Morsali et al. [476] was calculated at the same reduced temperature
and density with respect to its critical quantity, i.e. Tred = T LJ/T LJ

c = T LJTS/T LJTS
c and

ρred = ρLJ/ρLJ
c = ρLJTS/ρLJTS

c . The critical parameters were adopted from Vrabec et al.
[687] and Lotfi et al. [395] for the LJTS and LJ fluid, respectively. The influence of the
potential truncation on the RDF is therefore neglected. Morsali et al. [476] compared
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results from their RDF with a large number of computer experiment data and found
excellent agreement. A comparison of u′config obtained from the PeTS EOS and the
outlined CST is given in the Appendix. They agree well; the absolute average deviation
is 2%.

In summary, Eq. (56) enables the computation of the configurational internal energy of
binary LJTS mixtures u′config(a) from CST, using only the RDF of the pure LJTS fluid
gLJTS(r̃,T ,ρ) and the potential function vLJTS(r̃). u′config(a) is used here to character-
ize the mean interactions in the saturated liquid phase and subsequently put these in
relation to the regularity of interfacial properties.

3.5.2 Evaluation of the CST Model

The configurational internal energy u′config at T = 0.77 εk−1
B and x′2 = 0.05 mol mol−1, com-

puted by Eq. (56), is shown in Fig. 39 as a function of ξ and ε2/ε1 for all 90 investigated
LJTS mixtures. Starting in corner A, the absolute value of the configurational inter-
nal energy ∣u′config∣, and thereby also the magnitude of the mean dispersive interactions,
steadily decreases with decreasing ξ and decreasing ε2/ε1 towards corner B, which is
a direct result of the molecular interactions. The internal energy of the liquid phase
u′config(ε2/ε1 , ξ) obeys the same regular behavior as the bulk and interfacial properties,
cf. Figs. 32, 33 and 35 - 38, i.e. radially shaped traces for u′config = const. are found in
the ε2/ε1, ξ-plane.
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Figure 39: Configurational internal energy of the saturated liquid phase u′config cal-
culated from the conformal solution theory Eq. (56) as a function of the
binary interaction parameter ξ and the ratio of the dispersion energies ε2/ε1

at x′2 = 0.05 mol mol−1 and T = 0.77 εk−1
B . The surface is a linear interpo-

lation of the data points. The color of the surface is coded by its height
position.
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According to the discussion of Eq. (56), the configurational internal energy of a binary
mixture u′config at a given temperature and composition depends on the mixture type
only via the term ε00 σ3

00, that is defined by Eq. (55). Both the integral and the factor
1
2ρ

′ in Eq. (56) can be merged to a constant I at a given temperature and composition.
Introducing ζ = ε2/ε1, and employing the modified Berthelot combination rule, Eq. (56)
can be written as

u′config

I
=

2

∑
i=1

2

∑
j=1

x′ix
′
j εij σ

3
ij = x′1

2 ε1 + 2x′1x
′
2 ε1 ξ

√
ζ + x′2

2 ε1 ζ . (57)

The functional form of u′config(ξ, ζ) described by Eq. (57) yields the regularity with
the approximatively radial traces of u′config = const. in the ε2/ε1, ξ-plane, as depicted in
Fig. 39. Eq. (57) indicates that the regular traces that were observed in Figs. 32, 33
and 35 - 38 are not strictly radial but obey a more complicated law.

In our case, x′1, x′2 and ε1 are constant and the last term in Eq. (57) is small, as x′2
is small. Hence, the traces depicted in Fig. 39 as well as Figs. 32, 33 and 35 - 38
are basically curves in which ξ

√
ζ are constant. They only appear to be approximately

radial in the plots used here, due to the investigated ε2/ε1 , ξ range.

The regular behavior found in u′config(ε2/ε1 , ξ) is the same regular behavior as obtained
for the bulk and interfacial properties, cf. Figs. 32 - 38. Hence, the observed regularity
(for both bulk and interfacial properties) is a consequence of the employed mixing and
combination rule in DGT+EOS and the combination rule in MD. However, the regularity
and the shape of the traces evidently depend on the composition, cf. Eq. (57). The
results from this work indicate that the van der Waals one-fluid theory mixing rule
used in the PeTS EOS [249, 635], cf. section 3.2.2, yields an excellent description of
molecular simulation results for both bulk and interfacial mixture properties. The fact
that the bulk and interfacial properties in the VLE are dominated by the liquid phase
interactions can be described by the CST and can be exploited to find simple correlations
of all studied properties. The hypothesis is here that they can be described as simple
functions of the internal energy of the liquid phase.

Figs. 40 and 41 show that this hypothesis is confirmed by the data from the present
work: bulk and interfacial properties of the 90 LJTS mixtures are plotted as a function
of the corresponding liquid phase configurational internal energy u′config. All properties
are at constant temperature and liquid phase composition. The results from both MD
and DGT are shown. The investigated VLE bulk properties (Fig. 40) and interfacial
properties (Fig. 41) from both MD and DGT are found to be a simple function of
each mixture’s liquid phase configurational internal energy, which strongly indicates
that there is a direct link between them. For all studied properties, a simple relation is
found, for both the results obtained from MD and those from EOS+DGT.

Instead of the internal energy from CST also the internal energy from the EOS or the
force field could have been used for establishing plots like the ones shown in Figs. 40
and 41. The basic findings would have been the same, as the internal energies of the
liquid phase determined by the three methods agree very well, see Appendix. However,
using the CST gives further insight on the underlying mechanism, i.e. the fact that the
choice of the combination rule is responsible for the regularity behavior, cf. Eq. (57).

A fit function Y = Y (u′config) was parametrized to the DGT and EOS results for each
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Figure 40: Results for the conformal solution theory applied to the VLE properties
(Henry’s law constant H2,1, vapor pressure ps, and vapor phase composition
x′′2 ): the respective VLE property computed by MD (blue) and the EOS
(orange) are shown as a function of the configurational internal energy of
the saturated liquid phase u′config as computed by Eq. (56). The black solid
lines indicate the fitted functions (58) - (60) (fitted to the DGT results).
All results are at x′2 = 0.05 mol mol−1 and T = 0.77 εk−1

B . The dashed line
indicates u′config of the high-boiling pure component 1 computed by Eq.
(56). The black symbol indicates the vapor pressure of the pure component
1 obtained from the EOS.
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bulk and interfacial property Y = ⟨H2,1,ps,x′′2 ,E2, Γ
(1)
2 ,γ,L90

10⟩. The mathematical forms
and the parameters of the fitted functions are given in the following. The differences
between the DGT and the MD results in Figs. 40 and 41 are due to differences in the
data from these methods and not related to the CST, cf. Figs. 32, 33 and 35 - 38.

For each of the seven considered properties Y = ⟨H2,1,ps,x′′2 ,E2, Γ
(1)
2 ,γ,L90

10⟩, a simple
correlation function was parameterized to describe Y = Y (u′config). The DGT results
were used for this fit since they do not exhibit stochastic scattering as the MD results
do. Three function types were used:

Y /[Y ] = Ŷ + a1 ⋅ exp (
u′config/ε − a2

a3

) , (58)

Y /[Y ] = Ŷ + a1 ⋅ exp( − 0.5(
u′config/ε − a2

a3

)
2

) , (59)

Y /[Y ] = Ŷ ⋅ exp (a3 u
′
config/ε) , (60)

where Ŷ and ai are fitting parameters. [Y ] indicates the corresponding units of Y as
[Y ] = ⟨εσ−3, εσ−3, mol mol−1, 1, σ−2, εσ−2, σ⟩. The obtained numeric values for Ŷ and
ai are summarized in Table 6. Eq. (58) was used for correlating ps, Γ

(1)
2 ,γ,L90

10; Eq. (59)
for x′′2 ,E2; and Eq. (60) for correlating H2,1. The absolute average deviations (AAD)
between the fitted curves and the DGT results are also given in Table 6.

Fig. 40 shows the results for the Henry’s law constant H2,1, the vapor pressure ps, and
the vapor phase mole fraction x′′2 for the conditions studied in the present work as a
function of the corresponding liquid phase configurational internal energy. The three
properties increase with decreasing mean dispersive interactions in the liquid phase, i.e.
with decreasing absolute value of u′config. Fig. 41 shows that the same holds for the
relative adsorption Γ

(1)
2 and interfacial thickness L90

10. The enrichment of the low-boiling
component E2 also generally increases with decreasing mean dispersive interactions,
with the exception of the region near corner B. This exception is due to the difference
in the number density, cf. Fig. 33. Only the surface tension γ shows the inverse trend:
it decreases with decreasing mean dispersive interactions. In all cases, simple functional
relations between the studied properties and u′config are found, which are however, of
different types. The fitted functions for all seven investigated properties agree excellently
with the underlying DGT results. Similar fits were obtained for the MD results, but are
not shown in Figs. 40 and 41 for clarity. The DGT and EOS results for all properties
exhibit only low scattering around the respective fitted curves, i.e. the investigated bulk
and interfacial properties are highly correlated with the liquid phase mean interactions.
The scattering of the MD results is larger than that of the DGT and EOS results due
to the fluctuations from the sampling during the simulation. The absolute average
deviation (AAD) from the DGT and EOS results from the corresponding fitted curves
were calculated for each property and are reported in Table 6.

The scattering of the DGT and EOS results for the vapor pressure ps and the vapor
phase composition x′′2 around the respective fitted curve is fairly constant in the entire
range of u′config, i.e. the range of investigated mixtures. In contrast to this, the scat-
tering of the results for the interfacial properties around the respective fitted curves
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Figure 41: Results for the conformal solution theory applied to the interfacial proper-
ties (enrichment E2, relative adsorption Γ

(1)
2 , surface tension γ, and inter-

facial thickness L90
10): the respective interfacial property computed by MD

(blue) and DGT (orange) are shown as a function of the configurational in-
ternal energy of the saturated liquid phase u′config as computed by Eq. (56).
The black solid lines indicate the fitted functions (58) - (59) (fitted to the
DGT results). All results are at x′2 = 0.05 mol mol−1 and T = 0.77 εk−1

B . The
dashed line indicates u′config of the high-boiling pure component 1 computed
by Eq. (56). Black symbols indicate the values for the pure component 1
obtained from the EOS+DGT.
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varies with varying u′config. The scattering is significantly lower for mixtures with large
mean dispersive interactions than for those with low mean dispersive interactions, cf.
results for Γ

(1)
2 , γ, L90

10 in Fig. 41. Furthermore, the scattering is lower for the surface
tension and the interfacial thickness than for the relative adsorption and the enrichment,
which indicates that the latter are less dominated by the liquid phase interactions but
also influenced by the vapor phase interactions and the anisotropic interactions at the
interface. This is supported by the corresponding AADs given in Table 6.

Table 6: Parameters for the correlations (58) - (60).

Ŷ a1 a2 a3 AAD
(c)H2,1 2.32⋅1048 - - 25.87506 9.5%
(a)ps 0.00993 1.05 ⋅1049 - -0.03718 1.8%
(b)x′′2 0.00823 0.77992 -4.28011 0.08256 3.5%
(b)E2 1 1.61673 -4.32865 0.03954 3.9%
(a)Γ

(1)
2 -0.03928 3.19 ⋅1020 - -0.08891 12.8%

(a)γ 0.49078 -2.03 ⋅1019 - -0.09371 0.6%
(a)L90

10 2.26152 8.42⋅1030 - -0.06044 0.7%
(a) uses Eq. (58)
(b) uses Eq. (59)
(c) uses Eq. (60)

High absolute values of u′config are found for mixtures with strong mean liquid phase
interactions. Eq. (57) shows that for the conditions that were studied in the present
work, the variation of the mean liquid phase interaction stems mainly from the variation
of the unlike dispersive interactions between component 1 and 2. The higher the absolute
value of u′config is (left side in the diagrams of Figs. 40 and 41), the stronger is the
attraction between the components 1 and 2. This explains why high absolute values
of u′config lead to low Henry’s law constants H2,1 (high solubilities of component 2 in
component 1), low vapor pressures, and low concentrations of the component 2 in the
gas phase, cf. Fig. 40. On the other hand, low absolute values of u′config (weak 1 - 2
attraction) lead to high Henry’s law constants H2,1 (low solubilities of 2 in 1), high vapor
pressures, and high concentrations of the component 2 in the gas phase, cf. Fig. 40.

For mixtures with large mean dispersive interactions, a variation of u′config (which goes in
hand with a variation of ε2/ε1 and ξ) has only little influence on the bulk and interfacial
properties. Note that H2,1 is plotted on an ln-scale. Furthermore, the magnitude of the
interfacial properties is small for these mixtures, e.g. small adsorption and enrichment
of the low-boiling component.

Eq. (57) shows that the unlike dispersive interactions increase both with ξ (which con-
trols the dispersion energy ε12) and with ζ = ε2/ε1 (which controls the relative volatility).
The unlike dispersive interactions are therefore high in corner A and decrease going to
corner B, cf. Figs. 32, 33 and 35 - 38. This also explains the observed phase behavior,
cf. Fig. 31.

For high mean dispersive interactions (left side in the plot shown in Fig. 41), the
interfacial thickness L90

10 is low. For weaker interactions the interfacial thickness L90
10
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increases, as it might have been expected. Also the dependence of the surface tension
γ on the mean dispersive interactions is expected: it decreases with decreasing mean
dispersive interactions.

Furthermore, Figs. 40 and 41 show that the developed CST also works in the limit
of the pure component. The vapor pressure, surface tension, and interfacial thickness
of the pure component 1 computed from DGT+EOS at T = 0.77 εk−1

B are shown as
black symbols. Its liquid phase configurational internal energy u′config was computed by
Eq. (57). The pure component values agree excellently with mixture values at the same
u′config. Hence, the vapor pressure, surface tension, and interfacial thickness of the pure
component have the same values as those of mixtures with the same liquid phase mean
interactions. Using these observables, a pure component could not be distinguished from
these mixtures at the investigated temperature. Also, those mixtures have zero relative
adsorption Γ

(1)
2 = 0, cf. Fig. 41. This strongly supports the picture of the one-fluid

theory and the CST applied in this work.

Interestingly, the dependency of the interfacial properties on the liquid phase mean
interactions is not symmetric, i.e. starting at the mixtures with Γ

(1)
2 = 0, an increase

and decrease of u′config has qualitatively different effects.

The surface tension that is reported here is the number for x′2 = 0.05 mol mol−1. As
the surface tension of the pure component 1 is the same in all cases, a decrease in
the reported surface tension goes along with an increase of the gradient of the surface
tension with varying x′2. It therefore follows from the Gibbs adsorption equation that
the relative adsorption Γ

(1)
2 must increase, which is in line with the results shown in

Fig. 41. High numbers for the relative adsorption of component 2 also go along with an
enrichment of that component at the interface E2, cf. Fig. 41.

The increase of Γ
(1)
2 and E2 with decreasing u′config can also be understood based on

Eq. (57). A decrease in u′config stems either from a decrease in ξ or from a decrease in
ε2/ε1. The picture we invoke in the following is that of a dynamic equilibrium. Assume
that a particle of component 2 is on the way of entering the liquid phase coming from
the gas phase. The liquid phase contains basically only component 1. The chance that
the particle 2 will successfully enter the liquid phase decreases with decreasing mixed
unlike dispersive interactions 1 - 2 in the liquid phase, i.e. with decreasing ξ and ε2/ε1.
Furthermore, low values of ε2/ε1 lead to high concentrations of component 2 in the
vapor phase (see Fig. 40), such that there are many particles of component 2 near the
interface, which could in principle enter but face difficulties in doing so. This leads to
the enrichment E2 and the positive relative adsorption Γ

(1)
2 . In a more colorful picture,

the situation resembles that at the door of a disco: there are many people (particles 2)
roaming outside and they are attracted by the disco’s neon lights (the interface), but
there are only few places available in the disco (in the liquid phase). Hence, there will
be a crowd at the entrance (enrichment and adsorption).

3.5.3 Conclusions

The relation between the molecular interaction parameters in binary Lennard-Jones
mixtures and the bulk and interfacial vapor-liquid equilibrium properties were studied
here. All considered bulk and interfacial properties exhibit a regular behavior when they
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are considered as a function of the variables ε2/ε1 and ξ, which describe the molecular
interactions. A theory was developed which explains this behavior based on a conformal
solution theory of the molecular interactions. It is based on the assumption that the
behavior of the studied systems is dominated by the liquid phase mean interactions and
that the liquid phase can be described with a one-fluid theory. The vapor phase has only
a minor influence. The basic finding is a monovariate relationship between the studied
VLE properties and the mean liquid phase interactions, i.e. the configurational internal
energy. This resembles the physical theory of the so-called entropy-scaling, which uses
a monovariate relationship between transport coefficients and the entropy [567]. For
the interfacial and bulk VLE properties, different combinations of ε2/ε1 and ξ may lead
to different types of phase behavior, but when the internal energy of the liquid phase
is the same, the value of the studied properties is the same. The theory also works in
the limit of the pure component such that mixtures with the same liquid phase mean
interactions as a pure component have the same the vapor pressure, surface tension,
and interfacial thickness as that pure component – and zero relative adsorption. The
theory also enables predictions outside the range of the parameters ε2/ε1 and ξ that was
studied in the present work.

Both large enrichment and large relative adsorption of the low-boiling component are
found for mixtures with relatively low mean interactions in the liquid phase, which also
goes in hand with low solubilities, i.e. wide-boiling mixtures that tend to form low-
boiling azeotropes. Such mixtures also tend to show liquid-liquid phase splits. Systems
with liquid-liquid equilibria were, however, not investigated here as this would have
overloaded the study. But, such are considered in the following section.

As only data for constant temperature and liquid phase composition were taken in the
present work, it would be interesting to extend the applied CST to other temperatures
and compositions and test if the monovariate relationship established in this work also
holds for those dimensions.
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3.6 Relation of Interfacial Properties and the Phase
Diagram

Interfacial properties are intrinsically tied to the corresponding phase equilibria. These
equilibria are often represented in phase diagrams, which may have complex topologies.
Establishing relations between the interfacial properties and the phase diagram requires
systematic studies of the different types of equilibria and the corresponding interfaces
for a given system. Such work is surprisingly scarce in the literature. Such a study is
therefore carried out here for a simple model system: a binary mixture of Lennard-Jones
truncated and shifted (LJTS) fluids, and the parameters were chosen such that the phase
diagram of the mixture is of type III according to the classification of van Konyenburg
and Scott [339]. I.e. the mixture has two critical lines and a three-phase line. Hence,
the isothermal phase diagram shows vapor-liquid equilibria (VL1E and VL2E ), liquid-
liquid equilibria (L1L2E ), and a vapor-liquid-liquid equilibrium (VL1L2E ); furthermore,
at very high pressures, also fluid-fluid equilibria (F1F2E ) exist. For comparison, also
mixture A (practically ideal mixture in the sense of Raoult’s law) was studied, cf. section
3.3. Mixture A is of type I. Pursuing the labeling of the LJTS mixtures introduced in
section 3.3, the type III system is labeled here as ’mixture G’. The phase equilibria
and interfacial properties of these two systems were investigated here in a wide range of
temperatures and pressures.

The study on different fluid interfacial properties was carried out with both molecular
dynamics (MD) simulation and density gradient theory (DGT) in combination with
the PeTS equation of state (EOS) – as studies discussed in the previous sections. The
following interfacial properties were investigated for all types of interfaces: surface ten-
sion, density profiles of the components in the nanoscopic interfacial region, relative
adsorption at the interface, interfacial thickness, and the enrichment of the components.

Non-monotonic density profiles of components at interfaces have been reported since
the early days of computational work on vapor-liquid interfacial properties of mixtures
[91, 192, 361]. The enrichment at vapor-liquid interfaces has attracted much attention
in the past decades [32–34, 50, 56, 91, 122, 126, 130, 149, 153, 173, 193, 200, 328,
354, 362, 373, 378, 379, 390, 391, 404, 412, 414, 446, 477, 483, 492, 501–504, 522, 533,
551, 552, 583, 585, 586, 624, 630, 630, 634, 635, 635], also because it is suspected to
influence the mass transfer through the interface [199, 328, 488, 634, 635]. Asymmetric
mixtures have attracted special interest [56, 173, 354, 373, 391, 483, 501, 504, 583] since
a particularly high enrichment is found in these types of mixtures. However, there are
only few studies in the literature in which the link between the enrichment at vapor-
liquid interfaces and the corresponding bulk phase equilibria was explicitly discussed
[173], whereas the link between the relative adsorption, the phase behavior, and the
wetting behavior has been studied more systematically for vapor-liquid-liquid equilibria
[127, 142, 143, 195, 447, 655, 656].

A further interesting phenomenon observed at fluid interfaces is a non-monotonic be-
havior of the total density at liquid-liquid interfaces [141, 199, 204, 415, 490, 669]. This
has been investigated in only few studies compared to the large body of available work
on the enrichment at vapor-liquid interfaces.

We have recently carried out two studies [630, 635] (cf. sections 3.3 and 3.4) in which
the influence of molecular interactions on both the phase diagram and interfacial prop-
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erties of binary fluid mixtures were investigated systematically for LJTS mixtures. In
Ref. [630] (cf. section 3.4) we have demonstrated that the interfacial properties are
directly linked to bulk phase equilibrium properties [630] and have established a con-
formal solution theory for this (cf. section 3.5). The study discussed in this section is
complementary to those studies: while in the previous work [630, 635] (cf. sections 3.3
and 3.4) many different mixtures were studied at basically only one condition and only
VLE were considered, a different approach is taken here: two mixtures are studied in
full detail for a wide range of conditions and different types of equilibria are considered.
The studied mixtures were selected based on the experience from the previous work
[630, 635] in such a way that important interfacial effects, namely a high enrichment,
are expected in one of them (mixture G), while the other is an ideal binary mixture
that is studied as a reference (mixture A). To the best of our knowledge, this is the first
study in which, for a given mixture, interfacial properties of different types of phase
equilibria were systematically investigated and characterized regarding the structure of
the interface and its properties.

In systematic studies of interfacial properties and phase equilibria, also the temperature
must be varied. The present study therefore also extends the knowledge on the tempe-
rature dependency of interfacial phenomena, which is known to be important, especially
for the enrichment [50, 362, 624].

3.6.1 Specification of LJTS Mixture A and G

Two binary LJTS mixtures were studied in the present work; they are labeled as mixture
A and G in the following. Both contain a high-boiling component, denoted as component
1 and a low-boiling component, denoted as 2. The high-boiling component is the same
in both mixtures and can be considered as the reference fluid. The low-boiling character
of the component 2 is obtained by decreasing its dispersion energy with respect to
component 1. The size parameter is not varied and is σ for all components. Also the
mass of the LJTS particles M is also the same for both components.

As in the previous sections, the modified Lorentz-Berthelot combination rules are em-
ployed [52, 394] for the modeling of the interaction between unlike LJTS particles:

σij =
σi + σj

2
, (61)

εij = ξ
√
εiεj . (62)

Here, indices i and j stand for the interaction of two particles of the same component
and ij for the cross interaction between the different components, and ξ is a state-
independent interaction parameter.

The studied mixtures are:

• mixture A: ideal mixture with ε2/ε1 = 0.9 and ξ = 1 (cf. section 3.3),

• mixture G: asymmetric wide boiling mixture with ε2/ε1 = 0.6 and ξ = 0.85.

The two mixtures were selected based on the experience from our previous study [630]
(cf. section 3.4). Mixture G is the mixture for which the highest enrichment was found in
that study (cf. Fig. 35), which is due to the underlying bulk densities; see the Appendix
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for details. The vapor pressure curves of the three pure components are shown in Fig.
42. They were computed with the PeTS EOS [249], which reproduces both stable and
metastable states as well as the vapor-liquid equilibrium of the LJTS fluid very well, cf.
chapter 2. The binary interaction parameter ξ and the ratio of the dispersion energies
ε2/ε1 as specified above were used both in MD and DGT.

Figure 42: Vapor pressure curves for the three pure LJTS fluids employed in the
present work. The high-boiling component 1 is the gray solid curve. The
two low-boiling components 2 are the black solid curves. The critical points
are indicated as stars. The temperatures that were investigated in the
present study are indicated as colored vertical dashed lines.

The fluid interfaces of the binary mixtures A and G were studied in the present work
at five temperatures, which are indicated by the vertical dashed lines in Fig. 42:
T /εk−1

B = 0.66, 0.715, 0.77, 0.825, 0.88. Using the results of Vrabec et al. [687] for
the critical point of the LJTS fluid with rc = 2.5σ (Tc = 1.0779 εk−1

B ; ρc = 0.319σ−3) the
reduced temperatures with respect to the critical point of the reference component 1
are approximately: Tred = T /Tc,1 = 0.6, 0.65, 0.7, 0.75, 0.8. The lowest temperature
T = 0.66 εk−1

B is slightly above the triple point temperature (Ttrip = 0.62 εk−1
B ) of the

component 1 [442, 667]. The low-boiling component 2 with only slightly decreased dis-
persion energy (ε2/ε1 = 0.9) is subcritical at all investigated temperatures, whereas the
component 2 with ε2/ε1 = 0.6 supercritical at all investigated temperatures.

The focus of this study lies on the highly non-ideal mixture G. Mixture A is used as a
reference of a practically ideal mixture. In subsection 3.6.2, the phase diagrams of the
mixtures A and G are introduced and the results for bulk phase equilibria are presented.
Then, the results for the interfacial properties of mixture A and mixture G are discussed
in 3.6.3 and 3.6.4, respectively. For the mixture G, the following subsections report on
interfacial properties for different types of phase equilibria: subsection 3.6.4.1 on VL1

interfaces, subsection 3.6.4.2 contains a discussion of the different types of equilibria
adjacent to the three-phase VL1L2E, subsection 3.6.4.3 reports on the results for the
F1F2E and its’ interfacial properties. Finally, in subsection 3.6.5 the results for the
interfacial properties of the different types of equilibria are summarized and put into
context with each other. The results for both the phase equilibria and the interfacial
properties are shown graphically here, the corresponding numeric values of the results
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are reported in the Appendix.

It was shown in earlier works of our group [630, 635] (cf. section 3.3 and 3.4) that the
interfacial density profiles of LJTS mixtures obtained from MD and DGT+PeTS EOS
agree very well. Hence, only the DGT density profiles are discussed here for brevity;
the corresponding MD results are provided in the Appendix. The good agreement of
the results for the interfacial properties derived from the density profiles obtained from
MD and DGT affirms this procedure.

3.6.2 Results for the Phase Equilibria of Mixture A and G

Fig. 43 shows the pressure - temperature diagrams with the characteristic curves for the
binary mixtures A and G. Besides the vapor pressure curves of the pure components,
also the critical lines are shown, and for mixture G the three-phase line. The results were
obtained from the PeTS EOS. The phase equilibria were computed with the method and
algorithm described in Ref. [137].

Mixture A is almost ideal, cf. section 3.3, and shows a type I phase behavior in the
classification of van Konynenburg and Scott [339]. The pure component critical points
are connected by a single critical line of the binary mixture. Real mixtures that have
qualitatively the same phase behavior are for example methane + krypton, krypton +
xenon, and krypton + argon. Mixture G is strongly non-ideal and has a type III phase
behavior according to Ref. [339]. Real mixtures that have qualitatively the same phase
behavior are for example water + carbon dioxide, different alkanes + carbon dioxide,
neon + argon, nitrogen + ammonia, and neon + krypton. Mixtures of type III have
attracted much attention in the past [139, 173, 354, 553] as they exhibit an interesting
and complex phase behavior.

For mixture G, the critical line that starts at the critical point of component 2 ends
in an upper critical end point (UCEP), where also the three-phase VL1L2E line ends.
The critical line that starts at the critical point of component 1 exhibits a temperature
minimum, i.e. a bicritical end point (BICEP) in which two critical points merge. The
branch of the critical line that is connected to the critical point of component 1 belongs to
common binary vapor-liquid phase envelopes. The branch of the critical line that climbs
to high pressures belongs to so-called fluid-fluid equilibria [572] (which are sometimes
also referred to as ’gas-gas equilibria’). Even though both components are supercritical
at such states, a phase split is observed. The fluid-fluid critical line monotonically
increases with increasing temperature starting at the BICEP. In the temperature range
TUCEP < T < TBICEP, the phase envelopes starting at the high-boiling pure component
vapor pressure have no critical point. The five temperatures that were studied in the
present work were chosen such that the corresponding phase diagrams include all these
phenomena, cf. little arrows in Fig. 43.

Fig. 44 shows the isothermal p−x phase diagrams for the mixtures A and G at the five
studied temperatures. Results from computer experiments and the EOS are shown.

For mixture G, the low-boiling component 2 is supercritical at all investigated temper-
atures, whereas the high-boiling component 1 is subcritical at all temperatures. The
phase envelope is very wide at low temperatures and gets narrower as the temperature
increases. Starting at the critical point of the pure component 1, the critical pressure of
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Figure 43: Pressure-temperature diagrams with characteristic curves for the mixtures
A and G. Pure component vapor pressure curves and critical points are
gray lines and stars (high-boiling component 1) and black lines and stars
(low-boiling component 2). Red lines are critical lines of the mixture; the
red star is the upper critical end point of mixture G (UCEP). The green
line depicts the VL1L2E three-phase line of mixture G. Arrows indicate the
five temperatures investigated in this work, cf. Fig. 42 for the color coding.

the mixture first increases only slightly with decreasing temperature but then increases
dramatically for temperatures below about T = 0.715 εk−1

B , which becomes also clear
from the critical line depicted in Fig. 43.

Mixture G exhibits aVL1L2 three-phase equilibrium at temperatures below T = 0.689 εk−1
B ,

cf. Fig. 43. In the phase diagram, there is a VL1 equilibrium region below the three-
phase line, cf. Fig. 44. Above the three-phase line, there is a small region in which VL2

equilibria exist and a large L1L2 equilibrium region.

The isothermal phase diagram of mixture G at T = 0.715 εk−1
B is special, as in the

single two-phase region that is observed at this temperature, at low pressures equilibria
are found that can be classified as vapor-liquid equilibria, while at high pressures, the
equilibria resemble liquid-liquid equilibria. The density transition between both types is
smooth and can be found at pressures lying approximately on an extension of the three-
phase line, cf. Fig. 43. This transition occurs at approximately xL1

2 ≈ 0.17 mol mol−1 for
T = 0.715 εk−1

B . However, no isopycnic point [553] (both phases have the same density)
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Figure 44: Isothermal p−x phase diagrams for the mixture A and the mixture G at all
five investigated temperatures. The temperatures in the top and bottom
plot are color-coded using the same scale. Symbols are MD results and lines
are the PeTS EOS. The one and two phase regions are labeled only for the
lowest temperature T = 0.66 εk−1

B . The VL1L2 three-phase equilibrium is
depicted as dashed line.

is observed in mixture G.

According to the p − T diagram of mixture G (cf. Fig. 43), with increasing pressure
the VL1 region can either terminate at the three-phase line (T = 0.66 εk−1

B ), be open
(T = 0.715 εk−1

B ), or end in a critical point (T = 0.77, 0.825, 0.88 εk−1
B ).

Fig. 44 shows that the agreement between the results from the PeTS EOS and those
from the computer experiments is excellent for the ideal mixture A for all temperatures
that were studied. Also for the non-ideal mixture G, a good agreement is found in most
cases. Exceptions are regions in the vicinity of critical points, and the compositions
of the coexisting phases of the L1L2 liquid-liquid equilibria, where the EOS yields a
miscibility gap which is broader than that obtained from MD. These deviations are
probably a result of differences between the force field and the free energy model of the
PeTS EOS, which may be due to the simplified expression that is used for the description
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of the repulsive interactions in the EOS [66, 249, 639].

3.6.3 Results for the Interfacial Properties of Mixture A

The interfacial properties of mixture A are reported and discussed in this section. The
chosen mixture parameters for the mixture A ξ = 1 and ε2/ε1 = 0.9 result in a basically
ideal mixture in the sense of Raoult’s law (cf. Fig. 44 a). The activity coefficients at
infinite dilution are in all cases well below 1.1 in the entire temperature range studied
here. This ideal behavior holds for the entire investigated temperature range. Both
components are subcritical at all chosen temperatures.

Fig. 45 shows the density profiles of both components at theVL interface at T = 0.66 εk−1
B .

As the density profiles at other temperatures do not provide further insight, they are
only shown in the Appendix.

Figure 45: Density profiles of component 1 (dashed lines) and component 2 (full lines)
for the mixture A at T = 0.66 εk−1

B obtained by DGT. The color-code indi-
cates the liquid phase composition.

At very low concentrations of component 2, a small but distinct enrichment of component
2 at the interface is found (cf. Fig. 45). This also holds for T = 0.715 εk−1

B and
T = 0.77 εk−1

B (see Appendix).

Furthermore, a closer look reveals that the density profiles from component 2 are slightly
shifted to −z direction with respect to the density profile of the high-boiling component –
at all concentrations but especially at high xL2 . This is an indication that the component
2 adsorbs at the interface – even though no enrichment is present.

Fig. 46 shows the interfacial properties obtained from MD and DGT for the VL interface
of mixture A at all five considered temperatures. Results for the surface tension, relative
adsorption, enrichment, and interfacial thickness are shown. The surface tension of
mixture A, starting at the pure component 1, decreases almost linearly with increasing
xL2 . This holds for all five investigated temperatures. The surface tension decreases
with an increasing temperature, while the slope of the surface tension ∂γ/∂xL2 does not
depend on the temperature.
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Figure 46: VL interfacial properties for mixture A: (a) surface tension γ, (b) relative
adsorption of component 2 at the interface Γ

(1)
2 , (c) enrichment of compo-

nent 2 E2, and (d) interfacial thickness L90
10. Symbols are MD simulation

results, lines are DGT results. Results for all studied temperatures. The
color-code indicates the temperature and is the same for all shown plots.
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The adsorption isotherms (Fig. 46 b) for the mixture A are almost linear with a slight
concave curvature, which confirms the impressions from the density profiles. Since the
relative adsorption and the decay of the surface tension ∂γ/∂xL2 are linked via the Gibbs
adsorption equation, also the temperature dependency of the relative adsorption is faint;
the relative adsorption slightly increases with decreasing temperature. This can only be
seen in the DGT results, as the scattering of the MD results exceeds this temperature
influence on Γ

(1)
2 .

For the mixture A the results predicted from DGT lie within the error bars of the MD
results, even though the latter scatter intensely and have accordingly large error bars.
This is simply due to the fact that the magnitude of the adsorption is relatively small.

As shown in the inset in Fig. 45 also the density profiles of component 2 in mixture A
exhibit a slight maximum at the interface, i.e. enrichment E2 > 1. Such an enrichment is
only found at low temperatures and low liquid phase concentrations xL2 , cf. Fig. 46 (c).
This is in line with results from a previous study (cf. section 3.4) [630], which showed
that the enrichment exhibits a continuous transition upon varying mixture parameters
ξ and ε2/ε1 at constant temperature and xL2 . Even though MD seems to overestimate
the enrichment in ideal mixtures compared to the theory, the present enrichment is
probably not an artifact. The systematic overestimation of the enrichment obtained
from MD compared to DGT results in the case of an insignificant enrichment has been
attributed to the fact that outliers – in the not perfectly smooth density profiles from
MD – will have a strong influence at very small values of E2, cf. section 3.2.5 and Refs.
[628, 630, 635] for a detailed discussion. This can also be seen at the strongly increasing
error bars of the E2 results at low liquid phase concentrations xL2 in mixture A.

The interfacial thickness of mixture A (cf. Fig. 46 d) increases almost linearly between
the two pure component values with varying xL2 , which is similar to the surface tension
behavior (cf. Fig. 46 a). However, an important difference can be observed: ∂γ/∂xL2 does
not change with varying temperature, whereas ∂L90

10/∂xL2 depends on the temperature.
This is mainly due to differences in the pure component temperature dependency of the
surface tension and the interfacial thickness, cf. chapter 2. As found in previous studies
discussed in chapter 2 and sections 3.3 and 3.4, the PeTS+DGT results systematically
underestimate the MD results.

3.6.4 Results for the Interfacial Properties of Mixture G

3.6.4.1 VL1 Interfaces

Fig. 47 shows the VL1 density profiles of mixture G for all five temperatures that were
studied here in the entire composition range. Only DGT results are shown, which agree
well in all cases with the MD results (see Appendix).

In contrast to the ideal mixture A, the VL1 density profiles of component 2 of mixture
G exhibit a distinct maximum at all temperatures, i.e. enrichment is observed. This
maximum is most prominent at the lowest investigated temperature and decreases with
an increasing temperature. The interfacial thickness increases with increasing tempe-
rature, which becomes clear from the density profiles of component 1 and the width of
the enrichment peak shown in Fig. 47. The density profiles at the three highest studied
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Figure 47: VL1 density profiles
of component 1
(dashed lines) and
component 2 (full
lines) for the mixture
G obtained by DGT.
Results for all stu-
died temperatures.
The color-code in-
dicates the liquid
phase composi-
tion. Red squares
indicate invariant
intersection points
of density profiles of
component 1.
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temperatures are similar, those for the two lowest show a distinctly different behavior.
This is in line with the differences in the phase diagrams that were obtained for the five
temperatures, see Fig. 44 - bottom. For the higher three temperatures, the VL1E region
terminates in a critical point, which is not the case for the lower two temperatures.

For the density profiles at the three higher temperatures (T = 0.77 εk−1
B , 0.825 εk−1

B ,
and 0.88 εk−1

B ), the enrichment vanishes upon approaching the critical point. Hence,
both component density profiles become – as expected at a critical point – horizontally
flat. For T = 0.715 εk−1

B , the enrichment vanishes as the pressure increases and the
vapor phase density increases significantly. For T = 0.66 εk−1

B , the enrichment is most
prominent and furthermore remains present in the entire composition range up to the
VL1L2E, cf. Fig. 44. The interfacial structure in the vicinity of the VL1L2E is discussed
in detail in the next section. The enrichment decreases with increasing temperature but
does not fully vanish.

For all five temperatures, the enrichment peak is fairly symmetric at low mole fractions
xL1

2 of the component 2 in the liquid phase L1, i.e. for VL1 equilibria close to the boiling
point of the pure component 1. Also, the z-position of the peak does not change for low
xL1

2 . For high xL1
2 , the position of the enrichment peak slightly moves towards the vapor

phase. The position of the maximum of the enrichment remains fairly constant upon
varying composition and temperature, even when the topology of the phase diagram
changes, compare Fig. 47 with Fig. 43. The peak position is approximately at z(ρmax) ≃
−σ in the coordinates that are used here (cf. section 3.2.5). As also reported before,
e.g. Refs. [50, 635], no enrichment is found for the high-boiling component in the entire
investigated temperature and composition range.

For mixture A, no significant non-monotonic behavior of the density profiles of the two
components was found in the entire investigated temperature and composition range. It
is noted, however, that at very low temperature and very low concentrations xL1

2 , slight
maxima in the density profiles ρ2(z) of component 2 were observed (see above).

For mixture G, some of the density profiles exhibit one or even two invariant common
intersection points, which are indicated in Fig. 47. The common intersection points of
all examined phase equilibria in this study are discussed in section 3.6.4.4.

Fig. 48 (a) - (d) shows the results that were obtained for the surface tension γ, the
relative adsorption Γ

(1)
2 , and the enrichment of the low-boiling component E2, as well as

the interfacial thickness of the mixture G in the VL1E region. Results from both MD
and DGT are shown. The results for mixture G are plotted analog to Fig. 46, which
shows the results for mixture A.

The surface tension results from DGT lie within the error bars of the MD results for
all but one state point for the ideal mixture A (cf. Fig. 46 (a). The agreement is
less good for mixture G, cf. Fig. 48 (a), but considering the fact that both methods
are independent predictions, the agreement is fair. Deviations increase with decreasing
temperature and increasing xL1

2 . The DGT results systematically underestimate the
molecular simulation surface tensions for such state points. These deviations are likely
due to deviations between the PeTS EOS and the LJTS force field since deviations for
these state points are also found for the phase behavior, cf. Fig. 44.

Starting at the pure component 1, the VL1 surface tension γ of the mixture G first
decreases linearly with increasing xL1

2 at all investigated temperatures. The slope of the
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Figure 48: VL1 interfacial properties for mixture G: (a) surface tension γ, (b) relative
adsorption of component 2 at the interface Γ

(1)
2 , (c) enrichment of compo-

nent 2 E2, and (d) interfacial thickness L90
10. Symbols are MD simulation

results, lines are DGT results. Results for all studied temperatures are
shown. The color-code indicates the temperature and is the same for all
plots. The arrow indicates the composition of phase L1 in the three-phase
equilibrium at T = 0.66 εk−1

B .
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VL1 surface tension increases with decreasing temperature, which is due to an adsorption
of the low-boiling component at the interface following the Gibbs adsorption equation.
At T = 0.66 εk−1

B , the surface tension decay remains fairly linear until the three-phase
equilibrium is reached (small purple arrow). The results for the isotherm T = 0.715 εk−1

B

are special, as for that isotherm a transition of the phase equilibria from vapor-liquid-
like to liquid-liquid-like occurs, as explained above. For the four higher temperatures,
γ(xL1

2 ) becomes convex at high xL1
2 and falls to zero at the critical point. This is a

remainder of the three-phase equilibrium at T < TUCEP and the fluid-fluid equilibrium
at T > TBICEP.

The surface tension of the mixture A has a much simpler behavior: the decay of the
surface tension from the pure component 1 to component 2 is practically linear in the
entire temperature and composition range (see section 3.6.3).

Fig. 48 (b) shows the adsorption isotherms Γ
(1)
2 (xL1

2 ) for the mixture G in the VL1E
region obtained from MD and DGT. The results from both methods agree qualitatively
well in all cases – as found for the mixture A in section 3.6.3. The agreement is excellent
for the higher temperatures but less favorable for the lower temperatures. Furthermore,
the deviations increase with increasing xL1

2 .

All VL1 adsorption isotherms for the mixture G have in common that, starting at
infinite dilution of the component 2, the relative adsorption Γ

(1)
2 first increases with

increasing xL1
2 . The adsorption isotherms at T /εk−1

B = 0.715, 0.77, 0.825, 0.88 exhibit
a maximum; for the three highest temperatures, the mixtures’ phase envelope has a
critical point, at which the relative adsorption Γ

(1)
2 vanishes. Such adsorption isotherms

are usually found in systems with one supercritical component and a single critical point
[16, 33, 50, 116, 624, 635, 692]. The adsorption isotherm for T = 0.715 εk−1

B converges to
zero with increasing xL1

2 or p, even though the corresponding phase diagram does not
possess a critical point, cf. Fig. 43. This is a result of the transition from the vapor-
liquid-like behavior to liquid-liquid-like behavior on that isotherm. The adsorption
isotherm for T = 0.66 εk−1

B exhibits a pole at the composition in the liquid phase xL1
2

that corresponds to the three-phase equilibrium. Hence, component 2 adsorbs (Γ(1)2 > 0)
at the VL1 interface in the entire temperature and composition range. The adsorption
isotherms in mixture G exhibit values approximately an order of magnitude larger than
those in mixture A at low temperatures. However, at high temperatures, both mixtures
have similar values for Γ

(1)
2 , e.g. for the isotherm T = 0.88 εk−1

B the relative adsorption
is in both cases in the range of Γ

(1)
2 = 0 .. 0.2σ−2.

Fig. 48 (c) depicts the enrichment of the low-boiling component E2 at VL1 interfaces
of mixture G. The enrichment predicted from MD and DGT agrees qualitatively well
for both mixtures, but significant deviations are observed. DGT predicts a larger en-
richment than MD for mixture A. These differences might be caused by fluctuations
that are present in MD but not in DGT [50, 635, 637], but could also be caused by
differences between the PeTS EOS and the LJTS force field. The deviations between
DGT and MD increase with decreasing temperature (larger E2). This might be due
to the fact that large enrichment at the interface is more sensitive to fluctuations than
small enrichment.

For mixture G, values of up to about E2 = 7 are found for the VL1 interfacial enrichment
(cf. Fig. 48 b), which is remarkable considering the fact that it is a simple dispersively
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interacting system. We have shown in a previous work [630] that the difference of the
component 2 bulk density ∆ρ2 = ρL2 − ρV2 has an important influence on the enrichment
E2 (see the Appendix for more information). For ∆ρ2 = 0, any adsorption at a vapor-
liquid interface – required to satisfy the Gibbs adsorption equation – contributes to the
enrichment for geometric reasons, cf. section 3.4. For all state points studied in the
present work, ∆ρ2 was computed and is shown in the Appendix. For mixture G, ∣∆ρ2∣
is small, which favors the large enrichment found at the VL1 interfaces.

A further interesting finding is that at T = 0.66 εk−1
B , the function E2(xL1

2 ) shows a
non-monotonic behavior: starting at low xL1

2 , it first increases and then, after passing
a maximum, decreases. Such a behavior has to the best of our knowledge not been
reported before in the literature. The commonly reported behavior [50, 624, 635] of E2

is a monotonic decay with increasing xL1
2 , as observed for all other temperatures for the

mixture G.

Mixture A shows much lower values for the enrichment E2 than mixture G (see sec-
tion 3.6.3). The enrichment E2 that is predicted for mixture A by DGT does not exceed
E2 =1.05; values up to about E2 = 1.3 are predicted by MD, whereas mixture G yields
an enrichment up to E2 = 7.

Fig. 48 (d) shows the VL1 interfacial thickness L90
10, cf. Eq. (46), for mixture G. The

results from DGT and MD agree qualitatively well, but, as discussed in section 2.3
for the pure LJTS substance and sections 3.3 and 3.4 for binary LJTS mixtures, the
interfacial thickness obtained from DGT is systematically smaller than that from MD
by about 15%. This has been attributed to fluctuations of the interface present in MD
that are not present in DGT [50, 635, 637]; maybe also differences between the PeTS
EOS and the LJTS force field play a role [628, 630], cf. chapter 5.

For the upper three temperatures – above the bicritical endpoint – shown in Fig. 48 (d),
the interfacial thickness L90

10 increases monotonously with increasing xL1
2 . This increase

is expected to continue up to the critical point where L90
10 diverges. The behavior of L90

10

that is observed at the lowest temperature T = 0.66 εk−1
B is highly interesting. Here, L90

10

diverges upon approaching the VL1L2 line, i.e. when xL1
2 approaches the composition

of the phase L1 in the three-phase equilibrium. This is discussed and explained in the
next section.

Also the maximum of L90
10 that is observed for T = 0.715 εk−1

B is directly related to the
corresponding phase diagram. The liquid phase composition xL1

2 ≈ 0.17 mol mol−1 of
the L90

10 maximum at T = 0.715 εk−1
B corresponds to the transition of the vapor phase

to a ’liquid-like’ phase. This goes in hand with a drop of the relative adsorption of
component 2 at the interface and a kink in the enrichment E2(xL1

2 ), cf. Fig. 48 (b).
this transition can also be seen in the density profiles, cf. Fig. 47 (b).

3.6.4.2 VL1, VL2 and L1L2 Interfaces Adjacent to the VL1L2E

Below the temperature of the upper critical end point UCEP (cf. Fig. 43), the mix-
ture G exhibits a three-phase VL1L2 equilibrium in the phase diagram. Three two-
phase equilibrium regions are connected to that VL1L2E line: VL1E, VL2E, and L1L2E
(cf. Fig. 44). On the three-phase line, there are three fluid interfaces VL1, VL2, and
L1L2. Their surface tensions determine the wetting behavior of the three-phases, as
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discussed in more detail in the literature [127, 132, 447, 573]. The three surface tensions
are related by [573]

γVL1 ≤ γVL2 + γL1L2 , (63)

where the equality indicates total wetting (plane layer of phase L2 between L1 and V )
and the inequality indicates partial wetting of the phase L2 (droplets of phase L2 on
the phase L1). While interfacial properties and their relation to the wetting behavior
directly on three-phase lines have been reported in the literature [127, 142, 143, 195, 354,
447, 655, 656], only Falls et al. [173] discuss features of density profiles in the adjacent
two-phase regions. Therefore, we have carried out a systematic study of the transitions
of the interfacial properties in the two-phase regions in the vicinity of the three-phase
line in mixture G. Together with these results we discuss the VL2 and L1L2 interfaces
in general.

The vapor pressure and phase compositions of the three-phase equilibrium of mix-
ture G at T = 0.66 εk−1

B were calculated from the PeTS EOS: ps = 0.555 εσ−3, xL1
2 =

0.124 mol mol−1, xL2
2 = 0.817 mol mol−1, xV2 = 0.901 mol mol−1. The three corresponding

total number densities are: ρL1 = 0.78σ−3, ρL2 = 0.51σ−3, and ρV = 0.17σ−3.

Fig. 49 shows the density profiles at fluid interfaces of VL1E, VL2E, and L1L2E in the
vicinity of the three-phase VL1L2 equilibrium at T = 0.66 εk−1

B . As discussed above,
a large enrichment is found for VL1 interfaces. Upon approaching the VL1L2E, the
enrichment peak of the VL1 interface changes its shape dramatically: while there are
only small changes on the L1 liquid side of the peak, the vapor side V undergoes a
transition upon which the peak becomes much broader. This leads to an extremely
high adsorption and interfacial thickness in the vicinity of the VL1L2E. This transition
can be interpreted as a precursor of the second liquid phase L2. The second liquid
phase L2 starts growing out of the interface before the VL1L2E is reached, which can be
considered as a wetting transition upon which the adsorption Γ

(1)
2 increases drastically.

Furthermore, the density profile of the high-boiling component 1 undergoes a transition
(cf. Fig. 49 b), which is in line with the interpretation of a new phase growing at the
interface upon approaching the VL1L2E.

Interestingly, the enrichment in the VL1E region is already present at infinite dilution
and grows with increasing xL1

2 to become eventually the L2 phase at the three-phase
equilibrium. Furthermore, an enrichment in the VL1E region is also present at temper-
atures T > TUCEP, where no VL1L2E occur.

From the density profiles at T = 0.66 εk−1
B close to the three-phase VL1L2E, the density

and composition of the enrichment peak can be determined roughly as: ρpeak ≃ 0.51σ−3

and xpeak
2 ≃ 0.81 mol mol−1. This local composition and total number density at the

enrichment peak agrees very well with the composition and density of the second liquid
phase L2 in the VL1L2E at T = 0.66 εk−1

B (see above). Hence, the enrichment of the
component 2 at the interfaces in the VL1 two-phase region can be considered as the
nucleation of the L2 phase – starting already at infinite dilution of component 2. This
interpretation is in line with the picture evoked by Falls et al. [173].

The fluid interfaces in the three two-phase regions (VL1E, VL2E, and L1L2E ) have
strongly differing features, cf. Fig. 49. The interfaces in the VL1E region exhibit an
enrichment of the low-boiling component, whereas the VL2E region density profiles of
both components show a monotonous transition between the bulk phases. Finally, in
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Figure 49: Density profiles of different fluid interfaces for the binary mixture G at
T = 0.66 εk−1

B in the vicinity of the three-phase equilibrium. (a) shows
the VL2E two-phase region (V left, L2 right); (b) the VL1E (V left, L1

right) and L1L2E (L2 left, L1 right) region. Dashed lines stand for the
high-boiling component 1 and solid lines for the low-boiling component 2.
The color-code represents the liquid phase composition. The black lines
indicate the density profiles of the three-phase equilibrium. Red squares
indicate invariant intersection points of the density profiles.

the L1L2E region, a small enrichment is observed in the vicinity of the three-phase
equilibrium, cf. Fig. 49 (b).

Fig. 50 shows the interfacial properties (surface tension, relative adsorption, enrichment,
and interfacial thickness) of mixture G at T = 0.66 εk−1

B for the VL1, VL2, and L1L2

interfaces in the vicinity of the VL1L2 three-phase equilibrium. The properties of the
VL1 interfaces have already been discussed above.

The VL2 interfaces show an unexpected behavior: the surface tension and the relative
adsorption are very small, and no enrichment is observed. This may be related to the
proximity of the critical point in that small two-phase region. In line with this interpre-
tation, the interfacial thickness is large. As expected, it increases upon approaching the
critical point. The predictions of the VL2 interfacial properties obtained by DGT and
MD are in fair agreement.

For the L1L2 interfaces, the discrepancies between the predictions of the interfacial
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Figure 50: Interfacial properties of the mixture G at T = 0.66 εk−1
B in the vicinity of

the three-phase equilibrium as a function of the pressure. Top to bottom
are: surface tension, relative adsorption, enrichment of component 2, and
interfacial thickness. Symbols are the MD simulation results, lines are DGT
results. Solid lines and squares depict the VL1E region (left side in the
diagrams), dotted lines and circles the L1L2E region, and dashed lines and
triangles the VL2E region (right side in the diagrams). The black vertical
line indicates the VL1L2E pressure.
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properties obtained from the two methods are larger. This is not astonishing, as there
were also discrepancies in the predictions of the bulk phase behavior, cf. Fig. 44. Both
methods predict a small surface tension. Again, the enrichment E2 predicted by DGT is
substantially larger than that predicted by MD. However, even for DGT, the maximal
enrichment is only about E2 = 1.06. Both methods predict fairly large numbers for the
interfacial thickness L90

10, but the numbers obtained from MD (about 12σ) are again
much higher than those obtained from DGT (about 5σ). The L1L2 surface tension,
relative adsorption, and interfacial thickness decrease with increasing pressure.

For all three types of interfaces (VL1, VL2, and L1L2) in the vicinity of the three-phase
equilibrium, the relative adsorption Γ

(1)
2 is highest directly at the three-phase equilibrium

and decreases upon moving away from it, cf. Fig. 50 (b). The three surface tensions
at the three-phase equilibrium γVL1, γVL2, and γL1L2 are directly linked by the wetting
behavior of the phases in direct contact [127, 447, 573]. In the case of mixture G, the
phase L2 wets the VL1 interface, i.e. γVL1 = γVL2 + γL1L2. Hence, a macroscopic layer of
the phase L2 will form between the phases L1 and V at the three-phase equilibrium at
T = 0.66 εk−1

B , which is in line with predictions for simple mixtures of that type [127].
This is completely in line with the picture of a wetting transition described above.

As mentioned above, at T = 0.715 εk−1
B , there is a transition of the vapor phase upon

increasing pressure to a high density liquid-like phase in mixture G. Interestingly, also
for this transition, the enrichment acts as a precursor, cf. Fig. 47 (b). Hence, the
liquid-like phase starts forming at the interface in the VL1 region.

3.6.4.3 F1F2 Interfaces

Fig. 51 shows the phase behavior of mixture G at temperatures in the vicinity of the
bicritical end point (BICEP) and up to very high pressures. At T > TBICEP, the F1F2

fluid-fluid equilibrium region is separated from the VL1E region. Hence, two critical
points are present: the VL1 equilibrium region has a pressure maximum critical point,
the F1F2 region a pressure minimum critical point. In the F1F2E two high-density fluid
phases F1 and F2 coexist. The F1F2E is almost symmetric in the phase diagram –
especially at high temperatures, cf. Fig. 51.

We have studied the F1F2 interface at T = 0.77 εk−1
B and T = 0.825 εk−1

B with DGT. In
preliminary MD simulation runs, stability problems due to the extreme pressures were
observed in the employed NVT ensemble. Hence, only DGT results are available for the
F1F2 interfaces.

The obtained density profiles of the F1F2 interfaces of both components are shown
in Fig. 52. The corresponding results for the interfacial properties (surface tension,
relative adsorption, and interfacial thickness) are shown in Fig. 53. The enrichment of
both components at the interface is unity in the entire F1F2E region and is therefore
not plotted in Fig. 53. Starting at the F1F2E critical point, the surface tension is zero
and then increases with increasing pressure, cf. Fig. 53 (a). This is opposite to the
surface tension dependency in the L1L2 equilibrium region, cf. Fig. 50, where the surface
tension decreases with increasing pressure. However, the temperature dependency of γ
in the L1L2 and F1F2 equilibrium regions is the same, i.e. the surface tension decreases
with increasing temperature. As for the L1L2E, the surface tension γ for the F1F2E is
small and does not exceed 0.06 εσ−2.
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Figure 51: Isothermal p − x phase diagrams for the mixture G at temperatures close
to the bicritical endpoint (T = 0.7532 εk−1

B ) and up to very high pressures.
Results from the EOS. Stars indicate critical points.

Interestingly, in contrast to all other types of interfaces that were studied here, the F1F2

interfaces are depleted of component 2 (negative values of Γ
(1)
2 ), cf. Fig. 53 (b). Starting

at the F1F2E critical point, the relative adsorption Γ
(1)
2 is zero and then decreases with

increasing pressure. The absolute value of ∣Γ(1)2 ∣ is two orders of magnitude smaller than
the relative adsorption at the L1L2 and VL1 interfaces. Furthermore, Γ

(1)
2 (p) exhibits

an interesting ’S’-shaped behavior, which is related to the particular structure of the
F1F2 interface that is described in more detail below.

The interfacial thickness of the F1F2 interfaces diverges at the critical pressure and
decreases with increasing pressure, cf. Fig. 53 (c). At constant pressure, L90

10 also
increases with increasing temperature – as expected. The F1F2 and L1L2 interfaces
have the same qualitative behavior for the relative adsorption and interfacial thickness
– both decrease with increasing pressure.

Fig. 54 shows the density profiles at F1F2 interfaces at T = 0.77 εk−1
B . The top plot

shows the density profiles of the mixture at p = 18.1 εσ−3: besides the profiles of the
two individual components, also the total density profile is depicted for a single state
point; the bottom plot shows the total density profile for different pressures. The F1F2

interfaces are similar to the L1L2 interfaces, cf. Fig. 54: Also for the F1F2 interfaces,
the total density of both bulk phases is high and approximately the same for both
phases. The density profiles of both components ρ1(z) and ρ2(z) exhibit a monotonous
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Figure 52: Density profiles of mixture G at T = 0.77 εk−1
B (top) and T = 0.825 εk−1

B

(bottom) for the high pressure fluid-fluid F1F2 equilibrium obtained from
DGT. Dashed lines are the high-boiling component 1 and solid lines are the
low-boiling component 2. The color is coded by the pressure. Red squares
indicate invariant intersection points of density profiles.

transition between the bulk phases in both cases. This holds for the entire investigated
temperature and pressure range. The density profiles of the two components 1 and 2
are almost symmetric, which is analogous to the symmetry of the underlying p−x phase
diagram.

However, the F1F2 interfaces reveal an interesting phenomenon, which is not present
in the other fluid interfaces examined in this study. Usually, the total density changes
monotonously between the two bulk phases. This is also the case for the F1F2 interfaces
for moderate pressures. But for very high pressures, an oscillation is observed in the
total density profile, cf. Fig. 54 - bottom. A single minimum in the total density profile
has been reported before in the literature [141, 199, 204, 415, 490, 669], but to the best
of our knowledge no maximum-minimum structure.

The oscillation structure found at the investigated F1F2 interfaces in mixture G formally
resembles the oscillatory layering structures [145, 170, 171, 204, 520, 637, 669] of other
types of fluid interfaces, cf. section 2.4. But the single oscillation found here at F1F2

interfaces is likely a different phenomenon, since DGT was employed for the calculations,
which is not able to predict the common oscillatory layering structures [637]. It should
be noted that this oscillation might be an artifact of the employed EOS type, which
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Figure 53: Interfacial properties of the mixture G at T = 0.77 εk−1
B and T = 0.825 εk−1

B

for the high pressure fluid-fluid equilibrium (F1F2E ) as a function of the
pressure. Top to bottom are: surface tension, relative adsorption, and
interfacial thickness. Results from DGT. No enrichment was observed for
either of the components, i.e. Ei = 1.

is known to exhibit difficulties at extreme pressures due to the simplified repulsive
interaction term [66, 249, 639], cf. section 4.3. A detailed investigation of the oscillation
observed at the F1F2 interfaces would be an interesting topic for future work.



3.6 Relation of Interfacial Properties and the Phase Diagram 105

Figure 54: Density profiles of mixture G at T = 0.77 εk−1
B for the high pressure fluid-

fluid equilibrium (F1F2E ). Results from DGT. The top plot shows the den-
sity profiles of component 1, component 2, and the total density 1 + 2 at
p = 18.1 εσ−3. The bottom plot shows the total density 1 + 2 at different
pressures. The color-code indicates the pressure.

3.6.4.4 Invariant Intersection Points in Density Profiles

Invariant intersection points in the density profiles were observed for many fluid regions
studied in this study, cf. Figs. 47, 49 and Fig. 52. The phenomenon of invariant
intersection points has already been reported for pure substances [63, 637] and also
simple binary model mixtures [635] as well as for real mixtures [624]. In section 2.3.4, an
invariant intersection point in the density profiles of the pure LJTS fluid was observed for
the results from several theoretical methods. In section 3.3.2, an invariant intersection
point was observed for isothermal sets of density profiles of binary LJTS mixtures.

In these invariant intersection points, density profiles ρi(z) of a component i intersect.
These intersection points have been suspected to be related to critical points [63, 635,
637].

As also noted by Bongiorno and Davis [63], the invariant intersection points are not
exact, which might be due to computational reasons, i.e. the discretization of the density
profiles. Since the MD density profiles furthermore exhibit stochastic fluctuations, the
intersection points can only be identified approximately in the respective plots (see
Appendix). Their numeric values are not used for the following quantitative evaluation.
However, the qualitative features of the invariant intersection points obtained from the
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DGT and MD results are in all cases consistent.

Bongiorno and Davis [63] found that the invariant intersection point of the density
profiles at different temperatures of the pure van der Waals fluid have the same density
as the critical point density. The same was reported for the pure LJTS fluid [637], cf.
section 2.3.4. As discussed below in more detail, similar observations are made in the
present work for mixture G.

In this study, for VL1 and L1L2 interfaces of mixture G, an intersection point was found
for the high-boiling component 1, whereas for VL2 interfaces, an intersection point
was found for the low-boiling component 2. For F1F2 interfaces, intersection points
were observed for the density profiles of both components. No intersection points were
observed in the density profiles obtained for the ideal mixture A. The observations for
the intersection points were in all cases consistent among the MD and the DGT results
(see Appendix for MD density profiles). These invariant intersection points must have a
physical cause, which is, however, presently unknown. Further investigations are needed
to elucidate its cause. We limit ourselves to reporting our observations regarding the
invariant intersection points and a brief discussion of their relation to the corresponding
phase diagram. The discussion presents evidence that the invariant points are not only
related to critical points but that some of them also seem to be related to states that
can be considered to be an extension of the three-phase line.

Table 7 summarizes the findings on the invariant intersection points of the density
profiles for mixture G as obtained from DGT. It also gives reference to the figures in
which the corresponding profiles can be found. One or two invariant intersection points
were observed in the density profiles of component 1 for the VL1 and L1L2 interfaces.
For VL2 interfaces, one invariant intersection point in the density profile of component
2 was found. For F1F2 interfaces, an invariant intersection point was observed in the
density profiles of both components. For cases with two invariant intersection points in
the set of isothermal density profiles of a component (as observed for the VL1 interfaces
of mixture G at four temperatures (cf. Table 7) that set can can be split into two subsets.
One subset going through the first intersection point and a second one going through
the second intersection point. In all cases there is one density profile that belongs to
both subsets, i.e. it approximately runs through both intersection points and connects
them. That density profile is labeled with an asterisk here. There is a certain pressure
p∗ or liquid phase composition x∗2 associated with that density profile.

Table 7 shows that for phase equilibria in regions that have a critical point at least
one of the component density profiles exhibits an invariant intersection point. The
component density of that intersection point ρIP

i is in excellent agreement with the
corresponding critical component density ρc,i = xiρc computed from the PeTS EOS,
cf. Table 7. Such common intersection points are labeled here as type I. For the VL1

component 1 density profiles at T = 0.77 εk−1
B , 0.825 εk−1

B , and 0.88 εk−1
B , the intersection

point at z > 0 corresponds to the critical density ρc,1, i.e. is of type I. For the VL2

component 2 density profiles, the invariant intersection point corresponds to the critical
density ρc,2, i.e. it is also of type I. For the F1F2 interfaces, invariant intersection points
are observed in the density profiles of both components and their densities are the same
as the corresponding critical densities, ρc,1 and ρc,2, respectively. Also these intersections
points are of type I.

The type I intersection points include the density profile of the critical point. It follows
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from this, that the component density at the intersection point of type I must be the
critical density. However, nothing can be learnt from this argument about the physical
cause for the existence of an intersection point. If this were the sole argument, the
component density profiles might as well not intersect in phase equilibrium regions that
contain a critical point.

It is noted here that the existence of invariant intersection points is related to the way
z = 0 is defined for the density profiles, cf. section 3.2.5. The employed definition is
based on the averaging of the two bulk densities. This is analogue to the definition of
the rectilinear diameter, which is often used to determine the critical point [83, 468,
715, 731]. From this one might infer, that the invariant intersection points of type I
that were observed here are related to the so-called ’law of the rectilinear diameter’.

As can be seen from Table 7, there are also intersection points that are not of type I, i.e.
they do not contain a critical density profile, and the corresponding component density
is not a critical density.

Let us first turn to the component density profiles that contain two invariant points
(VL1 at T = 0.715 εk−1

B , 0.77 εk−1
B , 0.825 εk−1

B , 0.88 εk−1
B , cf. Table 7). The invariant point

that is not of type I is labeled type II here. The density profiles belonging to the type
I intersection point are in all cases those with the higher pressure; those belonging to
the type II intersection point are those with the lower pressure. The transition (density
profile ∗ going through both points) takes place at the pressure p∗. It is interesting to
note that when the pressure p∗ is plotted over the temperature T in the p,T -diagram
of mixture G, an extension of the VL1L2E line is obtained (see Appendix).

The invariant intersection points of type II are always found at z < 0 whereas those of
type I are found at z > 0. Interestingly, the z-position of the type II points in the density
profile of component 1 matches the position of the enrichment peak in the density profile
of component 2 very well.

All these findings indicate consistently that a relation may exist between the type II
invariant intersection points, the enrichment, and the precursor of the second liquid
phase as discussed in the main body of this paper. This leads to the following tentative
classification: type I invariant points are related to critical points, type II invariant
points are related to interfacial wetting by a precursor of a second liquid phase.

Following this classification, two of the four invariant points that were not discussed so
far can also be assigned. There is a single invariant point in the ρ1(z) set in the VL1

region of mixture G at T = 0.66 εk−1
B (cf. Table 7). This invariant point is obviously

related to the three-phase equilibrium and, hence, of type II. This can also be seen
from a continuity argument: the density of the invariant points of type II in the VL1

equilibrium region can be plotted as a function of temperature. As there is no critical
point in the VL1 equilibrium region at T = 0.66 εk−1

B , this invariant point is the only one
and all profiles ρ1(z) go through that point.

Furthermore, there are two invariant intersection points in the ρ1(z) profiles in the VL1

equilibrium region of mixture G at T = 0.715 εk−1
B . The one with the lower density is

of type II, as can be deduced from the same continuity argument as given above. The
other invariant point has a high density ρ1. The state point of the ∗ density profile at
T = 0.715 εk−1

B is found to agree well with the transition of the vapor phase to a dense
liquid-like phase, cf. Fig. 47 (b) and section 3.6.2 for a discussion.
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But as there is no upper critical point in the T = 0.715 εk−1
B phase diagram, the ρ1 ’high

density’ invariant point cannot be assigned to type I. However, that invariant point
resembles the invariant point in the L1L2 region at T = 0.66 εk−1

B . Also in that fluid
region, there is no upper critical point. We assign the latter two invariant points to a
type III that, however, has similarities with type I.

3.6.5 Overview of the Findings

This study reports on properties of fluid interfaces of binary mixtures (density profiles,
surface tension, relative adsorption, enrichment, and thickness) and their relation to the
phase diagram. For this purpose, two Lennard-Jones mixtures were investigated with
both molecular dynamics (MD) simulation and density gradient theory (DGT) at five
temperatures in the entire range in which fluid phase equilibria exist. The low-boiling
component 1 is the same in both mixtures. The high-boiling component 2 and the
interaction parameters were chosen such that mixture G is a highly asymmetric non-ideal
mixture of type III, in which component 2 is supercritical for all studied temperatures,
whereas mixture A is an almost ideal mixture of type I with a subcritical component
2. For mixture A, only vapor-liquid equilibria (VLE ) exist, whereas mixture G has
a complex phase diagram with a three-phase equilibrium (VL1L2E ), two vapor-liquid
equilibrium regions (VL1E and VL2E ), and regions in which liquid-liquid equilibria
(L1L2E ), and fluid-fluid equilibria (F1F2E ) exist.

The results that were obtained from MD and DGT for the interfaces agree well in most
cases. Significant differences were, however, observed for L1L2 interfaces and in the
vicinity of critical points, which are most likely related to the fact that in these cases
also the phase equilibria calculated from MD and from the EOS that was used in DGT
show differences.

The ideal mixture A shows the expected behavior: the surface tension γ of the VL
interfaces is dominated by the two pure substance values and decreases with increas-
ing temperature; the same holds for the relative adsorption Γ

(1)
2 , which is moderate

(Γ(1)2 < 0.4σ−2). There is no significant enrichment (E2 = 1), i.e. the density profiles in
the interfacial regions are monotonous, except very shallow maxima that were observed
at the low temperatures. The thickness of the interface L90

10 increases with increasing
temperature and is in the range of 2 to 5σ. There is a smooth transition of L90

10 between
the pure component values.

For mixture G, the results that were obtained for the different types of phase equilibria
differ significantly and important mixture effects are observed. The complex phase
behavior of mixture G causes not only a complex behavior of the surface tension, but
also the density profiles at interfaces have complex structures, with wetting transitions,
common intersecting points, maxima, and in some cases even minima.

The VL1E region in the isothermal phase diagram of mixture G has varying topologies
depending on the temperature: at the lowest studied temperature, it connects the boil-
ing point of the pure component 1 with the VL1L2 three-phase equilibrium, whereas at
high temperatures it ends in a critical point. One intermediate temperature was stu-
died where the phase envelope is open up to extreme pressures and exhibits a smooth
transition of the vapor phase V to a high density liquid-like phase, which acts as the
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transition between the L1L2E at lower temperatures and F1F2E at higher temperatures
for that type III mixture [553]. All this has important consequences for the interfacial
properties.

The phase diagram of mixture G has critical points of three different types. For all
critical points, the behavior of the interfacial properties is as expected: the surface
tension γ and the relative adsorption Γ

(1)
2 decay to zero, the enrichment E2 goes to

unity, and the thickness L90
10 goes to infinity upon approaching the critical point.

As for mixture A, also for mixture G typical values of the thickness L90
10 are between 2

and 5σ for state points that are far away from critical points and VL1L2E. This holds
for all types of phase equilibria of mixture G.

The fluid-fluid interfaces F1F2 of mixture G have small surface tension (γ < 0.1 εσ−2)
but a negative relative adsorption (Γ(1)2 < 0). An interesting phenomenon was observed
in the density profiles of the F1F2 interfaces: Even though the density profiles of both
components 1 and 2 are monotonous (i.e. E1 = E2 = 1), a non-monotonicity in the
total density profile with a minimum and a maximum was observed for several state
points. This phenomenon cannot be interpreted as a layering structure of the fluids
near surfaces, as it is usually predicted by DFT, as it was found by DGT, which cannot
yield these layering structures. Further research is needed to elucidate the cause of this
interesting structure.

Also the liquid-liquid interfaces L1L2 obtained for mixture G have small surface tension
(γ < 0.1 εσ−2), but in contrast to the F1F2 interfaces, they have a small positive relative
adsorption (Γ(1)2 < 0.3σ−2). The enrichment E2 is in general close to unity, but near the
VL1L2E, values up to about E2 = 1.06 were found for L1L2 interfaces.

There is a small VL2E region with a critical point in the phase diagram of mixture G,
for which the differences in the composition and the density of the coexisting phases are
fairly small throughout. This has the expected consequences: the surface tension γ is
very small (γ < 0.02 εσ−2), the interfacial thickness is large (L90

10 > 10σ), and there is no
enrichment E2. The relative adsorption Γ

(1)
2 is small and positive (Γ(1)2 < 0.3σ−2).

For VL1E in mixture G with low mole fractions xL1
2 , i.e. near the boiling point of

the pure component 1, simple trends are observed: the surface tension is similar to
the pure component value (γ < 0.65 εσ−2) and increases with decreasing temperature.
The same holds for the relative adsorption, which is positive (Γ(1)2 < 0.5σ−2 for xL1

2 <
0.05 mol mol−1). The enrichment E2 is large and increases with decreasing temperature.
Values E2 > 7 were found, which is remarkable for a simple dispersive system. In contrast
to the common finding that E2 decreases as xL1

2 decreases, E2(xL1
2 ) has a maximum for

the VL1 interfaces of mixture G at the lowest studied temperature (where the VL1L2E
exists). Such a feature has not been observed before. As expected, the interfacial
thickness L90

10 increases with increasing temperature for the VL1 interfaces.

For higher mole fractions xL1
2 , the differences between the different topologies of the

VL1E region become important for the interfacial properties: for the cases where the
VL1E region ends in a critical point, the trends are as expected: i.e., the surface tension
γ and the relative adsorption Γ

(1)
2 simply decay to zero.

But for the case, in which the VL1E region ends in the VL1L2 three-phase line, in-
teresting phenomena are observed: as the conditions get closer to those of the VL1L2
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three-phase equilibrium, a precursor of the second liquid phase L2 forms at the VL1

interface. This leads to a very strong increase of the relative absorption Γ
(1)
2 and the

interfacial thickness L90
10. The enrichment E2 can be considered to be a precursor of the

wetting present at the three-phase equilibrium. This interpretation is supported by the
fact that the composition at the peak of the enrichment is in very good agreement with
that of the second liquid phase L2 even for conditions that are not close to the VL1L2E.
Further support comes from the fact that the surface tensions obtained in the three-
phase equilibrium are such that the phase L2 wets the VL1 interface at the considered
temperature.

Some of the features described above for the VL1E and L1L2E region in the phase
diagram with a three-phase equilibrium VL1L2E are also observed for the isothermal
phase diagram for which the VL1E region is ’open’ up to extreme pressures (no critical
point) and the vapor phase eventually becomes liquid-like (and no VL1L2 three-phase
equilibrium exist). Hence, for such temperatures, the relative adsorption Γ

(1)
2 and the

interfacial thickness L90
10 show strong maxima at intermediate pressures. This is inter-

preted here as a consequence of the fact that the conditions are close to those of the
three-phase equilibrium. In principle the observations made for the interfacial proper-
ties for ’open’ VL1E phase diagrams can be understood as a transition from what is
found for the VL1 interfaces close to the boiling point of pure component 1 (i.e. at low
pressures) to what is found for F1F2 interfaces at high pressures. But this transition is
not always monotonous. E.g. maxima are observed both for the relative adsorption Γ

(1)
2

and the interfacial thickness L90
10, which can be understood as witnesses of the proximity

of the VL1L2E, that however does not exist any more at those conditions.

The findings for the interfacial properties of mixture G cannot be understood without
considering the corresponding phase diagrams. The most interesting observation from
the present study is that, as the conditions get closer to those of the three-phase VL1L2E,
a precursor of the second liquid phase L2 forms at the VL1 interface. This leads to a
very strong increase of the relative adsorption Γ

(1)
2 and the interfacial thickness L90

10. We
argue that the strong enrichment that is observed at the VL1 interface even at conditions
that are not close to the three-phase equilibrium can be interpreted as such a precursor
of the L2 phase. These findings and interpretations are in line with those established in
the literature for the wetting behavior of the phases in three-phase equilibria [127, 142,
143, 195, 354, 447, 655, 656] and also with the interpretation that Falls et al. [173] gave
of their observations regarding density profiles in a similar system.

Furthermore, we assume that what was observed here for mixture G regarding the
relation of the enrichment at VL1 interfaces and the three-phase equilibrium can be
generalized: our hypothesis is that a similar behavior will be observed in all systems
that show three-phase VL1L2E ; i.e. that high enrichment E2 will be observed at the
VL1 interfaces in these systems in general. We also argue that generally the enrichment
can be understood as a precursor of a second liquid phase L2 that nucleates under
the influence of the gradients at the interface. This does not mean that the existence
of a three-phase equilibrium in a given system is a prerequisite for the occurrence of
interfacial enrichment; but the presence of a three-phase equilibrium is assumed to
strongly favor interfacial enrichment.



112 3 Binary Mixtures of Lennard-Jones Truncated & Shifted Fluids

3.6.6 Conclusions

Binary Lennard-Jones truncated and shifted mixtures were comprehensively studied in
a wide range of interaction parameters as well as thermodynamic conditions. The pre-
dictions of the employed theory (DGT+PeTS EOS) was found to be in good agreement
with computer experiment results for the phase equilibrium and interfacial properties
of binary LJTS mixtures. The focus was on the influence of the interaction parameters
on the interfacial structure and the phase equilibrium.

The results from the present work show that the assumption of a temperature-independent
influence parameter in DGT works very well even when a broad temperature range is
investigated. Also the employed geometric mixing rule for the influence parameter yields
excellent results even though the investigated mixture G is highly asymmetric.

An enrichment forming under the influence of the gradients at the interface was observed
in many systems for the low-boiling component. Strong enrichment was found at low
temperatures, low concentrations of the low-boiling component in the liquid phase,
and a wide-boiling phase behavior. No enrichment was observed for the high-boiling
component.

The results of the reported studies give insight into the relation between the phase
behavior and the interfacial properties in many ways: regarding the critical points,
which do not only lead to the well-known effects in their vicinity such as a decrease of
the surface tension and the relative adsorption, but are also related to invariant common
intersection points that are found in several isothermal sets of density profiles. Further
research is needed to reveal the relation of these intersection points and the critical
behavior. The results furthermore reinforce a relation of the azeotropic and aneotropic
point [133, 184, 194, 195, 435].

For a mixture exhibiting a VLLE, a relationship between the enrichment at vapor-
liquid interfaces and the wetting behavior at the three-phase line was established: the
enrichment acts as a precursor of the second liquid phase nucleating under the influence
of the gradients at vapor-liquid interfaces at conditions that are still far off the three-
phase line. As the state point approaches the three-phase line, the enrichment grows
into the vapor phase, which results in a strong increase in the interfacial thickness and
the relative adsorption in the vicinity of VLLE.
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4 Lennard-Jones Fluid: Simulation
Data and Equations of State

4.1 Introduction

The Lennard-Jones (12,6) potential [303, 304] has been used extensively as a model of
simple fluids with repulsive and dispersive interactions since the early days of computer
simulation [15, 238, 431, 451, 555, 566, 677, 717]. It is probably the most frequently
investigated monomer model fluid. The Lennard-Jones potential provides, as already
stated by Nicolas et al. in 1979 [505], "a convenient model for testing liquid theories
and for investigating such phenomena as melting, the liquid-vapor surface, nucleation
etc.". This has not changed in the past four decades [194, 269, 275, 341, 440, 446, 565,
630, 637, 660, 663, 664]. Also, the Lennard-Jones potential is often used as a starting
point for the development of many state-of-the-art force fields for complex molecules
[2, 157, 351, 633]. It is often taken as a benchmark for the validation of simulation
codes and the test of new simulation techniques. Despite its simplicity, the Lennard-
Jones model fluid yields a realistic representation of simple fluids [576, 633]. Due to
its importance, it is sometimes even referred to as Lennard-Jonesium [98, 104, 452] –
suggesting that it is viewed as a chemical element [340].

The Lennard-Jones potential is defined as the pairwise additive and spherically sym-
metric potential

uLJ(r) = 4ε [(σ
r
)

12

− (σ
r
)

6

] , (64)

where r is the distance between two particles. Its parameters ε and σ characterize
the size of the particles and the magnitude of their dispersive attraction, respectively.
Simulations are usually performed with a truncated potential in combination with a
long-range correction [17].

Different versions of the LJ potential are used in the literature depending on the treat-
ment of the long-range interactions, which has an important influence on the thermody-
namic properties [31, 148, 302, 413, 536, 600, 602, 603, 611, 628]. This chapter is limited
to the ’full’ Lennard-Jones potential, i.e. including long-range correction schemes [17].
The ’full’ Lennard-Jones potential is referred to as LJ potential in the following.

