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AbstractAbstract

We study a multi-scale model for growth of malignant gliomas in the human brain. Interactions
of individual glioma cells with their environment determine the gross tumor shape. We connect
models on different time and length scales to derive a practical description of tumor growth
that takes these microscopic interactions into account. From a simple subcellular model for
haptotactic interactions of glioma cells with the white matter we derive a microscopic particle
system, which leads to a meso-scale model for the distribution of particles, and finally to a
macroscopic description of the cell density. The main body of this work is dedicated to the
development and study of numerical methods adequate for the meso-scale transport model and
its transition to the macroscopic limit.





ZusammenfassungZusammenfassung

Wir betrachten ein Modell für das Wachstum bösartiger Gliome im menschlichen Gehirn. Die
Form des gesamten Tumors ist eine direkte Folge von Interaktionen einzelner Krebszellen mit
ihrer Umgebung. Indem wir Modelle auf verschiedenen Zeit und Längenskalen miteinan-
der verknüpfen erhalten wir eine praktische Beschreibung des Tumorwachstums, die diese
mikroskopischen Interaktionen berücksichtigt. Ausgehend von einem einfachen Modell für die
Interaktionen zwischen Gliomenzellen mit der weißen Materie stellen wir zuerst ein mikroskopis-
ches Partikelsystem auf, aus dem wir eine Transportgleichung für die Zellverteilung auf der
Mesoskala, und schließlich eine makroskopische Beschreibung der Zelldichte herleiten. Im
Hauptteil der Arbeit entwickeln und analysieren wir geeignete numerische Methoden für
das Transportmodell für Gliomenausbreitung und den Übergang zu dessen makroskopischen
Grenzwert.
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1 IntroductionIntroduction

It might take you an hour to get over that tree. A lot of people never got past it. You
prod and poke at it, exploring the limits of your reach and strength, trying to find a
way up. And there’s a sense of truth in that lack of compromise.

Bennet Foddy — Getting over it

Gliomas are brain tumors originating from various types of glia in the central nervous system.
Grade IV1 astrocytoma, also termed glioblastoma multiforme (GBM) are the most prevalent and
deadly type. The severity of this diagnosis is best described with some quotations:

Because they generally grow and invade extensively before the patient notes any
symptoms, gliomas are almost impossible to cure. ([69])

Partly because of their growth pattern, curative treatment for diffuse gliomas is
generally impossible. ([29])

Malignant gliomas, the most common sub-type of primary brain tumors, are aggres-
sive, highly invasive, and neurologically destructive tumors considered to be among
the deadliest of human cancers. In its most aggressive manifestation, glioblastoma
(GBM), median survival ranges from 9 to 12 months, despite maximum treatment
efforts—a statistical fact that has changed little over several decades of technological
advances in neurosurgery, radiation therapy, and clinical trials of conventional and
novel therapeutics. ([103])

Especially the invasive nature of glioma cells, which leads to a diffuse growth pattern, poses a
challenge for treatment, let alone cure. Through several pathways and mechanisms, individual
glioma cells are able to migrate far away from the bulk tumor mass [124]. Those “guerilla
warriors” [29] are impossible to detect with current imaging technology and also difficult to
target without excessive damage to the healthy tissue. A standard practice in radiotherapy is to
define the target volume as the visible tumor plus a constant safety margin of 2 cm [91]. In the
end, only a few tumor cells need to survive to start a renewed growth after therapy. Thus, even
combined radiotherapy and gross tumor resection prolong the median survival by maximum 16
weeks [85].
A predictive model of tumor growth and infiltration could make the invisible parts of the tumor
accessible, and therefore lead to improved target volumes in resection and radiotherapy. This

1The WHO classifies brain tumors into the grades I to IV of increasing malignancy. [57]



2 Chapter 1. Introduction

could prolong the time until tumor recurrence and reduce the side effects of treatment. Growth
patterns of GBM vary significantly from patient to patient. Tumor shapes can be nearly spherical
or finger-like. In some cases, the invasionmargins are sharp and in other cases diffuse. These facts
indicate that tumor growth depends strongly on the individual. Any feasible description must
therefore incorporate patient specific measurements and possibly contains many parameters.
The possibility of model assisted therapy depends on advances in imaging technology, oncology,
and theoretical as well as applied mathematics. This thesis is a result of the project “Gliomen,
Mathematische Modelle und Therapieansätze (GlioMaTh)”2 3 in which knowledge from these
fields is combined to develop predictive models for improved tumor therapies. The GlioMaTh
project was funded by the German Federal Ministry of Education and Research (BMBF)4. We
summarize the challenges of this ambitious enterprise most relevant to this thesis.
Firstly, the fundamental molecular mechanisms of tumor growth and infiltration are an active
research area [29, 103, 117, 120]. These are very complex and not nearly understood yet. In this
thesis we focus on one selected aspect: the migration of glioma guided by white matter tracts
[55]. Fortunately, the highly anisotropic structure of fibers in white matter can be estimated
noninvasively with diffusion tensor imaging (DTI). Diffusion tensor images are obtained by
a sequence of magnetic resonance imaging (MRI) scans and provide measurements of the
mean diffusivity of water on a per-voxel basis with a resolution of 1 mm to 2 mm. Under the
assumption that water diffuses faster along the fibers than across them, a coarse estimate of the
fiber structure can be inferred. The main advantage of this method is that for diagnosis of GBM
DTI is performed routinely and thus the data is readily available. Technologically, measurements
with a higher angular and spatial resolution are possible, for instance by means of Q-Ball imaging
[131]. However, this data would come at a significant additional cost because this is not standard
medical practice.
Secondly, the aforementioned molecular processes have to be cast into a mathematical model for
tumor growth. On the one hand, an individual tumor cell is about 30 µm long [12]. Its interactions
with other cells or the environment—for example, in white matter this is constituted largely
by extracellular matrix (ECM)—are determined by molecular processes that are observable
only at the scale of nanometers. On the other hand, there are between one million and one
hundred million cells in a tumor [23]. It is infeasible to compute a model in so much detail.
However, in therapy the only quantity of interest is a contour of the invisible invasion front. The
resolution is typically in the range of a few millimeters and is determined by measurement and
treatment equipment. To incorporate the microscopic cellular processes in a macro-scale tumor
description, a hierarchy of models on different length and time scales is needed, each carrying
averaged information from the previous. In the context of statistical mechanics, the methods
to derive a macroscopic description from a particle system have been studied since the late
nineteenth century [19, 66] (see also [62, Introduction]). Opposed to mechanics, where particles
are passive rigid bodies only subject to external forces, in biology particles describe living cells
with complicated internals. Nevertheless, the basic procedure remains similar. As a first level
of abstraction, models on the meso-scale consider PDEs—so-called kinetic equations—for the
expected distribution of cells/particles in time, physical space and state space. Kinetic equations

2Glioma, mathematical models and approaches to therapy
3https://www.uni-muenster.de/GlioMaTh/
4https://www.bmbf.de/

https://www.uni-muenster.de/GlioMaTh/
https://www.bmbf.de/
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are characterized by a free-streaming transport term resulting from particle movement and a
collision operator modeling particle interactions as instantaneous state changes. The connection
between particle systems and kinetic equations has been established formally for example for
neutron transport [62] and the movement of bacteria [127]. In the kinetic theory of active
particles (KTAP) [14], models are formulated directly on this level of abstraction. The state of
a particle is described by its velocity and its activity, which is a scalar variable that models a
biological function. At larger scales only the resulting macroscopic population behavior can be
observed, that is, the total number density of particles regardless of their internal microscopic
state. To pass from the mesoscopic description to a population law, one considers the limit of the
kinetic equation when the mean free path of particles tends to zero. Analytically, passage to the
limiting macroscopic equation has been extensively studied for neutron transport [6, 94] and
more recently also in the context of biological cell migration [24, 111]. When only interactions
between particles and the environment are considered and interactions between particles are
neglected, the collision operator is linear. In this case the resulting macroscopic equations are of
diffusion-advection-reaction type [24].

Thirdly, in a clinical context a model is only useful, if it can be computed on standard hardware.
On the meso-scale, the PDE for the distribution of particles in time, space, velocity, and activity
is high-dimensional and thus costly to solve. In a moment model, the dependence on velocity
is approximated by a finite number of moments. Closer to the diffusion limit, usually fewer
moments are needed to obtain a good approximation. However, the classical low-order moment
methods fail to capture the diffusion limit of the considered kinetic glioma model. It is thus
necessary tomodify thesemethods to incorporate the anisotropic equilibrium state of the collision
operator. When the scales are clearly separated, it may be enough to solve the macroscopic model
directly. This has been done for example in [44, 46, 76]. The separation of scales depends on the
assumed model parameters, such as cell migration speed and turning rate, whose estimation is
unreliable. However, when the mean free path is small but not negligible, the collision term is stiff
and a straightforward discretization of the kinetic equation would need an infeasible spatial and
temporal resolution to resolve the small scales accurately [93]. Therefore, a variety of so-called
asymptotic preserving (AP) schemes has been developed [22, 63, 79, 81, 87, 96]. These methods
are constructed in such a way that—for a fixed resolution—they converge to a discretization of
the limit equation.

Last but not least, for parameter fitting and validation, the model needs to be compared against
measurement data. However, it is notoriously difficult to obtain in-vivo tumor data due to a
combination of factors. Hospitals run on tight budgets, measurements are an additional burden
for the patients, and tumor growth is massively influenced by therapy. Furthermore, large
portions of the active tumor are invisible to noninvasive measurements. Therefore, rudimentary
model validation is often done with small data sets from one to at most a dozen patients [108,
129]. Another team in the GlioMaTh project is developing a stationalization approach that makes
better use of the already available data and mitigates some of these problems [48].

Any individual work can contribute only an O (ε) part to the ambitious task of developing a
patient-specific predictive cancer model based on fundamental biological observations which
really improves therapy outcomes. This thesis is dedicated to the study of moment methods for
the meso-scale kinetic equations in the model hierarchy, but the larger context is not ignored.
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The glioma invasion model from [44, 46] serves as a prototype for hierarchic models. A detailed
discussion of the model’s assumptions is the foundation for more realistic models.

Structure

In the rest of this chapter we establish basic notation and concepts. In Section 1.1 we introduce
some well-known but essential concepts for multi-scale models originating from particle systems,
such as entropy dissipation, scaling, and the diffusion limit of the kinetic meso-scale equation. A
simple run-and-tumble particle model for bacterial movement serves as an illustrative example.
Section 1.2 then summarizes the method of moments for the classical kinetic equation. In
Chapter 2 we give an overview of the biological aspects of tumor growth, with emphasis on
cell migration. Then we review some existing mathematical models for glioma invasion on the
macro and micro-scale. We also touch upon data acquisition with MRI. Chapter 3 details the
transition from the subcellular modeling level to the macroscopic models. The focus lies on
modeling, not so much on rigorous limit procedures. We identify a class of kinetic equations as a
generalization of the meso-scale glioma model. In Chapter 4, we discuss moment methods for
this so-called haptotaxis equation. From a relative entropy dissipation law, we derive modified
moment methods that converge to the correct diffusion limit. In Chapter 5 we develop, analyze
and numerically validate an AP method to handle the transition from the kinetic equation to the
diffusion limit numerically. Finally, we summarize the results and discuss potential for further
work in Chapter 6.

1.1 A toy example for multi-scale models
By means of a simple run-and-tumble model for the motion of bacteria, we introduce the main
concepts and notation relevant for the multi-scale model in Chapter 3.

1.1.1 The micro-scale: A model for individual particles

We adopt Stroock’s [127] model which is based on experimental observations on the E. coli5
bacterium [17]. The bacterium alternates between two phases of movement: the run phase and
the tumble phase. During a run, the bacterium moves with constant speed c in a straight line. In
the tumble phase, it stays in its place and turns its main axis to determine the direction of the
next run phase. The tumble duration is short compared to the run duration.
On the micro-scale, the model describes the motion of a single bacterium. The bacterium is
considered in abstract form as a particle of which we know only the position of its center x �

(ξ, η, ζ)> ∈ R3 and its current movement direction v � (vξ , vη , vζ)> ∈ S2 :�
{

v ∈ R3 ��� |v | � 1
}
.

Without any information on the biochemical processes inside the bacteriumwe rely on a stochastic
description of tumbling that fits the observations. Furthermore, we assume that the tumble
duration is negligible and describe the tumbling phase with a random and instantaneous change
in direction, which we call turning event.
The evolution of the bacteria’s state ψ � (x , v) is governed by the following piece-wise determin-
istic Markov jump process [133]:

5Escherichia coli. A small bacterium that can be found in the human digestive tract.
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1. In a run phase, the state evolves according to the ODE

∂t x � cv ,

∂t v � 0.

2. Turning events occur at the times ti , which are Poisson distributed with constant rate
parameter λ: The probability that no turning event happens in the time span [s , t] is

P(ti < [s , t]∀i) � exp (−λ(t − s)) .

The turning rate is the inverse of the mean free flight duration 1
λ : the expected time between

turning events. The direction v+

i :� lim
t↓ti

(v(t)) right after a turning event depends on the

direction v−i :� lim
t↑ti

(v(t)) immediately before the event. Let K(v , v′) be a probability density

function in its first argument v, for each v′. The probability that the post-turning direction
v+

i is in the set Ωv , given that the pre-turning direction is v−i , is

P(v+

i ∈ Ωv |v−i ) �
∫

Ωv

K(v , v−i )dv.

Under the assumption that bacteria do not interact with each other, a collection of N bacteria is
described by N instances of this stochastic process.

Remark 1.1 A similarmodel applies for neutronsmoving through amedium and collidingwith
the nuclei therein [5, 62]. The collision times and post-collision velocities are determined by
the obstacle configuration. Randomness enters the model through the uncertain configuration
of obstacles, even if we assume hard-sphere collisions between neutrons and nuclei. Instead
of the turning rate, the collisions are usually parameterized by the so-called scattering cross-
section σ, which is the inverse of the mean free path. Let A be the interaction cross-section
between a nucleus and a neutron, and n the number density of obstacles. For hard-sphere
collisions of negligibly small neutrons with obstacles of radius R we have A � π(2R)2. The
scattering cross-section σ � An can be interpreted as the interaction cross-section per volume.
If the nuclei are independently Poisson distributed, the cross-section σ([σ] � m−1) is related
to the collision rate λ ([λ] � s−1), via

λ � cσ.

1.1.2 The meso-scale: A kinetic equation for the collective behavior

With a larger number of particles N , the individual realizations of the stochastic process contribute
less and less to the collective behavior. An equation for the expectation is better suited to describe
the collective. Let

µ(Ωx ×Ωv ) �
∫

Ωx

∫

Ωv

f (t , x′, v′)′dv′dx′

be the expected number of particles in the phase space Ωx ×Ωv , that is, µ is the measure of the
particle distribution function

f (t , x , v).
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The expectation of the stochastic process is governed by the integro-differential equation

∂t f + c∇x · (v f ) � λ
∫

S2
K(v , v′) f (v′) − K(v′, v) f (v)dv′ (1.1)

for f (t , x , v). Its derivation is outside the scope of this thesis. For details, we refer to [5, 62, 127].
We omit some or all arguments to f whenever this is unambiguous.
On the left-hand side of (1.1), the advection of f (v) in direction v is due to linear movement of
particles. The right-hand side is a balance of gains and losses for f (v) due to turning events. We
pose additional restrictions on the turning kernel K:

Definition 1.2 — Turning kernel. A turning kernel is a positive function K(v , v′) : S2 × S2 7→ R+
that is

• normalized with respect to its first argument, i.e,
∫

S2
K(v , v′)dv � 1, (1.2)

• bounded by positive constants from below and above,

0 < Kmin ≤ K(v , v′) ≤ Kmax < ∞, (1.3)

• and symmetric in its arguments

K(v , v′) � K(v′, v). (1.4)

The first assumption (1.2) ensures that the kernel K is a probability density such that the stochastic
process associated with (1.1) is physically meaningful. Assumptions (1.3) and (1.4) are essential
for the existence of a diffusion limit to the kinetic equation (see Section 1.1.3). In Section 3.5, we
will generalize this definition by weakening assumption (1.4).
The right-hand side of (1.1) is completely parameterized by the turning rate λ and the turning
kernel K. Therefore, the definition of a turning operator is natural:

Definition 1.3 — Turning operator. The turning operator L : L2(S2) 7→ L2(S2) associated with a
turning kernel K according to Definition 1.2, is given by

L f �

∫

S2
K(v , v′) f (v′) − K(v′, v) f (v)dv′. (1.5)

The first summand in (1.5) counts the particles that turn from any direction v′ into v, i.e., the
gain for direction v. We give it a special name:

Definition 1.4—Gain operator. A turning kernel K fulfillingDefinition 1.2 defines a gain operator
K : L2(S2) 7→ L2(S2) via the kernel integral

K f �

∫

S2
K(v , v′) f (v′)dv′.

Turning does not change the total number of particles, hence every gain for v comes from a loss
for v′, and all losses for v′ are given by

∫

S2
K(v , v′) f (v′)dv �

∫

S2
K(v , v′)dv f (v′) � f (v′).



1.1 A toy example for multi-scale models 7

Herein, we used the normalization of the K(v , v′). With Definition 1.4, we write L f � K f − f �

(K − I) f . By construction, the turning operator fulfills
∫

S2
L f (v)dv � 0,

and thus conserves the local particle mass ρ �
∫
S2 f (v)dv.

The particle distribution f (v) is in local equilibrium if the gains and losses for each direction v
cancel each other. For the equilibrium E(v), the detailed balance condition

K(v , v′)E(v) � K(v′, v)E(v′)

must hold for all v , v′ such that the integrand in (1.5) is identically zero. Then, assuming spatial
homogeneity, E is a steady state of (1.1):

∂tE � λL(E) � 0.

Due to symmetry (1.4) and strict positivity (1.3) of the turning kernel, the equilibria are exactly
the constant functions. In the following, we denote with E(v) � 1

|S2 | the constant function with
unit mass.

Reduced space dimension

The kinetic model is valid for particles moving in a three-dimensional domain Ωx ⊆ R3. To
simplify computations it is often useful to consider the model on a one or two-dimensional
domain. In the following, the parametrization of the unit sphere

(vξ , vη , vζ)> �

(√
1 − µ2 cos(φ),

√
1 − µ2 sin(φ), µ

)>
, µ ∈ [−1, 1], φ ∈ [0, 2π]

is useful.
In the slab geometry model, only one space dimension remains. Assume that the domain
Ωx � R2 ×Ωζ extends infinitely along the ξ and η axes. Further, assume that the initial conditions
and coefficients are constant on each infinite slab { x ∈ Ωx | ζ � const}. We can describe this
setting with the kinetic equation for f (t , ζ, µ):

∂t f + cµ∂ζ f � λ

∫ 1

−1
Kslab(µ, µ′) f (µ′) − Kslab(µ′, µ) f (µ)dµ′

wherein the direction v is projected onto the ζ-component. The turning kernel has to be integrated
over φ:

Kslab(µ, µ′) �
∫ 2π

0

∫ 2π

0
K(v , v′)dφdφ′.

Considering a domain Ωx � Ωξ,η × R that is infinite in the ζ-direction and assuming that initial
conditions and coefficients are constant for each line

{
x ∈ Ωx | ξ � const, η � const

}
, we obtain

a two-dimensional model for f (t , ξ, η, v):

∂t f + cvξ∂ξ f + cvη∂η f � λ

∫

S2
K(v , v′) f (v′) − K(v′, v) f (v)dv.

Here, the direction v remains on the unit sphere, but for the transport only the projection onto
the ξ, η-plane is relevant.
This is different from the intrinsically two-dimensional model with x̃ ∈ R2 and ṽ ∈ S1:

∂t f + c∇x̃ · (ṽ f ) � λ
∫

S1
K(ṽ , ṽ′) f (ṽ′) − K(ṽ′, ṽ) f (ṽ)dṽ′.
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Entropy dissipation

Equation (1.1) with the structure provided by Definition 1.2 and Definition 1.3 is endowed with
an entropy dissipation law. Dissipation of entropy essentially drives f towards the equilibrium
state E and is therefore a key ingredient for the diffusion limit [37] (see Section 1.1.3) as well as
for the hyperbolic limit [27] (see Section 3.5.3).

Definition 1.5 — Entropy density / Entropy. We call a convex, twice continuously differentiable
function η : R 7→ R an entropy density. This defines an entropy functional

h( f ) �
∫

S2
η( f (v))dv.

Multiplication of (1.1) by η′ and integration over S2 gives the local entropy dissipation law

∂t h + c∇x · j � λ
∫

S2
η′( f )L( f )dv ≤ 0 (1.6)

with entropy flux j �
∫
S2 η( f )vdv. The linear analog of the famous H-theorem [5, 19, 136]

guarantees that the collision operator dissipates entropy:

Lemma 1.6—Entropy dissipation of the turning operator. For an entropy according toDefinition 1.5,
the collision operator from Definition 1.3 fulfills

∫

S2
η′( f )L( f )dv ≤ 0.

Equality holds, if and only if f � E ∈ N (L).

Proof. The proof relies on the symmetry of the kernel, K(v , v′) � K(v′, v), and the convexity of
the entropy η. See Lemma 2 in [37]. The proof of Lemma 4.2 is conceptually similar. �

This lemma holds for any entropy η. Of all functions with mass ρ, the equilibrium function
ρE(v) ≡ ρ

|S2 | minimizes the entropy functional h( f ). We show this with Jensen’s inequality:

1
��S2��

h( f ) �
1

��S2��

∫

S2
η( f )dv ≥ η

(
1

��S2��

∫

S2
f dv(v)

)

� η

(
ρ

��S2��

)

�
1

��S2��

∫

S2
η

(
ρ

��S2��

)
dv

�
1

��S2��
h
(
ρ

��S2��

)
.

Because L locally diminishes the entropy, which is minimal in equilibrium, it drives f locally
towards E. In this sense, the entropy measures the distance of f to the equilibrium. Locally, the
entropy h can increase due to the transport term. Consider the total entropy H �

∫
Ωx

h( f )dx in
the domain Ωx . Integration of the local entropy dissipation law gives

dH
dt

+ c
∫

∂Ωx

j · ndx ≤ 0.

Unsurprisingly, the advection term does not change the total entropy in the domain interior. But
through fluxes over the boundary, entropy can either enter or leave the system.
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1.1.3 The macro-scale: Scaling and diffusion limit
Scaling

Equation (1.1) is defined in terms of the physical variables (t , x , v) ∈ Ωtxv on the physical domain
Ωtxv � Ωt ×Ωx × S2. With the coordinate transformations t � Tt̂, and x � Xx̂ we rewrite it in
terms of non-dimensional variables ( t̂ , x̂ , v) ∈ Ω̂txv � Ω̂t × Ω̂x × S2. The direction v is already
non-dimensional and therefore does not need to be transformed. With the total duration as
the time scale T and the largest side-length of the bounding box of Ωx as the length scale X,
the reference domain is normalized: The temporal domain becomes Ω̂t � [0, 1] and the spatial
domain Ω̂x fits into the unit square. Depending on the situation, another choice may be more
appropriate. For example, if the domain has features of a certain characteristic size L, we can
define X � L.
The non-dimensional particle distribution f̂ is defined via f (t , x , v) � f0 f̂ ( t̂ , x̂ , v), with an
arbitrary reference quantity f0 for particles. Using the chain rule, we express for instance the
time derivative in non-dimensional quantities as:

∂t f � f0
∂ f̂
∂t̂
∂t̂
∂t

�
f0

T
∂t̂ f̂ .

After multiplication with T
f0
, the non-dimensional equation reads:

∂t̂ f̂ +
Tc
X
∇x̂ · (v f̂ ) � TλL f̂ .

The characteristic numbers of this equation are the Strouhal number

St � X
Tc
,

which is the ratio of the time X
c a particle needs to travel the reference distance to the reference

time T, and the Knudsen number

Kn �
1

Tλ
,

the ratio of mean free time 1
λ to the reference time scale T. In terms of these characteristic

numbers, the equation reads

∂t̂ f̂ +
1
St∇x̂ · (v f̂ ) �

1
KnL f̂ . (1.7)

We may combine the characteristic numbers in any non-degenerate way to produce a different
set of two characteristic numbers and reformulate equation (1.7) accordingly. There are then two
perspectives we can take. From an analytical point of view, we may assume full control over the
physical parameters and set the characteristic numbers arbitrarily. Because there are four physical
parameters T,X, c , λ and two equations relating those parameters to the characteristic numbers,
we can choose two physical parameters freely. This determines the remaining two physical
parameters corresponding to the chosen characteristic numbers. From an applied perspective, all
physical parameters are already determined. Thus, we have no choice left. The two characteristic
numbers are completely determined by their definitions. We may use them to classify a given
physical situation.
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� Example 1.7 Given a set of parameters T,X, c , λ, we want to write the equation equivalently
with new parameters T̃ , X̃ , c̃ , λ̃ with unit speed c̃ � 1. To keep the characteristic numbers
St � S̃t and Kn � K̃n constant over this transformation, we keep X̃ � X unchanged and set

T̃ � cT, λ̃ �
1
c
λ.

Parabolic scaling and diffusion limit

We write equation (1.7) in the form

∂t̂ f̂ +
δ
ε
∇x̂ · (v f̂ ) �

δ

ε2L f̂ . (1.8)

A comparison of coefficients yields the characteristic numbers

ε �
Kn
St �

c
Xλ

,

δ �
Kn
St2 �

c2T
λX2 .

This so-called parabolic scaling is motivated by the limit of (1.8) as ε tends to zero. As we have
seen in Section 1.1.2, the turning operator locally relaxes f towards its equilibrium state due to
entropy dissipation. When ε tends to zero, turning dominates advection, and we can expect that
the distribution converges to the local equilibrium f̂0 � ρ̂0( t̂ , x̂)E(v). Indeed, when ε tends to
zero while δ is constant, equation (1.8) converges to the diffusion equation

∂t̂ ρ̂0 − δ∇x̂ ·
(
D̂∇x̂ ρ̂0

)
� 0, (1.9)

for the particle density

ρ̂0 �

∫

S2
f̂0(v)dv.

The diffusion tensor D̂ ∈ R3×3 is given by

D̂ � − 1
4π

∫

S2
vL−1(v>)dv. (1.10)

Herein, the term L−1(v>) is the inverse of L applied component-wise to v>. The inverse is
well-defined thanks to the following lemma:

Lemma 1.8 — Properties of turning operators. With respect to the scalar product on L2(S2), the
turning operator L has these properties:

1. L is self-adjoint.

2. The one-dimensional nullspace of L is spanned by the constant functions: N (L) �

span {1}. The range of L is the orthogonal complement of its nullspace
R(L) � N⊥(L) �

{
g �� (g , 1) �

∫
S2 gdv � 0

}
.

3. L : R 7→ R restricted to R(L) is bĳective: There exists a unique solution f ∈ R(L) to
L f � g, if and only if g ∈ R(L).
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Proof. See [38, Chapter XXI, Section 5.2, Lemma 1]. Assumptions (1.3), (1.4) are necessary
ingredients for the proof. The proof of Lemma 3.11 in Section 3.5 implies the proof of this
lemma. �

Because of
∫
S2 vdv � 0, v is in the range of L and the inverse L−1(v>) exists and is unique. A

derivation of the diffusion limit via a Hilbert expansion follows for the more general case in
Section 3.5.2. For a rigorous proof, see [38, Chapter XXI., Section 5.2, Theorem I].
The reverse transformation of 1.9 into physical coordinates yields

∂tρ0 − ∇x ·
(

X2δ
TD0

D∇xρ0

)
� 0,

with a reference diffusion parameter D0 and D � D0D̂. The coefficient in front of the diffusion
term should be equal to one. This defines a relation between the characteristic number δ on the
meso-scale and the macroscopic reference diffusion speed D0:

δ �
TD0
X2 .

We interpret δ as the ratio of the total time T to a characteristic diffusion time X2

D0
.

� Example 1.9— Isotropic scattering. When the velocities after collisions are distributeduniformly,
i.e.,

K(v , v′) �
1

��S2��
�

1
4π ,

equation (1.1) becomes

∂t f + c∇x · (v f ) � λ
( 1

4π
〈

f
〉 − f

)
.

For any g in the range of L, i.e.,
∫
S2 gdv � 0, we have L(−g) � g, thus the inverse operator is

L−1(g) � −g.

There is an explicit formula for the diffusion tensor:

D̂ � −
∫

S2
v(−v)>dv �

1
3 I .

1.2 A summary of moment models
Thediffusion limit is an example of a situationwhere the full distribution f (v) canbe reconstructed
approximately from a few degrees of freedom. Close to the diffusion limit, we can infer
f (v) ≈ ρE(v) from the single moment ρ. A moment model is an approximation of the six-
dimensional PDE (1.1) by a system of equations for the moments of f with respect to v. From a
numerical perspective, it is a discretization of the velocity space by a Galerkin method.
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Let

a∞ � (a0 , a1 , . . . )>

be a basis of the normalized velocity space L2(S2) with components ak (v). When the basis
consists of polynomials on the full sphere, we write

a∞ �

*...
,

a (0)

a (1)

...

+///
-

and collect all basis functions of polynomial degree l in the vector a (l) . We consider only such
spectral polynomial methods in this work. For completeness, note that in principle any other
basis is possible. In particular, basis functions with partial support on the sphere lead to so-called
partial moment methods. Full and partial moment methods are discussed in detail by Schneider
[121] in his PhD thesis.
The shorthand notation

〈·〉 �
∫

S2
·dv

for integrals over the angular domain S2 will be handy in the following. Integrals over vectors or
matrices are always meant component-wise as in 〈v〉 �

(〈
vξ

〉
,
〈
vη

〉
,
〈
vζ

〉)>
.

The moments of f (v) are defined as

u∞ �
〈
a∞(v) f (v)

〉
,

uk �
〈
ak (v) f (v)

〉
.

In principle, we can expand f in terms of the basis

f �

∞∑

k�0
αk ak (v)

and test (1.1) with the basis components to get an infinite system for the moments:

∂t uk + c∇x · 〈ak v f
〉
� λ

〈
akL f

〉
, k � 0, 1, . . . .

We obtain a finite-dimensional approximation to (1.1) if we test with the truncated basis

aN
�

*...
,

a (0)

...

a (N)

+///
-

�

*...
,

a0
...

an−1

+///
-

which spans an n-dimensional subspace V � span {a0 , . . . an−1} ⊂ L2(S2), containing exactly the
polynomials of order less than or equal to N. We call N the moment order of the system. The
moments with respect to the finite basis are uN �

〈
aN f

〉
. We omit the superscript N when the

moment order is unambiguous. The truncated system is equivalent to the condition that the
projection of (1.1) onto the finite-dimensional subspace V is fulfilled:

∂t u + c∇x ·
〈
va> f

〉
� λ

〈
aL f

〉
. (1.11)
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The so-called flux moments
〈
va> f

〉
are a 3 × n matrix with entries

〈
vi ak f

〉
, i � 1, 2, 3, k �

0, . . . , n − 1. The spatial divergence contracts components of the gradient with the columns of
the flux matrix.

Remark 1.10 All moment systems with arbitrary polynomial basis a of moment order N are
equivalent, because one can always find a coordinate transformation that maps one basis to
another. Therefore, the choice of basis has no influence on the approximation quality. However,
from a practical/programming perspective, some terms may be easier to interpret/evaluate
in one basis than in another.

Unfortunately, the functions va (l)> have polynomial degree l + 1 and the moments
〈
va (l)> f

〉

are some linear combination of moments in a (l+1) . When the basis is truncated at polynomial
order N , then for l � N the corresponding flux moments cannot be expressed exactly in terms of
the known moments. We need a moment closure: A method to approximate the higher-order
moments from the known moments.
One method is to first reconstruct an approximate distribution f[u] from the moments u. This
reconstruction should fulfill the moment constraints

〈af〉 � 〈
a f

〉
� u , (1.12)

but of course it will differ from the true distribution in its higher moments. When we insert this
ansatz into the moment system (1.11), we obtain a closed approximation

∂t u + c∇x ·
〈
va>f

〉
� λ 〈aLf〉 .

The linear closure PN and the entropy closure MN fit into this construction method (see
Section 1.2.3). Alternatively, one can approximate the higher-order moments directly from the
known moments, which is done for example in the Kershaw closure.
The end result is always a system of conservation laws with source term

∂t u + c∇x · F (u) � R(u).

The system is strictly hyperbolic, if for every normal n ∈ R3 the flux Jacobian

JFn �
∂(F (u) · n)

∂u
�

〈
v · na

∂f
∂u

〉

is diagonalizable with real eigenvalues.
It will often be helpful to write the equations in terms of the normalized moments

û �
1〈
f
〉 〈

â f
〉

:� 1〈
f
〉
〈
(a1 , a2 , . . . , an−1)> f

〉
.

Two extreme situations deserve special names: When the particle distribution is in equilibrium,
that is, f � ρE �

ρ
〈1〉 , the moments are given by

uE �
ρ

〈1〉 〈a〉 .
These are the isotropic moments. When all particles move in the same direction, the distribution
is a Dirac-delta f � δv∗ (v) and the moments are

uδ � a(v∗).

These are called the free-streaming moments, because this situation arises if no collisions occur.
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1.2.1 Monomial bases

A basis of monomials of L2(S2) is

a∞ �

(
v i
ξv j

ηvk
ζ; i , j, k ≥ 0, k ∈ {0, 1}

)>
.

On the sphere, the functions v2
ξ , v

2
η , v2

ζ are linearly dependent due to the identity v2
ζ � v2

ξ + v2
η.

The basis cannot contain the monomials v i
ξv j

ηvk
ζ for all combinations of indices. In the definition

above, we arbitrarily chose to exclude monomials with k > 1. The second-order monomial basis
a2(v) : S2 7→ R9 is for example

a2
�

(
1, vξ , vη , vζ , v2

ξ , v
2
η , vξvη , vξvζ , vηvζ

)>
.

The low-order moments of f in this basis have physical interpretations and deserve special names
[114]. Let

ρ �
〈

f
〉 ∈ R,

q �
〈
v f

〉 ∈ R3 ,

P �

〈
vv> f

〉
∈ R3×3 ,

denote the zeroth-order moment, the vector of first-order moments, and a tensor of second-order
moments, respectively. With these definitions, the first-order moment model of the transport
equation reads

∂tρ + c∇x · q � 0

∂t q + c∇x · P � λC � λ(C+ − q).
(1.13)

In analogywith the Euler equations, we call ρ themass (density), q themomentum (density) and P
the pressure tensor. Concerning the units, this nomenclature is misleading: The distribution is the
number of particles per volume and surface angle which is measured in units

[
f
]
� mol m−3 sr−1.

Consequently, ρ is really a number density with units
[
ρ
]
� mol m−3. To compute the physical

mass density Mρ we need to multiply by the molar mass of particles M. Similarly, the physical
momentum density is given by Mcq.
The normalized first-order moments

q̂ �
q
ρ

indicate how aligned the particles are. In equilibrium there is no net momentum: q̂ � 0. But
in the free-streaming situation with f � δv∗ (v), the momentum is q � ρv∗. The normalized
momentum q̂ � v∗ has magnitude one: ��q̂�� � 1.
The closure problem consists of finding an approximation to the pressure tensor and collision
moments

PA[ρ, q] ≈ P �

〈
vv> f

〉
,

CA[ρ, q] ≈ C �
〈
vL f

〉
,

in terms of the known moments ρ, q. When a reconstruction f[ρ, q] is defined, these moments
are naturally obtained by PA �

〈
vv>f

〉
, CA � 〈vLf〉 � 〈vK f〉 − q.
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The flux function F for this system is

F (ρ, q) � *
,

q>

PA
+
-
� ρ *

,

q̂>

P̂A
+
-
,

with Jacobian

JFn � *
,

0 n>
∂PA n
∂ρ

∂PA n
∂q

+
-
� *

,

0 n>

P̂An − ∂P̂
∂q̂ q̂ ∂P̂A n

∂q̂

+
-
. (1.14)

Herein we assumed that the pressure tensor can always be written in terms of normalized
moments as PA[ρ, q] � ρP̂A[q̂].

1.2.2 Realizability

We have seen that there are certain bounds on the moments when they arise from a physically
meaningful particle distribution f (v) ≥ 0. For example, the magnitude of the normalized
momentum ��q̂�� is between zero in the equilibrium and one in the free-streaming regime. Thus,
not all vectors u ∈ Rn are the moments of a positive distribution. The physically meaningful
moment vectors are characterized by the following definition:

Definition 1.11 — Realizable moments. A moment vector u is called realizable, if there exists
a non-negative function f (v) ≥ 0 that reproduces these moments:

〈
a f

〉
� u. Any such

function, of which there might be more than one, is called a representing distribution. The set
of realizable moments is

R(a) �
{

u | ∃ f (v) ≥ 0 :
〈
a f

〉
� u

}
.

Finding an explicit characterization of the realizable set R, that is, determining if a vector is
realizable, becomes increasingly difficult with higher order and space dimension [121]. Here,
we give formulas for the first-order and second-order monomial basis. A moment vector (ρ, q)
is realizable with respect to the monomial basis (1, v), if and only if ρ ≥ 0 and the normalized
momentum is less than one, i.e., ��q̂�� �

|q |
ρ ≤ 1. For the second-order basis we get the additional

conditions that tr(P̂) � 1 and the matrix P̂ − q̂ q̂> is positive semi-definite. Because the mass
can be factored out of the moments, the set R can always be described by conditions on the
normalized moments û and the condition ρ ≥ 0.
A given ansatz f might not be defined for all moment vectors u.

Definition 1.12 — Ansatz space. The ansatz space

A(a , f) � { u | ∃f[u]}

includes all moments for which the ansatz f[u] is well-defined.

Ideally, we would like to have an ansatz with R(a) � A(a , f). Then the ansatz can produce all
physically relevant moments, but nothing more.

1.2.3 Minimum entropy closures

Minimum entropy closures are proposed by Levermore [100, 102] in the context of gas kinetics.
We point to [71] for a short summary of the method for linear kinetic equations. To respect the
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entropy dissipation law (1.6) we want to take the ansatz f with minimal entropy. For a given
entropy η, finding the ansatz that minimizes this entropy is an infinite-dimensional, constrained
minimization problem:

f � argmin
g ,〈a g〉�u

{〈
η(g)

〉}
.

With the help of the Legendre transform, this can be cast as a finite-dimensional, unconstrained
minimization problem for the Lagrange multipliers instead.

Definition 1.13 — Legendre transform. The Legendre transform φ∗ of a convex function φ : Rn 7→
R is defined by

φ∗(y) � sup
z∈Rn

{
y · z − φ(z)

}
.

It has two important properties:

(φ∗)∗ � φ,

(φ∗)′ ◦ φ′ � I .

The dual optimization problem is given by

α̂(u) � argmin
α

{〈
η∗(α · a)

〉 − α · u}
�: argmin

α
{Fu (α)} , (1.15)

wherein α are the Lagrange multipliers for the moment constraints 〈af〉 � u in the original
optimization problem. Once the multipliers have been determined by the moments, the ansatz is
given by

f[u] � η′∗(α̂ · a). (1.16)

It can be shown that moment systems defined in this way are symmetric hyperbolic [101, 121].
Furthermore, the moment system is endowed with the entropy dissipation law

∂t hf + c∇x · ηf ≤ 0

with entropy hf �
〈
η(f)

〉
and entropy flux jf �

〈
vη(f)

〉
. The ansatz that reconstructs the

equilibrium moments uE with minimal entropy is of course the equilibrium E itself. Because f
minimizes the entropy, it is automatically equal to the equilibrium if the equilibrium moments
are given: f[uE] � E.
From the gradient Gu :� ∂Fu

∂α � 〈af[u]〉 − u of the objective function Fu we recover the moment
constraints. Numerically, the optimization problem (1.15) is typically solved [59] with a stabilized
Newton method for the equation Gu (α̂) � 0. The Newton method needs the symmetric positive
definite Hessian

Hu (α) �
〈
η′′∗ (α · a)aa>

〉
�

〈
a
∂f
∂α

〉

to calculate the descent direction. The integrals in the objective function, the gradient and the
Hessianmay have to be evaluated by a potentially costly high-order quadrature rule. Additionally,
the Hessian can be poorly conditioned if the moments are close to the border of the realizable set
[1].
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The MN method

The minimum entropy method with the Maxwell-Boltzmann entropy

η( f ) � f log( f ) − f ,

is the well-known MN method [42]. The Legendre dual is in this case simply η∗( f ) � exp( f ) and
the ansatz according to (1.16) is of exponential form

f[u] � exp (α · a) .

This ansatz is always positive and all moments reconstructed from it are automatically realizable.
Furthermore, Junk showed in [83] that the ansatz space is equal to the set of realizable moments:
A(a , f) � R(a). For each realizable moment vector u ∈ R(a) there exists a unique vector of
multipliers α̂(u) such that the ansatz reproduces the moments. The objective function, gradient,
and Hessian in the optimization problem (1.15) are

Fu �
〈
exp(α · a)

〉 − α · u ,
Gu �

〈
exp(α · a)a

〉 − u ,

Hu �

〈
exp(α · a)aa>

〉
.

For a first-order monomial basis, the exponential ansatz becomes

f � exp(a + b · v),

with multipliers a ∈ R, b ∈ R3. These follow from the solution of the nonlinear moment
constraints (1.12):

〈
exp(a + b · v)

〉
� ρ,

〈
v exp(a + b · v)

〉
� q.

We can compute the multipliers b independently of a via
〈
v exp(b · v)

〉
〈
exp(b · v)

〉 �
q
ρ
� q̂.

The resulting pressure tensor has the form PA[ρ, q] � ρP̂A[q̂]. When the equilibrium moments
uE � (ρ, 0) are given, the M1-pressure tensor

PA
�
ρ

3 I3

equals the exact pressure tensor P �
〈
vv>E

〉
.

