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Abstract: Kinetic models of human motion rely on boundary conditions which are defined by the
interaction of the body with its environment. In the simplest case, this interaction is limited to the foot
contact with the ground and is given by the so called ground reaction force (GRF). A major challenge
in the reconstruction of GRF from kinematic data is the double support phase, referring to the state
with multiple ground contacts. In this case, the GRF prediction is not well defined. In this work
we present an approach to reconstruct and distribute vertical GRF (vGRF) to each foot separately,
using only kinematic data. We propose the biomechanically inspired force shadow method (FSM)
to obtain a unique solution for any contact phase, including double support, of an arbitrary motion.
We create a kinematic based function, model an anatomical foot shape and mimic the effect of hip
muscle activations. We compare our estimations with the measurements of a Zebris pressure plate and
obtain correlations of 0.39 ≤ r ≤ 0.94 for double support motions and 0.83 ≤ r ≤ 0.87 for a walking
motion. The presented data is based on inertial human motion capture, showing the applicability
for scenarios outside the laboratory. The proposed approach has low computational complexity and
allows for online vGRF estimation.

Keywords: ground reaction force; vertical ground reaction force; vertical ground reaction force
prediction; mobile kinetic analysis; inertial motion capture; pressure; plantar pressure distribution

1. Introduction

The analysis of forces driving the human motion and the forces exerted to the surrounding via
contacts with the human body are part of kinetic human motion analysis, which is an important tool
for instrumented human motion analysis [1,2]. According to Newton’s third law, the ground exerts
a force on the human body by mirroring the acceleration of the body’s center of mass (CoM). This force
is called ground reaction force (GRF) and carries important information to analyze gait parameters,
e.g., in rehabilitation, sports, robotics, etc. [3]. The peak vertical GRF is a reliable parameter to evaluate
lower extremity functional strength during sport-specific movements and can be used, together with
the vertical impulse, which is the product of force multiplied by time during the propulsion phase of
a vertical jump, for prognoses after sports-related injuries [4]. The landing phase in running sports
produce high-frequency peaks in the vertical GRF trajectories and are assumed to play a crucial role
in the development of injuries [5]. The vertical GRF can be used for online estimation of (unknown)
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carried loads, e.g., in working environments, in order to assess physical stress [6–8]. In laboratories,
e.g., when human gait is measured and analyzed using force plates, subjects often need to strike
a locally fixed measuring device during the measurement which can lead to disturbances in their
natural walking behavior [9,10]. To avoid the restriction induced by a force plate, inverse dynamics
can be used to derive kinetic parameters from kinematic data in order to estimate the current stress on
joints during human motion and on an external contact point. Since kinematic data can be measured
from mobile inertial motion capture, this allows for kinetic analysis outside the laboratory. The starting
point for inverse dynamics calculations is the knowledge about the external forces. In this work,
we focus on GRF, especially the vertical component. In the case of only one connected contact region,
e.g., during single support phase in walking, the GRF can be uniquely derived from motion data,
cf. [11–13]. However, in double support phases, more than one contact region is present and the human
body forms a closed kinetic chain which makes the estimation of GRFs indeterminate (indeterminancy
problem) [14–16]. In that case, we need to provide additional information to obtain a unique solution
for the GRF. This was done via a smooth transition assumption and an empirically tuned function
for gait in [11,13]. Static optimization and a detailed musculoskeletal model with additional muscle
actuators under the feet were used in [14], which yielded good results for different types of motion;
however, it has a very high computational cost, preventing online usage to date. A neural network was
used in [10], which has low computational cost but is inherently data dependent. A further approach
is to employ additional measurements for the vGRF via pressure insoles, cf. [17].

In contrast to the mentioned work, we propose a method that is independent of the motion
and generalizes well to different motions, thus is not restricted to walking. Additionally, it has
a low computational complexity which makes it real-time capable. The overall idea is to compute
a conservative load distribution on each contact region (here, the feet) via a suitable projection of each
segment along the negative GRF vector to the next surface (here, the ground) and utilize anatomical
shape information of the foot as well as rough modeling of hip flexion as additional information.
This allows for a conservative and consistent distribution of the vGRF in the double stance phase.
The method is evaluated with three subjects that performed weight shifting movements with stationary
placements of the feet (double support) as well as normal gait cycles on a single pressure plate.

The paper is structured as follows: Section 2 introduces the force shadow method (FSM), Section 3
describes the experimental results and Section 4 presents our conclusions as well as future work.

2. Methods

In this section, we formalize the underlying idea behind the FSM. According to Newton’s third
law of motion, each body that exerts a force on a second one receives a force equal in magnitude and
opposite direction. With this law in mind, and assuming that a standing person is in contact with
the ground only via the feet, we observe an exerted force on the ground caused by the subject’s body
weight, which in turn causes the ground to react with a force in opposite direction. This reaction
force which acts on the human body (likewise in the dynamic case) is called the ground reaction force
FGRF ∈ R3.

One key question motivating this work is the following: How can the GRF be consistently
distributed over multiple contact regions, if only the kinematics and mass distributions of the body
are present? The approach should be simple and consistent, i.e., match direct measurements at the
contact regions.