Analytical model functions of the LJ fluid for the description of the thermodynamic
properties, i.e. equations of state (EOS), are crucial for many applications, e.g. the
development of theories for more complex fluids like polymers, electrolyte solutions and
associating fluids. LJ EOS have been used successfully as base models for a reference
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fluid to describe more complex fluids [57, 58, 102, 128, 353]. A large number of equations
of state have therefore been proposed for the LJ fluid in the past decades.

This chapter is organized as follows: in section 4.2, computer experiment data for the
Lennard-Jones fluid available in the literature is comprehensively assessed and compiled
to a consolidated database. To complement the database, new simulations were carried
out in fluid regions where only few data were available. This database is used in section
4.3 to assess available LJ EOS regarding their performance on homogeneous states as well
as the vapor-liquid equilibrium. A new LJ EOS based on the PC-SAFT monomer model
was parametrized (described in detail in the Appendix) and included in the comparison.
The development of the new LJ EOS aims at a good description of both the vapor-liquid
equilibrium and the homogeneous region and therefore uses elements from multi-criteria
optimization. In total, 20 LJ EOS were considered for the comparison. In section 4.4,
the studied LJ EOS are furthermore evaluated regarding Brown’s characteristic curves
and the virial coefficients.
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4.2 Thermophysical Properties of the Lennard-Jones
Fluid: Database and Data Assessment

The assessment of experimental thermophysical property data is a well-established field
in chemical engineering [114, 147, 682], especially for phase equilibrium data [310, 311].
For instance, consistency tests based on thermodynamic limits or balance equations
are used to evaluate the quality of datasets or data points of a given thermophysical
property. However, such approaches are not common in the analysis of thermophysical
property data obtained by computer experiments like molecular dynamics (MD) or
Monte Carlo (MC) simulations. Also, thermophysical data repositories [1, 381] have
so far not addressed molecular simulation data of model fluids like the Lennard-Jones
fluid. The present work therefore provides a coherent and consolidated database of
thermophysical property data of the Lennard-Jones fluid.

To sample thermophysical properties of the Lennard-Jones fluid, computer experiments
are carried out. In general, an obtained simulation result of a given observable xsim will
not agree with the true model value xmod [242]. Like in experiments in the laboratory,
errors occur also in computer experiments [183, 185, 497, 590] that can cause devia-
tions between the exact true value xmod and the value observed in the simulation xsim.
Both stochastic and systematic errors are usually present to some extent in computer
experiments. Techniques to assess statistical errors are well established for computer
simulations [17, 181, 185]. It is more difficult to assess systematic simulation errors. As
in laboratory experiments, round robin studies can be used for doing this, in which the
same simulation task is carried out by different groups with different programs. It is
known that the results from such studies generally differ by more that the combined
statistical uncertainty of the individual data, e.g. the results obtained by repetition
usually differ due to varying methods, simulation programs, etc. [590]. Systematic er-
rors may be a consequence of erroneous algorithms [402], user errors, differences due
to different simulation methods (for example MD and MC, phase equilibrium simula-
tion methods, techniques for the determination of the chemical potential [333], etc.).
Systematic errors may furthermore be caused by finite size effects, erroneous evaluation
of long-range interactions, insufficient equilibration or production periods, compilers,
parallelization, and hardware architecture [590]. Last but not least, also typographical
errors in publications have to be considered as a possible error source. The detection
and assessment of outliers in large datasets is a standard task in the field of data sci-
ence [47, 265, 330] and is widely applied to experimental data [156, 665], but has to the
best of our knowledge not yet been applied to thermophysical property data obtained by
computer experiments with model fluids. In the present work, we use the terms accurate
& precise as follows: accurate simulation results xsim scatter around the true value xmod

without trend; precise means here that given simulation results xsim are both accurate
and exhibit a low scattering.

This work reviews and assesses molecular simulation data of the Lennard-Jones fluid.
Approximately 35,000 data points were taken into account, including new simulation
data from this work that were taken to complement the available data in regions that
were only sparsely investigated in the literature. Vapor-liquid equilibrium (VLE) data
and data on state points from the homogeneous regions were considered: for the VLE,
the vapor pressure, the saturated densities, the enthalpy of vaporization, and the surface
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tension were investigated; for homogeneous state points, the investigated properties are:
the pressure, thermal expansion coefficient, isothermal compressibility, thermal pressure
coefficient, internal energy, isochoric heat capacity, isobaric heat capacity, Grüneisen
parameter, Joule-Thomson coefficient, speed of sound, Helmholtz energy, and chemical
potential. Transport properties were not taken into account.

The data were assessed by consistency tests to provide an indication for their accuracy
and precision. The entire database was digitalized and is presented in a consistent form
as a spreadsheet in the electronic Supplementary Material [640]. The database also
contains flags that indicate whether a data point was identified as an outlier.

4.2.1 Molecular Simulation Data of the Lennard-Jones Fluid
Available in the Literature

Table 8 gives an overview on the thermophysical property data of the Lennard-Jones
fluid from the literature. Only data on homogeneous states and vapor-liquid equilibria
were considered in this work. Data on the second and third virial coefficients and
the so-called characteristic curves [138, 621] were included in the database, but not
further assessed regarding their accuracy. The vast majority of studies in the literature
report pvT and internal energy data for homogeneous state points, cf. Table 8. The
chemical potential and higher-order derivatives, like speed of sound, heat capacities,
or isothermal compressibility were less frequently investigated. Wherever statistical
uncertainties were reported in the literature, they were also included in the database,
cf. electronic Supplementary Material [640].

Table 8: Computer experiment data of the Lennard-Jones fluid from the literature.
The data are sorted chronologically for each property. The # is the number
of data points and T the investigated temperature range.

Authors Year # T / εk−1B

pvT data
Wood and Parker [717] 1957 13 2.74
Fickett and Wood [175] 1960 23 1.92 - 177.95
McDonald and Singer [430] 1967 28 0.72 - 1.24
McDonald and Singer [431] 1967 48 1.45 - 3.53
Verlet and Levesque [678] 1967 7 1.05 - 2.74
Verlet [677] 1967 39 0.59 - 4.63
Wood [716] 1968 41 1.06 - 100
Hansen and Verlet [238] 1969 25 0.75 - 1.15
Levesque and Verlet [370] 1969 25 0.72 - 3.67
McDonald and Singer [432] 1969 28 0.72 - 1.24
Hansen [236] 1970 9 2.74 - 100
McDonald and Woodcock [433] 1970 6 0.75 - 2.33
Toxvaerd and Praestgaard [668] 1970 8 1.35
Weeks et al. [700] 1971 5 0.75 - 1.35
McDonald and Singer [429] 1972 56 0.55 - 1.24

continued on next page
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Authors Year # T / εk−1B
Schofield [595] 1973 6 0.73 - 1.1
Street et al. [643] 1974 80 0.75 - 3.05
Adams [5] 1975 12 2 - 4
Adams [6] 1976 16 1 - 1.2
Carley [92] 1977 11 1.35
Adams [7] 1979 31 1.15 - 1.35
Nicolas et al. [505] 1979 108 0.48 - 6.01
Ree [559] 1980 11 0.81 - 2.7
Yao et al. [723] 1982 12 1.15 - 1.25
Powles et al. [537] 1982 37 0.7 - 1.41
Lucas [398] 1986 10 0.79 - 1.83
Shaw [601] 1988 265 0.6 - 136.25
Adachi et al. [4] 1988 328 0.7 - 2.95
Baranyai et al. [40] 1989 12 0.75 - 1.5
Saager and Fischer [577] 1990 38 0.57 - 4
Sowers and Sandler [618] 1991 60 1.35 - 6
Lotfi et al. [395] 1992 19 0.7 - 1.3
Giaquinta et al. [210] 1992 12 0.75 - 1.15
Johnson et al. [302] 1993 199 0.7 - 6
Kolafa et al. [335] 1993 43 0.72 - 4.85
Miyano [460] 1993 112 0.45 - 100
Kolafa and Nezbeda [334] 1994 13 0.81 - 10
Lustig [399] 1994 2 1.18
Mecke et al. [438] 1996 12 1.32 - 1.34
Roccatano et al. [562] 1998 10 1.4 - 10
Meier [443] 2002 351 0.7 - 6
Linhart et al. [380] 2005 108 0.7 - 1.2
Morsali et al. [475] 2007 13 5.01
Baidakov et al. [38] 2008 208 0.35 - 2
Lustig [400] 2011 8 1.02 - 3
May and Mausbach [424] 2012 205 0.69 - 6.17
Yigzawe and Sadus [726, 727] 2012 406 1.3 - 2.62
Mairhofer and Sadus [405, 544] 2013 282 1.36 - 3.05
Thol et al. [661] 2016 197 0.7 - 9
Deiters and Neumaier [138] 2016 255 0.67 - 22.54
Köster et al. [341] 2017 45 1.01 - 30
Köster et al. [341, 543] 2017 65 1.01 - 30
Ustinov [549, 674] 2017 232 0.76 - 1.14
Schultz and Kofke [596] 2018 404 0.68 - 2272
this work 2019 655 0.7 - 90

Internal energy u
Wood and Parker [717] 1957 13 2.74
McDonald and Singer [430] 1967 27 0.72 - 1.24
McDonald and Singer [431] 1967 48 1.45 - 3.53
Verlet [677] 1967 39 0.59 - 4.63
Verlet and Levesque [678] 1967 7 1.05 - 2.74

continued on next page



118 4 Lennard-Jones Fluid: Simulation Data and Equations of State

Authors Year # T / εk−1B
Wood [716] 1968 41 1.06 - 100
Levesque and Verlet [370] 1969 25 0.72 - 3.67
McDonald and Singer [432] 1969 28 0.72 - 1.24
Hansen [236] 1970 9 2.74 - 100
McDonald and Woodcock [433] 1970 6 0.75 - 2.33
Weeks et al. [700] 1971 5 0.75 - 1.35
McDonald and Singer [429] 1972 56 0.55 - 1.24
Street et al. [643] 1974 80 0.75 - 3.05
Adams [5] 1975 12 2 - 4
Adams [6] 1976 16 1 - 1.2
Torrie and Valleau [666] 1977 7 0.092 - 1.35
Adams [7] 1979 31 1.15 - 1.35
Nicolas et al. [505] 1979 108 0.48 - 6.01
Ree [559] 1980 11 0.81 - 2.7
Yao et al. [723] 1982 12 1.15 - 1.25
Lucas [398] 1986 10 0.79 - 1.83
Shaw [601] 1988 265 0.59 - 136.25
Baranyai et al. [40] 1989 18 0.75 - 1.5
Saager and Fischer [577] 1990 38 0.57 - 4
Sowers and Sandler [618] 1991 54 1.35 - 6
Lotfi et al. [395] 1992 19 0.7 - 1.3
Giaquinta et al. [210] 1992 12 0.75 - 1.15
Johnson et al. [302] 1993 199 0.7 - 6
Kolafa et al. [335] 1993 43 0.72 - 4.85
Miyano [460] 1993 112 0.45 - 100
Kolafa and Nezbeda [334] 1994 13 0.81 - 10
Lustig [399] 1994 2 1.18
Mecke et al. [438] 1996 12 1.32 - 1.34
Roccatano et al. [562] 1998 10 1.4 - 10
Meier [443] 2002 351 0.7 - 6
Baidakov et al. [38] 2008 201 0.35 - 2
May and Mausbach [424] 2012 218 0.68 - 6.17
Yigzawe and Sadus [726, 727] 2012 346 1.31 - 2.62
Mairhofer and Sadus [405, 544] 2013 282 1.36 - 3.05
Thol et al. [661] 2016 197 0.7 - 9
Deiters and Neumaier [138, 540] 2016 255 0.67 - 22.54
Köster et al. [341] 2017 45 1.01 - 30
Köster et al. [341, 543] 2017 65 1.01 - 30
Ustinov [549, 674] 2017 232 0.76 - 1.14
Schultz and Kofke [596] 2018 404 0.68 - 2272
this work 2019 655 0.7 - 90

VLE ps, ρ′, ρ′′, ∆hv
Hansen and Verlet [238] (ps, ρ′, ρ′′, ∆hv) 1969 8 0.75 - 1.15
Lee et al. [363] (ρ′, ρ′′) 1974 10 0.7 - 1.2
Adams [6] (ps, ρ′, ρ′′, ∆hv) 1976 44 0.6 - 1.1
Chapela et al. [97] (ρ′, ρ′′) 1977 6 0.7 - 0.84

continued on next page
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Authors Year # T / εk−1B
Adams [7] (ps, ρ′, ρ′′, ∆hv) 1979 11 1.15 - 1.30
Panagiotopoulos [514] (ps, ρ′, ρ′′, ∆hv) 1987 30 0.75 - 1.3
Panagiotopoulos et al. [516] (ps, ρ′, ρ′′, ∆hv) 1988 30 0.75 - 1.3
Nijmeijer et al. [507] (ρ′, ρ′′) 1988 2 0.92
Smit and Frenkel [612] (ps, ρ′, ρ′′, ∆hv) 1989 20 1.15 - 1.3
Lotfi et al. [395] (ps, ρ′, ρ′′) 1992 52 0.7 - 1.3
Kofke [331] (ps, ρ′, ρ′′, ∆hv) 1993 80 0.74 - 1.32
Holcomb et al. [268] (ρ′, ρ′′) 1993 6 0.72 - 1.13
Agrawal and Kofke [9] (ps, ρ′, ρ′′, ∆hv) 1995 52 0.68 - 0.74
Hunter and Reinhardt [283] (ρ′, ρ′′) 1995 39 1 - 1.35
Sadus and Prausnitz [582] (ps, ρ′, ρ′′, ∆hv) 1996 30 1 - 1.25
Mecke et al. [440] (ρ′, ρ′′) 1997 6 0.7 - 1.1
Plačkov and Sadus [526] (ps, ρ′, ρ′′, ∆hv) 1997 55 0.95 - 1.27
Guo et al. [230] (ρ′, ρ′′) 1997 10 0.75 - 1.25
Guo and Lu [229] (ρ′, ρ′′) 1997 8 0.75 - 1.15
Martin and Siepmann [410] (ps, ρ′, ρ′′) 1998 18 0.75 - 1.18
Trokhymchuk and Alejandre [672] (ps, ρ′, ρ′′) 1999 18 0.72 - 1.27
Anisimov et al. [23] (ps, ρ′, ρ′′) 1999 18 0.75 - 1
Potoff and Panagiotopoulos [535] (ρ′, ρ′′) 2000 36 0.95 - 1.31
Baidakov et al. [31] (ps, ρ′, ρ′′) 2000 21 0.72 - 1.23
Okumura and Yonezawa [509, 547] (ps, ρ′, ρ′′) 2000 39 0.7 - 1.3
Shi and Johnson [603] (ρ′, ρ′′) 2001 26 1.15 - 1.27
Chen et al. [104] (ρ′, ρ′′) 2001 6 0.7 - 0.8
Okumura and Yonezawa [510, 548] (ps, ρ′, ρ′′) 2001 30 1.25 - 1.32
Baidakov et al. [37] (ρ′, ρ′′, spinodal) 2002 14 0.72 - 1.23
Kioupis et al. [324] (ps, ρ′, ρ′′, ∆hv) 2002 40 1.03 - 1.3
Errington [164] (ps, ρ′, ρ′′) 2003 12 0.7 - 1.3
Errington [163, 541] (ps, ρ′, ρ′′) 2003 39 0.7 - 1.3
Stoll et al. [642] (ps, ρ′, ρ′′, ∆hv) 2003 44 0.73 - 1.26
Baidakov et al. [39] (ps, ρ′, ρ′′) 2007 36 0.5 - 1.2
Betancourt-Cárdenas et al. [53] (ps, ρ′, ρ′′, ∆hv) 2008 35 0.7 - 1.27
Janeček [297] (ps, ρ′, ρ′′, ∆hv) 2009 16 0.72 - 1.25
Galliero et al. [189] (ρ′, ρ′′) 2009 38 0.7 - 1.3
Sadus [580] (ps) 2012 14 0.7 - 1.29
Mick et al. [452] (ps, ρ′, ρ′′, ∆hv) 2013 36 0.75 - 1.3
Martinez-Ruiz et al. [413] (ps, ρ′, ρ′′) 2014 21 0.7 - 1.1
Janeček et al. [298] (ps, ρ′, ρ′′, ∆hv) 2017 31 0.7 - 1.25
Janeček et al. [298, 299] (ps, ρ′, ρ′′, ∆hv) 2017 24 0.8 - 1.25
Werth et al. [709] (ps, ρ′, ρ′′, ∆hv) 2017 36 0.72 - 1.24
this work (ps, ρ′, ρ′′) green star in plots 2019 39 0.69 - 1.29
this work (ps, ρ′, ρ′′, ∆hv) orange square in plots 2019 124 0.69 - 1.28

Vapor-liquid surface tension γ
Lee et al. [363] 1974 5 0.7 - 1.2
Miyazaki et al. [461] 1976 1 0.7
Chapela et al. [97] 1977 5 0.7 - 1.27
Nijmeijer et al. [507] 1988 1 0.92

continued on next page
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Authors Year # T / εk−1B
Holcomb et al. [268] 1993 3 0.72 - 1.13
Mecke et al. [440] 1997 3 0.7 - 1.1
Guo et al. [230] 1997 5 0.75 - 1.25
Guo and Lu [229] 1997 4 0.75 - 1.15
Trokhymchuk and Alejandre [672] 1999 6 0.72 - 1.27
Anisimov et al. [23] 1999 6 0.75 - 1
Potoff and Panagiotopoulos [535] 2000 18 0.95 - 1.31
Baidakov et al. [31] 2000 7 0.72 - 1.23
Chen et al. [104] 2001 3 0.7 - 0.8
Baidakov et al. [37] 2002 6 0.72 - 1.22
Errington [164] 2003 4 0.7 -1.3
Baidakov et al. [39] 2007 12 0.5 - 1.2
Shen et al. [602] 2007 10 0.7 - 1.1
Janeček et al. [297] 2009 4 0.72 - 1.25
Galliero et al. [189] 2009 13 0.7 - 1.3
Galliero et al. [189] 2009 6 0.7 - 1.2
Werth et al. [706] 2013 7 0.7 - 1.25
Martinez-Ruiz et al. [413] 2014 7 0.7 -1.1
Janeček et al. [298] 2017 8 0.7 - 1.25
Werth et al. [709] 2017 9 0.72 - 1.24
this work 2019 13 0.69 - 1.29

SLE
Hansen and Verlet [238] 1969 4 0.75 - 2.74
Hansen [236] 1970 6 2.74 - 100
Agrawal and Kofke [9] 1995 37 0.69 - 274
van der Hoef [266] 2000 corr.(A) 0.1 - 2.0
Barroso and Ferreira [48] 2002 18 0.69 - 4.5
Morris and Song [473] 2002 12 0.72 - 2.65
Errington [165] 2004 2 0.75 - 2
McNeil-Watson and Wilding [436] 2006 34 0.72 - 83
Mastny and Pablo [418] 2007 5 1 - 20
Ahmed and Sadus [11, 12] 2009 5 0.8 - 2.74
Sousa et al. [617] 2012 10 0.75 - 5
Köster et al. [341] 2017 8 1.3 - 30
Schultz and Kofke [596] 2018 corr.(A) 0.68 - 2272

Isochoric heat capacity cv
Wood and Parker [717] 1957 11 2.74
McDonald and Singer [430] 1967 26 0.72 - 1.24
McDonald and Singer [431] 1967 48 1.45 - 3.53
Adams [5] 1975 12 2 - 4
Adams [7] 1979 31 1.15 - 1.35
Saager et al. [542, 578] 1990 12 1.1 - 1.35
Boda et al. [60] 1996 9 1.31 - 2
Roccatano et al. [562] 1998 10 1.4 - 10
Meier [443, 546] 2002 327 0.7 - 6

continued on next page
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Authors Year # T / εk−1B
Baidakov et al. [38] 2008 208 0.35 - 2
May and Mausbach [424, 545] 2012 218 0.68 - 6.17
Yigzawe and Sadus [726, 727] 2012 406 1.3 - 2.62
Mairhofer and Sadus [405, 544] 2013 282 1.36 - 3.05
Thol et al. [661] 2016 197 0.7 - 9
Köster et al. [341] 2017 45 1.01 - 30
Köster et al. [341, 543] 2017 65 1.01 - 30
this work 2019 515 0.7 - 90

Isobaric heat capacity cp
Boda et al. [60] 1996 41 0.65 - 1.9
Lustig [400] 2011 6 1.02 - 3
May and Mausbach [424, 545] 2012 202 0.69 - 6.17
Yigzawe and Sadus [726, 727] 2012 406 1.3 - 2.62
Mairhofer and Sadus [405, 544] 2013 282 1.36 - 3.05
Thol et al. [661] 2016 197 0.7 - 9
Köster et al. [341] 2017 45 1.01 - 30
Köster et al. [341, 543] 2017 65 1.01 - 30
this work 2019 515 0.7 - 90

Grüneisen coefficient Γ

Emampour et al. [158] 2011 26 1.2 - 1.8
Mausbach and May [422] 2014 212 0.69 - 6.17
Thol et al. [661] 2016 197 0.7 - 9
Mausbach et al. [421] 2016 110 0.72 - 9
Köster et al. [341] 2017 45 1.01 - 30
Köster et al. [341, 543] 2017 65 1.01 - 30
this work 2019 515 0.7 - 90

Thermal expansion coefficient α
McDonald and Singer [430] 1967 20 0.72 - 1.24
Adams [5] 1975 12 2 - 4
Yigzawe and Sadus [726, 727] 2012 406 1.3 - 2.62
Thol et al. [661] 2016 197 0.7 - 9
Köster et al. [341] 2017 45 1.01 - 30
Köster et al. [341, 543] 2017 65 1.01 - 30
this work 2019 515 0.7 - 90

Isothermal compressibility β
McDonald and Singer [430] 1967 22 0.72 - 1.24
Adams [5] 1975 12 2 - 4
Adams [7] 1979 31 1.15 - 1.35
Lotfi et al. [395] 1992 19 0.7 - 1.3
Lustig [399] 1994 2 1.18
Morsali et al. [475] 2007 13 3.76
May and Mausbach [424, 545] 2012 205 0.69 - 6.17
Yigzawe and Sadus [726, 727] 2012 406 1.3 - 2.62

continued on next page
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Authors Year # T / εk−1B
Mairhofer and Sadus [405, 544] 2013 282 1.36 - 3.05
Thol et al. [661] 2016 197 0.7 - 9
Köster et al. [341] 2017 45 1.01 - 30
Köster et al. [341, 543] 2017 65 1.01 - 30
this work 2019 515 0.7 - 90

Thermal pressure coefficient γ
McDonald and Singer [430] 1967 20 0.72 - 1.24
Adams [5] 1975 12 2 - 4
Lustig [399] 1994 2 1.18
Meier [443] 2002 326 0.7 - 6
Morsali et al. [475] 2007 13 3.76
May and Mausbach [424, 545] 2012 205 0.69 - 6.17
Yigzawe and Sadus [726, 727] 2012 406 1.3 - 2.62
Mairhofer and Sadus [405, 544] 2013 282 1.36 - 3.05
Thol et al. [661] 2016 197 0.7 - 9
Köster et al. [341] 2017 45 1.01 - 30
Köster et al. [341, 543] 2017 65 1.01 - 30
this work 2019 515 0.7 - 90

Speed of sound w
Meier [443] 2002 349 0.7 - 6
Lustig [400] 2011 8 1.02 - 3
May and Mausbach [424, 545] 2012 205 0.69 - 6.17
Yigzawe and Sadus [726, 727] 2012 406 1.3 - 2.62
Mairhofer and Sadus [405, 544] 2013 282 1.36 - 3.05
Thol et al. [661] 2016 197 0.7 - 9
Köster et al. [341] 2017 45 1.01 - 30
Köster et al. [341, 543] 2017 65 1.01 - 30
this work 2019 515 0.7 - 90

Joule-Thomson coefficient µJT

Lustig [400] 2011 8 1.02 - 3
May and Mausbach [424, 545] 2012 205 0.69 - 6.17
Yigzawe and Sadus [726, 727] 2012 406 1.3 - 2.62
Mairhofer and Sadus [405, 544] 2013 282 1.36 - 3.05
Thol et al. [661] 2016 197 0.7 - 9
Köster et al. [341] 2017 45 1.01 - 30
Köster et al. [341, 543] 2017 65 1.01 - 30
this work 2019 515 0.7 - 90

Entropic properties a, µ
Levesque and Verlet [370] (a) 1969 8 1.35
Hansen and Verlet [238] (a) 1969 25 0.75 - 1.15
Weeks et al. [700] (a) 1971 5 0.75 - 1.35
Weeks et al. [699] (a) 1971 27 0.75 - 1.35
Adams [5] (µ) 1975 12 2 - 4

continued on next page
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Authors Year # T / εk−1B
Torrie and Valleau [666] (a) 1977 16 0.75 - 2.74
Adams [7] (µ) 1979 31 1.15 - 1.35
Yao et al. [723] (µ) 1982 12 1.15 - 1.25
Powles et al. [537] (µ) 1982 37 0.7 - 1.41
Panagiotopoulos et al. [516] (µ) 1988 18 0.75 - 1.3
Baranyai and Evans [40] (a) 1989 6 1.15
Lotfi et al. [395] (µ) 1992 19 0.75 - 1.3
Han [235] (µ) 1992 3 1.2
Kolafa et al. [335] (µ) 1993 7 1.2 - 1.45
Lustig [399] (µ) 1994 2 1.18
Cuadros et al. [129] (a) 1996 269 0.7 - 2.6
Hong and Jhon [271] (a) 1997 36 0.59 - 2.89
Hong and Jang [270] (a) 2003 22 0.59 - 2.85
Thol et al. [661] (a, µ) 2016 197 0.7 - 9
Köster et al. [341, 543] (a, µ) 2017 65 1.01 - 30
Ustinov [549, 674] (µ) 2017 232 0.76 - 1.14
this work (a, µ) 2019 655 0.7 - 90

Virial coefficients B, C
Bird et al. [55] (C) 1950 74 0.7 - 400
Hirschfelder et al. [264] (B,C) 1954 156 0.3 - 400
Barker et al. [46] (B,C) 1966 66 0.625 - 20
Nicolas et al. [505] (B) 1979 33 0.625 - 20
Sun and Teja [646] (B,C) 1996 302 0.39 - 6.1
Shaul et al. [600] (B,C) 2010 22 0.7 - 2
Wheatley [550, 711] (B,C) 2013 100 0.1 - 1000

Ideal curves ID, BL, JTI, JI(B)

Heyes and Llaguno [260] (JTI) 1992 16 1.15 - 7.1
Colina and Müller [120] (JTI) 1999 24 1.12 - 6.4
Kioupis et al. [324] (JTI) 2002 29 1.3 - 6
Vrabec et al. [688] (JTI) 2005 18 1.2 - 6.3
Yigzawe and Sadus [727] (JTI) 2013 9 1.31 - 2.62
Deiters and Neumaier [138, 540] (ID, BL, JTI, JI) 2016 43 0.01 - 6.4

(A) The authors provided no numerical data, but a correlation that was
parametrized to computer experiment data.
(B) ID: Zeno curve, BL: Boyle curve, JTI: Joule-Thomson inversion curve, JI:
Joule inversion curve.

The simulation method proposed by Lustig [400, 401] provides Helmholtz energy deriva-
tives with respect to the density and the inverse temperature simultaneously from a sin-
gle simulation run. This technique can be combined with Widom’s test particle insertion
method [712] for the determination of the Helmholtz energy itself. This approach was
applied to the Lennard-Jones fluid by Thol et al. [661] and Köster et al. [341, 543] in
different fluid regions. The simulations of Thol et al. [661] were restricted to stable fluid
states below T = 9 εk−1

B , while the simulation data of Köster et al. [341, 543] focused on
the high density region close to the freezing line. These two datasets are complemented
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in the present work by data on 655 additional homogeneous state points, cf. Fig. 55,
that were also sampled with the Lustig formalism. The new data was taken in order
to get more information on regions in which literature data was comparatively sparse.
For the metastable region, only pressure, chemical potential, and internal energy are
reported here. The entity of the simulation results of Refs. [341, 543, 661] and from this
work is referred to as the Lustig formalism (LF) dataset in the following. All of them
were sampled with the simulation program ms2 [575] using similar simulation settings.
Details on the simulation procedure are given below.

0.0 0.2 0.4 0.6 0.8 1.0

0.8

1.2

1.6

2.0

0.0 0.4 0.8 1.2 1.6 2.0

20

40

60

80

100

T 
/ e

k B
-1

r / s-3 r / s-3

Figure 55: Overview of 963 state points that were studied with the Lustig formalism
[400, 401] by different authors. Circles: Thol et al. [661]; triangles: Köster
et al. [341, 543]; squares: this work. Data for the Helmholtz energy and its
density and inverse temperature derivatives up to second-order are available
for the stable state points. For the metastable state points, the derivatives
are available up to first-order.

Results on VLE properties of the Lennard-Jones fluid have been reported many times
in the literature, cf. Table 8. A total of 45 VLE datasets were found in the progress of
this work. The simulation methods used in these studies can be separated in two types:
simulations in which the liquid and the vapor phase are simulated in two separate
volumes that are suitably coupled and simulations in which the liquid and the vapor
phase coexist in a single volume that also contains the interface. The first are referred
to as indirect methods and the latter as direct methods in the following. Both VLE
simulation types provide in general vapor pressure ps, saturated densities of the liquid
and vapor phase ρ′ and ρ′′, respectively, and enthalpy of vaporization ∆hv at a given
temperature T . However, often only a subset of these properties was reported in the
literature, cf. Table 8. Simulation techniques that belong to the indirect type [515]
are the Gibbs ensemble method [514, 516], the Grand equilibrium method [685], the
NpT+test particle method [470], Gibbs-Duhem integration [332], and the Wang-Landau
method [498]. Additional information on interfacial properties can be obtained with the
direct method [209, 635]. Data on the surface tension of the Lennard-Jones fluid are also
included in the database, cf. Table 8. The Grand equilibrium method was employed
in the present work to obtain an extended VLE dataset for the Lennard-Jones fluid.
Details are given below.

Data on the triple point [9, 11, 12, 48, 104, 238, 253, 314, 315, 352, 418, 596, 617]
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and the critical point [7, 8, 21, 46, 84, 148, 258, 259, 261, 283, 302, 313, 315, 323,
331, 343, 350, 370, 383, 395, 410, 425, 438, 460, 505, 509, 510, 514, 534, 535, 603, 611,
616, 618, 647, 677, 678] of the Lennard-Jones fluid have been reported many times.
Numeric values of the critical point are summarized in Table 9. The critical pressure
has been less frequently reported than the critical temperature and density. The critical
parameters of the Lennard-Jones fluid reported in the literature scatter over a large
range – especially regarding the temperature. However, 13 critical temperature and
density data points (Refs. [84, 259, 331, 395, 509, 510, 534, 603, 611, 647]) are in
fairly good agreement, even though most of them do not agree within their combined
statistical uncertainties. The critical temperature reported by Refs. [84, 259, 331, 395,
509, 510, 534, 603, 611, 647] scatters in a range of Tc = 1.31 .. 1.326 εk−1

B ; the critical
density in a range of ρc = 0.304 .. 0.318σ−3. The reported critical densities obtained
from computer experiment reported by Refs. [84, 259, 331, 395, 509, 510, 603, 611, 647]
cluster around two different values: ρc = 0.305 and 0.316σ−3. Other data points were
discarded since they significantly deviate from this entity. The critical pressure reported
by Refs. [7, 148, 509, 510, 534] scatters in the range pc = 0.125 .. 0.135 εσ−3.

In the following, the critical point of the Lennard-Jones fluid is presumed to be located
at Tc = 1.321 ± 0.007 εk−1

B , ρc = 0.316 ± 0.005σ−3, and pc = 0.129 ± 0.005 εσ−3. The stated
uncertainties were estimated from the standard deviation of the critical parameters
reported by Refs. [84, 259, 331, 395, 509, 510, 603, 611, 647] for the critical temperature
and density and Refs. [7, 148, 509, 510, 534] for the critical pressure.

The solid-fluid equilibrium of the Lennard-Jones fluid is used in this study only to delimit
the fluid region, as molecular simulation results beyond the freezing line were excluded
regarding the assessment. Solid-fluid equilibria have been investigated multiple times,
cf. Table 8. The correlation for the freezing line by Köster et al. [341] was employed
here.

4.2.2 Molecular Simulations of this Work

Homogeneous State Point Simulations

Simulations in the homogeneous state were carried out in the NVT ensemble using
Monte Carlo (MC) sampling with an acceptance ratio of 0.5. The simulations contained
1372 particles. The initial conditions were generated as a fcc lattice and subsequently
equilibrated for 2.5 ⋅105 cycles and then sampled for 3 ⋅106 cycles, where one cycle corre-
sponds to 1372 attempts for a translational move. The cut-off radius was half the edge
length of a cubic simulation volume. Statistical uncertainties were estimated by the
block averaging method of Flyvbjerg and Petersen [181]. Numerical values of the simu-
lation results are reported in the electronic Supplementary Material [640]. Simulations
were carried out with the simulation program ms2 [575].

VLE Simulations

The vapor-liquid equilibrium of the Lennard-Jones fluid was obtained with the Grand
Equilibrium method of Vrabec and Hasse [685]. Two simulations were subsequently
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Table 9: Critical point data for the Lennard-Jones fluid obtained by computer exper-
iment reported in the literature. The numbers in parentheses indicate the
reported uncertainties of the last decimal digits.

Publication Year Tc/ εk
−1
B ρc/σ

−3 pc/ εσ
−3

Barker et al. [46] 1966 1.291 0.547 0.249
Verlet & Levesque [678] 1967 1.26 0.316 0.118
Verlet [677] 1967 1.32 0.31 0.12276
Kim et al. [323] 1969 1.35 0.3 0.14

1.28 0.29 0.13
Levesque & Verlet [370] 1969 1.36(3) 0.36(3) 0.151776
Sung & Chandler [647] 1974 1.348 0.349 0.148
Adams [7] 1979 1.30(2) 0.33(3) 0.13(2)
Panagiotopoulos [514] 1987 <1.35 0.31(2)
Meroni et al. [450] 1990 1.3317 0.332
Smit [611] 1992 1.316(6) 0.304(6)
Lotfi et al. [395] 1992 1.31 0.314
Kofke [331] 1993 1.321(4) 0.306(1)

1.324(12) 0.305(2)
Valleau [438, 539] 1994 1.328(3)
Hunter & Reinhardt [283] 1995 1.32
Mecke et al. [438] 1996 1.328(3) 0.3107
Mecke et al. [440] 1997 1.32521
Caillol [84] 1998 1.326(2) 0.316(2) 0.1472(3)
Martin & Siepmann [410] 1998 1.294(9) 0.311(6) 0.1144

1.311(9)
Potoff & Panagiotopoulos [534] 1998 1.3120(7) 0.316(1) 0.1279(6)
Potoff & Panagiotopoulos [535] 2000 1.311(2)

1.3120(7) 0.316(2)
Okumura & Yonezawa [509] 2000 1.313(2) 0.304(2) 0.125(1)
Shi & Johnson [603] 2001 1.3241(9) 0.3165(7)

1.3145(2) 0.316(1)
Dunikov et al. [148] 2001 1.350(5) 0.310(5) 0.126(8)
Okumura & Yonezawa [510] 2001 1.3207(4) 0.316(1) 0.1288(5)
Pérez-Pellitero et al. [525] 2006 1.3123(6) 0.3174(6)

1.3126(6) 0.3174(6)
1.313(1) 0.317(1)

Betancourt-Cárdenas et al. [53] 2008 1.302(6) 0.311(2) 0.12(3)
Kulinskii [350] 2013 1.333 0.325 0.122
Heyes & Woodcock [261] 2013 1.3365(5) 0.1405(2)
Heyes [259] 2015 1.316(1) 0.309(6)
Lishchuk & Fischer [383] 2018 1.31766
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carried out to obtain the VLE properties at a given temperature: first, the chemical
potential and the molar volume was sampled in an NpT MD liquid phase simulation.
Then, the vapor phase was simulated in a pseudo-µVT ensemble using an MC algorithm.
The pressure of the liquid state was chosen to be approximately 7% above the vapor
pressure, as estimated by the Lennard-Jones EOS from Ref. [639]. 2048 particles were
initialized on a fcc lattice for the NpT simulations and then equilibrated for 3 ⋅ 105

time steps. The time step was set to ∆τ = 0.001σ
√
M/ε. Velocity scaling was used to

specify the temperature. The chemical potential was sampled withWidom’s test particle
method [712], inserting 2500 test particles every time step. The chemical potential
and its pressure derivative, i.e. the molar volume, were then used during the second
simulation to obtain the saturated vapor phase properties. The pseudo-µVT simulation
was carried out such that the specified chemical potential was not constant but a function
of the actual pressure of the vapor phase. The vapor phase simulations were started
with 1000 particles using MC sampling with an acceptance ratio of 0.5. The system
was equilibrated for 105 time steps and production was carried out for 5 ⋅105 time steps.
The initial vapor density was also estimated with the Lennard-Jones EOS from Ref.
[639]. As for the homogeneous state point simulations, the cut-off radius was half the
edge length of a cubic simulation volume and the statistical uncertainty was estimated
by the block averaging method [181]. The vapor-liquid equilibrium was sampled at 31
temperatures between T = 0.69 and 1.28 εk−1

B . Numerical values of the obtained vapor
pressure, saturated densities, and enthalpy of vaporization are reported in the Appendix.

The simulation data from the outlined procedure is depicted by orange squares in the
plots. The simulations for the VLE data indicates by the green star (direct VLE simu-
lations) are discussed in chapter 5. The numeric values for both data sets are reported
in the Appendix.

4.2.3 Database of Thermophysical Properties

All thermophysical property data (approximately 35,000 data points) considered in this
work are summarized in a consistent form in an .xls spreadsheet in the electronic Sup-
plementary Material [640]. All data are sorted by thermophysical properties in that
spreadsheet. All numerical values are given in a consistent form, i.e. as residual proper-
ties with respect to the ideal gas and in the standard ’Lennard-Jones’ units. Information
on the statistical uncertainties were adopted from publications – wherever such infor-
mation was reported, which is unfortunately not always the case. The methods for
the estimation of statistical uncertainties differ significantly among the publications.
Sometimes, statistical uncertainties were reported, but no description on how such were
obtained is given. Due to this heterogeneity, statistical uncertainties could unfortunately
not be used for the assessment of data points in this work.

The database furthermore contains notes on pitfalls regarding the conversion of the
primary literature data to the format used in the database. Furthermore, known mis-
prints in publications from the literature were corrected, e.g. Refs. [543, 546, 661]. A
survey of these misprints is also given. Each data point possesses an additional mark,
which indicates whether the data point was found to be an outlier or not, according the
assessment described in the following.
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4.2.4 Assessment of Molecular Simulation Data

4.2.4.1 Assessment of Data on Homogeneous States

Thermophysical property data of the Lennard-Jones fluid reported in the literature (see
Table 8) for homogeneous state points were assessed by an equation of state (EOS)
consistency test. This consistency test is based on the statistical method proposed by
Rousseeuw and Croux [571] for the detection of outliers that was adopted and extended
for the purposes of the present work. The EOS test evaluates each data point individ-
ually by comparing it with the most accurate equations of state of the Lennard-Jones
fluid available in the literature and computer experiment data in its vicinity. The EOS
test is designed in a way to make a binary decision: either a data point is an outlier or
not.

The relative deviation δx of a given data point (DP) xDP(T ,ρ) from a given EOS at the
same temperature and density was computed as

δx = xDP − xEOS

xEOS

, (65)

where x is one of the following homogeneous bulk phase properties: pressure p, internal
energy u, speed of the sound w, thermal pressure coefficient γ, Grüneisen parameter Γ,
thermal expansion coefficient α, isothermal compressibility β, Joule-Thomson coefficient
µJT, isochoric heat capacity cv, isobaric heat capacity cp, Helmholtz energy divided by
the temperature ã = a/T , or chemical potential µ.

Comprehensive comparisons of EOS for the Lennard-Jones fluid have been carried out
recently [639] (see section 4.3 and 4.4). Six of the most accurate EOS were used here:
Johnson et al. [302], Kolafa and Nezbeda [334], Lafitte et al. [353], Mecke et al. [438,
439], Stephan et al. [639], and Thol et al. [661] (alphabetically). However, also these
EOS have deficiencies, e.g. the EOS of Thol et al. [661] exhibits an unrealistic behavior
in the two-phase region, that of Mecke et al. [438, 439] shows large deviations in the high
density region close to the freezing line, that of Stephan et al. [639] is less accurate in
the high temperature region, the EOS of Kolafa and Nezbeda [334] produces distorted
characteristic curves [138], and the one of Lafitte et al. [353] is less accurate in the
low density gas region. The EOS of Johnson et al. [302] is overall less precise than
the ones mentioned before. To take these deficiencies into account in evaluating an
individual data point, only the four EOS were considered that yielded the smallest
relative deviation δxj for a given data point. The four best EOS were identified and
selected for each data point individually, to prevent that the mentioned deficiencies of
the employed EOS adulterate the assessment.

To take into account that the precision of molecular simulation results varies in different
regions, the deviation of each individual state point was put into relation with the
average deviation of the data points in its neighborhood in the T − ρ plane. Each
data point j has its own neighborhood with i = 1 ..M neighbors, where the number
of neighbors is M = 15 .. 20. The nearest neighbors were determined using the radial
distance δ̃R between data points in the T − ρ plane, i.e. δ̃R = (δ̃T 2 + δ̃ρ2)0.5. The choice
of the radius and, hence, of M depends on the location of the data point in the T − ρ
plane, i.e. in a fluid region where data points are sparse or if a data point is close to
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a phase boundary, the radius was chosen large enough such that at least 15 neighbors
were allocated to the neighborhood of each data point. The neighbors of each data
point j were taken from the entity of all data points N of a given property, i.e. the
neighborhood M contains in general data points from different publications.

To decide whether a data point j is an outlier, a measure Pj is introduced. Following
the ideas of Refs. [265, 330, 371, 571], Pj was defined as

Pj =
∣δxj −medianMi=1(δxji)∣

MADj

with i = 1 ..M and j = 1 ..N . (66)

In the measure Pj, the deviation of a tested data point j and an EOS are compared to
the deviations of the data points from its neighborhood and that EOS. Details on the
selection of the EOS are given below. The numerator on the right-hand side of Eq. (66)
is the absolute deviation of the data point j and the median [201] of the data points
in its neighborhood. The denominator is a measure for the mean absolute deviation
(MAD) of the data points in the neighborhood of the given data point [234] j

MADj = k ⋅medianMi=1(∣δxij −medianMi=1(δxij)∣) , (67)

where k = 1.4826. The selection of that number is related to the assumption that the
deviation data δxij is normally distributed in the set of data points [280]. The MADj

quantifies how strong the data points of the neighborhood M scatter on average from
their median, i.e. how precise the data in the neighborhood is on average. The MAD is
robust, as the median is less affected by outliers than the mean. Hence, this test takes
the accuracy of the EOS and the accuracy of the computer experiment data of a certain
thermophysical property in a certain fluid region into account. For brevity, it is called
EOS test in the following.

The EOS test requires a sufficiently dense neighborhood of data points, to ensure that the
accuracy of the reference, i.e. the EOS, remains fairly constant within the neighborhood.
Since the data points for T > 6 εk−1

B are sparsely distributed in the T −ρ plane, the EOS
test was only applied to data at T ⩽ 6 εk−1

B .

The measure Pj was computed for the four EOS that were selected as described above,
and then compared with a parameter Pmax

Pj ⩾ Pmax . (68)

If this decision criterion was fulfilled for at least two of the four EOS, the data point j
was identified as an outlier. The parameter Pmax introduces an unavoidable subjective
attribute into the method [371, 571] and regulates the severity of the EOS test. A
fixed number for Pmax is used here for all thermophysical properties, EOS, and fluid
regions under consideration, which established a consistent framework. The parameter
was set to Pmax = 4. This results in a confirmation rate of approximately 90% of all
homogeneous data. Vise versa, 10% of all homogeneous data points were identified as
outliers. This rather conservative choice [371, 571] for Pmax was used to prevent a false
assessment of data points to be erroneous. A more stringent, but smaller database can be
generated easily by increasing Pmax and vice versa a larger database, that might however
include less precise data, can be generated by decreasing Pmax. The EOS test enables
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a robust assessment of the quality of individual data points based on an assessment of
the precision of the data points in its neighborhood.

Fig. 56 summarizes the results of the EOS test for the homogeneous state points for
Pmax = 4. About 85% of the pvT data and the data for the internal energy u passed the
EOS test. These two thermophysical properties are the most frequently reported: the
database contains about five times more pvT and internal energy data than any other
thermophysical property. The relatively low confirmation rate of the pvT and inter-
nal energy data is a result from significant differences in the precision among different
publications that the EOS test used for the detection of the outliers.

Figure 56: Statistics of the EOS test for homogeneous state points for different thermo-
physical properties: pressure p, internal energy u, isochoric heat capacity cv,
thermal pressure coefficient γ, speed of sound w, isothermal compressibility
β, isobaric heat capacity cp, Joule-Thomson coefficient µJT, Helmholtz en-
ergy divided by temperature ã = a/T , chemical potential µ, thermal expan-
sion coefficient α, and Grüneisen parameter Γ. The left ordinate indicates
the percentage of confirmed data and the right coordinate the total number
of data points available for each thermophysical property.

Confirmation rates of 94 - 96% were obtained for data for the isochoric heat capacity
cv, isobaric heat capacity cp, speed of sound w, thermal pressure coefficient γ, Joule-
Thomson coefficient µJT, and Grüneisen parameter Γ – which are higher-order tem-
perature and density derivatives of the Helmholtz energy. The confirmation rate for
the thermal expansion coefficient α and isothermal compressibility β was 92 - 93%. A
confirmation rate of 89% was found for the chemical potential µ, which is particularly
challenging to determine by molecular simulation. The lowest confirmation rate of 72%
was found for the Helmholtz energy ã, which is mainly due to particularly low confir-
mation rates for the results from some publications. Details are given in the electronic
Supplementary Material [640].

Also, the numerical values of all data points and the corresponding result of the EOS
test, i.e. whether a data point is confirmed or identified as an outlier with Pmax = 4, are
provided in the electronic Supplementary Material [640]. Moreover, information on the
dependence of the total percentage of confirmed data on the choice of the number for
Pmax is presented there.
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4.2.4.2 Assessment of Vapor-Liquid Equilibrium Data

For the vapor-liquid equilibrium, both bulk and interfacial properties were considered:
vapor pressure ps, saturated liquid and vapor density ρ′ and ρ′′, respectively, and en-
thalpy of vaporization ∆hv were considered for the bulk properties and the interfacial
tension γ as interfacial property, cf. Table 8.

Bulk VLE Data

In contrast to the test on the homogeneous state points, which was assessed for each
data point individually, entire VLE bulk property datasets from a given publication were
assessed and either confirmed or discarded. Furthermore, the EOS test for homogeneous
data is designed to identify gross outliers, whereas the assessment of the VLE data
additionally aims at determining the most precise data and to give an estimation of
that precision. The estimated precision indicates the magnitude that a given dataset
scatters around the presumed true value. The true value, i.e. exact and correct, of
a given property is approximated here by the mean of the most precise and accurate
datasets.

VLE bulk data of the Lennard-Jones fluid were assessed by several independent consis-
tency tests. Two of them were taken from the literature: the compressibility factor test
proposed by Nezbeda [494, 495] and the Clausius-Clapeyron test [395]. Furthermore, as
a third test, outliers were determined from a direct comparison of the data points as
described below in more detail. For brevity, this test is referred to as deviation test in
the following. Datasets were discarded, if the majority of data points within a dataset
violate one or more consistency tests. For the following discussion, the vicinity to the
critical point of the VLE region is defined to be above 95% of the critical temperature.
Data points in that region were not included in the consistency tests.

To facilitate the assessment, empirical correlation functions for the vapor pressure ps,
saturated liquid and vapor density ρ′ and ρ′′, respectively, and enthalpy of vaporization
∆hv were used:

lnps = n1T + n2

T
+ n3

T n4
, (69)

(ρ
′

ρc

) = 1 +
5

∑
i=1

ni (1 − T

Tc

)
ti

, (70)

ln (ρ
′′

ρc

) =
5

∑
i=1

ni (1 − T

Tc

)
ti

, (71)

∆hv =
4

∑
i=1

ni (Tc − T )ti . (72)

In an initial step, the VLE dataset from this work was used for the parametrization of
Eqs. (69) - (72), as it is the most extensive dataset. The absolute average deviation
from the correlations (69) - (72) and the respective VLE data from this work is: 0.3%
for the vapor pressure, 0.06% for the saturated liquid density, 0.5% for the saturated
vapor density, and 0.3% for the enthalpy of vaporization. The numerical values of the
parameters ni and ti are listed in Table 10. The critical values used in Eqs. (69) - (72)
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are Tc = 1.321 εk−1
B and ρc = 0.316σ−3. They are called base correlations in the following.

It will be shown below, that these correlations match the best available guess for the
considered properties within their estimated precision.

In the test proposed by Nezbeda [494, 495], the compressibility factor of the saturated
vapor phase Z ′′ = ps/ρ′′T is considered. Starting at low temperatures close to the triple
point, Z ′′ must be close to unity. With increasing temperature, Z ′′ must decrease
monotonically until the compressibility factor at the critical point is reached [494, 495].

This simple criterion can be applied for sorting out outliers: Z ′′ > 1 is not acceptable and
the slope dZ ′′/dT must be negative. More generally, the slope dZ ′′/dT is sensitive and
useful for discriminating data points that deviate from the general trend. Furthermore,
the data points were compared to the results for Z ′′, which was obtained from the base
correlations. Data points for which the deviation in Z ′′ from that correlation is above
1.25% were considered as outliers. The number 1.25% was chosen on the basis of an
examination of the scattering of the entire available data. Datasets of which more than
50% of the data points violate at least one of these criteria were discarded. The other
datasets are considered as confirmed by the compressibility factor test.

Fig. 57 shows the datasets that were confirmed by the compressibility factor test. These
data are in good mutual agreement and in agreement with the base correlation computed
from Eqs. (69) and (71). Excellent mutual agreement is found for the datasets from
Agrawal and Kofke [9], Errington [164], Errington [163, 541], Janeček et al. [298, 299],
Lotfi et al. [395], Mick et al. [452], Okumura and Yonezawa [510, 548], and from the
present work. Taking these data as the reference, and their scattering as a measure for
the precision, with which Z ′′ is known, that precision is estimated to be approximately
±0.5%, excluding the vicinity of the critical point. Furthermore, the datasets from
Hansen and Verlet [238], Janeček [297], Kofke [331],Martínez-Ruiz et al. [413], Okumura
and Yonezawa [509, 547], this work (direct simulations) , Stoll et al. [642], and Werth
et al. [709] also agree well with the data mentioned above, but scatter more. That data
were confirmed by the compressibility factor test. The larger scatter of the data of Refs.
[413, 628, 709] is probably due to the fact that these data were sampled with the direct
simulation method. The datasets from Refs. [163, 164, 509, 541, 547] each contain a
single data point that is a clear outlier. These data points are explicitly pointed out
in the Appendix. However, apart from the outlier, these datasets are considered as
confirmed by the compressibility factor test. Datasets from Refs. [6, 7, 23, 31, 39, 53,
283, 324, 410, 514, 516, 526, 582, 612, 672] were discarded by the compressibility factor
test. Details are given in the Appendix.

The second consistency test that was employed for the VLE bulk data is based on the
Clausius-Clapeyron equation

d lnps

d(1/T ) = − T ∆hv
ps (1/ρ′′ − 1/ρ′) . (73)

The left-hand side (LHS) and right-hand side (RHS) of Eq. (73) is considered individ-
ually for each dataset and compared. The equality of the LHS and RHS within the
corresponding statistical uncertainties indicates the thermodynamic consistency by the
Clausius-Clapeyron equation. The RHS of Eq. (73) is therefore computed directly from
the numerical values of the computer experiments. The statistical uncertainties of the
RHS values are determined using the error propagation law. The LHS of Eq. (73)
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Figure 57: Compressibility factor test for the vapor-liquid equilibrium data of the
Lennard-Jones fluid: saturated vapor phase compressibility factor Z ′′ as
function of the temperature T (top) and the relative deviation of Z ′′ from
the base correlations (69) and (71) (bottom). The black filled star indicates
the compressibility factor at the critical point according the base correla-
tion. Error bars are omitted in the bottom plot to avoid visual clutter.
Only confirmed data is shown.
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is calculated with an analytical function for the vapor pressure curve. The Clausius-
Clapeyron test is applied here in two ways (Test A and Test B). In Test A, the LHS and
RHS of a given dataset are directly compared. This can only be done in a meaningful
way for those datasets, that enable the parametrization of a correlation of ps(T ) for
the LHS in a sufficiently accurate manner. In Test B, the RHS of remaining datasets
are compared with the LHS correlations established in Test A. Data points violate the
Clausius-Clapeyron equation in Test A, if the computed RHS of a given data point does
not agree within the statistical uncertainty with the corresponding LHS value. In the
Test B, data points were considered as outliers, if they deviate 2% or more from the two
correlations established in Test A. As for the compressibility factor test, datasets for
which more than half of the data points violate the Clausius-Clapeyron test were dis-
carded. The remaining datasets were considered as confirmed by the Clausius-Clapeyron
test.

The datasets from Lotfi et al. [395] and this work were employed in Test A. Correlations
for ps(T ) obtained from the other datasets were not found to be sufficiently accurate
for carrying out a meaningful test of type A. For the data from this work, the base
correlation for the vapor pressure curve ps(T ) from Eq. (69) was used for the comparison.
The statistical uncertainty of the LHS was estimated from the error propagation law.
Lotfi et al. [395] published a correlation of their own vapor pressure curve data ps(T )
that was used here for computing the LHS of Eq. (73) for the comparison of the
corresponding RHS values. The RHS values of Eq. (73) were computed from the VLE
data from Refs. [7, 9, 53, 238, 297–299, 324, 331, 395, 452, 514, 516, 526, 582, 612, 642,
709] and Test B was applied accordingly.

Fig. 58 shows the VLE datasets that were confirmed by both the Clausius-Clapeyron
test and the compressibility factor test. In the plot, results for the RHS of Eq. (73)
that were obtained from the simulation data and are shown as symbols are compared
to results for the LHS that were obtained from correlations of the vapor pressure curve
and are shown as lines. Two such correlations are depicted: one obtained from the data
from the present work and one obtained by Lotfi et al. from their data [395]. Lotfi et al.
[395] compared their results for the Lennard-Jones fluid with results for Ne, Ar, and CH4

and found very good qualitative agreement, i.e. a parabolic shape of d(lnps)/d(T −1) as
function of the temperature.

Fig. 58 shows that the two correlations of the LHS of Eq. (73) match well. The
differences are far below the uncertainties of the data points for the RHS of Eq. (73). The
data from the present work and from Lotfi et al. [395] agree well with the correlations.
There is one outlier in the dataset from the present work. (It was not removed from
the dataset to ensure a fair comparison with the literature data, for which almost every
dataset was found to have at least one outlier). The LHS and RHS of Eq. (73) agree
within the statistical uncertainties for all but this state point, which is likely the result
of an overly optimistic error estimation. However, the data of Lotfi et al. [395] and
this work agree very well throughout, but the data of Lotfi et al. [395] show a more
pronounced scatter and larger error bars than the data from this work.

The RHS data of Janeček et al. [298, 299], Stoll et al. [642], Mick et al. [452], and
Agrawal and Kofke [9] are also in excellent agreement with the base correlation of the
LHS of Eq. (73). The agreement is also very good for the datasets of Hansen and Verlet
[238], Janeček [297], Kofke [331], and Werth et al. [709] but their RHS data exhibit
considerable scatter, as does the dataset of Lotfi et al. [395].
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Figure 58: Clausius-Clapeyron test according Eq. (73). Symbols indicate the RHS
and the lines the LHS of Eq. (73). The orange shaded area indicates the
statistical uncertainty of ±2% computed for the LHS of Eq. (69). The
purple line is Eq. (22) from Ref. [395]. Only confirmed data is shown.

The datasets from Refs. [6, 7, 53, 324, 514, 516, 526, 582, 612] were discarded by
the Clausius-Clapeyron test. Details are given in the Appendix. The results from the
Clausius-Clapeyron test reinforce the findings from the compressibility factor test.

As a third assessment, the deviation plots of each VLE bulk property (ps, ρ′, ρ′′, and
∆hv) from the base correlations were used as follows: first, the datasets with the best
mutual agreement were identified that were also confirmed by the previous two tests.
From these datasets, a confidence interval ±X% was estimated for each VLE property
(X = ps, ρ′, ρ′′, and ∆hv) individually that is a measure for the precision of the available
information. A data point was considered as an outlier, if its relative deviation to the
corresponding base correlation exceeds 2.5 times the number of X of one of the four VLE
properties. Again, datasets for which more than half of the data points of a given VLE
property violate the criterion were discarded. The remaining datasets were considered
as confirmed.

Fig. 59 shows the relative deviation of the VLE data (vapor pressure ps, enthalpy of
vaporization ∆hv, and the saturated densities ρ′ and ρ′′) from the base correlations.
Excellent mutual agreement (and also agreement with the base correlations) was found
for the datasets from Errington [163, 541], Errington [164], Janeček et al. [298, 299],
Lotfi et al. [395], Mick et al. [452], Okumura and Yonezawa [510, 548], and the dataset
from the present work. These seven datasets were also confirmed by the other two tests
and comprise a total of 86 state points. Interestingly, the precision, i.e. the scatter,
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of each of the seven best datasets (Refs. [163, 164, 298, 299, 395, 452, 510, 541, 548]
and this work) is very similar. Only the saturated vapor density and vapor pressure
data of Errington [163, 541] were found to be significantly more precise than the other
datasets. However, the scatter of the saturated liquid density data of Errington [163,
541] is significantly larger than the scatter of the other selected best datasets (Refs.
[163, 164, 298, 299, 395, 452, 510, 541, 548] and this work).

The mutual agreement of these seven selected best bulk VLE datasets is approximately
±1% for the vapor pressure, ±0.2% for the saturated liquid density, ±1% for the saturated
vapor density, and ±0.75% for the enthalpy of vaporization – excluding the region close
to the critical point. Five of these seven best datasets contain a single or two clear
outliers, which are listed in the Appendix.

The mutual agreement of the seven selected best datasets (Refs. [163, 164, 298, 299,
395, 452, 510, 541, 548] and the dataset from the present work) significantly decreases
in the region close to the critical point, i.e. T ≳ 1.25 εk−1

B . The mutual agreement in
the vicinity of the critical point is better for the vapor pressure and the saturated liquid
density than for the enthalpy of vaporization and the saturated vapor density.

The following datasets agree well but scatter strongly (however, within the confidence
interval and are thereby considered as confirmed by the deviation test): Betancourt-
Cárdenas et al. [53], Chen et al. [104], Hansen and Verlet [238], Martínez-Ruiz et al.
[413], Okumura and Yonezawa [509, 547], Stoll et al. [642], this work (direct simula-
tions), and Werth et al. [709]. The datasets from Refs. [6, 7, 9, 23, 31, 37, 39, 97, 189,
229, 230, 268, 283, 297, 298, 324, 331, 363, 410, 440, 507, 514, 516, 526, 534, 580, 582,
612, 672] were discarded because more than 50% of the respective data points exceed
the confidence interval of one of the bulk VLE properties.

The seven datasets from Refs. [163, 164, 298, 299, 395, 452, 510, 541, 548] and from the
present work were confirmed by all applicable tests and were found to be in excellent
mutual agreement and are therefore recommended as a reference. The datasets from
Refs. [238, 413, 509, 547, 628, 642, 709] were also confirmed by all applicable tests, but
exhibit a significantly larger scattering compared to these seven most precise datasets.
The datasets from Refs. [9, 37, 104, 189, 229, 230, 268, 283, 363, 507, 535, 603] were
discarded by a single consistency test, the datasets from Refs. [23, 31, 39, 331, 410, 672]
were discarded by two tests, and the the datasets from Refs. [7, 53, 324, 514, 516, 612]
by three tests. Note that, for most datasets only a selection of tests could be applied
due to missing properties that were not reported in these publications. For all but
one VLE dataset, the results of the three applicable tests reinforce each other. The
only exception is the dataset of Agrawal and Kofke [9]: the dataset was confirmed by
the compressibility factor test and the Clausius-Clapeyron test, but discarded by the
deviation test.

For many of the investigated datasets, the data points do not agree with the seven
selected best datasets within the reported statistical uncertainties. Therefore, systematic
simulation errors [590] are hold responsible for these deviations.

Fitting the combined data of the seven best datasets (Refs. [163, 164, 298, 299, 395, 452,
510, 541, 548] and the dataset from the present work) with the correlations presented
in Eqs. (69) - (72) yields a fit that is essentially the same as the one presented in
Table 10. For all studied properties, the differences between both fits are well below
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Figure 59: Relative deviations of the vapor-liquid equilibrium data for the vapor pres-
sure ps, saturated liquid density ρ′, saturated vapor density ρ′′, and en-
thalpy of vaporization ∆hv from correlations (69) - (72) as a function of
the temperature T . Error bars were omitted to avoid visual clutter. For
clarity, numerical values for out-of-range data points with negative devia-
tion for the vapor pressure, the enthalpy of vaporization, and the saturated
vapor density ρ′′ are omitted in the respective plot; they lie in the range of
δps = −0.05 .. − 0.16, δ∆hv = −0.15 .. 0.45, and δρ′′ = −0.08 .. − 0.2.
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the differences among the data from the seven datasets. Hence, we simply recommend
using the correlations from Table 10.

Interfacial VLE Data

As for the bulk VLE properties, the computer experiment data for the surface tension
were assessed with respect to their mutual agreement. To facilitate this assessment, a
base correlation function was also used for the temperature dependence of the surface
tension

γ/ εσ−2 = a(1 − T

Tc
)
b

, (74)

where a and b are parameters. Tc = 1.321 εk−1
B was specified for the critical temperature

in Eq. (74). In an initial step, the surface tension data from Refs. [628, 706] were
used for the parametrization of Eq. (74). The obtained values for the parameters are:
a = 3.03327 and b = 1.27748. The absolute average deviation between correlation (74)
and the data used for the parametrization is 1.2%. It will be shown below, that Eq. (74)
matches the best available guess for the surface tension within its estimated precision.

The surface tension data was also assessed with the deviation test: first, the datasets
with the best mutual agreement were identified. From these datasets, a confidence
interval ±X% was estimated as measure for the precision that the surface tension is
known. For the assessment, a data point was considered as an outlier, if its relative
deviation to the base correlation (74) exceeds 2.5 times the number of ±X%. Again,
datasets for which more than half of the data points violate the criterion were discarded.
The remaining datasets were considered as confirmed.

Fig. 60 shows the surface tension data as a function of the temperature. Overall, the
agreement is significantly poorer than for the bulk VLE properties. The best mutual
agreement is found for the datasets of Chen et al. [104], Janeček et al. [298], Janeček
[297], Werth et al. [706], Werth et al. [709], Lee et al. [363], Martinez-Ruiz et al. [413],
Mecke et al. [437], Nijmeijer et al. [507], this work (direct simulations), Shen et al.
[602]. These datasets agree approximately within ±4% – excluding the region close to
the critical point.

The following datasets agree well, i.e. are considered as confirmed, but exhibit a
more pronounced scatter or systematic deviations from the aforementioned datasets:
Trokhymchuk and Alejandre [672], Potoff and Panagiotopoulos [535], Miyazaki et al.
[461], Galliero et al. [189], Errington [164], Baidakov et al. [39], and Baidakov et al.
[37]. The datasets of Refs. [23, 31, 97, 229, 230, 268] were discarded since more than
50% of the respective data points exceed the confidence interval. Details are given in
the Appendix.
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Figure 60: Surface tension of the Lennard-Jones fluid as a function of the temperature
(top) and the corresponding relative deviation plot (bottom). The black
line (top) and baseline (bottom) indicates Eq. (74). Symbols indicate
computer experiment data. For clarity, numerical values for out-of-range
data points in the vicinity of the critical temperature are omitted in the
deviation plot.
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4.2.5 Conclusions

This work reviews and assesses thermophysical property data for the Lennard-Jones
fluid. Literature data (approximately 35,000 data points) were digitalized, evaluated,
and provided in the electronic Supplementary Material [640] as a consistent database.
For the homogeneous state points, approximately 10% of the data were identified to be
gross outliers by an EOS test. The lack of information on the statistical uncertainties
in some studies is unfortunate.

Three independent consistency tests were employed for the evaluation of the VLE data:
the compressibility factor test considers only the vapor pressure and the saturated vapor
density, whereas the Clausius-Clapeyron test also considers the saturated liquid density
and the enthalpy of vaporization. The third test evaluates the mutual agreement of
datasets for each VLE property individually. The VLE datasets of Errington [163, 541],
Errington [164], Janeček et al. [298, 299], Lotfi et al. [395], Mick et al. [452], Okumura
and Yonezawa [510, 548], and this work were confirmed by all tests and found to be
the most precise. The precision with which the VLE of the Lennard-Jones fluid is
known is thereby estimated to be ±1% for the vapor pressure, ±0.2% for the saturated
liquid density, ±1% for the saturated vapor density, and ±0.75% for the enthalpy of
vaporization – excluding the region close to the critical point. Since almost every VLE
dataset – even the most precise – contain individual outliers, we recommend to use
the combination of the above listed datasets as reference. Furthermore, the datasets of
Hansen and Verlet [238], Martínez-Ruiz et al. [413], Okumura and Yonezawa [509, 547],
this work (direct simulations), Stoll et al. [642], and Werth et al. [709] were found to
be accurate, but not as precise. The precision of the surface tension is estimated to be
±4%, i.e. significantly larger than the VLE bulk properties.

The EOS test presented here can be adopted easily to other applications in thermody-
namics. A test based on the ideas described here could for example be used for testing
VLE data of a given mixture based on models of the Gibbs excess energy GE.

Future simulation work should focus on the region in the direct vicinity of the critical
point, where the available VLE data and accordingly the location of the critical point
agree less well.

The consolidated data base that is presented here is used in sections 4.3 and 4.4 to
investigate the performance of equations of state for the Lennard-Jones fluid.
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4.3 Equations of State for the Lennard-Jones Fluid

A large number of equations of state of the Lennard-Jones (LJ) fluid have been proposed
in the literature of which Table 11 gives a survey. To the best of our knowledge, the
different LJ EOS from the literature have never been compared systematically. We have
therefore compared 20 of the most widely used LJ EOS using a consistent approach
and consolidated reference data. The LJ EOS that were included in the present study
are marked with abbreviations in Table 11. The focus of this study is on the LJ EOS
developed in the past 30 years. However, some older yet still frequently used LJ EOS
were also included in the comparison [4, 128, 505, 559].

There are about 35,000 data points on thermophysical properties of the LJ fluid in the
literature, which were critically assessed and screened for outliers, cf. section 4.2 [640].
This consolidated database still contains about 32,000 entries and was used here as basis
for the assessment of the LJ EOS.

The following physical properties were considered in the present study:

• the vapor-liquid equilibrium (for given T : vapor pressure ps, saturated liquid and
vapor densities ρ′ and ρ′′, respectively, and enthalpy of vaporization ∆hv).

• the critical point (critical temperature Tc, critical density ρc, and critical pressure
pc).

• homogeneous states (for given temperature T and density ρ: pressure p, thermal
expansion coefficient α, isothermal compressibility β, thermal pressure coefficient
γ, internal energy u, isochoric heat capacity cv, isobaric heat capacity cp, Grüneisen
parameter Γ, Joule-Thomson coefficient µJT, speed of sound w, Helmholtz energy
a, and chemical potential µ) in the different fluid regions such as: gas, liquid,
supercritical, etc. (details are given below). Also, second and third thermal virial
coefficients B and C are considered.

• the qualitative behavior of p(ρ) isotherms in the metastable and unstable region
and the spinodal curve.

LJ EOS can be broadly classified into empirical EOS and theoretically-based EOS. This
is only a crude classification and used here in the following sense [135]: empirical EOS
are data-driven and aim at correlating the data well. This is usually accomplished
by a flexible mathematical form with a large number of parameters. In contrast, the
mathematical form of theoretically-based EOS is derived from theoretical considerations.
They usually have a smaller number of adjustable parameters than the empirical EOS.
Obviously, the border between these two types of EOS is blurred. Most LJ EOS have
some physically motivated features and some empirical features, see Deiters and de
Reuck [135] for a detailed discussion. LJ EOS that could not be clearly assigned to
either of the two categories are labeled as semi-empirical LJ EOS here.
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It is widely accepted that both types of EOS have strengths and weaknesses that are
often characterized as follows [135, 137, 619]: empirical EOS are strong regarding the
accurate description of available data, but weak regarding extrapolations into regions
where no data was used for the training of the EOS; for theoretically-based EOS it is the
other way around: they are expected to be strong regarding extrapolations but typically
less accurate in the description of existing data. Furthermore, empirical EOS are prone
to yield unphysical behavior such as crossing isotherms [10, 527, 725] or several van der
Waals loops in the vapor-liquid coexistence region [249, 619, 661].

Lennard-Jones equations of state are often used as a base model for building models of
more complex fluids [57, 58, 102, 128, 353]. Among the theoretically-based EOS, those
of the SAFT-type are particularly successful and have been widely used for describing
complex fluids [100, 102, 155, 226, 353, 482]. Most of them were developed starting from
an LJ EOS for describing the monomer unit [57, 58, 99, 106, 206–208, 345, 479, 482, 650].
Different LJ EOS are used in different SAFT EOS. The monomer equations of the
following SAFT EOS were included in the present study: the Lennard-Jones extended
SAFT [206, 207], LJ-SAFT [345, 479], LJ-based SAFT [106], soft-SAFT [57, 58], and
SAFT-VR Mie [353, 518]; the corresponding LJ EOS considered in the present work
are those from Refs. [302, 334, 353, 505]. Another important SAFT EOS is PC-SAFT
[223, 224]. The monomer term of PC-SAFT was not developed to give a good description
of the LJ fluid. In the present work, the monomer term of PC-SAFT was re-parametrized
in order to get good results for the LJ fluid and enable direct comparisons with the
monomer terms in other versions of SAFT EOS. The parametrization, which aims at a
good description of both the vapor-liquid equilibrium and the homogeneous region, uses
elements from multi-criteria optimization and is described in the Appendix. The results
that were obtained with the new LJ EOS give insights in strengths and weaknesses of
the functional form of the monomer term that is used in PC-SAFT, which is put into
relation to the results from other LJ EOS.

The outline of this study is as follows: first, an overview of the LJ EOS from the literature
that were considered in this work is given. The second and main part comprises the
evaluation and comparison of LJ EOS. Finally, conclusions are drawn.

The present work is limited to the fluid regions of the Lennard-Jones fluid, i.e. no solid
phases are considered. This includes the two-phase regions in which solids occur. The
term two-phase region refers therefore exclusively to the vapor-liquid coexistence region
here.

4.3.1 Overview of Lennard-Jones EOS

Table 11 gives an overview of LJ EOS from the literature. Equations of state that are
only defined piecewise are not considered in Table 11, since their derivatives can be
discontinuous. The 20 LJ EOS for which an abbreviation is given in Table 11 were
considered for the comparison in the present work. As only some of the LJ EOS are
available in executable form or as source code, such a comparison requires programming
and validation of the considered EOS. Besides the 20 LJ EOS studied here, two more
LJ EOS [53, 129] were implemented in the course of this work, but the results reported
in the respective publications could not be reproduced using the given equations and
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numerical values of the parameters. Hence, they were not considered for the comparison
in this work.

Furthermore, in the course of the present work, misprints were identified in Refs. [710]
and [554]. The corrections are reported in the Appendix. Using these corrections, our
implementations of the LJ EOS from Refs. [554, 710] yield results that are consistent
with data reported in the respective publications.

All LJ EOS listed in Table 11 are either formulated explicitly in the pressure or the
Helmholtz energy. The number of parameters that were adjusted to obtain a good fit
of data from computer experiments varies between 0 and 177. The LJ EOS that were
considered in the present work are classified as follows: theoretically-based: Refs. [128,
353, 519, 710] and the LJ EOS from the present work; empirical: Refs. [4, 217, 302, 423,
425, 460, 505, 554, 559, 646, 661]; and semi-empirical: Refs. [62, 258, 334, 343, 438, 439].

The most popular LJ EOS are those of Johnson et al. [302], Nicolas et al. [505], Kolafa
and Nezbeda [334], Cotterman et al. [128], Lafitte et al. [353], Ree [559], and Mecke et
al. [438, 439] (sorted by their the number of citations; for more information, see the
Appendix).

The first LJ EOS were published soon after molecular simulations became feasible by
’computing machines’ [15, 451, 566, 717]. The oldest LJ EOS considered in the present
work is that of Nicolas et al. [505] from 1979, which is a modified Benedict-Webb-Rubin
(MBWR) type EOS [51, 294]. That LJ EOS has been re-parametrized several times,
e.g. from Adachi et al. [4], Miyano [460], Johnson et al. [302], Sun and Teja [646], and
May and Mausbach [423, 425], of which the parametrization of Johnson et al. [302] is
by far the most frequently used. The oldest LJ EOS of the ’theoretical’ type considered
here is that of Cotterman et al. [128] from 1986. Both Kolafa and Nezbeda [334] and
Mecke et al. [438, 439] proposed semi-empirical LJ EOS in the 90s that became popular.
Several theoretically-based LJ EOS have been developed in the recent years, e.g. those
of Paricaud [519], Lafitte et al. [353], and van Westen and Gross [710]. But also new
empirical LJ EOS have become available recently, e.g. those of Thol et al. [661] and
Gottschalk [217]. Further empirical and semi-empirical LJ EOS that are considered in
the present work are those of Boltachev and Baidakov [62], Quiñones-Cisneros et al.
[554], Ree [559], Koutras et al. [343], and Hess [258].

Theoretically-based LJ EOS are usually either built on the perturbation theory of Barker
and Henderson [42, 43] (BH) or that of Weeks-Chandler-Andersen [699] (WCA). The
LJ EOS of Song and Mason [616] is of the WCA type, those of Cotterman et al. [128],
Paricaud [519], Lafitte et al. [353], van Westen and Gross [710], and the PC-SAFT
monomer are of the BH type. Van Westen and Gross [710] also proposed a WCA type LJ
EOS and found it equally precise as their BH type LJ EOS. Only the latter is employed
here for comparison. Perturbation theory is expected to be a good approximation for
state points for which the influence of the attractive forces is not particularly strong,
i.e. high temperatures [43, 44].

The theoretically-based LJ EOS apply different formulations for the hard sphere refer-
ence term, e.g. the LJ EOS of Cotterman et al. [128], Paricaud [519], van Westen and
Gross [710], and Lafitte et al. [353] use the hard sphere equation of Carnahan and Star-
ling [93], whereas the PC-SAFT monomer uses that of Boublík [67] and Mansoori et al.
[407]. Also the semi-empirical LJ EOS of Mecke et al. [438, 439] employs the Carnahan
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and Starling [93] equation as a description of the hard sphere Helmholtz energy. The
semi-empirical LJ EOS of Kolafa and Nezbeda [334] employs a slightly modified version
of the Carnahan and Starling [93] equation. The LJ EOS of Koutras et al. [343] is based
on an empirically modified version of the Carnahan and Starling [93] equation.

The BH type LJ EOS of Cotterman et al. [128], Paricaud [519], Lafitte et al. [353],
and van Westen and Gross [710] as well as the PC-SAFT monomer use slightly differing
formulations for the temperature-dependent diameter for the modeling of the softness
of the repulsive interactions [43, 44]. The PC-SAFT monomer model, which was re-
parametrized in the present work, uses a simplified version of the temperature-dependent
diameter, cf. Eq. (145) in the Appendix.

The theoretically-based LJ EOS of Cotterman et al. [128], Paricaud [519], and the PC-
SAFT monomer model are developed up to the second-order perturbation term. The
LJ EOS of Lafitte et al. [353] and van Westen and Gross [710] are formulated up to
third and fourth-order perturbation terms, respectively.

Also the perturbation terms are designed differently in the considered theoretically-based
LJ EOS: the LJ EOS of Cotterman et al. [128] and the PC-SAFT monomer model are
simplified and developed in a series expansion in the packing fraction, whereas the LJ
EOS Paricaud [519], Lafitte et al. [353], and van Westen and Gross [710] use an analytic
function for the radial distribution function of the hard sphere system.

All LJ EOS considered here were fitted to computer experiment data (except that of Hess
[258], which has no adjustable parameter). However, the data that was used generally
differs. Furthermore, in many cases the training dataset, the objective functions, and
weights were not disclosed in the publications. Most LJ EOS were parametrized using
pvT data and eventually internal energy data. In some cases also data on the thermal
virial coefficients were used for the parametrization – mainly for empirical LJ EOS.
The LJ EOS of Thol et al. [661], which is explicit in the Helmholtz energy a, was
parametrized directly using computer experiment data of a and its density and inverse
temperature derivatives. Most theoretically-based LJ EOS [128, 353, 710] are directly
parametrized using computer experiment data of the perturbation term. The data type
used for the parametrization of each LJ EOS is summarized in the Appendix.

In some publications in which new LJ EOS are proposed (cf. Table 11), an estimated
range of validity of the LJ EOS is reported (which is usually given for the density and
temperature). Since this range of validity is mostly based only on estimates and in
some cases only described ambiguously, we compare all LJ EOS to the same computer
experiment database (cf. section 4.2), disregarding the eventual statements on the range
of validity to ensure a fair comparison. We find that the reported range of validity of
many LJ EOS is either far too optimistic or pessimistic. Information on the reported
range of validity of each LJ EOS is given in the Appendix.

4.3.2 Evaluation of Lennard-Jones EOS

Table 8 summarizes the reference database used for comparison, which contains approx-
imately 35,000 data points. These data are also available electronically in the electronic
Supplementary Material [640], such that the tests of the different LJ EOS that were
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carried out in the present work can easily be reproduced and the approach can be ex-
tended to the evaluation of new LJ EOS. Data points that were identified as outliers in
Ref. [640] were discarded for the comparison in the present work. The reference data
was not differentiated here regarding the source of the data points. However, also that
information can be retrieved from the electronic Supplementary Material [640].

As the results from computer simulations are subject to both systematic and statistical
errors [242, 590, 640], the true value of a given property of the LJ fluid at a given state
point is only known with some uncertainty. That uncertainty depends on the property
that is investigated as well as on the state point. Furthermore, the uncertainty can only
be estimated and, depending on the way this estimate is carried out, different numbers
for the uncertainty are obtained. We do not re-enter into the discussion of the quality of
the reference data and simply refer to Ref. [242, 590, 640]. The goal of any description
of properties of the LJ fluid by an EOS must be to describe the primary data within
their uncertainty. Ideally, this should be fulfilled for all properties of interest in the
entire fluid region.

The systematic approach for the comparison of the LJ EOS that was applied in the
present study is briefly described in the following. The performance of each LJ EOS i
was examined for different thermophysical properties j, and fluid regions k regarding
data points l from computer experiments.

The relative deviation δYijkl of a result Yijkl from an LJ EOS i from the corresponding
computer experiment value Yref,jkl for a given property j in a given fluid region k is
defined as

δYijkl =
Yijkl − Yref,jkl

Yref,jkl

. (75)

The complete set of numeric values Yijkl computed for each data point l from the
database [640] for each LJ EOS i is provided in the electronic Supplementary Mate-
rial [639] together with the corresponding reference value Yref,jkl. Where available, also
the statistical uncertainties from the computer experiment data is given.