The PN method

The quadratic entropy

η( f ) �
1
2 f 2

leads to a linear ansatz

f[u] � α̂ · a ,
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which minimizes the L2-norm:

f � argmin
g ,〈ga〉�u

{1
2
〈

g2
〉}
.

This is the classical PN method [21] [114, Chapter III, Section 5].
Finding multipliers α̂ such that (1.12) is fulfilled is the linear problem

〈
α̂ · aa>

〉
�

〈
aa>

〉
α̂ � u.

With an orthonormal basis, such as the spherical harmonics (see SectionA.4), thematrix
〈
aa>

〉
� I

becomes the identity, and the optimization problem reduces to

α � u.

This also shows that all moment vectors u ∈ Rn can be reproduced by the linear ansatz. It is
well-known that solutions to the PN equations can develop negative density [106], which fits
with the observation A(a , f) � Rn ⊃ R(a).
The flux moments for the PN method are

〈
va>f

〉
�

〈
va>α · a

〉

� 〈v ⊗ a ⊗ a〉
〈
aa>

〉−1
u.

The flux Jacobian is the tensor 〈v ⊗ a ⊗ a〉 〈aa>
〉 ∈ R3×n×n in which the last component of

〈v ⊗ a ⊗ a〉 is contracted with the first component of
〈
aa>

〉−1.
Using a first-order monomial basis, the ansatz becomes

f � a + b · v.

The multipliers a , b are the solution of the linear moment constraints

*
,

〈1〉 〈
v>

〉

〈v〉 〈
vv>

〉+
-

*
,

a
b

+
-
� *

,

ρ

q
+
-
.

The formulas in Section A.2 yield

4π *
,

1 0
0 1

3 I3
+
-

*
,

a
b

+
-
� *

,

ρ

q
+
-
,

with the solution a �
1

4π ρ, b �
3

4π q. Therefore, we obtain the explicit formula

f[ρ, q] � 1
4π (ρ + 3q · v),

for the ansatz. The pressure tensor in the P1 equations is

PA[ρ, q] � 1
4π

〈
vv>(ρ + 3q · v)

〉
�
ρ

3 I3.

It does not depend on the momentum q. When ��q̂�� > 1√
3
, the moments (ρ, q , P) are not realizable,

because the matrix P̂ − q̂ q̂> is not positive definite. This can lead to unphysical zeroth and first
moments, for example, a negative density [72].
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Using formula (1.14) for the flux Jacobian, we have

JFn � *
,

0 n>
1
3 n 0

+
-
.

An eigendecomposition of JFn shows that there are two longitudinal waves with speed ± 1√
3

and two transversal waves with speed 0. In the free-streaming limit, the kinetic equation just
transports the initial mass with unit speed along the direction q∗. Clearly, in this case the P1

model underestimates the forward propagation speed.

1.2.4 Kershaw closures

The Kershaw closure [86] for the first-order moment system (1.13) constructs the pressure tensor
PA directly from the known moments ρ, q such that the second-order moments (ρ, q , PA) are
realizable. Kershaw shows that the moments in the resulting system stay realizable. A convex
combination of isotropic and free-streaming pressure tensors is one possible construction of
a Kershaw closure. The normalized isotropic pressure tensor is P̂E �

1
3 I. Let q∗ � q̂

| q̂ | be the
mean direction of particles. If all particles moved in that direction, the distribution would be
f (v) � δq∗ (v) and the corresponding normalized free streaming moments are P̂δ (q∗) � q∗q∗>. A
pressure tensor that respects the realizability constraints is given by the convex combination

P̂A
� αP̂E + (1 − α)P̂δ (q∗) ,

with α � 1 − ��q̂��2, which reads

P̂A
�

(
1 − ��q̂��2

) 1
3 I + q̂ q̂>.

The moments P̂A are realizable because tr P̂A � 1 and

P̂A − q̂ q̂> �

(
1 − ��q̂��2

) 1
3 I

is positive definite when the first-order moments are realizable, i.e., when ��q̂�� ≤ 1 holds. Not only
does this procedure construct the correct pressure tensor for isotropic moments, but also when
the moments correspond to the free-streaming situation. Furthermore, the resulting system is
strictly hyperbolic for all q̂ in the interior of the realizable set. Kershaw computes the eigenvalues
of JFn and shows that they take all values between −1 and 1, which is exactly the range of
characteristic velocities of the transport equation. When q̂ � 0, the characteristic field is identical
to that of the P1 system: longitudinal waves move at speed ± 1√

3
, independently of the direction

n. But in the free-streaming limit with q̂ � q∗, looking parallel to the movement direction n � q∗,
the longitudinal waves move at speeds 1 and 1

3 .

1.2.5 The diffusion limit of the first-order moment system

The first-order moment system (1.13) in parabolic scaling reads

∂tρ +
1
ε
∇x · q � 0,

∂t q +
1
ε
∇x · P �

1
ε2 C.
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When ε is small, the kinetic distribution f is close to the equilibrium, and we write f �
1
〈1〉 ρ + εg.

At least in this situation the moment system should adequately approximate the kinetic equation.
Of course, in the limit ε → 0 the moment system should converge to the same diffusion equation
as the kinetic equation. In the following, we derive necessary conditions that the kinetic equation
and the ansatz must fulfill to achieve the correct diffusion limit. A rigorous proof of the diffusion
limit of the M1 system can be found in [37].
The natural condition for the ansatz f is that it should reproduce the equilibrium distribution,
i.e., f[ρ, 0] � ρ

〈1〉 . As discussed in Section 1.2.3, all ansätze of minimum-entropy form have this
property by construction. This automatically implies that the moments

PA[ρ, 0] � P
(
ρ

〈1〉
)
� ρ

〈
vv>

〉

〈1〉 �

〈
v2
ξ

〉

〈1〉 ρI ,

CA[ρ, 0] � C
(
ρ

〈1〉
)
� ρ

〈
vL(

1
〈1〉 )

〉
� 0

are reproduced exactly in this situation. When no ansatz is made, we just pose these conditions
on the moments directly.
We can say more about the ansatz function close to the isotropic point. From the decomposition
f �

ρ
〈1〉 + εg, we see that q � ε

〈
v g

〉
�: εq1 is of the order ε. The Taylor expansion in q around

the isotropic point q � 0 is

f[ρ, q] �
ρ

〈1〉 + ε
∂f
∂q

�����q�0
q1

+ . . . .

But f must fulfill the moment constraints. This means that

q � 〈vf〉 � ε
〈

v
∂f
∂q

�����q�0

〉
q1

must hold which in turn is fulfilled when
〈
v ∂f
∂q

���q�0

〉
� I. We see that

∂f
∂q

�����q�0
�

v>〈
v2
ξ

〉 .

Nowwe derive the diffusion limit of the closed moment system. To even have a limit, the moment
system must have an entropy dissipation (recall Section 1.1.2), which is the case for the P1 and
M1 method. Matching terms in the momentum equation order by order, we have for ε−2 simply
CA[ρ, 0] � 0. This is the discrete version of the condition that the kinetic distribution is in the
nullspace of the collision operator, f ∈ N (L). As we have seen above, the condition is always
fulfilled when CA is computed with an ansatz that reproduces the equilibrium. The order ε−1

terms provide us with

∇x · PA[ρ, 0] � ∂CA

∂q

�����q�0
q1

equivalent to

q1
�

〈
v2
ξ

〉

〈1〉
*
,
∂CA

∂q

�����q�0

+
-

−1

∇xρ.
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We obtain the derivative of C in the isotropic point via

∂CA

∂q

�����q�0
�

〈
vL *

,
∂f
∂q

�����q�0

+
-

〉
�

1〈
v2
ξ

〉
〈
vL(v>)

〉
.

Finally, the order ε0 terms in the mass equation are

∂tρ + ∇x · q1
� ∂tρ − ∇x · (D̂A∇xρ) � 0

with the diffusion tensor

D̂A
� −

〈
v2
ξ

〉2

〈1〉
〈
vL(v>)

〉−1
.

Compare this to the diffusion tensor D̂ � − 1
〈1〉

〈
vL−1(v)

〉
of the kinetic equation (see (1.10)). If v

is an eigenfunction of the collision operator to the negative eigenvalue −γ, that is L(v) � −γv,

then we have also L−1(v) � − 1
γ v. In this case, the diffusion tensors are equal: D̂A � D̂ �

〈
v2
ξ

〉

γ〈1〉 I.
Therefore, we make the additional assumption for the collision operator:

Assumption 1.14 The turning operator L from Definition 1.3 has v as an eigenfunction, i.e.,
there is a γ > 0 such that

L(v) � −γv.

The same assumption is also made in [37]. It is fulfilled if the turning kernel only depends on
the angle cos(θ) � v · v′ between directions, and not on the absolute direction v′ before turning:

Lemma 1.15 All turning operators L with a kernel of the form K(v , v′) � K(v · v′) � K(µ)
fulfill the eigenvalue equation

L(v) � −γv ,

with eigenvalue −γ � g − 1. Herein

g � 2π
∫ 1

−1
K(µ)µdµ

is the mean cosine of the turning angle.

Proof. First, we show

K (v) � gv.

The claim then follows from L � K − I.
Let Rv be a rotation matrix that rotates the unit vector e3 � (0, 0, 1)> onto v: Rv e3 � v. Expressing
v′ � Rv ṽ′ in this basis, we have

K (v) �
∫

S2
K(v · v′)v′dv

� Rv

∫

S2
K(e3 · ṽ′)ṽ′dṽ′.
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With the parametrization ṽ′ �
(√

1 − µ̃′2 cos(φ̃′),
√

1 − µ̃′2 sin(φ̃′), µ̃′
)>

, this becomes

Rv

∫ 1

−1

∫ 2π

0
K(µ̃′)

*...
,

√
1 − µ̃′2 cos(φ̃′)√
1 − µ̃′2 sin(φ̃′)

µ̃′

+///
-

dφ̃′dµ̃′ � Rv

*...
,

0
0

2π
∫ 1
−1 K(µ̃′)µ̃′dµ̃′

+///
-

� gRv e3 � gv.

�

To demonstrate that the diffusion tensor of the moment system can differ from the diffusion
tensor of the kinetic equation when Assumption 1.14 is not fulfilled, we show the following
example.

� Example 1.16 — Bad diffusion approximation. The kernel

Kw �
1

2π

[ 45
4096 (µ + 1)4(µ′ + 1)4 − 9

256 (µ + 1)4 − 9
256 (µ′ + 1)4

+
49
80

]

fulfills all properties of Definition 1.2, but we have

L(v) �
*...
,

−vξ
−vη

1
320

[
−33 − 260µ + 90µ2 + 60µ3 + 15µ4

]
+///
-

,

thus v is not an eigenvector of the collision operator. Symbolic computations yield the diffusion
tensor of the moment system

D̂A
� −4π

9
〈
vL(v>)

〉−1
�

*...
,

1
3 0 0
0 1

3 0
0 0 10

21

+///
-

.

By symbolic calculations it can be verified that the solution to L(w) � v is

w(v) �
*...
,

−vξ
−vη

1
64

[
11 − 84µ − 30µ2 − 20µ3 − 5µ4

]
+///
-

which gives the diffusion tensor for the kinetic equation:

D̂ � − 1
4π

〈
vw>

〉
�

*...
,

1
3 0 0
0 1

3 0
0 0 1

2

+///
-

.

These tensors differ indeed in their last component by 1
42 .

The diffusion tensor of the kinetic equation contains moments of the inverse L−1. In the moment
system, this is approximated by the inverse of the moments of L. When Assumption 1.14 is not
fulfilled, a higher-order moment system may provide a better approximation.
Similar computations as before yield the diffusion tensor of the PN system:

D̂A
� − 1
〈1〉 P

〈
pp>

〉 〈
pL(p>)

〉−1 〈
pv>

〉
,
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wherein p is the basis a excluding the constant function a (0) � 1 and Pm � q projects the
moment vector m �

〈
pf

〉
onto the momentum q � 〈vf〉. We return to the previous Example 1.16:

� Example 1.17 — Bad diffusion approximation. With the kernel from Example 1.16, the diffusion
tensors for the P2 and P3 moment systems are

D̂P2 �

*...
,

1
3 0 0
0 1

3 0
0 0 445

894

+///
-

,

D̂P3 �

*...
,

1
3 0 0
0 1

3 0
0 0 1

2

+///
-

.

The P2-diffusion tensor is closer to the correct tensor than the P1-tensor. For this particular
kernel, the P3-system already produces the correct diffusion tensor, which is not too surprising,
considering that the kernel has a polynomial form.
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Biological and medical aspects of
glioma

I itch all the time. Deep beneath my skin, where the bone sits enshrined in flesh I feel
it. Something, not moving, but that wants to move, wants to be free. It itches; and I
don’t think I want it. [...] I need it to be seen, to be seen in the cold light of knowledge,
which is anathema to the things that crawl and slither and swarm in the corners and
cracks [...]

Jonathan Simms — The Magnus Archives (Ep. 32)

To put the model in Chapter 3 in context, to see where it makes assumptions, how it could
be improved and to appreciate its simplicity, we review some aspects of glioma growth and
the associated mathematical models. There are two levels of description to consider. On the
one hand, noninvasive medical imaging tools (see Section 2.3) provide information on the
macroscopic structure of the tumor. On the other hand, this structure is the result of microscopic
interactions between individual tumor cells and their environment, which are in turn mediated
by complicated molecular processes inside the cell. Information about tumor composition can
only be gained by invasive procedures, i.e., by a biopsy and histological examination of tissue
samples.

2.1 Aspects of glioma growth
2.1.1 Macroscopic characteristics

As their name suggests, GBM come in a variety of shapes and growth patterns. Figure 2.1 displays
some examples. Tumors can grow into round (Figure 2.1a) or irregular shapes (Figure 2.1b). The
butterfly pattern (Figure 2.1c) typically occurs when the tumor grows on both hemispheres. It
is possible that small groups of glioma infiltrate distant regions of the brain and start another
growth site (Figure 2.1d). Cystic tumors (Figure 2.1e) grow compact, whereas a diffuse infiltration
leads to the gliomatosis cerebri growth pattern (Figure 2.1f).
Tumor growth has several stages. At first, the tumor forms a small compact nucleus [51].
When it reaches a critical size, the tumor center becomes necrotic due to lack of oxygen and
nutrients. It is hypothesized [23, 130] that this also marks the onset of diffuse infiltration. At later
stages, glioblastoma are characterized by a central necrotic region, a ring of so-called enhancing
tumor, which gives bright signal on contrast enhanced T1-MRI (see Section 2.3), and possibly an
edema [51]. To secure its oxygen supply the tumor forms new blood vessels, a process which
is termed angiogenesis. These permit the contrast agent to enter the brain due to an initially
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(a) Typical case (b) Anisotropic (c) Butterfly

(d) Multifocal (e) Cystic (f) Gliomatosis cerebri

Figure 2.1: Growth patterns of GBM as seen on MRI. Figures 2.1a to 2.1d are contrast enhanced
T1 images, Figure 2.1f is a T2 image. The white arrow (not in the original image) in Figure 2.1e
points to visible mass effect. Images are taken from Radiopaedia.org. For full credits, see the
Image Credits at the end of the document.

https://radiopaedia.org


2.1 Aspects of glioma growth 27

underdeveloped blood-brain barrier, hence the bright signal [56]. Larger tumors displace the
surrounding healthy tissue. The resulting deformation of the brain, which is for example visible
in Figure 2.1e, is called mass effect.

2.1.2 Microscopic processes

An exhaustive review of the microscopic processes involved in tumor formation would be outside
the scope and purpose of this thesis. We sketch a few selected aspects in broad strokes to put the
model in Chapter 3 in context. Most important is the fact that glioma cells migrate along a number
of invasion routes, for instance along blood vessels and white matter tracts [55]. The reason why
tumor cells are able to migrate may lie in their origin from mutated glial progenitor cells [120].
Glial progenitors differentiate into astrocytes, olygodendrocytes and ependymal cells. Each type
fulfills a supporting function for neurons, for instance, astrocytes provide nutrition and constitute
the blood-brain barrier. Gliomas are classified accordingly as astrocytoma, oligodendroglioma or
ependymoma [117]. To complicate matters, multiple cell types can be present in one glioma.
The p53 gene prevents mutations from DNA damage to spread [90]. If a cell’s DNA is damaged,
p53 protein is produced which will cause the cell to either repair the damage or initiate apoptosis.
If the p53 gene itself is damaged, this protection mechanism does not work and the mutant cell
can proliferate. This may be one factor in cancer development and it also implies that cancer
cells with a defect p53 gene are subject to further mutations. As a result, tumors are generally
heterogeneous and consist of cells with numerous phenotypes [125].
The ECM provides structural support to glia and neurons. It consists largely of fibrous proteins
such as collagen [117]. Cells can bind receptors on their surface—so-called integrins1—to the
fibronectin in ECM. Glioma cells migrate along the fibers by repeatedly attaching to ECM at the
front, detaching integrins at the back and shifting their body forward [53].
According to [54], cell motion can be roughly classified into several modes. Which mode is
preferred depends on the cell’s environment and neighboring cells, and the modes themselves
are not sharply separated. Amoeboid migration is an individual migration characterized by a
low adhesion to ECM and other cells that predominantly occurs in a loose and randomly oriented
environment. Mesenchymal motion is preferred in dense and oriented ECM [12]. If the fibers are
too dense or do not provide suitable attachment points, some cells may chemically ’cut’ the fibers,
thus remodeling the environment more in their favor [53]. This process is called proteolysis.
The mesenchymal mode is important for glioma migration inside white matter because there is
evidence [12] that the white matter is indeed packed tightly with pore diameters even smaller
than cell diameters. Collective migration of glioma cells along blood vessels [55] can be identified
with the collective strand migration mode [54]. Finally, epithelial migration is a collective motion
in form of sheets or clusters, when stable cell-cell adhesions are in place. Epithelial-mesenchymal
transition as well as mesenchymal-amoeboid transition have been observed in glioma cells [113].
Numerous chemical compounds produced and absorbed by the tumor also influence its develop-
ment. As all cells, glioma cells need oxygen and nutrients to survive and proliferate. If these
factors are absent, the cells die, which eventually leads to the development of a necrotic core.
To keep up their supply, glioma cells secret growth factors that stimulate the growth of blood
vessels. As a byproduct of their changed metabolism, which favors faster proliferation over

1We do not differentiate further between the various types of integrins.
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energy efficiency, tumor cells produce acid [89]. The acid itself inhibits proliferation and acts as a
chemorepellant, i.e., the tumor cells preferentially move away from acidic environments. Last
but not least, tumors compete with the immune system [15].

2.2 Mathematical models for tumor growth
2.2.1 The cell’s perspective

We focus onmodels for cell-ECM interactions and the resulting cellularmovement. But for the sake
of completeness, we point to Metzcar et al. [107] who review cell-based models for cancer growth
that feature many of the previously discussed effects, including angiogenesis, differentiation from
stem cells and epithelial-mesenchymal transition. Anderson [3] proposes a hybrid model—cells
are modeled as individuals, whereas chemicals are modeled as a continuum—for heterogeneous
tumor populations, taking proteolysis and oxygen concentrations into account.
One of the earliest to describe haptotaxis, movement stimulated by a fixed chemical signal, was
Carter [26] in 1967. He observed the movement of cells on coated glass andmodeled haptotaxis as
a result of surface tensions between the cell, the surface and the surroundingmedium. This simple
mechanical model corresponds to the amoeboid migration mode. Another mechanical model for
haptotaxis is proposed by Dickinson and Tranquilo [41]. In their model, cellular movement is the
result from forces generated by cell-surface attachments. They consider a fixed cell geometry and
divided it into a few regions. In each region, binding and unbinding of receptors is subject to a
stochastic process, with the transition probabilities determined by the concentration of adhesion
sites. In a gradient, different regions of the cell sense different concentrations of adhesion sites,
thus a net force is produced. The result is a Brownian motion with preference to migrate along
the gradient. Recently, Uatay [133] developed a model along the same lines that is specific to
interactions between glioma cells and ECM. The model considers also the internal structure of
cells, specifically individual stress fibers forming between adhesion sites which are responsible
for movement of the cell body after detachment of the rear. Stochasticity enters the model
in the binding and unbinding of cell-ECM connections; the motion between those events is a
deterministic result of the internal and external forces. This leads to a run-and-tumble motion,
a model that is compatible with the multi-scale description in the next chapter. Indeed, Uatay
also derives intermediate and macroscopic descriptions from the particle model. Two important
features of glioma migration are reproduced by this model, namely movement along gradients
of fiber concentration and contact guidance. Contact guidance is the preference of cells to move
parallel to directed fibers.

2.2.2 The doctor’s perspective

Harpold et al. [69] review the development of macroscopic tumor models. A simple model
[23] features a homogeneous reaction-diffusion equation for the cell density ρ0(t , x) with an
exponential growth term

∂tρ0 + ∇x · (D∇xρ0) � µρ0 ,

in which D is a scalar and constant diffusion coefficient. Assuming a point initial condition,
there is an analytic solution to this model. Although this model cannot predict the anisotropic
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growth patterns of glioblastoma, it is still useful to assess the influence of diffusion and growth
on survival time and the visible fraction of tumor cells. Essentially, the fraction D

µ determines the
detectable fraction of tumor, whereas the product Dµ determines the speed of the invasion front
[69]. High-grade tumors grow fast and diffuse, hence they are characterized by large D

µ and Dµ.
A first step towards the prediction of anisotropic growth patterns is the model by Swanson [130].
This model assigns different values to D(x) inside gray and white matter. The assumed five-fold
diffusion speed in white matter as opposed to gray matter is purely phenomenological.
The next logical step is to simulate migration along white matter tracts with an anisotropic
diffusion tensor D(x) : R3 7→ R3×3. Jbabdi [78] estimates tumor diffusion tensors from DTI
measurements of water diffusion (see Section 2.3). The construction of tumor diffusion tensors
uses the shape indices (2.3) to increase anisotropy in fiber directions. This procedure does not
take any microscopic phenomena into account.
For therapy, it is more important to resolve the invasion front than the complete tumor volume.
Therefore, themodel byMosayebi et al. [108] tracks only this front, using the Fisher approximation
for reaction-diffusion systems. Hogea et al. present an approach to include the mass effect in the
model [75]. They consider a reaction-diffusion model for the tumor growth coupled with the
description of brain matter as a linear elastic material.
A review of comparative studies between patient data and mathematical models can be found in
[108, 129]. Swan et al. [129] additionally provide comparisons between Swanson’s model [130]
and the anisotropic infiltration model by Painter et al. [112]. They compare model simulations to
clinical tumor segmentations of ten patients.

2.2.3 Multi-scale descriptions

The microscopic cell-based models are useful to observe the fundamental mechanisms of cell
migration in detail. But it is not feasible to model entire tumor populations that consists of 108

cells in this detail. The macroscopic models we reviewed are better suited for this task, however,
they are mostly based on observations on the gross tumor behavior. Multi-scale descriptions
consist of a hierarchy of models. Thus, the population dynamics follow from a microscopic
description of cell migration via a scaling limit.
A description based on kinetic PDEs is a helpful intermediate step to derive macroscopic models.
The quantities of interest are particle distribution functions p(t , x , v , y) that describe the expected
number of particles in a potentially high-dimensional state space. The KTAP [13, 14] is a general
framework to model systems of living entities directly on this meso-scale. In this framework,
functional subsystems serve as the basic building blocks. The following definition is taken
directly from [14]:

Definition 2.1 — Functional subsystem. A functional subsystem is a collection of active particles,
which have the ability to express the same activity, which is regarded as a scalar variable. The
whole system is constituted by several interacting functional subsystems.

In classical kinetic theory, particles are passive, that is, they only obey the laws of mechanics and
are fully described by the mechanical variables x and v. The active particles in KTAP express
an additional function. This is modeled by the scalar activity variable y. Bellomo et al. model
for example the competition between tumor cells and the immune system [13, 15] using four
functional subsystems, one for immune cells, one for endothelial cells and two for different
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species of tumor cells.
In the next chapter, we discuss themulti-scale model by Engwer et al. [44, 46] in detail. Themodel
only considers interactions between tumor cells and the ECM. We justify some assumptions
therein by observations from Uatay’s haptotaxis model [133]. The haptotaxis model also fits
into the KTAP framework. There is only one functional subsystem, namely the population of
tumor cells. The activity variable models the fraction of integrins that are bound to ECM. The
ECM takes the place of an outer system in the framework: its distribution is known and does not
evolve in time. In Section 4.3.5 we promote the fiber distribution to a functional subsystem and
include proteolysis in the model. In a recent work [35], the effects of necrosis, acid production
and proteolysis are also included into the model.

2.3 Diffusion tensor imaging
MRI is a standard tool for diagnosis of brain tumors and the subsequent planning of therapy. It
is a rich source of three-dimensional data that is readily available input for mathematical models.
In contrast to computed tomography (CT), MRI is especially useful to differentiate soft tissues as
found in the brain. The tissue to be probed is placed in a strong magnetic field, which aligns
the atomic nuclei therein. After excitation with a radiofrequency pulse, the nuclei are turned
out of the direction of the magnetic field but realign to the base state at a tissue dependent rate.
Measurements of the alignment shortly after the excitation produces a grayscale image with
voxels of 1 mm to 2 mm side length. Measurement procedures can be varied a lot to produce
images with different weighting, encoding different tissue properties2. Radiopaedia [56] is an
excellent online source of information on MRI for radiologists. With a combination of such
images at hand, the radiologist can assign a tissue type to each voxel, for example gray matter,
white matter, living tumor, or necrotic tumor.
DTI is an MRI sequence that measures the anisotropic diffusion of water in the tissue in form of a
symmetric positive-definite diffusion tensor DW ∈ R3×3. In a magnetic field modulated with a
gradient, the signal that water molecules generate on MRI depends on their movement speed in
gradient direction. Hence, to measure the diffusion tensor of water one needs at least six such
images [95]. Because tissue restricts the diffusion of water, the water diffusion tensor indirectly
provides directional information on the tissue.
The glioma model [44] that we discuss in Chapter 3 models the interaction of cells with the
ECM in white matter. The myelinated axon bundles in white matter let water molecules diffuse
relatively freely in fiber direction but restrict diffusion perpendicular to the fiber. Therefore, DTI
data can be used to estimate directional information on the fibers.
On the microscopic scale, tissue is not homogeneous. Water diffusion is different in the
intracellular compartment, i.e., inside the cells, and the extracellular compartment, i.e., the space
between the cells, which is occupied by ECM. DTI provides only one diffusion tensor per voxel,
which has to be interpreted as a weighted average over the compartments and tissue types.
Furthermore, a diffusion tensor cannot resolve two fibers that intersect in a voxel.

2Two relaxation times are involved. The time to realign the net magnetization, and the time the precession of
magnetization vectors loses phase coherence after excitation. Sequences attuned to these times produce the T1 and T2
weighted images, respectively.



2.3 Diffusion tensor imaging 31

2.3.1 Scalar diffusion quantities

From the full tensor information, several scalar quantities can be derived. These are useful to
visualize the tensor data and can also helpwith tumor diagnosis and assessment of its malignancy
grade [88, 128]. Let λ1 ≥ λ2 ≥ λ3 ≥ 0 denote the eigenvalues of the diffusion tensor DW . The
apparrent diffusion coefficient (ADC)

ADC � tr(DW ) �
∑

i�1,2,3
λi

measures the total diffusion independent of the direction. The anisotropy of a diffusion tensor
can be measured in several ways. A popular measure is the fractional anisotropy (FA)

FA � *
,

3
2

∑3
i�1(λi − λ̄)2

∑3
i�1 λ

2
i

+
-

1
2

, (2.1)

wherein λ̄ �
1
3 tr(DW ) is the average eigenvalue. FA is zero for isotropic diffusion λ1 � λ2 � λ3,

one for completely degenerate diffusion λ2 � λ3 � 0, and takes intermediate values in all other
situations. Under the assumption that diffusion in ECM fibers is degenerate and diffusion outside
of fibers is isotropic, the FA serves as a rough estimate of the volume fraction that is occupied
by fibers. In [45], a different estimate for the volume fraction is proposed. This is based on the
estimation of a characteristic diffusion length scale and is defined as

CL � 1 −
( tr(DW )

4λ1

) 3
2
. (2.2)

The characteristic length estimate (CL) ranges from 1 −
(

3
4

) 3
2 ≈ 0.35 for isotropic diffusion to

1 −
(

1
4

) 3
2
�

7
8 � 0.875 for degenerate diffusion. The FA and CL estimates are shown for the

Camino [30] DTI data set in Figure 2.3.
To visualize a diffusion tensor, the associated ellipsoid, i.e., the isosurface of v>DW

−1v � 1, is
helpful. If there is one dominating eigenvalue, the ellipsoid has an elongated form with the
axis in direction of the eigenvector corresponding to λ1. If two eigenvalues are of the same
order of magnitude, and one eigenvalue is much smaller, the ellipsoid has a flat shape. When all
eigenvalues are the same, the ellipsoid is a sphere. These situations are encoded in the linear,
planar, and spherical shape indices [78]

LSI � λ1 − λ2
tr(DW )

, PSI � 2(λ2 − λ3)
tr(DW )

, SSI � 3λ3
tr(DW )

. (2.3)

These indices are in the interval zero to one and sum to one. Examples of ellipsoids and
corresponding shape indices are shown in Figure 2.2.

2.3.2 Estimates for the fiber distribution

A model for the interactions of glioma cells with the ECM fibers requires directional information
about the fibers. In diffusion-MRI at least six gradient images are needed to estimate a diffusion
tensor, but typical data sets are sampled with 15 to 32 directions [68]. This is mainly done
to increase the signal-to-noise ratio for the diffusion tensors [95], not to increase the angular
resolution. However, the Q-Ball imaging method uses as much as 252 gradient directions to
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λ1 � 0.9, λ2 � 5 · 10−2, λ3 � 5 · 10−2,
ADC � 1, FA � 0.94, CL � 0.85, LSI � 0.85, PSI � 0, SSI � 0.15
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λ1 � 0.45, λ2 � 0.45, λ3 � 0.1,
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λ1 � 0.33, λ2 � 0.33, λ3 � 0.33,
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Figure 2.2: Ellipsoids and peanuts for various combinations of eigenvalues of DW . Eigenvectors
are aligned with the coordinate axes. Top row: One dominating eigenvalue; middle row: Two
dominating eigenvalues; Bottom row: Isotropic diffusion tensor.
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Figure 2.3: The indices CL (2.2) and FA (2.1) for a two-dimensional slice of the Camino [30] DTI
data set. The red arrows point along the main direction of DW .

reconstruct directional diffusion information with a higher angular resolution and is able to
resolve also fiber crossings inside a voxel [131]. But the values ADC and FA are used for tumor
diagnosis and segmentation [88, 128] such that diffusion tensor data is available for the model
without additional effort. This may not be the case with high resolution data. Hence, we consider
the water diffusion tensors as given and ignore additional information in the raw data sets. This
is in accordance with the models in [44, 46, 76, 112]. Any estimate of the fiber distribution based
on diffusion tensors alone is unable to represent two crossing fibers.
Nevertheless, the general model in Section 3.2 is ignorant of the original data. It needs only a
fiber distribution E(v) that fulfills some general assumptions, namely that it is strictly positive,
normalized and symmetric with respect to its first moment (cf. Definition 3.3). Thus, when high
resolution data becomes available, it could be used without too many changes in the model.
The simplest ansatz for the fiber distribution is the so-called peanut distribution

Epeanut(v) �
3

4π tr(DW )
v>DW v. (2.4)

To seewhere the name comes from, look at Figure 2.2b. The peanut distribution is computationally
inexpensive to evaluate and there are analytic formulas for its moments. Its main drawback is
that the resulting tumor diffusion (see Section 3.5.2) always has an isotropic component (see
Appendix A.3), even if DW is completely degenerate.
An arbitrary amount of anisotropy in the macroscopic model can be obtained with the bimodal
von Mises-Fisher distribution [46, 112]

EvMF(v) �
k

8π sinh(k)
(
exp(kv1 · v) + exp(−kv1 · v)

)
,

with v1 the eigenvector corresponding to the largest eigenvalue λ1 of DW and some function
k(FA) that determines the concentration of the two peaks. This ansatz introduces an additional



34 Chapter 2. Biological and medical aspects of glioma

model parameter and is more costly to evaluate, although there are analytical formulas for up to
second-order moments [74]. Another problem is the representation of a fiber crossing. When
there are two dominating eigenvalues of similar magnitude, the direction v1 of the peaks in the
von Mises-Fisher ansatz is rather arbitrary and subject to data noise. The peanut ansatz shown in
Figure 2.2d is not correct either but it is more robust with respect to noise.
Many other choices for E are possible. For instance, Hunt [76] uses the orientation distribution
function (ODF). Due to its simplicity we use the peanut ansatz for all computations in this thesis.
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In this chapter, we discuss the transition from a subcellular model of haptotaxis to a macroscopic
description of the tumor growth. There are four layers of description to consider. Firstly, we
need to model the molecular processes inside a single cell that determine its interaction with
the ECM. Because we are ultimately interested in the higher-level descriptions, the model on
this scale only mimics observed cell behavior qualitatively. Thus, the second level models
cells as particles with position x, velocity cv and activity y. Most interactions are randomly
occurring events that change a cell’s state (x , v , y). Thirdly, instead of tracking the random
path of each individual cell, we consider the expected behavior of particles. This so-called
meso-scale description is a PDE for the particle distribution function p(t , x , v , y): the expected
number of particles with a given state. Before we pass to a truly macroscopic equation, there
is an intermediate step. Under suitable assumptions, an equation for p (0) (t , x , v), the marginal
distribution w.r.t. activity y, is accurate enough. At this point, we take a step back and consider a
general class of kinetic equations, of which the glioma model is a special case. Finally, we derive
a macroscopic advection-diffusion-reaction model for the local particle density ρ0(t , x) from the
general kinetic equation.
The Engwer-Hillen-Knappitsch-Surulescu model (EHKS model) [44] serves as a foundation for
the following discussion. Some parts of this chapter have been presented in [36], although in less
detail.

3.1 A particle model with subcellular receptor dynamics
In this section we define a particle model for glioma cells that features proliferation, death
and movement due to haptic interactions with the ECM. Because the haptotactic movement is
facilitated through binding of integrins to ECM, the particle model includes aminimal description
of the cell’s receptor dynamics. Throughout the section we compare our modeling choices with
Uatay’s [133], who considers a much more detailed description of a cell’s internal mechanisms.

3.1.1 Subcellular receptor dynamics

Let us start with the binding dynamics. We assume that all integrins are indistinguishable and
attach to the same point in space, i.e., a cell can only probe a single point. The reaction scheme
between integrins and attachment sites is

free receptor + ECM attachment site
k+


k−

cell-ECM bond.

A free integrin and a free ECM attachment site form cell-ECM bonds with rate k+. The bonds
dissociate with rate k−. In Uatay’s model the rates k+ , k− are functions of the force at the
attachment point. Because we do not model the internal cell structure or individual integrin,
we have no information about the forces and therefore assume constant rates. We assume that
attachment sites are abundant, i.e., their number will not change in a reaction. The number of
attachment sites that is accessible to the cell is proportional to the volume fraction of ECM Q. Let
n f , nb be the number of free and bound receptors, respectively. The total number of receptors
NI � n f + nb is conserved. Therefore, we only need one equation

ṅb � k+Qn f − k−nb

� k+Q(NI − nb ) − k−nb ,
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for the bound receptors to describe the mass action kinetics. Therein the attachment rate k+ is not
a classical rate constant, because Q is not a number, but a fraction. Rather, k+ has to be interpreted
as the reaction constant multiplied with the maximum number of available attachment sites. The
mass action kinetics are only valid if NI is large enough. Estimates for the number of integrins
range from ten [133] to 105 [41, 44]. We refer to [41] for a model that respects the fact that NI is
finite. To make the model independent of the total number of receptors, we define the activity
y �

nb
NI

as the bound fraction of a cell’s receptors. The reaction kinetics in terms of activity are

G(y) :� ẏ � k+Q(1 − y) − k−y

� −(k+Q + k−)y + k+Q
(3.1)

Under the ODE (3.1), the activity y stays in the interval [0, 1], because G(0) � k+Q > 0 and
G(1) � −k− < 0.
The value

y∗ �
k+Q

k+Q + k−
(3.2)

is a steady state of the ODE. It is a stable equilibrium, because the second derivative ÿ��y∗ �

−(k+Q + k−) < 0 is strictly negative.

3.1.2 Model assumptions

In our model, each cell is described only by its position x, velocity cv, and activity y. Without
detailed information about a cell’s internal life we have to rely on stochastic processes to describe
the relevant phenomena. The particle model is primarily designed with the population-level
descriptions in mind. The major assumptions are:

Assumption 3.1

1. A cell moves in a straight line, until it changes its velocity instantly in a turning event.

2. Turning events happen randomly and are uncorrelated in time. Their frequency depends
on the internal state of a cell. The direction after reorientation is also randombut depends
on the direction before the event.

3. The cell speed c � ‖cv‖ is constant and equal for all cells.

4. Cells die randomly. Dead cells are removed from the population.

5. A cell proliferates at random and uncorrelated times. The original cell is removed from
the population and two new cells with uncorrelated velocity and activity appear at the
same position.

The first two assumptions reflect our lack of knowledge about internal cell structure and forces.
The resulting model resembles bacterial run-and-tumble motion, which has been modeled for
example by Stroock [127] or Erban and Othmer [49, 50] for E.coli. In contrast, Uatay models
the forces and moments a cell generates through adhesion to ECM. The cell’s path is a direct
consequence of these forces, which result from different receptors probing different locations.
Thus, his model is able to reproduce two experimentally observed phenomena for glioma cell



38 Chapter 3. A multi-scale haptotaxis model

migration in white matter: gradient detection [84] and contact guidance [105, 116]. Nevertheless,
we justify our assumptions. Firstly, the particle model is very simple, but we can include gradient
detection and contact guidance through a suitable choice of the turning process. Secondly, to
derive a macroscopic model, Uatay assumes that binding/unbinding happen on a much faster
time scale than cell movement. Therefore, our assumption of instant turning is asymptotically
valid. Thirdly, the resulting macroscopic models are structurally similar.
The third assumption is a simplification that reduces the dimension of the velocity space: Instead
of cv ∈ R3, we only have to consider v ∈ S2. Uatay observes approximately gamma-distributed
cell speeds. We could incorporate this observation into the turning kernel without introducing
many structural differences later on.
Cell death is a consequence of environmental conditions, such as lack of oxygen or acid
concentration. We model this with a death rate that depends on the cell density ρN in a
neighborhood. In reality, dead cells do not simply vanish but take up space and therfore inhibit
proliferation and also movement. To predict the necrotic tumor regions, we would have to model
dead cells as a second species. But we expect that this complication would not improve the
model’s prediction for the diffuse invasion margin, in which we are primarily interested. To
include the effect of crowding, we simply choose a proliferation rate that depends on ρN .
The fifth assumption is mainly justified by its simplicity. In reality, proliferation times are highly
correlated because cells follow a cycle and divide in regular intervals. Cell division is a slow
process and our assumption that it happens instantly is clearly wrong on the particle level. The
debated go-or-grow hypothesis states that glioma cells either proliferate or migrate. At the cost
of introducing more unknown parameters, we could model this hypothesis with two species,
one for the migrating cells and one for the dividing cells.

3.1.3 The particle model

Let the triplet ψ(t) � (x(t), v(t), y(t)) encode the state of a cell at time t: the position x ∈ R3,
direction v ∈ S2 and activity y ∈ R. At time t, the cell is in the state ψ0. Its evolution is then
governed by the following stochastic process:

1. Between reorientation times the cellmoves in a straight line and its activity evolves according
to (3.1):

∂t x � cv ,

∂t v � 0,

∂t y � G(y; Q(x)).

2. At certain times ti , the cell instantly changes its direction. These reorientation times ti are
Poisson distributed with rate λ(ψ), which possibly depends on the state ψ(t). Given the
state ψ(s) at some time s, the probability that no turning event happens in the time interval
[s , t) is

P(ti < [s , t] ∀i) � exp
(∫ t

s
−λ(ψ(s′))ds′

)
.

The state ψ+

i � lim
t↓ti

(ψ(t)) after a turning event is determined by the state before ψ−i �
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lim
t↑ti

(ψ(t)). Position and internal state remain unchanged:

x+

i � x−i ,

y+

i � y−i .

The direction v+

i after reorientation is chosen randomly according to the probability density
function K(v+

i ; v−i , x
−
i ). Hence, the probability that the new direction v+

i is in the set Ωv ,
given that it was v−i before, is

P(v+

i ∈ Ωv |v−i , x−i ) �
∫

Ωv

K(v′; v−i , x
−
i )dv′.

We often omit the last argument from the turning kernel and write K(v′, v) to simplify the
notation.

3. The cell dies at a random time tdeath, which is drawn from a Poisson distribution. The death
rate µ−(ρN ) depends on the density of cells in a neighborhood of the cell. With probability

P(tdeath < [s , t)) � exp
(∫ t

s
−µ−(ρN (s′, x(s′)))ds′

)
,

the cell does not die in the interval [s , t). When the cell dies, it is removed from the
population.

4. Similarly, proliferation events are Poisson distributed with the rate µ+:

P(tprol < [s , t)) � exp
(∫ t

s
−µ+(ρN (s′, x(s′)))ds′

)
.

In a proliferation event, the original cell is removed and replaced with two new cells at the
same position. The velocity and activity of both new cells follow the probability laws

P(v+ ∈ Ωv |v−) �
∫

Ωv

χv (v′; v−)dv′,

P(y+ ∈ Ωy |y−) �
∫

Ωy

χy (y′; y−)dy′.

