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Chapter 1

Introduction

1.1 What is LinTim?
LinTim is an academic algorithm and dataset library for mathematical public transport optimization. Prob-
lems in public transport optimization range from finding suitable locations for stations over calculating
passenger-friendly timetables to handling unexpected delays. As it would be too complicated (though best
in theory) to handle all these problems at the same time, they are split up and solved sequentially.
However, what seems to be best for one particular problem may have devastating influence on a different
problem: For example a good timetable might not be well suited for delay management. LinTim (standing
for Lineplanning and Timetabling) addresses this issue by integrating the various public transport optimiza-
tion problems and algorithms into one single environment. It hence gives the possibility to go back and
forth in the sequence of public transport optimization problems in order to find solutions that work well on a
greater scope and not only for the respective problem.
The data files are based on simple plain text formats that allow the implementation of algorithms in whatever
programming language the developer likes to use. Thus, it is made easy to extend the current LinTim-library
and keep up to date with new developments and ideas.
LinTim is designed for the use in UNIX, and will not work flawlessly in a native Windows environment.

Throughout the documentation, we will use some markers to indicate what certain
teletyped texts mean:

Fo foldername (relative paths w.r.t. the current dataset),

Fi filename (relative paths w.r.t. the current dataset),

R command that can run in some shell,

C config entry with key and value,

CK config key,

CV config value,

S statistic entry with key and value,

SK statistic key,

SV statistic value.

CK ( Fi ) a config key for a filename, followed by the default value
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1.2 Installation and Requirements
LinTim uses many different programming languages. For the most parts, it is enough to have Java (≥ 8),
C, C++ and Python3 (≥ 3.5) installed on your system. There may be some special algorithms requiring
additional programming languages, but if this is the case this is noted in the respective section of the
documentation.
Also, some programs make use of the commercial integer programming solvers Xpress, Cplex and Gurobi,
but they are only necessary if all functions of LinTim are desired. Especially, for each of the planning
stages line planning and timetabling there are also algorithms working without a solver installed. See the
instructions on the respective algorithms for configuring LinTim to use your chosen solver. If you want to
use them, make sure that the respective paths are set correctly:
For Xpress, source the xpvars.sh script. On your machine, this might mean to run

R source /opt/xpressmp/bin/xpvars.sh

This will take care of setting the appropriate environment variables for Xpress.
For Cplex, make sure the library paths are set correctly. You might need to export

R export
CLASSPATH="$CLASSPATH:/usr/local/cplex126/cplex/lib/cplex.jar"

Finally, for Gurobi, you might need to set the classpath as well:

R export CLASSPATH="$CLASSPATH:/opt/gurobi/linux64/lib/gurobi.jar"

Furthermore we need to add other environment variables. First, we need to set

R export GUROBI_HOME=/opt/gurobi/linux64/

Afterwards, we can use the setup script provided by Gurobi to set the other variables, i.e., run

R source /opt/gurobi/linux64/bin/gurobi.sh

Note that this will open a gurobi console, you may close this with exit().

For some of the graphical representations, the installation of the graphviz library is required, see http:
//www.graphviz.org/ for instructions.
Some of the python scripts may need packages, e.g., numpy or gurobipy. For reference, see the corresponding
scripts. We assume that these libraries are installed on your machine.
Also for using all of LinTim, you will have to fulfill other thirdparty dependencies. For more information,
have a look at Fi /libs/README.md .
To run most of the algorithms, installing build-essential openjdk-8-jdk ant graphviz and a
commercial solver listed above will work. Note, that this is also possible under Windows, using a WSL
installation.

1.3 Typical Usage: A Hands-On-Example
In the following we describe the typical usage of LinTim and give an overview over the structure of the
repository.
Its root directory consists of the following:

• Fo /ci
Folder for continuous integration tests.

• Fo /datasets
The LinTim instances and their customized configuration files.
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• Fo /doc
All documents regarding the LinTim project (e.g. this documentation).

• Fo /libs
A folder to place dependencies. If necessary, the dependency will be described in the corresponding
algorithm section.

• Fo /src
The source code of the LinTim algorithms.

In Fo /datasets you can see all the datasets which are implemented in LinTim for the time being. For
further information on these datasets see Chapter 8, including information on how to add your own datasets
to LinTim.

Our goal in this example will be to calculate a disposition timetable for the “toy”-dataset and describe
several of the in- and output files that you can find during the process. Note that in general, LinTim provides
the capability to configure all file paths. For simplicity, we will only provide the default values for this
config keys in this chapter. For more information, see the following chapters.

Change into the folder
Fo /datasets/toy

in order to run algorithms on the “toy”-dataset. You find an exemplary folder-structure of a dataset folder:

• Fo basis
Contains all the data describing the instance like OD matrix, edges, loads, line pool, headways, etc.

• Fo delay-management
Will contains all the data related to delay-management and aperiodic planning.

• Fo graphics
Will contain all graphical output of the algorithms you might use.

• Fo line-planning
Will contains all the data related to line planning.

• Fo statistic
Will contain all output of evaluations you might run (may not exist yet, will be created automatically
on evaluation).

• Fo timetabling
Will contain all data related to periodic timetabling.

• Fo vehicle-scheduling
Will contain all data related to vehicle scheduling.

As you can see, the folder names (and thus the contents) are related to the different steps of mathematical
public transport optimization.

Every output you produce will by default be written into the respective folders.

This means, if you somehow produce an output regarding e.g. the delay-management, it will be written to
Fo delay-management.

Also, each dataset folder contains a Makefile.

LinTim algorithms are used by calling make.

For instance typing

R make lc-line-concept
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while being located in the “toy”-folder will compile all necessary files, calculate a line concept for the
“toy”-instance and write it into Fi line-planning/Line-concept.lin .
Note that by default, this will use Xpress as an integer optimization solver. Therefore to successfully run
this step, Xpress needs to be installed. See Chapter 1.2 for more information.

For calculating a line concept, LinTim uses the data given in Fo basis.
Having a look into the makefile the line

line-concept:
${SRC_DIR}/line-planning/line-planning.sh ${FILENAME_CONFIG}

tells us, that the line concept is calculated using the algorithms from
Fo /src/line-planning with the configurations given in
Fi ${FILENAME_CONFIG} , which is Fi basis/Config.cnf by default.

For detailed instructions on configuration files and how to change them see Section 7.1.
If you want wo use different algorithms see Chapter 2 to know which are already implemented, Chapter 3 for
detailed information on the implemented algorithms and Chapter 10 for instructions on how to implement
your own into LinTim.

So let’s have a look at what we got from our call

R make lc-line-concept

The file Fi line-planning/Line-concept.lin should contain something like this:

# line-id; edge-order; edge-id; frequency
1;1;1;0
1;2;6;0
1;3;7;0
2;1;2;3
2;2;6;3
...

LinTim usually works with textfiles structured similarly (# comments a line). The advantage of this concept
is that they are very independent of the programming language used.
In the most textfiles, like in this example, an explanation will be given on how to read them.

So now we got ourselves a first line concept for our “toy”-example. Next thing to do would be calculating
a feasible timetable. For this we first have to provide an Event-Activity-Network (EAN). We can make
LinTim calculate this by calling

R make ean

Note that in order to calculate this EAN LinTim of course needs a public transportation network (PTN),
given by the network itself and a line concept on this network.
Of course it would be possible to design the algorithms in a way that a call of

R make ean

automatically generates a line concept if none is existent so far but for different reasons we refrained from
this.
Therefore before calling

R make ean

you will always have to provide a line concept. Calling it before calculating a line concept will result in an
error.
By calling
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R make ean

we calculated the events and activities of our EAN. These are written to
Fi timetabling/Activities-periodic.giv and Fi timetabling/Events-periodic.giv .

For instance Fi timetabling/Events-periodic.giv should look something like this:

# event_id; type; stop-id; line-id; passengers; line-direction;
line-freq-repetition

1; "departure"; 1; 1; 20; >; 1
2; "arrival"; 3; 1; 20; >; 1
3; "departure"; 3; 1; 20; >; 1
...

The first line again tells us how to read the file, i.e. e.g. event 2 is an arrival of line 1 at stop 3 carrying 20
passengers.

In order to calculate a timetable from this data we just call

R make tim-timetable

and LinTim will write a timetable to Fo timetabling/timetable-periodic.tim in which you can look
up the event given by its index and the time it is scheduled to take place.
Given this timetable we can now concentrate on the delay-management or the vehicle-scheduling.

We will try out the DM step first. This is a little bit more complex because there are some prerequisites we
have to provide.
First of all we need an aperiodic timetable since the DM-algorithms only work for these.
But we do not really need a new aperiodic timetable. We just need our periodic timetable expanded that is
we have to adhere the periods.
For LinTim we call this "Rollout" and calculate it by calling

R make ro-rollout

The needed “aperiodic” timetable will be written to
Fi delay-management/Timetable-expanded.tim and will also be included in
Fi delay-management/Events-expanded.tim .

After calculating this timetable we can create some delays by calling

R make dm-delays

This will call the delay-generator which generates source delays for our given network. More on how the
delay-generator works and how to control it can be found in Section 4.7.
After creating some delays we finally want to calculate a disposition timetable and do that by calling

R make dm-disposition-timetable

The timetable will be calculated and written to
Fi delay-management/Timetable-disposition.tim .

For concluding our first LinTim-cycle we now want to calculate a vehicle scheduling.
For this we first have to consider, that all the trips that have to be completed by some vehicle have to be
known. In a periodic timetable this might not be the case. Because of this we have to rollout the whole trips
and we can do so by setting C rollout_whole_trips to true. Changing a config-parameter is done in
the following way:
Change to

Fo basis

and write
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rollout_whole_trips; true

into Fi basis/Private-Config.cnf .
Now for calculating the vehicle-schedules we first have to repeat the steps from and including

R make ro-rollout

We then have to calculate the trips, the vehicles have to do. We can do so by typing

R make ro-trips

and the trips will be written to Fi delay-management/Trips.giv .
Now calling

R make vs-vehicle-schedules

calculates the vehicle schedule and it is written to
Fi vehicle-scheduling/Vehicle_Schedules.vs .

In the end, we want to evaluate the created vehicle schedule. By running

R make vs-vehicle-schedules-evaluate

we evaluate the current vehicle schedule and the computed properties will be written to
Fi statistic/statistic.sta , e.g. SK vs_cost, the cost of the vehicle schedule and
SK vs_feasible, whether the computed schedule is feasible.

Beside this few make-targets we introduced there are a lot more in LinTim. Have a look into the makefiles to
see which possible targets exist. Which algorithm will be called exactly is defined by the configuration file.
For a description of which parameter setting will call which algorithm, see Chapter 2.

11



Chapter 2

Overview on the Planning Steps

The different public transport optimization problems can be summarized in the following figure:
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Figure 2.1: Different planning steps considered in LinTim
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2.1 Stop Location
In the the stop location step a new PTN is computed according to a given demand and a given infrastructure
of stations and tracks.

2.1.1 Input
The following files are needed as input:

• CK default_existing_stop_file ( Fi basis/Existing-Stop.giv) stops of the existing in-
frastructure network

• CK default_existing_edge_file ( Fi basis/Existing-Edge.giv) edges of the existing
infrastructure network

• CK default_demand_file ( Fi basis/Demand.giv) demand at geographical positions

2.1.2 Output
The following files are produced as output.

• CK default_stops_file ( Fi basis/Stop.giv) stops of the new PTN

• CK default_edges_file ( Fi basis/Edge.giv) edges of the new PTN

2.1.3 Algorithms
Running

R make sl-stop-location

will create a new PTN with respect to the given demand points. The following algorithms are available:

• CK sl_model CV dsl finds an optimal solution for the stop location problem with fixed travel times
on PTN edges.

• CK sl_model CV greedy finds a feasible solution for the stop location problem with fixed travel
times on PTN edges with a greedy approach.

• CK sl_model CV dsl-tt solves CV dsl while considering the travel time, including acceleration
and deceleration.

• CK sl_model CV dsl-tt-2 solves CV dsl while considering the travel time, including acceleration
and deceleration.

2.2 Line Pool Generation
In the line pool generation step a possible set of lines is computed to use during the line planning step.

2.2.1 Preparation
Run

R make ptn-regenerate-load

to compute a new load.
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2.2.2 Input
The following files are needed as input:

• CK default_stops_file ( Fi basis/Stop.giv) stops of the PTN

• CK default_edges_file ( Fi basis/Edge.giv) edges of the PTN

• CK default_loads_file ( Fi basis/Load.giv) expected distribution of passengers to PTN
edges (depending on CK lpool_model)

• CK default_od_file ( Fi basis/OD.giv) OD matrix (depending on CK lpool_model)

2.2.3 Output
The following files are produced as output.

• CK default_pool_file ( Fi basis/Pool.giv) line pool, set of possible lines

• CK default_pool_cost_file ( Fi basis/Pool-Cost.giv) costs of lines in line pool

2.2.4 Algorithms
To compute a line pool run

R make lpool-line-pool

The following algorithms are available:

• CK lpool_model CV tree_based a heuristic based on MST which computes a line pool that at
least allows for a feasible line concept for a given load (see 3.2.1)

• CK lpool_model CV restricted_line_duration same as CV tree_based but with additional
constraints on the duration of a line (see 3.2.2)

• CK lpool_model CV k_shortest_paths a heuristic which computes the k shortest path for all
OD pairs as line pool (see 3.2.3).

2.3 Line Planning
In the line planning step a feasible line concept is determined by assigning frequencies to all lines in the line
pool.
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Figure 2.2: Line Planning Step
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2.3.1 Preparation
Run

R make ptn-regenerate-load

to compute a new load.

2.3.2 Input
The following files are needed as input:

• CK default_stops_file ( Fi basis/Stop.giv) stops of the PTN

• CK default_edges_file ( Fi basis/Edge.giv) edges of the PTN

• CK default_pool_file ( Fi basis/Pool.giv) line pool

• CK default_pool_cost_file ( Fi basis/Pool-Cost.giv) costs of line pool

• CK default_loads_file ( Fi basis/Load.giv) expected distribution of passengers to PTN
edges (depending on CK lc_model)

• CK default_od_file ( Fi basis/OD.giv) OD matrix (depending on CK lc_model)

2.3.3 Output
The following file is produced as output.

• CK default_lines_file ( Fi line-planning/Line-Concept.lin) line pool, set of possible
lines

2.3.4 Algorithms
To compute a line concept run

R make lc-line-concept

The following algorithms are available:

• CK lc_model CV cost optimization model minimizing the total costs of a line concept (see 3.3.1)

• CK lc_model CV cost_restricting_frequencies the CV cost-model, but with a restriction
on the number of frequencies (see 3.3.1)

• CK lc_model CV direct optimization model maximizing the number of passengers who can travel
on a shortest path from their origin to their destination without having to transfer (see 3.3.2)

• CK lc_model CV direct_restricting_frequencies the CV direct-model, but with a restric-
tion on the number of frequencies (see 3.3.2)

• CK lc_model CV direct_relaxation relaxation of CK lc_model CV direct

• CK lc_model CV cost_greedy_1 greedy heuristic trying to minimize the costs

• CK lc_model CV cost_greedy_2 another greedy heuristic trying to minimize the costs

• CK lc_model CV mult-cost-direct an IP minimizing the weighted sum of costs and direct
travelers
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• CK lc_model CV mult-cost-direct-relax an IP minimizing the weighted sum of costs and
direct travelers. Capacity restrictions are aggregated for each edge.

• CK lc_model CV traveling-time-cg a column generation procedure minimizing the estimated
travel time of passengers. (see 3.3.4)

• CK lc_model CV minchanges_ip integer program trying to minimize the weighted number of
transfers (see 3.3.5)

• CK lc_model CV minchanges_cg column generation procedure trying to minimize the weighted
number of transfers (see 3.3.5)

• CK lc_model CV game a game-theoretic approach which distributes lines equally among the edges
in order to avoid congestion and delays

2.4 Periodic Timetabling
In periodic timetabling for each Event of a previously created Event-Activity-Network is assigned a time,
resulting in a timetable.

2.4.1 Preparation
Run

R make ean

to create an Event-Activity-Network from an existing line concept.
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Figure 2.3: Creation of an EAN

2.4.2 Input
The following files are needed as input:

• CK default_activities_periodic_file ( Fi timetabling/Activities-periodic.giv) Ac-
tivities generated by the line concept.

• CK default_events_periodic_file ( Fi timetabling/Events-periodic.giv) Events gen-
erated by the line concept.

For some timetabling procedures also the following files are necessary:

• CK default_stops_file ( Fi basis/Stop.giv) stops of the PTN

• CK default_edges_file ( Fi basis/Edge.giv) edges of the PTN
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• CK default_lines_file ( Fi line-planning/Line-Concept.lin) line concept calculated in
the previous planning step

• CK filename_tim_fixed_times ( Fi timetabling/Fixed-timetable-periodic.tim) fixed
time intervals for some events

2.4.3 Output
The following files are produced as output.

• CK default_timetable_periodic_file ( Fi timetabling/Timetable-periodic.tim)
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Figure 2.4: Periodic Timetabling Step

2.4.4 Algorithms
To compute a line concept run

R make tim-timetable

The following algorithms are available by setting the config parameter CK tim_model to one of the
following:

• CV MATCH (default value) Heuristic that sets the times of driving and waiting activities to their lower
bounds and then tries to minimize change durations.

• CV con_prop Heuristic that fixes events and propagates the implied constraints to the whole network.

• CV csp Heuristic that transforms the problem to a Constraint Satisfaction Problem and finds a feasible
solution for it. Currently not included in the release version of LinTim.

• CV ns_improve Improvement procedure (known as Network-Simplex or Modulo-Simplex) that
requires a feasible timetable.

• CV csp_ns Runs csp and ns_improve afterwards. Currently not included in the release version of
LinTim.

• CV con_ns Runs con_prop and ns_improve afterwards.

• CK ipModels the Periodic Timetabling Problem as an IP and solves it.

