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Introduction

In 1982 J. Mather and S. Yau published the famous Mather-Yau theorem in [MY82].
The theorem yields a one-to-one correspondence between isomorphism classes of
germs of isolated hypersurface singularities and isomorphism classes of their respec-
tive so-called Tjurina algebras. Given the defining equation f € C{x} = C{x,...,z,}
of a hypersurface singularity, the Tjurina algebra T is defined as Ty = C{x}/(f, J¢),
where J; = (0y, f,..., 0z, f) is the Jacobian ideal. A first version of the Mather—Yau
theorem in case of quasi-homogeneous isolated hypersurface singularities has been
shown six years earlier by A.N. Shoshitaishvili in [Sho76]. The result in the quasi-
homogeneous case was also announced by G.-M. Greuel in [Gre77], but has never
been published. Three years later, the result has been generalized to singularities of
isolated singularity type by T. Gaffney and H. Hauser in [GH85]. One year later, a fur-
ther generalization to so-called harmonic singularities has been shown by H. Hauser
and G. Miiller in [HMS86]. The purpose of the aforementioned theorems is to reduce
the classification of singularities to the classification of C-algebras. In the particular
case of isolated hypersurface singularities, the problem is reduced to the isomorphy
problem of finite-dimensional C-algebras. A classical example of an invariant associ-
ated to isolated hypersurface singularities is the C-dimension of the Tjurina algebra,
the so-called Tjurina number. In general the Mather-Yau theorem does not hold in
positive characteristic. G.-M. Greuel and T. H. Pham (see [GP17]) stated an analogous
result to the Mather—Yau theorem in positive characteristic, which replaces the Tju-
rina algebra by so-called higher Tjurina algebras Ty, = K|[[x]]/(f, m*.J;), where K is
an algebraically closed field of positive characteristic and where £ € N has to satisfy
k-+ord(f)+ord(J ;) +1

m 2 I cm?J;.

In the present thesis we focus on the case of complex singularities. The results by J.
Mather and S. Yau, as well as by T. Gaffney and H. Hauser indicate that, for certain
classes of singularities, all the information about the singularity is encoded in the Tju-
rina algebra. Unfortunately, neither the proof in [MY82] nor the proof in [GHS85] is
constructive. This gives rise to two problems: the recognition problem and the recon-
struction problem. The recognition problem is to decide whether a given C-algebra
is isomorphic to the Tjurina algebra of a hypersurface singularity, whereas the recon-
struction problem is to reconstruct a defining equation for the hypersurface singularity
from which a given Tjurina algebra arises.

In case of a quasi-homogeneous isolated hypersurface singularity, S. Yau gave the
following theoretical answer to the recognition problem in [Yau87]:

Theorem. Let I = (f1,..., fr) C C{x} be an ideal with generators fi,..., fi, where 1 <
k < n.Then there exists a g € C{x} with J, = I if, and only if there exist quasi-homogeneous

1
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polynomials Fy, ..., F, € C[x] and a matrix B € CF*" of rank k, such that
Fy fi
=B
F, fk
and such that
O, Fj = 0y Fiforall 1 <i,j < n.

From a computational point of view the given answer by S. Yau is hard to verify if the
singularity is not homogeneous.

In the present thesis, we investigate the aforementioned problems by using the theory
of analytic gradings introduced by G. Scheja and H. Wiebe in [SW73]. Their theory
is a generalization of the classical theory of gradings of rings, see for example [Eis95,
Chapter 1], to analytic algebras. Their work yields a one-to-one relation between Z-
gradings of an analytic algebra A = C{x}/I and semi-simple logarithmic derivations
0 € Derj(C{x}) (see Definitions 1.49 and 1.46).

Overview

The thesis is structured as follows:

Chapter 1

We present the basic theory of complex analytic spaces and we restate the proof of the
main theorem in [GHS85] for hypersurface singularities. It leads to the following mild
generalization, involving so-called strongly Euler-homogeneous singularities:

Definition 1.100. Let X C C" be a hypersurface singularity. Denote by f, € C{x — p} the
local equation of X in p € X. We call X Euler-homogeneous at p € X if, and only if, there
exists a derivation x,, € Der(Ox p), such that x,(fp) = fp, where f, € C{x — p} is the local
equation of X at p € X. A derivation x,, is called Euler-derivation of f at p. We call X
strongly Euler-homogeneous at p € X if, and only if, there exists an Euler derivation x,
satisfying xp(p) = 0. We call X (strongly) Euler-homogeneous, if X is (strongly) Euler-
homogeneous at all p € X. Let f € C{x — p} be holomorphic on U C C". We say f is
(strongly) Euler-homogeneous, if X = V(f) C U is (strongly) Euler-homogeneous at p.
We call a complex space germ (X, p) (strongly) Euler homogeneous (at p), if there exists a
representant which is (strongly) Euler-homogeneous (at p).

We obtain the following result:

Theorem 1.101. Let f,g € C{x} define singularities (X,0), respectively (Y, 0), which are
strongly Euler-homogeneous at 0. Then the following are equivalent:

(1) (X,0) = (Y,0).

(2) Ty =T, as C-algebras.

Theorem 1.101 combined with [HM86, Theorem 4] implies the following:
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Corollary 1.105. Let f,g € C{x} define weighted-homogeneous hypersurface singularities
with weight-vector 0 # w = (w1, ...,wy) € Z" and with weighted degree d := deg., (f) =
deg, (g). Denote the singularities defined by f and g by (X, 0), respectively (Y, 0).
Assume that either

(i) d # 0, or

(ii) d —w; #0for1 <i<n.
Then the following are equivalent:

(1) (X,0) = (Y,0).

(2) Ty =T, as C-algebras.
We show, by adapting [GHS85, Example 4], that the statement of Corollary 1.105 is
sharp in the following sense:

Example 1.107. For t € C\{—1}, consider the family of polynomials
Fy = 2wy +abws +adar + aiwows+ xaws + (14 2+1) - (Ydy2 +y3ys + Y3y +y1y2ys +yays)

as elements of C{x1,...,%5,91,...,Ys, 2}. Define (X;,0) = (V(F;),0) C (C,0) fort €
C\{—1}. The F, are weighted-homogeneous with respect to
w = (0,0,0,1,—1,0,0,0,1,—1,0) € Z'. Then degy,(F,) = 0 and (Sing(Xy),0) =
(Sing(X¢),0) forall t € C\{—1}, but (Xo,0) 2 (X4, 0) for t € V\{0}, where V C C\{—1}
is an open neighborhood of 0.

Chapter 2

We first present the theory of analytic gradings by G. Scheja and H. Wiebe following
[SW73]. Next we investigate the relation between analytic Z*-gradings of an analytic
algebra A = C{x}/I, toral Lie subalgebras of the module of logarithmic derivations
of I Der;(C{x}) = Der;(C{x}) N Dery(C{x}) and the subgroup Aut;(C{x}) (see Def-
inition 2.38) of the automorphism group Aut(C{x}). We show that the dimension s
of the maximal algebraic tori contained in Aut;(C{x}) is an invariant of A, and that s
corresponds to the maximal possible value of k such that A admits Z*-grading. The
integer s is called rank of maximal multihomogeneity of A and will be used in the
chapters 3 and 6.

We finish the chapter by generalizing [Sch07, Theorem 1] to the case of arbitrary ideals.
Theorem 2.80. Let either

(i) A=CJx]]and I C A, or
(ii) A= C{x}and I C A be an algebraic ideal.

Define g := Der;(A) C Der'(A) and let s € N be the rank of maximal multihomogeneity.
Then there exist 61, ...,0s,11,...,Vr € @, Such that

(1) 61,...,9s,11,..., Vv, isa minimal set of generators of g as an A-module,
(2) if o € gwith [6;,0] = 0 forall i, then og € (1,...,0s)C,

(3) 90; is diagonal with eigenvalues in Q,

(4) v; is nilpotent, and

(5) [6i,v5] € Q- v
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Chapter 3

In Chapter 3 we focus on the following problem given by H. Hauser and ]. Schicho in
[HS11]:

Problem. Characterize all germs of hypersurface singularities (V (f),0) C (C",0), such that
(f,Jy) is monomial.

By modifying the proof of [XY96, Theorem 1.2] and by using the theory of analytic
gradings presented in Chapter 2, we show the following:

Theorem 3.11. Let f € m C C{x} and assume that the Tjurina algebra T ; admits a positive
grading. Then f € mJ;. Equivalently, the germ (V (f),0) is strongly Euler-homogeneous at
0.

An immediate corollary of Theorem 3.11 is the fact that hypersurface singularities
with monomial Tjurina ideal (f, J;) are strongly Euler-homogeneous and thus also
satisfy Theorem 1.101. This indicates that combinatorial properties of the singular
locus yield information about the singularity itself. We consider so-called ideals of
Stanley-Reisner type:

Definition 3.23. Let A = C{x} or C[[x]]. Let I C A be an ideal. We say I is an ideal of
monomial type, if there exists an automorphism ¢ € Aut(A), such that p(I) is a monomial
ideal. We say I is an ideal of Stanley—Reisner type, if I is a radical ideal of monomial type.

The main result of this chapter is the classification of all hypersurface singularities
where the ideal (f, Jf) is of Stanley—Reisner type.

Theorem 3.25. Let f € C{x}. Then (f, Jy) being of Stanley—Reisner type is equivalent to
the existence of an automorphism ¢ € Aut(C{x}) and a partition of the x variables, denoted
by x© x . xUHD) such that

o(f) = Z ()" + ig
=1

j=1

where g; € C[x(i)] is a normal crossing divisor for 1 < i < [. This means that all singularities
with Stanley—Reisner singular locus are of Sebastiani—Thom type where the summands are
Aq-singularities or normal crossing divisors. In particular, the Sebastiani—Thom components
are unique up to isomorphism and permutation.

Due to the shape of the defining equation, we call the singularities with analytical
Stanley-Reisner Tjurina ideal generalized normal crossing divisors. Theorem 3.25
shows that every generalized normal crossing divisor is of Sebastiani-Thom type, that
is:

Definition 3.24. Let f € C{x,y}. We say f is of Sebastiani-Thom type, if there exist
g € C{x} and h € C{y}, such that f = g + h. We say that a hypersurface singularity
X C C™™ is of Sebastiani-Thom type at p = (p1,p2) € X if there exists an isomorphism
such that (X, p) = (V(f),p), where f € C{x — p1,y — p2} is of Sebastiani—Thom type. We
call X a Sebastiani-Thom type hypersurface singularity, if it is of Sebastiani—Thom type
forall p € X. We say a complex space germ (X, 0) is of Sebastiani-Thom type , if there exists
a representant which is of Sebastiani—Thom type. Consider the germ (X,0) = (V(f),0) with
f=g+hand g € C{x}, h € C{y}, We call the germs (X;,0) = (V(g),0) C (C",0) and
(X2,0) = (V(h),0) C (C™,0) the Sebastiani—-Thom components of (X,0).



Explicit and effective Mather—Yau correspondence in view of analytic gradings 5

Chapter 4

This chapter is joint work with D. Pol (see [EP20]). In Chapter 2 we work with the
logarithmic derivation modules Der;(C{x}). In case I = (f) is a principal ideal, it
coincides with the notion of logarithmic derivations considered by K. Saito in [Sai75]
and [Sai80]. In these papers, K. Saito investigates a particular family of hypersurfaces
called free divisors. A hypersurface defined by I = (f) is called free if Der;(C{x}) is
a free C{x}-module. Several characterizations of freeness are known: X is free if and
only if the module of logarithmic 1-forms is free, where a form w is logarithmic if w
and dw have simple poles along X (see [Sai80]). Another characterization of freeness
is given by H. Terao (see [Ter80]) in case of quasi-homogeneous hypersurface and A.
G. Aleksandrov ([Ale88]) in general: a hypersurface (X,0) C C™ defined by f € C{x}
is free if and only if (X, 0) is smooth or T is Cohen-Macaulay of dimension n — 2.

Generalizations of logarithmic forms along complete intersections are introduced in
[ATO01] and [Ale12]. The definition of multi-logarithmic forms in [Alel2] is then ex-
tended to Cohen-Macaulay spaces in [Ale14], inspired by a characterization of regu-
lar meromorphic forms given by M. Kersken in [Ker84]. Analogously, a generalization
of logarithmic vector fields is introduced in [GS12] for complete intersections by M.
Granger and M. Schulze, and then in [Pol16] for Cohen-Macaulay spaces by D. Pol.
These definitions extend verbatim to equidimensional subspaces (see [P0l20]). In this
chapter, we use the equivalent definition given by M. Schulze and L. Tozzo in [ST18]:

Definition 4.1. Let (X,0) C (C",0) be a Cohen—Macaulay subspace of codimension k de-
fined as the vanishing set of the radical ideal Ix C C{x}. The module of multi-logarithmic
k-vector fields along X is defined by

k
DerX (—log X) = {5 € \Der(C{x}) [V(f1,.... fx) € I%, (5,dfy A--- Adfy) € IX}.

A generalization of freeness is suggested in [GS12] for complete intersection, which is
inspired by the characterization of H. Terao and A.G. Aleksandrov mentioned before,
and afterwards extended by M. Schulze in [Sch16] to Gorenstein singularities. We use
the generalization of freeness for an equidimensional subspace (X,0) C (C",0) of
codimension k given in [Pol20]: X is free if

projdim Der* (—log X) = k — 1.

Using a perfect pairing between the multi-logarithmic k-forms and Der* (—log X),
one can show a characterization of freeness involving multi-logarithmic k-forms (see
[Pol16]). These results have been translated in terms of general commutative algebra
in [ST18], removing the singularity theoretical context.

The first main result in this chapter is the following:

Theorem 4.30. Let (X1,0) C (C™,0) and (X2,0) C (C™2,0) be reduced Cohen—Macaulay
subspaces and (X,0) = (X1,0) x (X32,0) C (C™,0) x (C",0). Then (X1,0) and (X2, 0)
are free if and only if (X, 0) is free.

Applying this result to the generalized normal crossing divisors considered in the
previous chapter gives us the following:
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Proposition 4.40. Let (X,0) C C" be a generalized normal crossing divisor. Then
(Sing(X), 0) is a free singularity.

We also give another approach to the following conjecture by E. Faber (see [Fab15]):

Conjecture. Let (X,0) C C" be the germ of a hypersurface singularity. Denote by f € C{x}
a local equation of (X, 0). Then the following are equivalent:

(1) (X,0) is a normal crossing divisor.
(2) (X,0) is free and Jy is a radical ideal.

Proposition 4.42. Let (X,0) C C" be the germ of a hypersurface singularity. Denote by
[ € C{x} a local equation of (X,0). Then the following are equivalent:

(1) (X,0) is a normal crossing divisor.

(2) (X,0) is free and Jy is of Stanley—Reisner type.

The last part of this chapter is devoted to another property related to logarithmic
derivations, that is the holonomicity in the sense of K. Saito (see [Sai80]). The main
result of this part is:

Theorem 4.43. Let (X,0) C (C™™™,0) be a strongly Euler-homogeneous singularity of
Sebastiani—Thom type. We denote the Sebastiani—-Thom components of (X, 0) by (X;,0) C
(C™,0) and (X2,0) C (C™,0). Then the following hold:

(1) (Y,0) C (Sing(X),0) is a logarithmic stratum if, and only if, there exists a loga-
rithmic stratum (X1,4,0) C (Sing(X1),0) and a logarithmic stratum (X3 5,0) C
(Sing(X32),0), such that

(Y,0) = (X1,4,0) x (X2,4,0) =: (X(4,3),0).
(2) (X,0) is holonomic if, and only if, (X1, 0) and (X2, 0) are holonomic.

In particular, Theorem 4.43 implies that generalized normal crossing divisors are Saito
holonomic.

Chapter 5

In this chapter we present an algorithmic approach to the questions considered in
the previous chapters. In particular, we provide a Las Vegas algorithm solving the
recognition and reconstruction problem for quasi-homogeneous isolated hypersurface
singularities. A similar algorithm for the homogeneous case has been presented in
[IK14]. Our approach has been announced in [ERS17]. The algorithm is implemented
in the computer algebra system OSCAR (see [Tea20]) and can be downloaded at https:
//github.com/raulepure/reconstruction. jl.


https://github.com/raulepure/reconstruction.jl
https://github.com/raulepure/reconstruction.jl
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Chapter 6

Computations using the algorithms from Chapter 5 give rise to the following conjec-
ture for quasi-homogeneous isolated hypersurface singularities.

Conjecture 6.1. Let f € C{x} define a quasi-homogeneous isolated hypersurface singular-
ity. Then (V(f),0) is of Sebastiani—-Thom type with quasi-homogeneous Sebastiani—Thom
components if, and only if, the maximal multihomogeneity of Jy is at least 2.

We are able to show Conjecture 6.1 in some particular cases. The main result is the
following;:

Theorem 6.2. Let f € C{x} be a quasi-homogeneous isolated hypersurface singularity with
respect to the weight-vector w € NZ. Assume that J; is multihomogeneous with respect to
w and v € Q™\{0}, where w and v are linearly independent, and that one of the following
properties holds:

(a) Jy is of monomial type.

(b) w satisfies, after possibly permuting the variables,

w1
UJ1>>’UJn>7

(c) w satisfies, after possibly permuting the variables,

w1
wlzzwn>7

andv = (1,...,1).

(d) n <3.

Then (V(f),0) is of Sebastiani—Thom type with quasi-homogeneous Sebastiani—Thom compo-
nents.
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Conventions and Notations

In the following X denotes a complex space, A an analytic algebra and I C A an ideal.
The germ of X at p € X is denote by (X, p). Boldface letters, for example x, represent
vectors x = (z1,...,xy,) for somen € N.

Clx] The polynomial ring in x over C.
C{x} The ring of convergent power series in x over C.
K|[[x]] The ring of formal power series in x over K.
ord(f) The order of a power series f.
Jr The Jacobian ideal of f.

My The Milnor algebra of f, that is C{x}/J;.
Ty The Tjurina algebra of f, thatis C{x}/(f, J;).

Der(A, B) The set of all C-linear derivations on A with values in B.
Der(A)  The set of all C-linear derivations on A with values in A.
Der;(A)  The set of logarithmic vector fields of I.

Der(A)  The set of logarithmic vector fields of I and m.
Ox The sheaf of holomorphic functions on X.
dim,(X) The dimension of X at p.
dim(A4)  The Krull dimension of A.
Sing(X)  The singular locus of X.
V(I) The vanishing set of I.
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Chapter 1

Complex Spaces and Singularities

The following chapter serves as an introduction to the underlying topic of this thesis,
namely singularities. We begin with the basic definitions of analytic algebras, complex
spaces and singularities. The chapter will be finished by a proof of the analogous re-
sult to the Mather—Yau theorem by Gaffney and Hauser (see [GHS85]) in case of hyper-
surfaces of isolated singularity type and strongly Euler-homogeneous hypersurface
singularities. We will follow the outline of this topic as presented in the literature, as
for example in [JP00], [Fis76], [GLS07] and [GR71]. Since we intend to focus on the
most important definitions and results, we omit an introduction to category theory
and sheaf theory at this point.

1.1 Analytic Algebras

In the following we will present the theory of analytic algebras exclusively over the
field of complex numbers C endowed with the standard absolute value. Although
every construction in this section would also work over complete real valued fields
of characteristic 0 (see for example [GLS07, Chapter I]), we omit it at this point, since
we want to consider singularities over the complex numbers. To keep notation short

we will write vectors using bold letters. For example x = (z1,...,2y). Using this
notation we can write any formal power series f = > coz]! - ... 20" shorthand
aENn
as f = Y cox® Wedenote by C[[z1,...,z,]] = C[[x]] the formal power series ring,
acN"

where the addition and multiplication are as usual. The first object we consider are
convergent power series.

Definition 1.1. Let f = ) cox® be a formal power series. We call f a convergent power
aeN™
series, if there exists a vector v € RZ, such that ) |cq|v® is a convergent series. We
aeN™
denote the convergent power series ring by C{x}.

The main objects of interest in this thesis are quotients of the convergent or formal
power series ring.

Definition 1.2. Let A be a C-algebra. A is an analytic algebra, if A is isomorphic (as a
C-algebra) to C{x}/I for some ideal I C C{x}. We call A a formal analytic algebra, if A
is isomorphic to C[[x]]/I for some ideal I C CJ[[x]].

11
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Remark 1.3. From an algebraic point of view (formal) analytic algebras are interesting since
they are Noetherian local rings with maximal ideal m := (x). In particular the units of C[[x]]
are the elements with non-zero constant term.

The definition of convergence for convergent power series rings reduces to the analytic
notion of convergence. Next we will see an algebraic definition of convergence, which
turns the formal power series ring into a complete ring with respect to this notion.

Definition 1.4. Let A be either C{x} or C[[x]]. A sequence ( fi)ren C R is called convergent
in the m-adic topology to f € A, if for each | € N there exists a number K, such that
fe — f €wl forall k > K. It is called a Cauchy sequence if for each | € N there exists a
number K, such that f, — fm, € wm! forall k,m > K.

One can show that C[[x]] is the completion of C{x} with respect to this notion of con-
vergence. Using this it is fairly easy to prove the following lemma.

Lemma 1.5. Let A be a (formal) analytic algebra and M a finite A-module. Then

ﬂ m’y M = 0.
i>0

Proof. See [GLS07, Chapter I, Lemma 1.3]. O

The next step is to define morphisms of analytic algebras. With these we obtain the
category of analytic algebras 2. For more details on this topic see [GR71, Kapitel 2,

§01.

Definition 1.6. Let A and B be (formal) analytic algebras. We call ¢ : A — B a morphism
of (formal) analytic algebras, if ¢ is a C-algebra morphism.

Remark 1.7. Let ¢ : C{x1,...,2,} = C{y1,...,ym} be a morphism of analytic algebras.
Then ¢ is determined by the values on a minimal generating set of the maximal ideal m =
(x1,...,xn). This means that p(z;) = f; for certain f; € C{y1,...,ym} already determines
the morphism.

The most important feature of analytic algebras is the fact that we can apply tools from
analysis and obtain algebraic results.

Theorem 1.8 (Implicit Function Theorem). Let A = C{x1,...,2n,y1,...,Ym}. Further-
more, let f; € Afori=1,... ,msatisfy f;(0) = 0and

S ... 70

det : : # 0.
Ofm O fm
m0) ... 9=(0)

Then A/{fi1,..., fm) = C{z1,...,x,} and there exist unique power series Yi,...,Yy, €
(x1,...,xy) solving the implicit system of equations

fi (x,Y1(x),..., Y (x)=0,i=1,...,m.

Moreover, (fi,..., fm) =(y1 — Y1, ., Ym — Ym).
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Proof. See [GLS07, Chapter I, Theorem 1.18]. O

Using the implicit function theorem we can prove the inverse function theorem for
analytic algebras, which allows us to check whether a given morphism is an isomor-
phism. It even allows us to lift the information to a corresponding holomorphic map.
This is useful when we are dealing with complex spaces.

Theorem 1.9 (Inverse Function Theorem). Let fi,...,f, € C{z1,...,x,} such that
fi(0)=0fori=1,...,n. Then det (gj:; (O)) # 0 if and only if the C-algebra morphism

C{z1,...,zn} — Cl{ay,..., 2}

is an isomorphism. This again holds if and only if there exist open neighborhood U and W of
0 such that F := (f1,..., fn) defines a holomorphic map F : U — W with and this map has
a holomorphic inverse.

The inverse function theorem is the main ingredient in the proof of the next result.
Before we state it we need to define the notion of lift of a morphism.

Definition 1.10. Let ¢ : C{xy,...,zn}/I — Clyi,...,ym}/J. We call
@ C{z1,...,zn} = C{yr,...,umtaliftof pif o(I) C J or equivalently, if the following
diagram is commutative

C{z1,...,xn} L AN C{y1,-- - ym}

| |

(C{CCl, e 7I'n}/[ L C{ylv cee )yM}/‘]

Lemma 1.11 (Lifting Lemma). Let ¢ be a morphism of analytic C-algebras, i.e.
o C{z1,...,2n}/I = C{y1,...,ym}/J. Then there exists a lift ¢ : C{x} — C{y} of
@ which can be chosen as an isomorphism in the case that o is an isomorphism and n = m,
respectively as an epimorphism in the case that ¢ is an epimorphism and n > m.

Proof. See for example [GLS07, Chapter I, Lemma 1.23]. O

Remark 1.12. Theorem 1.8, Theorem 1.9 and Lemma 1.11 also hold, if we replace the conver-
gent power series ring by the formal power series ring.

We finish this section by defining the so-called analytic tensor product. It generalizes
the classical tensor product of rings to the context of power series rings.

Definition 1.13. Let A = C{x}/I, respectively A = C|[[x]]/I, and B = C{y}/J, respec-
tively B = Cl|[y]]/J. Then we define

A®B = C{x,y}/ (IC{x,y} + JC{x,y}),

respectively
A®B = C[[x,y]l/(IC[[x, y]] + JC[[x, ¥]}).

We call A® B the analytic tensor product.
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The analytic tensor product serves as the product in the category 2. It will be useful
to us in the next section, when we deal with germs of complex spaces and products of
them.

Remark 1.14. One can show (see for example [GR71, Kapitel 111, §5]) that the analytic tensor
product satisfies the expected universal property. Let A, B,T € 2 and assume there exists
morphisms my : T — Aand 7y : T — B. Then T = A& B if and only if for every C € 2 for
every morphism @1 : A — C and @9 : B — C there exists a unique morphism v : T — C,
such that the following diagram commutes

™
—

1
A
N lwl
Y

— C.
®2

2

WX

As usual for objects satisfying universal properties, the analytic tensor product is unique up to
unique isomorphism.

1.2 Complex Spaces

In this section we are going to define the basic geometric objects of interest in complex
analytic geometry, namely complex spaces. To be able to define them, we need ele-
mentary results from sheaf theory. We intend to give only the most basic definitions,
as far as we need them in the following. For more details see for example [JP00] and
[GLS07]. The main difference between analytic geometry and algebraic geometry, is
the fact that we use the euclidean topology and not the Zariski topology, which allows
us to consider "small" open neighborhoods of points. This difference leads to the so-
called singularity theory. Using the same approach through ringed spaces shows that
nilpotent elements of the structure sheaf can tell us more about the geometric object,
than the reduced structure. See for example Theorem 1.83.

Definition 1.15. Let D C C" be an open subset. Define Ocn by O(U) = {f : U —
C holomorphic} for every open subset U C C". We call Ocn the sheaf of holomorphic
functions on C". Denote by v : D — C" the canonical inclusion map. Then the sheaf of
holomorphic functions on D is defined by Op = 1= 'Ocn. We denote the stalk of Op at
p € D by Op . The elements of Op ), are called germs of holomorphic functions.

Before we can define general complex spaces, we start with so-called complex model
spaces, which is just the special case of subsets of C".

Definition 1.16 (Complex Model Spaces). Let D C C" be an open subset and let T C Op
be an ideal sheaf of finite type. Then Op /T is a sheaf of rings on D, and we define

V(Z)={peDI|L,# Opyp; ={p e D|[(0Op/I), #0}

to be the analytic set in D defined by I. Let X := V(I) and set Ox := (Op/I) |x . Then
(X,0x) = (V(I),(Op/I) |x) is an analytic ringed space, called a complex model space
(defined by 7).
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Remark 1.17. The definition of V(Z) can be reformulated as
V(Z) = Supp (Op/T).

Using this one can easily see that the V (1) are defined as vanishing sets in algebraic geometry.
Let f, € Op,p be a germ. Then there exists an open neighborhood U of p and f, lifts to a
holomorphic function f : U — C. Then Z,, # Op,,, if and only if f(p) = 0 for all f, € I,.
This means that there exist holomorphic functions fi, ..., fi defined on U, such that

VIO)NU={peU| filp) =-..= felp) =0} = V(f1,-- -, fr)-

Next we need to define morphisms of complex model spaces.

Definition 1.18. Let (X, Ox) and (Y, Oy ) be complex model spaces. A morphism of com-
plex model spaces (f, f*) : (X,0x) — (Y,Oy) is just a morphism of analytic ringed
spaces.

Now we can define complex spaces.

Definition 1.19 (Complex Spaces). Let (X, Ox) be an analytic ringed space with X Haus-
dorff. We call (X, Ox) a complex space, if for every p € X there exits an open neighborhood
U, such that (U, Ox|v) is isomorphic to a complex model space. A closed complex subspace
of X is an analytic ringed space (Y, Oy ), given by an ideal sheaf of finite type Iy C Ox such
that Y = V(Zy) := Supp (Ox /Iy) and Oy = (Ox/Ly) |y. Analogously, an open com-
plex subspace (U, Oy ) of (X, Ox) is given by an open subset U C X and Oy = Ox|y. A
subset A C X is called analytic at a point p € X, if there exists an open neighborhood U of
pand f1,..., fr € O(U) such that

ANU =V (f1,..., fx) := Supp(Oy/7),

where T := f1Op + ...+ frOv. If Aisanalytic at every point p € A, then it is called locally
closed analytic set in X. If A is analytic at every p € X, then it is called a (closed) analytic
set in X. To keep notation short, we usually write X instead of (X, Ox).

In case we deal with coherent sheaves we can easily obtain analytic sets.

Proposition 1.20. Let X be a complex space. Then a closed subset A C X is analytic if and
only if there exists a coherent sheaf F such that A = Supp(F).

Proof. See for example [GLS07, Chapter I, Corollary 1.64]. O

Remark 1.21. The connection between complex spaces and analytic algebras lies in the fact
that every stalk of the structure sheaf Ox is an analytic algebra and, conversely, every analytic
algebra can obtained as the stalk of a structure sheaf of a certain complex space X. We make
this more precise. Let X be a complex space and p € X. It follows from the definition that there
exist fi,..., fr € C{x}, such that

OX,IJ &~ O(C",O/ZO = C{X}/<f1, .. 7fk>

In this case we call x = (z1,...,zy,) local coordinates and f1, ..., fi. local equations for
X at p. On the other hand, given convergent power series fi, ..., fi € C{x}, there is an open
neighborhood U C C™ of 0, such that each f; defines a holomorphic map f; : U — C. Set
7= fi0uy+ ...+ fOy, the complex model space

(X,0x) := (V(T),(Ov/T) lv)
satisfies Ox 0 = C{x}/(f1,..., fx)-
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Let us have a look at two examples for complex spaces.

Example 1.22.

(1) Let D C C be defined by D = V(f), where f € C{x}. We want to see that closed
complex subspaces of C can have only a certain shape. In case f = 0, we get D =
C. So let us assume that f is not identically zero on D. By the identity theorem for
holomorphic functions in one dimension (see for example [JP00, Remark 3.1.10]), we
have that the zeros of f are isolated, since otherwise f would be identically zero on D.
Thus closed complex subspaces of C are path-connected. This simple statement will be
crucial for the proof of Theorem 1.101. We visualize this in the following picture. The
white points correspond to the zeros of the given holomorphic function f and the black
dots are arbitrary points on D.

D

Figure 1.1: Sketch of the path-connectedness of the non-zero locus of a one-dimensional
holomorphic function.

(2) The next object we want to visualize is the complex space defined by the polynomial
f=1vy?— a3 — 2 € Cla,y]. The zero-set looks as follows:

V(f)

Figure 1.2: Real picture of V(f).

We are going to use this curve in the following section to show that analytic geometry
and algebraic geometry yield different results, even if the input is the same.

Due to the fact that we are working with geometric objects we would like a notion of
dimension in order to have a simple invariant which allows us to distinguish complex
spaces.

Definition 1.23. Let X be a complex space, p € X and m,, the maximal ideal of Ox . Then
we define

dim, X := Krull dimension of Ox ;, the dimension of X at p,

dim X :=sup dim, X, the dimension of X,
peX

edim, X :=dimcm,/m2, the embedding dimension of X at p.
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Example 1.24. The dimension of a complex space X at a point p and the embedding dimension
at the same point do not necessarily need to coincide. Consider the complex space X defined by
the vanishing set of f = y?> — 2® — 2 € C[z,y] and the points p = (0,0) and q = (1,/2).
Using Taylor expansion we obtain

Ox,p = Clz,y}/(y* — 2 — 2?) and Ox , = Clu,v}/(v* + 2v20 — u® — 4u* — 5u).
A simple computation shows

dim, X =1 < 2 = edim,, X and dim, X = 1 = edim, X.

The observation from Example 1.24 leads to the following definition.

Definition 1.25. Let X be a complex space and p € X a point. We say X is regular at
p, if dim, X = edim, X. Otherwise we say X is singular at p. We call p a regular point,
respectively a singular point. The set of all singular points of X will be denoted by Sing(X),
the so-called singular locus of X.

Proposition 1.26. Let X be a complex space. Then Sing(X) is a closed analytic set in X.

Proof. See for example [GLS07, Chapter I, Corollary 1.111]. O

Remark 1.27. We are going to see in Section 1.4.2 that we can use differential methods to
compute singular locus of given complex space X.

The next definition is the definition of morphisms of complex spaces.

Definition 1.28. Let (X, Ox ) and (Y, Oy ) be complex spaces. A morphism (f, f*) : (X, Ox) —
(Y, Oy) of complex spaces is a morphism of analytic ringed spaces. Such a morphism is
also-called holomorphic map. We write Mor(X,Y) for the set of morphisms (X,Ox) —

(Y, Oy). An isomorphism of complex spaces is also-called biholomorphic map. To keep no-
tation short, we usually write f instead of (f, f*).

Using morphisms of complex spaces we can define products of the latter.

Definition 1.29. Let f : X — T and g : Y — T be two morphisms of complex spaces. Then
the analytic fibre product of X and Y over T is a triple (X X7 Y, wx,my) consisting of a
complex space X x7Y and two morphisms tx : X x7Y — X, wy : X xpY — Y such that
fomx = gomy, satisfying the following universal property: for any complex space Z and
any two morphisms h : Z — X, : Z — Y satisfying f o h = g o I/ there exists a unique
morphism ¢ : Z — X xrpY such that the following diagram commutes:

N

Y —— T.

Lemma 1.30. Consider the setup of Definition 1.25. Then the analytic fibre product X xpY
exists and is unique up to unique isomorphism.
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Proof. For the existence see for example [Fis76, Proposition 0.29]. The uniqueness fol-
lows from immediately from the universal property. O

Remark 1.31. As a topological space the analytic fibre product is nothing more than X X
Y :={(z,y) € X XY | f(x) = g(y).} The proof of existence relies on the observation, that if
T is a single point, then X xpY = X x Y and O(x vy, (3,4)) = Ox,20y,y.

1.3 Complex Space Germs

In this section we are going to define complex space germs. They turn out to be useful
in the study of the local behavior of complex spaces in the neighborhood of a fixed
point. In order to define these objects we need the notion of pointed complex spaces
and morphisms of the latter.

Definition 1.32. Let X be a complex space and x € X a point. The pair (X, z) is called
pointed complex space. A morphism f : (X, x) — (Y,y) of pointed complex spaces is a
morphism f : X — Y of complex spaces, such that f(x) = y.

Next we need to define germs of morphisms of complex spaces.

Definition 1.33. Let (X, ) and (Y, y) be pointed complex spaces, U,V C X open neighbor-
hoods of x and f : (U,x) — (Y,y)and g : (V,z) — (Y,y) morphisms of pointed complex
spaces. We say f and g are equivalent, if there exists an open neighborhood W C U NV of ,
such that flw = glw. We call the equivalence class of a morphism with respect to this equiv-
alence relation holomorphic map germs. By abuse of notation we denote the holomorphic
map germs by f : (X,z) — (Y,y). We can define the composition of two holomorphic
map germs [ : (X, z) — (Y,y)and g : (Y,y) — (Z, z) as follows: Consider representatives
f:Uzx)— Y,y)and g : (V,y) — (Z,z). Than g o f is the equivalence class of the mor-
phism g o f|s1y)nu- A map germ f 2 (X,z) — (Y,y) is called an isomorphism, if there
exists a map germ h : (Y,y) — (X, x) such that f o h =id(y,y)and ho f =id(x ;) -

Remark 1.34. From the definition of an isomorphic holomorphic map germ, we obtain that
any pointed complex space (X, x) is in this sense isomorphic to any pointed complex space
of type (U, z), where U is an open neighborhood of x, where the map germ is given by the
canonical inclusion v : U — X. We call U in this case a representative of the germ (X, x).
Let (Y, y) be another complex space and f : (X, z) — (Y,y) a map germ. Assume V C Y is
an open neighborhood of y, with f(U) C V. Then we call f : U — V a representative of the
map germ f.

Since we are able to compose map germs, we can build the following category.

Definition 1.35. The category whose objects are pointed complex spaces and as morphisms
holomorphic map germs is called category of complex space germs and is denoted by &. We
call the objects of & complex space germs or singularities.

Definition 1.36. Let (X, x) be a complex space germ represented by the complex space X with
structure sheaf Ox, then the stalk Ox , is called the (analytic) local ring of the germ (X, x)
and also denoted by O x ).

Next we need the notion of closed analytic subgerms.



Explicit and effective Mather-Yau correspondence in view of analytic gradings 19

Definition 1.37. Let (X, z) be a complex space germ and I C Ox , be an ideal. Furthermore,
let (U, Oy) be a representative of (X, x) and fi, ..., fr € Oy(U) such that I is generated by
the germs of fi1, ..., fr at x. The closed complex subspace of U defined by T = f1Opy + ... +
fxOu defines a closed analytic subgerm

(V(I),z) = (V(Z),2) € (U,z) = (X, z)

of (X, x), called the closed analytic subgerm defined by 1. In case I = (f) C Ocn ;, with
f # 0 the germ

(V(f)p) == (V{),p) € (C*,p)
is called a hypersurface singularity.

The last notions that pass on from complex spaces to germs are the notion of dimen-
sion and regularity.

Definition 1.38. Let (X, z) be a complex space germ represented by the complex space X. We
define

dim(X, z) :=dim, X, the dimension of (X, x),
edim(X, z) :=edim, X, the embedding dimension of (X, x).

We call a complex space germ regular, if dim(X, z) = edim(X, x), otherwise we call it sin-
gular.

After all these definitions we are able to state the most important result connecting
complex space germs and analytic algebras.

Proposition 1.39. The functor

.6 —A
(X,z) — Ox
fo: (X,2) = (Y,y) — fi: Oyy — Oxy

is an antiequivalence of categories.

Proof. See for example [Fis76, Proposition 0.21]. O

Proposition 1.39 is crucial for the work in this thesis. We want to classify certain hy-
persurface singularities up to isomorphism. The proposition now tells us, that it is
equivalent to study the corresponding analytic algebras. Due to this we can apply as
well methods from complex analysis as methods from abstract algebra.

We conclude this section by showing that analytic and algebraic geometry behave dif-
ferently.

Example 1.40. We consider the same equation as in Example 1.22, namely f = y? — 23 — 2.

From the point of view of classic algebraic geometry, we see f as an element of the polynomial
ring Clz, y]. In this case f is an irreducible polynomial and we obtain the real picture of V'(f)
as in Figure 1.3. From the point of view of analytic geometry we see f as a power series in
C{x,y}. In this case f is reducible, since it can be written as f = (y — xv/x +1) - (y +
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xv/x + 1). This yields the real picture of the complex space germ (V(f),0) in a small neigh-
borhood of 0 as in Figure 1.4.

V(f) (V(f),0)

Figure 1.3: Real picture of the vanishing Figure 1.4: Real picture of the complex
set V(y? — 23 — %) C C2. space germ (V (f),0) C (C2,0).

We can see, not only in the equations, but also in the (real) picture, that we obtain an irreducible
curve in algebraic case, but an intersection of two lines in the analytic case. This is a small
example where we obtain different results, although we start with the same equation.

1.4 Derivations on Analytic Algebras

This section deals with derivations and their applications to analytic algebras. We
start by presenting basic results. Afterwards we show how to use derivations in the
computation of singular points. The final subsection is concerned with detecting lo-
cal analytic triviality, this means we want to decide whether a complex space can be
considered locally as a product of a smaller complex space with C* for some k € N

1.4.1 Derivations on Analytic Algebras I: Basics

The following subsection is concerned with derivations and their relation to analytic
algebras, respectively complex space germs. We restrict our setup to the case of deriva-
tions between analytic algebras. The general case is treated in [Kun86].

Definition 1.41. Let A and B be (formal) analytic algebras. A C-linear map 6 : A — B
satisfying the Leibniz rule, that is
o(f-9)=06(f)-g9+71-d(9)
is called a derivation of A with values in B. The set
Der(A, B) :={d: A — B | is a derivation}
isvia (a-9)(f) = a-0(f) an A-module, the module of derivations of A with values in
B. In case A = B we define Der(A) := Der(A, A).

Remark 1.42. Let A be a (formal) analytic algebra. Then Der(A) is a vector space over C and
it is also a Lie algebra, if we define the multiplication as follows:

[0,0](f -g) = (600 —0a0d)(f-9),
with §,0 € Der(A), f,g € A. A simple computation yields

hence the multiplication is closed. The other properties of a Lie algebra can also be verified by
simple computations.



Explicit and effective Mather—Yau correspondence in view of analytic gradings 21

The most relevant case in our considerations will be the cases A = C{x} respectively
A = C[[x]]. In these cases the derivation module is free and its generators can be stated
explicitly.

Theorem 1.43. Let A = C{x} respectively A=C|[[x]]. Then every § € Der(A) can be
uniquely written as
5= 6(x:)0,,
i=1
where 0, denotes the partial derivation with respect to x;.

Proof. This follows for example from [GR71, Kapitel III, §4, Satz 2] O

Our goal is to investigate complex space germs (X, z) using derivations on the cor-
responding analytic algebras Ox ,, which are isomorphic to C{x}/I for some ideal
I C C{x}. Therefore we need to understand the derivation module Der(C{x}/I). A
first step towards this is the following proposition.

Proposition 1.44. Let A = C{x}/I be an analytic algebra. Then every derivation 6 €
Der(A) lifts to a derivation § € Der(C{x}) with the property 6(I) C I.

Proof. The result can be found in the standard literature. A specific proof of this result
for analytic algebras can be found in [SW73, (2.1)]. O

Remark 1.45. The result of Proposition 1.44 holds also in the case of formal analytic algebras.

It follows from Proposition 1.44 that it is helpful to consider the following set of deriva-
tions.

Definition 1.46. Let A be a (formal) analytic algebra and I C A an ideal. We call the module
Derj(A) := {6 € Der(A) | 6(I) C I}

the module of logarithmic derivations of I. In the case I = m we write Der’(A) instead of
Dery(A). We denote the module Dery N Der’ by Der’; .

Corollary 1.47. Let A = C{x}/I be an analytic algebra. Then

Der(A) = Der;(C{x})/I Der(C{x}).

Proof. Let 7 : C{x} — A denote the canonical projection. We consider the sequence of
C{x}-modules

0 — IDer(C{x}) —“ Der;(C{x}) —— Der(A) — 0,

where ¢ denotes the canonical inclusion and ¢(0) = 7 o 6. We want to show that this
sequence is exact. It is clear by construction that ¢ is injective. Proposition 1.44 implies
the surjectivity of ¢. Now it only remains to show that im(¢) = I Der(C{x}) = (¢).
The inclusion im(:) C ker(¢y) is clear.

Let 0 € ker(p). Then 7(6(x;)) = 0 foralli = 1,...,n. By Theorem 1.43 we know that
0 =Y 0(zi)0y,, hence §(z;) € I foralli = 1,...,n. Thus § € I Der(C{x}). The claim

i=1
follows from the isomorphy theorem. O
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Remark 1.48. Corollary 1.47 also holds, if we replace C{x} by C[[x]].

So far we have dealt with basic properties of derivation modules. Next we consider
properties of derivations which can be extended from classical linear algebra. Let A be
an analytic algebra. Then we have for every k£ € N natural projections 7y : Der(A) —
Der(A/m%) C Endc(A). Using these projections we start with the classical properties
of being diagonalizable and being nilpotent adapted to derivations.

Definition 1.49. Let A be an analytic algebra and 6 € Der’(A). We call 6 semi-simple, if
the linear operator induced by my,(5) in Der(A/mF) is semi-simple on A/mk, forall k € N. § is
called nilpotent, if the linear operator induced by 7,(8) in Der(A/m*) is nilpotent on A/mk,
forall k € N. § is called diagonalizable, if my has a system of generators containing only
eigenvectors of 6.

Remark 1.50. Since we work over an algebraically closed field, semi-simple derivations are
diagonalizable.

Lemma 1.51. Let A be an analytic algebra and § € Der’(A). Then ¢ is nilpotent if and only
if the C-linear operator induced by mo(8) on m4/m? is nilpotent.

Proof. Assume 4§ is nilpotent, then it induces a nilpotent C-linear operator on m4/m?
by definition. Now assume ¢ induces a nilpotent C-linear operator on m4/m%. This
means, there exists some n € N, such that §"(m4) C m%. Assume that we have an
n, such that 5”(m]2_1) C §(mk), for some k € N. Our result for k + 1 follows by a
application of the Leibniz rule:

S (mh) = 6" (mh my) = M (mF T ma + mF 6" (my) € mi

sz+1 gmz-&-l

Thus, § induces a nilpotent C-linear operator on m4/m% for all k € N. As §(C) = 0
and A = C @ m,, we get that it induces a nilpotent operator on A/m* for all k& € N.
Finally, § is nilpotent, as we can always take m := n - k and get that ™(A4) Cm%. O

Definition 1.52. Let A be an analytic algebra and § € Der’(A). We say that ¢ has a Cheval-
ley decomposition, if 0 can be written as § = dg + oy with [0g,dn] = 0, where 0g is a
semi-simple derivation, § is a nilpotent derivation and dg,dn € Der’(A).

Obviously the Chevalley decomposition from Definition 1.52 is analogous to the Jor-
dan decomposition known from linear algebra (see for example [Lan02, Chapter XIV,
Theorem 2.4]).

As in the linear algebra case, we cannot expect the Chevalley decomposition to exist
without any restrictions to the analytic algebra. The following three theorems are the
most important results regarding the linear algebra of derivations, which we are going
to use.

Theorem 1.53. Let A be an analytic algebra and 6 € Der’(A) admitting a Chevalley de-
composition 6 = ds + On. Then the Chevalley decomposition of ¢ is unique, that is, if
§ =05+ dn = 0y + Oy with [0g,0n] = [0, 0] = 0, then 65 = 0 and éy = 0.

Proof. See [SW81, Remark after (1.1)].
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Theorem 1.54. Let A be an analytic algebra and 6 € Der’(A) admitting a Chevalley de-
composition 6 = dg + dn. Furthermore let I C A be an ideal with § € Dery(A), then
ds,0N € DerI(A).

Proof. See [SW81, Remark after (1.1)] O

Theorem 1.55. Let A be a complete analytic algebra. Then every § € Der’(A) admits a
Chevalley decomposition.

Proof. See [SW81, (1.2)]. For a constructive approach, which will be turned to an algo-
rithm in Chapter 5, see [Sai71, Satz 3.1]. O

Let us take a look at an example for the Chevalley decomposition.

Example 1.56. Let A := Cl[z,y]]. Consider the derivation 6 = (z + y)0y + y0,. Then
05 = x0, + YO, is the semi-simple part of 6 and dn = yO, is the nilpotent part of 6. The first
statement follows, as 6g(x) = x and dg(y) = y. The second statement follows from the fact
that 6%, = 0.

Now consider § := (z + y + xy)0, + y0,. We want to show that the semi-simple part of the
linear part of our derivation is not necessarily the semi-simple part of our derivation. Assume
that 05 = x0y + y0,, then dn = (y + xy)0,. Using the same arqument as before, dg is
semi-simple, but [0g,0n] = zydy # 0, hence o cannot be the semi-simple part of 6. This
example shows that it is a non-trivial task to compute the semi-simple part of a derivation.

Proposition 1.57. Let A be a complete analytic algebra and §,e € Der’(A). If [e, 6] = 0, then
we have [e,0g] = 0 and [e,dn] = 0.

Proof. Denote by § and € the images of § and € to Der(A/m%), for any k£ € N. As in
the proof of Theorem 1.54, we can write §g as a polynomial in §. Due to the fact that
[€,0] = 0, we get that ¢ commutes with any polynomial expression in §, hence with J.
The analogous result follows for dn. The result follows, as 5 and 6y can be considered
as sequences of the dg respectively & . O

The final theorem of this section is the analogon to a classical result from linear algebra.

Theorem 1.58. Let A be a complete analytic algebra and let 61, . ..,0;, € Der’(A), k € N>o,
be pairwise commuting diagonalizable derivations. Then there exists a minimal generating
system 1, . .., xy of m4 consisting of common eigenvectors of the ;.

Proof. See [SW81, (2.1)]. O

We conclude this section with a criterion using commutators to check if a derivation
is nilpotent.

Lemma 1.59. Let A be an analytic algebra and 6 € Der’(A) diagonalizable. If € € Der’(A)
satisfies [0, €] = A - € for some \ € C*, then e is nilpotent.

Proof. See [Epul5, Lemma 4.38]. O



Explicit and effective Mather—Yau correspondence in view of analytic gradings 24

1.4.2 Derivations on Analytic Algebras II: Singularities

In this subsection we want to present one of the main application of derivations,
namely checking whether a point in a complex space is regular or not. We start with
an algebraic lemma motivating the following definitions.

Lemma 1.60. Let A be a (formal) analytic algebra. Then there is a canonical isomorphism
Der(A, C) — Homg(ma/m?, C).
In particular, edim(A) = dimc (Der(A4, C)).

Proof. See for example [GLS07, Chapter I, Lemma 1.107]. O

Lemma 1.60 motivates the following definition.

Definition 1.61. Let X be a complex space. We call the C-vector space TxX := Der(Ox 4, C)
the tangent space of X at x.

We obtain the following corollary.

Corollary 1.62. Let X be a complex space and x € X. Then X is reqular at x if and only if
dime TxX = dim Ox ;.

Using methods from computer algebra we can compute dim Ox ;. Our next result will
tell us how to compute TxX in case of closed complex subspaces of complex spaces.

Proposition 1.63. Let D C C" be a complex model space and X a closed complex subspace
of D defined by the ideal sheaf Z. Denote the local coordinates at a point p € X C D by
x = (21,...,%y). Then there is a C-vector space isomorphism

TpX — {(51,--,80) €C" | 51(00, f)(p) + ... 4 50(02, f)(p) = O forall f € I,}.
Proof. See for example [Fis76, Chapter 2, Section 2]. ]

Let us have a look at an example.

Example 1.64. We consider the same equation as in Example 1.22, namely f = y? — 23 — 22

and check the results from Example 1.24. The complex space is X = V (f) C C?. We consider
the points p = (0,0) and ¢ = (1,V/2). A simple computation shows that T,X = {(s1, s2) €
C? ’ $1-0+s9-0= 0} =2 anquX = {(81,82) e C? ‘ 81~(—5)+82~2\@: O} =~ C. We
visualize the real pictures of T, X and T X by dashed lines where T, X is visualized through
two dashed lines, since it would cover the whole picture.

Figure 1.5: Real picture of T, X . Figure 1.6: Real picture of T(X.

From the picture we obtain a result we already know, namely that p is a singular point and q a
reqular point.
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One can show that the defining equations for the tangent spaces can be checked on
generators of the given ideal. This yields the following criterion to check whether a
point is regular or not.

Definition 1.65. Let A = C{x} or A = C[[x]] and £ := (f1,..., fx) € A*. We call the
matrix
aarlfl T axlfk
Jp = : :
8$nf1 8ﬂ3nfk

the Jacobian matrix of f.

Theorem 1.66 (Jacobian Criterion). Let D C C" be a complex model space, X a closed
complex subspace of D defined by the ideal sheaf 7 and x € X a point. Assume I, =
(f1,---, fx) € Ox z. Then the complex space germ (X, x) is reqular if and only if tk(Jg)(z) =
n—dimOx ;.

Proof. See for example [JP00, Theorem 4.3.6]. O

1.4.3 Derivations on Analytic Algebras III: Triviality

This final section about derivations is concerned with the question whether a given
complex space (germ) is a product or not. Let us make this more precise.