Contact guidance enters our model via the turning kernel. We assume that a fiber orientation
distribution E(v; x) is given, for example by the estimates from Section 2.3. In its original
interpretation [44] E encodes the fiber orientation statistically. To model contact guidance, the
cell’s preference to change its direction to v should correlate with the fiber orientation. The
simplest way to achieve this is to set

K(v; v′, x) � E(v; x). (3.3)

The distribution function E provides coarse information for the fibers that fits well with the
stochastic nature of our microscopic model and also with the available DTI data. But we are
careful with its interpretation on the micro-scale. In light of (3.3), we should interpret E as the
cell’s preference to turn towards some direction, given an unknown fiber geometry. Nevertheless,
we refer to E as the fiber distribution, to be consistent with the literature.
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Dickinson and Tranquilo [41] describe several mechanisms that let a cell move up a stimulus
gradient. When the cell’s turning rate depends on the stimulus magnitude, they speak of
klinokinesis. In our model, gradient detection is the result of indirect klinokinesis: The turning
rate λ(y) depends on the receptor activity, which depends on the volume fraction of fibers Q(x)
in turn. We choose the same turning rate

λ(y) � λ0 − λ1 y∗ + λ1 y , (3.4)

as in a model for E. Coli bacteria by Erban and Othmer [49, 50]. The mechanism to detect a
gradient works as follows: When a cell’s receptor state is in equilibrium y∗, it turns with a base
turning rate λ0. Suppose a cell moved downwards a fiber concentration gradient. Coming from
a denser region, where y∗ is greater (see (3.2)), the cell has more bound receptors than needed for
the local equilibrium. According to equation (3.4), its turning rate is increased compared to the
base rate. Similarly, cells moving upwards a gradient will change direction less frequently.
Note that the turning rate correlates with the frequency of unbinding events due to equation (3.1).
This fits with Uatay’s model, wherein the cell moves and rotates only after unbinding events.
We do not model the proliferation in detail but rather consider a few simple options for the
proliferation kernels. Cells could have no preferred direction after proliferation, they could be
preferentially oriented in fiber direction or not change their current direction at all:

χv
iso(v , v′) �

1
��S2��

,

χv
eq(v , v′) � E(v),

χv
id(v , v′) � δv′ (v).

For the change of receptor activity we consider the kernels

χ
y
zero(y , y′) � δ0(y),

χ
y
eq(y , y′) � δy∗ (y),

χ
y
id(y , y′) � δy′ (y).

The first means that cells unbind all their receptors during growth, the second corresponds to the
case that activity is in local equilibrium and the third option means that there is no change in
receptor activity.

3.2 A meso-scale kinetic description
From the description of an individual cell in the last section follows a mesoscopic model for the
entire population. The quantity of interest is the so-called particle distribution p(t , x , v , y). It is
the density of the measure

µ(Ωψ) �
∫

Ωψ

p(t , ψ′)dψ′ �
∫

Ωx

∫

Ωv

∫

Ωy

p(t , x′, v′, y′)dy′dv′dx′

for the expected number of particles in the volume Ωx × Ωv × Ωy at time t. The derivation
of the kinetic equation is outside the scope of this work. We refer to [127] in the context of a
bacterial run-and-tumble model, and to [62] in the context of neutron transport. Note that in the
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KTAP framework [13, 14], the models are formulated directly on the meso-scale. The governing
equation for p is given by

∂t p + c∇x · (vp) + ∂y (Gp) � λ(y)Lp + µ(ρ)Sp. (3.5)

Its left-hand side describes the cell movement through physical and activity space. The cell-tissue
interactions are encoded in the turning operator

Lp �

∫

S2
K(v , v′; x)p(v′) − K(v′, v; x)p(v)dv′. (3.6)

Assumption 3.2 To factor the turning rate λ out of the collision operator in (3.5), it is crucial
that λ does not depend on v.

Proliferation and death are modeled by the source term

µ(ρ)Sp � −µ−(ρ)p(v) + µ+(ρ) *
,
−p(v , y) + 2

∫

S2

∫

Ωy

χy (y , y′)χv (v , v′)p(v′, y′)dy′dv′+
-

� −(µ−(ρ) + µ+(ρ))p(v , y) + 2µ+(ρ)
∫

S2

∫

Ωy

χy (y , y′)χv (v , v′)p(v′, y′)dy′dv′

wherein the net growth rate is

µ :� µ+ − µ−

and ρ �
∫
S2 pdv′ is the local particle density. If we assume that no changes in direction and state

occur during growth this simplifies to

µ(ρ)p(v , y),

i.e, S � I.
The following definition provides essential structure to the equation. The derivation of the
diffusion limit in Section 3.5.2 and the numerical methods in Chapter 4 and Chapter 5 heavily
depend on it.

Definition 3.3 — Turning kernel. A positive function K(v , v′) : S2 × S2 7→ R+ is a turning kernel,
if it is

• normalized, i.e., ∫

S2
K(v , v′)dv � 1, (3.7)

• bounded by positive constants from below and above

0 < Kmin < K(v , v′) < Kmax , (3.8)

• and L2-integrable ∫

S2

∫

S2
K2(v , v′)dv′dv < ∞. (3.9)

Further, there is a strictly positive function E : S2 7→ R+ that fulfills the detailed balance
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condition

K(v , v′)E(v′) � K(v′, v)E(v). (3.10)

This equilibrium function is normalized, i.e.,
∫

S2
E(v)dv � 1 (3.11)

and first-order symmetric, i.e.,
∫

S2
vE(v)dv � 0. (3.12)

Assumptions (3.7) – (3.9) are the same as in classical kinetic theory and identical to (1.2) – (1.4)
in Definition 1.2. Because the turning kernel is a probability distribution in its first argument,
its positivity and normalization (3.7) follow immediately. We need the bounds in (3.8) for the
diffusion limit in Section 3.5.2. They pose only minor restrictions on the model. If the velocity
space is compact, for example the unit sphere S2, integrability (3.9) follows from the bounds.
Assumption (3.10) is a generalization from classical kinetic theory. In the glioma model, the
equilibrium is the fiber distribution. The normalization (3.11) of the equilibrium is mostly for
convenience but it fits the interpretation of the fiber distribution. First-order symmetry (3.12) is
crucial for the existence of a diffusion limit. Considering that the fiber distribution comes from
DTI measurements, which are inherently symmetric, this assumption is not a real restriction.
The turning operatorL in equation (3.6) is a balance of gains and losses in p(v). Its first summand
counts the gains from particles changing their velocity from v′ to v during reorientation. This
leads us to the following definition:

Definition 3.4 — Gain operator. A turning kernel K fulfilling Definition 3.3, defines a gain
operatorK : L2

E (S2) 7→ L2
E (S2) via the integral

Kp �

∫

S2
K(v , v′)p(v′)dv′.

Due to normalization (3.7), the turning operator can be written as

Lp � (K − I)p.

In the following sections 3.3 and 3.5 we need the properties of the spectrum ofK collected in the
lemma:
Lemma 3.5 — Spectrum of gain operators. LetK be a gain operator with equilibrium E. Then

1. The equilibrium E is an eigenfunction ofK to the simple eigenvalue ν � 1.

2. The eigenvalue ν � 1 is the largest eigenvalue in absolute value.

3. E is the only positive eigenfunction and all other eigenfunctions F fulfill
∫
S2 F(v)dv � 0.

Proof. By the definition of the equilibrium (3.10) and normalization of the turning kernel (3.7)
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we have

KE �

∫

S2
K(v , v′)E(v′)dv′ �

∫

S2
K(v′, v)E(v)dv′ � E(v),

thus E is an eigenfunction ofK to eigenvalue ν � 1. Under assumption (3.8), the Krein-Rutmann
theorem [70, Chapter III, Theorem 10.1] states that there is a unique positive eigenfunction. This
eigenfunction belongs to a positive eigenvalue that is larger in absolute value than any other
eigenvalue. E is a positive eigenfunction, therefore its corresponding eigenvalue ν � 1 must be
the eigenvalue of the largest absolute value.
Integrating the characteristic equationKF � νF gives

∫

S2

∫

S2
K(v , v′)F(v′)dv′dv � ν

∫

S2
F(v)dv ,

∫

S2

∫

S2
K(v , v′)dvF(v′)dv′ � ν

∫

S2
F(v)dv ,

1
∫

S2
F(v)dv � ν

∫

S2
F(v)dv ,

which is equivalent to

ν � 1 ∨
∫

S2
F(v)dv � 0.

Thus, any eigenfunction other than E must integrate to zero. �

Remark 3.6 — More properties of the gain operator.

• Because of (3.9),K is a Hilbert-Schmidt operator and as such bounded and compact [2,
Theorem 3.12].

• In [111] it has been shown that K has a pure point spectrum, i.e., all values in the
spectrum are eigenvalues.

3.3 An activity-averaged kinetic model
The mass-action kinetics (3.1) drive the activity y towards its local equilibrium value y∗. But
two effects disturb this equilibrium. A cell moving in a gradient ∇xQ experiences a change in
y∗ and therefore its activity deviates from the local steady state. Also, the proliferation kernel
χy may disturb the steady state. When the receptor dynamics dominate, the deviation from
equilibrium is small and a reduced model for p (0) (t , x , v), the zeroth moment of p(t , x , v , y), is
accurate enough. We investigate under which conditions this is applicable for glioma migration.
We rewrite equation (3.5) in terms of the deviation from steady state

z :� y∗ − y.

The temporal evolution of z is governed by the ODE

ż � ẏ∗ − ẏ(z)

� ẏ∗ − G(y∗ − z).
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The steady state y∗(Q(x)) is a function of the volume fraction of fibers Q(x) and therefore a
function of x. Assuming that Q is constant in time, the temporal change in y∗, as observed by a
particle moving in a straight line x � x0 + cvt, is

ẏ∗ �
∂y∗

∂x
∂x
∂t

�
∂y∗

∂Q
c∇xQ · v.

In total, the particle’s activity evolves according to

ż �
∂y∗

∂Q
c∇xQ · v − (k+Q + k−)z

�: β · v − αz ,

with the definitions β �
∂y∗
∂Q c∇xQ and α � (k+Q + k−).

The kinetic equation in terms of p(t , x , v , z) is then given by:

∂t p + c∇x · (vp) + ∂z ((β · v − αz)p) � λ(z)Lp + µ(ρ)Sp. (3.13)

Applying the change of variables to the turning rate (3.4) leads to

λ(z) � λ0 − λ1z.

Let

p (k) (t , x , v) �
∫

Ωz

zk p(t , x , v , z)dz

denote the k-th moment of p with respect to activity. The boundaries z � y∗ − 1 and z � y∗

correspond to the situation that all or no receptors are bound, respectively. Under zero Dirichlet
boundary conditions p(y∗ − 1) � p(y∗) � 0, the moments of equation (3.13) are

∂t p (k)
+ c∇x · (vp (k)) − k

(
β · vp (k−1) − αp (k)

)
� λ0Lp (k) − λ1Lp (k+1)

+ µ(ρ)
∫

Ωz

S(p)zkdz.

(3.14)

3.3.1 The decay of moments

It is sensible to truncate the infinite moment system (3.14) after a finite k if the moments p (k)

decay fast enough. To obtain an estimate of the moment decay, we consider a simplified situation.
We assume zero net growth, i.e., µ+ � µ− and ignore velocity changes due to turning and
proliferation. The stationary, spatially homogeneous version of equation (3.14) is

−k
(
β · vp (k−1) − αp (k)

)
� −2µ+p (k)

+ 2µ+

∫

Ωz

∫

Ωz

χz (z , z′)p(z′)zkdz′dz

When there is no change in receptor state during proliferation, we have χz
id(z , z′) � δz′ (z) and

the moment system is simply

−k
(
β · vp (k−1) − αp (k)

)
� 0.

The k-th moment is therefore recursively determined by the k − 1-th moment

p (k)
�
β · v
α

p (k−1)

�

(
β · v
α

) k

p (0) .
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The rate
β · v
α
≤ k+k−

(k+Q + k−)3 c‖∇xQ‖

of this exponential decay depends on the specific parameters. Rough estimates for the parameters
in the situation of glioma migration are summarized in Table 5.4. The binding and unbinding
rates are of the order 0.1 s−1. Cell migration speed is approximately 10−4 mm s−1 and the gradient
magnitude as estimated from DTI data is of order 0.1 mm−1. As a result, the decay rate is of
order 10−4 and the moments decay rapidly.
Under the assumption that cell activity is in local equilibrium after proliferation, which corre-
sponds to the growth kernel χz

eq � δ0(z) 1 , the moments

p (k)
�

β · v
α + 2 µ

+

k

p (k−1)

decay even faster.
When the cells unbind all their receptors during proliferation, the growth kernel is χz

zero(z , z′) �
δy∗ (z) 2. Even if we ignore the perturbation due to the fiber gradient, the decay

αkp (k)
� −2µ+p (k)

+ 2µ+p (0) y∗k ,

p (k)
� p (0) 2µ+

αk + 2µ+
y∗k

is not fast enough to justify cutting off the expansion after the first moment. We still have an
exponential decay of moments, but y∗ is not much less than one.

3.3.2 A zeroth-order approximation

With the right choice of parameters and growth kernel, the moments decay fast enough to justify
a zeroth-order approximation of the system (3.14). Because of the estimates from the previous
section, we discard the kernel χz

zero. With the growth kernel χz
id � δz′ (z), and

Pp �

∫

S2
χv (v , v′)p(v′)dv′,

the equation for the zeroth moment is

∂t p (0)
+ c∇x · (vp (0)) � λ0Lp (0) − λ1Lp (1) − (µ+

+ µ−)p (0)
+ 2µ+Pp (0) . (3.15)

To close this equation, we need to approximate the first moment p (1) from the zeroth moment.
Letting p (1) � 0 is not an option, because then no information on the activity dynamics would
remain in the model. Instead, we assume that the first moment equilibrates so rapidly that we
can neglect the time derivative and the transport term in the first-order equation. Of course, this
equation in turn depends on the second moment p (2) . Due to the fast decay of moments, we
assume that second-order or higher moments are zero. These considerations lead to a stationary
and local approximation of p (1)

−β · vp (0)
+ αp (1)

� λ0Lp (1) − (µ+
+ µ−)p (1)

+ 2µ+Pp (1)

1Because of z � y∗ − y, the value z � 0 marks the local equilibrium of receptor dynamics.
2The value z � y∗ corresponds to y � 0.
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in terms of p (0) . After reordering the terms, we have

[(
α + λ0 + (µ+

+ µ−)
)

I − (λ0K + 2µ+P)
]

p (1)
� β · vp (0) . (3.16)

If the operator on the left-hand side is invertible, we can solve this relation for p (1) and
close equation (3.15). The next lemma guarantees invertibility for two special choices of P.

Lemma 3.7 — Invertibility of the left-hand side. Given positive constants α, λ0 , µ+ , µ−, fulfilling

α > (µ+ − µ−),

and a gain operatorK according to Definition 3.4, the operator

[(
α + λ0 + (µ+

+ µ−)
)

I − (λ0K + 2µ+P)
]

is invertible in either one of these special situations:

1. P is a gain operator.

2. χv � χv
id � δv′ (v), thus P � I.

Proof.

1. P is a gain operator. Define the operator T � λ0K + 2µ+P. As in the proof of Lemma 3.5,
the integral of the characteristic equation for T yields

νT � λ0 + 2µ+ ∨
∫

S2
F(v)dv � 0

as a necessary condition for eigenvalues/eigenfunctions. As a consequence of the Krein-
Rutmann theorem [70, Chapter III, Theorem 10.1], there is a positive eigenfunction ET
that belongs to the largest absolute eigenvalue. Because ET is positive it cannot fulfill∫
S2 ET (v)dv � 0 and therefore must belong to the eigenvalue νT ,1 � λ0 + 2µ+. Thus, νT ,1
is the largest eigenvalue.

BothK andP are gain operators, thereforeT is aHilbert-Schmidt operator and in particular
a compact operator. Then the Fredholm theorem [2, Theorem 9.11] applies. Let η > 0 and
consider the homogeneous equation

[
(νT ,1 + η)I − T ]

p � 0.

This eigenvalue equation cannot have a non-zero solution, because the spectral radius of T
is νT ,1. Therefore,

[
(νT ,1 + η)I − T ]

p � f

has a unique solution for all right-hand sides f , 0. A comparison of coefficients yields
η � α − (µ+ − µ−); thus the condition α > (µ+ − µ−).

2. P is the identity. The left-hand side is simplified to
[(
α + λ0 − (µ+ − µ−)

)
I − λ0K ]

. A
similar argument can be made with the spectral radius of λ0K .
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�

In the following we consider a special choice ofK for which we can solve (3.16) explicitly. With
(3.16) in mind, we solve

(I − aK )h(v) � r(v)

for h. Let K (v , v′) � E(v) be a simple relaxation kernel. The gain operator is in this case
Kp � E(v)

〈
p
〉
and the previous equation becomes

h(v) − a 〈h(v)〉 E(v) � r(v). (3.17)

Integration over the velocity space yields

〈h〉 � 1
1 − a

〈r〉 .

We substitute this into (3.17) to solve for h:

h � r +
a

1 − a
E 〈r〉 .

Moreover, the turning operator Lh applied to the solution of (3.17) is

Lh � Lr.

If either P � I or P � K , we can apply this solution formula to the first-order equation (3.16). In
the case P � I, (3.16) reduces to3

(
α + λ0 − µ) p (1) (v) − λ0E(v)

〈
p (1)

〉
� β · vp (0) .

A comparison with (3.17) yields

a �
λ0

α + λ0 − µ ,

r(v) �
1

α + λ0 − µ β · vp (0) ,

thus

Lp (1)
�

1
α + λ0 − µ β ·

(
E

〈
vp (0)

〉
− vp (0)

)
.

Remembering the definition β �
∂y∗
∂Q c∇xQ, the zeroth-order equation (3.15) becomes

∂t p (0)
+ c∇x · (vp (0)) � λ0

(
E

〈
p (0)

〉
− p (0)

)
− λH c∇xQ ·

(
E

〈
vp (0)

〉
− vp (0)

)
+ µp (0) ,

∂t p (0)
+ c∇x · (vp (0)) � λ0Lp (0) − λH c∇xQ · L

[
vp (0)

]
+ µp (0) ,

(3.18)

wherein

λH �
λ1

α + λ0 − µ
∂y∗

∂Q
. (3.19)

Note that L
(
vp (0)

)
is applied to each component of the vector vp (0) .

3Remember µ � µ+ − µ−.
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In the case P � K , (3.16) becomes

(
α + λ0 + (µ+

+ µ−)
)

p (1) − (λ0 + 2µ+)E
〈
p (1)

〉
� β · vp (0) ,

and as a consequence we have

r �
1

α + λ0 + (µ+ + µ−)
β · vp (0) .

The resulting zeroth-order equation reads

∂t p (0)
+ c∇x · (vp (0)) � λ0Lp (0) − λ̃H c∇xQ · L

[
vp (0)

]
− (µ+

+ µ−)p (0)
+ 2µ+E

〈
p (0)

〉
, (3.20)

with

λ̃H �
λ1

α + λ0 + (µ+ + µ−)
∂y∗

∂Q
.

3.4 The generalized haptotaxis equation
We take a step back and define a class of equations that generalizes the models from the previous
section. The general haptotaxis equation for the particle distribution f (t , x , v) has the form

∂t f + c∇x · (v f ) � λDLD f + λaLa f + µS f . (3.21)

The strictly positive turning rate λD (x) ≥ λmin > 0, the perturbation rate λa (x) and the net
growth rate µ(x , ρ) are functions of space. In the following, we define the interaction terms on
the right-hand side of (3.21).
With equation (3.6) and Definition 3.3 in mind, we give the definition:

Definition 3.8 — Turning operator. The turning operator L : L2
E (S2) → L2

E (S2) associated with a
turning kernel K according to Definition 3.3 is given by

L f �

∫

S2
K(v , v′) f (v′) − K(v′, v) f (v)dv′,

� (K − I) f .

The operator LD is such a turning operator with associated turning kernel KD (v , v′; x). We
allow the kernel to depend on position x, thus also the equilibrium E(x , v) may be a function of
position.
The other linear operator La should be interpreted as a perturbation to LD . It is defined via the
kernel integral

La �

∫

S2
ka (v , v′) f (v′) − ka (v′, v) f (v)dv′,

but it is not a turning operator, because ka is not a turning kernel. In particular, ka can be negative
and does not have an equilibrium.
To normalize the kernel, we demand

max
v′∈S2

{�����

∫

S2
ka (v , v′)dv

�����

}
� 1.
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This is necessary, because in contrast to a turning kernel,
∫
S2 ka (v , v′)dv can depend on v′.

To interpret the perturbed operator λDLD + λaLa as a generator of a microscopic jump process
it is necessary that the perturbed kernel

0 < kmin ≤ λDKD (v , v′) + λa ka (v , v′) ≤ kmax < ∞ (3.22)

is strictly positive and bounded from above.
The growth operator is normalized via

∫

S2
S f dv �

∫

S2
f dv � ρ.

3.4.1 Properties of turning operators

The following properties are essential for the derivation of themacroscopic limit in Section 3.5. Per
construction, an operator defined via the kernel integral L �

∫
S2 k(v , v′) f (v′) − k(v′, v) f (v)dv′

conserves mass:
∫

S2
L f dv � 0.

This holds for LD and La .
Turning operators defined as in Definition 3.8, have many more properties:

Lemma 3.9 — Spectrum of turning operators. Let L be a turning operator according to Defini-
tion 3.8, with associated turning kernel K and equilibrium E. Then

1. The equilibrium is an eigenfunction of L to the eigenvalue νL � 0.

2. The one-dimensional nullspace of L is spanned by the equilibrium: N (L) � span {E}.

3. All other eigenvalues fulfill |νL + 1| ≤ 1, and in particular Re(νL ) ≤ 0.

Proof.

1. Due to

L f � (K − I) f � (νK − 1) f � νL f (3.23)

the spectrum of L is just the spectrum of the associated gain operator shifted by minus
one. Lemma 3.5 states that E is an eigenfunction of K to eigenvalue νK � 1, thus it is an
eigenfunction of L to eigenvalue νL � 0.

2. The equilibrium is in the nullspace N (L) because of the equilibrium property (3.10):
K(v , v′)E(v′) � K(v′, v)E(v). The first claim also follows directly from this. From
Lemma 3.5 we know that νL is a simple eigenvalue. It follows that E is the only function in
the nullspace.

3. This follows from application of (3.23) to |νK | ≤ 1.

�
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Definition 3.10 — Weighted scalar product / weighted L2-space. The weighted scalar product

(
f (v), g(v)

)
E :�

∫

S2
f (v)g(v)

1
E(v)

dv

for f , g : S2 7→ R induces the weighted L2-space L2
E (S2).

Lemma 3.11 — Properties of turning operators. With respect to the weighted scalar product and
corresponding space L2

E (S2) from Definition 3.10, the turning operator L has these properties:

1. L is self-adjoint.

2. The range of L is the orthogonal complement of its nullspace:
R(L) � N⊥(L) �

{
g ��

(
g , E

)
E �

∫
S2 g(v)dv � 0

}
.

3. L : R 7→ R restricted to R is bĳective: There exists a unique solution f ∈ R to L f � g, if
and only if g ∈ R.

Proof.

1. We show self-adjointness of the gain operatorK . Then L � K − I is also self-adjoint. We
have

(K f , g
)

E �

∫

S2

∫

S2
K(v , v′) f (v′)dv′

g(v)
E(v)

dv ,

�

∫

S2

∫

S2
f (v′)g(v)

K(v , v′)
E(v)

dv′dv ,

�

∫

S2

∫

S2
f (v′)g(v)

K(v′, v)
E(v′)

dv′dv ,

�

∫

S2

∫

S2
f (v)g(v′)

K(v , v′)
E(v)

dvdv′,

�

∫

S2

∫

S2
K(v , v′)g(v′)dv′

f (v)
E(v)

dv ,

�
(

f ,K g
)

E ,

wherein we expand Definition 3.4 and Definition 3.10, move all terms into the inner integral,
apply the detailed balance property (3.10), swap the names of v and v′, and factor out the
v-dependent terms.

2. The gain operatorK is compact (see Remark 3.6). Thus, the Riesz-Schauder theorem for
compact operators [2, Theorem 9.9] applies, which gives us S2 � N (L) ⊕ R(L). Therefore,
R(L) � N⊥(L) �

{
g ��

(
g , E

)
E � 0

}
.

3. The Fredholm theorem [2, Theorem 10.8] gives us necessary and sufficient conditions
that a unique solution of L f � g exists. For any solution h to the adjoint homogeneous
equation (K̄ − I)h � 0, the right-hand side g must fulfill

(
g , h̄

)
E
� 0. K is self-adjoint

and therefore h ∈ N (L) � span {E}. Thus the condition on the right-hand side is(
g , E

)
E �

∫
S2 g(v)dv � 0, i.e., g ∈ N⊥(L) � R(L).

�
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3.4.2 The glioma model in this setting

We cast the models (3.18) and (3.20) into the general form (3.21). Recall the model (3.18):

∂t f + c∇x · (v f ) � λ0
(
E

〈
f
〉 − f

)
+ λH c‖∇xQ‖E∇xQ · (v f − E

〈
v f

〉)
+ µ f , (3.24)

with the gradient direction E∇xQ �
∇x Q
‖∇x Q‖ . A comparison with (3.21) yields the coefficients

λD � λ0 ,

λa � cλH ‖∇xQ‖ ,
(3.25)

and the kernels
KD (v , v′) � E(v),

ka (v , v′) � −E∇xQ · v′E(v).
(3.26)

We compute the inverse of LD in Lemma 3.11 explicitly for the right-hand side g with
〈

g
〉
� 0.

Because of

LD (−g) � E
〈−g

〉 − (−g) � g ,

the inverse operator is

L−1
D (g) � −g. (3.27)

3.4.3 Stroock’s E.Coli model

We revisit Stroock’s model [127] for the movement of E. Coli bacteria from the introductory
Section 1.1. In his article, he considered a turning rate λ � λ(x , v) that depends on space and
direction. This violates Assumption 3.2 for the kinetic equation (3.5). If the turning rate depends
on the current orientation of the bacterium, we cannot factor it out of the balance between gains
and losses. All bacteria that turn from v towards any other direction v′ contribute to the loss∫
S2 λ(v)K(v′, v) f (v)dv′ for v. Similarly, the gain for v is caused by the bacteria turning from
any direction v′ towards v:

∫
S2 λ(v′)K(v , v′) f (v′)dv′. A bacterium with orientation v′ has the

turning rate λ(v′). We write the balance as

L̃ f (v) �
∫

S2
K̃(v , v′) f (v′) − K̃(v′, v) f (v)dv′

with the (not normalized) kernel K̃(v , v′) � λ(v′)K(v , v′).

Remark 3.12 — Correction. Stroock erroneously used the balance

λ(v)
∫

S2
K(v , v′) f (v′) − K(v′, v) f (v)dv′.

in the the governing PDE. In contradiction with the underlying particle model, this term does
not preserve mass.

With some additional structure, Stroock’s model is equivalent to the glioma model from the
previous Section 3.4.2. Assume that some external stimulus Q(x) is given. The bacterium can
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detect the magnitude of that stimulus, and the rate of change dQ
dt � c∇xQ · v as it moves. It

adjusts its turning rate according to both pieces of information:

λ(x , v) � λ0αx (Q) − βv c∇xQ · v.

The activation function αx and parameter βv encode the sensitivity of the turning rate to stimulus
magnitude and rate of change, respectively.
This leads to the PDE

∂t f + c∇x · (v f ) � λ0αx (Q)LD f − βv c‖∇xQ‖La f ,

with

LD f �

∫

S2
K(v , v′) f (v′) − K(v′, v) f (v)dv′,

La f �

∫

S2

E∇xQ · v′K(v , v′) f (v′) −E∇xQ · vK(v′, v) f (v)dv′.

For the kernel K(v , v′) � E(v), this is identical to the glioma model.

3.5 Macroscopic population dynamics
In this section, we derive macroscopic models for the particle density ρ0(t , x) from the haptotaxis
equation (3.21). A parabolic scaling of (3.21) leads to an advection-diffusion-reaction equation in
the limit. Here we repeat the calculation of this diffusion limit, which has been done in [36]. The
same limit is obtained directly from the model (3.5) for p(t , x , v , y) in [44]. We refer also to [24,
50, 73, 111] for the diffusion limit in related models. Additionally, we introduce a hydrodynamic
scaling (see also [24, 73]) and derive a hyperbolic limit equation for the P1 approximation of the
glioma model.

3.5.1 The non-dimensional equation and its characteristic numbers

Towrite equation (3.21) in non-dimensional form on the reference domain Ω̂txv � [0, 1] × Ω̂x × S2,
we introduce non-dimensional variables t � Tt̂, x � Xx̂. The direction v is already a non-
dimensional quantity. We also set λD (x) � LD λ̂D (x̂), λa (x) � La λ̂a (x̂), and µ(x , ρ) � Mµ̂(x̂ , ρ̂)
with reference constants LD , La ,M chosen such that λ̂D (x̂), λ̂a (x̂), µ̂(x̂ , ρ̂) are comparable to one.
The non-dimensional form of (3.21) reads

∂t̂ f̂ +
Tc
X
∇x̂ · (v f̂ ) � TLD λ̂DLD f̂ + TLa λ̂aLa f̂ + TMµ̂S f̂ . (3.28)

We recognize the Strouhal number St �
X
Tc and the Knudsen numbers KnD �

1
TLD

,Kna �

1
TLa

,KnP �
1

TM for turning, perturbation, and proliferation and write (3.28) as

∂t̂ f̂ +
1
St∇x̂ · (v f̂ ) �

1
KnD

λ̂DLD f̂ +
1

Kna
λ̂aLa f̂ +

1
KnP

µ̂S f̂ . (3.29)

The characteristic numbers in (3.29) relate certain characteristic times of the model to the global
reference time T. The Strouhal number St is the ratio of the time that one particle needs to cross
the domain to the reference time and the Knudsen number KnD compares the expected time
between reorientations to the reference time.
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When the parameter functions λD (x), λa (x) assume a wide range of values throughout the
domain, the global Knudsen numbers will fail to characterize the situation locally. Therefore, we
also define local Knudsen numbers that include the space-dependent non-dimensional parameter
functions λ̂D (x̂), λ̂a (x̂), µ̂(x̂ , ρ̂). For example, the local Knudsen number for LD is

KnD �
1

TλD (x)
�

1
TLD λ̂D (x̂)

.

Equation (3.28) can be rewritten with different sets of characteristic numbers. In the following,
we present two such choices: Parabolic and hyperbolic scaling.

3.5.2 A parabolic scaling and the diffusion limit
Parabolic scaling

The parabolic scaling number

ε �
KnD

St �
c

XLD
,

is the ratio of the expected time between turning events and the time a particle needs to cross the
domain. With the characteristic numbers

δ �
KnD

St2 �
c2T

LDX2 , ν �
KnD

Kna St �
LaTc
LDX

, θ �
1

KnP
� TM, (3.30)

we rewrite (3.28) in the form

∂t̂ f̂ +
δ
ε
∇x̂ · (v f̂ ) �

δ

ε2 λ̂DLD f̂ +
ν
ε
λ̂aLa f̂ + θµ̂S f̂ . (3.31)

This so-called parabolic scaling is motivated by the limit of (3.31), when ε tends to zero and the
other numbers δ, ν, θ are fixed. The limit is given by the diffusion-advection-reaction equation

∂t̂ ρ̂0 − ∇x̂ ·
(
δ

1
λ̂D

(
D̂∇x̂ ρ̂0 + âD ρ̂0

)
− ν λ̂a

λ̂D
âρ̂0

)
� θµ̂ρ̂0 , (3.32)

wherein D̂ ∈ R3×3 is the non-dimensional diffusion tensor and â , âD ∈ R3 are non-dimensional
drift vectors. In physical coordinates, with physical diffusion D � D0D̂ and drift a � a0 â, the
diffusion equation is

∂tρ0 − ∇x ·
(

X2δ
TD0

1
λ̂D

(
D∇xρ0 + aDρ0

) − Xν
Ta0

λ̂a

λ̂D
aρ0

)
�

θ
MT

µρ0.

Thus,

δ �
TD0
X2

is the ratio of the global reference time T to a characteristic diffusion time X2

D0
. Furthermore,

ν �
a0T
X

is the ratio of the global timescale T to the timescale X
a0

for advection. Finally,

θ � MT

relates the global timescale to the timescale of proliferation. There are other possible variants
of characteristic numbers that could be used to define a parabolic scaling. However, with the
current definition, we get the same interpretation of ε as in [79].
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Diffusion Limit

We derive the diffusion limit (3.32) formally via the Hilbert expansion

f̂ ε � f̂ 0
+ ε f̂ 1

+ ε2 f̂ 2
+ . . . .

We insert f̂ ε into (3.31), multiply the equation with ε2 and sort by powers of ε. To zeroth order
this yields

LD f̂ 0
� 0.

Remembering the nullspaceN (LD ) � span {E} from Lemma 3.9, we write

f̂ 0
� ρ̂0E, (3.33)

with ρ̂0 �

〈
f̂ 0

〉
. The terms of order ε1 are

δ∇x̂ · (v f̂ 0) � δλ̂DLD f̂ 1
+ νλ̂aLa f̂ 0. (3.34)

Due to first-order symmetry 〈Ev〉 � 0 of the equilibrium (see Definition 3.3), the term v f̂ 0 is in
the range R(LD ). Because the perturbation operator conserves mass, La f̂ 0 is also in the range.
Hence, Lemma 3.11 guarantees that (3.34) has a unique solution for f̂ 1:

f̂ 1
�

1
λ̂D
L−1

D

(
∇x̂ · (vEρ̂0) − ν

δ
λ̂aLa (Eρ̂0)

)
. (3.35)

Finally, to the order of ε2 we have

∂t̂ f̂ 0
+ δ∇x̂ · (v f̂ 1) � δλ̂DLD f̂ 2

+ νλ̂aLa f̂ 1
+ θµ̂S f̂ 0.

Using Lemma 3.11 again, we see that the second-order term f̂ 2 is defined uniquely if and only
if the projection of this equation onto the nullspaceN (LD ) vanishes. Applying the projection,
which is just integration over S2, and inserting (3.33), (3.35) gives

∂t̂ ρ̂0 + δ∇x̂ ·
〈

v
1
λ̂D
L−1

D

(
∇x̂ · (vEρ̂0) − ν

δ
λ̂aLa (Eρ̂0)

)〉
� θµ̂ρ̂0 ,

∂t̂ ρ̂0 + ∇x̂ ·
(
δ

λ̂D

(〈
vL−1

D (v>E)
〉
· ∇x̂ ρ̂0 +

〈
vL−1

D (v · ∇x̂E)
〉
ρ̂0

)
− ν λ̂a

λ̂D

〈
vL−1

D La (E)
〉
ρ̂0

)
� θµ̂ρ̂0.

We write this as

∂t̂ ρ̂0 − ∇x̂ ·
(
δ

1
λ̂D

(
D̂∇x̂ ρ̂0 + âD ρ̂0

)
− ν λ̂a

λ̂D
âρ̂0

)
� θµ̂ρ̂0 ,

with the diffusion tensor

D̂ � −
〈
vL−1

D (v>E)
〉
, (3.36)

and drift vectors

âD � −
〈
vL−1

D (v · ∇x̂E)
〉

(3.37)

â � −
〈
vL−1

D LaE
〉
. (3.38)
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The term L−1
D (v>E) is to be understood as component wise application of the inverse.

When the inverse L−1
D does not depend on space, we can swap it with the gradient in the

expression (3.37) for âD and get

âD � ∇x̂ ·
〈
vL−1

D (v>E)
〉
� ∇x̂ · D̂ ,

which leads to the simplified form

∂t̂ ρ̂0 − ∇x̂ ·
(
δ

1
λ̂D
∇x̂ · (D̂ρ̂0) − ν λ̂a

λ̂D
âρ̂0

)
� θµ̂ρ̂0.

Remark 3.13 — Glioma model. For the glioma model in Section 3.4.2, the inverse of LD is given
by (3.27). Hence, explicit formulas for the diffusion tensor and drift vector are

D̂ �

〈
vv>E(v)

〉
,

âD � ∇x̂ · D̂.

When E is the peanut distribution from (2.4), the diffusion tensor is

DT �
1
5

(
I3 +

DW + DW
>

tr(DW )

)
. (3.39)

For details of this computation, see equation (A.1) in Section A.3. Using first-order symmetry
(3.12) of E , we also have

LaE � E∇xQ · (vE − E 〈vE〉)
� E∇xQ · vE,

thus the drift vector â is given by

â � 〈vLaE〉 ,
� E∇xQ ·

〈
vv>E

〉
,

� E∇xQ · D̂.
(3.40)

3.5.3 A hyperbolic scaling and the hyperbolic limit

We keep the definitions ε �
c

XLD
, θ � TM and define two new characteristic numbers:

д �
1
St �

Tc
X
, н �

KnD

Kna St �
La

LD

Tc
X
.

In terms of ε, д, н, θ, equation (3.29) reads

∂t̂ f̂ + д∇x̂ · (v f̂ ) �
д
ε
λ̂DLD f̂ +

н
ε
λ̂aLa f̂ + θµ̂S f̂ . (3.41)

We derive the limit as ε tends to zero only for the P1-approximation to the glioma model from
Section 3.4.2. This model is essentially the p-system treated by Jin and Levermore [79] and we
follow their example closely.
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To define the P1-approximation for equation (3.24) we preempt results from Chapter 4. In essence,
we make the ansatz

f (t , x , v) � ρ(t , x)E(x , v) + g(t , x , v),

and assume that all second-order or higher moments of g are zero, i.e.
〈
vv>g

〉
� 0. Taking

zeroth and first moments of (3.24) yields the system

∂tρ + c∇x · q � µρ,

∂t q + c∇x · (D̂ρ) � −λD q + λaE∇xQ · (D̂ρ) + µq

for the density ρ �
〈

f
〉
and flux q �

〈
v f

〉
�

〈
v g

〉
. The pressure tensor is given by D̂ �

〈
vv>E

〉

and the fiber gradient direction is E∇xQ �
∇x Q
‖∇x Q‖ . We apply the hyperbolic scaling from (3.41) and

get the non-dimensional system

∂t̂ ρ̂ + д∇x̂ · q̂ � θµ̂ρ̂,

∂t̂ q̂ + д∇x̂ · (D̂ρ̂) � −д
ε
λ̂D q̂ +

н
ε
λ̂aE∇xQ · D̂ρ̂ + θµ̂q̂.

(3.42)

We make a Hilbert expansion in ε for the flux q̂:

q̂ε � q̂0
+ εq̂1

+ . . . ,

insert this into the system, multiply everything by ε and group by powers of ε. The terms of
order ε0 are

q̂0
�

н
д
λ̂a

λ̂D

E∇xQ · D̂ρ̂ �: н
д

âρ̂.

To order ε1 we have

∂t̂ ρ̂
0
+ д∇x̂ · q̂0

� θµ̂ρ̂0 ,

∂t̂ q̂0
+ д∇x̂ · (D̂ρ̂0) � −дλ̂D q̂1

+ θµ̂q̂0.

We insert the definition of q̂0 and use the first equation to eliminate ∂t̂ ρ̂
0 in the second equation.

Then, we solve the second equation for q̂1:

q̂1
�

н2

д2λ̂D
â∇x̂ · (âρ̂0) − 1

λ̂D
∇x̂ · (D̂ρ̂0).

Finally, the ρ̂0-equation including order ε terms is

∂t̂ ρ̂
0
+ д∇x̂ · q̂0

� −εд∇x̂ · q̂1
+ θµ̂ρ̂0 ,

∂t̂ ρ̂
0
+ н∇x̂ · (âρ̂0) � −ε∇x̂ ·

[
н2

дλ̂D
â∇x̂ · (âρ̂0) − д

λ̂D
∇x̂ · (D̂ρ̂0)

]
+ θµ̂ρ̂0. (3.43)

This is a drift-dominated equation. Consider the equation in physical variables:

∂tρ + ∇x · (aρ) � −ε∇x ·
[

b
λ̂D

a∇x · (aρ) − 1
λ̂D
∇x · (Dρ)

]
+ µρ.



3.5 Macroscopic population dynamics 57

The time b matches the units of the terms in brackets. We compare the non-dimensional equation

∂t̂ ρ̂
0
+

Ta0
X
∇x̂ · (âρ̂0) � −ε∇x̂ ·



Ta2
0b

X2
1
λ̂D

â∇x̂ · (âρ̂0) − TD0
X2

1
λ̂D
∇x̂ · (D̂ρ̂0)


+ TMµ̂ρ̂0 ,

with (3.43), and obtain the relations

н �
Ta0
X
, д �

TD0
X2 , д �

T
b

between mesoscopic characteristic numbers д, н and macroscopic characteristic numbers D0 , a0.
The coefficient b �

X2

D0
follows directly from the previous relations. The characteristic number н

is the ratio of the global time scale to the advection time scale and д is the ratio of the diffusion
time scale to the global time-scale.

Remark 3.14 We do not have enough structure for La to derive a hyperbolic limit in the
general case. We would need an equilibrium Ẽ to the perturbed turning operator that fulfills
λDLDẼ + λaLaẼ � 0 and also an entropy dissipation law. Even for the glioma-model it is
not clear if such an equilibrium exists. We could compute the limit in the special case of the
P1-glioma model, because we could find an equilibrium distribution (ρ0 , q0) � (ρ0 , aρ0) for
the reaction terms on the right-hand side of the equation.

3.5.4 The transition between parabolic and hyperbolic scalings

Let д �
1
ε in the hyperbolic scaling (3.41). This is identical to the parabolic scaling (3.31) with

δ � 1 and ν � н. Vice versa, the parabolic scaling (3.31) with δ � ε yields the hyperbolic scaling
with н � ν. It is thus possible to blend between both regimes. Define the blending parameter
Ξ ∈ [0, 1] and let

δ � εΞ ,

д � εΞ−1.

The value Ξ � 0 corresponds to parabolic scaling and Ξ � 1 to hyperbolic scaling. In terms of
this blending parameter, the scaled equation reads

∂t̂ f̂ + ε(Ξ−1)∇x̂ · (v f̂ ) � ε(Ξ−2) λ̂DLD f̂ + νε(−1) λ̂aLa f̂ + θµ̂S f̂ .