2.5 Vehicle Scheduling
In the vehicle scheduling problem a set of routes for service vehicles is calculated to serve the given public
transportation system. There are two base models, one based on an aperiodic timetable, the other only
on a line concept. The following information is based on the classic formulations, based on the aperiodic
timetable.
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2.5.1 Preparation
Run

R make ro-rollout

and

R make ro-trips

with CK rollout_whole_trips set to CV true to create all input files needed for the vehicle scheduling
problem.
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Figure 2.5: Rollout Step
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Figure 2.6: Rollout to Trips Step

2.5.2 Input
For the rollout

The following files are needed as an input for the rollout-step:

• CK default_edges_file ( Fi basis/Edge.giv) edges of the PTN

• CK default_headways_file ( Fi basis/Headway.giv) headways of the PTN
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• CK default_lines_file ( Fi line-planning/Line-Concept.lin) frequencies of the lines

• CK default_events_periodic_file ( Fi timetabling/Events-periodic.giv) periodic
events

• CK default_activities_periodic_file ( Fi timetabling/Activities-periodic.giv)
periodic activities

• CK default_timetable_periodic_file ( Fi timetabling/Timetable-periodic.tim)
periodic timetable

Only for the model

The following files are needed as an input for the vehicle scheduling step:

• CK default_stops_file ( Fi basis/Stop.giv) stops of the PTN

• CK default_edges_file ( Fi basis/Edge.giv) edges of the PTN

• CK default_trips_file ( Fi delay-management/Trips.giv) trips for the vehicle schedule

• CK default_events_expanded_file ( Fi delay-management/Events-expanded.giv)
aperiodic events

2.5.3 Output
The following files will be produced:

• CK default_vehicle_schedule_file ( Fi vehicle-scheduling/Vehicle_Schedules.vs)
the vehicle schedule
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Figure 2.7: Vehicle Scheduling
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2.5.4 Algorithms
To compute a vehicle schedule run

R make vs-vehicle-schedules

. The following models are available

• CK vs_model CV MDM1Minimizing the number of vehicles (see 3.5.1)

• CK vs_model CV MDM2Minimizing the number of vehicles (see 3.5.2)

• CK vs_model CV ASSIGNMENT_MODELMinimizing the overall costs (see 3.5.3)

• CK vs_model CV TRANSPORTATION_MODELMinimizing the overall costs (see 3.5.4)

• CK vs_model CV NETWORK_FLOW_MODELMinimizing the overall costs (see 3.5.5) (see 3.5.1)

• CK vs_model CV CANAL_MODELMore detailed version of CV ASSIGNMENT_MODEL (see 3.5.6)

• CK vs_model CV LINE_BASED vehicle scheduling only based on line planning (see 3.5.7)

• CK vs_model CV SIMPLE will create a vehicle schedule driving the lines back and forth (see 3.5.8)

• CK vs_model CV IP solve a simple ip model (see 3.5.9)

2.6 Delay Management
Delay management computes a new (disposition) timetable based on an existing timetable and unforeseen
delays that make the original timetable infeasible.

2.6.1 Preparation
If you have not already done so for the vehicle scheduling part, run

R make ro-rollout

to expand a previously computed periodic timetable on a periodic Event-Activity Network into an aperiodic
timetable on an aperiodic Event-Activity Network.

2.6.2 Input
For the rollout

The following files are needed as an input for the rollout-step:

• CK default_edges_file ( Fi basis/Edge.giv) edges of the PTN

• CK default_headways_file ( Fi basis/Headway.giv) headways of the PTN

• CK default_lines_file ( Fi line-planning/Line-Concept.lin) frequencies of the lines

• CK default_events_periodic_file ( Fi timetabling/Events-periodic.giv) periodic
events

• CK default_activities_periodic_file ( Fi timetabling/Activities-periodic.giv)
periodic activities

• CK default_timetable_periodic_file ( Fi timetabling/Timetable-periodic.tim)
periodic timetable
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Aperiodic Event-Activity Network

These files, generated by the rollout step, are actually used for delay management:

• CK default_events_expanded_file ( Fi delay-management/Events-expanded.giv) for
the events

• CK default_activities_expanded_file ( Fi delay-management/Activities-expanded.giv)
for the activities

• CK default_timetable_expanded_file ( Fi delay-management/Timetable-expanded.tim)
for the initial timetable

Delays

There are two types of delays, which are both optional, and which go into separate files:

• CK default_event_delays_file ( Fi delay-management/Delays-Events.giv)

• CK default_activity_delays_file ( Fi delay-management/Delays-Activities.giv)

You can either manually enter delays on events and/or activities through these files, or use an automatic
(random) delay generator by running

R make dm-delays
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Figure 2.8: Generation of Delays

2.6.3 Output
The result of the delay management step is a new disposition timetable with no departure earlier than in the
original timetable, and with all the delays respected: CK default_disposition_timetable_file

( Fi delay-management/Timetable-disposition.tim)
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Figure 2.9: Delay Management Step

2.6.4 Algorithms
The delay management step is invoked via

R make dm-disposition-timetable

The main algorithms implemented in LinTim are the IP-based algorithms

• CK DM_method CV DM1

• CK DM_method CV FSFS

• CK DM_method CV FRFS

• CK DM_method CV EARLYFIX

• CK DM_method CV PRIORITY

• CK DM_method CV PRIOREPAIR

• CK DM_method CV best-of-allwhich computes all of the above and then chooses the best solution

• CK DM_method CV DM2

• CK DM_method CV DM2-pre

These need a solver configured via CK DM_solver (like CV Xpress or CV Gurobi, see section 1.2 for
details). In contrast, the most basic method without any optimization is just delaying all the events according
to the delays, CK DM_method CV propagate, where a maximum waiting time for change activities can
be configured in seconds by CK DM_propagate_maxwait, and headway activities can be turned around
automatically whenever this would not result in additional delay for the train that was originally scheduled
to go first, by setting CK DM_propagate_swapHeadways to CV true (the default).

2.7 Integrated Planning
LinTim also contains algorithms to compute multiple planning stages at once or in non-ordinary order.
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2.7.1 Algorithms
Timetabling and Passenger Routing: Run

R make int-tim-pass

to solve the integrated timetabling and passenger routing problem. More information can be found in
Section 3.7.1.

Timetabling and Vehicle Scheduling: Run

R make int-tim-veh

to solve the integrated timetabling and aperiodic vehicle scheduling problem. The passenger routes
are fixed in this model. More information can be found in Section 3.7.2.

Line Planning and Timetabling: Run

R make int-lin-tim-pass

to solve the integrated line planning and timetabling problem. This also includes passenger routing in
the timetabling stage. More information can be found in Section 3.7.3.

Timetabling and Vehicle Scheduling: Run

R make int-lin-tim-pass-veh

to solve the integrated line planning, timetabling and aperiodic vehicle scheduling problem. This also
includes passenger routing in the timetabling stage. More information can be found in Section 3.7.4.

2.7.2 The Eigenmodel
The eigenmodel is an iterative approach to integrated public transport planning, re-organizing the sequential
planning approach to allow new optimization models, solving the original problem in different orderings.
For more details, see Section 3.7.5.
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Chapter 3

Detailed Description of Algorithms

3.1 Stop Location
Running

R make sl-stop-location

will create a new PTN with respect to the given demand points. Here, all demand points have to be covered
by at least one station, i.e., the distance between the demand point an d the nearest station has to be less than
a given radius.
The parameters used for adjusting the model are the following:

• CK sl_distance norm used for measuring the distance between demand points, stations etc. Cur-
rently the only option is euclidean_norm.

• CK sl_radius maximal distance a demand point may have from a station to be covered.

• CK sl_destruction_allowed whether it is allowed to remove station that are not covering any
demand points.

• CK sl_new_stop_default_name name prefix to be given to new stops.

3.1.1 Fixed travel time on edges
The first step of the classical stop location problem which uses fixed travel times on the edges is to compute a
finite dominating set of candidates for new stations. When using the euclidean norm for measuring distance
this finite dominating set can easily computed as the intersection of the tracks and circles around the demand
point with the given radius and the already existing stops.

Optimization mode

For the optimization model define the constants

aps =

1 if demand point p is covered by candidate s
0 otherwise

and the variables

xs =

1 if candidate s is established as station
0 otherwise

.

The objective is to minimize the number of established stations such that all demand points are covered.
The following optimization model is solved to find an optimal solution for the stop location problem.
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(DS L) min
∑
s∈S

xs

s.t.
∑
s∈S

apsxs ≥ 1 ∀p ∈ P

xs ∈ {0, 1} ∀S

For more information, see [23, 27].

Greedy heuristic

The greedy heuristic find a feasible solution to the stop location problem by successively adding the candidate
which covered most uncovered demand points at this point in time.
For more information, see [23, 27].

3.1.2 Travel time considering acceleration/deceleration
When considering the acceleration and deceleration phases of vehicles, the following parameters have to be
set:

• CK sl_acceleration

• CK sl_deceleration

• CK sl_waiting_time

For more information, see [4].

3.2 Line Pool Generation
For creating a new line pool by running

R make lpool-line-pool

there are two different possibilities, using CK lpool_model CV tree_heuristic or CK lpool_model

CV k_shortest_paths.

3.2.1 Creating a new line pool with the tree based heuristic
For an undirected PTN a line pool L may be created from an existing PTN ( CK default_edges_file

( Fi basis/Edge.giv) , CK default_stops_file ( Fi basis/Stop.giv) ) and a given
CK default_loads_file ( Fi basis/Load.giv) (see Chapter 7) by running

R make lpool-line-pool

with CK lpool_model CV tree_based which creates a line pool
CK default_pool_file ( Fi basis/Pool.giv) and a corresponding CK default_pool_cost_file

( Fi basis/Pool-Cost.giv) . How the line costs are computed can be seen in Section 3.2.4.
The algorithm iteratively creates minimal spanning trees, on which lines are created in three different
possible ways:

• as a path from a leaf of the MST to another leaf,

• as a path from a leaf of the MST to a terminal or
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• as a path from a terminal to another terminal.

Here terminals are nodes of a high node degree. Each of the three classes of lines has to fulfill different
requirements, which can be seen in the discussion of the configuration parameters. Lines are created until a
feasible line concept can be found within the line pool or until the maximal number of iterations is reached.
One iteration consists of the following steps:

1. Determine a set of preferred edges.

2. Compute minimal spanning trees and create lines until all preferred edges are covered sufficiently
often or no other line can be added.

3. Test whether a feasible line concept can be found in the constructed pool.

In the first iteration preferred edges are chosen from the usage rate in the shortest paths of the OD pairs.
Later, the lower frequencies given in CK default_loads_file ( Fi basis/Load.giv) are lowered until
a feasible line concept can be found for the new frequencies and the edges for which the original frequencies
are not met are chosen as preferred edges.
The weight of an edge which is used to compute the minimal spanning tree is zero if the edge is preferred
and the physical length of the edge otherwise.
The configuration parameters are:

• CK lpool_max_iterations: the maximal number of iterations.

• CK lpool_ratio_od: the ratio of the most frequently used edges in shortest paths of the passengers,
which are preferred in the first iteration.

• CK lpool_node_degree_ratio: the percentage of the maximal node degree, which has to be
attained to qualify a node as a terminal. In the first iteration the node degree depends on the incident
edges in the PTN, later it depends on the lines passing the node.

• CK lpool_min_cover_factor: a preferred edge has to be covered

d
f min
e

lpool_min_cover_factor e times in order to be sufficiently covered.

• CK lpool_max_cover_factor: if a new line covers an edge more than
f max
e · lpool_max_cover_factor it cannot be used in the line pool.

• CK lpool_min_edges: the minimal number of edges in a line from a leaf to a terminal or from a
terminal to another terminal.

• CK lpool_min_distance_leaves: the minimal euclidean distance between two leaves to allow
for a line between them.

• CK lpool_add_shortest_paths: determines whether shortest paths are to be added as additional
lines to the line pool.

• CK lpool_ratio_shortest_paths: the percentage of the maximal number of passengers in an
OD pair which has to be attained in order to add the shortest path for an OD pair as a line. This
parameter is only relevant if CK lpool_add_shortest_paths is set to true.

Note that all lines which are created here are cycle-free, as they are either a path in a minimal spanning tree
or a shortest path in a network with non-negative edge-lengths.
For more information, see [9].

26



3.2.2 Creating a line pool while restricting the duration of the lines
When running

R make lpool-line-pool

with the parameter CK lpool_model set to CV restricted_line_duration the tree based heuristic
(see 3.2.1) is performed with additional constraints on the duration of lines. This is influenced by the
following parameters:

• CK ean_model_weight_drive to decide how the duration of a line is computed

• CK ean_model_weight_wait to decide how much waiting time is added in each station

• CK period_length used to determine the feasible duration interval

• CK vs_turn_over_time used to determine the feasible duration interval

• CK lpool_restricted_maximum_buffer_time used to determine the feasible duration interval

• CK lpool_restricted_allow_half_period determines if lines which fit into the interval at
exactly half a period minus the corresponding buffer times are allowed to be added

The feasible interval for the duration of a line mod CK period_length is defined as

[ CK period_length − CK vs_turn_over_time

− CK lpool_restricted_maximum_buffer_time,

CK period_length − CK vs_turn_over_time].

Note: There will be no shortest paths added to line pools created by this heuristic, i.e.,
CK lpool_add_shortest_paths has no influence.
For more information, see [17].

3.2.3 Creating a line pool by k shortest paths
Another possibility is to create a line pool with corresponding line costs by using the k shortest paths for
each OD pair as lines and then deleting lines which are nested in other lines. To do so run

R make lpool-line-pool

with the parameters

• CK lpool_model CV k_shortest_paths

• CK lpool_number_shortest_paths, which gives the number of shortest paths which are to be
computed for each OD pair.

3.2.4 Line costs
The costs of the lines created by

R make lpool-line-pool

are of the following form

costl = CK lpool_costs_fixed

+
∑
e∈l

(
CK lpool_costs_length · lengthe + CK lpool_costs_edges

)
+ CK lpool_costs_vehicles ·

durationl + CK vs_turn_over_time

CK period_length

 .
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The duration of a line is computed as described in Section 3.2.2.
For a given line pool CK default_pool_file ( Fi basis/Pool.giv) a corresponding cost file CK

default_pool_cost_file ( Fi basis/Pool-Cost.giv) can be created by running

R make lpool-line-pool-cost.

3.3 Line Planning
The line planning problem can be solved by running

R make lc-line-concept.

The following subsection describe the corresponding algorithms.

3.3.1 Cost
Running

R make lc-line-concept

with CK lc_model CV cost, CV cost_greedy_1 or CV cost_greedy_2 results in solving the line
planning model such that the operational costs are minimized. Operational costs in line planning are defined
as line based costs costl for all line l ∈ L and are calculated once per frequency. This means the operation
costs of a line concept with line frequencies fl for line l ∈ L is∑

l∈L

costl · fl.

Optimal solution

Running

R make lc-line-concept

with CK lc_model CV cost results in solving the classic costs minimizing line planning problem, described
in [25], to optimality. The corresponding integer program is

(LP-Cost) min
∑
l∈L

costl · fl

s.t. f min
e ≤

∑
l∈L: e∈l

fl ≤ f max
e ∀e ∈ E

fl ∈ Z ∀l ∈ L.

which is solved either by the solver Gurobi or by the solver Xpress, depending on whether CK lc_solver

is set to CV GUROBI or CV XPRESS.

System frequency

Running

R make lc-line-concept

with CK lc_model CV cost and CK lc_common_frequency_divisor set to a value unequal to 1, will
result in solving the problem with a system frequency, i.e., a frequency is only allowed in a solution, if it is
the multiple of the system frequency CK lc_common_frequency_divisor. A value <= 0 will test any
system frequency (except for 1) and output the best solution.
For more information, see [7].
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Heuristic solutions

Running

R make lc-line-concept

with CK lc_model CV cost_greedy_1 or CV cost_greedy_2 results in solving a heuristic for the cost
model described in this section. Lines are added to the line concept in a greedy way (w.r.t. the costs of the
lines) until the lower frequency bounds on the edges are fulfilled. Note that these algorithms ignore the
upper frequency bounds and are therefore not guaranteed to find a feasible solution w.r.t. these bounds. The
algorithms are described in [30].

Restricting the number of frequencies

Running

R make lc-line-concept

with CK lc_model CV cost_restricting_frequencies results in solving the cost model, while re-
stricting the number of possible frequencies. The resulting model has more variables than the original
problem, which may results in much longer running times. Even if the number of possible frequencies is
unrestricted (-1) this is still not the same model as cost due to CK lc_maximal_frequency.

• CK lc_solver either CV GUROBI or CV XPRESS, the solver to use to solve the model

• CK lc_number_of_possible_frequencies restrict the number of possible frequencies
(-1=infinity)

• CK lc_timelimit the timelimit for the solver (-1=infinity)

• CK lc_maximal_frequency the maximal allowed frequency

Fixed Lines

Running

R make lc-line-concept

with CK lc_model CV cost and CK lc_respect_fixed_lines set to CV true, will result in solving
the cost model while fixing the line frequencies given by
CK filename_lc_fixed_lines ( Fi line-planning/Fixed-Lines.lin) . Fixed lines will count to-
wards fulfilling the lower frequency bounds for feasibility and need to be included in the line pool, i.e., CK

default_pool_file ( Fi basis/Pool.giv) and CK default_pool_cost_file ( Fi basis/Pool-Cost.giv)
. The capacities for fixed lines need to be given in CK filename_lc_fixed_line_capacities ( Fi

line-planning/Line-Capacities.lin) .

3.3.2 Direct
Running

R make lc-line-concept

with CK lc_model CV direct results in solving an optimization model which aims to maximize the
number of passengers which can travel on a shortest path from their origin to their destination without
having to transfer between lines. The shortest path is determined w.r.t. CK ean_model_weight_drive.
Upper and lower frequency bounds have to be fulfilled similar to the cost model and additionally capacity
constraints on all edges have to be satisfied.
The following parameters control the behavior of the algorithm:
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• CK ean_model_weight_drive

• CK gen_passengers_per_vehicle

• CK lc_budget

• CK lc_common_frequency_divisor

• CK lc_direct_optimize_costs

• CK lc_mip_gap

• CK lc_mult_relation

• CK lc_timelimit

• CK period_length

For more information on the model, see [3].

Restricting the number of frequencies

Running

R make lc-line-concept

with CK lc_model CV direct_restricting_frequencies results in solving the direct model, while
restricting the number of possible frequencies. The resulting model has more variables than the original
problem, which may results in much longer running times. Even if the number of possible frequencies is
unrestricted (-1) this is still not the same model as direct due to CK lc_maximal_frequency.

• CK gen_passengers_per_vehicle

• CK lc_budget

• CK ean_model_weight_drive

• CK lc_common_frequency_divisor

• CK lc_timelimit

• CK lc_maximal_frequency

System frequency

Running

R make lc-line-concept

with CK lc_model CV direct and CK lc_common_frequency_divisor set to a value unequal to 1,
will result in solving the problem with a system frequency, i.e., a frequency is only allowed in a solution, if
it is the multiple of the system frequency CK lc_common_frequency_divisor. A value <= 0 will test
any system frequency (except for 1) and output the best solution. For more information, see [7].