Definition 1.67. Let X be a complex space and x € X a point. We say X is locally trivial
in x, if there exists an open neighborhood U of =, a complex space X' and an open set V. C CF
for some k € N together with a biholomorphic map

0:U— X'xV.
In case (x) = (', 0) it is equivalent to say that there exists an biholomorphic map
¢ (X, ) — (X' x CF, (2',0)).
We call (X, x) a suspension of (X', 2').

Before we state a criterion to decide whether a complex space is locally trivial, we have
a look at an example.

Example 1.68. We consider the complex space X C C? defined by the polynomial f = zy €
Clx, y] and the complex space Y C C3 defined by g = xy € Clz,y, 2].

V()

Figure 1.7: Real picture of the vanishing  Figure 1.8: Real picture of the complex
set V(zy) C C2. space V (zy) C C3.

From the pictures it easy to see, that (Y, 0) is a suspension of (X, 0).
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The equations in Example 1.68 are very simple, so we can immediately see that we
have a suspension. Our next results states a differential criterion to decide local trivi-
ality for hypersurfaces.

Theorem 1.69 (Local Analytic Triviality I). Let f € C{x1,...,2n,Y1,...,Ym} and ¢ € N.
The following conditions are equivalent:

(1) Oy, f € (w1, 2n)¢(Opy fyo o On [) +(f) fori=1,...,m.
(2) There exist 1,...,on,u € C{z1,...,Tn,Y1,...,Ym} such that

(a) u(xy,...,zn,0,...,0) =1,

) ¢i(z1,...,2n,0,...,0) = x4,

(c) pi—xi € {x1,...,20)",

d) f(x1, . Tny Y1y Ym) =u- flp1,...,0n,0,...,0).

If moreover Oy, f € (x1,...,2n)¢ (Op, f,...,0x, [) forall i, then we can choose u = 1.

Proof. The proof follows by induction from [JP00, Theorem 9.1.5]. O

A more general version is the following.

Theorem 1.70 (Local Analytic Triviality II). Let X be a complex space and x € X. Then X
is locally trivial in x if and only there exists derivations 01, ..., 0y, € Der(Ox ), such that
0 (x),...,0m(x) are linearly independent. In this case (X, z) = (X' x C™, (', 0)) for some
complex space germ (X', x').

Proof. See [Fis76, Theorem 2.12]. O

We stated both versions of local analytic triviality, since we are going to need both
separately. We conclude this section by stating a lemma concerning isomorphisms of
suspensions.

Lemma 1.71 (Cancellation Lemma). Let (X, z) = (X' x C*, (2/,0)) and (Y,y) = (Y’ x
C™, (y',0)) be complex space germs with k and m maximal. Then (X, xz) = (Y, y) if and only
ifk=mand (X', 2") = (Y y).

Proof. The if part follows from [Eph78, Lemma 1.5] and the only if part from the maxi-
mality of k£ and m, the fact that Der(Ox ;) = Der(Oy,) if (X, z) = (Y, y) and Theorem
1.70. O

1.5 Hypersurface Singularities

This section deals with the basics of hypersurface singularities. After introducing ba-
sic invariants of general hypersurface singularities, we define the notion of isolated
hypersurface singularities and state their properties. Next we consider basic results
regarding quasi-homogeneous isolated hypersurface singularities. We finish this sec-
tion by presenting harmonic hypersurface singularities and by showing that they are
determined, as well as isolated hypersurface singularities, by their singular locus fol-
lowing [GHS85].
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1.5.1 Isolated Hypersurface Singularities

For a given holomorphic function f : U — C, U C C" open, the singular locus is
defined by Sing(X) = {x € U | f(z) = O0s, f(z) = ... = O, f(x) = 0}. Locally the
information is stored in the ideal generated by the partial derivatives of f and f.

Definition 1.72. Let f : U — C be a holomorphic function and x € U. We call (V(f),x)
an isolated hypersurface singularity if there exists an open neighborhood V' of x such that
(Sing(X) N V)\{z} = 0.

Remark 1.73. For simplicity, all germs we consider will have base point x = 0.

This definition of isolated singularity is not easy to check, so we want to have an
algebraic argument to verify this property. To do so, we need some definitions

Definition 1.74. Let A = C{x} or A = C|[x]] and f € A.
(1) We call the ideal

Jp =0 fr. -, 00, f)
the Jacobian ideal of f.

(2) The analytic algebras
Mf = A/Jf and Tf = A/(f, Jf>
are called Milnor and Tjurina algebra of f, respectively.

(3) The numbers
nf = dim(c Mf and T = dim(c Tf

are called Milnor and Tjurina number of f respectively.

Example 1.75. We continue Example 1.68. From the pictures it is clear that (V (f), 0) defines
an isolated singularity and (V (g), 0) does not.

Pictures can be tricky, since we cannot picture the two or three dimensional complex
space. So we have develop an algebraic method to check this property.

Lemma 1.76. Let (X, 0) be a hypersurface singularity defined by f € C{x}. Then the follow-
ing are equivalent:

(1) (X,0) is an isolated hypersurface singularity.
(2) py < 0.

(3) Tf < 0.
Proof. See for example [GLS07, Chapter I, Lemma 2.3]. O

Using methods from computer algebra we can compute 1y and 7; in case f is a poly-
nomial. As it turns out next, we can always change coordinates in such a way, that an
isolated hypersurface singularity is defined by a polynomial. Let us make this more
precise.
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Definition 1.77. Let A = C{x} or A = CJ[[x]] and f,g € A.

(1) Wesay f is contact equivalent to g, denoted by f ~ g, if there exists an automorphism
v € Aut(A) and a unit w € A*, such that f = u - ¢(g).

(2) Denote by f*) the truncation of f up to degree k. Then we say f is k-determined if
f~ f® for some k € N.

Remark 1.78. It is easy to see that f ~ g is equivalent to (V(f),0) = (V(g),0). There is
also a notion of so-called right equivalence, but we omit it at this point, since we do not use
it in the further course of the thesis. For more details see [GLS07, Chapter 1, Definition 2.9].

For isolated hypersurface singularities we have the following statement.

Proposition 1.79. Let f € C{x}, such that (V(f),0) is an isolated hypersurface singularity.
Then f is Ty-determined.

Proof. See for example [GLS07, Chapter I, Corollary 2.24]. O

Using Proposition 1.79 one can prove the following lemma.

Lemma 1.80 (Splitting Lemma). Let f € C{x,...,x,} define an isolated hypersurface
singularity and let H := (0,0, f) denote the Hessian matrix of f. Assume rk H(0) = k,
then there exists a polynomial g € C[x41, ..., xy,) with ord(g) > 3, such that

feaid ity

Proof. See for example [GLS07, Chapter I, Theorem 2.47]. O

Singularities which are sums of squares are a special type of singularities.

Definition 1.81. Let f € C{x}. We call f an A,-singularity, if

for some k < n.

Remark 1.82. The splitting lemma basically tells us that every isolated hypersurface singular-
ity is tight-equivalent to the sum of an A-singularity and an isolated hypersurface singularity
g of order greater equal to 3.

Next to the fact that the dimension of the Tjurina algebra determines the determinacy
of an isolated hypersurface singularity, it also determines the isomorphism class as
follows:

Theorem 1.83 (Mather-Yau Theorem). Let f,g € C{x} define isolated hypersurface sin-
qularities (X, 0) respectively (Y, 0). Then the following are equivalent:

(1) f~g.
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(2) (X,0) = (Y,0).
(3) Ty =T, as C-algebras.
(4) (Sing(X),0) = (Sing(Y), 0).
Proof. See for example [GLS07, Chapter I, Theorem 2.26]. O

As mentioned in the introduction the goal of this thesis is to get a better understanding
of the explicit correspondence between the isomorphism class of the Tjurina algebra
and the isomorphism class of the complex space germ of isolated hypersurface singu-
larities.

We conclude this section with an example that shows the limits of the Mather—Yau
theorem.

Example 1.84. Consider the hypersurface singularities defined by f = x> + y?> € C{x,y}
and g = 2* — y* € C{x,y}. One can easily see that

Jf = <$2 +y212xa2y> = <$7y> = <.1‘2 - y272$7 _2y> = Jg-

We see that dimc Ty = dimc Ty = 1, hence f and g define isolated hypersurface singular-
ities. With Jy = J,, we obtain Ty = T, and the Mather—Yau theorem yields (V (f),0) =
(V(g),0). Next we compare the real pictures.

(V(/),0) (V(9),0)

Figure 1.9: Real picture of the hypersur- Figure 1.10: Real picture of the hypersur-
face singularity (V(f),0). face singularity (V' (g),0).

From the real picture we can see that the hypersurface germ, if we would consider them as
subsets of (R?,0) are not isomorphic, since they have a different number of irreducible com-
ponents. This is a counterexample to the Mather—Yau theorem in the case of the real numbers.
Due to this we put our focus on the complex numbers.

1.5.2 Quasi-Homogeneous Isolated Hypersurface Singularities

In the underlying thesis we are going to focus on a special type of isolated hypersur-
face singularities, namely so-called quasi-homogeneous isolated hypersurface sin-
gularities (short: QHIS).

Definition 1.85. Let f € C{x}. We say f is quasi-homogeneous power series if there
exists an integer d € N>y and a w € NZ, such that all monomials m € Supp(f) have
weighted degree d with respect to w. -

Let (X,0) be an isolated hypersurface singularity. We call (X,0) a quasi-homogeneous
isolated hypersurface singularity if there exists a quasi-homogeneous power series f €
C{x}, such that (X,0) = (V(f),0).

Remark 1.86. Due to the positivity of the entries of w, f has to be a polynomial. So we will
assume from now on that (X, 0) is defined by a quasi-homogeneous polynomial f € C[x].
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We start with an elementary property regarding the monomial structure of a polyno-
mial defining the QHIS.

Lemma 1.87. Let f € C[x| define a QHIS. Then for each 1 < i < n one of the following
statements holds:

(1) «* € Supp(f) for a certain m € N.

(2) x™z; € Supp(f) for a certainm € Nand 1 < j < n.
Proof. See [Sai71, Korollar 1.6]. O

Lemma 1.87 implies the following result.

Corollary 1.88. Let f € C[x] define a QHIS. Assume that ord(f) > 3 and that f is quasi-
homogeneous with respect to the weight-vectors w = (wy, ..., wy) and v = (v, ..., v,) with
weighted degrees d,, respectively d,,. Then

forall1 <i<n.

We conclude this structural part with the following uniqueness result.

Theorem 1.89. Let f € C[x] definea QHIS. Assume that ord(f) > 3, f is quasi-homogeneous
with respect to the weight-vector w = (w1, ..., wy) and f has weighted degree d. Then for all

Wy

1 < i < n the rational numbers s are uniquely determined and satisfy 0 < % < 1.
Proof. See [Sai71, Satz 1.3]. O

Next we present relations between the Milnor number, the weight-vector and the
weighted degree. We begin with the definition of an auxiliary function.

Definition 1.90. Denote by (pn)nens, the monotonously increasing sequence of prime num-

bers. We define the functionl : N>1 — Q,n — []
i=1

DPi
pi—1°

Using this function we obtain the following theorem.

Theorem 1.91. Let f € C[x] define a QHIS. Assume that f is quasi-homogeneous with
respect to the weight-vector w = (wy, . . ., wy) and has weighted degree d. Then the following

hold:
1 (-

(2) If n > 2, thend < l(n) - puy.

s

(1) py =15 =

(3) Iford(f) > 3andn > 2,thend <Il(n — 1) - puy.

Proof. See [HK12, Theorem 4.3]. O
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An interesting theoretical property of quasi-homogeneous hypersurface singularities
is the fact that being one is a generic property.

Let P = {p1,...,pm} C (x) be a finite set of polynomials. Define f; = ) a;;p; for 1 <
k=1
i < k and a;; € C. We want to express the existence of a;; such that C[x]w/(f1,. .., fr)

is a complete intersection ring in more algebraic terms. Consider the rings C[y] and
C[x, y] with maximal ideals n = (y) and 0 = (x,y).

Define A = Clyln, B = C[x,y]o and F; = > ;" (yij + aij)p; for 1 < i < k. Moreover,
let C = B/(F1,..., Fy). The canonical maps of A-algebras

A= B—=C
induce isomorphisms
C[X]m/<f17 . 7fk> = C/ﬁc 2C®a A/TIA

In particular the a;; yield a complete intersection if and only if C' ®4 A/nA is isomor-
phic to a complete intersection ring. Now we have every ingredient for the proof of
the genericity result. A sketch of the proof has been communicated to us by Claus
Hertling.

Theorem 1.92. Let M = {my,...,m} C C[x] be a finite set and I C C[x]| an ideal gener-
ated by k < n polynomials f1, ..., fi, which are linear combinations of elements of M, that is
!

fi= Zo a;ymy; for certain a;; € C. If C[x]/I is a n — k dimensional complete intersection,
J:

then C[x]/ <Z§‘:o aijp; | 1 <i < k)isan — k dimensional complete intersection for generic
&ij e C.

Proof. The geometric idea behind this theorem is the following;:

We consider the a;; as values for variables of a polynomial ring, this means that we
consider the f; as elements of the polynomial ring Cix,y]. Define
R =C[x,y]/{f1,..., fn) and S = Cly]. We obtain a morphism of schemes

f : Spec(R) — Spec(S5),

where the fibre of the maximal ideal p corresponding to the point P = (a;;) € C*™ is

isomorphic to
!

Clx)y /(D aijmy | 1< i <n).
j=0
By assumption the fibre is isomorphic to a complete intersection ring. We apply
[Gro67, Théoreme 6.9.1] in order to obtain an open U, such that f|y; : U — Spec(S) is a
flat morphism. Since flat morphisms are open (see [Gro67, Théoréme 2.4.6]), thus we
obtain that f(U) C Spec(S) is non-empty and open, hence dense in Spec(S), since S
is a domain. In our setup Krull’s Principal ideal theorem (see [BH93, Theorem A.1])
implies that each fibre is of dimension > n — k. By Chevalley’s theorem (see [Gro67,
Théoreme 13.1.3]) we know that locus where the fibres have dimension < n — k is
open. We can shrink U such that the assumption on the dimension of the fibres hold.
Since U is non-empty, we obtain that generic fibres have dimension n — k. O

The fact that being an isolated hypersurface singularity is equivalent to J; being a
zero-dimensional complete intersection yields the following corollary.
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Corollary 1.93. Assume we are given a finite set M = {my,...,m} C (x) C C[x] and a
polynomial f = Zé:o a;my; for certain a; € C. If f defines an isolated hypersurface singular-
ity, then f = Zé:o a;m; defines an isolated hypersurface singularity for generic a; € C.

1.5.3 A General Mather-Yau Theorem

In 1985 Gaffney and Hauser generalized the Mather—Yau theorem to a larger class of
singularities, which are not necessarily hypersurface singularities (see [GH85]). There
are two types of singularities for which we can extend this result. The first type are
singularities defined by an f € C{x} satisfying f € mJ;. These singularities are so-
called strongly Euler-homogeneous singularities and we consider this type of singularity
in more detail in Chapter 3. The result in this case for isolated hypersurface singulari-
ties has been proven by Shoshitaishvili in [Sho76]. The second type for which we can
extend the result are so-called harmonic singularities (see [HM86]). In this section we
state the proof of the aforementioned theorem in the hypersurface case, since it is the
theoretical foundation of the underlying thesis. Before we restate the proof, we need
to define basic notions.

Definition 1.94. Let (X, 0) be a hypersurface singularity.

(1) We say (X,0) is of isolated singularity type, if there exists a representative U of
(Sing(X), 0), such that

(U, z) # (U,0)

forall z € U\{0}.

(2) Wesay (X,0) is a harmonic singularity if there exists a singularity (X', 0) of isolated
singularity type and a k € N, such that

(X,0) = (X' x C",(0,0)).
Remark 1.95. We have the following chain of proper inclusions for hypersurface singularities:
{isolated} C {isolated singularity type} C {harmonic}.

Singularities with very simple defining equations suffice to show these proper inclusions. As
already seen in Example 1.68 and 1.75 the hypersurface singularity (V (zy),0) C (C2,0)
is isolated, whereas the singularity (V (xy),0) C (C3,0) is not. Nevertheless the latter is a
suspension of the first, hence it is a harmonic singularity. It is not of isolated singularity type,
since for any point p = (0,0,t) € C3 with t # 0, we have Sing(V (zy), 0) = Sing(V (zy), p).
At last we need a singularity, which is of isolated singularity type but not isolated. Therefore
we consider (V(xyz),0) C (C3,0). A simple computation shows that (Sing(V (zyz)),0) =
(V(zy) UV (xz) UV(yz),0) and one can see that (Sing(V (zyz)),0) 2 (Sing(V (zyz)),p)
for any p € C3\{0}, hence (V (xyz),0) is of isolated singularity type, but not isolated. The
real picture looks as follows:
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(V(zyz),0)

Figure 1.11: Real picture of the complex space (V (zyz),0) C (C?,0) and of its singular
locus.

In the remainder of this section we want to prove a theorem similar to the Mather—Yau
theorem for harmonic singularities. We adapt the proof of [JP00, Theorem 9.1.8] to our
setup. In the case of hypersurface singularities it is the same as in [GH85], we just fill
in more details, since this thesis relies theoretically on this result.

We start our preparations with a lemma that allows us to assume equality of Jacobian
ideals.

Lemma 1.96. Let A = C{x} or A = C[[x]] and ¢ = (1, ..., n) € Aut(A). Then for every
f € Ait holds that

e(J5) = Jo(p)-
Proof. First note that ¢(0,f) = (9, f)(p(x)), hence

p(J5) = (P [)s -+ (02, ) = (O [)(P(x)), -+ (0, ) (0(x)))-
Applying the chain rule to ¢(f) = f(¢(x)) yields

n

Onyp(f) =D _(Ou, ) (P(%)) - Oy 00 = Y (0, f) - Ouy P
=1

i=1
We can rewrite this as

Oz, 0(f) ©(0z, f)
: =J,- : . (1.1)

Do) (s, f)

Due to the Inverse Function Theorem (Theorem 1.9) the Jacobian matrix J,, is invert-
ible. This means that we can rewrite Equation (1.1) as

9z, 0(f) ©(0z, f)
CAREN B S N R (1.2)
Dz, f) ¢ (0, f)
Equation (1.1) and (1.2) now imply ¢(J¢) = Jy (). O

The next lemma is concerned with equality of a special type of ideals.

Lemma 1.97. Let A = C{x,t} or A = C[[x,t]]. Furthermore, let k € N>y and
Fiveoosfusgs-ogn € A Wedefine I = (fi,....fr) € Aand I, == (fy +1t- (g1 —
SO fe (g = fi) S AT = (g1, .. gk), then I = .
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Proof. The assumption I = (g1,...,gx) implies I; C I. To prove the equality we con-
sider the quotient I := I /I; C A/I; =: B. Due to the definition of I;, we obtain

ﬁ:t-(fi—gi)Gmeforallizl,...,k.

This implies I C mpI, hence I = 0 by Nakayama’s lemma. Thus I = ;. O

Our next result is a statement about path-connectedness of complex space germs.

Lemma 1.98. Let k € N>y and f1,..., f,01,...,9r € C{x}. Fix an open neighborhood
U C C" of 0 such that f;, g; are holomorphic functions on U for all 1 < i,j < k. We define
the ideal sheaf T := {10y + ... + frOy and assume that T = 1Oy + ... + g, Ov holds.
Furthermore, we define for any to € C the ideal sheaf Z;, :== (f1 +to - (91 — f1))Ov + ... +
(fe +to- (9x — fx))Ov. We define X := V(Z) and Xy, = V(Iy,) for any to € C. Then the
following hold:

(1) There exists a path v : [0, 1] — C satisfying v(0) = 0 and (1) = 1, such that
(Xa 0) = (Xtm 0)
forall ty € v([0, 1]).

(2) There exists an open neighborhood W C U of 0 and V' C C of 0 with the property that
forall tg € V it holds that
WNX=WnX,.

Proof. The idea for the proof of the first claim is to connect the ideals Iy := Zp =
<f17 s 7fk> = <gla v 7gk> = Il via the ideals Ito = (Ito)() = <f1 +t0(gl _f1)7 s 7fk+
to - (9x — fx)) by a complex line and check that there exists a path 7 as in the claim. In
order to show the existence of v we use sheaf theory. We define the ideal sheaves

J = [iOuxc + ...+ [iOuxc = 10uxc + ... + gOvxc

and
Ji=(fitt-(g1— f1))Ovuxc+...+ (fr +t- (9 — fr))Ovxc-

By construction we have an inclusion of ideal sheaves J; C J on the analytic set U x C
and in particular on the analytic subset {0} x C. We know by Proposition 1.20 that
Supp(J/J¢) N ({0} x C) is an analytic subset of {0} x C. By Example 1.22 we know that
the only closed complex subspaces of {0} x C are either unions of isolated points or
the whole space. If we can show that that (0,0), (0, 1) ¢ Supp(J/J) N ({0} x C), then
there exists a path ~y : [0, 1] — C, which avoids the isolated points and which satisfies
~7(0) = 0 and (1) = 1. So it only remains to show that the points (0,0) and (0, 1) are
not in Supp(J/J:). We only prove this for the stalk at (0, 0), as the stalk at (0, 1) works
analogously. Consider the ideal J; := (J¢) g o) = (f1 +t(91 — f1), - s fu +t(gr — fk)) €
C{x,t} and define Jy := Ip - C{x,t} = J(g,0)- Since Iy = I1, we can apply Lemma 1.97
to Jp and J; and obtain

Jo=T0,0) = (Tt)0,0) = It (1.3)

and hence (0,0) ¢ Supp(J/J:) N ({0} x C). This proves the first part of the statement.
Coherence of ideal sheaves and Equation (1.3) imply the existence of an open neigh-
borhood W C U of 0 and an open neighborhood V' C C of 0, such that we obtain an
equality of ideal sheaves

[1Owxv+.. .+ [iOwxv = (fi+t-(91—f1))Owxv+. . .+ (fre+t-(9e— fr)) Owxyv. (1.4)
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Setting the value of ¢ in Equation (1.4) to an arbitrary but fixed ¢y € V yields the
equality of ideal sheaves

Tlw = fiOw+. . +fiOw = (fi+to- (91— f1))Ow+. . .+ (frtto (g —fr)) Ow = (Ty,) lw-
(1.5)
Equation (1.5) implies
WAX=WnX,

for every ty € V. O

The next lemma shows how the isomorphy class of hypersurface singularities behave
if they lie on a line connecting two fixed hypersurface singularities.

Lemma 1.99. Let f,g € C{x}. Fix an open neighborhood U C C™ of O such that f, g are
holomorphic functions on U. We define the ideal sheaves Ty := fOy+0s, fOu+...+0,, fOu
and I, := gOy + 04,90y + ... + 04,90y Furthermore, we assume (Zy), = (f,Jy) =
(9,Jg) = (Zy)q - On U x C we define the holomorphic function F := f+t-(g— f) € C{x,t}
and on U we define for any to € C the holomorphic function Fy, := F(x,ty) € C{x}. Then
the following hold:

(1) (V(f) x C,(0,0)) = (V(F),(0,0)).

(2) There exist an open neighborhood V' of 0 € C and a continuous family of points (p;)icyv
with:

() limp; =0, and
(b) (V(£),0) = (V(Ft), Pro)-

(3) If f e mJyand g € mJgy, then py, = O forall ty € V.

Proof. By coherence of ideal sheaves the equality (Zy), = (Z,), implies the existence
of an open neighborhood U” C U of 0 such that Z¢|y» = Zg|¢r. After possibly shrinking
U we can assume without loss of generality U = U’ and hence Z; = Z,. We define the
ideal sheaf 7 := FOpxc+0z, FOuxc+... 40z, FOuxc.Since F' = f+t-(g—f), 0z, F =
Op; [+t (0,9 — 0, f) and Iy = 7, we obtain the inclusion of ideal sheaves

T C fOuxc + 0, fOUxc + - ..+ O, fOuxc = T'. (1.6)

Define I := Z99) and I' := Z{, o, = (f, Jy)-C{x,t}. Applying Lemma 1.97 to the ideals
I'and I’ implies I = I{o,o) = (f,Jf)-C{x,t} = I'. In this setup we obtain O, F = g— f €
(f,J¢)-C{x,t} = I and Theorem 1.69 implies the existence of ¢1, ..., p, € C{x,t} and

a unit u € C{x,t}*, such that
u- F(p1(x,t),...,0n(x,1),0) = F(x,1). (1.7)

The morphism ¢ : C{x,t} — C{x,t}, defined by ¢ := (¢1,...,¢n,t) is an isomor-
phism due to Theorem 1.69,2.(b) and the Inverse Function Theorem (Theorem 1.9).
Then there exist ¥, ..., 1, € C{x,t}, such that ¢y := (¢1,..., 1y, t) is the inverse of .
Applying 9 to Equation (1.7) yields

[= F(X, 0) = w(u)le(%(XJ)a B %(Xﬂf)vt) (1.8)



Explicit and effective Mather—Yau correspondence in view of analytic gradings 36

This proves the first statement. Since v) defines an automorphism of C{x,t}, there
must exist open neighborhoods W, W’ C U of 0 and V, V' C C of 0, such that ¢ : W x
v — W’ x V' is a biholomorphic map satisfying )(0,0) = (0,0). To prove the second
part of theorem we define for any ¢, € V the maps ¢y, := (¢¥1(x,%0), ..., VYn(x,t0)) :
W — W'. Due to the Inverse Function Theorem the v, are isomorphisms. De-
fine py, := 14,(0). By construction the family (p;):cy depends continuously on ¢ and
¥(0,0) = (0,0) implies %ir% pt = 0. Furthermore, setting ¢ := ¢y in Equation (1.8) im-
—
plies
(V(f)v O) = (V(Fto)7pt0)

for all ¢y € V. This proves the second statement.

To prove the third part of the theorem we carefully analyze the proof of the first part.
The assumptions f € mJ; and g € mJ, imply (Zy), = Jy and (Z,), = J,4. By assump-
tion we know that 7y = 7, = 0., fOy + ... + 0., fOu. Applying Lemma 1.97 to the
ideals I and J;-C{x,t} weobtain I = J;-C{x,t}. Weget 0,F = g—f € (x1,...,2n)J-
C{x,t} = (x1,...,xp,)I. In this case Theorem 1.69 yields (0,t;) = (0,ty). Then also
(0, t0) = (0,%p) and by construction p;, = 0. O

Before we state the general Mather—Yau theorem, let us define the notion of (strongly)
Euler-homogeneous singularities:

Definition 1.100. Let X C C" be a hypersurface singularity. Denote by f, € C{x — p} the
local equation of X in p € X. We call X Euler-homogeneous at p € X if, and only if, there
exists a derivation x,, € Der(Ox p), such that x,(fp) = fp, where f, € C{x — p} is the local
equation of X at p € X. A derivation x,, is called Euler-derivation of f at p. We call X
strongly Euler-homogeneous at p € X if, and only if, there exists an Euler derivation x,
satisfying xp(p) = 0. We call X (strongly) Euler-homogeneous, if X is (strongly) Euler-
homogeneous at all p € X. Let f € C{x — p} be holomorphic on U C C". We say f is
(strongly) Euler-homogeneous, if X = V(f) € U is (strongly) Euler-homogeneous at p.
We call a complex space germ (X, p) (strongly) Euler homogeneous (at p), if there exists a
representant which is (strongly) Euler-homogeneous (at p).

Now we are able to state and prove the general Mather-Yau theorem by Gaffney and
Hauser in the hypersurface case. We combine the original proof of the main theorem
in [GH85] with the proof of the Mather—Yau theorem in [JP00]. As a byproduct we also
obtain a proof for singularities satisfying f € J; generalizing the result from [Sho76].

Theorem 1.101. Let f,g € C{x} define singularities (X, 0) respectively (Y,0). Assume
either

(a) (X,0)and (Y, 0) are harmonic singularities, or

(b) (X,0)and (Y,0) are strongly Euler-homogeneous at 0.
Then the following are equivalent:
1. f~g.
2. (X,0)=(Y,0).

3. Ty =T, as C-algebras.
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4. (Sing(X),0) = (Sing(Y), 0).

Proof. The equivalence of 1. and 2. and of 3. and 4. follow immediately from Proposi-
tion 1.39. In case f ~ g the chain rule of differentiation implies Ty = T, as C-algebras.
So only the implication 3. to 1. has to be proven. We start with the proof in case (a).
Applying Lemma 1.71 we can reduce our setup to the case that f and g define singu-
larities of isolated singularity type.

We fix an open neighborhood U C C" of 0 € C", such that f,g are holomorphic
functions on U. If Ty = T, as C-algebras, then by Lemma 1.11 there exists an auto-
morphism ¢ € Aut(C{x}) satisfying

o((fsJ5)) = (o(f)s Jo(s)) = (9, Jg)- (1.9)

Since f ~ ¢(f), we can replace by abuse of notation f with ¢(f). Define the ideal
sheaves 7y := fOy + 0., fOuy + ... + 0., fOpy and I, := gOy + 05,90y + ... +
02,90y . Equation (1.9) is equivalent to saying that (Zy), = (Z,), . By coherence of
ideal sheaves there exists an open neighborhood U’ C C" of 0 € C", such that Z;|;» =
Zy4|vr. After possibly shrinking U we can assume without loss of generality U = U’
and hence 7y = 7,. In the same way as in Lemma 1.99 we define F':= f+t- (g — f) €
C{x,t} and F}, := F(x,ty) € C{x} for typ € C. Since F}, is a holomorphic function
on U for every ¢ty € C, we define for any ¢y € C the ideal sheaf Ir, = F,Ou +
0p, F1,Ou + ... + 0., F;,Oy. Using this notation we have Sing(V(f)) = V(Z;) and
Sing(V (Fy,)) = V(ZF,, ). Lemma 1.98 yields the existence of a path ~ : [0,1] — C such
that (Sing(V'(f)),0) = (Sing(V (Fy,)), 0) for ¢ty € ([0, 1]). Furthermore, we know that
there exist open neighborhoods W C U of 0 and V' C C of 0, such that

W N Sing(V(f)) = W N Sing(V(Fy, )) (1.10)

for any ty € V. Since (V(f),0) is of isolated singularity type, we can pick a represen-
tative U’ of (Sing(V'(f)),0), such that (U’,0) % (U’,z) for all x € U'\{0}. Due to the
fact that W N U’ is an open neighborhood of 0, we assume without loss of generality
that W = U’. Lemma 1.99 implies the existence of a family of points (pt,)i,ev € C™.
(V(f),0) = (V(F),pt,)- Then it holds that (Sing(V'(f),0)) = (Sing(V (Fy,)), pt,)- Due
to t})iglo pt, = 0 we obtain p,, € W for all ¢, in an open neighborhood V' of 0. Again we

can assume without loss of generality that V = V’. Using Equation (1.10), we obtain

(Sing(V (Fiy)), pro) = (Sing(V(f),0)) = (Sing(V (Fy,)), 0) (1.11)

for any ty € V. Combining the Equations (1.10) and (1.11) with the fact that f defines
a singularity of isolated singularity type yields p;, = 0 for any ¢y € V. This results in

(V(f)v O) = (V(Ft0)> 0)'

So far we have shown that the isomorphism of the singular loci implies the existence
of a contact equivalent hypersurface for small values of ty. Iterating this process we
construct a sequence of open sets (Vj)reny with 1y = V and a sequence (tj)eny with
tr, € 7([0,1]) NV}, of points converging to 1, such that (V(F;,),0) = (V(F3,,,),0). The
final step of the proof is to show that this process stops after finitely many steps. Since
the Vj, cover the compact set v([0, 1]), we can pick a finite number of them, such that
they still cover the whole path as sketched in Figure 1.12.
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Figure 1.12: Sketch of the open covering of ([0, 1]).

Then we have a finite subsequence (tx,)o<;<r, satisfying

(V(f),0) = (V(F,),0) = ... = (V(F,,),0) = (V(g),0).

This finishes the proof in case (a).
To prove case (b) we have to assume f € mJ; and g € mJ,. In this case Lemma 1.99
yields p; = 0, so that we can proceed from this point on as in case (a). O

Remark 1.102. The proof of Theorem 1.101 shows that, if we do not assume f € mJy, the
property of being of isolated singularity type arises as a natural condition in order to show that
the isomorphy class of the singular locus determines the isomorphy class of the hypersurface
singularity. We show in Example 1.103 that this condition is necessary. The proof we presented
does not work if the defining ideal of the singularity has multiple generators, since the Local
analytic triviality theorem cannot be extended in such a way, that we can work with the usual
singular locus. Therefore Gaffney and Hauser defined a different singular locus in order to
keep the analogy with the hypersurface case.

Next we give an example of a family of hypersurface singularities, such that the sin-
gular loci are all isomorphic, but the singularities themselves are not. The example is
a specialized version of [GHS85, 4. Example].

Example 1.103. Consider the polynomial f = z3zo+a3w3+ 1371 + 217975 € C{21, 72, 73}
A SINGULAR computation (see [Dec+19]) shows f ¢ Js. Define F' := f(x)+ (1 + 2z +1)-
f(y) € C{x,y, z,t}. Furthermore, we set F;, = F(x,y,z,t9) € C{x,y,2}, X := V(F) C
C®and Xy, := V(Fy,) C C7 for fixed to € C. By definition we have (Xo,0) = (V(f),0). We
want to show that there exists an open neighborhood V- C C of 0 € C, such that:

(1) We have (Sing(V (F'),0) = (Sing(V (Fp)) x V,0),
(2) but (X,0) % (Xo x V,0).
We start with the first claim. Computing the partial derivatives of F yields
O, ' = 0y, f,0,F = (1 +2+1) -0y, fand 0, F = O F = f(y)
for1 <i,j < 3. Using that (1 + z + t) is a unit in C{x,y, z,t} we obtain
(F,05,F, 0, F.0.F,0,F|1 < i,j < 3) = (f(x), f(y), 0, f, 0y, |1 < i.j < 3).

Thus the defining equations of the singular locus (Sing(V (F),0)) do not depend on t and
we have shown the first claim. Next we prove the second claim. Assume the converse. Then
Theorem 1.69 yields

OF = f(y) € (x,y,2)(0, F, 0y, F'|1 <, j < 3) + (F). (1.12)
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If we plug x = 0 and z = 0 into Equation (1.12), then there exist g1, ..., 93,9 € C{y} such
that

3
F&) =905 f(y)+g-(1+1)- f(y). (1.13)
=1

The partial derivatives of f(x) vanish, since f € m?. If ord(g) > 1, we can solve for f(y) in
3
Equation (1.13) and obtain either f(y) = (1 —g-(14+t))"" -3 ¢idy, f(y), hence f € J;,
i=1
ot, if ord(g) = 1, we obtain

F(y) € (x,y,2)(00,F, 0y, FI1 <, j < 3) + (1 + (x,y,2)) - (F). (1.14)

In the second case we plug y = 0 and z = 0 into Equation (1.14) and a similar arqument
as for f(y) yields f(x) € (0z, f(X),..., 04, f(x)), hence f € Js. Since both cases yield the
contradiction f € Jy, the second claim is proven.

We conclude this chapter by pointing out that Theorem 1.101 combined with a re-
sult by Hauser and Miiller classify weighted-homogeneous hypersurface singulari-
ties, which are determined by their singular locus. The result by Hauser and Miiller is
the following.

Theorem 1.104. Let f € C{x} be a weighted-homogeneous hypersurface singularity with
respect to the weight vector w = (w1, ..., wy) € C" and with weighted degree d := deg., (f).
Assume that d — w; # 0 for 1 < i < n, or, equivalently, that degy, (0, f) # 0 for 1 <1i < n.
Then (X,0) := (V(f),0) is a harmonic hypersurface singularity.

Proof. See [HM86, Theorem 4]. O

Theorem 1.104 states that any generic weighted-homogeneous hypersurface singu-
larity is determined by its singular locus. With Theorem 1.101 we obtain that any
weighted-homogeneous singularity f with weighted degree deg,, (f) # 0 is deter-
mined by its singular locus, since these singularities satisfy f € m.Jy.

Corollary 1.105. Let f,g € C{x} define weighted-homogeneous hypersurface singularities
with weight-vector 0 # w = (w1, ..., wy) € Z" and with weighted degree d := deg., (f) =
degy, (g). Denote the singularities defined by f and g by (X, 0), respectively (Y, 0).

Assume that either

(i) d #0,o0r

(ii) d —w; #0for 1 <i<n.
Then the following are equivalent:

(1) (X,0) = (¥,0).

(2) Ty =T, as C-algebras.

First we state an example of a singularity, which is weighted-homogeneous, but not
covered by Theorem 1.104, but by Corollary 1.105.
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Example 1.106. Consider the polynomial f = zowzws + 2928 + 2528 + 212 + moa® €
C{x1,x9, 3,24, x5}. It is easy to see that f is weighted-homogeneous with respect to the
vectorw = (1, —1,12, 1, 1) with weighted degree d = 12 and that deg,, (0, f) = d—12 = 0.
Using Theorem 1.70 one can show that (V' (f), 0) is a harmonic singularity.

The next example shows that in case deg,, (f) = 0 and at least one of the weights
being 0, the isomorphy class of a singularity is not determined the isomorphy class of
its singular locus.

Example 1.107. Consider the polynomial g = x3x9+ w373+ 2311 + 3170923 € C{21, T2, 73}
as in Example 1.103. We already know that g ¢ m.J,. Then the polynomial f = g + x4x5 €
C{x1, ..., x5} is weighted-homogeneous with respect to weight vector w = (0,0,0,1, —1) €
7P and has weighted degree deg., (f) = 0. It also holds that f ¢ w.Jg. Next we define the
polynomial F' = f(x)+ (1 +z+1t) - f(y) € C{x,y,2,t} as in Example 1.103. Then F is
weighted homogeneous with respect to the weight vector v = (w,w,0,0) € Z'2 and satisfies
deg, (F) = 0. Define Fy, = F(x,y,2,t9), X := V(F) C C?and X;, = (V(F,)) C C.
As seen in Example 1.103 we conclude that F' ¢ Jp and that (Sing(V (F'),0) = (Sing(V (Fp)) x
V,0), but (X,0) 2 (Xo x V,0), where V is an open neighborhood of 0 € C.

Remark 1.108. The full relationship between harmonic singularities and strongly Euler-
homogeneous singularities is unclear to us. By considering a non-quasi homogeneous isolated
hypersurface singularity it easy to see that not every harmonic singularity is strongly Euler-
homogeneous in 0. We do not know if every singularity, which is strongly Euler-homogeneous
in 0, is harmonic.



Chapter 2

Gradings of Analytic Algebras and
Modules

In the upcoming chapter we are introducing the theory of grading of Zariski rings
and modules over Zariski rings by abelian groups as introduced by Scheja and Wiebe
(see [SW73]). Due to the fact that every analytic algebra is a Zariski ring we obtain a
grading theory for analytic algebras and analytic modules. The main purpose of this
thesis is to understand singularities that admit multigradings, that is they are (C™, +)-
graded. To understand this grading we first need to understand the interplay between
(C, +)-gradings, diagonalizable logarithmic derivations and algebraic tori.

(C™,+) multi grad-
ings of C{x}/I

Algebraic Tori Toral Lie algebras
T C Aut;(C{x}) t C Der;(C{x})

Figure 2.1: Visualization of the aim of this chapter.

We are going to make use of results regarding derivations presented in Section 1.4.1.
Parts of the upcoming chapter, in particular Section 2.1 and Section 2.2 have already
been presented in the author’s master thesis (see [Epul5]). For this thesis to be self
contained we restate them.

41
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2.1 Gradings of Rings and Modules

In the following section we state the classical definition of group gradings of rings
and modules. Building up on these we present the definition of grading for analytic
algebras and analytic modules due to Scheja and Wiebe. For the classical definition of
grading in the context of rings or modules, we refer the reader to [GP08, Chapter 2.2].
We start with the basic definition of finitely graded rings and modules:

Definition 2.1. Let (G, +) be an abelian group, R a ring and M an R-module. R is a finitely
graded ring, if we have a system of group homomorphisms =l : R — R for g € G with the
property [ (R)mii(R) C 7, (R) for all g,h € G, such that R can be written as a direct
sum of the subgroups wg(R), thatis R = @ e ﬂf(R). Furthermore, M is a finitely graded
module , if R is graded with respect to a system of group homomorphisms wl¥, g € G as before,
which is compatible with group homomorphisms )" - M — M, that is l(R)m)! (M) C
wé‘ﬁfrh(M) forall g,h € G, such that M can be written as a direct sum of the subgroups

myt (M), that is M = @ ey 7" (M).

Remark 2.2. Definition 2.1 basically extends the well known idea of grading rings in the mul-
tivariate polynomial case. Consider for example the polynomial ring R := Q[z1, ..., zy,]. Us-
ing multi-indices o« = (a1,...,a,) € N we can write any f € R as
f = Zig}:gn Cox{t - x%n, where m is the total degree of f. To keep notation short, we
write f = Y, fa, where f, denotes the homogeneous degree |c| part of f. For more de-
tails on the grading of multivariate polynomial rings see [GPO8]. Now R can be written as
R = @450 Q" -+ apr. If we consider the group (G, +) = (Z,+) and the group homo-
morphisms

g R— R
0, ifg<0
fH{ far with|a] =g

We directly get the desired properties of (74)geq as in Definition 2.1.

The next interesting aspect is the general, not necessarily finite, grading of rings and
modules. We start with the definition of Zariski rings (see for example [AM69, Chapter
10, Exercise 6]), as this is the setup in which we are able to define general gradings.

Definition 2.3. Let R be a ring. We say R is a Zariski ring, if R is a commutative unitary
Noetherian topological ring whose topology is defined by an ideal m contained in the Jacobson
ideal of R.

Now we can define gradings for Zariski rings.

Definition 2.4. Let (G, +) be an abelian group, R a Zariski ring and M a finitely generated
R-module. R is a graded ring if we have a system of group homomorphisms wf : R — R for
g € G, which induce group homomorphisms @ : R/m™ — R/m" that define a finite grading
on R/m" for all n € N. M is a graded module, if R is graded with respect to a system of
group homomorphisms wlt, g € G as before, which is compatible with group homomorphisms
TI'éV[ : M — M which induce group homomorphism @ : M/m"M — M/m™M that define a
finite grading on M /m" M as an R/m™-module for all n € N.

Remark 2.5. The grading in the sense of Definition 2.4 is basically a grading of m-adic com-

pletions, as we reduce the grading of a ring R to gradings on all R/m*. The same holds also
for modules. We extend this idea to the grading of projective limits in Section 2.2.
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Example 2.6. Let us consider the ring R := Ql[[x1, ..., xy)], m = (z1,...,zy) and (G, +) :=
(Z,+). Define 4 as in Remark 2.2, just extended to power series. We get that the m, induce
a finite grading on R/wm* for all k € N, as R/m* = Q[x1,...,2,]/(x1, ..., 2,)* . Thus R is
graded in the sense of Definition 2.4.

The following statements generalize basic results of graded modules, as stated for
example in [GPO8].

Theorem 2.7. Let R be a graded Zariski ring and M be a graded R-module with system of
group homomorphisms (wé‘/[)ge(;. Every m € M can be written asm = 3 wé‘/[(m). If
m =, cqmg withmy € )/ (M), then we already have mg = w)! (m) for all g € G. my is

called the g-th homogeneous component of m.

Proof. See [SW73, (1.1)]. O

Proposition 2.8. Let R be a graded Zariski ring and M a graded R-module with systems of
group homomorphisms (wf)geg respectively (wéw )Jgec- Then for all g,h € G it holds that:
7r§ =1y, mgom, =0,if g # h,and W?(R)?T}JIM(M) C ﬂ'é\ih(M).

Proof. See [SW73, (1.2)]. O

The next natural step is to consider submodules of graded modules.

Definition 2.9. Let R be a graded Zariski ring, M be a graded R-module and N a subgroup
of M. N is called homogeneous submodule of M, if m}' (N) C N forall g € G.

The following three theorems characterize homogeneous submodules, resulting quo-
tient modules and their grading.

Theorem 2.10. Let R be a graded Zariski ring, M be a graded R-module and N a submodule
of M. N is homogeneous if and only if N can be generated by homogeneous elements.

Proof. See [SW73, (1.3)]. O

Theorem 2.11. Let R be a graded Zariski ring and M be a graded R-module with system
of group homomorphisms (7)")ge and N a homogeneous submodule of M. Then the group

homomorphisms w)!|x : N — N, g € G, induce a grading of N as an R-module.

Proof. See [SW73, (1.4)]. O

Theorem 2.12. Let R be a graded Zariski ring and M be a graded R-module with system

of group homomorphisms (7)")ge and N a homogeneous submodule of M. Then the group

homomorphisms W :M/N — M/N, g € G, induce a grading of M /N as an R-module.
Proof. See [SW73, (1.5)]. O

The next natural setup we can consider is the product of abelian groups, which yields
so-called multigradings.
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Definition 2.13. Let R be a Zariski ring and M an R-module. We say R is a multigraded
ring if there exists an m € N> and abelian groups G, . .., Gy, such that R is graded with
respect to G := G X ... X Gy, in the sense of Definition 2.1. We say M is a multigraded
module if there exists an m € N>y and abelian groups G1, ..., Gy, such that R and M are
graded with respect to G := G X ... X Gy, in the sense of Definition 2.1.

Our next results characterize the property of a Zariski ring R being multigraded.

Proposition 2.14. Let (G1,+),...,(Gm,+) be abelian groups, R a Zariski ring and m €
N>1. Furthermore, we denote for any k € n the natural projection R — R/m% by 7). Then R
is graded by (G X . .. X G, +) with group homomorphism W, o . (g1, --,9m) € G1 X

. X G, if and only if there exist pairwise commuting group homomorphisms 7y, , ..., 7g,,,
gi € G, grading R, satisfying

R/mh = ... € = (R/mp)n...nxk (R/m})

91€G1 ImE€Gm

forall k € N. In particular, Uy, o =74 o...omg forall (gi,...,gm) € G1 X ... xGp,.
Proof. See [Epul5, Corollary 4.27]. O

The next proposition is the analogous result for multigraded modules.

Proposition 2.15. Let (G1,+), ..., (G, +) be abelian groups, m € N>1, R a graded Zariski
ring and M an R-module. Then M is graded by (G1 X . . . X Gy, +) with group homomorphism

\Ij?g{,...,gm)’ (91,---,9m) € G1 X ... X Gy, if and only if there exist pairwise commuting

Mo Tl M g, € G; grading M and F

group homomorphisms m; , ..

gradings of R satisfying
Rjmp = ... € ¢ER/mi)N...NYE (R/mf)

g1€G1 gmE€Gm

ol the corresponding

and
M/mM = @ ... @ wpl(M/mFM) 0. Axdl (M /mbM)
g91€G1 gm€Gm
forallk € N. In partzculur \IJ( ) = =)l o. M and ‘1’(91, g =it oo for

all (g1,...,9m) € G1 X ... % G, where the latter is the corresponding grading of R.

2.2 (C™,+) Gradings of Analytic Algebras and Derivations

In this section we present the connection of (C™, +) gradings of analytic algebras and
derivations. We start with the classical results by Scheja and Wiebe connecting deriva-
tions to (C, +) gradings of analytic algebras and then state the analogous resutls for
(C™, +) gradings. Before we start with the result we need to define the notion of lifted,
respectively projected, derivations.

Definition 2.16. Let A and B be analytic algebras and assume there exists a surjective map m :

A — B.Let§ € Der(A)and 6 € Der(B). We call § a lifting of 5, respectively 6 a pro]ectzon
of 6, if there exists x1,...,xy, € Awithmy = (x1,...,2,) and mp = (7(z1),...,7(xy)),
such that § o w(x;) = w0 8(x;) fori =1,...,n.
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Definition 2.17. Let A = C{x} or A = C[[x]] and let § = Z a;0,, € Der'(A). Denote by
a;; € C,1 <14, j < nthe uniquely determined complex numbers such that

n

al—ZaijfL‘j Gmiforl <i<n.
j=1
We call the matrix A = (a;;) € C"*" the representation matrix of 6 and the derivation
dp := Z Z a;j;0y, the linear part of 6.

i=1j=

In case we have two derivations which equal their linear part, we can compute their
Lie bracket by computing the Lie bracket of their respective representation matrices.

Lemma 2.18. Let A be an analytic algebra and §,e € Der'(A). Assume m4 has a minimal
set of generators x1,...,xy, for somen € N, § = > Njw;0y, and € = €. Then [0,¢] =
x[Ms, M]0T, where Ms, M. € C™ ™ are the representation matrices of the linear parts of §
respectively e.

Proof. See [GS06, Lemma 2.2]. O

The first two theorems are very important, as they state that every grading of an ana-
lytic algebra arises from a derivation and vice versa.

Theorem 2.19. Let A be an analytic algebra and 6 € Der'(A), such that m4 has a system of
generators containing only eigenvectors of 0. Then there exits a unique (C, +) grading w4 of
A, g € C, such that each w;“(A) contains only g-eigenvectors of 4.

Proof. See [SW73, (2.2)]. O

Theorem 2.20. Let A be an analytic algebra and let 7TgA, g € C,bea(C,+) grading of A. Then
there exists a unique diagonalizable derivation § € Der'(A), such that each m4(A) contains
only g-eigenvectors of §.

Proof. See [SW73, (2.3)]. O

Remark 2.21. By Theorem 2.19 and 2.20 the diagonalizable derivations are in one-to-one
correspondence with the (C, +) gradings of analytic algebras.

The next theorems are crucial in an application of the Formal Structure Theorem,
which we are going to state in Section 2.4.2.

Theorem 2.22. Let A be a (C,+) graded analytic algebra. Furthermore, let I be an ideal of
Aand § € Der'(A) be the derivation corresponding to the grading. Then I is homogeneous, if
and only if I is §-invariant.

Proof. See [SW73, (2.4)]. O

Theorem 2.23. Let A be an analytic algebra, I be an ideal of A and § € Der’(A). If I is
d-invariant, then every associated prime ideal P of I is 6-invariant.

Proof. See [SW73, (2.5)]. O
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The next theorem in this section is a surprising result, which states that we can write
every diagonalizable derivation as a finite sum of diagonalizable derivations with ra-
tional eigenvalues.

Theorem 2.24. Let A be an analytic algebra and let 6 € Der'(A) be diagonalizable. Then
there exist diagonalizable 6; € Der’'(A)\{0} and a; € C,j = 1,...,m for some m € N, such
that 6 = 377" a;6;, every d; has the same eigenvectors as 0 and the §; have only rational
eigenvalues.

Proof. See [SW73, (3.2)]. O

The last lemma in this section characterizes diagonalizable and nilpotent derivations
by their linear part.

Lemma 2.25. Let A be an analytic algebra and § € Der'(A). Then § is diagonalizable if
and only if there exists a set of coordinates such that 6 = o and the representation matrix is
diagonalizable. § is nilpotent if and only if & is nilpotent.

Proof. We prove the theorem for analytic algebras of type A = C{x}/I for some ideal
I C C{x}. The complete case works analogously. We start with the statement regard-
ing diagonalizability. First assume ¢ is diagonalizable. Then Theorem 2.22 implies
that there exists a lift § of § in Der’(C{x}) satisfying 6(I) C I. Then there exists a set
of coordinates, say 71, ..., y, for some n € N, such that m¢(y} = (71, ..., 7,) with the
property that there exist \; € C, such that 5 (x;) = \iz;. By Theorem 1.43 we get that
5= o AixiOy,, hence 5 = &y and the representation matrix is obviously diagonaliz-
able. Passing to A we obtain the same result for §. Now if § = Jp and the representation
matrix is diagonalizable, then there exists a linear coordinate change, such that ¢ is of

type Y., Aizi0y, for a set of coordinates z1, ..., z,, some \; € C and some n € N.
Then ¢ is obviously diagonalizable. The statement for nilpotency follows immediately
from Lemma 1.51. O

In the last part of we want to exhibit the connection between multigradings and pair-
wise commuting diagonalizable derivations. The following theorems are the multi-
graded analogues to Theorem 2.19 and Theorem 2.20.

Theorem 2.26. Let A be an analytic algebra and 61, . ..,6,, € Der'(A) pairwise commut-
ing diagonalizable derivations. Then there exists a grading of A with group homomorphisms
7r’g4, g € C™, such that each 7T;]4<A) contains only common eigenvectors of 01, . .., Om.