One simple idea for the GRF estimation is to use only the center of mass (CoM) and compute the
GRF with respect to one contact point [18]. This simplifies the kinematics of the complete human body
to the kinematics of the CoM and reduces the interaction surface to one contact point, but does not
allow to deal with multiple contact points.

The basic idea behind the FSM is to approximate a body mass distribution and project it
onto a possible contact or interaction surface along the overall force vector, similar to a “shadow”.
In a further step, this projected distribution is considered as weighting for the contact regions.
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In Section 2.1, we formally explain how to determine FGRF and how we use it to construct a force
shadow (surface). As a direct application of the force shadow, Section 2.1.4 offers a general approach to
obtain a plantar distribution of the total mass. In Section 2.2, we adjust the approach and make it more
suitable to the human foot structure by incorporating the curvature of the foot arch and hip flexor
muscles and propose the adjusted formula in Section 2.2.3. Then, we complete the method chapter
presenting the algorithm in Section 2.4. The notation is explained in the abbreviations section, at the
end of this article.

2.1. Force Shadow Method

Let us first start with formalizing the GRF with respect to the CoM of a multi-body system. In the
following, we assume the positions x of the CoM and all segments to be given with respect to one
global coordinate system G, i.e., x = xG, but we leave out the superscript for better readability.

2.1.1. Ground Reaction Force

Newton’s third law tells us that the ground reaction force mirrors every acceleration of the body’s
CoM, based on the assumption that the feet define the only contact regions between the body and
its surrounding. Let S be the set of all body segments, i.e., we assume that the body is a multi-body
system consisting of |S| rigid body segments with masses ms, then the body’s CoM, xCoM ∈ R3, can be
written as the weighted sum of the segments’ CoMs which can be derived as follows (cf. [19]):

xCoM =

∫
vol(body) x dm∫
vol(body) dm

=

∑
s∈S

msxCoMs

mtotal
, (1)

mtotal = ∑
s∈S

ms, (2)

where mtotal denotes the subject’s total mass. Provided that we know the accelerations of each segment,
e.g., by kinematics, Equation (2) allows to compute the acceleration of the body’s CoM:

ẍCoM =

∑
s∈S

msẍCoMs

mtotal
.

The ground reaction force can be derived as follows:

FGRF = −mtotal(ẍCoM +
[
0 0 −g

]T
). (3)

2.1.2. Construction of Force Shadows for a Human Body

The force shadow method (FSM) constructs a surface by summing up multiple bivariate elliptical
normal distributions using projected CoMs as mean value and the segments’ orientations to construct
the corresponding covariances.

Let xCoMs ,t ∈ R3 be the CoM for an arbitrary segment s ∈ S at time t which is assumed to be in the
middle of the segment. The time stamp t ∈ R>0 denotes the current time at which the measurement
was taken. Then, xCoMs ,t is projected onto the bottom (we assume z = 0) along the ground reaction
force vector in order to acquire the respective projected Gaussian center, denoted as µs,t ∈ R3, i.e.,

µs,t = xCoMs ,t − kFGRF, (4)

k =
xT

CoMs ,tn

FT
GRFn

, (5)
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where n = [0, 0, 1]T is the unit vector which is orthogonal to the ground. The factor k ∈ R is chosen,
such that the vertical component of µs,t is zero, i.e., it corresponds to a point on the interaction surface.
This allows to consider variations in the 2-dimensional surface since only the projection onto the
bottom plane is of interest, hence, we assume x, µs,t ∈ R2 hereafter.

The covariance matrix Σs,t ∈ R2×2 is constructed in such a way that its principal components
have the same orientation as the corresponding segment.

Let as, bs ∈ R be the parameters representing the dispersion of the ellipsoid of the Gaussian
function and Rs,t ∈ R2×2 the rotation matrix responsible to rotate this ellipsoid around the vertical axis
into the direction of the corresponding segment’s orientation, then the covariance is determined via

Σs,t :=
CTC√
‖C‖2

, (6)

C :=

[
as 0
0 bs

]
RT

s,t. (7)

See Section 2.3 for the estimation of as, bs. Equation (6) ensures the symmetry and the positive
definiteness of the covariance matrix. Thus, for segment s ∈ S we obtain the function

fs,t(x) : = cs,tN (x; µs,t, Σs,t), where (8)

N (x; µs,t, Σs,t) =
1

2π
√

det Σs,t
exp

(
−1

2
(x− µs,t)

TΣ−1
s,t (x− µs,t)

)
, (9)

cs,t =
ds

N (µs,t; µs,t, Σs,t)
. (10)

The constant ds ∈ [0, 1] represents the contribution of segment s to the total body mass in terms of
body mass proportion as proposed in [20], they are given in percentage. We repeat the projection for
all segments. The shadow function is then obtained via superposition of all projected contributions of
the segments

ft(x) := ∑
s∈S

fs,t(x). (11)

For an illustration, see Figure 1.

Figure 1. Kinematic data with constructed force shadow function underneath the feet; the blue vector
describes the ground reaction force FGRF (left plot). Standard foot model for the left and right foot with
partitioned regions Ωi (right plot); the location of the first- (pFM) and the fifth metatarsal head (pVM)
and the calcaneus bone (pCA) are marked as blue points.
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2.1.3. Contact Region Estimation

In order to obtain contact regions for a general motion, we need a model for the respective parts
of the body that incorporates possible contact with the environment. In this work, we consider only
the foot regions, depicted in Figure 1, and a flat ground as interaction surface. The foot region model is
registered with a 2D foot model that is tailored to the person at hand.

