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Abstract

We develop a test for stationarity of a time series against the alternative of a time-
changing covariance structure. Using localized versions of the periodogram, we
obtain empirical versions of a reasonable notion of a time-varying spectral density.
Coeflicients w.r.t. a Haar wavelet series expansion of such a time-varying periodogram
are a possible indicator whether there is some deviation from covariance stationarity.
We propose a test based on the limit distribution of these empirical coefficients.
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1. INTRODUCTION

The simplifying assumption of stationarity, i.e. a second-order structure which is
constant over time, is very often made in time series analysis. If this is actually
adequate, it essentially simplifies the statistical analysis and allows one to use classical
methods of data analysis. However, in the case of a strong deviation from stationarity,
e.g. sudden or periodic changes in the covariance, this erroneous assumption can cause
unexpected effects, and can finally lead to wrong conclusions about the underlying
process. Examples of nonstationary processes are numerous, and can be found,
for instance, in biomedical time series analysis whether the measurements are of
blood pressure, enzyme levels, biomechanical movements or heartbeats, etc. In
particular, in the analysis of series with pulsatile components, often a classical model
of stationarity (and Gaussianity) is not sufficient to explain the data. We like to
refer to Normolle and Brown (1994) who, among others, used a series of luteinizing
hormone concentrations to illustrate such phenomena, occurring in the detection of
seasonalities in the series. Other examples of nonstationary phenomena derive from
electrical and acoustical engineering (Doppler signals, speech analysis, EEG’s and
ECG’s), geophysics and economics.

Therefore, it is important to have some guidelines to assess the adequacy of the
assumption of stationarity. When we focus on the mean and the covariance structure
as the central characteristics of a time series, we can readily get some impression
about possible deviations from stationarity by looking at nonparametric estimates
of the mean function m and the time-varying spectral density. The latter has been
treated by Neumann and von Sachs (1997), whereas von Sachs and MacGibbon (1997)
is an example for estimation of local variation in the trend of the data (e.g., again the
luteinizing hormone data) in the presence of a time—changing stochastic fluctuation.
If one is interested in a decision rule on a more formal level, then one may employ
tests for the hypothesis of stationarity.

There are different kinds of deviations from the hypothesis of stationarity one
might be interested in. For example, one could suspect that there exists a single
change in the mean of the observations or, more generally, a change in the marginal
distributions. There already exists a long list of proposals for tests on changes in
the mean, whereas the latter case was treated in Diimbgen (1994) in the case of
independent observations.

In the present paper we focus on the detection of changes in the covariance structure of
a stochastic process. In financial time series, the mean function is often of negligible
order of magnitude, whereas the main interest is in the variablity, that is the so-
called volatility function. Black (1976) observes an effect called wolatility clustering,
i.e. high volatility followed by high, and low volatility tending to follow low one.
The common econometric model for this observation is a positively-autocorrelated
time series. Because an increasing volatility can be interpreted as an indication for a
growing uncertainty on the market, it is of considerable importance to understand the
dynamics with respect to possibly very sudden changes in the variance of stochastic
stock return models, which consequently cannot be treated as stationary over time.
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(Compare, e.g., also Weiner (1996), who performs a detection of jumps in a volatility
function as a nonparametric regression function, though.)

Other examples include sudden changes in the time-frequency structure of speech
or sound signals (cf. above) where the characterizing quantity of interest is again of
second order, usually a time-varying spectrum rather than a changing covariance.

In total, for detection of either type of second-order nonstationarity, it is quite
generally a common practice to use estimates of the spectrum rather than looking at
explicit estimates of the covariances. This is because the spectral density effectively
summarizes the characteristics of the covariance structure and also allows for a more
convenient treatment of the problems. For the particular purpose of testing a single
change-point in the covariance structure of an otherwise stationary Gaussian time
series, Picard (1995) developed a test based on the statistic