The absolute average deviation AADijk of a given LJ EOS i for a thermophysical prop-
erty j in a fluid region k is defined as

AADijk = 1/Njk

Njk

∑
l=1

∣δYijkl∣ , (76)

where Njk is the number of reference data points for the respective property j in the
fluid region k. Hence, the AADijk quantifies the performance of an LJ EOS for a certain
property j in a certain fluid region k. The overall performance of an LJ EOS i for a
given property j was evaluated using

AADij = 1/Ntot

Ntot

∑
l=1

∣δYijl∣ , (77)

where Ntot is the number of data points available for a given property j. For clarity and
simplicity we sometimes refer to AADij for a given property j simply as AADj,total in
the following text, when it is clear which LJ EOS i is meant.

The classification into different fluid regions k is only used for homogeneous state data
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points specified as Y = Y (T ,ρ). Fig. 61 shows the eight fluid regions that were used in
the present work for the classification of Y = Y (T ,ρ) data.

Figure 61: Definition of characteristic fluid regions (colored) of the LJ fluid used for
the evaluation and comparison of LJ EOS in the present work: metastable/
unstable (MU), gas (G), liquid (L), critical (C), supercritical (Su), high
density liquid (HD-L), high density supercritical (HD-Su), and extreme
temperature (Ex-T). Details on the boundaries of the regions are given in
Table 12. Solid states and the melting region were not considered in the
present study.

Table 12 summarizes the conditions for each region. The binodal was adopted from an
analytic correlation of Stephan et al. [640] (cf. section 4.2.4.2) and the freezing line from
Köster et al. [341]. The line separating data in the high density liquid and high density
supercritical region was chosen as 95% of the density of the freezing line reported by
Köster et al. [341]. Since only very few computer experiment data has been reported for
the unstable region [460, 537, 640] obtained from specialized techniques and the location
of the spinodal is only known with large uncertainty (see below), the metastable and
unstable region were combined for the comparison to a single region enclosed by the
binodal. An eighth characteristic region was defined at extreme temperatures T > 6 εk−1

B ,
i.e. the supercritical and high density supercritical region end at T = 6 εk−1

B . All data
points from the database compiled in section 4.2 of the type Y = Y (T ,ρ) were assigned
to one of these eight regions. The allocation of each data point is reported in the
electronic Supplementary Material [639]. Data points that are specified as Y = Y (T ),
namely VLE properties, virial coefficients, and spinodal data, belong to individual fluid
regions.

For each LJ EOS i, the obtained AADijk for each property j and each region k and
AADij are reported in Tables 13 - 15 and are discussed in the following sections.
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4.3.2.1 Vapor-Liquid Equilibrium

The vapor-liquid equilibrium of the LJ fluid has been investigated numerous times [6, 7,
9, 23, 31, 37, 39, 53, 97, 104, 163, 164, 189, 229, 230, 238, 268, 283, 297, 298, 298, 324,
331, 363, 395, 410, 413, 440, 452, 507, 509, 510, 514, 516, 526, 535, 580, 582, 603, 612, 628,
640, 642, 672, 709]. Seven of these 45 datasets were found to be significantly more precise
and accurate than the remaining, cf. section 4.2.4.2. Only these seven best datasets
were used here for the comparison. However, also these seven datasets contain 8 clear
outliers [640] that were discarded for the present investigation. The mutual agreement
of these seven datasets was estimated to be ±1% for the vapor pressure, ±0.2% for
the saturated liquid density, ±1% for the saturated vapor density, and ±0.75% for the
enthalpy of vaporization – excluding the region close to the critical point (T > 1.26 εk−1

B )
[640]. Furthermore, empirical correlations of these 7 best datasets for ps, ∆hv, ρ′, and
ρ′′ have been proposed in section 4.2.4.2. The relative deviations of the VLE properties
are shown in Fig. 62 (vapor pressure ps and the enthalpy of vaporization ∆hv) and in
Fig. 63 (saturated liquid and vapor density ρ′ and ρ′′, respectively). The baselines are
the empirical correlations from section 4.2.4.2, other lines are the LJ EOS, and symbols
indicate reference data from the computer experiments. Table 13 lists the AADj,total as
defined by Eq. (77) obtained from the reference VLE data and each of the 20 considered
LJ EOS for j = ρ′, ρ′′, ps, ∆hv. The VLE computed from each of the considered LJ
EOS are reported in the electronic Supplementary Material [639].

The LJ EOS of Thol et al. [661], Mecke et al. [438, 439], Kolafa and Nezbeda [334],
Gottschalk [217], and from the present work show the best agreement with the VLE
simulation results. Nevertheless, the LJ EOS of Thol et al. [661], Mecke et al. [438, 439],
Gottschalk [217], and the LJ EOS from the present work exhibit minor systematic
deviations from the simulation results in the saturated liquid density at T > 1 εk−1

B .
Only the LJ EOS of Kolafa and Nezbeda [334] captures this trend correctly.

The LJ EOS of Johnson et al. [302], May and Mausbach [423, 425], Sun & Teja [646],
Lafitte et al. [353], and van Westen and Gross [710] also give a good description of
the VLE properties of the LJ fluid. However, the LJ EOS of Lafitte et al. [353], van
Westen and Gross [710], and Johnson et al. [302] exhibit distinct systematic deviations
from the reference data of the vapor pressure and the saturated densities. The LJ EOS
of May and Mausbach [423, 425] exhibits noticeable deviations regarding the saturated
liquid density at T > 1 εk−1

B .

Particularly large deviations from the computer experiment VLE data are found for the
LJ EOS of Nicolas et al. [505], Miyano [460], Boltachev and Baidakov [62], Adachi et
al. [4], Cotterman et al. [128], Paricaud [519], Hess [258], Koutras et al. [343], Ree
[559], and Quiñones-Cisneros et al. [554].

All considered LJ EOS are fully analytic and thereby exhibit classical scaling be-
havior, e.g. quadratic convergence of the saturated densities near the critical point
[178, 326, 599]. This, and the fact that the investigated LJ EOS have significantly dif-
fering critical temperatures (see following section), leads to the diverging deviations of
the VLE properties in Figs. 62 and 63 in the vicinity of the critical point. Also, the
scattering of the computer experiment VLE data significantly increases in the vicinity
of the critical point and, accordingly, only very few consistent data points are available
in that region [640].



152 4 Lennard-Jones Fluid: Simulation Data and Equations of State

Figure 62: Comparison of the results from 20 LJ EOS with reference data: relative
deviation of the vapor pressure (top) and enthalpy of vaporization (bottom).
The base line indicates the respective correlation of computer experiment
data from section 4.2.4.2. The other lines are results from the LJ EOS;
symbols are data from computer experiment.
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Figure 63: Comparison of the results from 20 LJ EOS with reference data: relative
deviation of the saturated densities: liquid density (top) and vapor density
(bottom). The base line indicates the correlation of computer experiment
data from section 4.2.4.2. The other lines are results from the LJ EOS;
symbols are data from computer experiment.
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For each VLE property j, the lowest absolute average deviation AADij among the
considered LJ EOS i in Table 13 is in good agreement with the stated mutual agreement
of the best computer experiment data, which indicates that the lowest absolute average
deviation values are in fact good guesses for the accuracy of the reference data.

4.3.2.2 Critical Point

Critical data derived from computer experiment data of the LJ fluid have been reported
numerous times in the literature [7, 46, 53, 84, 148, 259, 261, 283, 323, 332, 350, 370,
383, 395, 410, 450, 509, 510, 514, 534, 535, 559, 603, 611, 618, 647, 677, 678]. They
were summarized and assessed in section 4.2. The critical data of the LJ fluid were
thereby estimated to be Tc = 1.321±0.007 εk−1

B and ρc = 0.316±0.005σ−3 and pc = 0.129±
0.005 εσ−3. These values are referred to as ’computer experiment’ critical data in the
following.

The numeric values of the critical data computed from the LJ EOS are reported in the
Appendix. Fig. 64 shows the comparison of the critical data obtained from the LJ EOS
and the computer experiment values with their uncertainties. The critical data from
the LJ EOS scatter in a large range compared to the uncertainty of the critical data
from the computer experiments. Six LJ EOS (Refs. [258, 343, 460, 505, 519, 710]) have
particularly large deviations from the computer experiment critical point. Many LJ
EOS show fair agreement with the critical density from the computer experiments, but
a significant overestimation of the critical temperature and pressure is found in most
cases, which is due to the scaling behavior of the EOS [178, 326, 599]. The critical
pressure obtained from the vast majority of LJ EOS lies within a narrow band in the
p − T diagram. The width of that band is similar to the estimated uncertainty of the
critical pressure from the computer experiments δpc = ±0.005 εσ−3. Hence, the deviation
of the critical point computed from the LJ EOS is mainly a result of the mismatching
critical temperature – as expected from the scaling behavior.

The critical parameters obtained from the LJ EOS of Johnson et al. [302], Lafitte et al.
[353], May and Mausbach [423, 425], and Thol et al. [661] are in excellent agreement
with the computer experiment, which is surprising considering the fact that they are
analytic EOS and therefore should not be accurate in the vicinity of the critical point.
Lafitte et al. [353] assume that the applied third-order perturbation term is responsible
for the relatively low critical temperature of their LJ EOS. However, the LJ EOS of
van Westen and Gross [710] significantly overestimates the critical temperature of the
computer experiment, but also includes higher-order perturbation terms. Despite its
good results for the critical data, the LJ EOS of Thol et al. [661] has a relatively poor
performance for state points in the vicinity of the critical point – even crossing isotherms
are observed (see below).

The critical parameters obtained from the LJ EOS of Cotterman et al. [128], Kolafa
and Nezbeda [334], Mecke et al. [438, 439], Sun and Teja [646], Quiñones-Cisneros et al.
[554], Gottschalk [217], and the LJ EOS from the present work are generally in reasonable
agreement with critical data from the computer simulations, but they overestimate the
critical temperature Tc by about 0.01 .. 0.02 εk−1

B . The LJ EOS of Paricaud [519], Hess
[258], and Ree [559] overestimate the critical temperature by about 0.06 .. 0.09 εk−1

B .
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Figure 64: Critical point of the LJ fluid. Top: critical pressure over temperature.
Bottom: critical density over temperature. Each combination of a star &
abbreviation indicates the critical parameters from an LJ EOS. The abbre-
viations are the same as those in Table 11. The blue shaded area indicates
the critical parameters from computer experiments and their uncertainties
[640]. The solid lines indicate the correlations of the VLE properties from
Stephan et al. [640]. The numeric values of the critical parameters obtained
from the LJ EOS are reported in the Supplementary Material.

4.3.2.3 Isotherms in the Two-Phase Region and Spinodal

Equations of state should exhibit only a single van der Waals loop in the vapor-liquid
two-phase region. Multiple oscillations of isotherms are prohibitive for calculating in-
terfacial properties, e.g. with density gradient theory [167, 168, 573]. Furthermore,
isotherms in the two-phase region can show artificial undulations around the general
course of the van der Waals loop, which have a smaller amplitude than that of the van
der Waals loop. Another problem that can occur are crossing isotherms (multiplicity).

In this section, the behavior of the LJ EOS is characterized regarding the behavior of
isotherms in the two-phase region in the p − ρ diagram and the spinodal. The results
from the quantitative comparison of the LJ EOS with computer experiment data of the
type Y = Y (T ,ρ) for state points between the binodals with LJ EOS are discussed in
the subsequent section.
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The isotherms in the p − ρ diagram of all 20 considered LJ EOS were examined in the
temperature range T = 0.5 .. 1.32 εk−1

B regarding the following features in the two-phase
region: the number of zero crossings of dp/dρ = 0 and d2p/dρ2 = 0; the results are
summarized in Fig. 65. The numeric values for four isotherms in the two-phase region
are reported in the electronic Supplementary Material [639].

Figure 65: Number of zero crossings of the first and second derivative of the p − ρ
isotherms (dp/dρ = 0 and d2p/dρ2 = 0) in the two-phase region as a function
of the temperature for all 20 considered LJ EOS. The left panel indicates
the number of dp/dρ = 0 at a given temperature; the right panel indicates
the number of d2p/dρ2 = 0. The desired values are: 2 for the left panel and
1 for the right and are indicated in green. The abbreviations for the LJ
EOS are the same as in Table 11.

Most theoretically-based LJ EOS show none of the problems mentioned above in the
two-phase region, whereas most empirical and semi-empirical LJ EOS show at least some
artifacts in the two-phase region. The LJ EOS of Gottschalk [217] and Thol et al. [661]
exhibit multiple minima and maxima in a wide temperature range, cf. Fig. 65. The
LJ EOS of Thol et al. [661] exhibits artificial oscillations up to extreme negative and
positive pressures, which results in a crossing of isotherms [10, 527, 725] not only in the
two-phase region but also the supercritical region (details are given in the Appendix).
The LJ EOS of Refs. [302, 423, 425, 438, 439] exhibit multiple extrema only in the
vicinity or below of the triple point temperature. For the LJ EOS of Boltachev and
Baidakov [62], isotherms exhibit a second (unphysical) maximum in the homogeneous
high density region, which yields large deviations from reference data in that region (see
following section).

Several LJ EOS also exhibit undulations of the isotherms between the binodals in the
p − ρ diagram. This leads to the fact that the isotherms in the p − ρ diagram of the
LJ EOS of Johnson et al. [302], May and Mausbach [423, 425], Nicolas et al. [505],
Mecke et al. [438, 439], Boltachev and Baidakov [62], Kolafa and Nezbeda [334], and
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Adachi et al. [4] exhibit a single van der Waals loop, but multiple turning points. The
isotherms of the LJ EOS of Miyano [460], Lafitte et al. [353], Koutras et al. [343], and
the LJ EOS from the present work exhibit such turning points only below the triple
point temperature, cf. Fig. 65 - right.

For most of the investigated LJ EOS, the undulations of the isotherms in the two-phase
region decrease with increasing temperature and vanish upon approaching the critical
point (see the electronic Supplementary Material [639]). The only exception is the LJ
EOS of Thol et al. [661], which exhibits large oscillations up to the critical temperature.

LJ EOS with isotherms with a single and smooth van der Waals loop in the entire
considered temperature range (cf. Fig. 65) are those of Cotterman et al. [128], Paricaud
[519], Quiñones-Cisneros et al. [554], Hess [258], Ree [559], and van Westen and Gross
[710]. The isotherms of the LJ EOS of Sun and Teja [646], Lafitte et al. [353], and
the LJ EOS from the present work exhibit very small undulations between the binodals
above the triple point – without producing a second turning point in the isotherms (see
electronic Supplementary Material).

Recently, Alsaifi [19] carried out a study on the behavior of six empirical and semi-
empirical LJ EOS [302, 334, 423, 425, 438, 439, 505, 661] regarding possible artificial
phenomena. The findings for these six LJ EOS are in line with the results from the
present work.

Data derived from computer experiments for the spinodal of the LJ fluid have been
reported by Baidakov et al. [37] and Linhart et al. [380]. This data was compared with
the spinodals computed from the 20 LJ EOS that were considered here. The bottom
section of Table 13 reports the obtained absolute average deviations. In the assessment
of the deviations, it must be considered that only few reference data points are available
that are also subject to strong scattering (see Appendix).

The LJ EOS of Mecke et al. [438, 439], Kolafa and Nezbeda [334], Boltachev and
Baidakov [62], and Johnson et al. [302] yield the best agreement with the spinodal
reference data. Due to the artificial oscillatory behavior of the isotherms from the LJ
EOS of Gottschalk [217] and Thol et al. [661], no meaningful spinodal could be computed
for those LJ EOS.

4.3.2.4 Homogeneous Fluid States

In the present section, the performance of the LJ EOS for describing thermodynamic
properties of homogeneous fluid state points is discussed, which are calculated as Y =
Y (T ,ρ). The considered states are grouped in the fluid regions k shown in Fig. 61.
Computer experiment data points that were identified as outliers in section 4.2.4.1 were
discarded for the evaluation of the LJ EOS here. The reference data of each property
j of that type (cf. Table 8) was compared with the corresponding results of each of
the LJ EOS i. The obtained numbers for AADijk and AADij, cf. Eq. (76) and (77),
are reported in Tables 14 - 15. Since several LJ EOS have extremely large deviations
from the reference data (many orders of magnitude) in the extreme temperature region
k = Ex-T, which would lead to a meaningless total AADij, the Ex-T results were not
comprised in the AADij calculation but are reported separately in Table 15 instead.
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For all considered LJ EOS, the thermodynamic properties were computed from their
relations to the reduced Helmholtz energy ã = a/T and its derivatives with respect to
the density and the inverse temperature using the following notation:

ãnm = ãid
nm + ãres

nm = (1/T )n ρm ∂n+m(ãid + ãres)
∂(1/T )n ∂ρm , (78)

where ’id’ and ’res’ indicate the ideal gas contribution and the residual contribution to
the Helmholtz energy, respectively. Only, data for n,m = 0, 1, 2 were considered here.
This formalism was also applied to pressure-explicit LJ EOS, cf. Table 11. As the
Lennard-Jones fluid is a monoatomic gas, its ideal gas heat capacity is a priori known.
The following thermodynamic properties were studied here [619, 661]:

thermal properties

pressure p = −(∂a
∂v

)
T

= ρT (1 + ãres
01 ) (79)

caloric properties

residual internal energy ures = ares + Tsres = T ãres
10 (80)

isobaric heat capacity cp = ( ∂h
∂T

)
p

= −(ãid
20 + ãres

20 ) +
(1 + ãres

01 − ãres
11 )2

1 + 2ãres
01 + ãres

02

(81)

isochoric heat capacity cv = ( ∂u
∂T

)
v

= −(ãid
20 + ãres

20 ) (82)

entropic properties

residual chemical potential µres = hres − Tsres = T (1 + ãres
00 + ãres

01 ) (83)

2nd-order thermodynamic derivatives

thermal pressure coefficient γ = ( ∂p
∂T

)
ρ

= ρ(1 + ãres
01 − ãres

11 ) (84)

isothermal compressibility β = (ρ ∂p
∂ρ

)
−1

T

= 1

ρT (1 + 2ãres
01 + ãres

02 )
(85)

thermal expansion coeffi-
cient α = βγ =

( ∂p∂T )
ρ

ρ(∂p∂ρ)
T

= 1 + ãres
01 − ãres

11

T (1 + 2ãres
01 + ãres

02 )
(86)
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speed of sound w =
¿
ÁÁÀ(∂p

∂ρ
)
s

= (87)

=
⎛
⎝
T((1 + 2ares

01 + ares
02 ) −

(1 + ares
01 − ares

11 )2

aid
20 + ares

20

)
⎞
⎠

0.5

Joule-Thomson coefficient µJT = (∂T
∂p

)
h

= (88)

= ρ−1 −(ãres
01 + ãres

02 + ãres
11 )

(1 + ãres
01 − ãres

11 )2 − (ãid
20 + ãres

20 )(1 + 2ãres
01 + ãres

02 )

Grüneisen parameter Γ =
( ∂p
∂T

)
ρ

ρ cv
= 1 + ãres

01 − ãres
11

−ãid
20 − ãres

20

(89)

Thermal Properties

The AADijk computed according Eq. (76) for the pressure data j = p is given in Table 14
for all considered LJ EOS i and all regions k, except for the extreme temperature region
k = Ex-T, for which the corresponding results are presented in Table 15. Table 14
furthermore reports the absolute average deviations from the (exact) values for the
second and third virial coefficient k = B, C, which were taken from the literature [46,
264, 505, 640, 711].

The overall best description of the pvT data is found for the LJ EOS of Gottschalk
[217], Thol et al. [661], Mecke et al. [438, 439], and Kolafa and Nezbeda [334]. However,
the LJ EOS of Thol et al. [661] and Gottschalk [217] exhibit extreme deviations in the
metastable/ unstable region (see above). The LJ EOS from the present work describes
the pvT data in the gas, liquid, and critical region as good as the best LJ EOS in those
regions. In the high density liquid, and metastable/ unstable region, the LJ EOS from
the present work has slightly larger mean deviations than the best LJ EOS in those
regions.



4.3 Equations of State for the Lennard-Jones Fluid 161

T
ab

le
14

:
C
om

pa
ri
so
n
of

th
e
re
su
lt
s
fr
om

20
LJ

E
O
S
i
w
it
h
re
fe
re
nc
e
da

ta
,c

f.
Ta

bl
e
8
(o
ut
lie
rs

id
en
ti
fie
d
in

th
e
da

ta
se
t
as

di
sc
us
se
d
in

se
ct
io
n
4.
2.
4.
1
w
er
e
di
sc
ar
de
d)
:
ab

so
lu
te

av
er
ag

e
de

vi
at
io
ns

A
A
D
ij
k
(c
f.

E
q.

76
)
fo
r
di
ffe

re
nt

th
er
m
od

yn
am

ic
pr
op

er
ti
es
j
fo
r

ho
m
og

en
eo
us

st
at
e
po

in
ts

in
di
ffe

re
nt

re
gi
on

s
k
.
T
he

la
st

lin
e
’t
ot
al
’o

fe
ac
h
se
ct
io
n
gi
ve
s
th
e
m
ea
n
ab

so
lu
te

av
er
ag

e
de
vi
at
io
n

(c
f.

E
q.

77
).

#
is

th
e
nu

m
be

r
of

da
ta

po
in
ts
.

#

Cottermanetal.[128]

Paricaud[519]

Lafitteetal.[353]

vanWesten&Gross[710]

thiswork

Koutrasetal.[343]

Kolafa&Nezbeda[334]

Meckeetal.[438,439]

Hess[258]

Boltachevetal.[62]

Gottschalk[217]

Quiñones-Cisnerosetal.[554]

Nicolasetal.[505]

Adachietal.[4]

Miyano[460]

Johnsonetal.[302]

Sun&Teja[646]

May&Mausbach[423,425]

Ree[559]

Tholetal.[661]

p
v
T

d
at

a
G

16
9

1.
2

1.
0

0.
9

0.
8

0.
1

2.
4

0.
1

0.
1

0.
8

0.
1

0.
1

1.
0

0.
6

0.
9

0.
6

0.
2

0.
2

0.
1

1.
2

0.
1

L
53
7

15
.2

9.
5

6.
4

8.
1

2.
8

11
.6

3.
4

3.
0

65
.8

16
.4

2.
9

5.
0

8.
6

21
.0

8.
2

3.
6

5.
0

5.
1

16
.9

2.
9

H
D
-L

23
3

32
.0

5.
6

18
.6

10
.6

3.
9

6.
8

3.
4

3.
1

87
.7

40
.8

3.
2

3.
5

6.
8

7.
3

6.
9

3.
1

5.
0

6.
2

5.
4

3.
2

M
U

49
5

14
.9

23
.5

13
.9

20
.7

7.
8

21
.7

7.
1

6.
1

89
.5

14
.5

16
7.
3

15
.4

28
.7

35
.8

11
.1

7.
5

8.
1

14
.4

51
.9

52
8.
7

C
22
5

4.
6

6.
5

5.
0

4.
0

2.
1

3.
1

2.
1

2.
1

27
.4

4.
1

2.
1

2.
3

4.
5

13
.5

3.
7

3.
7

4.
2

3.
1

9.
0

2.
3

Su
17
15

2.
7

2.
1

2.
0

2.
3

1.
5

10
.5

0.
5

0.
5

4.
2

3⋅
1
0
3

0.
5

1.
1

1.
9

3.
6

1.
3

0.
7

1.
5

0.
6

1.
9

0.
5

H
D
-S
u

15
2

4.
4

9.
6

10
.4

12
.8

5.
6

20
.4

0.
2

0.
2

4.
3

3⋅
1
0
4

0.
1

3.
9

0.
3

1.
1

0.
2

0.
2

1.
2

0.
2

1.
3

0.
2

to
ta

l
35

26
8.

4
7.

0
5.

9
6.

8
2.

9
11

.6
2.

1
1.

9
32

.4
3⋅

1
0
3

24
.5

4.
1

7.
1

11
.4

4.
2

2.
4

3.
3

3.
7

11
.8

75
.3

2n
d
an

d
3r
d
vi
ri
al

co
effi

ci
en
t

B
35
9

12
.6

0.
6

5.
4

4.
1

13
.2

56
.8

0.
4

1.
0

0.
0

0.
6

0.
0

14
6.
7

9.
3

1.
4

0.
6

1.
4

3.
4

1.
4

41
.9

1.
1

C
39
3

31
7.
5

29
9.
0
11
5.
4
10
0.
0
11
0.
8

15
9.
3

53
.2

46
.6

50
.0

22
.6

25
.9

17
0.
9

25
3.
4

25
4.
2

74
.5

12
3.
8
13
4.
0
10
3.
9

33
8.
7

7.
7

to
ta

l
75

2
17

1.
9

15
6.

5
62

.9
54

.2
64

.2
11

0.
4

28
.0

24
.8

26
.1

12
.1

13
.5

15
9.

4
13

6.
9

13
3.

5
39

.2
65

.4
71

.6
55

.0
19

7.
0

4.
6

co
nt
in
ue
d
on

ne
xt

pa
ge



162 4 Lennard-Jones Fluid: Simulation Data and Equations of State

#

Cottermanetal.[128]

Paricaud[519]

Lafitteetal.[353]

vanWesten&Gross[710]

thiswork

Koutrasetal.[343]

Kolafa&Nezbeda[334]

Meckeetal.[438,439]

Hess[258]

Boltachevetal.[62]

Gottschalk[217]

Quiñones-Cisnerosetal.[554]

Nicolasetal.[505]

Adachietal.[4]

Miyano[460]

Johnsonetal.[302]

Sun&Teja[646]

May&Mausbach[423,425]

Ree[559]

Tholetal.[661]

In
te
rn
al

en
er
gy

u
re

s

G
17
4
13
.3

5.
1

9.
7

6.
7

1.
5

2⋅
1
0
4

0.
5

0.
4

0.
8

0.
3

0.
3

29
.7

5.
3

2.
5

1.
2

0.
9

3.
6

1.
1

18
.7

0.
3

L
43
8

4.
5

0.
8

0.
4

0.
4

0.
3

62
3.
3

0.
1

0.
1

24
.1

6.
7

0.
1

6.
2

0.
2

5.
2

0.
2

0.
1

0.
2

0.
5

0.
8

0.
1

H
D
-L

21
2

3.
3

1.
1

0.
6

0.
5

0.
5

2⋅
1
0
3

0.
3

0.
3

33
.6

15
.8

0.
3

14
.2

0.
4

8.
1

0.
5

0.
4

0.
4

0.
9

0.
3

0.
3

M
U

30
7

6.
6

4.
6

6.
3

5.
0

2.
5

2⋅
1
0
4

0.
6

0.
6

21
.6

3.
6

0.
3

18
.3

3.
5

7.
2

1.
9

1.
3

3.
1

2.
1

11
.7

0.
5

C
18
5

4.
9

4.
6

3.
9

5.
1

1.
6

48
4.
4

1.
0

1.
1

10
.0

1.
9

0.
8

12
.9

2.
7

1.
2

2.
0

0.
9

1.
9

1.
2

10
.8

1.
0

Su
14
92

5.
4

2.
8

2.
2

2.
3

6.
8

4⋅
1
0
3

0.
3

0.
3

4.
6

1⋅
1
0
4

0.
3

7.
7

1.
1

3.
6

1.
1

0.
7

1.
3

0.
6

3.
0

0.
2

H
D
-S
u

13
9
10
.2

13
.3

20
.6

22
.3

36
.0

2⋅
1
0
3

0.
9

0.
7

9.
0

2⋅
1
0
5

0.
5

9.
4

1.
8

13
.9

0.
8

2.
2

4.
8

3.
0

1.
2

0.
3

to
ta

l
29

47
5.

9
3.

3
3.

7
3.

5
5.

7
5⋅

1
0
3

0.
4

0.
3

11
.7

2⋅
1
0
4

0.
3

10
.8

1.
5

4.
8

1.
1

0.
8

1.
6

0.
9

4.
7

0.
3

Is
oc
ho

ri
c
he
at

ca
pa

ci
ty
c v

G
15
1

2.
4

4.
7

6.
0

5.
0

4.
4

1⋅
1
0
4

1.
1

0.
9

2.
5

2.
0

0.
5

4.
2

3.
4

2.
5

3.
3

1.
7

4.
1

2.
3

10
.5

0.
4

L
20
5

3.
9

3.
3

4.
3

1.
8

5.
3

1⋅
1
0
4

0.
4

0.
4
12
1.
8

20
8.
1

2.
4

99
.0

2.
5

41
.2

1.
8

2.
5

1.
6

6.
8

3.
5

0.
4

H
D
-L

57
9.
5

2.
9

5.
3

1.
6

9.
6

3⋅
1
0
4

0.
7

0.
7
21
2.
5

73
0.
5

4.
9
23
5.
1

1.
8

51
.3

1.
1
10
.2

3.
1
28
.8

0.
9

0.
5

M
U

11
3
10
.7

9.
8
11
.6

9.
4
10
.1

4⋅
1
0
4

4.
6

3.
7
10
3.
5

65
.5

10
.6

13
5.
9

6.
7

32
.6

7.
0

7.
9

8.
4
15
.6

16
.2

16
.6

C
15
2
18
.1

20
.3

18
.4

20
.2

17
.5

3⋅
1
0
3
10
.1

8.
1

9.
6

30
.7

3.
2

16
.0

14
.5

7.
7

19
.1

9.
1
19
.6

14
.8

30
.5

42
.9

Su
11
60

3.
9

2.
9

1.
7

2.
0

4.
2

3⋅
1
0
3

0.
4

0.
3

12
.6

2⋅
1
0
3

0.
5

9.
7

1.
6

6.
6

2.
0

1.
2

2.
3

2.
0

5.
6

0.
4

H
D
-S
u

53
4.
8

4.
8

1.
0

1.
1
16
.4

2⋅
1
0
3

0.
6

0.
3

20
.6

2⋅
1
0
4

0.
5

6.
0

1.
3

14
.9

0.
7

2.
9

2.
7

3.
5

0.
7

0.
3

to
ta

l
18

91
5.

5
5.

0
4.

4
4.

1
6.

3
7⋅

1
0
3

1.
5

1.
2

35
.1

2⋅
1
0
3

1.
7

33
.7

3.
2

13
.3

3.
7

2.
7

4.
2

5.
3

8.
1

4.
8

Is
ob

ar
ic

he
at

ca
pa

ci
ty
c p

G
92

1.
9

4.
7

5.
3

4.
3

2.
4

8⋅
1
0
3

0.
5

0.
4

0.
9

0.
8

0.
2

5.
4

3.
3

2.
6

1.
3

1.
1

2.
9

1.
3

9.
8

0.
3

L
15
6

4.
7

2.
9

3.
5

2.
9

3.
7

6⋅
1
0
3

1.
4

1.
5

77
.0

18
7.
8

2.
5

51
.1

3.
5

22
.8

2.
4

2.
6

2.
4

4.
8

2.
2

1.
4

H
D
-L

45
7.
1

4.
6

4.
1

2.
5

8.
1

1⋅
1
0
4

0.
7

0.
8
13
0.
8

2⋅
1
0
3

2.
8
11
2.
6

2.
1

35
.0

1.
4

6.
2

2.
7
18
.7

2.
0

0.
9

M
U

6
15
.8

95
.9

29
.4

14
.0

27
.2

2⋅
1
0
4
29
.2

30
.7

77
.6

26
.5

30
.5

48
.8

10
9.
4

23
.7

22
.3

26
.9

23
.1

24
.2

45
.8

68
.7

C
10
1
26
.4

33
2.
9
28
.5

82
.2

26
.6

43
2.
4
29
.9

30
.6

97
7.
1

30
.7

25
.2

29
.0

1⋅
1
0
3

36
.4

10
1.
1
35
.8

28
.2

27
.5

83
9.
4
30
.2

Su
93
4

4.
4

3.
8

3.
0

2.
9

3.
7

1⋅
1
0
3

2.
0

2.
0

14
.6

4⋅
1
0
3

2.
0

6.
3

3.
3

5.
5

2.
7

2.
3

2.
7

2.
5

5.
3

2.
0

H
D
-S
u

43
6.
6

4.
5

5.
1

3.
2
10
.9

2⋅
1
0
3

1.
2

0.
9

15
.2

4⋅
1
0
4

1.
0

4.
9

1.
4

11
.9

1.
6

2.
6

2.
6

3.
1

1.
6

0.
6

to
ta

l
13

77
6.

1
28

.3
5.

3
8.

8
5.

8
3⋅

1
0
3

4.
0

4.
0

95
.4

4⋅
1
0
3

3.
8

16
.6

81
.1

10
.8

9.
8

4.
9

4.
6

5.
1

66
.4

4.
1

co
nt
in
ue
d
on

ne
xt

pa
ge



4.3 Equations of State for the Lennard-Jones Fluid 163

#

Cottermanetal.[128]

Paricaud[519]

Lafitteetal.[353]

vanWesten&Gross[710]

thiswork

Koutrasetal.[343]

Kolafa&Nezbeda[334]

Meckeetal.[438,439]

Hess[258]

Boltachevetal.[62]

Gottschalk[217]

Quiñones-Cisnerosetal.[554]

Nicolasetal.[505]

Adachietal.[4]

Miyano[460]

Johnsonetal.[302]

Sun&Teja[646]

May&Mausbach[423,425]

Ree[559]

Tholetal.[661]

H
el
m
ho

lt
z
en
er
gy

ã
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Also the LJ EOS of Johnson et al. [302] gives a good description of the pvT data (cf.
Table 14); however, it is somewhat less precise than the three aforementioned LJ EOS.
The LJ EOS of Sun and Teja [646], May and Mausbach [423, 425], Quiñones-Cisneros et
al. [554], and Miyano [460] are in turn slightly less precise than the LJ EOS of Johnson
et al. [302]. The theoretically-based LJ EOS of Cotterman et al. [128], Lafitte et al.
[353], Paricaud [519], and van Westen and Gross [710] overall yield an absolute average
deviation two to three times larger than the most precise LJ EOS, cf. Table 14. In
general no fluid region is represented significantly better or worse than the others by
the theoretically-based LJ EOS. The performance of the LJ EOS from Cotterman et al.
[128], Lafitte et al. [353], Paricaud [519], and van Westen and Gross [710] regarding
the pvT behavior is overall similar. Also the LJ EOS of Nicolas et al. [505] has a
similar performance regarding the pvT data as the theoretically-based LJ EOS from
Refs. [128, 353, 519, 710], which is surprising considering the fact that the LJ EOS of
Nicolas et al. [505] is one of the oldest LJ EOS considered here. The LJ EOS from the
present work performs significantly better than the other theoretically-based LJ EOS,
which is likely due to the parametrization procedure (see Appendix). The LJ EOS of
Koutras et al. [343], Hess [258], Ree [559], Boltachev and Baidakov [62], and Adachi et
al. [4] exhibit large deviations in all fluid regions (AADi,j=p > 10%).

The isotherms obtained from the LJ EOS of Boltachev et al. [62] exhibit an artificial
maximum in the supercritical region, which results in gross deviations in the high density
liquid, the supercritical and the high density supercritical region. This also holds for
properties discussed in the following. The LJ EOS of Boltachev et al. [62] is therefore
discarded from the following discussions.

For the second and third virial coefficients B and C, the obtained absolute average
deviations are reported in the bottom section of Table 14. The second virial coefficient
B is exactly described by the LJ EOS of Gottschalk [217] and Hess [258], which comprise
the corresponding expression in their mathematical form. Good results are also obtained
for the LJ EOS of Paricaud [519], Kolafa and Nezbeda [334], Mecke et al. [438, 439],
Boltachev and Baidakov [62], Miyano [460], and Thol et al. [661]. The third virial
coefficient C is described best by the LJ EOS of Thol et al. [661]. Also the LJ EOS of
Gottschalk [217] yields an excellent description of C in a wide temperature range, but
a wrong limit at low temperatures yields an overall large absolute average deviation. A
detailed discussion on the performance of LJ EOS on the virial coefficients and their
relation to the characteristic curves can be found in section 4.4 [625].

Caloric Properties

Also the absolute average deviations AADijk for the residual internal energy j = ures (for
brevity, the addition ’residual’ is omitted in the following) in the different fluid regions k
are reported in Table 14 for all studied LJ EOS i. As for the pvT data, the LJ EOS from
Mecke et al. [438, 439], Gottschalk [217], Thol et al. [661], and Kolafa and Nezbeda [334]
give the best descriptions of the internal energy data. The LJ EOS from the present
work performs well in most fluid regions, i.e. only slightly exceeds the absolute average
deviations from the best LJ EOS, but becomes unreliable in the supercritical and high
density supercritical region. This is likely due to the simplifications of the temperature-
dependent diameter, cf. Eq. (145) in the Appendix, and hence an inadequate description
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of the soft repulsive interactions [66] of the PC-SAFT monomer equation in that fluid
region (details are given in the Appendix).

The LJ EOS of Johnson et al. [302], May and Mausbach [423, 425], Nicolas et al.
[505], Sun and Teja [646], and Miyano [460] exhibit total deviations AADi,j=ures for
the internal energy of about 1 .. 2%, cf. Table 14, and are thereby less precise than the
aforementioned LJ EOS [217, 334, 438, 439, 661] – in agreement with what was observed
for the pvT data.

The AADi,j=ures obtained for the theoretically-based LJ EOS of Cotterman et al. [128],
Lafitte et al. [353], Paricaud [519], van Westen and Gross [710], and the LJ EOS from
the present work is about an order of magnitude larger than the most precise LJ EOS
(Refs. [217, 334, 438, 439, 661]). The deviations of the theoretically-based LJ EOS are
particularly large in the gas and high density supercritical region. Nevertheless, the
theoretically-based LJ EOS of Lafitte et al. [353], Paricaud [519], and van Westen and
Gross [710], and from the present work show a good performance in the liquid and high
density liquid region, where the deviations are not significantly higher than those of the
empirical LJ EOS, cf. Table 14.

The empirical LJ EOS of Ree [559] and Adachi et al. [4] perform not better than the
considered theoretically-based LJ EOS for the internal energy. The LJ EOS of Koutras
et al. [343], Hess [258], Quiñones-Cisneros et al. [554], and Boltachev and Baidakov
[62] exhibit mean deviations AADi,j=ures > 10%.

Interestingly, most LJ EOS show a better performance for the internal energy ures than
for the pressure p, i.e. AADi,j=p > AADi,j=ures . This does not hold for the LJ EOS from
the present work, which is based on the PC-SAFT monomer equation. The mean devi-
ation for the internal energy data AADi,j=ures is more than three times larger than the
corresponding value for the pvT data AADi,j=p, which is likely due to the mathematical
form of the underlying model, namely on the chosen simplification for describing the
temperature-dependent diameter and the perturbation terms (see Appendix for details).
These simplifications have also been attributed to shortcomings of PC-SAFT regarding
its description of the soft repulsion, see Boshkova and Deiters [66]. The simplifications
in describing the soft repulsion in the PC-SAFT EOS may also explain its poorer per-
formance for caloric properties at supercritical states that was reported in the literature
[140, 376, 530, 531].

The absolute average deviations AADijk of the isochoric and isobaric heat capacity j = cv
and j = cp, respectively, found for the different LJ EOS i in the different fluid regions k
are also reported in Table 14. The four LJ EOS from Thol et al. [661], Gottschalk [217],
Mecke et al. [438, 439], and Kolafa and Nezbeda [334] give the best description of the
computer experiment data for the heat capacities, which is in line with the findings for
the internal energy ures and the pvT data. The LJ EOS of Thol et al. [661] has large
deviations in the critical and metastable/ unstable region, but performs slightly better
than the LJ EOS of Mecke et al. [438, 439] and Kolafa and Nezbeda [334] in the gas
and in both the high density liquid and high density supercritical region. While the LJ
EOS of Gottschalk [217] gives a slightly better description of the pvT data than that of
Thol et al. [661], this is reversed for the caloric properties in most fluid regions except
the critical and metastable/ unstable region.

For the isochoric and isobaric heat capacity, the LJ EOS of Johnson et al. [302] and Sun
and Teja [646] have slightly increased absolute average deviations in most fluid regions
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compared to the four best LJ EOS. The theoretically-based LJ EOS of Cotterman et al.
[128], Lafitte et al. [353], Paricaud [519], van Westen and Gross [710], and the LJ EOS
from the present work are less precise than the best empirical ones for the isochoric and
isobaric heat capacity, but the difference is only about a factor of two to four instead
an order of magnitude as found for the internal energy data.

The LJ EOS of Nicolas et al. [505] and Paricaud [519] exhibit large relative deviations
of the isobaric heat capacity data in the critical region, which is due to the significantly
overestimated critical temperature of these LJ EOS. The large deviations found for
both isochoric and isobaric heat capacity data for the LJ EOS of Thol et al. [661] in the
critical and metastable/ unstable region are probably a result of the multiple van der
Waals loops and the crossing of the isotherms in the critical region. However, it should
be noted, that the critical temperature of the LJ EOS of Thol et al. [661] is in excellent
agreement with the presumed true value (see above).

The LJ EOS of Koutras et al. [343], Hess [258], Ree [559], Adachi et al. [4], Boltachev
and Baidakov [62], and Quiñones-Cisneros et al. [554] exhibit for both j = cv and j = cp
mean deviations AADi,j ≳ 10%.

Entropic Properties

The results obtained for performance of the considered LJ EOS i on entropic proper-
ties j = (residual reduced Helmholtz energy ãres = ares/T and chemical potential µres

– mentioning ’residual’ is again omitted for brevity in the following) in the different
fluid regions k are also given in Table 14. The LJ EOS of Thol et al. [661], Gottschalk
[217], Mecke et al. [438, 439], and Kolafa and Nezbeda [334] give a generally similar
precise description of the entropic properties, cf. Table 14. The relative deviation of
the LJ EOS of Johnson et al. [302] is approximately twice as large as those of the four
best LJ EOS [217, 334, 438, 439, 661] for both the Helmholtz energy and the chemical
potential. The absolute average deviation for the entropic properties obtained for the
theoretically-based LJ EOS of Cotterman et al. [128], Lafitte et al. [353], Paricaud [519],
and van Westen and Gross [710], and the LJ EOS from the present work significantly
exceed those from the most precise LJ EOS. Large deviations for the entropic properties
are found for all theoretically-based LJ EOS in the high density supercritical region.
Furthermore, high deviations are found for the LJ EOS of Cotterman et al. [128] and
Lafitte et al. [353] in the gas region for both the Helmholtz energy and the chemical
potential. The LJ EOS of Boltachev and Baidakov [62], Koutras et al. [343], and Hess
[258] exhibit AADij > 10% for both considered entropic properties j = ãres and j = µres.

Overall, the results for the entropic properties support the findings from the caloric and
thermal properties discussed above. This also indicates that the reference data compiled
and assessed in section 4.2 for these properties has overall a similar quality and outliers
were equally well detected.

Second-Order Derivatives of the Helmholtz energy

The Helmholtz energy is considered here as a function of the inverse temperature and
the density, cf. Eq. (78). Accordingly, the second derivatives are ã20, ã11, and ã02. Six
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more thermodynamic properties were studied here that contain at least one of these
derivatives: the thermal pressure coefficient γ, the isothermal compressibility β, the
thermal expansion coefficient α, the speed of sound w, the Joule-Thomson coefficient
µJT, and the Grüneisen parameter Γ, cf. Eqs. (84) - (89). The AADijk results for the
considered LJ EOS i for j = α, β, γ, w, µJT, Γ in the different fluid regions k are given
in Table 14.

The thermal pressure coefficient γ, isothermal compressibility β, and thermal expansion
coefficient α is best and overall equally well described by the LJ EOS of Kolafa and
Nezbeda [334], Mecke et al. [438, 439], Gottschalk [217], and Thol et al. [661] – as it
was also found for the thermal, caloric, and entropic properties discussed above.

The LJ EOS of Johnson et al. [302], May and Mausbach [423, 425], and Sun and Teja
[646] exhibit slightly larger mean deviations for α, β, and γ than the aforementioned
LJ EOS, cf. Table 14. Also the LJ EOS of Lafitte et al. [353], Cotterman et al.
[128], Quiñones-Cisneros et al. [554], and the LJ EOS from the present work give a
reasonably precise description of the α, β, and γ computer experiment data. Mean
deviations AADij > 10% for either j = α, β, or γ were obtained for the LJ EOS of
Miyano [460], Adachi et al. [4], Ree [559], Nicolas et al. [505], Hess [258], Paricaud
[519], van Westen and Gross [710], Koutras et al. [343], and Boltachev and Baidakov
[62]. For the latter two LJ EOS mean deviations AADij > 10% are found for all three
properties j = α, β, and γ, cf. Table 14.

All five theoretically-based LJ EOS (Cotterman et al. [128], Lafitte et al. [353], Paricaud
[519], and van Westen and Gross [710], and the LJ EOS present work) exhibit high
relative deviations for α, β, and γ in the high density supercritical and high density
liquid region compared to other fluid regions. Furthermore, the theoretically-based LJ
EOS of Lafitte et al. [353] and Paricaud [519] are considerably less precise in the gas
region for j = α, β, and γ than the other theoretically-based LJ EOS, cf. Table 14.

The LJ EOS of Nicolas et al. [505], Hess [258], Ree [559], and Paricaud [519] exhibit
large relative deviations for the α and β computer experiment data in the critical region,
similar to the findings for the heat capacity. This is attributed to the significantly
overestimated critical temperature by these LJ EOS (see above).

The findings for j = w, µJT, and Γ are in line with the findings for the properties
discussed above: the three LJ EOS of Kolafa and Nezbeda [334], Mecke et al. [438, 439],
Gottschalk [217], and Thol et al. [661] give similarly precise descriptions, followed by
that of Johnson et al. [302]. The theoretically-based LJ EOS are significantly less
precise.

Distinct performance features for w, µJT, and Γ are: the LJ EOS of Thol et al. [661]
exhibits large deviations in the metastable/ unstable region for the Joule-Thomson co-
efficient and the LJ EOS from the present work is significantly less precise than other
LJ EOS for the Grüneisen parameter in the supercritical and high density supercritical
region. The latter is again attributed to the simplified temperature-dependent diameter
(see Appendix).
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Extreme Temperature Region

The performance of the investigated LJ EOS i in the extreme temperature region, i.e.
T > 6 εk−1

B , is summarized in Table 15 by reporting the corresponding absolute average
deviations AADijk with k = Ex-T for all considered homogeneous state properties j.
Since the reference data in the extreme temperature region covers a large range of states
[640], high absolute average deviations obtained for a given LJ EOS are in some cases a
result of a poor performance in only a sub-region of states, cf. electronic Supplementary
Material.

The LJ EOS of Quiñones-Cisneros et al. [554], Boltachev and Baidakov [62], and
Koutras et al. [343] give an erratic description of the extreme temperature region.
The empirical LJ EOS of Thol et al. [661] and Ree [559] give an astonishingly accu-
rate description of thermodynamic properties at extreme temperatures considering the
fact that they were parametrized exclusively using data at moderate temperatures. On
the contrary, the theoretically-based LJ EOS exhibit large deviations for most proper-
ties, especially for the pressure and the internal energy. This is surprising, considering
the fact that the studied theoretically-based LJ EOS are based on perturbation theory,
which is expected to perform well at high temperatures, where the attractive forces, i.e.
the perturbation contribution of the temperature expansion, plays a minor role.

The LJ EOS of Mecke et al. [438, 439] and Gottschalk [217], which are generally precise
(see above), exhibit large deviations for the pressure and the internal energy at extreme
temperatures – the LJ EOS ofMecke et al. [438, 439] also for other properties. A detailed
examination of the data (see the electronic Supplementary Material [639]) shows that
these large deviations mainly stem from the region T > 50 εk−1

B and ρ > 2σ−3 (for the LJ
EOS of Gottschalk [217], very few reference data points entail these large deviations).
The LJ EOS of Johnson et al. [302], Sun and Teja [646], May and Mausbach [423, 425],
Nicolas et al. [505], Adachi et al. [4], Hess [258], and Kolafa and Nezbeda [334] give a
reasonable description of the extreme temperature region – except the internal energy
data in some cases.



4.3 Equations of State for the Lennard-Jones Fluid 171

T
ab

le
15

:
C
om

pa
ri
so
n
of

th
e
re
su
lt
s
fr
om

20
LJ

E
O
S
i
w
it
h
re
fe
re
nc
e
da

ta
,
cf
.
Ta

bl
e
8
(o
ut
lie
rs

id
en
ti
fie
d
in

th
e
da

ta
se
t
as

di
sc
us
se
d

in
se
ct
io
n
4.
2.
4.
1
w
er
e
di
sc
ar
de
d)
:
ab

so
lu
te

av
er
ag

e
de
vi
at
io
ns

A
A
D
ij
k
(c
f.

E
q.

76
)
fo
r
di
ffe

re
nt

th
er
m
od

yn
am

ic
pr
op

er
ti
es
j

fo
r
ho

m
og

en
eo
us

st
at
e
po

in
ts

in
th
e
ex
tr
em

e
te
m
pe

ra
tu
re

(k
=
E
x-
T
)
re
gi
on

.
T
he

la
st

lin
e
’t
ot
al
’g

iv
es

th
e
m
ea
n
A
A
D
i
fo
r
al
l

ex
tr
em

e
te
m
pe

ra
tu
re

da
ta

in
a
gi
ve
n
co
lu
m
n.

#
is

th
e
nu

m
be

r
of

da
ta

po
in
ts
.

#

Cottermanetal.[128]

Paricaud[519]

Lafitteetal.[353]

vanWesten&Gross[710]

thiswork

Koutrasetal.[343]

Kolafa&Nezbeda[334]

Meckeetal.[438,439]

Hess[258]

Boltachevetal.[62]

Gottschalk[217]

Quiñones-Cisnerosetal.[554]

Nicolasetal.[505]

Adachietal.[4]

Miyano[460]

Johnsonetal.[302]

Sun&Teja[646]

May&Mausbach[423,425]

Ree[559]

Tholetal.[661]

p
v
T

64
3

2⋅
1
0
3
17
3.
8

2⋅
1
0
5

1⋅
1
0
4

1⋅
1
0
3

1⋅
1
0
7

37
.6

1⋅
1
0
7

38
.9

1⋅
1
0
7

3⋅
1
0
4

3⋅
1
0
2
9
7

14
.2

14
.2

18
3.
9

15
.3

12
.1

14
.3

7.
5

9.
2

u
r
e
s

62
6

2⋅
1
0
3
16
5.
6

2⋅
1
0
5

9⋅
1
0
3

30
7.
3

9⋅
1
0
5

30
.5

5⋅
1
0
6

39
.2

3⋅
1
0
6

3⋅
1
0
4

2⋅
1
0
2
9
8
11
8.
5
11
0.
0

44
.3

90
.1

71
.2

87
.8

28
.7

7.
7

c
v

29
8

17
.3

8.
0

1.
7

2.
4

23
.5

7⋅
1
0
4

2.
3

51
6.
3

3.
0

1⋅
1
0
5

1.
4

2⋅
1
0
2
9
4

6.
3

13
.0

1.
3

11
.4

8.
4

11
.2

0.
2

0.
4

c
p

27
3

8.
2

7.
3

4.
5

5.
6

23
.8

2⋅
1
0
5

4.
0

44
9.
9

6.
3

4⋅
1
0
5

2.
3

7⋅
1
0
1
4
3

3.
8

6.
2

6.
6

5.
7

4.
7

5.
5

0.
5

0.
8

ã
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4.3.3 Overview of the Performance of Lennard-Jones EOS

To enable a systematic comparison of the performance of the considered LJ EOS, we
define the performance index PIij of a given LJ EOS i for a given property j by setting its
absolute average deviation in a given region k AADijk in relation to the lowest absolute
average deviation obtained from all considered LJ EOS for that property and region
AADi=best,jk and summing up the result over all regions:

PIij = 1/Nreg

Nreg

∑
k=1

AADijk

AADi=best,jk

, (90)

where Nreg indicates the number of fluid regions. Here, Nreg = 7, as the extreme tempe-
rature region was excluded. The AADi=best,jk is the smallest value in a row in Table 13
and 14 for a given property k, i.e.

AADi=best,jk = min
i

(AADijk) . (91)

The formalism of Eq. (90) and (91) implies that all fluid regions are equally important
and sufficiently densely occupied by reference data points to enable a reasonable evalu-
ation. The value AADi=best,jk describes how accurate a given property can be currently
described in a given fluid region by the considered LJ EOS.

Low values of the performance index PIij are desired. A PIij = 1 would imply that
the LJ EOS i is the best for a given property j in all studied fluid regions. High
values of PIij imply that the LJ EOS is bad compared to the best competitors. Fur-
thermore, the AADi=best,jk can be considered as an upper limit for the uncertainty, i.e.
the scattering of the reference data Yref,jkl. The ratios of the number of reference data
points available for a given property j in the different fluid regions k does not influ-
ence the PIij value. Eq. (90) was applied to all properties discussed in Table 14 (j =
p, B, C, ures, cv, cp, ãres, µres, α, β, γ, w, µJT, Γ) as well as the VLE properties
discussed in Table 13 (j = ρ′, ρ′′, ps, ∆hv). Since the VLE properties stem all from the
same region, no summation has to be carried out in the evaluation of Eq. (90).

Following the differential approach for the extreme temperature region k = ex-T in
Table 15, this region was not comprised in the calculation of the PIij values in Eq. (90).
Instead, a separate performance index was defined for the comparison of the ex-T region
performance of the LJ EOS on the homogeneous state properties:

PIex-Ti = 1/Nprop

Nprop

∑
j=1

AADij,k=ex-T

AADi=best,j,k=ex-T
, (92)

where Nprop = 12 indicates the number of properties (j = p, B, C, ures, cv, cp, ãres, µres,
α, β, γ, w, µJT, Γ) for which data are available in that region and the denominator
AADi=best,j,k=ex-T indicates the absolute average deviation of the best performing LJ EOS
for a given property j in the region k = ex-T (smallest value in a line in Table 15).

Table 16 summarizes the performance of the investigated LJ EOS regarding the VLE
and homogeneous state properties by reporting the PIij and PIex−T

i values according
Eqs. (90) and (92), respectively. Additionally, it summarizes the maximum number of
points with dp/dρ = 0 and d2p/dρ2 = 0 found in p − ρ isotherms in the two-phase region
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(cf. Fig. 65).

The LJ EOS of Kolafa and Nezbeda [334], Mecke et al. [438, 439], Gottschalk [217], and
Thol et al. [661] yield an overall similar performance. However, their performance on
individual properties differs significantly: the LJ EOS of Mecke et al. [438, 439] and
Gottschalk [217] exhibit large deviations in the extreme-temperature region; the LJ EOS
of Thol et al. [661] and Gottschalk [217] exhibit multiple van der Waals loops, which
yields large PIij values for the pvT data. Overall, the LJ EOS of Kolafa and Nezbeda
[334] is found to give the most favorable and robust performance of those four most
precise LJ EOS, i.e. for the majority of properties its performance index values are in
the range 1.2 < PIij < 1.9.

The LJ EOS of Johnson et al. [302] and the LJ EOS from the present work (re-
parametrized PC-SAFT monomer) also give a good description of the LJ fluid.

In the group of the MBWR type LJ EOS [4, 302, 423, 425, 460, 505, 646] (cf. Table 11),
that of Johnson et al. [302] yields overall the best performance. Comparing the PIij
values among the MBWR type LJ EOS yields: the LJ EOS of Johnson et al. [302] has
eight lowest performance index values, that of May and Mausbach [423, 425] has four
lowest values, and both those of Miyano [460] and Sun and Teja [646] have two lowest
values.

Comparing the LJ EOS of Johnson et al. [302] and Kolafa and Nezbeda [334] (two of
the most popular ones; see Appendix for details), the latter has better performance
index values for all properties that were considered here. This is surprising, considering
the fact that the LJ EOS of Johnson et al. [302] has approximately four times more
citations. This also holds comparing their performance on practically all considered
properties in the individual fluid regions, cf. Table 13 - 15.

The theoretically-based LJ EOS yield PIij values between about 2 and 10 for the ma-
jority of studied properties j. Surprisingly, they show a poor performance when used
for extrapolations into the extreme temperature region, where they perform worse than
some empirical and semi-empirical LJ EOS. However, the theoretically-based LJ EOS
show a good performance in the two-phase region, throughout, i.e. no undulations of
the isotherms at most temperatures. Among the studied theoretically-based LJ EOS,
the one from the present work shows the best performance as measured by the PIij
values: for 11 properties it has the best PIij value in that group, which is probably
due to the parametrization procedure that considers both bulk and VLE properties.
However, for the caloric properties, it performs only poorly, which is attributed here
to the unfavorable choice of the temperature-dependent diameter term, see Appendix.
The other four theoretically-based LJ EOS (Refs. [128, 353, 519, 710]) show overall a
similar good performance – with strengths and weaknesses in different properties.
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4.3.4 Conclusions

In this study, Lennard-Jones equations of state were reviewed and evaluated by compar-
ing their results to an extensive consolidated database of molecular simulation results
[640]. Different types of LJ EOS were considered; they are classified here as: empiri-
cal EOS, semi-empirical EOS, and theoretically-based EOS. In total, 20 LJ EOS were
considered in the present work. The performance of these LJ EOS was investigated and
compared for a large number of properties. The numeric values computed from each LJ
EOS for each reference data point are reported in the electronic Supplementary Material
[639], which makes the employed test procedure fully transparent and reproducible and
enables an extension of the present study to new LJ EOS that may be developed in
future work.

Despite the simplicity of the Lennard-Jones fluid and the underlying intermolecular
potential and the fact that for more than 50 years LJ EOS have been proposed, no LJ
EOS gives a satisfactory description of the LJ fluid, in a sense that it a) represent the
available reference data well for most of the properties, i.e. the deviations between the
results of the EOS and the computer simulation data are of the same order of magnitude
as the uncertainties of the simulation data, b) it shows no unphysical behavior in the
two-phase region, and c) it is well-behaved when used for extrapolations to regions in
which extreme conditions prevail. Some LJ EOS meet the criterion a) well, namely the
LJ EOS of Mecke et al. [438, 439], Gottschalk [217], and Thol et al. [661], but they
fail to meet the other criteria in one or several ways. Only the LJ EOS of Kolafa and
Nezbeda [334] is found to meet all criteria reasonably well, but is, regarding criterion a)
slightly less precise than the three aforementioned LJ EOS. The four LJ EOS of Kolafa
and Nezbeda [334], Mecke et al. [438, 439], Gottschalk [217], and Thol et al. [661]
were found to give an overall similarly good description of the Lennard-Jones fluid.
However, their performance was found to differ significantly in different fluid regions
and thermodynamic properties. The LJ EOS of Kolafa and Nezbeda [334] is found to be
the most robust LJ EOS, cf. Table 16. The LJ EOS of Thol et al. [661] and Gottschalk
[217] exhibit multiple van der Waals loops and the LJ EOS of Mecke et al. [438, 439]
and Gottschalk [217] exhibit large deviations at extreme temperature and density.

The LJ EOS of Johnson et al. [302] has been used extensively in the literature, but is
found to be significantly less precise than either of the four aforementioned. Nevertheless,
among the MBWR type LJ EOS [4, 302, 423, 425, 460, 505, 646], that of Johnson et al.
[302] is found to be the best.

The four overall most precise LJ EOS [217, 334, 438, 439, 661] are empirical or semi-
empirical LJ EOS; the theoretically-based LJ EOS are found to be overall significantly
less precise (for most properties they are about an order of magnitude less precise than
the best LJ EOS). Very surprisingly, the theoretically-based LJ EOS were found to give a
poor performance upon extrapolating to extreme temperatures and densities compared
to the best empirical LJ EOS. This is particularly striking since the considered LJ
EOS are based on Barker and Henderson’s perturbation theory, which is expected to
perform well at high temperatures, where the attractive forces play a minor role. Hence,
the systematic deviations are probably due to the modeling of the soft repulsion in the
theory around the hard sphere reference system.

The theoretically-based LJ EOS of Cotterman et al. [128], Paricaud [519], Lafitte et
al. [353], and van Westen and Gross [710] are found to give a good representation
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of most thermodynamic properties, but are overall significantly less precise than the
best empirical and semi-empirical LJ EOS. Despite the large differences of the year of
publication which varies between 1986 and 2017 and differences of the underlying models,
the performance of the four theoretically-based LJ EOS of Refs. [128, 353, 519, 710] is
overall similar.

SAFT type EOS have become very popular in the last 30 years and many variants of
these EOS exist. Several of them use monomer terms that were developed to match
data of the Lennard-Jones fluid, i.e. the monomer terms are LJ EOS. Four of them
were included in the present study [302, 334, 353, 505]. However, the monomer term
of PC-SAFT – a particularly important version of SAFT – could not be included di-
rectly in the present study, as it was not developed to describe the Lennard-Jones fluid.
Therefore, in the present work, the PC-SAFT monomer term was re-parameterized us-
ing data of the LJ fluid. The resulting LJ EOS is found to be more precise than the
theoretically-based LJ EOS of Refs. [128, 353, 519, 710], which is probably due to the
employed parametrization strategy that takes both VLE and homogeneous data into ac-
count. However, the present work reveals also shortcomings of the PC-SAFT monomer
term: it exhibits important systematic deviations in the supercritical region – especially
for caloric properties. This is attributed to the simplified form of the temperature-
dependent diameter, which is used for the modeling of the soft repulsive interactions in
the PC-SAFT monomer term. This supports findings from Boshkova and Deiters [66].

The comparison and evaluation of LJ EOS employed in this study is based on a sys-
tematic strategy: an extensive and consolidated database is used as reference data that
comprises a broad variety of properties; each EOS is tested on that reference data; the
fluid region is divided into characteristic sub-regions, e.g. in the T −ρ space; each prop-
erty is studied in each region separately before the results are combined to achieve an
overall assessment. This strategy could also be useful for testing other pure component
EOS and be applied as a benchmark test for new Lennard-Jones equations of state.
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4.4 Characteristic Curves and Virial Coefficients of
the Lennard-Jones Fluid

In section 4.3, 20 LJ EOS (cf. Table 11) were systematically reviewed and compared
with available computer experiment data of the Lennard-Jones fluid for homogeneous
state points and the vapor-liquid equilibrium. This section pursues this comparison and
gives a detailed discussion of the virial coefficients, important characteristic states that
depend on these, and Brown’s characteristic curves [73]. This comparison is of particular
interest, since the virial coefficients of the LJ fluid can be computed exactly from their
definitions in statistical mechanics, while reference data obtained from computer sim-
ulations are subject to errors and uncertainties [242, 590, 640]. Brown’s characteristic
curves and the virial coefficients are directly linked in the limit of the ideal gas and are
therefore corporately investigated in the present work. Brown proposed the character-
istic curves for the assessment of equations of state for a simple fluid with repulsive and
dispersive interactions [73]. The Lennard-Jones fluid is evidently an excellent candidate
for such an assessment.

From Brown’s characteristic curves, the Amagat curve exhibits the largest pressure and
temperature. For most gases, the Amagat curve is therefore not relevant for technical
applications. Nevertheless, for particularly light-boiling gases, like neon, helium, and
hydrogen, the pressure and temperature range of the Amagat curve is often relevant
for technical applications. Furthermore, thermodynamic conditions in the range of the
Amagat curve are relevant for fluids in geological applications as well as lubrication gaps
in tribological applications. Only equations of state that produce reasonable Amagat
curves are appropriate for such applications.

4.4.1 Theory

Brown’s characteristic curves are defined as curves on which the compressibility factor
Z = pv

T or its derivatives match the values of an ideal gas at the same temperature and
density [73]. Since EOS are usually fitted to reference data at moderate conditions, the
evaluation of its characteristic curves is often referred to as ’testing the extrapolation
behavior’ of EOS [138, 491, 621, 661]. The testing of these characteristic curves has
also been included in the IUPAC guidelines for publishing equations of state [136]. In
this section, the definitions of Brown’s characteristic curves along with the description
of the their general features are briefly outlined. Also their relation to the second and
third virial coefficients B and C, respectively, is discussed.

Brown’s characteristic curves are defined as the loci of state points at which a certain
thermodynamic property of the fluid matches that of an ideal gas [66, 73, 138, 621].
Brown defined four main characteristic curves: one 0th-order (named Zeno curve) and
three 1st-order curves (named Amagat, Boyle, and Charles curve) [73] based on the
compressibility factor itself and its derivatives with respect to the temperature and
pressure. For a real fluid, Z and its derivatives can match the values of the ideal gas for
special T , v combinations only [73, 138], as a result of Gibbs’ phase rule. These state
points collectively constitute a characteristic curve.
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The characteristic curves are also known under other names: the Zeno curve as ’ideal
curve’, the Amagat curve as ’Joule inversion curve’, and the Charles curve as ’Joule-
Thomson inversion curve’. Here, we adopt the original naming introduced by Brown
[73]. The characteristic curves are usually plotted in a double-logarithmic p−T diagram;
this convention is also adopted here. In such a diagram the characteristic curves exhibit
a typical concave dome shape, i.e. they have a negative curvature.

The Zeno, Amagat, Boyle, and Charles curve are required to have a negative curvature
throughout and a single maximum in a double logarithmic pressure–temperature dia-
gram [73, 138]. Furthermore, Brown postulated that all four characteristic curves end
in the limit of p → 0 with an infinite slope in a double logarithmic p − T diagram [73].
Brown furthermore deduced that the four characteristic curves of 0th and 1st-order may
only contact each other at three distinct points [73, 138]: (1) the Zeno curve converges
against the Amagat curve on the hypothetical extension of the vapor pressure curve;
(2) the Zeno curve converges against the Boyle curve in their common limit of p → 0
at T = TBoyle (the zero crossing temperature of the second virial coefficient), and (3)
the Zeno curve intersects the Charles curve at the point of maximum pressure of the
Zeno curve. Usually, the Amagat and Zeno curve are truncated at low temperatures
by the solid-fluid equilibrium. Finally, the Amagat, Boyle, and Charles curve must not
cross, but enclose each other in a p−T diagram [73]: the Amagat curve surrounding the
Charles curve surrounding the Boyle curve.

The characteristic curves can be computed from the Helmholtz energy per particle a
and its derivatives. The following notation is used for the derivatives of the Helmholtz
energy with respect to the inverse temperature and density

ãnm = ãid
nm + ãres

nm = (1/T )n ρm ∂n+m(ãid + ãres)
∂(1/T )n ∂ρm , (93)

with n,m = 0, 1, 2 and the tilde indicating ã = a/T . In Eq. (93), ’id’ indicates the ideal
gas contribution and ’res’ the configurational contribution.

The Zeno curve (Z) is defined as the locus of state points that satisfy Z = pv
T ≡ 1 and

can be computed from the Helmholtz energy as [621]

ãres
01 = 0 . (94)

Furthermore, state points on the Zeno curve have ures = 0. The Zeno and Boyle curve
end at the Boyle temperature TBoyle in the zero pressure limit p→ 0, which corresponds
to the condition for the second virial coefficient B(TBoyle) = 0.

The Amagat curve (A) is defined as the locus of state points that satisfy (∂Z
∂T

)
v
≡ 0 and

can be computed from the Helmholtz energy as [621]

ãres
11 = 0 . (95)

The Amagat curve originates on the vapor pressure curve at low temperatures (if crystal-
lization is disregarded). It ends at the Amagat temperature TAmagat in the zero pressure
limit p → 0, which corresponds to the maximum of the second virial coefficient with
dB/dT = 0. Equations of state that do not exhibit a maximum in the second virial
coefficient B(T ) have a distorted Amagat curve in the limit p→ 0 [73, 138].
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The Boyle curve (B) is defined as the locus of state points that satisfy (∂Z
∂p

)
T
≡ 0 and

can be computed from the Helmholtz energy as [621]

ãres
01 + ρ ⋅ ãres

02 = 0 . (96)

The Boyle curve originates on the vapor pressure curve close to the critical point, runs
through a pressure maximum and ends with the Zeno curve at the Boyle temperature
in the limit p→ 0.

The Charles curve (C) is defined as the locus of state points that satisfy (∂Z
∂T

)
p
≡ 0 and

can be computed from the Helmholtz energy as [621]

ãres
01 + ρ ⋅ ãres

02 + 1/T ⋅ ãres
11 = 0 . (97)

The Charles curve – also known as Joule-Thomson inversion curve – is of fundamental
technical importance as it determines the transition locus from heating to cooling upon
isenthalpic throttling, i.e. (∂T∂p )h = 0 also holds on the Charles curve. The Charles
curve originates on the vapor pressure curve. The Charles curve ends at the Charles
temperature TCharles in the zero pressure limit p→ 0, which corresponds to the condition
for the second virial coefficient dB/dT = B/T (the secant of the second virial coefficient
at B(TCharles) is a line through the origin) [135].

Details and alternative thermodynamic definitions for the characteristic curves can be
found in Refs. [66, 73, 135, 138, 621].

The second and third virial coefficient B and C, respectively, of a fluid can be directly
computed from the pairwise additive intermolecular potential, e.g. the LJ potential uLJ

[263, 416]. Using the Mayer function

fij = exp ( − uLJ(rij)/kBT ) − 1 , (98)

where rij indicates the distance between two interacting particles, the second and third
virial coefficient can be written as [263]

B = − 1

2V

x
f12 dr1dr2 , (99)

C = − 1

3V

y
f12 f23 f13 dr1dr2dr3 , (100)

where dr indicates a finite volume element in which the particle is located. Eq. (99)
can be integrated in a trivial way, cf. Ref. [263]. The integrals in Eq. (100) were solved
in this work using the method proposed by Hutem and Boonchui [284]. Eq. (99) and
(100) were implemented and numerically integrated to obtain exact results for B and C
as well as their characteristic points using the Lennard-Jones potential, cf. Eq. (64).

Furthermore, the second and third viral coefficient were computed from the considered
LJ EOS, cf. Table 11. Eq. (101) and (102) give the thermodynamic definitions for
the calculation of the second and third virial coefficient B and C from the Helmholtz
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energy:

B = lim
ρ→0

(∂(p/ρT )
∂ρ

)
T

= ρ−1 lim
ρ→0

(ãres
01 /ρ) , (101)

C = 1/2 ⋅ lim
ρ→0

(∂
2(p/ρT )
∂ρ2

)
T

= ρ−2 lim
ρ→0

(ãres
02 /ρ2) . (102)

4.4.2 Results for the Virial Coefficients

The second and third virial coefficient computed from the 20 considered LJ EOS are com-
pared in Fig. 66 with exact data obtained from statistical mechanics [262] published in
the literature [46, 264, 600, 640, 646, 711]. Numbers from our implementation perfectly
agree with that literature data. The literature values are plotted for reproducibility
reasons. The numeric values for the second and third virial coefficient computed from
the 20 considered LJ EOS is reported in the electronic Supplementary Material [625].

Qualitatively, the second virial coefficient B of the LJ fluid is captured well by all
considered LJ EOS, cf. Fig. 66 - top, except that of Koutras et al. [343]. All
other LJ EOS have a single zero crossing at the Boyle temperature TBoyle (defined
as B(TBoyle) = 0). The exact value of the Boyle temperature obtained from numeri-
cal integration is TBoyle = 3.417927982 εk−1

B . However, significant deviations from the
exact second virial coefficient data are found for most LJ EOS at low temperatures
(below the triple point temperature, which is approximately Ttr = 0.68 ± 0.02 εk−1

B

[9, 11, 12, 238, 352, 418, 596, 617]) and at high temperatures (T > 10 εk−1
B ), cf. Fig. 66 -

middle. Excluding the direct vicinity of the Boyle temperature, all LJ EOS except that
of Paricaud [519], Gottschalk [217], and Hess [258] show relative deviations from the
exact values for the second virial coefficient of at least 20% in some temperature range.
The LJ EOS of Refs. [217, 258, 519] comprise the statistical mechanical formulation
for the second virial coefficient in their mathematical formulation, which consequently
leads to an excellent agreement for B. However, minor deviations for B are observed
for the results obtained from our implementation of the LJ EOS of Paricaud [519] at
low temperatures.

The LJ EOS of Quiñones-Cisneros et al. [554], Nicolas et al. [505], Cotterman et
al. [128], Sun and Teja [646], Koutras et al. [343], and from this work (see Appendix)
deviate by more than 20% from the exact values in the range T < Ttr and T > 6 εk−1

B . The
LJ EOS of van Westen and Gross [710], Lafitte et al. [353], Thol et al. [661], Adachi
et al. [4], May and Mausbach [423, 425], Johnson et al. [302], Kolafa and Nezbeda
[334], Boltachev and Baidakov [62], Ree [559], and Miyano [460] deviate by more than
20% from the exact values at T < Ttr, too, but perform better at high temperatures.
Excluding the vicinity of the Boyle temperature and extreme temperature conditions at
T < Ttr and T > 6 εk−1

B , the LJ EOS of Mecke et al. [438, 439], Johnson et al. [302],
Boltachev and Baidakov [62], Miyano [460], and Kolafa and Nezbeda [334] describe the
exact second virial coefficient data within δB = ±2%.

The agreement of the LJ EOS and exact values for the third virial coefficient C is overall
significantly less good than for the second virial coefficient. Only the LJ EOS of Johnson
et al. [302], Kolafa and Nezbeda [334], Lafitte et al. [353], Mecke et al. [438, 439], May
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Figure 66: Second (top and middle) and third (bottom) virial coefficient as a function
of the temperature. The top and bottom plot show the virial coefficients
them self; the middle plot shows the relative deviation of the second virial
coefficient from the LJ EOS of Paricaud [519]. For all three plots: lines
are LJ-EOS and exact values from Refs. [46, 55, 264, 600, 646, 711] are
symbols.
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and Mausbach [423, 425], Thol et al. [661], and van Westen and Gross [710] qualitatively
describe the trend of the third virial coefficient accurately. The LJ EOS of Kolafa and
Nezbeda [334], Mecke et al. [438, 439], and Thol et al. [661] describe the third virial
coefficient qualitatively well up to T = 100 εk−1

B . The absolute average deviations from
these three LJ EOS and the exact values for C from the literature are AADMe = 47%,
AADKo = 53%, and AADTh = 8%, i.e. that of Thol et al. [661] is the most accurate
regarding the description of C, cf. Table 14.

Other considered LJ EOS either exhibit no maximum or two maxima or a wrong limit
at low temperatures. Even though the LJ EOS of Refs. [217, 258, 519] were found to be
the most precise LJ EOS to describe the second virial coefficient, these LJ EOS produce
a qualitatively wrong trend for the third virial coefficient.

Castro-Marcano et al. [94] showed that theoretically based EOS, such as soft-SAFT
[57, 58], SAFT-VR [353, 518], and PC-SAFT [223, 224] do not adequately describe
third virial coefficients of real substances in a sense that they do not exhibit a maximum
at moderate temperatures and wrong limits at low temperatures. Our results indicate
that for the PC-SAFT equation, this deficiency is already inherent in the corresponding
monomer term (the LJ EOS from this work, see Appendix), whereas the soft-SAFT and
SAFT-VR Mie equation show a physically correct behavior for monomers.

4.4.3 Results for the Characteristic Curves

Several computer experiment datasets for the characteristic curves of the LJ fluid are
available in the literature [120, 138, 260, 324, 689, 727]. The Charles curve (also known
as Joule-Thomson inversion curve) of the LJ fluid has been investigated several times
in the literature by molecular simulations [120, 138, 260, 324, 689, 727]. The Amagat,
Boyle, and Zeno curve of the LJ fluid have only investigated by computer experiment
by Deiters and Neumaier [138]. The numeric values of these computer experiment data
were summarized in Ref. [640] and are taken here as reference.

The computer experiment data available for the characteristic curves is compared in
Fig. 67 with the results obtained from the LJ EOS of Lafitte et al. [353], which gives
the best description of the reference data (discussed in detail below). The Charles
curve computer experiment data points of Refs. [120, 138, 324, 689, 727] are in good
mutual agreement. For the Charles curve, the computer experiment data reported
by Heyes and Llaguno [260] is found to deviate significantly from the data of Refs.
[120, 138, 324, 689, 727]. To avoid visual clutter, only the data of Deiters and Neumaier
[138] is used in the following for the evaluation of the LJ EOS. Fig. 67 also shows the
solid-fluid transition reported by Agrawal and Kofke [9].

It turns out that some of the simulation data of Deiters and Neumaier [138] for the Am-
agat and Charles curves lie probably beyond the freezing line. It is well known, however,
that small simulation ensembles in cubic boxes with periodic boundary conditions tend
to subcool. Deiters and Neumaier [138] used a moderate ensemble size of N = 1000
particles, they always started their simulations from random configurations, and they
monitored the simulation runs for signs of crystallization. One can therefore conclude
that the reported simulation states beyond the freezing line represent subcooled fluid
states.
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Figure 67: Brown’s characteristic curves: lines are the LJ EOS of Lafitte et al. [353];
symbols are molecular simulations results from the literature [120, 138, 260,
324, 689, 727]. The black solid line and star indicate the VLE and critical
point. The gray shaded region indicates the solid phase of the LJ potential
as reported by Agrawal and Kofke [9].

Fig. 67 shows that the four characteristic curves computed from the LJ EOS of Lafitte et
al. [353] satisfies all requirements postulated by Brown [73], i.e. starting points on the
vapor pressure curve, limits at p → 0, and intersection points, except the termination
point of the Zeno and Amagat curve. Brown deduced from rational thermodynamic
arguments that the Zeno and Amagat curve converge into each other in the zero tem-
perature and zero pressure limit with infinite slope. However, it is interesting to note
that the LJ EOS of Lafitte et al. [353] yields a crossing of the Zeno and Amagat curve
at approximately the critical pressure. Furthermore, the Zeno curve of the LJ EOS
of Lafitte et al. [353] does not exhibit an infinite slope in the zero pressure limit as
postulated by Brown [73].

Brown’s [73] assumption for an infinite slope of the Zeno curve in the zero pressure
limit at low T is probably incorrect. The compressibility factor on the Zeno curve is by
definition Z = 1, which yields lnp = lnT + lnρ. The last term converges approximately
to a constant value at low p for T → 0. Hence, the Zeno curve has a constant slope of
unity at T → 0 in a double logarithmic p − T diagram – as predicted by the LJ EOS of
Lafitte et al. [353] and others (see below). Nonetheless, for the Lennard-Jones model,
that region lies in the solid region.

The characteristic curve computer experiment data of Deiters and Neumaier [138] are
compared in Fig. 68 individually with the results obtained from the 20 investigated
LJ EOS. The LJ EOS are ordered roughly according their types, i.e. starting from the
theoretically-based LJ EOS, to the semi-empirical and fully empirical LJ EOS.

None except the LJ EOS of Lafitte et al. [353] satisfies all requirements for the charac-
teristic curves. Most LJ EOS yield reasonable Zeno, Boyle, and Charles curves, but fail
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Figure 68: Comparison of Brown’s characteristic curves obtained from different LJ
EOS (colored lines) with the molecular simulations results (symbols) of
Deiters and Neumaier [138]. The black solid line and star indicate the
VLE and critical point obtained from the respective LJ EOS. The gray
shaded region indicates the solid phase of the LJ potential as reported by
Agrawal and Kofke [9].
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for the Amagat curve. In the case of inaccurate Zeno, Boyle, and Charles curves, they
are mostly distorted at low temperatures. Several LJ EOS [217, 258, 334, 460, 661, 710]
produce reasonable Amagat curves over a wide temperature range, but yield distortions
in the vicinity of the solid-fluid equilibrium. There are also some LJ EOS that produce
Amagat curves exhibiting minor oscillations at high pressures [4, 128, 302, 423, 425,
505, 519, 554, 646], i.e. a wrong curvature.

The four characteristic curves studied here evidently represent challenges of different
severity, i.e. the Charles curve is predicted qualitatively correct by most LJ EOS, while
the Amagat curve is predicted qualitatively correct and in good agreement with reference
data in the entire temperature range by merely one LJ EOS. There is a tendency among
the four characteristic curves to be predicted qualitatively correct (Charles → Boyle →
Zeno → Amagat).

Boshkova and Deiters [66] reported that many theoretically-based EOS fail to yield
accurate Amagat curves due to simplifications in the modeling of the repulsive inter-
actions. However, we find that the theoretically-based LJ EOS of Lafitte et al. [353],
Cotterman et al. [128], and Paricaud [519] yield reasonable Amagat curves in a wide
temperature range – the LJ EOS of Lafitte et al. [353] is even quantitatively in good
agreement with computer experiment results.