The pose of the region model is computed as follows: Note, in the following, we consider the left
foot only; the right foot can be treated analogously. We denote xi ∈ R2 for i ∈ LM := {FM, VM, CA}
as the anatomic landmarks taken from the current pose and pi ∈ R2 the respective landmarks of the
foot model; then we minimize the energy function

E(M, t) := ∑
i∈LM

‖(Mpi + t)− xi‖2, (12)

where t ∈ R2, M ∈ R2×2, in order to obtain a transformation of the foot model, see Figure 2.

Figure 2. Standard foot model registered via right (MR, tR) and left (ML, tL) transformation using the
anatomic landmarks from both the model and the kinematics.

We consider the transformation as a matrix multiplication using homogeneous coordinates, i.e.,

T :=

[
M t
0T 1

]
∈ R3×3, (13)

where 0 = [0, 0]T is a column vector consisting of zeros. In order to apply the transformation to the
points, these are transformed into homogeneous coordinates by adding 1 to the third component,

i.e., x̄i :=
[
xT

i 1
]T
∈ R3, p̄i :=

[
pT

i 1
]T
∈ R3, for all i ∈ LM.

Let X :=
[
x̄FM x̄VM x̄CA

]
and P :=

[
p̄FM p̄VM p̄CA

]
, X, P ∈ R3×3, be the homogeneous

marker points in matrix form. Then, we can rewrite Equation (12) as

E(T) = ‖TP− X‖2 . (14)

The linear least-squares problem
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min
T

E(T), (15)

can be solved in closed-form via the pseudo-inverse, e.g., utilizing the singular value decomposition
(SVD). In each time step, the regions ΩL, ΩR are transformed this way.

The (sub-)regions in ΩL, ΩR are defined to be in contact with the ground if the registered center
falls below a distance hmin ≈ 0.03 m from the ground and has a velocity below vmin ≈ 0.8 m

s . These
values are chosen similar to [14]. If, for a (sub-)region, at least one condition (height below hmin
or velocity below vmin) is not fulfilled, this particular region is assumed to have no ground contact
and, therefore, set to zero. With these conditions, the method is independent of stance times or gait
event patterns.

2.1.4. Force Distribution

Assuming unconnected sets of regions ΩL ⊆ R2 for the left and ΩR ⊆ R2 for the right foot
obtained from the registration described in the previous section: Consider an arbitrary region Ωk ⊆ ΩL
of the left foot model (Ωk ⊆ ΩR analogously). Let FGRF,z be the vertical component of the ground
reaction force from Equation (3), then, the estimated load on this region is generally given by

LΩk ,t = FGRF,z IΩk ,t, (16)

where the load distribution factor IΩk ,t ∈ [0, 1] for the corresponding region is computed by integration
and normalization, i.e,

IΩk ,t =

∫
Ωk

ft(x)dx∫
ΩL

ft(x)dx +
∫

ΩR
ft(x)dx

. (17)

Here, ft corresponds to the force shadow defined in (11). The integral of an arbitrary region
Ωk ⊆ (ΩL ∪ΩR) is approximated via a triangulation of this region (see Figure 1 on the right) using
the midpoint rule, that is,

∫
Ωk

ft(x)dx ≈
N∆

k

∑
i=1

f̄i,t︷ ︸︸ ︷1
3 ∑

j∈Nodes(∆i)

ft(xj)

 |∆i|, (18)

where f̄i,t is the mean value of the points evaluated at the nodes and |∆i| is the area of the triangle ∆i.
The number of triangles in region Ωk is denoted as N∆

k .

2.2. Anatomical Models

In this section, we describe additional, biomechanically motivated modifications of the
load distribution.

2.2.1. Arch of Foot

The above described force distribution method puts equal weight on all points of the foot region
model. This leads to a similar load, e.g., on the heel and the arch, during a neutral stance which would
be only the case for a pathologic foot anatomy. This would have an impact on the center of pressure
(CoP) for each foot, i.e., on the vGRFs’ application points. To compensate for this effect, we take
additional weights into account. To model the curvature of the foot, we fit a surface

w(x) = a0 + a1x + a2y + a3xy + a4x2 + a5y2, (19)
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for x := [x, y] ∈ R2, such that w(x) = 1 for the contact points of the metatarsal heads and the
calcaneus bone and w(x) = hadistCP for the midpoints between the front and rear contact points,
where distCP := ‖xCA − xVM‖2 is the distance between the the subject’s fifth metatarsal head and
calcaneus (not to be confused with the fixed scalar dCP from Figure 3). The scalar factor ha ∈ R is
a parameter modeling the anatomical height of the cuboid bone relative to the distance between the
support points of calcaneus and the head of the fifth metatarsal bone, cf. Figure 3 on the left.

Figure 3. Left cuboid bone to model the arch of the foot using the relative height ha (left) and muscles
responsible for hip flexion, i.e., psoas major and iliacus muscles (right).