We observe that for Ξ � 1, the hyperbolic limit equation (3.43) is equal to the parabolic limit
equation (3.32).
The macroscopic limits are idealizations that become increasingly accurate for ε close to zero.
In any given physical situation, we cannot choose the parameters and characteristic numbers.
But the numbers ε and Ξ are useful for classification. The value of Ξ locates any given situation
on a spectrum between the hyperbolic and parabolic limit situations. Of course, the value of ε
measures the proximity to any of the two limits.

3.5.5 The sub-characteristic condition

The hyperbolic limit (3.43) only exists if the so-called sub-characteristic condition is satisfied.
This condition states that the wave speeds in the limit system cannot be faster than the wave
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speeds of the original system. It also ensures that the O (ε) correction term in (3.43) is dissipative.
For an arbitrary unit vector n, the characteristic speeds of the left-hand side of (3.42) are 0
and ±д

√
n>D̂n. Comparing equation (3.42) with the p-system in [27, 79], we see that the

sub-characteristic condition translates to

н
λ̂a

λ̂D

���E∇xQ · D̂n��� < д
√

n>D̂n ,

λa

λD

���E∇xQ · D̂n��� <
√

n>D̂n.

In the parabolic limit the sub-characteristic condition is always fulfilled, because with д � ε−1 the
right-hand side of the condition tends to infinity. In the hyperbolic limit however, the condition
poses a restriction on the gradient field ∇xQ in relation to the coefficients λ0 , λH .
It is not practical to check the condition for every normal n. Therefore, we give an estimate based
on the eigenvalues of the diffusion tensor. Let Λmin(D̂) and Λmax(D̂) denote the smallest and
largest eigenvalues of D̂, respectively. Due to n>D̂n > Λmin(D̂) and ���E∇xQ · D̂n��� < Λmax(D̂), the
condition

‖∇xQ‖ < λ0
cλH

√
Λmin(D̂)

Λmax(D̂)
implies the sub-characteristic condition.
To keep a physically meaningful connection between mesoscopic haptotaxis models of the form
(3.21) and microscopic particle models, we have assumed that the perturbed kernel is positive.
The following lemma extends this connection to the macro-scale in the sense that a physically
meaningful particle model leads to a meaningful hyperbolic limit.

Lemma 3.15 When the perturbed kernel

λDKD (v , v′) + λa ka (v , v′) > 0, ∀v , v′ ∈ S2 ,

is strictly positive according to (3.22), the sub-characteristic condition for the P1-glioma model
(3.42) is fulfilled.

Proof. With the definitions (3.25) and (3.26), the condition (3.22) translates to

λaE∇xQ · v′E(v) < λDE(v), ∀v , v′ ∈ S2.

Because this holds true for all v′, we can choose

v′ �



v , E∇xQ · v >� 0,

−v , E∇xQ · v < 0,

such that E∇xQ · v′ � ���E∇xQ · v���. Then both sides of the inequality

λa
���E∇xQ · v��� E(v) < λDE(v), ∀v ∈ S2

are positive. We multiply with −v>n and integrate over all v with v>n < 0. On the left-hand
side this yields

〈���E∇xQv��� E(v)(−v)>n
〉

v>n<0
�

〈���E∇xQvE(v)(−v)>n���
〉

v>n<0
,

�

〈���E∇xQvE(v)v>n���
〉

v>n<0
,
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and we estimate the right-hand side from above with
〈
E(v)(−v)>n

〉
v>n<0

�
���
〈
E(v)(−v)>n

〉
v>n<0

��� ,

≤
〈���E(v)(−v)>n���

〉
v>n<0

,

�

〈���E(v)v>n���
〉

v>n<0
.

Altogether, the inequality becomes

λa
〈���E∇xQvE(v)v>n���

〉
v>n<0

< λD
〈���E(v)v>n���

〉
v>n<0

.

We now multiply with v>n and integrate over all v with v>n > 0. The same steps as before lead
to

λa
〈���E∇xQvE(v)v>n���

〉
v>n>0

< λD
〈���E(v)v>n���

〉
v>n>0

.

We add both inequalities together, which, because all numbers involved are positive, yields

λa
〈���E∇xQvE(v)(v)>n���

〉
< λD

〈���E(v)(v)>n���
〉
.

On the left-hand side of this, swapping the absolute value and the integral only weakens the
inequality. On the right-hand side, we use the Cauchy-Schwarz inequality

〈���E(v)v>n���
〉2 ≤

〈(
E

1
2 ���v
>n���

)2〉 〈(
E

1
2
)2〉

,

�

〈
E ���v

>n���
2〉
,

�

〈
E

(
v>n

)2〉
,

�

〈
En>vv>n

〉
,

� n>
〈
Evv>

〉
n.

Finally, we arrive at

λa
���E∇xQ

〈
Evv>

〉
n��� < λD

√
n> 〈Evv>〉 n ,

λa
���E∇xQD̂n��� < λD

√
n>D̂n.

�
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haptotaxis equation

Moment methods for the
haptotaxis equation

Same old song, just a drop of water in an endless sea.
All we do crumbles to the ground, though we refuse to see.
Dust in the wind, all we are is dust in the wind

Kansas — Dust in the wind

In this chapter we apply moment methods to the general haptotaxis equation (3.21)

∂t f + c∇x · (v f ) � λDLD f + λaLa f + µS f

from Section 3.5. The structure of the turning kernel KD makes it necessary tomodify the standard
methods to represent the equilibrium E. Therefore, in Section 4.1 we introduce a different notion
of entropy and derive the corresponding modified moment methods. In Section 4.2, we take a
detailed look at first-order moment systems and their diffusion limits. Finally, we investigate the
modified moment systems numerically in Section 4.3.

4.1 Modified entropy closures
4.1.1 Relative entropy

The classical entropy h( f ) �
〈
η( f )

〉
measures the distance of f to the isotropic distribution ρ

〈1〉 in
the following sense: The isotropic distribution minimizes any entropy h. Because the turning
operator in the classical radiative transport equation (1.1) dissipates any entropy, f approaches
the isotropic distribution with respect to the entropy. We have seen in Section 1.2.5 that entropy
closures extend this property to the moment system.
In the setting of the haptotaxis equation (3.21), we expect that the turning operator LD relaxes
f towards its equilibrium E. But an anisotropic equilibrium does not minimize any classical
entropy. Therefore, we need a different entropy, one that is minimized by E and dissipated by
LD , to control the approach to the equilibrium.

Definition 4.1 — Relative entropy density / relative entropy. Let η( f ) be a classical entropy density
(see Definition 1.5), that is, η is twice continuously differentiable and strictly convex. The
entropy density of f relative to E is defined as

ηr ( f |E) � η( f ) − η(E) − η′(E)( f − E).
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The relative entropy density induces the relative entropy functional:

hr ( f |E) �
∫

S2
ηr ( f (v) |E(v))dv.

A related, but conceptually different application of relative entropy is the study of the limit of
hyperbolic relaxation systems [132]. The same concept is applied to prove convergence of the
BGK model to the system of isentropic gas dynamics [18].
The equilibrium E has zero entropy relative to itself and it is the unique global minimizer of
ηr ( f |E). To see this, we compute the first derivative ∂ f ηr ( f |E) � η′( f ) − η′(E), which is zero for
the equilibrium. Furthermore, the second derivative is given by ∂ f f ηr ( f |E) � η′′( f ), therefore
the relative entropy is strictly convex with respect to its first argument.
We now show that the turning operator LD dissipates the Maxwell-Boltzmann entropy relative
to E. The Maxwell-Boltzmann entropy is

η( f ) � f log( f ) − f (4.1)

with derivative η′( f ) � log( f ). Note the following relation between the absolute entropy and
the relative entropy in this special case:

ηr ( f |E) � Eη
(

f
E

)
+ E.

Hence,

∂ f ηr ( f |E) � η′( f ) − η′(E) � η′
(

f
E

)
(4.2)

holds for the first derivative.
The detailed balance KD (v , v′)E(v′) � KD (v′, v)E(v) in the turning kernel (see (3.10)) is crucial
for entropy dissipation.

Lemma 4.2 — Entropy dissipation of the turning operator. The turning operator given by Defini-
tion 3.8 dissipates the Maxwell-Boltzmann entropy relative to its equilibrium E:

sr �

∫

S2
∂ f ηr ( f |E)LD ( f )dv ≤ 0.

If f � E a.e., the entropy dissipation is zero: sr � 0. If f ≤ fmax < ∞, sr � 0 implies f � E a.e.

Proof. We insert the Definition 3.8 of the turning operator and use the detailed balance (3.10) to
obtain

sr �

∫

S2
∂ f ηr ( f |E)LD ( f )dv �

∫

S2

∫

S2
∂ f ηr ( f (v) |E(v))

[
KD (v , v′) f (v′) − KD (v′, v) f (v)

]
dv′dv

�

∫

S2

∫

S2
∂ f ηr ( f (v) |E(v))

[
KD (v , v′) f (v′) − E(v′)

E(v)
KD (v , v′) f (v)

]
dv′dv

�

∫

S2

∫

S2
∂ f ηr ( f (v) |E(v))

KD (v , v′)
E(v)

[
E(v) f (v′) − E(v′) f (v)

]
dv′dv ,
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relying on strict positivity (3.8) to factor out E. We swap the names of v and v′, and use the
detailed balance again:

sr �

∫

S2

∫

S2
∂ f ηr ( f (v′) |E(v′))

KD (v , v′)
E(v)

[
E(v′) f (v) − E(v) f (v′)

]
dvdv′.

The sum of both equations multiplied by one half is

sr �
1
2

∫

S2

∫

S2

[
∂ f ηr ( f (v) |E(v)) − ∂ f ηr ( f (v′) |E(v′))

] KD (v , v′)
E(v)

[
E(v) f (v′) − E(v′) f (v)

]
dv′dv.

We rewrite the first bracket

∂ f ηr ( f (v) |E(v)) − ∂ f ηr ( f (v′) |E(v′)) � η′( f (v)) − η′(E(v)) − η′( f (v′)) + η′(E(v′))

� η′( f (v)E(v′)) − η′( f (v′)E(v)),

using relation (4.2). This is the only step in the proof in which we use that η is the Maxwell-
Boltzmann entropy. The entropy dissipation then reads:

sr �
1
2

∫

S2

∫

S2

[
η′( f (v)E(v′)) − η′( f (v′)E(v))

] KD (v , v′)
E(v)

[
E(v) f (v′) − E(v′) f (v)

]
dv′dv.

Because η is strictly convex, η′ is strictly monotone increasing and for each v , v′ the integrand is
less than or equal to zero, thus sr ≤ 0 holds.
If f � E, the second bracket in the integrand is always zero and therefore sr � 0. Application of
the mean value theorem on the first bracket yields the estimate

sr ≤ −1
2 C

∫

S2

∫

S2

[
E(v) f (v′) − E(v′) f (v)

]2 dv′dv ,

with the constant C � minv ,v∈S2

{
KD (v ,v′)

E(v)

}
infv ,v′∈S2

{
η′′( f (v)E(v′))

} ≥ 0. If f ≤ fmax < ∞,
the infimum equals the minimum, and we have C < 0. Using the orthogonal decomposition
S2 � R(LD ) ⊕ N (LD ) fromLemma 3.11, wewrite f � ρE+g with

〈
g
〉
� 0. Only the perturbation

g contributes to the dissipation of entropy:

sr ≤ −1
2 C

∫

S2

∫

S2

[
E(v)g(v′) − E(v′)g(v)

]2 dv′dv.

Assume g , 0 on a subset of S2 with positivemeasure. Due to
〈

g
〉
� 0, the setsV �

{
v | g(v) < 0

}
,

V′ �
{

v′ | v′ : g(v′) > 0
}
have positive measure. The Cartesian product V × V′ ⊂ S2 × S2 has

also positive measure and because E is strictly positive, the integral is strictly positive. Thus,
from f < ∞ and g , 0 follows sr < 0, therefore f < ∞ and sr � 0 implies f � E a.e. �

Equipped with the entropy dissipation of the turning operator, we write an entropy dissipation
law for the kinetic equation

∂t f + ∇x · (v f ) � LD ( f )

without the perturbation operatorLa and sourcesS. Multiplication by ∂ f ηr ( f |E) and integration
over the velocity space yields

〈
∂ f ηr ( f |E)∂t f

〉
+

〈
∂ f ηr ( f |E)∇x · (v f )

〉
�

〈
∂ f ηr ( f |E)LD ( f )

〉
,

∂t
〈
ηr ( f |E)

〉
+ ∇x · 〈vηr ( f |E)

〉 − 〈
∂Eηr ( f |E)∇x · (vE)

〉
�

〈
∂ f ηr ( f |E)LD ( f )

〉
.
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When the equilibrium is constant in space, the entropy dissipation law

∂t hr + ∇x · jr �
〈
∂ f ηr ( f |E)LD ( f )

〉
≤ 0,

with entropy hr �
〈
ηr ( f |E)

〉
and entropy flux jr �

〈
vηr ( f |E)

〉
follows from Lemma 4.2. However,

spatial gradients in the equilibrium lead to the additional term

− 〈
∂Eηr ( f |E)∇x · (vE)

〉
�

〈
η′′(E)( f − E)∇x · (vE)

〉
,

which can act both as entropy source and sink. Additionally, entropy can either enter or leave the
system through source terms, the perturbation kernel La and the boundary conditions.

4.1.2 The modified minimum-entropy method

Moment systems of the classical radiative transport equation closed with the minimum entropy
ansatz inherit the entropy dissipation law. We modify the approach from Section 1.2.3 such that
the reconstruction minimizes the relative entropy instead. Given the moments u �

〈
f a

〉
, the

reconstruction should satisfy

f � argmin
g ,〈ga〉�u

{〈
ηr (g |E)

〉}
.

With the Legendre transform (see Definition 1.13) we formulate this as an unconstrained
finite-dimensional optimization problem for the Lagrange multipliers α:

α̂ � argmin
α

{〈
ηr ∗(α · a |E)

〉
− α · u

}
.

Herein ηr ∗( f |E) is the Legendre transform of ηr with respect to its first argument f . Analogously
to (1.16), the reconstruction has the form

f[u] � ∂ f ηr ∗(α · a |E).

A formula for the derivative

∂ f ηr ∗( f |E) � (η′)−1( f + η′(E)) (4.3)

follows from the property φ′ ◦ φ∗′ � I of the Legendre transform and ∂ f ηr ( f |E) � η′( f ) − η′(E).
The inverse (η′)−1 always exists, because η′ is strictly monotone increasing.

Modified exponential closure M(E)
N

We insert the Maxwell-Boltzmann entropy (4.1) into formula (4.3):

∂ f ηr ∗( f |E) � E exp( f ).

Thus the minimum entropy ansatz is given by

f[u] � E exp(α · a).

This ansatz is always positive and all moments generated from it are automatically realizable,
i.e., A(a , f) ⊂ R(a). Junk [83] showed that A(a , f) � R(a) holds for the standard MN -method,
which is thus able to reproduce all realizable moments. To show the same for the modified
M(E)

N -method is an open problem. We propose to reexamine Junk’s proof for the weighted space
L1

E (S2) �
{

f �� E f ∈ L1(S2)
}
.
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Modified linear closure P(E+)
N

Although we could only show relative entropy dissipation for the Maxwell-Boltzmann entropy,
we can still use other entropies to derive moment closures. With the entropy η( f ) � 1

2 f 2 and the
corresponding relative entropy ηr ( f |ρE) we define the modified P(E+)

N ansatz

f[u] � α · a + ρE.

This ansatz is the basis of the AP method in Chapter 5 because it respects the orthogonal
decomposition S2 � R(LD ) ⊕ N (LD ).

4.2 First-order monomial systems
In the following, we take a closer look at the modified moment systems induced by a first-order
monomial basis

a � *
,

a (0)

a (1)
+
-
� *

,

1
v

+
-

with moments

u �
〈
a f

〉
� (

〈
f
〉
,
〈
v f

〉
) �: (ρ, q),

defined in Section 1.2.1. The first-order moment system for the haptotaxis equation reads

∂tρ + c∇x · q � µρ,

∂t q + c∇x · P � λDC + λaR + µS.
(4.4)

Therein P �
〈
vv> f

〉
is the pressure tensor, C �

〈
vLD ( f )

〉
denotes the moments of the turning

operator, R �
〈
vLa ( f )

〉
are the moments of the perturbation, and S �

〈
vS( f )

〉
are the moments

of the source. In the continuity equation, we used that LD and La conserve mass and that
the source S is normalized. To close the system we need to prescribe approximations PA[ρ, q],
CA[ρ, q], RA[ρ, q] and SA[ρ, q] to the unknown moments.
For the glioma model from Section 3.4.2 we have C � −q, R � E∇xQ ·P and S � q. The momentum
equation is given by

∂t q + c∇x · P � −λD q + λaE∇xQ · P + µq.

It remains to compute the pressure tensor to close this system.
An important quantity is the pressure tensor of the equilibrium

PE :�
〈
vv>E

〉
.

Remark 4.3 The standard P1 and M1 closures fail to capture the behavior of the haptotaxis
equation. For example, the P1 closure for the glioma model from Section 3.4.2 prescribes the
pressure tensor

PA
�

〈
vv>f

〉
�

1
3 Iρ.
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Hence, the momentum equation reduces to

∂t q +
1
3 c∇xρ � −λD q +

1
3λaE∇xQρ + µq.

No information about the fiber distribution E remains in this approximation. In Section 1.2.5,
we have seen that the ansatz f must reconstruct the nullspaceN (LD ) of the turning operator
to recover the correct diffusion limit. This is clearly not the case for the standard first-
order closures. The defect is visible in the results for Experiment 4.6 (see Figure 4.2) and
Experiment 4.7 (see Figure 4.9).

4.2.1 The diffusion limit of the first-order moment system

In analogy to Section 1.2.5, we compute the diffusion limit for the first-order moment system.
This limit is only equal to the diffusion limit (3.32) of the kinetic equation under additional
conditions on the ansatz and the turning operator. For clarity, we ignore the source terms and
assume constant coefficients λD , λa in the following. We also set the scaling parameters δ � ν � 1
and obtain the closed first-order moment system in scaled form

∂tρ +
1
ε
∇x · q � 0,

∂t q +
1
ε
∇x · PA

�
1
ε2 CA

+
1
ε

RA .

As before, the crucial property of the ansatz is that it reconstructs the equilibrium: f[ρ, 0] � ρE.
In this case, the unknown moments PA[ρ, 0] � P(E) � ρ

〈
vv>E

〉
, CA[ρ, 0] � ρC(E) � 0,

RA[ρ, 0] � ρR(E) are reproduced exactly in the equilibrium.
We write q � εq1 and make the Taylor expansion

f[ρ, q] � ρE + ε
∂f
∂q

�����q�0
q1

for the ansatz. The moment constraints 〈fv〉 � q from (1.12) are fulfilled if

∂f
∂q

�����q�0
� v ·

〈
vv>H(v)

〉−1
H(v), (4.5)

holds for some strictly positive function H(v).
We expand the moments in the first-order system, for instance CA[ρ, q] � CA[ρ, 0] + ε ∂CA

∂q
���q�0

q1,

and separate powers of ε. To the order ε−2 we get the condition CA[ρ, 0] � 0, which is naturally
fulfilled if f reconstructs the equilibrium. Solving the order ε−1 momentum equation for q1 yields

q1
� *

,
∂CA

∂q

�����q�0

+
-

−1 (
∇x · PA[ρ, 0] − RA[ρ, 0]

)

� *
,

〈
vLD *

,
∂f
∂q

�����q�0

+
-

〉
+
-

−1 (
∇x · (ρ

〈
vv>E

〉
) − ρ 〈vLa (E)〉

)

�

(〈
vLD (v>H)

〉 〈
vv>H

〉−1)−1 (
∇x · (ρ

〈
vv>E

〉
) − ρ 〈vLa (E)〉

)

�

〈
vv>H

〉 〈
vLD (v>H)

〉−1 (
∇xρ ·

〈
vv>E

〉
+ ρ∇x ·

〈
vv>E

〉
− ρ 〈vLa (E)〉

)
.
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We insert q1 into the order ε � 0 continuity equation

∂tρ + ∇x · q1
� 0,

and obtain

∂tρ − ∇x ·
(
D̂A∇xρ + âA

Dρ − âAρ
)
� 0,

with

D̂A
� −

〈
vv>H

〉 〈
vLD (v>H)

〉−1 〈
vv>E

〉
,

âA
D � −

〈
vv>H

〉 〈
vLD (v>H)

〉−1 ∇x ·
〈
vv>E

〉
,

âA
� −

〈
vv>H

〉 〈
vLD (v>H)

〉−1 〈vLa (E)〉 .
Compare this with the diffusion tensor and drift vectors for the kinetic equation

D̂ � −
〈
vL−1

D (v>E)
〉
,

âD � −
〈
vL−1

D (v · ∇x̂E)
〉
,

â � −
〈
vL−1

D LaE
〉
.

The diffusion tensors are equal D̂A � D̂ �
1
γ

〈
vv>E

〉
, if both vE and vH are eigenfunctions of

LD to the same eigenvalue −γ. The former is an assumption on the turning operator similar
to Assumption 1.14 and the latter is a condition for the ansatz f. To obtain the correct drift
vectors, we need even more assumptions: v · ∇xE and LaE must be eigenfunctions of LD to
the same eigenvalue −γ. Especially the first assumption is either restrictive on the turning
operator or the gradient field ∇xE. One turning operator that complies to these restrictions is the
BGK-type operator LD ( f ) � E(v)

〈
f
〉 − f in the glioma model. Every function with zero mass is

an eigenfunction of this operator to eigenvalue −1. It is not clear if the restrictive assumptions
above allow any other operator. Considering Example 1.17 in the introduction, a better diffusion
approximation may be obtained in a higher-order moment system.

4.2.2 Some examples for closures

In this section we present examples for closures of the first-order moment system. The closures
P(E+)

1 and M(E)
1 are specializations of the minimum entropy closures P(E+)

N and M(E)
N from

Section 4.1. Examples for modified closures that do not belong to the class of minimum-entropy
closures are P(E)

1 and K(E)
1 . These ansätze are modified from their classical counterparts P1 and

K1 to reconstruct the equilibrium. P(E)
1 , M(E)

1 and K(E)
1 have been introduced originally in [36].

Additive linear closure P(E+)
1

This is the first-order specialization of the modified P(E+)
N closure with the ansatz

ρE + b · v.
From the moment constraints 〈b · vv〉 � q follow the multipliers b �

〈
vv>

〉−1 q. The pressure
tensor is given by

PA
�

〈
vv>f

〉

� ρPE +

〈
vv>

〉−1 〈
vv>v · q

〉

� ρPE .
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As a representative of the minimum-entropy methods, the closure reconstructs P correctly for
equilibrium moments (ρ, 0). But PA is constant with respect to q, hence it fails to approximate
the pressure tensor in free-streaming situations.
For the derivative of the ansatz with respect to the momentum we obtain

∂f
∂q

� v> · vv>−1
.

A comparison to equation (4.5) yields H(v) � 1. Therefore, in addition to Assumption 1.14, the
moment system produces the correct diffusion tensor in the limit, if v and vE are eigenfunctions
of the turning operator LD to the same eigenvalue −γ.
Multiplicative linear closure P(E)

1
Another way to adapt the P1-closure for an anisotropic equilibrium is proposed in [36]. The
standard P1 ansatz is simply multiplied by the equilibrium:

f � E (a + b · v) .

Because of 〈vE〉 � 0, the moment constraints (1.12) yield a � ρ and PEb � q. We obtain the
pressure tensor

PA
� ρPE +

〈
vv>vE

〉
PE
−1q.

If the equilibrium is an even function of v, i.e., E(v) � E(−v) holds, then the third moments of E
vanish and the pressure tensor is reduced to

PA
� ρPE .

The multiplicative ansatz leads to the same pressure tensor as the additive ansatz. However, the
procedures differ in the diffusion limit. We have

∂f
∂q

� v · PE
−1E,

which yields H(v) � E(v) by comparison to (4.5). Therefore, the ansatz poses no restriction on
LD to get the correct diffusion tensor, apart from the usual Assumption 1.14.
To derive the Godunov scheme for the P(E)

1 system in Section 4.3.1, we compute the flux Jacobian
JFn and its eigenstructure. Equation (1.14) yields the flux Jacobian in n-direction:

JFn � *
,

0 n>

PEn 0
+
-
.

With n � eξ � (1, 0, 0)> for instance, the Jacobian reads:

JFξ �

*.....
,

0 1 0 0〈
vξvξE

〉
0 0 0〈

vηvξE
〉

0 0 0
〈
vζvξE

〉
0 0 0

+/////
-

.

There are two waves with zero speed. For any direction n⊥ normal to n, the vector

v � *
,

0
n⊥

+
-
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is an eigenvector of JFn to eigenvalue λ � 0. Furthermore, there are two waves with speed
λ± � ±√n>PEn to the eigenvectors

v± � *
,

λ±
PEn

+
-
.

Modified exponential closure M(E)
1

The modified minimum-entropy ansatz with Maxwell-Boltzmann entropy and first-order mono-
mial basis reads

f � E exp (a + b · v) .

The multipliers a , b solve the nonlinear system

ρ � exp(a)
〈
exp(b · v)E

〉
,

q � exp(a)
〈
v exp(b · v)E

〉
,

of moment constraints. Equivalently, the multipliers minimize the objective function

Fρ,q (a , b) �
〈
E exp(a + b · v)

〉 − aρ − b · q.

In normalized moments the second equation

q̂ �
q
ρ
�

〈
v exp(b · v)E

〉
〈
exp(b · v)E

〉

is independent of a. The multipliers that correspond to equilibrium moments (ρ, q̂) � (ρ, 0) are
(a , b) � (log(ρ), 0). In this case, the pressure tensor reduces to PA � ρPE. As for the P(E)

1 ansatz,
we have

∂f
∂q

�����q�0
� v · PE

−1E.

Modified Kershaw closure K(E)
1

We adapt the Kershaw [86] closure from Section 1.2.4 for anisotropic equilibrium E and construct
the pressure tensor as a convex combination between equilibrium and free-streaming moments.
In equilibrium f � E, the pressure tensor is PE �

〈
vv>E

〉
. In the free-streaming limit all

particles move in the same direction q∗ � q̂
| q̂ | , hence the distribution is the Dirac delta f � δq∗ (v).

The free-streaming pressure tensor P̂δ � q∗q∗> is not affected by the choice of the equilibrium.
Analogously to Section 1.2.4, the pressure tensor is the convex combination P̂A � αPE + (1− α)P̂δ
with α � 1 − ��q̂��2:

P̂A
�

(
1 − ��q̂��2

)
PE + ��q̂��2 q∗q∗>

�

(
1 − ��q̂��2

)
PE + q̂ q̂>.

(4.6)

The only difference between the modified and standard Kershaw closures is the equilibrium
pressure tensor. For the isotropic equilibrium E �

1
〈1〉 we obtain the standard Kershaw closure

K1. Due to tr P̂A � 1 and P̂A − q̂ q̂> > 0 for ��q̂�� < 1 the second moments are realizable.
A detailed computation of the eigenstructure of the resulting moment system is done in
Appendix A.5. From the results therein, we conclude the following lemma.
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Lemma 4.4 — Hyperbolicity of the generalized Kershaw moment system. The first-order moment
system (4.4) with the Kershaw closure (4.6) is strictly hyperbolic for moment vectors (ρ, q) in
the interior of the realizable set ��q�� < ρ. On the surface of the realizable set ��q�� � ρ, the Jacobian
has real eigenvalues but cannot be diagonalized.

Proof. See the computations in Appendix A.5. �

Remark 4.5 — Correction. The original version of this lemma published in [36] states that the
Jacobian is not diagonalizable only if ��q�� � ρ and q is parallel to an eigenvector of PE. That
the system loses strict hyperbolicity for all ρ on the boundary of the realizable set has been
overlooked.

Kershaw [86] gives the atomic representing density

f(v) � ρ
∑

i�1,2,3

∑

±
ωi±δv i± (v)

for realizable the moments ρ, q̂ , P̂. The weights ωi± and positions v i± are constructed in a rotated
frame of reference φ � R>v in which the pressure tensor Λ � R>PER is diagonal. We start from
the vector of normalized first moments in the rotated frame r̂ � R> q̂, which lies in the interior
of S2. Then we move parallel to the coordinate axis i in positive or negative direction, until we
intersect the sphere S2. This construction, which is sketched in Figure 4.1, yields the positions

φ1±
�

(
±
√
α + r̂2

1 , r̂2 , r̂3

)>
, φ2±

�

(
r̂1 ,±

√
α + r̂2

2 , r̂3

)>
, φ3±

�

(
r̂1 , r̂2 ,±

√
α + r̂2

3

)>
.

The corresponding weights are

ωi±
�
λi

2
*..
,
1 ± r̂i√

α + r̂2
i

+//
-
.

With elementary but lengthy calculations it can be checked that
∑

i±
ωi±

� 1,

∑

i±
ωi±φi±

� r̂ ,

∑

i±
ωi±φi±(φi±)> � αΛ + r̂ r̂>

hold, thus the atomic representing density reproduces the moments. In Section 4.3.1 we use the
atomic distribution to write a kinetic scheme for the Kershaw system.
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ξ′

η′
ζ′

r̂

ζ

ξξ

ηη

(a) Kershaw atoms

Figure 4.1: The construction of the atomic representing density. In the rotated coordinate system
ξ′, η′, ζ′ (red, green and blue arrows) in which the pressure tensor is diagonal, the atom positions
(black spheres) are the intersections of the unit sphere with lines parallel to the axes.
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4.3 Numerical experiments
To investigate the structure of the modified moment methods, and to compare them to their
classical counterparts, we perform a range of numerical experiments. We consider the methods
P(E)

N , M(E)
N and K(E)

1 . The P(E+)
N models are treated separately in Chapter 5. The following

Section 4.3.1 contains details on the numerical scheme. All experiments are variants of the
line source benchmark [58], although sometimes with many modifications. In Section 4.3.2,
we describe the default setup for the experiments. To reveal the general structure of the
moment models, we first consider a homogeneous setting in Section 4.3.3. The properties of two
specialized numerical flux functions are shown in an experiment with heterogeneous equilibrium
in Section 4.3.4. We describe how to treat an instationary equilibrium with the modified moment
methods in Section 4.3.5. Finally, in Section 4.3.6 we discuss the failure of the numerical scheme
in the diffusive regime.

4.3.1 The space and time discretization

For the numerical experiments we use the scheme from [36]. All considered moment systems
can be cast in the form

∂t u + ∇x · F (u , x) � R(u , x)

of a hyperbolic system with sources. When the equilibrium E varies in space also the flux
function F and reaction terms R depend on space. In the glioma models, the fiber distribution
E is estimated from the piece-wise constant measurements of the water diffusion tensor DW .
Therefore, we only treat piece-wise constant flux functions here. We derive a second-order
realizability preserving scheme for this system. First, we employ the operator splitting approach
and consider the two equations:

∂t u + ∇x · F (u , x) � 0, (4.7)

∂t u � R(u , x). (4.8)

When each of the steps is solved with a second-order accurate realizability preserving scheme, the
resulting scheme is also second order and realizable, as long as the second-order Strang splitting
is used to combine the steps. We use a finite-volume method and write an approximation for the
cell averages

u j ≈ {u}Ω j :� 1
���Ω j

���

∫

Ω j

udx.

The flux system

For the fluxes (4.7), this yields the semi-discrete system

∂t u j +
1

���Ω j
���

∑

N j

���∂Ω j,k
���

{
F̂

}Q
∂Ω j,k
· n j,k � 0. (4.9)

Herein F̂ (uL , uR) is a numerical flux function, which depends on the left and right states at the
interface.

{
F̂

}Q
∂Ω j,k

is the average of this numerical flux over the interface ∂Ω j,k , approximated by
a quadrature rule Q. The interface values are obtained from a cell-wise continuous reconstruction
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û j (x), evaluated at the quadrature nodes. In the first-order scheme a piece-wise constant
reconstruction û j (x) � u j is of course sufficient. The second-order scheme needs a piece-wise
linear reconstruction

û j (x) � u j + S j · (x − x j ).

The slope matrix S j ∈ Rn×d is reconstructed from the cell means of the neighbors. On a
tensor-product grid this can be done for each direction independently, for example the slope in
ξ-direction depends only on the cell mean at the cell itself and its left and right neighbors. We
use the minmod reconstruction, which is

S j �
1
∆x

Vj minmod(ũ j+1 − ũ j ,
1
2 (ũ j+1 − ũ j−1), ũ j − ũ j−1),

minmod(a1 , a2 , a3) �



sign(a1) min(|a1 | , |a2 | , |a3 |), sign a1 � sign a2 � sign a3 ,

0, else,

in one space dimension on a cell with length ∆x. To avoid spurious oscillations, this is done in
characteristic variables

ũ j � V−1
j u j ,

where Vj contains the eigenvectors of the flux Jacobian JFξ (u j ).
Additionally, we need to ensure that the reconstruction û j (x) is a realizable moment vector on
the entire cell Ω j . Therefore, we employ the realizability limiter from [28, 110, 121]. Essentially,
this means finding the largest τ, such that û j (x) � u j + τS j · (x − x j ) is realizable on the cell.
Because the domains of realizable moments are complicated for higher moment orders, this is
only implemented for the first-order moment systems. In that case, the problem boils down to
solving a quadratic equation for τ.
To discretize the time derivative in (4.9), we employ an SSP1 scheme of adequate order [64, 65].
For a first-order scheme, this is simply the explicit Euler method. A second-order SSP scheme
is Heun’s method. In [121, Chapter 3, Theorem 3.19], it is shown for similar schemes that the
cell means remain realizable after one forward Euler step under an appropriate CFL condition.
Because explicit SSP schemes are just convex combinations of explicit Euler steps, this guarantees
the realizability of the cell means in the second-order scheme, if the realizability limiter is applied
in each stage of the method.
We consider two choices for the numerical flux function that work with any moment method.
The simplest choice is of course the Lax-Friedrichs flux

F̂ LF (uL , uR) �
1
2 (F (uL) + F (uR) − c(uR − uL)) .

The largest eigenvalue of the flux Jacobian JFn is bounded by the particle speed c. Thus, we
simply take c as the viscosity constant. The Lax-Friedrichs flux is easy to implement for arbitrary
flux functions, cheap to evaluate and adequate for smooth solutions. When the solution has
discontinuities or the flux function itself is discontinuous in space, then it may produce too much
numerical diffusion.

1Strong stability preserving
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In the underlying kinetic equation, the distribution f (t , x , v) is transported in direction v.
Therefore, an upwind scheme per direction is natural. In the moment system, we use the
reconstruction f(u) from moments to define the kinetic flux

F̂ K (uL , uR) � 〈vaf(uL)〉v·n>0 + 〈vaf(uR)〉v·n<0 .

The integral 〈·〉v·n>0 is only taken over those directions v with positive component v · n normal
to the interface. The kinetic flux automatically handles jumps in the flux function correctly.
However, it is more costly, especially for higher moment orders, because we need to compute
the reconstructions and the integrals have to be approximated by a quadrature. If the Kershaw
ansatz from Section 4.2.2 is used, the kinetic flux can be written with the atomic representing
density. In that case the integrals reduce to

〈va(v)f(uL)〉v·n>0 � ρ
∑

v i± ·n j,k>0

ωi±v i±a(v i±).

In the special case of the P(E)
1 -model (with monomial basis), we have the linear system

∂t u + ∂ξ
(
JFξu

)
+ ∂η

(
JFηu

)
+ ∂ζ

(
JFζu

)
� 0,

with moments u � (ρ, q)>. The flux Jacobian JFn and its characteristic field are detailed
in Section 4.2.2. Due to its simple eigenstructure, we can write the Godunov scheme for
the heterogeneous conservation law according to [97, 98]. The Riemann problem at a cell
interface is determined by the initial data uL , uR and the equilibria EL , ER on the left and right
cells. Its solution consists of a left-going shock satisfying the Rankine-Hugoniot conditions
JFn ,L (uL∗−uL) � λL (uL∗−uL) in the left cell, a right-going shock satisfying a similar RH-condition
in the right cell, and two stationary shocks at the interface that connect uL∗ and uR∗ and ensure
the continuity of fluxes JFn ,LuL∗ � JFn ,RuR∗. Instead of the left and right states, which are
discontinuous at the interface, we connect the left and right flux via

JFn ,RuR − JFn ,LuL � vLβL + vRβR ,

where vL is the eigenvector to the negative eigenvalue λL in the left cell. This is a linear system
with four equations for the two unknowns βL , βR, which we can solve nevertheless because the
flux Jacobians JFn ,L , JFn ,R have the same nullspace. Then the Godunov flux at the interface is

F̂ G (uL , uR) � F (uL) + βLvL � F (uR) − βRvR .

The reactions

The finite-volume projection for the reactions (4.8) leads to the semi-discrete system

∂t u j � {R(u)}Ω j � R(u j ) + O
(
∆x2

)
. (4.10)

This is an ODE for u j in each cell Ω j . For simplicity, we therefore neglect the spatial index j and
just write ∂t u � R(u). The discontinuous-Galerkin scheme [11, 61] is unconditionally A-stable
and with even polynomial order also realizability-preserving without time step restriction.
The weak form of (4.10), using test functions φ(t) with support on the temporal cell [tn , tn+1), is

∫ tn+1

tn

∂t uφ(t)dt −
∫ tn+1

tn

R(u)φ(t)dt + φ(t+n )u(t+n ) � φ(t−n )u(t−n ),
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wherein for example u(t−n ) � lim
t↑tn

u(t). This means that the solution u(t) can be discontinuous at

the temporal cell interfaces: u(t−n ) , u(t+n ) is possible. After transformation τ � −1 + 2 t−tn
tn+1−tn

to
the reference interval [−1, 1], this is

∫ 1

−1
∂t uφ(τ)dτ − ∆t

2

∫ 1

−1
R(u)φ(τ)dτ + φ(−1)u(t+n ) � φ(−1)u(t−n ),

with ∆t � tn+1 − tn . We discretize this equation with a Lagrange basis of degree two for test and
ansatz functions, with nodes τ0 � −1, τ1 � 0, τ2 � 1. The Lagrange functions are

φ0(τ) �
1
2 (τ2 − τ), φ1(τ) � 1 − τ2 , φ2(τ) �

1
2 (τ2

+ τ),

and uh (τ) represented in this basis is

uh (τ) �
∑

i�1,2,3
un ,iφi (τ),

with coefficients

un ,0 � u(t+n ), un ,1 � u(t(τ1)) � u(
1
2 (tn+1 + tn )), un ,2 � u(t−n+1).

We obtain the possibly nonlinear system

∫ 1

−1
∂t uhφidτ − ∆t

2

∫ 1

−1
R(uh )φidτ + δi0un ,0 � δi0un−1,2 , i � 0, 1, 2

for the coefficients un ,i . The last value from the previous time step un−1,2 enters this system as a
right-hand side. The first integral term leads to a mass matrix M with Mi j �

∫ 1
−1 φ

′
j (τ)φi (τ)dτ,

which can be computed analytically. We approximate the reaction integral by a Gauss quadrature.
Finally, we solve this system with a Newton method. To evaluate the gradient, we need to
calculate derivatives of the reaction term ∂R(u)

∂u . The initial guess for the Newton iteration is a
constant extrapolation of the last time step.

4.3.2 The basic setup

The definitions in this section serve as default values for the following experiments. All
experiments are derived, sometimes with strong modifications, from the classical line source
benchmark [58]. The line source problem is a well-known benchmark [59, 123] used to assess
properties of angular discretization methods. In an infinite homogeneous medium with isotropic
scattering, the particles are initially concentrated at the ζ-axis: f (0, x , v) �

1
〈1〉 δ0(ζ). This

situation admits the reduced two-dimensional description from Section 1.1.2. There is an analytic
solution to the classical line source problem, which features a sharp circular wavefront moving at
unit speed and a smooth trailing distribution consisting of the scattered particles. Here we want
to adapt the problem formulation to investigate the structure of the modified moment methods
when E is not isotropic. We do not have an analytic solution for this problem.
Recall the glioma equation from Section 3.4.2

∂t f + c∇x · (v f ) � λ0
(
E

〈
f
〉 − f

)
+ λH c∇xQ · (v f − E

〈
v f

〉)
,
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without growth and with constant rate parameters λ0 , λH . In all following experiments, we
compute solutions to this equation. The equilibrium E(v) is always a peanut distribution (2.4).
We prescribe artificial water diffusion tensors

DW (x) �
1

(A(x) + 2)
R(x)

*...
,

A(x) 0 0
0 1 0
0 0 1

+///
-

R(x)>

in terms of the anisotropy factor A(x) and the main diffusion direction v1. R(x) is a rotation
matrix that rotates the vector (1, 0, 0)> onto v1. Because the peanut estimate is independent of
tr DW , we define DW such that tr DW � 1.
We have to be careful to respect the positivity condition (3.22). For the glioma model, this
translates to

λH <
λ0

c‖∇xQ‖ .

The default initial condition is a narrow Gaussian with standard deviation σ � 0.03 mm:

f (0, x , v) �
1
〈1〉 max

(
10−4 , exp

(
− ‖x‖

2

2σ2

))
. (4.11)

Because only a finite number of cells can occupy a given volume, we choose an initial condition
that is normalized with respect to the density ρ at its peak. Thus, ρ can be interpreted as the
fraction of cells with respect to this maximum cell density. Of course the problem is linear, and
the normalization does not influence the structure of the solution. The floor of 10−4 ensures
positivity of the distribution for the M(E)

N and K(E)
N models.

Simulations cover a time span of T � 1 s and the spatial domain is Ωx � [−1.5 mm, 1.5 mm]2

such that no interaction with the boundary happens. Nevertheless, at the boundary we prescribe
a thermal reflection condition. If nothing else is defined, computations are performed on an
equidistant grid with 200 × 200 grid cells with the second-order scheme and kinetic fluxes.