The LJ EOS from this work based on the PC-SAFT monomer model yields qualitatively
accurate Zeno, Boyle, and Charles curves, but a completely distorted Amagat curve.
This type of behavior was also reported by Boshkova and Deiters [66] for the original PC-
SAFT parametrization. They showed that this is a result of the simplified temperature-
dependent diameter of the PC-SAFT approach, which gives a poor description of the
soft repulsion of the Lennard-Jones potential [66]. This is supported by the results from
section 4.3, which showed that the LJ EOS from this work (re-parametrized PC-SAFT
monomer term) yields large deviations at high temperatures and densities for most
homogeneous state point properties, where the softness of the repulsive interactions
becomes more important.

The LJ EOS of the MBWR type (Refs. [4, 302, 423, 425, 460, 505, 646]) have in common
that they yield Zeno curves with a kink at low temperatures. Some of them also exhibit
a distorted Boyle curve (LJ EOS of Refs. [302, 423, 425, 460]). All LJ EOS of the
MBWR type yield distorted Amagat curves, but most of them yield accurate Charles
curves. For some MBWR type LJ EOS [4, 505, 646], the Amagat curve has a positive
curvature at high temperature.

The LJ EOS of Cotterman et al. [128], Paricaud [519], Thol et al. [661], and van Westen
and Gross [710] produce qualitatively accurate Zeno, Boyle, and Charles curves, but
wrong Amagat curves. The LJ EOS of Ree [559], Koutras et al. [343], and Hess [258]
yield unrealistic results for at least two characteristic curves. The LJ EOS of Boltachev
and Baidakov [62] and Quiñones-Cisneros et al. [554] show a distorted shape for all
four characteristic curves. For the LJ EOS of Quiñones-Cisneros et al. [554], the Zeno
curve at moderate temperatures lies below p = 0.01 εσ−3, i.e. out of the range of the
depicted plot. The characteristic curves obtained from the LJ EOS of Gottschalk [217]
are in good agreement with the reference data in a wide temperature and pressure range
of the fluid region, but all four curves yield unrealistic solutions at low temperatures.

The characteristic curves obtained from the LJ EOS of Mecke et al. [438, 439] are in
excellent agreement with the available computer experiment data, but show unphysical
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features in the low temperature limit. Deiters and Neumaier [138] reported that the LJ
EOS of Mecke et al. [438, 439] gives a realistic description of all characteristic curves,
which is found differently in the present work. An additional (physically unrealistic
[66, 73]) branch is found for all four characteristic curves. Likewise, an unrealistic
behavior is found for the Charles, Boyle, Zeno, and Amagat curve of the LJ EOS of
Kolafa and Nezbeda [334] at low temperature.

The Amagat curve of the LJ EOS of Thol et al. [661] is distorted at lower temperatures
– as also pointed out by Thol et al. [661] and Deiters and Neumaier [138]. However,
we find a significantly different Amagat curve as reported by Thol et al. [661] for their
LJ EOS. The Amagat curve computed from our implementation is in good agreement
with the computer experiment results reported by Deiters and Neumaier [138] for most
temperatures. We suspect a misprint in the publication of Thol et al. [661].

4.4.4 Results for the Characteristic State Points

The thermodynamic behavior of a pure substance contains multiple uniquely defined
state points, of which the critical point is the most prominent one. Such state points
can be favorably used to characterize the quality of equations of state, since they com-
prise a condensed description of the thermodynamic behavior in a single state point.
The critical point obtained from different LJ EOS in comparison to computer exper-
iment data has been discussed in detail in section 4.3.2.2. Here, characteristic state
points related to the virial coefficients and Brown’s characteristic curves are discussed.
In particular, exact values for a given interaction potential can be obtained for some
characteristic points from statistical mechanics.

Characteristic state points considered in the present work are:

• the state points of the four characteristic curves in the zero density limit, labeled
as Z(ρ→ 0), A(ρ→ 0), B(ρ→ 0), and C(ρ→ 0) (which can also be computed from
the virial coefficients – see above),

• the zero crossing of the third virial coefficient C(T ) = 0, and the maximum of the
third virial coefficient max(C(T )),

• the intersection of the Boyle and Charles curve with the vapor pressure curve
labeled as VLE ∩ B and VLE ∩ C,

• the intersection point of the Zeno and Charles curve labeled as Z ∩ C,

• the maxima of the four characteristic curves in the p−T plane labeled as max(A),
max(B), max(C), and max(Z).

Exact values from numerical integration of the virial coefficients can be obtained for
the temperature at Z(ρ→ 0), A(ρ→ 0), B(ρ→ 0) (from the second virial coefficient),
the zero crossing of the third virial coefficient C(T ) = 0, and the maximum of the third
virial coefficient max(C(T )) as indicated in Table 17. Those reported values in Table
17 were obtained in this work and were – where available – compared and found to be
in excellent agreement with results from the literature [581].

Furthermore, the above defined characteristic state points were computed for each of the
considered LJ EOS. For the maxima and intersection points of the characteristic curves,
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an iterative solver was used to find the state point satisfying the respective conditions.
For the intersection points of the characteristic curves with the phase envelope, both the
VLE and the characteristic curves were iteratively computed by means of a given LJ EOS
to find the intersection point. The zero density limit state points of the characteristic
curves were computed directly from the definition of the respective curve at ρ → 0. To
validate the consistency of the LJ EOS implementations used in the present work, these
state points were also computed by the LJ EOS from the corresponding definition from
the second virial coefficient (see above) for comparison. The results obtained from the
two thermodynamic definitions were found in all cases to be in excellent agreement.

Table 17 lists the temperatures of the characteristic state points. The temperature,
pressure, and density of each state point are reported in the electronic Supplementary
Material [625]. The numeric values therein are reported with more decimal places than
in Table 17. Blanks in Table 17 indicate cases where the shape of a characteristic curve
or the third virial coefficient is distorted in a way that a maximum or crossing point
could not be evaluated in a meaningful way.

For the zero density limit state points of the characteristic curves the temperature
TZ(ρ→0), TB(ρ→0), TC(ρ→0), and TA(ρ→0) can be compared with exact values obtained via
the virial coefficient route by numerical integration of the Lennard-Jones potential, cf.
Table 17. Excellent agreement is found for many LJ EOS except the LJ EOS of Refs.
[343, 505, 554, 559, 639, 646, 710] which yield significantly deviating TZ(ρ→0) and TB(ρ→0);
the LJ EOS of Refs. [4, 128, 302, 343, 423, 425, 505, 554, 559, 639, 646] yield significantly
deviating TA(ρ→0) (or even no solution).

The zero density limits TZ(ρ→0), TB(ρ→0), TC(ρ→0), and TA(ρ→0) obtained from the LJ EOS
of Gottschalk [217] and Hess [258] agree with the exact values within the computer pre-
cision employed for the calculations since those are integrated in the respective equation.
For the LJ EOS of Paricaud [519] small deviations for the values of TZ(ρ→0), TB(ρ→0),
TC(ρ→0), and TA(ρ→0) in comparison to the exact data are found, which is in line with
the small deviations observed for the second virial coefficient itself. Also the LJ EOS
of Kolafa & Nezbeda [334] has a second virial coefficient term and therefore gives an
excellent description of the zero density limits of the characteristic curves. Also the em-
pirical LJ EOS of Thol et al. [661] yields accurate results for TZ(ρ→0), TB(ρ→0), TC(ρ→0),
and TA(ρ→0) (deviations below 2%).

Exact values were also obtained in the present work for the temperature of the zero
crossing and maximum of the third virial coefficient TC=0 and Tmax(C), respectively,
from numerical integration, cf. Table 17. Only results from the LJ EOS of Refs. [334,
438, 439, 661] are found to be in good agreement with exact values for TC=0 and Tmax(C);
reasonable agreement is found for the LJ EOS of Refs. [302, 423, 425]. The best results
for TC=0 and Tmax(C) are obtained from the LJ EOS of Thol et al. [661].

The temperature of the Zeno curve maximum Tmax(Z) obtained from the 20 investigated
LJ EOS are in good agreement. They lie in the range Tmax(Z) = 1.74 ± 0.06 εk−1

B . The
temperature of the Boyle curve maximum obtained from the 20 LJ EOS scatters slightly
more in the range Tmax(B) = 2.12 ± 0.09 εk−1

B . Only the LJ EOS of Koutras et al. [343]
yields a significantly lower Tmax(Z) and Tmax(B) compared to all other investigated LJ
EOS. The scattering is significantly larger for the temperature of the Charles curve maxi-
mum obtained from the different LJ EOS as Tmax(C) = 2.92±0.5 εk−1

B . For the temperature
of the Amagat curve maximum, 11 LJ EOS scatter around Tmax(A) = 4.5 ± 1.5 εk−1

B . The
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LJ EOS of Refs. [4, 62, 128, 302, 423, 425, 646] show significantly shifted Tmax(A) which
is due to the distorted Amagat curves produced by these LJ EOS.

The differences in the intersection points of the Charles and Boyle curve with the VLE
are dominated by differences in the VLE obtained from the different LJ EOS – especially
close to the critical point. The temperature of the Zeno and Charles curve intersection
point (corresponding to max(Z)) obtained from the considered LJ EOS agrees within
TZ ∩C = 1.74 ± 0.06 εk−1

B , excluding the LJ EOS of Ref. [62].

Sadus [581] recently reported values for the Boyle temperature and the maximum of
the second virial coefficient computed from the LJ EOS Koutras et al. [343], which
significantly deviate from the values obtained from our implementation for that LJ EOS.
However, we compared B(T ) obtained from our implementation with results originally
reported by Koutras et al. [343] and found excellent agreement.

4.4.5 Conclusions

This study revisits Brown’s characteristic curves and virial coefficients of the Lennard-
Jones fluid. They were computed from a large number of LJ EOS and from rigorous
statistical mechanics (where accessible). For most LJ EOS, these properties have not
been examined yet – especially the theoretically-based ones.

The second virial coefficient is predicted qualitatively correctly by all but one LJ EOS.
However, significant quantitative deviations are observed for most considered LJ EOS.
For the third virial coefficient, only few LJ EOS produce qualitatively correct results.

Brown’s characteristic curves [73] predicted from the different LJ EOS were compared
with computer experiment data of Deiters and Neumaier [138] and with exact values
in the ideal gas limit. The theoretically-based LJ EOS are found to give an overall
better description of the characteristic curves – especially at low temperature and high
pressure. Most LJ EOS produce distorted Amagat curves. Only the LJ EOS of Lafitte
et al. [353] yields realistic results for all characteristic curves.

We showed that Brown’s assumption that the Amagat and Zeno curve should converge
with an infinite slope in the zero pressure limit at low temperatures (in the double
logarithmic pressure–temperature diagram) is probably inaccurate. The Zeno curve
exhibits a limiting slope of unity. Hence, the required intersection point of the Amagat
and Zeno curve is not found in the zero pressure limit.

Brown’s characteristic curves are found to be sensitive properties, in a sense that they
clearly reveal unphysical behavior of an equation of state, which holds in particular for
the Amagat and Zeno curve. The Boyle and Charles curve are found to be predicted
accurately by most LJ EOS and are therefore less sensitive indicators. Nevertheless,
the application of the characteristic curves to investigate ’the extrapolation behavior of
EOS’ [621] should be carried out with caution. For example, the characteristic curves
from the LJ EOS of Mecke et al. [438, 439] and Lafitte et al. [353] are in good agreement
with corresponding computer experiment data in a wide temperature range, but both LJ
EOS exhibit large deviations from pressure and internal energy reference data at extreme
temperature and density (beyond the Amagat curve), cf. section 4.3.2.4. Vice versa,
the LJ EOS of Kolafa and Nezbeda [334] and Thol et al. [661] exhibit distorted Amagat
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curves, but both LJ EOS give an accurate and fairly precise description of pressure and
internal energy reference data also at extreme conditions, cf. section 4.3.2.4. Hence, for
these LJ EOS, the findings for the performance on the characteristic curves could not
be transferred to conditions significantly above the pressure and temperature range of
the characteristic curves. Instead, it is emphasized that the characteristic curves are a
necessary requirement for an EOS to be accurate, but not a sufficient one.

Among the molecular model fluids, the Lennard-Jones fluid has a similar role as water
has among real fluids: it is the fluid that has been studied most extensively and most
thoroughly. This work summarizes the present state of these studies. The accuracy
with which the properties of the Lennard-Jones fluid are known is assessed here. It
can be assumed that it is a lower limit to the accuracy with which properties of fluids
can presently be determined with molecular simulations and accordingly described by
theoretically-based equations of state. Moreover, the Lennard-Jones potential is also a
point of departure for developing models of complex fluids. Most SAFT-type equations
of state are built on EOS for the LJ fluid for the modeling the soft repulsive and
dispersive interactions of monomers [482]. Hence, the study also enables an assessment
of their performance in the limit of a simple dispersively interacting monomer fluid. The
monomer terms of several SAFT EOS were included in the present study, e.g. SAFT-VR
Mie [353], soft SAFT [57, 58], LJ-SAFT [345, 479], and PC-SAFT [223].
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5 Influence of Dispersive Long-Range
Interactions on Phase Equilibria and
Interfacial Properties of Simple
Mixtures

5.1 Introduction

The influence of dispersive long-range interactions on properties of vapor-liquid equilib-
ria and interfaces of six binary Lennard-Jones mixtures is studied by molecular dynamics
(MD) simulations and density gradient theory (DGT). The mixtures were investigated
at a constant temperature, at which the low-boiling component, which is the same in all
mixtures, is subcritical. The molecular interaction parameters of the six mixtures are
adopted from section 3.3: two different high-boiling components were considered: one
is subcritical, the other is supercritical at the studied temperature. Furthermore, the
unlike dispersive interaction was varied such that mixtures with three different types of
phase behavior were obtained: ideal, low-boiling azeotrope, and high-boiling azeotrope.
To assess the influence of the long-range interactions, the results for the Lennard-Jones
truncated and shifted (LJTS) mixtures (cf. section 3.3) are compared here with results
from the full Lennard-Jones (LJ) potential. Hence, the six binary mixtures A - F were
additionally studied here using the full Lennard-Jones potential using both MD and
DGT+EOS. The results from the LJTS mixtures and the LJ mixtures are compared
applying the corresponding states principle.

In molecular simulations of classical force fields, in which interactions are computed
from pair-potentials [17, 410, 633], this is done explicitly only up to a certain distance
of the interacting sites. If no correction is applied, this causes a deviation of the simula-
tion results from what would be obtained with the full potential. Different corrections
schemes have been developed to account for the influence of the long-range interactions
in simulations [17, 505, 537]. They are based on simplifying assumptions regarding the
structure of the fluid. For simple cases, such as in studies of the equilibrium of homo-
geneous fluids, simple correction terms yield excellent results. In other cases, such as
in studies of inhomogeneous fluids with different phases, accounting for the long-range
interactions is more tedious [296, 383, 707], and it is not uncommon to simply truncate
the potential in these cases and to neglect the long-range terms [391, 447, 483]. More
generally, the ways in which long-range interactions are treated in molecular simulations
vary largely and it is interesting to evaluate which influence they have on the simulation
results.
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This has been studied in great detail for the Lennard-Jones (LJ) 12-6 pair potential
[31, 31, 59, 148, 148, 169, 170, 229, 230, 268, 296, 296, 298, 302, 383, 395, 413, 507, 536,
536, 537, 600, 600, 602, 603, 603, 611, 611, 672, 706, 706, 707]. In these studies, the full
LJ potential (as approximated by using a large value of the cut-off radius rc and suitable
long-range corrections) is typically compared to either a truncated LJ potential (LJT
potential; with some given rc and without applying long-range corrections), or to the so-
called LJ truncated and shifted potential (LJTS potential, which is a LJT potential that
is shifted in such way that the potential energy becomes zero at rc [148, 536, 603, 611]).
In homogeneous systems, the intermolecular forces that are calculated from the LJT
and the LJTS potential are the same, if the same rc is used in both cases, whereas the
energy and the pressure are affected by the shifting.

Different observables show different sensitivities to long-range interactions: the influ-
ence of the truncation has been studied for virial coefficients [600], the vapor-liquid
equilibrium (VLE) [148, 395, 611], and vapor-liquid interfacial properties [31, 706]. The
influence of the long-range interactions on phase equilibria and properties of inhomoge-
neous systems has been of particular interest [31, 59, 169, 170, 209, 220, 229, 230, 230,
286, 397, 413, 440, 507, 672, 676, 706].

To the best of our knowledge, all previous studies regarding the influence of the long-
range interactions refer to pure fluids only, and no study has been performed yet on
the influence of the long-range interactions for mixtures. We have therefore carried out
an investigation of the influence of these interactions on binary vapor-liquid interfacial
properties and the corresponding phase equilibria of binary fluid mixtures by comparing
results of the LJ and LJTS potential.

Vapor-liquid interfaces of mixtures are important in many fields of science and engi-
neering. They have recently received particular attention as in many systems an en-
richment of components at this interface occurs, which is thought to have an influence
on the mass transfer [50, 194, 328, 361, 634, 635]. Vapor-liquid interfacial proper-
ties of Lennard-Jones mixtures have been investigated many times in the literature
by molecular simulations, density gradient theory (DGT) or density functional theory
[79, 194, 195, 200, 362, 446, 551, 552, 635]. Reports on studies of the influence of the
size and energy parameters of the pure components as well as the influence of the cross
interactions on binary interfacial properties are available [551, 552, 635]. Also results
on the composition- and temperature-dependency of the enrichment of components at
these interfaces have been published [194, 195, 362, 635].

In this study, the influence of the dispersive long-range interactions on VLE proper-
ties (isothermal phase envelopes and Henry’s law constants) and interfacial properties
(surface tension, interfacial thickness, relative adsorption, and enrichment) of binary
Lennard-Jones mixtures were investigated. Therefore, results from LJTS mixtures are
compared with those from LJ mixtures. The results for the interfacial properties of the
LJTS mixtures were taken from an earlier work of our group [635], cf. section 3.3. The
computer experiments were accompanied by calculations with equations of state (EOS)
and density gradient theory. The equation of state for the LJ fluid [639] developed in
section 4.3 and the LJTS fluid [249] (PeTS EOS) were used for the DGT and for the
computation of phase equilibria.
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5.2 Modeling and Simulation

The Lennard-Jones (LJ) potential is defined as the pairwise-additive and spherically
symmetric potential

uLJ(r) = 4ε [(σ
r
)

12

− (σ
r
)

6

] , (103)

where r is the distance between two particles. The parameters σ and ε characterize
the diameter of the particles and the strength of the attractive interaction, respectively.
Simulations of the LJ potential were performed with a truncated potential in combi-
nation with a correction of long-range interactions [17, 640]. The interactions were
explicitly computed to a cut-off radius of 5σ in the present work and long-range inter-
actions beyond were considered with an implicit correction scheme, taking into account
inhomogeneities in simulations of two-phase systems as described in more detail below.
The corresponding results are referred to as ’results of the LJ potential’ in the following.

For comparison, the Lennard-Jones truncated and shifted potential (LJTS) is used, cf.
chapter 3. The truncation radius of the LJTS potential is 2.5σ throughout the present
work:

uLJTS(r) =
⎧⎪⎪⎨⎪⎪⎩

uLJ(r) − uLJ(rc) r ≤ 2.5σ

0 r > 2.5σ.
(104)

The corresponding results are referred to as ’results of the LJTS potential’.

The interaction parameters ε and σ were chosen to be the same for the binary mixtures
modeled by the LJ and the LJTS potential. The cross interactions of the mixtures were
described by the modified Lorentz-Berthelot combination rules [52, 394]:

σ12 =
σ1 + σ2

2
, (105)

ε12 = ξ12

√
ε1ε2, (106)

where ξ12 is a state-independent binary interaction parameter.

Analogue to the study discussed in section 3.3, properties of the six binary mixtures (A -
F) were investigated, cf. Fig. 69. For all binary mixtures, the high-boiling component is
labeled as ’1’ and the low-boiling component as ’2’. Each mixture was investigated using
the LJ potential and the LJTS potential. The temperatures in this pair of simulations
was chosen such that the reduced temperature with respect to the critical temperature of
the high-boiling component Tred = T /Tc,1 was the same for both LJ and LJTS potential.
This results in T = 0.92 εk−1

B for the LJ mixtures and T = 0.77 εk−1
B for the LJTS mixtures,

which corresponds in both cases to approximately T /Tc,1 = 0.7. The critical temperature
of the pure LJ and LJTS fluid has been reported numerous times in the literature, cf.
sections 2.3 and 4.2 for reviews of such data. Note, that the reported values show
significant scattering and thus are only known within a certain confidence interval.
Table 18 summarizes critical and triple point data of the LJ and LJTS fluid that are
used in this study with the estimated uncertainties.

The size parameter and the mass of both components are the same for all six mixtures A
- F, i.e. σ1 = σ2 and M1 =M2, respectively. The vapor pressure of the low-boiling com-
ponent 2 was decreased by decreasing the dispersion energy compared to component 1.
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Figure 69: Sketches of the isothermal phase diagrams of the studied binary mixtures
1 + 2. The different choices of the ratio of the dispersion energies ε2/ε1

and the binary interaction parameter ξ12 lead to six different types of phase
behavior (A - F).

Two different low-boiling components were considered: for the first, the ratio of dis-
persion energies was ε2/ε1 = 0.9; for the second it was ε2/ε1 = 0.5. Also the binary
interaction parameter was varied. Three values were chosen ξ12 = 1, 1.2, and 0.85.
These variations result in six mixtures (A - F) that were investigated. Their phase be-
havior is shown qualitatively in Fig. 69. Depending on the choice of ε2/ε1, component
2 is either subcritical (mixtures A - C) or supercritical (mixtures D - F). For ξ12 = 1
the mixture is almost ideal in the sense of Raoult’s law, the value of ξ12 = 1.2 causes
a negative deviation from Raoult’s law and ξ12 = 0.85 causes positive deviation from
Raoult’s law. This leads to a high-boiling azeotrope for mixture B and a low-boiling
azeotrope for the mixture C.

5.2.1 Molecular Dynamics Simulations

Direct Vapor-Liquid Equilibrium Simulations

The simulations for the coexisting vapor and liquid phase were carried out in the NVT
ensemble with 16,000 particles using the MD code ls1 mardyn [506]. A liquid film
was positioned in a rectangular box such that two planar vapor-liquid interfaces were
oriented perpendicular to the z-axis. The time step was ∆τ = 0.001 σ

√
M/ε. The

equilibration was executed for 2,000,000 time steps. For the initialization, the saturated
densities and the bulk phase compositions of the mixtures were estimated with the EOS.
The production was carried out for 6,000,000 time steps. Density and pressure profiles
were calculated in block averages of 500,000 time steps during the production phase.
The statistical uncertainty was estimated to be three times the standard deviation of
all block averages. The elongation of the simulation box normal to the interface was
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80σ and the thickness of the liquid film in the center of the simulation box was 40σ.
The elongation in the directions parallel to the interface was at least 20σ. The pressure
and density profiles were calculated in z-direction at 1200 bins. A slab-based long-range
correction scheme based on the approach of Janeček [296, 707] was used for the LJ
potential simulations.

The saturated densities ρ′ and ρ′′, the vapor pressure p, and the saturated vapor and
liquid phase composition x′i and x′′i were calculated as an average over the respective
phases excluding the area close to the interface. Also the density profiles along the
z-axis were obtained as averages over all sampled block averages.

The interfacial tension was calculated via the mechanical route, i.e. from the deviation
between the normal and the tangential diagonal components of the overall pressure
tensor [325, 695]

γ = 1

2 ∫
∞

−∞
(pN − pT) dz . (107)

The applied simulation procedure is described in detail in Ref. [635].

Henry’s Law Constant Simulations

Henry’s law constants H2,1 of the low-boiling component 2 in component 1 were sampled
in the NpT ensemble with 1372 solvent particles using the MD code ms2 [575]. The
Henry’s law constants were obtained from the residual chemical potential of the solute
at infinite dilution from the relation [607]

H2,1 = ρ′kBT exp(µ∞2 /kBT ) , (108)

where ρ′ is the saturated liquid density of the solvent and T is the temperature. The
residual chemical potential at infinite dilution µ∞2 was computed using Widom’s test
particle method [712]. The equilibration was carried out for 300,000 time steps and
the production for 1,000,000 time steps. The time step was ∆τ = 0.001σ

√
M/ε. The

statistical uncertainty of the Henry’s law constant was estimated to be three times the
standard deviation of ten block averages, each sampling 100,000 time steps.

5.2.2 Density Gradient Theory and Equation of State

Density Gradient Theory

Density gradient theory is applied here to binary systems with a planar interface, such
that there is only a dependence on one spatial coordinate, which is labeled z here, cf.
Eq. (39). As in chapter 3, the cross interaction influence parameter was computed
as the geometric mean of the pure substance influence parameters [91, 458, 635], i.e.
κij =

√
κiκj. The stabilized DGT (sDGT) algorithm proposed by Mu et al. [477] was

applied for solving Eq. (39) between the bulk phases and the computation of the surface
tension. The domain length was in all cases set to 20σ with a spatial discretization
of 0.02σ.
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EOS for the LJ and LJTS Fluid

The LJTS and LJ EOS discussed in section 2.2 and section 4.3, respectively, [249, 639]
were employed for computing phase equilibria and interfacial properties with DGT. For
the LJTS fluid, the PeTS EOS [249] was used; for the LJ fluid, the LJ EOS from this
work was used (see Appendix). The DGT influence parameters κi for the LJ EOS and
the LJTS EOS were parametrized to surface tension data from molecular simulation
[249, 639].

The VLE computed from the LJ and LJTS EOS are compared in Fig. 70 with corre-
sponding computer experiment data from the literature. Both EOS describe the VLE of
the pure components very well. Details on the performance of both EOS can be found
in sections 2.2 and 4.3 [249, 639]. Also, the critical points from both EOS are in good
agreement with those obtained from molecular simulations, cf. Table 18.

The long-range interactions applied for the LJ fluid significantly increase the critical
temperature and pressure compared to the LJTS fluid but hardly affect the critical
density [148, 536, 603, 611]. Furthermore, the critical parameters are influenced more
strongly by the long-range interactions than the triple point parameters. The vapor
pressure and the enthalpy of vaporization are influenced more strongly by the long-
range interactions than the saturated densities.

5.2.3 Interfacial Properties Derived from Density Profiles

The direct VLE MD simulations as well as the DGT calculations yield density profiles of
both components ρ1(z) and ρ2(z) at the planar interface. The relative adsorption Γ

(1)
2

and enrichment E2 of the low-boiling component 2 and the interfacial thickness L90
10 are

used to characterize the vapor-liquid interfaces. This follows the evaluation of the fluid
interfaces of LJTS mixtures in chapter 4. Hence, the definitions for the computation of
Γ
(1)
2 , E2, and L90

10 from the density profiles used in this study are given in section 3.3.2.2;
Eq. (44) - (46). Also the computation of the statistical uncertainties of the interfacial
properties performed here is described in section 3.3.2.2.

5.3 Results for the Interfacial Properties of Pure
Substances

First, the interfacial properties obtained for the pure fluids described by the LJ potential
and LJTS potential are compared. Subsequently, the results for the phase equilibria and
interfacial properties of the mixtures obtained from both potentials are compared. The
numerical values of the results for the phase equilibria and the interfacial properties
obtained in this study are presented in the Appendix.

Results from the present work for the surface tension and the interfacial thickness of the
pure LJ fluid and the pure LJTS fluid are compared in Fig. 71. Besides the results from
molecular simulation, also results from EOS+DGT are shown, that were obtained after
an adjustment of a state-independent number for κ to simulation data of the surface
tension resulting in κLJ = 5.10911 and κLJTS = 2.7334 [249].
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Figure 70: Vapor-liquid equilibrium of the LJ and LJTS fluid: vapor pressure (top),
saturated densities (middle), and enthalpy of vaporization (bottom). Black
lines and black symbols indicate the LJ fluid; dashed lines and open symbols
indicate the LJTS fluid. Lines indicate the corresponding EOS (cf. sections
2.2 and 4.3) [249, 639]; stars indicate the critical point computed from
the EOS. All other symbols are MD: this work; Lotfi et al. [395];
Vrabec et al. [687].
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Figure 71: Vapor-liquid interfacial properties of the LJ and LJTS fluid: surface tension
(top), interfacial thickness (bottom). Lines are EOS+DGT results: solid
lines indicate the LJ fluid; dashed lines indicate the LJTS fluid. Symbols
are MD results. LJ fluid: this work; Mecke et al. [440]; Werth et al.
[706]. LJTS fluid: this work; Vrabec et al. [687].

The surface tension of both components decreases monotonically from the triple point
temperature to the critical temperature. Starting at the triple point temperature, the
interfacial thickness increases only slightly with increasing temperature but exhibits a
strong convex trend and a pole at the critical temperature.

For both the LJ potential and the LJTS potential, computer experiment data for the
surface tension from the literature are shown for comparison. In a recent study (cf.
section 4.2) [640], surface tension data of the LJ fluid was reviewed and assessed. The
results of Mecke et al. [440] and Werth et al. [706] were found to be precise and accurate
and are used as reference here. The LJ surface tension results from the present work are
in excellent agreement with those of Refs. [440, 706]. The LJTS surface tension results
from the present work are in good agreement with those reported by Vrabec et al. [687],
who found their data to be in excellent agreement with other reliable literature data.

At the same reduced temperature, the LJ fluid has a larger surface tension and interfacial
thickness than the LJTS fluid. The long-range interactions have no significant influence
on the shape of γ(T ) and L90

10(T ), except the shifted critical point. This is in line with
the results reported by Dunikov et al. [148] and Baidakov et al. [31]. The long-range
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interactions have a stronger influence on the surface tension than on the interfacial
thickness – especially at lower temperatures. At the same reduced temperature, the
surface tension of the LJ fluid is up to about 40% higher than that of the LJTS fluid,
indicating a strong influence of the long-range interactions on this property. Evidently,
these differences vanish at the critical point T /Tc,1 = 1. Also the interfacial thickness of
the LJ fluid is larger than that of the LJTS fluid, but only by about 15%. Also this
increase is expected as a consequence of the long-range interactions [148].

For both the LJ potential and the LJTS potential, the EOS+DGT results are in good
agreement with the results from the corresponding computer experiments. The agree-
ment is better for the surface tension than it is for the interfacial thickness, as γ was
used for the fitting of the DGT influence parameter [249, 637], while the EOS+DGT
results for the interfacial thickness are predictions. For L90

10, the agreement of computer
experiment and EOS+DGT is slightly better for the LJ fluid compared to the LJTS
fluid. The deviations between the MD results and those from EOS+DGT are likely due
to fluctuations at the interface which are present in MD but not in DGT.

5.4 Results for the Phase Equilibria of Binary
Mixtures

Fig. 72 shows the results for the Henry’s law constants H2,1 of the supercritical compo-
nent 2 in the solvent 1 for the mixtures D - F. Results for the LJ potential and LJTS
potential are compared. Both MD simulation results and results from the corresponding
EOS are shown. Results for the entire temperature range between the triple point and
the critical point of the solvent 1 are shown. The results for the three systems differ
strongly. This is a consequence of the differences in the binary interaction parameter
ξ12, that controls the strength of the unlike attractive interactions 1 - 2, which are highly
important for the gas solubility: the stronger the attraction 1 - 2 (the higher ξ12), the
better the solubility (the lower H2,1). The variation of ξ12 between 0.85 (mixture F) and
1.2 (mixture E) leads to differences in H2,1 of almost an order of magnitude. Not only
the numbers of H2,1 are strongly affected by ξ12, but also the temperature dependence
H2,1(T ), which is related to the enthalpy of absorption of the solute 2 in the solvent 1.
Strong unlike attractive interactions lead to exothermal absorption and a positive slope
of H2,1(T ) (mixture E), weak unlike attractive interactions lead to endothermal absorp-
tion and a negative slope of H2,1(T ) (mixture F). In the ideal mixture, a maximum of
H2,1(T ) is found. All these observations hold both for the results from the LJ potential
and those from the LJTS potential.

Fig. 72 gives also insights on the influence of the long-range interactions on the Henry’s
law constants H2,1. This influence depends strongly on ξ12. For strong unlike attractive
interactions (ξ12 = 1.2, mixture E) neglecting the long-range part leads to a decrease of
the solubility (increase of H2,1), as might be expected. The inverse trend is observed
for mixture F. This is astonishing, but can be understood by the fact that not only
the solute–solvent interactions 1 - 2 are subject to the truncation but also the solvent–
solvent interactions 1 - 1. Neglecting the long-range interactions 1 - 1 facilitates the
insertion of 2 and increases the solubility (decreases H2,1). Both effects compete in the
ideal mixture D.
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Figure 72: Henry’s law constants of the binary mixtures D, E, and F between the triple
and critical temperature. Symbols are MD results; lines are EOS results.
Black lines and black symbols indicate the LJ potential; dashed lines and
open symbols indicate the LJTS potential.

The results from the EOS and those from the computer experiments agree overall well.
The best agreement is observed for mixture D, while for the mixtures E and F deviations
up to 10% are found. The EOS underestimate the results from the computer experiment
for mixture E but overestimate them for mixture F. These findings hold for both the
results of the LJ fluid and the LJTS fluid, which may be related to the fact that both
EOS have the same functional form [249, 639].

Fig. 73, panels A - F, show the binary phase diagrams obtained from the LJ potential
and LJTS potential at the same reduced temperature and pressure. The influence of the
interaction parameters ε2/ε1 and ξ12 on the phase behavior of Lennard-Jones mixtures
has already been discussed in section 3.3.

Fig. 73 reveals that the long-range interactions have practically no influence on the type
of phase behavior of mixtures. As the weakening of the attractive interactions by cutting
off the long-range interactions affects all interactions that occur in the mixture (those
between the same partners as well as those between unlike partners), the qualitative
phase behavior is not influenced, e.g. the position of the azeotropic points in the systems
B and C is almost the same for the LJ potential and LJTS potential. As for the Henry’s
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Figure 73: Vapor-liquid equilibria of the binary mixtures A, B, C, D, E, and F at
T /Tc,1 = 0.7, where Tc,1 is the critical temperature of the high-boiling com-
ponent 1. The pressure axis is reduced by the critical pressure of the respec-
tive high-boiling component (pc,1 = 0.129 εσ−3 in the case of the LJ potential
and pc,1 = 0.098 εσ−3 in the case of the LJTS potential). Symbols are MD
results; lines are EOS results. Black lines and black symbols indicate the
LJ potential; dashed lines and open symbols indicate the LJTS potential.
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law constants, the results from the EOS and the computer experiments are in good
agreement. This holds for both the LJ and the LJTS potential.

For the mixture A and B, the results obtained for the LJ potential and LJTS potential
agree almost perfectly when reduced variables are used, as in Fig. 73. For the mixtures
C - F, the MD results obtained for the LJ potential and LJTS potential show small
deviations – mainly for the bubble line. The EOS results for the mixtures D - F for the LJ
potential and LJTS potential show distinct deviations close to the critical point, which
is mainly due to the fact that all results were reduced with the computer experiment
critical pressure and temperature of the respective potential.

Fig. 74, panels A - F, show the binary saturated density phase diagrams obtained from
the LJ potential and LJTS potential at T /Tc,1 = 0.7. The saturated liquid density ρ′
and the saturated vapor density ρ′′ are shown as a function of the pressure. The results
obtained from the LJ and the LJTS potential show only little differences, as expected
from the pure substance properties, cf. Fig. 70. Hence, the long-range interactions have
no significant influence on the saturated densities of the mixtures. The results obtained
from both the LJ and LJTS EOS agree very well with the corresponding computer
experiments.

For the mixture A (ideal mixture), the saturated densities show a monotonous and
almost linear transition between the two pure component density values. For the mixture
B and C on the other hand, the saturated densities show a more complex behavior.
For the mixture B (high-boiling azeotrope), starting at the pure component 1, the
difference of the two densities ∆ρ = ρ′ − ρ′′ first increases with increasing pressure until
the azeotropic point and then decreases with further increasing pressure until the pure
component 2 value is reached; vice versa for the mixture C. Hence, the difference of
the two densities ∆ρ = ρ′ − ρ′′ exhibits a minimum as a function of the pressure in the
mixture C and a maximum in the mixture B.



204 5 Influence of Long-Range Interactions on Bulk and Interfacial Properties

Figure 74: Saturated densities as a function of the pressure of the binary mixtures A,
B, C, D, E, and F at T /Tc,1 = 0.7, where Tc,1 is the critical temperature
of the high-boiling component 1. Symbols are MD results; lines are EOS
results. Black lines and black symbols indicate the LJ potential; dashed
lines and open symbols indicate the LJTS potential. For the mixtures B
and C, the MD error bars for the liquid density were omitted to avoid visual
clutter.
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5.5 Results for the Interfacial Properties of Binary
Mixtures

The influence of the mixture type A - F on vapor-liquid interfacial properties has been
studied before, cf. section 3.3 [635]. The following discussion therefore focuses exclu-
sively on the influence of the long-range interactions on the interfacial properties of the
binary mixtures.

Fig. 75, panels A - F, show the results for the surface tension obtained from the LJ
potential and LJTS potential. The EOS+DGT and the simulation results agree almost
always within the MD error bars. Slight deviations are found for the mixtures B, E,
and F. Overall, the EOS+DGT results describe the results of the computer experiment
for the surface tension similarly well for both the LJ potential and LJTS potential.

Figure 75: Surface tension γ of the binary mixtures A, B, C, D, E, and F at T /Tc,1 = 0.7
as a function of the liquid phase composition x′2. Symbols are MD results;
lines are EOS+DGT results. Black lines and black symbols indicate the LJ
potential; dashed lines and open symbols indicate the LJTS potential.

As for the pure substance surface tension, the long-range interactions have an impor-
tant influence on the surface tension of binary mixtures. The long-range interactions
present in the LJ simulations increase the surface tension for all six investigated mix-
tures compared to the LJTS results. The surface tension obtained from the LJ potential
exceeds that from the LJTS potential by 40 - 50%. Nevertheless, the shape of γ(x′2) is
hardly affected by the long-range interactions. Also the aneotropic composition (mini-
mum and maximum of γ(x′2)) [133, 434, 435] is only slightly affected by the long-range
interactions.
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Figure 76: Interfacial thickness L90
10 of the binary mixtures A, B, C, D, E, and F at

T /Tc,1 = 0.7 as a function of the liquid phase composition x′2. Symbols
are MD results; lines are EOS+DGT results. Black lines and black sym-
bols indicate LJ potential; dashed lines and open symbols indicate LJTS
potential.

Fig. 76, panels A - F, show the results for the interfacial thickness obtained from
the LJ potential and LJTS potential. As for the pure substances (cf. Fig. 71), the
interfacial thickness of the LJ mixtures exceed those of the LJTS mixtures. The average
difference of the LJ and LJTS computer experiment results for the interfacial thickness
is approximately 10%. As for the surface tension, these differences between the LJ and
the LJTS fluid are practically composition-independent. The shape of L90

10(x′2) for the
LJ potential and LJTS potential are similar.

The L90
10(x′2) results from MD and EOS+DGT agree very well for the case of the LJ

potential. In contrast, for the results of the LJTS potential, the MD simulations are
generally underestimated by the EOS+DGT. This indicates a weakness of the EOS that
was used for describing the LJTS fluid. A major difference of that EOS as compared
to the one used for describing the LJ fluid is that in the parametrization of the latter,
also homogeneous bulk properties were used, cf. section 4.3 [635]. On the other hand,
the employed LJTS EOS was exclusively parametrized to VLE data [249].

Fig. 77, panels A - F, show the results for the relative adsorption Γ
(1)
2 of the low-boiling

component at the vapor-liquid interface (cf. Eq. (44)). The long-range interactions
only have a minor influence on the relative adsorption of the investigated Lennard-
Jones mixtures. This is due to the fact that the relative adsorption Γ

(1)
2 is closely linked
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Figure 77: Relative adsorption Γ
(1)
2 of the low-boiling component of the binary mix-

tures A, B, C, D, E, and F at T /Tc,1 = 0.7 as a function of the liquid phase
composition x′2. Symbols are MD results; lines are EOS+DGT results.
Black lines and black symbols indicate the LJ potential; dashed lines and
open symbols indicate the LJTS potential.

to the slope of the surface tension γ(x′2) via the Gibbs adsorption equation and the
composition dependency of γ(x′2) is hardy affected by the long-range interactions, cf.
Fig. 75. The MD results for Γ

(1)
2 of the mixtures A - F obtained from the LJ potential

and LJTS potential agree within their statistical uncertainties. Nevertheless, Γ
(1)
2 from

the LJ potential is in most cases slightly higher than the corresponding LJTS results.
The EOS+DGT results support this tendency.

For the mixtures A and D - F, the relative adsorption is always positive Γ
(1)
2 > 0, i.e.

the low-boiling component adsorbs at the interface in the entire investigate composition
range. For the mixtures B and C, the relative adsorption exhibits a range of positive
and a range of negative adsorption connected by a zero crossing Γ

(1)
2 = 0, which is a

result of the aneotropic behavior. For all mixtures and compositions where Γ
(1)
2 > 0,

the relative adsorption obtained by the LJ potential slightly exceeds that obtained by
the LJTS potential: Γ

(1)
2,LJ > Γ

(1)
2,LJTS. For the composition range of the mixture B and

C where Γ
(1)
2 < 0, results obtained for the LJ potential yield a stronger desorption of

the low-boiling component at the interface than the corresponding results for the LJTS
potential.

The long-range interactions have no significant influence on the slope of Γ
(1)
2 (x′2). As

for the surface tension results (cf. Fig. 75), the EOS+DGT results of Γ
(1)
2 (x′2) agree
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Figure 78: Enrichment of the low-boiling component E2 at the interface of the binary
mixtures A, B, C, D, E, and F at T /Tc,1 = 0.7 as a function of the liquid
phase composition x′2. Symbols are MD results; lines are EOS+DGT re-
sults. Black lines and black symbols indicate the LJ potential; dashed lines
and open symbols indicate the LJTS potential. In mixture A and B the
enrichment obtained from EOS+DGT is E2 = 1.0.

well with the corresponding MD results.

Fig. 78, panels A - F, show the results for the enrichment E2 of the low-boiling com-
ponent at the vapor-liquid interface (cf. Eq. (45)) in the six studied mixtures. Large
enrichment is only found in the mixtures D and F. The influence of the long-range in-
teractions on the enrichment of the low-boiling component at the interface is marginal.
The results from the computer experiments for E2 obtained from the LJ potential and
LJTS potential agree within their statistical uncertainties for most mixtures. Nonethe-
less, there is a trend that the results obtained from the LJ potential are slightly higher
than those obtained from the LJTS potential. This is not unexpected as the enrichment
is important at low x′2 where the interactions 1 - 2 are dominant, which are weaker when
the potential is truncated.

While the results from EOS+DGT agree very well with the computer experiment for
the other interfacial properties discussed above, this does not hold for the enrichment
E2. The results agree only qualitatively. As already discussed in Refs. [50, 634, 635],
partially significant differences between results from EOS+DGT and computer experi-
ments are observed (cf. chapter 9 for a detailed discussion). For the EOS+DGT, the
LJ and LJTS results show the same trends but partially significant deviations from the
MD data are observed. Furthermore, there are also significant differences between the
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EOS+DGT results obtained for the LJ potential and the LJTS potential in some mix-
tures, whereas such differences are not found in the MD results. As discussed above,
the differences in the qualities of the EOS might also play a role here. The agreement
for the enrichment obtained by the EOS+DGT and computer experiments is slightly
better for the LJ potential than the LJTS potential (cf. Fig. 78 - panels C and D). The
enrichment is the most sensitive of the investigated properties – regarding the agreement
of the theory and computer experiments.

5.6 Conclusions

In this study, the influence of dispersive long-range interactions on thermophysical prop-
erties of mixtures was systematically investigated for the first time. For that purpose,
six binary Lennard-Jones mixtures were studied with the LJ potential and the LJTS
potential. The comparison was carried out at the same reduced temperature of the
high-boiling component 1. Different low-boiling components 2 (subcritical and super-
critical) were used. Also the strength of the unlike interactions was varied, such that
six different types of phase behaviors were obtained.

The truncation and shifting of the potential in the LJTS fluid weakens the attractive
interactions compared to the LJ fluid. This affects pure component properties in ways
that are well-known from previous studies, e.g. the vapor pressure of the LJ fluid is lower
than that of the LJTS fluid at the same temperature [31, 148, 600, 603, 611]. In binary
mixtures, the reduced attractive interactions in the LJTS potential compared to the full
LJ potential affect all interactions in the same way, the like ones as well as the unlike
ones. Hence, it is expected that the qualitative behavior of the LJ mixtures and the
corresponding LJTS mixtures should be similar. This is confirmed in the present study
for different mixture types and all bulk and interfacial properties that were investigated:
the concentration-dependence that is observed for the different properties is always
similar for the LJ and the LJTS mixtures. The sign of the offset between the results
depends on the studied property and can generally be explained by the weaker attractive
interactions in the LJTS fluid. As for the pure fluids, the surface tension in mixtures
that is obtained from the LJ potential is always higher than the corresponding number
obtained from the LJTS potential, whereas the interfacial thickness is only slightly
increased. In contrast to the surface tension γ, the relative adsorption Γ

(1)
2 , which is

related to the slope of γ(x′2), is almost the same for the LJ fluid and the LJTS fluid.
Furthermore, no significant influence of the long-range interactions on the enrichment
at interfaces was observed.

Henry’s law constants obtained for LJ and LJTS mixtures differ in general. The dif-
ferences may have different signs, depending on the strength of the unlike interactions,
that was varied here using the parameter ξ12.

All comparisons in this study were carried out not only with MD simulations but also
using EOS for the LJ and the LJTS fluid – for the interfacial properties in connection
with DGT. The EOS and EOS+DGT calculations confirm the findings from the MD
simulations.
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6 Mass Transfer Through
Vapor-Liquid Interfaces: A New
Molecular Simulation Method

6.1 Introduction

The present chapter presents a new quasi-stationary molecular simulation method for
studying mass transfer through vapor-liquid interfaces of mixtures driven by gradients
of the chemical potential. The new simulation method is applied to two binary LJTS
mixtures that were examined regarding their equilibrium properties in chapter 3. In
the first mixture, a strong enrichment of the low-boiling component at the vapor-liquid
interface is observed, whereas practically no enrichment is present in the second mixture.
This comparison enables an evaluation of the influence of the enrichment on the mass
transfer through vapor-liquid interfaces.

To the best of our knowledge, no molecular simulation method has been described in
the literature for studying a stationary mass transfer of components through vapor-
liquid interfaces driven by gradients of the chemical potential. However, some related
simulation methods have been described previously in the literature. The heat and
mass transfer through vapor-liquid interfaces during evaporation and condensation has
been studied extensively in the literature using molecular simulation [54, 103, 110, 202,
203, 232, 233, 250, 251, 289, 327, 337, 348, 396, 419, 568, 569, 609, 673] or mesoscopic
models such as density functional theory [54, 202, 213, 233, 289, 300, 301, 329]. Most of
these studies consider a temperature gradient as the driving force of the heat and mass
transfer. Furthermore, in most of these studies only pure components are considered.

Diffusion near vapor-liquid interfaces is known to be anisotropic. The available studies
on this subject deal mostly with self-diffusion [111–113, 150]. Interestingly, the diffusion
parallel to the interface has been investigated more often than the diffusion perpendicular
[71, 150, 385] to the interface, which is relevant for the mass transfer in fluid separation
techniques.

Nagl et al. [488] recently reported on a combined theoretical–experimental investigation
of the mass transfer through liquid-liquid interfaces. Also Braga et al. [70] investigated
diffusion at liquid-liquid interfaces. The free energy barrier of particles crossing a vapor-
liquid interface has been studied by Braga et al. [71] and Garrett et al. [197]. The build
up of the interfacial excess at vapor-liquid interfaces of binary mixtures in a relaxation
process has been studied recently by Baidakov et al. [35, 36].
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The simulation method developed in the present work is inspired by simulations of dif-
fusion in crystals, membranes, and pores, in which the so-called dual control volume
method was applied [26, 243, 382, 403, 411, 528, 529, 645]. In this method, the chem-
ical potential in two sub-sections of the simulation volume is prescribed by a Monte
Carlo algorithm. Particles are then inserted in one sub-section and removed from the
other, causing a mass flux. We adapt the basic idea of the dual control volume method
[243, 245–247, 403] to induce a mass flux through vapor-liquid interfaces driven by a
gradient of the chemical potential. This approach was applied in the present work on
a rectangular simulation volume in which there is a liquid slab in the middle with a
vapor slab on each side. In each of the vapor domains, there is a control volume near
the outer boundary of the simulation volume. The chemical potential is prescribed
such that there is a mass transfer through the two vapor-liquid interfaces. The devel-
oped simulation scenario is tested using simple Lennard-Jones model mixtures. In the
tests, we address a current topic: the influence of the enrichment of components at the
vapor-liquid interface on the mass transfer.

Results from equilibrium molecular thermodynamics show an enrichment of low-boiling
components at vapor-liquid interfaces for many mixtures [50, 89, 95, 121, 159, 173,
184, 198, 372, 389, 445, 501, 504, 624, 628–630, 634, 635], cf. chapter 9 for a survey.
This enrichment is predicted consistently by molecular simulations, i.e. Monte Carlo or
molecular dynamics simulations, as well as density gradient theory [50, 446, 459, 483,
624, 635]. Since the enrichment is a nanoscopic effect at fluctuating fluid interfaces,
currently no experimental methods are available to study it directly. The enrichment
of components at fluid interfaces of mixtures is believed to influence the mass transfer
through fluid interfaces [159, 194, 199, 312, 328, 361, 488, 634, 635], but a proof is still
lacking.

The new simulation scenario is applied on the two binary Lennard-Jones mixtures A
and G, cf. section 3.6. Hence, the equilibrium interfacial and bulk properties of the
mixtures used in the present study have been studied systematically beforehand. For
the mixture G, the low-boiling component exhibits a strong enrichment at the interface;
for the mixture A, the low-boiling component exhibits no enrichment at the interface.
Mass transfer simulations with both mixtures are performed at four temperatures in
this study.

This chapter is organized as follows: first, the simulation method is introduced. Then,
the two mixtures are defined and described. The simulation results for the two mixtures
are subsequently presented and compared; finally conclusions are drawn.
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6.2 Molecular Simulations

6.2.1 Overview of the Simulation Method

In the present section, the new molecular simulation method for studying the mass
transfer through vapor-liquid interfaces driven by a gradient in the chemical potential
is described in a general way. The actual settings that were used for the simulations in
the present work are reported below.

The simulation scenario is schematically shown in Fig. 79. It contains a liquid do-
main in the middle and two vapor domains on each side. Each of the vapor domains
contains a control volume (labeled CV+ and CV-), in which the chemical potential is
prescribed such that the chemical potential difference causes a mass flux in +z-direction,
which passes through both vapor-liquid interfaces. This mass flux is the most impor-
tant observable in the simulation. Periodic boundary conditions are applied in x- and
y-direction perpendicular to the interfaces. In z-direction, the simulation volume is
confined by soft repulsive walls.

Figure 79: Scheme of the simulation set-up used in the present work for studying
the mass transfer through vapor-liquid interfaces in binary mixtures. Red
spheres indicate the high-boiling component 1 and blue spheres the low-
boiling component 2. A liquid domain in the middle is surrounded by two
vapor domains. The simulation box has periodic boundaries in x- and y-
direction and soft repulsive walls in z-direction. The chemical potential of
component 2 is adjusted to prescribed values in the control volumes CV+
and CV- (shaded blue) by a Monte Carlo algorithm. The resulting flux j2

of component 2 is measured.

As described in more detail in the following section, binary Lennard-Jones mixtures
were studied in the present work for testing the simulation scenario. The high-boiling
component is component 1, the low-boiling component is component 2. The chemical
potential difference was only set for component 2. No action on component 1 was taken
in the control volumes. As a consequence of the chosen boundary conditions, the flux of
component 1 j1 is zero. The flux j2 of component 2 is defined here as the mean number
of particles per time passing through a plane perpendicular to the z-axis. All fluxes are
reported in the fixed laboratory frame.

Quasi-stationary conditions were established before the sampling was started. The mag-
nitude of the chemical potential difference of component 2 was chosen such that the
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resulting flux of component 2 was low, but still reasonably measurable. The resulting
response is described well by linear theory.

The simulation was specified as follows: the temperature T was prescribed in the entire
simulation volume using velocity-scaling. As the particle velocity from the Brownian
movements is much larger than the averaged component velocity that causes the flux, the
thermostat was simply applied to the actual velocities of all particles without subtracting
the average component velocity. The error induced by this simplification is negligible.
The total volume of the simulation box V was constant. Due to the boundary conditions,
the number of particles of component 1 N1 was also constant. Particles of component 2
were inserted into the control volume CV+ and removed from the control volume CV-
by prescribing the number for the chemical potential of component 2 in the two control
volumes µCV+

2 and µCV−
2 . This was achieved by a grand canonical Monte Carlo algorithm

[245–247].

The simulation was carried out as follows: the initialization and an equilibration were
carried out in the NVT ensemble – as it is done in direct vapor-liquid equilibrium
simulations (cf. chapter 2 - 3). After that, the control volumes, which are placed next
to the soft repulsive walls, were switched on. With all settings active, the simulation
was run until the mass flux of component 2 through the simulation box was stationary;
then, the sampling was started.

The primary measured observable during the production phase is the flux of component 2
j2. It is measured by monitoring the number of particles of component 2 that are inserted
in the control volume CV+ and those that are deleted in the control volume CV-; details
are given in the Appendix. These numbers are equal – within their fluctuation band-
width – in the stationary sampling phase. The area that is used for calculating the flux
is the geometric cross section of the simulation box perpendicular to the z-direction.
Besides the flux j2, also profiles of different variables depending on the z-position in
the simulation box were sampled. For that purpose, the box was divided into bins in
z-direction, in which the number densities of both components ρ1(z) and ρ2(z) and the
diagonal components of the pressure tensor were measured.

The pressure in the bulk domains in the simulation box is not constant in z-direction.
This can be understood as a consequence of prescribing the temperature and imposing
a chemical potential gradient that controls the concentration profiles. The pressure gra-
dient and the flux of the particles of component 2 act in such a way that the momentum
balance is practically fulfilled in any sub-volume in the simulation box, i.e. no measures
had to be taken to stabilize the position of the liquid slab in the center of the simulation
volume.

The simulations with the new method pose several challenges. Unfavorable choices
for the difference of the chemical potential between both control volumes can yield
nucleation of droplets in the vapor domain, separation of the liquid film, movements
of the liquid film during simulations, and exceedingly long simulation times to reach a
quasi-stationary state. However, by choosing suitable settings, these problems can be
circumvented. Further details on the simulation method are given in the Appendix.
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6.2.2 Studied Lennard-Jones Mixtures

The simulation method introduced in the present work was used to study binary Lennard-
Jones mixtures. The Lennard-Jones fluid is one of the most frequently studied model
fluids as it is computationally relatively inexpensive but still yields a realistic description
of simple fluids. It is therefore often used to test new methods in molecular simulations
and fluid state theory [144, 154, 273, 359, 446, 626, 637]. In the present study, the
Lennard-Jones truncated and shifted (LJTS) potential with a cut-off radius of 2.5σ is
used:

uLJ(r) = 4ε [(σ
r
)

12

− (σ
r
)

6

] and (109)

uLJTS(r) =
⎧⎪⎪⎨⎪⎪⎩

uLJ(r) − uLJ(rc) r ≤ rc

0 r > rc,
(110)

where uLJ is the full Lennard-Jones potential, ε and σ are the energy and size parameter,
respectively. The distance between two particles is r. The truncation radius rc of the
potential is 2.5σ throughout the present study. No long-range corrections are required
in the simulations.

Two binary LJTS systems (named mixture A and G in the following) were used for test-
ing the new simulation method; they are the same as the systems studied in section 3.6.
Hence, the high-boiling component 1 is the same in both mixtures. The low-boiling
character of component 2 was obtained by decreasing its dispersion energy ε2 with re-
spect to ε1 of component 1. The size parameter and the mass of the components 1 and
2 are the same for both mixtures, i.e. σ1 = σ2 and M1 =M2.

The cross-interactions between unlike particles were modeled using the modified Lorentz-
Berthelot combination rules [52, 394]

σij =
σi + σj

2
, (111)

εij = ξ
√
εiεj, (112)

where the single indices i and j stand for the interaction of two particles of the same
component and the double index ij for the cross interaction between different compo-
nents.

The two binary LJTS mixtures investigated here are:

• mixture A (ideal mixture): ε2/ε1 = 0.9 and ξ = 1,

• mixture G (asymmetric wide-boiling mixture): ε2/ε1 = 0.6 and ξ = 0.85.

Both bulk and interfacial equilibrium properties of these two mixtures have been in-
vestigated systematically in previous works of our group [628–630, 635], cf. chapter 3.
Mixture A is essentially an ideal mixture in the sense of Raoult’s law, whereas mixture
G is highly asymmetric and strongly non-ideal. It exhibits a vapor-liquid-liquid equilib-
rium at low temperatures, cf. section 3.6. In mixture A, the low-boiling component 2
exhibits practically no enrichment at the vapor-liquid interface in the entire composition
and temperature range, whereas in mixture G component 2 exhibits a large enrichment,
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cf. section 3.6. This enrichment was found to increase with decreasing temperature and
decreasing mole fraction of the low-boiling component. There is no enrichment of the
high-boiling component 1 at the vapor-liquid interface, neither for mixture A nor for
mixture G, cf. section 3.6. Since we want to study the influence of the enrichment on
the mass transfer, the focus is on mixture G and mixture A is taken as a reference –
analogue to section 3.6.

The mass transfer through the vapor-liquid interfaces was studied with the new simula-
tion method for both mixture A and G at four temperatures: T /εk−1

B = 0.66, 0.715, 0.77,
0.825. For mixture G, the component 2 is supercritical at all investigated temperatures,
while for mixture A, the component 2 is subcritical at all investigated temperatures.

6.2.3 Simulation Details

We will first explain the principles and then discuss their realization. Let us start by con-
sidering an equilibrium situation (or, equivalently, assume that only a negligible gradient
in the chemical potential of component 2 were applied). Then, after the equilibration,
a vapor-liquid equilibrium would be established in the simulation. Let us first consider
this vapor-liquid equilibrium in intensive variables. In our simulations, it is specified
by the temperature T and the chemical potential of component 2 µ2. Furthermore, the
number of particles of component 1 N1 as well as the simulation volume V are set (N2 is
not set and will adjust itself to meet the specification of µ2). Hence, such a simulation
can be characterized as a N1, V , T , µ2-simulation. These settings fully determine the
vapor-liquid equilibrium in the simulation box, including the amounts of the vapor and
the liquid phase and the corresponding compositions. Starting from this equilibrium,
the finite gradient of the chemical potential of component 2 µ2 is imposed by increasing
µ2 in one control volume CV+ by δµ2 and decreasing it by the same amount in the other
control volume CV-. The resulting steady state is then sampled in the simulation, which
is near the equilibrium state described above for small δµ2. The new simulation scenario
is based on these principles; but the realization involves additional considerations, that
are discussed now.

The rectangular simulation volume V has a quadratic cross section in x- and y-direction
with a side length a. The length of the simulation volume in z-direction was always
b = 170σ. The length a was 21.1σ in the simulations with mixture G and 22σ in
the simulations with mixture A. The settings were chosen such that the thickness of the
liquid domain (in z-direction) was about 40σ and the thickness of the vapor domain was
55σ each, cf. Fig. 80. The maximal range of the soft repulsive wall potential was 5σ and
the thickness of the control volumes was 10σ, such that each of the two undisturbed bulk
vapor domains has a thickness of approximately 40σ, when these regions are excluded.
The total particle number N1 +N2 was about 16,000 in all simulations. The selection of
the actual choices for the initial densities and compositions was supported by preliminary
calculations of the phase equilibrium using the PeTS EOS [249, 635].

The soft repulsion of the walls acts on both components 1 and 2 and was modeled by
half a harmonic potential which starts to become effective at a distance of 5σ from the
end of the simulation box, as indicated in Fig. 80. At closer distances, a repulsive force
acts on the particle that rises linearly with a force constant of k = 20 εσ−2.
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Figure 80: Geometric parameters of the scenario used in the present simulations. Only
one half of the geometrically symmetric simulation box is shown; the sym-
metry plane is indicated by the dashed line. The cross section of the sim-
ulation box in the x, y-plane was quadratic (edge length was 21.1σ for
mixture G simulations and 22σ for the mixture A simulations). The purple
parable indicates the soft repulsive wall. The control volume is the gray
line.

In the left control volume CV+ (cf. Fig. 79) particles of component 2 were inserted;
and in the right control volume CV- particles of component 2 were removed from the
simulation box. The choice of the chemical potentials of component 2 µ2 in the control
volumes is not trivial. Basically, µ2, as determined in the NVT equilibrium simulations
was increased by δµ2 in the control volume CV+ and decreased by the same δµ2 in
the control volume CV-. The difference of the chemical potentials between the two
control volumes was the same in all simulations and was ∆µ2 = 0.5 ε. Preliminary
simulations showed that this is sufficient to ensure a reliable determination of the flux
of component 2, but still well in the linear regime. It turns out that this value –
chosen based on computational considerations – lies in the same range as the chemical
potential differences that are common in chemical engineering mass transfer problems
[658]. However, the chemical potential gradient, that results from this choice, is much
larger than that in common chemical engineering problems, as the distance of the control
volumes is of the order of 10−7 m whereas the boundary layers in chemical engineering
mass transfer problems are of the order of 10−4 m [658]. The corresponding difference of
3 - 4 orders of magnitude is also found for the fluxes between engineering mass transfer
problems and the fluxes obtained from the mass transfer simulations of the present work
(see results section below).

The simulations were carried out as follows: the first phase of the simulation is a pre-
run in the NVT ensemble. It is used to establish an equilibrium with a liquid slab in
the middle and the two surrounding vapor domains, see Figs. 79 and 80. The initial
positions and velocities were chosen as it is common in direct simulations of phase
equilibria; the description given in Ref. [630] applies also here, correspondingly. The
time step was ∆τ = 0.001σ

√
M/ε in all simulations. The NVT simulations were carried

out for 50,000 time steps. Subsequently, the control volumes in the vapor domains were
switched on to evoke the mass flux j2 in z-direction through the simulation box. The
simulations were then run for at least 3,000,000 further time steps, until a stationary
mass flux was established. The settings for the MC algorithm that was used for this
purpose in the control volumes were: 50 Monte Carlo insertion/ removal trials every 40
MD time steps. The insertion and removal is steered by a grand canonical Monte Carlo
algorithm, cf. Refs. [245–247] for details.

After a steady state was achieved, the sampling was started and carried out for at
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least 5,000,000 time steps. The simulation box was divided in 1200 equal bins by a
discretization in the z-direction. The pressure profile and the component density profiles
were sampled in these bins. Density and pressure profiles were computed in block
averages of 200,000 time steps during the production phase. During the entire simulation
time, the box was temperature-controlled by velocity scaling, as discussed above. The
velocity associated with the flux of the particles of component 2 was two to three orders
of magnitude smaller then the mean thermal motion velocity. The flux j2 of component
2 was measured by counting the insertions and deletions of particles of component 2 in
the control volumes in the production phase. A detailed discussion of the sampling and
the computation of the statistical uncertainties is given in the Appendix.

An inspection of the profiles (see below) shows that the gradients of the pressure and the
component densities in the bulk domains are moderate. For the discussion, it is helpful
to consider the average properties over the three bulk domains, which are labeled here
Vleft (vapor left), L (liquid), and Vright (vapor right). The density ρ, the pressure p,
and the composition xi were calculated as an average over the respective bulk domain
excluding the area close to the interface and close to the control volumes, i.e. keeping
a distance of at least 10σ to the control volume and to the center of the interface. The
corresponding statistical uncertainties were computed from the standard deviation of
the individual bin values.

Furthermore, the enrichment E2 of the low-boiling component at the interfaces [50] was
computed from each density profile from the production phase as

E2 =
max (ρ2(z))
max (ρL

2 ,ρV
2 ) . (113)

Here, ρL
2 and ρV

2 are the values of densities in the adjoining bulk domains. For each
simulation and interface, E2 and its uncertainty was computed as the mean value from
the block averages and three times their standard deviation, respectively.

The mass transfer simulations were carried out using the molecular dynamics code ls1
mardyn [506].

6.3 Results and Discussion

Table 19 reports the numeric values for the mass flux j2 in the mass transfer simulations
of both mixtures for all considered temperatures. The numeric values of the average
bulk domain state points and the interface positions are reported in the Appendix.

Also the results for the bulk diffusion coefficients of the two mixtures [638] are compared
in the Appendix. Those homogeneous bulk phase diffusion coefficients were determined
for both mixtures at the studied temperatures using Green-Kubo simulations for the
liquid phase and the Chapman-Enskog theory for the vapor phase [638].

In the following, the results of the mass transfer simulations are discussed, starting
with a detailed consideration of a single temperature, before also the results for other
temperatures are presented and discussed.
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6.3.1 Temperature T = 0.715 εk−1
B

For the simulations at T = 0.715 εk−1
B , the mass flux sampled in the production phase was

j2 = 0.26 ⋅10−3 σ−3(M/ε)−0.5 for mixture A and j2 = 0.11 ⋅10−3 σ−3(M/ε)−0.5 for mixture G
(the unit of j2 corresponds to the dimension of number of particles per area and time).
Hence, the obtained mass flux in mixture G is smaller than that for the mixture A by
more than a factor of two, even though the chemical potential gradient and the bulk
phase transport diffusion coefficient of both mixtures are approximately the same – see
Appendix for details.

Fig. 81 - left and middle shows the density and pressure profiles obtained from the mass
transfer simulations for mixture G and A at T = 0.715 εk−1

B during the production phase.
The density profiles in Fig. 81 show that the density of the low-boiling component
exhibits a gradient ∂ρ2

∂z in the bulk domains as a response to the gradient of the chemical
potential, whereas the total density exhibits no gradient in the bulk domains. Since the
diffusion coefficient is lower in the liquid phase than in the vapor phase (see Appendix),
the gradient ∂ρ2

∂z is larger in the liquid bulk domain than in the vapor bulk. This holds
for both mixtures.

For mixture G, the low-boiling component exhibits a large enrichment at the interface,
which is not observed for the mixture A. To the best of our knowledge, this is the
first time that the enrichment is studied under the influence of a mass transfer. The
observations for the enrichment in Fig. 81 are in line with results from equilibrium
simulations for these mixtures, cf. section 3.6. The numeric values for the enrichment
in mixture G at the left and right interface are compared in Table 20 with equilibrium
results from section 3.6 at the same liquid phase composition. Two values are reported
for the enrichment at the right interface. The evaluation of Eq. (113) requires the
computation of the larger value of the density of component 2 in the adjoining bulk
domains as reference in the denominator. In equilibrium simulations, the choice poses
no problem as the bulk phase is equilibrated. In mass transfer simulations, however,
gradients occur. This introduces an ambiguity in the choice of the bulk value: it could
be chosen as the average value of the domain, or be selected as values at the foot of
the peak. For the left peak, this makes no difference; the reference is always the vapor
domain and there is no substantial difference between the average vapor density and
that at the foot of the peak. For the right peak, this is different. When the average bulk
densities are used for the evaluation of Eq. (113), the reference is the liquid density;
when the values at the foot of the peak are used, the reference is the vapor density (for
which the value at the foot of the peak is again basically the same as the average value).
Hence, we report two values for the right peak.

As a reference, we have also included results for the enrichment obtained from for the
same mixture in vapor-liquid equilibrium simulations at the same temperature and the
same composition of the liquid bulk domain in Table 20. The results are also illustrated
in Fig. 82, from which it can be seen that the results for the left interface that were
obtained in the mass transfer simulations agree very well with those of the equilibrium
simulations. For the right interface, depending on the choice of the reference, the results
lie below or above the corresponding equilibrium values. Overall, it can be concluded
that the values for the enrichment E2 do not change strongly when mass transfer occurs,
at least for moderate gradients of the chemical potential, as they were applied here.
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Figure 81: Density profiles (left), pressure profiles (middle), and averaged thermody-
namic state points in the bulk domains (right) for the mixtures G (top) and
A (bottom) obtained in the mass transfer simulations at T = 0.715 εk−1

B .
The lower part of the split plot is just an expansion of the upper part. The
blue shaded area indicates the control volumes. For the pressure profiles,
the indices j = N , T indicate the normal and tangential component of the
pressure tensor, respectively. The thermodynamic state points indicated as
symbols in the right plots were sampled in the three bulk domains during
the production phase of the simulations. They are compared to results
for the vapor-liquid equilibrium computed with the LJTS EOS [249, 635]
(lines). The density and pressure profiles are from one block average during
the production phase; the state points depicted in the p−x diagrams (right)
are the average of all blocks.

No enrichment is found for mixture A, i.e. E2 = 1 within the numeric uncertainty in all
simulations, cf. the corresponding component density profiles in the Appendix. This
finding is in line with the findings from the equilibrium simulations, cf. section 3.6.

For both mixtures G and A, the average state points computed for the three bulk
domains Vleft, L, and Vright are compared with the corresponding phase equilibrium
obtained from the PeTS EOS [249, 635] in the right panels of Fig. 81. The averaged
state points sampled in the bulk domains agree astonishingly well with the isothermal
phase envelope from the EOS. The individual state points in each bin for a bulk domain
show an elliptic scattering around the averaged value, cf. Fig. A.18 in the Appendix.
The average pressure in the three bulk domains decreases from left to right with the
gradient of the chemical potential, as expected.
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Table 19: Numeric values of the mass flux j2, the prescribed residual chemical potential
in the inserting and deleting control volume µCV+

2 and µCV−
2 , respectively,

and the number of component 1 particles N1 in the performed mass transfer
simulations for both mixtures G and A at all four investigated temperatures.
The box size was 170σ in z-direction in all cases; the xy-cross section was a
square with the edge length 21.1σ for the simulations with mixture G and
22σ for the simulations with mixture A.

T / εk−1
B j2 / 103 σ−3(M/ε)−0.5 µCV+

2 / ε µCV−
2 / ε N1

G A G A G A G A
0.66 0.06(5) 0.23(1) -0.75 -2.22 -0.25 -1.72 12705 12447
0.715 0.11(5) 0.26(1) -0.8 -2.4 -0.3 -1.9 12703 12344
0.77 0.10(4) 0.21(1) -0.95 -2.6 -0.45 -2.1 12642 12344
0.825 0.19(3) 0.24(1) -1.1 -2.6 -0.6 -2.1 12689 12347

Table 20: Numeric values of the enrichment of the low-boiling component at the in-
terface for mixture G at all four investigated temperatures. The column
xL

2 indicates the mole fraction of component 2 in the liquid bulk domain L
sampled during the mass transfer simulations. The columns Eleft

2 and Eright
2

indicate the enrichment at the left and right interface, respectively. For the
right interface, V and L indicate the evaluation of Eq. (113) using the vapor
or liquid domain as reference, respectively (details are given in the text).
Eeq

2 indicates the equilibrium enrichment at the corresponding temperature
and liquid phase composition taken from Ref. [629].

T / εk−1
B xL

2 / mol mol−1 Eleft
2 Eright,L

2 Eright,V
2 Eeq

2

0.66 0.057(5) 4.4(2) 3.2(3) 5.4(4) 4.0(3)
0.715 0.056(3) 3.2(2) 2.6(2) 3.7(4) 3.1(1)
0.77 0.058(4) 2.5(1) 1.9(2) 2.9(2) 2.5(1)
0.825 0.055(3) 2.1(1) 1.6(2) 2.2(2) 1.9(1)

6.3.2 Influence of the Temperature

The influence of the temperature on the mass transfer in the two mixtures G and A was
studied by performing additional simulations at three further temperatures (T /εk−1

B =
0.66, 0.77, 0.825). The numeric values obtained for the mass fluxes and the non-
equilibrium enrichment are reported in Table 19 and 20, respectively.

Density profiles and isothermal p − x diagrams obtained during the quasi-stationary
production phase for mixture G at T /εk−1

B = 0.66, 0.77, 0.825 are shown in Fig. 83.
The corresponding plots for mixture A are presented in the Appendix. For all four
investigated temperatures (see above), the difference of the chemical potential applied
between the two control volumes was the same for mixture G and mixture A. The
density profiles obtained for mixture G (cf. Fig. 83) show in all cases a gradient of
the low-boiling component ∂ρ2

∂z , i.e. ρ2 decreases from the left to the right side in each
bulk domain. An enrichment of component 2 is observed in all cases for mixture G, but
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Figure 82: Enrichment of component 2 E2 at the interface at different temperatures
during the mass transfer simulations (triangles) in comparison to the en-
richment at equilibrium states (squares; adapted from section 3.6) at the
same liquid phase composition. Left triangles and right triangles indicate
the enrichment obtained for the left and right interface in the mass trans-
fer simulations, respectively. The filled and empty right triangles indicate
the enrichment using the vapor or liquid domain as reference, respectively
(details are given in the text). Lines are a guide for the eye.

its height decreases with increasing temperature, which is in line with corresponding
equilibrium results, cf. section 3.6.

The enrichment computed from Eq. (113) for the left and right interface is depicted
in Fig. 82 for all temperatures. As a reference, also the equilibrium enrichment at
the corresponding temperature and liquid phase composition are shown. As discussed
above, the enrichment of the right interface was evaluated in two different ways: using
the averaged bulk liquid density (open triangles right) and using the vapor density (filled
triangles right) for the evaluation of the denominator in Eq. (113). For all temperatures,
the enrichment at the left interface is in fair agreement with the enrichment obtained
from equilibrium simulations (cf. section 3.6). For the right interface, the evaluation
based on the average liquid bulk density as reference yields consistently lower enrichment
than the equilibrium results. Vice versa, the evaluation based on the vapor bulk density
reference yields larger enrichment. The differences between the enrichment obtained
for the left and the right interface are likely due to the fact that interfacial properties
strongly depend on the liquid bulk composition adjoined to the interface (cf. section
3.5), which varies for the left and right interface in the mass transfer simulations. A
comprehensive comparison of equilibrium and non-equilibrium interfacial properties is
out of the scope of this work but is an interesting topic for future work.

In some of the density profiles shown in Fig. 81 and 83, small peaks of the total density
in the vicinity of the control volumes indicate the presence of a small droplet. This is
due to the fact that the perturbations of the control volume act as nucleation precursor.
Hence, in some cases, small nucleus form in the saturated vapor domains attached to the
control volume. This also produces more pronounced fluctuations for the insertion rate
than the removal rate of component 2 particles in the control volumes, cf. Appendix.
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Figure 83: Density profiles (left panels) and isothermal p − x diagrams (right panels)
sampled during the production phase of the simulations of mixture G at
different temperatures. The blue shaded area indicates the elongation of
the control volumes in z-direction.

For all temperatures, the average state point computed for the three bulk domains Vleft,
L, and Vleft for mixture G are in excellent agreement with the corresponding phase
equilibrium, cf. Fig. 83 - right. The same holds for mixture A, see Appendix. Also, the
composition difference between the left and right bulk vapor domain is similar for the
results from the different temperatures.

Fig. 84 shows the stationary mass flux j2 sampled during the production phase as a
function of the temperature for mixture G and A. For all studied temperatures, the ideal
mixture A yields a significantly larger mass flux j2 – especially at low temperatures. The
mass flux obtained for mixture A exceeds that obtained for mixture G by a factor of two
to four. This is astonishing as the diffusivities of both components are similar for both
mixtures [638], both in the gas and liquid phase (see Appendix), the chemical potential
gradient was the same, and also the geometric parameters almost identical. The major
difference is that mixture G shows a high enrichment while mixture A shows almost no
enrichment. Hence, the present finding might point to an influence of the enrichment on
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Figure 84: Mass flux j2 sampled during the mass transfer simulations in mixture G
and mixture A at different temperatures. Lines are a guide for the eye.
The unit of j2 corresponds to the dimension of number of particles per area
and time

the mass transfer. A further investigation of this hypothesis would require carrying out
accompanying continuum simulations, which was not in the scope of the present work.

6.4 Conclusions

A new method for studying mass transfer in mixtures driven by a chemical potential dif-
ference across vapor-liquid interfaces by molecular simulation was developed and tested.
It is based on a simulation scenario in which two vapor domains encase a liquid domain.
Different values of the chemical potential of a selected component are prescribed in two
control volumes in the two vapor domains and evoke a flux of that component that passes
through two vapor-liquid interfaces; the other component is stagnant due to the chosen
boundary conditions. In isothermal simulations, the profiles of the component densities,
the pressure tensor, and the flux of the selected component is measured. To the best
of our knowledge, this is the first report on a molecular simulation method for studying
mass transfer through vapor-liquid interfaces driven by chemical potential gradients.
This is astonishing, as mass transfer through vapor-liquid interfaces is very important
in technical and natural processes. The new method opens the way for detailed studies
of these processes on the molecular level. In particular, the new method can be used for
systematic studies of the influence of mass transfer on interfacial properties, which are
presently still lacking.

The new simulation method was applied to study the influence of the enrichment of
components at the vapor-liquid interface on the mass transfer. Two Lennard-Jones
mixtures were examined, of which the phase equilibrium including the interfacial equi-
librium properties were systematically studied in chapter 3. Mixture G exhibits a large
enrichment of the low-boiling component at the interface, whereas mixture A exhibits
no enrichment. We find that, even though both mixtures have similar bulk diffusivi-
ties and the same chemical potential gradient was applied, the mass flux observed in
both systems differs significantly. These differences might be related to the presence
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of an enrichment at the interface in one of the mixtures. Hence, the results support
the assumption [194, 199, 328, 361, 488, 634, 635] that the enrichment influences the
mass transfer through fluid interfaces. Further studies are, however, needed to prove or
refute this hypothesis. The new scenario is a valuable tool for this. Such studies should
include also simulations with continuum methods, that can be compared to the results
from the molecular dynamics simulations.
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7 Vapor-Liquid Interfacial Properties
of the System Cyclohexane + CO2:
Experiments, Molecular Simulation
and Density Gradient Theory

7.1 Introduction

There are basically two approaches for developing a better understanding of the phe-
nomena at fluid interfaces. On the one side, studies on simple model systems can
be carried out. We have recently systematically studied binary mixtures of Lennard-
Jones fluids and have examined the influence of the variation of parameters, which
describe the molecular interactions on the interfacial properties (cf. chapter 3 and 5)
[628, 630, 634, 635]. Similar studies have also been carried out by multiple other groups,
e.g. Refs. [149, 192–195, 200, 361, 362, 412, 441, 446, 551, 552, 585, 586]. The second
approach is to study real systems, both by experiments and simulation. Unfortunately,
only the surface tension is directly accessible by experiments and the relative adsorp-
tion indirectly [211, 417, 573], while other properties, like the enrichment and interfa-
cial thickness, are not as readily accessible. However, the composition and orientation
of molecules at fluid interfaces can be examined by radiation scattering methods, cf.
[22, 216, 292, 584, 608].

The models used in both MD and DGT can be calibrated using experimental data to
predict the density profiles at vapor-liquid interfaces. The models should not only rep-
resent the interfacial properties well, but also the bulk VLE properties. Theoretical
studies on nanoscopic interfacial properties of real mixtures have been for example re-
ported in Refs. [50, 89, 121, 159, 173, 305, 328, 354, 374, 404, 444, 453, 456, 458, 459,
483, 501, 504, 533, 705].

In the present work we have followed the second route and studied the mixture of cy-
clohexane + CO2. As in Refs. [50, 445], the present study was carried out using several
methods: pendant drop experiments, molecular dynamics (MD) simulation, and den-
sity gradient theory (DGT) calculations in combination with the PCP-SAFT equation
of state [100–102, 221, 223]. We report surface tension and relative adsorption data ob-
tained from all three methods, whereas nanoscopic density profiles at the interface, the
enrichment of CO2 at the interface, and the interfacial thickness were only investigated
by MD and DGT. The experiments were carried out at temperatures between 303 K
and 373 K in intervals of 10 K. MD and DGT calculations were carried out at 303 K,
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333 K, and 363 K. The employed methods are described in section 7.2 and the results
are reported and discussed in section 7.3. Conclusions are drawn in section 7.4.