Aggragating the passengers per OD pair

Running

R make lc-line-concept

with CK lc_model CV direct_relaxation results in solving the direct model, while aggregating the
passengers per OD pair. This is a relaxation of the original model, see [3].
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Multicriteria optimization

Setting CK lc_direct_optimize_costs to CV true will result in solving the direct model with a
weighted sum, accounting for the line costs of the resulting line concept as well. As a weight factor, CK

lc_mult_relation will be used.

3.3.3 Cost Direct Weighted Sum
Executing

R make lc-line-concept

with CK lc_model set to CV mult_cost_direct or CV mult_cost_direct_relax solve programs
which are weighted sums between the cost model (Section 3.3.1) and the direct travelers model (Sec-
tion 3.3.2). In the relaxed version (i.e.,
CV mult_cost_direct_relax) the vehicle capacity is not considered for each vehicle but only the ag-
gregated capacity for each edge is considered. The capacity consideration can be turned off by setting CK

lc_mult_cap_restrict. The weight can be set by CK lc_mult_relation where CV 0 refers to the
direct travellers model and CV 1 to the cost model. The tolerance of feasibility, integrality and optimality
can be set by CK lc_mult_tolerance. A timelimit in seconds can be set by CK lc_timelimit, but it
will only stop the computation if a feasible solution was already found. Otherwise the computation will
continue until a feasible solution is found and stop then.
Additionally, there is the possibility to consider system frequencies, i.e., a common integer divisor for all
frequencies. For this, set CK lc_common_frequency_divisor to something different than CV 1. When
setting it to a value smaller or equal to CV 0, different prime values are tested as a system frequency and the
best in terms of objective value is used as output. Note that testing prime numbers is enough for finding an
optimal solution.

3.3.4 Travelingtime
Executing

R make lc-line-concept

with CK lc_model CV traveling_time_cg solves the traveltime model as stated in [28]. It is a column
generation procedure in which the passenger paths are generated throughout the column generation iterations.
It is implemented as part of [14]. Various different method exist in order to compute a feasible starting
tableau. That is

• CK lc_traveling_time_cg_cover can be set to true or false and is a method to include passenger
paths based on the idea that every edge is covered by at least one line.

• CK lc_traveling_time_cg_k_shortest_paths can be set to an integer value. This adds a
number of shortest paths.

• CK lc_traveling_time_cg_add_sol_1 can be set to true or false. The passenger paths which are
based on the line concept (a file) given in
CK lc_traveling_time_cg_add_sol_1_name are added.

• CK lc_traveling_time_cg_add_sol_2 can be set to true or false. The passenger paths which are
based on the line concept (a file) given in
CK lc_traveling_time_cg_add_sol_2_name are added.

• CK lc_traveling_time_cg_add_sol_3 can be set to true or false. The passenger paths which are
based on the line concept (a file) given in
CK lc_traveling_time_cg_add_sol_3_name are added.
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Then the actual column generation procedure is started. Four different versions of constraints (corresponding
to CV 1, CV 2, CV 3, CV 4) can be used which are set by CK lc_traveling_time_cg_constraint_type.
Finally the following parameters are important for execution.

• CK lc_traveling_time_cg_max_iterations: This many column generation iterations are exe-
cuted at most.

• CK lc_traveling_time_cg_termination_value: This is the gap in percent
between lower and upper bound below which the best solution is returned.

• CK lc_traveling_time_cg_weight_change_edge: The weights of the transfer (change) edges
in the Change&Go-Graph are determined by this value.

• CK lc_traveling_time_cg_weight_od_edge: The weights of the OD edges in the Change&Go-
Graph are determined by this value.

• CK lc_traveling_time_cg_relaxation_constraint: boolean for additional relaxation con-
straint yl ∀l ∈ L

• CK lc_traveling_time_cg_solve_ip: if set to true the integer program corresponding to the
final linear program should be solved in the last step to approximate an integer solution.

3.3.5 Minchanges
Running

R make lc-line-concept

with CK lc_model CV minchanges_ip or CV minchanges_cg results in solving a program to minimize
the number of passenger weighted transfers. For further reference see [13].

Integer program

The integer program corresponding to method CV minchanges_ip is

(IP-LPT) min
∑
i, j∈V

∑
p∈P

i j
CG

dpcp (3.1)

∑
p∈P

i j
CG

dp ≥ Ci j ∀i, j ∈ V (3.2)

∑
i, j∈V

∑
p∈P

i j
CG

(e,l)∈p

dp ≤ A fl ∀l ∈ L,∀e ∈ l (3.3)

∑
l∈L
e∈l

fl ≤ f max
e ∀e ∈ E (3.4)

dp ∈ N0 ∀p ∈ PCG (3.5)
fl ∈ N0 ∀l ∈ L (3.6)

Since paths of passengers have to be tracked in order to obtain their transfers, the model is based on the
Change&Go-Graph CG proposed in [28]. Paths in the Change&Go-Graph are referred to as PCG. The
number cp then gives the number of transfers on a path p ∈ PCG. The variables dp and fl specify the
number of passengers on path p and the frequency of line l ∈ L, respectively.
The following parameters are used to execute the computation:

• CK lc_minchanges_nr_ptn_paths determines the maximum number of paths in the PTN on
which passengers from each OD pair are allowed to travel. This ensures that also |PCG | is bounded.
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• CK lc_minchanges_xpress_miprelstop. This parameters is passed to the execution of Xpress
and determines the gap (in percent) between lower and upper bound which has to be reached such
that the best solution is returned.

• CK lc_minchanges_nr_max_changes. Since the number of paths in the
Change&Go-Graph could become very large this parameter is used to bound them. Only paths which
have less or equal transfers (changes) are considered. A value of 0 means that all paths are considered.

• CK gen_passengers_per_vehicle. This parameter corresponds to the A in constraint (3.3) and
determines the vehicle capacity.

Column Generation procedure

In the column generation procedure the integer program (IP-LPT) is relaxed and initially only solved for a
subset of all possible paths PCG. Throughout the column generation procedure paths which are likely to
improve the current solution are determined and added to the program. The column generation procedure
ends if no such paths can be found anymore. The problem which is solved in order to determine paths which
are likely to improve the current solution is an all pairs shortest path problem. Since the correspondence
of the solution of this problem to the primarily determined paths in the PTN, PG has to be checked, two
different implementations can be used via CK lc_minchanges_pricing_method.

• CV exact: For each path p ∈ PG the corresponding subgraph of CG is constructed and herein the
all-pairs shortest path problem is solved.

• CV heuristic: The all-pairs shortest path problem is solved in the entire
Change&Go-Graph CG for all pairs of nodes. It may happen that for a pair of nodes the shortest
path does not correspond to a path in PG. In this case a warning is returned because the computation
could be wrong. Still, this procedure is much faster since the Change&Go-Graph does not need to be
constructed in every iteration.

Additional to the parameters in Section 3.3.5 the following parameters are of relevance.

• CK lc_minchanges_nr_cg_paths_per_ptn_path: For the starting tableau of the column genera-
tion procedure a set of initial paths has to be computed. This parameter determines how many paths
in the Change&Go-Graph are computed for each path in the PTN.

• CK lc_minchanges_cg_var_per_it: Only at most this many variables are added in each column
generation iteration.

• CK lc_minchanges_max_reduced_costs_included_IP: After the column generation only vari-
ables which have reduced costs less than or equal to this value are included in the final IP.

For more information on the model, see [13].

3.3.6 Game
Running

R make lc-line-concept

with CK lc_model set to CV game results in solving a game theoretic model where each line acts as a
player and aims to minimize its own (expected delay). The delay is dependent on the traffic loads along its
edges, i.e, a lines tries to choose less-frequent edges. The algorithm uses a potential function to find a line
plan at an equilibrium which is a system optimum. This line plan is computed by an integer program. For
more information, see [29].
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3.4 Timetabling

3.4.1 Modulo Network Simplex Algorithms
There are different ways to use the Modulo Network Simplex Algorithm, depending on how to provide a
starting solution:

• C tim_model; "ns_improve" It is assumed that Timetable-periodic.tim already contains a feasi-
ble starting solution; only improvement steps are taken.

• C tim_model; "csp_ns"A starting solution is found using Abscon; high reliability, small running
times, but the starting solution quality is usually bad – see Section 3.4.2.

• C tim_model; "con_ns" A starting solution is found using constraint propagation; may take too
long for some networks, but has good quality when it succeeds – see Section 3.4.3.

There are two search procedures that may be further specified, one for local search and one for fundamental
search for cuts, see [12]. The first is represented by the parameter CK tim_nws_loc_search, the second
by CK tim_nws_tab_search.
The possible local search algorithms are:

• CV SINGLE_NODE_CUT.
The first improving single node cut that is found will be used. No further parameters have to be
specified.

• CV RANDOM_CUT.
Single node cuts are chosen at random, ignoring whether they are improving or not. This will be
repeated 10 times. This procedure is likely to give better results than SINGLE_NODE_CUT, but will
take longer. No further parameters have to be specified.

• CV WAITING_CUT.
Cuts are chosen along each waiting edge cut. This will only improve
SINGLE_NODE_CUT if the interval [le, ue] is especially small for waiting activities. No further
parameters have to be specified.

• CV CONNECTED_CUT.
Cuts are found using a local search technique. This will be repeated up to 3 times. Usually yields the
best results.

These are the possible fundamental search algorithms. Their setting will have the largest impact on the
quality and time consumption of the solution.

• CV TAB_FULL.
All possible base exchanges are considered and the best one is chosen. This is usually quite time
consuming but gives high quality results. No further parameters have to be specified. This may be
considered as the default setting.

• CV TAB_SIMPLE_TABU_SEARCH.
As in TAB_FULL, all base exchanges are considered, but a tabu list gives the possibility to leave local
optima again. Parameters are:

– CK tim_nws_ts_memory. The length of the tabu list.

– CK tim_nws_ts_max_iterations. The number of iterations that are allowed before searching
for a local cut.

Because of the tabu list this algorithm is even slower than TAB_FULL but will seldom give better
results because of the large number of neighbors in every step.
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• CV TAB_SIMULATED_ANNEALING.
Base exchanges are chosen at random and used despite of being non-improving considering a steadily
cooling temperature. Parameters are:

– CK tim_nws_sa_init. The starting temperature.

– CK tim_nws_sa_cooldown. The cooling factor < 1.

This algorithm may improve TAB_FULL significantly. The time consumption is about the same.

• CV TAB_STEEPEST_SA_HYBRID.
A mix of TAB_FULL and TAB_SIMULATED_ANNEALING. This will usually yield the best results
but takes longer than TAB_FULL. The same parameters are used as in
TAB_SIMULATED_ANNEALING.

• CV TAB_PERCENTAGE.
A fast algorithm that decreases the quality of the solution only slightly. Parameters are:

– CK tim_nws_percentage. An integer < 100 that gives the size of the search space.

• CV TAB_FASTEST.
Similar to TAB_PERCENTAGE. Parameters are

– CK tim_nws_min_pivot. The minimum relative improvement a base exchange has to give.

– CK tim_nws_dyn_pivot. The value by which the first parameter is multiplied if no cut
fulfilling the criteria is being found.

For more information, see [10].

3.4.2 Constraint Propagation
This is a way to find a feasible solution. The corresponding parameter is:

• C tim_model; "con_prop"

A solution is found by fixing any event time, and propagating this information through the network, thus
removing infeasible solutions. A backtracking procedure is used to fix times differently, if there is no
feasible solution anymore.
Parameters are:

• C tim_cp_sortmode; "UP", "DOWN", "RANDOM" Determines how event times are fixed. "UP"
tries to tighten them as far as possible, while "DOWN" tries to relax them as far as possible. "RAN-
DOM" chooses randomly from the set of locally feasible times, and often succeeds where the other
two settings don’t.

• C tim_cp_check_feasibility; true/false If set to true, a heuristic check for feasibility is
performed before the actual constraint propagation. This takes some time, but may help to determine
infeasibility.

3.4.3 Abscon
Currently not included in the release version of LinTim.
To use Abscon, set

• C tim_model; "csp"

The problem of finding a feasible timetable is then translated to a generic constraint satisfaction problem,
and the third-party solver Abscon is started to find a feasible solution. If the problem is feasible, a feasible
solution can be found relatively fast; however, its objective value tend to be worse than the one generated by
constraint propagation. No parameters.
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3.4.4 MATCH
To use MATCH, set

• C tim_model; "MATCH"

A feasible timetable is found by a matching-merge heuristic. The details of this method can be looked up
in [18].

3.4.5 PESP-IP
To use the pesp ip formulation, set

• C tim_model; "ip"

This will try to solve an integer programming model of the periodic timetabling problem, see [30]. The IP
model is implemented in Xpress and Gurobi. You can set a timelimit, a thread limit and a desired gap by
setting

• C tim_pesp_ip_gap

• C tim_pesp_ip_timelimit

• C tim_solver_threads.

Additionally for Gurobi, a solution limit, a best bound stop value, starting solution procedure and a MIPFocus
are implemented (see Gurobi documentation):

• C tim_pesp_ip_solution_limit

• C tim_pesp_ip_best_bound_stop

• C tim_pesp_ip_mip_focus

• C tim_use_old_solution

For all parameters the default value of 0 will disable the respective option.
For more information on the model, see [31].

3.4.6 Adaptions
Fixed times

Some timetabling models are able to handle additional restrictions on the events, namely an additional
interval for each one. Note that this interval may only include one value, fixing some events to a specific
time.
To use this feature, set CK tim_respect_fixed_times to CV true and add
CK filename_tim_fixed_times ( Fi timetabling/Fixed-timetable-periodic.tim) for the ad-
ditonal information.

3.5 Vehicle Scheduling
The vehicle scheduling step can be invoked via

R make vs-vehicle-schedules

It assumes that there is an aperiodic Event-Activity Network with a given timetable for the aperiodic events
and a set of trips to cover, which can be generated from a periodic timetable by the auxiliary rollout algorithm
(see Section 4.6).
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3.5.1 Mdm1
Running

R make vs-vehicle-schedules

with the CK vs_model set to CV MDM1 will result in running a model minimizing the number of vehicles
used in the vehicle schedule. For two consecutive trips the last station of the first trip has to be equal
to the first station of the second trip. A depot, given by CK vs_depot_index, is considered. For more
information on the model, see [2].

3.5.2 Mdm2
Running

R make vs-vehicle-schedules

with the CK vs_model set to CV MDM2 will result in running a model that is equivalent to CV MDM1, except
that no depot is considered. For more information on the model, see [2].

3.5.3 Assignment Model
Running

R make vs-vehicle-schedules

with the CK vs_model set to CV ASSIGNMENT_MODEL will result in running a model minimizing the overall
costs, considering vehicle costs( CK vs_vehicle_costs) and empty meters costs (given by the respective
distance in time). A depot, given by CK vs_depot_index, can be considered.
Two consecutive trips can have different end and start stations respectively. Whether they can be connected
relies on the end time of trip on, the start time of trip two, the distance between the two respective stations (in
terms of minimal running times on shortest path) and a minimal turnover time ( CK vs_turn_over_time).
Note that the turnover time is not a simple restriction on the time between two connected consecutive trips,
but includes the time needed to travel to the later station, i.e., it is the designated time the vehicle needs to
be available at the later station before departing again.
For more information on the model, see [2].

3.5.4 Transportation Model
Running

R make vs-vehicle-schedules

with the CK vs_model set to CV TRANSPORTATION_MODEL will result in running a model minimizing the
overall costs, considering vehicle costs by driving to/from the depot, given by CK vs_depot_index, and
(fixed) penalty costs CK vs_penalty_costs for not giving service on a trip. For more information on the
model, see [2].

3.5.5 Network Flow Model
Running

R make vs-vehicle-schedules

with the CK vs_model set to CV NETWORK_FLOW_MODEL will result in running a model minimizing the
overall costs considering both vehicle and empty meters costs. A depot, given by CK vs_depot_index, is
considered. The number of vehicles can be bounded. For more information on the model, see [2].
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3.5.6 Canal Model
Running

R make vs-vehicle-schedules

with the CK vs_model set to CV CANAL_MODEL will result in running a more detailed version of CV

ASSIGNMENT_MODEL incorporating the actual waiting times at every node and furthermore the considered
period can be extended. Thus, each station can be regarded as a depot if trains from one day wait at the station
for a service from that station the next day. Also, depot and maintenance decisions for locations which are
farther away from the actual station can be taken. The minimal turnover time ( CK vs_turn_over_time)
will be respected. For more information on the model, see [33].

3.5.7 Line based
Running

R make vs-vehicle-schedules

with the CK vs_model set to CV LINE-BASED will result in running a model based on line planning
only. This model runs with the CK vs_line_based_method set to CV 4, CV 3 or CV 2 and CK

vs_line_based_alpha set to CV 0.3. Here the CK vs_line_based_method describes the program
type and the CK vs_line_based_alpha describes the value of α. For more information on the model,
see [15].

3.5.8 Simple
Running

R make vs-vehicle-schedules

with the CK vs_model set to CV SIMPLE will result in a homogeneous vehicle schedule, i.e., all vehicles
will serve only one line, back and forth.

3.5.9 IP model
Running

R make vs-vehicle-schedules

with the CK vs_model set to CV IP will result in a simple ip model to determine a cost efficient vehi-
cle schedule. Trips are determined compatible, if the shortest path w.r.t. the lower bounds is sufficient
to serve the trips after each other. A depot, given by CK vs_depot_index can be considered. Cur-
rently, only CV GUROBI is allowed as CK vs_solver. A timelimit for the ip model can be set via
CK vs_timelimit, where CV -1 disables this option. The cost of a vehicle is determined using CK

vs_vehicle_costs and the cost of an empty trip by CK vs_eval_cost_factor_empty_trips_length

and CK vs_eval_cost_factor_empty_trips_duration. The minimal turnover time
( CK vs_turn_over_time) will be respected. For more information on the model, see [2].

3.6 Delay Management
The delay-management step can be invoked via

R make dm-disposition-timetable
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It assumes that there is an aperiodic Event-Activity Network with a given timetable for the aperiodic events,
which can be generated from a periodic timetable by the auxiliary rollout algorithm (see section 4.6), and
some primary delays on events and/or activities (see section 4.7). The lower bounds on the drive, wait
(dwell) and fixed-circulation activities can be automatically reduced to account for a globally applied buffer
that is contained in the lower bounds but may be exploited in case of delays. To this end, the parameter CK

DM_lower_bound_reduction_factor can be set to a value below CV 1.0.

