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Abstract
Simplified ODE models describing blood flow rate are governed by the pressure gradient.
However, assuming the orientation of the blood flow in a human body correlates to a positive
direction, a negative pressure gradient forces the valve to shut, which stops the flow through
the valve, hence, the flow rate is zero, whereas the pressure rate is formulated by an ODE.
Presence of ODEs together with algebraic constraints and sudden changes of system charac-
terizations yield systems of switched differential-algebraic equations (swDAEs). Alternating
dynamics of the heart can be well modelled by means of swDAEs. Moreover, to study pulse
wave propagation in arteries and veins, PDE models have been developed. Connection be-
tween the heart and vessels leads to coupling PDEs and swDAEs. This model motivates
to study PDEs coupled with swDAEs, for which the information exchange happens at PDE
boundaries, where swDAE provides boundary conditions to the PDE and PDE outputs serve
as inputs to swDAE. Such coupled systems occur, e.g. while modelling power grids using
telegrapher’s equations with switches [63], water flow networks with valves [76, 80] and dis-
trict heating networks with rapid consumption changes [21]. Solutions of swDAEs might
include jumps, Dirac impulses and their derivatives of arbitrary high orders. As outputs of
swDAE read as boundary conditions of PDE, a rigorous solution framework for PDE must
be developed so that jumps, Dirac impulses and their derivatives are allowed at PDE bound-
aries and in PDE solutions. This is a wider solution class than solutions of small bounded
variation (BV), for instance, used in [19] where nonlinear hyperbolic PDEs are coupled with
ODEs. Similarly, in [5, 71, 73], the solutions to switched linear PDEs with source terms are
restricted to the class of BV. However, in the presence of Dirac impulses and their derivatives,
BV functions cannot handle the coupled systems including DAEs with index greater than one.
Therefore, hyperbolic PDEs coupled with swDAEs with index one will be studied in the BV
setting and with swDAEs whose index is greater than one will be investigated in the distribu-
tional sense. To this end, the 1D space of piecewise-smooth distributions is extended to a 2D
piecewise-smooth distributional solution framework. 2D space of piecewise-smooth distri-
butions allows trace evaluations at boundaries of the PDE. Moreover, a relationship between
solutions to coupled system and switched delay DAEs is established. The coupling structure
in this thesis forms a rather general framework. In fact, any arbitrary network, where PDEs
are represented by edges and (switched) DAEs by nodes, is covered via this structure. Given
a network, by rescaling spatial domains which modifies the coefficient matrices by a con-
stant, each PDE can be defined on the same interval which leads to a formulation of a single
PDE whose unknown is made up of the unknowns of each PDE that are stacked over each
other with a block diagonal coefficient matrix. Likewise, every swDAE is reformulated such
that the unknowns are collected above each other and coefficient matrices compose a block
diagonal coefficient matrix so that each node in the network is expressed as a single swDAE.
The results are illustrated by numerical simulations of the power grid and simplified circula-
tory system examples. Numerical results for the power grid display the evolution of jumps
and Dirac impulses caused by initial and boundary conditions as a result of instant switches.
On the other hand, the analysis and numerical results for the simplified circulatory system do
not entail a Dirac impulse, for otherwise such an entity would destroy the entire system. Yet
jumps in the flow rate in the numerical results can come about due to opening and closure of
valves, which suits clinical and physiological findings. Regarding physiological parameters,
numerical results obtained in this thesis for the simplified circulatory system agree well with
medical data and findings from literature when compared for the validation.





Zusammenfassung
Modelle, die auf gewöhnlichen Differentialgleichungen (GDGL) führen, die die Blut-