/0/\ [I(l,m(w) — I(k+1,T) (w)] dw

where v is a suitable weight function and I, and I 7) are periodograms on
the segments Xi,..., Xy, and Xgi1,..., X7, respectively. This method has been
generalized by Giraitis and Leipus (1992) to the case of linear processes, and has
been modified by Rosenholc (1995) by using tapered periodograms. The test of
Picard is based on estimates of the (possibly time-varying) spectral function F(\) =
fo’\ f(w)dw . In contrast, we intend to propose to use directly estimates of the (possibly
time-varying) spectral density. In different contexts, Rosenblatt (1975) and Ghosh
and Huang (1991) discussed the relative merits of non-smoothing tests based on
cumulative characteristics versus smoothing-based tests based on local characteristics
like densities, for example. The essential message is that non-smoothing tests look
primarily at global deviations, and are therefore well suited for detecting classical
Pitman-alternatives of the form f = fy +n~'?¢g . On the other hand, smoothing-
based tests focus on more localized deviations, and are consequently more powerful for
detecting alternatives of the form f = fo+ng(./n~7) for suitable &, > 0. To be
more specific, an a-test based on the Lo-distance between a nonparametric estimate
with bandwidth n~™" of f and an analogously smoothed version of f; can attain a
nontrivial power (greater than 1 —a) for f = fo+n3/*"12g(./n™") ; see Theorem 2.2
in Ghosh and Huang (1991), whereas the power of the Kolmogorov-Smirnov test will
converge to 1 — a. Moreover, a test based on the supremum deviation between
a nonparametric estimate with bandwidth n~7 and the correspondingly smoothed
version of fy may detect even smaller localized deviations.

There are different possibilities to implement a localization for such a smoothing-type
test. In the context of testing a presumed additive structure of a regression function,
that is Hy : f(z1,22) = fi(z1) + fo(xe) , Eubank, Hart, Simpson and Stefanski
(1995) developed a test for the presence of interaction terms based on a Fourier series
expansion of f.

In the present paper we develop a test based on a wavelet decomposition of an
appropriate notion of a time-varying spectral density. A model which allows for
a rigorous asymptotic theory in this context is developed by Dahlhaus (1997), who
introduced the concept of locally stationary processes. Our test is partially based
upon ideas used in Neumann and von Sachs (1997) to develop a wavelet estimator

Zp = sup sup  Y(k/T) , (1.1)

Xe[0,n] ke{1,...,T—1}
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of the evolutionary spectral density f(u,w). It is a multiple test with the null
hypothesis of stationarity Hy : f(u,w) = f(w) , where each subtest checks the
significance of a particular coefficient o y.jip = [ [ f(u, w);p(w)djp(w) du dw
in our decomposition with respect to some set of bivariate wavelet functions
{Yj k(W) k(W) }jko ke - Note that under Hy all of these coefficients are equal to
0. We consider two natural candidates for empirical versions of f(u,w). First,
we can use segmented periodograms Ik r)(w) as used in Dahlhaus (1997) and von
Sachs and Schneider (1996) which are calculated on segments corresponding to
the particular wavelet 1);,(u) in time direction. Second, we may employ the so-
called pre-periodogram introduced in Neumann and von Sachs (1997). This second
method has obvious advantages of adaptivity and also of sparsity in the process
of estimating the evolutionary spectral density. As, in our context of testing for
stationarity, our numerical simulations performed on typical test examples show
similar results for both methods, we observe that, in the situation of data analysis
and modelling, it is simultaneously possible to perform estimation and testing with
the same nonparametric method. In other words, we can use the empirical wavelet
coefficients of the very estimation method we have chosen to perform also the test for
stationarity, and will possibly benefit at least on the estimation side of the problem
if we choose the admittedly computationally more expensive pre-periodogram based
method.

Using an asymptotic result for the marginal distributions of our estimates of «; ;1 ,
we obtain an appropriate critical value via Bonferroni’s inequality. We prove that the
error of the first kind is asymptotically not greater than the nominal one and deliver
a brief discussion on the power of our test. The practicability of this method for
moderate sample sizes is investigated by simulations which are reported in Section 4.

2. SOME BASIC CONCEPTS FOR NONSTATIONARY PROCESSES

2.1. A framework for nonstationary processes: A model of local
stationarity. The null hypothesis is simply that the time series {X,} is covariance
stationary. To define this, we do not need any such concept of nonstationarity. For
the alternative, we have basically any arbitrary deviation from covariance stationarity
in mind. To define nonstationarity on the level of spectral densities, we have to find
an appropriate extension of the definition of the spectral density generalizing from
the stationary case. A particular framework which also allows for rigorous asymptotic
theory has recently been developed by Dahlhaus (1997). The basic idea of his model
may be explained as follows.