To guarantee the conservation of integrals, we rescale the weight function pointwise with
a time-dependent scalar

w̃t(x) := nt w(x) (20)

nt =

∫
Ω ft(x)dx∫

Ω w(x) ft(x)dx
∈ R.

Note that the scalars nt belonging to the left and right foot differ from each other, thus, we have
to do this twice to obtain w̃L,t(x) and w̃R,t(x).

2.2.2. Hip Flexion Muscles

So far, the proposed approach cannot detect decreasing loads resulting from lifting off the feet
slightly, for example, in double support movements in which the whole CoM is located within the
region of one foot. This can hardly be measured by human motion capturing systems, especially
when the feet do not lift off, but influences the vGRF. Therefore, we model the effect of the muscles
responsible for hip flexion, see Figure 3 on the right, as follows: We assume that the muscles of the
unloaded leg are increasingly activated, the longer the mass is balanced on the other foot, which is
interpretable as raising the foot gradually, the longer the person stands on the other foot.

In order to model the described effect, the total loads are distributed accordingly to the left and
right foot. Therefore, for each time step t ∈ R>0 we compute the current velocity, ẋCoM,t, of the CoM
to predict its position for the next t̄ ∈ N time instances, i.e.,

x̃CoM,t+k := xCoM,t + k∆t · ẋCoM,t, for k ∈ {0, . . . , t̄} ⊆ N. (21)

Let sL,t, sR,t ∈ [0, 1], initialized as sL,t0 , sR,t0 = 1, be the distribution parameters for the left and
right foot. Then, if one of the predicted CoMs is contained in the convex hull of the left foot, that is,
x̃CoM,t+k ∈ Conv(ΩL), for at least one k, we increase sL,t (if sL,t < 1) and decrease sR,t (if sR,t > 0) using
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a ramp function with slope m (see Section 2.3 for the estimation of m). There are three cases in total
which can occur:

sL,t ↗, sR,t ↘ if there is a k, such that x̃CoM,t+k ∈ Conv(ΩL),

sL,t ↗, sR,t ↗ if for all k : x̃CoM,t+k /∈ Conv(ΩL)

and x̃CoM,t+k /∈ Conv(ΩR),

sL,t ↘, sR,t ↗ if there is a k, such that x̃CoM,t+k ∈ Conv(ΩR).

Note that the increment and decrement should provide that sL,t, sR,t ∈ [0, 1], e.g., we do not
increase sL,t0 , sR,t0 as they already are at their maximum. The weights w̃t(x) from (20) are then
multiplied by a linear combination of sL,t and sR,t, which leads to the modified weight functions

ŵL,t(x) = w̃L,t(x)(sL,t + (1− sR,t)), (22)

ŵR,t(x) = w̃R,t(x)(sR,t + (1− sL,t)).

2.2.3. Anatomy Aware Load Estimation

Incorporating the anatomy of a normal foot and mimicking the effect of hip flexion muscles on
the FSM in (16) and (17) for an arbitrary region Ωk we obtain the final vGRF distribution formula
as follows

LΩk ,t = FGRF,z

∫
Ωk

ŵL,t(x) ft(x)dx∫
ΩL

ŵL,t(x) ft(x)dx +
∫

ΩR
ŵR,t(x) ft(x)dx

. (23)

2.3. Utilized Hyper Parameters

For optimizing the hyper parameters introduced in the previous sections, i.e., the dispersion
parameters as, bs constructing the Gaussian bell functions in Equation (7), the time parameter t̄, and the
slope m of the ramp in Section 2.2.2, we used the load trajectories of a representative dataset (we choose
sway all around (AR) of one representative person, see Section 3.2 for the description of the performed
motions) for each of the six depicted areas of the foot model, see Figure 1 on the right; that is, we define
the vector LΩL ,it , LΩR ,it ∈ R6 as the estimated load vector for the time frame it and PΩL ,it , PΩR ,it ∈ R6

regarding the corresponding loads measured by the pressure plate. Let Nf denote the number of
frames of the trajectories and P the set of all parameters, i.e.,

P := {(as, bs)|s ∈ S} ∪ {t̄, m} , (24)

then, we minimize the following energy function

E(P) :=

√√√√ Nf

∑
it=1

(∥∥LΩL ,it(P) − PΩL ,it
∥∥2

2 +
∥∥LΩR ,it(P) − PΩR ,it

∥∥2
2

)

with respect to P using the interior-point method with a step tolerance of 10−8, that is, the optimization
ends if ‖Pk+1 −Pk‖ < 10−8(1 + ‖Pk‖). Note the dependency of the FSM on the parameter set,
i.e., LΩL ,it = LΩL ,it(P) and LΩR ,it = LΩR ,it(P).

2.4. FSM Algorithm

The subsequent algorithm summarizes the proposed method and requirements. We denote the
locations of the foot landmarks as xFM, xVM, xCA and pFM, pVM, pCA regarding the kinematic pose and
the foot model, respectively (cf. Figure 1).
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3. Experimental Results and Discussion

3.1. Materials

For the validation of the proposed method, we used two measurement systems. The Xsens
full body inertial measurement system with 17 IMUs at a sampling rate of 60 Hz to capture human
motion; MVN studio 4.97.1 for data acquisition. The validated Zebris pressure plate type FDM 1.5 [21]
acted as reference measuring system for pressure values. The pressure plate has an update rate of
100 Hz, a sensor area with dimensions 149 cm× 54.2 cm (length × width) and a spatial pressure value
resolution of 0.8469 cm2, i.e., per time frame, the pressure plate data is stored in a 176× 64 pressure
matrix. The methods were implemented and evaluated in MATLAB, version 9.4.0.813654 (R2018a).