!Note that during all these steps – in contrast to preceding planning steps like line planning or periodic
timetabling – time intervals are measured in seconds, points in time in seconds since 0:00. E.g., if an activity
has a lower bound of 60, this means 60 seconds, and if the time of an event is 28 800, this means 08:00 a.m.

The following parameters are used by all methods:

• CK DM_verbose: enable verbose output

• CK DM_enable_consistency_checks: enable (time-consuming) consistency
checks of input data and results

• CK DM_debug: enable debugging output (also enables verbose output and consistency checks)

3.6.1 Propagate
The mere propagation of delays to produce a feasible disposition timetable is done when CK DM_method

is set to CV propagate. After applying the given delays on events and on the lower bounds on activity
durations, the (rolled-out) events are traversed in a topological sorting. Upon visit of each event, its time
becomes fixed (since, due to the topological sorting, all events taking place earlier have been fixed before)
and its successor events (targets of outgoing activities) are delayed as much as necessary to fulfill the lower
bound on the duration of the respective activity.
During this propagation procedure, change activities can be cut off (so that delays will not propagate along
them) based on a maximum waiting time: If the target event of a change activity would be delayed by more
than CK DM_propagate_maxwait seconds, then this change activity is not respected at all. If all change
activities shall be maintained, this parameter must be set to a very large value (e.g. the duration of the time
horizon according to the rollout parameters, in seconds).
Furthermore, the headway constraints can be swapped around in those cases where the train that was
originally scheduled first is so late that the train that was originally scheduled to go second can actually
go first without affecting the train originally scheduled first. To enable this swapping of headways, CK

DM_propagate_swapHeadways must be set to CV true.

3.6.2 Integer-Linear-Programming based methods
The aim of delay management is to react to delays in such a way that the effect on the passengers is minimal.
To this end, one has to decide for each connection whether it should be maintained or not (i.e., if a connecting
train waits for a delayed feeder train or not) and for each pair of trains using the same piece of track which
train should go first. The delay management problem is for example described in [19]. The following
parameters are used by all delay management algorithms:

• CK DM_solver: Defines which MIP solver should be used. Possible choices are Gurobi and Xpress.
Please note that your environment (e.g. the CLASSPATH variable) has to be set up properly.

• CK DM_solver_time_limit: Time limit for the MIP solver in seconds – after this time, the solver
is interrupted and the best solution found so far is used. If set to 0, no time limit is used.

• CK DM_lower_bound_reduction_factor: Describes how much buffer time is included in the
minimal duration of the activities in the event-activity network. The lower bounds read from the input
are multiplied with this number, so setting CK DM_lower_bound_reduction_factor to 1 does not
change the lower bounds, while setting it to a value in ]0, 1[ reduces the lower bound of all activities.
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The variable CK DM_method defines which algorithm should be used to solve the delay management
problem:

CV DM1: Computes an optimal solution of the MIP formulation (DM1) presented in [23, 24]. This is the
slowest algorithm provided. To perform the calculation, the rollout must have been done where the
parameter CK rollout_passenger_paths is set to CV true since the algorithm minimizes the
delays on the passenger paths given in CK default_passenger_paths_file.

CV DM2: Computes an optimal solution of the MIP formulation (DM2) presented in [23, 24]. This is an
approximation for (DM1) and a bit faster but still far slower than the other algorithms.

CV DM2-pre: The same as CV DM2, but with a preprocessing step. Computes an optimal solution of the
MIP formulation (DM2) after applying Algorithm 3.2 from [19, p. 38] for reducing the size of the
event-activity network. For more information, see [23, 24].

CV FSFS: “First scheduled, first served” – fixes the forward headways, deletes the backward headways, and
solves the resulting uncapacitated delay management problem with fixed headways to optimality using
DM1 or DM2, as specified in CK DM_opt_method_for_heuristic, see Algorithm 4.1 in [19, p. 56].
For more information, see [19, 20]. Heuristic algorithm – might not find the global optimum.

CV FRFS: “First rescheduled, first served” – fixes the headways according to the optimal solution of the
corresponding uncapacitated delay management problem, then solves the resulting uncapacitated
delay management problem with fixed headways to optimality using CV DM1 or CV DM2, as specified
in CK DM_opt_method_for_heuristic, see Algorithm 4.2 in [19, p. 57]. For more information,
see [19, 20]. Heuristic algorithm – might not find the global optimum.

CV EARLYFIX: Similar to CV FRFS – but also fixes the changing activities according to the solution of the
corresponding uncapacitated delay management problem by using CV DM1 or CV DM2, as specified
in CK DM_opt_method_for_heuristic, see Algorithm 4.3 in [19, p. 57]. For more information,
see [19, 20]. Heuristic algorithm – might not find the global optimum. Note that CV FRFS is always
at least as good as this method [19, Lemma 4.5], while this method might be faster on instances with
many changing activities.

CV PRIORITY: Similar to CV FSFS – but also fixes the “most important” connections (the variable CK

DM_method_prio_percentage defines how many percent of all connections should be main-
tained), see Algorithm 4.4 in [19, p. 57]. For more information, see [19, 20]. Heuristic al-
gorithm – might not find the global optimum. Uses CV DM1 or CV DM2, as specified in CK

DM_opt_method_for_heuristic for optimization. Note that CV FSFS is always at least as good
as this method [19, Lemma 4.6], while this method might be faster on instances with many changing
activities.

CV PRIOREPAIR: Fixes the connections according to their weights like
CV PRIORITY, relaxes the headway constraints, and solves the resulting problem using CV DM1 or
CV DM2, as specified in CK DM_opt_method_for_heuristic. Then it uses this solution to fix the
headways and solves the problem again (again CV DM1 or CV DM2) (see Algorithm 4.7 in [19, p. 68]).
For more information, see [19, 20]. Heuristic algorithm – might not find the global optimum.

CV best-of-all: Runs CV FSFS, CV FRFS and CV PRIOREPAIR consecutively and takes the best solu-
tion. Due to [19, Lemma 4.5] and [19, Lemma 4.6], it’s sufficient to run CV FSFS, CV FRFS, and CV

PRIOREPAIR and to ignore CV EARLYFIX and CV PRIORITY. Uses CV DM1 or CV DM2, as specified
in CK DM_opt_method_for_heuristic for optimization. If
CK DM_best_of_all_write_objectives is set to CV true, this will output all objective values
of the different methods into
CK filename_dm_best_of_all_objectives ( Fi statistic/dm_objectives.sta) . For more
information, see [20]. Heuristic algorithm – might not find the global optimum.
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CV PASSENGERFIX: Uses a IP to fix the headways of passenger paths with the most passenger weight sum
possible without contradictions and solves the following smaller problem with CV DM1. Note that all
headways on a path get fixed if and only if no headway contradicts the earlier decisions. Otherwise no
headway gets fixed. Same requirement as CV DM1. The IP is very big and slow!

CV PASSENGERPRIOFIX: A heuristic for the IP of CV PASSENGERFIX, fixes the headways of the first CK

DM_method_prio_percentage percent of the passenger paths sorted by weight. Fixes any headway
for a path only if this is possible without contradiction to the previous paths. After that, it solves the
smaller problem with CV DM1. Same requirement as this method.

CV FIXFSFS: First uses the fixing method of CV PASSENGERPRIOFIX on as many paths as possible, again
sorted by weight. After that it uses the fixing method of CV FSFS to fix the remaining headways.
After that, it solves the reduced problem with CV DM1 with the same requirement.

CV FIXFRFS: Like CV FIXFSFS, just uses the fixing method of CV FRFS instead of CV FSFS

3.7 Integrated Planning
The common parameters for all integrated programs are the following. Whether these parameters are used is
dependent on the specific problems.

CK int_max_threads The maximal number of cpu threads used for optimization

CK int_factor_travel_time The objective factor for the travel time

CK int_factor_drive_time The objective factor for the drive time of the passengers

CK int_factor_transfer_time The objective factor for the transfer time of the passengers

CK int_factor_wait_time The objective factor for the wait time of the passengers

CK int_factor_penalty_time_slice The penalty for changing time slices for the passengers. Only
applicable on models respecting time slices. Only applicable for models with passenger routing.

CK int_time_slices The number of time slices to use. Only applicable for models with passenger
routing.

CK int_number_of_periods The number of periods to consider the vehicle schedule for. Lines will not
be cut off at the end of the planning period. Only applicable for models with vehicle scheduling.

CK int_restrict_to_system_frequency Whether to use a system frequency, i.e., a common divisor
for all frequency values. Only applicable for models with line planning.

CK int_system_frequency The value for the system frequency, i.e., the common divisor for all fre-
quency values. Only applicable for models with line planning.

CK int_check_lower_frequencies Whether the model should respect the lower frequency bounds,
i.e., the minimal number of times edges in the public transport network need to be covered. Only
applicable for models with line planning.

CK int_check_upper_frequencies Whether the model should respect the upper frequency bounds, i.e.,
the maximal number of times edges in the public transport network may be covered. Only applicable
for models with line planning.

CK int_set_starting_timetable Whether to set the starting values for timetabling. Only applicable
for models not containing line planning.

CK int_solver_type The solver to use.
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3.7.1 Integrated Timetabling and Passenger Routing
An implementation of the integrated periodic timetabling and passenger routing problem. For details on the
model, see [22].

CK tim_pass_use_preprocessing Whether to use an exact preprocessing method to reduce the problem
size before optimization.

CK tim_pass_use_cycle_base Whether to use a cycle-base formulation. This is normally much faster.

CK tim_pass_restrict_transfer_stations Whether to use an auxiliary IP to restrict the transfer
stations. This method is only exact if all drive- and wait-activities are fixed.

CK tim_pass_add_fixed_passenger_paths Whether to add the non-routed passengers as fixed weigths
to the model.

CK tim_pass_number_of_routed_od_pairs The number of routed od pairs.

CK tim_pass_choose_routed_od_pairs How to choose the routed od pairs. The following methods
are possible:

CV POTENTIAL Choose the od pairs with the most potential, i.e., compute the shortest path w.r.t. lower
bounds on the EAN, evaluate these paths w.r.t. the difference of upper and lower bound on each
activity and weight the result by the number of passengers of the od pair.

CV LARGEST_WEIGHT Choose the od pairs with the largest weight.

CV SMALLEST_WEIGHT Choose the od pairs with the smallest weight.

CV LARGEST_WEIGHT_WITH_TRANSFER Choose the od pairs with the largest weight that additionally
have at least one transfer in their shortest path w.r.t. the lower bounds on the EAN.

CV LARGEST_DISTANCE Choose the od pairs with the largest euclidian distance.

CV DIFF Similar to CV POTENTIAL but without the additional scaling by the number of passengers.

CV RANDOM Random.

CK tim_pass_time_limit The time limit for the optimization.

CK tim_pass_mip_gap The mip gap for the optimization.

CK tim_pass_write_lp_output Whether to write the lp output. Will additionally compute an IIS for
infeasible programs.

3.7.2 Integrated Timetabling and Aperiodic Vehicle Scheduling
Solve the integrated periodic timetabling and aperiodic vehicle scheduling problem. Includes passenger
routing for the timetabling step. For more information, see [22].

CK tim_veh_allow_empty_trips Whether to allow empty trips in the vehicle schedule.

CK tim_veh_use_lower_bound Whether to include an additional lower bound on the objective function.

CK tim_veh_time_limit The time limit for the optimization.

CK tim_veh_mip_gap The mip gap for the optimization.

CK tim_veh_write_lp_output Whether to write the lp output. Will additionally compute an IIS for
infeasible programs.
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3.7.3 Integrated Line Planning and Timetabling
Solve the integrated line planning and periodic timetabling problem. Includes passenger routing for the
timetabling stage. For more information, see [22].

CK lin_tim_pass_use_preprocessing Whether to use an exact preprocessing method to reduce the
problem size before optimization.

CK lin_tim_pass_add_fixed_passenger_paths Whether to add the non-routed passengers as fixed
weigths to the model.

CK lin_tim_pass_number_of_routed_od_pairs The number of routed od pairs.

CK lin_tim_pass_factor_line_cost The factor for the line costs.

CK lin_tim_pass_time_limit The time limit for the optimization.

CK lin_tim_pass_mip_gap The mip gap for the optimization.

CK lin_tim_pass_write_lp_output Whether to write the lp output. Will additionally compute an IIS
for infeasible programs.

CK lin_tim_pass_choose_routed_od_pairs How to choose the routed od pairs. The following meth-
ods are possible:

CV LARGEST_WEIGHT Choose the od pairs with the smallest weight.

CV SMALLEST_WEIGHT Choose the od pairs with the smallest weight.

CV LARGEST_DISTANCE Choose the od pairs with the largest euclidian distance.

CV RANDOM Random.

3.7.4 Integrated Line Planning, Timetabling and Vehicle Scheduling
Solve the integrated line planning, periodic timetabling and aperiodic vehicle scheduling problem. Includes
passenger routing for the timetabling stage. For more information, see [22].

CK lin_tim_pass_veh_use_preprocessing Whether to use an exact preprocessing method to reduce
the problem size before optimization.

CK lin_tim_pass_veh_add_fixed_passenger_paths Whether to add the non-routed passengers as
fixed weigths to the model.

CK lin_tim_pass_veh_number_of_routed_od_pairs The number of routed od pairs.

CK lin_tim_pass_veh_time_limit The time limit for the optimization.

CK lin_tim_pass_veh_mip_gap The mip gap for the optimization.

CK lin_tim_pass_veh_write_lp_output Whether to write the lp output. Will additionally compute
an IIS for infeasible programs.

CK lin_tim_pass_choose_routed_od_pairs How to choose the routed od pairs. The following meth-
ods are possible:

CV LARGEST_WEIGHT Choose the od pairs with the smallest weight.

CV SMALLEST_WEIGHT Choose the od pairs with the smallest weight.

CV LARGEST_DISTANCE Choose the od pairs with the largest euclidian distance.

CV RANDOM Random.
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Figure 3.1: Depiction of the eigenmodel described in [26].

3.7.5 Eigenmodel
The eigenmodel is a theoretical model for iteratively solving the integrated public transport model. A
representation can be seen in Figure 3.1. For more information, see [26].

Tim-Veh-To-Lin

Implementation of one of the steps of the inner circle of the eigenmodel. For a fixed line plan and vehicle
schedule, compute a new periodic timetable. For more information, see [21]. Note that this model will only
work for line frequencies of 1.

CK tim_veh_to_lin_time_limit The time limit for the optimization.

CK tim_veh_to_lin_mip_gap The mip gap for the optimization.

CK tim_veh_to_lin_write_lp_output Whether to write the lp output. Will additionally compute an
IIS for infeasible programs.

CK DM_earliest_time_EM The earliest time for events to consider for this model. Should be large
enough that the time between CK DM_earliest_time_EM and CK DM_latest_time_EM is free of
any aperiodic side effects.

CK DM_latest_time_EM The latest time for events to consider for this model. Should be small enough
that the time between CK DM_earliest_time_EM and CK DM_latest_time_EM is free of any
aperiodic side effects.
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Chapter 4

Auxiliary Algorithms

4.1 OD Matrix Creation
In the OD matrix creation step, an OD matrix is calculated using a given demand and a PTN.

4.1.1 Input
The following files are needed as input:

• CK default_stops_file ( Fi basis/Stop.giv) stops of the PTN

• CK default_edges_file ( Fi basis/Edge.giv) edges of the PTN

• CK default_demand_file ( Fi basis/Demand.giv) demand at geographical positions

4.1.2 Output
The following file is produced as output:

• CK default_od_file ( Fi basis/OD.giv) OD matrix for one planning period

4.1.3 Algorithms
To compute an OD matrix run

R make od-create

For all pairs of demand point a shortest path is computed, which includes the path to and from the PTN and
might also not use any PTN edges. The demand at one demand point is distributed randomly to all other
demand points proportionally to

demand at other demand point
(distance between demand points)2 .

The passengers which are computed to travel between to demand points are attributed to the OD pairs
consisting of the first and last station on the shortest path. If the shortest path does not contain any stations,
the passengers are not counted towards the OD matrix.
The following parameters can be used to influence the OD matrix which is created:

• CK od_use_network_distance: if set to true, the distance between demand point which is used
for distributing passengers to destination demand points is the travel time between the demand points
on the shortest paths. Otherwise it is proportional to the geographical distance between the demand
point depending on the norm
CK sl_distance.
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• CK od_remove_uncovered_demand_points: if set to true, demand points which are more than
CK sl_radius away from the nearest station are not included in the computation.

• CK od_network_acceleration: speed up factor for driving in the PTN compared to traveling
directly, also used for driving to and from the network.

• CK ptn_stop_waiting_time: the time (in minutes) a vehicle has to stop at each station which is
considered during the computation of the shortest path.

4.2 Load distribution
This steps takes the OD matrix and distributes the passengers to the PTN. The resulting edge loads are used
as an input for following steps, e.g. most line planning algorithms. This section first handles the setting of
CK load_generator_model to CV LOAD_FROM_PTN, for the other case, see 4.2.4.

4.2.1 Input
The following files are needed as input:

• CK default_stops_file ( Fi basis/Stop.giv)

• CK default_edges_file ( Fi basis/Edge.giv)

• CK default_od_file ( Fi basis/OD.giv)

When parameter CK load_generator_use_cg is set to CV true, the line pool is needed as well to build
the Change&Go-network, i.e.,

• CK default_pool_file ( Fi basis/Pool.giv)

• CK default_pool_cost_file ( Fi basis/Pool-Cost.giv)

4.2.2 Output
The following file is produced as output:

• CK default_loads_file ( Fi basis/Load.giv)

4.2.3 Algorithms
To compute a new load, run

R make ptn-regenerate-load

There are different objective functions to distribute the passengers, namely

• CK load_generator_type CV SP

• CK load_generator_type CV REWARD

• CK load_generator_type CV REDUCTION

CV SP distributes the passengers on shortest paths. For determining the length of a PTN edge, parameter
CK ean_model_weight_drive is used, see 4.4.
The load generators CV REWARD and CV REDUCTION are iterative and include an additional term, rewarding
in different ways the bundling of passengers. The weight of the additional terms is determined by CK

load_generator_scaling_factor. CV REDUCTION adds a penalty depending on the usage of the edge
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in PTN (high penalty for low usage) and CV REWARD rewards an edge more if less passengers are needed
to fill the next vehicle on the edge. CV load_generator_max_iteration determines the number of
iterations allowed before the algorithms terminates, if no convergence is observed. For a more detailed
description of the models, see [6].
There are two other parameters to determine the behavior of the algorithm:

CK load_generator_use_cg When this is set to CV true, a Change&Go-network is used for routing
the passengers. This includes the knowledge of the line pool, allowing to consider transfers. The cost
of a transfer will be the estimated change time ( CK load_generator_min_change_time_factor

times CK ean_default_minimal_change_time) plus CK ean_change_penalty. For waiting
at a stop, the behavior of CK ean_model_weight_wait is adopted, see 4.4. For a more detailed
description of the Change&Go-network see [28]. Since the network to route in is much larger, this
increases the runtime, especially for bigger pools. But the resulting load is often more realistic.