In order to estimate some object of interest (parameter, function,...) asymptotically
consistently, one needs an increasing amount of information about each feature of
this object. Independence or weak dependence of the observed data is one part of
a possible set of sufficient conditions for that. If the object of interest is of infinite
dimension, for example a curve, we also have to bound its complexity appropriately.
In nonparametric regression, people often consider an asymptotics with a fixed
function on a bounded interval as the target, and independent observations at an
increasingly fine grid of design points which then guarantees a growing amount
of information about the true function on every subinterval. In order to actually
have such an increasing amount of information about the function at any point z,
we have to be able to gain some information about f(zy) from the observations
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corresponding to design points close to xy. This is guaranteed by appropriate
smoothness assumptions on the regression function f. Dahlhaus uses basically this
approach to define an appropriate framework for asymptotic theory of nonstationary
processes. He keeps the central parameters of a time series, the mean and the
covariance structure, fixed and links them to a set of observations X;,...,Xr on a
growing time horizon by an appropriate rescaling of time. This leads to the following
definition.

Definition 2.1. (Dahlhaus (1997)) A sequence of stochastic processes Xir (t =
1,...,T) is called locally stationary with transfer function A° and trend g if there
exists a representation

t

Xur =plz) + [ Aiz(w) expliot) de(w), (2.1)

where

(i) &(w) is a stochastic process on [—m, 7| with {(w) = £(—w), E&(w) = 0 and
orthonormal increments, i.e. cov(dé(w), dé(w')) = 0(w — w')dw,
cum{dé(w1), ..., d€(wp)} = n(Zhoy w;) he(wi, .., wp—1) dwr ... dwg,
where cum{... } denotes the cumulant of oder k, |hg(wy,... ,wk—1)| < consty
for all k (with hy = 0, he(w) = 1) and n(w) = X372 d(w + 27j) is the period
27 extension of the Dirac delta function.
(ii) There exists a positive constant K and a smooth function A(u,w) on [0,1] X

[—m, 7] which is 27-periodic in w, with A(u, —w) = A(u,w), such that for all T,
sup [Afp(w) — A(t/T,w)| < KT (2.2)
t,w

A(u,w) and p(u) are assumed to be continuous in u.

Remark 2.1. In (2.1), t denotes a time point in the set {1,2,... , T} while u denotes a
time point in the rescaled interval [0,1], i.e. u =1t/T. Note that (2.1) does not define
a finer and finer discretized continuous time process as 7' tends to infinity. It rather
means that more and more data of the same local structure, given by A(¢/T,w), are
observed with increasing 7. As illustration we cite Example 1.1(i) given in Dahlhaus
(1996), which is

t t

Xir = “(T) + G(T) Y,

where {Y}} is a stationary process and y, o : [0,1] — R are continuous. Here, {X; 7} is
locally stationary with A?;(w) = A(t/T,w). If Y} is an autoregressive process of order
2 with (complex) roots close to the unit circle, then Y; shows a periodic behaviour
and o may be regarded as a time-varying amplitude function of the process {X;r}.
With increasing 7" more and more cycles of the process with u = t/T € [u,—¢, up,+€],
i.e. with amplitude close to o(u,), are observed.

Further examples are ARMA-processes with time—varying coefficients (cf. our
simulated examples in Section 4).

This concept now allows for the definition of a time-varying spectral density.
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Definition 2.2. As evolutionary spectrum of {X;r} given in (2.1) we define for
u € (0,1)

o0

1 :
f(u,w) = Jim > S:Z_OOCOV{X[UT_%]’T;X[UT+%]’T} exp(—iws), (2.3)

where X 1 is defined by A7 r(w) = A(0,w) for ¢ <1 and A77(w) = A(1,w) for t > T.
Under the smoothness assumptions on A(u,w) as, e.g., given further below in Section
3.1, this evolutionary spectrum equals f(u,w) = |A(u,w)|?, and is uniquely defined,
hence. For stationary processes this spectral density becomes constant in time, i.e.
f(u,w) = f(w), hence the class of locally stationary processes is a true generalization
including the stationary processes.