In this study, different interfacial properties of the binary system cyclohexane + CO2

were studied both by experiments and simulations. Also some data on the pure sub-
stances are reported. Table 21 gives an overview of the available experimental data on
the surface tension of pure cyclohexane and pure CO2 as well as their binary mixture.
To the best of our knowledge, no information on the nanoscopic properties at the vapor-
liquid interface of the system cyclohexane + CO2 is available in the literature. Data on
the surface tension of the mixture is still scarce.

Table 21: Literature overview of experimental data of the system cyclohexane + carbon
dioxide as well as the pure components.

Author T / K p / MPa
cyclohexane + carbon dioxide
VLE
Al-Sahhaf et al. [14] 333.15 1.08 - 8.17
Dymond [151] 304.23 0.1
Esmelindro et al. [166] 303, 333 4.59 - 9.81
Kaminishi et al. [309] 303.15 1.09 - 5.81
Mukhopadhyay & Srinivas [481] 366 10.2 - 11.97
Shibata & Sandler [606] 366.5 - 410.9 1.75 - 12.8
Yang et al. [721] 333.15 3.46 - 8.6
Zhang & Zheng [730] 303.15 0.97 - 6.66
Nagarajan & Robinson [487] 344.26 6.8 - 11
Krichevskii & Sorina [346] 473.15 - 483.15 1.3 - 13
Surface tension
Nagarajan & Robinson [487] 344.3 6.87 - 10.96
Yang et al. [722] 308.15, 323.15, 333.15 3.6 - 9.6
cyclohexane
VLE
correlation of experimental data from Span and Wagner [622]

Surface tension
Azizian & Bashavard [29] 293.15 - 323.15
Azizian et al. [30] 293.15 - 313.15
Campbell & Anand [85] 298.15 - 323.15
Clever and Chase [118] 298.15 - 308.15
Gómez-Díaz et al. [214] 298.15 - 323.15
Grafe [218] 295.15 - 306.15
Hückel & Harder [282] 279.55 - 349.95
Hennaut-Roland & Lek [254] 288.15 - 303.15

continued on next page



7.1 Introduction 229

Author T / K p / MPa
Jain & Singh [295] 298.16 - 308.16
Kahl et al. [308] 287.81 - 327.88
Kahl et al. [307] 279.33 - 337.93
Kaur et al. [316] 298.15 - 308.15
Konobeev & Lyapin [338] 293.15 - 353.85
Lakomy & Lehar [355] 298.15
Lam & Benson [356] 293.15 - 303.15
Mc Lure et al. [427] 303.2
Moll [469] 293.15
Ramakrishna & Patel [556] 308.15
Romero et al. [564] 283.15 - 313.15
Rusanov et al. [574] 293.15 - 323.15
Siskova & Secova [610] 293.15 - 313.15
Suri & Ramakrishna [648] 293.15 - 303.15
Trieschmann [670] 295.15
Villares et al. [680] 298.15 - 313.15
Vogel [681] 293.95 - 316.75
Wang et al. [696] 288.15 - 328.15
Wright & Akhtar [719] 303.15
Wright & Akhtar [718] 303.15
Zvereva & Smirnova [733] 303.15
carbon dioxide
VLE
correlation of experimental data from Span and Wagner [620]

Surface tension
Muratov & Skripov [485] 216.55 - 302
Anonymous [24] 298.15
Rathjien & Straub [557] 273.15 - 304.14

The mixture was furthermore chosen for two reasons: first, a significant enrichment of
the CO2 at the interface was to be expected according to the experiences from studies
of similar systems [121, 173, 635, 705]. Second, for both pure substances cyclohexane
and CO2 and their mixture, accurate and validated force field and PCP-SAFT EOS
models for the description of the vapor-liquid equilibrium are available in the literature
[221, 223, 448, 449, 633], such that the main focus of the present work could be laid on
the interfacial properties.

While interfaces are treated as two-dimensional objects on a macroscopic level, it is found
that the density changes continuously at the interface on an atomistic scale. There are
presently no experimental methods that yield information on such density profiles across
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fluid interfaces and thereby on the arrangement of the surface excess and the interfacial
thickness. However, such data can be obtained from molecular simulations based on
classical force fields on the one side and density gradient theory (DGT) combined with an
equation of state (EOS) or density functional theory (DFT) on the other side [168, 573].

Interesting phenomena have been observed in the nanoscopic interfacial region of binary
and multicomponent mixtures, such as maxima in the density profiles of the low-boiling
component at the interface [194, 195, 362, 630]. The density of low-boiling components
at such maxima can be several times higher than the bulk densities. This phenomenon
is referred to as enrichment and is closely related to the relative adsorption. The en-
richment of components at the vapor-liquid interface of mixtures has recently received
particular attention as it is suspected to influence the mass transfer across the inter-
face [328, 488, 634, 635, 705], which is of fundamental importance for fluid separation
processes. Also, the relation between the relative adsorption and the enrichment (both
describe the surface excess) and their relation to the molecular interactions is not yet
fully understood [50, 635].
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7.2 Methods

7.2.1 Pendant Drop Experiments

7.2.1.1 Measurements and Experimental Setup

Details of all materials (CAS Number, supplier, purity) used for the experiments are
listed in Table 22. Carbon dioxide was used without further purification. Cyclohexane
was degassed by vacuum distillation. The samples of the mixture were prepared as
described by Becker et al. [50].

Table 22: Chemicals that were used in the present work.

CAS number Supplier Purity / molmol−1

cyclohexane (C6H12) 110-82-7 Merck KGaA, Germany 0.998
carbon dioxide (CO2) 124-38-9 Air Liquide, France 0.99995

The pendant drop method [146, 240, 615] was used for the determination of the surface
tension of pure cyclohexane and its binary mixture with CO2. Due to the low critical
temperature of CO2, no measurements with pure CO2 were carried out. The method
is based on the mechanical equilibrium of a drop pending at a capillary tube, which
is governed by gravitational forces and the surface tension. The surface tension γ is
determined from

γ = ∆ρgz

A
, (114)

where ∆ρ = ρ′ −ρ′′ is the density difference between the liquid and the vapor phase, g is
the gravitational constant, z is the height coordinate of the drop as measured from the
apex, and A is a geometric factor characterizing the shape of the drop [146, 615]. The
latter was obtained from a photographic examination of the pending droplet.

The pendant drop measurements were carried out with a custom-built apparatus as
introduced in a previous publication of our group [50]. The procedure was the same as
described therein. The measurements yield data on the surface tension as a function
of temperature and pressure [50]. The mole fraction of CO2 in the liquid phase x′CO2

at a given temperature and pressure was subsequently determined with the PCP-SAFT
EOS, such that the experimental data can be related to the liquid phase composition. It
is shown in the results section 7.3.2.4 that the PCP-SAFT EOS gives a good description
of the bulk properties of the mixture cyclohexane + CO2.

As discussed in Ref. [50], the main contribution to the uncertainty of the surface tension
determined from Eq. (114) stems from the density difference ∆ρ. Any error in ∆ρ will
result in a similar error in γ, cf. Eq. (114). In the present work, ∆ρ was calculated from
the PCP-SAFT EOS. It is shown in section 7.3.2.4 that the numbers for ∆ρ obtained
in this way are in good agreement with available experimental data. Nevertheless, the
resulting uncertainty of the surface tension that stems from the uncertainty in ∆ρ is
up to 3%, cf. section 7.3.2.4. The random uncertainty of the measurement method
was estimated from repeated measurements of the surface tension of pure cyclohexane.
Hence, the statistical error was computed from three times the standard deviation of
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five independent data points. This random uncertainty of the measurement method is
less than 1.1% and the total uncertainty in the experimental data on the surface tension
of the binary mixture is better than 4.1%.

7.2.1.2 Determination of the Relative Adsorption from the Experimental
Data on the Surface Tension

The relative adsorption Γ
(1)
2 of a component 2 with reference to a component 1 in a

binary mixture can be obtained from the Gibbs adsorption equation [211], which yields
for the relative adsorption of CO2 at the vapor-liquid interface Γ

(C6H12)
CO2

in a mixture of
CO2 with cyclohexane (C6H12)

Γ
(C6H12)
CO2

= −( ∂γ

∂µCO2

)
T

, (115)

where µCO2 is the chemical potential of CO2 in the equilibrated phases.

Different ways have been established in the literature to describe the chemical potential
in Eq. (115) to obtain the relative adsorption, e.g. with activity coefficient models
[307, 308], equations of state [50], or an ideal gas phase assumption [417, 445]. The
PCP-SAFT EOS is used here for the determination of the chemical potential. The
chemical potential of CO2 µCO2 was therefor computed from the PCP-SAFT EOS at
every state point (characterized by (T ,p)) at which the surface tension was measured.
A value of the chemical potential µCO2 was subsequently assigned to each value of
the surface tension obtained from the pendant drop experiment. For each isotherm, a
polynomial curve was fitted to the data points (γ, µCO2), which is then used to compute
the derivative in Eq. (115). The adsorption data Γ

(C6H12)
CO2

obtained in this way are
referred to as experimental data in the following.

7.2.2 Molecular Models and Simulation Method

Molecular dynamics simulations were carried out with the program ls1 mardyn [506], the
force fields were taken from the MolMod database [633]. The molecular model for CO2

was that from Merker et al. [448]. It consists of three Lennard-Jones sites, representing
each atom and a point quadrupole in the center of mass representing the polarity of the
molecule. The cyclohexane model was taken from Merker et al. [449] and consists of
six Lennard-Jones sites (one for each methylene group). The molecular models of both
substances are rigid. It has been shown that thermodynamic properties of low molecular
weight molecules can be described well by rigid models, cf. Refs. [13, 88, 162].

The potential energy of the molecular models is given by

U =
N−1

∑
i=1

N

∑
j=i+1

⎧⎪⎪⎨⎪⎪⎩

nLJ
i

∑
a=1

nLJ
j

∑
b=1

4εijab
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(σijab
rijab

)
12

− (σijab
rijab

)
6⎤⎥⎥⎥⎥⎦

+
nei

∑
c=1

nej

∑
d=1

1

4πε0
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QicQjd

r5
ijcd

⋅ f(ωi,ωj)
⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
, (116)
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where εijab and σijab are the Lennard-Jones energy and size parameter, rijab and rijcd
are site-site distances, Qic and Qjd are the magnitude of the electrostatic interactions,
i.e. the point quadrupole moments, and f(ωi,ωj) are dimensionless angle-dependent
expressions representing the orientation ωi, ωj of the point multipoles [80]. The indices
i and j indicate the molecules, the indices a, b, c, d the interaction sites of a molecule.

The modified Lorentz-Berthelot combination rules [52, 394] were employed for describing
the dispersive/ repulsive interactions between unlike particles:

σij =
σii + σjj

2
, (117)

εij = ξij
√
εiiεjj , (118)

where the index ii and jj indicate the interaction of two particles of the same type and
the index ij the cross interaction between different particle types. Eq. (117) and (118)
were also employed for the modeling of the cross interactions using the PCP-SAFT EOS;
see the following section for details. The binary interaction parameter ξMD

CO2,C6H12
= 0.95

was used in the present work for the MD simulations. It was fitted by Merker et al.
[449] to experimental data of the Henry’s law constant of the mixture cyclohexane +
CO2.

The molecular force field models of the pure components which were employed in the
present work were parametrized to reproduce the saturated liquid density, the vapor
pressure, and the enthalpy of vaporization [448, 449]. The absolute average deviations
between the calculated values by the molecular simulation and experimental data are
0.3%, 3.7%, and 0.9% for cyclohexane [449] and 0.4%, 1.8%, and 8.1% for carbon dioxide
[448]. The surface tension was not considered in the parametrization of the molecular
models. For other pure fluid force field models developed with a similar parametrization
strategy the surface tension agrees with experimental data within 20%, whereat the MD
results often overestimate the experimental data [27, 28, 50, 153, 209, 640, 701, 705, 732].

In the molecular simulations of the vapor-liquid interfaces, systems were studied in which
a liquid phase is arranged as a slab in the middle of the simulation volume with a vapor
phase on each side. Periodic boundary conditions were applied in all directions. The
coordinate z is perpendicular to the interfaces. The elongation of the simulation box
normal to the interface was 30nm and the thickness of the liquid slab in the middle of the
simulation box was 15 nm. The elongation in the directions parallel to the interfaces was
at least 6 nm. The simulations were performed in the NVT ensemble with N = 32,000
particles. The equation of motion was solved by a leapfrog integrator [176] with a time
step of ∆τ = 2 fs. The initial densities and compositions in the simulations were taken
from the PCP-SAFT EOS to ensure fast equilibration.

For all simulations carried out in the present work, the cut-off radius was set to 17.5 Å
with a center-of-mass cut-off scheme. A slab-based long-range correction scheme was
employed to incorporate the long-range Lennard-Jones interactions [296, 707].

The equilibration was executed for 750,000 time steps. The production was conducted
for 4,000,000 time steps for the pure substances, and 8,000,000 for the mixture. Density
and pressure profiles were computed in block averages of 500,000 time steps during the
production phase. From each block average, the vapor pressure p, the saturated liquid
and vapor density ρ′ and ρ′′, respectively, and the saturated vapor and liquid phase mole
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fractions x′i and x′′i were calculated as an average in the respective phase – excluding
the area close to the interface, where the first derivative of the density with respect to
the z-coordinate significantly deviates from zero.

The surface tension in the MD simulations was calculated from the deviation between
the normal and the tangential diagonal components of the pressure tensor [325, 695] in
the pressure profiles, i.e. by the mechanical route

γ = 1

2 ∫
∞

−∞
(pN − pT) dz , (119)

where pN is the normal pressure given by the z-component of the diagonal of the pressure
tensor and pT is the tangential pressure, which was determined by averaging over the x-
and y-components of the diagonal of the pressure tensor. The statistical uncertainties
of the surface tension γ and the bulk VLE properties (p, ρ′, ρ′′, x′i, x′′i ) were estimated
to be three times the standard deviation of all sampled block averages.

7.2.3 Density Gradient Theory + PCP-SAFT EOS

7.2.3.1 Density Gradient Theory

Density gradient theory [81, 82] is a widely used method for computing the surface
tension of both pure substances [89, 121, 455, 532] and mixtures [78, 90, 159, 305, 404,
456, 458, 477, 533]. Also, nanoscopic interfacial properties can be obtained from DGT,
namely the density profiles across the interface. To model fluid interfaces, DGT requires
a model of the Helmholtz energy of the bulk fluid and the so-called influence parameter
κ that describes the influence of the density gradient on the Helmholtz energy. For a
comprehensive introduction of DGT we refer the reader to Refs. [125, 455, 573].

The cross-interaction influence parameter was assumed here to be the geometric mean
of the pure substance influence parameters [91, 458]

κij =
√
κiκj . (120)

In a previous work of our group, it was shown that this assumption leads to almost
perfect agreement between results from DGT and computer experiment for different
Lennard-Jones mixtures with various types of phase behavior in the entire composition
range, cf. chapter 3. The influence parameters of the pure components cyclohexane and
carbon dioxide were adopted from the literature [500, 503], cf. Table 23.

Table 23: Pure component parameters used in the present work in the PCP-SAFT +
DGT calculations.

Component m σ / Å ε/kB / K Q / DÅ 1020 κDGT / Jm5 mol−2

cyclohexane 2.5303 3.8499 278.11 - 34.07
carbon dioxide 1.5131 3.1869 163.33 4.4 2.327

The stabilized DGT algorithm proposed by Mu et al. [477] was employed to obtain the
equilibrium density profiles ρi(z) of both components connecting the bulk phases, which



7.2 Methods 235

is numerically robust and avoids choosing a reference component, which has numerical
pitfalls [378]. The domain length was set to 12 nm with a spatial discretization of
0.02 nm.

The surface tension γ was calculated from

γ = ∫
2

∑
i=1

2

∑
j=1

κij∇ρi∇ρj dz . (121)

7.2.3.2 PCP-SAFT Equation of State

The PCP–SAFT equation of state [221, 223], which is an extension of the original SAFT
EOS of Chapman et al. [100–102], was used in this work for describing the Helmholtz
energy in DGT. It was also used for the computation of phase equilibria of the studied
systems, the density differences ∆ρ used in the pendant drop method (cf. Eq. (114)),
and the calculation of the chemical potential of CO2 in the mixture (cf. Eq. (115)).
The details of the EOS are described elsewhere [221, 223].

For non-associating components, as the ones that are studied here, the PCP-SAFT EOS
has four pure component parameters: the segment number m, the segment diameter σ,
the segment dispersion energy ε, and the quadrupole moment Q. The pure component
parameters for cyclohexane and CO2 were taken from the literature [221, 223] and are
summarized in Table 23. Carbon dioxide was modeled as a component with a quadrupole
moment. Cyclohexane was described with the dispersion and chain term, cf. Table 23.
The pure component models were adjusted in Refs. [221, 223] such as to yield a good
description of the saturated liquid density and the vapor pressure [221, 223].

The modified combination rules of Lorentz and Berthelot presented in Eq. (117) and
(118) were also used in the PCP-SAFT equation of state. The binary interaction para-
meter ξEOS

CO2,C6H12
= 0.945 was fitted in the present work to experimental data [14, 166, 721]

of the vapor-liquid equilibrium at T = 333.15 K.

The molecular models employed for the molecular dynamics simulations and those em-
ployed for the PCP-SAFT and DGT calculations are summarized in Table 24.

7.2.4 Interfacial Properties Derived from Density Profiles

Molecular simulations and density gradient theory yield the component density profiles
ρi(z) across the vapor-liquid interface on a nanoscopic scale. On the basis of the density
profiles of both pure components, the relative adsorption Γ

(C6H12)
CO2

and enrichment ECO2

of CO2 at the interface as well as the interfacial thickness L90
10 were computed. The

equations are reported in section section 3.3.2.2; Eq. (44) - (46). Also the computation
of the corresponding statistical uncertainties performed in this study is described in
section 3.3.2.2. Section 3.3.2.2 also comprises a brief discussion on the relation of the
relative adsorption and enrichment and computational aspects.

For both MD and DGT, the origin on the z-axis of the interfacial profiles was chosen
here such that ρtot(z) = 0 at ρtot = ρ′′tot + 0.5 (ρ′tot − ρ′′tot).
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7.3 Results and Discussion

First, the results for the pure components are discussed (vapor-liquid equilibrium and
interfacial properties) and subsequently the results for the binary mixture. The numeric
values of all results from this work (pendant drop experiment, MD, and DGT) are
reported in the Appendix.

7.3.1 Results for the Pure Substances

7.3.1.1 Bulk Properties

Fig. 85 shows the vapor-liquid equilibrium of the two pure substances cyclohexane
and carbon dioxide. Both the vapor pressure and the saturated densities from both
components are shown. The results from the molecular models (MD force field and
PCP-SAFT model) are compared with correlations of experimental data from Span and
Wagner [620, 622]. These correlations are reported to agree with experimental data
within the following range [620, 622]: the absolute average deviation for cyclohexane is
at least 0.2% for the vapor pressure and 0.3% for the saturated liquid density [622]; and
for carbon dioxide 0.006% for the vapor pressure, 0.01% for the saturated liquid density,
and 0.01% for the saturated vapor density [620]. It is known that the critical pressure
is not represented well by the reference EOS of cyclohexane [622], cf. Fig. 85.

The results obtained from the MD force fields and the PCP-SAFT models agree excel-
lently with the reference correlations. The absolute average deviations of the PCP-SAFT
models and experimental data are: for cyclohexane: 0.5% for the vapor pressure and
3.1% for the saturated liquid density [223]; and for carbon dioxide: 0.3% for the vapor
pressure and 1.3% for the saturated liquid density [221], excluding the region in the
vicinity of the critical point.

The molecular simulation results from this work are in excellent agreement with results
reported in the literature for the same force fields [448, 449, 704, 708], i.e. the results
agree within their statistical uncertainties. The agreement of the results obtained with
the force fields for the two pure substances with experimental data has been studied
before: for carbon dioxide, the deviations were reported to be below 1.8% for the vapor
pressure and 0.4% for the saturated liquid density [448], for cyclohexane the correspond-
ing numbers are 3% for the vapor pressure and 0.4% for the saturated liquid density
[449]. This is confirmed by the results from the present work.

The three dashed lines in the plot of Fig. 85 - top indicate the three temperatures
that were investigated by all three methods (experiment, MD, and DGT) for the binary
mixture of cyclohexane + CO2: 303.15 K, 333.15 K, and 363.15 K. The experimental
value of the critical temperature of cyclohexane is TC6H12

c = 553.8 K [131]. Hence, the
temperatures of the binary mixture investigated with all three methods correspond to
reduced temperatures of approximately T /TC6H12

c = 0.55, 0.6, 0.65.

The experimental critical temperature of CO2 is 304.2 K [1]. The lowest investigated
temperature 303.15 K is thereby slightly below the critical temperature of CO2. The
critical temperature of the molecular force field model was estimated to be 304 K [448];
for the PCP-SAFT model [221] that number is 304.99 K.
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Figure 85: Vapor pressure curves (top) and saturated densities (bottom) of the pure
substances cyclohexane (black) and carbon dioxide (blue). The solid lines
are the results from the PCP-SAFT EOS. The dashed lines are the correla-
tions of the experimental data [620, 622]. All symbols are MD results: open
symbols represent data from this work, filled squares data from Merker et
al. [449], and filled triangles data from Werth et al. [704, 708]. The vertical
dashed lines in the upper plot indicate the three temperatures (303.15 K,
333.15 K, and 363.15 K) for which data of the binary mixture was taken
with all three methods (experiments, MD, and DGT) in the present work.

7.3.1.2 Interfacial Properties

Fig. 86 shows the surface tension (top) and interfacial thickness (bottom) of the vapor-
liquid interface of the pure substances cyclohexane and CO2. For the surface tension,
data from experiment, MD, and DGT are compared, whereas for the thickness only
results from the theoretical methods MD and DGT can be compared. As explained
above, no experimental data for the surface tension of pure carbon dioxide was taken in
the present work. The surface tension from both cyclohexane and CO2 decreases with
increasing temperature and becomes zero at the critical point. The interfacial thickness,
on the other hand, increases monotonously and has a pole at the critical point.

The experimental results for the surface tension of cyclohexane from the present work
agree with corresponding results from the literature (cf. Table 22) within their scatter-
ing.
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Figure 86: Surface tension (top) and interfacial thickness (bottom) of the pure sub-
stances cyclohexane (black) and carbon dioxide (blue). Crosses are experi-
mental data from the literature: Refs. [29, 30, 85, 118, 214, 218, 254, 282,
295, 307, 308, 316, 338, 355, 356, 427, 469, 556, 564, 574, 610, 648, 670, 680,
681, 696, 718, 719, 733] for cyclohexane and Refs. [24, 485, 557] for CO2.
The solid lines are the results from DGT (this work). Open symbols are
results from this work: open diamonds are results from the pendant drop
experiment which were only carried out for cyclohexane; open circles are
MD results. Filled triangles are results from Werth et al. [704, 705, 708].

The surface tension obtained from DGT agrees excellently with experimental data, for
both cyclohexane and CO2, since such data was used for the parametrization of the
DGT influence parameter κ [500, 503]. For both substances, the molecular dynamics
simulation results systematically overestimate the surface tension, which has already
been reported by Werth et al. [704, 705, 708] for both employed force fields. These
deviations might be related to the parameterization strategy employed for the force
field development (see section 7.2.2), i.e. the surface tension was not considered during
the parametrization. However, the results for the surface tension obtained in the present
work agree very well with MD results from the literature [704, 705, 708].

For the interfacial thickness, the results obtained from MD and DGT agree qualitatively
well. Nevertheless, for most temperatures, the MD results exceed those from DGT,
which is likely due to the fluctuations, which are present in MD but not in DGT [637].
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7.3.2 Results for the Mixture Cyclohexane + CO2

7.3.2.1 Bulk Properties

Fig. 87 shows isothermal p − x phase diagrams of the binary mixture cyclohexane
+ CO2 at 303.15 K, 333.15 K, and 363.15 K. Experimental data from the literature
(cf. Table 21) are compared with molecular simulation data from this work and the
PCP-SAFT EOS. As discussed above, CO2 is still subcritical at T = 303.15 K, which is
described correctly by the EOS.

Figure 87: Vapor-liquid equilibrium of the system cyclohexane + CO2 at three temper-
atures. The solid lines are PCP-SAFT results and the open circles are MD
simulation results obtained in this work; the crosses indicate experimental
data from the literature: 303.15 K (Refs. [151, 166, 309, 730]), 333.15 K
(Refs. [14, 166, 721]), and 363.15 K (Refs. [481, 605]).

Overall, EOS and MD results agree well with the experimental data. For both theoretical
methods, the agreement with the experimental data is better for the dew line than



7.3 Results and Discussion 241

for the bubble line. At 303.15 K, the molecular simulation results agree excellently
with the experimental bubble line data while the PCP-SAFT EOS results show some
deviations, whereas at 333.15 K, these trends are inversed: the EOS agrees very well with
experimental bubble line data while the MD simulation results show some deviations.
The good agreement of the results from the EOS model with the experimental data
at 333.15 K is due to the fact that it was used for the fitting of ξEOS

CO2,C6H12
. For both

temperatures where CO2 is supercritical, the PCP-SAFT EOS overestimates the critical
pressure, as it is usually observed for classical EOS. The PCP-SAFT EOS yields an
absolute average deviation for the equilibrium pressure from the available experimental
data at the three studied temperatures of 5.2%.

7.3.2.2 Surface Tension

The surface tension for the binary system cyclohexane + CO2 was determined with the
pendant drop method at eight temperatures between 303.15 K and 373.15 K in intervals
of 10 K and pressures up to 6 MPa. The numeric values of all experimental data is
reported in the Appendix. DGT and MD calculations were only carried out at three
temperatures (303.15 K, 333.15 K, and 363.15 K), cf. Fig. 85.

Figure 88: Surface tension of the system cyclohexane + CO2 as a function of the liquid
phase mole fraction of carbon dioxide x′CO2

at three temperatures (indicated
by the color). The lines are DGT results, circles are MD results, and
diamonds are results from the pendant drop experiments. For T = 303.15 K
and x′CO2

= 1 mol mol−1, the DGT yields γDGT = 0.0983 mN m−1.

Fig. 88 shows results for the surface tension obtained in this work for the temperatures
303.15 K, 333.15 K, and 363.15 K. Results from all three employed methods (pendant
drop experiment, MD, and DGT) are shown. Experimental data on the surface tension
in the system cyclohexane + CO2 has been reported previously by Nagarajan & Robinson
[487] and Yang et al. [722]. Their data is compared to results from the present work
in section 7.3.2.4. The data from Nagarajan & Robinson [487] is found to be in good
agreement with our results, whereas the data of Yang et al. [722] systematically deviates
from our results.
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The surface tension of the binary mixture decreases with increasing liquid phase mole
fraction of carbon dioxide x′CO2

and with increasing temperature. For high concentra-
tions of CO2, the surface tension of the binary mixture exhibits an interesting feature:
above the critical temperature of CO2, the surface tension isotherms have a convex
shape close to the critical point, as it is observed in many systems of the type solvent
+ supercritical solute. However, for the subcritical isotherm at 303.15 K, the surface
tension of the mixture exhibits a concave shape at high CO2 concentrations x′CO2

. This
behavior is described well by both molecular simulations and DGT.

The DGT surface tension results agree very well with the experimental data from the
present work. The absolute average deviation is approximately 1.8% for the data shown
in Fig. 88, which confirms the assumption of using a geometric mixing for the influence
parameter, cf. Eq. (120). The molecular simulation results systematically overestimate
the surface tension of the binary mixture obtained from DGT by approximately 13% in
the entire temperature and composition range, which is due to the deviations already
present in the pure substances surface tension, cf. Fig. 86.

7.3.2.3 Nanoscopic Interfacial Properties

Nanoscopic interfacial properties were studied with MD and DGT. Fig. 89 shows the
density profiles in the vapor-liquid interface obtained from MD and DGT at three state
points at high CO2 concentrations and temperature of 303.15 K, 333.15 K, and 363.15 K.
In all cases, starting in the bulk vapor phase, the component density of cyclohexane
ρC6H12(z) increases monotonously towards the liquid bulk phase, whereas the component
density of carbon dioxide ρCO2(z) exhibits a distinct maximum in the interfacial region,
i.e. there is an enrichment. Such an enrichment of low-boiling components at vapor-
liquid interfaces has been reported many times in the literature, e.g. [56, 57, 91, 122,
126, 130, 173, 184, 192–195, 305, 361, 362, 372, 373, 379, 390, 391, 412, 446, 483, 492,
522, 533, 551, 552, 583, 604]. A review of enrichment data at vapor-liquid interfaces
available in the literature is given in chapter 9.

Overall, the results from MD and DGT show excellent agreement. However, small
differences may be pointed out. Since the liquid phase composition was prescribed for
the calculations shown in Fig. 89, the densities from MD and DGT + PCP-SAFT match
very well in the liquid bulk phase. The minor differences for the gas phase simply stem
from differences in the description of the bulk VLE data (cf. Fig. 87).

The MD simulations predict a slightly larger interfacial width compared to the results
from DGT. This is due to the fluctuations of the interface, which are present in MD,
whereas in DGT the surface is always perfectly flat – as already discussed for the pure
substances, cf. Fig. 86. Considering the fact that both methods are independent
predictions for the mixture, the density profiles obtained from both methods agree
remarkably well.

The adsorption of carbon dioxide increases with decreasing temperature, which agrees
well with findings for similar systems, cf. section 3.6 and Refs. [50, 362, 705]. The
interfacial thickness, on the other hand, decreases with decreasing temperature.

It has been shown in a recent work of our group that the difference of the bulk density
of the low-boiling component ∆ρCO2 = ρ′CO2

− ρ′′CO2
has an important influence on the
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Figure 89: Component density profiles of cyclohexane and CO2 at the vapor-liquid
interface of their binary mixture. Each plot shows one state point. Symbols
are MD simulation results, lines are DGT results. Diamonds and solid lines
represent CO2; circles and dashed lines are cyclohexane.

enrichment, cf. section 3.4 [630]. According to that, ∆ρCO2 ≈ 0 favors an enrichment,
since the relative adsorption (cf. Eq. (44)) must always result in an enrichment in
that case. For the binary mixture cyclohexane + CO2 investigated in the present work,
∆ρCO2 > 0 holds in the entire considered temperature range.

Fig. 90 shows the density profiles obtained from DGT in the entire composition range
at the three temperatures 303.15 K, 333.15 K, and 363.15 K. The corresponding plots
for the MD results are shown in the Supplementary Material. The state points depicted
in Fig. 90 are the same as for the MD results in the Appendix. For all state points,
the agreement between the MD and the DGT results is similar to that found for the
examples shown in Fig. 89.

For all state points, the high-boiling component cyclohexane exhibits a monotonous
transition from the vapor to the liquid bulk phase and the low-boiling component CO2

exhibits a maximum at the interface. The interfacial width increases with increasing
mole fraction x′CO2

and with increasing temperature. The adsorption of CO2 increases
with x′CO2

but decreases with increasing temperature.

The position of the density maximum zmax exhibits an interesting behavior with varying
x′CO2

: at T = 363.15 K, the position of the maximum in the CO2 density profile is
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Figure 90: Density profiles of cyclohexane and CO2 at the vapor-liquid interface of
binary mixtures of these components for three temperatures: 303.15 K
(bottom), 333.15 K (middle), and 363.15 K (top) and different compositions
of the bulk liquid phase (indicated by the colors). Results from DGT.
Dashed lines are cyclohexane; solid lines are CO2.
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found at approximately zmax = 0 for all studied x′CO2
. On the contrary, at 333.15 K and

303.15 K, starting at low concentrations of CO2, the maximum moves towards the liquid
bulk phase, i.e. zmax > 0, with increasing x′CO2

. This is an indication for a decreasing
adsorption with increasing x′CO2

. Evidently, this finding is linked to our choice of the
definition of z = 0, cf. section 7.2.4.

Fig. 91 - top shows results for the relative adsorption of CO2 at the vapor-liquid inter-
face Γ

(C6H12)
CO2

. The relative adsorption Γ
(C6H12)
CO2

computed from the nanoscopic density
profiles (MD and DGT) via the symmetric interface segregation presented in Eq. (44)
is compared to the results obtained from the macroscopic relation given by the Gibbs
adsorption equation (115). The latter are referred to as ’experimental results’.

Overall, the results obtained from both routes (nanoscopic and macroscopic) agree very
well – both qualitatively and quantitatively. The relative adsorption of CO2 at the
vapor-liquid interface is found to be up to 12 µmol m−2, which is in the range of results
reported in the literature for similar systems [50, 445, 692].

Starting at infinite dilution of CO2 in the liquid phase, Γ
(C6H12)
CO2

first increases linearly
with increasing x′CO2

, passes through a maximum and drops down to zero towards the
critical point. The relative adsorption of CO2 at the interface increases with decreasing
temperature, as discussed for the density profiles in Fig. 90.

As the density profiles obtained from MD and DGT agree very well (cf. Fig. 89), the
relative adsorption computed by the integral in Eq. (44) agree also well. However, the
MD results are slightly above those from DGT in the linear regime of Γ

(C6H12)
CO2

(x′CO2
),

whereas they are below those from DGT in the concave regime. However, there is a high
statistical uncertainty of the MD results at high x′CO2

. The DGT and the experimental
results agree excellently, especially for moderate values of x′CO2

.

The enrichment of CO2 at the vapor-liquid interface of the binary mixture as obtained
from MD and DGT is shown in Fig. 91 - middle. The enrichment of CO2 is high-
est at infinite dilution and decreases to unity with increasing x′CO2

. Furthermore, the
enrichment decreases with increasing temperature.

The results for the enrichment obtained from MD and DGT agree very well, especially
at low x′CO2

. At high x′CO2
, the enrichment predicted by DGT exceeds that predicted

by MD.

The fact that the behavior of ECO2(T ,x′CO2
) resembles that of the surface tension,

cf. Fig. 88, may well be a coincidence, since differing behavior of ECO2(T ,x′CO2
) and

γ(T ,x′CO2
) has been reported for other mixture types, cf. [184, 635].

The surface excess of CO2 at the interface is characterized here by the relative adsorp-
tion Γ

(C6H12)
CO2

and the enrichment ECO2 . The temperature dependency of Γ
(C6H12)
CO2

and
ECO2 are similar: both decrease with increasing temperature. However, the composition
dependency of Γ

(C6H12)
CO2

and ECO2 differs strongly: at infinite dilution, the relative ad-
sorption is Γ

(C6H12)
CO2

= 0 by definition, whereas the enrichment ECO2 is highest at infinite
dilution of CO2. With increasing x′CO2

, Γ
(C6H12)
CO2

increases until a maximum is reached
and then decreases, whereas ECO2 decreases monotonously. This supports the findings
from previous work [50, 635], that Γ

(C6H12)
CO2

and ECO2 contain different information even
though both describe the surface excess of the low-boiling component.
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Figure 91: Relative adsorption (top) and enrichment (middle) of CO2 at the vapor-
liquid interface and it’s thickness (bottom) as a function of the liquid phase
mole fraction x′CO2

in the system cyclohexane + CO2. Results for three
temperatures (indicated by the color). The lines are DGT results, circles
are MD results, and diamonds are results from the pendant drop experiment
(only available for Γ

(C6H12)
CO2

). The MD and DGT results were calculated from
the density profiles via Eq. (44); the experimental results were calculated
from the macroscopic definition Eq. (115).
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The results for the interfacial thickness L90
10 of the vapor-liquid interface as defined by

Eq. (46) are shown in Fig. 91 - bottom. As for the enrichment, results are only available
from the theoretical methods MD and DGT.

Adding CO2 to cyclohexane at constant temperature first leads to a moderate increase of
the interfacial thickness, followed by a steep increase as the critical point is approached.
Hence, the composition dependency of L90

10 for the binary mixture is similar to the
temperature dependency of L90

10 of the pure components. The interfacial thickness of the
binary mixture also increases with increasing temperature.

For the lowest investigated temperature 303.15 K, the interfacial thickness obtained
from DGT shows an unexpected anomaly that is, however, not found in the results from
MD: the curve L90

10(x′CO2
) has a wiggle in the region of low x′CO2

before the continuous
increase of L90

10 sets in. These calculations were confirmed using the reference density
DGT method. The maximum/ minimum of the interfacial thickness might be due to the
specific phase behavior at 303.15 K (CO2 is subcritical and cyclohexane is close to it’s
triple point temperature). The mathematical form of the PCP-SAFT equation is known
to yield artifacts in the metastable and unstable region at low temperatures, cf. chapter
4 [639]. This might be related to the anomaly that was observed here in the DGT
results. Apart from this difference, the results from MD and DGT agree qualitatively
well, but the molecular simulations yield a larger interfacial thickness for most state
points as discussed already for the pure substances.
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7.3.2.4 Comparison with Experimental Data from the Literature

Saturated Densities in the Binary Mixture of Cyclohexane + CO2

The density difference of the saturated phases ∆ρ = ρ′ − ρ′′ of the binary mixture cyclo-
hexane + CO2 is shown in Fig. 92. Results from the PCP-SAFT EOS are compared
with experimental data from the literature (cf. Table 21). Experimental data is avail-
able in Refs. [346, 487, 606] for five temperatures. The results obtained from the
PCP-SAFT EOS agree very well with the experimental data from Nagarajan & Robin-
son [487] and Shibata & Sandler [606] – except in the vicinity of the critical point. The
data from Krichevskii & Sorina [346] deviates significantly from the PCP-SAFT results
in the entire composition range. The absolute average deviation from the results of Refs.
[487, 606] and the PCP-SAFT EOS are better than 3% – when the direct vicinity of the
critical point is excluded.

Figure 92: Difference between the saturated liquid and vapor density ∆ρ = ρ′ − ρ′′
of the binary mixture cyclohexane + CO2. Experimental data from the
literature (symbols) is compared with results obtained from the PCP-SAFT
EOS (lines). Experimental data are from Nagarajan & Robinson [487]
( 344.3 K), Shibata & Sandler [606] ( 366.5 K and 410.9 K), and
Krichevskii & Sorina [346] ( 473.15 K and 483.15 K).
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Surface Tension in the Binary Mixture of Cyclohexane + CO2

The surface tension results obtained in the present work for the mixture cyclohexane
+ CO2 are compared to the available data from the literature in Fig. 93. Surface
tension data of mixtures of cyclohexane and CO2 is available at four temperatures in
the literature [487, 722], cf. the four plots in Fig. 93. At three of those four temperatures
experiments were also carried out in the present work. The surface tension at all four
temperatures was computed by DGT as described in section 7.2.3 and compared with
the literature data.

For T ≅ 344 K, the surface tension results from the present work and the data of Na-
garajan & Robinson [487] agree well. The surface tension data reported by Yang et al.
[722] shows significant systematic deviations from the results obtained in the present
work.

Figure 93: Comparison of experimental data for the surface tension of the system cy-
clohexane + CO2 from the literature with results from the present work.
All available literature data are shown: ( ) Nagarajan & Robinson [487]
and ( ) Yang et al. [722]. The lines are results from DGT obtained in the
present work, ( ) are experimental results from the present work. In the
upper panel, the temperatures are: 343.15 K for ( ); and 344.23 K for both
( ) and DGT.
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7.4 Conclusions

Interfacial properties of the mixture cyclohexane + CO2 were studied by experiment,
molecular dynamics simulations, and density gradient theory in combination with the
PCP-SAFT equation of state. Properties that can be determined in experiments were
investigated with all three methods (surface tension and relative adsorption). Further-
more, using MD and DGT, the density profiles of the components at the interface were
determined and used for calculating the enrichment and the interfacial thickness, which
cannot be measured experimentally. The experimental surface tension data obtained
from the pendant drop method agrees well with experimental data from the literature
for pure cyclohexane. For mixtures of cyclohexane with CO2, two sets of data were
available, which, however, do not agree. The present data confirms that of Nagarajan &
Robinson [487]. The results for the surface tension of the mixture obtained from DGT
+ PCP-SAFT agrees very well with the experimental data. The model was adjusted to
bulk VLE data of the mixture as well as to pure component data, which included surface
tension data. The molecular models of cyclohexane and carbon dioxide that were used
for the MD simulations describe the VLE data of the pure components and the mixture
(to which they were adjusted) well. The results for the surface tension, which was not
used in the adjustment, are systematically too high by about 10 - 15% for both the pure
components and the mixture. Similar findings have been reported before by Werth et
al. [701, 704] for a large number of systems. However, the temperature and composition
dependency of the surface tension is predicted well by the MD simulations.

The surface excess of carbon dioxide at the vapor-liquid interface was quantified using
the relative adsorption Γ

(C6H12)
CO2

and the enrichment ECO2 . The experimental data for
the relative adsorption was obtained from the experimental data for the surface tension
in the Gibbs adsorption equation and the chemical potential from the PCP-SAFT EOS,
whereas the data for the relative adsorption from MD and DGT were determined from
the nanoscopic density profiles at the vapor-liquid interface. The results for the relative
adsorption of CO2 obtained from the macroscopic and nanoscopic route agree very well.

As the enrichment of CO2 at the interface is not accessible by experiment, it was deter-
mined by MD and DGT only. The predictions of the enrichment from both methods are
in excellent agreement. Even though Γ

(C6H12)
CO2

and ECO2 characterize the surface excess
of the low-boiling component, both properties show important differences: starting at
infinite dilution of CO2 in cyclohexane, the relative adsorption Γ

(C6H12)
CO2

increases with
increasing mole fraction of CO2 in the liquid phase x′CO2

, passes through a maximum
and decreases to zero at the critical point. The enrichment ECO2 , on the other hand, is
highest at infinite dilution of CO2 and monotonously decreases with increasing x′CO2

.

The detailed study of the system cyclohexane and CO2 that was carried out here shows
that interfacial properties of mixtures can be predicted well both by MD and DGT if
models are used that are suitably parameterized using pure component data and bulk
VLE mixture data. However, no mixture data on interfacial properties was needed for
the parameterization.

The results from this study support the findings from the chapters 3 and 5 on binary
Lennard-Jones model mixtures regarding the interfacial enrichment: the enrichment
decreases with increasing temperature and liquid phase concentration of the enriching



7.4 Conclusions 251

component. Furthermore, the considered system cyclohexane + CO2 exhibits a wide-
boiling phase behavior and has a relatively large enrichment – as found for the disper-
sively interacting model fluids. The behavior of the enrichment in solvent + supercritical
solvent systems is further discussed in chapter 9.
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8 Enrichment of Components at
Vapor-Liquid Interfaces in the
Systems Toluene + CO2 and
Ethanol + CO2

8.1 Introduction

In fluid separation processes, not only thermodynamic bulk but also interfacial proper-
ties play a crucial role. In separation technology, mass transport between phases is a key
factor for apparatus design. This transport is accounted for by models like the two-film
theory, assuming that the transport resistance in the interface is negligible. If, however,
low-boiling components like inert gases are present in the mixture, enrichment of these
components at the interface can occur. It is known that surfactants, which also show
enrichment at the interface, can reduce mass transfer rates [107, 109, 215, 579]. The
same might hold for the enrichment of other chemicals, provided that this enrichment
is high enough, cf. section 6. The present work compares results from different systems
of the type solvent + supercritical solute.

The enrichment of a component i at the interface is defined as

Ei =
max(ρi(z))
max (ρ′i,ρ′′i )

, (122)

where z is the spatial coordinate perpendicular to the interface, max(ρi(z)) is the max-
imum density of the low-boiling component in the density profile ρi(z) and max (ρ′i,ρ′′i )
the higher of the two bulk densities.

Recent studies from our group on the vapor-liquid interface of several real mixtures and
model fluids using theoretical methods (MD and DGT + EOS) yield consistent results
and reveal an important enrichment in some cases [50, 624, 635, 705]. Strong enrich-
ment is found at vapor-liquid interfaces in the systems in which one of the components is
supercritical. These results indicate that mixtures, which are typical for absorption pro-
cesses usually show an important enrichment, whereas this is not the case for mixtures
that are typically separated by distillation.
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In the present study, the enrichment obtained from molecular simulation and DGT +
EOS for different systems of the type solvent + supercritical solute are compared. Two
real mixtures and a model fluid mixture are considered:

I) toluene + carbon dioxide,

II) ethanol + carbon dioxide,

III) binary mixture of Lennard-Jones truncated and shifted (LJTS) fluids.

For describing the real fluids in the molecular simulations, force fields from previous work
of our group were used [278, 448, 593, 633]. In the density gradient theory approach,
the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) equation of state
[223] was used to model the real fluids and the PeTS (Perturbed truncated and shifted)
equation of state was used for describing the LJTS fluid [249, 635].

8.2 Modeling and Simulation

8.2.1 Molecular Simulations

Molecular dynamics simulations (MD) of equilibrated systems in which a vapor and a
liquid phase are in direct contact were carried out in the NVT ensemble with N = 16, 000
particles. The ls1 mardyn code [506] was used for the simulations, where the equations
of motion were solved with the leapfrog integrator with a time step of 1 fs. After an
equilibration of at least 500,000 time steps, production ran for at least 2,500,000 time
steps. Periodic boundary conditions were used. The simulation box contains a liquid
slab in the middle surrounded by two vapor phases on either sides. The temperature was
kept constant by velocity-scaling. The numbers of particles of the two components was
chosen in such a way that mole fraction of the low-boiling component in the liquid phase
varies between about x2 = 0.05 and x2 = 0.85 mol mol−1 to investigate the composition
dependence of the enrichment. The cut-off radius was 17.5 Å for the real fluids in I)
and II), while it was 2.5 σ for the LJTS fluids in III), cf. Refs. [50, 635, 705] for details.

The molecular models consist of Lennard-Jones sites (describing the dispersion and re-
pulsion between the particles) and eventually point multipoles (describing the polarity
of the molecule and hydrogen bonding between molecules). Unlike electrostatic interac-
tions, e.g. between charges and quadrupoles, were treated in a physically straightforward
way, using the laws of electrostatics. The molecular model of ethanol, carbon dioxide,
and toluene were taken from Refs. [278, 448, 593, 633].

The size parameters of the two components in the LJTS model mixture were the same,
i.e. σ11 = σ22, the ratio of the energy parameters was ε22/ε11 = 0.5, such that component
2 was the low-boiling component. The cut-off radius of the LJTS fluids was rc = 2.5σ.
For the representation of the results for the LJTS fluids, reduced variables are used that
are based on the size parameter σ and the energy parameter ε of the model [17].

For modeling interactions between unlike Lennard-Jones sites, the modified Lorentz-
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Berthelot combining rules were used:

σij =
σii + σjj

2
, (123)

εij = ξij
√
εiiεjj . (124)

The state-independent binary interaction parameter ξij has been adjusted to a single
experimental vapor pressure for the systems I) and II) resulting in ξEtOH,CO2 = 1.08 [705]
and ξtolouene,CO2 = 0.95 [50]. The binary interaction parameter for the LJTS mixture was
set to ξMD

LJTS = 1.0.

8.2.2 Density Gradient Theory

Density gradient theory describes the continuous change of density in inhomogeneous
systems, for example at vapor-liquid interfaces, see e.g. Refs. [82, 124]. Applying density
gradient theory requires an equation of state for the Helmholtz free energy A. The so-
called influence parameter κij describes the influence of the density gradients on the
thermodynamic properties, cf. Eq. (125). The basic idea of DGT is the development of
the free energy of an inhomogeneous system around the homogeneous equilibrium state
in the spatial derivative of the density, cf. Eq. (125). Usually, the series is truncated
after the square gradient term [456], which results in

A[ρ(z)] = S ∫
∞

−∞
[â0(ρ(z)) +

1

2
∑
j

∑
i

κij (
dρi
dz

)(dρj
dz

)]dz , (125)

for an inhomogeneous system with a planar interface. Eq. (125) expresses the free
energy as a functional of the density profiles ρi(z). Here, S is the surface area, â0 is the
local free energy per volume, and ρi is the molar density of component i. The interfacial
profiles were determined using the method of Ref. [456]. The pure component influence
parameter κii is usually fit to experimental surface tension data, e.g. Refs. [502, 503],
while a geometric mixing rule is applied for the binary influence parameters:

κij =
√
κiiκjj . (126)

The PC-SAFT equation of state [223] was used in the present work for the calculation
of the Helmholtz free energy of the real substances and the PeTS EOS for the truncated
and shifted Lennard-Jones fluids [249, 635]. The pure component parameters for PC-
SAFT were taken from [223] for toluene and carbon dioxide and from Ref. [224] for
ethanol. The parameters for the unlike interaction energy ξEOS

ij in the PC-SAFT EOS
were taken from Ref. [705] for the toluene + carbon dioxide mixture and from Ref. [50]
for the ethanol + carbon dioxide mixture. The unlike energy interaction parameters in
the PeTS EOS for the LJTS mixtures have the same value as the one used in the mixing
rule of the molecular model, i.e. ξEOS

ij = ξMD
ij . The influence parameters κii for carbon

dioxide, ethanol, toluene, and the LJTS fluid were taken from Refs. [50, 160, 705], and
Ref. [249], respectively.
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8.3 Results and Discussion

Figs. 94, 95, and 96 show results for the binary mixtures toluene + carbon dioxide
[705], ethanol + carbon dioxide [50], and the binary LJTS mixture [635]. Results for
several further isotherms for the systems toluene + carbon dioxide (as well as toluene
+ nitrogen) are provided in the electronic Supplementary Material [627, 632].

In Figs. 94, 95, and 96, panel (a) shows the phase behavior, an exemplary density profile
is shown in panel (b), and the enrichment of the low-boiling component is depicted as
a function of the liquid phase mole fraction of that component in panel (c). Figs. 94
and 95 show that the molecular simulation results are in excellent agreement with the
experimental data for the vapor-liquid equilibrium (panels a). The same holds for the
PC-SAFT EOS except for the data near the critical point. Fig. 96 (a) shows that
the vapor-liquid equilibrium of the LJTS mixture is described very well by the PeTS
EOS, although no adjustment of the binary interaction parameter was carried out (as
described above, that parameter was simply adopted from the molecular model).

The density profiles in Figs. 94 - 96 (b) reveal that a significant enrichment of the
low-boiling component occurs at the interface in all three mixtures. The density profiles
predicted by MD and DGT are in good agreement. This is remarkable, as the methods
are completely independent. The fact that the peak in the density of the low-boiling
component in the interfacial region is slightly broader for MD than for DGT is due to the
fluctuations that are present in MD but not in DGT. The composition dependence of the
enrichment of the low-boiling component is shown in Figs. 94 - 96 (c). In all systems,
the highest enrichment is observed for low concentrations of the low-boiling component.
It is about 2.5 for all systems. The results from MD and DGT agree well, although
DGT slightly overestimates the enrichment predicted by MD, which is probably again
due to the absence of fluctuations in DGT.
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Figure 94: Results for the system toluene + carbon dioxide at 353 K: (a) Phase be-
havior; empty symbols are experimental data [321, 474, 480, 489, 694] full
symbols are molecular simulation results [705], and the solid line is obtained
from PC-SAFT. (b) Density profiles for x′CO2

= 0.2 mol mol−1: solid lines are
obtained from DGT, symbols are MD results [705]. The black color cor-
responds to the total density, blue to the toluene density, and red to the
carbon dioxide density. (c) Enrichment of carbon dioxide at the interface;
solid line corresponds to DGT and symbols to MD results.

Figure 95: Results for the system ethanol + carbon dioxide at 333 K: (a) Phase behav-
ior; empty symbols are experimental data [597], full symbols are molecular
simulation results [50], and the solid line is obtained from PC-SAFT [50].
(b) Density profiles for x′CO2

= 0.3 mol mol−1: solid lines are obtained from
DGT, symbols are MD results [50]. The black color corresponds to the total
density, blue to the ethanol density, and red to the carbon dioxide density.
(c) Enrichment of carbon dioxide at the interface; solid line corresponds to
DGT and symbols to MD results.



258 8 Enrichment of Components at Vapor-Liquid Interfaces

Figure 96: Results for the binary LJTS mixture at T = 0.7Tc,1: (a) Phase behavior; full
symbols are molecular simulation results [635], and the solid line is obtained
from the PeTS EOS. (b) Density profiles for x′2 = 0.04 mol mol−1: solid lines
are obtained from DGT, symbols are MD results [635]. The black color
corresponds to the total density, blue to the component 1 density, and red
to the component 2 density. (c) Enrichment of component 2 at the interface;
solid line corresponds to DGT and symbols to MD results.

8.4 Conclusions

The observation made for model mixtures in chapter 3 and 5 also hold for real sub-
stance mixtures: significant enrichment is found in different systems of the type solvent
+ supercritical solute. The results show that enrichment is always observed for the
low-boiling component but not for the high-boiling component. Interestingly, the be-
havior of the enrichment in the three discussed systems is very similar – despite the
fact that the molecular interactions in the three systems differ significantly: system I)
consists of a dispersively interacting aromatic hydrocarbon as solvent and a quadrupolar
solute; system II) consists of an associating small solvent molecule and a quadrupolar
solvent; and system III) consists of a purely dispersively interacting solvent and solute.
Nevertheless, all three mixtures likewise yield an enrichment in the range 1 < E2 < 2.5.
Furthermore, in all three cases, the enrichment decreases with increasing mole fraction
of the low-boiling component in the liquid phase.

Molecular simulation and density gradient theory lead to consistent results for phase
equilibria and interfacial behavior. The enrichment predicted by MD and DGT agrees
well for all three investigated mixtures. The results show that enrichment of low-boiling
components is important at low concentrations of that component in the liquid phase,
i.e. for conditions that are typically encountered in absorption fluid separation processes.
It is a hypothesis for future work, that this influences mass transfer in absorption and
should be accounted for explicitly.

The observations from this study are generalized in chapter 9 by establishing a short-cut
method to estimate the enrichment based on phase equilibrium data solely.
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9 Enrichment at Vapor-Liquid
Interfaces of Mixtures: Establishing
a Link between Nanoscopic and
Macroscopic Properties

9.1 Introduction

Predictions of the enrichment with theoretical methods is a complex task: for molecular
simulations, suitable force fields must be available and time-consuming direct simula-
tions of the interface must be carried out; similarly DGT requires a suitable equation
of state together with a parametrization of the gradient term and a DGT code, which
is presently not standard in process simulators. Hence, a reliable short-cut method for
the estimation of the enrichment would be desirable.

In this study, we review the available literature data on component density profiles at
vapor-liquid interfaces, give an account on central points of the existing knowledge on
the enrichment, and propose a simple model for the prediction of the enrichment from
vapor-liquid equilibrium properties. The literature data is evaluated and the available
data on the enrichment is collected in a database that is provided in an electronic form
in the Supplementary Material [627]. A comprehensive dataset on the enrichment at
vapor-liquid interfaces in simple model mixtures (cf. chapter 3 [629, 630, 635]) was
used for the training of the model, which is then tested on all available enrichment
data. The predictions from that model are practically within the uncertainties of the
computations using molecular thermodynamics, which provides a short-cut method to
reliably estimate the enrichment from macroscopic properties instead of using complex
theoretical methods such as molecular simulations or DGT.

The present work is limited to the investigation of vapor-liquid interfaces of binary
mixtures of molecular fluids. Related work on electrolyte solutions and ionic liquids
[96, 287, 290–292, 499, 523, 524], on the behavior of surfactants at interfaces [239, 322,
387, 388, 464, 465], as well as on the enrichment of components at liquid-liquid interfaces
[79, 115, 161, 196, 347, 349, 488, 629] is not covered. Since theoretical methods for the
prediction of component density profiles, namely molecular simulation, DGT, and DFT
have been reviewed in detail elsewhere [167, 168, 209, 357, 573] their description is not
subject of this work.

This study is organized as follows: as different terminologies are used in the literature,
first, the studied properties are defined. Then, the literature data on the enrichment
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of components at vapor-liquid interfaces in binary mixtures is reviewed and discussed.
Subsequently, the development and parametrization of the empirical model for the pre-
diction of the enrichment from macroscopic properties is presented, including a brief
discussion of the choice of descriptors. Then, the empirical model is tested on available
enrichment data from the literature. Finally, conclusions are drawn and options for
future developments in the field are discussed.

9.2 Nanoscopic Interfacial Properties: Enrichment
and Relative Adsorption

To quantify the non-monotonicity of component density profiles, Becker et al. [50]
introduced the enrichment Ei = max(ρi(z))

max(ρ′i,ρ
′′
i )

of a component i at the interface, where ρi(z)
are the component number density profiles across the vapor-liquid interface, z indicates
the direction normal to a (nanoscopically) planar interface, and ρ′i and ρ′′i indicate the
saturated liquid and vapor densities of component i, respectively. Hence, the enrichment
Ei is a dimensionless property and can be therefore favorably used to study both model
fluid mixtures as well as real substance mixtures.

The focus of this study is on the investigation of the non-monotonicity of component
density profiles ρi(z) at vapor-liquid interfaces of mixtures. Two similar effects are not
covered: the oscillatory layering structure at fluid interfaces (a structural effect which
is also observed for pure components, cf. section 2.4) [169, 170, 204, 637] and the non-
monotonic behavior of the total density which is sometimes observed at liquid-liquid
and fluid-fluid interfaces [74, 141, 199, 204, 415, 490, 629, 669] (cf. section 3.6). The
amplitude of the enrichment, i.e. the peak height of component density profiles ρi(z) at
vapor-liquid interfaces, is usually significantly larger than the amplitude of the peaks in
the aforementioned phenomena. But, it should be noted that the enrichment and the
two aforementioned phenomena may be present simultaneously in some situations, cf.
Ref. [714].

In this study, vapor-liquid interfaces of binary mixtures are discussed; the low-boiling
component is denoted by ’2’ and the high-boiling component by ’1’. By definition, cf. Eq.
(122), the enrichment Ei has values equal to or larger than unity. In binary mixtures, an
enrichment Ei > 1 is only observed for the low-boiling component 2, cf. sections 3.3, 3.4,
3.6, 5.5, 7.3, and 8.3. At least, no contrary evidence has been reported yet to the best
of our knowledge. In the case of multicomponent mixtures, a simultaneous enrichment
has been reported for several low-boiling components [78, 256, 404, 466, 467, 560, 705].

Fig. 97 shows snapshots of two exemplary mixtures with the corresponding density
profiles of component 2: the mixture that is depicted in the top panel of Fig. 97
exhibits an enrichment of the low-boiling component at the vapor-liquid interface, while
no enrichment is observed for the mixture shown in the lower panel.

Besides the enrichment E2, also the relative adsorption Γ
(1)
2 of a low-boiling component

2 with respect to component 1 (blue shaded area in Fig. 97) characterizes the surface
excess. Γ

(1)
2 quantifies the number of adsorbed molecules per unit area at the interface,

as described in more detail in section 3.2.5 and 7.2. The relative adsorption Γ
(1)
2 can be

calculated from macroscopic properties and the nanoscopic density profiles ρi(z) [193].
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Figure 97: Schemes of vapor-liquid interfaces of two exemplary mixtures. The particles
of the high-boiling component 1 are shown in red, those of the low-boiling
component 2 in blue. Top: component 2 exhibits an enrichment E2 > 1 and
a relative adsorption Γ

(1)
2 > 0; Bottom: component 2 exhibits no enrichment

E2 = 1 but a relative adsorption Γ
(1)
2 > 0. The scheme is based on simulation

screenshots from the simulation data from mixture G and A, respectively,
cf. section 3.6. For the visualization, the distance of the particles from the
image plane is indicated by their transparency.

The relative adsorption Γ
(1)
2 can be determined experimentally – at least indirectly

[133, 573]: the Gibbs adsorption equation provides a direct link between macroscopic
properties and the relative adsorption, cf. chapter 7. The relative adsorption obtained
from that macroscopic route and from its nanoscopic definition, i.e. the integral under
the density profiles (cf. Fig. 97), are usually found to be in good agreement [16, 25,
33, 34, 50, 116, 354, 361, 441, 445, 483, 522, 624, 659, 692]. This indicates that the
underlying density profiles (including the contribution of the enrichment to Γ

(1)
2 , cf.

Fig. 97 - top) predicted from theoretical methods are in agreement with the reality.

Comparing the enrichment E2 and the relative adsorption Γ
(1)
2 , it should be noted that

only the latter is thermodynamically rigorously defined, in a sense that it can be derived
from thermodynamic potentials (see section 7.2), whereas the enrichment was introduced
as a simple geometric measure to characterize the surface excess regarding the non-
monotonicity of the density profiles.

Even though both Γ
(1)
2 and E2 characterize the surface excess of the low-boiling compo-

nent at vapor-liquid interfaces, both properties show important differences, cf. sections
3.3, 3.4, and 7.3. For example for systems solvent 1 + supercritical gas 2: starting at
infinite dilution of component 2, the relative adsorption Γ

(1)
2 increases with increasing

mole fraction of component 2 in the liquid phase x′2, passes through a maximum and
decreases to zero at the critical point of the mixture. The enrichment E2 in such mix-
tures, on the other hand, is highest at infinite dilution of component 2 and decreases
monotonously with increasing x′2.
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Furthermore, it is not unusual that mixtures exhibit a positive relative adsorption
Γ
(1)
2 > 0 but no enrichment, i.e. E2 = 1, cf. the results from section 3.3 and 3.6 [629, 635].

Such a case is visualized in Fig. 97 - bottom. Both component density profiles exhibit
a monotonic transition across the interface, but the profiles are slightly shifted with
regard to one another in z-direction, which causes a positive relative adsorption Γ

(1)
2 > 0

– without an enrichment. However, an enrichment E2 > 1 usually favors high relative
adsorption Γ

(1)
2 > 0, cf. Fig. 97 - top. Hence, both the relative adsorption Γ

(1)
2 and the

enrichment E2 characterize the surface excess and are closely linked, but do not express
the same information.

9.3 Review of Literature Data on the Enrichment at
Vapor-Liquid Interfaces and Database

There is a large body of studies in the literature (approximately 100 publications) re-
porting on component density profiles ρi(z) at vapor-liquid interfaces of binary mix-
tures, of which Table 25 gives an overview. The density profiles ρi(z) were obtained
in these studies from different theoretical methods (molecular simulations, DGT, DFT
or a combination of those). Since data on ternary and multicomponent mixtures have
been reported relatively scarcely in the literature [78, 190, 196, 255, 256, 312, 342, 384,
404, 456, 457, 466, 467, 560, 728], they are not listed in Table 25.

Studies on the prediction of interfacial properties of mixtures by theoretical methods
mostly focus on the prediction of the surface tension, but also often report density
profiles and the relative adsorption Γ

(1)
2 . In most cases, a qualitative description and

discussion of the observations regarding the monotonicity of the component density
profiles ρi(z) is given in the publications. But those findings are rarely put into relation
with other works and to the phase behavior of the considered mixture.

In most publications on vapor-liquid interfacial properties, cf. Table 25, the density
profiles are unfortunately only reported for a small subset of the performed simulations
(the surface tension is the main observable of interest). Hence, a large number of primary
data remained unpublished in this field. The vast majority of studies (cf. Table 25)
report the density profiles ρi(z) only graphically. The enrichment E2 according Eq. (122)
was rarely computed and reported. For the density profiles, unfortunately no consistent
form for plotting the data was established, i.e. sometimes only one of the component
density profiles was reported and sometimes all. Electronic data of density profiles was
practically never reported.

From the density profiles ρ2(z) reported in the literature, cf. Table 25, the enrichment
E2 was calculated in the present work. If, as in most cases, ρ2(z) was only reported
graphically in the publication, the data were digitalized [563] and the maximum of the
low-boiling component’s density profile as well as the larger bulk density were metered
from the plots which introduces a considerable uncertainty. To estimate the uncertainty
of this ’measuring’ process, the digitalization and evaluation was repeated five times and
the standard deviation was taken as a measure of the uncertainty due to the digitalization
procedure. The average uncertainty of the results for E2 is approximately δE2 = ±0.1.
The digitalized data E2(T ,x′2, ∆ρ2) is reported in an electronic spread sheet in the
Supplementary Material [627] where also more details on the procedure are given.
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Abbreviations used in Table 25:
DFT density functional theory
DGT density gradient theory
EOS equation of state
LFT lattice fluid theory [587]
LJ Lennard-Jones fluid EOS [302–304, 368, 639]
MC Monte Carlo simulation [17, 451]
MD molecular dynamics simulation [17]

PC-SAFT perturbed-chain statistical associating
fluid theory EOS [223, 224]

PCP-SAFT perturbed-chain polar statistical associating
fluid theory EOS [221, 225, 684]

PeTS perturbed truncated shifted EOS [249, 635]
PR Peng-Robinson EOS [521]

QCHB quasi-chemical hydrogen bonding [517]
SAFT statistical associating fluid theory EOS [100–102]

CK-SAFT Chen-Kreglewski SAFT EOS [277, 724]
SAFT-VR Mie EOS SAFT variable range Mie potential EOS [353]

SAFT-γ Mie group contribution SAFT-VR Mie EOS version [518]
SAFT VR SAFT variable range EOS [188, 212]
soft SAFT soft SAFT EOS [57, 58]

SRK Soave-Redlich-Kwong EOS [558, 614]
VDW van der Waals EOS

Studies reporting vapor-liquid interfacial properties focus on a large variety of differ-
ent systems and applications, such as enhanced oil recovery [116, 198, 386, 389, 445,
483, 500, 508, 583], natural gas [77, 319, 372, 391, 453, 459, 486], CO2 absorption and
carbon-capture and storage (CCS) [56, 105, 117, 354, 373, 391, 445, 493, 504], refrigerants
[184, 318, 374, 679], evaporation and nucleation [328, 729], environmental science [172,
276, 478], process and chemical engineering [16, 50, 153, 187, 336, 373, 589, 624, 634],
polymers [533, 604], fundamental physics [191, 192, 362, 484, 630, 714], and the develop-
ment of computational methods and algorithms [36, 72, 86, 91, 205, 328, 342, 441, 477].
Hence, they were published in a large variety of different journals. Due to this hetero-
geneity of applications and motivations, there is no dense citation network present in
this field. It was one goal of this study to establish the corresponding links.

Strong enrichment at vapor-liquid interfaces is usually found in systems in which one
of the components is supercritical. Furthermore, strong enrichment is usually found at
low temperatures and low concentrations of the low-boiling component. These results
indicate that mixtures that are typical for absorption processes for fluid separation
usually show an important enrichment, whereas the enrichment is less important for
mixtures that are typically separated by distillation. It is well-known that absorption
and distillation processes are generally designed differently, even though the columns
that are used in both processes are similar: while rate-based models are preferred for
absorption, equilibrium stage models are the standard choice for distillation. These
differences might be related to the presence of the enrichment in the absorption systems.
Rate-based models do not account explicitly for the influence of the enrichment, but they
can do this indirectly as a result of their parametrization. Also, important enrichment
effects are observed at many interfaces of mixtures that are important in environmental
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science, like water + CO2 and water + acid gas systems [56, 78, 172, 276, 354, 419, 478].

Density profiles at vapor-liquid interfaces have been investigated for both model fluids
[149, 192–195, 200, 361, 362, 412, 441, 446, 551, 552, 585, 586, 630, 635] (very often
the Lennard-Jones fluid) and models of real substances [50, 89, 121, 159, 173, 305, 328,
354, 404, 444, 453, 456, 458, 459, 483, 501, 504, 533]. These groups differ mainly in the
way the molecular model is used: model fluids are usually used to study the effect of
a variation of a molecular parameter on a given observable (cf. chapter 3), whereby a
generic information is obtained, whereas models of real substances are used to study
properties of a given mixture (cf. chapter 7), which causes the findings to be restricted
to that case.

The influence of the molecular parameters on density profiles and other interfacial prop-
erties has been studied several times in the literature. Results are available for the influ-
ence of the size and energy parameters of the pure components [79, 194, 195, 200, 362,
446, 551, 552, 628–630, 635, 635], the cross interactions [194, 195, 200, 362, 446, 628–630,
635, 635], and the chain length of the components [149, 328, 390, 390, 391, 414, 483, 583].
Some studies also investigated the influence of associating components [50, 56, 354, 504]
on vapor-liquid interfacial properties. Asymmetric mixtures have caused special interest
[56, 173, 354, 373, 391, 483, 501, 504, 583] since a particularly large enrichment is found
in such cases.

The most frequently studied systems are (H2O + CO2), (H2O + alcohols), as well as
(CO2 or N2 + alkanes), and Lennard-Jones mixtures (cf. Table 25). The latter were
mostly used for systematic studies of the influence of molecular parameters on different
interfacial and bulk properties. Also, most of the early simulation studies on interfacial
properties [192, 194, 195, 361, 362] were performed with Lennard-Jones fluids. Mixtures
of simple fluids (argon, neon, krypton, methane etc.) can be modeled reasonably well
as Lennard-Jones mixtures. Hence, such data can be considered real substance data
or model fluid data. Table 25 reports such data as it is referred to in the respective
publication.

Also the influence of the temperature [50, 362, 624, 629] and the composition [634, 635]
on the interfacial enrichment has been investigated systematically in the literature.
Overall, it was found that an enrichment is favored by asymmetric molecular inter-
actions, large differences in the volatility of the pure components (i.e. wide-boiling
phase behavior), low concentrations of the low-boiling components, and low temper-
atures [50, 56, 379, 459, 483, 492, 504, 583, 630, 634, 635]. In most cases, starting at
infinite dilution of component 2, the enrichment E2 was found to decrease monotonically
with increasing concentration of the low-boiling component 2 at constant temperature
to converge to unity either at a critical point, an azeotropic point, or the high-boiling
pure component vapor pressure (depending on the phase behavior).

Furthermore, two types of enrichment behavior have been reported for wide-boiling mix-
tures (cf. section 3.3 and 3.4) [630, 635] depending on the sign of the density difference
of component 2 ∆ρ2 = ρ′2 − ρ′′2 : mixtures with ∆ρ2 > 0 usually yield large enrichment,
whereas mixtures with ∆ρ2 < 0 usually yield small enrichment. For example solvent
+ nitrogen systems usually yield ∆ρ2 < 0, which goes in hand with small enrichment,
whereas solvent + carbon dioxide or solvent + methane systems usually have ∆ρ2 > 0,
which goes in hand with large enrichment. This differentiation has also been confirmed
for different types of Lennard-Jones model mixtures, cf. section 3.4 [630].
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The results for the enrichment obtained from the literature data lie almost exclusively
in the range of 1 < E2 < 10, whereat the vast majority of data lies in the range 1 < E2 < 3.
On the other hand, enrichment data in the range 6 < E2 < 10 is rare. Fig. 98 shows a
corresponding histogram.

1 2 3 4 5 6 7 8 9 10

1

10

100

1000

 

 

N

E2

Figure 98: Histogram of the data on the enrichment E2 obtained from the literature,
cf. Table 25. N is the number of data points in the indicated E2 interval.
A logarithmic scale is used for N .

Particularly large enrichment is often observed for mixtures that exhibit a three-phase
vapor-liquid-liquid-equilibrium (VLLE). The enrichment at (two-phase) vapor-liquid in-
terfaces is related to a wetting transition in the vicinity of a three-phase VLLE (cf.
section 3.6): approaching the VLLE line through a VL two-phase region, the enrich-
ment increases and can be understood as a precursor of the second liquid phase. The
enrichment at two-phase vapor-liquid interfaces approaching a VLL three-phase equi-
librium line forms a layer that can be considered as a pre-wetting layer. This layer
has similar thermodynamic properties as the second liquid phase L2 that appears at
the three-phase line. Nevertheless, enrichment E2 > 1 at vapor-liquid interfaces in such
systems is also found at thermodynamic conditions (temperature and pressure) far away
from the three-phase line. Furthermore, an enrichment has also been reported for many
mixtures that do not exhibit a miscibility gap and a VLLE line.

It has been shown, that the enrichment exhibits a continuous transition between dif-
ferent types of systems at constant reduced temperature and liquid phase composition.
Systematic studies on Lennard-Jones model mixtures (cf. chapter 3) [630, 635] recently
showed that ideal mixtures (in the sense of Raoult’s law) and high-boiling azeotropic
mixtures exhibit no enrichment, whereas for low-boiling azeotropic mixtures, a signif-
icant enrichment is found. This is in line with findings for real substance mixtures
reported in the literature [159, 194, 589, 635]. Furthermore, it was found that the en-
riching component changes at the azeotropic point [589]. Hence, in each azeotropic
branch, the respective low-boiling component exhibits an enrichment at the interface.
Nevertheless, enrichment data on azeotropic mixtures is relatively scarce in the litera-
ture.

The number of theoretical studies of vapor-liquid interfaces has grown significantly in
the last decade, which is probably due to the fact that MD and MC studies of direct
VLE simulations, where the vapor and the liquid phase coexist in a simulation box,
became computationally readily affordable. Approximately 60% of the available studies
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reporting vapor-liquid density profile data of binary mixtures have been published in
the last ten years, cf. Table 25.

Most studies on density profiles of vapor-liquid interfaces employ either molecular sim-
ulations, i.e. molecular dynamics or Monte Carlo simulations using classical force fields
[157, 633], or DGT in combination with an EOS. Approximately half of the studies re-
porting vapor-liquid interfacial density profiles employ density gradient theory in com-
bination with an equation of state. Not all EOS are suited for such studies. An essential
prerequisite is that they exhibit only a single van der Waals loop in the two-phase region
[572], like cubic EOS or SAFT type EOS [100, 226, 249, 482, 619, 623]. Density func-
tional theory (DFT) was only applied in few cases, cf. Table 25. As in the present work
(cf. chapters 3, 5, 7, and 8), in some studies from the literature two methods were em-
ployed for a given mixture – usually molecular simulations and DGT. Even though both
methods were found to yield good qualitative agreement for the predicted enrichment in
practically all cases, significant quantitative differences have been reported many times
[50, 116, 198, 445, 446, 453, 459, 483, 624, 628, 635, 657, 705]. For a given mixture,
the reported absolute deviation for the predicted enrichment among different methods
mostly lies in the range δE2 = 0.1 .. 1.

Systematic deviations between molecular simulations and DGT results for the enrich-
ment have been observed several times: for low E2 values, molecular simulations typi-
cally yield larger enrichment than DGT, whereas for high E2 values, the DGT results
mostly overestimate the MD results for the enrichment [50, 116, 205, 361, 362, 445, 446,
453, 459, 483, 624, 629, 705].

Assessing these deviations between the results from molecular simulations and DGT,
several sources of error and uncertainties should be considered: leaving aside the problem
of the topic of the reproducibility of molecular simulations results [3, 228, 392, 590, 640],
the underlying pure substance models (EOS and force field) have to be parametrized
adequately to yield conformal representations of the VLE, which is not trivial even
for the most simple fluids, cf. chapter 3 [639]. Furthermore, molecular simulations and
DGT have some fundamental differences, e.g. fluctuations are present in the MD density
profiles ρi(z) but not in the corresponding DGT results, cf. chapters 2 - 5 for a detailed
discussion.

For the sake of completeness, we briefly point out further interesting aspects related
to the enrichment that have been studied in the literature: the peak position and the
shape of the peak was found to depend on the system and varies with temperature and
composition such that the position of the peak can either be on the liquid or the vapor
side of the interface [624, 629, 635] (with respect to the center of the interface defined
as ρcentre = 0.5 (ρ′ + ρ′′)). Furthermore, the interfacial thickness, the enrichment, and
the relative adsorption have been examined simultaneously in some cases as these three
properties comprehensively characterize the structure of an interface [624, 629]. Long-
range interactions were found to have a minor influence on the enrichment in simple
fluid mixtures [628]. Also the pressure tensor across vapor-liquid interfaces of mixtures
was measured by several authors [56, 152, 173, 361, 412, 478, 492]. The pressure profiles
do not exhibit additional oscillations in cases of high E2 compared to cases with low E2.
Moreover, the orientation of enriching species at the interface [172, 276, 292, 523] and the
details on the distribution of functional groups at the interface [205, 523, 524, 584] has
been investigated. In several cases, a preferential orientation of low-boiling components
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with respect to the interface was observed [172, 276, 584], compared to a stochastic
orientation in the bulk phases.

9.4 Enrichment Model and Parametrization

9.4.1 Dataset Used for the Parametrization

The enrichment database compiled from literature data in the present work (cf. Ta-
ble 25) was split into two datasets: one for the training of the empirical model and one
for the testing. For the training of the empirical enrichment model, the comprehensive
dataset on binary Lennard-Jones mixtures (cf. chapter 3) was used [629, 630, 635]. The
test-dataset comprises the remaining enrichment data from the literature, cf. Table 25.

The training-dataset comprises a large variety of mixture types and thermodynamic
conditions (temperature and liquid phase composition). An overview of the Lennard-
Jones mixtures comprised in the training-dataset [629, 630, 635] is given in Fig. 99, in
which the molecular interaction parameters are depicted. For all mixtures, the high-
boiling component 1 was the same and both components have the same size parameter σ
and mass M . The mixtures differ in the dispersion energy of the low-boiling component
ε2 and the parameter ξ that is used in the modified Berthelot combination rule for
describing the cross interaction dispersion energy ε12 = ξ

√
ε1ε2. Values of ξ > 1 indicate

an increased cross affinity of the two components and ξ < 1 a decreased cross affinity. A
selection of the resulting isothermal phase diagrams is given in Fig. 31.

Fig. 100 shows the results for the enrichment obtained in these systematic studies
[629, 630, 635]. The obtained enrichment is plotted as a function of the liquid phase
concentration for the data from Refs. [629, 635] (panels a) - d) and as a function of the
partition coefficient for the data from Ref. [630] (panel e).

The training-dataset thereby contains enrichment data of 90 Lennard-Jones systems at
only one temperature and liquid phase composition (x′2 = 0.05 mol mol−1), six systems at
one temperature but the entire composition range, and two systems at five temperatures
in the entire composition range. All three studies (cf. chapter 3) [629, 630, 635] were
carried out using both MD and DGT. For the parametrization of the enrichment model,
only the MD results reported in chapter 3 were used. The training-dataset covers a
wide range of types of phase behavior. Furthermore, it contains data for a selection of
mixtures in the temperature range between the triple point temperature and the critical
temperature of the high-boiling component and the entire concentration range where
vapor-liquid equilibria exist in these systems. In total, the training-dataset consists of
338 data points.

For all studied mixtures in the training-dataset, the enrichment E2 predicted by MD
is largest at infinite dilution of the low-boiling component and monotonically decreases
with increasing x′2. The enrichment increases with decreasing temperature, cf. Fig. 100
c) and d). The enrichment data at constant temperature and liquid phase concentra-
tion (x′2 = 0.05 mol mol−1) plotted as a function of the partition coefficient K2 = x′′2/x′2
(Fig. 100 e) shows an interesting behavior: all data points collapse to a single curve for
values of K2 of up to about 12. This is not completely surprising, as in section 3.5, a
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Figure 99: Overview of the binary Lennard-Jones mixtures that were used for the
training of the empirical enrichment model (cf. chapter 3). Component 1
was the same for all mixtures. ε2/ε1 denotes the ratio of the two compo-
nents’ dispersion energy and ξ the cross interaction parameter used in the
modified Berthelot combination rule. The particle size σ was the same
for both components in all cases. Mixtures that are indicated by cir-
cles were studied at x′2 = 0.05 mol mol−1 and T /Tc,1 = 0.7, cf. section 3.4
[630]. Mixtures indicated by triangles were studied in the entire compo-
sition range at T /Tc,1 = 0.7, cf. section 3.3 [635]. Mixtures indicated by
crosses were studied in the entire composition range and at the tempera-
tures T /Tc,1 = 0.6, 0.65, 0.7, 0.75, 0.8, cf. section 3.6 [629].

general monovariate dependency of the interfacial properties on the internal energy of
the liquid phase was found. However, at K2 ≈ 12 a second branch appears in the plot
shown in Fig. 100 e). The existence of this second branch is related to the difference of
the partial densities of component 2 in the two phases ∆ρ2 = ρ′′2 − ρ′2. For most systems,
the partial density difference ∆ρ2 is positive, i.e. ρ2 in the liquid phase is larger than ρ2

in the vapor phase (which is related to the gas solubility, cf. section 3.4 [630]). However,
for some systems, the inverse is true, i.e. ∆ρ2 is negative. Both types of systems show
large values of K2 (the limit is about K2 = 12). As shown in section 3.4 [630], the sign
of ∆ρ2 has important influence on the enrichment. As a consequence, for K2 > 12 a
distinction is necessary between systems with ∆ρ2 > 0 and systems with ∆ρ2 < 0. The
branch found for ∆ρ2 > 0 in this range of K2 is a simple extension of the curve found
for lower K2, whereas on the other branch (∆ρ2 < 0), distinctly smaller values of E2 are
found. While the database is dense for low K2, not as many data points are currently
available at high K2 in the training-dataset, cf. Fig. 100.