4.3.3 A homogeneous setting

To expose the structure of the modified moment methods, we prescribe a homogeneous fiber
distribution. Hence, we choose the constant water diffusion tensor DW with anisotropy factor
A � 6 and main direction v1 �

1√
3

(2,−1, 0)>. According to Section A.3, the resulting equilibrium
pressure tensor PE is given by

PE � R
*...
,

1
2 0 0
0 1

4 0
0 0 1

4

+///
-

R>.

Additionally, we prescribe a field Q with constant and normalized gradient ∇xQ �
1√
7

(3, 1, 0)>.
The parameters in Table 4.1 describe a setting in the kinetic regime with some drift. The positivity
condition (3.22) 0.5 � λH < 2 is easily satisfied.
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λ0 2 s−1 turning rate

λH 0.5 ratio of turning rate coefficients λ1
λ0

c 1 mm s−1 cell speed

St 3 Strouhal number

KnD 0.5 Knudsen number for turning

Kna 6 Knudsen number for drift

ε 0.17 parabolic scaling number

Table 4.1: Base parameters for the line source benchmark.

No drift

To observe the effects of the anisotropic equilibrium in isolation, we switch off the drift term. In
this setting, we compare the methods P(E)

N , M(E)
N and K(E)

1 to their classical counterparts, first in
the kinetic regime and then in an intermediate regime.

� Experiment 4.6 — Kinetic regime. We take the parameters from Table 4.1 but set λH � 0, thus
Kna � ∞. We compute the modified linear moment models P(E)

N for N � 1, 3, 5, 7, 9 and the
modified exponential models M(E)

N for N � 1, 2 as well as their classical counterparts PN , MN .
Additionally, we compute the modified Kershaw model K(E)

1 . All computations except for the
M(E)

2 and M2 models are done on a uniform grid with 200 × 200 cells and the second-order
scheme. We did not implement a realizability limiter for N > 1 and therefore have to use a
first-order scheme for the M2 and M(E)

2 models. To compensate, we increase the resolution to
400 × 400 grid cells.

Figures 4.2 - 4.7 display the results of Experiment 4.6. In Figure 4.2 and Figure 4.3 the density ρ
in the solutions to the linear moment models P(E)

N and PN , as well as their point-wise difference
are plotted. For N � 1, 3, 5, 7, Figure 4.4 contains plots of the density along two lines. Starting
from the origin, one line is parallel to the main axis v1 and the other line is orthogonal to v1. In
the classical PN methods the fluxes do not depend on the equililbrium and wave propagation is
independent of the direction. Therefore, the waves in the PN solutions are always circular. In
the P1 solution, we observe the expected speed 1√

3
in any direction. As discussed in Remark 4.3,

the classical first-order moment models do not retain any information about the equilibrium.
Consequently, the P1 solution is rotationally symmetric. In the higher-order classical models,
the equilibrium distribution is represented in the moments of the turning operator

〈
aLD f

〉
.

The amplitudes of their circular waves vary with direction. The modified moment methods
incorporate the anisotropic equilibrium also in the fluxes. For the P(E)

1 method we saw in
Section 4.2.2 that there are two waves with speed ±√n>PEn. The observed propagation speed 1√

2
in the main direction and 1

2 in the orthogonal direction match that prediction. In the higher-order
modified methods, the speed difference between main and orthogonal direction is greater for
the slower waves. In the P(E)

7 and P(E)
9 solutions, the outer rings are almost circular, whereas in

the inner ring the ellipsoid form is still visible, though less pronounced than in the lower-order
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models.
Figure 4.5 and Figure 4.6 present the M(E)

N and MN solutions for N � 1, 2. Like the linear
first-order model, the MN ansatz does not include any information about the equilibrium and
is therefore rotationally symmetric. In the M(E)

1 solution, there is a difference in wave speed
between main and orthogonal directions, though less pronounced than in the P(E)

1 solution.
We expect that this difference vanishes in the free-streaming limit λ0 → 0, which we cannot
compute, because the optimization problem to compute multipliers from moments becomes
arbitrarily ill-conditioned. Because the floor of the initial condition interacts with the thermal
boundary condition, the M(E)

N andMN solutions differ also outside the central ring. Including the
equilibrium into the ansatz seems to make the multiplier optimization problem easier to solve
numerically. The M(E)

N solutions were computed with the kinetic flux, but for this setting, the
optimizer in the MN methods fails. We have to help the optimizer with a little bit of numerical
diffusion and use the Lax-Friedrichs flux instead. A detailed numerical study of the optimization
problem for the modified M(E)

N closure in analogy to [1] is an interesting line of future research.
In the M(E)

2 solution, the modified flux leads to a more concentrated central zero-speed wave2.
Finally, Figure 4.7 shows a comparison between the K(E)

1 , M(E)
1 , and P(E)

1 solutions. Although the
maximal wave speed of the K(E)

1 model is one in all directions (see Section A.5), we observe an
elliptical shape of the solution, because the maximum speed is only obtained at the realizability
boundary.

� Experiment 4.7 — Intermediate regime. We take the parameters from Table 4.1 and switch off
the drift term, i.e., λH � 0 and Kna � ∞. Furthermore, we choose a turning rate λ0 � 10 s−1, in
the intermediate regime with KnD � 0.1 and ε � 0.03. We compute the linear moment models
P(E)

N , PN for N � 1, 3, 5 and the M(E)
1 and K(E)

1 models.

Figure 4.9 shows the P(E)
N and PN solutions in the intermediate regime. As before, the first-order

classical ansatz fails to approximate the equilibrium and produces a circular solution. In the
diffusion limit, the analytic solution to the anisotropic line source problem is a Gaussian with
covariance matrix P−1

E . The numerical scheme is not designed to work close to the diffusion
limit (see Section 4.3.6), hence we do not discuss convergence to this solution here. However,
visually, the third and fifth-order solutions are already close to an aniostropic Gaussian. In both
first-order solutions, the reduced wave speed is still visible in the sharper transition at the edge of
the cell cluster. The difference between P(E)

3 and P(E)
1 is about 10 %. In this regime, a low moment

order suffices to represent the solution adequately. The relative difference between the P(E)
5 and

P(E)
3 solutions is below 1 %.

The differences between modified and classical schemes vanish fast with increasing moment
order. Already at N � 5, the relative difference is below 0.1 % everywhere. The third and
fifth-order ansätze are able to approximate the equilibrium, a second-order polynomial, exactly.
In the diffusion limit we expect the difference between modified and classical models to vanish

2The fluxmatrices of the even-order PN models have always one zero eigenvalue. For example, in one space dimension,
the eigenvalues are the roots of the Legendre polynomial of order N + 1 [72, Sec. 3.2]. The MN model has the same flux
matrix as the PN for equilibrium moments uE . An in-depth discussion of the eigenstucture of moment models can be
found in [121, Sec. I.2.5].
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Figure 4.2: Results of Experiment 4.6—kinetic regime. First two columns: Density ρ of the P(E)
N

and PN solutions, respectively. Third column: Their point-wise relative difference on a signed
logarithmic scale. The contours in the third column are drawn at 10 %, 1 % and 0.01 % magnitude
of the relative difference. Rows: N � 1, 3, 5.
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Figure 4.3: Results of Experiment 4.6—kinetic regime. The figure layout is the same as in
Figure 4.2 but rows correspond to moment orders N � 7, 9
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Figure 4.4: Results of Experiment 4.6—kinetic regime. In each subfigure, the density ρ of the
P(E)

N and PN solutions is plotted over two lines: One parallel to and one orthogonal to the main
axis of DW .
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Figure 4.5: Results of the modified M(E)
N and classical MN models, N � 1, 2 in Experiment 4.6—

kinetic regime. Otherwise, the figure layout is the same as in Figure 4.2.



4.3 Numerical experiments 83

0 0.5 1 1.5
0

2

4

6

·10−3

r/mm

ρ

(a) N � 1

0 0.5 1 1.5
0

2

4

6

·10−3

r/mm

ρ

(b) N � 2

M(E)
N main M(E)

N orth MN main MN orth

Figure 4.6: Results of the modified M(E)
N and classical MN models, N � 1, 2 in Experiment 4.6—

kinetic regime. Line plots of ρ over the main and orthogonal directions of DW , as in Figure 4.4.

−1 0 1

−1

0

1

ξ/mm

η/
m

m

(a) K(E)
1

0 5
·10−3

−1 0 1

−1

0

1

ξ/mm

η/
m

m

(b) M(E)
1

0 5
·10−3

−1 0 1

−1

0

1

ξ/mm

η/
m

m

(c) P(E)
1

0 1 2
·10−2

Figure 4.7: Results of Experiment 4.6—kinetic regime. Density ρ of the K(E)
1 , M(E)

1 , and P(E)
1

solutions.



84 Chapter 4. Moment methods for the haptotaxis equation

−1 0 1

−1

0

1

ξ/mm

η/
m

m
(a) 1

0.02
(
K(E)

1 − P(E)
5

)

−100 −10−2 10−2 100±10−4.0

−1 0 1

−1

0

1

ξ/mm
η/

m
m

(b) 1
0.02

(
M(E)

1 − P(E)
5

)

−100 −10−2 10−2 100±10−4.0

−1 0 1

−1

0

1

ξ/mm

η/
m

m

(c) 1
0.02

(
P(E)

1 − P(E)
5

)

−100 −10−2 10−2 100±10−4.0

Figure 4.8: Results of Experiment 4.7—intermediate regime. Density ρ of the K(E)
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1 , and
P(E)

1 solutions.

completely for N ≥ 3. We hypothesize that differences between modified and classical schemes
would be more pronounced if the equilibrium is not exactly represented by the ansatz. However,
we did not test this numerically. In Figure 4.8 the relative differences of the first-order models to
the P(E)

5 solution are shown. All three models underestimate the reference at the outer edge, but
the P(E)

1 model makes the largest error. In this regime, K(E)
1 and M(E)

1 perform equally.

With drift term

The following experiment reveals the influence of the drift term on the structure of the solution.

� Experiment 4.8 — Drift.
We take the parameters from Table 4.1 and compute solutions for the modified linear moment
models P(E)

N for N � 1, 3, 5, the exponential models M(E)
N for N � 1, 2 and the Kershaw model

K(E)
1 . All computations except for the M(E)

2 model are done on a uniform grid with 200 × 200
cells and the second-order scheme. The M(E)

2 solution is computed on a 400 × 400 grid using
the first-order scheme.

The density ρ for all models in Experiment 4.8 is shown in Figure 4.10. Figure 4.11 displays two
line plots per model, one in drift direction and one against it together with one line plot of the
corresponding model without drift. In the presence of the drift term the particles preferentially
move in drift direction. This effect is present in the solutions to all moment models. The
amplitudes of the waves in drift direction are larger than against drift direction. But the drift
term leaves the wave speeds and therefore the overall structure of the solutions unmodified.
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Figure 4.9: Results of Experiment 4.7—intermediate regime: Density ρ of the modified P(E)
N and

classical PN solutions with N � 1, 3, 5. First row: The P(E)
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difference. Second row: The P(E)
3 solution, the difference to the P(E)

1 solution and the difference to
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4.3.4 Flux functions and heterogeneous media

This test is designed to show the differences in approximation quality between numerical flux
functions. In Section 4.3, two specialized flux functions were introduced: the Godunov flux
for the P(E)

1 model, and the kinetic flux for the K(E)
1 model. We expect both numerical fluxes

to perform significantly better than the all-purpose Lax-Friedrichs flux, especially at material
interfaces. The setup is similar to the line source benchmark in Section 4.3.2 without drift, except
that the water diffusion tensor and therefore the equilibrium is discontinuous. We divide the
domain of width X � 3 mm into Ns vertical stripes, in each of which DW is constant:

DW (x) �



DW,E , b Ns
X ξ + 0.5c even,

DW,O , b Ns
X ξ + 0.5c odd.

The anisotropy factor A � 6 is the same for DW,E and DW,O , but the main diffusion directions
meet at right angles at the interfaces. For DW,E, the main direction is 1√

2
(1, 1)> and for DW,O it is

1√
2

(1,−1). The chosen parameters in Table 4.2 correspond to a kinetic regime.

� Experiment 4.9 — Lax-Friedrichs vs. Godunov. We compute solutions to the P(E)
1 model for

1. a coarse stripe layout with Ns � 10,

2. a fine stripe layout with Ns � 100,

each with the Lax-Friedrichs flux and the Godunov flux for the parameters from Table 4.2.
The end time is T � 2 s.

Figure 4.12 displays the results of Experiment 4.9: The solutions computedwith the Lax-Friedrichs
flux and the Godunov flux and their relative differences. In all solutions the single wave of the
P(E)

1 model is visible. Each time it hits an interface, a fraction of the wave is reflected. In both
solutions for the coarse layout these reflections are clearly visible. Almost vertically travelling
particles have a tendency to get trapped at the interfaces due to refraction. The Godunov flux has
less numerical diffusion and produces a much sharper solution: The main wave is less smeared
and the reflection patterns are clearer. For the fine layout, a homogenization technique [97] is
applicable such that we can consider a single homogeneous medium with averaged properties
as an approximation. The homogenization leads to an isotropic equilibrium with averaged
wave speed λ �

1
2 ( 1√

2
+

1
2 ) ≈ 0.60. In the horizontal direction, we observe exactly this behavior.

Close to the vertical direction, the homogenization breaks down, because to an almost vertically
travelling particle, the effective stripe width is comparable to the domain size. Hence, we observe
remnants of the refraction and concentration at interfaces, at least in the Godunov solution. The

λ0 2 s−1 turning rate

λH 0 ratio of turning rate coefficients λ1
λ0

c 1 mm s−1 cell speed

Table 4.2: Base parameters for the stripes benchmark.
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Figure 4.12: Results of Experiment 4.9—Lax-Friedrichs vs. Godunov. Top row: The coarse
layout with Ns � 10. Bottom row: The fine layout with Ns � 100. Columns from left to right:
Lax-Friedrichs flux, Godunov flux and their relative point-wise difference.

Lax-Friedrichs solution is too diffusive to show these fine-scale effects.

� Experiment 4.10 — Lax-Friedrichs vs. Kershaw-kinetic. We compute solutions to the K(E)
1 model

for

1. a coarse stripe layout with Ns � 10,

2. a fine stripe layout with Ns � 100,

each with the Lax-Friedrichs flux and the Kershaw-kinetic flux, using the parameters from
Table 4.2. The end time is T � 1 s.

Figure 4.13 shows the K(E)
1 solutions to the stripes benchmark and their relative differences. The

solutions produced with the kinetic scheme have much sharper features than the Lax-Friedrichs
solutions. The results for the coarse layout show again the concentration of vertically moving
particles at the interfaces. In the kinetic solution for the fine layout, this effect is captured well,
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Figure 4.13: Results of Experiment 4.10—Lax-Friedrichs vs. Kershaw-kinetic. Top row: The
coarse layout with Ns � 10. Bottom row: The fine layout with Ns � 100. Columns from left to
right: Lax-Friedrichs flux, Kershaw-kinetic flux and their relative point-wise difference.

whereas it is almost completely smeared out in the Lax-Friedrichs solution.

4.3.5 A proteolysis model

Cancer cells actively remodel their environment by chemically cutting fibers [53], a process called
proteolysis. Remodeling may either happen locally upon direct contact of the cells with ECM or
through secretion and diffusion of matrix degrading enzymes. We incorporate a simple model of
contact-dependent proteolysis [73] into the glioma model from Section 3.4.2:

∂t (QE(v)) � −γQE(v)
∫

S2
(1 − |v · v′ |) f (v′)dv′.

Herein, γ is a rate constant and QE is the total fiber distribution without normalization. The fiber
distribution E is now a function of time, whose change depends only on the local cell distribution.
The model assumes that cells preferentially cut fibers that are in their way, i.e., orthogonal to
their current movement direction.
We discretize the velocity variables in this equation with a moment model. In [35], we use a
similar approach in the context of a macroscopic glioma model with proteolysis. Although E
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depends on space, the proteolysis equation acts locally. Thus, the resulting moment model is an
ODE system for each point in space.
With the basis b(v), the corresponding moments w � 〈bQE〉, and an ansatz QE[w] with
multipliers β, we write the moment system:

∂t w � −γ
∫

S2
b(v)QE(v)

∫

S2
(1 − |v · v′ |)f(v′)dv′dv

� −γ
(
wρ −

∫

S2

∫

S2
b(v) |v · v′ |QE(v)f(v′)dv′dv

)
.

(4.12)

The peanut ansatz QE � v>DW v can be interpreted as a monomial P2 ansatz QE(v) � β · b(v).
Normalization of E implies Q �

〈
v>DW v

〉
�

4π
3 tr DW . We identify the entries of the water

diffusion tensor DW with components of the multipliers β and the entries of the tumor diffusion
tensor QPE �

〈
v>vE

〉
with the moments w:

b �

*....................
,

1
vξ
vη
vζ
v2
ξ

v2
η

vξvη
vξvζ
vηvζ

+////////////////////
-

, β �

*....................
,

DW,ζζ

0
0
0

DW,ξξ − DW,ζζ

DW,ηη − DW,ζζ

2DW,ξη

2DW,ξζ

2DW,ηζ

+////////////////////
-

, w � 〈bQE〉 � Q

*....................
,

1
0
0
0

DT,ξξ

DT,ηη

DT,ξη

DT,ξζ

DT,ηζ

+////////////////////
-

.

Now the modified ansatz for particles f depends on the changing ansatz E in turn. The coupled
moment system has the form

∂t *
,

u
w

+
-
+ ∇x · *

,

F (u ,w)
0

+
-
� *

,

R f (u ,w)
RE (u ,w)

+
-
,

with F ,R f from equations (4.7), (4.8) and RE given by the right-hand side of (4.12).
With a modified moment model for glioma, the u equations depend on the tissue moments w in
two ways. Firstly, the fiber distribution E is part of the ansatz f and it also plays the role of an
equilibrium in the turning operator LD . For example, the P(E)

N ansatz is Eα · a. The effects of an
anisotropic equilibrium were discussed in Section 4.3.3. Secondly, fiber degradation produces
gradients in Q, and hence leads to a drift in the particle equation. Therefore, to separate these
effects, in each of the following experiments we perform three computations:

1. Both proteolysis and drift are switched off by setting λH � 0 and γ � 0 s−1.

2. Drift is disabled (λH � 0) but proteolysis is active.

3. Both proteolysis and drift are active.

A set of default parameters for the third option is given in Table 4.3. This choice corresponds to a
kinetic regime with strong drift.
In the first experiment, we model a cluster of cells that starts at the origin with no preferred
orientation and migrates through a homogeneous and aligned tissue.
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λ0 1 s−1 turning rate

λH 0.5 ratio of turning rate coefficients λ1
λ0

c 1 mm s−1 cell speed

γ 12 s−1 rate of proteolytic degradation

Table 4.3: Base parameters for the proteolysis computations.

� Experiment 4.11 — Proteolysis, kinetic regime. We prescribe a homogeneous initial condition
QE(0, x , v) � Q0E0 for fibers. The initial condition for the volume fraction is Q0 � 1 and E0

is a peanut distribution, with anisotropy factor A � 10 and main direction parallel to the
ξ-axis. The cell cluster is initially described by a Gaussian as in (4.11) with standard deviation
σ � 0.2 mm. We compute solutions to the P(E)

1 model, with a P2 ansatz for the fiber distribution
E.

Figure 4.14 displays the cell density ρ and the direction and anisotropy of DW for the results
of Experiment 4.11. Without drift and proteolysis the usual ellipsoidal wave of the P(E)

1 model
can be observed. When proteolysis is enabled, the cells degrade the tissue while spreading
outwards and leave a hole that is visible on a plot of the volume fraction Q. We observe no
change in the fiber orientation. The linear shape index LSI of DW (see (2.3)) and thus the tissue
anisotropy is increased throughout the domain. In horizontal direction, this is clear: Most cells
move horizontally along the fiber direction and cut predominantly vertical fibers. But vertically
moving cells predominantly cut horizontal cells, thus one could expect a decrease in LSI in
vertical direction. Remember that a strong preference to move in fiber direction is built into the
P(E)

1 ansatz, even if f is not in equilibrium. Therefore, a large fraction of cells always moves in
horizontal direction. The P(E)

1 ansatz, which is constructed with the diffusion limit in mind, is
not suited for the kinetic regime. In contrast, the P(E)

5 solution for the same setting, which is not
shown, features an increase in LSI in the vertical direction. Compared to the setting without
proteolysis, the increased anisotropy in E means that the cells’ preference for the horizontal
direction is stronger. Hence, we observe higher peaks in ρ along the horizontal.
In the third setting with enabled drift, the cells detect gradients in Q and move out of the hole
that they create by proteolysis. Hence, the horizontal peaks become even more pronounced.
Also, an increased vertical migration can be observed. The fiber orientation remains unchanged
also in this setting.
We repeat the previous experiment in an intermediate transport regime.

� Experiment 4.12 — Proteolysis, intermediate regime. This experiment is identical to Experi-
ment 4.11, except that we use a higher turning rate λ0 � 10 s−1.

In Figure 4.15 we display results of Experiment 4.12 for the intermediate regime. The observations
are similar to the observations in the kinetic regime. Enabling only proteolysis leads to increased
anisotropy in DW and therefore increased anisotropy in ρ in turn. With additional drift, the
outward bound cell migration is faster in all directions. In contrast to the previous experiment,
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Figure 4.14: Results of Experiment 4.11—proteolysis, kinetic regime. The columns correspond to
the three scenarios: Both effects off, only proteolysis and both effects on. The two rows show
gray scale images of the volume fraction Q (top) and the linear shape index LSI (bottom) for the
same computation. The red lines point in the main direction of DW and scale with the anisotropy
factor. The colored contours show the cell density ρ.
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Figure 4.15: Results of Experiment 4.12—proteolysis, intermediate regime. The Figure layout is
identical to Figure 4.14.

the shape of the ρ contours is the same as in the second scenario. The drift does not increase the
anisotropy of the population. As we saw in the previous line source experiments (Experiment 4.7),
the P(E)

1 model is adequate for this intermediate regime. Here, the fact that LSI is decreased
throughout the domain is expected, since f is closer to E.
The final experiment models the extreme situation that cells cut their way across aligned fibers.
In this artifical setting, the cells start with a strong preference to move to the right, whereas the
fibers are oriented vertically.

� Experiment 4.13 — Extreme remodeling. The initial condition for fibers is homogeneous with
volume fraction Q0 � 1 and a peanut ansatz for E0 with anisotropy A � 10 and main direction
parallel to the η-axis. The cells are initially distributed as a Gaussian with σ � 0.2 mm at the
origin and start with an orientation inside a fuzzy cone of angle π

12 around the ξ-axis:

f (0, x , v) � exp
(
− ‖x‖

2

2σ2

)
12
4π

( 1
π

atan
(
5
(
π
12 − acos(vξ)

))
+

1
2

)
.

We compute solutions to the P(E)
5 model with a P2 ansatz for the fiber distribution.
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Figure 4.16: Results of Experiment 4.13—extreme remodeling. The Figure layout is identical to
Figure 4.14.

Results of this experiment are shown in Figure 4.16. In the first scenario without proteolysis
and drift, the cell cluster moves to the right, relatively unaffected by the fibers. At the tail, the
usual PN artifacts are visible. When proteolysis is enabled, the cells degrade the vertical fibers
along their path which results in a decrease in LSI at the horizontal axis. Due to the changed
equilibrium, fewer cells turn towards the vertical, and the cluster is more compact than without
proteolysis. In agreement with Experiment 4.11, the cells that do move vertically increase LSI.
We observe that in the path of the cells the main axis of DW is turned out of the vertical.
As before, the drift term lets cells detect the gradient of Q, which is caused by proteolysis. As a
result, even more mass remains in the cell cluster and the effect of proteolysis is stronger along the
horizontal axis. In one place, which appears on the LSI image as a lighter spot on the horizontal
axis, so many vertical fibers have been cut that the fibers are now aligned horizontally.
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4.3.6 Direct methods in the diffusion limit

Although the modified moment methods are designed with the diffusion limit in mind, the
numerical scheme defined in Section 4.3.1 is not well suited for the diffusive regime. The scheme
encounters two problems, when ε becomes small. Firstly, in the scaled kinetic equation (3.31)
there is an ε−1 factor in front of the advection term. Because the scheme needs to respect the CFL
condition, this enforces a prohibitively small time step

∆t ≤ ε
δ
∆x

that tends to zero in the diffusion limit. Secondly, due to the stiffness ε−2 in the relaxation term,
the scheme is dominated by numerical diffusion when the discretization is optically thick [93].
Optically thick grid cells are much larger than the mean free path. For the standard upwind
finite-difference scheme, the ratio of numerical diffusion to physical diffusion is proportional to
the Péclet number [79]:

Pe :� ∆x
X

1
ε
�
∆xλ

c
.

A Pe � 1 corresponds to the optically thick regime. Hence, the spatial resolution ∆x must be
chosen proportional to ε to ensure that the numerical diffusion does not dominate the solution
when ε tends to zero. Considering the time step restriction, this means that ∆t ∝ ε2. The run time
of a computation is roughly proportional to

(
X
∆x

)d 1
∆t , and therefore proportional to ε−(2+d) . Even

in one space dimension, computing situations close to the diffusion limit becomes prohibitively
expensive. The following experiment demonstrates the failure of the scheme for an optically
thick discretization.

� Experiment 4.14 — Numerical diffusion. We compute the P(E)
1 solution for the scaled equation

(3.31) without drift (ν � 0) and growth (θ � 0) in one space dimension. For fixed parameter
δ � 0.01 we compute solutions for ε � 0.1, 0.05, 0.01, 0.001, and 0.0001. At a constant grid
resolution of ∆x �

1
200 , the corresponding Péclet numbers are Pe � 0.05, 0.1, 0.5, 5, and 50. The

equilibrium is homogeneous, thus the diffusion constant is D̂ �
1
3 and the diffusion limit is

simply

∂tρ0 − δD̂∂ξξρ0 � 0.

The fundamental solution for the initial condition f (0, ξ, v) � Mδξ (0) is

ρ0(t , ξ) �
M√

4πδD̂

1√
t

exp
(
− 1

4t
ξ2

δD̂

)
.

We start the simulation at time t0 and use f (0, ξ, v) �
1
〈1〉 ρ0(t0 , ξ) as initial condition. The

final time is t0 + 1 � 1.135. We choose σ � 0.03, t0 �
σ2

2δD̂
� 0.135 and M �

√
t0, such that the

initial condition is a Gaussian with standard deviation σ and density ρ � 1 at the peak.

Results of Experiment 4.14 are shown in Figure 4.17. At ε � 0.1 and ε � 0.05 the solution is not
yet accurately described by the diffusion limit. For the value ε � 0.01, the solution is already in
the diffusive regime. At the corresponding Péclet number Pe � 0.5, the numerical diffusion is
still relatively small. But on this grid, moving further to the diffusion limit results in dominating
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Figure 4.17: Results of Experiment 4.14—numerical diffusion. Due to symmetry, only the right
half of the domain is shown. The ε � 0 line is the fundamental solution in the diffusion limit.

numerical diffusion, as seen in the solutions for ε � 0.001 and ε � 0.0001. To keep the Péclet
numbers constant while approaching the diffusion limit, we could increase the spatial resolution.
At ε � 0.0001, we would need a grid with 20 000 cells to keep Pe � 0.5 reasonably small. Note that
the ε � 0.0001 solution needed already about 4.4 × 103 time steps (at CFL � 0.9 ) on the coarse
grid with 200 cells. On the fine grid, we would therefore need 4.4 × 105 time steps. Compared to
the ε � 0.01 solution on the coarse grid, this simulation would run one million times longer.
Two set of parameters for the model of glioma invasion in the human brain are listed in Table 5.4
in the next chapter. The resulting scaling numbers ε range from 6.2 × 10−7 to 1.2 × 10−6. With the
previous considerations in mind, it is clear that the direct numerical scheme from Section 4.3.1 is
the wrong choice in this situation.
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An asymptotic preserving method
for the haptotaxis equation

The hardest thing to imagine, to really get your head around, is the scale at which the
universe operates. You can drill down so small, that you reach particles and building
blocks that your brain simply can’t connect to the physical reality that you inhabit. [...]
And at the other end, the sheer size at which the universe operates literally cannot be
fully conceptualized by the human mind. We have to reduce it to factors, or long
strings of comparative zeros.

Jonathan Simms — The Magnus Archives (Ep. 106)

Analytically we pass seamlessly from the kinetic equation (3.31) to the diffusion limit (3.32) when
ε tends to zero. But the direct discretization in Section 4.3 is only valid for ε not too close to zero.
As seen in Section 4.3.6, this method is dominated by numerical diffusion when the discretization
is optically thick [93], i.e., when the mean free path is much smaller than the grid size. To pass to
the diffusion limit with such a scheme would require infinite spatial and temporal resolution.
On the other hand, there are numerous schemes for the diffusion equation, for example the
multi-point flux approximation (MPFA) method [43]. In this chapter we fill this gap: We design a
numerical scheme for the kinetic equation that is valid for all values of ε > 0 and that converges
to a valid numerical scheme for the diffusion approximation as ε tends to zero. In the limit, the
spatial and temporal resolution are bounded by a stability criterion for the limit equation. This
class of scheme is called AP1. There are many such schemes and in Section 5.1 we review a few of
them. In Section 5.2 we apply the micro-macro decomposition of Lemou and Mieussens [96] to
the haptotaxis equation. Based on their discretization on staggered grids, we derive a numerical
scheme for the haptotaxis equation in three space dimensions, which we describe exhaustively
in Section 5.3. Finally, we investigate the scheme numerically in Section 5.4, wherein we also
present simulations of glioma invasion in white matter.

Most of the contents of this chapter have been published originally in [32]. The final three
numerical experiments in Section 5.4.5, Section 5.4.6, and Section 5.4.7 are new.

1In older literature, the term ’uniformly accurate’ is used [81]
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5.1 A review of asymptotic preserving schemes
For simplicity of exposition, we consider the one-dimensional slab-geometry transport equation
with isotropic scattering. In the diffusive scaling, this equation reads:

∂t f +
1
ε

v∂x f �
1
ε2

(
1
2

∫ 1

−1
f (v′)dv′ − f

)

�
1
ε2

(
ρ − f

)
.

(5.1)

Jin, Pareschi, and Toscani (JPT) [81] split the distribution f into an even and an odd part:

r(t , x , v) �
1
2

[
f (t , x , v) + f (t , x ,−v)

]
,

j(t , x , v) �
1

2ε
[

f (t , x , v) − f (t , x ,−v)
]
,

and reformulate the transport equation (5.1) into the equivalent system

∂t r + v∂x j �
1
ε2 (ρ − r),

∂t j +
1
ε2 v∂x r � − 1

ε2 j.

Introducing the blending function φ(ε), 0 ≤ φ ≤ 1
ε2 , the authors further rewrite this as a

relaxation system

∂t r + v∂x j � − 1
ε2 (r − ρ),

∂t j + φv∂x r � − 1
ε2 ( j + (1 − ε2φ)v∂x r),

in which the stiffness is isolated on the right-hand side. Due to symmetry of r and j, only the
positive half of the velocity space, i.e., v ≥ 0 has to be resolved. As ε tends to zero, the even and
odd functions asymptotically approach r � ρ, j � −v∂x r, thus the r-equation integrated in v over
[−1, 1] becomes the diffusion equation

∂tρ0 − 1
3∂xxρ0 � 0.

An operator splitting between fluxes and reactions—with an explicit-in-time discretization of
the fluxes and an implicit discretization of the reactions—leads to an asymptotic preserving
scheme. The reaction update can be computed explicitly when an implicit Euler scheme is used.
In two space dimensions, the velocity space is divided into quadrants and f is split into four
functions, two even and two odd ones. Applications of the JPT scheme include electron transport
in semiconductors [80] and chemotaxis models for bacteria [25]. The JPT scheme with φ � 0 is
equivalent to Klar’s splitting [87].
Jin and Levermore (JL) [79] propose a scheme for nonlinear two-by-two relaxation systems of the
form

∂tρ + ∂x q � 0,

∂t q + ∂x p(ρ) � −1
ε

(q − r(ρ)).
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This formulation corresponds to the hyperbolic scaling in Section 3.5.3 and includes all first-order
moment systems for (5.1): For example, the P1 approximation leads to p(ρ) � 1

3ρ and r(ρ) � 0.
To first order, the momentum equation is

q0 � r(ρ) − ε(p′(ρ) − r′(ρ)2)∂xρ (5.2)

for ε � 1. The JL scheme is based on a finite-volume discretization with a convex combination of
numerical fluxes depending on the scaling parameter. In the kinetic regime, the upwind flux
based on the face values q (Up)

i+ 1
2

� qi is appropriate. But for small ε, the momentum q approaches

its limit value q0 from (5.2). Face values q (0)
i+ 1

2
that fulfill a discrete version of (5.2) should be used in

the limit regime. The authors propose a convex combination qi+ 1
2
� φ(Pe)q (Up)

i+ 1
2

+ (1−φ(Pe))q (0)
i+ 1

2

that depends on the Péclet number Pe �
∆x
Xε .

Buet et al. [22] extend the Jin-Levermore scheme to the hyperbolic heat equation

∂tρ +
1
ε
∇x · q � 0

∂t q +
1
ε
∇xρ � − 1

ε2 q

in two dimensions. Their nodal scheme, in which fluxes q are reconstructed on control-volumes
around the vertices of the mesh, is designed for arbitrary triangular and quadrilateral meshes. A
combination of kinetic and diffusive fluxes in analogy to the JL scheme ensures the AP property.
Last but not least, Boscarino, Pareschi and Russo [20] design an AP scheme for the transport
equation in a mixed scaling (see Section 3.5.4). In the transition from hyperbolic to parabolic
scaling, they blend between different implicit-explicit (IMEX) schemes.

5.2 The micro-macro decomposition and the diffusion limit
In the next section, we follow the work of Lemou and Mieussens [96] quite closely to perform a
micro-macro decomposition of equation (3.31) in the parabolic dimensionless form. This serves
as the starting point for the numerical discretization scheme. From Lemma 3.9 and Lemma 3.11
we recall the nullspaceN (LD ) � span {E} and range R(LD ) � N⊥(LD ) of the turning operator.
Orthogonal projections onto those spaces are

Π(φ) �
〈
φ
〉

E,

(I −Π)(φ) � φ − 〈
φ
〉

E,

respectively. With these projections, we decompose the particle distribution into an equilibrium
part and a small perturbation:

f � Π f + (I −Π) f � ρE + εg. (5.3)

Now the kinetic equation is split into a system of two equations—one for the macroscopic density
ρ(t , x) and one for the microscopic perturbation g(t , x , v). To obtain the ρ-equation

∂tρ + δ∇x · 〈v g
〉
� θµρ, (5.4)
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we insert the perturbation formula (5.3) into (3.31) and apply the projection Π, using the
positivity and symmetry of the equilibrium (see Definition 3.3) and the mass conservation
〈LD〉 � 0, 〈La〉 � 0 of the turning operators. The equation for g follows from application of
(I −Π) to (3.31) and division by ε:

∂t g +
δ
ε

(I −Π)∇x · (v g) � − δ
ε2∇x · (vρE) +

δλD

ε2 LD g +
νλa

ε2 La f +
θµ

ε
(I −Π)S f . (5.5)

Apart from the new perturbation term La , this is identical to the decomposition of Lemou
and Mieussens [96]. They show that—for compatible initial and boundary conditions—the
micro-macro decomposition is equivalent to the original kinetic equation.
Informally, it is easy to see the diffusion limit from this decomposition. In the limit of ε → 0,
only the 1

ε2 terms remain in (5.5), therefore it is reduced to

g0 �
1
λD
L−1

D

(
∇x · (vρ0E) − ν

δ
λaρ0LaE

)
.

Since 〈vE〉 � 〈La f
〉
� 0, Lemma 3.11 assures that the inverse of LD in this expression exists and

is unique. Inserting this into the macro equation (5.4) immediately gives the diffusion limit (3.32).
We construct the micro-macro AP scheme as the discrete analog of this procedure. To update the
solution from time tn to time tn+1, we compute the perturbation gn+1 with a discrete version of
the micro equation (5.5) first. Then we insert gn+1 into the discretized macro equation (5.4) and
compute the density ρn+1.

5.3 The asymptotic preserving method
We start from the micro-macro decomposition from the previous Section 5.2 and write it as

∂tρ � Φρ (ρ, g) +Γρ (ρ, g),

∂t g �

(
Φ

g
E (ρ) +Φg (ρ, g)

)
+Γg (ρ, g).

(5.6)

Here, the individual terms are grouped into those that we discretize explicitly in time

Φρ (ρ, g) � −δ∇x · 〈v g
〉
+ θµρ,

Φ
g
E (ρ) � − δ

ε2∇x · (vρE),

Φg (ρ, g) � − δ
ε

(I −Π)(∇x · (v g)) +
νλa

ε2 La f +
θµ

ε
(I −Π)(S f ),

(5.7)

and those that we discretize implicitly

Γρ (ρ, g) � 0,

Γg (ρ, g) �
δλD

ε2 LD g.
(5.8)

In [96] the authors argued that it is enough to treat only the term LD implicitly to get an AP
scheme. We call the first and second-order minimally implicit schemes derived from equations
(5.6)-(5.8) MM1m and MM2m , respectively. Without introducing an implicit coupling between
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grid cells, we can also treat the other volume terms implicitly. That is, we regroup the terms into

Φ̃ρ (ρ, g) � −δ∇x · 〈v g
〉
,

Φ̃
g
E (ρ) � − δ

ε2∇x · (vρE),

Φ̃g (ρ, g) � − δ
ε

(I −Π)(∇x · (v g)),

Γ̃ρ (ρ, g) � θµρ,

Γ̃g (ρ, g) �
δλD

ε2 LD g +
νλa

ε2 La f +
θµ

ε
(I −Π)(S f )

(5.9)

and treat Φ̃ρ , Φ̃g
E , Φ̃

g explicitly and Γ̃ρ , Γ̃g partially2 implicit. We call the first and second-order
variants of the scheme with implicit volume terms MM1i and MM2i , respectively.

5.3.1 Primal-dual mesh pairs

Lemou and Mieussens [96] discretize the micro-macro system with finite differences on a
staggered grid in one space dimension. To generalize the method to arbitrary dimension d, we
reformulate the method in the context of finite volumes on primal-dual mesh pairs.
Although the implementation supports only tensor-product grids at the moment, we write the
scheme for conforming polyhedral meshes. This has several benefits. Most aspects of the scheme
do not depend on the tensor-product structure, and also the implementation in DUNE [7] (see
Section B.1) is mesh-agnostic in most parts. The general notation is close to the implementation,
which helps to understand the code and also will make an implementation on unstructured
conforming meshes easier. Our notation and construction deliberately mirrors that of Buet et al.
[22]
Firstly, we consider only the topology of the dual mesh associated with a conforming primal
mesh. Secondly, we define the dual geometry for polyhedral primal meshes in two dimensions.
And finally, we generalize the construction to three space dimensions.

Topology of the dual mesh

The two-dimensional example mesh in Figure 5.1a is helpful to visualize the following definitions.
Each primal cell is identifiedwith a dual vertex, and each primal vertex with a dual cell. Wherever
two primal cells intersect in a face, two dual vertices are connected with an edge and where two
primal vertices are connected, there is a face between two dual cells. Note that in two space
dimensions, edges, entities of dimension one, coincide with faces, entities of dimension d − 1 � 1.
We reserve the indices j, k ∈ N to label cells Ω j ,Ωk in the primal mesh and r, s ∈ N to identify
primal vertices xr , xs . To label an entity on either mesh, we use the indices i , i′. Any primal
cell index j also identifies a dual vertex x j and a primal vertex index r corresponds to a dual
cell Ωr . In one mesh, two cells Ωi ,Ωi′ are neighbors if they intersect in a face ∂Ωi ,i′ � Ωi ∩Ωi′ .
Then the two vertices xi , xi′ in the other mesh are also neighbors, i.e., they are connected with an
edge xi xi′ . In this sense, the neighbors of an index i are those indices i′ for which in one mesh
the corresponding cells are neighbors and thus in the other mesh the corresponding vertices
are neighbors. We write Ni for the set of all neighbors of i. A related concept is the adjacency
between entities of different dimension. If the edge xr xs is part of the cell Ω j we say that Ω j is

2In the discretization of ∂t g � Γ̃g (ρ, g), only g is a function of time and ρ is constant (see Section 5.3.4)
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Figure 5.1: The primal-dual mesh pair in two dimensions. The primal cell Ω j is marked green
and the dual cell Ωr is hatched in gray. Further, the primal vertices xr , xs and the dual vertices
x j , xk are labelled. 5.1a: Highlighted are the primal face ∂Ω j,k and the dual face ∂Ωr,s . 5.1b: The
sub-cell ωr

j � Ω j ∩Ωr is the intersection of the green and gray areas. Highlighted are the primal

facet ∂ωr
j,k � ∂Ω j,k ∩Ωr and the dual facet ∂ω j

r,s � ∂Ωr,s ∩Ω j .

adjacent to xr xs , and denote this by j ∈ Ar,s . The index pair (r, s) also identifies a dual face ∂Ωr,s ,
thus Ar,s equivalently is the set of all dual vertices x j that are part of that face. Furthermore, we
denote the set of a cell’s verticesVi .

Geometry of the dual mesh in two dimensions

We define the dual geometry associated with a conforming polyhedral primal mesh. The
construction is identical to the definition of a control volume by Buet et al. in [22]. Figure 5.1b
illustrates this construction. A dual face ∂Ωr,s , which is the intersection of two dual cells, does
not need to be planar. In two space dimensions it can be constructed, however, from one planar
facet ∂ω j

r,s � ∂Ωr,s ∩Ω j for each intersection with an adjacent primal cell Ω j : j ∈ Ar,s . The facet
∂ω

j
r,s is the line x j xr,s between the primal cell’s barycenter x j and the barycenter xr,s of the edge

xr xs (which coincides with a face ∂Ω j,k , for some k).