Note that (2.3) could have been derived also on a purely heuristic level without the
theory of locally stationary processes. If we assume that the covariances decay at
a certain rate as the lag order tends to infinity, and that the covariance structure
changes slowly over time (which is in accordance with the idea of rescaling), then
Definition 2.2 is obviously a reasonable generalization of the spectral density for
stationary processes. Actually, since the covariances decay as the lag length increases,
f(up,w) is mainly determined by covariances of X;’s with |uoT — t| small. Hence, the
definition of f(ug,w) is already automatically localized in some sense. Furthermore,
since the covariance structure is nearly the same over small segments, the definition
of f(u,w) is also stable in u, which means in turn that it is reasonable to include
some X;’s with small |ug7 — t| in the definition of the spectrum near wuy.

2.2. Two time-varying periodograms. We discuss now possibilities to define
local periodograms in the case of nonstationary processes. Assume for simplicity
1= 0. In the case of nonstationary time series it is a natural idea to fit time series
models on small segments. Accordingly, we can also consider a usual periodogram
on small segments as a starting point for further inference. This has been proposed
in Dahlhaus (1997) for the purpose of fitting certain time series models locally to a
nonstationary process, and in von Sachs and Schneider (1996) as a starting point for
a wavelet estimator of the evolutionary spectrum. In the nontapered case, such a
local periodogram has the form

2
1 | :
5N > Xpur—nyo+s) exp(—iws)

s=1
Note that the role of the parameter N, which is usually assumed to obey N — oo
and N/T — 0 as T — oo, is a two-fold one: First, it delivers a cut-off point,
from which on higher lags are not incorporated in the definition of the periodogram.
Actually, Iy (u,w) contains only estimates of the covariances up to lag N — 1; hence,
too small a value of N will introduce some bias. Second, the definition of Iy (u,w)
contains already some smoothing in time direction. In other words, the parameter
N acts in two opposite ways as a smoothing parameter: Whereas small values of
N restrict the resolution in frequency direction, large N restrict the resolution in
time direction. Of course, according to the uncertainty principle (see, for example,
Priestley (1981), p. 835), there is no loss due to the fact that the number of lags being
incorporated in the segmented periodogram is not greater than the time window. At

Iy(u,w) =
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any point ug there exists a choice of N = N(ug) which is connected to the “bandwidth
of stationarity” h,; for the latter see Dahlhaus (1996). So a in general time-varying
hy over [0,1] would call for possibly very different segment lengths N(u) over [0, 1].
Moreover, there is the additional important problem of how to perform a data-driven
choice of N. Usually, this parameter is chosen before one starts the “smoothing
machinery”, that means before one gets information about the order of magnitude of
the bandwidth of stationarity.

To avoid these shortcomings, Neumann and von Sachs (1997) introduced a different
empirical version of f(u,w). The basic idea is to avoid any kind of presmoothing at
this stage which amounts to choosing the time window as small as possible and the
lag window as large as possible. These considerations led in Neumann and von Sachs
(1997) to the definition

1 .
I(u,w) = o > Xpur—k/2,7 X[ur+k/2),7 €Xp(iwk)
Tk 1<[uT—k/2],[uT+k/2]<T (2.4)

which was called “pre-periodogram”. It was used in Neumann and von Sachs (1997)
as a starting point for a wavelet estimator of the evolutionary spectral density and
also applied in Dahlhaus (1995) to establish local likelihood methods as a tool for
fitting semiparametric time series models to locally stationary processes. The obvious
advantage of this new definition is, that the choice of the appropriate bandwidths in
time and frequency direction is completely left to the major smoothing step. In
contrast to Ik ry(w), the pre-periodogram has a diverging variance as T — oo.
However, it turns out that smoothing in time and frequency direction lead both
to a variance reduction; see also the calculations in Neumann and von Sachs (1997).
This fact also explains why the wavelet estimator of the evolutionary spectral density
considered in Neumann and von Sachs (1997) attains similar rates of convergence

as the estimator based on the segmented periodogram considered in von Sachs and
Schneider (1996).

3. THE TEST

3.1. Derivation of the test statistic. The test we intend to devise will be based on
a decomposition of an empirical version of f(u,w) with respect to a certain system of
Haar wavelet functions. Anticipating their later use on the intervals [0, 1] and [0, 7],
respectively, we define

(1, if 0<u<1/2,
Y(u) = { —1, if1/2<u<l1

and
d(w) = 1//m for 0 <w < .
Further, we set

Yin(u) = 2720 — k) and  ¢jx(w) = 2726(Qw — k1), k=0,...,2 —1.