Proof. [Epul5, Theorem 4.35] O

Theorem 2.27. Let A be a (C™, +) multigraded analytic algebra, where the grading is in-
duced by group homomorphisms 7rgA, g € C™. Then there exist pairwise commuting diag-
onalizable derivations 41, ...,0,, € Der'(A), such that each w;“(A) contains only common
eigenvectors of 81, ..., 0pm,.

Proof. It suffices to consider the case m = 2. Proposition 2.14 translates to the fact that
A/mk decomposes as a direct sum of common eigenvectors of the induced deriva-
tions. In particular, it holds that d; o d2(z) = d2 0 §1(x) mod m’j‘ for all £ € N. This
implies that §; o 3 = d2 0 d;. ]



Explicit and effective Mather—Yau correspondence in view of analytic gradings 47

Using these results we can define the following notions of graded objects using deriva-
tions.

Definition 2.28. Let A be an analytic algebra and § € Der’(A) diagonalizable. We call an
element f € A §-homogeneous of degree \ or quasi-homogeneous, if 6(f) = X - f for
some N\ € C. If we have a set of diagonal and commuting derivations, say d1,. .., 0pm, for
some s € N, we call f A-multihomogeneous, if for all 1 < j < m there exist \; € C with
8;(f) = Aj-f.where A :== (A1, ..., \p). Wesay A is 6-graded or just graded, if 6 € Der'(A)
and 0 is diagonalizable. We say A = C{x}/I is multigraded with respect to o1, ..., 0n, if
d; € Der'(A) are diagonalizable for j = 1,...,s and commute pairwise. We call a complex
space germ (X, 0) graded, respectively multigraded, if the corresponding analytic algebra
Ox o is isomorphic to a graded, respectively multigraded analytic algebra.

We finish this section by applying the theory of gradings through derivations to in-
vestigate the compatibility of gradings with suspensions.

We start with the following lemma.

Lemma 2.29. Let A := C{x,y} and A’ := C{x}andlet I C Aand I' C A’ be ideals.
Assume there exists an isomorphism ¢ € Aut(A) with p(I) = AI'. Then the map ® :
Der}; — Der'y;(A),§ — ¢ oo @t isa bijection. In particular, ® maps diagonalizable
derivations to diagonalizable derivations.

Proof. Consider the map ¥ : Der’y;,(A) — Der},§ — ¢~ 0§ o p. Incase ® and ¥ are
well-defined, they are obviously inverse maps for each other. Thus we just have to
check well-definedness. It suffices to show the well-definedness in case of ®, since ¥
works analogously. The map § = @ oo~ is a derivation, as one can easily compute.
It only remains to show that §(1) C I implies 6(AI’') C AI'. To show this, let f € AI’
be arbitrary. Then ¢ '(f) € I, hence § o o~ '(f) € I and thus 5(f) = @ oo ' (f) €
ATl'. O

Lemma 2.29 allows us to relate derivations in Der4;/(A) and Dery(A’). We capture
this in the following definition.

Definition 2.30. Let A := C{x,y}and A" := C{x}andlet I C Aand I' C A’ be ideals. Let
5 € Derp(A)and § = 31| ai(x,y)0, +> 11 bj(x,y)0y; € Derays(A) be the image under
the map ® from Lemma 2.29. We call the derivation § = Y 1" | a;(x,0)0,, € Dery/(A’) the
projection of 5. Given a derivation § = Y7, a;(x)dy, € Derp/(A'), we call the derivation
6 =" ai(x)ds, € Derap(A) the suspension of o.

Proposition 2.31. Let (X,0) C (C""™,0) be a complex space germ. Assume that (X, 0) =
(X',0) x (C™,0). If (X', 0) is graded by 6 € Der'(Ox o), then there exists a suspension
§ € Der’(Ox.0) of 8, such that (X, 0) is graded by é.

Proof. Define A := C{x,y} and A" := C{x}. Assume Oxo = A/I, where I :=
(fi,-.-sfr) € Aand Ox: g = A'/T', where I' := (g1,...,91) € A’. We consider the
lifted situation. Due to the fact that A/I = A’/I'®@C{y}, we know by Lemma 1.11 that
there exists an isomorphism ¢ : A — A satisfying p(I'A) = I.

Since (X', 0) is graded by § € Der’(Ox o) there exists a diagonalizable &' € Der’, (A').

Denote by 2, ..., z!, a minimal generating system of m 4 satisfying ¢'(z}) = A for
certain \; € C. Define 8" = > \;jz}d,, € Der’(A). By Lemma 2.29 there exists a diago-
i=1 ’

nalizable derivation § € Der’(A) with §(I) C I, hence (X, 0) is graded. O
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The proof of Proposition 2.31 also works in the multigraded case, if we assume that the
pairwise commuting diagonalizable derivations can be simultaneously diagonalized.

Proposition 2.32. Let (X,0) C (C"""™,0) be a complex space germ. Assume that (X, 0) =
(X',0)x(C™,0).If (X', 0) is multigraded by the diagonal derivations dy, . . ., 0, € Der’(Ox o),
then there exists liftings 01, . .., 0, € Der’'(Ox o) of the 0;, such that (X, 0) is multigraded.

Proof. The proof for the multigraded case works in the same as the proof of Proposi-
tion 2.31 by using a multihomogeneous generating systems. O

The converse of the previous propositions does not hold in general.

Example 2.33. Let f € C{z,y} be any power series, which is not homogeneous and not a
unit. In this case (V(f),0) is not graded. In case we consider f extended to C{z,y, 2}, then
[ is homogeneous with respect to the derivation § = z0,, which implies that (V (f) x C,0) is
graded. This shows that Proposition 2.31 cannot hold in general.

Definition 2.34. Let A := C{x,y} and A’ := C{x} and let I C Aand I' C A’ be ideals.
Let 6 € Der;(A). We call 6 suspension compatible, if ¢ is not the zero derivation.

Using suspension compatible derivations we can state converse statements to Propo-
sition 2.31 and 2.32.

Proposition 2.35. Let (X,0) C (C™*™, 0) be a complex space germ. Assume that (X,0) =
(X',0) x (C™,0). If (X,0) is graded by a suspension compatible 6 € Der'(Ox), then
(X', 0) is graded by the projection 6 € Der’(Ox o).

Proof. Define A := C{x,y} and A’ := C{x}. Assume Oxgo = A/I, where I :=
(fi,---, fuy € C{x,y} and Ox/ o = A'/I', where I' := (g1,...,q1) € C{x}. We con-
sider the lifted situation. Due to our assumption, (X, 0) is graded with grading in-
duced by ¢ € Der’(A) with §(I) C I. By Lemma 2.29, there exists a diagonalizable
derivation 6 € Der 47/(A). The fact that § is not the zero derivation implies that § is not
the zero-derivation, hence (X', 0) is graded. O]

Proposition 2.36. Let (X,0) C (C"*™ 0) be a complex space germ. Assume that (X,0) =
(X’,0) x (C™,0). If (X,0) is multigraded by the suspension compatible diagonal deriva-
tions 61,...,0m € Der'(Oxp), then (X’,0) is multigraded by the respective projections
815y Om.

Proof. The proof for the multigraded case works in the same way as the proof of Propo-
sition 2.35 by using a multihomogeneous generating systems. O

2.3 Linear Algebraic Subgroups of Aut(A)

In the following section we present the connection between algebraic tori and the au-
tomorphism group of an analytic algebra A = C{x} or A = C[[x]], as well as the
connection to derivations. Therefore we are going to use the theory of linear alge-
braic groups and Lie algebras. A good reference for the theory of linear algebraic
groups is [Hum?75] or for a more modern approach [Mill7]. In the theory of linear
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algebraic groups, it is a well known result that we can associate to each linear alge-
braic group a Lie algebra (see for example [Hum?75]). In the following section we state
results about the subgroups Aut;(A) := {¢ € Aut(A) | ¢(I) = I} of Aut(A), where
I is an ideal of A. We show that we can associate, in a formal sense, the Lie algebra
Der’(A) := Der’(A) NDer;(A) to these algebraic groups. We also show that the canon-
ical projection to A - A/m? induces a bijection of reductive linear algebraic groups.
We use this bijection to prove the that the dimension of maximal algebraic tori is an
invariant of an analytic algebra A/I and that it is connected to the maximal possible
(Ck, +)-grading of A/I. Before we start with our results, we fix the notation for this
section.

Notation 2.37. From now on A either denotes C{x} or C[[x]]. The maximal ideal of A will
always be denoted by mu. We denote by . the canonical projection A — A/m*™. By
abuse of notation the induced projection Der’(A) — Der(A/m%"") and the induced projection

Aut(A) — Aut(A/m") are also denoted by Ty,

2.3.1 Linear Reductive Subgroups of Aut;(A)

The aim of this subsection is to understand linear algebraic subgroups of Aut(A). After
stating general result, we focus on algebraic tori. In order to have precise notion of the
latter we adapt [Miil86, Definition] to our setup.

Definition 2.38.

(1) The group Autr(A) := {¢ € Aut(A) | ¢(I) = I} is called the group of I-invariant
automorphisms.

(2) Let G be an linear algebraic group. A homomorphism o : G — Autj(A) is called
rational action, if all ), o o are morphisms of algebraic groups.

(3) A subgroup G C Auty(A) isomorphic to a linear algebraic group is called linear alge-
braic subgroup of Aut;(A), if the injection G — Auty(A) is a rational action.

Remark 2.39. From now on we drop the term linear, since all algebraic groups that will
appear from now on are linear.

The first important result we need, is the fact that we can always find a coordinate
system for A, such that reductive algebraic groups act linearly. To prove this result we
need the following lemma.

Lemma 2.40. Let I C A be an ideal and let G C Aut(A) be a reductive algebraic subgroup.

Then there exists a minimal generating system f1, ..., fm of I, such that the C-vector space
(f1,-- -, fm)c is G-invariant.
Proof. See [Miil86, Hilfssatz 2]. O

Proposition 2.41. Let I C A be an ideal and let G C Aut;(A) be a reductive algebraic
subgroup. Then there exists a coordinate system x1, . .., xy, of A such that G acts linearly.
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Proof. We apply Lemma 2.40 to the ideal m,. Then we have a coordinate system
Z1,..., Ty, such that the C-vector space V' := (z1,...z,)c is G-invariant. Thus for
every g € G there exists a matrix Ay, such that

g.x = Ajx.

This defines a representation p : G — GL(V),g — A,-1. By construction this induces
a rational action a : G — Aut;(A), g — p(g). O

Since every representation of a reductive group is semi-simple (see [Mill17, Corollary
22.43]), we can use [Kau67, Satz] to obtain that 7 restricted to a linear reductive sub-
group of Aut(A) is injective.

Theorem 2.42. Let G C Aut(A) be an algebraic reductive subgroup. Then the map m; : G —
Aut(A/m?%) is an injection.

This result generalizes to 7, for all & € N.

Corollary 2.43. Let G C Aut(A) be a reductive algebraic subgroup. Then the map m, :
Aut(A) — Aut(A/m") restricted to G is injective.

Proof. 1t follows from Theorem 2.42 that 7; restricted to G is injective. Due to the fact
that we are working with a projective system, we have 71 = 7 o 1. Then 7, restricted
to G is injective for any k € N. O

The next important result is the lifting of conjugacy of reductive algebraic subgroups
of Autr(A).

Theorem 2.44. Let I C Abeanideal and G, H C Aut;(A) be reductive algebraic subgroups.
Assume there exists a p; € m(Autr(A)), such that m (G) = @11 (H) @y . Then there exists
ap € Auty(A), such that G = pHp ™!,

Proof. See [M1il86, Satz 2]. O

From now on we will focus on algebraic tori. By [Mil17, Proposition 12.54] algebraic
tori are reductive. It is a classical result that so-called maximal algebraic tori are con-
jugated, see for example [Hum?75, Corollary 21.3, A]. We want to prove the analogous
result in our setup.

Definition 2.45. Let I C A be an ideal and T C Aut;(A) an algebraic torus. We call T
a maximal algebraic torus if for any algebraic torus T' C Aut;(A) containing T we have
T=T.

Theorem 2.44 implies the following result.

Corollary 2.46. Let I C A be an ideal and let T, T" C Aut;(A) be maximal algebraic tori.
Then there exists a p € Auty(A), such that oT'o~' = T.

In the case of algebraic tori we can make Proposition 2.41 even more explicit.

Proposition 2.47. Let I C A be an ideal. Furthermore, let T C Auty(A) be an algebraic
torus. Then there exists a coordinate system w1, . .., Ty, such that T acts via characters on A.
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Proof. Assume that we have T is a k-dimensional algebraic torus. To keep the notation
simple, we assume that 7' = (C*)*. Forany ¢ € T we denote by ¢; the i-th component of
t. Applying Lemma 2.40 to the maximal ideal m 4, we know that there exists a minimal
generating set yi,...,y, of my, such that the vector space V' := (y1,...,ym)c is T-
invariant. This implies the existence of a group representation p : T — GL(V). By
[Mil17, Theorem 12.12] we can write

V= P V. 2.1)

XE€X(T)

where X (T) denotes the character group of T and V), the eigenspace for T with char-
acter x € X (T), see for example [Mil17, Chapter 4, g]. It is know that X (T) = Z¥, see
for example [Mil17, Chapter 12, e]. Thus we can rewrite Equation 2.1 as

V=@V (2.2)

AeZF

Let A = (A1,..., M) Thent = (ty,...,t) acts via p(t)(v) = t;™ - ... t,;)"“v on Vj.
Thus there exists a basis consisting of eigenvectors for V' with respect to this action.
Let x4, ..., z, be the basis vectors. Then my = (z1,...,z,) and we obtain that T acts
via characters in these coordinates. ]

We finish this section by showing that algebraic tori induce (Z*, +) gradings of A/I.

Theorem 2.48. Let I C A be an ideal and let T C Aut;(A) be a k-dimensional algebraic
torus. Then there exists a (Z*,+) grading of A/I. Equivalently, there exist k pairwise com-
muting diagonalizable derivations 61, . . ., o € Dery(A) with integer eigenvalues.

Proof. By Proposition 2.47 we can choose coordinates for A such that T = (C*)* acts
via characters on them. This means that there exist \;; € Z with

t.x; = H t;)\ijxi, (23)

forany ¢t = (t1,...,t;) € T. By Lemma 2.40 and [Mill7, Theorem 12.12] we obtain a

minimal generating system f1, ..., f, of I such that there exist d;; € Z with
S
th=1145" 1 (24)
7=1

forany ¢t = (t1,...,t;) € T. Combining Equation 2.3 and Equation 2.4 we obtain

—A1j —Anj —dy
tiJi=ftja,. .. tjan) = [ “:):1,...,13]- Txn) =% fi(xy, ... @) (2.5)

Equation 2.5 is equivalent so saying that the f; are multi-homogeneous with respect
to weights A\; := (Mi1,...,Aip) for 1 < i < k. This again implies that I is (ZF, +)
graded. O
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2.3.2 (Z™,+) Gradings, Algebraic Tori and Derivations

In this section we want to see an explicit correspondence between the Lie algebra g
generated by ¢y, .. ., d,, pairwise commuting diagonalizable derivations with integer
eigenvalues, thatis (Z™, +) gradings, and algebraic tori contained in Aut;(A). The first
step is to see that m (Aut;(A)) as an algebraic group with Lie algebra 7 (Der’; (A)). This
result extends the classical result for Artinian algebras, which are finite dimensional
vector spaces. See for example [Hum?75, Corollary 13.2].

Lemma 2.49. Let A be an analytic algebra and I C A an ideal. Then mi(Aut;(A)) is an
algebraic group with Lie algebra m,(Der’;(A)).

Proof. See [Kra78, (4.32)]. O

We need some preparations before we can state the relation between algebraic tori
and pairwise commuting diagonalizable derivations with integer eigenvalues. This
section relies on the fact that we can find a coordinate system such that a set of pairwise
commuting diagonalizable derivations are in diagonal shape.

Remark 2.50. For the moment, we restrict ourselves to the case A = C[[x]].
To keep our computations as simple as possible we assume that our coordinate system is always

chosen in such a way that §; = ) \ijw;0y; with \i; € Z.
=1 ‘

We can consider any element of 71 (Der;(A)) as an element of gl(n, C) by considering
the linear part of the derivations. In particular, we have a representation 7, : g —
gl(n,C),d — dy. Since we deal with pairwise commuting diagonalizable derivations,
we need the following definition.

Definition 2.51. Let g C gl(n,C) be a finite dimensional Lie subalgebra. We call t C g a
toral subalgebra of g if all elements of t are diagonalizable. We say t is a maximal toral
subalgebra of g, if for every toral subalgebra t' of g with t C t' it holds that t = t'. If g is clear
from the context, we call t a (maximal) toral Lie algebra.

Remark 2.52. It is easy to see that being a maximal toral Lie algebra is equivalent to the
following condition:

For every diagonalizable matrix D € g with the property that [D, L] = 0 for all L € t, implies
D et

Example 2.53. Let I C A be an ideal. Consider the Lie algebra by generated by the pairwise
commuting diagonalizable derivations 61,...,06,, € Der}(A). The §; can be represented by
diagonal matrices D; = diag(\i1, ..., Ain). Let t = (D1, ..., Dp,)c. By definition t is a toral
subalgebra of g = w1 (Der’;(A)). In this setup we have t = m1(h).

We want to show that, in the formal case, every set of pairwise commuting diagonal-
izable derivations induces an algebraic torus T C Aut;(A). Any toral Lie algebra t
generated by diagonal matrices over C gives rise to an algebraic torus T = €', since
for any two matrices A, B € gl(n, C) with [A, B] = 0 it holds that eA*5 = ¢4 . €5,

To prove T — Aut;(A), we need some preparations.
Definition 2.54. Let vy,...,vy € R™ with m < n be R-linearly independent vectors. We

call the Z-module L = (v1,...,vn)z a lattice of rank m. In case L = (vy, ..., vp)r N Z",
we say L is saturated.
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The toral Lie algebra t from Example 2.53 restricted to the real span of its generators
satisfies the condition of being a saturated lattice. We use this to show that T is iso-
morphic to (C*)" as an algebraic group.

Proposition 2.55. Let t C gl(n, C) be a toral Lie algebra. Assume t admits a C-vector space
basis D1, ..., Dy, such that all eigenvalues of the D; are integers. Denote the j-th diagonal
entry of D; by \ij. Define v; := (N\ij)i<j<n € R™ Let L = (v1,...,vn)z be the lattice
spanned by the v;. If L is saturated, then T := e is isomorphic to (C*)™ as an algebraic

group.

Proof. Denote by D(n,C) the algebraic group of diagonal matrices (see for example
[Hum?5, Section 7.1]). We define the map ¢ : (C*)™ — D(n,C) via

(b1 .oy tm) > diag(E2M - thmt e ),

It is obvious that ¢ satisfies p(a - b) = ¢(a) - ¢(b) for any a,b € (C*)™. Since ¢ is
defined by rational functions, it also defines a morphism of algebraic varieties. So it
is a group homomorphism of linear algebraic groups. Our goal now is to show that ¢
maps injectively onto T .
First we show im(¢) = T. We know that for every ¢; € C* there exists a z; € C with
e = t;. The surjectivity of the complex exponential map implies that we can write
diag(tf‘“, . ,t;.\"'”) as e#Pi. By definition, ¢ maps (1,...,1,#;,1,...,1) to this element.
Since the e*%i form a generating set of T and since ¢ is multiplicative, we obtain
im(p) =T.
It remains to show that ¢ is injective. Denote the real part of z; by z; € R and the
imaginary partby y; € [0, 27). Then we can write p(t1, . .., t,;,) = e?tP1+FT2mDm_Gince
we are dealing with diagonal matrices (1, ..., ty,) = id implies z1 D1 +. ..+ 2, Dy, =
2midiag(ky, ..., ky) for integers ki, ..., k,. Thus we obtain

21D1 + ...+ xmDm = 0and 22Dy + ...+ L™ D,, = diag(ky, . .., kn).

27 27

The fact that the D; are linearly independent implies x; = 0. The v; being a basis of
a saturated lattice translates to the fact that the 5- are integers. This implies y; = 0.
So we have z; = 0 and in particular ¢; = 1 for 1 < ¢ < m. Thus ¢ is injective and we
obtain T = (C*)™. O

Corollary 2.56. Let I C A be an ideal and let g be the Lie algebra generated by the pairwise
commuting diagonalizable derivations 61, . . ., 6., € Dery(A) with integer eigenvalues. Define
t := m(g) — gl(n,C) and T := €'. For any diagonal matrix D = diag(dy, ...,d,) with
d; € C we define the map ¢p : A — A, x; — d;x;. Then the map

¥ : T < Autj(A),D — ¢p

defines a rational action.

Proof. We keep the notation from Proposition 2.55. The map ¢p defines an automor-
phism, since det(D) # 0 for any D € T. Let f € A be multihomogeneous, that is
0;(f) = w;f for some w; € Z. Define D; := diag(ti_’\il,...,ti_’\i") fori = 1,...,m.
Then ¢p,(f) = f(t;)‘“xl, . ,t;Ai"a:n) = t; "' f, since we assume that we are in a
multihomogeneous coordinate system. This implies ¢p, (/) C I, since I can be gen-
erated by multihomogeneous elements. Using that ¢p,p, = ¢p, o pp, we obtain
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¢p € Autr(A) forall D € T. Since any automorphism of A is uniquely determined
by its action on the z; we obtain an injection of groups a : T — Aut;(A),D — ¢p. It
remains to show that the maps 7, o @ are homomorphisms of algebraic groups. For
any D = diag(A1,...,\,) we have that (7 o ¢p)(Ti;) = \iT;. This implies that the
T © @p, considered as elements of Endc(m/m**1), are diagonal matrices, where the
diagonal entries are polynomial expressions in the diagonal entries of D. This implies
that 7, o o is a morphism of algebraic groups and thus T — Aut;(A) defines a rational
action. O

Corollary 2.56, combined with Theorem 2.48, yields a correspondence between (Z™, +)
gradings, algebraic tori and toral Lie algebras of derivations with integer eigenvalues
in the complete case. To our knowledge, these results cannot be proven for ideals of
the convergent power series ring in general. Nevertheless, it can be proven for ideals
I C C{x}, which are generated by algebraic power series. Let us make this notion
more precise.

Definition 2.57. Let R = C[x] and f € C{x}. We call f an algebraic power series, if there
exists a polynomial p € R[t], such that p(f) = 0. We say an ideal I C C{x} is algebraic, if
it can be generated by algebraic power series.

The following theorem is a crucial tool in passing to algebraic ideals.

Theorem 2.58. Let I C C{x} be an algebraic ideal and let G C GL(n,C) be a reductive al-
gebraic group. Define I := IC[[x]]. Then G C Aut;(C{x}) if and only if G C Aut;(C|[[x]]).

Proof. See [HM89, Theorem 2]. O

Theorem 2.58 combined with Corollary 2.56 implies:

Corollary 2.59. Let I C C{x} be an algebraic ideal and let g be the Lie algebra generated
by the pairwise commuting diagonalizable derivations 01, ...,0,, € Derj(A) with integer
eigenvalues. Define t := m1(g) < gl(n,C) and T := e'. For any diagonal matrix D =
diag(dy, ..., dy,) with d; € C we define the map ¢p : A — A, x; — d;x;. Then the map

¥ : T < Autj(A),D — ¢p

defines a rational action.

2.3.3 Maximal Multihomogeneity

Our next objective is to see that there is a one-to-one correspondence between maximal
(C™, +) gradings, maximal toral Lie algebras and maximal algebraic tori. So far we
have dealt with (Z™, +) gradings. Due to Theorem 2.24, we are able to reduce to the
complex case to the integer case.

Definition 2.60. Let A = C{x} or A = C[[x]] and I C A. Assume that A/I is (C*,+)
multigraded. We say A/I is maximal multihomogeneous of rank s, if for all (C +)
gradings of A/I it holds that k < s. This can be equivalently reformulated using derivations.
There exist pairwise commuting diagonalizable derivations 6y, ...,0, € Derj(A) with the
following properties
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(a) For all diagonalizable derivations 6 € Dery(A) with [0,9;] =0 fori =1,...,s it holds
that § € <(51, ceey 55>(C-

(b) s is maximal with respect to all sets of pairwise commuting derivations satisfying prop-
erty (a).

In order to prove that the maximal multihomogeneity is an invariant of the algebra,
we need some preparations.

Lemma 2.61. Let g C gl(n, C) be an abelian Lie algebra. Define G := e® C GL(n,C). If G
is connected and dim(G) = dimc(g), then Lie(G) = g.

Proof. Any linear algebraic group G C GL(n, C) can be considered as a Lie group (see
[OV90, Chapter 3, §1, Theorem 2]). We use [Hall5, Definition 3.18] and compute the
corresponding Lie algebra as

Lie(G) = {X € gl(n,C) | ¢"* € G, forallt € R}.
The inclusion g C Lie(G) is obvious. Our assumptions now imply:
dimc(Lie(G)) = dim(G) = dimc(g),

hence g = Lie(G). O

Next we show that the Lie-functor commutes with the canonical projections 7, in the
complete case.

Corollary 2.62. Let either

(i) A=CJx]]and I C A, or
(i) A= C{x}and I C A be algebraic.

Furthermore, let g be the Lie algebra generated by the pairwise commuting diagonalizable
derivations 41, ..., 0, € Derr(A) with integer eigenvalues. Define t := m(g) — gl(n,C)
and T := e' C Auty(A). Then Lie(r(T)) = mx(t) forall k € N.

Proof. 1t suffices to show the result in the complete case. By Corollary 2.43 we know
that 7, : T — m,(T) is an isomorphism of algebraic groups for all £ € N. Since we can
assume that our coordinates are chosen such that d1,...,d,, are diagonal, we know
that 7; : g — 71(g) is an isomorphism of Lie algebras. Using that 71 = 7% o 7y, we
obtain that 7 : g — 7, (g) is an isomorphism of Lie algebras. The same result holds
for 7,(T). Combining these results we also obtain that the maps 7} : m(T) — m4(T)
and 7l : m(g) — 7 (g) are isomorphisms of algebraic groups, respectively Lie alge-
bras. Since we are working over characteristic zero, we know by [Hum?75, Theorem
12.5] that the Lie functor is exact. Then the isomorphism 7 : m(T) — m(T) in-
duces the isomorphism dr', : Lie(m(T)) — Lie(m(T)). For k = 1 Lemma 2.61 implies
Lie(m1(T)) = m1(g). The fact that the differential drl, coincides with a restriction of the
map 7t : m(Der}(A)) — mg(Der;(A)), implies 7y (g) = Lie(m(T)) forany k € N. [

The following theorem shows us that T = e® is a maximal torus in Aut;(A), if the
grading induced by g is maximal.
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Theorem 2.63. Let cither

(i) A=CJx]]and I C A, or
(ii) A= C{x}and I C A be algebraic.

Furthermore, let g be the Lie algebra generated by the pairwise commuting diagonalizable
derivations &1, . .., 05 € Der(A). Define t := m1(g) < gl(n,C) and T := ' C Aut;(A). If
01, ..., 0s induce a maximal multigrading on A/, then T is a maximal torus in Auty(A).

Proof. We split the proof in two steps. First we show statement for the complete case,
then we reduce the algebraic case to the complete case.

Step 1: Let A = C[[x]]. Denote by T/ C Aut;(A) an algebraic torus with T C T’.
Since tori are reductive, Corollary 2.43 implies 7 (T) C 7 (T’) for every k € N. We
have isomorphisms of Lie algebras 7" : Lie(m,(T')) — Lie(m(T')). Define g’ :=
@Lie(ﬂk(T’ )). Lemma 2.49 combined with [Mil17, (10.14)] and [Hum?75, Theorem

keEN
13.1] implies

Lie(m(T)) C Lie(mi(T")) C Lie(mg(Auts(A))) = mp(Der’(A))

for any k € N. Passing to the projective limit this yields g C g’ C Der’(A). By [Hum?75,
Theorem 13.4(b)] we know that the Lie algebra of a connected commutative algebraic
group is abelian. Considering 74(T) as a subset of GL(m/m**1) and using [Hum?75,
Theorem 15.5], we obtain that Lie(;(T)) is a toral Lie subalgebra of gl(m/m**!). Then
¢’ consists of pairwise commuting diagonalizable elements. Since g C g’, we also have
[0;,9'] = 0forall i = 1,...,m. By assumption this implies g = ¢’ and in particular
m1(g’) = m1(g). Then [Hum?75, Theorem 13.1] yields 71(T) = m1(T’). From Corollary
2.46 we obtain that T is a maximal algebraic torus.

Step 2: Let A = C{x} and I C A, be an algebraic ideal. Passing to the completion
A, we can assume that the §; are in diagonal shape. By Corollary 2.56 they induce
an algebraic torus T C Aut f(fl) with dim(T) = s. If T is not maximal, there exists a
maximal algebraic torus T’ C Aut;(A) with s’ := dim(T') > s. By Theorem 2.58 we
have T, T C Aut;(A). Then Theorem 2.48 implies that A/ is (C*',+) graded. This
contradicts the maximality of s and thus T is a maximal algebraic torus. O

Combining Theorem 2.48 and Theorem 2.63 we obtain the following.

Remark 2.64. Let I C A be an ideal. Then there exists a correspondence between maximal
algebraic tori and maximal multigradings of A/1.

Remark 2.65. At the moment we cannot drop the assumption that I is an algebraic ideal,
since the proof of Theorem 2.58 makes use of an approximation theorem proven by Popescu in
[Pop86], which works only in the algebraic setup. For the convergent case of this approximation
theorem, a counterexample was given by Gabrielov in [Gab71].

Remark 2.66. Analyzing the proofs of Theorem 2.63 and Theorem 2.48 combined with the
fact that all maximal algebraic tori are conjugated and that all algebraic tori are contained in a
maximal torus, implies that the weights of all maximal multigradings are the same. Thus the
information regarding the weights of an ideal can be recovered from the eigenvalues of a toral
Lie algebra t C my(Der(A)) or from the characters of T C Autj(A). From a computational
point of view it turns out, that it easier to obtain the eigenvalues. Corollary 2.59 implies that
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if A/Iis (C™,+) graded, then m < n. In particular the maximal value of k is given by the
dimension of the maximal tori. Thus the maximal multihomogeneity is an invariant which can
be computed from algebraic objects. This completes the picture presented in the beginning of
this chapter.

In Chapter 3 we are going to investigate the case when s = n, that is the maximal
multihomogeneity obtains its greatest possible value.

2.4 The Structure Theorem for Analytic Algebras

In this section, we extend the abstract definition of grading from the previous sections
to so-called Lie-Rinehart algebras and generalize the Formal Structure Theorem from
[GS06], [Sch07] and [Epul5] to certain Lie-Rinehart subalgebras of Der’(A), where
A = C{x}/I is an analytic algebra and I is generated by algebraic elements or [ is pos-
itively graded. Subsection 2.4.1 is an adapted version of [Epul5, Section 4.2], which
we included in order to keep the material self contained.

2.4.1 Lie-Rinehart Algebras

In the following section, we introduce the notion of Lie-Rinehart algebras, which com-
bine the structure of modules with the structure of Lie algebras and relate both to
derivation modules. We also define a notion of (multi-)grading for Lie-Rinehart alge-
bras.

Let us start with the definition of a Lie-Rinehart algebra. The definition is taken from
[Hue98] and is slightly modified to fit in our context.

Definition 2.67. Let A be an algebra over C, g be a Lie algebra over C and p : g — Der(A) a
morphism of Lie algebras. Define a(f) := p(a)(f) forall « € gand f € A. We call the pair
(A, g, p) a Lie-Rinehart algebra, if the following conditions are satisfied:

(i) gisan A - module,
(ii) [, fB] = a(f)B + flo, Bl forall f € A, o, B € g, and
(iii) (fo)(g) = f(a(g)) forall f,g € A, a € g.

Remark 2.68. Condition ii) in the previous definition implies that the Lie algebra morphism
pisalso A - linear.

The next topic we need to talk about is morphisms of Lie-Rinehart algebras. The
following definition is taken from [Hue90, Chapter 1].

Definition 2.69. Let (A, g, p) and (B, Yy, o) be Lie—Rinehart algebras, where A, B are algebras
over C. Then (p,) is a morphism of Lie-Rinehart algebras, if:

i) ¢ : A — B isamorphism of C-algebras,

ii) v : g — b is a morphism of Lie algebras, which in the same time is a morphism of A -
modules, where A acts on B via o, and



Explicit and effective Mather—Yau correspondence in view of analytic gradings 58

iii) forall f € A, « € g it holds that
poa(f)=1v(a)(e(f)):

Our standard example for a Lie-Rinehart algebra is the module of derivations of an
analytic algebra.

Example 2.70. Let A be an analytic algebra and g = Der(A). Then (A, g,id) is a Lie—
Rinehart algebra, since all properties are basic properties of the module of derivations.

Let us now define a notion of grading for a special type of Lie-Rinehart algebras.

Definition 2.71. Let (G, +) be an abelian group, A be an algebra over C and (A, g, p) a Lie—
Rinehart algebra, where g C Der(A) and p : g — Der’(A) the canonical inclusion map. We
say (A, g, p) is finitely graded, if the following conditions hold:

i) Ais finitely graded in the sense of Definition 2.1,
ii) g is finitely graded as an A - module in the sense of Definition 2.1, and

iii) the group homomorphisms w4, g € G, arising from Definition 2.1, have to satisfy
[74(9), mn(9)] < 7g+n(0) forall g,k € G.

Next, we take a look at general gradings of Lie-Rinehart algebras. We restrict our-
selves to the case where A is an analytic algebra. We denote the natural projection
A — A/mk by pid for k € N. To keep notation short, we write 4j, := A/m%. Let
g C Der(A) and p := Der’(A). The map pi induces natural morphisms py, : Der(A) —
Der(Ay), which induce a natural projection of Lie algebras p{ : g — m(g). Define
gk := p}(g). This again induces morphisms (]a,?7 p}) of Lie-Rinehart algebras.

Definition 2.72. Let (G, +) be an abelian group, A an analytic algebra and (A, g, p) a Lie—
Rinehart algebra, where g C Der(A) and p : g — Der’(A) is the canonical inclusion map.
We say (A, g, p) is a graded Lie-Rinehart algebra with respect to G, if the following hold:

i) Forall g € G there are group homomorphisms 7r;4 (A, +) — (A, +) grading A in the
sense of Definition 2.4, and

ii) for all g € G there are group homomorphisms 7§ : (g,+) — (g,+), such that the
induced morphisms wg* : g — gi, grade (A, 9k, pr) in the sense of Definition 2.71 for
all k € N.

Our definition of a graded Lie-Rinehart algebra allows us to use our results regarding
graded modules. We can also switch the perspective from which we are looking at our
Lie-Rinehart algebra, as it is useful to consider it sometimes as a module, sometimes
as a Lie algebra. Before we go on with examples and the most important theorem of
this section, we have the following remark regarding the usual notion of grading of
finite Lie-algebras.

Remark 2.73. The usual grading of a finite Lie algebra g over C is a special case of Definition
2.71. If we let g operate trivially on C, that is, a(f) = 0 forall f € Cand o € g, we
can satisfy all conditions from Definition 2.67, hence (C, g, p) is a Lie—Rinehart algebra, with
p : g — Der(K) being the trivial morphism. Now we can simply take A = C and grade it
trivially. Then condition i) in Definition 2.71 is superfluous and conditions ii) and iii) state
basically, that our Lie algebra can be written as a direct sum of graded components, which are
compatible with the Lie brackets, which is the usual definition of a graded Lie algebra.
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The following theorem shows, that gradings of analytic algebras induce gradings of
the corresponding Lie algebra of derivations.

Theorem 2.74. Let A be an analytic algebra and (A, Der’(A),id) a Lie—Rinehart algebra.
Denote the projections Der’(A) — Der(A/m") by px, where g;, := pr(Der’(A)) for k € N.
Assume that Ais (C, +) graded, where the grading is induced by 6 € Der'(A). Then ¢ induces
a grading on (A, Der’ (A),id) in the sense of Definition 2.72. In particular, every homogeneous
¢ € Der’(A) satisfies ads(e) = e, for some \ € C.

Proof. Define g = Der’(A). In the following proof, we use that if § € Der’(A) is diag-
onalizable, also adj is diagonalizable on the finite-dimensional Lie algebras g, where
§ denotes the image of § under p;. Next we show that this property on the finite-
dimensional Lie algebras induces our grading on g. The first property of Definition
2.72 is satistied automatically, as we assume that A is graded. To show the second
property, we use that g; = @, ¢ gk, where g;, \ denotes the eigenspace with respect
to the eigenvalue A. Define 7$* : (gi,+) — (gi,+) as the projection to gi », for any
A € C. Next we show that the g;, are finitely graded as Ai-modules. Consider any
k € N, and A, u € C, then we have for any homogeneous elements f, € Aj; and
A € Ok, ¢
adz(fuma) = pfumx + Afumh = (1 + X) fuT™x € Gkt

hence gy, is a graded Ax-module. Next we need to prove the property of Definition
2.71, namely the finite grading as a Lie algebra, that is [gx x, gk, .] C gk r+u- Consider
any 7, € gi,, and 7y € gi », then

adg([TM,T)\]) = _[TM’ [T/\’(S” - [7—>\> [67TMH = A[Tuﬂ—)\] - M[TMTM] = (:u + A)[TM’TAL

hence [k, 9k,2] € Gk, oA
Let € € g be homogeneous. Then ads(e) = Ae follows by Lemma 1.5, since the equality
holds modulo every power of the maximal ideal. O

The next corollary is an immediate consequence of Theorem 2.74.

Corollary 2.75. Let A be a graded analytic algebra with grading induced by a diagonalizable
derivation § € Der’(A) and (A, g, p) a Lie—Rinehart algebra, where g C Der(A) and p :
g — Der'(A) is the canonical inclusion map. If [§,9] C g, then g is a graded Lie—Rinehart
subalgebra of Der’ (A) with respect to 6.

Now we are able to extend the notion of multigradings to Lie-Rinehart subalgebras of
Der(A).

Definition 2.76. Let A be an analytic algebra and (A, g, p) a Lie-Rinehart algebra, where
g C Der(A)and p : g — Der/(A) is the canonical inclusion map. We say (A, g, p) is a multi-
graded Lie—Rinehart algebra, if there exists an m € N> and abelian groups G, ...,Gp,
such that (A, g, p) is graded with respect to G := G X ... x Gy, in the sense of Definition
2.72.

Next we state the analogous results to Proposition 2.14 and 2.15. We skip the proof for
the statement, since it works analogously to the proof of [Epul5, Lemma 4.26].
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Proposition 2.77. Let (G1,+),...,(Gm,+) be abelian groups, A a graded analytic alge-
bra and (A, g, p) a graded Lie—Rinehart algebra as in Definition 2.72, where m € N>q,g C
Der(A) and p : g < Der/(A) is the canonical inclusion map. Keeping the notation and
conditions of Definition 2.72, we say (A, g, p) is graded by (G % ... X Gy, +) with group

homomorphism \I’%gl,...,gm)’ (91,---,9m) € G1 X ... X G, if and only if there exist pairwise
commuting group homomorphisms wgr, ..., 7g%, gi € G; grading gj and wgk, e ,wﬁk the

corresponding gradings of Ay, satisfying

gleGl gmeGm

and

=P ... P %) n...07% (gr)

g1€G1 gmEGm

g _ 0 g A _ A A
forall k € N. Furthermore, Wl gm) = Tgm O+ O gy and Wi, o\ =T, 0...0my for

all (g1,-..,9m) € G1 X ... X Gy, where the latter is the corresponding grading of A.

Due to the fact that a set of pairwise commuting derivations induces a multigrading
on an analytic algebra A, we obtain, analogously to Theorem 2.74, that they induce a
multigrading on Der(A).

Theorem 2.78. Let A be an analytic algebra and (A, Der’(A),id) a Lie—Rinehart algebra.
Denote the projections Der’(A) — Der(A/m~) by py, and define gy, := pr(Der’(A)) for k €
N. Assume that A is (C*, +) graded, where the grading is induced by the pairwise commuting
diagonalizable derivations 61, ...,05 € Der’(A). Then 61, ...,d5 induce a multigrading on
(A, Der’(A),id) in the sense of Definition 2.76. In particular, every multihomogeneous € €
Der/(A) satisfies ads, (€) = A€, for 1 < i < s some \; € C.

Proof. The proof works analogously to the proof of Theorem 2.74. Due to Proposi-
tion 2.77 it only remains to show that for all 1 < 4,j < s it holds that ads, cads;, =
ads; o ads, . This holds, since for any 7 € Der’(A)

adéz‘ ° ad5j (T) = [5“ [5j7 TH - _[5j7 [7—7 51“ - [7’, [517 5]“ - [5j7 [7’, 61]] = ad5j © ad5i (T)

Now the group homomorphisms which grade Der(Ay) are the projections to the com-
mon eigenspaces of the adg, so the proof of Theorem 2.74 also works in this case. [J

The following corollary follows from Theorem 2.78.

Corollary 2.79. Let A be an analytic algebra and (A, g, p) a Lie—Rinehart algebra, where
g C Der(A) and p : g — Der/(A) is the canonical inclusion map. Assume that A is (C5,4)
graded, where the grading is induced by the pairwise commuting diagonalizable derivations
81,...,05 € Der'(A). If [6;, 9] C g, then the 01, . ..,d5 induce a multigrading on (A, g, p) in
the sense of Definition 2.76. In particular, every multihomogeneous e € g satisfies ads,(€) =
Ai€, for 1 < i < ssome \; € C.

2.4.2 The Structure Theorem

In this section we prove the structure theorem for logarithmic derivation modules. We
make use of the fact that Der;(A) is a Lie-Rinehart algebra, thus we can use the notion
of grading introduced in Section 2.4.1 in order to prove a statement about the structure
of Der;(A).

We present a new proof compared to [Epul5, Theorem 4.44] for the formal case:
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Theorem 2.80 (Structure Theorem). Let either

(i) A=CJx]]and I C A, or
(ii) A = C{x}and I C A be an algebraic ideal.

Define g := Der;(A) C Der’(A) and let s € N be the rank of maximal multihomogeneity.
Then there exist 61, ...,0s,11, ...,V € g, such that

(1) 61,...,0s,v1,...,v, is a minimal set of generators of g as an A-module,
(2) if o € gwith [6;,0] =0 forall i, then og € (1,...,0s)C,

(3) 6; is diagonal with eigenvalues in Q,

(4) v; is nilpotent, and

(5) [6i,v] € Q-

Proof. By assumption there exists an algebraic torus T C Aut;(A). Proposition 2.41
allows us to choose the coordinates, such that T acts linearly . Due to Theorem 2.48
there exist s pairwise commuting diagonal derivations 41, ...,J,. By Corollary 2.79
they induce a multigrading on g. In particular, we can extend {¢1, ..., ds} to a minimal
multihomogeneous generating system of g by adding multihomogeneous elements
V1i,...,V, where r € N. This proves the statements i), iii) and v). Denote by \; =
(Ait, - - -, Ais) the multidegree of v;. If \j; # 0fora 1l < j < s, then Lemma 1.59 implies
that v; is nilpotent. Thus we assume \;; = Oforall 1 < j < s. Passing to the completion
/1, we decompose v; into its diagonal part v; g and into its nilpotent part v; ;. Due to
Proposition 1.57, we obtain [6;, ;5] = 0 forall 1 < j < s. Since s is maximal we obtain
that v; s € (d1,...,d5)c. This implies that v; s € Der(A). Thus we can replace v; with
v; v and obtain iv). Statement ii) follows directly from the maximality of s. O

Next we present a small application of Theorem 2.80. In [Fab15] Faber gave a charac-
terization of being normal crossing via the logarithmic derivation module of the local
defining equation.

Proposition 2.81. Let f € C{x} and U C C™ be an open neighborhood of 0, such that f is
holomorphic on U. Define X := V(f) C U. Let p € X be arbitrary. We define h, € C{x — p}
to be the Taylor expansion of f around p. Then the following are equivalent:

(1) X has normal crossings at p € X.

(2) hy is squarefree, Der(Ox ) is free of rank n with basis 01, . . ., 6, and [6;, 6;] = 0 for all
1<i,j<n.

Proof. See [Fab15, Proposition 6]. O
Before we can prove our version of Proposition 2.81, we need the following lemma.

Lemma 2.82. Let§ = ) a;0,, € Der(C{x}) be a derivation with [§,0,;] = 0for 1 < j < n.
i=1
Then for all 1 < i < n it holds that Oz;a; = 0.
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Proof. We assume, without loss of generality, that j = 1. Let 6 = ) a;0,,, where

i=1
a; € C{x}. Then we can write:
[0z, 6] = Z[aﬂclvaiaﬂfi] = Zaﬂ?l (a;) - 0z, = 0.
i=1 i=1
Comparing coefficients yields 0,, (a;) =0 forall 1 < i <mn. O

We can now prove the following;:

Theorem 2.83. Let f € C{x} and U C C" be an open neighborhood of 0, such that f is
holomorphic on U. Define X := V (f) C U. Let p € X be arbitrary. We define h, € C{x — p}
to be the Taylor expansion of f around p, ky, := dimc Der(Ox p)(p) and o, := ord(hy). Then
the following are equivalent:

(1) X has normal crossings at p € X.

(2) op = n — ky, hy, is squarefree and Der(Ox ) is free of rank n, such that there exists a
basis consisting of n — k,, diagonalizable derivations 61, . ..,0n_, and k, derivations
On—ky+1, - - - » On With non-constant term satisfying [6;,6;] = 0 forall 1 <i,j < n.

Proof. If X has normal crossings at p € X, then the second statement is obvious. Let
us assume that the second statement holds. Without loss of generality we can assume
that p = 0. Therefore we write h, k and o instead of h,,, k, and o,. We prove an even
stronger statement: we show that if the module Der;(C{x}), where I = (h), has the
desired structure, then h defines a normal crossing divisor after a suitable change of
coordinates. Due to Theorem 1.70 we can assume that our coordinates are chosen in
such a way, that 6,,_j; = 0, ,,, for 1 <i < k. Due to order reasons, we know that
Or,h = 0foralln —k+1 <7 < n. Lemma 2.82 implies that the derivations d1, ..., 6,k
only depend on the variables 1, ..., z,_k, hence we can assume without loss of gen-
erality that £ = 0. In this case we know that we have as many simultaneously diag-
onalizable derivations as variables and % has to be a monomial. By assumption, h is
squarefree, so h = A - z1,-... - x, for a certain A € C\ {0}. This implies that ~ defines
a normal crossing divisor. O

Remark 2.84. If we drop the assumption that hy, is squarefree, Theorem 2.83 states that h,, is
a non-reduced normal crossing divisor.



Chapter 3

Positive Gradings and Monomial
Ideals

In this chapter we first want to show that the main results of Chapter 2, Section 2.3
hold in the presence of a positively graded analytic algebra C{x}/I. Furthermore,
we show that hypersurface singularities with positively graded Tjurina algebra are
strongly Euler-homogeneous at 0 and thus are determined by their singular locus due
to Theorem 1.101. Hypersurface singularities with monomial singular locus have a
positively graded Tjurina algebra. Using combinatorial results on monomial ideals
we are going to classify all hypersurface singularities with radical monomial Jacobian
ideal.

3.1 Positively Graded Analytic Algebras

We know from Remark 2.66 that once our analytic algebra A = C{x}/I admits a
positive grading induced by 6 € Der;(A), every multigrading of A contains a positive
grading induced by another derivation ¢’ € Dery(A) which has the same eigenvalues
as 6. If the maximal multigrading of A isinduced by say d1,. .., ds, with 61 = ¢, then the
main ingredient to prove Theorem 2.63 was to use that we were able to simultaneously
diagonalize the §;. In the presence of a positive grading we show that we are still able
to do this. The tool we need is the following approximation theorem due to Artin.

Theorem 3.1 (Artin’s Approximation Theorem). Let x = (21,...,2,),y = (Y1,---,YN)
and f1(x,y),..., fm(x,y) € C{x,y} for certain m,n, N € N>;. Fix an integer ¢ € N. If
there exists a formal solution y € (x)C[[x]]"V of the system of equations

filx,y)=0,i=1,...,m, (3.1)
then there exists also a convergent solution y € C{x}" of (3.1) such that
y=y mod (x)".
Proof. See [Art68, Theorem 1.2]. O

Using Artin’s Approximation Theorem we can prove the following result regarding
ideal containment.

63
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Corollary 3.2. Let x = (z1,...,2n),y = (Y1,-..,y~), L1,..., I, C C{x} be ideals and
f1t(X,¥), - -, fmpk(X,y) € C{x,y} for certain p, my,n, N € N>y and 1 < k < p. Fix an
integer ¢ € N>1. If there exists a y € (x)C[[x]]", such that

fik(x,y) € ,C[[x]] forallj=1,...,my,k=1,...,p
then there exists also a y € C{x}" such that
fik(x,y) € I forall j=1,... my,k=1,...,p
and such that
§=3 mod (x)°.

Proof. We can assume that the /; have the same number of generators, since we can
add 0 functions to the generating sets. Denote this number of generators by I € N.
Assume I; = (g1j, ..., gi;) for certain g;; € C{x}. Again by adding 0 functions we can
assume that the m; have all the same value m € N. Adding formal variables zl(]k) we
consider the system of equations:

l
Frxy) =3 2Pgi foralli=1,...omj=1,....Lk=1,....p. (32
=1

(k)

Then the ideal containment condition is equivalent to the existence of constants ¢;;” €
C and formal power series 21(5) € (x)C[[x]], such that
l
fie(x,y) — Z glk—Oforallz—l omyj=1,...;Lk=1,....p. (3.3)

i=1

Applying Artin’s Approximation Theorem to Equation 3.3 yields the existence of y, z €
C{x}, such that Equation 3.3 holds. This is equivalent to f;;(x,y) € I; forall j =
1,...,mg,k = 1,...,p. The equality of the formal and convergent solution up to de-
gree c follows also immediately from Artin’s Approximation Theorem. O

Now we are able to prove the following lemma.

Lemma 3.3. Let I, ..., I, C C{x} be ideals with I, = (fif, ..., fix) for certain p,l;;,n €
N. Let gjr € C{x} for 1 < j < l,1 < k < p. If there exists an automorphism ¢ €
Aut(C[[x]]), such that $(Iy) = {(gik; - - - > Gmk)C[[X]] for 1 < k < p, then there exists an
automorphism ¢ € Aut(C{x}), such that (1) = (G1k, - - - » Gmyk) for 1 < k < p.

Proof. Define 3; := ¢(z;) € (x)C[[x]] for ¢ = 1,...,n. By adding 0 functions, we can
assume that for all 1 < k < p it holds that m; = m, where m € N is a constant. In the
same manner, we can assume that for all 1 < k£ < p it holds that [, = [, where [ € N is
a constant. Then $(I;) = (g1, - - - , gmk)C[[x]] is equivalent to the fact that ¥ solves the
ideal containment

f]k(y) € <glk’7gmk>(CHX” for all] = 1""7l7k = 17~~-’P-

By Corollary 3.2 we obtain the existence of y € C{x}" satisfying

fjk(y)E <glk,...,gmk> forallj:1,...,l,k::1,...,p
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and

y=y mod (x)
Define ¢(x;) := g; for i = 1,...,n. Due to the fact that y equals y up to degree 1, we
know that ¢ € Aut(C{x}). Then this is equivalent to (1) C (gik, - -, gmk) forall 1 <
k < p. By faithful flatness of C[[x]] over C{x} we obtain equality, since @(I};)C[[x]] =
<gmk7 cee agmk’>(c[[XH -

Now we can prove that every positively graded ideal is algebraic.

Proposition 3.4. Let I C C{x} be an ideal. If there exits a diagonalizable derivation 6 € Der;
with positive eigenvalues, then there exists an automorphism ¢ € Aut(C{x}), such that o(I)
is generated by ( - homogeneous) polynomials g, . .., gm € C[x]. In particular, I is algebraic
after a suitable change of coordinates.