3.2. Experiments

Three subjects (body weight 80.3± 7.7 kg, i.e. between 73 and 87 kg, age between 27 and 29 years)
walked onto the pressure plate and performed double support movements (weight shifting),
i.e., sway all around (AR), sway from side to side (S2S) and sway back and forth (BF), with eighteen
cycles (three cycles per measurement) in total for each movement. Further, more dynamic motions
like squatting (SQ) and walking (NW) were performed. As in the double support case, eighteen
squats (three squats per measurement) in total were measured. Regarding NW, the subjects walked
over the plate in normal speed measuring nine non-consecutive gait cycles (heel-strike to toe-off) per
measurement; in total, 54 gait cycles were measured. Due to poor inertial tracking data, 12 cycles
were omitted.

After receiving all relevant study information, the participants signed an informed consent to the
study including a permission to publish the data.

The focus is on the evaluation of the predicted vGRFs and the forces for the three regions (the front
part is summarized into one) per foot shown in Figure 1 using the proposed method in Algorithm 1 as
compared to the pressure plate data.

Algorithm 1 Force Shadow Method (FSM)

Require: mtotal, w(x) (cf. (19)), set of hyper parameters P ;
1: Input: kinematic data: xCoMs ,t for all segments s ∈ S , xCoM,t, xFM, xVM, xCA;
2: foot model: triangle mesh grid, pFM, pVM, pCA;
3: Output: LΩk ,t for all regions Ωk ⊂ (ΩL ∪ΩR);
4: procedure FORCE SHADOW CONSTRUCTION

5: Determine FGRF, cf. (3);
6: Project xCoMs ,t along FGRF to obtain µs,t and construct Σs,t according to (4)–(7);
7: Determine the shadow function ft(x) using µs,t, Σs,t, cf. (8)–(11);
8: procedure WEIGHTS INCORPORATING ANATOMY

9: Register foot models into the current kinematic pose using the foot landmarks, cf. (12)–(15);
10: Determine w̃t(x) = ntw(x), cf. (20);
11: Project the current body’s center of mass xCoM,t along FGRF onto the ground;
12: Predict xCoM,τ for τ ∈ [t, t + t̄] to obtain modified weights ŵ·,t, cf. (21) and (22);
13: procedure INTEGRATION

14: Integrate the weighted force shadow function ŵ·,t ft over the triangle meshes Ωk, cf. (18), (23);
15: return: LΩk ,t for all regions Ωk ⊂ (ΩL ∪ΩR);

3.3. Registration of the Pressure Plate Data

In order to obtain reference data from the pressure plate, the locations of the foot prints on the
pressure plate need to be known, such that we can detect which region Ωk is activated and which force
is acting on this respective region. For that reason, we extract the foot prints on the pressure plate by
summing up the 176× 64 pressure matrices for every time frame (given a static pose of the feet, i.e.,



Sensors 2020, 20, 5709 10 of 18

we know that in the measured range the subject’s foot pose was fixed) and use an indicator function
for each activated cell, i.e., we set the cells with non-vanishing pressure values to one; that way, we
obtain a binary matrix storing the spatial information about the 2D foot prints. The connected non-zero
entries of the matrix represent the Cartesian coordinates of the foot prints. These coordinates are
registered to the foot models via a 2D point registration, using the rigid extended coherent point drift
(rECPD), cf. [22]. To determine the vGRF for the region Ωk the pressure values that are active at the
respective region and time are multiplied pointwise by the cell’s area (0.8469 cm2) and summed up in
that region. For the total vGRF the total foot prints need to be considered.

3.4. Error Metrics

To evaluate the performance of the FSM, the estimations y(k), for k = 1, . . . , N,
were compared with the measurements ỹ(k) of the pressure plate, both normalized by bodyweight,

e.g., yHeel(k) =
LΩHeel,k

mtotal
regarding the estimation for the heel at time step k.

In order to enable the comparison to recent studies, we include the metrics defined in [13],
i.e., the root-mean-square error (RMSE),

RMSE =

√√√√ 1
N

N

∑
k=1

(y(k)− ỹ(k))2 =

√√√√ 1
N

N

∑
k=1

e(k)2, (25)

where e(k) = y(k)− ỹ(k) is defined as the error at the kth sample, and the relative root-mean-square
error (rRMSE),

rRMSE =
RMSE

1
2 (maxk(y(k))−mink(y(k)) + maxk(ỹ(k))−mink(ỹ(k)))

× 100%, (26)

which constitutes the normalization of RMSE by the peak-to-peak amplitude between both
discrete trajectories.