In the following we estimate the coefficients

1 pm
ach;jl’k/ :/0 /0 f(u,w)wjyk(u)qﬁj,,k,(w)dudw,
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which may be interpreted as measures for the local contrast in time direction. Under
the null hypothesis, Hp : f(u,w) = f(w) , all of these coefficients are equal to 0.
That means that we have to test the hypothesis of ;. = 0 for all (4, k;j', k').
A natural estimate based on the segmented periodogram is

~(1)
O kst k!

= / / (k2=iT)[(k+1/2)2-i1]) (W) X (U € (k277 (kK +1/2)277])

+ Lk 40y 2y (@) x (v € [(k+1/2)279, (k + 1)2_j])] Vi (u) s i (w)dudw
1 412737

= U+ )/2\/— it [quz—m,[(k+1/2)2—m>(w) - I([((lc+1/2)2—i+1)T],[(k+1)2—J'T])(w)] dw,
(3.1)
where )
1
1 X —iwt
is the ordinary periodogram for the segment XK, ey, X

For later purposes of asymptotic considerations, in order to control the bias of the
coefficients &g},g;j,,k,, we assume that the dyadic segment lengths N; = N;(T) =
2-UDT fulfill N; > T'2. Note that, in our situation, there is no additional

segmentation bias of order O(N/T) as we estimate integrals of the spectrum over
per—defined dyadic segments. We put our assumption into

(A0) 20 = o (T'?) .
Analogously, we obtain for the pre-periodogram

1 pm
e = [ [ 100)a() b (w)dude
o1 D [ p(k1/2)27
— 9U+i"N/2_~_ / I(u,w)du _/
N k (k+1/2)2-7
For simplicity of notation, we use the multiindex I = (j,k;j', k') . Let

Tr = {I| 0<j+j <log(Jr), 0<k<2 -1, 0<k <2 -1}

(k+1)2-7

2-7

I(u,w)du] d(3.2)

(3.3)

be the set of indices that correspond to those &?)’s to be used in our test, where

Jr = O(T"~") (34)

for some p > 0.

To complete the construction of the test, we have to know at least the asymptotic
distribution of the a;’s. It will turn out that, under natural conditions, a large
number of these a; are asymptotically normally distributed. Since it is natural in
this nonparametric context to base the test on an increasing number of &;’s, we need
an appropriate formulation of this fact in terms of probabilities of large deviations.
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We use the following assumptions:

(A1) a) sup,, |A(u,w)| < cc.
b) inf, , |A(u,w)| > k for some k > 0.
¢) A(u,w) has a uniformly bounded total variation both wrt time u and
frequency w, i.e. sup, TVjox(A(u,.)) < oo and sup,, TVjo,11(A(.,w)) < oo.
(A2) Let A(u,s) :=1/(2n) [ A(u,w) exp(iws) dw ,s € Z,u € [0,1]. Then assume,
a) 3, sup, |A(u, s)| < co.

o~

b) Zs TVY[O,I](A(af)) <0,

where T'V)o11(A(.,€)) denotes the total variation of the Fourier transform

A(.,¢) of A(.,w) as a function in the first argument u € [0, 1].

(A3) ¥(u) and ¢(w) have bounded total variation on [0, 1] and [0, 7], respectively.
Then it is in particular fulfilled that, for the Fourier transform é(s) of (w), we
have |¢(s)| = O (|s|™).

(A4) SUP1<t; <1 {Etj; =1 ‘Cum(th,T’ st ’thvT)|} < C’k(k!)1+’7 for all & =

goun

2,3,..., where v > 0.

Proposition 3.1. Suppose that Assumptions (A0) to (A4) are fulfilled. Let Arp =
C/logT for any fized C' < co. Then

P (6 — a)/or > ) = (1 - (@)1 + o(1))

holds uniformly in —oo < x < Ar and I € Iy , where ®(x) = [* p(t)dt denotes
the standard normal cumulative distribution function and

o2 = 27 T /0 1 /0 " P2, w) Y2 ()62 (w)dudw + o(T™Y) + O27IT™).

The proof of this proposition is analogous to that of Proposition 3.1 in Neumann and
von Sachs (1997), and therefore omitted. Note however, that here, by (A2)(b), we
use slightly stronger assumptions on the smoothness of A(u,w), basically to allow for
the use of less regular Haar scaling functions ¢(w).