Geometry of the dual mesh in three dimensions

In three space dimensions the construction, sketched in Figure 5.2, is similar but more involved.
Because the primal mesh is polyhedral and conforming, the facet ∂ω j

r,s is bounded by line
segments connecting the four points x j , x j,k , xr,s , x j,k′ . The indices k , k′ ∈ N j ∩Ar,s label those two
neighbors of cell Ω j that have xr xs as an edge. With x j,k , x j,k′ we denote the barycenters of the
faces ∂Ω j,k , ∂Ω j,k′ . As in the two-dimensional setting, xr,s is the barycenter of the edge xr xs . In
general, the four points do not have to lie in a plane. To obtain a polyhedral dual mesh, we must
split the facet ∂ω j

r,s into two triangles ∂ω j,1
r,s ∪ ∂ω j,2

r,s � ∂ω
j
r,s defined by the triplets x j , x j,k , xr,s ,

and x j , xr,s , x j,k′ . For tensor product grids and tetrahedral meshes (see [138]) the four points lie
in a plane, which renders the split into triangles unnecessary.
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x j,k

x j,k′ xr,s

∂ω
j
r,s

Figure 5.2: The primal-dual mesh pair in three dimensions. Shown are the primal cell Ω j (green
wire-frame), its two neighbors Ωk ,Ωk′ that are also adjacent to the edge xr xs , and the facet
∂ω

j
r,s � ∂Ωr,s ∩Ω j (gray hatched), i.e., the part of the dual face ∂Ωr,s that lies in the primal cell

Ω j .

5.3.2 The space discretization

We use the symbol Ei wherever any kind of entity on the mesh can be inserted (cell, face, edge,
dual cell, . . . ) and denote the average over Ei with

{·}Ei :� 1
|Ei |

∫

Ei

· dx ,

in which |Ei | �
∫
Ei

1dx is the volume of Ei . In the following, we derive the minimally implicit
variants MM1m , MM2m . All that is required to obtain the variants MM1i , MM2i with implicit
volume terms is a reordering of terms as in (5.9). Let (ρ, g) be the solution of (5.6), with the
average densities

{
ρ
}
Ωr

on dual cells, and the average perturbations
{
g
}
Ω j

on the primal cells.
The projection of equation (5.6) onto the cell averages is a finite system of equations for the values
ρr ≈ {

ρ
}
Ωr
, g j ≈ {

g
}
Ω j

which approximate the averages of the exact solution. We collect these
values in the vectors ρ̄ � (. . . , ρr , ρr+1 . . . )> and ḡ � (. . . , g j , g j+1 , . . . )> and write the resulting
space-discrete system as

∂t ρ̄ � Φ̄ρ (ρ̄, ḡ) +Γ̄ρ (ρ̄, ḡ)

∂t ḡ � (Φ̄g
E (ρ̄) + Φ̄g (ρ̄, ḡ))+Γ̄g (ρ̄, ḡ),

(5.10)

using the same notation for the approximations of the projected operators. For instance, we
have Φ̄ρ (ρ̄, ḡ) � (...,Φρr (ρ̄, ḡ),Φρr+1(ρ̄, ḡ), ...)>, where Φρr is an approximation to {Φρ}Ωr . With
second-order accuracy, the average {·}Ei can be swapped with a product or a chained function,
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i.e., given functions u(x), w(x) ∈ C2(Ei ), and z(u) ∈ C2(u(Ei )) we have

{u(x)w(x)}Ei � {u(x)}Ei {w(x)}Ei + O
(
∆x2

)

{z(u(x))}Ei � z
(
{u(x)}Ei

)
+ O

(
∆x2

)
.

Up to second-order accurate approximations to the explicit operators on each cell are

Φ
ρ
r � −δ

∑

s∈Nr

F(ρ,g)
r,s + θµ(ρr )ρr ,

Φ
g
E j � −

δ

ε2

∑

k∈N j

F(g ,ρ)
j,k ,

Φ
g
j � − δ

ε

∑

k∈N j

F(g ,g)
j,k +

νλa , j

ε2 La
(
ρ̃ jE j + εg j

)
+
θµ(ρ̃ j )
ε

(I −Π)S(ρ̃ jE j + εg j ).

The average density on a primal cell ρ̃ j is not a degree of freedom of the scheme and needs to be
computed from the averages on contributing dual cells:

ρ̃ j �
1

���Ω j
���

∑

r∈Vj

���ω
r
j
��� ρr . (5.11)

The fluxes F(ρ,g)
r,s in density ρ, due to the perturbation g, follow from application of Gauss’

theorem on the term {Φρ}Ωr from equation (5.7):

F(ρ,g)
r,s �

1
|Ωr |

∑

j∈Ar,s

���∂ω
j
r,s

���
{〈

v g
〉}Q
∂ω

j
r,s
· n j

r,s ,

together with a quadrature rule Q. The unit outer normal of a facet ∂ω j
r,s is denoted n j

r,s . The
reconstruction g (x) is a function that is piece-wise continuous on primal cells and interpolates
the averages:

{
g
}
Ω j

� g j . In the first-order scheme the reconstruction is piece-wise constant and
equal to the cell average:

g (x)��Ω j
� g j .

In the second-order scheme we prescribe a piece-wise linear reconstruction

g (x)��Ω j
� g j + b · (x − x j ),

wherein b is a limited estimate of the slope that can be obtained by a minmod3 or WENO4
ansatz. Because we compute the flux on dual faces, which are inside the primal cells where g
is continuous, we do not need an approximate flux function and only have to approximate the
integrals by a quadrature. For the piece-wise constant reconstruction, these simplify to a single
evaluation of the cell mean.
Next we consider the fluxes F(g ,ρ)

j,k resulting from
{
Φ

g
E

}
Ω j

in (5.7):

F(g ,ρ)
j,k �

1
���Ω j

���

*.
,

∑

r∈A j,k

���∂ω
r
j,k

���
{
(vρE)

}Q
∂ωr

j,k

+/
-
· n j,k

3See Section 4.3.1.
4Weighted, essentially non-oscillatory: A high order reconstruction scheme for finite-volume methods.
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This time, the facets ∂ωr
j,k which are parts of the primal face ∂Ω j,k all share the same constant

normal n j,k . ρ(x) is a piece-wise continuous reconstruction of the density on dual cells.
Finally, application of the divergence theorem to {Φg }Ω j in equation (5.7), together with the
projection (I −Π)(∇x · (v g)) � ∇x · (v g) − (∇x · 〈v g

〉
)E gives:

F(g ,g)
j,k �

���∂Ω j,k
���

���Ω j
���

({
(v̂ g)

}Q
∂Ω j,k
−

{E〈v g
〉
EΩ j

}Q
∂Ω j,k

)
· n j,k .

Here, v̂ g is an approximate flux function, for example the upwind flux, that depends on the left
and right state gΩ j

, gΩk
of the face ∂Ω j,k . The second term of the projection is not in conservation

form. In the spirit of wave-propagation for heterogeneous media, as proposed by LeVeque [98],
we simply evaluate the equilibrium EΩ j on the current cell Ω j .
The approximate implicit operators are

Γ
ρ
r � 0

Γ
g
j �

δλD , j

ε2 LD g j � {Γg }Ω j + O
(
∆x2

)
.

If λD (x) is a constant on each cell, this is even exact, because LD is linear. Note that the implicit
operator on a cell only depends on the cell mean. Thus, the implicit part can be solved on each
cell separately. This is still true for the MM1i and MM2i variants in which all volume terms are
treated implicitly.

5.3.3 The resulting scheme on a square grid

In the following, we show the MM1m scheme on a two-dimensional square-grid, i.e., a tensor-
product grid where all primal vertices and cell centers are equally spaced:

x(l ,m) � (l ,m)>∆x x(l+ 1
2 ,m+

1
2 ) � (l +

1
2 ,m +

1
2 )>∆x.

The primal cells of this grid are the squares

Ω(l+ 1
2 ,m+

1
2 ) �

{
x ∈ Rd ���

��x(l ,m) ��∞ ≤ |x |∞ ≤ ��x(l+1,m+1) ��∞
}
,

and the dual cells are

Ω(l ,m) �

{
x ∈ Rd ���

���x(l− 1
2 ,m− 1

2 )
���∞ ≤ |x |∞ ≤

���x(l+ 1
2 ,m+

1
2 )

���∞
}
.

In the first-order MM1m scheme, the reconstructions ρ, g are piece-wise constant and equal to
the cell means. All occurrences of a quadrature rule Q are replaced by the midpoint-rule. Then
the right-hand side of the macro equation becomes

Φ
ρ
(l ,m) � − δ

1
2∆x

〈
− vξ (g(l− 1

2 ,m− 1
2 ) + g(l− 1

2 ,m+
1
2 )) − vη (g(l− 1

2 ,m− 1
2 ) + g(l+ 1

2 ,m+
1
2 ))

+ vξ (g(l+ 1
2 ,m− 1

2 ) + g(l+ 1
2 ,m+

1
2 )) + vη (g(l+ 1

2 ,m+
1
2 ) + g(l− 1

2 ,m+
1
2 ))

〉

+ θµ(ρ(l ,m))ρ(l ,m) ,

when we insert the fluxes on all four faces. The term Φg
E is

Φ
g
E (l+ 1

2 ,m+
1
2 ) �

− δ
ε2

1
2∆x

E(l+ 1
2 ,m+

1
2 )

[ − vξ (ρ(l ,m) + ρ(l ,m+1)) − vη (ρ(l ,m) + ρ(l+1,m))

+ vξ (ρ(l+1,m) + ρ(l+1,m+1)) + vη (ρ(l+1,m+1) + ρ(l ,m+1))
]
.
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And finally we have:

Φ
g
(l+ 1

2 ,m+
1
2 )

�

− δ
ε

1
2∆x

[
E−vξ g(g(l+ 1

2 ,m+
1
2 ) , g(l− 1

2 ,m+
1
2 )) E−vηg(g(l+ 1

2 ,m+
1
2 ) , g(l+ 1

2 ,m− 1
2 ))

+v̂ξ g(g(l+ 1
2 ,m+

1
2 ) , g(l+ 3

2 ,m+
1
2 )) + v̂ηg(g(l+ 1

2 ,m+
1
2 ) , g(l+ 1

2 ,m+
3
2 ))

]

+
νλa , j

ε2

[
La

(
ρ̃(l+ 1

2 ,m+
1
2 )E(l+ 1

2 ,m+
1
2 ) + εg(l+ 1

2 ,m+
1
2 )

)]

+

θµ(ρ̃(l+ 1
2 ,m+

1
2 ))

ε

[
S

(
ρ̃(l+ 1

2 ,m+
1
2 )E(l+ 1

2 ,m+
1
2 ) + εg(l+ 1

2 ,m+
1
2 )

)

− ρ̃(l+ 1
2 ,m+

1
2 )E(l+ 1

2 ,m+
1
2 )

]

with the average density ρ̃(l+ 1
2 ,m+

1
2 ) �

1
4 (ρ(l ,m) + ρ(l+1,m) + ρ(l+1,m+1) + ρ(l ,m+1)) over the primal

cell Ω(l+ 1
2 ,m+

1
2 ) . The numerical flux function can be any of the usual methods, for example, the

upwind flux

v̂ξ g(g(l+ 1
2 ,m+

1
2 ) , g(l+ 3

2 ,m+
1
2 )) � max(vξ , 0)g(l+ 1

2 ,m+
1
2 ) + min(vξ , 0)g(l+ 3

2 ,m+
1
2 ) .

5.3.4 The time discretization

We use the stiffly accurate IMEX schemes from [4]. The time step size is denoted by ∆t. In the
first-order scheme, the forward-backward Euler scheme is used. For the particular system (5.10),
this reads

ρ̄∗

ḡ∗
�

�

ρ̄n + ∆tΦ̄ρ (ρ̄n , ḡn )

ḡn + ∆t
(
Φ̄

g
E (ρ̄n , ḡn ) + Φ̄g (ρ̄n , ḡn )

)


explicit euler step

ρ̄n+1

ḡn+1

�

�

ρ̄∗ + ∆tΓ̄ρ (ρ̄n+1 , ḡ∗)

ḡ∗ + ∆tΓ̄g (ρ̄∗ , ḡn+1)




implicit solve

without coupling.

In the minimally implicit variant MM1m , we have Γ̄ρ � 0 and thus the implicit update for the
density reduces to ρ̄n+1 � ρ̄∗. Lemou andMieussens [96] proved that their scheme is stable under
the time step restriction

∆t ≤ 1
2 (∆tmicro + ∆tmacro) . (5.12)

We do not try to prove a stability result, but all our computations indicate that this choice leads
to a stable scheme. The microscopic time step restriction comes from the CFL condition in the
discretization of the transport part and is given by ∆tmicro �

1
2
∆x
c . On the macroscopic scale, the

scheme must respect the stability condition of the diffusion approximation, as well as the CFL
condition for advection. Hence, ∆tmacro � max

(
∆x2

2‖D‖ ,
∆x

2‖a‖
)
.

Remark 5.1 —Glioma equation. The implicit part in the MM1m scheme can be solved analytically
for the glioma model from Section 3.4.2. We have

gn+1
j � g∗j + ∆t

δλD , j

ε2 LD gn+1
j

� g∗j − ∆t
δλD , j

ε2 gn+1
j ,
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which is easily solved for the update:

gn+1
j �

1

1 + ∆t
δλD , j

ε2

g∗j .

This is of course no longer possible for the schemes MM1i and MM2i with implicitly discretized
volume terms.

The second-order scheme has to be chosen carefully to keep the asymptotic preserving property.
We use the stiffly accurate IMEX scheme ARS(2,2,2) [4] in which the updated solution is identical
to the last stage in a time step. The details of the application of that scheme to (5.10) can be found
in Section A.6. Our numerical experiments indicate that the time step (5.12) needs to be restricted
further by a factor of 0.2 to achieve stability with this scheme.

5.3.5 The asymptotic limit of the scheme

We consider the first-order minimally implicit variant MM1m , which can—with some reordering
of the steps—be written as

ḡ∗ � ḡn
+ ∆t

(
Φ̄

g
E (ρ̄n , ḡn ) + Φ̄g (ρ̄n , ḡn )

)

ḡn+1
� ḡ∗ + ∆tΓ̄g ( ḡn+1)

ρ̄n+1
� ρ̄n

+ ∆tΦ̄ρ (ρ̄n , ḡn+1).

This looks already like a discrete version of the considerations in Section 5.2 where we first
computed the perturbation and then inserted this into the density equation. In the diffusion
limit, only the 1

ε2 terms remain. Thus, the implicit perturbation update reduces to

gn+1
j � − ε2

∆tδλD , j
L−1

D g∗j

with

g∗j � ∆t
(
Φ

g
E j (ρ̄

n , ḡn ) +Φg
j (ρ̄n , ḡn )

)

� ∆t *.
,
− δ
ε2

1
���Ω j

���

∑

k∈N j

*.
,

∑

r∈A j,k

���∂ω
r
j,k

��� vρn
r E j

+/
-
· n j,k +

νλa , j

ε2 La
(
E j

)
ρ̃n

j
+/
-
.

Combining these two expressions yields

gn+1
j � − 1

λD , j

*.
,
− 1

���Ω j
���

∑

k∈N j

*.
,

∑

r∈A j,k

���∂ω
r
j,k

���L−1
D (vE j )ρn

r
+/
-
· n j,k +

ν
δ
λa , jL−1

D La
(
E j

)
ρ̃n

j
+/
-
.

Finally, we get the limit of the scheme as ε → 0, when we insert this expression into the update
for the density:

ρn+1
r � ρn

r + ∆t *.
,
−δ 1
|Ωr |

∑

s∈Nr

∑

j∈Ar,s

���∂ω
j
r,s

���
〈
v gn+1

j

〉
· n j

r,s + θµ(ρn
r )ρn

r
+/
-
.

This is an explicit scheme for the density ρn+1
r . The updated value ρn+1

r only depends on the
previous values on the same dual cell Ωr and those cells Ωs′ which are connected to it with at
least a vertex, i.e., Ωr ∩Ωs′ , ∅ or ∃ j : x j ∈ Vr ∧Vs′ .
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On a square grid in two dimensions, this is equivalent to

gn+1
(l+ 1

2 ,m+
1
2 )

�
1
λD , j

1
2∆x
L−1

D

(
E(l+ 1

2 ,m+
1
2 )

[
−vξ

(
ρn

(l ,m) + ρ
n
(l ,m+1)

)
− vη

(
ρn

(l ,m) + ρ
n
(l+1,m)

)

+vξ
(
ρn

(l+1,m) + ρ
n
(l+1,m+1)

)
+ vη

(
ρn

(l ,m+1) + ρ
n
(l+1,m+1)

)] )

− ν
δ

λa , j

λD
L−1

D La (E(l+ 1
2 ,m+

1
2 ))

1
4

(
ρn

(l ,m) + ρ
n
(l+1,m) + ρ

n
(l+1,m+1) + ρ

n
(l ,m+1)

)
,

ρn+1
(l ,m) � ρ

n
(l ,m) −

∆tδ
2∆x

〈
−vξ

(
gn+1

(l− 1
2 ,m− 1

2 )
+ gn+1

(l− 1
2 ,m+

1
2 )

)
− vη

(
gn+1

(l− 1
2 ,m− 1

2 )
+ gn+1

(l+ 1
2 ,m− 1

2 )

)

+vξ
(
gn+1

(l+ 1
2 ,m− 1

2 )
+ gn+1

(l+ 1
2 ,m+

1
2 )

)
+ vη

(
gn+1

(l− 1
2 ,m+

1
2 )
+ gn+1

(l+ 1
2 ,m+

1
2 )

)〉

+ ∆tθµ(ρn
(l ,m))ρ

n
(l ,m) .

For the special case that the equilibrium E and the factors λD , λa are constant in space, we write
the limit scheme explicitly. We eliminate ḡn+1 in the ρ̄ equation5 and write the resulting scheme
for ρ̄n+1

ρn+1
(l ,m) � ρ

n
(l ,m) + ∆t

δ
λD

(
∇x · (D∇xρ)

)
− ∆t

νλa

λD

(
∇x · (aρ)

)
+ ∆tθµ(ρn

(l ,m))ρ
n
(l ,m) ,

with approximations to the diffusion

∇x · (D∇xρ) �
1

4∆x2

(
ρn

(l ,m) (−4Dξξ − 4Dηη)

+

(
ρn

(l−1,m) + ρ
n
(l+1,m)

)
(2Dξξ − 2Dηη)

+

(
ρn

(l ,m−1) + ρ
n
(l ,m+1)

)
(−2Dξξ + 2Dηη)

+

(
ρn

(l−1,m−1) + ρ
n
(l+1,m+1)

)
(Dξξ + 2Dξη + Dηη)

+

(
ρn

(l+1,m−1) + ρ
n
(l−1,m+1)

)
(Dξξ − 2Dξη + Dηη)

)

and drift

∇x · (aρ) � − 1
8∆x

( (
ρn

(l−1,m) − ρn
(l+1,m)

)
(2aξ)

+

(
ρn

(l ,m−1) − ρn
(l ,m+1)

)
(2aη)

+

(
ρn

(l−1,m−1) − ρn
(l+1,m+1)

)
(aξ + aη)

+

(
ρn

(l+1,m−1) − ρn
(l−1,m+1)

)
(−aξ + aη)

)
,

wherein D is the diffusion tensor from (3.36) and a is the drift vector from (3.38). If the diffusion
tensor is the identity D � I, which is the case for example in the glioma equation with isotropic
equilibrium E(v) � 1, then the discrete diffusion reduces to a diagonal five-point stencil

∇x · (D∇xρ) � ∇x · (∇xρ) �
1

2∆x2

(
−4ρn

(l ,m) + ρ
n
(l−1,m−1) + ρ

n
(l+1,m−1) + ρ

n
(l−1,m+1) + ρ

n
(l+1,m+1)

)
.

Figure 5.3 illustrates how the neighboring cells contribute to the limit stencil. In this special case,
the presented AP-method is identical to the nodal scheme [22] proposed by Buet et al. As they
already discussed, the scheme leads to a decoupling of meshes. If we start with a Dirac initial

5A symbolic toolbox is handy in these calculations.
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condition on cell (l ,m), only every other cell (l + l′,m + m′) with l′ + m′ � 2q will ever receive
some mass. The result is the checkerboard pattern observed in Experiment 5.10 (see Figure 5.12).
The drift is approximated by a central scheme, which is also not ideal. For example, inserting the
first unit vector a � (1, 0)> for the drift, we get

∇x · (aρ) � ∂ξρ �
1

4∆x

(
−2ρn

(l−1,m) + 2ρn
(l+1,m) − ρn

(l−1,m−1) + ρ
n
(l+1,m−1) − ρn

(l−1,m+1) + ρ
n
(l+1,m+1)

)
.

In the next two subsections we show how to modify the AP-method in such a way that the
diffusion and drift are better approximated in the limit. Particularly, on a tensor-product grid
the diffusion will be approximated by a standard five-point stencil, and the drift by an upwind
method.

5.3.6 An improved diffusion stencil in the limit

The numerical diffusion approximation results from a concatenation of the macroscopic flux
Φ
ρ
r (ρ̄n , ḡn+1) with L−1

D Φ
g
E j (ρ̄

n , ḡn ) on overlapping primal cells j ∈ Vr . The goal of this section is
to modify Φρr and Φg

E j such that—on a square grid in two dimensions—the resulting diffusion
approximation becomes the standard five-point stencil. We distinguish the improved schemes by
a superscript +, for example MM+

1m , from the naive schemes, denoted for example by MM×
1m .

To simplify the following computations as much as possible, we set δ � 1, λD � 1 and use a
constant-in-space equilibrium E(x , v) � E(v).
Recall the flux over primal faces in the most general form:

F(g ,ρ)
j,k �

���∂Ω j,k
���

���Ω j
���

{
(vρE) · n j,k

}Q
∂Ω j,k

.

Together with a piece-wise constant reconstruction of the density ρ��Ωr
� ρr this results in the

formulation

F(g ,ρ)
j,k �

1
���Ω j

���

*.
,

∑

r∈A j,k

���∂ω
r
j,k

��� vρrE j
+/
-
· n j,k .

This is a sum of constant fluxes over the facets ∂ωr
j,k , weighted by the facet volumes

����∂ω
r
j,k

����. In the
derivation of the AP scheme on square grids in Section 5.3.3 we used this method. Considering
the primal face (l + 1

2 ,m +
1
2 ), (l + 3

2 ,m +
1
2 ) in effect this method assigns equal weights 1

2∆x to
both overlapping dual cells (l + 1,m), (l + 1,m + 1). We get the same weights if we reconstruct ρ
as a globally continuous function from bilinear elements on each dual cell and use a midpoint
quadrature rule on the faces. Starting from this interpretation, we define four variants of the
microscopic flux

Φ
g ,(ξ,+)
E,(l+ 1

2 ,m+
1
2 )
, Φ

g ,(ξ,−)
E,(l+ 1

2 ,m+
1
2 )
, Φ

g ,(η,+)
E,(l+ 1

2 ,m+
1
2 )
, Φ

g ,(η,−)
E,(l+ 1

2 ,m+
1
2 )

that use different weights on different faces. In the (ξ,+)-variant, the flux on ξ-normal faces is
evaluated with the topmost points, but for the η-normal faces equal weights are used:

Φ
g ,(ξ,+)
E,(l+ 1

2 ,m+
1
2 )

� − δ
ε2

E
∆x

[
− vξρ(l ,m+1) − 1

2 vη (ρ(l ,m) + ρ(l+1,m))

+ vξρ(l+1,m+1) +
1
2 vη (ρ(l ,m+1) + ρ(l+1,m+1))

]
.
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ρ(l ,m)

g(l− 1
2 ,m− 1

2 )

g(l− 1
2 ,m+

1
2 )

	
g(l+ 1

2 ,m− 1
2 )

⊕
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2 ,m+
1
2 )

F(ρ,g)
(l ,m),(l+1,m)

F(ρ,g)
(l ,m),(l ,m+1)

F(ρ,g)
(l ,m),(l ,m−1)
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1
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1
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4

Figure 5.3: Contribution of the right neighbor (l + 1,m) (highlighted green) to the limit diffusion
stencil around (l ,m). In the middle of the figure, the dual cell (l ,m) (gray hatched) is shown
together with the overlapping primal cells. At the top and bottom of the figure the primal cells
(l + 1

2 ,m +
1
2 ) (marked ⊕) and (l + 1

2 ,m − 1
2 ) (marked 	) are shown again. Evaluation points

for fluxes are shown as red stars. In the upper right primal cell, the right neighbor contributes
the term E

2∆x vξρ(l+1,m) ( 1 ) to the flux F(g ,ρ)
(l+ 1

2 ,m+
1
2 ),(l+ 3

2 ,m+
1
2 )

over the primal face in positive ξ-

direction. It also adds the term − E
2∆x vηρ(l+1,m) (not labelled) to the flux F(g ,ρ)

(l+ 1
2 ,m+

1
2 ),(l+ 1

2 ,m− 1
2 )

in negative η-direction. Both these fluxes contribute (e.g. 2 for the positive ξ-flux) to the
update g (n+1)

(l+ 1
2 ,m+

1
2 )

� L−1
D g∗

(l+ 1
2 ,m+

1
2 )
, which in turn is used for the fluxes over dual faces around

(l ,m). For the positive ξ-flux F(ρ,g)
(l ,m),(l+1,m) , the value g (n+1)

(l+ 1
2 ,m+

1
2 )

contributes 1
2∆x

〈
vξ g(l+ 1

2 ,m+
1
2 )

〉

( 3 ) and similarly for the positive η-flux F(ρ,g)
(l ,m),(l ,m+1) it adds

1
2∆x

〈
vηg(l+ 1

2 ,m+
1
2 )

〉
(not labelled).

Remembering that Dξη � −
〈
vξL−1

D (vηE)
〉
, we get for the total contribution of ρ(l+1,m) via the

upper right overlap g(l+ 1
2 ,m+

1
2 ) the term 1

4∆x2

(
Dξξ − Dηη − Dξη + Dηξ

)
(e.g. 4 ), which is zero for

an isotropic tensor D � I. Analogously, the contributions via the lower right overlap cancel.



5.3 The asymptotic preserving method 113
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⊕
g(l+ 1

2 ,m+
1
2 )

F(ρ,g)
(l ,m),(l+1,m)

F(ρ,g)
(l ,m),(l ,m+1)

F(ρ,g)
(l ,m),(l ,m−1)

	

⊕
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⊕
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⊕
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Figure 5.4: Improved diffusion stencil: Contribution of the right neighbor (l + 1,m) (highlighted
green) to the limit diffusion stencil around (l ,m). In the middle of the figure, the dual cell
(l ,m) (hatched gray) is shown together with the overlapping primal cells. At the top of the
figure, the primal cell (l + 1

2 ,m +
1
2 ) is shown again twice (marked ⊕), on the top left to display

the update variant (η,−) and on the top right to display the variant (ξ,+). Similarly, at the
bottom the two update variants (η,−) and (ξ,+) are shown for the primal cell (l + 1

2 ,m − 1
2 )

(marked 	). Evaluation points for fluxes are shown as red stars. The lines show how different
variants are used for fluxes over different dual facets, thin dots denoting zero weight, thick
dots denoting weight 1

2 , and thick dashes denoting weight 1. With similar considerations as
in Figure 5.3, we see that (follow e.g., 1 – 2 – 3 – 4 ) the right neighbor ρ(l+1,m) contributes with
weights 1

4∆x2

(
4Dξξ + 0Dηη + 0Dηξ + 0Dξη

)
.
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Similarly, the (ξ,−)-variant uses only the lowest points in ξ-normal faces:

Φ
g ,(ξ,−)
E,(l+ 1

2 ,m+
1
2 )

� − δ
ε2

E
∆x

[
− vξρ(l ,m) − 1

2 vη (ρ(l ,m) + ρ(l+1,m))

+ vξρ(l+1,m) +
1
2 vη (ρ(l ,m+1) + ρ(l+1,m+1))

]
.

The other variants are defined analogously for the η-normal faces. These weights can be
interpreted as evaluations of a linear interpolation between cell means at the nodes of zeroth-
order accurate Gauss-Radau quadrature rules. In the second-order scheme, we assign the weights
according to first-order accurate Gauss-Radau rules instead. Figure 5.5 shows the evaluation
points for the (ξ,−) variant. We use each flux variant in the perturbation update gn+1

(l+ 1
2 ,m+

1
2 )
in

turn to compute the four modified perturbations

gn+1,(ξ,+)
(l+ 1

2 ,m+
1
2 )
, gn+1,(ξ,−)

(l+ 1
2 ,m+

1
2 )
, gn+1,(η,−)

(l+ 1
2 ,m+

1
2 )
, gn+1,(η,−)

(l+ 1
2 ,m+

1
2 )
.

Now we modify the density flux Φρ(l ,m) . In each flux over a dual facet, one variant of the
perturbation is used:

ρn+1
(l ,m) � ρ

n
(l ,m)

− ∆tδ
2∆x

〈
− vξ

(
gn+1,(ξ,+)

(l− 1
2 ,m− 1

2 )
+ gn+1,(ξ,−)

(l− 1
2 ,m+

1
2 )

)
− vη

(
gn+1,(η,+)

(l− 1
2 ,m− 1

2 )
+ gn+1,(η,−)

(l+ 1
2 ,m− 1

2 )

)

+ vξ
(
gn+1,(ξ,+)

(l+ 1
2 ,m− 1

2 )
+ gn+1,(ξ,−)

(l+ 1
2 ,m+

1
2 )

)
+ vη

(
gn+1,(ξ,+)

(l− 1
2 ,m+

1
2 )
+ gn+1,(ξ,−)

(l+ 1
2 ,m+

1
2 )

) 〉

+ ∆tθµ(ρn
(l ,m))ρ

n
(l ,m) ,

By this procedure, which is depicted in Figure 5.4, weight is shifted from the diagonal neighbors
to the direct neighbors.
In the limit, this gives the following diffusion approximation:

∇x · (D∇xρ) �
1

4∆x2

(
ρn

(l ,m) (−8Dξξ − 8Dηη)

+

(
ρn

(l−1,m) + ρ
n
(l+1,m)

)
(4Dξξ) +

(
ρn

(l ,m−1) + ρ
n
(l ,m+1)

)
(4Dηη)

+

(
ρn

(l−1,m−1) − ρn
(l+1,m−1) − ρn

(l−1,m+1) + ρ
n
(l+1,m+1)

)
(2Dξη)

)
,

which is the classical five-point stencil

∇x · (D∇xρ) � ∇x · (∇xρ) �
1

2∆x2

(
−4ρn

(l ,m) + ρ
n
(l−1,m) + ρ

n
(l+1,m) + ρ

n
(l ,m−1) + ρ

n
(l ,m+1)

)

if the diffusion tensor is isotropic.

Remark 5.2 — Extension to three dimensions. In three space dimensions the procedure is struc-
turally similar but the notation becomes even more unwieldy. The computational cost also
increases, because we need twelve variants, four for each normal direction. For example, in
the variant (ξ,++), the fluxes over ξ-normal faces are evaluated at the top right node.
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g (ξ,−)
(l+ 1

2 ,m+
1
2 )

ρ(l ,m) ρ(l+1,m)

ρ(l ,m+1) ρ(l+1,m+1)

Figure 5.5: The second-order accurate shifted update variant (ξ,−) around the primal cell
(l + 1

2 ,m +
1
2 ). Evaluation points for fluxes are shown as red stars. A first-order accurate

Gauss-Radau quadrature is used for the fluxes over ξ-normal faces. The fluxes over η-normal
faces are approximated with the second-order accurate midpoint rule.

5.3.7 An upwind discretization of the drift in the limit

The limit drift approximation follows from a concatenation of the macroscopic flux Φρ with
−L−1

D La (E j )ρ̃n
j . Using an average density ρ̃ j weighted by the sub-cell volumes as in (5.11) leads

to a central approximation of the drift as sketched in Figure 5.6a. But we know the local drift
direction

a j �
〈
vL−1

D LaE j
〉

and want to assign more weight to those cells Ωr that are upwind of the center x j . We write x∗j
for the intersection of the ray

x j − τa j , τ ∈ R+

with the cell boundary ∂Ω j . Then we define

ρ̃ j � ρ(x∗j )

with a continuous, piece-wise linear reconstruction ρ by hat-functions. In Figure 5.6b we show a
sketch of this first-order accurate upwind discretization for the drift.

(a) Central

gl+ 1
2 ,m+

1
2

ρ(l ,m) ρ(l+1,m)

ρ(l ,m+1) ρ(l+1,m+1)

(b) Upwind

gl+ 1
2 ,m+

1
2

ρ(l ,m) ρ(l+1,m)

ρ(l ,m+1) ρ(l+1,m+1)

a

ρ̃

Figure 5.6: Drift discretizations on the primal cell (l + 1
2 ,m +

1
2 ): central and upwind scheme.

Red stars are evaluation points for the density ρ̃(l+ 1
2 ,m+

1
2 ) .
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5.3.8 The treatment of boundary conditions

We consider only boundary conditions that preserve mass. On a macroscopic level this translates
to a zero-flux Robin-type boundary condition for the density in (3.32):

−δD · ∇xρ0 + δaDρ0 − νρ0a��∂Ωx
� 0. (5.13)

This does not determine the boundary conditions for the micro-equation uniquely. All reflective
boundary conditions for the kinetic equation (3.31) for f preserve mass. At a reflective boundary,
the values f (v) are prescribed for incoming velocities v · n < 0 and follow from the outgoing
values via the reflection integral:

f (v) �
∫

v′·n>0
B(v , v′) f (v′)dv′ ∀v · n < 0, (5.14)

Of course, the reflection kernel B is defined such that the net mass flux across the boundary is
zero, that is, it fulfills

0 �

∫

S2
(v · n) f (v)dv �

∫

v·n>0
(v · n) f (v)dv +

∫

v·n<0
(v · n) f (v)dv

�

∫

v·n>0
(v · n) f (v)dv +

∫

v·n<0
(v · n)

∫

v′·n>0
B(v , v′) f (v′)dv′dv.

(5.15)

From the last line, we see that this is the case if
∫

v·n<0
(v · n)B(v , v′)dv � −v′ · n

holds. To derive the boundary condition for g that is equivalent to (5.14), we insert the
micro-macro decomposition (5.3) and obtain

g(v) �
ρ

ε

[∫

v′·n>0
B(v , v′)E(v′)dv′ − E(v)

]
+

∫

v′·n>0
B(v , v′)g(v′)dv′.

If the kernel is not compatible with the equilibrium state, then in the limit when ε tends to zero, g
becomes unbounded at the boundary, and we need to solve a half-space problem to compute the
boundary condition. Here we do not want to consider boundary layers and therefore demand
that the equilibrium state E fulfills (5.14). Then the condition (5.14) also holds for g. The value
for ρ is left unconstrained.
For the kernel, we consider two options. The ’u-turn’ kernel models that cells turn around 180
degrees when encountering a wall, independent of the angle of collision. It is given by

Buturn(v , v′) � δv (−v′).

Because the equilibrium fulfills E(v) � E(−v), the reflection equation (5.14) holds for the
equilibrium. It is easy to check the zero-mass-flux condition (5.15) for this kernel.
Another option is that after a collision with the wall, the incoming particles are in equilibrium

f (v) � αE(v) ∀v · n < 0.

This so-called thermal boundary condition can be achieved with the kernel

Bthermal(v , v′) �
αE(v)∫

v′·n>0 f (v′)dv′
.
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The parameter α is defined by

α � −
∫

v·n>0(v · n) f (v)dv
∫

v·n<0(v · n)E(v)dv

to fulfill the zero-mass-flux condition (5.15). For a symmetric equilibrium we have α � 1, thus
the boundary condition is compatible with the equilibrium. The resulting boundary condition
for g is

g(v) � −
∫

v·n>0(v · n)g(v)dv
∫

v·n<0(v · n)E(v)dv
E(v) ∀v · n < 0. (5.16)

Remark 5.3 — Specular reflection. The specular reflection kernel

Bspec(v , v′) � δv (v′ − 2(v′ · n)n)

models hard-sphere collisions between particles and the wall. It conserves mass, but is not
compatible with the equilibrium in general, only if the equilibrium is mirror symmetric
around the outer boundary

E(v) � E(v − 2(v · n)n).

Optionally, we can constrain the density ρ0��∂Ωx
� ρ0b . Then, together with (5.13) this implies a

condition for ∇xρ0, which can always be fulfilled because D is invertible. On the particle level,
this yields the additional condition

ρ��∂Ωx
�

∫

S2
f (v)dv

�����∂Ωx

� ρ0b .

5.3.9 The discretization of the velocity space by a linear spectral method

The scheme that we derived in the previous sections is discrete in time and space. It remains to
find a suitable discretization for the velocity space. We use a linear spectral Galerkin method
based on real-valued spherical harmonics [21, 59, 123]. For a definition of the spherical harmonics,
we refer to Appendix A.2. Remember the constrained space of perturbations g from Lemma 3.9

g ∈ N⊥(LD ) �
{

g ∈ L2
E , (g , E)E �

〈
g
〉
� 0

}
. (5.17)

Let a∞ be a basis of spherical harmonics with the first basis function a0 �
1√
4π
. Because of the

orthogonality
〈
ai a j

〉
� δi j of the spherical harmonics, all basis components except for a0 fulfill

the constraint
〈

g
〉
� 0 in (5.17). Hence, we construct finite-dimensional basis vectors pN for the

constrained space by leaving out the constant basis function a0:

pN
�

(
p (1) , . . . , p (N)

)
�

(
a (1) , . . . , a (N)

)
.

With the moments

m �
〈
p g

〉
,
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we write the discrete-in-velocity approximation of problem (5.6), which consists of finding
moments (ρ,m) that solve

∂tρ � Φρ (ρ, g) +Γρ (ρ, g),

∂t m �

〈
pΦg

E (ρ)
〉
+

〈
pΦg (ρ, g)

〉
+

〈
pΓg (ρ, g)

〉
.

(5.18)

To close the system, we make the linear ansatz g(v) � φ · p(v) � m · p. This is the orthogonal
projection of g onto the finite-dimensional subspace ofN⊥(LD ) spanned by p. The multipliers
φ are identical to the moments m because the basis is orthonormal (see Section 1.2.3). Moments
of the individual terms from (5.7), (5.8) are

Φρ (ρ, g) � −δ∇x · 〈vg〉 + θµρ,
〈
pΦg

E (ρ)
〉
� − δ

ε2∇x ·
(
ρ
〈
vp>E

〉)
,

〈
pΦg (ρ, g)

〉
� − δ

ε

[
∇x ·

〈
vp>g

〉
− ∇x · 〈vg〉 〈pE

〉]
+
νλa

ε2
〈
pLa (ρE + εg)

〉
+
θµ

ε

〈
p(I −Π)S(ρE + εg)

〉
,

and

Γρ (ρ, g) � 0,
〈
pΓg (ρ, g)

〉
�
δλD

ε2
〈
pLD (g)

〉
.

The equations are coupled by the flux moments 〈vg〉 ∈ Rd ,
〈
vp>g

〉 ∈ Rn×d and moments of the
collision term and source on the right-hand side. The macro equation is coupled with the micro
equations by the moments

〈vg〉 �
√

4π√
3

〈
p (1)g

〉
�

√
4π√
3

m (1) .

In general, i-th order flux moments
〈
vp (i)>g

〉
can be written as a combination of the moments〈

p (i+1)g
〉
� m (i+1) of order i + 1. Usually, this relation is written in matrix form. For instance, for

the ξ-component of the velocity, we write

〈
vξpg

〉
� Mξm :�

〈
vξpp>

〉
m.

For details on how to compute these matrices for the full basis a, see for example [123]. By
orthogonality of the basis we can simply remove the first row and column of the matrix

〈
vξaa>

〉

to get the matrix Mξ �
〈
vξpp>

〉
for the restricted basis p. Because the turning operators are

linear, we can also write their contribution to the moment system in matrix form:

〈
pLD (g)

〉
� CD m ,

〈
pLa (g)

〉
� Ca m.
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Remark 5.4 — Turning operators in the glioma equation. From equation (3.27) we have

LD (g) � −g,

thus

〈
pLD (g)

〉
� − 〈

pg
〉
� −m ,

and CD � −I. The turning perturbation is given by

La (g) � E∇xQ · (E 〈vg〉 − vg).

Its moments are

〈
pLa (g)

〉
� E∇xQ ·

(
〈vg〉

〈
p>E

〉
−

〈
vp>g

〉)

The dot product is between components of the gradient E∇xQ and components of the velocity
v. The moments appearing in this expression have been calculated before. With some abuse
of vector notation, we have

〈
pLa (g)

〉
� E∇xQ ·

(√
4π√
3

m (1)
〈
p>E

〉
− (Mξm ,Mηm ,Mζm)>

)
.

Because the source is S f � f , its moments can be simplified to

〈
p(I −Π)S(ρE + εg)

〉
� εm.

Remark 5.5 Equation (5.18) is equivalent to the moment system

∂t u � − δ
ε
∇x ·

〈
va>f

〉
+
δ

ε2 λD 〈aLDf〉 + ν
ε
λa 〈aLaf〉 + θµ 〈aSf〉

for the original equation (3.31) with the approximation f and moments u of the particle
distribution f given by

f � u · a � ρE + εg,

ui � 〈aif〉 �



1√
4π
ρ i � 0

ρ
〈
Epi

〉
+ εmi i > 0

This corresponds to the modified P(E+)
N method introduced in Section 4.1.2.