CK load_generator_number_of_shortest_paths This determines the number of shortest paths the
passenger are distributed to, i.e., if this is set to K, the K shortest paths are computed in each step.
This increases the runtime! To distribute the passengers on the different paths, a logit model with
parameter CK load_generator_sp_distribution_factor is used.

To determine the lower and upper frequency values in the CK default_loads_file

( Fi basis/Load.giv) , the resulting load is divided by the vehicle capacity,
CK lc_passengers_per_vehicle. The following parameters are used:

CK load_generator_lower_frequency_factor A factor to multiply the lower frequency after divid-
ing by the capacity. The result is rounded up.

CK load_generator_fix_upper_frequency Whether a fixed upper frequency should be used. Other-
wise the upper frequency depends on the lower frequency.

CK load_generator_upper_frequency_factor The factor to multiply the lower frequency to get the
upper frequency. The result is rounded down.

CK load_generator_fixed_upper_frequency The fixed upper frequency to use.

4.2.4 Using the EAN
If CK load_generator_model is set to CV LOAD_FROM_EAN, the EAN is used to determine the load of
the PTN edges. Therefore the EAN is read and has to be present, i.e., the files

• CK default_events_periodic_file ( Fi timetabling/Events-periodic.giv)

• CK default_activities_periodic_file ( Fi timetabling/Activities-periodic.giv)

4.3 Headway creation
This is a small helper script to create a headway file for the current dataset. Some older methods still need a
headway file present, even if the content is not used.

4.3.1 Input
The following file is needed as input

• CK default_edges_file ( Fi basis/Edge.giv) edges of the PTN
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4.3.2 Output
The following file is produced as output:

• CK default_headways_file ( Fi basis/Headway.giv) a file containing a default headway
value for each edge

4.3.3 Algorithm
To create the headways, run

R make ptn-headways

This will create a new headway file, using CK ptn_default_headway_value as a value for each edge.

4.4 PTN to EAN

4.4.1 Input
The following files are required as input

• CK default_stops_file ( Fi basis/Stop.giv) edges of the PTN

• CK default_edges_file ( Fi basis/Edge.giv) edges of the PTN

• CK default_lines_file ( Fi line-planning/Line-Concept.lin) a line concept on the PTN

4.4.2 Output
This procedure gives the following output

• CK default_events_periodic_file ( Fi timetabling/Events-periodic.giv)

• CK default_activities_periodic_file ( Fi timetabling/Activities-periodic.giv)

4.4.3 Algorithm
To create the Event-Activity-Network (required as input for Timetabling etc.), run

R make ean

The event-activity-network is then created. To this end for every line departure and arrival events for
every station the line passes (every line is executed in both directions) will be created. These events are
then connected either with drive or wait activities (respecting the bounds given by the configuration of
CK ean_default_minimal_waiting_time etc.). Furthermore it will assign each arc with some weight,
corresponding to the amount of passengers driving on it. The calculation assumes that the times for each
activity are given by CK ean_model_weight_drive (resp. wait/change/etc.).
Per default CK ean_construction_target_model_frequency is set to
CV FREQUENCY_AS_MULTIPLICITY, which additionally creates synchronisation activities between every
repetition of each line. This ensures that in the EAN the frequency of each line is indeed respected. Note,
that such synchronisation activities have fixed upper and lower bounds, that are equal. If the frequency of a
line does not divide the period length, this routine will distribute the remaining time buffer evenly to the
different activities.
If headways exist, they can also be created for the EAN by setting
CK ean_construction_target_model_headway to something different than
CV NO_HEADWAYS (which is the default), e.g. to CV SIMPLE.
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4.5 EAN reroute passengers
R make ean-reroute-passengers

This generates a passenger distribution (i.e., new weights on the activities) by rerouting the passengers (i.e.,
the OD pairs) through the periodic EAN on shortest paths with respect to the timetable derived durations.
Note that the passengers of the same OD pair will not be split up, but will all use the same shortest path in
the EAN.

4.6 Rollout
The periodic event-activity network and the periodic timetable have to be converted to a nonperiodic
event-activity network that can be used in the operational phase of public transport.

4.6.1 Input
The following files are needed as input

• CK default_edges_file (default: basis/Edge.giv)

• CK default_headways_file (default: basis/Headway.giv)

• CK default_events_periodic_file ( Fi timetabling/Events-periodic.giv)

• CK default_activities_periodic_file ( Fi timetabling/Activities-periodic.giv)

4.6.2 Output
The following files are produced as output:

• CK default_events_expanded_file ( Fi delay-management/Events-expanded.giv) a file
containing the aperiodic events

• CK default_activities_expanded_file

( Fi delay-management/Activities-expanded.giv) a file containing the aperiodic activities

• CK default_timetable_expanded_file

( Fi delay-management/Timetable-expanded.tim) a file containing the aperiodic timetable

4.6.3 Algorithm
To roll out, all (nonperiodic) events that take place in the time interval [ CK DM_earliest_time, CK

DM_latest_time] (given in seconds since 0:00) as well as all (nonperiodic) activities connecting those
events are taken into account. If CK rollout_whole_trips is set to CV true, all trips whose start
event or end event are not contained in [ CK DM_earliest_time, CK DM_latest_time] are deleted. If
CK rollout_discard_unused_change_edges is set to CV true, changing activities with weight 0 are
ignored (this might significantly reduce the size of the nonperiodic event-activity network, speeding up the
delay management step). The parameter CK rollout_for_nonperiodic_timetabling influences the
output: if set to CV true, only forward headways are contained in the output, and for each activity, the
output also contains an upper bound on its duration (note that this parameter always should be set to false
unless you really know what you are doing!).
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Delay Management and Vehicle Scheduling When rolling out for vehicle scheduling, usually a long
time period (e.g. a whole day) is considered and CK rollout_whole_trips must be set to CV true.
When rolling out for delay management, usually a short time period (e.g. two hours) is considered and CK

rollout_whole_trips should be set to CV false. Typically, the combination of vehicle scheduling and
delay management could be like this:

1. Set [ CK DM_earliest_time, CK DM_latest_time] to a “large” time interval, e.g. one day, and
CK rollout_whole_trips to CV true.

2. Run

R make ro-rollout && make ro-trips

3. Run

R make vs-vehicle-schedules

to generate the vehicle schedules.

4. Set [ CK DM_earliest_time, CK DM_latest_time] to the time interval needed for delay manage-
ment, e.g. two hours, and CK rollout_whole_trips to CV false.

5. Run

R make ro-rollout && make vs-add-circulations-to-ean

to roll out for delay management and to add the circulations to the rolled-out event-activity network.

Generating passenger paths For more precise methods of delay management, OD pairs may be rolled
out over the delay management period into distinct paths in the aperiodic EAN. As this takes quite some time
in the rollout and in the evaluation of the delay management, this has to be explicitly enabled by setting the
rollout_passenger_paths parameter to true. A new file determined by default_passenger_paths_file
will be created containing in each line a departure event, an arrival event, the source and target station id, an
integral passenger weight and a comma-separated list of change activities. The weights are distributed from
the original OD file, where passengers are equally distributed over the time between DM_earliest_time and
the departure time of their last connection. Every passenger gets assigned to the next possible departure
event. If there exists multiple paths with the same arrival time, among them only those with a minimal
number of changes and with the latest possible departure time will be kept and considered. A path for which
another path with the same or a later departure time but an earlier arrival time exists will not be considered
either. If there still are multiple paths for one departure time, the passengers will be divided between them
equally but integrally (such that some of them may have 1 passenger less than others). If passenger paths are
rolled out, there will be an additional file according to default_od_expanded_file will be created. This file
contains a timestamped OD demand according to the path-distribution of the passengers.

4.6.4 Requirements and Caveats
• If CK DM_enable_consistency_checks is set to CV true, IDs in files are checked to be consecu-

tively numbered beginning from 1.

4.6.5 Generating Trips
For vehicle scheduling, it is necessary to additionally create the trips after rolling out, i.e., after

R make ro-rollout

with CK rollout_whole_trips set to CV true,

R make ro-trips
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should be run as well. This method uses the files

• CK default_activities_expanded_file

( Fi delay-management/Activities-expanded.giv)

• CK default_events_expanded_file ( Fi delay-management/Events-expanded.giv)

to create

• CK default_trips_file ( Fi delay-management/Trips.giv)

The file CK default_trips_file ( Fi delay-management/Trips.giv) will then contain all informa-
tion regarding line trips that need to be covered of a feasible vehicle schedule.

4.7 Delay generation
To simulate source delays during the operational phase, different delay generators are included in LinTim.
The following parameters are used by all delay generators:

• The interval [ CK delays_min_time, CK delays_max_time] defines which events and/or activ-
ities might be delayed (only events taking place in this time interval or activities connecting two
such events might be delayed). Note that [ CK delays_min_time, CK delays_max_time] ⊆ [ CK

DM_earliest_time, CK DM_latest_time] is required.

• The parameters CK delays_min_delay and CK delays_max_delay define lower and upper
bounds on the amount of a source delay. If CK delays_absolute_numbers is set to CV true, the
bounds are in seconds, otherwise the bounds are in % of the nominal duration of a delayed activity
(this is needed for delays on activities only).

• If CK delays_append is set to CV true, the generated source delays are appended to already
existing files containing source delays (to allow a combination of delays, generated by different delay
generators); if set to CV false, existing files containing source delays are replaced. Please note that
several source delays of the same event (activity) are not additive: newly generated source delays are
simply appended to the file containing the source delays, and this file is read sequentially – so for
each event (activity), only the last source delay contained in the file is taken into account.

Which generator is going to be used is controlled by the CK delays_generator parameter.

CV uniform_distribution: Adds random source delays to randomly chosen events and/or activities.
Its behavior can be controlled by the following parameters:

• CK delays_events: If set to CV true, source delays on events are generated (can be combined
with CK delays_activities).

• CK delays_activities: If set to CV true, source delays on driving activities are generated
(can be combined with CK delays_events).

• CK delays_count: Number of source delays that will be generated. If
CK delays_count_is_absolute is set to CV true, CK delays_count is an absolute num-
ber; otherwise it defines how many events of all events taking place in
[ CK delays_min_time, CK delays_max_time] (in %) and/or how many driving activi-
ties of all driving activities with start event and end event in [ CK delays_min_time, CK

delays_max_time] (in %) will be delayed.

CV events_in_station: Delays all events in the station defined by
CK delays_station_id_for_delays. If CK delays_station_id_for_delays is CV -1, the
station is chosen randomly. If you want to delay all events in several different stations, you have to run
the delay generator several times with different values of CK delays_station_id_for_delays

and CK delays_append set to CV true.
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CV activities_on_track: Delays all driving activities on the track defined by
CK delays_edge_id_for_delays. If CK delays_edge_id_for_delays is CV -1, the track
is chosen randomly. If you want to delay all driving activities on several different tracks, you have to
run the delay generator several times with different values of CK delays_edge_id_for_delays

and CK delays_append set to CV true.

CV uniform_background_noise: Adds random source delays to every event and/or activity. Its behavior
can be controlled by the following parameters:

• CK delays_seed: For reproducible purpose a seed for generating random delay amount is
introduced. If delays seed is set to CV 0, no seed will be set and thus the experiment in general
is not reproducible.

• CK delays_events: If set to CV true, source delays on events are generated (can be combined
with CK delays_activities).

• CK delays_activities: If set to CV true, source delays on driving activities are generated
(can be combined with CK delays_events).

• CK delays_append: If this is set to CV true, the already delayed events and activities are not
further manipulated.

4.8 Visualization
LinTim offers algorithms for drawing several states of the public transportation system. The output files can
be found in Fo graphics.

4.8.1 PTN
To create an illustration of the PTN run

R make ptn-draw

The result for dataset toy is depicted in Figure 4.1.

Figure 4.1: The PTN of the toy dataset

The graph can be scaled by adapting CK ptn_draw_conversion_factor.

4.8.2 Line Pool
To create an illustration of the line pool run

R make lpool-line-pool-draw

The result for dataset toy is depicted in Figure 4.2.
The graph can be scaled by adapting CK lpool_coordinate_factor.
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Figure 4.2: The line pool of the toy dataset

4.8.3 Line Concept
To create an illustration of the line concept run

R make lc-line-concept-draw

The result for dataset toy is depicted in Figure 4.3.

Figure 4.3: One possible line concept of the toy dataset

The graph can be scaled by adapting CK lpool_coordinate_factor.

4.8.4 Timetable
To create an illustration of the timetable, run

R make tim-timetable-draw

The result for dataset toy is depicted in Figure 4.4. Note, that this command will draw only the ean, if no
timetable is present.

4.8.5 Disposition timetable
To create an illustration of the disposition timetable, run

R make dm-disposition-timetable-draw

The result for dataset toy is depicted in Figure 4.5. Delayed events will be displayed in red (more delay
results in more saturation). Note, that this command will draw only the extended timetable, if no disposition
timetable is present.
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Figure 4.4: Extract of one possible timetable of the toy dataset

Figure 4.5: Extract of one possible disposition timetable of the toy dataset

4.8.6 mapgui
Additionally, there is an interactive tool for displaying public transportation systems on a map which is used
by running

R make mapgui

To decide which step is displayed, set the parameter CK mapgui_show_step to CV ptn, CV linepool,
CV lineconcept, CV timetable or CV dispotimetable, respectively. The speed of the visualization
is controlled by CK mapgui_visual_speed.

4.9 Interaction with VISUM
During the work on DFG FOR 2083, a basic interface to PTV VISUM ([1]) was created. For this, LinTim
gained the ability to write the periodic timetable in a format that can be easily read by VISUM, as well
as reading fixed lines and timetables from VISUM-net-files. The description of the needed format of the
VISUM files is out of scope for this documentation, but we want to provide a short idea, how to use the
interface.
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The interface consists of three parts:

Reading fixed lines: By calling

R make lc-read-fixed-lines-from-visum

LinTim will read the VISUM-file provided by CK filename_net_file ( Fi visum.net) to find
all lines that should be fixed and write them in LinTim-format. For this, we assume that there is a bus-
system that should be optimized (noted by “B” in the VISUM files) and other fixed transportation sys-
tems. All fixed lines are read and added to the line pool as well as CK filename_lc_fixed_lines

( Fi line-planning/Fixed-Lines.lin) with their respective frequency and the corresponding
capacities will be written to
CK filename_lc_fixed_line_capacities ( Fi line-planning/Line-Capacities.lin) .
Note that this will change the line pool, i.e., running this multiple times in a row without reset-
ting the pool may lead to unintended consequences.

Afterwards, setting CK lc_respect_fixed_lines to CV true will respect these lines for the line
planning problem. This is not supported for all line planning problems, see the corresponding line
planning documentation in Section 3.3.

Transforming timetable to VISUM: By calling

R make tim-transform-to-visum

LinTim will create a timetable file based on stops at CK default_timetable_visum_file ( Fi

timetabling/Timetable-visum-nodes.tim) , that can be read easier by VISUM.
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Chapter 5

Evaluation

5.1 Evaluation of the PTN created by Stop Location
To evaluate the properties of the public transportation network created by stop location, you can use the
makefile target

R make sl-evaluate

The following parameters will be evaluated and written to
CK default_statistic_file ( Fi statistic/statistic.sta) :

SK ptn_feasible_od For every OD pair exists a path through the PTN. (Only evaluated if an OD matrix
exists.)

SK ptn_feasible_sl Every demand point that is no more than CK sl_radius away from the PTN is
covered by a stop, i.e., it is no more than CK sl_radius away from a stop.

SK ptn_time_average Average travel-time of all passengers on shortest path through the PTN in seconds.
(Only evaluated if an OD matrix exists.)

SK ptn_obj_stops Number of stops.

SK ptn_prop_edges Number of undirected edges for an undirected PTN, number of directed edges for a
directed PTN.

SK ptn_prop_existing_stops Number of stops before a stop location algorithm was executed.

SK ptn_prop_existing_edges Number of undirected edges for an undirected PTN, number of directed
edges for a directed PTN before a stop location algorithm was executed.

SK ptn_prop_demand_point Number of demand points.

SK ptn_prop_relevant_demand_point Number of demand points that are no more than
CK sl_radius away from the PTN.

SK ptn_travel_time_realistic Sum of the realistic travel-travel time on all edges of the PTN in sec-
onds considering the acceleration ( CK sl_acceleration) and deceleration
( CK sl_deceleration) of the vehicles.

SK ptn_travel_time_const Sum of the travel-travel time on all edges of the PTN in seconds assuming
the vehicles would maintain a constant speed of CK gen_vehicle_speed.

If
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C sl_eval_extended; true

is set, the following parameters will additionally be evaluated:

SK ptn_max_distance Maximal distance any demand point has to the stop nearest to it.

SK ptn_candidates Number of candidates considered as new stops during the stop location algorithm.

5.2 Evaluation of the PTN
To evaluate the properties of the public transportation network, you can use the makefile target

R make ptn-evaluate

The following parameters will be evaluated and written to
CK default_statistic_file ( Fi statistic/statistic.sta) :

SK ptn_feasible_od For every OD pair exists a path through the PTN. (Only evaluated if an OD matrix
exists.)

SK ptn_time_average Average travel-time of all passengers on shortest path through the PTN. (Only
evaluated if an OD matrix exists.)

SK ptn_obj_stops Number of stops.

SK ptn_prop_edges Number of undirected edges for an undirected PTN, number of directed edges for a
directed PTN.

5.3 Evaluation of the OD matrix
To evaluate the properties of the origin destination matrix, you can use the makefile target

R make od-evaluate

The following parameters will be evaluated and written to
CK default_statistic_file ( Fi statistic/statistic.sta) :

SK od_prop_entries_greater_zero Number of entries greater than zero, i.e., of OD pairs (A, B) where
more than zero passengers want to travel from A to B.