9.4.2 Empirical Enrichment Model

As described above, the enrichment E2 is considered here as a function of T and x′2 for
a given mixture. The aim was to establish a correlation of E2 with readily available
macroscopic data on the VLE of the mixture. Correlations in dimensionless variables
are preferred. Many options are available for establishing such correlations and we have
tested a number of them in preliminary work. For brevity, we will not describe all these
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Figure 100: Data on the enrichment obtained from molecular simulations of Lennard-
Jones mixtures (cf. chapter 3) [629, 630, 635] (symbols) that was used for
training of the empirical model (lines). The plots (a) and (b) show the
enrichment observed in six different Lennard-Jones mixtures at T /Tc,1 =
0.7 as a function of the liquid phase concentration; (c) and (d) show the
enrichment observed in two Lennard-Jones mixtures at five temperatures
as a function of the liquid phase concentration; (e) shows the enrichment
observed in 96 different Lennard-Jones mixtures at T /Tc,1 = 0.7 and x′2 =
0.05 mol mol−1 as a function of the partition coefficient K2 = x′′2/x′2. For
all mixtures, both particles have the same size σ1 = σ2.
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tests and present here only the final result. Our only claim is the usefulness of the
correlation, i.e. a good description of the available E2 data, not any kind of optimality.
A clear indication of the usefulness is the fact that the simple correlation presented here
describes the available data on E2 in most cases within the uncertainty of the prediction
of E2 from different methods.

The proposed correlation describes E2 as a product of two terms:

E2 = α0 + fa(x′2) fb(VLE) , (127)

and an empirical offset parameter α0. The term fa describes the concentration depen-
dence of E2 in a generalized way, the term fb includes the information on the VLE of the
considered binary system. Preliminary tests showed that it is not necessary to introduce
a universal function of the temperature. The influence of temperature is accounted for
in the term fb. In the following, empirical parameters employed in the functions fa and
fb are labeled as αi.

Following the findings shown in Figure 100 e), the VLE of a mixture is characterized
here by the partition coefficient of component 2, i.e. K2 = x′′2/x′2. This is convenient, as
in all studies of interfacial properties in the literature, the partition coefficient K2 can
be calculated easily from the available data. Furthermore, the required data on x′′2 and
x′2 is readily available in databases for a large number of mixtures of practical relevance.

The partition coefficient K2 depends both on the temperature and composition. For
characterizing the studied systems, the partition coefficient at infinite dilution would
have been a convenient choice, since E2 was found in all cases to be largest at infinite
dilution and monotonically decrease with increasing x′2 (see chapter 3 for a detailed
discussion). But since MD simulations can only be carried out at finite concentrations
and based on an analysis of the available data and preliminary tests, it was decided to
use the partition coefficient at the liquid phase concentration of x′2 = 0.05 mol mol−1

K5%
2 = x′′2

x′2 ≡ 0.05 mol mol−1 . (128)

For a given mixture, the value of K5%
2 depends on the temperature. This is how the

temperature is accounted for in the model.

The dependency of the enrichment on the liquid phase concentration is described by a
simple monotonically decaying universal function

fa(x′2) = α1 + ln( 1

x′2 + α2

) − α2

x′2 + α2

. (129)

The function fa has a finite value at x′2 = 0 and monotonically decreases with a convex
curvature to zero at x′2 = 0. The outlined model does not explicitly take three-phase
VLLE and critical points into account as termination points for E2 isotherms, cf. chap-
ter 3. It would be desirable to consider these end points in the model, but there is
presently not enough data to do this in a meaningful way. If more data were available,
this is expected to lead to further improvements of the model.

As discussed above, for mixtures with large K2, the influence of the density difference of
the low-boiling component ∆ρ2 = ρ′2−ρ′′2 must be taken into account. This is incorporated
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in the empirical model by defining

fb = α3 gI(K5%
2 ) δ(∆ρ̃2) + α4 gII(K5%

2 ) (1 − δ(∆ρ̃2)) , (130)

where δ is a smoothed step function taking values between 0 and 1 of the form

δ (∆ρ̃2) =
tanh (100 ⋅∆ρ̃2) + 1

2
. (131)

In Eq. (131), ∆ρ̃2 is the reduced density difference with respect to the critical density
of the high-boiling component, i.e. ∆ρ̃2 = ∆ρ2/ρc,1. Hence, also ∆ρ̃2 is a dimensionless
variable. The reduced density difference ∆ρ̃2 is only used for the decision function
δ(∆ρ̃2) to navigate between the terms gI(K5%

2 ) and gII(K5%
2 ) depending on the sign of

∆ρ̃2. The value of ∆ρ̃2 can easily be obtained from saturated density and concentrations
data, which is readily available for a large number of systems [1, 381].

The two functions for the modeling of the enrichment dependency on the partition
coefficient gI and gII are defined as

gI(K5%
2 ) = ( exp (tanh (α5 ⋅K5%

2 − α6)) )
α7

, (132)

gII(K5%
2 ) = α8 + exp

⎛
⎝
α9 ⋅ (

K5%
2 − α10

α11

)
2⎞
⎠

. (133)

The equations (127) - (133) define an empirical enrichment model as a function

E2 = E2(x′2, K5%
2 , ∆ρ̃2) . (134)

All three variables are dimensionless macroscopic VLE properties that are easily accessi-
ble by experiment and available in databases for a large number of systems [1, 381]. The
values for K5%

2 and ∆ρ̃2 can be determined conveniently for both the training-dataset
and the test-dataset. For the training-dataset, all required numeric values were reported
in the respective publications. The determination of K5%

2 and ∆ρ̃2 for the test-dataset
is discussed in the next section.

The empirical enrichment model has 12 adjustable parameters αi with i = 0 - 11, which
were fitted to the training-dataset, i.e. the MD Lennard-Jones mixture data from chap-
ter 3 [629, 630, 635]. The parametrization was carried out by minimizing the absolute
average deviation

AADE2 = 1/N
N

∑
j=1

∣∆E2,j ∣
Eref

2,j

, (135)

where N is the number of enrichment data points in the training-dataset, Eref
2,j is the

reference enrichment from the training-dataset [629, 630, 635], and ∆E2 is the abso-
lute deviation between the reference value and the value predicted by the empirical
enrichment model ∆E2,j = Eref

2,j − Emodel
2,j . Table 26 reports the obtained values for the

parameters αi.

The model described above is empirical. Experience tells us that the limits of applica-
bility of such models are related to the range of states covered by the training-dataset.
In our case the considered VLE regions ended always in the boiling point of the high-
boiling component 1, i.e. infinite dilution of component 2, and the temperatures were
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Table 26: Parameters of the empirical enrichment model Eq. (127).

i αi i αi

0 0.9594 6 0.5521
1 0.0199 7 2.7099
2 0.01 8 0.4706
3 0.0811 9 -0.05
4 0.3414 10 10.85
5 0.1345 11 0.8

between the triple point temperature and the critical temperature of the high-boiling
component 1. The upper limit of the concentration of the low-boiling component 2 was
determined by the occurrence of a critical point or a three-phase line. For more details
see section 3.6. Furthermore, reference data was available for 0 < K5%

2 < 15. It is noted
that neither the training-dataset nor the test-dataset contain data points with ∆ρ̃2 < 0
and K5%

2 < 12. Hence, the empirical enrichment model is not valid in that region. We
therefore assume that, if such data exist at all, they are rare. But should they exist, the
model would probably not describe them well.

Fig. 101 depicts the enrichment determined from the empirical model as a function of
the liquid phase concentration x′2 and the partition coefficient K5%

2 – also extrapolating
into the region K5%

2 > 15.

Figure 101: Results of the empirical enrichment model E2 = E2(x′2, K5%
2 ). Results

are shown for ∆ρ̃2 = 0.1 and −0.1. The color coding references to the
magnitude of E2. The branches of the graph for K5%

2 > 12 correspond to
∆ρ̃2 < 0 (low E2) and ∆ρ̃2 > 0 (high E2), cf. Eq. (130).

The plot shown in Fig. 101 was obtained for ∆ρ̃2 = 0.1 or ∆ρ̃2 = −0.1, respectively. Due
to the character of the Eq. (127) - (133), other choices of ∆ρ̃2 yield similar results as
long as the sign of ∆ρ̃2 is the same. Only for ∆ρ̃2 values with a very small absolute value
∣∆ρ̃2∣ < 0.01, there is a smooth transition between the branches, which is numerically
convenient.
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For K5%
2 < 12 and ∆ρ̃2 > 0 (the region where only a single branch exists), the model

converges to unity with decreasing K5%
2 at infinite dilution of component 2. For the

composition dependency, the model decreases monotonically to approximately unity for
all K5%

2 and ∆ρ̃2 with increasing x′2. At infinite dilution of component 2, the enrichment
model yields E2 = 4.3 at K5%

2 = 15 and ∆ρ̃2 > 0 (upper branch depicted in Fig. 101). At
infinite dilution of component 2 at ∆ρ̃2 < 0 (bottom branch in Fig. 101), the enrichment
model converges to E2 = 1.4 with increasing K5%

2 .

The empirical enrichment model is compared to the training-dataset in Fig. 100. The
enrichment model generally describes the influence of the composition, the temperature,
and the partition coefficient on E2 well. However, Fig. 100 b) shows deviations for the
composition dependency for isotherms that exhibit a critical point. Figs. 100 c) and
d) show that the temperature dependency is captured reasonably well by the model.
Fig. 100 e) shows the enrichment as a function of the partition coefficient K5%

2 , i.e.
the performance of the term fb(K5%

2 ) in Eq. (127). Deviations are observed for data
points K5%

2 > 12, which is mainly due to the fact that the training data was sparsely
populated in that region. Figs. 100 a) - e) contain data points from a large range
of temperatures and large variety of mixture types, which are described well by the
empirical enrichment model. Hence, the implicit temperature dependency of the model
via K5%

2 (T ) is found to perform astonishingly well, considering the fact that both the
influence of the temperature and the mixture type is taken into account only by K5%

2 .

Fig. 102 shows the deviation plots for the performance of the empirical enrichment model
on the training data. The fit yields an absolute average deviation of AADE2 = 6.5%.
Fig. 102 a) shows the absolute deviation ∆E2 as a function of the partition coefficient
K5%

2 (for different T and x′2); Fig. 102 b) shows ∆E2 as a function of the liquid phase
concentration x′2 (for different T and K5%

2 ); and Fig. 102 c) shows the absolute deviation
∆E2 as a function of the enrichment E2 itself (for different T , x′2, and K

5%
2 ).

The model captures generally the enrichment behavior well. The largest absolute devi-
ations are observed for high values of E2 and high values K5%

2 and are about 0.75. The
model slightly underestimates the training data in the range E2 = 1.2 .. 2.5 and slightly
overestimates the training data for E2 > 2.5.

Assessing the performance of the empirical model, it should be kept in mind that the
MD data that were used here as training data, deviate also from the corresponding data
obtained by DGT by up to ∣EMD

2 −EDGT
2 ∣ = 1 [629, 630, 635] (indicated by the dashed

lines in Fig. 102) which is more than the largest deviations of the empirical model to
the training data. Furthermore, the MD results exhibit statistical uncertainties from
the simulation sampling of up to δE2 = ±0.1.

Fig. 103 depicts the histogram of the absolute deviations of the enrichment obtained
from the empirical model Emodel

2 and the corresponding training-dataset values Eref
2 .

97.3% of the data points of the training-dataset are described with an absolute deviation
below ∣∆E2∣ = 0.5. For the majority of the data points with ∣∆E2∣ > 0.5, the empirical
model slightly underestimates the training data.
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Figure 102: Deviation plots of the enrichment data from the training-dataset (MD
data from chapter 3 [629, 630, 635]) and the predictions from the em-
pirical model: a) shows the absolute deviation ∆E2 as a function of the
partition coefficient K5%

2 ; b) shows ∆E2 as a function of the liquid phase
concentration x′2; c) shows ∆E2 as a function of the enrichment E2 itself.
Red indicates data points with ∆ρ̃2 < 0 and blue data points with ∆ρ̃2 > 0.
The dashed lines indicate δE2 = ±1, which corresponds to the uncertainty
of the data.



282 9 Establishing a Link between Nanoscopic and Macroscopic Properties

-2 -1 0 1 2
0

50

100

150

200

250

 

 

N

DE2

Figure 103: Histogram of the absolute deviations ∆E2 = Eref
2 −Emodel

2 of the empirical
enrichment model from the training-dataset. The bin width is 0.2.

9.5 Testing the Model Predictions

The empirical enrichment model was tested on available enrichment data for binary
mixtures from the literature, cf. Table 25 – excluding the training-dataset from chapter 3
[629, 630, 635].

The test-dataset comprises data on real mixtures as well as on model mixtures, e.g. LJ
mixtures. For applying the enrichment model, VLE data on the mixtures is needed.
For the real mixtures, the VLE data was taken from thermophysical property databases
[1, 381]; for the model mixtures, the vast majority of publications reporting vapor-liquid
density profiles also report the corresponding T ,x′,x′′-data, which was employed here.
2% of the enrichment data points of the test-dataset (cf. Table 25) could not be used
for the testing of the empirical model, as no T ,x′,x′′-data for the calculation of K5%

2 (T )
was available. In many cases, the VLE data – required for the computation of the
partition coefficient – was not available at exactly x′2 = 0.05 mol mol−1 and the required
temperature. The required input was estimated from the available data as described in
more detail in the Appendix.

Fig. 104 shows the histogram of the absolute deviations of the enrichment predicted
from the empirical model Emodel

2 and the reference values Eref
2 from the test-dataset. The

absolute average deviation is AADE2 = 16.1%, which is astonishingly low considering the
fact that the empirical model was trained to an MD dataset based on purely dispersively
interacting fluids, whereas the test-dataset contains a large variety of molecular inter-
actions, mixture types, and employed methods. 84% of the data points are described
within an absolute deviation of ∆E2 = ±0.5 by the empirical model. Hence, the empiri-
cal model predicts the enrichment of a low-boiling component E2 practically within the
uncertainty of the determination of E2 with different theoretical methods. However, as
found for the performance on the training-dataset, the empirical model shows a trend
to slightly overestimate the enrichment.

The performance of the model predictions are analyzed in more detail in Fig. 105,
which shows the deviation plots for E2 predicted by the empirical model and the values
from the test-dataset. Its layout is analogue to that of Fig. 102. Fig. 105 a) shows
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Figure 104: Histogram of the absolute deviations ∆E2 = Eref
2 −Emodel

2 of the predictions
of the empirical enrichment model to the data from the test-dataset (cf.
Table 25). The bin width is 0.2.

the absolute deviation ∆E2 as a function of the partition coefficient K5%
2 ; Fig. 105 b)

shows ∆E2 as a function of the liquid phase concentration x′2; and Fig. 105 c) shows the
absolute deviation ∆E2 as a function of the enrichment E2 itself. Absolute deviations
∆E2 > 1 are mainly found for large partition coefficients K5%

2 , low x′2, and large E2,
which is attributed to simplifications in the term fb in the empirical model. This is
likely due to the fact that the training-dataset has only a relatively small amount of
data points at large K5%

2 > 12 and the fact that the model was applied to predict data
points with K5%

2 > 15. For mixtures with low K5%
2 , the model performs very well.

From Figs. 105 a) - c), it becomes clear that the empirical model slightly overestimates
the enrichment for most data points – especially data points with ∆ρ̃2 < 0, whereas data
points with ∆ρ̃2 > 0 are mostly slightly underestimated. Some of the few outliers that
can be seen in Fig. 105 might be due to the digitalization, see the Appendix for details.

The lined-up data points in Fig. 105 c) correspond to enrichment isotherms obtained
from DGT from Refs. [50, 624, 632, 705]. In most cases, they are predicted well by the
empirical model in a large composition range, but deviations are observed for high E2.
For low E2 values, the empirical model correctly predicts the vast majority of reference
values within an absolute deviation of ∆E2 = ±0.3, which is surprisingly good since even
the deviations between the DGT and MD data usually exceed that range.
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Figure 105: Deviation plots of the enrichment data from the test-dataset (cf. Ta-
ble 25) and the predictions from the empirical model: a) shows the abso-
lute deviation ∆E2 as a function of the partition coefficient K5%

2 ; b) shows
∆E2 = Eref

2 −Emodel
2 as a function of the liquid phase concentration x′2; c)

shows ∆E2 as a function of the enrichment E2 itself. Data that was used
for the training of the empirical model [629, 630, 635] is not shown. Red
indicates data points with ∆ρ̃2 < 0 and blue data points with ∆ρ̃2 > 0.
The dashed lines indicate δE2 = ±1, which corresponds to the uncertainty
of the reference data.
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9.6 Conclusions

The starting point of this study was a review of the enrichment of components at
vapor-liquid interfaces and data available in the literature. The enrichment is defined
quantitatively and is a measure for the non-monotonicity of the component density
profile in the interfacial region. The enrichment is a highly interesting property as
it is believed to influence the mass transfer across interfaces [159, 194, 199, 312, 328,
361, 488, 634, 635]. We have digitalized component density profiles from more than 100
publications and have used the profiles to determine the enrichment for about 2,300 data
points. The established database is supplied in the electronic Supplementary Material
[627]. The enrichment predicted from independent theoretical methods usually agrees
within δE2 ± 1. The values of the enrichment lie mostly in the range 1 < E2 < 10.

The determination of the enrichment for a given system is presently tedious as it can only
be achieved by complex theoretical methods. Therefore, an empirical short-cut method
was developed in the present work to estimate the enrichment, a nanoscopic property,
solely from macroscopic vapor-liquid equilibrium data for a given mixture. The database
on the enrichment established in the present work was therefore split into a training-set
and a test-set. The training-set (approximately 300 data points) consists of data from
comprehensive studies on binary Lennard-Jones mixtures (cf. chapter 3) [629, 630, 635].
The test-set contains all remaining data on the enrichment available in the literature
(approximately 2,000 data points). The empirical model describes the enrichment of the
training-dataset with an AAD of 6.5%. The vast majority of data points is described
by the empirical model with an error of ∆E2 ± 0.5, which is well below the uncertainty
of the reference data. Applying the empirical model on the test-dataset yields an AAD
of 16.1%, whereat 84% of the data points are described within ∆E2 ± 0.5. This is re-
markable considering the fact that the enrichment model characterizes a mixture only
by its partition coefficient at x′2 = 0.05 mol mol−1 K5%

2 and the density difference in the
bulk phases ∆ρ2 = ρ′2 − ρ′′2 of the low-boiling component 2. Moreover, for ∆ρ2, basically
only the sign has to be known. As further input for the model, only the liquid phase
concentration x′2 is needed. The model gets its information on the temperature only
indirectly by the specification of K5%

2 , which depends on the temperature. Hence, the
model is designed in a way that the enrichment can be computed from the bulk compo-
sitions and densities solely, which is available in thermophysical property databases for
a large number of systems.

For future work, it would be interesting to extend the dataset employed for the training
of the model to systems with K5%

2 > 15, i.e. particularly wide-boiling phase behavior,
comprising mixtures with ∆ρ2 > 0 and ∆ρ2 < 0 as well as azeotropic systems. Further-
more, the performance of the model could probably be further improved by extending
the model such that information on the critical composition or the three-phase equilib-
rium (if present) are incorporated. However, this would have the drawback that such
data is not as readily available for most mixtures.

Finally, we would like to emphasize that it would be desirable that data on density
profiles or profiles of other thermodynamic properties in interfacial regions, which is
obtained by costly simulations, should be reported electronically. This has not been the
case in the past such that the vast majority of the corresponding data that has been
obtained in previous studies by expensive simulations is now lost for the community.
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Based on the developed enrichment model, it was shown, that the nanoscopic enrichment
is closely linked to the macroscopic phase behavior. This knowledge can be used for the
screening of systems to identify mixtures with large enrichment.
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10 Conclusions

The present work contributes to the general understanding of the physics of vapor-
liquid interfaces. Both macroscopic and nanoscopic properties of vapor-liquid interfaces
were studied, with a focus on mixtures. Two independent theoretical methods were
employed: molecular dynamics (MD) simulations based on classical force fields and
density gradient theory (DGT) in combination with theoretically-based equations of
state (EOS). Furthermore, complementary laboratory experiments were performed for
validation.

Different aspects of vapor-liquid interfaces of fluids were studied. Special attention
was given to the density profiles of the components in the interfacial region and their
dependence on the thermodynamic conditions as well as on the molecular interaction
parameters and the resulting macroscopic phase behavior. As the nanoscopic struc-
ture of fluid interfaces is not accessible by experiment, it was studied here by MD and
DGT. The vapor-liquid interfaces were thereby characterized by the surface tension, the
relative adsorption, the interfacial thickness, and the enrichment of components.

While density profiles at vapor-liquid interfaces have been studied many times in the
literature, no systematic evaluation on the characteristics of the surface excess in mix-
tures has been reported yet. The well-known relative Gibbs adsorption Γ

(j)
i quantifies

the number of adsorbed molecules of component i per unit area at the interface and
can be calculated from both macroscopic properties (via the Gibbs adsorption equa-
tion) as well as from the nanoscopic density profiles ρi(z). The enrichment Ei simply
quantifies the relative peak hight of the non-monotonicity of the density profile of com-
ponent i and is therefore dimensionless. The relative adsorption Γ

(j)
i obtained from

the nanoscopic and macroscopic routes were found in the present work to be in good
agreement for an exemplary mixture, which confirms the consistency of the two routes
[33, 50, 354, 361, 445, 483, 522, 692] and indicates that the underlying density profiles
– including the enrichment – predicted from molecular thermodynamics are in agree-
ment with the reality. This is supported by the fact that the enrichment in the density
profiles is consistently predicted from MD and DGT for all systems considered in the
present work. It is furthermore shown in the present work that the two properties Γ

(j)
i

and Ei show important differences upon characterizing the surface excess: starting at
infinite dilution of component i, Γ

(j)
i is zero and increases with increasing mole fraction

in the liquid phase x′i at constant temperature. The enrichment Ei, on the other hand,
is mostly found to be highest at infinite dilution and monotonously decreases with in-
creasing x′i. However, both the enrichment Ei and the relative adsorption Γ

(j)
i increase

with decreasing temperature.

Even though the non-monotonicity of density profiles has been discussed in the litera-
ture before, no framework has been established yet elucidating the dependency of the
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enrichment on the molecular interaction parameters as well as on the thermodynamic
conditions and the corresponding phase behavior. By studying a large number of mix-
tures of model fluids, the present work, for the first time, establishes a general picture
of the enrichment at vapor-liquid interfaces: enrichment is only found for the respec-
tive low-boiling component. Large enrichment is found for wide-boiling mixtures. The
enrichment decreases with increasing temperature and increasing concentration of the
of the low-boiling component in the liquid phase. Furthermore, strong enrichment is
favored by similar number densities of the enriching component i in the bulk phases. For
the case ρ′i = ρ′′i , the relative adsorption has to result in an enrichment at the interface
for geometric reasons.

In addition, it was shown in the present work that the enrichment can be understood
as a precursor of a second liquid phase that nucleates under the influence of the gra-
dients at the interface. Upon approaching a vapor-liquid-liquid three-phase line from a
vapor-liquid two-phase region, the enrichment peak eventually exhibits the same density
and composition as the second liquid phase. In the direct vicinity of the three-phase
equilibrium, the enrichment peak broadens and a macroscopic phase evolves, which
wets the vapor-liquid interface. Hence, the enrichment is strongly linked to the wetting
behavior of the phases in vapor-liquid-liquid equilibria. This connection has not been
described previously. The actual existence of a three-phase equilibrium is, however, not
a necessary condition for an enrichment.

Conformal solution theory has been applied for a long time to explain the bulk behavior
of mixtures. In the present work, a conformal solution theory of fluid interfaces was
developed and tested: it was thereby shown that the properties of vapor-liquid interfaces
are directly linked to the mean interactions of the liquid phase and can therefore be
described as a simple function of the configurational internal energy. By comparing
results that were obtained in the present work for a large number of different mixtures
of simple fluids, it was shown that mixtures with the same configurational internal energy
exhibit the same interfacial properties. This theory was found to be also valid in the limit
of the pure component such that mixtures with the same configurational internal energy
as a pure component have the same surface tension and interfacial thickness as that pure
component – and zero relative adsorption. The monovariate relationship between vapor-
liquid interfacial properties and the internal energy resembles the relationship between
transport coefficients and the entropy [567]. It would be interesting to test the theory
on real substance mixtures in a future work.

Based on these findings, a short-cut method was developed in the present work to estab-
lish a direct link between bulk vapor-liquid equilibrium properties and the nanoscopic
enrichment at the interface. The comprehensive enrichment dataset on binary Lennard-
Jones mixtures established in this work was used for the parametrization of that model.
The model was tested on all available enrichment data from the literature, which com-
prises a large variety of binary mixtures. The good performance in that rigorous test
reinforces the findings described above regarding an intimate relation between the bulk
and interfacial VLE properties. The new short-cut method can be used in future work
for the design of laboratory experiments to elucidate the influence of the enrichment on
the mass transfer through interfaces.

These findings from the present work may have consequences for mixtures of practical
relevance: no enrichment is expected for systems that exhibit an ideal behavior or high-
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boiling azeotropic behavior. Large enrichment, on the other hand, is expected in wide-
boiling systems, e.g. of the type solute + supercritical solvent or low-boiling azeotropic
mixtures. Particularly large enrichment is expected in the vicinity of vapor-liquid-liquid
equilibria and at low temperatures in general. Furthermore, high enrichment is expected
at low concentrations of the low-boiling component. These results consistently indicate
that mixtures, which are typical for absorption fluid separation processes usually show
an important enrichment, whereas this is not the case for mixtures that are typically
separated by distillation. This might explain the necessity for different approaches in
the corresponding process design.

Non-equilibrium molecular simulation results from the present work furthermore indicate
that the enrichment influences the mass transfer through fluid interfaces, which might
have important consequences for fluid separation processes in chemical engineering as
well as processes in nature. A new molecular simulation method for corresponding
investigations was developed in this work and applied to Lennard-Jones mixtures that
were studied prior to this regarding their equilibrium properties. Even though the two
studied mixtures exhibit very similar bulk diffusivities, the mass fluxes through vapor-
liquid interfaces in a system exhibiting an enrichment is found to be two to four times
lower than in a reference system that does not exhibit an enrichment. This difference
may indicate a hindrance caused by the enrichment at the interface. However, further
studies are needed to prove or refute this hypothesis.

In the course of the present work, several other interesting results were obtained: isother-
mal sets of density profiles in vapor-liquid interfaces of mixtures may show common
intersection points. They are clearly related to critical points – similar to the rectilinear
diameter, which supports previous statements of Bongiorno and Davis [63]. Further-
more, the dispersive long-range interactions were found to have a significant influence on
the surface tension and the interfacial thickness of Lennard-Jones mixtures, whereas the
relative adsorption and the enrichment are hardly affected. The long-range interactions
have practically no influence on the composition dependency of the investigated mixture
properties. Moreover, using a new method for the examination of the oscillatory layering
structure at vapor-liquid interfaces (as it is well-known from adsorption at solid-fluid
interfaces) shows that density oscillations, as predicted by DFT [637], are also present in
the molecular simulations density profiles, however, with a lower amplitude. The decay
of the amplitude of the oscillatory layering structure with increasing temperature was
found to be in good agreement with results from the literature [145].

Conformal representations of the VLE properties of the pure substance models (EOS and
force field) are a prerequisite for a rigorous comparison of results from MD and DGT.
The Lennard-Jones fluid was therefore comprehensively reviewed in the present work
regarding two aspects: first, available simulation data was collated (35,000 data points),
complemented by new simulations in in regions where previously only sparse data were
available, and assessed. For the assessment different thermodynamic tests were applied:
a new test was developed for homogeneous state points using data from their respective
vicinity in combination with equations of state. For the VLE data assessment, the
Clausius-Clapeyron equation and the compressibility factor of the vapor phase were
used. The consolidated database was subsequently used for a systematic evaluation
of 20 LJ EOS. A consolidated database for the simulation data and the corresponding
results from the considered equations of state is provided in the electronic Supplementary
Material [639, 640]. Hence, the developed test procedure can be used in future work as
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benchmark test.

Furthermore, the PC-SAFT monomer term was re-parametrized in this work using
Lennard-Jones molecular simulation data with the objective to describe both VLE and
homogeneous state properties well. The evaluation and comparison with other LJ EOS
reveals shortcomings for the description of caloric properties and supercritical states in
general. This is probably a result of the simplified form of the temperature-dependent
diameter used for the modeling of the soft repulsion in the EOS. This supports findings
from Boshkova and Deiters [66] regarding PC-SAFT.

Nevertheless, the new LJ EOS yields an excellent description of the VLE properties
and shows a reasonable behavior in the vapor-liquid two-phase region, i.e. a single van
der Waals loop. It is therefore a good candidate for studies of interfacial properties
using density gradient theory. Furthermore, the functional form of the new LJ EOS is
consistent with that of the PeTS EOS [249], which enables a meaningful comparison of
the DGT results for LJ and LJTS mixtures, as it was performed in this work to study
the influence of dispersive long-range interactions (see above).

Interfacial properties are a direct result of the large gradients of the profiles of ther-
modynamic properties across the interface. These profiles connect the bulk values of
the properties. It is therefore obvious that the interfacial properties are closely related
to the respective bulk phase properties. The success of the conformal solution the-
ory developed in the present work shows that properties of vapor-liquid interfaces are
dominated by the properties of the respective liquid phase. Furthermore, the profiles
of thermodynamic properties in the interfacial region often show invariant intersection
points, when several of these profiles, obtained by changing only a single parameter,
are plotted together. Also this surprising feature is closely related to bulk properties,
e.g. the results from the present work clearly show that the invariant points of sets of
density profiles are linked to critical points in the corresponding phase diagram. More-
over, the oscillatory layering structure at vapor-liquid interfaces is a consequence of the
corresponding radial distribution function of the liquid bulk phase. Last not least, the
enrichment at vapor-liquid interfaces can be interpreted as a precursor of a second liquid
phase that is eventually found in the phase diagram of the studied system. Hence, a
picture evolves in which the properties of the interfacial region mirror bulk properties
of the system, albeit in the way of a fun-house mirror in which the bulk behavior is
distorted by the strong gradients.
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Appendix

A Additional Data

A.1 Simulation Results for LJTS Mixtures A - F

This Appendix contains the following points:

• MD density profile plots for the investigated LJTS mixtures A - F, cf. Fig. A.1
and A.2

• numeric values for the computed phase equilibria (Table A.1) and interfacial prop-
erties (Table A.2) for both MD and DGT for the LJTS mixtures A - F

• Henry’s law constant data for the LJTS mixture D, E, and F, cf. Table A.3

Density Profiles from Molecular Simulations
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Figure A.1: Density profiles of the binary LJTS mixture A, B, and C as a function
of the coordinate z normal to the interface at T = 0.77 εk−1

B . Results
from MD. Dashed lines: high-boiling component 1, solid lines: low-boiling
component 2. The color indicates the liquid phase composition.
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Figure A.2: Density profiles of the binary LJTS mixture D, E, and F as a function
of the coordinate z normal to the interface at T = 0.77 εk−1

B . Results
from MD. Dashed lines: high-boiling component 1, solid lines: low-boiling
component 2. The color indicates the liquid phase composition.
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Tables of Numeric Values from the MD and DGT+PeTS
Results

The numerical results from MD and the PeTS EOS for the vapor-liquid equilibrium
of the studied mixtures are summarized in Table A.1. The numerical results for the
interfacial properties are summarized in Table A.2.

Table A.1: MD and PeTS EOS results for the vapor-liquid equilibrium of the binary
LJTS mixtures A - F for the temperature T = 0.77 εk−1

B . The number in the
parentheses indicates the statistical uncertainty in the last decimal digit.

x′2/molmol−1 p / εσ−3 x′′2 / mol mol−1 ρ′ / σ−3 ρ′′ / σ−3

MD EOS MD EOS MD EOS MD EOS
LJTS Mixture A (ε2/ε1 = 0.9 and ξ12 = 1)

0.000 0.0105(2) 0.0104 0.000 0.000 0.7486(4) 0.7480 0.015(2) 0.0150
0.064(2) 0.0110(3) 0.0110 0.110(12) 0.1102 0.7456(7) 0.7451 0.016(7) 0.0160
0.110(1) 0.0116(2) 0.0114 0.191(15) 0.1812 0.7435(8) 0.7430 0.017(9) 0.0167
0.154(2) 0.0119(3) 0.0118 0.257(13) 0.2450 0.7412(10) 0.7410 0.018(9) 0.0174
0.202(2) 0.0124(2) 0.0123 0.313(12) 0.3111 0.7391(9) 0.7387 0.018(9) 0.0181
0.246(2) 0.0129(4) 0.0127 0.366(18) 0.3662 0.7370(9) 0.7366 0.019(11) 0.0188
0.296(2) 0.0134(4) 0.0132 0.424(15) 0.4263 0.7346(9) 0.7342 0.020(11) 0.0196
0.334(1) 0.0137(3) 0.0136 0.466(18) 0.4691 0.7327(10) 0.7323 0.020(11) 0.0202
0.392(2) 0.0143(4) 0.0141 0.532(11) 0.5303 0.7297(10) 0.7294 0.021(10) 0.0211
0.436(1) 0.0146(3) 0.0145 0.573(11) 0.5742 0.7275(10) 0.7271 0.022(10) 0.0218
0.484(2) 0.0150(4) 0.0150 0.618(11) 0.6199 0.7249(11) 0.7247 0.023(11) 0.0226
0.527(2) 0.0156(4) 0.0154 0.653(12) 0.6584 0.7228(11) 0.7224 0.024(13) 0.0233
0.574(2) 0.0158(3) 0.0159 0.694(9) 0.6985 0.7202(11) 0.7199 0.024(12) 0.0241
0.617(2) 0.0163(4) 0.0163 0.726(14) 0.7345 0.7178(10) 0.7176 0.025(12) 0.0248
0.662(1) 0.0168(2) 0.0167 0.769(10) 0.7700 0.7154(10) 0.7151 0.026(10) 0.0256
0.714(2) 0.0173(3) 0.0172 0.813(6) 0.8097 0.7125(11) 0.7122 0.027(10) 0.0265
0.764(1) 0.0179(3) 0.0177 0.846(7) 0.8457 0.7096(11) 0.7093 0.028(9) 0.0273
0.808(2) 0.0183(4) 0.0181 0.881(8) 0.8761 0.7072(10) 0.7068 0.028(8) 0.0281
0.863(1) 0.0188(3) 0.0187 0.910(6) 0.9133 0.7039(12) 0.7035 0.029(9) 0.0291
0.904(1) 0.0192(2) 0.0191 0.939(5) 0.9404 0.7012(15) 0.7010 0.030(7) 0.0298
0.952(1) 0.0197(3) 0.0196 0.973(4) 0.9706 0.6985(10) 0.6981 0.031(6) 0.0307
1.000 0.0203(3) 0.0201 1.000 1.000 0.6955(9) 0.6951 0.032(3) 0.0316

LJTS Mixture B (ε2/ε1 = 0.9 and ξ12 = 1.2)
0.000 0.0105(2) 0.0104 0.0000 0.0000 0.7486(4) 0.7480 0.015(2) 0.0150

0.069(1) 0.0097(2) 0.0097 0.019(4) 0.0184 0.756(6) 0.7564 0.0139(6) 0.0139
0.119(1) 0.0092(2) 0.0091 0.041(6) 0.0409 0.761(8) 0.7613 0.0132(6) 0.0130
0.163(1) 0.0087(2) 0.0086 0.066(7) 0.0696 0.764(7) 0.7647 0.0124(6) 0.0123
0.212(1) 0.0082(2) 0.0081 0.112(11) 0.1151 0.767(8) 0.7678 0.0116(6) 0.0115
0.256(1) 0.0079(2) 0.0077 0.171(13) 0.1682 0.769(8) 0.7698 0.0112(6) 0.0110
0.305(1) 0.0075(2) 0.0074 0.251(11) 0.2448 0.770(9) 0.7713 0.0106(7) 0.0105
0.343(1) 0.0073(2) 0.0073 0.304(11) 0.3139 0.771(8) 0.7720 0.0103(6) 0.0103
0.399(1) 0.0073(2) 0.0073 0.435(14) 0.4284 0.771(10) 0.7722 0.0103(7) 0.0103
0.442(1) 0.0075(2) 0.0075 0.525(23) 0.5223 0.770(9) 0.7716 0.0105(7) 0.0106
0.486(1) 0.0079(2) 0.0078 0.611(18) 0.6141 0.769(9) 0.7705 0.0111(7) 0.0111
0.528(1) 0.0085(2) 0.0083 0.697(19) 0.6944 0.767(8) 0.7688 0.0120(7) 0.0118
0.572(1) 0.0091(2) 0.0090 0.768(13) 0.7678 0.765(8) 0.7664 0.0129(7) 0.0128
0.614(1) 0.0099(3) 0.0098 0.828(9) 0.8247 0.762(8) 0.7636 0.0142(7) 0.0140
0.659(1) 0.0108(2) 0.0108 0.879(9) 0.8740 0.758(8) 0.7597 0.0156(8) 0.0155
0.712(2) 0.0122(3) 0.0121 0.914(8) 0.9170 0.753(8) 0.7541 0.0178(8) 0.0176
0.759(1) 0.0133(2) 0.0134 0.942(7) 0.9446 0.747(8) 0.7481 0.0196(8) 0.0197

continued on next page
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x′2/molmol−1 p / εσ−3 x′′2 / mol mol−1 ρ′ / σ−3 ρ′′ / σ−3

MD EOS MD EOS MD EOS MD EOS
0.804(1) 0.0148(3) 0.0147 0.961(6) 0.9635 0.740(7) 0.7414 0.0221(9) 0.0219
0.858(1) 0.0164(2) 0.0163 0.980(2) 0.9795 0.730(7) 0.7316 0.0247(8) 0.0246
0.900(1) 0.0177(1) 0.0174 0.988(3) 0.9879 0.722(6) 0.7228 0.0272(9) 0.0267
0.949(1) 0.0189(3) 0.0188 0.994(1) 0.9950 0.710(5) 0.7104 0.0294(9) 0.0292
1.000 0.0203(3) 0.0201 1.000 1.0000 0.695(3) 0.6951 0.0320(9) 0.0316

LJTS Mixture C (ε2/ε1 = 0.9 and ξ12 = 0.85)
0.000 0.0105(2) 0.0104 0.000 0.000 0.7486(4) 0.7480 0.015(2) 0.0150

0.096(1) 0.0174(3) 0.0178 0.414(12) 0.4216 0.733(8) 0.7315 0.0259(1) 0.0272
0.136(2) 0.0189(3) 0.0197 0.465(11) 0.4832 0.727(13) 0.7247 0.029(1) 0.0306
0.183(3) 0.0204(4) 0.0212 0.512(9) 0.5276 0.720(13) 0.7170 0.032(1) 0.0335
0.226(2) 0.0213(3) 0.0222 0.541(10) 0.5551 0.714(17) 0.7102 0.034(1) 0.0355
0.276(3) 0.0221(3) 0.0230 0.573(12) 0.5771 0.707(18) 0.7026 0.035(1) 0.0371
0.316(4) 0.0224(3) 0.0235 0.577(10) 0.5901 0.701(18) 0.6968 0.036(2) 0.0381
0.377(5) 0.0231(5) 0.0239 0.599(11) 0.6051 0.694(25) 0.6889 0.038(3) 0.0390
0.425(5) 0.0234(2) 0.0242 0.612(11) 0.6150 0.690(23) 0.6834 0.038(1) 0.0396
0.473(4) 0.0238(3) 0.0244 0.629(12) 0.6238 0.684(22) 0.6789 0.041(9) 0.0400
0.520(5) 0.0241(2) 0.0245 0.643(9) 0.6327 0.682(19) 0.6752 0.039(2) 0.0403
0.572(5) 0.0241(4) 0.0247 0.651(15) 0.6435 0.680(25) 0.6724 0.039(1) 0.0406
0.614(3) 0.0241(6) 0.0248 0.664(11) 0.6535 0.674(24) 0.6710 0.045(20) 0.0408
0.668(2) 0.0243(3) 0.0248 0.676(9) 0.6689 0.670(17) 0.6704 0.040(2) 0.0409
0.722(4) 0.0242(12) 0.0247 0.708(9) 0.6888 0.672(25) 0.6713 0.047(25) 0.0408
0.772(2) 0.0238(4) 0.0246 0.730(9) 0.7124 0.678(12) 0.6733 0.039(1) 0.0404
0.816(2) 0.0238(17) 0.0243 0.762(9) 0.7392 0.667(45) 0.6759 0.053(22) 0.0398
0.873(2) 0.0236(4) 0.0236 0.803(6) 0.7870 0.684(11) 0.6806 0.038(1) 0.0384
0.912(1) 0.0228(3) 0.0229 0.844(6) 0.8311 0.686(8) 0.6845 0.037(2) 0.0370
0.956(1) 0.0217(3) 0.0217 0.915(10) 0.9009 0.691(6) 0.6896 0.035(1) 0.0347
1.000 0.0203(3) 0.0201 1.000 1.000 0.696(3) 0.6951 0.032(1) 0.0316

LJTS Mixture D (ε2/ε1 = 0.5 and ξ12 = 1)
0.000 0.0105(2) 0.0104 0.0000 0.0000 0.7486(4) 0.7480 0.015(2) 0.0150

0.038(1) 0.0225(3) 0.0215 0.490(12) 0.4750 0.740(6) 0.7403 0.034(1) 0.03209
0.050(1) 0.0256(3) 0.0247 0.537(10) 0.5320 0.737(6) 0.7380 0.039(1) 0.03726
0.071(1) 0.0303(3) 0.0308 0.593(9) 0.6062 0.731(8) 0.7333 0.046(1) 0.04729
0.099(2) 0.0380(4) 0.0382 0.654(6) 0.6642 0.724(10) 0.7272 0.060(2) 0.06039
0.131(3) 0.0464(6) 0.0466 0.702(7) 0.7055 0.715(10) 0.7196 0.076(2) 0.07628
0.162(3) 0.0537(6) 0.0545 0.724(8) 0.7310 0.706(10) 0.7118 0.090(2) 0.09261
0.196(5) 0.0619(6) 0.0627 0.747(10) 0.7483 0.696(13) 0.7029 0.108(3) 0.11104
0.224(3) 0.0681(5) 0.0692 0.751(5) 0.7574 0.686(13) 0.6950 0.124(3) 0.12718
0.271(5) 0.0769(6) 0.0799 0.758(7) 0.7651 0.669(13) 0.6806 0.147(3) 0.15682

LJTS Mixture E (ε2/ε1 = 0.5 and ξ12 = 1.2)
0.000 0.0105(2) 0.0104 0.0000 0.0000 0.7486(4) 0.7480 0.015(2) 0.0150

0.056(1) 0.0142(4) 0.0133 0.276(13) 0.2409 0.741(6) 0.7427 0.021(1) 0.0196
0.098(2) 0.0171(2) 0.0161 0.402(15) 0.3809 0.735(8) 0.7380 0.026(1) 0.0240
0.136(2) 0.0205(3) 0.0191 0.499(10) 0.4832 0.728(9) 0.7333 0.031(1) 0.0287
0.179(1) 0.0248(3) 0.0230 0.583(10) 0.5739 0.721(7) 0.7274 0.038(1) 0.0350
0.217(3) 0.0286(6) 0.0270 0.649(14) 0.6378 0.713(9) 0.7214 0.045(2) 0.0417
0.262(2) 0.0339(4) 0.0324 0.695(9) 0.6975 0.704(9) 0.7135 0.054(2) 0.0511
0.295(2) 0.0378(6) 0.0369 0.726(11) 0.7328 0.695(8) 0.7068 0.061(2) 0.0593
0.345(2) 0.0458(4) 0.0443 0.767(7) 0.7728 0.682(10) 0.6959 0.077(2) 0.0734
0.383(3) 0.0520(7) 0.0508 0.792(8) 0.7966 0.671(8) 0.6860 0.089(2) 0.0865
0.425(3) 0.0586(8) 0.0585 0.802(6) 0.8160 0.657(9) 0.6739 0.104(3) 0.1032
0.464(4) 0.0656(8) 0.0662 0.819(8) 0.8292 0.642(8) 0.6610 0.121(3) 0.1218
0.505(3) 0.0736(7) 0.0748 0.828(5) 0.8382 0.624(8) 0.6456 0.142(3) 0.1448
0.551(10) 0.0806(15) 0.0851 0.827(6) 0.8426 0.596(11) 0.6250 0.165(4) 0.1768

continued on next page
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x′2/molmol−1 p / εσ−3 x′′2 / mol mol−1 ρ′ / σ−3 ρ′′ / σ−3

MD EOS MD EOS MD EOS MD EOS
0.598(6) 0.0894(10) 0.0961 0.830(8) 0.8404 0.564(10) 0.5996 0.196(5) 0.2180

LJTS Mixture F (ε2/ε1 = 0.5 and ξ12 = 0.85)
0.000 0.0105(2) 0.0104 0.0000 0.0000 0.7486(4) 0.7480 0.015(2) 0.0150

0.006(1) 0.0169(3) 0.0171 0.341(11) 0.3543 0.747(4) 0.7468 0.024(1) 0.0248
0.016(1) 0.0264(4) 0.0278 0.547(5) 0.5684 0.745(5) 0.7449 0.039(2) 0.0411
0.027(1) 0.0362(2) 0.0389 0.642(10) 0.6657 0.742(6) 0.7429 0.055(2) 0.0595
0.037(1) 0.0458(5) 0.0506 0.699(6) 0.7188 0.740(8) 0.7409 0.071(2) 0.0802
0.049(2) 0.0573(5) 0.0637 0.737(9) 0.7521 0.737(8) 0.7387 0.092(2) 0.1056
0.061(2) 0.0681(5) 0.0776 0.760(8) 0.7714 0.734(8) 0.7365 0.114(3) 0.1359
0.077(2) 0.0772(4) 0.0972 0.768(7) 0.7821 0.729(9) 0.7338 0.134(3) 0.1836
0.093(2) 0.0901(3) 0.1179 0.782(6) 0.7812 0.725(11) 0.7316 0.164(3) 0.2388
0.110(6) 0.1025(10) 0.1452 0.773(8) 0.7710 0.720(15) 0.7298 0.198(4) 0.3095
0.123(4) 0.1168(7) 0.1684 0.778(6) 0.7597 0.718(14) 0.7290 0.236(5) 0.3613
0.140(5) 0.1316(10) 0.2048 0.754(13) 0.7421 0.713(19) 0.7289 0.287(7) 0.4252

Table A.2: MD and DGT+PeTS EOS results for the vapor-liquid interfacial properties
of the binary LJTS mixtures A - F for the temperature T = 0.77 εk−1

B . The
number in the parentheses indicates the statistical uncertainty in the last
decimal digit.

x′2/molmol−1 γ / εσ−2 Γ
(1)
2 / σ−2 E2 L90

10 / σ

MD DGT MD DGT MD DGT MD DGT
LJTS Mixture A (ε2/ε1 = 0.9 and ξ12 = 1)

0.000 0.446(18) 0.4566 - - - - 2.68(6) 2.33
0.064(2) 0.439(14) 0.4432 0.027(26) 0.0173 1.09(5) 1.00 2.72(4) 2.36
0.110(1) 0.423(16) 0.4339 0.056(20) 0.0290 1.06(2) 1.00 2.75(6) 2.38
0.154(2) 0.417(18) 0.4251 0.022(32) 0.0401 1.03(2) 1.00 2.76(4) 2.40
0.202(2) 0.410(13) 0.4154 0.065(47) 0.0519 1.03(2) 1.00 2.81(6) 2.42
0.246(2) 0.405(16) 0.4070 0.102(56) 0.0621 1.04(2) 1.00 2.88(8) 2.44
0.296(2) 0.393(15) 0.3973 0.007(57) 0.0737 1.01(2) 1.00 2.86(5) 2.46
0.334(1) 0.385(15) 0.3902 0.118(61) 0.0821 1.02(1) 1.00 2.90(7) 2.48
0.392(2) 0.376(11) 0.3794 0.100(62) 0.0945 1.02(1) 1.00 2.91(5) 2.52
0.436(1) 0.369(14) 0.3714 0.129(88) 0.1036 1.02(1) 1.00 2.96(8) 2.54
0.484(2) 0.361(16) 0.3627 0.096(85) 0.1133 1.02(1) 1.00 2.99(6) 2.56
0.527(2) 0.350(17) 0.3552 -0.018(18) 0.1216 1.01(2) 1.00 3.00(7) 2.58
0.574(2) 0.343(20) 0.3470 0.203(15) 0.1304 1.02(1) 1.00 3.08(7) 2.60
0.617(2) 0.327(15) 0.3395 0.211(12) 0.1384 1.02(1) 1.00 3.11(7) 2.62
0.662(1) 0.323(17) 0.3319 0.123(87) 0.1464 1.01(1) 1.00 3.12(7) 2.66
0.714(2) 0.317(18) 0.3230 0.177(13) 0.1553 1.01(1) 1.00 3.17(7) 2.66
0.764(1) 0.319(14) 0.3148 0.198(18) 0.1635 1.012(4) 1.00 3.22(11) 2.70
0.808(2) 0.302(14) 0.3077 0.316(15) 0.1704 1.011(4) 1.00 3.23(7) 2.72
0.863(1) 0.292(12) 0.2988 -0.099(14) 0.1789 1.007(4) 1.00 3.28(7) 2.74
0.904(1) 0.288(14) 0.2921 0.038(22) 0.1850 1.009(4) 1.00 3.28(7) 2.78
0.952(1) 0.283(15) 0.2846 0.452(37) 0.1918 1.008(1) 1.00 3.36(10) 2.80
1.000 0.273(18) 0.2920 - - - - 3.38(6) 2.88

LJTS Mixture B (ε2/ε1 = 0.9 and ξ12 = 1.2)
0.0000 0.446(18) 0.4566 - - - - 2.68(6) 2.33
0.069(1) 0.474(16) 0.4792 -0.018(30) -0.0224 1.08(5) 1.00 2.62(4) 2.26
0.119(1) 0.498(17) 0.4947 -0.044(42) -0.0309 1.03(2) 1.00 2.56(5) 2.22
0.163(1) 0.523(21) 0.5069 -0.043(25) -0.0336 1.04(1) 1.00 2.52(7) 2.18

continued on next page
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x′2/molmol−1 γ / εσ−2 Γ
(1)
2 / σ−2 E2 L90

10 / σ

MD DGT MD DGT MD DGT MD DGT
0.212(1) 0.529(20) 0.5185 -0.044(44) -0.0317 1.03(1) 1.00 2.49(8) 2.14
0.256(1) 0.527(18) 0.5262 -0.044(45) -0.0260 1.02(1) 1.00 2.47(6) 2.10
0.305(1) 0.548(17) 0.5318 -0.046(46) -0.0154 1.02(1) 1.00 2.42(5) 2.08
0.343(1) 0.545(17) 0.5337 -0.030(45) -0.0044 1.02(1) 1.00 2.45(4) 2.08
0.399(1) 0.542(18) 0.5323 -0.03(7) 0.0164 1.01(1) 1.00 2.44(5) 2.08
0.442(1) 0.550(22) 0.5278 0.11(8) 0.0364 1.02(1) 1.00 2.43(5) 2.08
0.486(1) 0.547(20) 0.5202 0.07(7) 0.0599 1.01(1) 1.00 2.43(4) 2.10
0.528(1) 0.525(15) 0.5101 0.09(9) 0.0856 1.01(1) 1.00 2.50(6) 2.12
0.572(1) 0.515(21) 0.4965 0.14(8) 0.1163 1.02(1) 1.00 2.53(5) 2.14
0.614(1) 0.493(17) 0.4813 0.12(7) 0.1486 1.011(4) 1.00 2.60(5) 2.16
0.659(1) 0.476(16) 0.4622 0.18(8) 0.1879 1.012(4) 1.00 2.62(5) 2.22
0.712(2) 0.443(17) 0.4369 0.22(13) 0.2397 1.009(4) 1.00 2.77(7) 2.28
0.759(1) 0.419(19) 0.4123 0.34(5) 0.2918 1.011(3) 1.00 2.81(7) 2.34
0.804(1) 0.395(14) 0.3874 0.35(19) 0.3469 1.009(3) 1.00 2.90(7) 2.44
0.858(1) 0.357(15) 0.3564 0.46(11) 0.4213 1.009(3) 1.00 3.02(7) 2.52
0.900(1) 0.326(16) 0.3326 0.44(23) 0.4838 1.008(2) 1.00 3.14(6) 2.62
0.949(1) 0.300(16) 0.3045 0.51(43) 0.5648 1.008(3) 1.00 3.28(8) 2.72
1.0000 0.273(18) 0.2920 - - - - 3.38(6) 2.88

LJTS Mixture C (ε2/ε1 = 0.9 and ξ12 = 0.85)
0.000 0.446(18) 0.4566 - - - - 2.68(6) 2.33

0.096(1) 0.363(14) 0.3625 0.144(46) 0.1476 1.28(8) 1.47 3.04(10) 2.68
0.136(2) 0.336(17) 0.3332 0.156(55) 0.2069 1.21(6) 1.43 3.18(9) 2.82
0.183(3) 0.308(16) 0.3064 0.25(8) 0.2673 1.19(7) 1.37 3.29(9) 2.94
0.226(2) 0.292(15) 0.2872 0.29(10) 0.3137 1.17(6) 1.32 3.40(9) 3.06
0.276(3) 0.275(18) 0.2703 0.39(11) 0.3515 1.13(6) 1.25 3.52(9) 3.14
0.316(4) 0.265(13) 0.2601 0.34(13) 0.3676 1.06(3) 1.19 3.51(9) 3.18
0.377(5) 0.252(16) 0.2489 0.37(6) 0.3651 1.05(2) 1.12 3.63(11) 3.22
0.425(5) 0.236(12) 0.2423 0.38(13) 0.3404 1.05(3) 1.07 3.65(11) 3.22
0.473(4) 0.234(15) 0.2374 0.19(12) 0.2996 1.03(2) 1.03 3.56(7) 3.22
0.520(5) 0.224(15) 0.2335 0.32(14) 0.2460 1.03(1) 1.01 3.75(16) 3.24
0.572(5) 0.223(14) 0.2303 -0.17(15) 0.1761 1.01(1) 1.00 3.68(9) 3.22
0.614(3) 0.230(12) 0.2284 0.16(13) 0.1131 1.02(1) 1.00 3.62(14) 3.22
0.668(2) 0.223(17) 0.2271 0.02(20) 0.0265 1.01(1) 1.00 3.67(11) 3.22
0.722(4) 0.224(14) 0.2275 -0.006(100) -0.0665 1.02(2) 1.00 3.55(19) 3.20
0.772(2) 0.229(14) 0.2298 -0.10(19) -0.1540 1.01(1) 1.00 3.70(7) 3.16
0.816(2) 0.231(10) 0.2336 0.09(14) -0.2321 1.02(3) 1.00 3.59(22) 3.14
0.873(2) 0.241(13) 0.2418 -1.00(36) -0.3343 1.01(1) 1.00 3.64(10) 3.08
0.912(1) 0.250(15) 0.2498 -0.26(33) -0.4018 1.009(2) 1.00 3.57(5) 3.02
0.956(1) 0.253(12) 0.2619 -0.26(66) -0.4774 1.009(3) 1.00 3.48(8) 2.94
1.000 0.273(18) 0.2920 - - - - 3.38(6) 2.88

LJTS Mixture D (ε2/ε1 = 0.5 and ξ12 = 1)
0.000 0.446(18) 0.4566 - - - - 2.68(6) 2.33

0.038(1) 0.370(12) 0.3812 0.106(28) 0.0947 2.02(9) 2.11 3.05(6) 2.58
0.050(1) 0.347(17) 0.3611 0.143(27) 0.1190 1.88(6) 2.04 3.18(7) 2.66
0.071(1) 0.317(14) 0.3255 0.146(34) 0.1610 1.66(4) 1.92 3.27(9) 2.82
0.099(2) 0.276(10) 0.2844 0.202(33) 0.2083 1.57(5) 1.78 3.58(10) 3.02
0.131(3) 0.233(11) 0.2415 0.257(51) 0.2557 1.47(5) 1.65 3.90(12) 3.28
0.162(3) 0.191(16) 0.2043 0.27(6) 0.2952 1.37(4) 1.54 4.28(13) 3.54
0.196(5) 0.155(15) 0.1691 0.33(7) 0.3304 1.31(4) 1.45 4.74(18) 3.88
0.224(3) 0.131(9) 0.1431 0.34(6) 0.3542 1.25(3) 1.38 5.12(17) 4.20
0.271(5) 0.098(11) 0.1050 0.38(8) 0.3830 1.17(3) 1.28 5.9(5) 4.80

LJTS Mixture E (ε2/ε1 = 0.5 and ξ12 = 1.2)
0.0000 0.446(18) 0.4566 - - - - 2.68(6) 2.33

continued on next page
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x′2/molmol−1 γ / εσ−2 Γ
(1)
2 / σ−2 E2 L90

10 / σ

MD DGT MD DGT MD DGT MD DGT
0.056(1) 0.406(22) 0.4157 0.056(23) 0.0480 1.17(6) 1.22 2.84(4) 2.45
0.098(2) 0.372(14) 0.3845 0.121(22) 0.0798 1.11(4) 1.17 3.00(7) 2.50
0.136(2) 0.337(14) 0.3557 0.091(31) 0.1069 1.07(3) 1.13 3.11(7) 2.55
0.179(1) 0.306(11) 0.3230 0.177(29) 0.1357 1.07(2) 1.10 3.30(7) 2.65
0.217(3) 0.277(18) 0.2937 0.18(4) 0.1602 1.06(2) 1.08 3.47(11) 2.75
0.262(2) 0.243(14) 0.2585 0.22(7) 0.1882 1.03(1) 1.05 3.76(9) 2.95
0.295(2) 0.213(15) 0.2323 0.222(31) 0.2082 1.02(1) 1.04 3.85(13) 3.05
0.345(2) 0.174(11) 0.1947 0.291(35) 0.2356 1.02(1) 1.02 4.33(12) 3.30
0.383(3) 0.150(11) 0.1657 0.25(7) 0.2554 1.02(1) 1.01 4.51(13) 3.50
0.425(3) 0.122(10) 0.1354 0.27(7) 0.2744 1.02(1) 1.01 4.94(17) 3.80
0.464(4) 0.098(11) 0.1084 0.28(4) 0.2889 1.01(1) 1.00 5.61(18) 4.20
0.505(3) 0.068(9) 0.0821 0.30(8) 0.2989 1.01(1) 1.00 6.60(63) 4.70
0.551(10) 0.044(11) 0.0552 0.26(12) 0.3005 1.015(4) 1.00 8.9(41) 5.50
0.598(6) 0.032(9) 0.0321 0.24(11) 0.2837 1.012(3) 1.00 9.2(16) 6.75

LJTS Mixture F (ε2/ε1 = 0.5 and ξ12 = 0.85)
0.0000 0.446(18) 0.4566 - - - - 2.68(6) 2.33
0.006(1) 0.420(16) 0.4296 0.035(10) 0.0352 2.42(16) 2.80 2.78(7) 2.45
0.016(1) 0.382(16) 0.3884 0.087(9) 0.0891 2.25(7) 2.64 2.99(5) 2.60
0.027(1) 0.349(20) 0.3474 0.14(3) 0.1426 2.12(7) 2.47 3.19(10) 2.80
0.037(1) 0.314(13) 0.3075 0.19(3) 0.1937 1.94(5) 2.28 3.43(9) 3.00
0.049(2) 0.267(15) 0.2662 0.24(3) 0.2440 1.84(3) 2.07 3.75(12) 3.20
0.061(2) 0.240(14) 0.2265 0.27(2) 0.2868 1.70(3) 1.86 4.05(12) 3.55
0.077(2) 0.203(19) 0.1793 0.28(3) 0.3213 1.61(2) 1.59 4.32(14) 3.90
0.093(2) 0.165(17) 0.1401 0.36(3) 0.3206 1.46(2) 1.38 4.83(23) 4.30
0.110(6) 0.144(20) 0.1037 0.33(4) 0.2783 1.36(2) 1.19 5.16(21) 4.55
0.123(4) 0.103(20) 0.0824 0.39(4) 0.2324 1.25(1) 1.10 6.11(47) 4.70
0.140(5) 0.077(23) 0.0604 0.38(8) 0.1702 1.15(2) 1.04 6.75(56) 4.85

Henry’s law constant data

Table A.3: MD results for the Henry’s law constants of the LJTS mixtures D, E, and
F. The number in the parentheses indicates the statistical uncertainty in
the last decimal digit.

T / εk−1B H2,1 / εσ−3

D E F
0.63 0.2066(57) 0.0224(7) 0.9929(90)
0.68 0.2382(42) 0.0331(6) 0.9937(98)
0.73 0.2595(32) 0.0447(6) 0.9326(92)
0.78 0.2893(23) 0.0583(5) 0.8842(68)
0.83 0.3030(21) 0.0747(5) 0.8350(64)
0.88 0.3137(20) 0.0902(5) 0.7704(59)
0.93 0.3183(20) 0.1060(6) 0.7127(43)
0.98 0.3156(16) 0.1208(5) 0.6300(47)
1.03 0.3045(17) 0.1338(5) 0.5429(44)
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A.2 Simulation Results for 90 LJTS Mixtures

This Appendix contains the following points:

• numeric values for the computed phase equilibria from both MD and the PeTS
EOS (Table A.4) and the corresponding topology plots for the vapor pressure (cf.
Fig. A.3) and the vapor phase composition (cf. Fig. A.4) as a function of the
binary interaction parameter ξ and the ratio of the dispersion energies ε2/ε1

• Table A.5 report the Henry’s law constants obtained from molecular simulations
and the PeTS EOS

• Fig. A.6 shows the comparison for the configurational internal energy results
obtained from the conformal solution theory and the PeTS EOS. Details on the
CST are given in the main body of the article.
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Figure A.3: Vapor pressure of binary LJTS mixtures at T = 0.77 εk−1
B and

x′2 = 0.05 mol mol−1 as a function of the binary interaction parameter ξ and
the ratio of the dispersion energies of the low and high-boiling component
ε2/ε1. Blue points: MD, orange points: PeTS EOS [249]. The surface is a
linear interpolation of the EOS results. The color of the surface is coded
by its height position.
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Figure A.4: Composition of the saturated vapor phase of binary LJTS mixtures at T =
0.77 εk−1

B and x′2 = 0.05 mol mol−1 as a function of the binary interaction
parameter ξ and the ratio of the dispersion energies of the low and high-
boiling component ε2/ε1. Blue points: MD, orange points: PeTS EOS
[249]. The surface is a linear interpolation of the respective results. The
color of the surface is coded by its height position.
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Figure A.5: Deviation from the liquid phase composition by MD to the initially pre-
scribed concentration x′2 = 0.05 mol mol−1 as a function of the binary in-
teraction parameter ξ and the ratio of the dispersion energies of the low
and high-boiling component ε2/ε1. The surface is a linear interpolation;
the color of the surface is coded by its height position.
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Figure A.6: Configurational internal energy of the saturated liquid phase u′ calculated
from the conformal solution theory by Eq. (56) (black points) and the
PeTS EOS (orange points) as a function of the binary interaction para-
meter ξ and the ratio of the dispersion energies ε2/ε1 at x′2 = 0.05 mol mol−1

and T = 0.77 εk−1
B . The shown surface is a linear interpolation of the data

points. The color of the surface is coded by its height position. The
absolute average deviation of the data from both methods is 2.3%.
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Bulk VLE Numeric Values

Table A.4: MD and PeTS EOS results for the vapor-liquid equilibrium data at
T = 0.77 εk−1

B of the binary LJTS mixtures. DGT results were calculated
at the liquid phase composition x′2 = 0.05 mol mol−1. The MD liquid phase
composition is listed in Table 5 and not repeated here. The number in the
parentheses indicates the statistical uncertainty in the last decimal digit.

ε2/ε1 x′′2/molmol−1 ps / εσ−3 ρ′ / σ−3 ρ′′ / σ−3

MD EOS MD EOS MD EOS MD EOS
ξ = 0.85

0.5 0.764(8) 0.754 0.0686(3) 0.0648 0.735(9) 0.7385 0.115(3) 0.1079
0.55 0.719(9) 0.712 0.0511(3) 0.0487 0.734(9) 0.7371 0.084(2) 0.0796
0.6 0.67(1) 0.662 0.0386(6) 0.0378 0.732(8) 0.7364 0.062(2) 0.0606
0.65 0.62(1) 0.605 0.0314(3) 0.0303 0.733(9) 0.7364 0.050(2) 0.0477
0.7 0.553(9) 0.543 0.0261(2) 0.0250 0.734(8) 0.7366 0.041(1) 0.0388
0.75 0.50(1) 0.480 0.0219(2) 0.0212 0.735(9) 0.7371 0.034(1) 0.0324
0.8 0.44(1) 0.417 0.0193(4) 0.0184 0.736(7) 0.7378 0.029(1) 0.0279
0.85 0.40(1) 0.356 0.0174(3) 0.0164 0.738(7) 0.7386 0.026(1) 0.0246
0.9 0.33(1) 0.301 0.0156(3) 0.0148 0.738(8) 0.7394 0.023(1) 0.0221
0.95 0.29(1) 0.251 0.0144(2) 0.0137 0.739(9) 0.7403 0.021(1) 0.0203
ξ = 0.9
0.5 0.70(7) 0.691 0.047(1) 0.0442 0.734(8) 0.7372 0.075(2) 0.0696
0.55 0.648(7) 0.634 0.0369(7) 0.0342 0.734(8) 0.7368 0.058(2) 0.0533
0.6 0.60(1) 0.570 0.0295(3) 0.0274 0.734(7) 0.7369 0.046(1) 0.0422
0.65 0.528(7) 0.503 0.0243(3) 0.0226 0.735(8) 0.7373 0.037(1) 0.0345
0.7 0.47(1) 0.435 0.0208(4) 0.0192 0.736(7) 0.7379 0.032(1) 0.0290
0.75 0.41(1) 0.369 0.0180(6) 0.0168 0.737(8) 0.7387 0.027(1) 0.0252
0.8 0.36(1) 0.308 0.0161(3) 0.0150 0.738(7) 0.7395 0.024(1) 0.0224
0.85 0.30(1) 0.253 0.0146(4) 0.0138 0.739(9) 0.7405 0.022(1) 0.0204
0.9 0.25(1) 0.206 0.0136(2) 0.0128 0.741(7) 0.7414 0.020(1) 0.0189
0.95 0.205(9) 0.166 0.0126(3) 0.0121 0.742(8) 0.7424 0.019(1) 0.0177

ξ = 0.95
0.5 0.645(9) 0.616 0.0360(4) 0.0323 0.735(8) 0.7372 0.056(2) 0.0494
0.55 0.583(6) 0.546 0.0285(5) 0.0256 0.735(7) 0.7374 0.044(2) 0.0390
0.6 0.51(1) 0.473 0.0235(7) 0.0211 0.735(7) 0.7379 0.036(1) 0.0318
0.65 0.45(1) 0.401 0.0200(3) 0.0180 0.737(7) 0.7386 0.030(1) 0.0269
0.7 0.387(9) 0.333 0.0173(3) 0.0157 0.738(8) 0.7395 0.026(1) 0.0234
0.75 0.349(3) 0.271 0.0154(3) 0.0142 0.739(7) 0.7405 0.023(1) 0.0209
0.8 0.262(7) 0.218 0.0140(3) 0.0130 0.740(8) 0.7415 0.021(1) 0.0192
0.85 0.22(1) 0.173 0.0129(4) 0.0122 0.742(8) 0.7425 0.019(1) 0.0179
0.9 0.17(1) 0.136 0.0119(3) 0.0116 0.743(7) 0.7436 0.017(1) 0.0169
0.95 0.143(8) 0.106 0.0115(3) 0.0111 0.744(7) 0.7447 0.017(1) 0.0163
ξ = 1.0
0.5 0.577(4) 0.533 0.0281(6) 0.0248 0.735(8) 0.7379 0.043(2) 0.0374
0.55 0.500(9) 0.455 0.0227(3) 0.0203 0.735(7) 0.7385 0.034(1) 0.0303
0.6 0.43(1) 0.378 0.0193(2) 0.0172 0.737(7) 0.7393 0.029(1) 0.0256
0.65 0.37(1) 0.307 0.0168(3) 0.0150 0.738(8) 0.7402 0.025(1) 0.0223
0.7 0.29(1) 0.244 0.0145(2) 0.0136 0.739(8) 0.7413 0.021(1) 0.0200
0.75 0.25(1) 0.191 0.0132(3) 0.0125 0.741(7) 0.7424 0.019(1) 0.0184
0.8 0.19(1) 0.148 0.0122(3) 0.0118 0.742(7) 0.7435 0.018(1) 0.0172
0.85 0.15(1) 0.114 0.0118(2) 0.0112 0.744(8) 0.7446 0.017(1) 0.0164
0.9 0.123(8) 0.087 0.0112(2) 0.0109 0.745(8) 0.7458 0.016(1) 0.0158
0.95 0.089(9) 0.066 0.0109(1) 0.0106 0.747(7) 0.7469 0.016(1) 0.0154

ξ = 1.05

continued on next page
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ε2/ε1 x′′2 / mol mol−1 ps / εσ−3 ρ′ / σ−3 ρ′′ / σ−3

MD EOS MD EOS MD EOS MD EOS
0.5 0.51(1) 0.447 0.0232(5) 0.0199 0.736(7) 0.7390 0.035(1) 0.0297
0.55 0.43(1) 0.365 0.0192(3) 0.0167 0.737(7) 0.7398 0.029(1) 0.0249
0.6 0.35(2) 0.290 0.0162(2) 0.0146 0.738(7) 0.7409 0.024(1) 0.0216
0.65 0.29(1) 0.226 0.0144(2) 0.0132 0.740(7) 0.7420 0.021(1) 0.0194
0.7 0.24(2) 0.173 0.0132(2) 0.0122 0.741(8) 0.7431 0.019(1) 0.0178
0.75 0.18(1) 0.131 0.0121(2) 0.0115 0.743(7) 0.7443 0.018(1) 0.0168
0.8 0.140(8) 0.098 0.0114(2) 0.0110 0.745(7) 0.7455 0.017(1) 0.0160
0.85 0.106(9) 0.073 0.0109(1) 0.0107 0.747(7) 0.7467 0.016(1) 0.0155
0.9 0.080(9) 0.054 0.0106(2) 0.0104 0.748(8) 0.7479 0.015(1) 0.0151
0.95 0.062(8) 0.040 0.0104(3) 0.0102 0.750(7) 0.7491 0.015(1) 0.0148
ξ = 1.1
0.5 0.43(1) 0.362 0.0194(3) 0.0167 0.737(8) 0.7403 0.029(1) 0.0247
0.55 0.35(1) 0.283 0.0163(5) 0.0144 0.738(7) 0.7414 0.024(1) 0.0213
0.6 0.28(2) 0.216 0.0141(3) 0.0130 0.740(7) 0.7425 0.021(1) 0.0190
0.65 0.22(1) 0.161 0.0128(3) 0.0120 0.742(8) 0.7438 0.019(1) 0.0175
0.7 0.17(1) 0.119 0.0120(3) 0.0113 0.744(8) 0.7450 0.017(1) 0.0165
0.75 0.13(1) 0.087 0.0112(3) 0.0108 0.745(7) 0.7463 0.016(1) 0.0158
0.8 0.094(9) 0.063 0.0109(1) 0.0105 0.747(7) 0.7476 0.016(1) 0.0153
0.85 0.066(7) 0.046 0.0104(2) 0.0103 0.749(8) 0.7488 0.015(1) 0.0149
0.9 0.051(6) 0.033 0.0101(2) 0.0101 0.751(6) 0.7501 0.015(1) 0.0147
0.95 0.037(4) 0.024 0.0101(2) 0.0100 0.753(8) 0.7513 0.015(1) 0.0145

ξ = 1.15
0.5 0.36(1) 0.285 0.0165(4) 0.0145 0.738(6) 0.7418 0.024(1) 0.0213
0.55 0.29(1) 0.212 0.0145(3) 0.0129 0.740(7) 0.7430 0.021(1) 0.0189
0.6 0.22(2) 0.155 0.0130(3) 0.0119 0.742(7) 0.7443 0.019(1) 0.0173
0.65 0.16(1) 0.112 0.0116(3) 0.0112 0.744(7) 0.7456 0.017(1) 0.0163
0.7 0.12(1) 0.080 0.0111(2) 0.0107 0.746(8) 0.7469 0.016(1) 0.0156
0.75 0.087(9) 0.057 0.0107(3) 0.0104 0.748(6) 0.7483 0.015(1) 0.0151
0.8 0.07(1) 0.040 0.0104(3) 0.0102 0.750(7) 0.7496 0.015(1) 0.0148
0.85 0.046(8) 0.028 0.0100(2) 0.0101 0.752(7) 0.7509 0.014(1) 0.0146
0.9 0.033(4) 0.020 0.0099(1) 0.0100 0.754(7) 0.7522 0.014(1) 0.0144
0.95 0.022(5) 0.014 0.0098(2) 0.0099 0.756(8) 0.7535 0.014(1) 0.0143
ξ = 1.2
0.5 0.29(2) 0.217 0.0145(4) 0.0130 0.740(7) 0.7433 0.021(1) 0.0190
0.55 0.212(9) 0.155 0.0128(2) 0.0118 0.742(7) 0.7446 0.019(1) 0.0173
0.6 0.16(1) 0.109 0.0119(2) 0.0111 0.744(8) 0.7460 0.017(1) 0.0162
0.65 0.112(8) 0.076 0.0111(2) 0.0107 0.746(7) 0.7474 0.016(1) 0.0155
0.7 0.08(1) 0.053 0.0105(1) 0.0104 0.748(7) 0.7489 0.015(1) 0.0150
0.75 0.060(8) 0.036 0.0103(2) 0.0102 0.750(7) 0.7503 0.015(1) 0.0147
0.8 0.039(7) 0.025 0.0100(2) 0.0100 0.752(8) 0.7516 0.014(1) 0.0145
0.85 0.030(6) 0.017 0.0099(2) 0.0099 0.754(7) 0.7530 0.014(1) 0.0143
0.9 0.021(4) 0.012 0.0097(2) 0.0099 0.756(6) 0.7543 0.014(1) 0.0142
0.95 0.015(4) 0.008 0.0097(2) 0.0098 0.758(7) 0.7556 0.014(1) 0.0142

ξ = 1.25
0.5 0.228(9) 0.161 0.0130(2) 0.0119 0.741(7) 0.7449 0.019(1) 0.0175
0.55 0.17(1) 0.111 0.0118(2) 0.0111 0.744(7) 0.7463 0.017(1) 0.0162
0.6 0.12(1) 0.075 0.0112(3) 0.0106 0.746(7) 0.7478 0.016(1) 0.0155
0.65 0.086(8) 0.051 0.0107(2) 0.0103 0.748(7) 0.7493 0.016(1) 0.0150
0.7 0.057(8) 0.034 0.0102(2) 0.0101 0.751(7) 0.7508 0.015(1) 0.0146
0.75 0.037(5) 0.023 0.0098(2) 0.0100 0.753(7) 0.7522 0.014(1) 0.0144
0.8 0.026(4) 0.016 0.0098(2) 0.0099 0.755(6) 0.7536 0.014(1) 0.0143
0.85 0.014(3) 0.011 0.0097(2) 0.0098 0.757(7) 0.7550 0.014(1) 0.0142
0.9 0.015(4) 0.007 0.0096(2) 0.0098 0.759(6) 0.7564 0.014(1) 0.0141
0.95 0.012(5) 0.006 0.0095(3) 0.0097 0.760(7) 0.7575 0.014(1) 0.0139
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Henry’s Law Constant Numeric Values

The numeric values of the Henry’s law constant calculated by both MD and the PeTS
EOS for all 90 investigated mixtures are provided in Table A.5.

Table A.5: Henry’s law constant calculated by both the PeTS EOS and computer
experiment for 90 investigated LJTS mixtures (cf. section 3.4) at
T = 0.77 εk−1

B .