The space and time discretization can be carried over to the moment system without change.
It is of course possible to discretize the velocity space by any other method. Close enough to the
diffusion limit, the choice of the discretization should become negligible. Due to its simplicity,
one popular choice in the literature is the discrete-ordinates method [59, 92]. In three space
dimensions this method needs at least eight degrees of freedom to preserve symmetry, twice as
much as needed in the P1-method.
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5.4 Numerical experiments
We investigate properties of the scheme numerically in a range of benchmarks. The fundamental
solution to the drift-diffusion equation serves to verify the correct diffusion limit of the scheme
and also its order of convergence with respect to grid refinement (see Section 5.4.1). Additionally,
the order of convergence is verified in Section 5.4.2 with a manufactured solution for all transport
regimes. In Section 5.4.3, we demonstrate the benefit of the stencil improvement from Section 5.3.6.
Two benchmarks from the porous-media context are employed to investigate the behavior of the
scheme in presence of discontinuities (see Section 5.4.4). The final benchmark in Section 5.4.5
shows properties of the temporal discretization using an approximate travelling wave solution to
the Fisher-KPP equation.
Then, we consider two applications. In Section 5.4.6, we simulate Stroock’s E.coli model in one
space dimension to evaluate mechanisms of directed migration. And finally, we apply the scheme
to the glioma model with realistic parameters and diffusion tensors from DTI.
All computations are performed on the glioma model from Section 3.4.2 with the peanut
distribution (2.4). When not otherwise mentioned, we use the minimally implicit schemes
MM+

1m and MM+

2m with the stencil improvements from Section 5.3.6 and Section 5.3.7. For the
computations in Section 5.4.1 and Section 5.4.4 we need to prescribe the macroscopic diffusion
tensor DT . We achieve this by constructing artificial values for the water diffusion tensor

DW �
1
2 (5DT − I) ,

according to the inverse of (3.39). Whenever we prescribe the macroscopic drift aT , we define the
volume fraction Q according to the inverse of (3.40):

∇xQ �
1
λH

a>T DT
−1.

5.4.1 The fundamental solution of the limit equation

When the diffusion tensor D and drift a are constant and the growth factor θ is zero, the limiting
advection-diffusion equation (3.32) has the fundamental solution

ρ0 , f �
(
(4π)d det D

)− 1
2 t−

d
2 exp

(
− 1

4t
(x − at)>D−1(x − at)

)
(5.19)

in physical coordinates. Our scheme should reproduce this solution when ε is small. For the test
we choose

DT � D0
1

4.5 R
*...
,

2.5 0 0
0 1 0
0 0 1

+///
-

R> , aT � a0
1√
10

*...
,

3
1
0

+///
-

.

Herein, the matrix R rotates e1 onto the main diffusion direction (−1, 2, 0)>. We choose the
characteristic diffusion speed D0 �

1
100 .

To smooth the initial Dirac-delta distribution, we choose the initial condition ρ(0, x) � ρ0 , f (tO , x)
with the time offset tO � 0.2. Then the solution at time t is given by ρ0 , f (t + tO , x).
First we test convergence with respect to grid refinement.
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Figure 5.7: Results of Experiment 5.6—grid refinement—and Experiment 5.7—convergence to
diffusion limit. 5.7a: L2 errors over number of grid points on each axis. Shown are the errors for
both MM+

1m , and MM+

2m , each without drift aT � 0 and with some drift aT � 0.1. 5.7b: L2 errors
over parabolic scaling parameter ε, for a fixed grid with 200 × 200 cells. Errors for the MM+

1m are
shown both without and with drift.

� Experiment 5.6 — Grid refinement. We compute the MM+

1m and MM+

2m solutions of the P(E)
1

model on five different grids each: starting at a 40 × 40 grid we refine five times by the factor
1.5 We perform two tests, one without drift, i.e., a0 � 0, and one with drift speed a0 � 0.1. The
analytical solution is of course only valid in the diffusion limit, therefore, we choose ε � 10−5.

The L2 error over the number of grid points is plotted in Figure 5.7a. Without the drift term, both
schemes converge with second order accuracy to the analytic solution, as is to be expected for a
discretization of the pure diffusion equation. With the drift, the order of both schemes is reduced
to about 0.9 and absolute errors are also much greater.
We are also interested in convergence as ε tends to zero.

� Experiment 5.7 — Convergence to diffusion limit. We compute the MM+

1m solution of the P(E)
1

model on a grid with 200 × 200 cells for some ε ∈ [1 × 10−9 , 1]. We perform two tests, one
without drift, i.e., a0 � 0, and one with drift speed a0 � 0.1.

From the grid refinement study, we see that at about 200 × 200 grid points, the error is roughly
2 × 10−5 without drift and 4 × 10−4 with the drift term. As ε approaches zero, we expect the total
error to be dominated by this discretization error. In Figure 5.7b, the L2 error of the first order
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Figure 5.8: Results of Experiment 5.7—convergence to diffusion limit. Density ρ of the MM+

1m
solution for various values of ε, ranging from the kinetic regime ε � 0.1 in 5.8a to the intermediate
regime in 5.8f with ε � 10−2.
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Figure 5.9: Results of Experiment 5.7—convergence to diffusion limit. Each plot shows the
relative difference in density ρ between two solutions on a signed truncated logarithmic scale.
Figure 5.9a - 5.9e show the relative difference between the numerical solution at various ε, and
the exact solution (5.19). Figure 5.9f shows the difference between the numerical solutions at
ε � 10−3 and ε � 10−9.
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scheme at 200 × 200 grid points is plotted, over values of ε from one to 10−9. We observe that the
error levels out at the expected discretization error below a threshold value of ε, roughly 10−4

without drift and 10−3 with drift. Note that for certain intermediate values of ε, the error reaches
a local minimum slightly below the limit discretization error because kinetic effects cancel out
some numerical diffusion of the scheme. Numerical solutions in the kinetic to intermediate
regime (ε ∈ [0.1, 0.01]) are shown in Figure 5.8. In the kinetic regime, the problem is similar to
the line source problem [59]; only for anisotropic scattering. Indeed, the P1 solutions feature a
single ellipsoid wave, which travels at speed 1√

3
c in the main diffusion direction and is biased

towards the drift direction. With decreasing ε the diffusion dominates and the wave maximum
is smeared out into a Gaussian. Below ε ≈ 10−2 the solutions are too similar for direct visual
comparisons. Therefore, in Figure 5.9 we show relative differences on a signed logarithmic scale
instead. Figure 5.9a to Figure 5.9f show relative differences between the numerical solution
and the fundamental solution to the diffusion equation (5.19). The solution at ε � 10−2 still has
some small kinetic effects (see Figure 5.9a) of relative magnitude 10−2. In Figure 5.9f the relative
difference between the numerical solutions at ε � 10−3 and ε � 10−9 is plotted. We see that
already at ε � 10−3 the discretization error dominates the kinetic effects. From Figure 5.9b we
see how the kinetic effects cancel some numerical diffusion. The numerical diffusion from the
drift discretization becomes apparent from Figure 5.9e: looking in drift direction, the solution at
ε � 10−9 overestimates the fundamental solution before and after the peak and underestimates it
at the peak.
With the fundamental solution we can also quantify the numerical diffusion of the scheme.

� Experiment 5.8 — Numerical diffusion. We fit a multivariate Gaussian

ρ0 ,fit �
(
(4π)d det Dfit

)− 1
2 t−

d
2 exp

(
− 1

4t
(x − afitt)>D−1

fit (x − afitt)
)

to the results of Experiment 5.6 and estimate the numerical diffusion tensor via

Dnum � Dfit − D.

In Figure 5.10, the two eigenvalues and the main direction of this estimated numerical diffusion
Dnum are plotted. We observe that numerical diffusion converges at the same rate as the L2

error. When the drift term is active, it dominates the overall numerical diffusion by two orders of
magnitude and the main axis of the numerical diffusion is parallel to the drift direction. Without
the drift, we observe an interesting difference between the MM1m scheme and the MM2m scheme.
For the MM2m scheme, both eigenvalues are positive and their ratio is close to the anisotropy
factor 2.5. Additionally, the main axes of physical and numerical diffusion are aligned. Thus, the
numerical diffusion is proportional to the physical diffusion. In the MM1m scheme the ratio of
eigenvalues and main axis is the same. However, both eigenvalues are negative, which indicates
that the leading numerical error is dispersive rather than diffusive.
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Figure 5.10: Results of Experiment 5.8—numerical diffusion. Figure 5.10a: The larger eigenvalue
of the numerical diffusion tensor Dnum in absolute value. Figure 5.10b: The smaller eigenvalue.
Figure 5.10c: The direction of the main eigenvector.

5.4.2 Convergence analysis with manufactured solutions

We verify the expected order of convergence for MM+

1m and MM+

2m in all transport regimes.
Apart from the theoretical concern to determine the convergence order for different transport
regimes, convergence tests with manufactured solutions are useful to detect errors in the scheme
and bugs in its implementation [119].
We consider only the two-dimensional setting. On the domain

Ωtxv � [0, 1
4] × [0, 1]2 × S2

we prescribe the solution in terms of the density and perturbation

ρex (t , x) � cos(2πt)(p6(ξ)p6(η)) + 2,

gex (t , x , v) � cos(2πt)(p6(ξ)p6(η)).
(5.20)

The analytic solution at final time is simply ρex ��t� 1
4
≡ 2 and gex ��t� 1

4
≡ 0. The sixth-order

polynomial

p6(ξ) � 32
(
−ξ6

+ 3ξ5 − 3ξ4
+ ξ3

)

is carefully chosen such that its value, and its first and second derivative are zero at the boundary:

0 � p6(0) � p6(1) � p′6(0) � p′6(1) � p′′6 (0) � p′′6 (1).

We add artificial source terms Ŝρ , Ŝg to the right-hand side of (5.4) and(5.5) such that ρex , gex

solve the equation. To observe the correct order of convergence, we need a smoothly varying
fiber distribution. Here we use a distribution with increasing anisotropy along the ξ-axis:

DW (x) �
*...
,

1 + ξ 0 0
0 1 0
0 0 1

+///
-
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We set δ � 0.1 and ignore natural growth, i.e., set θ � 0.

� Experiment 5.9 — Order of convergence. We perform convergence tests for every combination
of the following choices:

1. MM+

1m or MM+

2m ,

2. ith advection ν
δ � 20 or without advection ν

δ � 0,

3. ε � 1, 10−1 , 10−2 , 10−3 , 10−5.

In each convergence test, we refine the grid five times, starting at 20 grid points and increasing
by the factor 1.5 in each step. We compute the L2-differences between the numerical solutions
and the analytic solution (5.20).

The results are plotted in Figure 5.11. Without the drift ν
δ � 0, the first-order code (see

Figure 5.11a) shows the expected first-order convergence in the kinetic regime ε � 1 and second-
order convergence in the diffusive regime ε � 10−5. In the transition between the regimes, the
convergence order increases from one to two. As expected, this increase in order is lost when the
drift term is active (see Figure 5.11c) and the convergence order is one for all considered values of
ε. We observe second-order convergence for the second-order code without drift, independently
of the transport regime (see Figure 5.11b). However, presence of the drift, which is discretized by
a first-order method, reduces the order to one (see Figure 5.11d). The second-order code still
produces smaller absolute errors than the first-order code. Interestingly, absolute errors for the
second-order code are much smaller with ε � 1 compared to all other values of ε.
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Figure 5.11: Results of Experiment 5.9—order of convergence: L2 errors at the final time for
various values of ε. Left column: first-order scheme. Rigth column: second-order scheme. Top
row: without drift. Bottom row: with drift.
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5.4.3 Stencil improvements

Using the line-source benchmark (see Section 4.3.2) we demonstrate the shortcomings of the
naive MM×

1m scheme, which results in a diagonal five-point stencil in the limit.

� Experiment 5.10 — Improved stencil. We compute the P(E+)
1 solution for the isotropic line source

benchmark, once with the naive scheme MM×
1m and once with the improved scheme MM+

1m .
The domain Ωx � [−1.5 mm, 1.5 mm]2 is discretized with 100 × 100 cells. Let E �

1
〈1〉 , T � 1 s,

c � 1 mm s−1, and λD � 1 s−1. The initial condition is a Gaussian with σ � 0.015 mm.

The initial condition in Experiment 5.10 is concentrated almost entirely on a single cell. In the
naive scheme, directly neighboring cells are not coupled, hence the checkerboard pattern in
Figure 5.12. The improved scheme does not exhibit this property.
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Figure 5.12: Results of Experiment 5.10—improved stencil. Axes are zoomed in. Figure 5.12a:
Color plot of ρ for the naive scheme. Figure 5.12b: Line plot along the ξ-axis for both variants of
the scheme.

5.4.4 Strong discontinuities in the diffusion coefficients

The coefficients in the glioma model from Section 3.4.2 are estimated from DTI measurements
of the brain, which give a water diffusion tensor DW per voxel. Voxels typically have a length
of a few millimeters. On each voxel, the tensor is assumed constant and as such the resulting
coefficients jump across the voxel boundaries. Apart from these artifacts, there are genuine jumps
in the data when the underlying tissue orientation changes rapidly. Thus, we are interested in
the behavior of our scheme in the presence of discontinuous coefficients, especially if ε is small.
In the context of flow through porous media, a number of benchmarks with strong jumps in
the diffusion coefficient have been developed [43, 118]. We adapt two benchmarks with an
analytical solution for our scheme. The first is a special case of a benchmark with discontinuities
in permeability at quadrant boundaries from Eigestad and Klausen [43] which we call isotropic
quadrants test. The domain is divided into four quadrants of which each is assigned a constant
and isotropic permeability. The other test is similar to the ’piece-wise uniform flow’ in [43]. It
features two domains of constant diffusion tensor with a single discontinuity. But here we align
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the discontinuity with the x2-axis and choose constant anisotropic diffusion tensors whose main
axes meet at an angle at the interface.
Note that the benchmarks are designed for the stationary porous media equation

∇x · (D∇xρ0) � 0.

Our code is neither stationary nor does it solve the porous media equation. If growth and drift
are neglected, the code should approximately solve

∂tρ0 − δ∇x · (∇x · (Dρ0)) � 0 (5.21)

for small ε. However, we can run the simulations for a long enough time T∗, until a steady
state is reached and choose ε small, i.e., 10−5. This method is a very inefficient iterative solver
for the stationary equation. In the steady state, the choice of δ does not play a role. As a
convergence criterion we use the relative L2-difference between successive time steps, i.e., we
abort the simulation if

‖ρ(ti−1) − ρ(ti )‖2
‖ρ(ti )‖2∆ti

< 10−6.

In the benchmarks, we prescribe Dirichlet boundary conditions for ρ according to the exact
solution and thermal boundary conditions (5.16) for the micro equation g.

Quadrants with jump in permeability

First, we switch to polar coordinates (ξ, η)> � r(cos(θ), sin(θ))>. The i-th quadrant is then
Qi � (r, θ) ∈ [0,∞) × [ iπ

2 ,
(i+1)π

2 ), for i � 0, . . . 3. On each quadrant, we have a constant isotropic
diffusion tensor Di � κi I. The stationary solution to (5.21) has the form

ρ0 ,ex (r, θ) � rα (ai cos(αθ) + bi sin(αθ)) (r, θ) ∈ Qi , (5.22)

with coefficients α, ai , bi determined by the continuity of the density and the flux at the interfaces.
Continuity of the density gives the four conditions

ρ0 ,ex (r, θ−i ) � ρ0 ,ex (r, θ+

i ),

wherein θ±i mean that the interface at iπ
2 is approached from the left or the right. Continuity of

the fluxes translates into the conditions

∂
∂n

Dρ0 ,ex (r, θ−i ) �
∂
∂n

Dρ0 ,ex (r, θ+

i ),

with

∂
∂n

Dρ0 ,ex (r, θ) � κ
∂
∂n
ρ0 ,ex � αrα−1(−ai sin(αθ) + bi cos(αθ)).

Here, we used that on each quadrant the coefficients are constant. Altogether we have eight
conditions for nine coefficients. We arbitrarily set a0 � 1 and solve for the remaining coefficients
numerically.
Similar to [43], we take the permeability κ equal at diagonally opposite quadrants, and set

κ0 � κ2 � 100, κ1 � κ3 � 1.
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Figure 5.13: Figure 5.13a: Analytic solution for the quadrants benchmark. Figure 5.13b: Results of
Experiment 5.11—quadrants benchmark: Convergence of L2-error with respect to grid refinement.

The coefficients that belong to this choice are listed in Table 5.1. They are identical to the values
reported in [43]. A plot of the analytic solution (5.22) corresponding to these coefficients is shown
in Figure 5.13a. Due to the discontinuous permeability, the solution to the diffusion equation only
belongs to the fractional Sobolev space H1+α−ν ,∀ν > 0, i.e., it is at most 1 + α times differentiable.
Therefore, the maximum order of convergence we can expect with respect to grid refinement is
2α.

� Experiment 5.11 — Quadrants benchmark. We perform two grid refinement studies for the
quadrants benchmark. In each study, the grid is refined roughly by the factor 1.5, but in the
first study, we enforce an even number of grid points per space direction and in the second
study we enforce an odd number. The grid sizes are

1. 20, 30, 46, 68, 102 and 154 in the first study, and

2. 21, 31, 45, 69, 105 in the second study.

For each grid size, we compute the L2-difference between the MM+

1m solution of the P(E+)
1

model and the analytic solution (5.22).

We plot the L2 errors from Experiment 5.11 in Figure 5.13. For even grid sizes, we observe
convergence with rate 0.4, and for odd grid sizes the order of convergence is even larger—
about 0.5. These observed orders are significantly greater than the theoretical order 2α ≈ 0.25.
When the number of grid cells per direction is even, the primal edges are aligned with the
quadrant boundaries, thus the absolute errors are smaller compared to the next odd-numbered
discretization. Due to resource constraints, we consider only coarse grids. The absolute errors
are quite large, and we suspect that the correct order of convergence could be observed on finer
grids.

Interface with change in diffusion tensor axis

In this test, the diffusion tensor is constant but anisotropic on the left and right half-planes.
At the interface—the η-axis—there is an abrupt change in the main direction of diffusion.
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i 0 1 2 3

κi 100 1 100 1

ai 1 2.960 396 04 −0.882 756 59 −6.456 461 75

bi 0.1 −9.603 960 4 −0.480 354 87 7.701 564 88

α 0.126 902 069 721

Table 5.1: Coefficients for the exact solution (5.22) of the quadrants test.

Let R(θ) ∈ SO(3) a rotation around the ζ-axis with angle θ. The diffusion tensor field is
parameterized by left and right anisotropies aL , aR and left and right angles of main diffusion
θL , θR. For i ∈ {L, R} the diffusion tensor on each quadrant is

D i
�

1
a i + 2

R>(θi )diag
(
a i 1 1

)
R(θi ).

The piece-wise linear function

ρ0(x) �



ρ0
L � sL · x , ξ < 0,

ρ0
R � sR · x , ξ > 0

(5.23)

is a stationary solution to the diffusion equation (5.21) on each half-plane. For a given left slope
sL, we use the continuity of the solution and normal fluxes at the interface to compute the right
slope sR. Continuity of the solution and normal fluxes translate into equations for the slopes:

sR
η � sL

η , sR
ξ �

1
DR
ξξ

(
−DR

ηξsR
η + DL

ξξsL
ξ + DL

ηξsL
η

)
.

� Experiment 5.12 We set the anisotropy factor aL � aR � 2.5 and left and right angles
θL � 80◦ , θR � 20◦ and compare the MM+

1m solution on a 50 × 50 grid to the analytic solution
(5.23).

The numerical solution is to machine precision identical to the analytic solution.

5.4.5 The Fisher-KPP equation

In absence of drift, with isotropic and homogeneous diffusion, and a logistic growth µ(ρ) � (1−ρ),
the diffusion limit (3.32) is equivalent to the Fisher-KPP equation

∂tρ0 − k∇x · ∇xρ0 � θρ0(1 − ρ0),

with k �
δ
3 . This equation belongs to the class of diffusion-reaction systems, which are treated

exhaustively in [137]. The Fisher equation admits so-called travelling wave solutions, which
connect the two steady states of the reaction term: ρ0 � 0 and ρ0 � 1. In a reference frame
that moves with the wave, its profile is constant. When the wave front is sharp, there is an
approximation for the wave speed in terms of its radius of curvature. In two dimensions, a
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ε 1 × 10−5 parabolic scaling number

δ 0.0008 diffusion time ratio

ν 0 advection time ratio

θ 50 growth time ratio

R0 0.1 initial front radius

R(t � 1) 0.330 final front radius

Table 5.2: Parameters for the Fisher-KPP benchmark.

circular wave front of radius R approximately moves with the speed

R′ � w − k
R
,

w � 2
√

kθ.

The solution to this ODE with initial condition R(0) � R0 is implicitly given by

t �
k

w2 ln
(

wR − k
wR0 − k

)
+

1
w

(R − R0). (5.24)

The parameters in Table 5.2 correspond to a situation close to the diffusion limit with a sharp
front in the travelling wave. In this situation, the numerical scheme should reproduce a travelling
wave solution whose position coincides with the approximation (5.24).

� Experiment 5.13 — Fisher-KPP benchmark. Let ∆x0 :� 1
100 and DSC0 � 0.2, which gives the

time step ∆t0 � DSC0
∆x2

2k � 9.38 × 10−3. We compute the P(E+)
1 solution for the parameters

given in Table 5.2 with both second-order schemes MM2m and MM2i for each of the following
resolutions:

1. Coarse grid ∆x0, intermediate time step DSC0

2. Coarse grid ∆x0, small time step 1
4 DSC0

3. Medium grid 1
2∆x0, intermediate time step DSC0

4. Medium grid 1
2∆x0, small time step 1

4 DSC0

5. Fine grid 1
4∆x0, intermediate time step DSC0

6. fine grid 1
4∆x0, small time step 1

4 DSC0

For the intermediate resolution 1
2∆x0, DSC0 we also compute the solution with the MM1m

and MM1i schemes.

We display the results of Experiment 5.13 in Figure 5.14. In contrast to the analytic travelling wave
solution, the numerical solutions at t � 1 are not rotationally symmetric. As an artifact of the
regular grid, the wave travels faster along the coordinate directions than diagonal to them. The
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speed difference is independent of the time step and the temporal discretization of the reaction
terms. It is proportional to the grid resolution, thus with finer grids, the solution becomes more
symmetric. The profile of the travelling wave is always the same, no matter which scheme or
resolution is used. For the second-order schemes, the difference between explicit and implicit
temporal discretization of the reaction terms (MM2m or MM2i) becomes negligible for time
steps smaller than 1

4∆t0. The MM1i solution, however, benefits from the implicit discretization
compared to the MM1m solution (see Figure 5.14g). To capture the correct speed of the travelling
wave, a small time step has to be used, otherwise the speed is underestimated.



134 Chapter 5. An asymptotic preserving method for the haptotaxis equation

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ξ

η

(a) t � 0
0 0.5 1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ξ

η

(b) t � 1
0 0.5 1

0.25 0.3 0.35 0.4
0

0.2

0.4

0.6

0.8

1

r

ρ

(c) ∆x0, DSC0

0.25 0.3 0.35 0.4
0

0.2

0.4

0.6

0.8

1

r

ρ

(d) ∆x0, 1
4 DSC0

0.25 0.3 0.35 0.4
0

0.2

0.4

0.6

0.8

1

r

ρ

(e) 1
2∆x0, DSC0

0.25 0.3 0.35 0.4
0

0.2

0.4

0.6

0.8

1

r

ρ

(f) 1
2∆x0, 1

4 DSC0

0.25 0.3 0.35 0.4
0

0.2

0.4

0.6

0.8

1

r

ρ

(g) 1
2∆x0, DSC0, MM1

0.25 0.3 0.35 0.4
0

0.2

0.4

0.6

0.8

1

r

ρ

(h) 1
4∆x0, DSC0

0.25 0.3 0.35 0.4
0

0.2

0.4

0.6

0.8

1

r

ρ

(i) 1
4∆x0, 1

4 DSC0

MMm 0° MMm 45° MMi 0° MMi 45°

Figure 5.14: Results of Experiment 5.13—Fisher-KPP benchmark. Figure 5.14a: Initial condition,
Figure 5.14b: Solution at time t � 1 for the MM2m at 1

2∆x0 and 1
4∆t0. The red circle indicates the

front position of the analytical approximation. Figures 5.14c–5.14i: Line plots of the density. One
line is along the ξ-axis and the other at a 45° angle. The plots are zoomed in on the wave position.
The gray cross indicates the front position from (5.24). Figure 5.14g: first-order schemes MM1.
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5.4.6 Stroock’s model

We consider the model from Section 3.4.3 with the isotropic kernel K(v , v′) � E(v) � 1
〈1〉 . Stroock

raised the question, whether the dependence of λ on x or v provides the bacterium with the
more ’efficient’ means of directed migration. He hypothesized that the v-dependence is the
’better’ mechanism, but couldn’t prove this conclusively. The following numerical simulations
provide some evidence for this intuition.
We take inspiration from an experiment shown in [16]. In the original experiment, E. coli are
placed on a Petri plate, which contains some uniformly distributed nutrients. Chemotactic
interaction between bacteria and nutrients leads to the ring patterns seen in Figure 5.15. The small
white spot on the left of the Petri plate in Figure 5.15 is a bacteria population that is insensitive to
the nutrients. It therefore serves as a reference to our model computations. The other results
are not directly comparable to this setting, in which we prescribe the gradient of a stationary
stimulus. Berg [16] mentions that E. coli react to non-chemical stimuli, such as temperature or
light. In Table 5.3 we list the parameters for the experiment.
On the domain Ωx � [−40 mm, 40 mm], the stimulus is given by Q(ξ) � 1 +

1
80 mmξ, i.e., its

magnitude is one at the center and ‖∇x Q‖
X is one. Therefore, we have δ � ν �

c2T
λ0X2 . The scaling

number ε � 2.65 × 10−4 indicates that this situation is already close to the diffusion limit.
The diffusion limit (3.32) for Stroock’s model is

∂tρ0 − ∇x ·
(

δ
3αx (Q)

∇xρ0 − νβv

3αx (Q)
ˆ∇xQρ0

)
� 0.

The advection term in the bracket is a result of the v-dependence of λ. Through the chain rule,
the x-dependence introduces effectively another drift vector δ

3∇x
1

αx (Q) .
We compare two different strategies for the bacterium to move in the presence of a stimulus
Q � Q0 + ∇xQ · x with constant gradient ∇xQ:

1. The bacterium adjusts its turning rate according to the activation function αx �
1

Qp . It
does not react to the gradient: βv � 0. This choice leads to the drift vector δ

3∇x
1

αx (Q) �

δ
3 pQp−1∇xQ opposite to the gradient.

2. The bacterium detects the gradient, but does not react to stimulus magnitude: αv (Q) �

1, βv > 0.

Figure 5.15: A chemotaxis experiment with E.coli on a Petri plate. Taken from [16]. For full
credits, see the Image Credits at the end of the document.
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λ0 1 s−1 base turning rate

c 2.12 mm s−1 speed

X 80 mm diameter of the Petri plate

T 28 800 s eight hours

ε 0.000 265 parabolic scaling number

δ 0.002 diffusion time ratio

ν 0.002 advection time ratio

Table 5.3: Parameters for the Petri plate experiment from [16].

� Experiment 5.14 — Stroock’s model. Using the parameters from Table 5.3, we compute the
P(E+)

1 solution of Stroock’s model in one space dimension on a grid with 160 cells. The initial
condition is a rectangle of width 2 mm in the center of the domain:

f (0, ξ, v) �
1
〈1〉




1, |ξ | ≤ 1 mm,

0, |ξ | > 1 mm.

For the first strategy, we compute the model with activation functions αx (Q) � 1
Q , αx (Q) � 1

Q5 ,
and αx (Q) �

1
Q10 For the second strategy, we compute solutions with βv � 1, βv � 10, and

βv � 40. Additionally, the model solution in absence of any stimuli serves as a reference
(αx (Q) � 1, βv � 0).

Figure 5.16 shows the results for Experiment 5.14. In absence of any stimulus, the model bacteria
only diffuse due to their random changes in direction and the resulting solution is symmetric.
Unfortunately, the model does not match with the Petri plate experiment, in which the cell
population has a much sharper front. From Figure 5.15, we estimate that the radius of the cluster
is about 0.25 cm, at which ρ0 in the model computation is roughly half of the peak value. In
reality, the bacterias’ behavior seems to be governed by more than random tumbling.

The first strategy causes a small drift opposite to the gradient. At the center of the domain, where
Q � 1, this drift is proportional to the exponent p. Also, the diffusion constant increases along
the ξ-axis, thus the right flank of the solution is flatter than the left. The diffusion coefficient
at the center is the same for all exponents. At p � 1 the drift magnitude is too small to have
any visible effect, but we see the increased diffusion to the right. To achieve a visible drift, we
have to increase p to 10, which also means the right flank is much flatter. Concerning directed
motion, this strategy is ambiguous. Although the right flank diffuses faster, the bulk of cells
moves slowly to the left. As Stroock [127] already remarked, to increase directed motion in this
way, one has to allow the turning rate λ to become large in negative ξ-direction.

In contrast, a dependence of λ on orientation introduces a drift term which scales linearly with
βv . With βv � p, the second strategy achieves the same drift magnitude as the first strategy, but in
opposite direction. The second strategy enables the bacteria population to move up the stimulus
gradient. Note that due to the first-order discretization of the drift and the relatively coarse grid,
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Figure 5.16: Results of Experiment 5.14—Stroock’s model. Top row: strategy 1. Bottom row:
strategy 2. In each figure, the solution in the positive half (+), the solution in the negative half (−)
and the symmetric solution without stimuli (base) are plotted.

there is some numerical diffusion visible in the solution with βv � 40.

5.4.7 The glioma model with DTI data from a human brain

To demonstrate the full capabilities of the scheme, we compute the EHKS model of glioma
invasion in the human brain (see Section 3.4.2).

The water diffusion tensors DW (x) for all computations come from the open source Camino
DTI data set [30]. The data set has 112 × 112 × 50 cubic voxels with side length 2 mm, therefore
the three-dimensional domain is Ωx � [0 mm, 224 mm] × [0 mm, 224 mm] × [0 mm, 100 mm].
To avoid interpolation artifacts, we align the spatial discretization with the data mesh. With
one exception, all computations are performed with the reduced two-dimensional version (see
Section 1.1.2) of the glioma model on the slice of the Camino data visualized in Figure 2.3.

In the previous experiments, we chose a constant λH . Recall the derivation of the glioma model
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set A [47] set B [35]

c 2.1 × 10−4 mm s−1 1.39 × 10−5 mm s−1 cell speed

λ0 0.8 s−1 0.1 s−1 base turning rate

λ1 10 s−1ab 10 s−1 slope of turning rate

k+ 0.1 s−1 0.0342 s−1 cell-ECM binding rate

k− 0.1 s−1 0.01 s−1 cell-ECM unbinding rate

µ 8.44 × 10−7 s−1 2.6 × 10−7 s−1 net growth rate

ε 1.2 × 10−6 6.2 × 10−7 parabolic scaling number

δ 6.9 × 10−5 2.4 × 10−6 diffusion time ratio

ν 8.7 × 10−4 2.4 × 10−4 advection time ratio

θ 53 16.4 growth time ratio

Ξ 0.7 0.9 parabolic-hyperbolic blending

aOur λ1 corresponds to the product R0λ1 in [47], with R0 the number of receptors per cell. Because R0 only occurs as
a weight for the advection, we include it directly in λ1.

bIn [47], λ1 (including R0) has been estimated as 1000 s−1.

Table 5.4: The reference parameters and the resulting characteristic numbers used in the
simulations of glioma invasion in the human brain.

in Section 3.3.2 and the equation (3.19) for λH . Here, we choose

λH �
λ1

α + λ0

∂y∗

∂Q
�

λ1
k+Q + k− + λ0

k−

(k+Q + k−)2

in accordance with the EHKS model [36, 44]. Note that equation (3.19) contains the additional
summand µ in the first denominator, which we neglect here. In the considered parameter sets,
however, µ is negligible in comparison to k+ and k−. We estimate the volume fraction of fibers Q
with the FA index (2.1):

Q(x) � FA(DW (x)).

In all following experiments, we simulate the tumor growth over the time span T of two years. The
initial tumormass at position x0 � (90 mm, 90 mm, 60 mm)> is given by aGaussianwith standard
deviation σ � 1.4 mm, which is normalized to ρ(x0) � 0.1. The tumor starts in equilibrium, i.e.,
g(0, x) � 0 everywhere. We are not interested in absolute values of ρ but rather in the ratio ρ

ρcc

and therefore set the carrying capacity for logistic growth to one in the computations.
Estimates for the parameters in this model vary wildly in the literature. In Table 5.4 we show the
parameters from [47] and [35] side by side. With the currently available clinical data it is not
possible to validate any set of parameters.
In the next experiment we investigate the influence of model parameters on the predicted tumor
shape qualitatively.
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� Experiment 5.15 — Glioma parameter study. We compute the P(E+)
1 solution of the glioma model

with the MM+

1m scheme for these parameter sets (see Table 5.4):

I: set A,

II: set B,

III: set A, but with µ from set B,

IV: set B, but with c from set A,

V: set B, but with c , k+ , k− from set A.

Additionally, we compute the Fisher approximation (5.24) for each parameter set.

In Figure 5.17 we display the tumor densities for the computations from Experiment 5.15 together
with the Fisher approximation. With the parameters from sets A and B, the tumor essentially
evolves like a traveling wave in the fisher equation. The cell density ρ inside the tumor is almost
stationary. It fluctuates slightly around the carrying capacity ρcc � 1 of the logistic growth due
to advection. The set A parameters result in an almost isotropic spread, because the relatively
large growth term evens out the anisotropic diffusion and drift. The discretization is coarse:
the 60 mm by 60 mm section of the domain shown in Figure 5.17 has only 30 × 30 grid cells. As
seen in Experiment 5.13, the scheme has trouble to approximate the travelling waves correctly.
The wave speed is larger parallel to the axis directions, which results in an artificial anisotropy.
Further, in this situation, the scheme overestimates the Fisher speed generally. Both problems
could be cured with a finer spatial resolution, which comes at the cost of interpolation artifacts in
the diffusion tensors (see Experiment 5.18). When the growth constant is reduced (set III), the
tumor spread is slower and more irregular. The tumor front is also flatter, thus the numerical
scheme has no problems to produce the correct front speed in this situation. In set B, the drift
is faster (due to decreased k+ , k−), but growth and diffusion are slower compared to set A. We
observe a preferred tumor growth along the central vertical fiber tract. When we increase the
speed in set B, we are in a situation with fast diffusion and drift, but relatively slow growth. Thus,
in the results for set IV, we observe a highly anisotropic tumor with a strong preference to grow
along the white matter tracts. Due to the drift, the cell density ρ exceeds the carrying capacity
ρcc by a large margin. It is unclear how to interpret cell densities above the carrying capacity. On
the one hand, we could interpret the carrying capacity as the maximum number of cells that
physically fit into a given volume. Then, a density above ρ is clearly unphysical. We would have
to limit the drift velocity in the model to prevent cells from moving into already full regions. On
the other hand, we could argue that cell proliferation stops well before the volume is filled to
capacity. In this case, ρ > ρcc is allowed, and ρcc is just an arbitrary reference scale for the cell
density. We see the effect of the receptor dynamics by comparing results for sets IV and V. The
difference between these situations is the choice of binding and unbinding rate k+ , k−. In set V,
the resulting λH is smaller compared to set IV. As a result, the tumor is shaped more regularly
and does not exceed the carrying capacity as much.

In light of the considerations in Chapter 2, the glioma model that we consider here is very simple.
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Figure 5.17: Tumor density ρ in the gliomamodel with the parameter sets from Experiment 5.15—
glioma parameter study. Red contour: The Fisher approximation. Grayscale image: Fractional
anisotropy FA(DW ). Red arrows: Main axis of DW . Blue arrows: Drift vector a in the limit
equation.

Nevertheless, we observe a wide range of predicted tumor shapes, which depend strongly on
the model parameters. To formulate mathematical models that are useful in patient-specific
therapy, future efforts should be concentrated on parameter identification and model validation.
Important open questions are: How much do the parameters vary from patient to patient? If the
parameters vary, how can we estimate them from the medical data? How can we obtain enough
data for model validation?
The values of ε in Table 5.4 indicate that the situation is close to the diffusion limit. We show the
influence of ε on the solution in the next experiment.

� Experiment 5.16 — Parabolic scaling. We compute the P(E+)
1 solution of the glioma model with

the MM+

1m scheme, using parameter set III from Experiment 5.15. We perform the same
computation with artificially changed values for ε � 10−3 , 10−4 , 10−5 , 10−10. The physical
parameters in these computations are chosen according to (3.30) such that the remaining
parabolic scaling parameters δ, ν, θ are constant.
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Figure 5.18: Results for Experiment 5.16—parabolic scaling: influence of ε. Shown are the 10 %
contour lines of the tumor density ρ. Grayscale image: fractional anisotropy FA(DW ). Red
arrows: main axis of DW . Blue arrows: drift vector a in the limit equation.

In Figure 5.18 we show the 10 % contours of the tumor density ρ for the results of Experiment 5.16.
The contours for the ε � 10−10, ε � 1.17 × 10−6, and ε � 10−5 solutions lie on top of each other.
Thus, the parameters describe a situation well within the diffusive regime. For practical purposes,
the meso-scale description does not add any useful information to the macroscopic model. At ε �

10−4, two orders of magnitude larger than the natural value, small deviations from the diffusion
limit are visible. This value of ε corresponds to the cell speed c ≈ 2.4 × 10−6 mm s−1, which is
about a hundredth of the original value, and turning rates λ0 ≈ 1.1 × 10−4 s−1 , λ1 ≈ 1.4 × 10−3 s−1

approximately one thousandth of the original rates. Thus, the kinetic model could be relevant
for cell species that migrate slowly and change their orientation rarely (in this example once
every 150 minutes). At ε � 1 × 10−3, the contour distance to the diffusive model is roughly the
length of one voxel. Further away from the diffusion limit, the invasion front is faster because
individual cells have a higher chance of overtaking the diffusive invasion front.
Finally, we investigate the influence of the moment order, the numerical scheme and the space
dimension onto the solution.

� Experiment 5.17 — Choice of moment order, scheme, and space dimension. We start with the
parameters from set III in Experiment 5.15 and compute

1. the P(E+)
1 and P(E+)

3 approximations of the glioma model with the MM+

1m scheme,

2. the P(E+)
1 and P(E+)

3 approximations of the glioma model with artificially increased
ε � 10−3 with the MM+

1m scheme,

3. the P(E+)
1 glioma model with the MM+

1m , MM+

1i , MM+

2m , and MM+

2i schemes,

4. the P(E+)
1 glioma model with the MM+

1m scheme on the full three-dimensional domain.
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Figure 5.19: Results for Experiment 5.17—choice of moment order, scheme, and space dimension.
Shown are the 10% contour lines of the tumor density ρ. Grayscale image: fractional anisotropy
FA(DW ). Red arrows: main axis of DW . Blue arrows: drift vector a in the limit equation.

Results for Experiment 5.17 are displayed in Figure 5.19. The moment models of any order
converge to the diffusion limit, thus for the chosen parameters, the first-order model P(E+)

1 is
sufficient. Even if we artificially set ε � 10−3, the P(E+)

3 solution deviates from the P(E+)
1 solution

by much less than a millimeter. The choice of scheme only has a minuscule impact on the
solution. Finally, we compare the solution of the two-dimensional model with a slice of the
three-dimensional model. The contour distance is less than a voxel everywhere. Thus, the
reduced two-dimensional model, which needs less resources to compute, is accurate enough
to explore the parameter space. We repeated Experiment 5.17 with parameter set V, without
observing anything new.
In Experiment 5.15 the grid resolution ∆x is chosen to match the data resolution ∆xDTI . Due
to the coarse discretization, for some parameters (set I, set II) the scheme introduces artificial
anisotropy and overestimates the speed of travelling waves. In the next experiment we choose a
finer grid to overcome these problems.

� Experiment 5.18 — Grid refinement and interpolation artifacts. We refine the grid such that each
voxel of the Camino data set is discretized with 4 × 4 grid cells. The grid resolution is thus
∆x � 0.5 mm. We map the water diffusion tensors DW , which are piece-wise constant in the



5.4 Numerical experiments 143

Camino data, onto the fine grid. The mapping is done for each tensor component individually.
We consider two choices:

1. A smoothed mapping DW (x) �
∑

i w(x − xi )DW (xi ) with a Gaussian kernel w with
standard deviation σ � 1.2∆xDTI .

2. A linear interpolation by first-order B-splines.

We compute the MM+

1m solution of the P(E+)
1 glioma model with parameter sets I and V (see

Experiment 5.15) for each mapping.

We show the results of Experiment 5.18 in Figure 5.20. The 60 mm by 60 mm section of the
domain shown in Figure 5.20 is now discretized with 120×120 grid cells. In the computation with
the set I parameters, the artificial anisotropy is greatly reduced compared to the computation on
the coarse grid. The speed of the travelling wave is captured adequately. The set I parameters
correspond to an almost isotropic growth with little drift. Therefore, the choice of mapping does
not influence the tumor shape much. However, in the 100 % contours, the mapping artifacts are
visible. The parameter set V corresponds to an anisotropic finger-like spread, in which the drift
plays a large role. Because the drift depends on ∇xQ, which depends on DW , the mapping has a
significant impact on the tumor shape. To find a natural mapping procedure for diffusion tensors
is an interesting problem in its own right, which we do not discuss further. But note that both
mappings considered in this experiment are chosen arbitrarily. Especially the component wise
interpolation of tensors is questionable.
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Figure 5.20: Results for Experiment 5.18—grid refinement and interpolation artifacts. Top row:
set I. Bottom row: set V. Left column: gaussian smoothing. Right column: linear interpolation.
Shown are the 10 %, 50 %, and 100 % contour lines of the tumor density ρ. Red contour: The
Fisher approximation. Grayscale image: Fractional anisotropy FA(DW ). Red arrows: Main axis
of DW . Blue arrows: Drift vector a in the limit equation.