Proof. Applying Theorem 2.10 to the ideal I/, we know that there exists a generating
set consisting of multihomogeneous elements. Applying Nakayama’s Lemma allows
us to reduce this to a minimal multihomogeneous generating set. There exists a for-
mal coordinate change ¢ € Aut(C[[x]]), such that § is diagonal and the generators are
common eigenfunctions of . This implies that these generators have to be polynomi-
als. Denote them by g1, ...,9m € C[x]. Then ¢(I) = (g1, ..., 9m)C[[x]] and the result
follows from Lemma 3.3. O

Theorem 2.63 implies the following:

Corollary 3.5. Let A = C{x} and I C A be an ideal. Assume that A/I is maximal multiho-
mogeneous of rank s and that A/I admits a positive grading. Denote by 61, . ..,ds € Dery(A)
the pairwise commuting diagonalizable derivations inducing this grading. Then there exists a
maximal algebraic torus T C Auty(A) with dim(T) = s.

Using positivity we obtain two sequences we can associate to an ideal. The first one
depends on the choice of coordinates, whereas the second one is independent of the
coordinates. Let us define the first sequence.

Definition 3.6. Let I C C{x} be an ideal and 01, ..., 6, € Der;(C{x}) be pairwise com-
muting diagonalizable derivations with integer eigenvalues. Assume that the eigenvalues of
01 are positive integers and that the coordinates are chosen in such a way, that the §; are
diagonal. Denote by w; € Z° the weight-vectors arising from the 6;. Let fi,. .., fi be a min-
imal multihomogeneous polynomial generating set of I and define d;; := degy, (fi) as well
as d; := (di1,...,dis) € Z°. Assume that dy, ..., dy are already ordered increasingly with
respect to the lexicographical ordering. Then we call the sequence

(di,...,dg)

the weight-sequence of I.

It remains to show that once a coordinate system is fixed, the weight-sequence does
not depend on the minimal generators of I.

Proposition 3.7. Let I C C{x} be an ideal and ¢1,...,06, € Der;(C{x}) be pairwise
commuting diagonalizable derivations with integer eigenvalues. Assume that the eigenvalues
of 01 are positive integers and that the coordinates are chosen in such a way, that the §; are
diagonal. Let (dy,...,dg) as well as (d}, ..., d}) be weight-sequences of I. Then it holds that

(dy,...,dg) = (d},...,d}).
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Proof. Due to the fact that all multihomogeneous minimal generating systems con-
sist of polynomials the result follows from the statement in the polynomial case. For
details, see for example [KR05, Proposition 4.7.8]. O

The next sequence is independent of the chosen coordinate system.

Definition 3.8. Let I C C{x} be an ideal with minimal generating system f1, ..., fi. Define
d; := ord(f;). Assume that the d; are ordered increasingly. Then we call the sequence

(di,...,dy)

the order-sequence of 1.

We finish this section with the proof that the order sequence is an invariant of the ideal
I

Proposition 3.9. Let I C C{x} be an ideal with k minimal generators and let (di, ..., dy)
as well as (d}, ..., d}) be order-sequences of I. Then it holds that

(dr,....dg) = (d},....d).

Proof. Being in a fixed coordinate system, the equality of the sequences follows from
Nakayama’s Lemma and the fact that ord(z;) = 1 > 0. The coordinate invariance
follows from the fact that every ¢ € Aut;(C{x}) satisfies p(m) C m. O

3.2 Positively Graded Tjurina Algebra

In this section we want to prove that every hypersurface singularity f with positively
graded Tjurina algebra is strongly Euler-homogeneous. From a computational point
of view, it is harder to check if the Tjurina algebra is positively graded, than to check
whether f € mJ; or not. The main importance for this result is the fact that we can
use it to classify a special type of singularities, so-called normal crossing divisors,
using only the Jacobian ideal J;. Moreover, the class of hypersurface singularities
with monomial singular locus have a positively graded Tjurina algebra, hence they
are strongly Euler-homogeneous and thus their isomorphy class is determined by the
isomorphy class of their singular locus (see Theorem 1.101). The main property of
strongly Euler homogeneous singularities we are going to use is the following:

Lemma 3.10. Let X C C" be a hypersurface singularity. Assume that X = X' x CF
for 1 < k < n. Then X is strongly Euler-homogeneous if and only if X' is strongly Euler
homogeneous.

Proof. This follows from [GS06, Lemma 3.2]. O

We start with the main result of this section. The statement and proof are generalized
versions of [XY96, Theorem 1.2], where we use the analytic grading instead of the
classical grading.

Theorem 3.11. Let f € m C C{x} and assume that the Tjurina algebra T ; admits a positive
grading. Then f € mJ;. Equivalently, the germ (V' (f),0) is strongly Euler-homogeneous at
0.
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Proof. We assume that f is not analytically trivial, that is for every derivation € €
Der sy (C{x}) it holds that ¢(0) = 0. Using Proposition 2.31 this does not change the
assumption on the positive grading of T .
In case f € m\m? we know that we can find a ¢ € Aut(C{x}), such that ¢(f) = ;. In
this case f is obviously strongly Euler-homogeneous. Due to this we assume from now
on that f € m?. Define I := (f, fu,, ..., fz, ). By assumption, we know that there exists
a diagonalizable derivation 6 € Der;(C{x}), such that 6(I) C I and ¢ has positive
n
integer eigenvalues. Due to Proposition 3.4 we can assume that 6 = ) w;x;0,, with
i=1
w; € Zso. In this case we can write I = ) I, where the I; are the homogeneous
dEZZO

components of I with weighted degree d. The positivity of § implies the finiteness of
dimc 1. Since ¢ acts by multiplication with d on I; we can consider it as a bijective
linear operator on all I; with d > 0. By assumption f is a non-unit, hence we know
that Iy = {0}. This implies that § acts bijectively on I. The inclusion 6(I) C I yields
the existence of a; € C{x} and a;1, ..., a;, € C{x} such that

O (fa)) = aif + ) aijfa, (34)
1

j=

for all 1 < ¢ < n. Due to the surjectivity of ¢ there exist d; € C{x} and d;1,...,din €
C{x} satisfying

for =0 | dif +> dijfa, | = [ 0(d) + D dijay | f+)

j=1 j=1 J=1

diwjxj + 8(d;j) + Z dyay; | fu;-
=1
(3.5)
Define the derivations
n n 8
T = Z diwjxj + (5(d1]) + Zdilalj — €45 87 S Der(C{x}),
j=1 =1 J

where (e;5);; € R"*" is the unit matrix. Then Equation 3.5 implies 7(f) € (f). Write
n
=, Tij%- By assumption f is not analytically trivial, hence 7;(0) = 0, or equiva-
j=1

lently_Tij(O) = 0for 1 < 4,5 < n. This implies

(Z dgay; — €ij> (0)=0 (3.6)
=1

for all 1 < i < n. Equation 3.6 is equivalent to the matrix (a;;(0));; being invertible.
Using the bijectivity of § on I, there exist ¢, c1, . .., ¢, € C{x} such that:

n
cw;xj + 0(cj) + Z Citij | fu;
i=1

(3.7)

F=olcf+> cife, | =00+ aje; | F+>
j=1 j=1 j=1
Define the derivation

n n 6
n = cw;z; + 0(cj) + Z ciaij] 2. € Der(C{x}).
J

j=1 i=1



Explicit and effective Mather—Yau correspondence in view of analytic gradings 68

Then n(f) = [1 —d(c) — Zn: aic,;] f. By construction n(f) € (f). Since f is not analyti-
i=1

cally trivial, we obtain
(Z ciaij> (0) =0 (38)
i=1

for 1 < ¢ < n. Equation 3.8 implies that the vector (¢;(0)); is in the kernel of the matrix
(a;5(0));;. Since the latter is invertible, we obtain ¢;(0) = 0 for 1 < i < n. This implies

that u := 1 — 6(c) — Y. a;c; is a unit in C{x}. Now u~15(f) = £, hence f is strongly
i=1
Euler-homogeneous. O

Theorem 3.11 implies the following two corollaries.

Corollary 3.12. Let f € C{x} and (X,0) := (V(f),0) € (C",0). If (Sing(X),0) is
positively graded, then the isomorphy class of (X, 0) is determined by the isomorphy class of
T;.

Corollary 3.13. Let f € C{x}and (X,0) := (V(f),0) C (C",0).If (Sing(X), 0) is defined
by a monomial ideal, then the isomorphy class of (X, 0) is determmed by the isomorphy class

Ofo

The following lemma shows that the Tjurina ideal (f, J;) and the Jacobian ideal J;
coincide in case they are positively graded and radical.

Lemma 3.14. Let f € C{x}. If either (f,Jy) is positively graded, or J; is radical, then
(i dp) = Js

Proof. In case (f, Jy) is positively graded and radical, Theorem 3.11 implies f € mJy,
hence (f,J;) = Jy. Now assume that J; is radical. By [Fab15, Lemma 1] J; being
radical implies f € J; and the statement follows. O

The next aim of this section is to deduce a numerical characterization for normal cross-
ing divisors. First we need to define them.

Definition 3.15. Let X C C". We say X is normal crossing at p € X, if there exists a
coordinate system x1, . .., x, at p and an integer k € N>y with k < n, such that

(X,p) = (V(zy-... xk),p)-

If X is normal crossing at p we also call (X, p) a normal crossing divisor. If f € C{x}
defines a normal crossing singularity in O we also say that f is a normal crossing divisor.

Example 3.16. We have already encountered an example for a normal crossing divisor in
Remark 1.95. We consider f = xyz € C{x,y, z}. The real picture of (V(f),0) C (C3,0)
looks as follows:
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Figure 3.1: Real picture of the normal crossing divisor (V (zyz),0) C (C3,0).

To see an example of a non-normal crossing divisor at 0, we consider the equation g = zz(x +
z —y?) € C{x,y, 2}. The name of corresponding surface is Tiille. Tiille looks as follows:

Figure 3.2: Real picture of Tiille.

Outside of 0 Tiille has normal crossings, but in 0 it does not.

In [Fab15] Faber gave an algebraic characterization of being normal crossing. The
characterization given there needs the property of a hypersurface being free and it
uses the normalization. For the notion of normalization see [GLS07, Chapter 1.9]. The
notion of freeness is due to Saito (see [Sai80]) and looks as follows.

Definition 3.17. Let X C C" be a divisor. We call X a free divisor at a point p € X if the
module of logarithmic derivations Der(Ox ) is a free module. We say X is a free divisor if
X is free at any point p € X. We say the complex space germ (X, 0) is a free divisor, if there
exists a representant which is a free divisor.

Faber states the following criterion to decide whether a hypersurface singularity is
normal crossing at a point p € X.

Theorem 3.18. Let X C C". For every p € X we denote by f, € C{x —p} the local equation
of X at p. Denote by m : X — X the normalization of X. Then the following are equivalent:

(1) X has normal crossings at p € X.

(2) X isfreeat p, Jyp is radical and (f(, 7r_1(p)) is smooth.
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Proof. See [Fab15, Theorem 1]. d

We want to give other criteria to check whether a hypersurface has normal crossings
at a point p or not, which do not use the normalization. The first one is the following.

Theorem 3.19. Let X C C". For every p € X we denote by f, € C{x— p} the local equation
of X at p. Furthermore, we define k, := dimc Der(Ox ,,)(p) and o, := ord(hy). Then the
following are equivalent:

(1) X has normal crossings at p € X.

(2) op =n—ky, Jypisradical, (fy, J¢ ) is, after a suitable change of coordinates, minimaly
generated by n — k,, monomials of order o, — 1.

Proof. The second statement follows by a simple computation in case X has normal
crossings at p, thus we only need to prove the converse. For simplicity we assume
p = 0 and we consider the complex space germ (X, 0). Corollary 3.13 implies that
(X,0) is determined by (Sing(X),0), since the monomiality of (f, ;) implies that
T/ is positively graded. Before we prove the result, we reduce to the case kg = 0.
By Theorem 1.70 it holds that (X,0) = (X’,0) x (Cko 0). This implies the existence
of a f/ € C{x'} with (X’,0) = (V(f’),0). Then it also holds that (Sing(X),0) =
(Sing(X’), 0) x (C*0,0). In our case (Sing(X), 0) corresponds to the algebra T s, which
is generated by monomials. In particular, it has maximal multihomogeneity n. Thus,
by Proposition 2.32, (Sing(X’), 0) has maximal multihomogeneity n — kg and T is
also generated by monomials. Theorem 3.11 yields f' € Jy. Using [GR71, §5 Satz
17] we know that reducedness is preserved under analytic tensor products and since
Ty = Ty @Ok o, the ideal (f', Jy) = Jy is radical. These considerations show that

we can replace f by f’ or, equivalently, assume ko = 0. Let ¢ = z1 - ... - z,,. The
assumption on the monomial generators yields that
9 9
Jp=(—,....,= ) =J,. 3.9
f <£L'1 ) ) T > g ( )

Equation 3.9 is equivalent to saying that 7y = T,, which by Theorem 1.101 is equiva-
lent to
(X,0) = (V(z1-... 24),0).

By definition X has a normal crossing at 0. O

Remark 3.20. The property of an ideal being generated by monomials is equivalent to having
maximal multihomogeneity n. Due to this all quantities respectively properties appearing in
Theorem 3.19 are invariants. Theorem 1.70 implies that kg is an invariant, being radical is an
algebraic property, which does not depend on the chosen coordinate system, and the order of an
element respectively the order-sequence of a minimal generating system are invariants due to
Proposition 3.9. We are going to see in Chapter 5 how to compute these invariants.

Let us have a look at two examples.

Example 3.21. Let us have a look at a simple example to verify our criterion. Consider the
polynomial f = (x+y?)(y+xy) € C{z,vy, 2}. We want to see whether X := V (f) has normal
crossings in 0 or not. First we notice that ko = 1 and that og = 2 = n — ko. In this simple
case both invariants can be read of from the defining equation. By SINGULAR computation we
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obtain (f, J¢) = (x,y). Thus (f, J¢) is a monomial ideal, which immediately implies that T
is positively graded. Due to this we know f € m.J, hence J; is also a radical ideal. The order
sequence of the Jacobian ideal is (1,1) = (n — ko — 1,n — ko — 1). Then Theorem 3.19 yields
(X,0) = (V(z-y),0) and X has normal crossings at 0.

Next we want to show that Tiille from Example 3.16 has no normal crossings at 0. Let g =
zz2(z+ 2 —y?) € C{x,y, 2} and Y := V(g). A SINGULAR computation shows that

(9,Jg) = (2% + 222 — 21?202 + 22 — P2, y22 — y32).

This generating system is minimal, hence we have the order-sequence (2,2, 3). By Theorem
3.19Y cannot have normal crossings at 0.

Remark 3.22. Theorem 3.19 has the advantage that, if the order sequence has different entries,
we are already done in disproving that the given hypersurface has normal crossings, whereas
all checks in Theorem 3.18 can be time consuming.

3.3 Stanley-Reisner Monomial Singular Loci

In the previous section we have seen, that we can characterize normal crossing di-
visors almost only by numerical properties of the Jacobian ideal. Motivated by the
second problem of Hauser and Schicho in [HS11] to classify all hypersurface singu-
larities f where the ideal (f, J) is monomial, we investigate this setup for the special
class of ideals of so-called Stanley-Reisner type. We give a complete characterization
of hypersurfaces, where the ideal (f, J¢) is of Stanley—Reisner type. The motivation
for question arises from the fact that monomial ideals in general admit combinatorial
descriptions, see for example [HH11, Part III]. In order to state the main result of this
section we need the following definitions:

Definition 3.23. Let A = C{x} or C[[x]]. Let I C A be an ideal. We say I is an ideal of
monomial type, if there exists an automorphism ¢ € Aut(A), such that ¢(I) is a monomial
ideal. We say I is an ideal of Stanley—Reisner type, if I is a radical ideal of monomial type.

Definition 3.24. Let f € C{x,y}. We say f is of Sebastiani-Thom type, if there exist
g € C{x} and h € C{y}, such that f = g + h. We say that a hypersurface singularity
X C C™™ is of Sebastiani-Thom type at p = (p1,p2) € X if there exists an isomorphism
such that (X, p) = (V(f),p), where f € C{x — p1,y — p2} is of Sebastiani—Thom type. We
call X a Sebastiani—-Thom type hypersurface singularity, if it is of Sebastiani—Thom type
forall p € X. We say a complex space germ (X, 0) is of Sebastiani-Thom type, if there exists
a representant which is of Sebastiani—Thom type. Consider the germ (X,0) = (V (f),0) with
f=g+hand g € C{x}, h € C{y}, We call the germs (X;,0) = (V(g),0) C (C",0) and
(X2,0) = (V(h),0) C (C™,0) the Sebastiani—-Thom components of (X,0).

Theorem 3.25. Let f € C{x}. Then (f, Js) being an ideal of Stanley—Reisner type is equiv-
alent to the existence of an automorphism ¢ € Aut(C{x}) and a partition of the x variables,
denoted by x(0, x(W) . <+ such that

T1

=3 () +
i=1

j=1

where g; € C[x"] is a normal crossing divisor for 1 < i < 1. This means that all singularities
with Stanley—Reisner singular locus are of Sebastiani—Thom type where the summands are
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Aq-singularities or normal crossing divisors. In particular, the Sebastiani—Thom components
are unique up to isomorphism and permutation.

Theorem 3.25 is similar to the Splitting Lemma (see Lemma 1.80). It states that every
singularity with Stanley—Reisner singular locus is the sum of an A;-singularity and a
Sebastiani-Thom singularity whose summands are all normal crossing divisors.

Definition 3.26. Let f € C{x}. We say f defines a generalized normal crossing divisor, if
there exists a coordinate change p € C{x} and a partition of x denoted by x© x(1) ... x(+1)
such that

l
=0

where go € C[x] is an Ay-singularity and g; € C[x")] is a normal crossing divisor for 1 < i <
1. We call a hypersurface singularity X C C" a generalized normal crossing singularity at
p, if the local equation f, € C{x — p} of X at p defines a generalized normal crossing divisor.
We call a complex space germ (X, p) generalized normal crossing, if there exists a representant
which is generalized normal crossing.

3.4 Proof of Theorem 3.25

This section is dedicated to the proof of Theorem 3.25. We start by fixing the notation
and certain standing assumptions.

In our setup, Theorem 3.11 implies f € m.Jy, hence we can directly assume that the
Jacobian ideal of f is a Stanley—Reisner ideal. We fix a minimal generating system of
Jy consisting of partial derivatives, and order them increasingly with respect to their
order.

Notation 3.27. Denote by k the order sequence of J¢. We write k = (ku, ..., k;) where the
k; are constant sequences with entry k; € N>y fori=1,... L.

Notation 3.28. We partition the x variables into [ 4 1 blocks xU) such that forl < j <lthe
power series O_(;) f appear as minimal generators of Jy and are of order k;. The x(0) variables

7
correspond to power series O (o) f, which do not appear as a minimal generators of Jy in our
J

fixed minimal generating system.

Notation 3.29. By r; we denote the number of variables in k;.

Let j € Nwith 1 < j < I. We can further partition the x variables. We write uﬁj ) for the
minimal monomial generators of J; of order k;.

The first result we need is a statement from linear algebra.

Lemma 3.30. Let n € N>y and M € C"*" be an invertible matrix. Then we can permute the
rows of M such that the resulting matrix B = (b;;) € C™"*" satisfies by; # 0 for 1 <i < n.

Proof. We do the proof by induction on n. For n = 1 the statement is trivial. In case
the first column of M does not contain any non-zero value, M does not have full rank,
which is not possible. Denote by A; ; the (n — 1) x (n — 1) matrix which is obtained if
we delete the i-th row and j-th column of M. We have to show that M; ; has full rank
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for some i with m;; # 0. Assume this is not the case, this means for all s with m;; # 0
we have det(M; ;) = 0. Then det(M) = 0 by Laplace expansion. Thus there exists an
index k with my; # 0 and det (M}, 1) # 0. We swap the first row with the k-th row and
we obtain a new matrix B = (b;;). By construction B has full rank and we can argue
by induction. O

Now we can prove the auxiliary lemma we are going to use in every upcoming proof.

Lemma 3.31. Let f € C{x} and assume that Jy is a Stanley—Reisner ideal with order-

sequencek = (ki,...,k,) € (N>1)" and minimal monomial generating system ugj), ey ug),

where 1 < j <. Then, after possibly renumbering the variables x(lj ), ce mg), we can assuime

uz(-j) € Supp (8:6@)]")
foralll1 <j<land1 <i<r;.

Proof. Due to the fact that we have two minimal generating systems, there exists an
invertible matrix M € C{x}"*", such that

8x(11) f ugl)
: =M :
Q0 f !
In order to see which monomial is contained in the support of the partial derivatives
we consider the non-zero entries of the matrix M (0), which is also invertible, since
i

A is invertible. By our assumption on the order of the u\?) and 9 ) f, we know that

ugj ) ¢ Supp <az(j/) f) for any j/ > j. This means that the shape of M (0) is as follows:

My  x * *
0 M2 * *

where M; € C7*"J are invertible matrices. By Lemma 3.30 we can reorder the rows
of the M; independently, such that the diagonal entries of the resulting matrices are

non-zero. This is equivalent to renumbering the variables :cgj ), e xy(«g), such that

ugj) € Supp ((’9xl(j)f>

foralll <j<land1l <i<rj. O

Next we need an auxiliary lemma, which implies that a monomial of a certain type is
a minimal monomial generator of J.
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Lemma 3.32. Let f € C{x} and assume that J; is a Stanley—Reisner ideal with order-
sequencek = (ky,...,k,) € (N>1)" and minimal monomial generating system ugj), e ,u,({,),
where 1 < j < 1. Suppose that for all indices j with 1 < j <land forall 1 <i <r;

ug‘j) e Cx@ xM . xU).

Then, for fixed index j, the following holds:
If, after renumbering the minimal monomial generators, ugj ) —m. xl(j ) e Supp (6 ) f) ,
Ty

where m € C[x9, xM ... x0)]is a monomial, 0 < j' < j,1 < i < rjandi # 1 in case

j =J', then the monomial w = m - ibgj ) is a minimal monomial generator of Jy.

Proof. After renumbering the minimal monomial generators and the xU"), xU) vari-

ables, we can consider ugj) = m-xgj/) € Supp (8x§j>f> or ugj) = m‘a:éj) € Supp (8mgj)f) .

Let “gj) =m: :ng/) € Supp (8 (j)f) . Then the monomial m - xgj/) . x(lj) € Supp(f) and
hence m - xgj) € Supp(d i f) C Jys. In case ugj) =m- azgj) it follows analogously that
. Zy
m - x(lj) € Supp(0 ;) f) € J¢. We consider two cases.
L)

(1) In case xgj ) divides m, we know that m € J;, since Jy is radical. Due to the fact
that ord(m) < k; — 1, we know that there exists a minimal monomial generator

")

u; ', wherel < j” < jand 1 <4 < rjn, which divides m. Then ugj ) is divisible

Z’/
by ug/j ) In this case ugj ) is not a minimal monomial generator, which yields a
contradiction to our assumption.
()

(2) In case z;y"’ does not divide m, we obtain that m - 27"’ is another minimal mono-

gj)
mial generator of order k;, since no ug,] Dfor1 < J" < jand 1 < i < rjmis
divisible by z” and since no !/’ ()

- can divide m, since u
tor.

is a minimal genera-

The first application of Lemma 3.31 are the following two results.

Lemma 3.33. Let f € C{x} and assume that Jy is a Stanley—Reisner ideal with order-
sequencek = (ki,...,k,) € (N>1)" and minimal monomial generating system ugj), ey u&;),
where 1 < j < 1. Suppose that for all for all indices j with 1 < j < land forall1 <i <r;

WD e Cx®,xM, ... <0,

Then, for fixed index j, the following holds:

() (")

If, after renumbering the minimal monomial generators, wy’ = m - x;’, where
m € Cx©,xW, ... xU)] is a monomial, 0 < j' < jand 1 < i < rj, then the mono-
mials up = m - xgj ) sy Uy =TT xg) are minimal monomial generators of J;.

Proof. Assume that, after renumbering the minimal monomial generators, u? = m .

)

xgj/ for some 0 < j/ < j < land m € C[x©,x(M ..  x0)] a monomial of order
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k; — 1. By Lemma 3.31 we can assume that ug D e Supp (8 S ) after renumbering the

xU) variables. At this point we apply Lemma 3.32 and obtain that u; = m - m(j )is a

minimal monomial generator of order k;. We denote this monomial by u( 7). Assume

that we have constructed the minimal monomial generators ugj ) = m - 1:51 ) g] ) =

m - xgj ), . uéj ) —m. :z:l(cj )1, where k < r;. Lemma 3.31 implies that, after possibly

renumbering the variables x| we can assume that u( D e Supp (8 5) f) forl <i<k.

Denote the permutation on the indices of the x\/) variables by ¢. Then u(J ) = m.
xgj/),ugj) =m- x(]()) .,u,(f) =m -zt ()k - Denote by i the index, such that 1 <7 < k
andi ¢ o ({1,...,k—1}).

In the case i = 1 we use u§j) =m- azg " e Supp( mgj)f). In case i > 1 we use ul(j) =

m - acgj()FD € Supp(0_() f). After applying Lemma 3.32, we obtain in both cases that

m- xl(j ) is another minimal monomial generator of order k;. We denote this monomial
by u,(jll. This shows that we can construct the r; minimal monomial generators as
claimed. ]

Lemma 3.32 and Lemma 3.33 allow us to show that the u( 7 can only be divisible by
the variables, where the partial derivative of f with respect to them has the same order
()

as u;

Lemma 3.34. Let f € C{x} and assume that J; is a Stanley—Reisner ideal with order-
sequencek = (ky,...,k,) € (N>1)" and minimal monomial generating system ugj), e ,u,(%,),
where 1 < j <. Then

ugj) € C[x(j)]

foralll1 <j<land1 <i<r;.

Proof. In order to prove the lemma we have to be able to apply Lemma 3.32 and
Lemma 3.33. We do so in two steps.
Step 1:

©)

The first step is to show that the u,;”” are not divisible by the x") variables with j' > j.

Assume the contrary, that is, after renumbering, we can assume ugj ) —m. xgj ) for
some 1 < j < j/ < land m € C[x] a monomial of order k; — 1. By Lemma 3.31

we can assume that ugj) € Supp <8 (j)f> . Then m - :cgj) . xgj/) € Supp(f) and hence
Ty

m- x(j) € Supp (8 2% )f) This contradicts the fact that ord (8 (j/)f) = kj > kj.
Ty
Step 2:
Let 1 < j <. Due to Step 1 we already know that u( ) e Cx©@,... xUW]foralll <i <

rj. Assume that, after renumbering the minimal monomial generators, ugj ) ¢ C[x)].
This is equivalent to saying that there exists a monomial m € C[x(), ..., x1)] of order
kj — 1 and an index 0 < j’ < j, such that after renumbering the x7) variables, we can
assume ugj ) =m- ng ). Lemma 3.33 implies that we have r; + 1 minimal monomial
generators of order k;, which contradicts our assumption on the maximal number 7;

of minimal monomial generators of order k;. Thus u( 2N C[xW] forall1 < j <land
1<i <. O
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So far we know that ul(-j ) e C[xY)]. The next step is to show that the minimal monomial
generators arise as derivatives of normal crossing divisors. We need the following
auxiliary lemma.

Lemma 3.35. Let f € C{x} and assume that J; is a Stanley—Reisner ideal with order-
sequencek = (ky,...,k;) € (N>1)" and minimal monomial generating system ug]), . ,u%),
where 1 < j < . We fix an index j, such that k; > 2. Let N C {1,...,r;} with |[N| = k;

and assume that, after renumbering the minimal monomial generators, ugj ) = II xgj ). Then
€N

ugj) & Supp <8$<_j)f) forall i € N.

Proof. Assume the contrary, thatis, there existsan i’ € N, such that ugj ) e Supp (833(;) f) .

Then ¢ := <w§,j)> : 1_\[{ }xgj) € Supp(f). Since k; > 2, there exists an index i €
iEN\{#/

N\ {i'}. Then 8 g = (xE,J ) ) . TI 2% € J;. This monomial is not squarefree
i i€N\{i’,i"}

so it must be divisible by some ul(.,j,/) with1 < 5’ < jand 1 <" < rj. Since, due to

Lemma 3.34, ug,],/) ¢ C[x\9)], this yields a contradiction. O

Lemma 3.36. Let f € C{x} and assume that J; is a Stanley—Reisner ideal with order-

sequencek = (ki, ..., k;) € (N>1)" and minimal monomial generating system ugj), . ,u%),

where 1 < j < 1. We fix an index j with k; > 2. Let N C {1,...,r;} with |N| = k; and

assume that, after renumbering the minimal monomial generators, ugj ) = I1 xl(] ) Then there
ieN

exists an index i’ € {1,...,r;} \ N, such that:

(1) g:= :L‘E,]) : l_][VZUZ(j) € Supp(f), and
i€

(2) forall s € N U {i'}, we obtain that Om(j)g € Jy are minimal monomial generators of
order k;.
In particular, ifugj) € Supp (8 (j>f) forak e {1,...,r;}\N, then one can choose i’ = k.
T

Proof. Due to Lemma 3.31 we know that ugj e Supp <6$(7> f> foracertain 1 < ¢ <r;j.

By Lemma 3.35 we know that ¢’ ¢ N. Thus g := xg,]) 11 azgj) € Supp(f). Due to the fact

ieEN
that, by Lemma 3.34, uE,J,/) ¢ CxW]foralll < j/ < jand1<i” < 7%, the monomials
OROYAS C[xU)] are minimal monomial generators for all s € N U {i'}. O

Lemma 3.37. Let f € C{x} and assume that Jy is a Stanley—Reisner ideal with order-
sequencek = (ki,...,k,) € (N>1)" and minimal monomial generating system ugj), . ,ug),
where 1 < j < 1. We fix an index j with k; > 2. Then for all 1 < i < r; there exists a mono-
mial m € C[xY)], such that u = ;vl(-j)
k;j.

-m is a minimal monomial generator of Jy of order
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Proof. Lemma 3.31 implies that, after renumbering the x () variables, u, U) ¢ Supp ((‘3 5 f)

forall 1 <i < r;. By Lemma 3.36 we obtain that all partial derivatives of g = a:(J ) oul)

(2
are minimal monomial generators of J; of order k;, hence the claim follows. O

Lemma 3.38. Let f € C{x} and assume that Jy is a Stanley—Reisner ideal with order-

sequencek = (ki,...,k,) € (N>1)" and minimal monomial generating system u(] ) u&z ),

where 1 < j < 1. We fix an index j with k; > 2. Assume that, after renumbermg the x(7)

variables, the parts of partition xUV) ... x) have been constructed for some t > 1 and that

these parts of partition are containing preczsely the variables x(j )2 wherel < a < Tj.

Furthermore, we assume that, after renumbering the mznzmal monomial generators, it holds
that ugj), .. 7“1(;]) c CxUD, ..., xUY] foral < b < r;. Assume that, after renumbering
minimal monomial generators with index greater than b and after renumbering the xU) vari-
ables with index greater than a, there exist an integer w € N with 1 < w < kj;, and two sets
SCA{l,...,atand T ={a+1,...,a+w} with |S| = kj — wand |T| = w, such that

ub—i—l - H Ill H xz(g)

i1€S i2€T

Assume that “1(7]421 € Supp (896“) f ) for some 1 < s < rj. Then one the following holds:

(1) If s > a + 1, then the partial derivatives of g := = 29 ul(izl are minimal monomial

generators of J; of order k; distinct from u{?), . .., ul(f ),

(2) If w = kjand s < a, then there exists a minimal monomial generator v = 29 m of

order k; distinct from ugj), ... 7ul() )7 where m € Clx éll, e ,xfﬁkj]

(3) If w < kj and s < a, then at least k; of the partial'derivativ'es of g :== 29 ul()ﬂr)l are
minimal monomial generators of Jy distinct from ugj ). ,ul()] ).
Proof.

(1) Lets > a+1. By Lemma 3.35 we can assume, after renumbering the x(9) variables

with index not contained in {1,...,a}, that s = a + w + 1. Then Lemma 3.36

implies that g = xgj ) u,()j_gl € Supp(f) and all partial derivatives of g are minimal

monomial generators of J;, which are by construction distinct from u(J ) , ulgj ),

(2) Letw = k; and s < a. We can assume, after renumbering the x/) variables with

index contained in {1,...,a} and the so far constructed parts of partition, that
s = 1. Then Lemma 3.36 implies that g = x -1 :c ) € Supp(f) and all partial
i€l
derivatives of g with respect to the variables xgj )for i € T are minimal monomial
generators of J¢, which are distinct from ugj ), e ul()j ) In particular, since k; > 2,
we obtain a minimal monomial generator u = x§j ). I1 a:l(j ),
i€T\{a+1}

(3) Letw < kj and s < a. We can assume, after renumbering the x(9) variables with
index contained in {1,...,a} and the so far constructed parts of partition, that

s = 1. Then Lemma 3.36 implies that g = azgj ). ul(izl € Supp(f) and all partial
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derivatives of g are minimal monomial generators of J;. By construction at least

k; are distinct from u(j ). , ulgj ),

O]

Lemma 3.39. Let f € C{x} and assume that J; is a Stanley—Reisner ideal with order-
sequencek = (ki,...,k;) € (N>1)" and minimal monomial generating system ugj), e ,u,(ng,),
where 1 < j <. Then for each 1 < j < lwith k; > 2 the following hold:

(1) There exists a partition of the x\7) variables denoted by xU1) . ... xWl) for some I; € N
with 1 < 1; < rj, where each part of the partition contains k;j + 1 variables.

kil B
(2) We define gt .= JH 29 e CxU) forany 1 <1 < 1;. Then forall 1 < I < I
i=1

and 1 < s < kj + 1 the monomials Om(j,l/)g(”/) are minimal monomial generators of J.

Proof. Fixaj € {1,...,1} with k; > 2. Due to Lemma 3.34 we can assume u( 7 ¢ C[xY)]

forall1 <i <rj. The upcommg proof is going to be constructive. Due to Lemma 3.31

(4)

we can assume that u;”’ € Supp (8 ) f) . By Lemma 3.35 we can assume that, after

kj+ .
renumbering the xU) variables, u! ]]_[2 2. Define x01) = (2. ) :L'l(j )+1) and

H x; ) The statement for g1 follows from Lemma 3.36. If xU) contains

only k; + 1 Varlables the statement is proved. Assume x/) contains more than k; + 1
variables and assume that, after renumbering the x() variables, the parts of partition

xU:1) ... xU:) have been constructed for some ¢ > 1 and that these parts of partition

are contammg precisely the variables .1‘(] ) 2 where 1 < a < r;j. Furthermore,

we assume that, after renumbering the m1n1mal monomial generators, it holds that
u 7“1(7]) € CxUY, ..., xU"] fora 1 < b < r;. By construction the ideal .J; has
at most n minimal monomial generators. Due to our convention, there are exactly r;
minimal monomial generators of order k; of Jy. By Lemma 3.37 there exists a minimal

monomial generator ub ¢ ClxUD), ... xUN]. In particular, b < r;. After renumber-

ing the xU) variables with index greater than a, there exist an integer w € N with
1<w<kjandtwosets S C {1,...,a}and T ={a+1,...,a+w} with |S| =k; —w

and |7T'| = w, such that
@)
ub+1 = H x“ H e
11ES i2€T

Due to Lemma 3.31 we know that u((izl € Supp (8$gj>f> for some 1 < s < r;. We are
now in the setup of Lemma 3.38. We construct the next part of partition x**1) and

B : ) ) : (4) () e
minimal monomial generators uy /, ..., u; Ly respectively wy /o, ..., uy 41 distinct

(J) B (J)

from uy iteratively.

Case 1: Let w = kj and s > a + 1. By Lemma 3.35 we can assume, after renumbering
the xU) variables with index not contained in {1,...,a}, that s = a + k; + 1. We define

xUtH1) = (azéﬁl, . ,xgﬁkﬁl) and glt+1) = 2. “1(){21 Lemma 3.38 implies that all
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k; + 1 partial derivatives of gU**!) are minimal monomial generators of J; of order
k;, which are distinct from ugj), e u,()]).
Case 2: Let w = k; and s < a. We can assume, after renumbering the x(7) variables

with index contained in {1,...,a} and the so far constructed partitions, that s = 1.

Then Lemma 3.38 implies that u = :vgj ) I1 xgj ) is a minimal monomial genera-
i€T\{a+1}

tor of J;. Redefine uéﬂzl = .

Case 3: Let w < kj and s > a + 1. By Lemma 3.35 we can assume, after renumbering

the x() variables with index not contained in {1,...,a}, that s = a + w + 1. In this
case we define xU-t+1) .= (mffll, . ,zl(fle) and gUt+D) = z{0) . uéi)
implies that all k; + 1 partial derivatives of gl**1) are minimal monomial generators
of J; of order k;, which are distinct from ugj ) uéj ),

Case 4: Let w < kj and s < a. We can assume, after renumbering the x) variables

,- Lemma 3.38

with index contained in {1,...,a} and the so far constructed partitions, that s = 1.
Define xU:+1) .= (a:gjll, . 7$<(12w) and gUt+1) .= xgj)u,gfgl. Lemma 3.38 implies that

at least k; partial derivatives of g**1) are minimal monomial generators of .J; of or-
der k;, which are distinct from ugj ), ey nas

Note that Case 2 changes the input of our iteration so that we end up in either Case
3 or Case 4. In Case 3 and Case 4 we partition strictly less variables than minimal
monomial generators that are constructed. This implies that we can continue the it-
eration after a new part of the partition has been constructed in Case 3 or Case 4.
Since we deal with only finitely many variables this yields a contradiction. So every
part of the partition has been constructed in Case 1. The statement then follows by

construction. O
Now we have all tools to prove Theorem 3.25.

Proof of Theorem 3.25. Due to Corollary 3.12, it suffices to find a partition of the vari-
1 1 2 t
ables x(©, x( ... x) and a g € C{x},such that T; = Tyand g = Zl (xg )) + Zzgi,
i= i=
where g; € C[x(] is a normal crossing divisor for 2 < i < t. We define x(°), as before,
to be variables, whose partial derivatives do not appear in a fixed minimal generat-
ing system of .J;. First assume that ord(f) = 2. Define x(!) to be the variables which
are minimal monomial generators of .J; of order 1. We can partition the remaining
variables according to Lemma 3.39 into x®) ... x(®) where the minimal monomial
generators with respect to each set of variables arise as the partial derivatives of a
. 1 2 t
normal crossing divisor g; € C[x(¥)]. We define g := 3. (xgl)) + > ¢; and obtain
j=1 =2
Ty =T, . Incaseord(f) > 3, the statement follows analogously, since we can drop the
sum of squares in the definition of g. The uniqueness statement follows immediately
from the uniqueness of the order-sequence. O
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Chapter 4

Free Singularities and Generalized
Normal Crossing Divisor

This chapter is joint work with D. Pol (see [EP20]). Section 4.1 is common work with D.
Pol. Section 4.2 has been contributed by D. Pol, whereas the sections 4.3 and 4.4 have
been contributed by the author of this thesis. The purpose of this chapter is to give
new families of free singularities and to investigate properties of generalized normal
crossing divisors, which are related to the module of (multi-)logarithmic derivations.
We first show that a generic equidimensional subspace arrangement of codimension &
in C" is free if the number of subspaces is lower than or equal to (}}) (see Theorem 4.18).
Afterwards we show that a product of two Cohen-Macaulay subspaces is free if and
only if the two subspaces are free (see Theorem 4.30). In the particular case of divisors,
it follows that the product of two divisors is a free complete intersection of codimen-
sion 2 if and only if both divisors are free. All computations have been performed us-
ing the computer algebra system SINGULAR ([Dec+19]). In order to compute all men-
tioned algebraic objects we provide the SINGULAR-library logmodules.1ib which can
be downloaded under https://www.math.univ-angers.fr/ pol/logmodules.lib.

We conclude this chapter by showing that singular loci of generalized normal crossing
divisors are free, as well as that these singularities are Saito holonomic.

4.1 Preliminaries

Let n € N>;. Throughout this section, if not stated otherwise, let A be either C[x] or
C{x}. For the rest of this section, we will also write C" in the local case instead of
(C",0).

We denote by Der(A) the A-module of vector fields on C", which is a free A-module
of rank n, generated by the vector fields {0,,, ..., 0y, }.

For ¢ € N we denote by Qf.,, the module of differential ¢-forms on C" and we consider
the usual pairing (-, -) : A7 Der(A4) x Q. — A.

A generalization of the module of logarithmic vector fields along singular hypersur-
faces (see [Sai80]) is introduced in [GS12] for complete intersections and in [Pol20] for
general equidimensional subspaces. We give here the equivalent definition as stated
in [ST18, Definition 3.19]:
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Definition 4.1. Let X C C" be a Cohen—Macaulay subspace of codimension k defined as the
vanishing set of the radical ideal Ix C A. The module of multi-logarithmic k-vector fields
along X is defined by

k
Der® (—log X) = {5e A\Der(A) [ V(f1,.... fx) € I%,(5,dfs A=+ Adfy) € IX}.

Remark 4.2. Let {hi,...,h,} be a generating set of Ix. Let § € NFDer(A). Then §
Der® (—log X) if and only if for all (iy < --- < i) C {1,...,7}, (§,dhsy A---Adhy,) €
Ix.

A hypersurface D is called free if and only if Der(—log D) := Der! (—1log D) is a free
A-module (see [Sai80]). A generalization of this notion to higher codimensional sub-
spaces is the following (see [Pol20, Definition 4.3]):

Definition 4.3. An equidimensional reduced subspace X C C" of codimension k is called

free if and only if
projdim (Derk (—log X)) =k—1

In the case of hypersurfaces, the criterion of Terao and Aleksandrov ([Ter80], [Ale88])
gives a characterization of freeness in terms of a property of the singular locus. It is
shown in [Pol20] that this property can be extended to Cohen-Macaulay spaces.

Let X C C" be a reduced equidimensional subspace. One can prove that there exists
a regular sequence (f1,..., fx) C Ix such that the ideal /¢ generated by fi,..., fj is
radical (see [AT08, Remark 4.3] or [Pol16, Proposition 4.2.1] for a detailed proof of this
result). We fix such a sequence (f1, ..., fi) and denote by C the complete intersection
defined by the ideal Ic = (fi, ..., fx)-

Notation 4.4. Let X be a reduced equidimensional subspace of codimension k in C" and C' be
a reduced complete intersection of codimension k in C" containing X. Let Jx,c = Jo + Ix,
where J¢ is the Jacobian ideal of C, that is to say, the ideal of A generated by the k x k minors
of the Jacobian matrix of (fi1,..., fx).

Remark 4.5. The vanishing set of the ideal Jx ¢ is the restriction of the singular locus of C
to X. If X is not a complete intersection, it does not describe the singular locus of X.

The following proposition generalizes [GS12, Definition 5.1]:

Proposition 4.6. Let X C C" be a reduced Cohen—-Macaulay subspace of codimension k in
C™and C be a reduced complete intersection of codimension k containing X. Then X is free if
and only if A/ Jx,c = 0 or A/ Jx,c is Cohen—-Macaulay of dimension n — k — 1.

Proof. See [Pol20, Proposition 4.2]. O

Remark 4.7. If C’ is another reduced complete intersection of codimension k containing X,
the modules A/Jx,c and A/Jx cr are isomorphic as A/Ix-modules (see [Pol20, Remark
3.8]).

The module of multi-logarithmic k-vector fields of a union of reduced equidimen-
sional subspaces of the same codimension satisfies the following property:
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Proposition 4.8. Let X be a reduced equidimensional subspace of codimension k, with irre-
ducible components X, ..., Xs. Then:

Der® (—log X) ﬂ Der® (—log X;) .

Proof. See [Pol20, Proposition 5.1]. O
Before giving some basic motivating examples of free singularities, let us introduce
the following notation:

Notation 4.9. We denote by K (f) the Koszul complex of a sequence (f1, ..., fi) in A:

k 1
K(f) : 0 \AF 25 By A AR By 40, (4.1)

The maps d,, are given by

M@

dp(e, Now-Neg)) = )/ fies Ao Neg A e,

]=1

We also set K ( [) the complex obtained from K (f) by removing the last A.
The complex 0 — A — 0 is denoted by C.

Example 4.10. Let Ey = {i; < --- <ix} C {1,...,n} and let X be the vector subspace of
C" defined by the reqular sequence (x;,,. .., x;, ). Then a generating set of Der* (— log X) is

{zj Nier, 0z, | J € Eo} U{NicE0x, | E # Eo} .

A minimal free resolution of Der® (—log X) is then given by

K ((:)icm,) ® EB C.

1<)
In particular, projdim (Der* (—log X)) = k — 1 so that X is free.

More generally, the following holds:

Proposition 4.11. Let X be an equidimensional union of coordinate subspaces. Then X is

free.

Proof. See [Pol20, Corollary 5.5] O
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4.2 Generic Subspace Arrangements and Freeness

In this section we assume A = C[x].

Definition 4.12. An equidimensional subspace arrangement of codimension k in C" is a finite
union of pairwise distinct vector subspaces of codimension k in C". We denote by Ix C S the
ideal of vanishing polynomials on X.

Definition 4.13. Let § € \" Der(A). We say that 6 is homogeneous of degree p if there exist
homogeneous polynomials (ag)|g|=k,Ec{1,... ny Of degree p such that

s= Y <aE/\8xi>.

EC{l,..n} i€E
|El=k

Notation 4.14. Let M be a graded A-module. For p € N we denote by M,, the submodule of
M composed of the homogeneous elements of M of degree p and 0 € M.

Definition 4.15. Let A be a finite index set and let X = |J;c, X; be an equidimensional
subspace arrangement of codimension k. We say that X is generic if for j = min {|A], (})}
and for all I C A with |I| = j, it holds that

dimg (ﬂ Der® (— log Xi)()) = (Z) —J.

el

Remark 4.16. The condition given in Definition 4.15 generalizes the usual definition of
generic hyperplane arrangement (see [OT92, Definition 5.22]), since for a hyperplane H,
Der! (—log H),, is equal to the vector fields tangent to the hyperplane.

Remark 4.17. If the coefficients of the defining linear equations of the irreducible components
are chosen randomly, the condition of Definition 4.15 is satisfied. This remark can be used to
create examples in a computer algebra system such as SINGULAR.

Up to a change of coordinates, it is easy to see that a generic hyperplane arrangement
in C™ with at most n hyperplanes is isomorphic to a normal crossing divisor, and thus
is free. The purpose of this section is to prove the following generalization of this
result:

Theorem 4.18. Let X = X; U ... U X, be an equidimensional subspace arrangement of
codimension k in C" such that for all i € {1,...,s}, X; is a vector subspace defined by the
regular sequence (hi 1, ..., ).

If s < (z) and X is a generic subspace arrangement, then there exists a basis <61, . ,5<n))
k

of N¥ Der(A) such that a minimal generating set of Der® (— log X) is given by
{h@j(si ‘7;6 {1,...,8},j S {1,,]47}}U{(51 |7,Z 8+1} 4.2)

Corollary 4.19. Let X = X; U ... U X, be an equidimensional subspace arrangement of
codimension k in C™ satisfying the hypothesis of Theorem 4.18. Then X is free.

In order to prove Theorem 4.18, we need the following auxiliary lemmas.
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Lemma 4.20. Let hy, . .., hy be k linear polynomials defining a vector subspace X of codimen-
sion k. Let {i1 < ... < i} C{1,...,n}. Weassume that the k x k minor of .Jy, relative to the
columns indexed by iy, .. . iy, is non-zero. Then a minimal generating set of Der® (—log X)
is of the form:

{hic%il ANy, |ie {1,...,k}} U {52, 5(2)71}, 4.3)
where for i € {2,...,(})—1}, & is homogeneous of degree 0 and such that
{axil Ao N0, 02, .,5( )} is a basis of/\k Der(A).

K
Proof. Let us consider new coordinates (y1,...,¥,) such that for j € {1,...,k}, y;, =
h; and for all j ¢ {i1,...,ix}, y; = x;. The condition on the minor ensures that it is

indeed a change of coordinates.
Let S € GL(C, n) be the matrix such that (y1, . .. ,yn)T =S (x1,..., xn)T.

In the new system of coordinates, the subspace X is defined by ¥;,,...,y; so thata
minimal generating set of Derk (—log X) is given by Example 4.10.

It holds that (9y,,...,0y,) = (g, ..., 0z,) S™L
Let B = (bij)lgi,jgn =51
Since forall j ¢ {i1,...,ix}, y; = xj, we have that for all (¢, j) such thati ¢ {i1,..., i}

and j # i, bjj; = 0. Therefore, for j € {1,...,k}, 6%]_ is a linear combination of
Oz, .- 0x, . Thus, 0y, A--- A0y, canbe expressed as a non-zero multiple of Oy, A
RN arik . OJ

Remark 4.21. With the same assumptions as for Lemma 4.20, for any 0 # 6 € < AF Der(A)) O\

Der* (- log X), and B a basis of Der* (— log X ), one can see that BU{h;6 | i € {1,...,k}}
is a minimal generating set of Der® (—log X).

Lemma 4.22. Let A be a graded ring and F be a free graded A-module of rank n € N with
bases B = {b1,...,bptand C = {c1,...,cp}. Fork € {1,...,n—1},let I, I ,...,I; C A
be homogeneous ideals. Define the graded modules V = @F_| I;b; @ D py1 Abjand W =
Iei & @, Ac;. If dime (Vo N Wo) = n — k — 1, then there exists a basis B’ = {b,...,V),}
of F, such that:

k n
VW =PLve i, e P Ab.
i=1 j=k+2

Proof. Let V! = (Vp) and W' = (W)). After renumbering the b; with index i > k + 1,
we can assume by 1 ¢ Vo N Wo. Then B = {by11} is a basis of F//W’, which yields the
existence of a; € Aand w; € W/, such thatb; = a;by1+w; fori € {1,... k,k+2,...,n}
and the existence of a unit axy; € A and of w1 € W’ with ¢; = apr1bpr1 + Wraq-
This implies that B’ = {wy, ..., wg, bgt1, Wi+t2, - - ., wy } is a basis of F. We obtain

k n
V= @ Liw; & Abk+1 D @ ij
i=1 j=k+2

and

k n
i—1 j=k42
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Then

k n
VAW =D Liw @ Ibp ® @ Aw;.
i=1 j=k+2

O]

Proof of Theorem 4.18. Let us prove Theorem 4.18 by induction. The initialisation for
s = 1is given by Lemma 4.20. Let N = (}) and s € {1,...,N — 1}

We assume that X1, ..., X, are linear subspaces of C" of codimension k& which are
in generic position.

Let X = |J._, X;, V = Der* (—log X),W = Der* (—log Xs;1) and F = AV. By the
induction hypothesis, dim¢ Vp = N — s and by Lemma 4.20, dim¢ Wy = N — 1. Then
dimc Vo N Wy = N — s — 1 follows from the genericity of the subspace arrangement.
By Proposition 4.8 it holds that

s+1
DerK <—log (U X,)) =Vnw.
i=1

Then Lemma 4.22 yields the result. O

Proof of Corollary 4.19. Let {41,...,dn} be abasis of A* Dercn such that a minimal gen-
erating set of Der* (— log X) is given by (4.2). Since for alli € {1,...,s}, (hi1,...,hi)
is a regular sequence, a minimal free resolution of the ideal (h; 1, ..., h; ) is given by
the truncated Koszul complex K=K (hij,---,hik). Since

s

N
Der* (—log X) = @) (hin, ... . hix) 6 ® € 56,

i=1 =541

we deduce that a minimal free resolution of Der* (—log X) is

where C is defined as in Notation 4.9. Thus, the projective dimension of Der* (— log X)
is k — 1 and X is free. 0

The following example shows that the genericity assumption cannot be dropped in
Theorem 4.18.

Example 4.23. Let us consider the subspace arrangement X defined by the equations hy =
zy(x —y + z — t) and hy = zt. It is the union of 6 planes in C. Computations using
SINGULAR show that X is not free, since a minimal free resolution is given by:

0— A— A% —» A - Derf (—log X) — 0.

Remark 4.24. The condition on the number of subspaces in Theorem 4.18 cannot be dropped,

as we observed by considering randomly generated examples with more than (}}) subspaces

with SINGULAR.



Explicit and effective Mather-Yau correspondence in view of analytic gradings 87

4.3 Constructing Free Singularities via Products

In this section we describe two ways of constructing new free singularities from known
free singularities via two kinds of products: scheme-theoretic products and a general-
ization of the product in the sense of hyperplane arrangements.