Further metrics included in the evaluation are the mean absolute error (MAE) of the sample data

MAE =
1
N

N

∑
k=1
|e(k)|, (27)

the standard deviation of the absolute error (SD)

SD =

√√√√ 1
N − 1

N

∑
k=1

(|e(k)| − ē)2, (28)

where

ē =
1
N

N

∑
k=1

e(k), (29)

and the Pearson correlation coefficient (r)

r =
∑N

k=1 (y(k)− ȳ)(ỹ(k)− ¯̃y)√
∑N

k=1 (y(k)− ȳ)2
√

∑N
k=1 (ỹ(k)− ¯̃y)2

, (30)

where

ȳ =
1
N

N

∑
k=1

y(k), ¯̃y =
1
N

N

∑
k=1

ỹ(k). (31)
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3.5. Subregions

The results of the subregions in ΩL and ΩR, according to the foot model shown in Figure 1 on the
right, are listed in Table 1. The subregions comprise heel, arch of the foot and front foot, which consists
of ΩMetatarsum and ΩToes.

Table 1. Error metrics for the subregions, i.e., heel (vGRFH), foot arch (vGRFA), front foot (vGRFF)
and the total foot (vGRF), per movement for each foot. Walking with normal speed (NW), squatting
(SQ), swaying all around (AR), from side to side (S2S) and back and forth (BF). The chosen metrics,
i.e., root-mean-square error (RMSE), relative root-mean-square error (rRMSE), mean-absolute error
(MAE), standard deviation (SD) and the correlation coefficient (r), are determined including all
measured cycles per motion.

AR
(Left Foot) (Right Foot)

vGRFH vGRFA vGRFF vGRF vGRFH vGRFA vGRFF vGRF

RMSE [N/kg] 1.46 0.59 1.18 1.28 1.50 0.60 1.26 1.25
rRMSE [%] 18.04 20.63 14.83 13.28 20.39 20.53 17.04 13.15

MAE [N/kg] 1.03 0.39 0.89 1.01 1.03 0.41 0.92 1.03
SD [N/kg] 1.03 0.44 0.78 0.78 1.09 0.44 0.86 0.71

r 0.87 0.85 0.84 0.94 0.84 0.80 0.81 0.94

S2S
(Left Foot) (Right Foot)

vGRFH vGRFA vGRFF vGRF vGRFH vGRFA vGRFF vGRF

RMSE [N/kg] 2.00 0.64 1.48 1.31 2.36 0.76 1.64 1.41
rRMSE [%] 31.41 24.12 22.45 13.56 38.88 25.45 25.81 14.39

MAE [N/kg] 1.57 0.44 1.18 1.03 1.81 0.51 1.21 1.12
SD [N/kg] 1.23 0.46 0.90 0.81 1.52 0.57 1.10 0.86

r 0.76 0.85 0.66 0.93 0.78 0.80 0.68 0.93

BF
(Left Foot) (Right Foot)

vGRFH vGRFA vGRFF vGRF vGRFH vGRFA vGRFF vGRF

RMSE [N/kg] 1.33 0.34 1.23 0.75 1.30 0.49 1.18 0.60
rRMSE [%] 26.76 30.28 28.32 27.65 24.79 33.28 26.69 16.20

MAE [N/kg] 1.14 0.29 0.97 0.56 1.10 0.38 0.98 0.48
SD [N/kg] 0.68 0.19 0.76 0.50 0.69 0.31 0.67 0.36

r 0.91 0.47 0.92 0.65 0.86 0.17 0.92 0.75

SQ
(Left Foot) (Right Foot)

vGRFH vGRFA vGRFF vGRF vGRFH vGRFA vGRFF vGRF

RMSE [N/kg] 1.07 0.31 0.98 0.78 1.54 0.42 0.98 1.01
rRMSE [%] 22.93 20.07 27.54 14.96 32.14 20.97 16.74 18.82

MAE [N/kg] 0.87 0.21 0.77 0.61 1.31 0.31 0.82 0.77
SD [N/kg] 0.62 0.22 0.60 0.48 0.82 0.28 0.55 0.65

r 0.55 0.37 0.14 0.39 0.19 0.43 0.71 0.45

NW
(Left Foot) (Right Foot)

vGRFH vGRFA vGRFF vGRF vGRFH vGRFA vGRFF vGRF

RMSE [N/kg] 2.13 1.03 1.91 1.64 1.86 1.00 1.79 1.42
rRMSE [%] 24.77 33.19 20.67 15.94 22.71 31.42 19.40 13.60

MAE [N/kg] 1.51 0.74 1.55 1.22 1.36 0.75 1.42 1.09
SD [N/kg] 1.49 0.71 1.12 1.11 1.28 0.66 1.09 0.91

r 0.64 0.53 0.79 0.83 0.75 0.60 0.81 0.87

The smallest deviations can be found in the mid foot with a RMSE of at most 0.76 N
kg for weight

shifting movements and 1.03 N
kg for walking. The RMSEs of estimated loads on heel and front foot do

not exceed 2.36 N
kg and 2.13 N

kg , respectively, which can be found in S2S and NW movements. Regarding

the entire foot area, the RMSE lies in between 0.60 N
kg and 1.64 N

kg for all movements. Small deviations
in the CoM can already falsely detect the activation of hip flexion muscles leading to lower correlations,
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see the correlation coefficients in SQ. Hence, overall, the results show that the FSM can approximate
measured pressure values and vGRF reasonably well, based on the kinematics of the human body,
its CoM and the force shadow function.