As a least prerequisite for our test we have to define a consistent estimate of the
variance o7 of &;. Under Hy, with [ 7, (u)du = 1, we have

o = 27 T /0 " P (W) 6 g (W)dw + ofT7Y) + 02T,

Whereas it is rather laborious to estimate the O(277T!)-term caused by fourth-
order cumulants, the estimation of the first term is quite easy. Since, for the ordinary
periodogram I 1y (w),

EI(21,T)(W) = 2f%(w) + o(1) as T — oo,



we propose to estimate o? simply by

67 = 7 [ I (@) o (w)do. (3.5)
From well-known properties of the periodogram, it follows that
P(T[6} - 0| > T7) = O(T7),
for suitable 0 > 0 and arbitrarily large A < 0o .
Let a be the nominal level of our test. Since there does not exist a result on the joint

distribution of the a;’s, we use the slightly conservative approach via Bonferroni’s
inequality, and define aq = «/|Zy| . Then our test rejects Hy, if

la;| > 6; @' (1 —ar/2) forany I € Zy. (3.6)

Although our simple approach of estimating 0% neglects terms caused by fourth-order
cumulants, there are basically two settings under which the asymptotic error of the
first kind does not exceed the desired one. This is obviously the case if the time
series is Gaussian. Further, since the term from the fourth-order cumulants becomes
negligible when j' — oo, our test is also correct if 5/ — oo. The assumption of ;' — oo
appears to be very natural in our fully nonparametric context.

Theorem 3.1. Suppose that (A1) to (A4) are fulfilled. Further, suppose either that
(i) {X:} is Gaussian,
or that
(i) j" — oo.
Then
Py, (|6;]| > 527 (1~ ag/2) forany I €Ty) < o + o(1).

3.2. A brief discussion on the power of the test. Although the focus is often
primarily at the error of the first kind, the power is an important quantity to compare
different competing tests. Since there is no result on the joint distribution of the
ar’s available, asymptotically exact power calculations seem to be out of reach.
Nevertheless, some insight into the power properties of our test is provided by looking
at certain special cases in the space of alternatives. First, from Proposition 3.1 we
obtain, for 0 < f <1 — a that

P(lja;| < 6:97 (1 —ar/2) forall I€Ty) < 8 (3.7)
if there exists an I € Zy such that

|| > CpT'/%/10g(T) (3.8)

with Cp < oo . We consider the simple case of a jump in f(u,w). For simplicity of
presentation, suppose that X; = o(t/T)e; , where € ~ N(0,1) are independent and
identically distributed. To simplify our considerations further, we assume that the
jumps are located at dyadic points. We look at the case of testing

H,y : o(u) = oy
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against

_ | oo, u€[0,1/2)U(1/2+ 279 1],
H: o(u) = { o0 + o7, u € [1/2,1/2+ 279]

where o0y > 0 is fixed, and we seek for the minimal value of ¢y that guarantees a
“nontrivial power”, that is # < 1 — a . The parameter jo > 0 is used to model a
transient deviation from stationarity. Now it is easy to see that

max {|a g} < or 27722022 N 279, (3.9)
where the maximum is attained for (k + 1/2)277 = 1/2 . The right-hand side of
(3.9) is maximized by the choice j' =0 and j = j, . Hence, (3.8) implies that
cp = 20027712, [log(T) is a sufficient height of a transient jump in o(u) of length
2770, Deviations from oy of short duration are modelled by j, = jo(T) — oo in our

simplified context. Hence, it is necessary to incorporate wavelets on these fine scales
Jo in order to be able to detect such a jump of minimal height.

4. A NUMERICAL STUDY

Finally we want to apply our new test procedures to some simulated examples which
give an idea about the performance both on the null-hypothesis of stationarity and
on the alternative, i.e with a spectrum f(u,w) which is not constant in time u. Most
of our simulations concern the test based on the segmented periodogra, i.e. with

coefficients &j(-’l,z;j,,k, as given in (3.1), though we also give some comparison to the use

of the pre-periodogram as in (3.2).