Notation 4.25. Let A; = C{x} and Ay = C{y}.
Weset A= A1®A; ~ C{x,y}.

Notation 4.26. The following notations are fixed in this section.

Fori € {1,2} let (X;,0) C (C™,0) be a reduced Cohen—Macaulay subspace of codimension
ki and (fi1,..., fir,) C© Ai be the equations of a reduced complete intersection (C;,0) of
codimension k; containing (X;,0).

The next lemma recalls basic properties of analytic tensor products which will be used
after.

Theorem 4.27. Let Ry and Ry be two analytic C-algebras and R = Ri®Rsy. Let M; be an
R;-module for i € {1,2} and define M;r = M; ®p, R. Then

(1) depthr(Mir ®r Mag) = depthp, (M1) + depthp, (Ma),
(2) dimR(MlR XRR MQR) = dile (Ml) + dimR2 (MQ)

(3) Ry and Ry are reduced if and only if R is reduced.

Proof. See [GR71, Kapitel III §5 Satz 10], [GR71, Kapitel III §5 Satz 17] and [GR71,
Kapitel III §5 Satz 19]. O

It follows that:

Corollary 4.28. With the hypothesis of Notations 4.26, the product (X1,0) x (X2,0) C
(C™,0) x (C",0) is a reduced Cohen—Macaulay subspace.

Remark 4.29. We define (X,0) := (X1, 0) x (X2, 0). A reduced complete intersection (C,0)
containing (X, 0) is defined by the reqular sequence (fi1,..., f1 k., f21,---, for,) C A In
particular, codim(X) = codim(C) = k1 + ka and Jo = AJc, - Adc,.

The main result of this section is:

Theorem 4.30. Lef (X;,0) C (C",0) and (X2,0) C (C",0) be reduced Cohen—Macaulay
subspaces and (X,0) = (X1,0) x (X32,0) C (C™,0) x (C"2,0). Then (X1,0) and (X2, 0)
are free if and only if (X, 0) is free.

Remark 4.31. In particular, if (X;1,0) and (Xs,0) are hypersurfaces, then (X;,0) and

(X2,0) are free divisors if and only if (X1,0) x (X2,0) is a free complete intersection of
codimension 2.

We will need the following results.
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Lemma 4.32 (Depth Lemma). Let R be a local Noetherian ring and consider a short exact
sequence of R-modules :
0— My — My — M3 — 0.

Then
depth(Mz) > min (depth(M;), depth(M3)) .

In case this inequality is strict, we have depth(M;) = depth(M3) + 1.
Proof. See [JP00, Lemma 6.5.18]. O
Lemma 4.33. Let Ry and Ry be two analytic C-algebras and R = Ri®Ry. Let I C Ry

and J C Ry. We assume that depth (R /1) < depth(R;) and depth (Ra/J) < depth(R2).
Then:

(1) depth (R/(RI + RJ)) = depth (Ry/I) + depth (Ry/.J),

(2) depth (R/(RINRJ)) = depth (R1/I) 4 depth (R2/J) + 1.
Proof.

(1) The statement follows from Lemma 4.27 noticing that
R/(RI + RJ) ~ (R1/I)®(Ra/J).

(2) Let us consider the exact sequence
0— R/(RINRJ)— (R/RI)® (R/RJ) — R/(RI + RJ) — 0.  (4.4)
Applying Lemma 4.27 to R/RI = (R, /I)®R; yields
depth(R/RI) = depth(Ry/I) + depth(Rz).
By assumption depth(R2) > depth(R2/J), hence statement 1. and Lemma 4.27

imply
depth(R/RI) > depth(R/(RI + RJ)).

Analogously we obtain
depth(R/RJ) > depth(R/(RI + RJ)).
Since depth((R/RI) & (R/RJ)) = min(depth(R/RI),depth(R/R.J)), we get

depth((R/RI) & (R/RJ)) > depth(R/(RI + RJ)).

In this case the inequality in Lemma 4.32 is strict, hence
depth(R/(RI N RJ)) = depth(R/(RI + RJ)) + 1. O
Proposition 4.34. Let Ry and Ry be two analytic C-algebras and R = Ri&Ry. Let I C Ry

and J C Ry. We assume that depth (Ry/I) < depth(Ry) and depth (Ry/J) < depth(Ry3).
Then the following are equivalent:

(1) R/(RIN RJ) is Cohen—Macaulay,
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(2) Ry, Rz, R1/I and Ry/J are Cohen—Macaulay, dim(R;/I) = dim(R;) — 1 and
dim(RQ/J) = dim(RQ) — 1.

Proof. By Lemma 4.33, we have:

depth (R/(RI N RJ)) = depth (Ry/I) + depth (Rg/J) + 1. (4.5)

Furthermore, Lemma 4.27 and our assumptions imply the following inequality:

dim(R/(RI N RJ)) = max (dim(R/RI), dim(R/R.J))
= max (dim(R;/I) + dim(Rz), dim(R;) + dim(Rz/J))
min (dim(R; /1) + dim(Rs), dim(Ry) + dim(Rs/J))
min (depth(Ry/I) + depth(Rz2), depth(R;) + depth(R2/J))
depth(Ry/I) + depth(Rs/J) + 1. (4.6)

AYARAYARIY]

Assume first that the hypothesis of the second statement is satisfied. In this case In-
equality (4.6) becomes an equality. Then the first statement follows by using Equa-
tion (4.5).

Next we assume that R/(RI N RJ) is Cohen-Macaulay. Due to Equation (4.5) and
Inequality (4.6) we obtain:

depth (R/(RINRJ)) = depth(Ry/I)+ depth (Ry/J) + 1
< dim(R/(RI N RJ))

Since R/(RI N RJ) is Cohen-Macaulay, equality holds everywhere, which yields that
Ri, Ry, R1/I and Ry/J are Cohen-Macaulay and dim(R2/J) = dim(R2) — 1 and

Lemma 4.35. Let Ry and Rs be two analytic C-algebras and R = Ri®Ry. Let I C Ry and
J C Ry be ideals. Then the following equality holds in the ring R:

RI-RJ=RINRJ.
Proof. [GR71, Kapitel III, §5 Korollar zu Satz 5] O

Proof of Theorem 4.30. We set for i € {1,2}, R; = A;/Ix, and
R = A/IX = A]/IX1®A2/IX2.
Fori € {1,2}, let Jx,/c, € A; and Jx,c C A be defined as in Notation 4.4. We denote

by 7 : A — R, respectively 7; : A; — R; the canonical surjections. Then, by Remark
429, Jc = AJg, - AJc, C A, hence Lemma 4.35 implies

m(Jx/c) = m(Je)
= Rmi(Jey) - Rma(Jey)
= Rm(Jx,/c,) Bra(Jx,/c,)
= Rﬂ'l(JXl/Cl) N RWQ(JXQ/CQ) 4.7)

First we assume Jy, /o, # Ai for i € {1,2}. Then, by Proposition 4.6, X is free if
and only if R/7(Jx/c) is Cohen-Macaulay of R-codimension 1. By Equation (4.7)
and Proposition 4.34 we obtain that R/7(Jx/c) is Cohen-Macaulay if and only if for
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i € {1,2} it holds that R; and R;/m;(Jx,/c,) are Cohen-Macaulay and dim(R;) =
dim(R;/m:(Jx,/c,)) + 1. This is, again by Proposition 4.6, equivalent to the fact that X;
and X are free. Next we consider the case Jx, /¢, = A4; for at least one i € {1,2}. In
case Jx/c = A the statement is obvious, hence we assume without loss of generality
Jx/c = AJx, jc,- Then R/m(Jx,c) = Ri/m1(Jx, /o, )@ Ro. In this setup the statement
follows from Theorem 4.27. O]

Remark 4.36. As a consequence, if (X1,0) and (X2, 0) are free Cohen—Macaulay subspaces,
we have

projdim <Derk1+k2 (—log X x Xz)) =

projdim (Delrkl (—log Xl)) + projdim (Derk2 (—log Xg)) +1
A different notion of product for hyperplane arrangements is considered in [OT92,
Definition 2.13]. We use the following notation.

Notation 4.37. Let X; C C™ and Xy C C™ be two reduced equidimensional subspaces,
both of the same codimension k. Let X| = X x C"? and X5 = C™ x Xs.

For i € {1,2} let 1; : N\"Dercns — A"Dergni4ny be the canonical maps. By abuse
of notation we identify Der* (—log X;) with the submodule of \* Dergn,+ny generated by
ti (Der® (—log X;)).

Consider the decomposition:

k
/\ DeI'(Cnl-HLQ = D1 (S5) D2 ¥ D1,2

where D; is the submodule generated by the image of \* Dercn; in \¥ Dergn,+ny and Dy o is
the free submodule of \" Dercn+m generated by the elements of the form Oy N N Oy A
Ay, /\---Aayjkip wherep € {1,...,k—1}.

It can be generalized to subspaces of higher codimension as follows:

Definition 4.38. Let X; C C™ and Xy C C™ be two equidimensional subspaces, both of the
same codimension k. We set X1 * Xo = X| U XJ.

A similar result as Theorem 4.30 is satisfied, which generalizes [OT92, Proposition
4.28]:

Proposition 4.39. Let X1 C C™ and Xy C C"2 be two reduced equidimensional subspaces,
both of the same codimension k. Then, with Notation 4.37:

Der (—log X1 * X5) = Der® (- log X1) ® Der® (— log X3) @ D; ».
In particular, X = Xy is free if and only if both X, and X, are free.
Proof. We have:
DerK (— log X{) = Derk (—log X1) ® D2 @ D1 2,

Der® (—log X}) = Dy @ Der™ (— log X5) @ D1 ».
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By Proposition 4.8, Der* (—log X1 * X3) = Der® (—log X}) N Der* (—log X3). Thus
Der* (- log X;) C D; implies:

Der® (—log X % X5) = Der® (= log X1) @ Der® (— log X5) @ D; 5
A minimal free resolution of Der® (—log X * X3) is thus given as the direct sum of

minimal free resolutions of Der® (—log X;),Der® (—log X5) and D;». Since D; is
free, the projective dimension of Derk (—log X1 * X3) is

max {projdim <Derk (—log Xl)) , projdim (Derk (—log Xg)) } .

Since by [Pol20, Proposition 4.2], projdim (Der® (—logXj)) > k — 1, we have
projdim (Der® (—log X; * X)) = k — 1 if and only if

projdim (Derk (—log X1)> — projdim (Derk (— log Xg)) — k-1 0

4.4 Properties of Generalized Normal Crossing divisors

4.4.1 Freeness and Generalized Normal Crossing divisors

In this section we investigate freeness of generalized normal crossing divisors respec-
tively their singular loci.

Theorem 4.30 implies directly that generalized normal crossing divisors have free sin-
gular loci:

Proposition 4.40. Let (X,0) C C" be a generalized normal crossing divisor. Then (Sing(X ), 0)
is a free singularity.

Proof. By Theorem 3.25 we can assume that f = 22:0 gi, where gg is an A;-singularity
and the g¢; are normal crossing divisors for 1 < ¢ < [. Due to Proposition 4.11, we
obtain that J,, defines a free singularity. The result follows from Theorem 4.30. O

Next we want to investigate when generalized normal crossing divisors are free. In or-
der to do so, we need the following result from Aleksandrov-Terao, which is a special
version of Proposition 4.6.

Lemma 4.41. Let (X,0) C C" be the germ of a hypersurface singularity. Denote by f €
C{x} a local equation of (X,0). Then (X,0) is free if and only if the Ox o/Js is Cohen—
Macaulay of dimension n — 2.

Proof. See [Ter80, Proposition 2.4] and [Ale88, §2, Theorem]. O

Now we are able to show the following;:

Proposition 4.42. Let (X,0) C C™ be the germ of a hypersurface singularity. Denote by
[ € C{x} alocal equation of (X,0). Then the following are equivalent:

(1) (X,0) isanormal crossing divisor.
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(2) (X,0) is free and Jy is of Stanley—Reisner type.

Proof. In case (X, 0) has normal crossings the freeness of (X, 0) and J; being a Stanley—
Reisner ideal follow immediately. Therefore only the converse has to be shown. Due
to Theorem 3.25 we may assume that f = i <$§1)>2 + i gi,€ C{xO . x(+Dy
where 7,1 € N, and g; € C{x(} are norm;?crossing. Fl;r1 simplicity define gy :=
ZT: <x£0)>2 e C{x(}. Then

=1
Ci{x}/J; = C{xW}/J, &...ac{xV}/J,,. (4.8)

Applying Theorem 4.27 to C{x}/J; and Proposition 4.6 to C{x}/J,,, we obtain
dim C{x}/Jf = n — 21— r. In order for f to be free, we must have either / = 1 and
r=0or!l=0andr = 2. In the first this case we have that f defines a normal crossing

. o W\ ()
divisor, and the claim is shown. In the second case we have that f = (xl ) + (:c2 > .

Define z := :ngl) +i- xgl) and y := :cgl) — - xgl) then the automorphism ¢ € Aut(C{x})

defined by ¢ (x(o)) = xEO), © <x§1)> = 2tV and ¢ (acgl)) = Y satisfies o(f) = x - y.

% 29

Thus f defines a normal crossing divisor. O

4.4.2 Saito Holonomicity and Generalized Normal Crossing Divisors

In this subsection we investigate the holonomicity of strongly Euler homogeneous di-
visors of Sebastiani-Thom type. The notion of holonomicity as introduced by K. Saito
in [Sai80] is closely related to the module of logarithmic derivations of a hypersurface
singularity. We show the following theorem:

Theorem 4.43. Let (X,0) C (C"*™ 0) be a strongly Euler-homogeneous singularity of
Sebastiani—Thom type. We denote the Sebastiani—Thom components of (X, 0) by (X;,0) C
(C™,0) and (X2,0) C (C™,0). Then the following hold:

(1) (Y,0) C (Sing(X),0) is a logarithmic stratum if and only if there exists a loga-
rithmic stratum (X1 ,,,0) C (Sing(X1),0) and a logarithmic stratum (X3 3,0) C
(Sing(X2), 0), such that

(Y, O) = (XLQ,O) X (Xgﬂ,()) =: (X(a,ﬁ)vo)'
(2) (X,0) is holonomic if and only if (X1, 0) and (X2, 0) are holonomic.

We start with the basic notions in order to define the term holonomic divisor, which
is based on the definition in [Sai80, (3.8)].

Notation 4.44. From now on let S C C" be an n-dimensional complex manifold and X C S
a hypersurface singularity. Any given index set will be denoted by T.

Definition 4.45. Let Derg(— log X) be the sheaf of logarithmic vector fields along X. For any
point p € S we denote by Derg(log X)(p) the subspace of the tangent space T, at p, which
consists of the vectors 6(p) of the values of the vector field § € Derg(—log Ox ;) at p.

We obtain the following lemma:



Explicit and effective Mather—Yau correspondence in view of analytic gradings 93

Lemma 4.46. There exists a unique startification {X, | a € Z} of S with the following
properties:

(1) Each stratum X, o € T is a smooth connected immersed submanifold of S and S is a
disjoint union | .7 X of the strata.

(2) Let p € S belong to a stratum X,. Then the tangent space Tx,, , of X, at p equals
Ders(— log(X))(p).

(3) If Xo N X # 0 for some o, B € T and o # B, then X, C 0Xg.
Proof. See [Sai80, (3.2)]. O

Now we are able to define the notion of logarithmic stratification.

Definition 4.47. The stratification of Lemma 4.46 is called logarithmic stratification of S.
The strata X, are called logarithmic strata.

Using the notion of logarithmic strata we can define the notion of holonomic points,
holonomic strata and holonomic divisors.

Definition 4.48. A point p € S is called holonomic, if there exists an open neighborhood
V of p, such that V intersects only finitely many logarithmic strata. A stratum X, is called
holonomic stratum, if there exists an open neighborhood V of X, such that V' intersects only
finitely many logarithmic strata. A divisor X is called holonomic divisor, if every p € S
is holonomic. We say a complex space germ (X, 0) is holonomic, if there exists a holonomic
representant.

In order to state criteria to determine the holonomicity of divisor, we need the follow-
ing notation.

Notation 4.49. We define T, = {# € T | p € Xp} forapointp € Sand I, = {f € T |
Xo € X} forastratum X,. For anyr > 0wedefine V, = {p € S | rankc Derg(—log X)(p)}.

Remark 4.50. By definition the sets V,. are closed analytic subsets and it holds that V, =

U Xa
dim Xo <r

The following lemma gives us an algebraic tool to decide whether a divisor is holo-
nomic or not.

Lemma 4.51.

(1) Let p be a point of a stratum X,,. Then p is holonomic if and only if

dimy, V. <r for dim X, <.

(2) Let S" C S be an open subset and let X' = X N S’. Then a point p € S’ is holonomic
with respect to the logarithmic stratification by X' if and only if p € S is holonomic with
respect to the logarithmic stratification by X.

(3) Let X = X' x Ck C " x CF = S forsome 1 < k < n.Thenp = (p/,p") € S is
holonomic if and only if p’ € S’ is holonomic.
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Proof. See [Sai80, (3.13)] and [Sai80, (3.14)]. O

Lemma 4.51 allows us to verify algorithmically if a divisor is holonomic by comput-
ing the dimension of the varieties V;., which are just radicals of minor ideals. Further-
more, Lemma 4.51 allows us to reduce to the case of unsuspended divisors. To make
the computational aspect more explicit, we consider two examples of divisors, one
holonomic the other one not holonomic.

Example 4.52.

(1) Let X = V(xyz) C C3. Then a SINGULAR computation yields that Dercs(log X ) is
generated by the derivations

5 Ty z Oy
(52 =lx 0 —2z|- ay
(53 0 Yy —z az

From the radicals of minor ideals of the matrix A we obtain

Vo =V(z,y,2)
Vi =V(xy, xz,yz)
Vo = V(zyz)

V, = C3forallr > 3.
In particular, dim(V;.) < r for all r > 0, hence X is a holonomic divisor by Lemma 4.51.

(2) Let X =V (zy(x + y)(z — y)(y — x2)) C C3. Then a SINGULAR computation yields
that Dercs (log X) is generated by the derivations

01 x Y 0 Oz

So| =0 2%y—y3 2zy— a2 —3y*z+ 22y |- | 9,

53 0 0 Yy— Tz az
=A

In this particular case, we obtain Vo = V (x,y). This implies that X is not holonomic,
since dim(Vp) =1 > 0.

As we can see in the previous example, we need to compute the module of logarithmic
derivations of a given divisor to determine whether it is holonomic or not.

To keep the notation as simple as possible, we reduce to the unsuspended case.

Remark 4.53. By Lemma 3.10, we assume from now on that all divisors are unsuspended.

We introduce the following definition.

Definition 4.54. Let X C C" define a hypersurface singularity. Let p € X. Denote by f,, €
C{x—p} the local equation of X at p. The module Der x ,(—log f,) = {6 € Dercn(—1log Ox ) |
d(fp) = 0.} is called the module of annihilating derivations of f at p.

In our particular case, we obtain the module of logarithmic derivations very easily
from the following lemma:
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Lemma 4.55. Let X € C" define an Euler-homogeneous hypersurface singularity. Denote by
fp € C{x — p} the local equation of X at p € X and by x,, an Euler-derivation at the point
p € X. Then

Dercn(—1log Ox ) = (xp) + Derx ,(—log f,).

Proof. For every ¢ € Dercn(—log Ox p) it holds that 6(f,) = g - f, for some g € Ox .
Then we can write § as
0= 0-9-Xp +9 Xp-
———
€Derx ,(—log fp)

Thus the claim follows. O

In other words, Lemma 4.55 states that every logarithmic derivation of f can be writ-
ten as a sum of an Euler-derivation and an annihilating derivation.

Remark 4.56. Note that Derx ,(—log f) is isomorphic to the module syze . (Jy,). Hence
computing the module of annihilating derivations is reduced to computing the syzygies of the
Jacobian ideal.

The next proposition is crucial for the computation of the annihilating derivations.
The proof of Proposition 4.57 involves some basic computer algebra, in particular the
theory of standard bases over power series rings. We refer the reader for more details
on this topic to [JP00, Chapter 7] and [GP08, Chapter 6].

Proposition 4.57. Let A = C{x,y}, A1 = C{x} and Ay = C{y}. Let f € Awith f =
g1 + g2, where g1 € Ay and go € Ay. Denote by ey, . .., epqm the canonical basis vectors of
A™MT™ Then

syza(Jg) = R1+ Ro +J €A™,

where Ry = syz 4, (Jg,) ®a, A C (e1,...,en), Ro =5yz24,(Jg,) ®a, A C (i1, -+, Entm)
and J is generated by vectors of type 3| aje; + > 1L bjenyj with a; € Jg,,bj € Jg, .

We need the following theorem to show Proposition 4.57.

Theorem 4.58. Let F' = (f1,..., f)T € C{x}*and G = (g1, ...,9m)" € C{x}™. Assume
that S = {g1,...,9m} is a standard basis of the ideal I = (f1,..., fs). Denote by E; the
s X s unit matrix, by R the matrix whose rows form a generating set of syzcq ((S)), by U
the matrix satisfying G = UF and by V' the matrix satisfying ' = V G. Then the rows of @
form a basis of syzgyy (1), where

E,-V-U
o= (")
Proof. The result is shown in [Win96, Theorem 8.4.8] for the polynomial case and
works verbatim for the power series case. O

Proof of Proposition 4.57. We fix an arbitrary local ordering >; on A; and an arbitrary
local ordering >2 on Ay. On A we consider the local ordering >= (>, >2). We prove
the result in two steps.

Step 1: We assume that S’ = {0,,91,...,05,91, 0y, 92, - - ., Oy,, g2} is a standard basis for
J¢. Using the Product Criterion (see [JP00, Exercise 7.2.19]) and [GP08, Theorem 2.5.9]
the result follows. In particular, J = (9,,g2e; — Oz, 91€; |1<i<n,1<j<m).
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Step 2: We assume that S’ = {0,,01,...,0:,91,0y,02,...,0y,92} is not a standard
basis for J;. By applying the Product Criterion it follows that, if S; is a standard basis
for J, € Ay and if Ss is a standard basis for J,, € Ay, S = S1 U S is a standard basis
for Jf. Let sy = ’Sl|,52 = ‘SQ‘ and s = sy + so. Define I} = (8“91, ... ,azngl)T e A%,
Fy = (0y,92,...,0y,, @)l € A Gy € A7 be the vector containing the elements of S}
and Gy € A3? be the vector containing the elements of S;. Furthermore, we denote
by Uy € A7™°! the matrix satisfying G; = U1 Fy, by Us € AJ"**? the matrix satisfying
Gy = UsFy, by Vi € AT*®! the matrix satisfying F1 = V1G; and by V5 € A2 the
matrix satisfying F» = V2G5. Denote by R/ the matrix whose rows form a generating
set of syz 4, ((S1)), by RY the matrix whose rows form a generating set of syz 4, ((S2)),
and by J’ the matrox whose rows are the vectors (0, ... ;0y;92,0,...,0,02,91,0,...,0)
for1 <i<n,1<j<m.This means that J = (J1 Jz) , where the entries of J; are in
Jg, and the entries of J are in J,, . Then, by Step 1, syz 4 ((S)) is generated by the rows
of the matrix

R 0
R=10 R
J1 Jo

Let F' be the concatenation of F; and Fy, G the concatenation of G7 and Go,U =

U 0 and V = i 0 . Then G = UF and F' = V@G. The result follows from
0 U2 0 V2

Theorem 4.58 and the block structure of the involved matrices. O

Remark 4.59. Proposition 4.57 shows that, in the setup of Theorem 4.43, every derivation
d € Dergntm(—log Ox p) as

o= Xp + 0 + 9o + O3,
—~ ~— —~~
€ERy €R> eJ

where the derivations 91,2 and 63 satisfy d1(g1) = 0,62(g2) = 0 and é3(p) = 0 for p €
Sing(X). This means that 5, and 62 are annihilating derivations of g, respectively go.

In our setup we obtain a block-matrix structure for the generating set of Dercn+m (—log Ox ),
as we can see in the following example:

Example 4.60. Let f = xyz + abed € Clz,y,2,a,b,¢c,d] and X = V(f) C C7. Then
Dercr(—log X) is generated by the columns of the following matrix, where we drop the partial
derivatives:

4z x 0 0 0 0 —bed —acd —abd —abe 0 0 0 0 0 0 0 0
4y 0 Yy 0 0 0 0 0 0 0 —bed —acd —abd —abce 0 0 0 0
4z —z -z 0 0 0 0 0 0 0 0 0 0 0 —bed  —acd —abd —abe
3a 0 0 a 0 0 yz 0 0 0 Tz 0 0 0 xy 0 0 0
3b 0 0 0 b 0 0 yz 0 0 0 Tz 0 0 0 Ty 0 0
3c 0 0 0 0 c 0 0 yz 0 0 0 Tz 0 0 0 Ty 0
3d 0 0 —d —-d —d 0 0 0 yz 0 0 0 Tz 0 0 0 Ty

Next we want to show, that it suffices to consider only the annihilating derivations of
f evaluated at every point p € Sing(X).

Lemma 4.61. Let X C C" be an Euler-homogeneous hypersurface singularity. Then for
every point p € X and for every Euler-derivation x, € Dercn(—logOxp) it holds that
Xp(p) € Derx ,(—log f,,)(p) if, and only if X is strongly Euler-homogeneous.

Proof. Denote the local equation of X at p by f,.



Explicit and effective Mather—Yau correspondence in view of analytic gradings 97

Let p € X be arbitrary and x, € Dercn(—log Ox ) any Euler-derivation. The equa-
tion x,(p) € Derxp,(—log f,)(p) implies the existence of ¢ € Derx ,(—log f,) with
Xp(P) = d(p). Then the derivation xj, = x;, — ¢ is an Euler-derivation with x;,(p) = 0,
hence X is strongly Euler-homogeneous at p. Now we assume that X is strongly Euler-
homogeneous at p € X. Denote by X, the Euler-derivation satisfying x,(p) = 0. By
Lemma 4.55 every Euler-derivation y;, of f, can be written as

Xp = Xp + 0,

where § € Derx ,(—log f,). This implies x,(p) = x,(p) + d(p) = d(p), hence x;,(p) €
Derx »(—log f,)(p). [

The final ingredient we need is the following lemma.

Lemma 4.62. Let (X,0) C (C™*™, 0) be a hypersurface singularity of Sebastiani—Thom type.
Then (X, 0) is strongly Euler-homogeneous if and only if the Sebastiani—Thom components of
(X, 0) are strongly Euler-homogeneous.

Proof. Let A = C{x,y}, A1 = C{x}, Ay = C{y},(X,0) = (V(f),0) C C*"*™, with
f=g+he A whereg e A and h € As. If g and h are strongly Euler-homogeneous
with respect to the Euler-derivations x, = > a;0y, and xp = 371, b0y, then f
is strongly Euler-homogeneous with respect to the Euler-derivation x = > | a;0,, +
i1 bj0y;. Now we prove the converse. Assume (X, 0) is strongly Euler-homogeneous.
If g = 0or h = 0, we are in the case of Lemma 3.10, hence we can assume g # 0 and
h # 0. The fact that f is strongly Euler-homogeneous is equivalent tof € m4.Jy. This

is equivalent to the existence of a;,b; € m for 1 <i <n,1 < j < m, such that
n m
f=Y aisg+> bjdyh. (4.9)
i=1 j=1

Since f defines a singularity, we know that f € m?, hence g € mih and h € mib. This
implies that d,,9(0) = 0 and 8yjh(0) =0forl <i<nand1l < j < m.Equation 4.9
implies

9(x) = f(x,0) = Y ai(x,0)ds,9(x).
i=1

By assumption g # 0, so for all 1 < i < n it holds that a;(x,0) # 0, hence g € my,J,.
The result for h follows analogously. ]

Remark 4.63. The converse statement of Lemma 4.62 does not hold in general, if we replace the
property of being strongly Euler-homogeneous with the property of being Euler-homogeneous.
To see this, consider any g € C[x], such that (X1,0) = (V (g),0) is not Euler-homogeneous.
Define f = g € C[x,y] Then X = V(f) € C"! has Sebastiani—~Thom components (X1, 0)
and (X2,0) = (C,0) at p = 0. Additionally, (X,0) = (V(e¥ - ¢),0), so (X,0) is Euler-
homogeneous with Euler-derivation 0,.

Now we are able to prove Theorem 4.43.

Proof of Theorem 4.43. Let A = C{x,y}, A1 = C{x}, Ay = C{y},(X,0) = (V(f),0) C
C"t™ with f =g+ h € A, where g € A; and h € As. Define (X1,0) = (V(g),0) C C"
and (X2,0) = (V(h),0) C C™.Itholds that (Sing(X), 0) = (Sing(X}), 0) x(Sing(X2),0).
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We fix a basic open neighbourhood U = U; x Uy € C"*™ of 0 and consider the repre-
sentants on U, respectively on U; and Us,. We start by proving the first statement. Due
to Lemma 4.62 we know that g and h are strongly Euler-homogeneous. Proposition
4.57 and Lemma 4.61 imply that for every p = (p1,p2) € U it holds that:

Dercn+m(—log V(f))(p) = Dercn(—log V(g))(p1) ® Dercm (—log V'(h))(p2).  (4.10)

Let X, be a logarithmic stratum of X; and X» g be a logarithmic stratum of X5. De-
fine X, 3) = X1,a X X2 . By construction the X, gy are smooth, connected, immersed
submanifolds of U with Sing(X) = U, ) X(a,s) and

TX(Q,B),ID = TXl,a,;m ¥ TXz,g,pz' (4.11)

Lemma 4.46, Equation (4.10) and Equation (4.11) imply that the X, ) are the unique
logarithmic strata of Sing(X'), hence the statement follows. The second statement fol-
lows directly from the first statement, since by Lemma 4.51 only the logarithmic strata
contained in the singular locus have to satisfy the finiteness property. O

Since generalized normal crossing divisors satisfy the assumptions of Theorem 4.43,
we obtain the following corollary:

Corollary 4.64. Let (X,0) C (C",0) be a generalized normal crossing divisor. Then (X, 0)
is a holonomic divisor.



Chapter 5

Algorithms and Examples

In this chapter we present a Las Vegas algorithm, which can reconstruct the defining
equation f of a quasi-homogeneous isolated hypersurface singularity from a zero-
dimensional C-algebra isomorphic to C{x}/J;. The algorithm can also be used to
check if a zero-dimensional C-algebra is isomorphic to C{x}/J;, where f defines a
quasi-homogeneous isolated hypersurface singularity.

We focus on quasi-homogeneous isolated hypersurface singularities, because they
admit enough structure which makes it possible to obtain the needed information.
A similar algorithm for the homogeneous case has been presented in [IK14]. The
main obstacle we have to overcome is the fact that in the quasi-homogeneous case
the weights of f, which is uniquely determined if ord(f) > 3, are not known. We
are going to use computational methods to not only recover the weights, but also to
show that maximal toral Lie algebras contained in Der , (C{x}) contain the informa-
tion needed to find a suitable coordinate system in which our defining polynomial is
quasi-homogeneous.

For basic computational aspects we refer the reader to [GP08] for an introduction to
Computer algebra and to [Gra00] for an algorithmic treatment of Lie algebras. We
start by presenting methods from linear algebra for vector fields and continue with
basic results regarding quasi-homogeneous isolated hypersurface singularities. An
implementation, in particular of Algorithm 10, can be found at https://github.com/
raulepure/reconstruction. j1. Algorithm 10 has been announced in [ERS17].

5.1 Linear Algebra for Vector Fields

In this section we want to extend methods from linear algebra, such as Jordan de-
composition and simultaneous diagonalization of matrices, to vector fields. These
methods allow us to obtain information about a coordinate change into a coordinate
system in which a maximal multihomogeneous system of generators exists as well as
to give us the corresponding weights. The methods we present work theoretically for
any analytic algebra, but they do not necessarily terminate in case we do not deal with
a zero-dimensional analytic algebra.

Let I C C{x} be an ideal generated by fi, ..., fi € C{x}. Then we can use syzygies to
compute Der;(C{x}).

99
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Lemma 5.1. Let I = (fi,..., fr) € C{x} be an ideal. Then Der;(C{x}) is isomorphic to
the projection of the first n components of syz(A), where the matrix A is defined as follows:

Oufi oo Oufi Fi oo fe O ... 0

A= € Mat(C{x},k x (n+1) - k).

Ouife oo Oufe O .o 0 Ffi .o fu

Using SINGULAR we can compute the aforementioned syzygies and we obtain vectors
in C{x}" which represent our vector fields. The next operation we need to apply
coordinate changes to these vector fields. We denote different systems of coordinates
by x,y and z. Let ¢ : C{z} — C{y} and ¢ : C{y} — C{x} be automorphisms and
denote by J, and Jy, their respective Jacobian matrices. Using the chain rule we can
write

Oz, = > Ouyipj(x) - Oy, (5.1)
j=1

Equation (5.1) yields
Vx=J,Vy. (5.2)

Equation (5.2) implies the following lemma.

Lemma 5.2. A be an analytic algebra isomorphic to C{x}. Denote by x,y and z three systems
of coordinates and let ¢ : C{z} — C{y}and ¢ : C{y} — C{x} be automorphisms. Then the
following hold:

(1) ongp - w (J(p) . Jw, IZTZd

(2) Jp1 = (™1 (Jy))

-1

Now we are able to transofrm vector fields which are represented by vectors.

Lemma 5.3. Let § € Der’;(C{x}) be represented by the vector V.= V(x) € C{x}" and let
¢ : C{y} — C{x} be an automorphism. Then

Viy) = (¢"'(V(x)" - Jp1 € Cly}™

Lemma 5.3 is formulated in this way, since the usual coordinate transformation is of
type yi = pi(x), but we want to express our vector field in terms of the y variables.
This show us that it is necessary to compute the inverse of an algebra morphism.
By the inverse function theorem we obtain that our morphism are invertible and the
inverse is a power series expression, even if the input is polynomial. At this point it
is important to work with a zero-dimensional algebra. Here, using the SINGULAR to
compute the highest corner of I, we obtain a bound & such that m* C I. The following
result gives us an algorithm to compute such inverse up to to a given bound.

Lemma 5.4. Let p € C[x|" and let I := (y; — 1(X), ..., Yn — on(x)) +m**1 C C[x,y],
where k € N is a given bound. Denote by G a reduced Grobner basis of I with respect to an
elimination ordering for x. Then  induces an automorphism of C[x]/m**1 if and only if there
exist ¢ € Cly|" and q1, . .., qm € Cly] such that

G = {ﬂfl —1/11(}’)7 y Im _¢n(y)7Q1v 7Qm}

In particular, if  induces an automorphism of C[x]/m**+1, then + induces the inverse map.
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Proof. See [Ess00, Theorem 3.2.1]. O

The algorithm looks as follows:

Algorithm 1 Inversion of Algebra Morphism in C[z]/m**!

INPUT: A C-algebra morphism ¢(x) defined by ¢; = ¢(z;) and a bound k € N>;.
OUTPUT: An automorphism ¢ (y) which is an inverse of ¢ modulo m*+1.

1: Compute generating set Q = {q1, ..., qn} of m*1.

2: Compute a reduced Grobner Basis G for the ideal I = (y1 — ¢1(X),...,yn —
on(x),q1,...,qm) C C[x, y] with respect to an elimination ordering for x.

3: return Y1 (y) := NF(z; | G), ..., ¥n(y) :== NF(z,, | G).

Lemma 5.4 implies the following proposition.

Proposition 5.5. Algorithm 1 terminates and works correctly.

Now we can describe how to compute the Chevalley decomposition of a vector field
and how to simultaneously diagonalize pairwise commuting diagonalizable vector
fields. We start with the simultaneous diagonalization. The theory for the Chevalley
decomposition will only be sketched, since it can be found in detail in [Sai71].

Remark 5.6. We assume from now on that all vector fields appearing in this section are con-
tained in Der’;(C|[x]]), where I C C[[x]] is an ideal.

We want to show how to algorithmically diagonalize a given finite set of pairwise
commuting and diagonalizable vector fields simultaneously. Define V}, := C[[x]]/m*
and denote the image of § under the projection Der’;(C[[x]]) — Endc(Vy) by dj. In case
01,...,0m is a set of pairwise commuting and diagonalizable derivations, also their
linear parts are pairwise commuting and diagonalizable. It is well known from linear
algebra, that we can find a linear coordinate change, such that the linear parts of the J;
are diagonal. We assume this setup from now on. Our goal is to show, that we can find
iterative coordinate changes of type y; = x; + h;, where h; is homogeneous of degree
[, such that we can write ¢; in the new coordinate system as §; = 0,0 + >, @;,i0y,
with ord(a;) > [ + 1, where | denotes the number of iterations. In terms of linear
algebra, this is equivalent to saying that a common eigenvector of 81k, ..., d,  lifts
under the canonical projection 7, : Endc(Vi+1) — Endc(Vi) to a common eigenvector
of 31, Etly--- ,Sm’k+1. We use the linear algebraic characterization to prove the result.

Lemma5.7. Let I C C|[[x]] bean ideal and b1, . .., 6y, € Der’(C[[x]]) be pairwise commuting
and diagonalizable derivations with diagonal linear parts 61, ...,0m0. Write 0; = 9,0 +
Yoy a0y, and assume ord(a;;) > 1 for some | € N>i. Then there exists a coordinate
change y; = x; + h; with h; homogeneous of degree 1, such that 6; = &;0 + Y _ry a0y, and
Ol"d((lj’@') >+ 1.

Proof. By assumption 01,...,0m; € Endc(V;) are diagonalizable. So it suffices to
show that the common eigerlspaces of 017+1,...,0m+1 map surjectively to the com-
mon eigenspaces of 01 ,...,d,,;. To see this we consider the following commutative

diagram:
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8041
Vigr —— Vi

ok

=2

Let w be a common eigenvector of 61 j4+1, . - ., O +1 With 6; 141 (w) = Ajw. Then
digom(w) =m 0841 (w) = Nm(w).

This computation shows that, if m(w) # 0, then m(w) is a common eigenvector of
01,05+ 0my With 6; (m(w)) = Aym(w). Since 7 is a surjection, the claim follows O

Lemma 5.7 yields the existence of a Cauchy sequence of coordinate systems (x(™),,cx
(in the m-adic topology). Denote the limit by z. By construction we obtain the follow-
ing result:

Theorem 5.8. Let I C C[[x]] be an ideal and 61, . ..,0,, € Der}(C[[x]]) be pairwise com-
muting and diagonalizable derivations with diagonal linear parts 619 = xD107, ... 0o =
xD,,0T. Then there exists a coordinate system z, such that 6; = zD;07 € Der;(C|[z]]) for
1=1,...,m.

It remains to state the algorithm on how to explicitly diagonalize a set of given vector
fields simultaneously up to a given degree bound k. In general the algorithm does
not terminate in a finite number of steps, because we have to consider our derivations
modulo all possible powers of the maximal ideal m. For the investigation in case of
zero-dimensional ideals a bound is sufficient, since we know that m* C I for some
keN >1-

We keep the notation from Theorem 5.8. Let y; = x; + h;, where h; is homogeneous of
degree | < k. Then

(5]' (yz) = (Sj (.%'Z + hz) = 630(.701-) + gJ(Z) (X) + (5j7()(hi) mod ml“, (53)

where g](-i) is homogeneous of degree [. Lemma 5.7 now tells us that we can find h;
in such a way that all g; + d;0(h;) = 0 for j = 1,...,s. Write W for the vector space

y) the representation matrix
of d;0 on W;. Let r = dimc(W;). From now on we consider the g§i) and h; as elements
of W;. Define

generated by all monomials of degree [ and denote by A

l
A
A(l) _ e CsTXr
AD
and ‘
g\
g’

Equation 5.3 now implies that finding a coordinate change such that the §; are diago-
nal modulo m'*! is equivalent to finding solutions h; of the linear systems of equations
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AWp; + g = 0. The pseudo code of the algorithm to compute a simultaneous diag-
onalization of vector fields looks as follows:

Algorithm 2 Simultaneous Diagonalization of Vector Fields

INPUT: 63,...,d5 € Der}(C[[x]]) pairwise commuting and diagonalizable, a degree
bound k € N>;.
OUTPUT: An automorphism ¢ € Aut;(C[[x]]), such that 6y, ..., d, are diagonal in the
coordinate system y = ¢(x), and the 41, .. ., d5 transformed with respect to ¢.
1: Compute a transformation matrix S € C"*", such that 41, ..., ;0 are diagonal.
2: Set p(x) = Sx and transform ¢, . . ., ds into the coordinate system y = ¢(x).
3: for! =2tok do
4 Compute the matrix A().

5: fori =1tondo

6: Compute the vectors g®).

7: Compute solutions h; of ADOp; + gl =,

8: end for

9: Define the map v via ¢ (z;) = z; + h;.
10: p=1o0p.
11: Transform 4y, . . ., ds into the coordinate system y = ((x).
12: end for

13: return p and 41, ..., J;.

The previous discussion as well as Theorem 5.8 imply the following proposition.

Proposition 5.9. Algorithm 2 terminates and works correctly.

The idea for the Chevalley decomposition of a vector field ¢ is to write § = """ | a;0x,
with a; € C[[x]] and to find coordinate changes such that a; is weighted homogeneous
with respect with respect to the weight vector A = (\q,..., \,) defined by the eigen-
values of the matrix M defining the linear part 6y = xM OT'. We obtain this iteratively
by first applying a linear coordinate change to bring A into Jordan normal form. Saito
has shown the following:

Lemma 5.10. Let I C C[[x]] be an ideal and 6 € Der’;(C[[x]]) be a vector field with linear
part &g, which is in Jordan normal form. Denote the weight vector defined by the eigenvalues
of 0o by A. Let | € N>o. Write 6 = > | (a; + b;)0y, and assume ord(a;;) > 1 for some
le Nzl.

(1) a; € C[x] is weighted homogeneous with respect to X and of degree < 1 — 1, and

(2) b; € C[[x]] is of order > 1.

Then there exists a coordinate change y; = x;+ h; with h; € Wy, such that, after the coordinate
transformation y; = x; + h;, we can write § = Y ;" (a} + b})0,, where

(1) o) € Cly] is weighted homogeneous with respect to X and of degree < I, and
(2) b, € C[ly]] is of order > 1 + 1.

Proof. This follows from [Sai71, Lemma 2.4]. O
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Lemma 5.10 yields a Cauchy sequence of coordinate systems in the m-adic topology.
Denote the limit by z and write 6 = )" | a;0,,. Let 69 = zJ 9T, where J € C*"*" is in
Jordan normal form. Let J = D+ N, where D is a diagonal matrix and /N is a nilpotent
matrix. Keeping this notation we obtain the following theorem.

Theorem 5.11. Let I C C[[x]] be an ideal and § € Der;(C[[x]]). Then there exists a coordi-
nate system z, such that:

(1) 6o =zJOT,
(2) 65 =zDIT,
(3) Oy =96 — dg, and

(4) [65,6n] = 0.

Proof. See [Sai71, Satz 3.1]. O

Now we present the algorithm. As in the case of the simultaneous diagonalization,
it suffices to use methods from linear algebra. We keep the notation of Lemma 5.10
and denote by W, , the vector space of all monomials of degree [ which are weighted
homogeneous with respect to A. Fix an integer [ € N>;. Due to the structure of the
Jordan normal form we have to distinguish the two cases

(1) do(x;) = Nizy, and

(2) do(zi) = zi—1 + ;.

In the first case we write
8(yi) = 0j(x; + hy) = a; + g (x) + do(h;) mod m'*1, (5.4)
and in the second case we write

8(yi) = 6;(x; + hi) = a; + g (x) + do(hs) + hi_1  mod m! L, (5.5)

Our goal is to find h;, such that x; := 6(y;) — a; — do(hi) € Wy x. Write U for a vector
space complement of W, \ in W; and write 7; for the canonical projection 7y : W; — U.
Denote the representation matrix of jp on U by A; and the vector representing ;
on U by g¥. Note that the fact that diagonal and nilpotent part commute implies
ADW; \ C W, Then x; is weighted homogeneous with respect to ), if and only if
7y (x:i) = 0. This yields the following algorithm:
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Algorithm 3 Chevalley Decomposition of Vector Fields

INPUT: 6 € Der/(C|[[x]]), a degree bound k € N>;.
OUTPUT: An automorphism ¢ € Aut;(C[[x]]), such that 65 = dp,s and oy = § — dg

modulo m**! in the coordinate system y = ¢(x).

1: Compute a transformation matrix S € C"*", such that dy is in Jordan normal form.
2: Set ¢(x) = Sx and transform ¢ into the coordinate system y = ¢(x).

3: forl =2to kdo

4 Compute the matrix A().

5: fori=1tondo
6: Compute the vectors gl®).
7: Compute solutions h; of A(l)ﬂ'U(hi) + g(i) = 0.
8: end for
9: Define the map v via ¢ (z;) = z; + h;.
10: p=1op.
11: Transform § into the coordinate system y = ¢(x).
12: end for

13: return ¢, 6,00 5 and .

The previous discussion and Theorem 5.11 imply the following proposition.
Proposition 5.12. Algorithm 3 terminates and works correctly.

Remark 5.13. Algorithm 2 and 3 have been implemented by Adrian Rettich under our super-
vision in the SINGULAR library VECFIELD.LIB. We can use this library to compute explicit
examples.

Example 5.14. We consider the ideal I = (2% + 2xy + y?,y*> — 22%y + 2*) C C[[z,y]]. A
SINGULAR computation shows that D = Der(Cl[x, y]]) is generated by the derivations

o= (y—9y*)0 + (~y +y* +2zy* +24°)0,
by = — (2% + 22y + )0,

63 = (—y* +v*)0, + (22%y + 22y® + y3 — y1)9,
6y = —(z + )0y + (2zy + 2y°0y)

Using the SINGULAR library VECFIELD.LIB we obtain that § = 1 is diagonalizable, 65 and
03 are nilpotent and that 64 decomposes into a diagonalizable and nilpotent part. The explicit
computation of does not terminate, but since m® C I, we obtain by truncation that the deriva-
tion 0 with the following Jordan—Chevalley decomposition:

6s = (—x—y—2xy — 2y* — 42’y — 122y° — 8y®)0, + (2zy + 2y* + day® + 4y3)9,
ON = (2zy + 2y% + 42y + 122y° + 8y®) 0, + (—4dzy® — 4y3)9,

is contained in D. Diagonalizing 61, up to degree 3, yields
(§1 == —x@x

with respect to the coordinate transformation ¢ : C[[x,y]] — C[[z,y]],z — y + v* + 22y* +
33,y — o+ y + 2y® + y3. We obtain o~ (I) = (22, y?). This means that I is monomial,
hence has maximal multihomogeneity 2. It holds that [61, ds] # 0, so we are not able to simul-
taneously diagonalize both derivations. This shows that, in view of Theorem 2.80, more work
has to be put into finding the two pairwise commuting diagonalizable derivations in D. We
cover more details regarding this topic in the next section.
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5.2 Computing Weights and Monomiality

This subsection serves two purposes. On the one hand side we want to present an al-
gorithm, which is able to check, whether a given hypersurface singularity (V' (f), 0) is
isomorphic to a non-reduced normal crossing divisor, that is isomorphic to
(V(z{* - ... 2%),0) for certain a; € N. The second purpose is to give a simple method
to obtain the maximal multihomogeneity of any ideal / C C|[x]] which is defined by
polynomials. As a byproduct we also obtain a check if a given ideal is of monomial

type or not. We use the results from Chapter 2 and basic results regarding Lie algebras.

Remark 5.15. Consider the canonical projection m; : Der(C[[x]]) — Der(C[[x]]/m?).
Throughout this section we define g := m1 (Der’;(C[[x]])) .

Due to Theorem 2.48 and Theorem 2.63 we obtain all possible weights of C[[x]]/I as
the eigenvalues of any maximal toral Lie subalgebra contained in g. Using one of the
corner stones of OSCAR, the computer algebra system GAP (see [19]), we are able
to perform computations with Lie algebras. The computation of a maximal toral Lie
subalgebra is based on [Gra00, Algorithm ToralSubalgebra]:

Algorithm 4 Maximal Toral Subalgebra

INPUT: A basis of a finite-dimensional Lie algebra £.
OUTPUT: A basis of a maximal toral subalgebra t C £.
1: Compute a Cartan subalgebra h C £.
2: Compute a basis B’ of the center of h.
3: Define L := 0.
4: forz € B' do
5: Compute the semi-simple part =, of x.
6
7
8
9

L =LU{xs}.
: end for
: Compute a basis B of the Lie algebra generated by L.
: return B.

Proposition 5.16. Algorithm 4 terminates and works correctly.

Proof. The correctness follows from [Humé67, Proposition 15.2]. The termination fol-
lows from the fact that all algorithms which are used, terminate, see [Gra00]. O

We obtain the following algorithm to decide whether an ideal is of monomial type or
not.

Algorithm 5 Is of monomial type

INPUT: An ideal I C C{x} generated by polynomials.
OUTPUT: 1 if I is of monomial type, 0 else.

Compute a vector space basis of g = 71 (Der’(C[[x]])) .
Use Algorithm 4 to compute a basis B of a maximal toral subalgebra t C g.
if |B| = n then
return 1.
else
return 0.
end if
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Proposition 5.17. Algorithm 5 terminates and works correctly.

Proof. The correctness follows from the fact that an ideal is monomial if and only if it
is invariant under a (C*)" action, which is equivalent to dim(t) = n. The termination
follows from the fact that all algorithms, which are used, terminate. ]

Let us consider an example.

Example 5.18. We continue Example 5.14. The Lie algebra g is generated by the matrices
0 1
= )
-1 -1
= (o)

It holds that [Ay, A2] = 0 and that both matrices are diagonalizable, so we obtain that the ideal
I is of monomial type, as we have already seen in Example 5.14.

Algorithm 4 also allows us to compute a maximal set of weight vectors for a given
ideal 1.

Algorithm 6 Maximal set of Weight Vectors

INPUT: An ideal I C C{x} generated by polynomials.
OUTPUT: A matrix M whose rows contain a maximal set of weight vectors for I.

Compute a vector space basis of g = 71 (Der’(C[[x]])) .

Use Algorithm 4 to compute a basis B of a maximal toral subalgebra t C g.
Simultaneously diagonalize the matrices of B and store them in a list L.

Denote by A € CIBI*" the matrix containing the diagonals of the matrices in L as
TOWS.

Compute M € CIB*"_ the reduced row echelon form of A.

6: return M.

o

Proposition 5.19. Algorithm 6 terminates and works correctly.

Proof. The termination follows from the fact that all algorithms, which are used, ter-
minate. The correctness up to Step 4 follows from the fact that we are considering
the eigenvalues of diagonalizable derivations. In order to obtain weights, we need
rational numbers. So it remains to show that M ¢ Q‘B|X”. Due to Theorem 2.24, we
know that the vector space spanned by the rows of A has a basis consisting only of
vectors with rational entries. This is equivalent to saying that we can find a ma-
trix U € GL(|B|,C), such that Q := U - A € QIB*", The matrices A and Q have
the same reduced row echelon form, which is given by the matrix M. Since comput-
ing the reduced row echelon form for ) involves only operations over QQ, we obtain
M e QIBIxn, O

Let us consider an example.

Example 5.20. Consider the ideal I = (22, 3y*+23,y22, 2°) C C[[x,y, 2]]. Using OSCAR we

obtain
1 00
M= (0 3 2) )

This shows us additionally that the ideal I cannot be of monomial type.
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5.3 Classifying Non-Reduced and Generalized Normal Cross-
ing Divisors

In the upcoming section we are going to state algorithms which classify non-reduced
normal crossing divisors and generalized normal crossing divisors. We start with the
algorithm for the classification of non-reduced normal crossing divisors, since it also
serves as a toy example to show how to perform computations over a finite algebraic
extension K of QQ instead of C, since symbolic computations on a computer cannot be
performed over C. For this algorithm, we assume that our singularity is defined by a
polynomial f € K[x].