3.6. Justification of Arch and Hip Flexion Model

Figures 4–6 justify the importance of choosing elliptic Gaussian functions, modeling the arch of
the foot and modeling the hip flexor muscles. The plots show the trajectories of the vGRF or vGRFArch
for the left and right foot compared to the reference from the Zebris plate during double support
movements with and without these extensions.

Figure 4. vGRF trajectories for the left and right foot applying isometric Gaussian functions,
i.e., as, bs = 1, for all s ∈ S , (blue squares) and optimized, elliptic functions (green triangles) during AR
movement compared to the pressure plate (red line); both plots show the estimations and measurements
in Newton per kilogram.

Figure 5. vGRFArch trajectories for the left and right foot before (blue squares) and after (green triangles)
modeling the foot arch during AR movement (left) compared to the pressure plate (red line); both plots
show the estimations and measurements in Newton per kilogram.

Figure 6. vGRF trajectories for the left and right foot before (blue squares) and after (green triangles)
modeling the hip flexion compared to the pressure plate (red line) during AR movement; both plots
show the estimations and measurements in Newton per kilogram.
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3.7. Gait Cycle Trajectories

Figure 7 shows the vGRF trajectories obtained from the FSM as compared to the reference data
during walking with normal speed (normalized with the corresponding total weight). Shown are
the gait cycles from heel-strike to toe-off. According to [13,23,24], the trajectories follow the typical
structural pattern of gait cycles.

Figure 7. vGRF trajectories for the left and right foot resulting from FSM (green indication) compared
to the pressure plate (red indication) normalized by the total body weight; the lines illustrate the mean
vGRF values taken from multiple gait cycles (from heel-strike to toe-off) with the respective variations
of one standard deviation.

3.8. Execution Time

In Table 2, the execution times for the substeps of the proposed FSM algorithm are listed;
some substeps are taken together due to interdependencies. As the computation time is independent
of the movement, one AR measurement with 1308 time frames was chosen for the statistics.
Note, the execution time was produced with (non-optimized) MATLAB code, which can be much
slower as compared to an optimized C++ implementation. A single iteration of the algorithm takes
114.1 ms (average over 1308 frames) making the method usable for online applications. The algorithm
was executed using an Intel Core i7-7700 processor at 3.6 GHz.

Table 2. Execution times regarding one full iteration (last line) and the substeps during a sway all
around measurement. The third column shows the mean values and one standard deviation of the
required time for 1308 executions.

Code Line Procedure Execution Time

5: Determine FGRF 2.1692 · 10−6 ± 1.8414 · 10−5 s
6–7: Determine µs,t, Σs,t and ft(x) 0.047± 0.0508 s

9: Register foot models 0.0087± 0.0044 s
10: Determine weights w̃t(x) 0.0545± 0.002 s

11–12: Determine weights ŵ·,t 2.5707 · 10−4 ± 1.4173 · 10−4 s
14: Integration and Normalization 0.0036± 2.9285 · 10−4 s

4–15: One complete iteration 0.1141± 0.0578 s

3.9. Discussion on Application Scenarios and Accuracy

The FSM predicts the vGRF for arbitrary contact regions online and is designed to be robust to
different stance times or gait events, e.g., initial contacts; via biomechanically motivated models and
few hyper-parameters. However, the method has not been validated for patients with severe gait
abnormalities, so far. Possible differences to the presented results could arise, e.g., for different single
stance times, due to abnormalities of gait or balance that could have an influence on the hip flexion
model. The parameters t̄ and m for the hip flexion model were treated as hyper-parameters in this
work and were only tested for the presented motion types for healthy participants.
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Regarding accuracy comparisons with existing methods for GRF prediction, the presented
approach has comparable to inferior accuracy regarding vGRF prediction as compared to the approach
presented in [14], with respect to the squatting motion and an increased error (by about a factor
of 2) with respect to normal walking (cf. Table 3 of [14] with Table 1). Note that the approach [14]
is an offline approach that considers an optimization over a detailed musculoskeletal model and
is, thus, considerably more expensive regarding computation time and only applicable with the
detailed musculoskeletal model. Moreover, our approach was not yet optimized for walking scenarios,
e.g., the hyper-parameters were only tuned on one person for the AR motion and used for all other
motions, including NW.

One application scenario, where the FSM can be applied, is related to the Ovako Working
Posture Analysing System (OWAS) [6–8] to assess work postures. This system is partitioned in four
parts, the first three parts are concerned with the worker’s pose, in particular, the pose of the head,
back, arms and legs. The fourth OWAS category classifies the carried load in the following classes,
from 0 kg to 10 kg, 10 kg to 20 kg and above 20 kg with the respective scores. With this specific
application in mind and assuming a target accuracy of 5 kg to 10 kg, we tolerate errors of about 0.61 N

kg

to 1.22 N
kg (using the subjects’ average body weight of 80.3 kg for weight normalization). Comparing

with the results in Table 1, this target accuracy can be reached. However, to estimate unknown
carried loads, additional data is needed, which can be provided by pressure insoles. In this scenario,
the proposed method can act as a predictor for vGRF (in comparison to the the insoles’ measurements),
especially when ambiguities due to increased accelerations (caused by motion) occur, as this would
lead to ambiguities with increased loads, if measured with insoles alone.