6 ConclusionsConclusions

To improve cancer therapy by predictive mathematical models is a task that requires insights
from many disciplines to be brought together, including biology, medicine, and theoretical and
applied mathematics. Although the focus of this thesis lies on the development of numerical
methods for meso-scale glioma models, we did not ignore the wider context.
Two fundamentally different levels of description for glioma invasion have to be taken into
account: The macroscopic shapes and growth patterns observed in clinical practice are caused
by microscopic interactions of glioma cells with their environment. Ultimately, a prediction of
the macroscopic shape of the tumor invasion margin is needed in therapy. A multi-scale model
carries averaged information about the small-scale behavior of individual cells to a macroscopic
description. In Chapter 2 we gave an overview on the intricate microscopic processes involved in
tumor growth. Compared to the complexity of tumor cells the reviewed mathematical models
are incredibly simple. However, patient specific models are only useful if the required input
data is readily available. The EHKS model at the center of this thesis [44, 46] concentrates on
the interaction of individual cells with the ECM fibers in white matter. Coarse estimates for
this directed structure can be obtained from routinely performed DTI, which yields a water
diffusion tensor in each voxel of the three-dimensional image. It is tempting to include further
effects into the model, though even for the presented model there is not enough clinical data for
validation and parameter identification. We demonstrated that the uncertainties of parameters
in the literature lead to widely differing predictions for the tumor shapes. Beyond that, we did
not make further attempts at parameter identification.
In Chapter 3 we reviewed the EHKS model [44] in detail and made all model assumptions
explicit. The subcellular and particle level descriptions of cell-ECM interactions are constructed
with the resulting macroscopic model in mind. For example, the receptor binding dynamics
are approximated by simple mass action kinetics. Many assumptions on the particle level are
coarse from the perspective of a single cell. Especially the assumption of free linear movement
interspersed with random and uncorrelated turning events is better suited to describe movement
of bacteria than glioma cells. A much more detailed description of a glioma cell’s internal
structure and the resulting forces is provided by Uatay [133]. However, in the limit, both
approaches lead to an advection-diffusion type equation. Thus, we justified most assumptions
in the EHKS model by their simplicity and incorporated important experimentally observed
phenomena phenomenologically. Indeed, contact guidance, the cells’ preference to move along
directed fibers, and gradient detection, are explicitly built into the turning operator on the
meso-scale. A modeling choice appropriate for the diffuse invasion margin of the tumor, but not
so much for the dense tumor center, is to neglect cell-cell interactions completely.
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From the full mesoscopic description including the cell’s receptor state, one can pass directly to
a macroscopic limit, as in [44]. Alternatively, one can make an intermediate step and derive a
simplified kinetic equation by averaging over the receptor state. In this thesis we concentrated on
the simplified meso-scale model and its generalizations. In any case, the crucial assumption is
that the receptor state equilibrates rapidly compared to the other effects, such that the moments
with respect to activity decay rapidly. We showed that the decay of moments, and therefore the
validity of the assumption, depends on the choice of parameters and on the proliferation model.
For typical glioma parameters and an appropriate proliferation kernel, the activity moments
decay fast enough to justify the zeroth-order approximation.

With the simplified meso-scale glioma model as a prototype, we derived a general class of kinetic
equations: the so-called haptotaxis equation. Stroock’s model for directed movement of E. coli
[127] is another example that fits into this structure. In contrast to the classical kinetic equations
from radiative transfer, the turning operator has an anisotropic equilibrium. Additionally, there is
another kernel-integral operator that acts as a perturbation on the turning operator. We identified
the necessary structure for this equation such that it converges to a reaction-diffusion-advection
equation in the parabolic limit. As some assumptions were made purely for convenience, further
generalizations may be possible.

In a moment model, the angular variable in the particle distribution is approximated by a
system of equations for the moments. The quality of this approximation depends on the specific
parameters and setting, the number of moments and the choice of moment closure. Generally
speaking, in more diffusive settings, fewer moments are needed than in free-streaming situations.
Therefore, even the first-order moment methods should at least be able to approximate the correct
diffusion limit. We demonstrated that the classical first-order moment models, however, fail to
capture any information about the anisotropic equilibrium in the haptotaxis equation. Hence,
they do not converge to the same diffusion limit as the kinetic equation.

The turning operator in the kinetic equation relaxes the particle distribution onto its equilibrium
state. This relaxation is controlled by the dissipation of entropy. In the classical kinetic theory,
the isotropic equilibrium minimizes the classical entropy. When the equilibrium is anisotropic, it
makes sense to consider another entropy which is minimized by this anisotropic equilibrium.
We constructed a modified entropy based on the concept of relative entropy [132], which was
originally introduced to study the limit of hyperbolic relaxation systems. For the Maxwell-
Boltzmann entropy relative to the equilibrium, we proved a local entropy dissipation law for the
haptotaxis equation.

Minimum entropy closures carry the entropy dissipation law for the kinetic equation over to
the moment system. We adapted this theory for the modified entropy and derived modified
linear and exponential minimum-entropy models in analogy to their classical counterparts. The
physical relevance of the Maxwell-Boltzmann entropy for glioma is unclear, but the resulting
ansatz function is at least always positive. We also included the modified additive linear moment
closure in this framework, although it is based on a quadratic entropy function, for which we
did not prove the entropy dissipation law. In contrast, the multiplicative linear closure, which
was originally proposed in [36] as an ad hoc modification, does not fit in this minimum-entropy
theory.

To investigate the moment methods numerically, we implemented a second-order scheme with
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splitting between fluxes and reactions. The fluxes are discretized by a standard finite-volume
method with minmod limited second-order reconstruction in characteristic variables, and
updated with a second-order Runge-Kutta method in time. The reactions reduce to an ODE for
the evolution of the cell mean over time in each grid cell, which is solved by a stiffly accurate
DG1 method. The scheme is well-suited for a kinetic to intermediate regime, but in the diffusive
regime it suffers from severe restrictions on the spatial and temporal resolution. For an optically
thick discretization, the scheme is dominated by numerical diffusion. Thus, to approach the
diffusion limit, one would have to refine the grid indefinitely. The computation with typical
glioma parameters is entirely infeasible with this direct scheme. We therefore considered kinetic
to intermediate transport regimes in our numerical experiments to compare modified and
classical moment methods for the haptotaxis equation. Although no analytic solution exists for
the anisotropic version of the line source test, it still unveils the structure of the moment methods
nicely. The structural difference between the modified moment methods and their classical
counterparts becomes most apparent for low moment orders. The modified models encode the
equilibrium distribution directly into the fluxes. Thus, with the peanut distribution, the resulting
waves in the line source test have an ellipsoidal form. In the lower-order moment methods this
modification is the most pronounced. In the higher-order models, the slower waves are modified
the most, whereas the fastest waves are barely modified at all. The classical higher-order moment
models can reproduce the anisotropic equilibrium, even though it is not explicitly included. The
peanut distribution is essentially a second-order polynomial, therefore the third-order classical
ansatz should be able to reproduce the correct diffusion limit. In this case, the benefit of the
modified ansatz compared to the classical ansatz vanishes. It would be interesting to see how
the modified methods perform compared to the classical methods if the equilibrium cannot be
approximated by a low-order polynomial.
As a small model extension, we implemented a model for proteolytic degradation of tissue.
Because the fiber layout changes over time, so does the equilibrium distribution. The peanut
distribution can be interpreted as a second-order polynomial ansatz for the fiber distribution,
hence a second-order linear moment model for the fiber dynamics is natural. The result is a
coupled system for the particle moments and fiber moments.
To compute the kinetic glioma model with realistic parameters, we developed an asymptotic-
preserving scheme for the haptotaxis equation. As a starting point for our scheme, we used
the method developed by Lemou and Mieussens [96]. This scheme employs a micro-macro
decomposition and discretizes the microscopic and macroscopic components on different parts
of a staggered grid. Here, we generalized the method to an asymptotic preserving finite-volume
formulation on primal-dual mesh pairs that works in two and three space dimensions. In the
description of the method, we used a mostly mesh-agnostic notation because we are confident
that it is also applicable on unstructured meshes. Most parts of the implementation in DUNE
[7] are already written mesh-independently, but a complete implementation exists only for
tensor-product grids. Development and testing of the unstructured implementation are left for
the future.
To discretize the velocity space in the micro equation, we employed the method of moments.
More specifically, we used spherical harmonic basis functions and a linear reconstruction ansatz.

1discontinuous-Galerkin
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The resulting moment system is equivalent to the linear additive minimum-entropy method. In
the diffusive regime, first-order basis polynomials are accurate enough, which means that only
one degree of freedom per space dimension is needed. Compare this to the discrete ordinates
method, that needs at least two degrees of freedom per space dimension to maintain symmetry.
For successively less diffusive regimes, higher moment orders can be added as needed. Of course,
in the kinetic regime the linear moment method has the usual drawback of producing unphysical
Gibb’s phenomena. But this is not a problem in the diffusive regime.

For asymptotic preserving methods, one special point of interest is the resulting discretization in
the parabolic limit. Analytically, we computed the limit diffusion and drift approximations for
a simplified setting, a regular grid with constant and isotropic coefficients, and identified two
drawbacks of the basic method. First, the limit diffusion approximation is a five-point diagonal
stencil that leads to a decoupling of grids and spurious oscillations. The same effect is also
described in [22] and seems to be a general problem for primal-dual discretizations. We altered
the basic method and modified the limiting discretization of the diffusion and drift terms. In
effect, this led to the classical five-point stencil for the diffusion and an upwind approximation
of the drift. However, the drift discretization comes at the price of being inherently first-order
accurate.

The implementation was developed specifically for the EHKS model, and we took advantage
of the simplifications it offers compared to the general haptotaxis equation, for example that
the turning operator is explicitly invertible or that the equilibrium distribution is a quadratic
form. But probably the most significant factor in the method’s development were the associated
data. DTI data are measured and delivered on regular grids with fixed spatial resolution. On
each grid cell, the water diffusion tensor is assumed constant, because there is no natural way
to interpolate between those tensors. To avoid interpolation artifacts in the solution, the space
discretization has to use the same grid as the original data. As a consequence, we implemented
the method for tensor-product grids only. In the method’s development we had to respect the
strong heterogeneities and discontinuities in the DTI data.

Instead of further analysis of the scheme on paper, we investigated the method’s properties
numerically in a wide range of benchmarks. The fundamental solution test demonstrates that
the method indeed is asymptotic preserving and in the limit converges with the correct order
to the fundamental solution. Moreover, we used this benchmark to estimate properties of
the modified equation of the scheme. Of special interest is the behavior of the method in
presence of strong discontinuities as encountered in the DTI data. For this, we adapted two
stationary benchmark tests from the porous media community. The scheme deals well with
strong jumps in permeability and accurately resolves interfaces with an abrupt change in the
diffusion direction. An approximate circular travelling wave solution to the Fisher-KPP equation
served as a benchmark for the instationary part of the scheme. We saw that the scheme resolves
the travelling waves with increasing accuracy for refined grids. On coarse grids, however,
an artifact of the regular grid becomes apparent as the numerical solution is not rotationally
symmetric and travelling waves move faster along the coordinate axes.

We applied the AP scheme to Stroock’s E. coli model in one dimension. Stroock posed the
question, whether klinokinesis or klinotaxis provide the bacteria with the more efficient means
to detect stimulus gradients. The simulations support Stroock’s hypothesis that klinotaxis, i.e.,
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the dependency of the turning rate on direction, is the better mechanism.
Last but not least we demonstrated the capabilities of the AP method on the EHKS model for
glioma invasion. Although the parameters are rough estimates, the overall situation is similar to
the application. The method performs mostly well on the coarse and heterogeneous real-world
DTI data. However, for some parameter sets the approximation quality of travelling waves suffers
from the coarse spatial discretization dictated by the DTI data.
The parameters in both application contexts are in a diffusive regime. We showed experimentally
that the kinetic model does not add useful information compared to the limit equation. In
practice, we recommend using a dedicated numerical scheme for the limit equation instead. Let
us just mention the MPFA method here as one example. Due to its origins in porous media
applications, it is designed to work with highly anisotropic and heterogeneous coefficients.





A Calculation detailsCalculation details

A.1 Notation for vector and matrix calculus
By default, all vectors are column vectors. Given two vectors v , w ∈ Rn , the dot product is to be
understood as

v · w :� v>w �

n∑

i�1
vi wi .

The tensor product vw> of two vectors v ∈ Rn , w ∈ Rm is an Rn×m matrix with entries vi w j . For
a function f : Rd 7→ R, the gradient

∇x f (x) �
*....
,

∂ f
∂x1
...
∂ f
∂xd

+////
-

∈ Rd

is a column vector but the derivative

∂ f
∂x

�

(
∂ f
∂x1

· · · ∂ f
∂xd

)
∈ R1×d

is a row vector. The divergence of a vector field v : Rd 7→ Rd is denoted

∇x · v(x) �
d∑

i�1

∂vi

∂xi
∈ R.

For the divergence of tensor field A : Rd 7→ Rd×n , we write

∇x · A(x) �
*....
,

∑d
i�1

∂Ai1
∂xi

...∑d
i�1

∂Aid
∂xi

+////
-

∈ Rn .

The divergence contracts components of ∇x with the columns of A and produces a column vector.
This is a slight abuse of notation, because the left-multiplication of ∇>x to A should yield a row
vector. We define the tensor divergence in this way to avoid transpose signs in the moment
systems.
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A.2 Monomial integrals
With Sn we denote the boundary of the unit ball in d � n + 1 dimensions. Thus, S1 is the unit
circle and S2 the unit sphere. For integrals over Sn , we write

〈·〉Sn :�
∫

Sn
·dS(v).

Each multiindex i � (i1 , . . . , id ) ∈ Nd
+ identifies a monomial vi :� v i1

1 v i2
2 · · · v id

d . Because the
sphere is symmetric, the integral over a monomial does not change when indices are swapped.
For example, the integrals

〈
vξv2

η

〉
S2 �

〈
v2
ξvζ

〉
S2 are the same. Therefore we introduce the notation

for monomial integrals:

Mn � 〈1〉Sn ,

Mk
n �

〈
vk

1

〉
Sn � · · · �

〈
vk

d

〉
Sn ,

Mk ,l
n �

〈
vk

1 v l
2

〉
Sn �

〈
vk

1 v l
3

〉
Sn � . . . ,

Mk ,l ,...,s
n �

〈
vk

1 ...v
s
q

〉
Sn � . . . q ≤ d, indices k , l , . . . , s .

The symbolMk ,l ,...,s
n denotes all monomial integrals

〈
vi

〉
Sn , where one arbitrary component of i

is equal k, a different component is equal l, and so on; and the remaining d − q components are
zero. When the monomial contains an odd power, i.e., at least one of k , l , . . . , s is an odd integer,
the integral is zero due to symmetry of the sphere.

Monomial Integrals over the unit circle

The non-zero monomial integrals over the circle S1 up to order four are

M1 � 〈1〉S1 � 2π,

M2
1 �

〈
v2
ξ

〉
S1 � π,

M4
1 �

〈
v4
ξ

〉
S1 �

3
4π,

M2,2
1 �

〈
v2
ξv2

η

〉
S1 �

1
4π.

We haveM4
1 � 3M2,2

1 .

Monomial Integrals over the unit sphere

The first monomial integrals over the sphere S2 are

M2 � 〈1〉S2 � 4π,

M2
2 �

〈
v2
ξ

〉
S2 �

4
3π,

M4
2 �

〈
v4
ξ

〉
S2 �

4
5π,

M2p
2 �

〈
vp
ξ

〉
S2 �

4
2p + 1π,

M2,2
2 �

〈
v2
ξv2

η

〉
S2 �

4
15π.

We have againM4
2 � 3M2,2

2 .
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A.3 The tumor diffusion tensor for a peanut ansatz
Moments of the Quadratic Form

For a matrix D ∈ Rd×d , and vector v ∈ Rd , define the quadratic form v>Dv. We compute the
moments up to order two of v>Dv on the sphere Sn . The zeroth moment is

〈
v>Dv

〉
Sd �

n∑

i�0

n∑

j�0
Di j

〈
vi v j

〉
Sd

�

n∑

i�0

∑

j,i

Di j
〈
vi v j

〉
Sd +

n∑

i�0
Dii

〈
v2

i

〉
Sd

�M2
d tr(D).

The vector of first moments contains exclusively oddmonomial integrals and is therefore identical
zero:

〈
(v>Dv)v

〉
Sd � 0.

The tensor of second moments is

〈
(v>Dv)vv>

〉
Sd �

n∑

i�0

n∑

j�0
Di j

〈
vi v j vk vl

〉
Sd

�

n∑

i�0

n∑

j,i

Di j
〈
vi v j vk vl

〉
Sd +

n∑

i�0
Dii

〈
v2

i vk vl

〉
Sd .

Note that in the first sum the integral
〈
vi v j vk vl

〉
Sd is only non-zero, if (i � k ∧ j � l) or

(i � l ∧ j � k). This sum reduces to

n∑

i�0

n∑

j,i

Di j
〈
vi v j vk vl

〉
Sd �M2,2

d (Dkl + Dlk )(1 − δkl ).

In the second sum, the integral is only non-zero, if k � l and thus we write

n∑

i�0
Dii

〈
v2

i vk vl

〉
Sd �

n∑

i�0
Dii

〈
v2

i v2
k

〉
Sd δkl

� *
,

∑

i,k

Dii
〈
v2

i v2
k

〉
Sd +

〈
v4

k

〉
Sd Dkk+

-
δkl

� *
,
M2,2

d

∑

i,k

Dii +M4
dDkk+

-
δkl

� *
,

∑

i,k

Dii + 3Dkk+
-
M2,2

d δkl

� *
,

n∑

i�0
Dii + Dkl + Dlk+

-
M2,2

d δkl .
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In the second last step we used thatM4
d � 3M2,2

d . Finally, the second moments are gven by

〈
(v>Dv)vv>

〉
Sd �M2,2

d (Dkl + Dlk )(1 − δkl ) + *
,

n∑

i�0
Dii + Dkl + Dlk+

-
M2,2

d δkl ,

�M2,2
d (tr(D)In + D + D>).

The tumor diffusion tensor in three space dimensions

Measurements of the water diffusion tensor DW are given for d � 3. Using the normalized
quadratic ansatz

E(v) �
1

〈v>DW v〉S2
v>DW v

for the fiber distribution, we can use the integrals from the previous part to compute the tumor
diffusion tensor DT,3 as

DT,3 �

〈
E(v)vv>

〉
S2 �

M2,2
2

M2
2

(
I3 +

DW + DW
>

tr(DW )

)

�
1
5

(
I3 +

DW + DW
>

tr(DW )

)
.

(A.1)

For an isotropic water diffusion tensor DW � I, we have

DT,3 �
1
5

(
I3 +

2
3 I3

)
�

1
3 I3.

Even for completely degenerate water diffusion

DW �

*...
,

1 0 0
0 0 0
0 0 0

+///
-

we have a non-degenerate tumor diffusion tensor

DT,3 �
1
5

*...
,

3 0 0
0 1 0
0 0 1

+///
-

.

This limits the amount of anisotropy we can get from the quadratic model. If we want more
anisotropy for the tumor diffusion, we can use for example a bimodal Fisher ansatz.

The tumor diffusion tensor in two space dimensions

We have two options when computing the tumor diffusion tensor in two space dimensions. The
first option is to start from a truly two-dimensional kinetic model, i.e., v ∈ S1. Then it is natural
to estimate the fiber distribution from the reduced water diffusion tensor DW,2, which consists of
the upper left corner of DW :

E2(v) �
1〈

v>DW,2v
〉
S1

v>DW,2v.
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The moment formulas then give

DT,2 �

〈
E(v)vv>

〉
S1 �

M2,2
1

M2
1

(
I2 +

DW,2 + DW,2
>

tr(DW,2)

)

�
1
4

(
I2 +

DW,2 + DW,2
>

tr(DW,2)

)

for the tumor diffusion tensor. The second option is to start from a three-dimensional kinetic
model which is constant and extended infinitely along the ζ-axis. Then the velocity space remains
v ∈ S2. This means that the formulas for the d � 3 case are used to compute DT,3 and then only
the upper left corner of this tensor is the two-dimensional tumor diffusion tensor D̃T,2:

D̃T,2 �
1
5

(
I2 +

DW,2 + DW,2
>

tr(DW,3)

)
.

Comparing these two approaches for an isotropic water diffusion tensor DW,3 � I3 gives

DT,2 �
1
4

(
I2 +

2I2
2

)
�

1
2 I2 ,

D̃T,2 �
1
5

(
I2 +

2I2
3

)
�

1
3 I2.

Intuitively, it makes sense that the overall diffusion is faster in the truly two-dimensional model,
because here the cells always move with unit speed in the (ξ, η)-plane. In the reduced three-
dimensional model, cells still have a velocity in S2 which means that their speed projected onto
the (ξ, η)-plane is less than one.

A.4 Real valued spherical harmonics
We parametrize the unit sphere with

*...
,

vξ
vη
vζ

+///
-

�

*...
,

√
1 − µ2 cos(φ)√
1 − µ2 sin(φ)

µ

+///
-

.

The complex spherical harmonics Ym
l , 0 ≤ l ,−l ≤ m ≤ l are defined as

Ym
l (µ, φ) �

√
2l + 1

4π
(l − m)!
(l + m)! Pm

l (µ) exp(imφ),

with the associated legendre polynomials

Pm
l (µ) � (−1)m

(
1 − µ2

) m
2 dmPl (µ)

dµm ,

and

Pl (µ) �
1

2l l!
d l

dµl

(
µ2 − 1

) l
.
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This is the same definition as in the Boost library [40]. We define the real valued spherical
harmonics in the same way as the StarMAP paper [123]: For 0 ≤ l , 0 ≤ m, we have

Yl ,m �




− i(−1)m√
2

(
Y−m

l − (−1)mYm
l

)
, m < 0,

Y0
l , m � 0,

(−1)m√
2

(
Ym

l + (−1)mY−m
l

)
, m > 0,

�




√
2(−1)m Im(Y−m

l ), m < 0,

Y0
l , m � 0,
√

2(−1)m Re(Ym
l ), m > 0.

Note that in the StarMAP paper, there is a minus sign missing in the definition of Yl ,m ,m < 0.
With this definition, the first basis functions are

*..................
,

Y0,0

Y1,1

Y1,−1

Y1,0

Y2,2

Y2,−2

Y2,1
...

+//////////////////
-

�

√
1

4π

*..................
,

1√
3vξ√
3vη√
3vζ√

15
2 (v2

ξ − v2
η)√

15vξvη√
15vξvζ
...

+//////////////////
-

.

With this ordering, which corresponds to the ordering in [123], we obtain the density ρ and flux
q from the moments u �

〈
f a

〉
via

ρ �
〈

f
〉
�
√

4π
〈

f Y0,0
〉
�
√

4πu (0) ,

q �
〈

f v
〉
�

*...
,

〈
f vξ

〉
〈

f vη
〉

〈
f vζ

〉
+///
-

�

√
4π
3

*...
,

〈
f Y1,1

〉
〈

f Y1,−1
〉

〈
f Y1,0

〉
+///
-

�

√
4π
3 u (1) .

A.5 The eigenstructure of the Kershaw moment system
We compute the eigenvalues and eigenvectors of the flux Jacobian for the modified Kershaw
moment system from Section 4.2.2. The calculation is similar to that in Kershaw’s original paper
[86] and is based on rotations into a suitable reference frame. It has been published originally in
[36].
Recall the formula (1.14) for the flux Jacobian JFn

JFn � *
,

0 n>

P̂n − ∂P̂n
∂q̂ q̂ ∂P̂n

∂q̂

+
-
.

With P̂ � P̂ (K) from (4.6), and writing PE �
〈
vv>E

〉
, we have

∂P̂n
∂q̂

� −2(PEn) q̂> + I(q̂>n) + q̂n> ,

∂P̂n
∂q̂

q̂ � −2(PEn) q̂> q̂ + 2(q̂>n) q̂.
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The Jacobian becomes

JFn � *
,

0 n>

(1 + | q̂ |2)(PEn) − (q̂>n) q̂ −2(PEn) q̂> + I(q̂>n) + q̂n>
+
-

� *
,

0 n>

(1 + | q̂ |2)(PEn) − | q̂ |2(q∗>n)q∗ | q̂ | (−2(PEn)q∗> + I(q∗>n) + q∗n>
)+

-
,

where q∗ � q̂
| q̂ | is the free-streaming first moment. Define the rotation matrix R̂ that rotates q∗

onto the first unit vector e1

R̂q∗ � e1 ,

and a compatible extension

R :� *
,

1 0
0 R̂

+
-

to the full Jacobian. Under the similarity transform R the Jacobian becomes

RJFnR> � *
,

0 n>R̂>

(1 + | q̂ |2)R̂(PEn) − | q̂ |2(e>1 R̂n)e1 | q̂ |
(
−2(R̂PEn)e>1 + I(e>1 R̂n) + e1n>R̂>

)+
-
.

Let n j such that R̂n j � e j , j � 1, 2, 3. That is, n1 is parallel to q∗ and n2 , n3 are orthogonal to the
free-streaming direction. We compute the eigenvectors and eigenvalues of RJFnR> for these
basis vectors. The Jacobians become

RJFn j R
>
�

*.
,

0 e>j
(1 + | q̂ |2)Se j − | q̂ |2δ1 j e1 | q̂ |

(
−2Se j e>1 + Iδ1 j + e1e>j

)+/
-
,

where S is the similarity transform of PE:

S :� R̂PER̂>.

For j � 1, we have

RJFn1 R> �

*.....
,

0 1 0 0
(1 + | q̂ |2)S11 − | q̂ |2 | q̂ |(−2S11 + 2) 0 0

(1 + | q̂ |2)S21 | q̂ |(−2S21) | q̂ | 0
(1 + | q̂ |2)S31 | q̂ |(−2S31) 0 | q̂ |

+/////
-

,

with characteristic polynomial

det(RJFn1 R> − λI) � (| q̂ | − λ)2
[
λ2 − 2λ | q̂ |(1 − S11) + | q̂ |2 − (1 + | q̂ |2)S11

]

and eigenvalues

λ2,3 � | q̂ |,
λ1,4 � (1 − S11) | q̂ | ±

√
g(| q̂ |, S11).
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In a hyperbolic system, all eigenvalues must be real, which is the case if the term under the
square root

g(| q̂ |, S11) � S2
11 | q̂ |2 + S11(1 − | q̂ |2)

is greater than or equal to zero. The matrix component

S11 � e>1 R̂
〈
vv>E

〉
R̂>e1 �

〈
(e>1 R̂v)2E

〉
> 0,

is positive because E is positive. Since | q̂ | ∈ [0, 1], we have indeed

g(| q̂ |, S11) > 0.

Because g > 0, the eigenvalues λ1 , λ4 are distinct.
The Jacobian is diagonalizable if there are four linearly independent eigenvalues. We see
immediately that the dimension of the nullspace of RJ (F · n1)R> − | q̂ |I is two. Thus, two
independent eigenvectors exist for the eigenvalue λ1,2 � | q̂ |. They are given by V2 � (0, e2) and
V3 � (0, e3), and therefore are the characteristic speeds of transversal waves. Because S11 > 0, the
eigenvalues λ1,4 are distinct and a complete basis of eigenvectors exists. The eigenvectors V1 ,V4

to eigenvalues λ1 , λ4 have the form (1, λ1,4 , r, s). Unfortunately, the last two components r, s
are in general not zero, hence the characteristic waves are not longitudinal. But if S is diagonal,
which happens if n1 is along an eigenvector of PE, we have V1,4 � (1, λ1,4 , 0, 0).
In the free-streaming situation, the characteristic speeds are λ1 � 1 and λ4 � 1−2S11. Additionally
the eigenvector to the main eigenvalue is V1 � (1, e1).
For j � 2 the Jacobian is

RJFn2 R> �

*.....
,

0 0 1 0
(1 + | q̂ |2)S12 | q̂ |(−2S12) | q̂ | 0
(1 + | q̂ |2)S22 | q̂ |(−2S22) 0 0
(1 + | q̂ |2)S32 | q̂ |(−2S32) 0 0

+/////
-

,

with characteristic polynomial

det(RJFn2 R> − λI) � λ2
[
λ2

+ 2| q̂ |S12λ + S22(| q̂ |2 − 1)
]

and eigenvalues

λ2,3 � 0,

λ1,4 � −| q̂ |S12 ±
√

h ,

where

h � S2
12 | q̂ |2 + S22(1 − | q̂ |2) ≥ 0

is non-negative by the same arguments as before.
This matrix cannot be diagonalized when the first moment is on the surface of the realizable set
��q̂�� � 1. In this situation, the three eigenvalues λ1,2,3 � 0 are zero. But the matrix

RJFn2 R> − 0I �
*.....
,

0 0 1 0
2S12 −2S12 1 0
2S22 −2S22 0 0
2S32 −2S32 0 0

+/////
-
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has rank two, thus there are only two linearly independent eigenvectors to the eigenvalue zero.
The case j � 3 is completely analogous to j � 2.

A.6 A second-order time stepping
The stiffly accurate IMEX scheme ARS(2,2,2) [4] applied to the system (5.10) reads:

(Φ̄ρ)(1)

(Φ̄g
E)(1)

(Φ̄g )(1)

�

�

�

Φ̄ρ (ρ̄n , ḡn )

Φ̄
g
E (ρ̄n , ḡn )

Φ̄g (ρ̄n , ḡn )




compute operators

at time t

ρ̄∗

ḡ∗
�

�

ρ̄n + τ∆t(Φ̄ρ)(1)

ḡn + τ∆t
(
(Φ̄g

E)(1) + (Φ̄g )(1)
)




intermediate explicit

step to t + τ∆t

ρ̄(n ,1)

ḡ (n ,1)

�

�

ρ̄∗ + τ∆tΓ̄ρ (ρ̄(n ,1) , ḡ∗)

ḡ∗ + τ∆tΓ̄g (ρ̄∗ , ḡ (n ,1))




intermediate implicit

step

(Φ̄ρ)(2)

(Φ̄g
E)(2)

(Φ̄g )(2)

(Γ̄ρ)(2)

(Γ̄g )(2)

�

�

�

�

�

Φ̄ρ (ρ̄(n ,1) , ḡ (n ,1))

Φ̄
g
E (ρ̄(n ,1) , ḡ (n ,1))

Φ̄g (ρ̄(n ,1) , ḡ (n ,1))

Γ̄ρ (ρ̄(n ,1) , ḡ (n ,1))

Γ̄g (ρ̄(n ,1) , ḡ (n ,1))




compute operators

at time t + τ∆t

ρ̄∗∗

ḡ∗∗

�

�

ρ̄n + (1 − τ)∆t(Γ̄ρ)(2)

+∆t(σ(Φ̄ρ)(1) + (1 − σ)(Φ̄ρ)(2))

ḡn + (1 − τ)∆t(Γ̄g )(2)

+∆t(σ(Φ̄g
E + Φ̄g )(1) + (1 − σ)(Φ̄g

E + Φ̄g )(2))




explicit step to t + ∆t

ρ̄n+1

ḡn+1

�

�

ρ̄∗∗ + τ∆tΓ̄ρ (ρ̄n+1 , ḡ∗∗)

ḡ∗∗ + τ∆tΓ̄g (ρ̄∗∗ , ḡn+1)



implicit step

with the constants

τ �
2 − √2

2 ,

σ � 1 − 1
2τ .





B Software and dataSoftware and data

The complete source code and data for this thesis is publicly available online [34] under the
doi https://doi.org/10.26204/data/2. This includes the source of the implementation of the
numerical schemes, as well as the scripts for plotting the results and the source code for this
document. Furthermore, the computations for the experiments in this thesis are documented in
this archive, including precise settings and output data. In Section B.2, we describe the archiving
tool we developed for this purpose.

B.1 Used software
The implementation of the numerical schemes from Section 4.3.1 and Section 5.3 is built upon
the DUNE [7–9] and DUNE PDELab [10] environments. These are C++ toolboxes that provide
core functionality to discretize PDEs with standard grid based methods. DUNE is organized in
so-called modules. We provide three such modules: kershaw-kinetic implements the scheme
from Section 4.3.1, kershaw-ap implements the AP scheme from Section 5.3, and kershaw-common
holds common functionality, e.g., code related to moment methods or IO.
The code depends on the Eigen library [67] to perform the necessary linear algebra computations
in the context of moment methods, and the Boost library [40] to evaluate spherical harmonic
functions. To read the DTI data, NetCDF [134] is required, but this depencency is optional if only
synthetic data are used.
The kershaw-kinetic and kershaw-ap programs produce outputs in the vtk format [122], which is
supported by DUNE. Postprocessing of the simulation outputs is done with Python [52]. The
figures in this thesis have been generated with the python library matplotlib [77].
Table B.1 summarizes the dependencies.

B.2 Computational experiments
When investigating mathematical models and numerical methods computationally, as we do
in Section 4.3 and Section 5.4, one cannot avoid the concept of computational experiments.
Fundamentally, computation is experimentation:

So science is still carried out as an ongoing interplay between theory and experimen-
tation. The complexity of both, however, has increased to such a degree that they
cannot be carried out without computation. There is no need, therefore, to attach
new legs to science. ([135])

https://doi.org/10.26204/data/2


162 Appendix B. Software and data

Software Version Use

g++ 7.5.0a compiler
DUNEb 2.6 PDE discretization
Eigen 3 Linear algrebra for moment methods
Boost 1.66.0 Spherical harmonics
NetCDFc 4 reading DTI input
MPId 2 parallelization

Pythone 2.7 postprocessing + visualization
VTK 5.10 visualization

aC++17 standard
brequired modules: dune-common, dune-geometry, dune-grid, dune-typetree, dune-multidomaingrid, dune-istl,

dune-localfunctions, dune-functions, dune-pdelab
coptional
doptional
enotable modules: vtk, matplotlib, numpy

Table B.1: Dependencies for the kershaw modules.

Thus, computational experiments should be subject to the same established practices as tradid-
ionally executed experiments:

We believe that software is just another kind of experimental apparatus [135] and
should be built, checked, and used as carefully as any physical apparatus. ([139])

But what is an experiment? Here is our presumptious attempt to summarize several centuries of
scientific practice in a single sentence:

Definition B.1 — Experiment. A carefully planned, executed and documented observation of a
system in a controlled environment, in order to support or reject a theory.

For example, let us see, how this definition applies to Experiment 5.7. We want to investigate
wether themodified P(E+)

1 momentmodel (system) converges to the correct diffusion limit (theory).
Therefore,we compute (execution) thismodelwith anumerical scheme (environment)with several
small values for ε (planning) and compute the difference to the analytic solution (observation).
The observations (see Figure 5.7b) support the theory (evaluation). The classification above is not
as clear cut as it might seem. We can look at the same experiment in a different way: Having
gathered strong theoretical evidence (see Lemma 4.2), that the first-order modified moment
model converges to the correct diffusion limit, we want to verify this convergence (theory) for
the numerical schemes, e.g. MM+

1m (system). We run computations (execution) of this scheme,
using the current version of its implementation (environment), with several small values for
ε (planning) and compute the difference to the analytic solution (observation). Again, our
observations support the theory (evaluation).
There are too many aspects to the proper conduct of experiments to list them all. Let us point to
[109, 139] for guides on best practices. One major recommendation is the use of standardized
and thoroughly tested equipment. In the context of this thesis, DUNE [7–9] and DUNE PDELab
[10] as standard toolboxes for numerical solution of PDEs are part of this equipment.
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For someone to benefit from the hard work put into an experiment, all the steps have to
be documented. Noble summarizes the possible use cases in his guide to best practices in
computational biology nicely:

This “someone” could be any of a variety of people: someone who read your
published article and wants to try to reproduce your work, a collaborator who wants
to understand the details of your experiments, a future student working in your
lab who wants to extend your work after you have moved on to a new job, your
research advisor, who may be interested in understanding your work or who may
be evaluating your research skills. Most commonly, however, that “someone” is you.
([109])

Ideally, as many people as possible should benefit from the documentation of an experiment.
However, the scope and purpose of documentation differs too much between audiences to
address all concerns at once. We focus on a single aspect:

This leads to the second principle, which is actually more like a version of Murphy’s
Law: Everything you do, you will probably have to do over again. ([109])

The Archivist—the archiving tool that we describe in the following—is a direct consequence of
too many first-hand experiences with this principle.
Many researchers have approached the issue of documentation from different angles. The major
concern in reproducible research [39, 99, 126] is, as the name suggests, to enable oneself and other
researchers to reproduce experiments independently, i.e., using different source code. This goes
beyond simple replication, i.e., rerunning the same computation using the same code (in the same
environment) again. Although one functionality of the Archivist is the replication of previous
experiments, this is not enough to ensure the research is reproducible in this sense. Therefore,
we avoid the phrase ’reproducible research’ in the following. Another purpose of documentation
is to prove the provenance of data, such as experiment results. Verifiable Result Identifiers [60]
have been proposed as an automatic and cheat-proof tool to document how each piece of data in
the chain of computations from raw data to results came into existence. The Archivist provides
only a few links in this chain and leaves much room for human error or manipulation. Source
code is also documentation [104]. Although automation software can do the bookkeeping task to
remember, for example commit numbers, no piece of software can ensure that the source code
itself is understandable. Therefore, good coding practices [82, 104] are always important.
Rather than a fully automated solution to all issues of documentation, the Archivist should be
understood as an electronic lab journal. It does not guarantee a clean and seamless documentation;
but used properly, it enables it. Many other pieces of software with similar functionality exist [39,
99, 115].

B.2.1 The Archivist

The Archivist has been presented at the Dune User and Developer Meeting 2018 [33] and
is available online [31]. It is a Python tool that aims to automate error-prone and tedious
bookkeeping tasks essential to the proper conduct of computational experiments.
Figure B.1 gives an overview of the environment of a computational experiment, from the
perspective of the Archivist. An experiment requires to run an executable to produce output.



164 Appendix B. Software and data
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Figure B.1: The environment of a computational experiment.

This can be anything from a compiled stand-alone application to a shell script that calls other
programs in some order. To produce the desired result, the executable usually consumes input.
As far as the Archivist is concerned, there are two types of input—parameters and data—which
are treated differently. Parameters are usually inputs that are human readable and writable,
and most importantly, small enough to store plain copies every time an experiment is archived.
This could be command line inputs or configuration files. Data are typically generated by
measurements or other software, they could be in raw binary format, and they are too large
to store as copies. An example from this work is the DTI data set used in Experiment ??. The
Archivist assumes that the executable can be built by a single command. It does not matter
whether this is a plain shell script, a makefile, an entire build system, e.g. CMake, or nothing at
all. Most importantly, the source code for the executable must be under version control1. This
restriction is built in on purpose to enforce the use of version control. Of course, any external
dependencies, such as libraries or other executables, as well as the hardware, belong also to the
environment.
The Archivist performs these functions:

• Archive the inputs, source code, and outputs of an experiment.

• Restore the inputs, source code, and executable to match an archived experiment, and
optionally run it again.

• Organize experiments into so-called file cabinets, attach descriptions and tags to experi-
ments.

It does not

• manage external dependencies,

• record versions for external dependencies,

• record hardware details,

1Currently, only Git is supported.
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aspect archiving restoring

environment - -
source code store commit hash checkout commit
parameters copy to archive copy to project
data store hashes verify hashes
executable store command line arguments build and run
output copy -
description query user input -

Table B.2: The actions the Archivist performs on components of the environment.

• manage data inputs.

Table B.2 lists the actions that the Archivist takes for each component of the environment to
archive and restore experiments. Managing external dependencies is a complicated task that
is adressed by other tools, e.g. CDE [126] or Conda. As far as the Archivist is concerned, it
is the user’s responsibility to install the required dependencies. Note the distinction between
parameters and data. Parameters are stored as plain copies, whereas for data only the hashes
are stored. The user has to ensure that data are archived separately. If input data are corrupted
or missing, the Archivist will report an error when trying to restore an experiment. It should
go without saying that the Archivist cannot force the user to provide sensible descriptions.
Because the experiment archive should serve as documentation, everything is stored in the
human readable JSON format in plain text files.
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GlossaryGlossary

apparrent diffusion coefficient (ADC)

The isotropic component of the diffusion tensor. 31, 33

asymptotic preserving (AP)

A numerical scheme that converges to a valid scheme for a scaling limit. 3, 4, 65, 99, 101,
102, 148, 149, 161

characteristic length estimate (CL)

An estimate for the volume fraction of fibers, based on a characteristic diffusion length. 31,
33

computed tomography (CT)

A noninvasive 3D imaging technique based on absorption of x-rays in tissue. 30

diffusion tensor imaging (DTI)

A series of MRI images that can be used to measure diffusion speed of water molecules. 2,
29–31, 33, 39, 42, 45, 120, 137, 145, 148, 149, 161, 162, 164, 177

Engwer-Hillen-Knappitsch-Surulescu model (EHKS model)

The glioma model proposed by Engwer, Hillen, Knappitsch, and Surulescu. 36, 137, 138,
145, 148, 149

extracellular matrix (ECM)

The fibrous protein structure outside of cells that provides stability to the tissue and is used
by cells to attach to. 2, 27, 28, 30, 31, 36, 37, 90, 145

fractional anisotropy (FA)

A measure of anisotropy of a diffusion tensor. 31, 33, 138

glioblastoma multiforme (GBM)

The most agressive type of glioma; grade IV astrocytoma. 1, 2, 25, 26, 177

implicit-explicit (IMEX)

A mixture of implicit and explicit time stepping. 101, 108, 109, 159
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kinetic theory of active particles (KTAP)

A mathematical structure to model living systems with kinetic equations. 3, 29, 30, 41

magnetic resonance imaging (MRI)

A noninvasive imaging technique based on the interaction of magnetic fields with hydrogen
atoms. 2, 4, 25, 26, 30, 31, 177

multi-point flux approximation (MPFA)

A numerical scheme for flow through porous media. 99, 149
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