Algorithm 7 Classify non-reduced normal crossing
INPUT: A polynomial f € K[x].
OUTPUT: 0, if f does not define a non-reduced normal crossing divisor, or a polyno-

mial g = z{* - ... 2% € L[x], where L is a finite extension of K.
1: Compute a vector space basis of g = m (Der’; (C[[x]])) .
2: Use Algorithm 6 to compute a basis B of a maximal toral subalgebra t C g.
3: if |B] < n then
4: return 0.
5. end if
6: Simultaneously diagonalize the matrices of B and denote the splitting field by L.
7: Denote by o the order of f.
8: Denote by h the o-jet of f.
9: Factor the polynomial h over L[x] and denote the exponents of the irreducible

factors by a;. If we have fewer exponents than variables we define the remaining
exponents to be 0.

10: return g = z{* - ... 2"

n

Proposition 5.21. Algorithm 7 terminates and works correctly.

Proof. The termination follows from the fact that all algorithms, which are used, termi-
nate. For the correctness we note that f defines a non-reduced normal crossing divisor
if and only if | B| = n. It remains to show why the computations over the splitting field
L of K are sufficient to obtain the exponents ay, . . ., a,. Note that Step 6 is the same as
the first step in Algorithm 2. From a theoretical point of view, we can use Algorithm 2
to compute a coordinate change ¢ € Aut;(C{x}), such that

{p(f) = (21t an). (5.6)

All computations in Algorithm 2 take place over the field L, in particular all coeffi-
cients of the defining equations of ¢ are in L. The equality of ideals in Equation 5.6
implies the existence of a unit u = ug + u; € C{x}, where uyp € C\{0} and u; € m,
such that

o(f)=u-af* ... xpm. (5.7)

In order to pass to a statement about f, we have to apply the inverse of ¢ to Equation
5.7. Since Algorithm 1 also performs all its computations over the field L, we obtain
that the defining equations of 1) := ¢! are contained in L. Denote by oy the order
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of f and by h the os-jet of f. Furthermore write 1); for the linear part of 1, that is
Y(z;) = ¥1(xi) + gi, where g; € m?. Applying ¢ and comparing components of equal
degree yields

h=wuo-¥1(z1)® ... Pr(@n)™. (5.8)

From Equation 5.8 we can read of, that the exponents of the factors of h are the expo-
nents a;. ]

Example 5.22. Consider the polynomial f = x22% + y?2% + 2252 + 223y22 + 2® + 26y2 €
Q{z,y, z}. Algorithm 6 implies that, after a coordinate change, f is defined by a monomial
over Q(i){x,y, z}. The order of f is 4, so it cannot define a normal crossing divisor. We obtain

h = 2222+ 22y% = (z +iy) - (x — iy) - 2°,
hence f defines a non-reduced normal crossing divisor.

Now we can state an algorithm to classify generalized normal crossing divisors.

Algorithm 8 Classify generalized normal crossing

INPUT: A polynomial f € C[x].

OUTPUT: 0, if f does not define a generalized normal crossing divisor, or a polyno-
mial g defining a generalized normal crossing divisor.

Compute J;, apply Algorithm 5 to Jy and store the result in m.
if m = 0 then
return 0.
end if
Compute a minimal generating set M of J;.
Definev:N = N,z +— [{m € M | ord(m) = z}
Create a list of tuples L = {(a,v(a)) | ord(m) = a for some m € M, }.
Define g := 0.
for (a,v(a)) € L do
Generate n, := Zfl) normal crossing divisors g4 1 ... gan, Of order a + 1 in
distinct sets %f variables.
1 g=g+ Zlga,i-
12: end for Z
13: return g.

[y
i

Proposition 5.23. Algorithm 8 terminates and works correctly.

Proof. The termination follows from the fact that all algorithms, which are used, ter-
minate. Correctness follows from Theorem 3.25. O

Example 5.24. Consider the polynomial f = —x2 + 2y — zy* + y> + abc + b*c + a®b +
a?b? € C{z,y,a,b, c}. Using OSCAR, we obtain that J is indeed of monomial type and using
SINGULAR we obtain that Jy is radical. A minimal generating set of Jy is given by

{z,y,bc + 3a2b + 2ab2, ac + 2bc + a3 + 2a2b, ab + b2}.

Considering the order of the elements, we obtain g = xy + abc as a normal form.
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5.4 Reconstructing QHIS from their Milnor Algebra

In this section we present a Las Vegas algorithm, which can reconstruct the defining
equation f of a quasi-homogeneous isolated hypersurface singularity from a zero-
dimensional C-algebra isomorphic to C{x}/J;. The algorithm can also be used to
check if a zero-dimensional C-algebra is isomorphic to C{x}/J;, where f defines a
quasi-homogeneous isolated hypersurface singularity.

We focus on quasi-homogeneous isolated hypersurface singularities, because they ad-
mit enough structure which makes it possible to obtain the needed information. A
similar algorithm for the homogeneous case has been presented in [IK14]. The main
obstacle we have to overcome, is the fact that in the quasi-homogeneous case the
weights of f, which are uniquely determined if ord(f) > 3, are not known. From a
theoretical point of view, we can compute this information from a maximal toral sub-
group of Aut¢(C{x}), as presented in Chapter 2.

5.4.1 More about QHIS

Basic theoretical properties have been presented in Section 1.5.2. Here we continue
with more specific theoretical results.

Due to Theorem 1.91 we have a relation between the weight vector, the weighted de-
gree and the Milnor number of a QHIS. In our algorithm the main task is to find pos-
sible weight vectors for f. Knowing a weight vector and the corresponding weighted
degree we obtain the Milnor number. The Milnor number on the other hand side
gives us a bound on the weighted degree. This implies that if we are given any weight
vector, knowing the corresponding weighted degree would help us to decide if this
weight vector can be a possible one for f. The key ingredient for this is to use the socle
of M f-

Definition 5.25. Let R be a local ring with maximal ideal wm and residue field k. The we define
the socle of R as
Soc(R) =0:m.

Remark 5.26. Note that Soc(R) = Hom(k, R).

In our setup we consider R = My, which is a zero-dimensional complete intersec-
tion ring. Due to [BH93, Proposition 3.1.20] R is a Gorenstein ring, so we obtain the
following result.

Proposition 5.27. Let f € C[x]| define an isolated hypersurface singularity.
Then dimg Soc(My) = 1.

Proof. This follows from [BH93, Theorem 3.2.10]. O

Denote by w the weight-vector of f. Then M} is quasi-homogeneous with respect to
the weight-vector w. Next we want to show that the socle of M can be generated by a
quasi-homogeneous element and that we can even compute its degree. Therefore we
need the following lemma.

Lemma 5.28. Let f € C[x] define a QHIS. Denote the Hessian matrix of f by Hg. Then the
following hold:
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(1) det(Hy) & Jy.
(2) For every g € C{x}\J; there exists an h € C{x}, such that
h-g—det(He) € Jy.
Proof. See [Sai74, Lemma 3.3]. O

In the upcoming statements we denote by g the image of g under the canonical projec-
tion C{x} — M. Now we can show the following.

Proposition 5.29. Let f € C[x| define a QHIS. Assume that f is quasi-homogeneous with
respect to the weight-vector w = (wy, . . ., wy) and has weighted degree d. Denote the Hessian
matrix of f by He. Then det(Hy) generates Soc(My). In particular, Soc(My) is generated by

an element of weighted degreen - d — 2 - > wj.
i=1

Proof. Let g € C{x}\Js be an element, such that Soc(M;) = (g)c. By Lemma 5.28
there exists an element h € C{x}, such that i - g = det(Hs). In case h € m we obtain
h - g = 0, which contradicts det(Hg) ¢ J;. Thus h is a unit and we can assume h € C*.
This implies that det(H¢) generates Soc(My).

The formula for the degree follows from the Leibniz-formula to compute the determi-
nant. O

The next object we introduce is the so-called highest corner of an ideal. This object
allows us to compute a bound for the determinacy of our isolated hypersurface sin-
gularity and it yields a monomial representative for the socle. We state the definition
only in the local case.

Definition 5.30. Let > be a local monomial ordering on the set of monomials Mon(x) and let
I C C[x]x) be an ideal. A monomial m € Mon(x) is called highest corner of I, if

(1) m ¢ L(I), and

(2) m' € Mon(x) with m’ < m implies m’ € L(I).

We obtain the following two results

Theorem 5.31. Let f € C[x] define a QHIS and fix a local ordering on Mon(x). Denote by
m; € Mon(x) the highest corner of m*Jy,i = 0,1,2. Then f is min(deg(m;) + 2 — ili =
0,1,2) determined.

Proof. See [GP08, Corollary A.9.7]. O

Proposition 5.32. Let f € C|x]| define a QHIS, fix a local ordering on Mon(x) and denote by
m € Mon(x) the highest corner of J¢. Then T generates Soc(Mjp).

Proof. First we note that m being a monomial means that m € L(Jy) if and only if
m € Jy, hence by definition v # 0. Let m’ € m be an arbitrary monomial. Since we
work over a local ordering we obtain m < 1, thus m’ - m < m’, hence by definition
m’ - m € Jy. This implies m - m C J; and thus 7 generates Soc(Mjy). O
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The standing assumption of this section, so far, was that we have our coordinates
chosen in such a way that f is quasi-homogeneous. Our final theoretical result is to
show that we can always find such a coordinate system. In fact it turns out that any
coordinate system in which a maximal Torus is linear, is sufficient.

Proposition 5.33. Let f € C{x} define a quasi-homogeneous isolated hypersurface singu-
larity. Let I C C{x} be an ideal, such that My = C{x}/I. For every maximal algebraic
torus T C Aut;(C{x}), which is linear with respect to the chosen coordinates, there exists a
quasi-homogeneous gt € I C C{x}, such that :

(1) (V(gr),0) = (V(f),0),and

(2) Jgy is T-equivariant.

Proof. Since My = C{x}/I, we obtain the existence of an isomorphism ¢ € Aut(C{x})
with ¢(Jy) = I. By Lemma 1.96 it holds that I = J, ). This means that we can
replace f with ¢(f) and we can reduce to the case I = J;. By quasi-homogeneity
of f we can assume that the coordinates x are chosen, such that f is defined by a
quasi-homogeneous power series. This implies the existence of an algebraic torus Ty,
which is linear with respect to the chosen coordinate system. Due to the fact that the
partial derivatives of f are also quasi-homogeneous, we obtain T; C Aut;, (C{x}).
Let T, C Aut,, (C{x}) be a maximal algebraic torus containing T s . Due to Corollary
2.46 any algebraic torus T C Aut,, (C{x}) is conjugated to T, this means there exists
¥ € Auty, (C{x}), such that

-1
T=yT,, ¢
Define gr := ¥(f) and T, := ¢ Ty ¢~'. Using the definitions we obtain

Tyr(gr) = Tr " (gr) = ¥ T(f) € Cgr.

This implies that gr is quasi-homogeneous with respect to the weights induced by the
characters of Ty, . In particular, it holds that gr € Jy. = Jy(y). Using Lemma 1.96 we
obtain that M, = M;. The Mather-Yau theorem now implies V (g1, 0) = V(f,0). By
construction J,, is T-equivariant. O

5.4.2 The Reconstruction Algorithm

After we prepared the theoretical foundation, we are able to show how an algorithmic
reconstruction works. The main idea is to recover candidates for the weight-vector
of the QHIS and to use Corollary 1.93. We start by presenting an algorithm to find
possible weight-vectors. The key to finding them is Algorithm 6 and some elementary
convex geometry, as it can be found in [Zie95].

We assume from now on, that we are in a coordinate system in which a maximal
torus T C Aut,,(C{x}) is linear. This can be achieved by using Algorithm 2. After
changing the coordinate system we can find candidates for our weight-vectors. Let M
be the output of Algorithm 6. We write I for the vector-space generated by the rows
of M. The following are known about the weight-vector wy = (wy,...,w,) and the
weighted degree d; :

(1) wy € Z% (see Theorem 1.89),
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(2) If the class of the monomial m € C[x] generates Soc(My), then deg,, (m) =

n-df—2- ; w; (see Proposition 5.32),
(3) dy < C -y, where C can be computed explicitly (see Theorem 1.91) and

4) py = H (i—i — 1) (see Theorem 1.91).

=1

The first property of wy allows us to restrict our considerations to the convex cone
n
Cr = WNRY, Assume m = [[ z;", then the second property combined with the
- i=1
third yields the inequation

wi-(a1+2)+ .. wy - (an +2) <n-C - py. (5.9)

Restricting C'y with inequation 5.9, we obtain a polytope P containing w; as a point.
For every point p = (p1,...,pn) € P we can use Proposition 5.32 to compute a candi-
date for the weighted degree of f, which we denote by d,,. We know that our weight-
vector can be chosen to be integral, so it suffices to consider weight-vectors, where the
gecd of the weights and the weighted degree is 1. Due to our previous arguments, it
suffices to consider the weights, which are in the following set:

i=1 v

~(d
A= {pEP|peZ”,gcd(p1,...,pn,dp):1and,uf:H<wé—1)}.

The algorithm to compute the set A looks as follows:
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Algorithm 9 Candidates for weight-vectors

INPUT: A zero-dimensional complete intersection ideal I C C{x} generated by poly-
nomials, a set L C Der;(C{x}) of simultaneously diagonal derivations, where |L| is
equal to the maximal multihomogeneity of I.

OUTPUT: A set A containing candidates for the weight-vectors of a possible polyno-
mial f satisfying M = C{x}/I.

: Let W be the vector space generated by the diagonals of the elements of L.
Compute 1 = dime C{x}/I.

Compute m, such that (m)¢c = Soc(C[x]/I).

Denote the exponents of m by ay, ..., ay.

Compute a bound d for the weighted degree d; using Theorem 1.91.

Compute the Polytope

P::WQR’%OH{(pl,...,pn)ER”|Zpi-(ai+2)§n-d}
i=1

7. A=10.
8 forpe PNZ" do

n

9.  Compute d, = ——=—

n

10: if ged(p1,....pn,dp) =land p = [] (Z—p — 1) then
i=1 N

11: A=AU{(p1,...,pn.dp)}.

12: end if

13: end for

14: return A.

Proposition 5.34. Algorithm 9 terminates and works correctly.

Proof. The termination follows from the fact that all algorithms, which are used, ter-
minate. Correctness follows from the discussion prior to the algorithm. O

Example 5.35. We consider the ideal I = (22,3y® + 23,y2%, 2°) C C{x,y, 2} as in Example
5.20. We already know that W is generated by the rows of

u=(o 5 )
Further OSCAR computations show that pn = 14,d = 53 is an upper degree bound and that
the polytope P C R3 is described by the equation
3r1 — 222 =0
and the inequations

159 > 6x1 + 225 + 3x3

OS I
0< T
OS I3

Reducing the integer points of P yields
A=1{(2,3,3,9),(2,3,4,10)}.
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Using Algorithm 9 we are able to state our reconstruction algorithm, which is based
on Proposition 5.33 and Corollary 1.93. The proposition guarantees the existence of
a polynomial g, which is right-equivalent to f, in case we are in a coordinate system,
where a maximal torus T acts linearly on J;. Algorithm 9 allows us the computation
of candidates for our weight-vector we are looking for. For each candidate p € A, we
can compute the set of monomials

M, = {m € Mon(C[x]) | deg,(m) = d,}.

Due to the positivity of the weight-vectors in A, the set M,, is finite. Denote its car-
dinality by k,. Let M, = {ma,...,my, } and J; be generated by fi,..., fr. Using
kP
syzygies, we can check for the existence of a1, ..., ax, € C,suchthatg, := > a;-m;is
i=1
right-equivalent to f. To see this, let 7 : C{x}*»*"* — C{x}*» be the projection to the
first k, entries. We compute

Sy = (sy2(E,)) N C*,

where
mi mkp f1 fk 0 ... 0 0O ... 0
8x1m1 8x1mkp 0o ... 0 f1 fk 0 0
E, = , : : :
8Inm1 &Enmkp 0o ... 0 0 0 fl fk

We know that for some p € A, S, cannot be empty, hence we can choose a generic
linear combination of a basis of S, and denote the result by a,. By construction of A,
the resulting polynomial g, satisfies j1,, = 1y, and by construction of a,, we obtain
gp € Jyand J,, C Jy. The genericity in the choice of a;, and Corollary 1.93 imply
that, if p is the correct weight-vector, g, defines an isolated hypersurface singularity.
Combining all these, we obtain an isomorphism of C-algebras between the Milnor-
algebras M,, and M. Due to the Mather — Yau theorem, this is equivalent to g, being
right-equivalent to f. This leads to the following algorithm:
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Algorithm 10 Reconstructing QHIS from their Milnor-algebra

INPUT: A zero-dimensional complete intersection ideal I C C{x} generated by poly-
nomials.

OUTPUT: A quasi-homogeneous polynomial g € C[x], such that M, = C{x}/I, or
false if none is found.

1: Compute g := Der; (C[x]).

2: Compute a toral Lie algebra t of g.

3: Use Algorithm 2 to simultaneously diagonalize the basis of t and store the result
inalist L.

Denote the coordinate change for the simultaneous diagonalization by ¢.

Define I := ¢(I).

Compute the set A by applying Algorithm 9 to L.

Compute m, such that (m)c = Soc(C[x]/I).

forp € Ado

n

deg, (m)+2- 3~ pi
9: Compute dj, = ——=—.

1. Compute M, = {m € Mon(C[x]) | deg,(m) = dy}.
11: Let M, = {my,...,my,}.

12: Compute a basis for the vector-space S),, which is defined as in the previous
discussion.

13:  if S, # 0 then
kp

14: Choose a generic 0 # a, € S, and construct g, := ) a; - m;.
i=1

15: if g, defines an isolated singularity then

16: return g,.

17: end if

18: end if

19: end for

20: return false

Proposition 5.36. Algorithm 10 terminates and works correctly.

Proof. The termination follows from the fact that all algorithms, which are used, ter-
minate. Correctness follows from the discussion prior to the algorithm. O

We consider three examples.

Example 5.37. We continue Example 5.35. We have seen already that | A| = 2, so only few
tests have to be done. In our case Algorithm 10 returns, for example,

g = —3823+62- (3 +y2°).
This implies C{x}/I = M.
Example 5.38. We consider the ideal I = (x? + y? + 322,3y? — 222 + 922,222 + 2yz —
922 4yz? — 923, 21 C{x,y, 2}. We obtain p = 8,d = 30 and A = {(1,1,1,3)}. Algorithm

10 returns, for example,

g = 302> + 30y> + 30222 + 30y%z + 3023.
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Example 5.37 and Example 5.38 have been positive results. The next example is going
to be a negative result, which shows that not all quasi-homogeneous zero-dimensional
complete intersections arise as Milnor algebras of QHIS. Before we state the example,
we consider the following theorem due to Yau.

Theorem 5.39. Let I = (fi,..., fr) C C{x} be an ideal with homogeneous generators
fi,.-., fr, where 1 <k <n.Assume that fi,..., fi are of degree d € N>o. Then there exists
a g € C{x} with J, = I if, and only if there exist homogeneous polynomials Fy, ..., F, €
C[x] of degree d and a matrix B € CF*™ of rank k, such that

P bil
c|=B-|: (5.10)
Fn fk
and such that
Oy, Fj = 0y Fiforall 1 <i,j <n. (5.11)
Proof. See [Yau87, Theorem 5]. O

Example 5.40. Consider the ideal I = (f1, fa, f3) C C{x,y, 2z}, where

fi = 423 + 2%y — bxy? + 2y° — 3222 — 3axyz + 4y°2 + 2022 4 3y2? — 223
fo= a3+ 2%y —bxy? — 5y° — 42?2 + bayz — 3y?z + br2? + y2? + 323
f3= —5x3 — bay? + 3y — 2xyz — 2%z + dxz? + 2y2? — 223

As invariants we obtain p = 27,d = 102 and maximal multihomogeneity s = 1. For this
example Algorithm 10 returns false. So far, this result does not mean too much, since our
algorithm is a Las Vegas algorithm. This implies that we need to prove that C{x} /I cannot be
the Milnor algebra of a QHIS. We apply Theorem 5.39. I is homogeneous, since it has three
homogeneous generators. Equation (5.10) and Equation (5.11) in Theorem 5.39 are equivalent
to solving a linear system of equations to determine, whether a matrix B € C3*3 exists in
our case. Using for example OSCAR we obtain that such a matrix B cannot exist, hence there
exists no f € C{x}, such that My = C{x}/I.
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Chapter 6

On Singularities of
Sebastiani-Thom type

In the upcoming chapter we are going to establish a connection between the property
of being a Sebastiani-Thom singularity in case of quasi-homogeneous hypersurface
singularities and the maximal multihomogeneity of their singular locus. To be more
precise, we investigate the following conjecture:

Conjecture 6.1. Let f € C{x} define a quasi-homogeneous isolated hypersurface singular-
ity. Then (V(f),0) is of Sebastiani—Thom type with quasi-homogeneous Sebastiani—Thom
components if, and only if, the maximal multihomogeneity of J; is at least 2.

We show the following:

Theorem 6.2. Let f € C{x} be a quasi-homogeneous isolated hypersurface singularity with
respect to the weight-vector w € NZ. Assume that J; is multihomogeneous with respect to
w and v € Q"\{0}, where w and v are linearly independent, and that one of the following
properties holds:

(a) Jy is of monomial type.

(b) w satisfies, after possibly permuting the variables,

w1

(c) w satisfies, after possibly permuting the variables,
w1
Wy 2> ... > Wy > >

andv =(1,...,1).
(d) n<3.

Then (V(f),0) is of Sebastiani—Thom type with quasi-homogeneous Sebastiani—Thom compo-
nents.

The rest of this chapter is concerned with the proof of Theorem 6.2. We start at this
point by reducing first to the case that ord(f) > 3.

119
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Proposition 6.3. Let f € C{x} define a quasi-homogeneous isolated hypersurface singular-
ity. Assume ord(f) = 2. Then (V(f),0) is of Sebastiani—Thom type with quasi-homogeneous
Sebastiani—Thom components.

Proof. By the Splitting Lemma (see Lemma 1.80) we know that f is right-equivalent
tox? +... + 22 + g € C[x], where g € C{zy41,...,7,} defines an isolated hyper-
surface singularity and ord(g) > 3. We obtain the isomorphism of Tjurina-algebras
Ty = Tg. In particular, T} is positively graded, since f is quasi-homogeneous. It fol-
lows from [XY96, Theorem 1.2] and Theorem 1.83 that g is right-equivalent to a quasi-
homogeneous polynomial h € C{zy41,...,z,}. Thus (V(f),0) is of Sebastiani-Thom
type with quasi-homogeneous Sebastiani-Thom components. ]

Remark 6.4. Proposition 6.3 justifies to consider Theorem 6.2 only for the case ord(f) > 3.

For the next result, we need the following definition.

Definition 6.5. Let f € C{x}. We say f defines a Brieskorn—-Pham singularity, if there
exists integers ay, . .., a, € N2, such that f is right-equivalent to x{* + ... 4+ zl.

Theorem 6.2 (a) follows from the following proposition.

Proposition 6.6. Let f € C{x} define an isolated hypersurface singularity. Assume J; is of
monomial type. Then f is a Brieskorn—Pham singularity.

Proof. Since J; is of monomial type, there exists an isomorphism ¢ € Aut(C{x}),
such that p(Jy) = J,(y) is monomial. Since J,,( sy defines a zero-dimensional complete

intersection ideal, we obtain that it is generated by «7*, ..., 2% for certain ay, ..., a, €
NZ,. Then g = (! 4 ... 4 28! satisfies J, = Jo(p)- By Theorem 1.83 f is right-
equivalent to g, hence f defines a Brieskorn-Pham singularity. O

6.1 Proof of Theorem 6.2 (b) and (¢)

Before we prove our result, we state a characterization of a zero-dimensional algebra
to be the Milnor algebra of a quasi-homogeneous isolated hypersurface singularity.

To prove our result we need the following version of the Poincaré-Lemma:
Lemma 6.7. Let Fy, ..., F, € C{x} with

forall 1 <i,j <mn.Then there exists an f € C{x}, such that F; = 0,, f.

Furthermore, we need the following auxiliary lemma, which is part of the proof of
[Yau87, Theorem 2]:

Lemma 6.8. Let f € m C C{x}. Assume that there exists a weight-vector w = (wy, ..., wy) €
2, such that the partial derivatives of f are w-homogeneous.
Then f =37, WM@@M f. In particular, f is weighted-homogeneous.
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Proof. The result follows immediately from the following computation:

1 d n W
= [ = f(tW ... tYrxy,)dt = : Oz, f.
d /odtf( o o) ;degw(azif)erz'x o
O

Using the Poincaré-Lemma and Lemma 6.8, Yau (see [Yau87, Theorem 3]) proved the
following theorem:

Theorem 6.9. Let I C C{x} be an ideal and w = (w1, ..., wy,) € NZ. Then A := C{x}/I
is the Milnor-Algebra of a w-homogeneous hypersurface singuarity f € C{x} if and only if I
is generated by I, ..., F,, € C{x} with the following properties:

(1) the F; are weighted-homogeneous with respect to w,
(2) Oy, F; = 0y, Fj forall 1 <i,j <n,and
(3) Oy, f =Fiforalll <i<n.

Remark 6.10. Let f € C[x]| define a quasi-homogeneous isolated hypersurface singularity,
which is weighted-homogeneous with respect to the weight-vector w = (wz, ..., wy,) € NZj.
Furthermore, we assume that the partial derivatives of f are weighted homogeneous with re-
spect to w and to an additional weight-vector v = (v1,...,v,) € Q"\{0}, where w and v
are linearly independent. By adding a sufficient multiple of w to v, we can assume v; > w;
forall 1 < i < n. By choosing k with vy — wy < v; — w; for all i # k and scaling v by %,
we can additionally assume that vy, = wy,. This assumption implies, by using Lemma 6.8, that
deg, f > deg,, f forall f € C[x].

Now we are able to prove a weak version of our result.

Proposition 6.11. Let I C C{x} be an ideal and w = (wq,...,wy,) € NZ,. Then A :=
C{x}/I is the Milnor-Algebra of a w-homogeneous isolated hypersurface singularity f €
C{x} of Sebastiani-Thom type with quasi-homogeneous Sebastiani—Thom components if and
only if I is generated by F\, ..., F, € m? with the following properties:

(1) I is zero-dimensional and there exists a v € Q"\{0}, where w and v are linearly inde-
pendent, such that the F; are multihomogeneous with respect to w and v, and

(2) 0y F; = 0, Fj forall1 <i,j <n.

Proof. We show the "if" direction, since the other direction is trivial.

Due to Theorem 6.9 there exists a w-homogeneous f € C{x} satisfying J,, f = F; for
1 <i < n. In particular, it holds that ord(f) > 3. By assumption f defines an isolated
hypersurface singularity, since I is zero-dimensional. Due to Remark 6.10 we assume
that v; > w; and that there exists an index k, such that v, = wj. By assumption,
the partial derivatives of f are w-homogeneous, as well as v-homogeneous. Due to
Lemma 6.8 and due to the uniqueness of the weights of f, see Theorem 1.89, we obtain

wj Uj

deg (0o f) +w;  degy (D, f) + v;

6.1)
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for all 1 <7 < n.For any index k with wy, = v, Equation (6.1) implies

Assume 92, f # 0. For any 1 < < n with v; > w; Equation (6.2) yields

degw(aa%i,xk f) - degw(alk f) —w; > degv<8$kf> — U= degv(ai,xk f) (6.3)
Inequality (6.3) and Remark 6.10 yield a contradiction, hence
92 f=0.

Ty Tk

This means that the partial derivatives with respect to variables x;, which satisfy w;, =
v, do not depend on variables z; with v; > w; and vice versa. We reorder the x
variables together with the corresponding weights, such that v; = w; for1 < i < r
and v; > w; for r +1 < i < n. Under our assumptions, Lemma 6.7 and Lemma 6.8
imply the existence of w-homogeneous fi(z1,...,z,) and fo(xyy1,...,xy), such that
Oz, f1 = Oy, ffor1 <i <rand 0y, fo = Oy, f for r+1 < i < n. This proves the claim. [

The main problem with Proposition 6.11 is that the statement is highly coordinate
dependent. We aim to prove a coordinate independent version, which holds under
stronger assumptions on the weights.

Theorem 6.12. Let f € C{x} be a quasi-homogeneous isolated hypersurface singularity with
respect to the weight-vector w € NZ. Assume that J; is multihomogeneous with respect to
w and v € Q"\{0}, where w and v are linearly independent, and that one of the following
properties holds:

(1) wy > ...>w, > G
2 w1 >...>2w,>Fandv=(1,...,1).

Then (V(f),0) is of Sebastiani—Thom type with quasi-homogeneous Sebastiani—Thom compo-
nents.

Proof. Denoteby d = deg,, (f) the w-degree of f. Furthermore, we assume that deg,, (F;) =
degy, 0z, f) = d—w; for 1 < i < n.Write 0y, f = >_7_, a;; Fj. Due to the w-homogeneity,
we obtain

degw(aij) = Wj; — W;. (64)

The fact that w; > ... > w, together with Equation (6.4) imply that the matrix A =
(a;j) € C{x}"*" is an invertible, lower triangular matrix. Both assumptions imply

wj — w; < 2Wp — Wy, = W,

hence the matrix A has only constant entries.

In case wy > ... > wy, the matrix A is diagonal, so the partial derivatives of f are
already multihomogeneous and we can apply Proposition 6.11.
In case w; > ... > wy,, the matrix A is block diagonal, where the size of the blocks

corresponds to the number of weights with the same value. Since A is invertible, the
linear coordinate change ¢(x) = (A7) ~!x combined with Lemma 5.3 implies that ¢(f)
is w-homogeneous with v-homogeneous partial derivatives. Yet again we can apply
Proposition 6.11.

O]
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6.2 Proof of Theorem 6.2 (d)

Theorem 6.13. Let f € C{z,y,z} be quasi-homogeneous and of order > 3. Assume f
defines an isolated hypersurface singularity. Then f is of Sebastiani—Thom type if and only if
the maximal multihomogeneity of Jy is at least 2.

The proof will be split into a rigorous case by case analysis taking into account possible
cases for the ordering of the weights of f. The following sections then will deal with
the respective proofs of the subcases.

Remark 6.14. Throughout this chapter, we will always assume that f is given in a coordinate
system, in which it is quasi-homogeneous with respect to the weights w1, wa, w3.

Notation 6.15. We assume that the Jacobian ideal J; is generated by multihomogeneous poly-
nomials hy, ha, and hs. We can assume this, due to Proposition 5.33. The maximal multiho-
mogeneity of J¢ will be denoted by s. Supp( f) denotes the monomial support of f.

The main idea of the upcoming computations is to consider the monomial diagram
of the monomial support Supp(f) for the defining equation f € C[z,y, z]. We use the
fact that being quasi-homogeneous implies that the exponents of all monomials in
Supp(f), considered as points in R? lie on one hyperplane H. In a next step we con-
sider the minimal multihomogeneous generating set {h1, ha, h3} of J¢. By assumption
we have maximal multihomogeneity s = 2, hence the exponents of the monomials
of the h; lie on lines L; in R3, with the feature, that the lines L1, Lo, L3 are pairwise
parallel. We use this fact, to show that f cannot contain a monomial of type x%y"z¢ for
a,b, ¢ € N5, in a suitably chosen coordinate system. Since a line L in R? is determined
by a point p € L on the line and a vector v € R3, determining the direction of the line,
we introduce the following definition.

Definition 6.16. Let h € C[z,y, 2| be a multihomogeneous polynomial with | Supp(h)| > 2.
Assume that p = (p1, p2,ps) and q = (q1, g2, q3) in R3 are different exponents of monomials
of h. Then we say that the vector v = p — q is a direction vector of h.

The proof relies on a case by case analysis of the weights and of the exponents of f.

6.3 The case w; = wy = w3 =1
The first case we are dealing with is the homogeneous case. We start with the follow-
ing auxiliary lemma.

Lemma 6.17. Let f € Clz, y, z| define a homogeneous isolated hypersurface singularity with
deg(f) = d > 3and s = 2. Then the following hold:

(1) There exists a multihomogeneous set of generators hy, ho, hs of J; with deg(h;) = d—1.

(2) There exists an invertible matrix M € C3*3, such that

fac hl
fy =M | hy

fz h3
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Proof. The first result follows immediately from Proposition 3.9. The second result
follows from elementary linear algebra. O

In a first step we are going to reduce to the case that J; is multihomogeneous with
respect to the weight vectors v; = (1,1,0) and v2 = (0,0, 1). If this were not the case,
we can assume that, after renumbering the variables, J; is weighted homogeneous
with respect to the weight vectors v; = (1,1,1) and v2 = (w,1,0) fora w € Qs;. In
this case we are able to show the following;:

Lemma 6.18. Let f € Clz,y, 2] be a homogeneous isolated hypersurface singularity with
deg(f) = d > 3 and assume Jy is weighted homogeneous with respect to the weight vectors
v1 = (1,1,1) and vy = (w, 1, 0) for some w € Q. Then f is of Sebastiani—Thom type.

Proof. Lemma 6.17 implies that all monomials appearing in Supp(9,.f), Supp(9, f) and
Supp(0; f) are also appearing in Supp(h1 ), Supp(h2) and Supp(h3). Note that by Lemma
1.87 {41, y?=1 2471} C Supp(d, f)USupp(d, f)USupp(d, f), hence {z?~1, y4-1 24-1} C
Supp(h1)USupp(ha)USupp(hs). Due to this we can assume that deg,, (h1) = deg,,, (z47?)
w(d—1),deg,, (h2) = deg,,(y*"!) = d—1and deg,, (h3) = deg,, (2?~!) = 0. We show in
multiple steps, that no monomial of type z%y°, y°2¢, 2%y*2¢ with a, b, ¢ > 1 is contained
in the support of f. This shows, that f is of Sebastiani-Thom type.

Step 1: We show that no monomial of type y°2¢ with b, ¢ > 1 is contained in the sup-
port of f. Assume the contrary.

The assumptions imply in particular 1 < b < d — 1. Then y*~'2¢ € Supp(d, f) and in
particular y*~12¢ € Supp(h;) for some i = 1,2, 3. It holds that

0<b—1=deg,,(y’2°) <d—1.
This implies b = 1 and ¢ = d — 1, hence yz9=2 € Supp(9. f). Next it holds that
0< degv2(yzd_2) =1<d—-1,

hence 529! ¢ Supp(h;) for i = 1,2, 3, which is a contradiction.
Step 2: We show that no monomial of type 2%y’ with a,b > 1 is contained in the sup-
port of f. Assume the contrary.
The assumptions imply in particular 1 < b < d— 1. Then 2% !4®, 2%9y*~! € Supp(d, f)U
Supp(9y f) and in particular 221yt x%b~1 are contained Supp(h;) for certain i =
1,2, 3. It holds that

O<w(a—1)+b<wa+b-—1.

This implies deg,, (zy*~') = w(d — 1), since we obtain a contradiction otherwise.

Using that a + b = d, we obtain a = d — 1 and b = 1. On the other hand, in order to
avoid a contradiction, we obtain

d—1=deg,,(z* ') = w(d —2) + 1.

This equation implies w = 1, which contradicts w > 1.
Step 3: We show that no monomial of type z%yb2¢ € Supp(f) with a,b,c > 1 is con-
tained in the support of f. Assume the contrary.

a

Then 2%°2¢~! € Supp(9, f) and in particular x%y°2~! € Supp(h;) for some i = 1,2, 3.
It holds that

deg,, (h1) = w(d — 1) > wa + b = deg,, (z“y’z°"") > 0.

We consider two subcases:
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(1) Assume that deg,,(h1) = deg,, (zy’2°"!). Then a + b < d — 1 implies that a =
d—1,b =0and ¢ = 1. This contradicts b > 1.

(2) Assume that deg,, (hs) = deg,, (z*y*2°"') = d — 1. Then 2% 1y*2¢ € Supp(d,f)
and in particular 2~ !y*2¢ € Supp(h;) for some i = 1,2, 3. It holds that

deg,, (ho) = deg,, (x9N =wa+b>wla—1)+b= deg,, (2% Lyb2).

This implies w(a — 1) +b = 0, hence a = 1,b = 0 and ¢ = d — 1. This contradicts
b>1.

O]

Due to Lemma 6.18 we can assume that J; is multihomogeneous with respect to the
weight vectors v; = (1,1,0) and v2 = (0,0, 1).

Being weighted homogeneous with respect to vy implies h; = 2% - g;(z,y) with k; € N
and g; € Clz,y]. In order to prove that f is of Sebastiani-Thom type, we need the
following lemmas.

Lemma 6.19. Let f € Clz,y, 2] be a homogeneous isolated hypersurface singularity with
ord(f) > 3,s = 2 and assume that Jy is weighted homogeneous with respect to the weights
v1 = (1,1,0) and v = (0,0, 1). Furthermore, denote by hy, ha, hs a multihomogeneous
system of generators of Jy. Then, after possibly renumbering the h;, hy = hy(x,y) and hy =
ho(z,y). In particular, it holds that ks > 2.

Proof. 1f k; > 0 for more than one index ¢, then f does not define an isolated singu-
larity, hence we can assume without loss of generality that h; = hi(z,y) and hy =
ha(z,y). The fact that f defines an isolated singularity also implies in this case that
ks > 0. Furthermore, Lemma 1.87 implies that either 2" ™!, 2"z, 2"y € Supp(f) with
r > 2. The fact that by = hi(z,y) and hye = ha(z,y) implies together with Lemma 6.17
that k3 > 2.

O

Lemma 6.20. Let f € Clz,y, 2] be a homogeneous isolated hypersurface singularity with
ord(f) > 3,s = 2 and assume that Jy is weighted homogeneous with respect to the weights
v = (1,1,0) and vy = (0,0,1). Furthermore, denote by hy, ha, hy a multihomogeneous
system of generators of J. Then hg = 23, 2%s ¢ Supp(f,) and z*3 ¢ Supp(f,).

Proof. By Lemma 6.19 we assume that h; and hy do not depend on the z-variable. Let
zlyi2* € Supp(hs) for i, j € N. We first show that 2%y 2*3 ¢ Supp(f,) U Supp(f,). We
consider two cases:

Case 1: z'y/ 2" € Supp(f.).

Then z™1y2#3~1 ¢ Supp(f.). In this case f, is a sum of at least two elements with
non-zero vo-degree, since k3 > 2 by Lemma 6.19. This contradicts Lemma 6.17.

Case 2: z'y/ 2% € Supp(f,).

This case works analogously to Case 1.

Next we show that if either i > 0 or j > 0, then 2'y/2% ¢ Supp(f.). We can assume
without loss of generality that i > 0. Assume the contrary, that is z'y/ 23 € Supp(f.).
Then z~1yJ2#3+1 ¢ Supp(f,). In this case f, is a sum of at least two elements with
non-zero vp-degree. This contradicts Lemma 6.17. This shows that h3 = 2ks and that

zks ¢ Supp(fx) U Supp(fy).
0
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The next step is to show that we can give more structure to the matrix M in Lemma

6.17 in case h; and hy do not depend on the z-variable and in case h3 = 2"3.

Lemma 6.21. Let f € Clx,y, 2] be a homogeneous isolated hypersurface singularity and
assume Jy is weighted homogeneous with respect to the weights vi = (1,1,0) and vy =
(0,0,1). Furthermore, denote by hi, ha, hs a multihomogeneous system of generators of J.
Assume that hy = hy(x,y), ho = ho(x,y) and hz = z*3. Then, after a suitable linear change
of coordinates,

o 1 0 0\ /M

Hl=10 1 0] |h

Iz Br B2 Bs) \hs

for some 3; € C.

Proof. Due to Lemma 6.20 we can assume the matrix appearing in Lemma 6.17 to be
mi1 Mmag 0

M= |ms mg 0 |.Thesubmatrix M’ := <
ms Mg My

is invertible. We consider a linear coordinate change of type

my Mma

> of M is invertible, since M
ms3 My

o(z,y,2) = (a17 + a2y, asx + aqy, 2)

with a; € C. Note that this type of coordinate change does not affect the homogeneity
of f or the multihomogeneity of J;. We show that we can determine certain values for
the a; € C, in order to obtain the desired shape of the matrix. Define

a a ap az 0
A= (al a2> and B:= a3 a4 O
8 0 0 1

We use that ¢ being a coordinate change is equivalent to A and B being invertible.
Applying the chain rule to f'(z,y,2) = f o ¢ = f(aiz + a2y, asx + a4y, z) and using
Lemma 6.17, we obtain:

f frop hiogp T hiogp
f?; = BT fyop =BTM ho o :<mA]\T{L 77(1)> hg o
fl frop hs o 5 6 7 hs o

Choosing the a; such that AT = (M’)~! we can define 3 := ms, 32 := mg and f5 :=
my7, and we obtain our desired result. O

Now we can show that f is of Sebastiani-Thom type.

Proposition 6.22. Let f € Clx, y, z| be a homogeneous isolated hypersurface singularity with
ord(f) > 3,s = 2 and assume that J; is weighted homogeneous with respect to the weights
v1 = (1,1,0) and vy = (0,0, 1). Then (V(f),0) is of Sebastiani—Thom type.

Proof. By Lemma 6.19 and by Lemma 6.20 can assume that hy = hi(x,y), ho = ha(z,y)
and hs = z"3. Due to Lemma 6.21 it holds that

Oyhy = Oyhy.

Then Lemma 6.7 implies that there exists a ¢ € C{z, y}, such that 0,9 = hy and 9,9 =
hy. Define F = g(z,y) + 2***1 Then Jr = J;, hence the Mather—Yau theorem implies
that (V(F),0) = (V(f),0) is of Sebastiani-Thom type.

O]
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6.3.1 The case w; > wy > w3

Lemma 6.23. Let f € Clz,vy, z] be a QHIS with weights w = (w1, w2, ws), where wy >
wy > ws and assume s = 2. Then the following hold:

(1) f, is multihomogeneous with respect to the weights of J;.

(2) There exist g1, g2 € Cly, z] and g3 € Clz], such that

fy=91fa + heand f. = g2 fo + gsha + hs.
In particular we can always assume hy = f,.

Proof. The inequality w; > ws > w3 combined with Proposition 3.7 implies

degw(fm) = degw(hl) < degw(fy) = degw(hQ) < degw(f?:) = degw(h?’)'

We also know that

degw(fl‘) + w1 > degw(fy)7 degw(fZ) and degw(fy) + w2 > degw(fZ)' (65)

Using these inequalities we can prove the statements:

(1) Proposition 3.7 implies that there exists an a € C\{0}, such that h; = af,. This
immediately implies that f, is multihomogeneous with respect to weights of J;.

(2) Proposition 3.7 also yields the existence of g € m and a; € C\{0}, such that
fy = 91fz + a1he. Equation (6.5) implies g; € (y,z) C Cly, 2]. Since a; # 0, we
can assume a; = 1 after a coordinate change of type ¢(z,y, z) = A(x,y, z), which
does not affect the quasihomogeneity of f and the multihomogeneity of J¢. Then
we obtain

fy = glfm + ho,

with g1 € Cly, z]. The same reasoning implies the analogous result for f,.

O]

The first step is to show that no monomial of type 2%y°2¢ with a,b,c¢ > 1 occurs in f. In
order to do so, we prove some lemmas assuming such a monomial exists in Supp( f).

Lemma 6.24. Let f € Clz,y, 2] be a QHIS with weights (w1, ws,ws),ord(f) > 3 and
assume that there exist a, b, c € N>1 with 2%y?2¢ € Supp(f). Then the following statements
hold:

(1) If y?™' € Supp(f) for some q € N, then y? € Supp(hs).

(2) y9z ¢ Supp(f) for any ¢ € N.

(3) If y?*tz € Supp(f) for some q € N, then y?z € Supp(hz).

Proof.
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(1) Lety?™ € Supp(f). Assume y? ¢ Supp(hz), then f, = g1(y, 2) f, + h implies the
existence of an [ € N>9, such that y' € Supp(f,). Now we have to consider three
cases:

(a) If P! € Supp(f), then a direction vector of f, is
u=(a—1,b,¢)— (p,0,0) = (a—1—p,b,c)
and in the same way
' = (a—1,b,c)—(0,1,0) = (a—1,b—1l,c).

The vector u cannot be parallel to «’, since the last components are equal,
butb > b—1.

(b) If 2PT1y € Supp(f), then a direction vector of f, is
u=(a—1,b,c)— (p,1,0) =(a—1—p,b—1,¢)
and in the same way
v =(a—1,b,c)—(0,1,0) = (a—1,b—1,c).

The vector u cannot be parallel to v, since the last components are equal,
butb—1>b-1.

(c) If 2Pz € Supp(f), then a direction vector of f, is
u=(a—1,b,¢c)— (p,0,1)=(a—1—p,b,c—1)
and in the same way
v =(a—1,b,c)—(0,1,0) = (a—1,b—1,c).

The vector u cannot be parallel to «/, since ¢ > ¢ — 1 and v = A’ imply
1> X >0, contradicting b > b — [.

All cases are impossible so y? € Supp(hz).

(2) If yix € Supp(f), then y? € Supp(f,), which is impossible due to the proof of
part (1).

(3) Let y7™'z € Supp(f). Assume y?z ¢ Supp(hs), then f, = g1(y, 2) f + ho implies
the existence of an | € N1 with y'z € Supp(f.). We are going to proceed as in the
proof of (1) by showing that direction vectors cannot be parallel. To assure that
the direction vectors we deal with are not equal to (0, 0,0), we have to assume
l#bora>1lorc> 1 Thecasea = ¢ = 1and ! = b is treated separately. We
have to consider three cases:

(@) If P! € Supp(f), then a direction vector of f, is
u=(a—1,b,¢)— (p,0,0) = (a—1—p,b,c)
and in the same way
v = (a—1,b,c)—(0,1,1)=(a—1,b—1,c—1).

Both vectors are different from (0,0,0), sincel # bora > 1 or ¢ > 1. u can-
not be parallel to v, since ¢ > ¢ — 1 and u = A\v/ imply A > 1, contradicting
a—1>a—1—p.
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(b) If 2P*1y € Supp(f), then a direction vector of f, is
u=(a—1,b,¢c)—(p,1,0)=(a—1—p,b—1,¢)
and in the same way
w = (a—1,b,c)—(0,1,1)=(a—1,b—1,c—1).

Both vectors are different from (0,0, 0), since since l # bora > 1 or ¢ >
1. u cannot be parallel to v/, since ¢ > ¢ — 1 and u = A/ imply A > 1,
contradictinga —1>a —1—p.

(c) If 2PT12 € Supp(f), then the direction vector of f, is

u=(a—1,b,¢)— (p,0,1) = (a—1—p,b,c—1)
and in the same way
w' = (a—1,b,c)—(0,[,1)=(a—1,b—1,c—1).

Both vectors are different from (0,0,0), since [ # bora > lorb > 1. u
cannot be parallel to v, since the last components are equal, but b > b — .

Next we consider the case a« = ¢ = 1 and | = b. We assume that zy'z is the
only monomial of f of type ziyiz¥ for i,j,k € N1, otherwise we are in the
previous case. Since all monomials of f, = hy lie on a line, only y'z and one of
the monomials 2P, 2Py or 2Pz can appear in Supp( f;). If another monomial were
to appear, then it would be of type 'y’ or 227 for some i,j € N and a simple
computation as in (a) - (c) shows that the monomials of f, would not lie on a
line.

The weighted homogeneity of f yields:

deg,,(y7z) = (¢ + Dws + w3 = deg,,(zy'2) = w1 + lws + w3 > (I + 1)ws + ws.

This implies ¢ > [ + 1. Since f, = g1(y, z) fx + h2 and y'2 divides 9z, we know
that y?~! € Supp(g;). We use this in the following three cases:

(@) If P! € Supp(f), then a direction vector of £, is

u = (07 lv 1) - (p7 07 0) = (_pa l7 1)
We have {2, y'z} = Supp(f..), which implies y?~'2? € Supp(gi f..). We con-
sider two different subcases:

i. Assume y9~'zP € Supp(ha). We know that xy'~'z € Supp(f,). The
structure of f, and g; yields xy'~'2 ¢ Supp(g1f.). This implies zy'~1z €
Supp(hs2). Then a direction vector of hg is

ul:(17l_1a1)_<p7q_l+170):(1_p72l_q_271)'

u cannot be parallel to u1, since the last components are equal, but 1 —
D> —D.

ii. Assume y?¢~'aP ¢ Supp(hs). Then y9~'aP € Supp(f,), which implies
y?~"H1xP=1 € Supp(f,). Thus another direction vector of f, is given by

ug = (p,0,0) —(p—1,g—1+1,0)=(1,l —qg—1,0).

u cannot be parallel to us, since 1 # 0 in the last component.
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(b) If 2P*1y € Supp(f), then a direction vector of f, is
U = (Oala 1) - (p7 1,0) = (_pvl - 17 1)

Since f, = 91(y, 2) fz + h2 and 2P € Supp(f,), we obtain 2P € Supp(hs).
We know that y9="+12P ¢ Supp(y?~! f,.). We consider two different subcases:

i. Assume y?!T1zP € Supp(hs). Then a direction vector of hs is
up =(p+1,0,0)—(p,g—1+1,0)=(1,l —qg—1,0).

u cannot be parallel to u, since 1 # 0 in the last component.

ii. Assume y?~"*1zP ¢ Supp(hs). Then y¢~"*1aP € Supp(f,), which im-
plies y?~!*22P~1 ¢ Supp(f.). Thus another direction vector of f, is
given by

u2:(p7170)_(p_17q_l+270):(1vl_q_170)'

u cannot be parallel to us, since 1 # 0 in the last component.

(c) If 2Ptz € Supp(f), then a direction vector of f, is
U= (p,o, 1) - (07 L 1) = (p, —l,O).

We know that {zP*1z, y?*1z xy!z} C Supp(f). By our assumption on f,
and since z is not allowed to divide f, if f defines an isolated hypersurface
singularity, we obtain y™*! € Supp(f) for some m € N>s. By (1) we know
y™ € Supp(ha). We know y?™! € Supp(f.). The proof of (1) excludes y?™* €
Supp(g2fz), so we only have to consider two cases:

i. If y9*1 ¢ Supp(hs) then, there must exist a k € N with y* € Supp(hs)
and k < ¢ + 1. The multihomogeneity of hy implies m = k < ¢ + 1.
Then y9™12, y™*1 € Supp(f) and the weighted homogeneity of f imply
(¢ + 1)wa + wg = (m + 1)ws. This implies

ws = (m — q)ws <0,

which contradicts w3 > 0.

ii. If y9*1 € Supp(hs), then f. = g2(y, 2) f + g3(2)ha + hz and deg,, (f.) <
deg,,(he) < deg, (hs) imply ™! € Supp(hs). A direction vector of h3
is

U’/ = <p+ 17070) - (O7Q+ 170) = <p+ lv_q_ 170)
u cannot be parallel to v, since p+ 1 > pand u = A/ imply 1 > X > 0,
contradicting -1 > —¢ — 1.

All cases are impossible so y?z € Supp(hz).

Now we prove a similar statement for the monomials close to the z-axis.

Lemma 6.25. Let f € Clx,y,z] be a QHIS with weights (w1, ws,ws),ord(f) > 3 and

assume that there exist a, b, c € N1 with 2%y°2¢ € Supp(f). Then the following statements
hold:
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(1) If 2"+ € Supp(f) for some r € N, then 2" € Supp(hs).
(2) 2"z ¢ Supp(f) forany r € N.

(3) 2"y ¢ Supp(f) for any r € N.
Proof.

(1) Let 2" € Supp(f.). With f, = g2(y, 2)fx + g3(2)he + hs, we have to exclude
2" € Supp(g2fx) and 2" € Supp(gshz) in order to show z" € Supp(hs).