3.10. Main Limitations

We used full body kinematics, based on inertial motion tracking, and a mass distribution table [20]
to obtain the CoM kinematics. Inertial motion capture can have sensor-to-segment calibration errors
with severe impacts on the tracked kinematics [25]. Figure 8 demonstrates how errors in tracking
the CoM can result in vGRF deviations. In this situation, the FSM is not able to distribute the vGRF
accordingly, especially in movements where the CoM is predominantly located in the center of the
body, see the correlation coefficients for BF or SQ in Table 1.

Figure 8. vGRF trajectories for the left and right foot demonstrating the effect of poorly tracked CoM
while shifting the weight back and forth; both plots show the estimations and measurements in Newton
per kilogram.

Further, the pressure estimates of the different regions can be ambiguous, in the case where the
pressure distribution under the foot is changed due to muscle contraction, but the kinematics do not
change. Thus, the distributions under each foot have to be interpreted with care. However, the total
vGRF, predicted for each independent contact region, e.g., left or right foot, is invariant to this due to
integration over the region. The only variation here can happen in the application point of the vGRF,
i.e., the CoP under the foot, which is derived from the distribution of the respective contact region.
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Finally, the results have been, up to this point, only tested on healthy male subjects of rather
similar weight.

4. Conclusions and Future Work

4.1. Conclusions

In this work, we presented the FSM which is an approach to estimate and distribute vGRF for
multiple contact regions, using only kinematic data of a human body, approximate segment weight
distributions and the person’s overall weight. This has been addressed in literature so far only for
specific motion patterns [11,13], completely data-based, i.e., with neural networks [10], or with a high
computational burden, utilizing a detailed musculoskeletal model [14,26]. In contrast, the proposed
approach is generally applicable, model-based and has a small computational complexity which
allows for online (real-time) usage. The experimental results also show that the proposed FSM can
approximate measured pressure values and vGRF reasonably well with kinematic data from inertial
body motion capture, hence, allowing for a mobile setup. Therefore, this work is meant as another step
in the direction of consistent (online) mobile kinematic and kinetic analysis of human motion which is
currently lacking in literature.

4.2. Future Work

The FSM is not limited to the shown movements and should be evaluated for other, more dynamic,
movements, e.g., running and cutting maneuvers, which are relevant in the field of sports medicine.

In the current work, only healthy foot anatomy was considered. However, the anatomical model
can be extended to pathologic feet.

The projected distribution parameters (as, bs) introduced in (7) are currently optimized to fit
a small set of subjects. According to the constructive nature of the approach, these could be replaced
by projected segment volumes of an adapted human body model, e.g., automatically generated based
on a portable RGB-D sensor as proposed in [27–29].

The influence of sensor-to-segment calibration errors already described in Section 3.10 could be
addressed by including automatic sensor alignment in the inertial tracking in future studies, similar
to [30,31], or by applying other corrections of the body’s CoM. One possibility is the exploitation of
sensor insoles to provide additional data. In this scenario, the FSM could be used as a predictor (in the
sense of statistical inference) to improve the insoles’ measurements via bias estimation or estimate
additionally carried loads, see also Section 3.9. The combination of full-body kinematics and carried
load estimation is particularly interesting in the context of ergonomic assessment, see e.g., [6–8,32,33].

In order to get access to complete gait analyzes, it is inevitable to estimate the full 3D GRF and the
ground reaction torques for each foot. Based on the latter, one can also obtain the center of pressure,
which can be used as additional information to correct the CoM.
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Abbreviations

The following abbreviations are used in this manuscript:

FSM proposed force shadow method
R set of real numbers
N set of natural numbers
FGRF three dimensional ground reaction force
FGRF,z third, vertical component of FGRF
S set of all segments of a human body
|S| number of segments
m mass in kilogram
ms mass of segment s ∈ S in kilogram
mtotal total mass in kilogram
x position vector, x = [x, y, z] or x = [x, y], respectively
ẍ acceleration vector
CoM center of mass
xCoM location of total mass center
xCoM,s location of segment’s center of mass, s ∈ S
g acceleration of gravity
R rotation matrix
N (µ, Σ, x) bell-shaped probability density function representing a normal distribution

with mean value µ, covariance Σ, evaluated at x
Ω general region specifier (ΩL and ΩR indicate the regions for the left and right foot)
p position vector regarding the landmarks of the foot model
|·| absolute value function
LΩ estimated load on region Ω
∆t difference between two measured time frames
Conv(Ω) convex hull of region Ω
w(x), w̃(x), ŵ(x) weighting functions evaluated at x
P set of hyper parameters
‖·‖p p-norm or lp-norm
RMSE root mean square error
rRMSE relative root mean square error
MAE mean absolute error
SD standard deviation
r Pearson correlation coefficient; r ∈ [0, 1]
AR motion indicator: shifting the weight all around
S2S motion indicator: shifting the weight from side to side
BF motion indicator: shifting the weight back and forth
SQ motion indicator: performing squats
NW motion indicator: walking with normal speed
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