SK od_prop_overall_sum Sum over all entries in the matrix, i.e., all passengers who want to travel in
the network.

5.4 Evaluation of the line pool
To evaluate the properties of the line pool, you can use the makefile target

R make lpool-line-pool-evaluate

The following parameters will be evaluated and written to
CK default_statistic_file ( Fi statistic/statistic.sta) :

SK lpool_cost
∑

l∈L costl - sum over costs per line.

SK lpool_feasible_circles No line is containing a circle.

SK lpool_feasible_od For every passenger there exists a path through the PTN that is only using edges
occurring in the line pool.

SK lpool_prop_directed_lines Number of directed lines.

SK lpool_time_average Average travel-time of all passengers on shortest path through the PTN where
only edges occurring in the line pool are used.
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5.5 Evaluation of the line concept
To evaluate the properties of the line concept, you can use the makefile target

R make lc-line-concept-evaluate

The following parameters will be evaluated and written to
CK default_statistic_file ( Fi statistic/statistic.sta) :

SK lc_cost
∑

l∈L costl fl - sum over costs per line times frequency.

SK lc_feasible f min
e ≤

∑
l∈L
e∈l

fl ≤ f max
e - lower and upper bounds on frequency on every edge respected.

SK lc_obj_direct_travelers_sp Number of direct travelers on all shortest paths.

SK lc_obj_game
∑

e∈E f 2
e - sum of the squared frequencies on all edges.

SK lc_prop_directed_lines (2·)|L| - number of directed lines. If a line is undirected, it is counted
twice.

SK lc_prop_freq_max maxl∈L fl the maximal frequency.

SK lc_time_average Average travel-time of all passengers on shortest path through the PTN where only
edges occurring in the line concept with frequency greater than zero are used.

SK lc_average_distance/edges/length Average distance/number of edges/length of the lines in the
line concept.

SK lc_min_distance/edges/length Minimal distance/number of edges/length of the lines in the line
concept.

SK lc_var_distance/edges/length Variance of the distance/number of edges/length of the lines in
the line concept.

Furthermore by setting config-parameter CK lc_eval_extended to true additionally the following param-
eter will be evaluated and written to CK default_statistic_file ( Fi statistic/statistic.sta)
:

SK lc_prop_changes Sum over all OD pairs, where the number of passengers is multiplied with the
number of necessary changes on the shortest path.

5.6 Evaluation of the EAN
To evaluate the properties of the event activity network, you can use the makefile target

R make ean-evaluate

The following parameters will be evaluated and written to
CK default_statistic_file ( Fi statistic/statistic.sta) :

SK ean_prop_events |E| - number of events.

SK ean_prop_events_arrival |{e ∈ E : e is arrival}| - number of arrival events.

SK ean_prop_events_departure |{e ∈ E : e is departure}| - number of departure events.

SK ean_prop_activities |A| - number of activities.

SK ean_prop_activities_change |Achange| - number of change activities.
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SK ean_prop_activities_drive |Adrive| - number of drive activities.

SK ean_prop_activities_wait |Await | - number of wait activities.

SK ean_prop_activities_headway |Aheadway| - number of headway activities.

SK ean_prop_activities_od |{a ∈ A : ca > 0}| - number of activities with more than 0 passengers.

SK ean_prop_activities_od_change |{a ∈ Achange : ca > 0}| - number of change activities with more
than 0 passengers.

SK ean_prop_activities_od_drive |{a ∈ Adrive : ca > 0}| - number of drive activities with more than
0 passengers.

SK ean_prop_activities_od_wait |{a ∈ Await : ca > 0}| - number of wait activities with more than 0
passengers.

SK ean_time_average 1∑
a∈A ca

∑
a∈Aca · ”duration assumption” - estimated average travel time. For dura-

tion assumption see 4.4.

Furthermore by setting config-parameter CK ean_eval_extended to true additionally the following param-
eter will be evaluated and written to CK default_statistic_file ( Fi statistic/statistic.sta)
:

SK ean_prop_activities_feas |{a ∈ A : Ua − La < T − 1}| - number of activities that impose
constraints.

SK ean_prop_activities_objective |{a ∈ A : ca > 0 or Ua − La < T − 1}| - number of activities that
have an influence on the objective value.

SK ean_prop_changes_od_max max
a∈Achange

ca>0

”duration assumption of a” - maximal used

change duration.

SK ean_prop_changes_od_min min
a∈Achange

ca>0

”duration assumption of a” - minimal used

change duration.

SK ean_prop_headways_dep Are headways between departures only.

SK ean_prop_headways_interstation Do headways exist between different stations.

Additionally, the loads on the ean will be evaluated and compared to the maximal feasible load on the ptn
edges given by the line concept. If the load on the ptn is invalid, i.e., too high, the respective ptn edges
and their load will be written to CK filename_invalid_loads ( Fi statistic/Invalid-Loads.sta)
. Additionally, the maximal load factor will be written as SK ean_max_load_factor to
CK default_statistic_file ( Fi statistic/statistic.sta) .

5.7 Evaluation of the timetable
To evaluate the properties of the timetable, you can use the makefile target

R make tim-timetable-evaluate

The following parameters will be evaluated and written to
CK default_statistic_file ( Fi statistic/statistic.sta) :

SK tim_feasible La ≤ ((π j − πi − La)mod T ) + La ≤ Ua for all (i, j) = a ∈ A - Are lower and upper
bounds on travel time on each activity respected.
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SK tim_obj_ptt1
∑

(i, j)=a∈Aca

(((
π j − πi − La

)
mod T

)
+ La

)
- Sum of weighted travel time. Weights

correspond to the number of passengers specified in activity file.

SK tim_obj_slack_average 1
|A|

∑
(i, j)=a∈A

(
π j − πi − La

)
mod T - Average of slacks.

SK tim_time_average - Average travel time per passenger. The travel time for every OD pair is calculated
according to its shortest path in the EAN.

SK tim_perceived_time_average - Average travel time per passenger. The travel time for every OD
pair is calculated according to its shortest path in the EAN with additionally
CK ean_change_penalty on change activities.

Furthermore by setting config-parameter CK tim_eval_extended to true additionally the following param-
eter will be evaluated and written to CK default_statistic_file ( Fi statistic/statistic.sta)
:

SK tim_obj_slack_drive_average 1
|Adrive |

∑
(i, j)=a∈Adrive

(
π j − πi − La

)
mod T - average slack on drive

activities.

SK tim_obj_slack_wait_average 1
|Await |

∑
(i, j)=a∈Await

(
π j − πi − La

)
mod T - average

slack on wait activities.

SK tim_obj_slack_change_average 1
|Achange |

∑
(i, j)=a∈Achange

(
π j − πi − La

)
mod T - average slack on

change activities.

SK tim_obj_slack_headway_average 1
|Aheadway |

∑
(i, j)=a∈Aheadway

(
π j − πi − La

)
mod T

average slack on headway activities.

SK tim_prop_changes_od_max max
(i, j)=a∈Achange

ca>0

(
π j − πi

)
modT - maximal used change duration.

SK tim_prop_changes_od_min min
(i, j)=a∈Achange

ca>0

(
π j − πi

)
modT - minimal used change duration.

SK tim_number_of_transfers Weighted number of transfers.

5.8 Evaluation of the trips
To evaluate the properties of the trips, you can use the makefile target

R make ro-trips-evaluate

The following parameters will be evaluated and written to
CK default_statistic_file ( Fi statistic/statistic.sta) :

SK ro_trips_feasible whether the trips are feasible. The trips are considered feasible if they cover
every event in the aperiodic event activity network and no event is used in multiple trips.

SK ro_prop_trips |T| - number of trips.

SK ro_prop_stops_at_begin_or_end Number of stations that are start or end station of a trip.
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5.9 Evaluation of the Delay Management
To evaluate the properties of the delay management, you can use the makefile target

R make dm-disposition-timetable-evaluate

The following parameters will be evaluated and written to
CK default_statistic_file ( Fi statistic/statistic.sta) :

SK dm_feasible Whether the disposition timetable is feasible according to the lower bounds of the
activities.

SK dm_obj_changes_missed_od The number of missed used connections in the disposition timetable.

SK dm_obj_delay_events_average The average delay of the events in the disposition timetable.

SK dm_obj_dm2 The objective value of the DM_method DM2.

SK dm_obj_dm2_average The objective value of DM_method DM2, divided by the number of passengers.

SK dm_prop_events_delayed The number of delayed events in the disposition timetable.

SK dm_prop_headways_swapped The number of headways swapped in the disposition timetable, com-
pared to the original timetable.

SK dm_time_average The average travel time of the passengers according to the disposition timetable.

Furthermore by setting config-parameter CK DM_eval_extended to true additionally the following param-
eters will be written to CK default_statistic_file ( Fi statistic/statistic.sta) . Note, that
the rollout must have been done with the parameter ro_rollout_passenger_paths set to true.

SK dm_obj_dm1 The objective value of DM_method DM1.

SK dm_obj_dm1_average The objective value of DM_method DM1, divided by the number of passengers.

SK dm_passenger_delay The delay of the passenger after rerouting, given the distribution of
DM_passenger_routing_arrival_on_time.

SK dm_passenger_delay_average The average delay of the passenger after rerouting, given the distri-
bution of DM_passenger_routing_arrival_on_time.

Additionally, when the config-parameter CK DM_eval_extended is set to true, the following distributions
will be written to Fi ./statistic/statistic_dist.sta :

SK dm_dist_delays_events For each possible delay (in seconds) there is one entry giving the number
of events with this delay in the disposition timetable.

SK dm_dist_delays_od For each possible delay (in seconds) there is one entry giving the number of
passengers with this delay in the disposition timetable.

5.10 Evaluation of the Vehicle Scheduling
To evaluate the properties of the vehicle scheduling, you can use the makefile target

R make vs-vehicle-schedules-evaluate

This evaluation will read the following parameters from the config-files:

CK vs_vehicle_cost The cost of a vehicle, needed to determine the costs
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CK vs_eval_cost_factor_empty_length the cost of a kilometer on an empty trip

CK vs_eval_cost_factor_empty_duration the cost for the vehicle driving on an empty trip for an
hour

CK vs_eval_cost_factor_full_length the cost of a kilometer serving a line

CK vs_eval_cost_factor_full_duration the cost for the vehicle driving for an hour while serving a
line

The following parameters will be evaluated and written to
CK default_statistic_file ( Fi statistic/statistic.sta) :

SK vs_cost The cost of the vehicle schedule, weighted according to the parameters above.

SK vs_feasible Whether the current vehicle schedule is feasible. This only checks, whether the time for
the empty trips is sufficient, not the viability of the covered lines.

SK vs_circulations The number of circulations in the vehicle schedule.

SK vs_vehicles The number of used vehicles in the vehicle schedule.

SK vs_empty_distance The distance a vehicle drives without passengers in the current vehicle schedule,
given in kilometers.

SK vs_empty_distance_with_depot The distance a vehicle drives without passengers in the current
vehicle schedule including driving from and to the depot, given in kilometers. Will be the same as
above if the depot index is not set.

SK vs_empty_duration The time needed for empty trips in the current vehicle schedule, given in minutes.
Does not include waiting in stations.

SK vs_empty_duration_with_depot The time needed for empty trips in the current vehicle schedule
including driving from and to the depot, given in minutes. Does not include waiting in stations. Will
be the same as above if the depot index is not set.

SK vs_empty_trips The number of empty trips in the current vehicle schedule. Does not include waiting
in stations.

SK vs_emtpy_trips_depot The number of empty trips to and from the depot.

SK vs_minimal_waiting_time The minimal waiting time in a station between two consecutive trips,
served by the same vehicle. Only if the station is not changed in the empty trip.

SK vs_maximal_waiting_time The maximal waiting time in a station between two consecutive trips,
served by the same vehicle. Only if the station is not changed in the empty trip.

SK vs_average_waiting_time The average waiting time in a station between two consecutive trips,
served by the same vehicle. Only if the station is not changed in the empty trip.

SK vs_full_distance The distance a vehicle drives with passengers in the current vehicle schedule,
given in kilometers.

SK vs_full_duration The time needed for serving trips in the current vehicle schedule, given in minutes.
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Chapter 6

Configuration Parameters

6.1 General
CK gen_passengers_per_vehicle the capacity of the vehicles.

CK period_length the length of the periodic planning period.

6.2 Line Planning
CK lc_budget the budget for the line concept, i.e., the maximal weighted sum of the line costs and the

computed frequencies.

CK lc_common_frequency_divisor the common divisor of the frequencies, i.e., a frequency is only
allowed if it is a multiple of this value. A value <= 0 will test any system frequency (except for 1) and
output the best solution.

CK lc_direct_optimize_costs whether to additionally optimize the costs in the direct model, see
Section 3.3.2. When set to CV true, the model will optimize a weighted sum of line costs and direct
travelers and will use CK lc_mult_relation as a weight.

CK lc_maximal_frequency the maximal frequency value allowed

CK lc_mult_relation weighting factor in a convex combination of costs and direct travelers. A value of
0 is equivalent to solving the direct travelers model while a value of 1 is equivalent to solving the cost
model, therefore the value should be in [0, 1].

CK lc_mip_gap the mip optimization gap for the solver, 0.1 equals a gap of 10 % (-1=use default value).

CK lc_model the line planning model to use. For an overview of all models, see Section 2.3.

CK lc_number_of_possible_frequencies the maximal number of different frequency values allowed
to use.

CK lc_timelimit the timelimit for the solver in seconds (-1=use default value).

6.3 Periodic EAN
CK ean_model_weight_change determines how to estimate the transfer time between two lines without

a given timetable. For a transfer between the lines l1 and l2, let f1 and f2 be the respective frequencies
and T the CK period_length. The following options are available:
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CV FORMULA_1 T
f1

+ T
f2

+ CK ean_change_penalty.

CV FORMULA_2 T
2· f1· f2

.

CV FORMULA_3 T
2· f2

.

CV MINIMAL_CHANGING_TIME CK ean_default_minimal_change_time.

CK ean_model_weight_drive determines how to estimate the drive time on an infrastructure edge
without a given timetable. The following options are available:

CV AVERAGE_DRIVING_TIME using the average between minimal and maximal travel time of the
infrastructure edge.

CV EDGE_LENGTH using the edge length of the infrastructure edge.

CV MINIMAL_DRIVING_TIME using the minimal travel time of the infrastructure edge.

CV MAXIMAL_DRIVING_TIME using the maximal travel time of the infrastructure edge.

CK ean_model_weight_wait determines how to estimate the wait time when traversing a stop in a line
without a given timetable. The following options are available:

CV AVERAGE_WAITING_TIME using the average of CK ean_default_minimal_waiting_time

and CK ean_default_maximal_waiting_time.

CV MAXIMAL_WAITING_TIME using CK ean_default_maximal_waiting_time.

CV MINIMAL_WAITING_TIME using CK ean_default_minimal_waiting_time.

CV ZERO_COST assume the wait time to be 0.

6.4 Timetabling
CK tim_model the timetabling model to use. For an overview of all models, see Section 3.4

CK tim_pesp_ip_gap the gap to use in the pesp ip model, set to 0 to deactivate

CK tim_pesp_ip_timelimit the timelimit to use in the pesp ip model, set to 0 to deactivate

CK tim_pesp_ip_solution_limit limit the number of feasible solutions found. Only implemented in
Gurobi. Set to 0 to deactivate.

CK tim_pesp_ip_best_bound_stop a best bound stop criterion, only implemented for Gurobi. For
details, see Gurobi documentation. Set to 0 to deactivate.

CK tim_pesp_ip_mip_focus set the MIPFocus, only implemented for Gurobi. For details, see Gurobi
documentation. Set to 0 to deactivate.

CK tim_solver the solver to use for timetabling. Which solvers are implemented depends on the chose
CK tim_model, see the corresponding documentation.

CK tim_solver_output Set to CV false to suppress solver output. This will only work if the CK

console_log_level is not set to CV DEBUG.

CK tim_solver_threads the number of threads a solver is allowed to use. Set to 0 to deactivate.

CK tim_use_old_solution whether to use the current solution as a starting solution, only implemented
for Gurobi. Set to 0 to deactivate.
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Chapter 7

In- and Output Data

This section will describe all files and their contents that are in- or outputs of the LinTim algorithms.

7.1 Config
Config is the short form for configuration and an important tool in LinTim. We will now have a look at the
general structure of the LinTim config files.
The LinTim config is contained in several CSV files that have the syntax

config_key; config_value

It organizes those values that are parameters to the calculation. Typical examples are the period length,
the vehicle capacity (if there is only one), which algorithm to use for a specific computation step, e.g. for
timetabling and filenames as well and could thus look like

period_length; 60
gen_passengers_per_vehicle; 100
tim_model; csp

Besides key-value pairs the configuration may also include other config files with either the CK include or
CK include_if_exists statement. Former states that the file must exists or else an exception is thrown,
in latter case, if the file does not exist, it will not be included. This inclusion is recursive, i.e. files included
in already included files are included as well.
If a certain config key occurs twice, the latter value overwrites the former, e.g.

period_length; 60
period_length; 120

sets the CK period_length to 120. As a consequence, all values that belong to keys in an included file
overwrite those defined before.
All keys demanded by programs are expected to exist, i.e., there are no in-program default values. Programs
accessing config are expected to exit with an error message in case a key does not exist.
The meaning of the parameters is explained in the corresponding sections of this documentation.
Config has the following file hierarchy

Fi /datasets/Global-Config.cnf offers a default value for all config parameters that are not network
specific, like CK ptn_name or CK period_length.

Fi basis/Config.cnf contains all the values specific to the dataset. Together with the global config this
offers a value for all parameters. It includes the global config at the beginning, i.e., every parameter
that was already defined in the global config will be overwritten. It roughly looks like
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include; "../../Global-Config.cnf"
ptn_name; "DATASET"
...
include_if_exists; "State-Config.cnf"
include_if_exists; "Private-Config.cnf"
include_if_exists; "After-Config.cnf"

CK filename_state_config ( Fi basis/State-Config.cnf) is intended to allow programs to not
only generate networks, but also to save and modify state information about them, e.g. whether the
event activity network is modeled with frequency_as_attribute or
frequency_as_multiplicitywhich is once set on construction and may be modified by a Pe-
riodic Rollout. The network specific state is not part of the version control system, although there
are state defaults in the global config.

Fi basis/Private-Config.cnf is used for user specific settings, e.g. for choosing a specific algorithm
for solving or manipulating its parameters and is not part of the version control system. Note that if
a value is defined in the config or state config as well as in the private config, the one given in the
private config is used.