(a) Assume 2" € Supp(g2f:). Then there exist an I € N>y with 2! € Supp(f.).
Now we have to consider three possible cases:

i. If 2P*1 € Supp(f), then a direction vector of f, is
u=(a—1,b,¢) = (p,0,0) = (a—1—p,b,c)
and in the same way
u' = (a—1,b,c)—(0,0,1) = (a—1,b,c—1).

u cannot be parallel to «’, since the second components are equal, but
c>c—L.

ii. If 2P*1y € Supp(f), then a direction vector of f, is
u=(a—1,b,c)—(p,1,0)=(a—1—p,b—1,¢)
and in the same way
v = (a—1,b,¢c) —(0,0,1) = (a —1,b,c —1).

u cannot be parallel to «/, since b > b — 1 and u = A\v/ imply 1 > X > 0,
contradicting ¢ > ¢ — [.

iii. If xP™!2 € Supp(f), then a direction vector of f; is
u=(a—1,b,¢c)—(p,0,1)=(a—1—p,b,c—1)
and in the same way
u' = (a—1,b,c)—(0,0,1) = (a — 1,b,c = 1).
u cannot be parallel to «/, since the second components are equal, but
c—1>c—1L

This computation implies 2! ¢ Supp(f.) and thus 2" ¢ Supp(ga2f.)-

(b) Assume 2" € Supp(gshs). Then there exists an [ € N>o with 2! € Supp(hz).
Using Lemma 6.24, we know that either y? € Supp(h2) or y?z € Supp(hsg)
for some g € N. We also know that the monomials of h; and hs have to lie
on parallel lines. We consider both cases separately:

i. Assume y? € Supp(hz) for some g > 2. Again we have to distinguish
all cases with monomials close to the x-axis.
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A. If zP*1 € Supp(f), then 2P € Supp(f,). A direction vector of f, is
given by

U= (a’_ 1,b,C) - (p7070) = (a_ 1 —p,b,C)
and a direction vector of hs is given by

v = (0,q,0) — (0,0,1) = (0,q, —1).

Since a,b,c > 1 and deg,, (z%y’2¢) = deg,, (zP*!) we obtain aw; +

bwy + cws = (p + 1)wy, hence p + 1 > a. Then u cannot be parallel
tou,sincea —p—1<0.

B. If zP*ly € Supp(f), then 2Py € Supp(f.). A direction vector of f, is
given by

u=(a—1,b,¢c) — (p,1,0) =(a—1—p,b—1,¢)
and a direction vector of hs is given by

v = (0,q,0) — (0,0,1) = (0,q, —1).

Since a,b,c > 1 and deg,, (z%y°2¢) = deg,, (zPT'y) we obtain aw; +

bwy + cws = pwi + we, hence p > a. Then u cannot be parallel to v/,
sincea —p—1<0.

C. If 2Pz € Supp(f), then 2Pz € Supp(f.). A direction vector of f, is
given by

u=(a—1,b,¢c)—(p,0,1) =(a—1—p,b,c—1)
and a direction vector of hs is given by

v = (0,q,0) — (0,0,1) = (0,q, —1).

Since a,b,c > 1 and deg,, (z%9°2¢) = deg,, (zPT'2) we obtain aw; +

bwsy + cws = pw; + w3, hence p > a. Then u cannot be parallel to «/,
sincea —p—1<0.
ii. Assume y?z € Supp(hs).
A. If zP*1 € Supp(f), then 2P € Supp(f,). A direction vector of f, is
given by

U= (a'_ 1,b,C) - (p7070) = (a_ 1 —p,b,C)
and a direction vector of hs is given by

u' = (0,q,1) — (0,0,1) = (0,q,1 —1).

Since a,b,c > 1 and deg,, (z%y’2¢) = deg,, (zP*!) we obtain aw; +

bwy + cws = (p + 1)wy, hence p + 1 > a. Then u cannot be parallel
tou,sincea —p—1<0.

B. If zP*ly € Supp(f), then 2Py € Supp(f.). A direction vector of f, is
given by

u=(a—1,b,¢c) — (p,1,0) =(a—1—p,b—1,¢)
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and a direction vector of hs is given by
u' = (0,¢,1) = (0,0,1) = (0,¢,1 = 1).

Since a,b,c > 1 and deg,, (z%y*2¢) = deg,, (zP*'y) we obtain aw; +
bwy + cws = pw; + wg, hence p > a. Then u cannot be parallel to «/,
sincea —p—1 < 0.

C. If 2Ptz € Supp(f), then 2z € Supp(f,). A direction vector of f, is
given by

U= (a_ 1,b,C) - (paoal) = (a_ 1—p,bc— 1)
and a direction vector of hs is given by
u'(0,¢,1) = (0,0,1) = (0,¢,1 = 1).

Since a,b,c > 1 and deg,, (z%y°z¢) = deg,,(2PT'2) we obtain aw; +
bwy + cws = pw; + w3, hence p > a. Then u cannot be parallel to «/,
sincea —p—1 < 0.

These computations imply 2" ¢ Supp(g2f;) and 2" ¢ Supp(gshs), so we
must have 2" € Supp(hs).

(2) Let 2"z € Supp(f) for some r € N. Then 2" € Supp(f;), which is impossible due
to the proof of (1), (a).

(3) Let 2"y € Supp(f) for some r € N. Then 2" € Supp(fy), which is impossible due
to the proof of (1), (a) and (1), (b), since f, = g1(y, 2) f» + ho implies that either
2" € Supp(hs) or 2! € Supp(f,) for some [ € N>s.

O]

Our next goal is to prove that 294*~12¢ € Supp(hs), if %y°2¢ € Supp(f). Before we can

do so, we need a lemma excluding a very special case.

Lemma 6.26. Let f € Clz,y, 2] be a QHIS with weights (w1, ws,ws),ord(f) > 3 and
assume that there exist a,b,c € N> with x%’2¢ € Supp(f). Furthermore, we assume the
following:

(1) a,b, care chosen with maximal a, i.e. ifx“/yb,zcl € Supp(f) with a’, b, ¢ € N>y, then
a>a.

(2) bwy + cws = wy.
(3) P! € Supp(f) for some p € N>o.

(4) No monomial of type x'y’ 2" is contained in Supp(hs) for any i, j, k € N>1.
Then a = p and

(a) fisright-equivalent to xP1 + y9 + 2" or 2PT1 + y92 + 2" for some q,7 € N, or

(b) xPz¢ € Supp(hz), if b = 1 and (a) does not hold.
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Proof. First we show that a = p. Since 271!, 2%°2¢ € Supp(f) and bws + cwz = w; the
weighted homogeneity of f implies

(p+ Dwy = awy + bwy + cws = (a + 1)wy,

which yields a = p. Next we proof the second part of the statement for b > 1. Deriving
yields 2Py®~12¢ € Supp(f,). Since no monomial of type 'y’ z* is contained in Supp(hs)
for any 4,7,k € N>, we know that 2Py*~12¢ € Supp(g1f.) with g1 = g1(y, 2). The
only possibility to obtain zPy*~12¢ as a multiple of a monomial of f; is to multiply z”
with *~12¢. Otherwise multiplication of 2Py*~1=%2¢~t with y*2! for some s,t € N with
s <b—1and ¢ < c contradicts web + wsc = wy. Multiplying f, with yb_lzc implies
aP~1y?=122¢ ¢ Supp(g1f.). With no monomial of type z'y/z* in Supp(ha) we have
2P~ 1y?22¢ € Supp(f). Continuing this argument we obtain

{xypbzpc’ o ,xp—1y2b220’ xpbeC} C Supp(f)-

We also have y(PT1D2(P+1)e ¢ Supp(f). Assume this were not the case, then y?~12¢yPb 2P¢ =
yPtb=1.(0+0e ¢ Supp(gyf,) and y®PTHP=12(+)e ¢ Supp(hy), because the corre-
sponding monomials need to cancel each other. In this case, using Lemma 6.24, it
easy to see that the resulting direction vectors of f, and hy cannot be parallel, since a
direction vectors of f; is given by

u=(1,-b,—c)

having 1 as the first component and the possible direction vectors of ks have 0 as their
first component.

Next we show that the only monomial of type y“z” € Supp(f) with u,v > 2 is
y(PTb(PH1)e . Assume the contrary. Then y*~'2¥ € Supp(f,). If y* 12 ¢ Supp(ha),
then there exist 7,7 € N with y?27 € Supp(f,) and y’2z/ divides y*~!2". Since f, is mul-
tihomogeneous we must have i« = pb and j = pc. In particular, v > pb and v > pc.
This yields zPy*~17P2?=P¢ ¢ Supp(g1 fz). If 2Py~ 17PP22=P¢ € Supp(hy), we have to
consider four cases:

(1) Ifu —1 > pband v > pc we have p,u — 1 — pb,v — pc > 1 and aPy*17Pbv—Pc ¢
Supp(hs), contradicting assumption (4).

(2) Assume u — 1 = pb and v = pc. Using Lemma 6.24, we have to consider two
subcases:

(a) Assume y?¢ € Supp(hz). Then a direction vector of h; is given by
uy = (p7 —q, 0)

u cannot be parallel to u, since —¢ < 0.

(b) Assume y?z € Supp(hz). Then a direction vector of h; is given by
uz = (p, —q,—1).

u cannot be parallel to u;, since p > 1 and u = Aug imply 1 > A > 0,
contradicting —c < —1.

(3) Assume u — 1 > pb and v = pc. Using Lemma 6.24, we have to consider two
subcases:
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(a) Assume y¢ € Supp(hz). Then a direction vector of h; is given by
up = (p,u—1—pb—gq,0).
u cannot be parallel to u;, since —c < 0.
(b) Assume y?z € Supp(hz). Then a direction vector of h; is given by
up = (p,u—1—pb—gq,-1).

u cannot be parallel to uj, since p > 1 and u = Aug imply 1 > A > 0,
contradicting —c < —1.

(4) Assume u — 1 = pb and v > pc. Using Lemma 6.24, we have to consider two
subcases:

(a) Assume y¢ € Supp(hs). Then a direction vector of h; is given by

Uy = (pa -4,V — pc)
u cannot be parallel to u;, since p > 1 and u = Aug imply 1 > X > 0,
contradicting v — pc > 0 > —c¢
(b) Assume y?z € Supp(hz). Then a direction vector of hs is given by

ug = (p, —q,v —pc—1).

u cannot be parallel to u;, since p > 1 and u = Aug imply 1 > A > 0,
contradictingv —pc—1>0> —c

All the cases contradict xPy"~17P°2Y=P¢ ¢ Supp(hs). This implies xPy"~1-Pb,v=P¢ ¢
Supp(f,), hence xPy“~P>2¥~P¢ € Supp( f). The multihomogeneity of f, implies u—pb =
band v — pc = ¢, hence u = (p+ 1)b,v = (p + 1)c. Thus only monomials close to the y-
or z-axis and yP+ 12 (P+1)e are allowed to appear in f, if x were not to appear in them.
Applying Lemma 6.24 and Lemma 6.25 we know, after a suitable coordinate change
of type x — ax,y — By and z — vz for certain «, 3,y € C\{0}, that

f=aPtt pyd 42"+ NPyt 4+ )\py(PH)bz(”H)c

or
f=aP fylz+ 2"+ NPyl + .+ /\py(PH)bz(pH)C

with \; € C. Considering the structure of f we see that the only way of eliminating the
monomials in f, containing an z is by multiplying f, with A\y®~12¢ for some A € C\{0}.
Comparing coefficients in the equation

fy = Ml f = gyt

or
fy =Ml f = gyt

yields \; = (P1) (%)Z . Using the binomial formula we get

A p+1
f= <:p + by”f) +yl+ 2",
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or

by p+1
f= <x + bybzc> +ylz+ 2"

After the coordinate change x — x — %ybzc, y — y, z — z we obtain the claimed form
for (a). Next we assume b = 1. Either we have 272¢ ¢ Supp(h2) and we can argue
precisely as before or we obtain 2P2¢ € Supp(hs).

O]

The next step is to prove 2%y*~12¢ € Supp(hs)

Lemma 6.27. Let f € Clz,y, 2] be a QHIS with weights (w1, ws,ws),ord(f) > 3 and
assume that there exist a, b, c € N>y with x%y°2¢ € Supp(f). Then x%y*~12¢ € Supp(hz).

Proof. Similar to the previous proofs we assume that 2%y*~'2¢ ¢ Supp(hs) for any

a,b,c € N> with 2%9°2¢ € Supp(f). For fixed a,b, ¢, due to w; > ws, w3, there must

exist k,1 € N with 2%*2! € Supp(f,) and 2%y* 2! divides 2%y’ 2¢. We consider differ-

ent cases.

(1) Assume k,! > 1. Choose a, b, c € N>1 with 294°2¢ € Supp(f) and a maximal, i.e.
if 29'y" 2" € Supp(f) with @, ¥/, ¢ € N>, then a > d’. Then z%+1y*2! € Supp(f),
contradicting the maximality of a.

(2) Assume k = 1 and [ = 0. This implies that 24"y € Supp(f) and 2" €
Supp(fy). With wy > ws, we have 2" € Supp(hs). By Lemma 6.24 we have
y? € Supp(hy) for some ¢ > 2 or y?z € Supp(hsa) for some ¢ > 1. We have to
compare possible direction vectors of f, and hy in both cases. A direction vector
of f, is
u=(a—1,b¢)—(a,1,0) = (=1,b—1,¢).

For a direction vector of hy we have two possibilities:
(@) Assume y? € Supp(hs2). Then a direction vector of hs is
u = (a+1,0,0) - (0,4,0) = (a + 1, —¢,0).

u cannot be parallel to u, since ¢ > 0.
(b) Assume y?z € Supp(hs). Then a direction vector of hy is

ug = (a+1,0,0) — (0,¢,1) = (a + 1,—q, —1).

u cannot be parallel to us, since a +1 > —1 and © = Aug imply 0 > A > —1,
contradicting ¢ > 1.

This contradicts %y € Supp(fz)-

(3) Assume k = 0 and [ = 1. This implies that "'z € Supp(f) and 22! €
Supp(f.). With w; > w3, wehave 2T € Supp(hs). By Lemma 6.25 2" € Supp(h3)
for some r > 2. We have to compare possible direction vectors of f, and hs. A
direction vector of f, is

u=(a—1,b¢c)—(a,0,1) = (—=1,b,c — 1)
and a direction vector of hs is
v = (a+1,0,0) - (0,0,q) = (a + 1,0, —q).

u cannot be parallel to v/, since b > 0. This contradicts z%z € Supp(fz).
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(4) Assume k > 2 and [ = 0. This implies that x*'y* € Supp(f) and z%* ¢
Supp(fz). Considering all possibilities of monomials close to the x-axis we have
three different monomials of f, and we can check if the corresponding direction
vectors are parallel:

(a) Assume zP € Supp(f,) for some p > 2. The first direction vector we obtain
is
uy = (a_ 17b70) - (a,k,O) = (_lab_ ]{,C)

and the second one is
U = (Cl - 1,b,C) - (p,0,0) = ((I—p,b,C)-

u1 cannot be parallel to us, since the last components are equal, butb > b—k.

(b) Assume 2Py € Supp(f,) for some p > 1. The first direction vector we obtain
is
up = (a_ 1,b,C) - (a,k;,O) = (_17b_ ]{,C)

and the second one is
uz = (a—1,b,¢) — (p,1,0) = (a — p,b—1,¢).

u1 cannot be parallel to ug, since the last components are equal, but b — 1 >
b— k.

(c) Assume 2Pz € Supp(f,) for some p > 1. The first direction vector we obtain
is
u; = (a—1,b,¢) — (a,k,0) = (=1,b — k,¢)

and the second one is
U2 = (a—l,b,c)—(p,O,l) = (a_p7bac_ 1)

u1 cannot be parallel to us, since b > b — k and u; = Aug imply 1 > A > 0,
contradicting ¢ > ¢ — 1.

This contradicts 2%4* € Supp(f.).

(5) Assume k = 0 and | > 2. This implies z%*1y! € Supp(f) and 2%’ € Supp(f.).
Considering all possibilities of monomials close to the x-axis we have three dif-
ferent monomials of f, and we can check if the corresponding direction vectors
are parallel:

(a) Assume zP € Supp(f,) for some p > 2. The first direction vector we obtain
is
up = (a—1,b,¢) — (a,0,1) = (—1,b,c — 1)

and the second one is
ug = (a—1,b,¢) — (p,0,0) = (a — p, b, c).

u; cannot be parallel to us, since the second components are equal, but
c>c—1.
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(b)

(©)

Assume 2Py € Supp(f,) for some p > 1. The first direction vector we obtain
is
up = (a—1,b,¢) — (a,0,1) = (—1,b,c — 1)

and the second one is
ug = (a—1,b,¢) — (p,1,0) = (a —p,b—1,¢).

uy cannot be parallel to us, since b — 1 < b and u; = Aug imply A > 1,
contradicting ¢ > ¢ — [.

Assume 2Pz € Supp(f,) for some p > 1. The first direction vector we obtain
is
up = (a—1,b,¢) — (a,0,1) = (—=1,b,c— 1)

and the second one is
up = (a—1,b,¢) — (p,0,1) = (a — p,b,c — 1).

u; cannot be parallel to us, since the second components are equal, but
c—1>c—1.

This contradicts 2%z € Supp(f).

(6) Assume k = [ = 0. This case is an application of Lemma 6.26. If we are in
case (a) of Lemma 6.26, we can perform a coordinate change, which does not
change the multihomogeneity of f and no monomial of type z%y’2¢ appears in
Supp(f), contradicting the assumption. If we are in case (b) of Lemma 6.26 we
have 2Pz¢ € Supp(h2) and 2P € Supp(f;). This yields

u=(p,0,0)—(p—1,1,¢) = (1,1, —c¢)

as a direction vector of f,. For hy Lemma 6.24 yields two possibilities:

(a)

(b)

Assume y? € Supp(hz). Then a direction vector of hy is

ur = (p,0,¢) - (0,4,0) = (p, —q, ).

u cannot be parallel to u1, since the last entries and u = Au; imply A = —1,
contradiction p > 1.

Assume y?z € Supp(hz). Then a direction vector of hs is

up = (p,O,C) - (OaQ7 1) = (pa —q,C— 1)

u cannot be parallel to u;, since —¢ < —1 and v = Aug imply 1 > A > 0,
contradictionc — 1 < c.

This contradicts zPz¢ € Supp(hs).

The assumption that no monomial of type z%y

b, satisfies z%y*~12¢ € Supp(hs) leads

only to contradictions, so hy must contain such a monomial. O

Now we are in the position to prove that no monomial of type 2%y°2¢ can be contained
in Supp(f), if we know that J; is multihomogeneous and w; > wy > ws.
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Proposition 6.28. Let f € Clx,y, z] be a QHIS with weights (w1, w2, ws),ord(f) > 3 and
with s = 2. Then there do not exist a, b, c € N>y with z%y*2¢ € Supp(f).

Proof. Assume the contrary. Then by Lemma 6.27 there exist a, b, ¢ € N> with z9y°12¢ €
Supp(hs). Lemma 6.24 states that y¢ € Supp(hz) or y?z € Supp(hs) for some g € N.
Next to these two cases we have to consider all cases of monomials close to the x-axis.

(1) Assume y¢ € Supp(hs) for a ¢ > 2. A direction vector of hy is given by
u=(a,b—1,¢) —(0,4,0) = (a,b—1—gq,c).
Next we consider all possible cases of monomials close to the x-axis:
(a) If zPT1 € Supp(f), then xP € Supp(f.). A direction vector of f, is given by
v =(a—1,b,c)— (p,0,0) = (a —1—p,b,c).

u cannot be parallel to v/, since the last components are equal, but a >

a—1—p.
(b) If 2P*1y € Supp(f), then 2Py € Supp(f.). A direction vector of f, is given
by

v = (CL— ]_,b,C) - (pa]-ao) = (a_ 1 _p’b_ 1?6)'
u cannot be parallel to «’, since the last components are equal, but a >
a—1—p.
(c) If 2Ptz € Supp(f), then 2Pz € Supp(f.). A direction vector of f, is given
by
' =(a—1,b,c)— (p,0,1) =(a—1—p,b,c—1).

u cannot be parallel to v/, since ¢ > ¢ — 1 and v/ = Auimply 1 > A > 0,
contradicting b > b — 1 —q.
(2) Assume y9z € Supp(hs) for a ¢ > 1. A direction vector of h; is given by
u=(a,b—1,¢) —(0,¢,1) = (a,b—1—¢q,c—1).
Next we consider all possible cases of monomials close to the x-axis:
(a) If 2P*1 € Supp(f), then P € Supp(f:). A direction vector of £, is given by
u, = ((Z— 1,b,C) - (paOaO) = (a’_ 1 —p,b,c).
u cannot be parallel to v/, since ¢ > ¢ — 1 and v/ = Au imply A > 1, contra-
dictinga >a—1—p.
(b) If 2P*1y € Supp(f), then 2Py € Supp(f.). A direction vector of f, is given

by
u' = (a—1,b,c)— (p,1,0) = (a—1—p,b—1,c).
u cannot be parallel to «, since ¢ > ¢ — 1 and «' = Au imply A > 1, contra-
dictinga >a—1—p.
(c) If 2Pz € Supp(f), then 2Pz € Supp(f.). A direction vector of f, is given
by
v =(a—1,b,c)— (p,0,1) =(a—1—p,b,c—1).

u cannot be parallel to v/, since the last components are equal, but a >
a—1-—p.
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O

Remark 6.29. Proposition 6.28 allows us to assume from now on that no monomials of type
2%y 2¢ appear in Supp(f) for a, b, c € N>1.

The next step is to consider all possibilities for the structure of the monomial diagram
of f;, knowing that no monomial of type zoyPz¢ appears in Supp(f). The fact that f,
is multihomogeneous leaves us with only four possibilities:

(1) f:is a monomial, or

(2) f. only contains monomials of type x'y’ for i, j € N, or

(3) f. only contains monomials of type 2%z for i, j € N, or

(4) f. contains one monomial of type 'y’ and one monomial of type x*2! for certain

i,7,k,1 € N.

We prove for each case that either f is of Sebastiani-Thom type or that such an f
cannot exits. Let us begin with the first case.

Lemma 6.30. Let f € C[x,y, z] bea QHIS with weights (w1, we, ws),ord(f) > 3and s > 2.
Let f, be a monomial, then the following hold:

(1) If f» = P for some p € N, then f is of Sebastiani-Thom type.
(2) If fu = 2Py for some p € N, then f is of Sebastiani—Thom type.

(3) If f» = aPz for some p € N, then [ is of Sebastiani-Thom type.

Proof.
(1) By integration we obtain f(z,y,z) = [zPdx = ﬁ;rp“ + h(y, z) for some poly-
nomial h € Cly, z].

(2) By assumption the only possible monomials close to the y-axis are y?*! or y4™12.
Using that f, = 2Py we have 27! € Supp(f,), which implies 2™ € Supp(hs),
since wy > wy. Now we have two possible pairs:

(a) aP, 47 € Supp(hs) or
(b) 2P*1, 49z € Supp(hs).

With s = 2 the monomials of hy have to lie on a line. This implies that no
monomial of type y'zJ fori > 1and j > 2 is contained in Supp( fy), as it could
not be canceled by a multiple of a monomial contained in Supp( f;) and it would
contradict the fact that the monomials in Supp(h2) lie on a line. This implies that
the only monomial close to the z-axis is z"*! for some r € N. Due to our results
so far we have two possible cases for Supp(f) :

(a) The first caseis {zP*1y, y4*!, 2"t} = Supp(f). In this case f is of Sebastiani—
Thom type.
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(b)

The second case is {zP*1y, 49712, 271} = Supp(f). In this case 2", 397! €
Supp(hs), since no monomial of f, or hs could divide any of these mono-
mials. But in this case h3 lies in the y-z plane. We obtain a contradiction to
the parallelity of the direction vectors of hy and hg3, since one monomial of
hs lies in the y-z plane and the other one does not.

(3) By assumption f, = f,(y,2). Then f, = ¢1(y,2)aPz + hy implies that we can
choose hy = f,. With w; > w3 we obtain 2PT!1 € Supp(hs). Here we have to
differentiate two possible cases:

(a)

The first case is Supp(h3) = {zP7!}. Our assumptions allow two possibili-
ties for monomials close to the y-axis. If y?*12 € Supp(f) for some g € N>,
then 49! € Supp(hs), since f. = g2(y, 2) fx + g3(2)fy + hs and wy > ws.
This means that the only possibility is 9™ € Supp(f) for some ¢ € N>o.
Next we consider monomials of type y2/ € Supp(f) withi,j € N>j. As-
sume such a monomial with j > 2 minimal is contained in Supp(f). Then
there must exist y’z% € Supp(hs) dividing y’2?~1 € Supp(f.). The mini-
mality assumption on j implies a = 0, so 2/~! € Supp(g3). y? € Supp(fy)
yields y?729~1 € Supp(f.), hence the weighted homogeneity of f. implies
i = q. With y7='29 € Supp(f,), we obtain y?12%7=! € Supp(f.). Iterating
this process we obtain that, after a suitable change of coordinates, as in the
proof of Lemma 6.26,

f= Pl 4 yq+1 4 Alyqzj 4+ )\qyszj + )\q+12(f1+1)j,

with \; € C. Since f. = ¢2(v, 2) fo + 93(2) fy + h3, the previous computations

imply '
f.= A/ L. fy 4 Pl

for some \ € C\{0}. Comparing coefficients yields ; = (*1") (%)Z . Then

A . q+1
[= <y—|-jz]> + 2Pz

Using the coordinate change = — z,y — y — %zj ,z — z we get that f is

right-equivalent to 2Pz + y9*1, which does not define an isolated hypersur-
face singularity.

The next possible case is that h3 contains more than one monomial. We
know that the direction vectors f,, and h3 have to be parallel. Since h3 is not
contained in the y-z plane, this implies that f, contains only one monomial.
Then the only monomial close to the z-axis is 2" for some € N. We have to
consider two cases for monomials close to the y-axis:

i. If Supp(fy) = {y?} for some ¢ € N>y we immediately have that f is of
Sebastiani-Thom type.

ii. The case Supp(f,) = {y?z} is impossible, since our assumptions on f
yield {zPT1z yat1z 21} = Supp(f). In this case z divides f, so the fact
that f defines an isolated hypersurface singularity implies the existence
of y* € Supp(f), which contradicts the assumptions.
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In the next steps we assume that the monomials of f, lie on a line in the x-y or x-z
plane. First we consider the case where they lie in the x-y plane.

Lemma 6.31. Let f € Clz,vy, 2] be a QHIS with weights (w1, ws,ws),ord(f) > 3 and
s = 2. Assume | Supp(fy)| > 2 and the monomials of f, lie in the x-y plane. Then f is of
Sebastiani—Thom type.

Proof. Due to our assumption we have either {zP*! 299} C Supp(f) for a,b > 1 or
{xP*1ly, 2%} C Supp(f) fora > 1and b > 1. Assume we are in the first case. We have
to consider two possible cases:

(1) Assume x%" € Supp(hy) with a,b > 1. Then hy = ha(z,y) since the direction
vectors of f, and hy have to be parallel. Assume now there exist monomials of
type y'z/ € Supp(f) for somei, j € N>1. Theny' 127 € Supp(f,) and by assump-
tion y*~127 € Supp(g1f.), since fy = g1(y, 2) fx + h2. Now f, = fo(z,y) implies
y* € Supp(f:) for some k € N. Using this we see that 2Py'~1=*27 € Supp(g1 )
and thus 2P~ 1y =%/ € Supp(f.) contradicting the fact that the monomials of f,
lie in the x-y plane, since j > 1. So no monomial of type y'z? with i,j € N>,
exists and f has to be of Sebastiani-Thom type.

(2) Assume no monomial of type 2%y is contained in hy. Consider such a monomial

in Supp(f) with minimal b. Then z%y*~! is in Supp(g1 f ), hence there exists a k €

N with 2%y* divides z%y*~!. The minimality of b and the fact that f, is weighted
homogeneous imply k = 0 and a = p. Thus we must have 2Py?*~! € Supp(f,).
Iterating this process, and using a suitable change of coordinates we obtain

f=aPt APy + .+ )\pazypb + )\p+1y(p+1)b + h(y, z)
with \; € Cand h € Cly, z] and

fy =M e+ hy(y, 2)

for some A € C. Using the same argument as in the proof of Lemma 6.26, we get
that f is right-equivalent to
P 4 r(y, 2)

for some polynomial r € Cly, z]. Then f is of Sebastiani-Thom type.

In the case {2P*1y, z%y®} C Supp(f) for a > 1 and b > 1 we see that 277! € Supp(hs).
Due to this hy lies in the x-y plane and we can argue as in (1). O

Next we consider the case where f, lies in the x-z plane.

Lemma 6.32. Let f € Clz,y, 2] be a QHIS with weights (w1, ws,ws),ord(f) > 3 and
s = 2. Assume | Supp(fz)| > 2 and the monomials of f lie in the x-z plane. Then f is of
Sebastiani—Thom type.

Proof. Due to our assumptions we have f, € C[y, z|. Since f, € Clz, z] we can assume
that f, = hs. The fact that the direction vectors of f, and hs have to be parallel implies
Supp(fy) = {y?} or Supp(f,) = {y?z}. So we have to consider two cases:

(1) Let Supp(fy) = {y?}. Then integration yields that f is of Sebastiani-Thom type.
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(2) Let Supp(fy) = {y?z}. Then y?™! € Supp(hs), since the monomial cannot be
divided by any monomial of f, or y?z. This implies Supp(hs) = {y?*!}, since
the direction vectors of f, and h3 have to be parallel. This also implies Pt €
Supp(f), since the same argument would yield P! € Supp(hs), if 2Pz €
Supp(f). Any monomial of type z'2/ € Supp(f.) fori > 1and j > 2 has to be
a multiple of a monomial of f,. Taking such a monomial with minimal j, which
must exist since f, = f.(z,2) and | Supp(f;)| > 2, we can argue similar to the
proof of Lemma 6.30, (3), (a) and after suitable change of coordinates we obtain
that f is right equivalent to

P + yq+1 P

for some p, ¢ € N. In this case f does not define an isolated hypersurface singu-

larity.
O

Finally we consider the case where f;, lies in the x-y plane and in the x-z plane.

Lemma 6.33. Let f € Clz,y, 2] be a polynomial with unique weights (w1, wa, ws),ord(f) >
3and s = 2. Assume | Supp(fy)| > 2 and the monomials of f, lie in the x-y plane and in the
x-z plane. Then f cannot define an isolated hypersurface singularity.

Proof. Assume f defines an isolated hypersurface singularity. Then Supp(f.) = {zPy, x27}
or Supp(f) = {zPz,x'y’} fori,j € N>q.

(1) Assume Supp(f.) = {zPy, 2'z’}. Then zP*! € Supp(hz), since no monomial of f;
divides 27!, By the same argument we obtain y? € Supp(hz) or y?z € Supp(h2)
for some ¢ € N. A possible direction vector of f, is given by

u=(p—1,1,—j).
We have to consider two different cases:
(a) Lety? € Supp(hz), then a possible direction vector of hs is given by
u; = (p+1,—-¢,0).

u cannot be parallel to uq, since —j < 0 in the last component.

(b) Let y?z € Supp(h2), then a possible direction vector of hy is given by
Uz = (p + ]-a —q, _1)

u cannot be parallel to usy, since —j < —1 < 0 and v = Aug imply A > 0
contradicting —¢ < 0 < 1 in the second component.

Both cases contradict our assumptions.

(2) Assume Supp(f,) = {2Pz,2'y’} with j > 2. Then x**1y/=1 € Supp(hs), since
this monomial cannot be divided by any monomial of f,. As in (1) we must
have y? € Supp(ha) or y?z € Supp(hg) for some ¢ € N. A possible direction
vector of f, is given by

u=(p—1,—j,1).

We have to consider two different cases:
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(a) Lety? € Supp(hz), then a possible direction vector of h; is given by
up=(+1,7—1-—4¢q,0).

u cannot be parallel to u;, since 1 > 0 in the last component.

(b) Let y?z € Supp(h2), then a possible direction vector of hy is given by

u cannot be parallel to us, since —1 < 0 < 1 and u = Aup imply A = —1
contradicting —g < —j in the second component.

Both cases contradict our assumptions and an isolated hypersurface singularity
defined by f cannot exist.

Combining the previous lemmas we obtain the following result:

Proposition 6.34. Let f € Clz, vy, z] be a QHIS with weights (w1, w2, w3),ord(f) > 3 and
s = 2, then f is of Sebastiani—Thom type.

6.4 The case w1 > Wy = W3
The following Lemma can be proven using the same techniques that appeared in the
proof of Lemma 6.23. Due to this we omit the proof.

Lemma 6.35. Let f € Clz,y, z] be a QHIS with weights w = (w1, wa, w3), where wy >
wy = w3 and assume s = 2. Then the following hold:

(1) f, is multihomogeneous with respect to the weights of J;.

(2) There exist g1, g2 € Cly, z] and a1, b1 € C, such that

fy = glfz + ho + a1hs and fz = Qsz + bi1ho + hs.
In particular we can always assume hy = f,.

The first step is to show that no monomial of type 2%y°z¢ with a,b,c > 1 occurs in f.
In order to do so, we first prove results assuming such a monomial exists in f. Let us
start with the first result:

Lemma 6.36. Let f € Clx,y, z] be a QHIS with weights (w1, wz, w3),ord(f) > 3, s = 2
and assume that there exist a, b, ¢ > 1 with x%y®z¢ € Supp(f). Then the following statements
hold:

(1) If y?** € Supp(f) for some q € N, then y? € Supp(hs) U Supp(hs).
(2) y?*tx ¢ Supp(f) for any q € N.

(3) If y7™'z € Supp(f) for some q € N, then y1z € Supp(hs) U Supp(hs) or there exists a
k € Nxg such that y* € Supp(ha) U Supp(hs).
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Proof.

(1) Lety9™ € Supp(f). Then y? € Supp(f,). If y? ¢ Supp(hz2) U Supp(hs), then there
exists some [ > 2, such that y' € Supp(f,). Using z2~1y*2¢ € Supp(f.) we need
to consider the following three cases:

(a) If P! € Supp(f), then a direction vector of f, is
up = (a—1,b,¢) — (p,0,0) = (a—1—p,b,c)
and in the same way
ug = (a—1,b,¢) —(0,1,0) = (a—1,b—1,c).

These cannot be parallel, since the last components are equal, buta—1—p <
a — 1. This gives a contradiction to f, having monomials on a line.

(b) If 2Py € Supp(f), then a direction vector of f, is
up = (a—1,b,¢) — (p,1,0) =(a—1—p,b—1,c¢)
and in the same way
ug = (a—1,b,¢) —(0,1,0) = (a — 1,b— 1, ¢).

These vectors cannot be parallel, since their third component is equal to c,
but b — [ < b. This gives a contradiction to f, having monomials on a line.

(c) If 2PT12 € Supp(f), then a direction vector of £, is
up = (a—1,b,¢) — (p,0,1) =(a—1—p,b,c—1)
and in the same way
ug = (a—1,b,¢) — (0,1,0) = (a — 1,b— L, ¢).

These vectors cannot be parallel, since 0 < ¢ — 1 < ¢ implies Aug = u; only
if 1 > A > 0,butthen b= Ab—1) <b—1[<b. This gives a contradiction to
fx having monomials on a line.

All cases are impossible so y? € Supp(hz) U Supp(hs).

(2) If y9™tz € Supp(f), then y?*! € Supp(f.), which is impossible due to the proof
of (1).

(3) If y7™'z € Supp(f), then y?z € Supp(fy). If y?z ¢ Supp(hs) U Supp(hs), then,
as in the proof of (1), there must exist an [ > 1 with y'z € Supp(f,). In order to
use the same arguments as in (1) we need to assure that the appearing direction
vectors are all different from (0, 0,0). To obtain this, we first assume a > 1 or
b # lorec > 1. Using 2% 1y*2¢ € Supp(f.) we need to consider the following
three cases:
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(a) If P! € Supp(f), then a direction vector of f, is
u; = (a—1,b,¢) — (p,0,0) = (a—1—p,b,c)
and in the same way
ug = (a—1,b,¢) — (0,1,1) = (a—1,b—1,c—1).

These vectors cannot be parallel, since 0 < ¢ — 1 < cand Aug = u; imply
A > 1, contradicting a—1 > a—1—p. This gives a contradiction to f, having
monomials on a line.

(b) If 2PT1y € Supp(f), then a direction vector of f, is
up = (a—1,b,¢) — (p,1,0) =(a—1—p,b—1,¢)
and in the same way
ug = (a—1,b,¢) —(0,1,1) =(a—1,b—1,c—1).

These vectors cannot be parallel, since 0 < ¢ — 1 < cand Aug = u; imply
A > 1, contradicting a—1 > a—1—p. This gives a contradiction to f, having
monomials on a line.

(c) If 2Ptz € Supp(f), then a direction vector of f, is
up = (a—1,b,¢) — (p,0,1) = (a—1—p,b,c—1)
and in the same way
ug = (a—1,b,¢) — (0,1,1) = (a—1,b—1,c—1).

These vectors cannot be parallel, since their last components equal ¢ — 1,
buta—1—p < a— 1. This gives a contradiction to f, having monomials on
a line.

Next we consider the monomial 2%42¢ € Supp(f) with the property that a is
maximal, i.e. for any 2%y 2¢ € Supp(f) with a’,¥,¢ > 1 we have a > a’. Only
the case a = ¢ = 1 and b = [ remains to be considered. The maximality of a
implies that zy'z is the only monomial of f of type x'yz* for i, j, k € N>;. Since
all monomials of f, lie on a line, only y'z and one of the monomials z?, zPy or
xPz can appear in Supp(f;). If another monomial were to appear, then it would
be of type z'y’ or x'27 for some i, j € N and a simple computation as in (a) - (c)
yields a contradiction on the parallelity of the direction vectors of f,. Using the
weighted homogeneity of f we obtain

wo(q+ 1) + ws = wy + wal + w3 > wo(l + 1) + ws.

This implies ¢ > [ + 1. Since f, = g1 fz + ha + a1hs and y'z € Supp(f..) divides
y?z, we know that y?~! € Supp(g1).

(i) If zPT! € Supp(f), then a direction vector of f, is

u=(0,0,1) — (p,0,0) = (—p, 1, 1).
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(ii)

(iii)

We know zy!~1z € Supp(fy). If zy'~'z ¢ Supp(hy) U Supp(hs), then there
exists a monomial of type xy‘z/ € Supp(f,) dividing zy'~'z. Supp(f.) =
{xP y'2} implies i = j = 0, thus = € Supp(f,) contradicting ord(f) > 2.
Thus zy'~'z € Supp(h2) U Supp(hs). We know that y9~'zP € Supp(y?~'f,).
If y9~laP ¢ Supp(ha) U Supp(hs), then y9~'aP € Supp(f,). In this case
y?~ 1P~ ¢ Supp(f.), which is not possible. So y?~!zP € Supp(hz) U
Supp(hs3). Having three different monomials from Supp(hs2) U Supp(hsz) we
know that two of them must be in hy or hsz, so we obtain three possible
direction vectors of hg or h3. Then possibilities are

up=(L1-1,1)—(p,g—1+1,00=(1-p,2l —qg—2,1)
UQ:(lvl_lvl)_(O7Q+170):(172l_q_271)
U3:(p,q—l+1,0)—(0,q+1,0) :(p7_l70)

u cannot be parallel to u; since —p < 1 — p, but the last entries of the vectors
are equal. u cannot be parallel to us since 1 > —p but the last entries of the
vectors are equal. u cannot be parallel to u3 since 1 # 0 in the last entry.

If zP*1y € Supp(f), then a direction vector of f; is
U = (07l7 1) - (p7 170) = (_p7l - 17 1)

We know 2P™! € Supp(f,). If 27T ¢ Supp(hs) U Supp(hs), then 2PT! €
Supp(fz), contradicting deg,,(f;) < deg,(fy). Thus 2™ € Supp(hs) U
Supp(h3). We know that y?~ 12 € Supp(y9~'f,). If y9~ 2P ¢ Supp(hs) U
Supp(hs), then y4=*1a2P € Supp(f,). In this case y?~!*22P~1 € Supp(f.),
which is not possible. So y?~*'zP € Supp(ha) U Supp(hs). Having three
different monomials from Supp(h2) U Supp(hs) we know that two of them
must be in hy or hs3, so we obtain three possible direction vectors of hy or
hs. Then possible ones are

up=(p+10,0)—(pg—1+1,00=(1,l —qg—1,0)
u2:<p+17070)_(07Q+170):(p+17_q_170)
U3:(p,q—l+1,0)—(0,q+1,0)Z(p,—l,O)

u cannot be parallel to u;, us or ugz since 1 # 0 in the last entry.

If 2712 € Supp(f), then {aP*1z, ¢4z 2yl2} C Supp(f). Considering that
we need a monomial close to the z-axis, we have only monomials, which
are divisible by z, hence we need a monomial of type z'y’ for some i, j € N.
Due to Supp(fz) = {2Pz, y'z} thisimplies i = 0 and we obtain y™ € Supp(f)
for some m € N>3. Now (1) implies y™~! € Supp(hs) U Supp(hs). Thus we
obtain our result by setting k = m — 1.

O]

Lemma 6.37. Let f € Clz,y, z] be a QHIS with weights (w1, w2, ws),ord(f) > 3,s = 2
and assume that there exist a, b, c > 1 with 2%y®2¢ € Supp(f). Then the following statements

hold:

(1) If 21 € Supp(f) for some r € N, then 2" € Supp(ha) U Supp(hs).

(2) 2"z ¢ Supp(f) forany r € N.
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(3) If 21y € Supp(f) for some r € N, then 2"y € Supp(hs) U Supp(hs) or there exists a
k € N>g such that 2* € Supp(hs) U Supp(hs).

Proof. The result follows from Lemma 6.36 by applying the automorphism defined by
x — x,y — 2,z — y, which does not affect the multihomogeneity of J;. O
Before we can prove that 2%y*~12¢ € Supp(ha) U Supp(hs3) for some a, b, ¢ > 1 we need
a lemma excluding a very special case.

Lemma 6.38. Let f € Clz, y, z| bea QHIS with weights (w1, w2, ws), w1 > wy = ws, ord(f)
3,5 = 2 and assume that there exist a,b, c > 1 with z%y’z¢ € Supp(f). Furthermore, we as-
sume the following:

(1) a,b, c are chosen with maximal a, i.e. if z%y¥ 2 € Supp(f) with a’, ¥, € N>, then
a>a.
(2) bwy + cws = wy.

(3) xP*L € Supp(f) for some p € N>o.

(4) No monomial of type x'y 2* is contained in Supp(he) USupp(hs) for any i, j, k € N>1.
Then a = p and

(a) f is right-equivalent to xPt1 + y9 + 27 or 2P + y%z + 27 or 2PTL + y7 + 2"y or
P 4yl + 2Ty for some q,r € N, or

(b) xPz¢ € Supp(ha) U Supp(hs), if b = 1 and (a) does not hold.

Proof. From now on we denote the weighted degree deg,,(f) by d. The equality a = p
follows as in the proof of Lemma 6.27. First we assume b > 1. Now we also know that
aP~1ybz¢ € Supp(f,) and 2Py®~12¢ € Supp(f,). Assumption (4) implies 2Py’ 1:¢ €
Supp(g1 fz). Since g1 = g¢1(y, z) we must have y*~12¢ € Supp(g1). Thus we obtain
aP~1y2=122¢ € Supp(g; f,). Assumption (4) then implies 2P~ 1y?*~122¢ € Supp(f,) and
thus 2P~1y?22¢ € Supp(f). Continuing this argument we obtain

{xypbzpc, Py xpybzc} C Supp(f).

>

Furthermore, we have y®+ Dbz (P+1)¢ ¢ Supp(f). If this were not the case, then y?* (P ¢

Supp(h2) U Supp(hg) in order to cancel the corresponding monomial from a multiple
of f;. In this case, using Lemma 6.36 and Lemma 6.37, a simple computation shows
that the direction vectors of f, and hs or h3 cannot be parallel.

Next we show that the only monomial of type y“z” € Supp(f) with u,v > 2 is
yPTDb (e Assume the contrary. Then y*“~12° € Supp(f,). If y*~12¥ ¢ Supp(ha) U
Supp(hs), then there exist i, j € N with 4’2/ € Supp(f,) and y'z7 divides y*~12?. Since
all monomials of f, lie on a line we have i = pb and j = pc. In particular © > pb and
v > pc. Now we have y%~17P02v=P¢. P is a multiple of a monomial of f,. If this mono-
mial were in hy or h3 this contradicts our assumptions, since either u—1 > pbor v > pc
as the monomial is different from yP°z7¢. This implies y*~17P°2V"P¢ . 2P € Supp(f,)
and hence 3% P°2v=P¢ . gz € Supp(f). Now the structure of f, implies u — pb = b and
v —pc = ¢, hence u = (p+ 1)b,v = (p+ 1)c, again a contradiction. So only monomials
close to the y- or z-axis and y®+1?2(P+1)¢ are allowed in the support of £, if x does not
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divide them.
Applying Lemma 6.36 and Lemma 6.37 we know;, after a suitable coordinate change,
that

=Pt gyl 2 NPy 4L+ )\py(erl)bz(pH)C

or

F=aPt iz 4 2 4 AaPyle 4 L Ay P
or

f=aPt 4 yd + 2"y + MaPyP + .+ )\py(PH)bz(”H)c
or

f=aPtt pyls 4 2y + MaPyPC 4.+ )\py(p+1)bz(p+1)c

for \; € C. Checking the proof so far we see that the only way of eliminating the
monomials in f, divisible by z is by multiplying f, with A\y®~!2¢ for some A € C\{0}.
Comparing coefficients in the equation

fy = Ml f = gyt

or
fy - /\yb_lchz = qu_lz

yields \; = (P1) (%)Z . Using the binomial formula we get

A p+1
f= <:p + bybzc> +yl+ 2",

or
A p+1
f= <a: + bybzc> +ylz+ 2"
or
A p+1
f= (33 + bybzc) +y? 42"y
or

A p+1
f= (x + bybzc> + iz + 2"y.

After the coordinate change = — = — %ybzc, y — y, 2 — z we obtain the claimed forms.

Next we assume b = 1. In case 2Pz¢ ¢ Supp(ha) U Supp(h3), then we can argue in the
same way as above. Otherwise we obtain z”z¢ € Supp(h2) U Supp(hs). O

The next step is to prove z%y*~12¢, 299°2¢~1 € Supp(hz2) U Supp(hs).

Lemma 6.39. Let f € Clz,y, 2] be a QHIS with weights (wy, w2, ws),ord(f) > 3,s = 2
and assume that there exist a, b, c € N>1 with 2%y*2¢ € Supp(f). Then the following hold:

(1) {x"y"~ "2, 2"y’2"1} C Supp(hg) U Supp(hs),

(2) {x%’12¢ 2%b2¢"1} ¢ Supp(he) and

(3) {126, 2’2"} ¢ Supp(hs).
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Proof. First we prove (1) for 2%y~12¢. Similar to the previous proofs we assume that

2%y’ 12¢ ¢ Supp(h2) U Supp(hs) for any a,b,c > 1 with 2%°2¢ € Supp(f). Due to
wy > wa, w3, there must exist k, I € N with 2%y 2! € Supp(f,), such that z%y* 2! divides

2%~ 12¢. We consider different cases for k, 1 :

(1) Assume k,I > 1. Choose a maximal with the property that 2%42¢ € Supp(f).
Then z%*1y*2! € Supp(f), contradicting the maximality of a.

(2) Assume k = 1 and [ = 0. This implies that "'y € Supp(f) and 22! €
Supp(f,)- Now w; > ws implies 2! € Supp(ha) USupp(hs). By Lemma 6.36 we
have y? € Supp(ha) U Supp(hs) for some ¢ > 2 or y?z € Supp(ha) U Supp(hs) for
some ¢ > 1 and by Lemma 6.37 we have 2" € Supp(h2)USupp(hs) for some r > 2
or 2"y € Supp(hz) U Supp(hs) for some r > 1. Since f is quasi-homogeneous we
obtain

ws(r 4+ 1) = we + w3r = wia + waeb + wze > wy + wsc,

which implies » > ¢, a fact we are going to need in the following proof. We
have to compare direction vectors of f, and hs or hs in these cases. A possible
direction vector of f, is

u=1(a,1,0) = (a—1,b,¢) = (1,1 = b, —c).
We consider four different cases:

(a) Assume y?,2" € Supp(hz) U Supp(hs). Having three different monomials
from Supp(hsa) USupp(hs) we know that two of them must be in hs or hs, so
we obtain three possible direction vectors of hy or hz, which are not equal
to (0,0,0) :

Uy = (OaQ7O) - (0,0,7") = (O?qv *T)
uz = (a+1,0,0) — (0,¢,0) = (a +1,—¢,0)
uz = (a+1,0,0) — (0,0,7) = (a + 1,0, —7)

u cannot be parallel to u; since 1 # 0 in the first entry. u cannot be parallel
to ugy since —c # 0 in the last entry. u cannot be parallel to u3 if b > 1 since
1 — b # 0in the second entry. If b = 1, then 0 < 1 < a + 1. u = Aug implies
1> X > 0, contradicting —c > —r. In this case u is also not parallel to us.

(b) Assume y9, 2"y € Supp(h2) U Supp(hs). Having three different monomials
from Supp(h2) USupp(hs) we know that two of them must be in A5 or hs, so
we obtain three possible direction vectors of hy or hz, which are not equal
to (0,0,0) :

uy = (Ov(LO) - (0,1,7") = (an_ 1,-7“)
uz = (a+1,0,0) — (0,4,0) = (a + 1,—¢,0)
us = (a+1,0,0) — (0,1,7) = (a+1,—-1,—r)

u cannot be parallel to u; since 1 # 0 in the first entry. u cannot be parallel
to uy since —c # 0 in the last entry. u cannot be parallel to u3 if b # 2, since
0 <1l<a+1andu = Auz implies 1 > X > 0 contradicting —c > —r. If
b =2, then 1 # a + 1 contradicts parallelity.
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()

(d)

Assume y9z, 2" € Supp(hg) U Supp(hs). Having three different monomials
from Supp(ha) USupp(hs) we know that two of them must be in hs or hs, so
we obtain three possible direction vectors of hy or hz, which are not equal
to (0,0,0) :

uy = (O,Q, 1) - (0,0,7") = (07Qa *T+1)
U2 = (a+170’0)_(0aQa1) = (a+1’_Qv_1)
us = (a+1,0,0) — (0,0,7) = (a + 1,0, —7)

u cannot be parallel to u; since 1 # 0 in the first entry. u cannot be parallel
to zp since 0 < 1 < a+ 1 and v = Aup implies 1 > A > 0, contradicting
—1 > —c. u cannot be parallel to us if b # 1 since b — 1 # 0 in the second
entry. If b = 1, then0 < 1 < a+1and u = Aug implies 1 > A > 0,
contradicting —c > —. In this case u is also not parallel to u3.

Assume y?z, 2"y € Supp(h2) U Supp(hs). Having three different monomials
from Supp(ha) USupp(hs) we know that two of them must be in A5 or hs, so
we obtain three possible direction vectors of hy or h3, which are not equal
to (0,0,0) :

u; = (0,¢q,1) — (0,1,7) = (0,g — 1,—1r + 1)
uz = (a+1,0,0) — (0,¢,1) = (a+1,—q,—1)
us = (a+1,0,0) — (0,1,7) = (a+1,—1,—r)

The vector u cannot be parallel to u; since 1 # 0 in the first entry. u cannot
be parallel to uz since 0 < 1 < a+ 1 and u = Aup implies 1 > A > 0,
contradicting —1 > —c. u cannot be parallel to u3 if b > 2since 0 < 1 < a+1
and u = Auz implies 1 > A > 0, contradicting —1 > b — 1. If b = 2, then
0 < 1 < a+ 1 but the second entries are equal. In case b = 1 the we have
—1 # 0 in the second entry. In all these cases u is also not parallel to us.

This implies that %y ¢ Supp(fz)-

(3) Assume k = 0and [ = 1. We perform the coordinate change  — z,y — 2,2 — y
and use (2). Afterwards we use the same coordinate change to obtain 2z ¢

Supp( fz)-

(4) This proof works in the same way as in the proof of Lemma 6.27 (4).

(5) This proof works in the same way as in the proof of Lemma 6.27 (5).