ε2/ε1 PeTS MD ε2/ε1 PeTS MD ε2/ε1 PeTS MD

ξ = 0.85 ξ = 0.9 ξ = 0.95

0.5 0.95620 0.908(6) 0.5 0.62781 0.608(4) 0.5 0.41218 0.415(3)
0.55 0.70700 0.649(5) 0.55 0.45473 0.433(3) 0.55 0.29246 0.293(3)
0.6 0.52650 0.481(3) 0.6 0.33204 0.312(2) 0.6 0.20939 0.204(1)
0.65 0.39473 0.356(3) 0.65 0.24429 0.227(2) 0.65 0.15117 0.145(1)
0.7 0.29783 0.267(2) 0.7 0.18100 0.168(1) 0.7 0.10999 0.104(1)
0.75 0.22609 0.202(1) 0.75 0.13501 0.124(1) 0.75 0.08062 0.076(1)
0.8 0.17265 0.154(1) 0.8 0.10136 0.093(1) 0.8 0.05951 0.0554(4)
0.85 0.13258 0.118(1) 0.85 0.07657 0.070(1) 0.85 0.04422 0.0411(3)
0.9 0.10237 0.093(1) 0.9 0.05819 0.053(1) 0.9 0.03307 0.0305(2)
0.95 0.07946 0.071(1) 0.95 0.04447 0.040(1) 0.95 0.02488 0.0228(2)
ξ = 1 ξ = 1.05 ξ = 1.1

0.5 0.27059 0.285(2) 0.5 0.17763 0.189(1) 0.5 0.11660 0.127(1)
0.55 0.18809 0.190(1) 0.55 0.12095 0.126(1) 0.55 0.07777 0.082(1)
0.6 0.13204 0.131(1) 0.6 0.08325 0.085(1) 0.6 0.05249 0.0541(4)
0.65 0.09354 0.092(1) 0.65 0.05787 0.0577(4) 0.65 0.03580 0.0361(2)
0.7 0.06683 0.0647(4) 0.7 0.04060 0.0398(3) 0.7 0.02467 0.0244(2)
0.75 0.04813 0.0467(3) 0.75 0.02873 0.0278(2) 0.75 0.01715 0.0167(1)
0.8 0.03493 0.0329(2) 0.8 0.02050 0.0196(1) 0.8 0.01203 0.0115(1)
0.85 0.02553 0.0238(2) 0.85 0.01474 0.0139(1) 0.85 0.00851 0.0080(1)
0.9 0.01879 0.0177(1) 0.9 0.01068 0.0099(1) 0.9 0.00607 0.0056(1)
0.95 0.01392 0.0128(1) 0.95 0.00779 0.0072(1) 0.95 0.00436 0.0040(1)
ξ = 1.15 ξ = 1.2 ξ = 1.25

0.5 0.07653 0.085(1) 0.5 0.05023 0.0572(4) 0.5 0.03297 0.0374(3)
0.55 0.05001 0.0536(4) 0.55 0.03215 0.0348(2) 0.55 0.02067 0.0226(2)
0.6 0.03309 0.0345(2) 0.6 0.02086 0.0219(1) 0.6 0.01315 0.0139(1)
0.65 0.02215 0.0225(2) 0.65 0.01370 0.0140(1) 0.65 0.00847 0.0086(1)
0.7 0.01498 0.0149(1) 0.7 0.00910 0.0090(1) 0.7 0.00553 0.00547(4)
0.75 0.01024 0.0100(1) 0.75 0.00611 0.00593(4) 0.75 0.00365 0.00351(3)
0.8 0.00706 0.0067(1) 0.8 0.00414 0.00392(3) 0.8 0.00243 0.00228(2)
0.85 0.00491 0.0046(1) 0.85 0.00284 0.00263(2) 0.85 0.00164 0.00149(1)
0.9 0.00345 0.0032(1) 0.9 0.00196 0.00180(1) 0.9 0.00111 0.00099(1)
0.95 0.00244 0.0022(1) 0.95 0.00136 0.00121(1) 0.95 0.00080 0.00066(1)
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A.3 Simulation Results for LJTS Mixtures A and G

This Appendix contains the following points:

• p − T diagram of mixture G; including the state points whose density profiles
intersect in two invariant points (see 3.6.4.4 for a discussion)

• the comparison of the difference of the component 2 bulk density in the VL1E
region ∆ρ2 = ρL1

2 − ρV2 (cf. Fig. A.8) and a discussion of these results

• exemplary screenshots of the MD simulation of the mixtures A and B (cf. Fig. A.9)

• the plots of the MD VL1 density profiles from both investigated mixtures A and
B at all five temperatures (cf. Fig. A.10 and Fig. A.11),

• plots of the DGT VL1 density profiles for mixture B at all temperatures (cf. Fig.
A.12)

• numeric values for the computed phase equilibria and interfacial properties for
both MD and DGT for all studied temperatures for mixture A and G (Table
A.6 and A.7 for the phase equilibria and Tables A.8 and A.9 for the interfacial
properties)

p − T Diagram of Mixture G
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Figure A.7: Pressure-temperature diagram with characteristic curves for the mixture
G – including the transition state points observed for the invariant inter-
section points. Pure component vapor pressure curves and critical points
are the gray line and star (high-boiling component 1) and black line and
star (low-boiling component 2). Red lines are critical lines of the mix-
ture; the red star is the upper critical end point of mixture G (UCEP).
The green line depicts the VL1L2E three-phase line. The open triangles
indicate the state points p∗ of which density profiles intersect multiple
invariant points for a given temperature (see section 3.6.4.4 for a discus-
sion).
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Results for the Density Difference ∆ρ2

We have shown in an earlier work, cf. section 3.4 [630], that the difference of the
component 2 bulk density in a VLE ∆ρ2 = ρL2 −ρV2 is directly related to the arrangement
of the surface excess at the vapor-liquid interface and thereby to the enrichment of the
low-boiling component 2 at the interface. It was shown in section 3.4 that for ∆ρ2 = 0,
all adsorption at a vapor-liquid interface contributes to the enrichment. Fig. A.8 shows
∆ρ2 in the VL1E region for the mixtures A and G. As for the phase diagrams shown
in the main body of the paper, the agreement between the computer experiment and
the theory is almost perfect for the mixture A, but significant deviations are observed
in the case of the mixture G. The PeTS EOS predicts ∆ρ2 < 0 for all temperatures in
the entire composition range, whereas the molecular simulations predict small values
∆ρ2 > 0 for most state points. For mixture A, the function ∆ρ2(xL1

2 ) is very different
from that for mixture G. For mixture A, ∆ρ2(xL1

2 ) shows an almost linear increase. The
slope of ∆ρ2(xL1

2 ) decreases with increasing temperature, which is simply due to the
decreasing total density difference between both phases with increasing temperature.

Figure A.8: Difference of the number density of the component 2 ∆ρ2 = ρL1
2 − ρV2

between both bulk phases. The temperatures in the top and bottom plot
are color-coded using the same scale. Symbols are MD results and lines
are the PeTS EOS.

In contrast, in mixture G ∆ρ2(xL1
2 ) has a highly non-linear behavior. ∆ρ2 remains

very close to zero at highly diluted mixtures (xL1
2 → 0) and then decreases with further
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increasing concentration xL1
2 . This decay increases with decreasing temperature. Close

to the VL1L2E line, ∆ρ2 drops almost vertically. The PeTS EOS predicts ∆ρ2 to exhibit
a minimum at the three highest temperatures (T = 0.77 εk−1

B , 0.825 εk−1
B , 0.88 εk−1

B ). By
definition of the critical point, the densities and compositions of both phases must
equalize upon approaching the very, i.e. ∆ρ2 → 0 at the critical point, which is verified
from the EOS results.

The poor agreement between MD and the EOS in the case of mixture G is likely due to
the deviations observed in the bubble line in the phase diagrams at elevated pressures.
Only the convex slope of ∆ρ2(xL1

2 ) is captured consistently from both methods.

Simulation Screenshots

Fig. A.9 shows screenshots from the molecular dynamics simulation from mixture A
and G at T = 0.66 εk−1

B during the production phase of the simulation. The liquid
phase composition is similar in both simulations – just above 10% mole fraction of the
low-boiling component. It is evident that the vapor-liquid interface in the case of the
asymmetric mixture G shows a strong surface excess of the low-boiling component 2 at
the interface which is not present in the ideal mixture A.

Figure A.9: Screenshots from the molecular simulations of mixture A (top) and mix-
ture G (bottom) at T = 0.66 εk−1

B . The liquid phase compositions are
xL1

2 = 0.11 mol mol−1 (top) and xL1
2 = 0.12 mol mol−1 (bottom). The

high-boiling component 1 is indicated red, the low-boiling component 2
blue.

Density Profiles
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Figure A.10: Density profiles
of component 1
(dashed lines) and
component 2 (full
lines) for the mix-
ture a obtained
by MD. Results
for all studied
temperatures.
The color-code
indicates the
liquid phase
composition.
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Figure A.11: VL1 density pro-
files of component
1 (dashed lines)
and component
2 (full lines) for
the mixture G
obtained by MD.
Results for all
studied tem-
peratures. The
color-code indi-
cates the liquid
phase composi-
tion. Red squares
indicate invari-
ant intersection
points of density
profiles.
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Figure A.12: Density profiles
of component 1
(dashed lines) and
component 2 (full
lines) for the mix-
ture A obtained
by DGT. Results
for all studied
temperatures.
The color-code
indicates the
liquid phase
composition.
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Numeric Values

Table A.6: MD and PeTS EOS results for the vapor-liquid equilibrium of the binary
LJTS mixture A (ε2/ε1 = 0.9 and ξ12 = 1) for the temperatures T /εk−1

B =
0.66, 0.715, 0.825, 0.88. The number in the parentheses indicates the sta-
tistical uncertainty in the last decimal digit.

x′2/molmol−1 p / εσ−3 x′′2 / mol mol−1 ρ′ / σ−3 ρ′′ / σ−3

MD EOS MD EOS MD EOS MD EOS
T = 0.66 εk−1B

0.000 0.0030(1) 0.0029 0.00 0.00 0.808(4) 0.8084 0.0047(3) 0.0046
0.005(1) 0.0030(1) 0.0029 0.01(1) 0.0109 0.808(4) 0.8082 0.0047(3) 0.0046
0.055(1) 0.0030(1) 0.0031 0.11(1) 0.1110 0.806(8) 0.8065 0.0048(4) 0.0049
0.100(1) 0.0033(1) 0.0033 0.20(2) 0.1928 0.804(9) 0.8049 0.0052(5) 0.0052
0.157(2) 0.0034(2) 0.0035 0.27(2) 0.2846 0.80(1) 0.8028 0.0054(5) 0.0055
0.208(1) 0.0036(1) 0.0036 0.35(2) 0.3593 0.80(2) 0.8009 0.0058(5) 0.0058
0.251(1) 0.0038(1) 0.0038 0.42(2) 0.4160 0.80(1) 0.7993 0.0061(5) 0.0061
0.297(1) 0.0039(2) 0.0039 0.47(2) 0.4727 0.80(1) 0.7976 0.0063(5) 0.0063
0.354(1) 0.0042(2) 0.0041 0.53(2) 0.5364 0.80(1) 0.7954 0.0067(6) 0.0067
0.388(2) 0.0043(1) 0.0043 0.58(2) 0.5713 0.79(1) 0.7941 0.0070(6) 0.0068
0.437(2) 0.0045(1) 0.0044 0.62(2) 0.6187 0.79(1) 0.7922 0.0072(6) 0.0071
0.490(1) 0.0047(1) 0.0046 0.66(2) 0.6667 0.79(2) 0.7902 0.0075(6) 0.0074
0.533(1) 0.0047(2) 0.0048 0.69(3) 0.7036 0.79(2) 0.7884 0.0076(6) 0.0077
0.584(1) 0.0050(1) 0.0049 0.75(2) 0.7441 0.79(2) 0.7864 0.0081(6) 0.0080
0.630(2) 0.0051(1) 0.0051 0.77(1) 0.7784 0.78(1) 0.7845 0.0083(6) 0.0083
0.683(1) 0.0053(2) 0.0053 0.82(1) 0.8155 0.78(1) 0.7824 0.0086(6) 0.0086
0.731(1) 0.0055(2) 0.0054 0.84(1) 0.8474 0.78(1) 0.7804 0.0090(6) 0.0089
0.772(1) 0.0056(2) 0.0056 0.88(1) 0.8732 0.78(1) 0.7787 0.0091(6) 0.0091
0.824(2) 0.0059(2) 0.0058 0.90(1) 0.9046 0.78(1) 0.7765 0.0096(6) 0.0094
0.874(1) 0.0059(1) 0.0059 0.94(1) 0.9336 0.77(1) 0.7743 0.0097(6) 0.0097
0.929(1) 0.0062(2) 0.0061 0.96(1) 0.9635 0.77(1) 0.7719 0.0102(8) 0.0101
1.00 0.0064(2) 0.0063 1.00 1.00 0.769(3) 0.7692 0.0106(5) 0.0104

T = 0.715 εk−1B
0.000 0.0058(3) 0.0058 0.00 0.00 0.779(3) 0.7789 0.0087(4) 0.0087

0.0049(2) 0.0057(2) 0.0058 0.011(3) 0.0097 0.779(4) 0.7787 0.0086(5) 0.0087
0.053(1) 0.0061(2) 0.0061 0.10(1) 0.0988 0.777(7) 0.7768 0.0091(6) 0.0092
0.105(2) 0.0064(2) 0.0064 0.19(1) 0.1872 0.775(8) 0.7747 0.0097(6) 0.0097
0.151(1) 0.0067(2) 0.0067 0.26(1) 0.2567 0.773(10) 0.7728 0.0101(7) 0.0101
0.200(1) 0.0070(2) 0.0070 0.34(2) 0.3273 0.771(12) 0.7708 0.0107(7) 0.0106
0.243(1) 0.0073(2) 0.0072 0.39(1) 0.3836 0.769(11) 0.7690 0.0112(7) 0.0110
0.289(2) 0.0075(2) 0.0075 0.44(2) 0.4392 0.767(12) 0.7671 0.0115(7) 0.0115
0.339(1) 0.0079(2) 0.0078 0.49(2) 0.4957 0.765(12) 0.7649 0.0121(7) 0.0120
0.380(2) 0.0081(2) 0.0081 0.53(2) 0.5394 0.764(14) 0.7632 0.0125(8) 0.0124
0.427(2) 0.0083(2) 0.0083 0.58(2) 0.5866 0.761(12) 0.7611 0.0128(8) 0.0128
0.476(1) 0.0087(2) 0.0086 0.62(1) 0.6326 0.759(12) 0.7589 0.0133(8) 0.0133
0.520(1) 0.0088(2) 0.0089 0.68(1) 0.6718 0.757(12) 0.7570 0.0136(8) 0.0138
0.562(1) 0.0092(2) 0.0092 0.71(2) 0.7075 0.755(12) 0.7550 0.0143(8) 0.0142
0.619(2) 0.0095(2) 0.0095 0.75(1) 0.7530 0.753(14) 0.7524 0.0147(8) 0.0148
0.661(3) 0.0099(3) 0.0097 0.78(2) 0.7843 0.751(12) 0.7505 0.0154(8) 0.0152
0.711(1) 0.0101(2) 0.0100 0.82(1) 0.8204 0.749(13) 0.7481 0.0159(8) 0.0157
0.759(2) 0.0106(3) 0.0103 0.85(1) 0.8538 0.746(13) 0.7458 0.0166(8) 0.0162
0.810(1) 0.0109(2) 0.0106 0.88(1) 0.8870 0.744(10) 0.7433 0.0171(8) 0.0168
0.853(1) 0.0110(2) 0.0109 0.91(1) 0.9141 0.741(10) 0.7412 0.0174(12) 0.0172
0.899(1) 0.0112(3) 0.0112 0.94(1) 0.9418 0.739(8) 0.7389 0.0178(8) 0.0177
0.948(1) 0.0118(2) 0.0115 0.97(1) 0.9705 0.736(11) 0.7364 0.019(3) 0.0182

continued on next page
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x′2/molmol−1 p / εσ−3 x′′2 / mol mol−1 ρ′ / σ−3 ρ′′ / σ−3

MD EOS MD EOS MD EOS MD EOS
1.000 0.0119(2) 0.0117 1.00 1.00 0.734(3) 0.7342 0.0190(7) 0.0187

T = 0.825 εk−1B
0.000 0.0175(3) 0.0173 0.000 0.00 0.716(3) 0.7149 0.025(1) 0.0246

0.0055(3) 0.0176(3) 0.0173 0.010(3) 0.0092 0.715(4) 0.7146 0.025(1) 0.0247
0.051(1) 0.0181(4) 0.0180 0.082(8) 0.0820 0.713(6) 0.7122 0.026(1) 0.0257
0.096(1) 0.0188(3) 0.0186 0.151(7) 0.1500 0.710(7) 0.7098 0.027(1) 0.0268
0.145(1) 0.0195(2) 0.0193 0.213(9) 0.2189 0.707(9) 0.7072 0.028(1) 0.0279
0.195(2) 0.0201(3) 0.0200 0.29(1) 0.2844 0.705(9) 0.7044 0.029(1) 0.0291
0.246(1) 0.0210(2) 0.0207 0.35(1) 0.3485 0.702(9) 0.7015 0.031(1) 0.0303
0.280(1) 0.0214(4) 0.0212 0.38(1) 0.3878 0.700(10) 0.6996 0.031(1) 0.0311
0.330(1) 0.0222(4) 0.0219 0.44(1) 0.4445 0.697(9) 0.6966 0.033(1) 0.0323
0.351(2) 0.0224(3) 0.0222 0.47(1) 0.4668 0.696(10) 0.6954 0.033(1) 0.0328
0.390(2) 0.0231(3) 0.0228 0.51(1) 0.5078 0.69(1) 0.6931 0.035(3) 0.0338
0.435(2) 0.0236(3) 0.0234 0.55(1) 0.5531 0.69(1) 0.6903 0.035(1) 0.0350
0.481(2) 0.0243(3) 0.0241 0.60(1) 0.5974 0.69(1) 0.6875 0.036(2) 0.0361
0.526(2) 0.0248(3) 0.0247 0.63(1) 0.6389 0.68(1) 0.6846 0.037(1) 0.0373
0.562(4) 0.0253(7) 0.0253 0.66(1) 0.6709 0.68(1) 0.6823 0.043(2) 0.0383
0.604(2) 0.0259(3) 0.0259 0.71(1) 0.7065 0.68(1) 0.6796 0.040(2) 0.0394
0.651(1) 0.0267(4) 0.0266 0.74(1) 0.7458 0.68(1) 0.6764 0.041(2) 0.0407
0.795(2) 0.0289(3) 0.0287 0.86(1) 0.8577 0.667(7) 0.6663 0.045(1) 0.0448
0.83(4) 0.0294(5) 0.0292 0.88(3) 0.8808 0.664(8) 0.6640 0.046(2) 0.0457
0.895(1) 0.0304(4) 0.0302 0.928(4) 0.9289 0.658(8) 0.6589 0.049(3) 0.0478
0.948(1) 0.0313(4) 0.0310 0.965(3) 0.9653 0.655(5) 0.6547 0.050(1) 0.0494
0.959(1) 0.0313(4) 0.0312 0.973(3) 0.9729 0.654(5) 0.6538 0.050(1) 0.0498
1.000 0.0320(4) 0.0317 1.00 0.9934 0.651(3) 0.6514 0.052(1) 0.0508

T = 0.88 εk−1B
0.000 0.0271(4) 0.0270 0.00 0.00 0.679(3) 0.6782 0.039(1) 0.0384

0.0051(3) 0.0272(3) 0.0271 0.007(2) 0.0080 0.679(3) 0.6778 0.039(1) 0.0386
0.050(1) 0.0281(3) 0.0280 0.075(4) 0.0752 0.675(6) 0.6750 0.041(2) 0.0401
0.098(1) 0.0291(3) 0.0289 0.14(1) 0.1434 0.672(6) 0.6719 0.042(1) 0.0418
0.143(1) 0.0299(3) 0.0298 0.21(1) 0.2038 0.669(7) 0.6689 0.044(2) 0.0434
0.187(1) 0.0309(3) 0.0307 0.25(1) 0.2601 0.666(8) 0.6659 0.045(1) 0.0449
0.240(2) 0.0321(3) 0.0318 0.32(1) 0.3235 0.663(8) 0.6623 0.047(1) 0.0468
0.280(2) 0.0328(3) 0.0326 0.37(1) 0.3697 0.660(9) 0.6595 0.049(2) 0.0483
0.322(2) 0.0335(4) 0.0334 0.42(1) 0.4161 0.657(16) 0.6565 0.050(11) 0.0499
0.365(2) 0.0347(3) 0.0343 0.47(1) 0.4626 0.653(8) 0.6540 0.052(2) 0.0512
0.356(2) 0.0344(5) 0.0341 0.46(1) 0.4525 0.653(11) 0.6532 0.051(4) 0.0516
0.401(3) 0.0354(4) 0.0350 0.50(1) 0.4997 0.61(2) 0.6505 0.053(9) 0.0530
0.431(2) 0.0357(5) 0.0356 0.53(1) 0.5292 0.65(1) 0.6483 0.054(3) 0.0542
0.478(4) 0.0364(7) 0.0366 0.56(1) 0.5750 0.645(4) 0.6446 0.057(3) 0.0561
0.514(3) 0.0371(10) 0.0374 0.60(1) 0.6092 0.643(4) 0.6416 0.058(3) 0.0576
0.552(4) 0.0383(9) 0.0381 0.63(1) 0.6435 0.639(4) 0.6386 0.059(4) 0.0592
0.576(6) 0.0386(15) 0.0387 0.66(2) 0.6654 0.637(14) 0.6365 0.060(12) 0.0602
0.622(5) 0.0397(15) 0.0396 0.71(2) 0.7049 0.633(15) 0.6326 0.062(13) 0.0622
0.651(5) 0.0407(13) 0.0402 0.74(1) 0.7303 0.631(13) 0.6300 0.065(11) 0.0636
0.873(1) 0.0453(6) 0.0450 0.909(4) 0.9063 0.61(1) 0.6201 0.076(2) 0.0687
0.76(9) 0.0428(4) 0.0426 0.819(10) 0.8187 0.621(15) 0.6090 0.070(15) 0.0744
0.929(1) 0.0464(5) 0.0463 0.949(4) 0.9483 0.605(5) 0.6030 0.078(2) 0.0775
0.946(1) 0.0469(5) 0.0467 0.959(3) 0.9606 0.603(4) 0.6012 0.079(2) 0.0784
0.969(1) 0.0473(4) 0.0472 0.977(2) 0.9777 0.600(4) 0.5986 0.080(2) 0.0798
1.000 0.0478(7) 0.0477 1.00 1.00 0.597(3) 0.5963 0.081(2) 0.0810
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Table A.7: MD and PeTS EOS results for the vapor-liquid equilibrium of the binary
LJTS mixture G (ε2/ε1 = 0.6 and ξ12 = 0.85) for the temperatures T /εk−1

B =
0.66, 0.715, 0.77, 0.825, 0.88. The number in the parentheses indicates the
statistical uncertainty in the last decimal digit.

x′2/molmol−1 p / εσ−3 x′′2 / mol mol−1 ρ′ / σ−3 ρ′′ / σ−3

MD EOS MD EOS MD EOS MD EOS
T = 0.66 εk−1B

0.000 0.0030(1) 0.0029 0.000 0.000 0.808(4) 0.8084 0.0047(3) 0.0046
0.009(1) 0.0066(2) 0.0074 0.534(16) 0.5874 0.806(5) 0.8070 0.0106(8) 0.0108
0.0077(5) 0.0072(2) 0.0067 0.580(18) 0.5503 0.807(5) 0.8067 0.0115(8) 0.0119
0.018(1) 0.0101(2) 0.0119 0.690(15) 0.7337 0.804(6) 0.8049 0.0164(9) 0.0197
0.027(1) 0.0135(3) 0.0161 0.759(9) 0.7953 0.803(7) 0.8032 0.022(1) 0.0274
0.036(1) 0.0168(2) 0.0201 0.803(8) 0.8294 0.801(8) 0.8015 0.029(1) 0.0351
0.045(1) 0.0199(3) 0.0242 0.824(9) 0.8527 0.799(9) 0.7997 0.035(1) 0.0438
0.055(2) 0.0235(3) 0.0283 0.848(8) 0.8687 0.797(11) 0.7978 0.042(1) 0.0532
0.063(3) 0.0271(5) 0.0315 0.863(8) 0.8777 0.796(11) 0.7963 0.050(2) 0.0609
0.075(2) 0.0295(4) 0.0366 0.872(6) 0.8886 0.793(12) 0.7938 0.056(2) 0.0750
0.085(2) 0.0329(4) 0.0403 0.880(8) 0.8941 0.791(14) 0.7919 0.064(2) 0.0865
0.092(5) 0.0364(6) 0.0432 0.891(6) 0.8974 0.789(13) 0.7903 0.074(2) 0.0967
0.111(2) 0.0387(3) 0.0504 0.889(9) 0.9019 0.785(20) 0.7864 0.081(2) 0.1295
0.117(4) 0.0430(4) 0.0525 0.901(5) 0.9020 0.784(18) 0.7853 0.095(3) 0.1429

T = 0.715 εk−1B
0.000 0.0058(3) 0.0058 0.000 0.000 0.779(3) 0.7789 0.0087(4) 0.0087

0.0096(4) 0.0106(3) 0.0110 0.426(10) 0.4476 0.777(5) 0.7769 0.0160(8) 0.0167
0.0129(9) 0.0125(3) 0.0128 0.496(8) 0.5176 0.777(5) 0.7762 0.019(1) 0.0196
0.027(1) 0.0184(4) 0.0203 0.651(10) 0.6775 0.773(6) 0.7732 0.029(1) 0.0322
0.043(2) 0.0238(4) 0.0278 0.715(11) 0.7498 0.770(8) 0.7700 0.038(1) 0.0462
0.056(2) 0.0300(4) 0.0344 0.764(8) 0.7862 0.767(9) 0.7671 0.050(2) 0.0598
0.071(1) 0.0355(4) 0.0409 0.786(8) 0.8092 0.76(1) 0.7640 0.062(2) 0.0746
0.084(3) 0.0415(5) 0.0467 0.809(5) 0.8233 0.76(1) 0.7611 0.076(2) 0.0897
0.109(2) 0.0454(6) 0.0575 0.820(8) 0.8384 0.75(1) 0.7554 0.085(2) 0.1244
0.124(6) 0.0512(8) 0.0635 0.831(8) 0.8416 0.75(2) 0.7521 0.102(3) 0.1497
0.142(5) 0.0568(9) 0.0712 0.836(5) 0.8396 0.74(2) 0.7480 0.121(3) 0.1959
0.178(8) 0.0639(9) 0.1066 0.840(6) 0.7357 0.73(3) 0.7429 0.152(7) 0.5084

T = 0.77 εk−1B
0.000 0.0105(3) 0.0104 0.000 0.000 0.749(3) 0.7480 0.0152(6) 0.0150

0.0045(3) 0.0128(3) 0.0130 0.164(6) 0.1821 0.748(4) 0.7470 0.0185(8) 0.0189
0.0097(6) 0.0151(3) 0.0160 0.272(13) 0.3193 0.746(5) 0.7458 0.022(1) 0.0234
0.0136(9) 0.0178(3) 0.0182 0.371(12) 0.3914 0.745(5) 0.7449 0.026(1) 0.0268
0.0271(9) 0.0242(3) 0.0257 0.517(8) 0.5446 0.742(6) 0.7418 0.036(1) 0.0389
0.044(1) 0.0308(3) 0.0349 0.607(9) 0.6416 0.737(8) 0.7378 0.047(2) 0.0551
0.056(1) 0.0371(4) 0.0411 0.652(9) 0.6810 0.734(8) 0.7349 0.059(2) 0.0670
0.075(2) 0.0435(7) 0.0501 0.696(9) 0.7194 0.729(9) 0.7305 0.071(2) 0.0863
0.089(1) 0.0499(4) 0.0570 0.717(5) 0.7387 0.73(1) 0.7268 0.085(2) 0.1031
0.122(3) 0.0617(6) 0.0715 0.747(6) 0.7607 0.72(1) 0.7186 0.115(3) 0.1464
0.146(3) 0.0666(6) 0.0820 0.753(11) 0.7641 0.71(1) 0.7123 0.129(3) 0.1889
0.163(4) 0.0731(6) 0.0894 0.767(7) 0.7598 0.70(2) 0.7078 0.150(4) 0.2276
0.191(8) 0.078(1) 0.1025 0.763(9) 0.7372 0.69(2) 0.7008 0.170(5) 0.3148
0.215(14) 0.084(1) 0.1165 0.757(15) 0.6988 0.68(3) 0.6953 0.204(8) 0.4069

T = 0.825 εk−1B
0.000 0.0175(3) 0.0173 0.000 0.000 0.716(3) 0.7149 0.025(1) 0.0246

0.0041(3) 0.0200(4) 0.0198 0.114(6) 0.1091 0.714(3) 0.7139 0.029(1) 0.0282
0.0083(9) 0.0219(4) 0.0223 0.173(8) 0.1953 0.713(4) 0.7128 0.031(1) 0.0319
0.0177(6) 0.0275(4) 0.0279 0.308(9) 0.3301 0.711(5) 0.7103 0.040(1) 0.0404

continued on next page
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x′2/molmol−1 p / εσ−3 x′′2 / mol mol−1 ρ′ / σ−3 ρ′′ / σ−3

MD EOS MD EOS MD EOS MD EOS
0.029(2) 0.0327(5) 0.0343 0.40(1) 0.4314 0.707(6) 0.7074 0.048(2) 0.0507
0.038(1) 0.0371(5) 0.0397 0.46(1) 0.4906 0.704(6) 0.7049 0.055(2) 0.0598
0.048(1) 0.0413(4) 0.0449 0.51(1) 0.5341 0.701(7) 0.7023 0.062(2) 0.0692
0.069(2) 0.0501(5) 0.0561 0.57(1) 0.5971 0.695(9) 0.6964 0.078(2) 0.0910
0.103(2) 0.0633(5) 0.0727 0.62(1) 0.6477 0.68(1) 0.6868 0.106(3) 0.1297
0.125(3) 0.0713(6) 0.0829 0.65(1) 0.6629 0.68(1) 0.6801 0.125(3) 0.1589
0.158(6) 0.082(1) 0.0973 0.66(1) 0.6686 0.66(1) 0.6700 0.157(4) 0.2098
0.191(5) 0.090(1) 0.1110 0.67(1) 0.6585 0.65(2) 0.6597 0.184(5) 0.2701

T = 0.88 εk−1B
0.000 0.0271(4) 0.0270 0.000 0.000 0.679(3) 0.6782 0.039(1) 0.0384

0.0098(6) 0.0325(4) 0.0331 0.134(5) 0.1479 0.676(4) 0.6752 0.046(1) 0.0475
0.0143(5) 0.0350(3) 0.0359 0.181(6) 0.1993 0.674(4) 0.6739 0.050(2) 0.0517
0.0185(6) 0.0377(4) 0.0384 0.227(6) 0.2391 0.673(5) 0.6726 0.055(2) 0.0556
0.0248(9) 0.0401(4) 0.0421 0.259(8) 0.2902 0.670(4) 0.6707 0.058(2) 0.0616
0.027(2) 0.0411(7) 0.0437 0.274(8) 0.3088 0.669(6) 0.6698 0.060(2) 0.0642
0.029(1) 0.0425(4) 0.0445 0.293(6) 0.3182 0.669(5) 0.6694 0.062(2) 0.0656
0.0345(1) 0.0453(4) 0.0479 0.326(6) 0.3523 0.667(5) 0.6676 0.067(2) 0.0712
0.038(2) 0.0480(6) 0.0501 0.353(9) 0.3726 0.666(6) 0.6663 0.071(2) 0.0751
0.043(1) 0.0501(6) 0.0525 0.372(7) 0.3923 0.664(6) 0.6650 0.075(2) 0.0793
0.100(2) 0.0756(6) 0.0824 0.505(9) 0.5279 0.642(9) 0.6458 0.126(3) 0.1423
0.166(6) 0.0949(11) 0.1116 0.55(1) 0.5554 0.612(15) 0.6214 0.177(5) 0.2320
0.223(11) 0.1126(7) 0.1330 0.52(6) 0.5338 0.583(17) 0.5981 0.27(2) 0.3196
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Table A.8: Interfacial properties of the binary LJTS mixture A (ε2/ε1 = 0.9 and ξ12 = 1)
for the temperatures T /εk−1

B = 0.66, 0.715, 0.825, 0.88. Results from MD
and DGT+PeTS. Both methods are calculated at the same liquid phase
composition. The number in the parentheses indicates the statistical un-
certainty in the last decimal digit.

x′2/molmol−1 γ / εσ−2 Γ
(1)
2 / σ−2 E2 L90

10 / σ

MD DGT MD DGT MD DGT MD DGT
T = 0.66 εk−1B

0.00 0.655(26) 0.6632 - - - - 2.06(5) 1.94
0.005(1) 0.649(18) 0.6620 0.003(10) 0.002 1.32(13) 1.03 2.05(4) 1.94
0.055(1) 0.647(31) 0.6506 0.032(20) 0.019 1.11(5) 1.02 2.07(4) 1.96
0.100(1) 0.627(25) 0.6405 0.07(2) 0.034 1.08(2) 1.01 2.07(6) 1.96
0.157(2) 0.626(23) 0.6280 0.09(5) 0.052 1.06(2) 1.01 2.12(5) 1.98
0.208(1) 0.612(30) 0.6170 -0.11(4) 0.067 0.99(2) 1.00 2.11(5) 1.98
0.251(1) 0.604(24) 0.6080 0.07(3) 0.080 1.04(1) 1.00 2.16(4) 2.00
0.297(1) 0.590(19) 0.5984 0.11(7) 0.093 1.03(2) 1.00 2.16(5) 2.00
0.354(1) 0.582(28) 0.5869 0.08(4) 0.109 1.02(1) 1.00 2.19(3) 2.02
0.388(2) 0.568(24) 0.5803 0.08(7) 0.117 1.03(1) 1.00 2.22(6) 2.02
0.437(2) 0.565(26) 0.5708 0.16(8) 0.130 1.02(1) 1.00 2.23(3) 2.04
0.490(1) 0.559(20) 0.5606 0.01(13) 0.143 1.02(1) 1.00 2.22(4) 2.06
0.533(1) 0.542(23) 0.5523 0.04(12) 0.153 1.01(1) 1.00 2.25(5) 2.08
0.584(1) 0.534(20) 0.5429 0.11(21) 0.165 1.01(1) 1.00 2.28(6) 2.08
0.630(2) 0.524(27) 0.5345 0.03(20) 0.175 1.01(1) 1.00 2.29(5) 2.08
0.683(1) 0.517(23) 0.5251 -0.05(11) 0.186 1.01(1) 1.00 2.31(5) 2.10
0.731(1) 0.513(27) 0.5166 -0.04(12) 0.196 1.01(1) 1.00 2.33(6) 2.12
0.772(1) 0.499(28) 0.5095 0.1(2) 0.204 1.01(0) 1.00 2.36(5) 2.12
0.824(2) 0.494(23) 0.5006 -0.02(36) 0.214 1.01(1) 1.00 2.36(3) 2.14
0.874(1) 0.484(28) 0.4920 0.03(56) 0.223 1.01(1) 1.00 2.37(5) 2.14
0.929(1) 0.479(28) 0.4829 -0.23(84) 0.232 1.01(0) 1.00 2.39(5) 2.16
1.00 0.467(21) 0.4729 - - - - 2.41(5) 2.18

T = 0.715 εk−1B
0.000 0.541(26) 0.5579 - - - - 2.34(5) 2.12

0.0049(2) 0.543(20) 0.5568 0.004(3) 0.002 1.35(12) 1.01 2.31(5) 2.12
0.053(1) 0.537(21) 0.5463 0.01(2) 0.016 1.11(4) 1.00 2.35(4) 2.12
0.105(2) 0.526(24) 0.5350 0.03(3) 0.031 1.06(3) 1.00 2.37(5) 2.14
0.151(1) 0.511(22) 0.5255 0.03(4) 0.044 1.04(2) 1.00 2.40(4) 2.16
0.200(1) 0.502(23) 0.5152 0.10(7) 0.058 1.04(2) 1.00 2.44(4) 2.16
0.243(1) 0.497(23) 0.5064 0.06(7) 0.069 1.03(2) 1.00 2.44(7) 2.20
0.289(2) 0.484(22) 0.4973 0.03(7) 0.081 1.03(2) 1.00 2.47(7) 2.20
0.339(1) 0.482(16) 0.4876 0.11(10) 0.093 1.03(2) 1.00 2.52(5) 2.22
0.380(2) 0.474(24) 0.4797 0.09(11) 0.103 1.03(2) 1.00 2.51(5) 2.24
0.427(2) 0.465(18) 0.4707 0.10(07) 0.114 1.02(1) 1.00 2.53(5) 2.24
0.476(1) 0.453(21) 0.4616 0.08(5) 0.125 1.02(1) 1.00 2.58(6) 2.26
0.520(1) 0.445(22) 0.4535 0.12(9) 0.134 1.02(1) 1.00 2.59(7) 2.28
0.562(1) 0.439(27) 0.4458 0.05(9) 0.143 1.01(1) 1.00 2.63(7) 2.30
0.619(2) 0.429(21) 0.4356 0.2(3) 0.155 1.02(1) 1.00 2.66(7) 2.32
0.661(3) 0.424(25) 0.4283 0.04(23) 0.163 1.01(1) 1.00 2.68(6) 2.34
0.711(1) 0.414(25) 0.4197 -0.11(18) 0.172 1.01(1) 1.00 2.64(5) 2.34
0.759(2) 0.406(25) 0.4114 -0.04(30) 0.181 1.01(1) 1.00 2.67(6) 2.36
0.810(1) 0.398(26) 0.4028 0.09(27) 0.190 1.013(5) 1.00 2.74(5) 2.38
0.853(1) 0.387(25) 0.3957 0.02(34) 0.197 1.010(4) 1.00 2.76(7) 2.40
0.899(1) 0.382(23) 0.3882 -0.1(4) 0.205 1.009(4) 1.00 2.77(5) 2.42
0.948(1) 0.375(29) 0.3802 -0.8(8) 0.213 1.004(3) 1.00 2.83(7) 2.44
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x′2/molmol−1 γ / εσ−2 Γ
(1)
2 / σ−2 E2 L90

10 / σ

MD DGT MD DGT MD DGT MD DGT
1.000 0.364(13) 0.3734 - - - - 2.83(5) 2.44

T = 0.825 εk−1B
0.000 0.350(17) 0.3598 - - - - 3.06(7) 2.62

0.0055(3) 0.347(14) 0.3587 0.00(1) 0.001 1.24(12) 1.00 3.09(8) 2.64
0.051(1) 0.343(16) 0.3497 0.04(2) 0.012 1.09(5) 1.00 3.17(8) 2.66
0.096(1) 0.329(14) 0.3408 0.01(3) 0.023 1.04(2) 1.00 3.18(7) 2.68
0.145(1) 0.323(17) 0.3314 0.04(5) 0.034 1.03(2) 1.00 3.26(9) 2.70
0.195(2) 0.311(15) 0.3221 0.01(4) 0.044 1.02(2) 1.00 3.30(9) 2.74
0.246(1) 0.306(14) 0.3125 0.03(7) 0.055 1.02(2) 1.00 3.33(9) 2.78
0.280(1) 0.302(19) 0.3064 0.08(7) 0.062 1.02(1) 1.00 3.35(7) 2.80
0.330(1) 0.282(20) 0.2973 0.07(5) 0.072 1.02(1) 1.00 3.39(7) 2.84
0.351(2) 0.285(17) 0.2936 0.07(9) 0.076 1.02(1) 1.00 3.47(10) 2.86
0.390(2) 0.280(20) 0.2867 0.03(10) 0.084 1.02(2) 1.00 3.46(6) 2.88
0.435(2) 0.272(20) 0.2788 0.06(7) 0.092 1.02(1) 1.00 3.50(9) 2.92
0.481(2) 0.263(20) 0.2709 0.08(8) 0.100 1.02(1) 1.00 3.53(8) 2.94
0.526(2) 0.253(18) 0.2632 0.05(12) 0.108 1.013(4) 1.00 3.62(12) 2.98
0.562(4) 0.253(16) 0.2572 0.05(10) 0.114 1.002(12) 1.00 3.54(12) 3.02
0.604(2) 0.242(19) 0.2503 0.05(23) 0.121 1.012(7) 1.00 3.75(12) 3.04
0.651(1) 0.237(19) 0.2425 -0.07(17) 0.129 1.008(7) 1.00 3.71(10) 3.08
0.795(2) 0.207(14) 0.2194 0.04(20) 0.150 1.007(3) 1.00 3.96(9) 3.20
0.83(4) 0.199(13) 0.2145 0.03(26) 0.154 1.007(3) 1.00 3.96(12) 3.22
0.895(1) 0.196(12) 0.2040 0.28(18) 0.163 1.008(4) 1.00 4.09(10) 3.30
0.948(1) 0.189(11) 0.1959 -0.08(33) 0.170 1.008(3) 1.00 4.16(12) 3.34
0.959(1) 0.189(15) 0.1942 0.35(31) 0.171 1.008(1) 1.00 4.20(16) 3.36
1.000 0.180(8) 0.1896 - - - - 4.20(11) 3.40

T = 0.88 εk−1B
0.000 0.264(14) 0.2675 - - - - 3.67(9) 3.04

0.0051(3) 0.253(14) 0.2665 0.002(7) 0.001 1.43(9) 1.00 3.68(8) 3.04
0.050(1) 0.247(8) 0.2582 0.006(13) 0.011 1.11(2) 1.00 3.75(12) 3.06
0.098(1) 0.239(12) 0.2494 0.03(3) 0.020 1.10(2) 1.00 3.83(9) 3.12
0.143(1) 0.233(15) 0.2412 0.05(2) 0.029 1.07(1) 1.00 3.90(11) 3.18
0.187(1) 0.226(11) 0.2334 0.02(4) 0.038 1.05(2) 1.00 3.95(10) 3.20
0.240(2) 0.213(14) 0.2242 0.01(4) 0.047 1.04(1) 1.00 4.01(9) 3.28
0.280(2) 0.208(13) 0.2174 0.07(5) 0.055 1.06(1) 1.00 4.04(13) 3.32
0.322(2) 0.204(13) 0.2102 0.08(4) 0.062 1.04(1) 1.00 4.03(15) 3.36
0.365(2) 0.197(15) 0.2029 0.09(4) 0.069 1.03(1) 1.00 4.17(11) 3.40
0.356(2) 0.202(16) 0.2045 0.08(5) 0.068 1.04(1) 1.00 4.18(12) 3.38
0.401(3) 0.194(17) 0.1970 0.05(7) 0.075 1.03(1) 1.00 4.22(19) 3.44
0.431(2) 0.188(17) 0.1921 0.04(7) 0.080 1.03(1) 1.00 4.26(13) 3.48
0.478(4) 0.180(18) 0.1845 0.05(6) 0.087 1.01(2) 1.00 4.37(16) 3.54
0.514(3) 0.174(19) 0.1787 -0.01(9) 0.093 1.00(3) 1.00 4.49(3) 3.58
0.552(4) 0.164(18) 0.1728 0.10(10) 0.098 1.02(2) 1.00 4.46(19) 3.64
0.576(6) 0.164(18) 0.1689 -0.07(6) 0.102 1.01(3) 1.00 4.6(4) 3.66
0.622(5) 0.156(16) 0.1619 -0.02(8) 0.108 1.01(2) 1.00 4.66(5) 3.74
0.651(5) 0.148(21) 0.1573 -0.08(7) 0.112 1.01(2) 1.00 4.7(3) 3.76
0.873(1) 0.113(8) 0.1245 0.20(19) 0.139 1.010(4) 1.00 5.2(2) 4.16
0.76(9) 0.119(11) 0.1411 0.31(32) 0.126 1.01(6) 1.00 5.03(2) 3.94
0.929(1) 0.108(10) 0.1165 0.19(20) 0.144 1.008(2) 1.00 5.38(19) 4.26
0.946(1) 0.103(11) 0.1141 0.0(3) 0.146 1.007(3) 1.00 5.38(24) 4.30
0.969(1) 0.103(12) 0.1109 -0.2(5) 0.148 1.008(3) 1.00 5.63(26) 4.36
1.000 0.097(13) 0.1080 - - - - 5.70(26) 4.38
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Table A.9: Interfacial properties of the binary LJTS mixture G (ε2/ε1 = 0.6 and
ξ12 = 0.85) for the temperatures T /εk−1

B = 0.66, 0.715, 0.77, 0.825, 0.88.
Results from MD and DGT+PeTS. Both methods are calculated at the
same liquid phase composition. The number in the parentheses indicates
the statistical uncertainty in the last decimal digit.

x′2/molmol−1 γ / εσ−2 Γ
(1)
2 / σ−2 E2 L90

10 / σ

MD DGT MD DGT MD DGT MD DGT
T = 0.66 εk−1B

0.000 0.655(26) 0.6632 - - - - 2.06(5) 1.94
0.009(1) 0.601(22) 0.6152 0.07(1) 0.075 4.6(6) 7.12 2.19(6) 2.06
0.0077(5) 0.609(28) 0.6222 0.07(1) 0.064 5.8(3) 7.10 2.18(5) 2.04
0.018(1) 0.573(24) 0.5659 0.12(1) 0.157 4.5(3) 7.22 2.28(5) 2.20
0.027(1) 0.536(25) 0.5201 0.19(2) 0.238 4.3(3) 7.23 2.45(5) 2.34
0.036(1) 0.493(34) 0.4768 0.25(2) 0.318 4.2(2) 7.08 2.58(6) 2.48
0.045(1) 0.477(35) 0.4317 0.31(3) 0.406 4.0(2) 6.74 2.73(3) 2.66
0.055(2) 0.430(30) 0.3871 0.35(2) 0.498 4.0(1) 6.32 2.92(4) 2.88
0.063(3) 0.393(30) 0.3535 0.48(4) 0.573 4.1(3) 5.98 3.15(8) 3.08
0.075(2) 0.366(37) 0.2988 0.53(4) 0.709 3.7(2) 5.38 3.31(10) 3.48
0.085(2) 0.328(31) 0.2594 0.64(6) 0.825 3.7(1) 4.93 3.59(7) 3.88
0.092(5) 0.295(17) 0.2285 0.75(5) 0.933 3.8(3) 4.58 3.00(14) 4.28
0.111(2) 0.260(19) 0.1493 0.75(6) 1.360 3.3(1) 3.67 4.30(17) 6.12
0.117(4) 0.215(32) 0.1253 1.08(5) 1.594 3.5(2) 3.38 5.08(16) 7.22

T = 0.715 εk−1B
0.000 0.541(26) 0.5579 - - - - 2.34(5) 2.12

0.0096(4) 0.511(22) 0.5189 0.05(1) 0.056 3.7(4) 4.93 2.45(5) 2.22
0.0129(9) 0.494(17) 0.5055 0.08(1) 0.076 3.9(4) 4.90 2.50(7) 2.26
0.027(1) 0.452(25) 0.4496 0.14(2) 0.162 3.4(2) 4.73 2.69(5) 2.44
0.043(2) 0.413(18) 0.3944 0.18(2) 0.252 3.0(2) 4.48 2.89(7) 2.68
0.056(2) 0.363(32) 0.3466 0.30(3) 0.336 3.1(1) 4.19 3.19(9) 2.92
0.071(1) 0.319(31) 0.3008 0.38(4) 0.422 3.0(1) 3.87 3.44(8) 3.20
0.084(3) 0.273(29) 0.2608 0.44(3) 0.504 2.9(1) 3.56 3.9(1) 3.52
0.109(2) 0.257(19) 0.1891 0.50(5) 0.675 2.5(1) 2.95 4.0(1) 4.36
0.124(6) 0.208(26) 0.1514 0.64(6) 0.784 2.5(1) 2.59 4.6(2) 5.10
0.142(5) 0.172(22) 0.1061 0.77(6) 0.932 2.43(6) 2.11 5.4(2) 6.52
0.178(8) 0.112(24) 0.0330 0.96(7) 0.180 2.13(8) 1.02 6.8(4) 5.76

T = 0.77 εk−1B
0.000 0.454(20) 0.4567 - - - - 2.68(4) 2.32

0.0045(3) 0.439(28) 0.4423 0.019(4) 0.019 2.8(4) 3.58 2.74(6) 2.38
0.0097(6) 0.411(18) 0.4258 0.03(1) 0.041 2.5(3) 3.53 2.78(7) 2.44
0.0136(9) 0.406(14) 0.4138 0.05(1) 0.057 2.9(4) 3.50 2.87(8) 2.48
0.0271(9) 0.366(23) 0.3734 0.10(1) 0.113 2.7(1) 3.36 3.01(6) 2.64
0.044(1) 0.331(22) 0.3250 0.14(3) 0.184 2.4(1) 3.15 3.2(1) 2.88
0.056(1) 0.303(20) 0.2935 0.20(3) 0.232 2.5(1) 3.00 3.5(1) 3.06
0.075(2) 0.270(22) 0.2485 0.27(2) 0.304 2.2(1) 2.76 3.7(1) 3.38
0.089(1) 0.219(22) 0.2154 0.29(2) 0.360 2.22(6) 2.56 4.0(1) 3.68
0.122(3) 0.170(18) 0.1507 0.45(3) 0.474 2.06(8) 2.12 4.9(2) 4.52
0.146(3) 0.150(17) 0.1090 0.49(5) 0.544 1.88(6) 1.80 5.1(2) 5.40
0.163(4) 0.115(16) 0.0834 0.59(6) 0.566 1.83(6) 1.58 6.1(3) 6.14
0.191(8) 0.088(19) 0.0492 0.60(6) 0.492 1.66(4) 1.26 6.7(4) 7.28
0.215(14) 0.063(18) 0.0282 0.68(11) 0.318 1.56(4) 1.07 8.0(7) 7.72

T = 0.825 εk−1B
0.000 0.350(17) 0.3598 - - - - 3.06(7) 2.62

0.0041(3) 0.346(16) 0.3493 0.02(1) 0.013 2.5(2) 2.70 3.19(5) 2.68
continued on next page
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x′2/molmol−1 γ / εσ−2 Γ
(1)
2 / σ−2 E2 L90

10 / σ

MD DGT MD DGT MD DGT MD DGT
0.0083(9) 0.335(13) 0.3387 0.02(1) 0.026 2.1(3) 2.67 3.19(8) 2.72
0.0177(6) 0.303(16) 0.3159 0.05(2) 0.054 2.2(1) 2.60 3.35(8) 2.82
0.029(2) 0.280(14) 0.2901 0.08(2) 0.087 2.1(2) 2.51 3.5(1) 2.96
0.038(1) 0.268(12) 0.2690 0.12(2) 0.115 2.1(1) 2.43 3.6(1) 3.10
0.048(1) 0.245(15) 0.2487 0.15(2) 0.142 2.0(1) 2.35 3.7(1) 3.24
0.069(2) 0.212(22) 0.2071 0.18(3) 0.198 1.8(1) 2.17 4.1(1) 3.56
0.103(2) 0.163(12) 0.1497 0.25(4) 0.278 1.74(6) 1.88 4.8(2) 4.24
0.125(3) 0.130(12) 0.1177 0.29(3) 0.320 1.64(6) 1.70 5.3(2) 4.78
0.158(6) 0.095(19) 0.0783 0.37(4) 0.358 1.54(7) 1.45 6.4(3) 5.74
0.191(5) 0.064(17) 0.0486 0.37(7) 0.349 1.42(4) 1.25 7.2(6) 6.82

T = 0.88 εk−1B
0.000 0.264(14) 0.2675 - - - - 3.67(9) 3.04

0.0098(6) 0.236(13) 0.2481 0.01(1) 0.022 1.77(19) 2.08 3.81(8) 3.16
0.0143(5) 0.227(16) 0.2394 0.03(1) 0.032 1.81(13) 2.06 3.89(9) 3.20
0.0185(6) 0.225(15) 0.2316 0.05(1) 0.041 1.85(13) 2.03 4.0(1) 3.26
0.0248(9) 0.214(14) 0.2201 0.04(2) 0.055 1.69(12) 1.99 4.0(1) 3.36
0.027(2) 0.210(14) 0.2153 0.06(1) 0.060 1.62(17) 1.98 4.1(1) 3.38
0.029(1) 0.209(19) 0.2128 0.06(1) 0.063 1.72(11) 1.97 4.1(1) 3.40
0.0345(1) 0.201(18) 0.2028 0.08(1) 0.075 1.70(11) 1.93 4.3(1) 3.50
0.038(2) 0.192(10) 0.1961 0.09(3) 0.083 1.71(12) 1.91 4.4(2) 3.56
0.043(1) 0.184(9) 0.1891 0.09(2) 0.091 1.71(8) 1.88 4.4(1) 3.60
0.100(2) 0.105(16) 0.1085 0.19(3) 0.186 1.52(5) 1.55 5.7(2) 4.74
0.166(6) 0.056(14) 0.0476 0.22(5) 0.228 1.28(6) 1.24 7.5(6) 6.66
0.223(11) 0.021(18) 0.0187 0.19(8) 0.185 1.14(3) 1.07 10.3(20) 8.88
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A.4 Simulation Results for the LJ Fluid

This Appendix contains the following points:

• Table A.10 summarizes the results for the vapor-liquid equilibrium data of the
Lennard-Jones fluid obtained in this work using the Grand Equilibrium method
[685] as implemented in ms2 [575]

• Table A.11 and A.12 report the vapor-liquid equilibrium bulk and interfacial prop-
erties, respectively, from the direct VLE simulations using the code ls1 mardyn
[506]

Table A.10: Simulation results for the VLE data of the LJ fluid. The columns are from
left to right: vapor pressure, saturated liquid density, saturated vapor
density, and the enthalpy of vaporization. The numbers in parentheses
indicate the uncertainties of the last decimal digits.

T / εk−1B ps / εσ−3 ρ′ / σ−3 ρ′′ / σ−3 ∆hv / ε
0.69 0.001172(24) 0.847111(1) 0.001729(35) 6.766422(34)
0.7 0.001343(25) 0.8427(1) 0.001956(36) 6.762403(39)
0.72 0.001784(28) 0.834385(1) 0.002538(39) 6.652809(43)
0.74 0.002319(29) 0.825751(1) 0.003227(40) 6.641588(48)
0.76 0.002932(32) 0.817195(2) 0.003994(44) 6.528674(58)
0.78 0.003689(40) 0.8083(1) 0.004929(54) 6.513863(71)
0.8 0.004649(44) 0.799470(2) 0.006103(57) 6.395171(72)
0.82 0.005608(44) 0.7903(1) 0.007233(57) 6.278050(94)
0.84 0.006872(44) 0.7812(1) 0.008730(55) 6.25512(12)
0.86 0.008299(53) 0.7718(1) 0.010397(66) 6.13070(14)
0.88 0.009902(63) 0.7623(1) 0.012248(78) 6.10391(17)
0.9 0.011795(39) 0.7527(1) 0.014435(48) 5.97235(16)
0.92 0.013783(67) 0.7427(1) 0.016686(81) 5.84091(21)
0.94 0.016237(79) 0.7328(1) 0.01952(10) 5.80088(26)
0.96 0.018686(63) 0.7224(1) 0.02228(07) 5.66382(30)
0.98 0.021625(75) 0.7120(1) 0.02567(09) 5.51804(44)
1 0.024843(87) 0.7009(1) 0.02938(10) 5.46904(50)

1.02 0.02823(10) 0.6899(1) 0.03329(12) 5.31864(67)
1.04 0.03216(11) 0.6785(1) 0.03795(13) 5.15826(69)
1.06 0.03623(09) 0.6664(1) 0.04277(11) 4.9978(11)
1.08 0.04058(10) 0.6537(2) 0.04799(11) 4.8332(12)
1.1 0.04568(12) 0.6409(2) 0.05443(14) 4.7536(16)
1.12 0.05112(13) 0.6275(2) 0.06145(15) 4.5688(18)
1.14 0.05674(16) 0.6133(2) 0.06885(19) 4.3817(24)
1.16 0.06323(20) 0.5985(2) 0.07810(24) 4.1717(33)
1.18 0.06957(21) 0.5820(2) 0.08715(26) 3.9681(39)
1.2 0.07684(25) 0.5639(3) 0.09862(32) 3.7339(59)
1.22 0.08429(33) 0.5446(4) 0.11101(44) 3.3941(87)
1.24 0.09260(36) 0.5235(5) 0.12657(50) 3.122(11)
1.26 0.10129(44) 0.5007(5) 0.14451(62) 2.823(16)
1.28 0.11082(39) 0.4747(8) 0.17041(60) 2.350(21)
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Table A.11: MD and EOS results for the vapor-liquid equilibrium of the pure Lennard-
Jones fluid. The columns are from left to right: the temperature, the
vapour pressure, saturated liquid and vapour density. The number in the
parentheses indicates the statistical uncertainty in the last decimal digit.
The EOS results were obtained by the LJ EOS presented in this work, see
below.

T / εk−1B p / εσ−3 ρ′′ / σ−3 ρ′ / σ−3

MD EOS MD EOS MD EOS
0.69 0.00110(10) 0.0012 0.00164(20) 0.0018 0.847(12) 0.8468
0.74 0.00230(10) 0.0023 0.00320(40) 0.0032 0.826(12) 0.8255
0.79 0.00395(10) 0.0042 0.00522(40) 0.0055 0.804(11) 0.8036
0.84 0.0069(2) 0.0069 0.0087(6) 0.0088 0.781(11) 0.7811
0.89 0.0108(1) 0.0109 0.0133(7) 0.0134 0.758(10) 0.7578
0.94 0.0164(1) 0.0162 0.0198(9) 0.0195 0.7327(90) 0.7333
0.99 0.0233(3) 0.0233 0.0276(10) 0.0276 0.7065(80) 0.7073
1.04 0.0323(2) 0.0323 0.0380(10) 0.0380 0.6782(70) 0.6793
1.09 0.0437(1) 0.0434 0.052(1) 0.0515 0.6478(80) 0.6486
1.14 0.0572(4) 0.0570 0.070(2) 0.0691 0.6134(70) 0.6142
1.19 0.0736(7) 0.0733 0.094(2) 0.0925 0.5734(60) 0.5744
1.24 0.0931(5) 0.0925 0.128(3) 0.1249 0.5240(60) 0.5257
1.29 0.1164(3) 0.1150 0.189(4) 0.1753 0.4521(40) 0.4595

Table A.12: MD and DGT results for the vapor-liquid interfacial properties of the pure
Lennard-Jones fluid. The columns are from left to right: the temperature,
surface tension, and interfacial thickness. The number in the parentheses
indicates the statistical uncertainty in the last decimal digit.

T / εk−1B γ / εσ−2 L90
10 / σ

MD DGT MD DGT
0.69 1.18(2) 1.207 1.88(2) 2.21
0.74 1.07(3) 1.083 2.06(5) 2.33
0.79 0.95(3) 0.961 2.24(3) 2.47
0.84 0.85(2) 0.844 2.43(3) 2.63
0.89 0.74(2) 0.730 2.72(5) 2.82
0.94 0.62(2) 0.620 3.04(3) 3.05
0.99 0.52(2) 0.515 3.38(5) 3.33
1.04 0.42(3) 0.415 3.84(5) 3.67
1.09 0.32(1) 0.320 4.43(9) 4.13
1.14 0.24(1) 0.232 5.23(8) 4.75
1.19 0.15(1) 0.153 6.5(1) 5.65
1.24 0.08(1) 0.083 8.4(2) 7.21
1.29 0.03(1) 0.028 14.3(9) 10.82
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A.5 Simulation Results for LJ Mixtures A - F

This Appendix contains the following points:

• density profiles at the planar vapor-liquid interfaces of the investigated LJ mix-
tures. The results from both MD and DGT are shown for all investigated mixtures,
cf. Figs. A.13 - A.16

• numeric values of the Henry’s law constants from MD simulations for the LJ
mixtures D, E, and F (Table A.13)

• numeric values of the phase equilibria (Table A.14) and interfacial properties (Ta-
ble A.15) results of the LJ mixtures A - F. Results from both MD simulations and
the EOS+DGT are reported

Density Profiles
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Figure A.13: Density profiles of the binary LJ mixtures A, B, and C at T = 0.92 εk−1
B .

Results from DGT. Dashed lines: high-boiling component 1; solid lines:
low-boiling component 2. The color indicates the liquid phase composi-
tion.
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Figure A.14: Density profiles of the binary LJ mixtures D, E, and F at T = 0.92 εk−1
B .

Results from DGT. Dashed lines: high-boiling component 1; solid lines:
low-boiling component 2. The color indicates the liquid phase composi-
tion.
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Figure A.15: Density profiles of the binary LJ mixtures A, B, and C at T = 0.92 εk−1
B .

Results from MD. Dashed lines: high-boiling component 1; solid lines:
low-boiling component 2. The color indicates the liquid phase composi-
tion.
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Figure A.16: Density profiles of the binary LJ mixtures D, E, and F at T = 0.92 εk−1
B .

Results from MD. Dashed lines: high-boiling component 1; solid lines:
low-boiling component 2. The color indicates the liquid phase composi-
tion.
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Henry’s Law Constant Numeric Values

Table A.13: MD results for the Henry’s law constants of the LJ potential for the mix-
ture D, E, and F. The number in the parentheses indicates the statistical
uncertainty in the last decimal digit.

T / εk−1B H2,1 / εσ−3

D E F
0.74 0.2283(47) 0.0261(6) 1.0999(98)
0.79 0.2538(48) 0.0353(7) 1.0593(90)
0.84 0.2796(27) 0.0468(5) 1.0209(96)
0.89 0.3053(28) 0.0601(5) 0.9902(91)
0.94 0.3302(24) 0.0752(5) 0.9629(73)
0.99 0.3464(21) 0.0903(5) 0.9157(58)
1.04 0.3541(20) 0.1054(5) 0.8538(53)
1.09 0.3664(16) 0.1199(5) 0.8143(48)
1.14 0.3663(17) 0.1357(5) 0.7472(46)
1.19 0.3653(17) 0.1505(5) 0.6912(37)
1.24 0.3539(18) 0.1626(5) 0.6180(39)
1.29 0.3290(26) 0.1703(8) 0.5262(56)
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Bulk VLE Properties Numeric Values

Table A.14: MD and LJ EOS results for the vapor-liquid equilibrium of the binary LJ
mixtures A - F for the temperature T = 0.92 εk−1

B . The number in the
parentheses indicates the statistical uncertainty in the last decimal digit.

x′2/molmol−1 p / εσ−3 x′′2 / mol mol−1 ρ′ / σ−3 ρ′′ / σ−3

MD EOS MD EOS MD EOS MD EOS
LJ Mixture A (ε2/ε1 = 0.9 and ξ12 = 1)

0.000 0.0138(1) 0.0139 0.000 0.000 0.743(9) 0.743 0.0167(8) 0.0168
0.010(1) 0.0141(3) 0.0140 0.021(3) 0.018 0.742(4) 0.743 0.0171(8) 0.0170
0.050(1) 0.0145(4) 0.0145 0.089(6) 0.084 0.740(6) 0.741 0.0177(8) 0.0176
0.104(1) 0.0151(2) 0.0151 0.167(12) 0.168 0.738(8) 0.738 0.0184(8) 0.0185
0.150(2) 0.0157(2) 0.0157 0.239(13) 0.234 0.736(9) 0.736 0.0193(8) 0.0192
0.197(2) 0.0163(2) 0.0162 0.299(10) 0.298 0.733(9) 0.734 0.0201(9) 0.0200
0.245(3) 0.0167(3) 0.0168 0.364(14) 0.358 0.731(9) 0.732 0.0206(9) 0.0207
0.300(1) 0.0175(4) 0.0175 0.428(16) 0.424 0.728(11) 0.729 0.0217(12) 0.0216
0.347(1) 0.0178(3) 0.0180 0.473(14) 0.476 0.726(10) 0.727 0.0221(10) 0.0224
0.398(2) 0.0187(4) 0.0186 0.527(14) 0.530 0.723(11) 0.724 0.0233(10) 0.0233
0.446(2) 0.0195(4) 0.0192 0.581(15) 0.577 0.721(11) 0.722 0.0245(11) 0.0240
0.495(2) 0.0197(4) 0.0198 0.626(12) 0.623 0.718(10) 0.719 0.0248(11) 0.0249
0.550(1) 0.0206(2) 0.0205 0.670(7) 0.672 0.715(12) 0.716 0.0261(11) 0.0258
0.594(2) 0.0210(3) 0.0210 0.711(14) 0.710 0.713(11) 0.714 0.0267(11) 0.0266
0.642(2) 0.0214(3) 0.0216 0.747(9) 0.749 0.710(10) 0.711 0.0273(13) 0.0274
0.699(2) 0.0221(4) 0.0223 0.784(8) 0.794 0.706(10) 0.708 0.0282(11) 0.0284
0.752(2) 0.0230(4) 0.0229 0.831(10) 0.833 0.704(10) 0.705 0.0297(12) 0.0294
0.791(1) 0.0234(5) 0.0234 0.859(12) 0.862 0.701(10) 0.702 0.0302(11) 0.0301
0.848(2) 0.0242(3) 0.0241 0.901(9) 0.901 0.698(7) 0.699 0.0315(11) 0.0311
0.900(1) 0.0247(6) 0.0247 0.934(6) 0.936 0.694(7) 0.696 0.0322(11) 0.0321
0.950(1) 0.0253(2) 0.0253 0.968(2) 0.968 0.691(6) 0.693 0.0331(12) 0.0330
1.000 0.0259(3) 0.0259 1.000 1.000 0.688(3) 0.690 0.0342(12) 0.0340

LJ Mixture B (ε2/ε1 = 0.9 and ξ12 = 1.2)
0.000 0.0138(1) 0.0139 0.000 0.000 0.743(9) 0.743 0.0167(8) 0.0168

0.0111(4) 0.0138(2) 0.0138 0.002(1) 0.002 0.744(4) 0.745 0.0167(8) 0.0166
0.0542(8) 0.0132(2) 0.0132 0.015(3) 0.014 0.749(6) 0.751 0.0159(6) 0.0158
0.1112(9) 0.0124(3) 0.0123 0.039(2) 0.038 0.754(7) 0.757 0.0149(6) 0.0148
0.1575(18) 0.0117(2) 0.0117 0.073(7) 0.067 0.758(8) 0.761 0.0139(7) 0.0139
0.2062(14) 0.0112(2) 0.0110 0.107(8) 0.110 0.761(8) 0.764 0.0133(7) 0.0131
0.2520(17) 0.0105(2) 0.0105 0.167(13) 0.164 0.763(8) 0.767 0.0125(7) 0.0124
0.3094(12) 0.0101(3) 0.0100 0.260(10) 0.252 0.765(9) 0.769 0.0120(7) 0.0118
0.3547(12) 0.0100(2) 0.0098 0.330(20) 0.335 0.765(8) 0.770 0.0118(7) 0.0116
0.4038(15) 0.0099(3) 0.0099 0.445(14) 0.436 0.765(9) 0.770 0.0117(7) 0.0116
0.4528(14) 0.0102(2) 0.0102 0.538(19) 0.540 0.765(9) 0.769 0.0121(7) 0.0120
0.4999(9) 0.0108(3) 0.0107 0.632(7) 0.636 0.763(8) 0.768 0.0128(7) 0.0126
0.5498(12) 0.0115(2) 0.0115 0.724(7) 0.726 0.761(8) 0.765 0.0137(8) 0.0137
0.5943(13) 0.0127(3) 0.0125 0.794(14) 0.793 0.758(8) 0.763 0.0152(7) 0.0149
0.6403(15) 0.0140(4) 0.0137 0.844(13) 0.850 0.754(8) 0.759 0.0169(8) 0.0164
0.6946(8) 0.0154(3) 0.0153 0.899(7) 0.900 0.749(7) 0.753 0.0187(8) 0.0186
0.7479(11) 0.0172(2) 0.0171 0.931(7) 0.935 0.742(8) 0.747 0.0211(8) 0.0210
0.7863(18) 0.0184(3) 0.0185 0.953(4) 0.954 0.737(7) 0.741 0.0228(9) 0.0229
0.8440(13) 0.0207(4) 0.0206 0.972(3) 0.974 0.727(7) 0.731 0.0261(9) 0.0259
0.8938(8) 0.0223(3) 0.0224 0.986(2) 0.986 0.717(6) 0.720 0.0284(9) 0.0286
0.9469(10) 0.0244(5) 0.0243 0.995(1) 0.994 0.704(5) 0.706 0.0317(10) 0.0313
1.0000 0.0259(3) 0.0259 1.000 1.000 0.688(3) 0.690 0.0342(12) 0.0340

LJ Mixture C (ε2/ε1 = 0.9 and ξ12 = 0.85)
continued on next page
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x′2/molmol−1 p / εσ−3 x′′2 / mol mol−1 ρ′ / σ−3 ρ′′ / σ−3

MD EOS MD EOS MD EOS MD EOS
0.000 0.0138(1) 0.0139 0.000 0.000 0.743(9) 0.743 0.0167(8) 0.0168

0.0090(4) 0.0150(2) 0.0150 0.064(8) 0.073 0.741(4) 0.742 0.0183(9) 0.0183
0.0430(10) 0.0182(4) 0.0187 0.230(16) 0.257 0.736(6) 0.735 0.0225(9) 0.0231
0.0886(17) 0.0220(5) 0.0224 0.374(13) 0.388 0.728(9) 0.727 0.0279(12) 0.0284
0.1333(12) 0.0236(3) 0.0251 0.440(8) 0.460 0.721(11) 0.719 0.0302(12) 0.0323
0.1771(18) 0.0255(4) 0.0269 0.480(8) 0.505 0.714(12) 0.712 0.0331(15) 0.0352
0.2222(25) 0.0269(4) 0.0283 0.520(13) 0.537 0.707(13) 0.704 0.0352(13) 0.0375
0.2797(41) 0.0283(4) 0.0295 0.552(11) 0.564 0.699(18) 0.695 0.0375(14) 0.0394
0.3335(46) 0.0288(3) 0.0303 0.566(9) 0.582 0.692(19) 0.687 0.0383(15) 0.0407
0.3821(31) 0.0294(3) 0.0307 0.595(13) 0.595 0.686(15) 0.681 0.0396(17) 0.0415
0.4390(25) 0.0301(3) 0.0311 0.610(10) 0.608 0.680(20) 0.675 0.0411(31) 0.0422
0.4939(51) 0.0305(3) 0.0314 0.617(13) 0.620 0.676(16) 0.670 0.0413(16) 0.0428
0.5510(25) 0.0306(5) 0.0317 0.635(10) 0.634 0.672(20) 0.666 0.0419(27) 0.0432
0.6481(37) 0.0307(5) 0.0319 0.668(8) 0.661 0.668(17) 0.663 0.0417(14) 0.0435
0.7038(9) 0.0308(4) 0.0319 0.695(10) 0.681 0.668(14) 0.664 0.0423(27) 0.0435
0.7647(17) 0.0310(3) 0.0316 0.716(8) 0.710 0.670(12) 0.666 0.0422(16) 0.0431
0.8007(18) 0.0304(5) 0.0314 0.744(10) 0.731 0.670(11) 0.668 0.0412(16) 0.0426
0.8575(23) 0.0298(4) 0.0307 0.792(6) 0.775 0.675(9) 0.673 0.0402(14) 0.0414
0.9085(25) 0.0293(3) 0.0296 0.834(8) 0.830 0.679(10) 0.678 0.0392(14) 0.0396
0.9548(9) 0.0280(5) 0.0280 0.907(7) 0.901 0.683(6) 0.683 0.0373(14) 0.0372
1.0000 0.0259(3) 0.0259 1.000 1.000 0.688(3) 0.690 0.0342(12) 0.0340

LJ Mixture D (ε2/ε1 = 0.5 and ξ12 = 1)
0.000 0.0138(1) 0.0139 0.000 0.000 0.743(9) 0.743 0.0167(8) 0.0168

0.015(1) 0.0193(4) 0.0190 0.259(13) 0.247 0.739(4) 0.740 0.024(1) 0.0232
0.051(1) 0.0310(3) 0.0305 0.504(10) 0.502 0.731(6) 0.733 0.039(1) 0.0383
0.099(2) 0.0467(6) 0.0452 0.646(9) 0.636 0.719(8) 0.722 0.061(2) 0.0590
0.136(3) 0.0573(6) 0.0559 0.692(7) 0.687 0.708(9) 0.713 0.078(2) 0.0755
0.176(3) 0.0681(5) 0.0669 0.724(7) 0.721 0.697(9) 0.703 0.096(2) 0.0941
0.228(4) 0.0827(8) 0.0803 0.744(6) 0.747 0.681(13) 0.688 0.125(2) 0.1191
0.253(3) 0.0872(6) 0.0863 0.749(7) 0.754 0.672(10) 0.680 0.134(3) 0.1315
0.314(9) 0.0988(3) 0.1002 0.761(5) 0.765 0.644(16) 0.660 0.161(6) 0.1638
0.332(6) 0.1031(9) 0.1040 0.760(7) 0.766 0.642(12) 0.653 0.173(3) 0.1738
0.391(6) 0.1144(9) 0.1157 0.757(10) 0.766 0.616(13) 0.629 0.208(4) 0.2086
0.424(3) 0.1193(7) 0.1217 0.756(7) 0.763 0.599(13) 0.614 0.224(4) 0.2299
0.467(6) 0.1267(7) 0.1288 0.749(11) 0.756 0.576(11) 0.592 0.255(5) 0.2594
0.498(15) 0.1326(17) 0.1334 0.731(43) 0.749 0.558(12) 0.574 0.293(15) 0.2823

LJ Mixture E (ε2/ε1 = 0.5 and ξ12 = 1.2)
0.000 0.0138(1) 0.0139 0.000 0.000 0.743(9) 0.743 0.0167(8) 0.0168

0.032(1) 0.0161(2) 0.0158 0.146(8) 0.134 0.738(6) 0.740 0.020(1) 0.0192
0.071(2) 0.0197(3) 0.0184 0.312(11) 0.273 0.733(6) 0.737 0.024(1) 0.0227
0.127(1) 0.0248(3) 0.0232 0.462(9) 0.436 0.724(7) 0.730 0.031(1) 0.0289
0.175(1) 0.0301(4) 0.0282 0.557(7) 0.544 0.715(8) 0.724 0.038(1) 0.0357
0.225(2) 0.0357(4) 0.0342 0.633(7) 0.629 0.705(8) 0.716 0.046(1) 0.0441
0.271(1) 0.0430(5) 0.0409 0.691(7) 0.691 0.695(8) 0.708 0.057(2) 0.0536
0.326(2) 0.0518(6) 0.0499 0.740(7) 0.746 0.682(8) 0.697 0.071(2) 0.0671
0.373(2) 0.0612(4) 0.0586 0.777(9) 0.782 0.669(8) 0.685 0.086(2) 0.0811
0.428(3) 0.0714(9) 0.0699 0.803(5) 0.812 0.651(7) 0.670 0.105(2) 0.1005
0.489(1) 0.0847(4) 0.0836 0.825(5) 0.835 0.628(7) 0.649 0.131(3) 0.1270
0.544(3) 0.0971(7) 0.0971 0.834(8) 0.847 0.603(8) 0.626 0.160(4) 0.1568
0.610(3) 0.1116(7) 0.1135 0.835(6) 0.853 0.565(8) 0.592 0.204(5) 0.2010
0.681(6) 0.1290(8) 0.1309 0.826(8) 0.846 0.512(9) 0.541 0.275(7) 0.2650

LJ Mixture F (ε2/ε1 = 0.5 and ξ12 = 0.85)
0.000 0.0138(1) 0.0139 0.000 0.000 0.743(9) 0.743 0.0167(8) 0.0168

continued on next page
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x′2/molmol−1 p / εσ−3 x′′2 / mol mol−1 ρ′ / σ−3 ρ′′ / σ−3

MD EOS MD EOS MD EOS MD EOS
0.012(1) 0.0273(4) 0.0279 0.446(8) 0.454 0.740(4) 0.741 0.033(1) 0.0341
0.032(1) 0.0455(5) 0.0502 0.629(5) 0.655 0.736(6) 0.737 0.058(2) 0.0642
0.048(2) 0.0591(5) 0.0689 0.688(8) 0.719 0.731(7) 0.733 0.078(2) 0.0924
0.059(2) 0.0726(4) 0.0812 0.721(6) 0.743 0.729(8) 0.731 0.099(2) 0.1129
0.084(4) 0.0947(7) 0.1104 0.758(6) 0.769 0.722(8) 0.726 0.138(3) 0.1691
0.101(3) 0.1084(6) 0.1310 0.766(7) 0.771 0.718(9) 0.723 0.165(3) 0.2159
0.110(4) 0.1248(6) 0.1419 0.769(6) 0.769 0.717(11) 0.721 0.202(4) 0.2429
0.137(3) 0.1419(8) 0.1817 0.762(5) 0.745 0.709(10) 0.717 0.246(4) 0.3435

Interfacial VLE Properties Numeric Values

Table A.15: MD and LJ EOS results for the vapor-liquid interfacial properties of the
binary LJ mixtures A - F for the temperature T = 0.92 εk−1

B . The number
in the parentheses indicates the statistical uncertainty in the last decimal
digit.

x′2/molmol−1 γ / εσ−2 Γ
(1)
2 / σ−2 E2 L90

10 / σ

MD DGT MD DGT MD DGT MD DGT
LJ Mixture A (ε2/ε1 = 0.9 and ξ12 = 1)

0.000 0.665(21) 0.663 - - - - 2.91(5) 2.95
0.010(1) 0.672(30) 0.661 0.005(13) 0.003 1.2(2) 1.0 2.90(5) 2.96
0.050(1) 0.660(22) 0.650 0.015(15) 0.014 1.07(4) 1.0 2.95(4) 2.98
0.104(1) 0.645(23) 0.636 0.040(23) 0.030 1.05(2) 1.0 2.98(6) 3.02
0.150(2) 0.622(24) 0.624 0.023(4) 0.042 1.03(3) 1.0 3.01(5) 3.06
0.197(2) 0.609(22) 0.612 0.042(4) 0.055 1.03(2) 1.0 3.01(5) 3.08
0.245(3) 0.599(23) 0.600 0.08(6) 0.067 1.03(1) 1.0 3.07(5) 3.12
0.300(1) 0.577(27) 0.586 0.04(5) 0.081 1.01(1) 1.0 3.11(5) 3.16
0.347(1) 0.575(26) 0.575 0.08(6) 0.093 1.02(1) 1.0 3.17(5) 3.2
0.398(2) 0.555(25) 0.562 0.09(9) 0.105 1.02(1) 1.0 3.21(7) 3.24
0.446(2) 0.542(18) 0.551 0.14(10) 0.116 1.02(1) 1.0 3.24(6) 3.28
0.495(2) 0.528(22) 0.539 0.14(6) 0.127 1.02(1) 1.0 3.28(6) 3.32
0.550(1) 0.512(18) 0.527 0.24(9) 0.140 1.02(1) 1.0 3.33(7) 3.34
0.594(2) 0.508(22) 0.516 0.31(10) 0.149 1.02(1) 1.0 3.37(5) 3.4
0.642(2) 0.486(20) 0.505 0.22(7) 0.159 1.01(1) 1.0 3.38(6) 3.42
0.699(2) 0.481(17) 0.492 0.16(18) 0.171 1.01(1) 1.0 3.39(6) 3.48
0.752(2) 0.468(23) 0.481 0.17(16) 0.181 1.01(1) 1.0 3.50(3) 3.52
0.791(1) 0.462(16) 0.472 0.08(17) 0.189 1.01(1) 1.0 3.50(4) 3.54
0.848(2) 0.449(25) 0.459 0.22(26) 0.200 1.01(1) 1.0 3.59(7) 3.6
0.900(1) 0.435(21) 0.448 0.28(28) 0.209 1.01(1) 1.0 3.58(6) 3.64
0.950(1) 0.425(19) 0.437 0.19(42) 0.218 1.01(1) 1.0 3.64(6) 3.68
1.000 0.424(21) 0.427 - - - - 3.67(8) 3.70

LJ Mixture B (ε2/ε1 = 0.9 and ξ12 = 1.2)
0.000 0.665(21) 0.663 - - - - 2.91(5) 2.95

0.0111(4) 0.688(28) 0.669 -0.021(8) -0.006 1.10(8) 1.0 2.90(4) 2.94
0.0542(8) 0.714(28) 0.692 -0.022(24) -0.026 1.06(4) 1.0 2.84(5) 2.90
0.1112(9) 0.739(24) 0.722 -0.019(19) -0.042 1.04(1) 1.0 2.77(3) 2.84
0.1575(18) 0.749(27) 0.744 -0.05(5) -0.048 1.04(2) 1.0 2.77(3) 2.78
0.2062(14) 0.780(26) 0.764 -0.09(5) -0.048 1.02(1) 1.0 2.73(4) 2.74
0.2520(17) 0.789(28) 0.779 -0.03(4) -0.042 1.03(1) 1.0 2.67(3) 2.70

continued on next page
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x′2/molmol−1 γ / εσ−2 Γ
(1)
2 / σ−2 E2 L90

10 / σ

MD DGT MD DGT MD DGT MD DGT
0.3094(12) 0.809(29) 0.791 -0.00(6) -0.027 1.02(1) 1.0 2.65(4) 2.68
0.3547(12) 0.811(28) 0.796 0.02(2) -0.010 1.02(1) 1.0 2.65(4) 2.68
0.4038(15) 0.808(29) 0.796 0.10(3) 0.014 1.02(1) 1.0 2.64(5) 2.68
0.4528(14) 0.800(25) 0.790 0.09(5) 0.043 1.02(1) 1.0 2.65(5) 2.70
0.4999(9) 0.786(25) 0.778 0.05(6) 0.077 1.02(1) 1.0 2.67(4) 2.72
0.5498(12) 0.768(22) 0.760 0.17(7) 0.118 1.01(1) 1.0 2.73(3) 2.76
0.5943(13) 0.743(33) 0.739 0.21(5) 0.160 1.01(1) 1.0 2.78(3) 2.80
0.6403(15) 0.715(26) 0.713 0.25(10) 0.209 1.01(1) 1.0 2.83(5) 2.86
0.6946(8) 0.684(26) 0.677 0.29(6) 0.275 1.01(1) 1.0 2.92(6) 2.94
0.7479(11) 0.644(23) 0.637 0.27(14) 0.348 1.01(1) 1.0 3.04(3) 3.06
0.7863(18) 0.604(25) 0.606 0.38(12) 0.407 1.01(1) 1.0 3.12(6) 3.14
0.8440(13) 0.558(20) 0.558 0.51(26) 0.506 1.01(1) 1.0 3.28(8) 3.28
0.8938(8) 0.510(18) 0.515 0.68(14) 0.600 1.01(1) 1.0 3.43(7) 3.44
0.9469(10) 0.471(26) 0.470 0.64(27) 0.710 1.01(1) 1.0 3.58(7) 3.58
1.0000 0.426(21) 0.427 - - - - 3.67(8) 3.70

LJ Mixture C (ε2/ε1 = 0.9 and ξ12 = 0.85)
0.000 0.665(21) 0.663 - - - - 2.91(5) 2.95

0.0090(4) 0.662(35) 0.649 0.01(1) 0.016 1.31(17) 1.49 2.94(5) 3.00
0.0430(10) 0.604(17) 0.597 0.07(1) 0.078 1.33(10) 1.46 3.09(7) 3.16
0.0886(17) 0.555(23) 0.539 0.18(3) 0.157 1.34(10) 1.41 3.34(6) 3.36
0.1333(12) 0.515(22) 0.493 0.23(5) 0.229 1.25(4) 1.35 3.47(7) 3.54
0.1771(18) 0.479(20) 0.457 0.23(3) 0.290 1.17(5) 1.30 3.60(7) 3.72
0.2222(25) 0.442(23) 0.428 0.36(6) 0.340 1.20(6) 1.24 3.75(7) 3.84
0.2797(41) 0.414(26) 0.401 0.38(12) 0.381 1.11(4) 1.16 3.83(6) 3.98
0.3335(46) 0.406(22) 0.383 0.37(9) 0.393 1.05(2) 1.10 3.87(6) 4.04
0.3821(31) 0.380(22) 0.371 0.28(9) 0.381 1.04(2) 1.06 3.89(8) 4.08
0.4390(25) 0.370(22) 0.361 0.24(11) 0.340 1.03(2) 1.02 3.95(7) 4.10
0.4939(51) 0.351(21) 0.353 0.38(13) 0.279 1.03(1) 1.00 3.99(7) 4.12
0.5510(25) 0.345(18) 0.347 0.15(20) 0.197 1.01(2) 1.00 3.95(4) 4.14
0.6481(37) 0.342(19) 0.343 0.26(22) 0.027 1.02(1) 1.00 3.98(8) 4.16
0.7038(9) 0.342(15) 0.343 -0.13(13) -0.084 1.01(1) 1.00 4.02(7) 4.14
0.7647(17) 0.338(21) 0.348 -0.14(27) -0.213 1.01(1) 1.00 4.03(8) 4.12
0.8007(18) 0.354(25) 0.353 -0.09(20) -0.293 1.01(1) 1.00 3.95(7) 4.12
0.8575(23) 0.366(20) 0.365 -0.04(32) -0.421 1.01(1) 1.00 3.91(7) 4.06
0.9085(25) 0.373(15) 0.382 -1.25(30) -0.536 1.01(1) 1.00 3.89(7) 3.96
0.9548(9) 0.393(24) 0.402 -0.72(63) -0.639 1.01(1) 1.00 3.75(7) 3.86
1.0000 0.423(21) 0.427 - - - - 3.67(8) 3.70

LJ Mixture D (ε2/ε1 = 0.5 and ξ12 = 1)
0.000 0.665(21) 0.663 - - - - 2.91(5) 2.95

0.015(1) 0.625(21) 0.620 0.05(1) 0.047 2.2(3) 2.26 3.08(6) 3.06
0.051(1) 0.540(20) 0.529 0.13(2) 0.139 1.8(1) 1.98 3.42(5) 3.38
0.099(2) 0.424(18) 0.427 0.26(3) 0.238 1.68(4) 1.72 3.99(8) 3.80
0.136(3) 0.354(13) 0.360 0.33(4) 0.302 1.52(3) 1.57 4.47(8) 4.18
0.176(3) 0.286(15) 0.296 0.38(4) 0.361 1.40(4) 1.44 5.0(2) 4.64
0.228(4) 0.206(17) 0.226 0.52(6) 0.423 1.30(4) 1.32 5.9(2) 5.34
0.253(3) 0.185(14) 0.196 0.48(3) 0.446 1.24(2) 1.27 6.2(2) 5.72
0.314(9) 0.133(13) 0.135 0.45(11) 0.488 1.14(2) 1.17 7.2(3) 6.82
0.332(6) 0.118(14) 0.119 0.49(9) 0.495 1.12(2) 1.14 7.7(3) 7.22
0.391(6) 0.073(13) 0.076 0.48(5) 0.511 1.06(1) 1.08 9.4(8) 8.76
0.424(3) 0.051(12) 0.056 0.42(7) 0.503 1.04(1) 1.05 10.5(12) 9.86
0.467(6) 0.036(15) 0.034 0.42(10) 0.472 1.03(1) 1.02 13.4(21) 12.00
0.498(15) 0.026(15) 0.023 0.30(17) 0.430 1.02(2) 1.01 14.8(35) 13.90

LJ Mixture E (ε2/ε1 = 0.5 and ξ12 = 1.2)
continued on next page
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x′2/molmol−1 γ / εσ−2 Γ
(1)
2 / σ−2 E2 L90

10 / σ

MD DGT MD DGT MD DGT MD DGT
0.000 0.665(21) 0.663 - - - - 2.91(5) 2.95

0.032(1) 0.634(3) 0.637 0.013(14) 0.028 1.1(1) 1.03 3.03(3) 3.02
0.071(2) 0.592(16) 0.603 0.09(2) 0.060 1.2(1) 1.01 3.19(5) 3.14
0.127(1) 0.530(18) 0.551 0.14(3) 0.107 1.09(3) 1.00 3.36(6) 3.30
0.175(1) 0.469(20) 0.504 0.15(3) 0.147 1.05(2) 1.00 3.60(6) 3.48
0.225(2) 0.419(19) 0.453 0.19(4) 0.188 1.03(1) 1.00 3.77(4) 3.70
0.271(1) 0.362(14) 0.403 0.23(5) 0.227 1.03(1) 1.00 4.04(7) 3.94
0.326(2) 0.300(15) 0.343 0.25(4) 0.272 1.02(1) 1.00 4.43(6) 4.28
0.373(2) 0.250(13) 0.291 0.28(5) 0.310 1.01(1) 1.00 4.91(11) 4.64
0.428(3) 0.199(15) 0.231 0.31(8) 0.350 1.01(1) 1.00 5.5(2) 5.20
0.489(1) 0.134(12) 0.168 0.36(5) 0.388 1.01(1) 1.00 6.4(3) 6.02
0.544(3) 0.091(11) 0.116 0.31(6) 0.408 1.01(1) 1.00 7.4(3) 7.10
0.610(3) 0.054(9) 0.063 0.33(6) 0.397 1.01(1) 1.00 9.9(6) 9.10
0.681(6) 0.020(13) 0.023 0.29(8) 0.291 1.01(1) 1.00 16.1(26) 12.68

LJ Mixture F (ε2/ε1 = 0.5 and ξ12 = 0.85)
0.000 0.665(21) 0.663 - - - - 2.91(5) 2.95

0.012(1) 0.600(16) 0.587 0.07(1) 0.082 2.45(7) 3.18 3.15(5) 3.14
0.032(1) 0.519(17) 0.477 0.16(2) 0.199 2.22(3) 2.71 3.59(7) 3.52
0.048(2) 0.455(15) 0.394 0.21(2) 0.284 2.04(5) 2.38 3.92(7) 3.90
0.059(2) 0.400(18) 0.345 0.31(3) 0.333 1.91(4) 2.18 4.38(9) 4.18
0.084(4) 0.311(16) 0.242 0.38(3) 0.418 1.67(3) 1.77 5.1(1) 4.94
0.101(3) 0.268(20) 0.184 0.45(3) 0.443 1.56(2) 1.53 5.8(1) 5.50
0.110(4) 0.207(21) 0.158 0.53(5) 0.432 1.40(2) 1.42 6.6(3) 5.74
0.137(3) 0.166(14) 0.091 0.49(4) 0.322 1.28(1) 1.15 7.3(4) 6.14
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A.6 Mass Transfer Simulations

Simulation Details

Fig. A.17 shows details of the mass transfer simulations (cf. chapter 6) that were carried
out for the LJTS mixtures A and G at the temperature T = 0.715 εk−1

B . Only results from
the production phase are shown. In the diagrams on the left side, the number of inserted
and deleted particles of component 2 in the two control volumes is shown as a function
of the simulation time. The mass flux j2 = ∆N2

∆τ a2 was determined from the total number
of inserted and removed particles during the production time ∆τ . The cross section
of the simulation box is a2 (see chapter 6 for details). Note that the control volumes
regulate the chemical potential, which can result in the fact that each control volume
inserts and deletes particles in some times steps. However, the cumulative number of
inserted particles in the control volume CV+ and deleted particles in the control volume
CV- during the production phase yield increasing and decreasing trends, respectively,
cf. Fig. A.17. The number of inserted and deleted particles ∆N2 was computed from
the average of the inserted and deleted particles by the end of the production phase τend,
i.e. ∆N2 = NCV+

2 (τend)+NCV−
2 (τend)

2 . In all cases, NCV+
2 (τend) and NCV−

2 (τend) deviate by no
more than 10%.