Fi basis/After-Config.cnf can be used for automation and is intended to be thrown away upon usage,
unlike all other configurations. A script that automatically evaluates a wide range of configurations
thus may overwrite the after config in every step. Make sure that at the end of the script, the after
config is deleted again or else it still influences manual runs as it overwrites all other configs.

7.2 Statistic
The statistic file CK default_statistic_file ( Fi statistic/statistic.sta) contains the out-
come of the evaluation routines described in 5. The content is formatted as follows

statistic_key; statistik_value

where the statistic key described what is evaluated and the statistic value gives the corresponding value.
Statistic files are intended to be modified, i.e., new entries are added but old entries are not deleted, although
the statistic file itself may be deleted any time. Make sure that the entries are up to date, e.g. R make
tim-timetable-evaluate is run after calculating a new timetable and before evaluating the statistic.

7.3 basis
Files in the folder Fo basis describe the structure of the Public Transportation Network, the demand and
the line pool with its corresponding costs.

7.3.1 Demand
The file CK default_demand_file ( Fi basis/Demand.giv) contains the demand at specified locations.
The columns of the csv file correspond to:

demand-id id of the demand point

short-name short name of the demand point

long-name log name of the demand point

x-coordinate x-coordinate of the demand point

y-coordinate y-coordinate of the demand point

66



demand demand at the demand point

Note: the distance between two demand points can be transformed to kilometers by multiplying with CK

gen_conversion_coordinates.

7.3.2 Demand Geo
The file CK default_demand_coordinates_file ( Fi basis/Demand.giv.geo) gives the geograph-
ical coordinates (latitude and longitude) of the demand points. The columns of the csv file correspond
to:

demand-id id of the demand point

latitude latitude of the demand point

longitude longitude of the demand point

7.3.3 Existing Stop
The file CK default_existing_stop_file ( Fi basis/Existing-Stop.giv) contains information
about already existing stops in the PTN. The columns of the csv file correspond to:

stop-id id of the stop

short-name short name of the stop

long-name log name of the stop

x-coordinate x-coordinate of the stop

y-coordinate y-coordinate of the stop

Note: the distance between two stops can be transformed to kilometers by multiplying with
CK gen_conversion_coordinates.

7.3.4 Existing Stop Geo
The file CK default_existing_stop_coordinates_file ( Fi basis/Existing-Stop.giv.geo)
gives the geographical coordinates (latitude and longitude) of the already existing stops. The columns of the
csv file correspond to:

stop-id id of the stop

latitude latitude of the stop

longitude longitude of the stop

7.3.5 Existing Edge
The file CK default_existing_edge_file ( Fi basis/Existing-Edge.giv) contains information
about already existing edges in the PTN. The columns of the csv file correspond to:

edge-id id of the edge

left-stop-id id of the left stop (source node in directed case)

right-stop-id id of the right stop (target node in directed case)

length length of the edge
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lower-bound minimum time to traverse the edge in minutes

upper-bound maximum time to traverse the edge in minutes

Note: whether the edges are directed or undirected in defined by CK ptn_is_undirected.
Note: the length of an edge can be transformed to kilometers by multiplying with
CK gen_conversion_length.

7.3.6 Stop
The file CK default_stops_file ( Fi basis/Stop.giv) contains information about the stops in the
PTN. The columns of the csv file correspond to:

stop-id id of the stop

short-name short name of the stop

long-name log name of the stop

x-coordinate x-coordinate of the stop

y-coordinate y-coordinate of the stop

Note: the distance between two stops can be transformed to kilometers by multiplying with
CK gen_conversion_coordinates.

7.3.7 Stop Geo
The file CK default_stops_coordinates_file ( Fi basis/Stop.giv.geo) gives the geographical
coordinates (latitude and longitude) of the stops. The columns of the csv file correspond to:

stop-id id of the stop

latitude latitude of the stop

longitude longitude of the stop

7.3.8 Edge
The file CK default_edges_file ( Fi basis/Edge.giv) contains information about the edges in the
PTN. The columns of the csv file correspond to:

edge-id id of the edge

left-stop-id id of the left stop (source node in directed case)

right-stop-id id of the right stop (target node in directed case)

length length of the edge

lower-bound minimum time to traverse the edge in minutes

upper-bound maximum time to traverse the edge in minutes

Note: whether the edges are directed or undirected in defined by CK ptn_is_undirected.
Note: the length of an edge can be transformed to kilometers by multiplying with
CK gen_conversion_length.
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7.3.9 Load
The file CK default_loads_file ( Fi basis/Load.giv) contains information about the load and
frequency constraints of the edges in the PTN. The columns of the csv file correspond to:

edge-id id of the edge

load load on the edge

lower-frequency minimal frequency all lines in the line concept have to add up to the edge

upper-frequency maximal frequency all lines in the line concept are allowed to add up to for the edge

7.3.10 Headway
The file CK default_headways_file ( Fi basis/Headway.giv) contains information about the head-
way needed for the edges in the PTN. The columns of the csv file correspond to:

edge-id id of the edge

headway headway on the edge, i.e., the minimum time between two consecutive vehicles on this edge in
minutes

7.3.11 OD
The file CK default_od_file ( Fi basis/OD.giv) contains information about the passenger demand
between all pairs of stops in the PTN. The columns of the csv file correspond to:

left-stop-id id of the stop the passengers start at

right-stop-id id of the stop the passengers travel to

customers number of passengers traveling

7.3.12 Pool
The file CK default_pool_file ( Fi basis/Pool.giv) contains information about the line pool. The
columns of the csv file correspond to:

line-id id of the line

edge-order where the edge is in the line

edge-id id of the edge

7.3.13 Pool Cost
The file CK default_pool_cost_file ( Fi basis/Pool-Cost.giv) contains information about the
cost and length of lines in the line pool. The columns of the csv file correspond to:

line-id id of the line

length length of the line

cost cost of the line

Note: the length of a line can be transformed to kilometers by multiplying with
CK gen_conversion_length.
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7.4 Line Planning
The folder Fo line-planning contains information about the line concept.

7.4.1 Line Concept
The file CK default_lines_file ( Fi line-planning/Line-Concept.lin) contains information
about the line concept. The columns of the csv file correspond to:

line-id id of the line

edge-order where the edge is in the line

edge-id id of the edge

frequency frequency of the line. If this is zero, the line is not used in the line concept.

7.4.2 Fixed Lines
The file CK filename_lc_fixed_lines ( Fi line-planning/Fixed-Lines.lin) contains informa-
tion about the fixed lines that should be in the line concept. It can not be read/respected by all line planning
methods, so see Section 3.3 for more information. The columns of the csv file correspond to:

line-id id of the line

edge-order where the edge is in the line

edge-id id of the edge

frequency frequency of the line. If this is zero, the line is not used in the line concept.

7.4.3 Line Capacities
The file CK filename_lc_fixed_line_capacities ( Fi line-planning/Line-Capacities.lin)
contains information about the capacities of the fixed lines that should be in the line concept. It can not be
read/respected by all line planning methods, so see Section 3.3 for more information. The columns of the
csv file correspond to:

line-id id of the line

capacity the capacity of the line

7.5 Timetabling
The folder Fo timetabling contains information about the periodic event-activity-network and the
timetable.

7.5.1 Events Periodic
The file CK default_events_periodic_file ( Fi timetabling/Events-periodic.giv) contains
information about events in the periodic EAN. The columns of the csv file correspond to:

event-id id of the event

type type of the event, can be departure for events which are departures of a line at a stop or arrival
for events which are arrivals of a line at a stop

stop-id id of the corresponding stop
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line-id id of the corresponding line

passengers number of passengers boarding/alighting at the event

line-direction direction of the line, > for forward direction (i.e., the direction given in the file Fi

Pool.giv ) or < for the backward direction

line-freq-repetition repetition of the line, i.e., how often the line has already been used in the
planning period

7.5.2 Activities Periodic
The file CK default_activities_periodic_file ( Fi timetabling/Activities-periodic.giv)
contains information about activities in the periodic EAN. The columns of the csv file correspond to:

activity-id id of the activity

type type of the activity, can be drive for drive activities, wait for wait activities, change for transfers of
passengers, sync for synchronization activities between different servings of a line with frequency
greater than one or turnaround for turnaround activities, i.e., activities of vehicles serving one line
after another

tail-event-id id of source event, i.e., the start of the activity

head-event-id id of target event, i.e., the end of the activity

lower-bound the minimal time for this activity, i.e., the minimal time duration needed between the
corresponding source and target event to be feasible

upper-bound the maximal time for this activity, i.e., the maximal time duration allowed between the
corresponding source and target event to be feasible

passengers the number of passengers using this activity

7.5.3 Timetable Periodic
The file CK default_timetable_periodic_file ( Fi timetabling/Timetable-periodic.tim)
contains a time for each event in the periodic EAN. The columns of the csv file correspond to:

event-id id of the event

time the periodic time of the event

7.5.4 Timetable for VISUM
The file CK default_timetable_visum_file ( Fi timetabling/Timetable-visum-nodes.tim) is
an intermediate format for reading a LinTim timetable into VISUM. For more information, see 4.9. The
columns of the csv file correspond to:

line-id the line id

line-code the line code, i.e., a short name

direction the direction of the line

stop-order where the stop is in the line

stop-id the id of the stop

frequency the frequency of the line
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departure_time the departure time at this stop

arrival_time the arrival time at this stop

line-freq-repetition the repetition of the line

7.5.5 Fixed times
The file CK filename_tim_fixed_times ( Fi timetabling/Fixed-timetable-periodic.tim)
gives restrictions on the allowed times for single events. Not all events need to be included in this file, only
the ones with additional restrictions.

event-id the periodic event id

lower-bound the lower time bound on the event

upper-bound the upper time bound on the event

7.6 Delay Management
The folder Fo delay-management contains information about the aperiodic event-activity-network,
timetable and delays with a disposition timetable

7.6.1 Events Expanded
The file CK default_events_expanded_file ( Fi delay-management/Events-expanded.giv)
contains information about events in the aperiodic EAN. The columns of the csv file correspond to:

event-id id of the event

periodic-id the corresponding periodic id

type type of the event, can be departure for events which are departures of a line at a stop or arrival
for events which are arrivals of a line at a stop

time the time of the event

passengers number of passengers boarding/alighting at the event

stop-id id of the corresponding stop

7.6.2 Activities Expanded
The file CK default_activities_expanded_file

( Fi delay-management/Activities-expanded.giv) contains information about activities in the ape-
riodic EAN. The columns of the csv file correspond to:

activity-id id of the activity

periodic-id the corresponding periodic id

type type of the activity, can be drive for drive activities, wait for wait activities, change for transfers of
passengers, sync for synchronization activities between different servings of a line with frequency
greater than one or turnaround for turnaround activities, i.e., activities of vehicles serving one line
after another

tail-event-id id of source event, i.e., the start of the activity

head-event-id id of target event, i.e., the end of the activity
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lower-bound the minimal time for this activity, i.e., the minimal time duration needed between the
corresponding source and target event to be feasible

upper-bound the maximal time for this activity, i.e., the maximal time duration allowed between the
corresponding source and target event to be feasible

passengers the number of passengers using this activity

7.6.3 Timetable Expanded
The file CK default_timetable_expanded_file

( Fi delay-management/Timetable-expanded.tim) contains information about the aperiodic time-
table, i.e., the time for each aperiodic event. The columns of the csv file correspond to:

event-id id of the event

time the time of the event

7.6.4 Timetable Disposition
The file CK default_disposition_timetable_file

( Fi delay-management/Timetable-disposition.tim) contains information about the disposition
timetable, i.e., the time for each aperiodic event in the given delay scenario. The columns of the csv file
correspond to:

event-id id of the event

time the time of the event

7.6.5 Delays Events
The file CK default_event_delays_file ( Fi delay-management/Delays-Events.giv) contains
information about the delay induced at the events. The columns of the csv file correspond to:

ID the id of the delayed event

delay the delay, given in seconds

7.6.6 Delays Activities
The file CK default_activity_delays_file

( Fi delay-management/Delays-Activities.giv) contains information about the delay induced at
the activities. The columns of the csv file correspond to:

ID the id of the delayed activity

delay the delay, given in seconds

7.6.7 Trips
The file CK default_trips_file ( Fi delay-management/Trips.giv) contains information regard-
ing the vehicle trips. A vehicle trips is the serving of a line by a vehicle, i.e., this file contains all line
servings in the aperiodic EAN. The columns of the csv file correspond to:

aperiodic-start-ID the aperiodic event id of the start event of this serving of the line

periodic-start-ID the periodic event id of the start event of this serving of the line
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start-stop-id the stop id of the start of the line

start-time the starting time of this service of the line

aperiodic-end-ID the aperiodic event id of the end event of this serving of the line

periodic-end-ID the periodic event id of the end event of this serving of the line

end-stop-id the stop id of the end of the line

end-time the ending time of this service of the line

line the line id

7.7 Vehicle Scheduling
The folder Fo vehicle-scheduling contains information about the vehicle tours in the dataset.

7.7.1 Vehicle Schedules
The file CK default_vehicle_schedule_file

( Fi vehicle-scheduling/Vehicle_Schedules.vs) contains information regarding the scheduling of
the vehicles. The columns of the csv file correspond to:

circulation-ID Id of the corresponding circulation

vehicle-ID Id of the vehicle

trip-number of this vehicle the trip number of the vehicle

type the type of the tour, can be trip for a line serving or empty for an empty trip

aperiodic-start-ID the aperiodic event id of the start event of this serving of the line

periodic-start-ID the periodic event id of the start event of this serving of the line

start-stop-id the stop id of the start of the line

start-time the starting time of this service of the line

aperiodic-end-ID the aperiodic event id of the end event of this serving of the line

periodic-end-ID the periodic event id of the end event of this serving of the line

end-stop-id the stop id of the end of the line

end-time the ending time of this service of the line

line the line id
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Chapter 8

Datasets

LinTim provides many datasets to test and evaluate public transport planning algorithms. The following
chapter should give an overview over the available datasets and the compatibility with the different planning
steps.

8.1 Configuration Parameters for Datasets
There are some configuration parameters used per dataset and not per algorithm. These are set in the file Fi

basis/Config.cnf .

• CK gen_conversion_length: conversion factor used to convert the edge length given in CK

default_edges_file ( Fi basis/Edge.giv) to kilometers.

• CK gen_conversion_coordinates: conversion factor used to convert the distance between two
stations given in CK default_stops_file ( Fi basis/Stop.giv) by the coordinates to kilome-
ters.

• CK gen_vehicle_speed: speed of the vehicles in km/h.

• CK ptn_name: the name of the network

• CK ptn_stop_waiting_time: the time each vehicle has to stop at each stop in average. Used in
shortest path computation during OD creation.

• CK period_length: the length of a period in time units

• CK time_units_per_minutes: the number of time units per minute

• CK ean_default_minimal_waiting_time: the lower bound for wait activities in the ean. Used
during the creation of the ean.

• CK ean_default_maximal_waiting_time: the upper bound for wait activities in the ean. Used
during the creation of the ean.

• CK ean_default_minimal_change_time: the lower bound for change activities in the ean. Used
during the creation of the ean.

• CK ean_default_maximal_change_time: the upper bound for change activities in the ean. Used
during the creation of the ean.

• CK ean_change_penalty: the penalty for using a change activity in the ean. Used for routing
passengers in the ean and evaluating the perceived travel time.

• CK gen_passengers_per_vehicle: the maximal number of passengers per
vehicle. Used in computing lower frequency bounds in preparation of line planning.
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Figure 8.1: The PTN of the toy dataset

8.2 Artificial Datasets
There are two purely artificial datasets in LinTim. These are small examples to test and understand new
algorithms.

8.2.1 Toy
The toy dataset is purely designed for testing purposes. It contains 8 nodes, 8 edges and 22 OD pairs,
consisting of 2622 passengers in total. An overview of the structure is given in Fig. 8.1.
Since the dataset does not contain the necessary information, stop location is not supported on this dataset
out of the box.

8.2.2 Grid
The grid dataset is designed to be overseeable, yet complex enough to contain complex effects. Therefore,
the dataset contains a simple PTN structure but a reasonable demand structure designed by transportation
planners, see [8]. It is part of the benchmark datasets found at [5].
The dataset contains 25 nodes, 40 edges and 567 OD pairs, consisting of 2546 passengers in total. An
overview of the structure is given in Fig. 8.2. Since the dataset does not contain the necessary information,
stop location is not supported on this dataset out of the box.

8.2.3 Ring
The ring dataset is a little bit larger than the grid dataset but still maintains a clear structure. It is part of the
benchmark datasets found at [5].
The dataset contains 161 nodes, 320 edges and 25760 OD pairs, consisting of 2766.12 passengers in total.
An overview of the structure is given in Fig. 8.3. Since the dataset does not contain the necessary information,
stop location is not supported on this dataset out of the box.

8.3 Datasets based on real world data

8.3.1 Sioux Falls
The sioux falls dataset is a dataset often used in practical public transport planning. It was first introduced
in [16] and is available at [32]. It is a representation of the city of Sioux Falls, South Dakote, USA. It is part
of the benchmark datasets found at [5].
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Figure 8.2: The PTN of the grid dataset

Figure 8.3: The PTN of the ring dataset
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Figure 8.4: Infrastructure of the sioux falls dataset

Figure 8.5: Existing infrastructure of the lower saxony dataset

The dataset contains 24 stops, 38 edges and 4114.57 passengers in 552 od pairs. An overview of the structure
of the dataset is given in Fig. 8.4.

8.3.2 Lowersaxony
The lower saxony dataset was included to test the effects of stop location and line pool generation. It contains
the regional railway data of lower saxony, a region in northern Germany.
The dataset contains 34 existing stops, 35 existing edges and 31 demand points. An overview of the structure
given by the existing stops and edges is given in Fig. 8.5. To work with this dataset, you need to start with
the stop location step.

8.3.3 Goevb
The goevb dataset represents the bus network in Göttingen, a city in the middle of Germany and home of the
LinTim project. It was included as part of a student project in 2011.
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Figure 8.6: The PTN of the goevb dataset

The dataset contains 257 stops, 548 edges and 58226 OD pairs, consisting of 406146 passengers in total. An
overview of the structure is given in Fig. 8.6. Since the dataset does not contain the necessary information,
stop location is not supported on this dataset out of the box.
Note, that goevb is a directed network!