(6) Assume k = | = 0. This implies web + w3zc = w; and %! € Supp(f). Now
Lemma 6.38 yields that after a suitable coordinate change no monomial of type
1%z for a, b, ¢ € N>1 appears in Supp(f) or 22¢ € Supp(h2) USupp(hs). Let us
consider the latter. By Lemma 6.36 we have y? € Supp(hg) U Supp(hs) for some
q > 2 or y9z € Supp(hg) U Supp(hs) for some g > 1 and by Lemma 6.37 we have
2" € Supp(hg) U Supp(hs) for some r > 2 or 2"y € Supp(ha) U Supp(hs) for some
r > 1. We obtain four possibilities for direction vectors of hs :

(a)

Assume y?, 2" € Supp(hz2) U Supp(hs). Then we obtain

u; = (a,0,¢) —(0,¢,0) = (a, —q, )
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and

ug = (a,0,¢) — (0,0,7) = (a,0,¢c — 1)
as direction vectors of hy. The vector u; is not parallel to ug, since —¢ # 0 in
the second components.

(b) Assume y?z, 2" € Supp(hz2) U Supp(hs). Then we obtain
up = (a,O,c) - (07Q7 1) = (a7 —q,C— 1)

and
uz = (a,0,¢) — (0,0,7) = (a,0,c — 1)

as direction vectors of hy. The vector u; is not parallel to us, since —¢ # 0 in
the second components.

(c) Assume y?, 2"y € Supp(hz) U Supp(hs). Then we obtain
uy = (a‘a Oa C) - (07 q, 0) = (a7 —q, C)

and
U2 = (CL,O,C) - (07 17T) = (CL, —1l,c— 7”)

as direction vectors of hy. The vector u; is not parallel to us, since the first
components are equal, but —1 > —¢q in the second components.

(d) Assume y?z, 2"y € Supp(ha) U Supp(hs). Then we obtain
up = (a,O,c) - (O7Q7 1) = (CL, —q,C— 1)

and
ug = (a,0,¢) — (0,1,r) = (a,—1,c—r)

as direction vectors of hy. The vector u; is not parallel to us, since the first
components are equal, but —1 > —q in the second components.

Since all cases are impossible, we obtain x*z¢ ¢ Supp(ha) U Supp(hs).

Combining all cases, there must exist a monomial of type 2y’ 2* in Supp(ha)USupp(hs3)
with i, j, k € N>1. Having this result, we can obtain 2%y°2°~! € Supp(hz2) U Supp(hs)
very easy. We apply the coordinate change = — x,y — z, 2z — y. This does not change
our setup. Applying the previous result we obtain z%y°~12* € Supp(ha) U Supp(hs).
Applying the same coordinate change again, we obtain 2%y°2¢~! € Supp(h2)USupp(hs).
In order to prove (2) we assume z%y*~12¢ € Supp(hs). If 2%y°2°"! € Supp(hs), then a
direction vector of hy is (0,1,—1). In all cases of monomials close to the x-axis, we
obtain that the first entry of the direction vector is not equal to 0, so they cannot be
parallel. This implies 2%y°2¢~! € Supp(hs). (3) follows analogously. O

Now we are in the position to prove that no monomial of type z%y’z¢ can be contained
in Supp(f), if we know that J; is multihomogeneous and w; > wy = ws.

Proposition 6.40. Let f € Clx,y, z] be a QHIS with weights (w1, w2, ws),ord(f) > 3 and
s = 2. Then there do not exist a, b, c € N>1 with 2%9°2¢ € Supp(f).
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Proof. Assume the contrary. Then by Lemma 6.39 there exist a, b, ¢ € N> with z%y*~12¢ €
Supp(h2) U Supp(hs). Lemma 6.36 states that y¢ € Supp(he) U Supp(hs) or yiz €
Supp(hg) U Supp(hs) for a certain ¢ € N and Lemma 6.37 states that z" € Supp(hs) U
Supp(hs) or 2"y € Supp(ha)USupp(hs) for certain r € N. In all cases we have ¢ > band

r > ¢, since f is quasihomogeneous. Next to these four cases we have to consider all
cases of monomials close to the x-axis. In the following we always have p > a, since
wy > W, W3.

(1) Assume y9, 2" € Supp(he) U Supp(hs) for r,q > 2. Having three different mono-
mials in Supp(hg) U Supp(hs) we know that two of them must be in Supp(h2) or
Supp(hs), so we obtain three possible direction vectors of hs or hg :

Uy = (07Q70) - (0707T) = (07Qa _T)
ug = (a,b—1,¢) — (0,¢,0) = (a,b—q—1,¢)
uz = (a,b—1,¢) — (0,0,7) = (a,b—1,c—r)

(a) If 2P € Supp(f), then 2P € Supp(f:). A direction vector of f, is parallel to
u=(a—1,b,¢c)— (p,0,0) =(a—1—p,b,c).

i. u cannot be parallel to uy, since a — 1 — p < 0 in the first entry.
ii. u cannot be parallel to us, since @ > a — 1 — p but the last entries are
equal.
iii. u cannot be parallel to u3, sinceb > b —1 > 0 and v = Aug imply A > 1
contradictinga >0 >a —1—p.
(b) If 2PTly € Supp(f), then 2Py € Supp(f.). A direction vector of f; is parallel
to
u=(a—1,b,c)—(p,1,0) =(a—1—p,b—1,c¢).
i. u cannot be parallel to uy, since a — 1 — p < 0 in the first entry.
ii. u cannot be parallel to u, since @ > a — 1 — p but the last entries are
equal.
iii. u cannot be parallel to u3, since @ > 0 > a —1—p, but the second entries
are equal.

(c) If 2Pz € Supp(f), then 2Pz € Supp(f.). A direction vector of £, is parallel
to
u=(a—1,b,¢)—(p,0,1)=(a—1—p,b,c—1).
i. u cannot be parallel to uy, since a — 1 — p < 0 in the first entry.
ii. u cannot be parallel to ug, since ¢ > ¢ —1 > 0 and u = Aug imply
1> X > 0 contradictinga >0>a —1—p.
iii. u cannot be parallel to u3, sinceb > b —1 > 0and u = Auz imply A > 1
contradictinga >0 >a —1—p.

(2) Assume y?z,2" € Supp(h2) U Supp(hs) for ¢ > 1 and r > 2. Having three dif-
ferent monomials in Supp(hz2) U Supp(hsz) we know that two of them must be in
Supp(h2) or Supp(hs), so we obtain three possible direction vectors of hy or hs :

Uy = (07Q71)_(0705T) = (O,C],].—T‘)
ug = (a,b—1,¢) — (0,¢,1) = (a,b—qg—1,¢—1)
uz = (a,b—1,¢) — (0,0,r) = (a,b—1,c—r)
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(a) If 2P+ € Supp(f), then 2?7 € Supp(f.). A direction vector of f, is parallel to
u=(a—1,b,¢)—(p,0,0) =(a—1—p,b,c).

i. u cannot be parallel to uy, since a — 1 — p < 0 in the first entry.

ii. u cannot be parallel to ug, since ¢ > ¢ —1 > 0 and u = Aug imply A > 1
contradictingb >0 >b—¢q — 1.

iii. u cannot be parallel to u3, sinceb > b —1 > 0 and u = Auz imply A > 1
contradictinga >0 >a —1—p.

(b) If zPTly € Supp(f), then 2Py € Supp(f.). A direction vector of f; is parallel
to
u=(a—1,b,c)—(p,1,0) =(a—1—p,b—1,c¢).
i. u cannot be parallel to uy, since a — 1 — p < 0 in the first entry.

ii. u cannot be parallel to us, since ¢ > c¢—1> 0 and u = Aug imply A > 1
contradictingb >0 >b—q — 1.

iii. u cannot be parallel to u3, since @ > 0 > a —1 —p, but the second entries
are equal.

(c) If 2Pz € Supp(f), then 2Pz € Supp(f.). A direction vector of f, is parallel
to
u=(a—1,b,¢) —(p,0,1) =(a—1—p,b,c—1).
i. u cannot be parallel to u, sincea —1 — p < 0.

ii. u cannot be parallel to ug, since a > 0 > a — 1 — p, but the last entries
are equal.

iii. u cannot be parallel to u3, sinceb > b —1 > 0 and v = Aug imply A > 1
contradictinga >0 >a —1— p.

(3) Assume y?, 2"y € Supp(ha) U Supp(hs) for ¢ > 2 and r > 1. Having three dif-
ferent monomials in Supp(hz2) U Supp(hsz) we know that two of them must be in
Supp(hg) or Supp(hs), so we obtain three possible direction vectors of hy or hg :

ur =(0,¢,0) = (0,1,7) = (0,¢ — 1, —7)
ug = (a,b—1,¢) — (0,¢,0) = (a,b—q—1,¢)
us = (a,b—1,¢) — (0,1,r) = (a,b—2,c—r)
ug has to be replaced in the following proofs if b = 1. We need to take the mono-

mial 2%y2°"! into account. Assuming that 2%2¢, y2" € Supp(hs) we can assume
by Lemma 6.39 2%z¢~1 y? € Supp(hs). The corresponding direction vector is

ug = (a,1 —q,c—1).
(a) If 2P* € Supp(f), then 2?7 € Supp(f.). A direction vector of f, is parallel to
U= (a_ l,b,C) - (p,0,0) = (a’_ 1 _pvb7c)'

i. u cannot be parallel to u;, sincea —1 —p < 0.
ii. u cannot be parallel to ug, since b > b — ¢ — 1 but the last entries are
equal.
iii. u cannot be parallel to us, if b > 1, sinceb > b —2 > 0 and v = Aus
imply A > 1 contradictinga >0 >a —1 —p.
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iv. u cannot be parallel to u4, since ¢ > ¢ — 1 > 0 and v = Aug imply A > 1
contradictinga >0 >a —1—p.

(b) If 2Py € Supp(f), then 2Py € Supp(f.). A direction vector of f, is parallel
to
u=(a—1,b,¢c) — (p,1,0) =(a—1—p,b—1,¢).
i. u cannot be parallel to u;, sincea —1 —p < 0.

ii. u cannot be parallel to ug, since b — 1 > b — ¢ — 1 but the last entries are
equal.
iii. u cannot be parallel to us,if b > 1,sinceb—1>b—2 > 0and u = Aus
imply A > 1 contradictinga >0 >a —1—p.
iv. u cannot be parallel to uy if b = 1, sincec > ¢ —1 > 0 and u = Auy
imply A > 1 contradictinga >0 >a —1—p.
(c) If 2Pz € Supp(f), then 2Pz € Supp(f:). A direction vector of f, is parallel
to
u=(a—1,b,c)—(p,0,1)=(a—1—p,b,c—1).
i. u cannot be parallel to u;, sincea —1 —p < 0.

ii. u cannot be parallel to ug, since ¢ > ¢ —1 > 0 and u = Aug imply
1 > A > 0 contradictinga >0>a—1—p.

iii. u cannot be parallel to uz if b > 1,sinceb > b—2 > 0 and u = Aus
imply A > 1 contradictinga >0 >a —1 —p.

iv. u cannot be parallel to u4 if b = 1, since a > a —1 —p and the last entries
are equal.

(4) Assume y?z, 2"y € Supp(hg) U Supp(hs) for ¢ > 1 and r > 1. Having three
different monomials in Supp(h2) U Supp(hs) we know that two of them must be
in Supp(hg) or Supp(hs), so we obtain three possible direction vectors of hy or
hs :

U1:(0,(],1)—(0,1,7‘):(O,Q—l,l—r)
u2:(a7b_170)_(07Q71):(aﬂb_q_LC_l)
us = (a,b—1,¢) — (0,1,r) = (a,b—2,c—r)

ug has to be replaced in the following proofs if b = 1. We need to take the mono-

mial 2%y2°"! into account. Assuming that 2%2¢, y2" € Supp(hs) we can assume
by Lemma 6.39 2%y2¢~1, y%z € Supp(hs). The corresponding direction vector is

ug = (a,1 —q,c—2).
(@) If 2P € Supp(f), then 2P € Supp(f.). A direction vector of f, is parallel to
P
u=(a—1,b,¢)—(p,0,0) = (a—1—p,b,c).

i. u cannot be parallel to u;, sincea —1 —p < 0.
ii. u cannot be parallel to us, since ¢ > c—1 > 0and u = Aug imply A > 1
contradictingb >0 >b—q — 1.
iii. u cannot be parallel to uz if b > 1,sinceb > b—2 > 0 and u = Aus
imply A > 1 contradictinga >0 >a —1 —p.
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iv. u cannot be parallel to u4 if b = 1 and ¢ > 1, since ¢ > ¢ — 2 > 0 and
u = Auyg imply A > 1 contradictinga >0 >a —1—p.

v. u cannot be parallel to us if b = ¢ = 1, since u = Auy implies A = —1.
Thusp =2a—1>2and ¢ = 2. Thena > 2 and

3wy < 4wy < 2aw; = 2we + w3 < 2w + we

implies wo > wy, which is a contradiction.

(b) If zPTly € Supp(f), then 2Py € Supp(f.). A direction vector of f; is parallel
to
u=(a—1,b,c)—(p,1,0) =(a—1—p,b—1,c¢).
i. u cannot be parallel to u;, sincea —1 —p < 0.
ii. u cannot be parallel to us, sincec > c—1> 0and u = Aug imply A > 1
contradictingb—1>0>b—¢— 1.
iii. u cannot be parallel to uzif b > 1,sinceb—1>b—2 > 0and v = \us
imply A > 1 contradictinga >0 >a—1—p.
iv. v and u4 cannot be parallelif b =1 and ¢ > 1, since 1 — ¢ < 0.
v. u and u4 cannot be parallel if ¢ = 1, since y?z, z%y2¢ € Supp(f) implies

2we + w3 = aw + wg + cwz > w1 + wa + w3z > 2wa + ws,

which is a contradiction.

(c) If 2PT1z € Supp(f), then 2P~ € Supp(f.). A direction vector of f; is parallel
to
u=(a—1,b,c)—(p,0,1) =(a—1—p,b,c—1).
i. u cannot be parallel to u;, sincea —1 —p < 0.
ii. u cannot be parallel to ug, since a > a — 1 — p but the last entries are
equal.
iii. u cannot be parallel to uz if b > 1,sinceb > b—2 > 0 and u = Aus
imply A > 1 contradictinga >0 >a—1—p.
iv. u cannot be parallel to u4 if b = 1 and ¢ = 1, since 1 # 0 in the second
entry.
v. u cannot be parallel to us if b = ¢ = 1 and ¢ > 1, since —1 # 0 in the
third entry.
vi. u cannot be parallel to ug if ¢ > 1 = b, sincec—1 > c—2 > 0 and
u = Aug imply A > 1 contradictinga >0>a —1—p.

O

From now on we can assume that f has no monomials of type 2%y°2¢ for any a,b,c €
N>1. In the next steps we have to consider all possibilities for f,. The first possibility
is that f,, is a monomial.

In the following proof we will make explicit use of the additional weights of the Jaco-
bian ideal J;. We denote them by v = (v, v2,v3). The main technique we are going
to use is the fact that we can compute linear combinations of v and w to obtain new
weight vectors, which by abuse of notation will be denoted again by v. Since switch-
ing the y and z variable does not affect the multihomogeneity of J;, we can always
assume that v > vs.

This technique is being used in the next proof.
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Lemma 6.41. Let f € Clz,y, 2] be a QHIS with weights (w1, we, ws),ord(f) > 3and s > 2.
Let f be a monomial, then the following hold:

(1) If f» = «P for some p € N, then f is of Sebastiani—Thom type.
(2) If fz = 2Py for some p € N, then f is of Sebastiani—Thom type.

(3) If f» = Pz for some p € N, then f is of Sebastiani—Thom type.

Proof.

(1) By integration we obtain f(z,y,z) = [aPdx = ﬁx”“ + h(y, z) for some poly-

nomial A.

(2) With ord(f) > 3 the only possible monomials close to the y-axis are y" ! or y"2
for some 7 € N and the only possible monomials close to the z-axis are 2" or
2"y, If {aPy,y" 1 2"y} C Supp(f) or {aPy,y"z, 2"y} C Supp(f), then we know
that there exists an i € N>; with 2* € Supp(f), otherwise f would not define an
isolated hypersurface singularity, since y would divide all monomials of f. With
f being quasihomogeneous we know that ¢ = r + 1. So we can always assume

(@) {zPy,y" ™, 2"} C Supp(f) or
(b) {zPy,y"z, 2"t} C Supp(f).

The next step is to show that no monomial of type y’2’ is contained in Supp(f)
for any i, j € N>;j. Assume the contrary. Using that Supp(f;) = {zPy}, we obtain
fy = ha + aihs, f. = asha + h3 for a;,a2 € C and {aP, =120 gz =1 27} C
Supp(h2)USupp(hs). The idea is to use the second weight vector v of J;. Since we
can perform linear operations on v using w and since switching y with z does not
change the multihomogeneity, we can assume that v = (0, v2, v3) with vy > vs.
In case vo = v3, we modify v again and obtain v = (1,0, 0), since w; > wy = ws.
First we assume v > v3. We consider both cases (a) and (b) assuming that a
monomial of type y'27 with i, j > 1 is contained in Supp(f) :

(a) Assume {2P,y",y" 129} C Supp(f,). Obviously
0 = deg, (z") < deg, (y")-
The equality we = w3 implies r = ¢ — 1 + j. This yields
vor = va(i — 1) + vaj > vo(i — 1) + vsj.

In case deg, (y'~127) # 0 we obtain

deg, (27 < deg, (y'~'27) < deg,(y"),
which is a sequence of three elements appearing in Supp( f,) with different
v-degrees. This is not possible, since f, is a linear combination of at most

two weighted homogeneous elements. For the case deg,(y*"127) = 0 we
have to consider two subcases:
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i. If i > 2 we have
0=(i—1)va+wv3j > (i — 1+ j)vs =rvg = deg,(z").

In particular, v3 < 0. Since {z?,y", 2"} C Supp(h2) U Supp(hs) we have
three elements with

deg,(z") <0 = deg, (z") < deg,(y")

which is impossible. Hence a monomial of type 3’2/ withi > 2,5 > 1
cannot be contained in Supp(f).

ii. If i = 1, then v3 = 0, since j > 1. In this case we can assume without
loss of generality {z?, 2"} C Supp(h2), since deg, (zP) = deg,(z") =0 #
deg, (y"). This means that 4" € Supp(hs). Since z" € Supp(f,) and =P ¢
Supp(f.), we must have 2P € Supp(hs) as well, since otherwise it could
not be canceled from f,. In this case h3 is not homogeneous with respect
to v, which contradicts the assumption that i3 is multihomogeneous.

(b) Assume {z”,y""'2,y", 2"} C Supp(ha) U Supp(hs). Obviously
0= degv(‘rp) < degv(yr)'

We have to consider two subcases:

i. If v3 # 0 we have
0 # deg, (2") < deg,(y").

We obtain a sequence of three elements appearing in Supp(hg)USupp(hs),
with different v-degrees. This contradicts the multihomogeneity of hs
and hg.

ii. If v3 = 0, then we can assume without loss of generality {z?,2"} C
Supp(hz), since deg,(zP) = deg,(z") = 0 # deg,(y"). This implies
y"lz,9y" € Supp(hs). With » > 2 we obtain

0 < deg,(y"'2) < deg,(y").

This yields a contradiction to h3 being weighted homogeneous with
respect to v.

From both cases we see that in both the cases no monomial of type y'z/ with
i,j > 1 can exist. Thus {zPy, y"*!, 21} = Supp(f) and f is of Sebastiani-Thom
type, if vo > v3. To finish the proof we have to consider the case v = (1,0,0) in
the cases (a) or (b):

(a) Assume {2?,y",y" 127} C Supp(f,). With out loss of generality we can
assume {y",y" 127} C Supp(hz), since deg,(y") = deg,(y '27) = 0 #
deg,(z?). This implies 2P € Supp(hz). Since 2P does not appear in Supp(f-),
we must have 2P € Supp(hg), which contradicts the multihomogeneity of
ho.

(b) Assume {zP,y""tz,y", 2"} C Supp(hs) U Supp(hs). With out loss of gener-
ality we can assume {y", 2"} C Supp(hz), since deg,(y") = deg,(2") = 0 #
deg, (zP). This implies 2P € Supp(hg3). Since 2P does not appear in Supp(f.),

we must have 2P € Supp(hg), which contradicts the multihomogeneity of
ha.
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This shows that the case v = (1,0, 0) is not possible.

(3) The result follows immediately from (2) if we apply the coordinate change = +—
T,y +— zand z — y.

O]

In the next steps we assume that the monomials of f; lie on a line in the x-y or x-z
plane. First we consider the case where f lies in the x-y plane.

Lemma 6.42. Let f € Clz,y, 2] be a QHIS with weights (w1, ws,ws),ord(f) > 3 and
s = 2. Assume | Supp(fy)| > 2 and the monomials of f, lie in the x-y plane. Then f is of
Sebastiani—Thom type.

Proof. Due to our assumption we have either {zP*! 2%} C Supp(f) for a,b > 1 or
{xPF1ly, 2%} C Supp(f) for a > 1 and b > 1. Assume we are in the first case, then a
possible direction vector of f; is

u=(p—a+1,-b,0).

We have to consider two cases:

(1) Assume that a monomial of type xly™ with [, m € N> is contained in hs, then
hy = ha(z,y) since its direction vector has to be parallel to a direction vector
of f;. We assume this without loss of generality, since the case of h3 = h3(z,y)
works analogously. Next we assume that there exists a monomial of type y'z’ €
Supp(f) with i,j € N>; and that j is chosen maximal, i.e. if 4" 27" € Supp(f)
with i’, j/ € N>q, then j > j’. This setup yields y'~'27 € Supp(f,). We have to
consider three cases.

(a) Assume y'~!27 € Supp(hs). We know that 327~ € Supp(f.).

i. Assume y'2/~1 € Supp(hs), then a possible direction vector of hj is
Uy = (07 17 _1)7

which is obviously not parallel to u.

ii. Assume y’2/~! € Supp(hs). Then hy = hy(z,y) implies j = 1. Since j
is maximal and f, = fz(x,y), and we know immediately that the only
possible monomial close to the z-axis is 2" ! for some r € N>. The
quasihomogeneity of f, implies r + 1 =i + 1, thus r = 4. The structure
of f and hs also imply 2" € Supp(hs). In this case a possible direction
vector of hs is

Uz = (0, 1, —1),

which is not parallel to u.

iii. Assume y’27~! € Supp(ga.f.). Then there exists y* € Supp(f,) for some
k € N>o. This implies 2Py*~*27=! € Supp(g2f.). Now we have to con-
sider three cases for this monomial:

A. If 2Py*~*27=1 € Supp(hy), then j = 1 and we know immediately
that the only possible monomial close to the z-axis is 2" ! for some
r € N>o. Hence we are in case (ii).
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B. If xPy~*29=1 € Supp(h3), then a possible direction vector of hs is
us = (p7 1- kv _1)7

which is obviously not parallel to u.

C. If 2Py*=%29=1 ¢ Supp(ha) U Supp(hs), then zPy*~*27=1 ¢ Supp(f.)
and in particular xPy*~*2/ € Supp(f), which is impossible, since
p > 2implies 2P~ 1y %27 € f, and j > 1 implies f, = f.(z,v, 2).

(b) If y*~127 ¢ Supp(hs), then hy = ha(z,y) implies the existence of a k € N>y
with y* € Supp(f,) and this implies zPy* 1729 € Supp(g; f,). if 2Py' =120 ¢
Supp(h2)USupp(hs), then 2Py ~17%27 € Supp(f,) and in particular 2Py* %27 €
Supp(f), which contradicts f, = f.(z,y). So the only remaining possibility
is xPy'~1=k2J € Supp(hs3), since hy = hy(z, 7). Let us assume this from now
on. As before we know that y’2/~! € Supp(f.). We have to consider three
different cases:

i. Assume y'z/~! € Supp(hs). Then a possible direction vector of hs is
given by
up = (p,—1—k,—1),
which is not parallel to w.
ii. Assume 3'z'~! € Supp(hy). Then j = 1 and, since j is maximal, we
have 2"t € Supp(f) for some r € Nso. The structure of f, and hs
implies 2" € Supp(hs). In this case a possible direction vector of h3 is

UQ:(p,i—l—k,l—T),

which is not parallel to u, since r > 2. So this case is impossible.
iii. Assume 32771 € Supp(gaf.). This implies 2Py'~*29=1 € Supp(gafs)-
Now we have to consider three cases for this monomial:

A. If 2Pyi=F2=1 € Supp(hy), then j = 1 and we know immediately
that the only possible monomial close to the z-axis is 2" for some
r € N>g. The structure of f, and hy then implies 2" € Supp(hz). In
this case a possible direction vector of h3 is

us = (p,i—1—k,1—r).

This vector is not parallel to u, since » > 2 implies 1 — r # 0.
B. If 2Py'~*29=1 € Supp(hs), then a possible direction vector of hj is

Uqg = (Oa ]-a _1)5

which is obviously not parallel to u.

C. If 2Py=*27=1 ¢ Supp(ha) U Supp(hs), then 2Py ~*29=1 € Supp(f.)
and in particular 2Py*~*27 € Supp(f), which is impossible, since
p > 2 implies 2P~ 1yt k27 € f, and j > 1 implies f, = f.(z,v, 2).

All theses cases imply that no monomial of type y‘2’ for i,j € N1 can be con-
tained in Supp(f). Thus f is of Sebastiani-Thom type.

(2) Assume no monomial of type z'y™, I,m € Nsi, is contained in Supp(hz) U
Supp(hs). Consider a monomial of this type in Supp(f) with minimal m. If m >
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2, then z'y™~1 is in Supp(gi f), hence we must have | = p, since only z? can
divide z!y™~! due to the minimality of m. Due to our assumption we must have
2P~ 1y?m=1 € Supp(f,), hence 2P~ 1y?™ € Supp(f). Iterating this process we see
that f, = \y"™ ' f, + h(y,z) for some A € C\{0} and h € Cly, 2] a polynomial.
Using the same argument as in the proof of Lemma 6.26, we get that f is right-
equivalent to zP*! 4 yP+)™ 4 1(y, ) for some polynomial r € C[y, 2] and this
is of Sebastiani-Thom type, if m > 2. The case m = 1 remains. In this case
we have 2! € Supp(f,). The structure of f, and w; > we = ws implies 2! €
Supp(h2) U Supp(hs). Without loss of generality we can assume 2! € Supp(hs),
which implies hy = ha(z,y), hence we can argue as in (1).

In the case {zP*1y, %%} C Supp(f) for a > 1 and b > 1 we see that 2P+ € Supp(hs) U
Supp(hs). Due to this we can assume that the monomials of &5 lie in the x-y plane and
we can argue as in (1). O

Next we consider the case where f, lies in the x-z plane.

Lemma 6.43. Let f € Clz,vy, 2] be a QHIS with weights (w1, ws,ws),ord(f) > 3 and
s = 2. Assume | Supp(fy)| > 2 and the monomials of f; lie in the x-z plane. Then f is of
Sebastiani—Thom type.

Proof. This result follows from Lemma 6.42 by applying the coordinate change = +—
r,y— zand z — y. O

Finally we consider the case where the monomials of f, lie in the x-y and in the x-z
plane. In the following proof we will again make explicit use of the additional weights
of the Jacobian ideal J;. We denote them by v = (v1,v2,v3). Since we can perform
linear combinations of weights to obtain new ones, we assume from now on that v; =
0 and vy > v3. Switching the y and z coordinate does not affect the quasihomogeneity
of f or the multihomogeneity of J;.

Lemma 6.44. Let f € Clz,y, 2] be a polynomial with unique weights (w1, wa, w3),ord(f) >
3and s = 2. Assume | Supp(fz)| > 2 and that the monomials of f lie in the x-y and x-z
plane. Then f is of Sebastiani—Thom type.

Proof. In the case where the monomials of f lie in the x-y plane as well as in the x-z
plane we know that Supp(f,) = {xPy, 727} or Supp(f;) = {2Pz, 2%y} fori,j € Nwith
i+ =2

(1) Assume Supp(f,) = {zPy,2'2}. Then zP*' € Supp(hs) U Supp(hs), since no
monomial of f, divides xPT!. Using that either y?™! or y?z are in Supp(f) for
some ¢ € N and using that either 2"*! or 2"y are in Supp(f) for some r € N,
we can apply the previous argument to see that y?, 2" € Supp(ha) U Supp(hs).
Assuming that the monomials of f, do not lie completely in the x-y plane, we
can assume j € N>. In the case p # i checking possible direction vectors shows
that ho or hg cannot be parallel to f;. So let us consider the case p = i in more
detail, since this case is non-trivial. In this case a direction vector of f; is given
by u = (0,1, —1). The weights of f imply that {«Py, 2Pz} = Supp(f). Checking
the possible direction vectors we see that the only non-trivial case is ¢ = r,2? €
Supp(he) and y", 2" € Supp(hs), but y", 2" ¢ Supp(he). If va > vs3, then y" and 2"
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do not have the same multidegree and thus cannot be monomials of i3, hence
vg = v3. Using our information so far we know that f = A\aPy+puaPz+h(y, z) with
A, i € C\{0}. Then the coordinate change ¢ defined by = — =,y — Y555, 2 — 2
is multihomogeneous and keeps the quasihomogeneity of f and the multihomo-
geneity of J;. We obtain ¢(f) = 2y + ¢(h(y, 2))) and we can apply Lemma 6.41
to obtain that f is of Thom Sebastiani type.

(2) Assume Supp(f,) = {2z, 2'y’}. Apply the coordinate change = + x,y > z and
z — y and we can argue using (1).

O]

Combining the previous lemmas we obtain the following result:

Proposition 6.45. Let f € Clz,y, z] be a QHIS with weights (w1, wa, ws) satisfying wy, >
wy = ws,ord(f) > 3and s = 2. Then f is of Sebastiani—Thom type.

6.5 The case w; = wy > ws

In this section we will make explicit use of the additional weight of the Jacobian ideal.
We denote it by v = (v1, v2,v3). Since we can perform linear combinations of weight
vectors w and v to obtain new ones, we assume from now on that v3 = 0. In the
previous sections we made use of the fact that f, = k1. In this case we do not get this
result immediately. Proposition 3.7 yields only the following result:

Lemma 6.46. Let f € Clz,y, z] be a QHIS with weights w = (w1, w2, w3), where w; =
wy > ws and assume s = 2. Then there exist g1, go € C[z] and o, € C such that:

(1) fo=hi+ ahyand f, = Bhy + ho, and
(2) f.= gih1 + g2ha + hs3.

In our setup we can prove now that we can assume hy = f; and hy = fy.

Lemma 6.47. Let f € Clz, y, z| bea QHIS with weights (w1, w2, w3), w; = wa > w3, ord(f) >
3 and s = 2. If there exists a second weight vector v for Jy with vy # vy, then f, and f, are
multihomogeneous with respect to the weights w and v. In particular, we can choose hy = f
and hy = f.

Proof. We keep the notation of Lemma 6.46. The case a = 5 = 0 is trivial. So we as-
sume « # 0 or § # 0. In case Supp(h1) N Supp(hz2) # 0, we know deg, (h1) = deg, (h2).
Then f, and f, form part of a system of multihomogeneous minimal generators of J;
and we can assume f,; = hy, f = he. Thus we can assume Supp(h1) N Supp(ha) = 0.
We bring this to a contradiction by considering three different cases for the values of
a and 3. We can assume without loss of generality v; > v, since switching the x and
y variable does not affect the multihomogeneity of J.

(1) First we consider the case a # 0 # . Then f, and f, contain the same monomi-
als, as the monomials cannot cancel each other. We need to consider two cases to
show that no monomial close to the x-axis can be contained in Supp(f) in order
to construct a contradiction.
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(a) Let us assume z'y/ € Supp(f) fori,j € Nand i + j > 3. Deriving yields
1yl € Supp(fs) = Supp(f,). Integrating yields z'~1y/*1 € Supp(f). We
can iterate this process and obtain

g a2y ey € Supp(f.)

Now we have
deg, (¢771) > deg, (¢ ?y) > ... > deg, (zy"7?),

which is impossible since this implies that f, has to contain at least 3 mono-
mials of different multi-degrees.

(b) Let us assume 2Pz € Supp(f) for some p € N. In case p > 3 deriving and
integrating yields 2?1z, 2P~2yz, 2P~3y?z € Supp(f,), since f, and f, share
the same monomials. With deg,(z?~'2) > deg, (#P"2yz) > deg, (zP~3y%2),
we see that f, has to contain at least 3 monomials of different multi-degrees,
which is impossible, since f;, can contain at most 2. If p = 2 we see that z is
contained in all monomials that we can obtain by deriving and integrating
so far. We know, since f defines an isolated singularity, that this implies the
existence of a monomial of type z'y’ with i + j > 3. This case is covered by

(a).

(2) Now we consider the case a = 0 # 3. In this case f, = h; and f, = Bh1 + ho.
Then all monomials of f, also appear in f, and they cannot cancel each other.
Consider any monomial close to the x-axis. This monomial is of type zPy'z/
with p,i,j € N;p > 2and 4, j € {0,1}. Deriving and integrating as in (1) yields
P~y *120 € Supp(f). This implies {zP~1y'z?, xP~2yi 129} C Supp(f:). Since
deg, (zP~1y'27) > deg,(zP~2y"*'27) we obtain that f, = hj cannot be multiho-
mogeneous, which is a contradiction.

(3) The case o # 0 = 3 works in the same way as case (2) considering the monomials
close to the y-axis.

O

Lemma 6.48. Let f € Clx, y, z] bea QHIS with weights (w1, w2, w3), w1 = wy > w3, ord(f)
3and s = 2. If v| # va, then no monomial of type x%y°z¢ with a,b, c € N> is contained in
Supp(f).-

Proof. The idea is to assume the existence of a monomial of type z%y°2¢ with a, b, c €
N>1 in Supp(f) and bring this to a contradiction. For the first part of the proof we
assume without loss of generality v; > v2 and v; > 0, since v can be multiplied by a
non-zero constant and since the coordinate change « — v,y — z and z — 2z does not
affect the quasihomogeneity of f and the multihomogeneity of J;. We show that the
only monomial close to the x-axis can be 27z for some p € N and the only monomial
close to the y-axis can be y”z. For the monomials close to the x-axis we consider two
different cases:

(1) If 2P € Supp(f) for some p € Nso, then w; = wy > w3 and ¢ > 1 imply
p+1>a+ b, whichisequivalenttop > a — 1+ b. Using v1 > 0 and v; > v2 we
obtain

vip > vi(a —1) +v1b > vi(a — 1) + vab.

v
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This implies deg, (zP) > deg, (2% '4’2¢) and contradicts the multihomogeneity
of f5.

(2) If 2Py € Supp(f) for some p € N>j, then w; = we > wsz and ¢ > 1 imply
p+ 1> a+ b, whichisequivalenttop > a+ b — 1. Using v1 > 0 and v; > v2 we
obtain

vip > via+v1(b—1) > via+va(b—1).

This implies deg, (zP) > deg,(z%y*~'2¢) and contradicts the multihomogeneity
of fy.

For the statement about the monomials close to the y-axis we first consider the case
vg # 0. Since multiplying by a non-zero constant does not change the multihomogene-
ity of the h; we get another weight vector v' = (v, v4, v5) with v} > 0.

(1) If y?* € Supp(f) for some ¢ € Nxo, then wy = wy > w3 and ¢ > 1 imply
¢+1 > a+b, whichis equivalent to ¢ > a+b— 1. We have to consider two cases:

(a) If v4 > v} we obtain
vhq = vha +vh(b — 1) > via + va(b — 1),
which implies deg,, (y9) > deg, (z%y"~12°).
(b) If v5 < v} we obtain
vhq = vha + vy(b — 1) < via + vh(b—1),
which implies deg,, (y9) < deg,, (z%y*~12°).
Both possibilities contradict the multihomogeneity of f,

(2) If y?z € Supp(f) for some ¢ € N>q, then w; = wy > w3z and ¢ > 1 imply
¢+1> a+b, whichis equivalent to ¢ > a —1+b. We have to consider two cases:

(a) If v4 > v} we obtain
vhq > vh(a — 1) + vhb > vi(a — 1) + vhd,

which implies deg,, (y9) > deg, (2% 1y*2°).
(b) If v5 < v} we obtain

vhq > vh(a — 1) +vhb > vi(a — 1) + vib,

a—1

which implies deg,, (y9) < deg,, (2%~ 1y*2°).

Both possibilities contradict the multihomogeneity of f.

So far we have shown that v; # v2 and va > 0 implies that only 2Py respectively
y?z are close to the x-axis respectively y-axis. The remaining case is vo = vz = 0.
In this case we can assume v; = 1. Then f, being multihomogeneous implies f, =
2%g(y, 2) for some k € N and g € C[y, z]. In this setup, no matter which one of the
monomials P!, 2Py or 2Pz are close to the x-axis, ws,b,c > 1 imply p > a. Using
{aPyizd 22 1yb2¢} C Supp(fs), we see that f, cannot be multihomogeneous, contra-
dicting our assumptions.
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The proof so far implies {27z, y9z} C Supp(f). Now w; = ws and the quasihomogene-
ity of f imply p = ¢. In particular we obtain {z?,y?} C Supp(f.). With deg,,(fz) =
deg,,(fy) < deg,(f.) and g1, g2 € C[z|, we obtain {z”, y”} C Supp(hs). This contradicts
the multihomogeneity of hs, since these monomials have different weighted degrees
with respect to v due to v; # vo. All these results combined yield a contradiction, if we
assume that a monomial of type x%y°z¢ for any a, b, ¢ € N> is contained in Supp(f).

O]

Lemma 6.48 implies that the monomials of f can lie only on the x-y, x-z and the y-z
plane, thus f, can only lie on the x-y and/or the x-z plane. We consider all possible
cases of the position of f;, starting with f, being a monomial.

Lemma 6.49. Let f € Clz, y, z| bea QHIS with weights (w1, w2, w3), w1 = wy > ws, ord(f)
3and s = 2. Assume vy # vo and let f, be a monomial, then the following hold:

(1) If f» = aP for some p € N>3, then f is of Sebastiani—Thom type.
(2) If fr = aPy for some p € N>o, then f is of Sebastiani—Thom type.
(3) If f» = Pz for some p € N>o, then f is of Sebastiani—Thom type.

Proof.

(1) By integration we obtain f(z,y,2) = [aPdx = —=zP*! + h(y, z) for some poly-

. pt
nomial A.

(2) Withord(f) > 3 the only possible monomials close to the y-axis are y¢*! or y¢+12
for some g € N and the only possible monomials close to the z-axis are 2" ™! or 2"y
for some r € N. If {aP*1y, 491 2"y} C Supp(f) or {zP*ly, 49z, 2"y} C Supp(f),
then there exists an i € N> with 2* € Supp(f), otherwise f would not define an
isolated hypersurface singularity, since y would divide f. Thus we have

(@) {zPly,y?tt, 2"t} C Supp(f) or
(b) {xPtly,yt1lz, 271} C Supp(f).

The next step is to show that no monomial of type 3?27 is contained in Supp(f)
for any 7, j € N>1. Assume the contrary. We need to consider two different cases:

(a) If {aPTly,y?t1 271} C Supp(f), then {xP*1 y?, y*~127} C Supp(f,). Two
possible direction vectors of f, are
ur = (p+1,-¢,0)
and

uy and us are not parallel since p + 1 # 0. So no monomial of type y'27 for
i,j € N>; can exist in Supp(f) and f is of Sebastiani-Thom type.

Vv

(b) If {zP Ty, y7* 2, 2"} C Supp(f), then {2P*, y92} C Supp(fy)and {y?, 2"} C

Supp(fz). w1 = wy > w3 implies y? € Supp(hs). For 2" we have two pos-
sibilities. Either there exists an I € N> with 2! € Supp( fy) and P
Supp(gz) or 2" € Supp(hs).
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i.

ii.

If 2! € Supp( fy) for some [ € N>, then two possible direction vectors
of f, are
Uy = (p + 1a0a _l)

and
ug = (0,¢,1 —1).

uy and uy are not parallel since p + 1 # 0.
If 2" € Supp(hs), then a possible direction vector of h3 is

ur = (0,g+1,-r)
and a possible direction vector of f, is
U2 = (p +1,—q, _1)

uy and us are not parallel since p + 1 # 0.

(3) With ord(f) > 3 the only possible monomials close to the y-axis are y?*! or y47!2
for some ¢ € N and the only possible monomials close to the z-axis are 2" ! or
2"y for some r € N. If {zPF1z yatlz 2711 C Supp(f) or {zPtlz, 49z, 2"y} C
Supp(f), then there exists an i € Nx; with y* € Supp(f), otherwise f would
not define an isolated hypersurface singularity, since z would divide f. Thus we

have

(@) {zPT1z,y?tL, 271} C Supp(f) or
(b) {zPTlz, 49t 2"y} C Supp(f).

The next step is to show that no monomial of type y’2’ is contained in Supp(f)
for any ¢, j € N>;. Assume the contrary. We need to consider two different cases:

(a) Assume {zPT1z, 9t 271} C Supp(f). Then {y4,y*" 127} C Supp(f,) and
{aPT1 2"} C Supp(f.). w1 = wy > ws implies 2P € Supp(hs). For 2" we
have two possibilities. Either there exists an [ € N>o with 2! € Supp(f,)
and 2" € Supp(gz) or 2" € Supp(hs).

i.

If 2! € Supp(f,) and vy # 0 then deg, (y?) = qua # 0 = deg,(2'). This
implies that f, contains two monomials with different v-degree, con-
tradicting the multihomogeneity of f,,.

If v2 = 0, then we can assume v; = 1 and the multihomogeneity of J;
implies Supp(f,) = {2Pz} and Supp(h3) = {zPT'}. Now we consider a
monomial of type y®2* € Supp(f) with a,b € N>, with a being maxi-
mal. Then y%2°~! € Supp(f.) implies y?2°~! € Supp(ga fy). This yields
the existence of a k € N with y®2* € Supp(f,). The maximality of a
implies £ = 0 and thus a = ¢, since f, is quasihomogeneous. Due to
y? ¢ Supp(hsz) and we > w3 we must have b > 2. The fact that f, and
hs are monomials divisible by x imply that {21} = Supp(gz). In order
to see this assume 2! € Supp(g2) with ¢ # b — 1. In this setup Supp(f.)
contains y?2°~! and y9zf,which contradicts the quasihomogeneity of f.
with respect to w. This implies {y92°,y97 1220 ... 2(aTDPY C Supp(f).
Applying the same argument as in Lemma 6.26, we obtain, after a suit-
able change of coordinates, f = xP™1z 4 y?™! thus f does not define an
isolated hypersurface singularity. In this case no monomial of type yz’
for any i, j € N> can be contained in Supp(f) and f is of Sebastiani—
Thom type.
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ii. If 2" € Supp(hs), then a possible direction vector of h3 is
up = (p+1,0,—r)
and a possible direction vector of f, is
up = (0, +1—1i,—j),

which are obviously not parallel. Thus no monomial of type y'z’ for
i,j € N>; can exist in Supp(f) and f is of Sebastiani-Thom type.

(b) Assume {xP1z y971 2"y} C Supp(f). Then {y?, 2"} C Supp(f,) and {aP*! yi2} C

Supp(fz). If va # 0, then deg, (y?) = qua # 0 = deg,(2"). This implies that
fy contains two monomials with different v-degree, contradicting the mul-
tihomogeneity of f,.
Now we can assume v; = 1 and vy = v3 = 0. In this setup we know that
Supp(f:) = {2Pz} and Supp(hs) = {zP*1}. Consider a monomial of type
y?2® € Supp(f) with a,b € Ns; with a being maximal. Then y%zt~! €
Supp(g2 f,), hence there exists a k € N with y?2* € Supp(f,). The maximal-
ity of a implies k = 0 and thus a = ¢, since f, is quasihomogeneous. Due to
y? ¢ Supp(hs) and we > w3 we must have b > 2. The fact that f, and hg are
monomials divisible by x imply that {20~} = Supp(g2). In order to see this
assume z' € Supp(gz) with t # b — 1. In this setup Supp(f.) contains y?z0~!
and y9z', which contradicts the quasihomogeneity of f, with respect to w.
This implies {72, y9~12%, ... 2(@+ Db} C Supp(f) and we are in the setup
of (a).

Next we consider the cases where f, lies in the x-y plane or the x-z plane.

Lemma 6.50. Let f € Clz, y, z| bea QHIS with weights (w1, w2, w3), w; = wy > w3, ord(f) >

3and s = 2 Assume vy # vo and assume that the monomials of f, lie in the x-y plane. Then
[ is of Sebastiani—Thom type.

Proof. By assertion the monomials of f, are of type z'y’ for i,j € N with i + j > 2.
Define dw = degw(fz)7 dv = degv(fﬂU) and

A= (w1 w1> .
V1 ()
A has full rank, since v; # vg. Then (i, j) has to satisfy (i,7)AT = (dy,d,)T. Since A

has full rank, there exists precisely one solution for (, j). Thus f, is a monomial and
we can apply Lemma 6.49. O

Next we consider the case where f lies in the x-z plane.

Lemma 6.51. Let f € Clz,y, z| bea QHIS with weights (w1, w2, w3), w; = wa > ws,ord(f) >
3and s = 2. Assume vy # v, | Supp(fz)| > 2 and assume that the monomials of f, lie in the
x-z plane. Then f is of Sebastiani—Thom type.
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Proof. 1f vi # 0 = vs3, then we can argue as in the proof of Lemma 6.50 and we obtain
that f, is a monomial. Then Lemma 6.49, (c) yields that f is of Sebastiani-Thom type.
Now we assume v; = v3 = 0 and v = 1. This implies that Supp(f,) = {y?} or
Supp(f,) = {y? 'z} for some q € N>5. Applying the coordinate change = — y,y —
x,z — z does not change the facts that f is quasi homogeneous and that J; is multi-
homogeneous. After the coordinate change we are in the case of Lemma 6.49 and the
result follows. ]

Lemma 6.52. Let f € Clx,y, 2] be a polynomial with unique weights (wy, we,ws), w1 =
wy > ws,ord(f) > 3and s = 2. Assume vy # va,|Supp(fy)| > 2 and assume that the
monomials of fy lie in the x-y plane and in the x-z plane. Then f is of Sebastiani—Thom type.

Proof. In the case where f lies in the x-y plane as well as in the x-z plane we know that
Supp(fz) = {2Py, 27127} or Supp(f.) = {aPz, 21y’ } for certain i, j € Nwithi+j >3
and ¢ > 1. We have to consider these two cases:

(1) Assume Supp(f;) = {2Py,x*"127}. In this setup only y?*! or y?*'z can be the
monomials in Supp(f) close to the y-axis. If j = 0 f, lies in the x-y plane and
this case has already been covered in Lemma 6.50. From now on we assume
j > 1. A possible direction vector of f is

up = (p+1-1,1,—j).
Using 2P € Supp( f,) we have to consider two cases:
(a) Assume y9*! € Supp(f). Then a direction vector of [y is given by
uz = (p,—¢,0).

u1 is not parallel to us, since —j # 0 in the last component.

(b) Assume y9™'z € Supp(f). Then a direction vector of f,, is given by
us = (p7 —-q, _1)

uy is not parallel to us, since j > 1 and u; = Aug imply A > 1, which
contradicts —q < 1.

(2) Assume Supp(f;) = {2Pz, 21y}, In this setup all monomials y?™!, y4*1z or
y?T!2 can be monomials in Supp(f) close to the y-axis. If j = 0 f, lies in the x-y
plane and this case has already been covered in Lemma 6.50. From now on we
assume j > 1. A possible direction vector of f; is

w=(p+1—1i,—j1).
Using z'y’ ! € Supp(f,) we have to consider three cases:
(a) Assume 9! € Supp(f). Then a direction vector of f,, is given by
uz = (—i,q+1—3,0)

u1 is not parallel to ug, since 1 # 0 in the last component.
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(b) Assume y?™'z € Supp(f). Then a direction vector of f,, is given by
uz = (Z_ 17] -1 _Q7O)

Incaset > 1orj # q+ 1 we have ug # (0,0,0). In this case we see that
up is not parallel to u3, since 1 # 0 in the last component. We consider
the case i = 1 and j = ¢ + 1 separately. In this case we have Supp(f,) =
{2P2, 491}, Due to the fact that the monomials of f, have to lie on a line
only one monomial of type y®z"*! can be contained in Supp(f) for certain
a,r € N. Since we need a monomial close to the z-axis, we obtain a € {0,1}.
This yields
{aP* 2, 2yt Y2} = Supp(f).

Then Supp(f.) = {zPT!,y*2"}. This implies f, = hs, since no monomial of
fz or f, divides any monomial of f.. We have to consider some possibilities:

i. Assume a = 0. Then the multihomogeneity of f, implies v1(p+ 1) =0,
hence v; = 0. Thus we can assume v, = 1. This contradicts the multi-
homogeneity of f, since deg, (2P2) = 0 # ¢ + 1 = deg, (y7™).

ii. Assume a = 1. Then the multihomogeneity of f, implies v; + v2g = 0
and the multihomogeneity of f, implies vi(p + 1) = v2. Combining
both results yields v; = 0, hence we obtain v, # 0. In this case we
obtain ¢ = 0, which contradicts ord(f) > 3.

(c) Assume y9t'z € Supp(f). Then a direction vector of [y is given by
Uqg = (_Z7q+ 1 _.77]-)
uy is not parallel to u4, since the last components are equal, but —i # p — i.

O]

This concludes the case v # v2. Next we consider the case vy = vs.

Lemma 6.53. Let f € Clz, y, z| be a QHIS with weights (w1, w2, w3), w; = wy > w3, ord(f)
3and s = 2. If vi = v, then, after a suitable change of coordinates, we can assume f, = hq
and f, = ha.

Proof. Given a system of coordinates (z,y, z) our goal is to find a coordinate change
¢(z,y, z), such that we can assume f, = h; and f, = hp. With w; = wy > w3 and
v1 = v2 # 0 = v3 we obtain ' = (1,1,0) as well as v" = (0,0, 1) as possible weight
vectors for Jy. This implies that the coordinate change

for certain a,b,c,d € C is multihomogeneous. We know that f, = h; + ahy and
fy = Bh1 + ho for certain «, 3 € C. Define

a b 1 «
A::(C d)andB::(/B 1).

The fact that ¢ is a coordinate change yields that A is invertible. The fact that f,
and f,, as well as h; and ho, form part of a minimal system of generators of Jy and
have minimal weighted degree with respect to w implies that B is invertible. Define

v
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"= fop,ie. f/(z,y,2) = flax+yb, cx+dy, z). In this setup we only need to consider
fr and f;. Applying the chain rule yields:

(f%) AT <fa:080> —ATp <h1090> )
Iy fyop ha o
We can choose a, b, c,d in such a way that AT := B~!. Then we obtain f, = hy o ¢

and f;, = ha o ¢. This means we can find a linear coordinate change such that we can
assume f, = hy and f, = ho. O

With these preparations we can prove the following.

Proposition 6.54. Let f € Clz,y, z] be a QHIS with weights (w1, w2, ws), w; = wy >
ws,ord(f) > 3and s = 2. If vy = v, then f is of Sebastiani—Thom type.

Proof. Using Lemma 6.53, we can assume f, = hy and f, = ho. We know that J;
is homogeneous with respect to v = (0,0, 1), which implies h; = z¥ih/(z, y) for some
k; € Nand b € Clz,y]. We obtain f, = zF1h)(z,y) and f, = 2F2h,(x,y). I k1 # 0 # ko,
then z divides f, which is not allowed for isolated hypersurface singularities. Hence
we can assume without loss of generality that k1 = 0, which implies f, = fz(z,y). We
have to consider two cases:

(1) Assume k3 = 0. Then f, and f, do not depend on z, so the only monomial
containing z is 2" for some r € N. In this case f = g(z,y)+ 2" for some g € C[z, y]
and f is of Sebastiani-Thom type.

(2) Assume ky > 1. Assume that 2%y 2% € Supp( fy) forsomei > 1. Then 2~ 1yJ ke ¢
Supp( fz), which contradicts f, = f;(z,y). This means f, does not depend on x.
Now any monomial of type 'y’ € Supp(f.) for j > 1 leads to a similar contra-
diction, so f, can only depend on z, hence Supp(f;) = {z”} for some p € N>3.
By integration we obtain that f = P+ + h(y, 2) for some h € Cly, 2] and f is of
Sebastiani-Thom type. O

Combining the previous Lemmas and Proposition 6.54 we obtain:

Proposition 6.55. Let f € Clx,y, z] be a QHIS with weights (w1, ws, ws), w; = wg >
ws,ord(f) > 3and s = 2. Then f is of Sebastiani—Thom type.
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