The statistical uncertainty of the mass flux j2 was determined from the average deviation
of the lines through the origin with the slope ∆N2

∆τ and −∆N2

∆τ and the corresponding
primary data for N+

2 (τ) and N−
2 (τ), cf. Fig. A.17.

For mixture A, the results are as expected: symmetric straight lines through the origin
for N+

2 (τ) and N−
2 (τ). The rate of low-boiling particles inserted in the left control

volume approximately equals the rate of low-boiling particles being removed in the right
control volume. The results for mixture G scatter much more than those for mixture A.
This is mainly due to the higher vapor density and pressure in mixture G. Hence, the
uncertainty obtained for the flux j2 in mixture G is significantly larger than in mixture
A (see chapter 6).

Since the insertion of particles is the more difficult step in a sense that also unfavorable
configurations are sometimes accepted, the fluctuations are more pronounced for the
inserting control volume, cf. Fig. A.17. Still, both shown cases can be considered
quasi-stationary.

The interface positions shown in Fig. A.17 – right indicate that the liquid slab remains
fairly constant in the simulation box. However, in the case of mixture A, the liquid slab
slightly moves towards the inserting control volume during the production phase.

Several challenges were observed during the preliminary testing of the simulation method
that are briefly summarized here. The choice of an appropriate difference of the chemical
potential was particularly challenging. Large values of the difference of the chemical
potential were found to cause strong perturbations – especially in the vapor phases –
and, hence, cause nucleation of droplets or bubbles and also require long equilibration
times to reach a quasi-stationary state. Furthermore, large differences of the chemical
potential favor movements of the liquid film in the box. Small values of the differences
of the chemical potential will on the other hand result in small values of the flux.
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Figure A.17: Results from the production phase of the mass transfer simulations at
T = 0.715 εk−1

B . Left: cumulative inserted and removed particles of the
component 2 in the control volumesN+

2 (τ) (blue) andN−
2 (τ) (red); right:

position of the interfaces as a function of the simulation time. Results of
the mixture G are in the top; results of mixture A are bottom. Symbols
indicate the total density at the interface ρinterface = ρV + 0.5 (ρL − ρV).
The black lines indicate the obtained slopes ∆N2

∆τ and −∆N2

∆τ .

The number NMC and frequency fMC of GCMC steps applied in the control volumes
(see chapter 6) were chosen based on preliminary tests. On the one side, the amount
of MC steps has to be large enough to ensure that the prescribed chemical potential
is regulated in the control volumes. On the other side, NMC should be small as it
significantly influences the required computational time and causes perturbations in the
vapor phase. Also the frequency fMC that MC and MD calculations are alternated has
to be balanced between computational effort and the stability of the simulation.

Individual State Points in the Profiles

Fig. A.18 - top depicts a detailed comparison of the sampled state points from each bin
(excluding the vicinity of the control volumes) from all profiles during the production
phase from the mass transfer simulation at T = 0.715 εk−1

B . The averaged state points
for the two vapor domains and the liquid domain agree very well with the equilibrium
phase envelope computed from the PeTS EOS [249, 635]. The liquid bulk domain state
points are connected to the two vapor domains by the state points in the interface. For
the liquid bulk domain, the state points show an elliptic scatter pattern around a point
on the phase equilibrium envelope. The scattering is dominated by a scattering in the
pressure, which is simply due to the fact that the pressure shows stronger fluctuations in
the liquid bulk than the vapor bulk, cf. the pressure profiles in Fig. 81. On the contrary
for vapor bulk domains Vleft and Vright, where the scattering of the individual bin state
points is dominated by a scattering in the concentration. This is due to the fact that the
relatively low number of particles in the vapor bins yields stronger fluctuations compared
to the liquid bulk bins. Nevertheless, the three averaged state points from the bins in
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the respective bulk domain from all profiles during the production phase (blue squares
in Fig. A.18) are for both mixtures in excellent agreement with the phase equilibrium
computed from the PeTS EOS [249, 635], which is known to give an excellent description
of the phase equilibrium of LJTS mixtures [628–630].

Following Ref. [288], the local scalar pressure p in the heterogeneous system was sim-
ply computed by averaging the trace of the pressure tensor. The pressure across the
interfaces smoothly connects the three bulk domains Vleft – L – Vright. The pressure
transition in the two interfaces differ, which is in line with differences in the enrichment,
cf. Fig. 82.

Figure A.18: Pressure – composition diagram for mixture G (top) and mixture A (bot-
tom) at T = 0.715 εk−1

B . The black line indicates the phase equilibrium
computed with the PeTS EOS [249, 635]. The circles indicate state
points sampled during the stationary phase of the simulation in the indi-
vidual bins of the profiles – excluding the vicinity of the control volumes.
The color corresponds to the z-position in the profile. The squares indi-
cate the averaged state points computed in each bulk domain (liquid as
well as left and right vapor).

The magnitude of the pressure and composition scattering in the bulk domains is similar
for both mixtures: the state points in the vapor bulk domains (yellow and dark blue
circles in Fig. A.18) exhibit stronger fluctuations in the composition, whereas the liquid
bulk domain exhibits more pronounced pressure fluctuations (turquoise circles). For
both mixtures, the pressure range in the interface and the scattering in the liquid domain
exceeds the pressure range of the phase equilibrium.
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Additional Results for Mixture A

Fig. A.19 shows the density profiles and isothermal p−x diagrams of mixture A during
the production phase of the mass transfer simulations at different temperatures. In all
cases, no enrichment is found at the interface. The state points averaged for the three
bulk domains are in excellent agreement with the respective phase equilibrium envelop.
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Figure A.19: Density profiles (left panels) and state points in the bulk domains (right
panels) sampled during the production phase of the mass transfer sim-
ulations for mixture A at different temperatures. The blue shaded area
indicates the elongation of the control volumes in z-direction.

Numeric Values from the Mass Transfer Simulations

Table A.16 reports the numeric values for the pressure, density, mole fraction, and
velocity of component 2 obtained for all three bulk domains for both studied mixtures
and the four considered temperatures.

Table A.17 reports the interface positions averaged during the production phase. The in-
terface position was defined as the point in the interface with the total density ρinterface =
ρV + 0.5 (ρL − ρV), cf. Fig. A.17. The interface position was computed from each block
averaged density profile; the reported values in Table A.17 are their mean values. The
uncertainty was estimated as three times the standard deviation of the block average
values, which confirms the assumption of a quasi-stationary state of the simulations.
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Table A.16: Numeric values for the results from the mass transfer simulations in the
three bulk domains Vleft, L, and Vright (as defined in chapter 6). Results
for mixture G and mixture A. Results for all four studied temperatures:
pressure p; total density ρ in the bulk domains; mole fraction of the low-
boiling component x2 in the bulk domains; and average velocity u2 of the
component 2 particles in the fixed laboratory frame.

T / εk−1B Vleft L Vright

G A G A G A
p / εσ−3

0.66 0.0335(25) 0.0041(4) 0.0262(19) 0.0036(14) 0.0187(7) 0.0030(3)
0.715 0.0387(15) 0.0077(5) 0.0316(21) 0.0071(13) 0.0239(14) 0.0063(3)
0.77 0.0440(21) 0.0131(5) 0.0376(20) 0.0121(13) 0.0300(15) 0.0112(4)
0.825 0.048(3) 0.0213(6) 0.0436(22) 0.0204(16) 0.0382(17) 0.0193(6)

ρ / σ−3

0.66 0.06576(3) 0.00660(1) 0.79691(3) 0.80062(3) 0.03292(1) 0.00484(1)
0.715 0.06718(3) 0.01176(1) 0.76706(3) 0.77081(2) 0.04325(8) 0.00944(1)
0.77 0.07236(3) 0.01937(1) 0.73398(2) 0.73935(2) 0.04623(3) 0.01630(1)
0.825 0.07376(3) 0.03112(1) 0.69914(2) 0.70425(2) 0.05838(7) 0.02791(1)

x2 / mol mol−1

0.66 0.895(10) 0.48(5) 0.057(5) 0.208(3) 0.81(4) 0.16(3)
0.715 0.829(9) 0.44(3) 0.056(3) 0.209(2) 0.68(6) 0.171(22)
0.77 0.711(13) 0.378(21) 0.058(4) 0.198(4) 0.60(3) 0.159(12)
0.825 0.567(22) 0.382(20) 0.055(3) 0.206(3) 0.49(4) 0.191(12)

u2 /
√

ε/M
0.66 0.0011(1) 0.0719(1) 0.0014(1) 0.0014(1) 0.0024(2) 0.3023(1)
0.715 0.0020(1) 0.0497(1) 0.0026(1) 0.0016(1) 0.0038(1) 0.1609(1)
0.77 0.0020(2) 0.0287(1) 0.0024(2) 0.0014(2) 0.0037(2) 0.0810(2)
0.825 0.0045(2) 0.0202(2) 0.0049(3) 0.0017(1) 0.0066(3) 0.0451(2)

Table A.17: Average position of the two vapor-liquid interfaces during the mass trans-
fer simulations. Results for mixture G and mixture A. Results for all four
studied temperatures. The uncertainty was estimated as three times the
standard deviation of the block averages obtained during the simulation.

T / εk−1B zleft / σ zright / σ

G A G A
0.66 59(1) 58(1) 96(1) 98(1)
0.715 62(1) 56(2) 97(1) 99(2)
0.77 61(1) 56(2) 94(1) 96(2)
0.825 63(1) 52(2) 95(2) 94(2)
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Comparison of Bulk Diffusion Coefficients

Figs. A.20 and A.21 compare the diffusivity ρÐ12 of the bulk phases from both mixtures
G and A; results from Ref. [638]. Fig. A.20 shows the diffusivity for the liquid phase
for both mixtures. Fig. A.21 shows the diffusivity for the vapor phase for both mix-
tures. The liquid phase results were obtained using Green-Kubo molecular simulations
sampling slightly above the bubble line and the vapor phase results were obtained from
the Chapman-Enskog theory for the saturated vapor phase [638].

The values of the diffusivity for both mixtures are approximately the same. This holds
for both the liquid and the vapor phase. For the liquid and the vapor phase, there is a
tendency that the diffusivity ρÐ12 for mixture G slightly exceeds that of mixture A.
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Figure A.20: Diffusivity ρÐ12 of the liquid phase at different temperatures. Results
for mixture G (left) and mixture A (right) [638]. The color indicates the
temperature.

Figure A.21: Diffusivity ρÐ12 of the vapor phase for mixture G (circles) and A
(squares) [638].
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A.7 Results for the Mixture Cyclohexane + CO2

This Appendix contains the following points:

• numeric values (results from MD and EOS) of the phase equilibria for the pure
substances and the mixture of cyclohexane and CO2, cf. Table A.18 - A.19 for the
pure substances and Table A.20 for the binary mixture results at three tempera-
tures

• numeric values of the interfacial properties obtained from MD and DGT; Tables
A.21 and A.22 report the pure substance interfacial properties; Tables A.23 the
mixture interfacial properties

• density profiles obtained from MD simulation of the binary mixture cyclohexane
+ CO2 at three temperatures (Fig. A.22)

• numeric values of the of the experimental surface tension measurements, cf. Table
A.24
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Numeric Values of Phase Equilibria Results

Table A.18: MD and PCP-SAFT results for the vapor-liquid equilibrium of cyclohex-
ane. The columns are from left to right: temperature, vapor pressure,
and saturated liquid and vapor density, respectively. The number in the
parentheses indicates the statistical uncertainty in the last decimal digit.

T / K p / MPa ρ′ / mol l−1 ρ′′ / mol l−1

MD EOS MD EOS MD EOS
280 0.00524(4) 0.0054 9.349(34) 9.2530 0.0023(4) 0.0023
290 0.009(1) 0.0089 9.239(30) 9.1465 0.0039(7) 0.0037

303.15 0.0185(26) 0.0163 9.101(89) 9.0062 0.0075(16) 0.0065
313.15 0.0286(17) 0.0246 8.991(82) 8.8989 0.0112(21) 0.0096
323.15 0.0343(22) 0.0362 8.874(88) 8.7907 0.0131(29) 0.0137
333.15 0.0495(28) 0.0517 8.767(92) 8.6813 0.0185(33) 0.0190
343.15 0.0904(43) 0.0722 8.654(88) 8.5704 0.0334(41) 0.0259
353.15 0.1096(67) 0.0985 8.54(10) 8.4577 0.0392(43) 0.0347
363.15 0.1367(84) 0.1319 8.404(75) 8.3427 0.0476(44) 0.0455
373.15 0.1783(52) 0.1735 8.291(75) 8.2252 0.0615(55) 0.0588
390 0.278(9) 0.2657 8.075(27) 8.0200 0.0929(43) 0.0878
410 0.429(11) 0.4189 7.818(30) 7.7620 0.1402(65) 0.1356
430 0.650(11) 0.6309 7.536(34) 7.4838 0.211(10) 0.2020
450 0.945(11) 0.9143 7.227(42) 7.1790 0.308(18) 0.2929
470 1.327(18) 1.2829 6.882(59) 6.8381 0.440(34) 0.4171
490 1.812(14) 1.7517 6.494(98) 6.4465 0.629(71) 0.5882
510 2.438(11) 2.3374 5.91(31) 5.9783 0.995(276) 0.8309
530 3.155(27) 3.0593 5.33(35) 5.3783 1.435(348) 1.1991
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Table A.19: MD and PCP-SAFT results for the vapor-liquid equilibrium of CO2. The
columns are from left to right: temperature, vapor pressure, and saturated
liquid and vapor density, respectively. The number in the parentheses
indicates the statistical uncertainty in the last decimal digit.

T / K p / MPa ρ′ / mol l−1 ρ′′ / mol l−1

MD EOS MD EOS MD EOS
220 0.396(15) 0.607 26.60(17) 26.457 0.23(2) 0.360
230 0.864(24) 0.898 25.58(10) 25.685 0.56(10) 0.524
240 1.221(63) 1.282 24.51(16) 24.852 0.71(3) 0.743
250 1.89(12) 1.779 23.65(51) 23.939 1.13(7) 1.035
260 2.32(16) 2.407 22.83(21) 22.911 1.39(6) 1.423
270 3.20(16) 3.187 21.47(15) 21.718 2.02(12) 1.947
280 4.25(8) 4.144 20.18(23) 20.263 2.83(17) 2.681
290 5.08(19) 5.306 18.65(48) 18.327 3.48(21) 3.792

Table A.20: MD and PCP-SAFT results for the vapor-liquid equilibrium of the binary
mixture cyclohexane + CO2 at T = 303.15 K, 333.15 K, and 363.15 K. The
columns are from left to right: the liquid phase concentration, the vapor
phase concentration, the coexistence pressure, the liquid phase density,
and the vapor phase density. The number in the parentheses indicates the
statistical uncertainty in the last decimal digit. The given liquid phase
composition holds for both the EOS and MD; for the EOS exactly and
for MD with the reported uncertainty.

x′CO2
/molmol−1 x′′CO2

/molmol−1 p / MPa ρ′ / mol l−1 ρ′′ / mol l−1

MD EOS MD EOS MD EOS MD EOS
T = 303.15 K

0.0380(8) 0.9672(21) 0.9611 0.559(5) 0.4473 9.283(40) 9.196 0.228(6) 0.182
0.0618(14) 0.9777(16) 0.9745 0.906(11) 0.7120 9.411(48) 9.319 0.376(6) 0.294
0.0893(25) 0.9835(13) 0.9812 1.248(14) 1.0092 9.558(54) 9.465 0.527(8) 0.423
0.1711(21) 0.9893(6) 0.9883 2.213(21) 1.8511 10.02(9) 9.928 0.986(14) 0.815
0.2021(24) 0.9902(8) 0.9894 2.595(26) 2.1513 10.20(13) 10.115 1.182(15) 0.965
0.2526(35) 0.9909(9) 0.9906 3.097(24) 2.6163 10.53(17) 10.434 1.459(26) 1.211
0.3070(53) 0.9916(7) 0.9913 3.570(45) 3.0831 10.89(25) 10.801 1.739(21) 1.477
0.3655(50) 0.9915(4) 0.9918 4.033(33) 3.5423 11.29(38) 11.223 2.036(34) 1.761
0.4302(45) 0.9918(7) 0.9921 4.463(28) 3.9975 11.78(57) 11.727 2.341(43) 2.069
0.5039(46) 0.9914(10) 0.9923 4.868(42) 4.4477 12.38(72) 12.352 2.659(42) 2.408
0.5849(71) 0.9915(8) 0.9924 5.240(62) 4.8625 13.11(76) 13.107 2.983(72) 2.758
0.6711(44) 0.9912(6) 0.9924 5.487(53) 5.2253 13.91(84) 13.988 3.238(62) 3.105
0.7746(29) 0.9914(10) 0.9925 5.824(50) 5.6030 14.95(61) 15.119 3.625(85) 3.521
0.8692(14) 0.9911(7) 0.9929 6.164(55) 5.9897 15.84(28) 16.061 4.074(11) 4.030

T = 333.15 K
0.0351(9) 0.9145(41) 0.9022 0.7039(87) 0.5694 8.928(36) 8.845 0.262(5) 0.212
0.0607(9) 0.9464(24) 0.9381 1.1717(83) 0.9436 9.046(40) 8.968 0.444(8) 0.356
0.0980(16) 0.9624(15) 0.9578 1.7852(87) 1.4835 9.233(48) 9.153 0.691(10) 0.572
0.1369(24) 0.9702(8) 0.9669 2.439(23) 2.0388 9.433(66) 9.354 0.968(13) 0.805
0.1770(17) 0.9740(11) 0.9720 3.149(15) 2.6035 9.648(73) 9.569 1.287(18) 1.055
0.2201(18) 0.9762(12) 0.9752 3.907(19) 3.1991 9.89(12) 9.811 1.654(18) 1.336
0.3324(38) 0.9785(11) 0.9788 5.365(37) 4.6910 10.54(24) 10.493 2.447(32) 2.130
0.3993(48) 0.9799(8) 0.9792 6.090(34) 5.5303 10.99(33) 10.938 2.893(49) 2.655
0.4648(50) 0.9774(11) 0.9790 6.971(51) 6.3094 11.39(53) 11.399 3.537(63) 3.215

continued on next page
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x′CO2
/molmol−1 x′′CO2

/molmol−1 p / MPa ρ′ / mol l−1 ρ′′ / mol l−1

MD EOS MD EOS MD EOS MD EOS
0.5592(74) 0.9764(17) 0.9775 7.798(70) 7.3493 12.01(66) 12.103 4.238(93) 4.121
0.6392(59) 0.9729(14) 0.9752 8.546(72) 8.1479 12.56(79) 12.712 5.06(16) 5.014
0.7332(25) 0.9687(16) 0.9706 9.196(46) 8.9922 13.01(84) 13.358 6.01(34) 6.303

T = 363.15 K
0.0306(5) 0.8158(47) 0.7906 0.835(8) 0.6792 8.544(32) 8.474 0.288(6) 0.234
0.0479(8) 0.8688(30) 0.8513 1.210(11) 0.9900 8.621(39) 8.550 0.421(7) 0.343
0.0817(14) 0.9124(26) 0.9014 1.954(15) 1.5965 8.777(44) 8.702 0.692(10) 0.564
0.1454(24) 0.9434(25) 0.9347 3.286(34) 2.7419 9.068(71) 9.000 1.206(20) 1.006
0.1743(19) 0.9484(15) 0.9416 3.914(15) 3.2623 9.212(84) 9.141 1.466(25) 1.220
0.2188(24) 0.9506(15) 0.9484 4.858(25) 4.0623 9.42(11) 9.365 1.879(33) 1.566
0.2682(24) 0.9545(14) 0.9526 5.790(26) 4.9486 9.66(15) 9.624 2.313(36) 1.979
0.3068(32) 0.9536(14) 0.9544 6.598(36) 5.6392 9.85(21) 9.832 2.722(44) 2.325
0.3648(44) 0.9551(11) 0.9553 7.576(49) 6.6740 10.16(30) 10.157 3.248(56) 2.893
0.4279(51) 0.9533(25) 0.9545 8.680(49) 7.7873 10.46(45) 10.521 3.933(80) 3.586
0.5002(46) 0.9487(14) 0.9512 9.797(46) 9.0453 10.81(61) 10.946 4.68(22) 4.508
0.5859(59) 0.9415(23) 0.9431 10.865(76) 10.4977 11.15(90) 11.433 5.66(31) 5.837
0.6665(44) 0.9304(227) 0.9289 11.825(74) 11.7944 11.4(10) 11.811 6.73(47) 7.384

Numeric Values of Interfacial Properties Results

Table A.21: MD and DGT results for the vapor-liquid interfacial properties of cyclo-
hexane. The columns are from left to right: the temperature, the surface
tension, and the interfacial thickness. The number in the parentheses
indicates the statistical uncertainty in the last decimal digit.

T / K γ / mN m−1 L90
10 / nm

MD DGT MD DGT
280 28.72(37) 26.69 0.693(1) 0.80
290 27.64(15) 25.44 0.736(1) 0.82

303.15 25.78(13) 23.83 0.743(16) 0.85
313.15 24.69(23) 22.63 0.815(16) 0.87
323.15 23.69(15) 21.45 0.859(16) 0.90
333.15 22.78(21) 20.29 0.844(22) 0.92
343.15 21.06(25) 19.14 0.953(25) 0.95
353.15 19.81(15) 18.02 0.981(20) 0.98
363.15 18.53(19) 16.91 1.032(30) 1.01
373.15 17.47(15) 15.82 1.111(20) 1.05
390 15.66(18) 14.01 1.205(16) 1.11
410 13.19(15) 11.93 1.313(20) 1.21
430 11.18(15) 9.92 1.487(20) 1.32
450 9.07(10) 7.98 1.696(16) 1.47
470 7.08(9) 6.13 1.912(16) 1.66
490 5.08(17) 4.39 2.237(32) 1.94
510 3.20(12) 2.78 2.540(82) 2.36
530 1.76(11) 1.38 3.08(16) 3.14
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Table A.22: MD and DGT results for the vapor-liquid interfacial properties of CO2.
The columns are from left to right: the temperature, the surface tension,
and the interfacial thickness. The number in the parentheses indicates
the statistical uncertainty in the last decimal digit.

T / K γ / mN m−1 L90
10 / nm

MD DGT MD DGT
220 20.32(69) 15.66 0.81(2) 0.73
230 15.75(60) 13.42 1.09(8) 0.80
240 13.48(47) 11.24 1.14(4) 0.87
250 11.3(14) 9.13 1.49(25) 0.97
260 9.06(36) 7.10 1.43(4) 1.10
270 7.8(17) 5.16 1.75(12) 1.27
280 4.7(11) 3.34 2.14(23) 1.56
290 2.77(41) 1.70 2.58(48) 2.10

Table A.23: MD and DGT results for the vapor-liquid interfacial properties of the bi-
nary mixture cyclohexane + CO2 at T = 303.15 K, 333.15 K, and 363.15 K.
The columns are from left to right: the liquid phase concentration, the
surface tension, the relative adsorption of CO2 at the interface, the interfa-
cial thickness, and the enrichment of CO2. The number in the parentheses
indicates the statistical uncertainty in the last decimal digit. The given
liquid phase composition holds for both the DGT and MD; for the DGT
exactly and for MD with the reported uncertainty.

x′CO2
/molmol−1 γ / mN m−1 Γ

(C6H12)
CO2

/ µmolm−2 L90
10 / nm ECO2

MD DGT MD DGT MD DGT MD DGT
T = 303.15 K

0.0380(8) 24.24(17) 22.43 0.65(2) 0.57281011 0.83(1) 0.89 2.66(8) 2.68
0.0618(14) 23.26(29) 21.56 1.12(5) 0.94766042 0.87(1) 0.90 2.70(11) 2.64
0.0893(25) 22.24(22) 20.56 1.56(9) 1.39117202 0.90(2) 0.90 2.56(11) 2.60
0.1711(21) 18.95(23) 17.69 3.12(12) 2.79745698 0.96(2) 0.87 2.38(6) 2.46
0.2021(24) 17.80(15) 16.64 3.81(11) 3.36052806 0.98(2) 0.83 2.32(3) 2.40
0.2526(35) 16.08(12) 14.98 4.77(24) 4.30661582 1.00(3) 0.79 2.19(6) 2.29
0.3070(53) 14.28(14) 13.29 5.97(18) 5.36025348 1.03(2) 0.77 2.07(7) 2.17
0.3655(50) 12.41(16) 11.58 7.22(24) 6.51843965 1.11(3) 0.81 1.91(4) 2.03
0.4302(45) 10.56(16) 9.86 8.20(22) 7.81381184 1.23(2) 0.85 1.71(3) 1.87
0.5039(46) 8.74(19) 8.12 9.37(31) 9.27075818 1.28(3) 0.92 1.55(3) 1.68
0.5849(71) 7.23(13) 6.49 10.04(43) 10.7579958 1.46(3) 1.04 1.36(3) 1.49
0.6711(44) 5.83(18) 5.06 9.9(6) 11.9794891 1.61(3) 1.21 1.20(2) 1.30
0.7746(29) 4.22(24) 3.62 11.0(12) 12.3953079 2.02(8) 1.50 1.07(1) 1.12
0.8692(14) 3.00(16) 2.35 10.4(15) 11.2818141 2.30(9) 1.94 1.01(1) 1.01

T = 333.15 K
0.0351(9) 20.85(19) 19.11 0.49(3) 0.43 0.96(3) 0.96 2.31(8) 2.32
0.0607(9) 19.77(28) 18.25 0.85(4) 0.76 1.00(3) 0.98 2.28(6) 2.28
0.0980(16) 18.56(23) 17.03 1.41(7) 1.24 1.04(3) 1.00 2.20(7) 2.21
0.1369(24) 17.01(35) 15.77 1.95(7) 1.76 1.10(2) 1.02 2.12(5) 2.15
0.1770(17) 15.60(23) 14.49 2.58(6) 2.30 1.13(3) 1.02 2.07(3) 2.08
0.2201(18) 14.08(28) 13.15 3.41(8) 2.90 1.19(2) 1.02 2.00(2) 2.00
0.3324(38) 10.65(27) 9.86 4.73(19) 4.52 1.34(3) 1.04 1.70(3) 1.80
0.3993(48) 9.19(49) 8.05 5.8(2) 5.49 1.39(3) 1.08 1.60(3) 1.67

continued on next page
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x′CO2
/molmol−1 γ / mN m−1 Γ

(C6H12)
CO2

/ µmolm−2 L90
10 / nm ECO2

MD DGT MD DGT MD DGT MD DGT
0.4648(50) 6.88(28) 6.42 6.3(4) 6.44 1.61(6) 1.19 1.45(3) 1.54
0.5592(74) 5.1(16) 4.34 6.6(5) 7.72 1.90(6) 1.44 1.26(3) 1.37
0.6392(59) 3.47(30) 2.84 7.5(7) 8.61 2.33(8) 1.83 1.15(1) 1.23
0.7332(25) 2.12(80) 1.43 5.3(11) 9.03 3.08(20) 2.64 1.04(1) 1.10

T = 363.15 K
0.0306(5) 17.52(29) 15.98 0.36(3) 0.31 1.10(2) 1.06 2.08(6) 2.05
0.0479(8) 17.01(24) 15.46 0.53(3) 0.49 1.13(2) 1.06 2.03(7) 2.02
0.0817(14) 15.84(39) 14.44 0.94(3) 0.84 1.19(3) 1.10 1.98(4) 1.97
0.1454(24) 13.79(30) 12.57 1.75(10) 1.51 1.28(3) 1.15 1.88(4) 1.87
0.1743(19) 12.84(23) 11.74 1.95(9) 1.82 1.33(2) 1.17 1.82(3) 1.83
0.2188(24) 11.22(28) 10.48 2.69(8) 2.29 1.40(2) 1.21 1.77(3) 1.76
0.2682(24) 9.67(51) 9.13 2.99(16) 2.81 1.50(3) 1.25 1.66(3) 1.68
0.3068(32) 8.59(31) 8.11 3.18(16) 3.22 1.61(3) 1.29 1.56(3) 1.63
0.3648(44) 7.16(40) 6.64 3.75(15) 3.81 1.71(4) 1.37 1.48(2) 1.54
0.4279(51) 5.54(33) 5.14 4.01(28) 4.40 1.91(5) 1.50 1.36(2) 1.44
0.5002(46) 4.12(81) 3.59 2.38(34) 4.96 2.19(6) 1.75 1.21(2) 1.33
0.5859(59) 2.69(35) 2.02 2.96(58) 5.29 2.6(1) 2.29 1.11(1) 1.21
0.6665(44) 1.65(29) 0.90 1.55(61) 4.92 2.9(2) 3.29 1.04(1) 1.11
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Density Profiles

Figure A.22: Density profiles of the binary mixture cyclohexane + CO2 at three differ-
ent temperatures: 303.15 K (bottom), 333.15 K (middle), and 363.15 K
(top) and different composition. Results from MD. Dashed lines are
CO2; solid lines are cyclohexane. The color indicates the liquid phase
composition.
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Results of Experimental Measurements

Table A.24: Experimental data of the surface tension of the binary mixture cyclohex-
ane + CO2 obtained with the pendant drop apparatus [624]. Absolute
uncertainties U are U(T ) = 0.1 K, U(p) = 0.0025 MPa for p > 2.5 MPa and
U(p) = 0.01 MPa for p > 2.5 MPa. The relative uncertainty of the surface
tension is u(γ) = 0.041γ.

T / K p / MPa γ / mN m−1 T / K p / MPa γ / mN m−1

303.15 0.573 21.63 343.15 0.526 17.79
1.028 20.30 1.034 16.83
2.014 17.40 2.065 14.93
3.001 14.02 3.138 12.77
4.032 10.21 4.093 11.13
4.998 6.35 5.089 9.27
5.991 2.59 5.974 7.61

313.15 0.529 20.72 353.15 0.539 16.87
1.031 19.50 1.036 16.04
2.106 16.68 2.083 14.22
3.066 13.76 3.099 12.48
4.065 11.01 4.109 10.74
5.06 7.90 5.079 9.23
6.47 3.13 6.028 7.63

323.15 0.561 19.74 363.15 0.584 16.06
1.055 18.72 1.063 15.15
2.065 16.35 2.078 13.59
3.098 13.72 3.129 11.96
4.106 11.26 4.126 10.40
5.099 8.70 5.133 8.86
6.107 6.10 6.027 7.57

333.15 0.512 19.07 373.15 0.583 14.83
1.044 17.82 1.023 14.24
2.122 15.56 2.076 12.78
3.132 13.31 3.162 11.25
4.131 11.09 4.129 9.85
5.114 9.06 5.081 8.60
6.053 7.07 5.954 7.49
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B Details on Data Analysis and Data
Assessment

B.1 Details on the Assessment of LJ Computer
Experiment Data

This Appendix contains the following points:

• additional information on the EOS test for the assessment of the homogeneous
state points.

• additional information on the compressibility factor test, the Clausius-Clapeyron
test, and the deviation test of the VLE bulk data, cf. Fig. A.24, A.25, and A.26,
respectively. All available VLE data (both confirmed and discarded) are shown
and discussed in detail.

• additional information on the surface tension data, cf. Fig. A.27.

• list of clear outliers (eight data point) from the seven best VLE datasets
(Refs. [163, 164, 298, 299, 395, 452, 510, 541, 548] and this work), cf. Table A.25.

Details on the Assessment of Homogeneous States Data

Fig. A.23 shows the results of the EOS test on the homogeneous state points as the
percentage of the overall confirmed data as a function of the parameter Pmax. The
chosen value of Pmax = 4 is indicated, which entails approximately 90% confirmed data.
For smaller Pmax values, the EOS test becomes more stringent as more data points are
characterized as outliers. For larger Pmax values, the EOS test becomes more lenient
(i.e. more conservative) and less data points are identified as outliers. Evidently, the
EOS test converges for large Pmax values to approximately Nconf = 98%, which means
that these 2% of all homogeneous data are particularly gross outliers.
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Figure A.23: Percentage of overall confirmed data as a function of the parameter Pmax

for the homogeneous data EOS test. Nconf is the confirmation rate of all
homogeneous data. The dashed line indicates the value Pmax = 4 chosen
for the identification of outliers as they are specified in the database.

Details on the Assessment of VLE Bulk data

The results of the three VLE tests for all datasets (both confirmed and discarded) are
shown in Figs. A.24, A.25, and A.26. Fig. A.24 shows the results of the compressibility
factor test for all VLE data, Fig. A.25 shows the results of the Clausius-Clapeyron test
for all VLE data, and Fig. A.26 shows the deviations from all VLE data and the base
correlations (see section 4.2 for details).

Datasets that were discarded according the criteria for the compressibility factor test
(cf. Fig. A.24) outlined in the main part of this work are those from Adams [6], Adams
[7], Anisimov et al. [23], Baidakov et al. [31], Baidakov et al. [39], Betancourt-Cárdenas
et al. [53], Kioupis et al. [324], Martin and Siepmann [410], Panagiotopoulos [514],
Panagiotopoulos et al. [516], Smit and Frenkel [612], and Trokhymchuk and Alejandre
[672].

For the datasets from the literature that report all VLE properties required for the
Clausius-Clapeyron test, the RHS of Eq. (73) was computed and is shown in Fig.
A.25 for comparison. Large deviations from the base correlation and the most precise
datasets (Refs. [298, 299, 395, 452] and this work) were found for the data of Adams
[6], Adams [7], Kioupis et al. [324], Betancourt-Cárdenas et al. [53], Panagiotopoulos
[514], Panagiotopoulos et al. [516], and Smit and Frenkel [612]. According the criteria
outlined in the main part of this work, these datasets were discarded.

Fig. A.26 shows the deviation plots for each VLE property (ps, ρ′, ρ′′, and ∆hv) for all
VLE datasets considered in this work. The following datasets contain two or more data
points with deviations larger than 5%, i.e. are out of the range of Fig. A.26: Adams [6],
Adams [7], Anisimov et al. [23], Baidakov et al. [31], Baidakov et al. [39], Baidakov et
al. [37], Betancourt-Cárdenas et al. [53], Guo et al. [230], Guo and Lu [229], Galliero
et al. [189], Hunter and Reinhardt [283], Holcomb et al. [268], Janeček [297], Kioupis
et al. [324], Kofke [331], Lee et al. [363], Martin and Siepmann [410], Mecke et al.
[440], Okumura and Yonezawa [509, 547], Panagiotopoulos [514], Panagiotopoulos et al.
[516], Potoff and Panagiotopoulos [534], Smit and Frenkel [612], and Trokhymchuk and
Alejandre [672]. These pronounced deviations were found in most cases for the vapor
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Figure A.24: Compressibility factor test for the vapor-liquid equilibrium data of the
Lennard-Jones fluid according to Nezbeda [494, 495]: saturated vapor
phase compressibility factor Z ′′ as function of the temperature T (top)
and the relative deviation of Z ′′ from correlations (69) and (71) (bottom).
The dotted line indicates the range of 2.5 times the confidence interval
of the most precise data, as discussed in section 4.2. Error bars are
omitted in the bottom plot to avoid visual clutter. For clarity, the out-
of-range data points are omitted in both, the top and bottom plot. The
black filled star indicates the compressibility factor at the critical point
according the base correlation.
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Figure A.25: Clausius-Clapeyron test according to Eq. (73). Symbols indicate the
RHS and the lines the LHS of Eq. (73). The orange line indicates Eq.
(69). The purple line is Eq. (22) from Ref. [395]. For clarity, the numeric
values of the out-of-range data points are omitted in the plot; they lie in
the range of d(lnps)/d(T −1) = −31 to − 0.8.

pressure and the saturated vapor density. Deviations of data points that exceed 5% in
the saturated liquid density or the enthalpy of vaporization were only found for the data
from Panagiotopoulos [514], Smit and Frenkel [612], Kofke [331], Kioupis et al. [324],
Hunter and Reinhardt [283], Mecke et al. [440], and Lee et al. [363]. Datasets exhibiting
particularly large deviations from Eqs. (69) - (72) at multiple state points are those from
Anisimov et al. [23], Baidakov et al. [31], Baidakov et al. [39], Galliero et al. [189],
Hunter and Reinhardt [283], Kioupis et al. [324], Lee et al. [363], Panagiotopoulos [514],
and Trokhymchuk and Alejandre [672]. To avoid visual clutter, these out-of-range data
points are not shown in Fig. A.26. This confirms the findings from the compressibility
factor and the Clausius-Clapeyron tests, where these datasets could be applied.

The datasets of Hunter and Reinhardt [283], Potoff and Panagiotopoulos [534], Shi and
Johnson [603] (only saturated densities reported) show small, but distinct systematic
deviations to the base correlation and the seven most precise datasets.
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Figure A.26: Relative deviations of the vapor-liquid equilibrium data for the vapor
pressure ps, saturated liquid density ρ′, saturated vapor density ρ′′, and
enthalpy of vaporization ∆hv from correlations (69) - (72) as a function
of the temperature T . Error bars were omitted to avoid visual clutter.
The dotted lines indicates the range of 2.5 times the confidence interval
of the most precise data δx, as discussed in section 4.2. For clarity, the
out-of-range data points are omitted in the deviation plots.
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Details on the Assessment of VLE Interfacial Data

Fig. A.27 shows the surface tension of the LJ fluid from all considered data. The surface
tension results reported by Trokhymchuk and Alejandre [672] and the MC results of Gal-
liero et al. [189] are slightly but noticeably below the mutually best agreeing datasets.
The data of Anisimov et al. [23] show large deviations, which is likely a result of the
employed LJ potential version.

The surface tension data of Potoff and Panagiotopoulos [535] shows distinct deviations
from the above mentioned data of best mutual agreement – especially close to the critical
point. The same was found for the saturated densities data of Potoff and Panagiotopou-
los [535]. This is in line with the relatively low critical temperature reported by Ref.
[535].

Identified Outliers in Best VLE Datasets

Table A.25 summarizes the identified outliers in the datasets that were identified to be
the best VLE datasets: Errington [163, 541], Janeček et al. [298, 299], Lotfi et al. [395],
Mick et al. [452], Okumura and Yonezawa [510, 548], and this work.

Table A.25: Identified outliers in the best VLE datasets: Errington [163, 541], Janeček
et al. [298, 299], Lotfi et al. [395], Mick et al. [452], Okumura and
Yonezawa [510, 548], and this work.

Reference T / εk−1B ps / εσ−3 ρ′ / σ−3 ρ′′ / σ−3 ∆hv / ε
Mick et al. [452] 0.75 0.0022(1) 0.8208(2) 0.0030(1) 6.595(3)

1.25 0.0967(4) 0.514(2) 0.135(2) 3.30(3)
this work(a) 1.08 0.040583(62) 0.65371(20) 0.047992(74) 4.8332(12)

Lotfi et al. [395] 0.7 0.00131(6) 0.84266(18) 0.00193(10) 6.758(4)
Errington [164] 1.3 0.1212(10) 0.4271(13) 0.2096(13) -

Errington [163, 541] 1.3 0.1215841(996) 0.4442(51) 0.193072(5552) -
1.25 0.0975052(672) 0.5049(12) 0.143990(335) -

(a) data point is slightly off the statistical uncertainties regarding the self-
consistency Clausius-Clapeyron test (see Fig. A.25).
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Figure A.27: Surface tension of the LJ fluid as a function of the temperature (top)
and the corresponding relative deviation plot (bottom). The black line
indicates Eq. (74). Symbols indicate computer experiment data. For
clarity, numerical values for out-of-range data points in the vicinity of
the critical temperature in the deviation plot are omitted. The dotted
lines indicates the range of 2.5 times the confidence interval of the most
precise data as discussed in section 4.2.
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B.2 Details on the Assessment of LJ EOS

This Appendix contains the following points:

• remarks on the implementation of the Lennard-Jones (LJ) equations of state (EOS)

• remarks on the considered LJ EOS

• critical data of the Lennard-Jones fluid

• behavior of p − ρ isotherms in the two-phase region

• comparison of spinodal reference data with selected LJ EOS
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Implementations of the LJ EOS

All 20 considered LJ EOS were implemented in Matlab and validated using data re-
ported in the respective original publications. Benchmark values for the validation of
the implementation of the EOS were unfortunately not in all cases available. Several
authors only reported graphical results computed from their LJ EOS or numeric values
with few significant digits. Interestingly, in most cases, publications reporting empiri-
cal LJ EOS provide excellent test-data and even in some cases a source code, whereas
theoretically-based LJ EOS generally provide only sparse support for potential users.

Hess [258] proposed several LJ EOS in his publication. We have employed the EOS
described by Eqs. (7), (10), (11), (15), (18), and (20) of Ref. [258].

Van Westen and Gross [710] compared several approaches; we have used the LJ EOS
termed ’BH3 corr’.

Typos were identified in two publications [554, 710]. We could reproduce the results
reported in these publications only after correcting them. The corrections are briefly
described in the following. The LJ EOS of Quiñones-Cisneros et al. [554] was imple-
mented in accordance with the implementation in Ref. [134]. Two typos were thereby
identified in the original publication [554]. Eq. (15) from Ref. [554] was changed in our
implementation to

p∗r =
T ∗ρ∗2b + (...)

1 − bρ∗ , (136)

and Eq. (17) from Ref. [554] to

p∗dis = (...)ρ∗1.9 exp[−(...)ρ∗3] . (137)

The LJ EOS of van Westen and Gross [710] was implemented after correcting two typos:
the last term in Eq. (26) and an inverted sign in Eq. (41). Accordingly, the following
equations were used for the LJ EOS of van Westen and Gross [710] in the present work:

yhs
d = exp((...) +C(η)x3) , (138)

a3 = +β3(...) . (139)

Also the LJ EOS of Betancourt-Cárdenas et al. [53] was implemented in the present
work, but results reported in the original publication could not be reproduced. How-
ever, the deviations computed from our implementation of the LJ EOS of Betancourt-
Cárdenas et al. [53] are in agreement with those reported by Guerin [227] for the same
LJ EOS. Nevertheless, the LJ EOS from Ref. [53] was discarded from the present study.

In cases where LJ EOS yield complex numbers for a given property and data point, only
its real part was used.

Remarks on the Considered LJ EOS

This section reports details on the LJ EOS considered in chapter 4. Fig. A.28 gives an
overview of the number of citations of the respective publications.
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Figure A.28: Number of citations of the publications reporting LJ EOS that were
considered in the present work. The abbreviations refer to Table I of the
main body of this work. The data was taken in April 2020.

In the following, for each of the 20 considered LJ EOS, some central features are sum-
marized, based on the original publications: range of validity, type of data used for the
parametrization, and number of parameters used for the optimization. The latter is
given in the form ( #Preal ∣ #Pexp ), where #Preal indicates the number of parameters
that are real numbers (classical parameters) and #Pexp indicates parameters that are
exponents that were also fitted or selected. The sequence of the LJ EOS corresponds to
that used for the discussion of the LJ EOS in the main body of this work.

• LJ EOS of Cotterman et al. [128] (Co, 1986)
– reported range of validity: not stated

– reference data used for parametrization: second virial coefficient and first and
second-order perturbation term data

– number of parameters ( 15 ∣ 13 )

• LJ EOS of Paricaud [519] (Pa, 2006)
– reported range of validity: not stated

– reference data used for parametrization: hard sphere radial distribution func-
tion

– number of parameters ( 34 ∣ 9 )

• LJ EOS of Lafitte et al. [353] (La, 2013)
– reported range of validity: not stated

– reference data used for parametrization: first and second-order perturbation
term data and VLE data of the Mie fluid

– number of parameters ( 62 ∣ 12 )
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• LJ EOS of van Westen and Gross [710] (vWe, 2017)
– reported range of validity: not stated

– reference data used for parametrization: first, second, and third-order per-
turbation term data

– number of parameters ( 43 ∣ 19 )

• LJ EOS of this work (th, 2020)
– reported range of validity: 0.66 < T < 5 εk−1

B and ρ < 1.25σ−3

– reference data used for parametrization: second and third virial coefficient,
VLE of the LJ fluid, and Helmholtz energy and its density and inverse tem-
perature derivatives at homogeneous states

– number of parameters ( 18 ∣ 8 )

• LJ EOS of Koutras et al. [343] (Kou, 1992)
– reported range of validity: not stated

– reference data used for parametrization: second virial coefficient and pvT
data

– number of parameters ( 15 ∣ 8 )

• LJ EOS of Kolafa and Nezbeda [334] (Ko, 1994)
– reported range of validity: 0.68 < T < 10 εk−1

B

– reference data used for parametrization: second virial coefficient, pvT data,
and internal energy data at homogeneous states

– number of parameters ( 36 ∣ 32 )

• LJ EOS of Mecke et al. [438, 439] (Me, 1996)
– reported range of validity: 0.7 < T < 10 εk−1

B

– reference data used for parametrization: second and third virial coefficient,
pvT data, internal energy data at homogeneous states, and VLE data of the
LJ fluid

– number of parameters ( 38 ∣ 70 )

• LJ EOS of Hess [258] (He, 1999)
– reported range of validity: not stated

– reference data used for parametrization: -

– number of parameters ( 0 ∣ 0 )

• LJ EOS of Boltachev and Baidakov [62] (Bo, 2003)
– reported range of validity: 0.7 < T < 35 εk−1

B and p < 0.5 εσ−3

– reference data used for parametrization: not reported explicitly

– number of parameters ( 39 ∣ 33 )

• LJ EOS of Gottschalk [217] (Go, 2019)
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– reported range of validity: T < 140 εk−1
B and ρ < 2.5σ−3

– reference data used for parametrization: virial coefficients, and Helmholtz
energy and its density and inverse temperature derivatives at homogeneous
states

– number of parameters ( 167 ∣ 38 )

• LJ EOS of Quiñones-Cisneros et al. [554] (Qui, 2009)
– reported range of validity: 0.7 < T < 6 εk−1

B

– reference data used for parametrization: not stated

– number of parameters ( 16 ∣ 15 )

• LJ EOS of Nicolas et al. [505] (Ni, 1979)
– reported range of validity: 0.5 < T < 6 εk−1

B and (depending on T ) 0 < ρ <
1.2σ−3

– reference data used for parametrization: second virial coefficient and pvT and
internal energy data

– number of parameters ( 33 ∣ 43 )

• LJ EOS of Adachi et al. [4] (Ad, 1988)
– reported range of validity: not stated

– reference data used for parametrization: second virial coefficient and pvT
data

– number of parameters ( 33 ∣ 43 )

• LJ EOS of Miyano [460] (Mi, 1993)
– reported range of validity: 0.45 < T < 100 εk−1

B and 0 < ρ < 1.2σ−3

– reference data used for parametrization: second virial coefficient, pvT data,
and internal energy data

– number of parameters ( 33 ∣ 43 )

• LJ EOS of Johnson et al. [302] (Jo, 1993)
– reported range of validity: 0.7 < T < 6 εk−1

B

– reference data used for parametrization: second virial coefficient, pvT data,
and internal energy data

– number of parameters ( 33 ∣ 43 )

• LJ EOS of Sun and Teja [646] (Su, 1996)
– reported range of validity: 0.45 < T < 6 εk−1

B

– reference data used for parametrization: second virial coefficient, pvT data,
and internal energy data

– number of parameters ( 33 ∣ 43 )

• LJ EOS of May and Mausbach [423, 425] (Ma, 2012)
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– reported range of validity: not stated

– reference data used for parametrization: second virial coefficient, pvT data
and internal energy data

– number of parameters ( 33 ∣ 43 )

• LJ EOS of Ree [559] (Re, 1980)
– reported range of validity: 0.76 < T < 2.698 εk−1

B and 0.05 < ρ < 0.96σ−3

– reference data used for parametrization: pvT data

– number of parameters ( 15 ∣ 22 )

• LJ EOS of Thol et al. [661] (Th, 2016)
– reported range of validity: 0.661 < T < 9 εk−1

B and p < 65 εσ−3

– reference data used for parametrization: Helmholtz energy and its density
and inverse temperature derivatives at homogeneous states

– number of parameters ( 67 ∣ 52 )

Critical Data of the Lennard-Jones Fluid

Table A.26 reports the critical data obtained from the LJ EOS. For the sake of com-
pleteness, also critical parameters from LJ EOS are reported that were not employed
in the evaluation of the present work. These results are compared in Fig. A.29 to
the critical data obtained from computer experiments reported in the literature. That
data was discussed and evaluated in Ref. [640], cf. chapter 4. We report the com-
pilation of the available primary data on the critical data of the LJ fluid (both EOS
and computer experiment) in Fig. A.29. The presumed true critical data values are
Tc = 1.321 ± 0.007 εk−1

B and ρc = 0.316 ± 0.005σ−3 and pc = 0.129 ± 0.005 εσ−3. Evidently,
some computer experiment data and LJ EOS show significant deviations from those.
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Table A.26: Critical data obtained from Lennard-Jones equations of state.

publication year Tc / εk−1B ρc / σ−3 pc / εσ−3

Levesque & Verlet [370] 1969 1.3700 0.3100 0.1403
1.3600 0.3300 0.1616

Nicolas et al. [505] Ni 1979 1.3500 0.3500 0.1417
Ree [559] Re 1980 1.41 0.33 0.177

Sys & Malijevsky [649] 1980 1.35 0.33 0.147
Cotterman et al. [128] Co 1986 1.3305 0.3222 0.1413

Adachi et al. [4] Ad 1988 1.2731 0.2842 0.1188
Song & Mason [616] 1989 1.3057 0.2625 0.1225
Koutras et al. [343] Kou 1992 1.355 0.29 0.147

Miyano [460] Mi 1993 1.3500 0.3200 0.1420
Johnson et al. [302] Jo 1993 1.3130 0.3100 0.1299

Kolafa & Nezbeda [334] Ko 1994 1.3396 0.3108 0.1405
Mecke et al. [438, 439] Me 1996 1.3280 0.3107 0.1352

Sun & Teja [646] Su 1996 1.3130 0.3100 0.1299
Amadai et al. [21] 1999 1.35 0.337 0.149

Hess [258] He 1999 1.4187 0.2851 0.1499
1.2800 0.2500 0.1056
1.3300 0.3000 0.1357

Gross & Sadowski [223] (PC-SAFT)† 2001 1.2757 0.2824 0.1147
Boltachev & Baidakov [62] Bo 2003 1.3082 0.2962 0.1262

Paricaud [519] Pa 2006 1.3859 0.3112 0.1602
Betancourt-Cardenas et al. [53] 2008 1.3532 0.3162 0.1508

Betancourt-Cardenas et al. [53]†† 1.3531 0.3166 0.1669
Quiñones-Cisneros et al. [554] Qui 2009 1.3321 0.3236 0.1387
May & Mausbach [423, 425] Ma 2012 1.3145 0.3160 0.1300

Lafitte et al. [353] La 2013 1.3122 0.3003 0.1306
Thol et al. [661] Th 2016 1.3200 0.3100 0.1301

van Westen & Gross [710] vWe 2017 1.3535 0.3196 0.1544
Gottschalk [217] Go 2019 1.3276 0.3164 0.1356

this work th 2020 1.3352 0.3105 0.1383

†† critical point obtained from the implementation from this work
† original parameters of the PC-SAFT monomer [223]
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Figure A.29: Critical point of the LJ fluid. Top: critical pressure over tempera-
ture. Bottom: critical density over temperature. Each combination
of a gray star & abbreviation indicates the critical parameters from an
LJ EOS. The abbreviations are linked with Table A.26. Colored sym-
bols are critical parameters obtained from computer experiment of Refs.
[7, 46, 84, 148, 259, 323, 331, 350, 370, 395, 410, 450, 509, 510, 534, 559,
603, 611, 618, 647, 677, 678], cf. Table 9.
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Behavior of p − ρ Isotherms in the Two-Phase Region

Fig. A.30 shows the vapor-liquid two-phase region in a p − ρ diagram for the charac-
terization of the van der Waals loops. Fig. A.30 shows results from from computer
experiments in the metastable region (symbols) at four temperatures and the corre-
sponding isotherms computed from the LJ EOS of Thol et al. [661], Gottschalk [217],
and the LJ EOS from the present work. The LJ EOS of Thol et al. [661] and Gottschalk
[217] exhibit strong oscillations in the two-phase region. Furthermore, Fig. A.30 shows
that isotherms yield significant negative pressure in the unstable region – as expected.
However, the LJ EOS of Thol et al. [661] and Gottschalk [217] yield isotherms with
multiple zero crossings in the two-phase region.

Figure A.30: Thermal properties of the LJ fluid: isotherms in the p − ρ diagram ob-
tained with from the LJ EOS from the present work (black lines), the
LJ EOS from Thol et al. [661] (red lines), Gottschalk [217] (pink dotted
lines) and molecular simulation results from Stephan et al. [640] (open
symbols) for T / εk−1

B = 0.7, 0.9, 1.1, 1.25. The gray solid line and star
indicate the VLE and critical point obtained from the LJ EOS from the
present work.
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Comparison of Spinodal Reference Data with Selected LJ EOS

Fig. A.31 shows the spinodal of the LJ fluid in the p − T and T − ρ diagram. Results
from computer experiments are compared with the LJ EOS of Johnson et al. [302],
Lafitte et al. [353], and the present work. The reference data obtained from computer
experiments [37, 380] shows significant scattering. The depicted LJ EOS agree with
that reference data within that scattering. The same holds for most other considered
LJ EOS (see main body of the present work and the attached electronic Supplementary
Material [639]). Only for the LJ EOS of Thol et al. [661] and Gottschalk [217], no
meaningful spinodal could be computed due to the oscillations present in the two-phase
region, cf. Fig. A.30.

Figure A.31: Spinodal (thin lines) computed from the LJ EOS of Johnson et al. [302]
(pink dashed line), Lafitte et al. [353] (pink solid line), and from the
present work (black solid line) compared to corresponding molecular
simulations data (open symbols): squares are results from Linhart et
al. [380] and circles are from Baidakov et al. [37]. The binodal and crit-
ical point shown were also computed from the LJ EOS from the present
work (black thick line and star).
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B.3 Details on Enrichment Data from the Literature

This Appendix contains the following points:

• details on the digitalization procedure of the enrichment data from the literature,
cf. chapter 9

• summary of the VLE data employed for testing the empirical enrichment model,
cf. chapter 9

Details on the Digitalization Procedure

Since the vast majority of publications (cf. Table 25 in the main body of this work)
report on density profiles ρi(z) only graphically, the enrichment E2 (cf. Eq. (122)) had
to be extracted from that data manually. Therefore, screenshots of the ρi(z) plots were
extracted from a given publication and required data for the computation of the enrich-
ment E2 was metered using the Web Plot Digitizer [563]. A database was established
(see attached spread sheet file [627]) based on that data.

Each data point j consists of the following data obtained from a given publication
reporting vapor-liquid interfacial density profiles (cf. Table 25) or databases [1]:

• The temperature Tj and

• the liquid bulk phase mole fraction x′2,j to specify the state point.

• The enrichment E2,j and the difference of the bulk densities ∆ρ2,j measured from
the density profile ρ2,j(z) of the respective low-boiling component 2.

• The standard deviation from five repeated ’measurements’ for all manually digi-
talised data.

• The partition coefficient K5%
2,j at x′2 = 0.05 mol mol−1 at Tj (either taken from the

same publication reporting the density profiles or taken from the Dortmund Data
Base [1] or NIST database [381]).

• The critical density ρc,1 of the high-boiling component 1 (also either taken from
the same publication reporting the density profiles or taken from the Dortmund
Data Base [1] or NIST database [381]).

To compute E2,j and ∆ρ2,j, the three points max(ρ2(z)), ρ′2, and ρ′′2 were measured from
a given ρ2(z) plot. If the concentration of the low-boiling component 2 in the liquid
phase x′2,j – to specify the state point – was not explicitly reported, it was computed
from

x′2 =
ρ′2

ρ′1 + ρ′2
, (140)

which additionally required the measuring of the bulk phase density ρ′1 of the high-
boiling component 1. In some cases, neither the high-boiling component density profile
ρ1(z), nor the bulk phase composition was reported. In such cases, x′2,j was taken from
reported phase diagrams.

Each digitalization was repeated five times; the actual value for each required property
was taken from the mean value of the individual measurements and an uncertainty
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caused by the digitalization was estimated from the standard deviation of the repeated
values. The mean value of the absolute uncertainty was δE2 = ±0.11.

For some mixtures, the required VLE data was not available in databases – especially
the model mixtures. In such cases, x′′2 at x′2 = 0.05 mol mol−1 for the computation of
K5%

2,j was also obtained by digitalization from phase diagrams reported in respective
publications.

Challenges emerged, when plots for density profiles were small, the resolution was low,
and the line width and symbol size were particularly large or hard to detect precisely.
This became particularly a problem for density profiles at very low concentrations of
the low-boiling component such that ρ′2 and ρ′′2 practically collapse with the abscissa
of the respective plot. In such cases the value of ρ′2 and/ or ρ′′2 can get in the size
of a pixel during the digitalization. Since such state points often correspond to large
enrichment, the digitalization yields large uncertainties for such data – in both E2 and
x′2. Sometimes, the density profiles would also not be plotted to the exact bulk density
values, i.e. the end of the density profiles would still posses a gradient dρi/dz ≠ 0.
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VLE Data Employed for the Enrichment Model

For the test-dataset, the required VLE data (see list above) was taken either from the
publication that reported the density profiles or it was taken from the Dortmund Data
Base [1] or NIST database [381]. In practically all cases, the partition coefficient was
not exactly available at the prescribed x′2 = 0.05 mol mol−1 and the given T . For the
liquid phase composition, the vast majority of data points was available at x′2 = 0.05 ±
0.005 mol mol−1. For the temperature, most data points were available within 2% of
the required temperature. Fig. A.32 shows the histogram of the available VLE data
for the considered systems (cf. Table 25 in the main body of the present work). The
enrichment model was only applied, if the available VLE data did not deviate more
than 10% from the temperatures the density profiles were reported for and data on the
partition coefficient was available within x′2 = 0.05 ± 0.015 mol mol−1. This was only the
case for less than 1% of the data points of the entire database on enrichment data.

Figure A.32: Histogram of the available VLE data for the prediction of the enrichment
of the literature data. Left: histogram for the absolute deviation of the
prescribed liquid phase concentration. Right: histogram of the relative
deviation of the required temperature. ’DB’ indicates the temperature
of VLE data taken from databases as input for the enrichment model;
’ref’ indicates the temperature of the reference data, cf. Table 25.
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C Parametrization of New
Lennard-Jones Equation of State

C.1 PC-SAFT Monomer Model

The LJ EOS developed in the present work is a re-parameterization of the PC-SAFT
[223] monomer model, i.e. a spherical particle with soft repulsive and dispersive in-
teractions. The universal constants of the PC-SAFT EOS [223] have been optimized
several times in the literature [53, 222, 249, 375, 376]. Gross and Sadowski [222], who
developed the original version of the PC-SAFT EOS adjusted the universal constants to
hard chain computer experiment data [222] and n-alkane VLE properties [223]; Liang
and Kontogeorgis [375, 376] fitted the parameters to VLE and speed of sound data of
different real substances, and Heier et al. [249] fitted the parameters to VLE data
of the Lennard-Jones truncated and shifted fluid. To include the PC-SAFT monomer
model in the comprehensive comparison of the present work, its universal constants were
re-parametrized such as to match computer experiment data of the Lennard-Jones fluid.

As most other theoretically-based LJ EOS, the PC-SAFT monomer model is based on
perturbation theory [43, 44, 237, 252, 613]. The PC-SAFT monomer model uses the
perturbation theory of Barker and Henderson [42, 43], according to which the Helmholtz
energy of the LJ fluid can be written as

ã = ãid + ãres = ãid + ãref + ãpert , (141)

where ãref and ãpert are the Helmholtz energy contribution of the reference system and
the perturbation, respectively.

The Helmholtz energy of the hard sphere fluid of the PC-SAFT monomer is adopted
from Boublík [67] and Mansoori et al. [407] as

ãref = ãhs = ζ−1
0

⎛
⎝

3ζ1ζ2

(1 − ζ3)
+ ζ3

2

ζ3(1 − ζ3)2
+ (ζ

3
2

ζ2
3

− ζ0) ln(1 − ζ3)
⎞
⎠

, (142)

where ζn is defined as

ζn =
π

6
ρdn with n = 0, 1, 2, 3 , (143)

where ζ3 = η is the packing fraction and ρ is the number density.

Following Barker and Henderson [41], the purely repulsively interacting reference fluid
is that of a hard sphere, with an effective temperature-dependent hard sphere diameter
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d as
d(T ) = ∫

1

0
(1 − exp ( − uLJ(r)

kBT
))dr . (144)

This temperature-dependent diameter gives the repulsive hard sphere term its softness.
The PC-SAFT monomer model simplifies Eq. (144) to an algebraic equation proposed
by Chen and Kreglewski [108] to avoid the numerical integration to

d (T ) = 1 − c1 ⋅ exp(− c2

kBT
) . (145)

The perturbation contribution ãpert is modeled up to second-order in the PC-SAFT
monomer model, i.e.

ãpert = ã1 + ã2 . (146)

As described in detail in Refs. [41, 42], applying the local compressibility-version of
Barker and Henderson’s perturbation theory, the first- and second-order perturbation
terms can be written as

ã1 = −2πρ∫
∞

1
upert(r) g0(r)r2dr , and (147)

ã2 = −π ρT (∂ρ
∂p

)
T

∂

∂ρ
[ρ∫

∞

1
upert(r)2g0 (r) r2dr] . (148)

Following the ansatz of Gross and Sadowski made in their PC-SAFT equation of state
[222, 223], the integrals in Eq. (147) and (148) are simplified into a power series expan-
sion in the packing fraction:

∫
∞

1
upert(r) g0(r)r2dr = I1 =

N

∑
i=0

aiη
i (149)

∂

∂ρ
[ρ∫

∞

1
upert(r)2g0 (r) r2dr] = I2 =

N

∑
i=0

biη
i (150)

The parameters c1, c2, ai, and bi (i = 1 ..N) are the state-independent universal constants
of the PC-SAFT monomer model. We chose N = 7 for the present work. The 18 model
parameters were adjusted in the present work to data of the LJ fluid. Only a subset
of the computer experiment data compiled in Ref. [640] was used for that purpose.
It comprises consistent comprehensive data for the VLE and homogeneous fluid states
[625, 640, 661].

The optimization was guided by the idea that a good representation of VLE proper-
ties should be accompanied by a good representation of bulk properties. Therefore,
the dataset used for the parametrization was a combination of the homogeneous state
data and vapor-liquid equilibrium data. Not the full set of simulation data compiled
in Ref. [640] that was used for testing the EOS as described in the main part of the
paper was also used for the re-parameterization of the PC-SAFT monomer term. The
large and consistent set of simulation data of Thol et al. [661] for homogeneous stable
states was selected here, as it provides the residual Helmholtz energy ãres = ares/kBT and
its derivatives with respect to the inverse temperature and the density for each state
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point. The vapor pressure and the saturated densities were taken from the correlations
from section 4.2 that describe the most precise computer experiment data within their
combined scattering. Furthermore, data for the second and third virial coefficient in the
range T = 1.32 .. 5 εk−1

B with a discretization step of 0.005 were used for the parametriza-
tion.

The employed parametrization strategy uses elements from multi-criteria optimization
to account for conflicts between the different objectives and is based on recent work of
our group [64, 65, 182, 641, 683].

C.2 Parametrization

In this section, the optimization procedure that was employed to determine the new
universal constants of the PC-SAFT monomer term for the modeling of the LJ fluid is
described. The optimization was guided by the idea that a good representation of VLE
properties should be accompanied by a good representation of bulk properties. There-
fore, the dataset used for the parametrization was a combination of the homogeneous
state data and vapor-liquid equilibrium data, cf. Table A.27.

Table A.27: Dataset used for the parametrization of the LJ EOS from the present
work. The two last columns indicate the number of data points and the
temperature range of that data.

Data Source # T / εk−1
B

free energy and free energy derivatives at
homogeneous states; ãres

00 , ãres
10 , ãres

01 , ãres
11 ,

ãres
20 , ãres

02

Thol et al. [661] 167 0.7 .. 5

VLE ps, ρ′, ρ′′ this work 61 0.69 .. 1.29

2nd, 3rd virial coefficient B, C this work 736 1.32 .. 5

In contrast to the main body of this work, for simplicity, the fluid state was divided
in only four regions k: liquid, gas, and supercritical (sc) for the homogeneous region,
and the vapor-liquid equilibrium (VLE). The liquid, gas, and supercritical region were
simply defined here with respect to the critical point, i.e. homogeneous state points
with (T < Tc and ρ < ρc) belong to the gas region, for (T < Tc and ρ > ρc) they belong to
the liquid region, and for (T > Tc) they belong to the supercritical region. The employed
reference data (cf. Table A.27) was assigned accordingly. Following this classification,
the virial coefficients that were used here are from the supercritical region.

The objective functions were defined using the Huber loss [241, 281, 730] as

fjk(x) =
1

Njk

Njk

∑
l=1

cjkl[(1 + (100 ⋅
Y ref
jkl − Yjkl(x)

Y ref
jkl

)
2

)
0.5

− 1] , (151)

where j indicates the property, k the fluid region, and l the data point; x is the para-
meter vector, cjkl was calculated from the uncertainty of the data points as explained
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below, and Njk is the number of data points of property j in a region k. The prop-
erties are j = (ã00, ã10, ã01, ã11, ã20, ã02, B, C, ρ′, ρ′′, ps), and the regions are
k = (liquid, gas, sc, VLE). The employed Huber loss function behaves like the ordinary
convex ’squared’ loss in the vicinity of the origin but like an ’absolute’ loss elsewhere,
which makes it robust against regions of particularly large deviations [241, 281, 730]
(which is found to be the case for the PC-SAFT monomer equation in the supercritical
region, see below).

The resulting objective space is a R23-space (B, C, ρ′, ρ′′, ps are only applicable in a
single region). The parameter space is a R18-space; the parameters are c1, c2, ai, and bi
with i = 0 .. 7, as described in the main text.

For the homogeneous state data from Thol et al. [661], the values cjkl were computed
from

cjkl =
δ−1
jkl

1
Njk

Njk

∑
l=1
δ−1
jkl

, (152)

where δjkl is the statistical uncertainty reported by Thol et al. [661]. The denominator
in Eq. (152) normalizes the data point specific penalty δ−1

jkl by the mean value of δ−1
jkl of

the corresponding thermophysical property j and fluid region k. For the VLE region
data, the values cjkl were computed from the reported uncertainty of the respective
correlations [640], i.e. δps = 0.01 for the vapor pressure, δρ′ = 0.002 for the saturated
liquid density, and δρ′′ = 0.01 for the saturated vapor density [640]. Hence, all data
points l of a VLE property j = ps, ρ′, ρ′′ had the same cjkl value, which was defined as

cj,k=VLE,l =
δ−1
j

1
3

3

∑
j=1
δ−1
j

for j = ps, ρ′, ρ′′ . (153)

Again, the denominator normalizes the uncertainties in the region. For the virial coeffi-
cients, cjkl were set to unity, since such data is exact for a given intermolecular potential.

To reduce the objective space from a R23 to a space with lower dimension, the 11 con-
sidered properties j were lumped into a single objective function for each fluid region k:

fk =
11

∑
j=1

wj fjk . (154)

For each region, the weights wj were determined as follows: a single optimization run
was carried out for each property j. The weight wj was determined as the reciprocal
value of the resulting objective function value, i.e. wj = f−1

j .

After applying the lumping described by Eq. (154), the objective space is a R4, with the
objectives fVLE, fgas, fliq, and fsc. An ad hoc optimization procedure was applied to find
a good compromise between these conflicting objectives, in which elements from single
objective optimization, namely the lumping of the objective functions, were combined
with elements from multi-criteria optimization (MCO). The MCO routine was adapted
from previous work of our group [182]. Sets of best compromises were determined simply
by varying weights in objective functions (see below), assuming the set is convex. The
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following objective function was used in a hierarchical, iterative manner:

f = wVLEfVLE +wbulk(wgasfgas +wliquidfliquid +wscfsc

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
fbulk

) . (155)

In a first step, the weights wVLE and wbulk were set to unity. Then the weights wgas, wliq,
and wsc were varied and for each triplet, an SCO was carried out. The resulting fgas,
fliq, and fsc can be considered as a point in the set of best compromises, see Fig. A.33 -
right, for an example of the results, which form a surface in the R3 objective space. For
each point in this set, also the corresponding set of weights wgas, wliq, and wsc is known,
and, additionally, also fVLE is known (not shown in Fig. A.33 - right). It turns out that
the set in the R3 has a sharp ’Pareto knee’, i.e. a region in which small gains in one
objective can only be achieved by high losses in at least one of the other objectives. A
point from that Pareto knee was chosen, leading to a certain triplet of values f∗gas, f∗liq,
and f∗sc. The corresponding triplet (w∗

gas, w∗
liq, and w∗

sc) also yields a value for f∗VLE. The
results for the deviations in the bulk properties were then lumped as indicated in Eq.
(155), leading to a number for f∗bulk. The actions described so far relate a given choice
of wVLE and wbulk to certain values of fVLE and fbulk.

This enables an optimization on a higher level, namely by finding best compromises
between fVLE and fbulk. This is done following the ideas presented above by varying
the weights wVLE and wbulk. In that optimization, the weights wgas, wliq, and wsc were
kept constant. A typical result is shown in Fig. A.33 - left. It has the typical shape
of a Pareto set in the R2. Also from this set, a solution must be chosen. Here, we did
not select a solution from the Pareto knee, but the one, in which the number obtained
for fVLE is not lower than what can be expected from the corresponding experimental
uncertainties to avoid an overfitting. Using the the weights wVLE and wbulk from that
point, all steps, starting from step 1, were repeated until convergence was achieved in
about 5 iterations. The final solution is depicted in Fig. A.33 - left by a square; the
corresponding detailed results for fgas, fliq, and fsc are also depicted by a square in Fig.
A.33 - right.

Fig. A.33, right reveals that the average deviation in each of the regions converges to
a certain minimal value. That value is found when the weights for the other regions
are set to zero. These minimal values are approximately: fmin

liquid = 0.3%, fmin
gas = 0.2%,

and fmin
sc = 3.5%. While the absolute numbers of the fj should not be over-interpreted

(they follow from the definition of Eq. 151) their relative values indicate strengths
and weaknesses. The high number for fsc indicates that it is difficult to heal the poor
performance of the PC-SAFT monomer term for the sc region by any parameterization
(as long as also VLE properties are taken into account).

The square in Fig. A.33 indicates the chosen model. The final 18 parameters of the new
LJ EOS are summarized in Table A.28.
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Figure A.33: Results from the optimization procedure that was applied for determin-
ing the parameters of the LJ EOS from the present work. Different
objective spaces are shown. Left: objective functions for the bulk prop-
erties and the VLE properties; right: objective functions for homoge-
neous state properties in the gas, liquid, and supercritical (sc) region.
The results in both plots have the form of Pareto sets. The white square
indicates the chosen model. The color coding corresponds to the value
of the deviation fgas.

Table A.28: Parameters of the new LJ EOS based on the PC-SAFT monomer model,
cf. main body of this work.

parameter value parameter value parameter value
a0 0.8589806535 b0 0.6408575395 c1 0.11428861
a1 0.6349673926 b1 3.2950236588 c2 2.91331917
a2 6.3970881521 b2 -2.0716729542
a3 -39.4901329694 b3 -201.2263717300
a4 109.8420725518 b4 1151.6799275262
a5 -173.3316886409 b5 -3855.8452492581
a6 139.7734440081 b6 8261.2413758352
a7 -37.2039395551 b7 -7537.8336347463
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