8.3.4 Athens
The athens dataset represents the metro system in Athens.
The dataset contains 51 stops, 52 edges and 2385 OD pairs, consisting of 63323 passengers in total. An
overview of the structure is given in Fig. 8.7. Since the dataset does not contain the necessary information,
stop location is not supported on this dataset out of the box.

8.3.5 Bahn-01
Currently not included in the release version of LinTim.
The bahn-01 dataset represents parts of the German railway network, including the long distance network.
For larger datasets, see Sec. 8.3.6-8.3.8.
The dataset contains 250 stops, 326 edges and 48842 OD pairs, consisting of 3147382 passengers in total.
An overview of the structure is given in Fig. 8.8. Since the dataset does not contain the necessary information,
stop location is not supported on this dataset out of the box.

8.3.6 Bahn-02
Currently not included in the release version of LinTim.
The bahn-02 dataset represents parts of the German railway network, including the long distance network.
For a smaller dataset see Sec. 8.3.5, for larger datasets, see Sec. 8.3.7 and 8.3.8.
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Figure 8.7: The PTN of the athens dataset

Figure 8.8: The PTN of the bahn-01 dataset
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Figure 8.9: The PTN of the bahn-02 dataset

The dataset contains 280 stops, 354 edges and 61110 OD pairs, consisting of 3666720 passengers in total.
An overview of the structure is given in Fig. 8.9. Since the dataset does not contain the necessary information,
stop location is not supported on this dataset out of the box.

8.3.7 Bahn-03
Currently not included in the release version of LinTim.
The bahn-03 dataset represents parts of the German railway network, including the long distance network.
For smaller datasets see Sec. 8.3.5 and 8.3.6, for a larger dataset, see Sec. 8.3.8.
The dataset contains 296 stops, 393 edges and 68284 OD pairs, consisting of 3878392 passengers in total. An
overview of the structure is given in Fig. 8.10. Since the dataset does not contain the necessary information,
stop location is not supported on this dataset out of the box.

8.3.8 Bahn-04
Currently not included in the release version of LinTim.
The bahn-04 dataset represents parts of the German railway network, including the regional network. For
smaller datasets, see Sec. 8.3.5-8.3.7.
The dataset contains 319 stops, 452 edges and 77878 OD pairs, consisting of 4183088 passengers in total. An
overview of the structure is given in Fig. 8.11. Since the dataset does not contain the necessary information,
stop location is not supported on this dataset out of the box.

8.3.9 Bahn-equal-frequencies
Currently not included in the release version of LinTim.
The bahn-equal-frequencies dataset is based on bahn-01(8.3.5). It is designed, such that running the line
planning step with default parameters will result in a line concept with binary frequencies. This is therefore
helpful to test algorithms that do not work for frequencies > 1.
The dataset contains 250 stops, 326 edges and 6106 OD pairs, consisting of 385868 passengers in total. An
overview of the structure is given in Fig. 8.12. Since the dataset does not contain the necessary information,
stop location is not supported on this dataset out of the box.
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Figure 8.10: The PTN of the bahn-03 dataset

Figure 8.11: The PTN of the bahn-04 dataset
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Figure 8.12: The PTN of the bahn-equal-frequencies dataset

Figure 8.13: The PTN of the BOMHarbour dataset

8.3.10 BOMHarbour
BOMHarbour is based on the metro network in Mumbai, India. Since the metro is quite new, the dataset
only consists of a few stations. The main focus investigated in BOMHarbour is to find a feasible timetable
for the given line concept.
The dataset contains 11 stops, 11 edges and no passenger information. An overview of the structure is given
in Fig. 8.13. Since the dataset does not contain the necessary information, stop location is not supported on
this dataset out of the box.

8.4 Adding new datasets
For adding a new dataset, use the content of the template dataset as input. Therefore create a new folder in
Fi datasets and copy the content into a new directory with a name of your choosing. Afterwards, adapt

the local only default parameters in the Fi basis/Config.cnf file. For an explanation of the parameters,
see Section 8.1.
Before running anything, you need to fill the new dataset with data. To see, which algorithm needs which
data, see the respective section in this documentation. For information on the file structure, see Chapter 7.

8.4.1 Adding a dataset from PESPlib
There is a helper method to import a PESPlib dataset. PESPlib ([11]) is a benchmark library for Periodic
Event Scheduling Problems, based on timetabling problems in public transport planning.
To import a PESPlib dataset, place the dataset file (e.g. R1L1.txt) into Fi /src/tools/PESPlib_import
and run e.g.

R python3 pesplib_import.py R1L1
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there. This will create a new dataset folder with the given dataset name and all required files for timetabling
in the Fi /datasets -directory.
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Chapter 9

LinTim Core

For allowing easier extensions of LinTim, its core functionality is provided in two languages, namely Python
(3) and Java. There is a version for C++ too, but it is deprecated.
In the following the vocabulary of Java is used, but the versions for Python is structured in the same way.
The core is organized into several packages, which are briefly explained in the following sections. Note that
for continuity all core libraries follow the naming convention for Java for their public API as far as possible.
To create a javadoc version of the documentation run

R make docs

in the folder Fo /src/core/java. An HTML version of the documentation can then be found in Fo

/src/core/java/docs.

9.1 Model
The package model consists of interfaces which represent basic concepts and classes which represent the
basic objects used in public transport planning.

9.1.1 Interfaces
The following interfaces are given.

Graph with basic graph functionality

Node with basic node functionality

Edge with basic edge functionality, can be directed or undirected

Path with basic path functionality

OD structure to handle OD information

9.1.2 Classes
The following classes are given.

Stop representing a stop in a PTN, implementing Node

Link representing a link in a PTN, implementing Edge

DemandPoint representing a demand point, i.e., the demand at a certain location

Line representing a line in the PTN
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LinePool representing a line pool

ODPair representing an origin destination pair

PeriodicEvent representing an event in the periodic event activity network

PeriodicActivity representing an activity in the periodic event activity network

PeriodicHeadway representing a headway activity in the periodic event activity network

AperiodicEvent representing an event in the aperiodic event activity network

AperiodicActivity representing an activity in the aperiodic event activity network

AperiodicHeadway representing a headway activity in the aperiodic event activity network

Timetable representation of a timetable

PeriodicTimetable representation of a periodic timetable

9.1.3 Enumerations
The following enumerations are given.

EventType possible types of events

ActivityType possible types of activities

LineDirection possible direction of a line (FORWARDS, BACKWARDS)

9.1.4 Package model.impl
The package model.impl in the Java core contains different implementations of the interfaces, which might
be useful in different scenarios.

ArrayListGraph graph implementation

LinkedListPath path implementation

FullOD OD implementation used for OD matrices with many entries

SparseOD OD implementation used for OD matrices with few entries

9.2 Input and Output
The package io contains reader and writer for all classes in model as well as the ones in util which need
them.

9.3 Algorithm
The package algorithm contains implementation of algorithms working on model classes, which are
needed at several places in LinTim.

Dijkstra shortest path implementation using Dijkstra’s algorithm
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9.4 Utility
The package util contains utility classes and enumerations.

Config a representation of the config

Statistic a representation of the statistic

Pair representation of a tuple consisting of 2 elements

LogLevel wrapper mapping different Java logging levels to the ones we are using

SolverType enumeration of different solver types

9.5 Exceptions
The following error catalog is used. All exceptions inherit from LinTimException such that logging is
handled only once.

Input

• input file cannot be found: Error I1: File <filename> cannot be found.

• format of input files is wrong: Error I2: File <filename> is not
formatted correctly: <x> columns given, <y> needed.

• inconsistency: Error I3: Column <x> of file <filename> should be
of type <type> but entry in line <line number> is <entry>.

• inconsistent numbering: Error I4: Datatype <data-type> is not
numbered consistently starting from 1, but <algorithm-name>
needs that.

Output

• output cannot be written: Error O1: File <filename> cannot be written.

• no output is produced: Error O2: Algorithm <algo> did not terminate correctly, no
output will be produced.

Config parameters

• file not found: Error C1: No config file can be found.

• existence: Error C2: Config parameter <configkey> does not exist.

• type: Error C3: Config parameter <configkey> should be of type
<type> but is <configparameter>.

• file name not given: Error C4: No config file name given.
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Algorithms

• stopping criterion reached: Error A1: Stopping criterion of algorithm <algo>
reached without finding a feasible/optimal solution.

• infeasible parameter setting: Error A2: Algorithm <algo> cannot be run with
parameter setting <configkey>; <configparameter>.

• in Dijkstra, distance was queried before computation: Error A3: Distance to <node> was
queried before computation

• in Dijkstra, path was queried before computation: Error A4: Path to <node> was queried
before computation

• in Dijkstra, algo was called with node, that was not in the graph, when the class was initialized:
Error A5: Usage of unknown node <node>. This may happen, when the graph was altered
after initialization

• in Dijkstra, there is an edge with negative length: Error A6: Edge <edge> has negative
length <length>. Dijkstra cannot work reliably with negative edge length.

• in Dijkstra, if the network is not connected: Error A7: Node <sourceNode> is not
connected to node <targetNode>, but a shortest path was
queried. This may happen during computation of a shortest path or when computing all shortest
paths starting from a specific node.

Graphs

• multiple nodes with same index: Error G1: Node with id <node id> already exists.

• multiple edges with same index: Error G2: Edge with id <edge id> already exists.

• left or right node of edge does not exist: Error G3: Edge <edge id> is incident to
node <node id> but node <node id> does not exist.

Lines

• link cannot be added to line: Error L1: Link <link id> cannot be added to line
<line id>.

• line contains a circle: Error L2: Line <line id> contains a circle.

• line is no path: Error L3: Line <line id> is no path.

Data inconsistency

• periodic event to aperiodic event does not exist: Error D1: Periodic event <event id> to
aperiodic event <event id> does not exist.

• periodic activity to aperiodic activity does not exist: Error D2: Periodic activity
<activity id> to aperiodic activity <activity id> does not exist.

• index not found: Error D3: <Element> with index <index> not found.

• illegal event type: Error D4: <Event type> of event <event id> is no legal event
type.

• illegal activity type: Error D5: <Activity type> of activity <activity id> is no
legal activity type.

• illegal line direction: Error D6: <Line direction> of event <event id> is no legal
line direction.
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Solver

• solver not supported: Error S1: Solver <solver name> not supported for algorithm
<algo>.

• Gurobi Error: Error S2: Gurobi returned the following error:
<exception.toString()>

• Cplex Error: Error S3: Cplex returned the following error:
<exception.toString()>

• Cplex Error: Error S4: The solver <solver name> is not yet implemented in the
core solver library.

• Attribute not implemented: Error S5: Attribute <attribute name> is not
implemented for <solver name> yet.

• Parameter not implemented: Error S6: The parameter <parameter name> is not
implemented for <solver name> yet.

• Variable type not implemented: Error S7: The variable type <variable type> is not
implemented for <solver name> yet.

• Invalid call: There was an invalid call, e.g., reading variables of an infeasible model. Please check the
text for further information. Error S8: <error message>

Statistic

• type mismatch: Error ST1: Statistic key <key> should have type <type> but has
value <value>.

• key not found: Error ST2: Statistic parameter <configkey> does not exist.
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Chapter 10

Introduction to extending LinTim

10.1 Logging
The following guidelines govern the output expected from LinTim programs.

10.1.1 Output from LinTim programs
Output from LinTim programs must adhere to the formatting described here.
For software using a LinTim core Library (Java, C++, ...), there are dedicated logging Classes to use for
output.
These will default to write to STDOUT, and the Makefile invocations shall do so, but they can also be
configured otherwise.
Software not using a LinTim library should use STDOUT or a commonly used facility for its respective
programming environment/language that can be configured for writing to STDOUT, so Makefile invocations
can do so.

10.1.2 Log Levels
The following Levels shall be used:

FATAL for errors that cancel the execution

ERROR for errors that are severe, but do not stop the program

WARN (a.k.a. warning) for messages from the program that need not be a real error, but may be of interest
to the user (also hints for probably wrong configuration) because they might want to be cautious about
it, as something is probably different from what they might expect

INFO for everything that happens as expected and is of interest to the end user

DEBUG for output that allows to see what’s happening under the hood

In the output to STDOUT (be it configurable through a library or not), the loglevel must be written in capital
letters, preceded by the current system time formatted as YYYY-MM-DD HH:mm:ss at the beginning of
the line, followed by a colon, a space, and the actual message. (Only) DEBUG messages may additionally
contain hints to the source code like the classname, source code line, and/or stack traces of Exceptions, etc..
Multi-line messages are allowed for DEBUG messages.

10.1.3 Error messages
The messages outlined in the Error catalog shall be used literally for their respective FATAL, ERROR or
WARN messages. The level depends upon the severity for the respective program.
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10.1.4 Info messages
The following INFO and DEBUG messages should be written at the beginning and end of the respective
steps. If a step is not present in a particular program, the respective output can be omitted.
any introductory INFO message(s) you like (e.g. stating the program name and version) or nothing at all

INFO: Begin reading configuration

DEBUG: Parameter <key> set to <value>

INFO: Finished reading configuration

INFO: Begin reading input data

DEBUG: Reading file <path/and/filename>

INFO: Finished reading input data

INFO: Begin execution

further DEBUG and INFO messages as you see fit

INFO: Finished execution

INFO: Begin writing output data

DEBUG: Writing file <path/and/filename> or Appending to file <path/and/filename>

INFO: Finished writing output data

Whether the setup of a mathematical program for a solver is done during the reading step (maybe on the
fly) or as part of the execution step is up to the author. Solvers may produce their own output to report
progress. Whenever possible, the output of a solver shall be configured to go into the filename provided
by the configuration key CK solver_output_file. (which may contain a relative or absolute path). If
the key is the empty string or not set at all, solver output shall be printed to STDOUT, but not through the
logging facility (or only at the DEBUG level). (Note: Solver output refers to the usual progress report, not
to the results, i.e., values of variables in the solution. Still, intermediate or final results may or may not be
part of the solver output.)

10.2 Cleaning
Due to the vast number of algorithms in LinTim, manually cleaning the Fo src directory is tedious.
Therefore, LinTim provides an automatic capability to do so by running

R make clean-src

in a dataset-folder or

R make clean

in the Fo src directory. There are several file types cleaned automatically from all directories in Fo src

(see Fi src/FILES_TO_CLEAN ) but you may add additional files as well. To do so, create a file named
Fi FILES_TO_CLEAN in the source directory of the algorithm and add all files that should be deleted, one

per line. Glob patterns, e.g. Fi bin/* are supported.
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Chapter 11

Continous Integration

There are some continous integration tests contained in LinTim. They can be found in the folder Fo /ci.

11.1 Running the tests
There are two possibilities, running all test cases and running a specific test.
For running all tests, run the script Fi /ci/run_tests.sh . This file will set some basic environment
variables for the solvers and run every test separately. Note, that the main script will fail on the first test
failure. Also, you may need to make sure, that the environment variables for running the necessary solvers
are set for your system, see Chapter 1.2.
There is also the possibility to run a single test. For this, change into the corresponding subdirectory of Fo

/ci and run the script Fi run.sh . Note, that no environment variables for solvers will be set, therefore
this is up to you before starting the test.
Additionally, note that the tests are mostly regression tests, designed to find unintended changes on already
implemented algorithms. Therefore, the results are based on running specific software versions on specific
hardware. They are therefore likely to fail for you. On the other hand, the unit tests should work for every
installation of LinTim. You can run them separately with Fi /ci/run_unit_tests.sh

11.2 Adding test cases
There is the possibility to add your own test cases. A test contains of four things, a list of LinTim commands
to run, a dataset to run the commands on, a Fi Private-Config.cnf for configuration, and an expected
statistic result.
To add your own test, copy the content of Fo /ci/template into a new subdirectory of Fo /ci. In there,
the commands to run and the dataset can be changed by setting the corresponding variables in Fi run.sh .
To add your own configuration parameters, adapt Fi basis/Private-Config.cnf in your test directory.
This file will be copied in the given dataset before running the test commands.
For the expected results, add data into the file Fi expected-statistic.sta in your test directory. This
file will be compared to the statistic file created by the test commands and will determine the success or the
failure of the test. For a successful test, all statistic keys in the Fi expected-statistic.sta need to be
contained in the produced statistic file and their values need to coincide. Note that the produced statistic file
may contain more data, this will not cause the test to fail.
Every test will create a new version of the corresponding dataset, you may therefore not assume the dataset
to differ from the currently commited version.
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Chapter 12

Changelog

This section contains a brief changelog of the different versions. Note that the changelog ist not complete
and does only include the most important features. For a complete list of changes, use the version control
system. The version numbers of LinTim are based on the date of release and are not semantic.

2020.12
Added

• Additional IP parameters for Gurobi

• Dataset ring

Changed

• Python Core: Replaced usage of DictGraph by SimpleDictGraph to improve performance

• Core: StatisticWriter will default to appending to the file on disc instead of overwriting

• Line planning model direct is now allowed a non-integer budget restriction

• Remove goblin dependency from periodic modulo simplex, use gurobi now instead

• Allow periodic timetable evaluation without an od matrix present

Fixed

• R make ean-add-simple-vs will now respect the parameter CK time_units_per_minute

• Line Planning method CV cost_restricting_frequencies can now be compiled with only one
of the supported solvers installed

• Python core will use default statistic for reading if none is given

• Fixed bug in cycle base version of integrated timetabling and passenger routing model

• Adapted ean_change_penalty for time_units_per_minute in dataset athens

• Equals method in periodic and aperiodic ean now working in python core

• Suppress double logging/console output when using the core gurobi solver interface with gurobi 9

• Python core vehicle schedule writer reads correct default config key for the vehicle schedule file

• R make ean-add-simple-vs will now throw an error when run on a directed ptn

• CK time_units_per_minute are now consistently handled in all vehicle scheduling methods
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2020.02
Added

• Sioux Falls dataset

• Models for integrated planning

– Integrated timetabling and passenger routing

– Integrated line planning, timetabling and passenger routing

– Integrated timetabling and vehicle scheduling

– Integrated line planning, timetabling, passenger routing and vehicle scheduling

– Computing a new timetable for given line plan and vehicle schedule

• Respect fixed lines in line planning

• Respect fixed lines in timetabling

• Modulo Simplex algorithm for timetabling

• Full support for running under Windows

• Import of VISUM datasets

• New Python core graph implementation

• Automatic cleaning of src folders

• Robustness checks for delay management

Changed

• The export format to visum does now include the line repetition

Deprecated

• the cpp core will not be maintained any more and will be removed in a future version

2018.06
First release version
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