We start with simulation of some stationary processes, all of length 7" = 1024, by
generation of pseudo-random standard normal {e;} and, possibly, transformation to
some low—order autoregressive process with time—constant spectral density f(w).
For testing the null-hypothesis Hy we use the following set of seven Haar wavelet
coefficients

L={(,k0,0)0<j<2,0<k<2 -1},

i.e. in frequency direction we start with using only the Haar scaling function ¢g(w)
on the coarsest scale. This also enters in equation (3.5) for determining an estimate
67 for the unknown variance o?.

Fixing the nominal level of our test to & = 0.1 we measure the error of first
kind ey in counting the exceedences in (3.6) based on the normal quantile g; for
ar = a/|I;| = 1/70 which is ¢; = 2.45.

Our examples 1 — 3 are the standard normal white noise ¢4, an autoregressive process
of order 1, Xy + a1X; 1 = & with parameter a; = —0.9 and an AR(1)-process
with a; = 0.9. In 1000 simulation runs we observed the following rates ey of false
rejection: For Example 1 (White Noise) ey = 0.105, for Example 2 (a; = —0.9)
ep = 0.109, and for Example 3 (a; = 0.9) ¢y = 0.134. We note that the number
of simulation runs is large enough to ensure a small enough standard deviation over
these pseudo—independent runs, and we observe empirical levels which are pretty
close to the nominal level of o = 0.1.
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In the now following examples of non-stationary processes, we simulate the
performance on the alternative H; to get an idea about the error e; of second kind.
For this we simulated two situations of time-varying autoregressive processes, which
can be considered as quite typical examples of realizations of a nonstationary process
motivated from model (2.1),

p
Xor+ > ai(t)T) Xy i =¢,

=1

with autoregressive parameters a; = a;(t/T") being functions which change over time.

The first, our Example 4, can be considered as a cartoon for a transient, i.e. a
short nonstationarity of considerable size, but short duration (note the similarity to
the simplified example of section 3.2.):

We start from a stationary AR(2)-process X; + a1X; 1 + @Xio = &
with a3 = —0.5,a; = 0.2, up to time ¢t = 7/2. Then, for the short interval
t € [T/2,T/2+ T/64] we switch to Y; = C - X; with some parameter C' > 1 that
we will vary appropiately. Finally for t > T'/2 + T'/64 we jump back to the original
process X;.

In exactly the same set—up as above for the simulations of the stationary examples
1-3, the error rates of second kind e; = e;(C) depend, of course, on C:

For C varying between C' = 1.50 (“small jump”), C' = 1.65 (“medium jump”) and
C = 1.75 (“large jump”) we observe a monotonically falling error e;(C = 1.50) =
0.275,e1(C = 1.65) = 0.121,e,(C = 1.75) = 0.055, by counting the frequency of
failure of detection of the jump.

This is compatible with the performance on the null-hypothesis H,. We display
the time—varying (piecewise in u constant) spectrum of this example, with C' = 1.65
in Figure 1. Observe the higher intensity in the short duration segment in time.

The next example, Example 5, is a piecewise constant AR (1)—process with parameter
a; = —0.95 for t < 0.6 T and a; = —0.99 for £ > 0.6 T. So we have a peak in the
spectrum at zero frequency which gets sharper for the second segment of piecewise
stationarity. Observe the plot in Figure 2 with higher intensity in the second time
segment.

Running the same set—up as for examples 1-4, with testing only seven wavelet
coefficients will lead to a high error of second kind of e; = e;(7) = 0.543. It seems
that for this, and the next example to follow, too, it is no more sufficient to only
use the scaling function in frequency ¢g(w) on the coarsest level j' = 0: We need to
include also some splitting in the frequency domain, to detect significant differences by
wavelet coefficients where we integrate over smaller segments in frequency direction.
This seems to be necessary whenever the time-changing spectrum shows a higher
spatial variability, like for the process of this Example 5 with a lot of spectral mass
concentrated around zero frequency. So now our new sets of incorporated indices are

-[14 = {(]aka],a kl)

0<j<20<k<2-1;j=1,0<k <2 -1},
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True spectrum of Example 4

-0.5 0 0.5
Frequency

FIGURE 1. Example 4: true spectrum of AR(2)-process “transient
with medium-size jump” (C = 1.65)

True spectrum of Example 5

-0.5 0 0.5
Frequency

FIGURE 2. Example 5: true spectrum of piecewise constant AR (1)—process.

with 14 coefficients, and

-[28 = {(]a k;j,a kl)

0<j<20<k<2-1;j'=20<K <2 —1},
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counting 28 coefficients, which is a sufficiently large subset of Zr for this purpose
here.

We get the following errors of second kind, again based on 1000 simulation runs, now
with quantiles ¢4 = 2.69 and ¢og = 2.91, respectively:

For Iy4, e;(14) = 0.203, and for Iss, e1(28) = 0.200, which is quite a bit of an
improvement compared to e;(7) = 0.543 with the use of I7.

In this case we also checked the errors of first kind ey(14) and €¢(28) for the use
of I, and I in Examples 1 and 2, which, with sample size T" = 1024, were the
following: For Example 1 (standard Gaussian white noise), eg(14) = 0.111 and
e9(28) = 0.117, and for Example 2 (AR(1)-process with a; = —0.9), eo(14) = 0.176
and eg(28) = 0.214. As these values got a bit high, compared to those with I7, we
repeated the simulations with increased sample size T' = 2048, and got ey(14) = 0.116
and €y(28) = 0.158. We conjecture that the higher the scale j' of the wavelet
coefficients in frequency is the more data are needed to get close enough to the
asymptotic normality of the empirical coefficients. This is not too surprising as the
variance of the integrated classical periodogram is the smaller the larger the range of
integration in frequency is.

In another, final example, Example 6, yet, again with 7" = 1024, we simulated
a piecewise stationary autoregressive process of order 2, now, with parameters
a1 = —0.60 for £ < 0.6 T and a; = —0.208 for £ > 0.6 T, and a constant a, = 0.36.
This amounts to a sudden shift from the autoregressive peak from frequency 7/3 to
frequency 47 /9, which is comparatively close. Compare the plot of the true spectrum
in Figure 3.

Here we suspect again the need for using the sets I;4 and Ips. Our simulations
confirmed this conjecture as e;(7) = 0.694,e;(14) = 0.093 and e;(28) = 0.092.
Obviously, integration in frequency over the whole domain leads to wavelet coefficients

~(1) ) . i . : :
@, j.jr g 10 I7 of similar size, and only integration over finer segments in frequency
allows for significant differences.

As mentioned in the beginning of this section, it is also of considerable interest to
compare these results with the performance of the test with the use of the pre-

periodogram instead, i.e. with coefficients 545',212;j',k'- We repeated the experiments
done for Example 2 (i.e. under the null-hypothesis Hy of a stationary AR(1) with
coefficient a; = —0.9) with ey(7) = 0.117 for the use of I; (and to give a comparison
with the performance on Hj, below) also ey(14) = 0.124 for I;4. That is, the
performance of the test on H,, based on the pre-periodogram, is as close to the

nominal level of @ = 0.100 as it was for the segmented periodogram.

As typical example for the performance on the alternative H; we chose Example
4 with C' = 1.65, where we got e;(7) = 0.106 and, also to use an example with
a higher number of coefficients needed, Example 6: Here, e;(7) = 0.312, whereas
e1(14) = 0.102, which is roughly the same improvement we could observe already for
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True spectrum of Example 6

0 0.5
Frequency

FIGURE 3. Example 6: true spectrum of piecewise constant AR(2)-process.

the segmented periodogram.

Summarizing, both test procedures do not only seem to keep the nominal level on Hy,
but also show sufficient power on H;. As the method based on the pre-periodogram
did not lead to a significant improvement for most simple simulated examples, we
advertise the use of the algorithmically much faster method based on the segmented
periodogram. However, an estimator based on 2-d tensor wavelet coefficients of the
pre-periodogram investigated in Neumann and von Sachs (1997) proved useful for
situations of considerably different regularity of the time-dependent spetrum f(u,w)
in time and frequency. Hence, we believe nonetheless that there are situations where
it might be necessary to run a pre-periodogram based test, e.g. if a lot of frequency
resolution would be necessary, or where a situation of long-range dependence might
call for the need of incorporating a long range of lags, even for a locally changing
spectrum in time. As a certain advantage, in any case, though, we consider the
possibility of performing both estimation and testing simultaneously with the same
nonparametric method. I.e., we can use the empirical wavelet coefficients of the very
estimation method we have chosen to perform also the test for stationarity, and will
possibly benefit for at least the estimation if we use the pre-periodogram.
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