flussrate beschreiben, werden durch den Druckgradienten bestimmt. Wird die Orientierung
des Blutflusses im menschlichen Körper als positive Richtung angenommen, so führt ein
negativer Druckgradient zur Umkehrung der Flussrichtung und zum Schließen der Herzklap-
pen. Der Blutfluss wird gestoppt und die Flussrate fällt auf Null. Der Verlauf der Druck-
änderung, die Druckrate, wird dabei mithilfe einer DGL beschrieben. Unterliegen die DGL
algebraischen Beschränkungen und plötzlichen Änderungen der Systemcharakterisierungen,
führt dies zu Systemen geschalteter differential – algebraischer Gleichungen (DAGL). Die
alternierende Dynamik des Herzens kann mithilfe von geschalteten DAGL gut modelliert
werden. Darüber hinaus wurden zur Untersuchung der Pulswellenausbreitung in Arterien
und Venen Modelle, die auf partiellen Differentialgleichungen (PDGL) führen, entwickelt.
Die Verbindung zwischen dem Herzen und den Gefäßen führt zur Kopplung von PDGL
und geschalteten DAGL. Dieses Modell motiviert zur Untersuchung von mit geschalteten
DAGL gekoppelten PDGL, bei denen der Informationsaustausch an den PDGL-Grenzen stat-
tfindet. Dabei liefern die geschalteten DAGL die von den PDGL benötigten Randbedingun-
gen, während die Ausgabewerte der PDGL als Eingabewerte der geschalteten DAGL dienen.
Solche gekoppelten Systeme treten z.B. bei der Modellierung von Stromnetzen mithilfe von
Telegrafengleichungen mit Schaltern [63], Wasserflussnetzen mit Ventilen [76, 80] und Fer-
nwärmenetzen mit schnellen Verbrauchsänderungen [21] auf. Lösungen geschalteter DAGL
können Sprünge, Dirac-Impulse und ihre Ableitungen beliebig hoher Ordnungen umfassen.
Da sich die Ergebnisse von geschalteten DAGL als Randbedingungen von PDGL lesen, muss
ein strenger Lösungsrahmen für PDGL entwickelt werden, sodass Sprünge, Dirac-Impulse
und ihre Ableitungen an den PDGL-Grenzen und in PDGL-Lösungen erlaubt sind. Dies
ist eine breitere Lösungsklasse als die Funktionen der beschränkten Variation (BV), die
z.B. in [19] verwendet werden, wo nichtlineare hyperbolische PDGL mit DGL gekoppelt
sind. In ähnlicher Weise sind in [5, 71, 73] die Lösungen für geschaltete lineare PDGL mit
Quelltermen auf die Klasse der BV beschränkt. Bei Vorhandensein von Dirac-Impulsen und
ihren Ableitungen können BV-Funktionen jedoch nicht mit den gekoppelten Systemen ein-
schließlich DAGL mit Index größer als eins umgehen. Daher werden hyperbolische PDGL,
die mit DAGL mit Index eins gekoppelt sind, in der BV-Einstellung und mit DAGL, deren
Index größer als eins ist, auf die Klasse der Distributionen untersucht. Zu diesem Zweck
wird der eindimensionale Raum stückweise glatter Distributionen auf ein zweidimensionales
stückweise glattes Lösungsframework erweitert. Der zweidimensionale Raum stückweise-
glatter Verteilungen erlaubt Randwerte an den Grenzen der PDGL. Darüber hinaus wird eine
Beziehung zwischen Lösungen des gekoppelten Systems und den geschalteten retardierten
DAGL hergestellt. Die Kopplungsstruktur, die hier untersucht wird, bildet einen eher allge-
meinen Rahmen. Tatsächlich wird jedes beliebige Netzwerk, in dem PDGL durch Kanten
und (geschaltete) DAGL durch Knoten repräsentiert werden, über diese Struktur abgedeckt.
Die Ergebnisse anhand numerische Simulationen des Stromnetzes und vereinfachter
Beispiele des Herz-Kreislaufsystems veranschaulicht werden. Die numerischen Ergebnisse
für das Stromnetz zeigen die Entwicklung von Sprüngen und Dirac-Impulsen, die durch
die, von Sofortschaltern beeinflussten, Anfangs- und Randbedingungen verursacht werden.
Dementgegen beinhalten die Analyse und die numerischen Ergebnisse für das vereinfachte
Zirkulationssystem keinen Dirac-Impuls, denn sonst würde eine solche Entität das gesamte
System zerstören. Dennoch können Sprünge in der Flussrate in den numerischen Ergebnis-
sen durch Öffnen und Schließen der Klappen entstehen, was den klinischen und physiolo-
gischen Befunden entspricht. Was die physiologischen Parameter betrifft, so stimmen die
numerischen Ergebnisse für das vereinfachte Kreislaufsystem gut mit medizinischen Daten
und Befunden aus der Literatur überein.
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Chapter 1

Introduction

In this thesis, a rigorous solution theory is developed for systems where a system of lin-
ear hyperbolic partial differential equations (PDEs) is coupled with a system of switched
differential algebraic equations (DAEs) via boundary conditions (BC), see Figure 1.1 as an
overview. Furthermore, the well-posedness of a switched system which is composed of semi-

PDE(u)
BC (u,yD)
output yP

swDAE(w)
input yP

output yD

yPyD

FIGURE 1.1: Coupling of a PDE with a switched DAE via boundary condi-
tion.

linear hyperbolic balance laws and DAEs is studied, where the system is given as follows

∂tu(t,x)+Aσ(t,x)∂xu(t,x) = sσ(t,x,u(t,x)), (1.1a)

Pσ(t)
(

u(t,0+)
u(t,1−)

)
= Pw,σ(t)w(t)+pσ(t), (1.1b)

Eσẇ = Hσw+K0,σ(t)u(t,0+)+K1,σ(t)u(t,1−)+ f(t), (1.1c)

where the unknown u satisfies the system of semi-linear hyperbolic partial differential equa-
tions (1.1a), and w is the solution to the linear DAE (1.1c) whose index is one. The functions
u and w are linked together through the boundary conditions (1.1b) of the PDE and the vec-
tor field of the DAE (1.1c). The complete system (1.1) is subject to some external switching,
governed by the parameter σ. Such systems occur in many real applications, for example,
when modeling power grids using the telegrapher’s equations [63] including switches (e.g.
induced by disconnecting lines), water flow networks with valves [76, 80], gas transport
[11, 41, 42], supply chain models including processor breakdown [3, 53], district heating
systems with rapid consumption changes [21] and blood flow with simplified valve models
in the heart [94]. Similar systems, but with nonlinear PDEs, are also used for modelling
the human circulatory system [102, 103, 104] or for controlling traffic flow [38, 56] with
autonomous vehicles. Similar to [72], the closed loop setting illustrated in Figure 1.1 can in-
clude general network structures where edges represent PDEs and nodes stand for switched
DAEs (swDAEs). After rescaling the spatial domain of each PDE, the coefficient matrices
for PDEs are modified by a constant factor. As every PDE is defined on the same space in-
terval due to rescaling, all PDEs in the network can be then viewed as a single PDE whose
unknown consists of the unknowns of PDEs that are stacked over each other. Moreover, the
coefficinet matrix of the resulting PDE is a block diagonal matrix composed of coefficient
matrices of each PDE. In a similar fashion, all swDAEs can be grouped together such that
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there is only one swDAE system whose unknown comprises the unknowns of given swDAEs;
and whose coefficient matrices are block diagonal, which are made up of coefficient matrices
of the corresponding swDAEs.

In the literature, the coupling between hyperbolic PDEs and ODEs at the boundary has
been studied in different settings; see [19, 20, 29, 34, 35, 57, 58] and references therein. In the
case of nonlinear systems of hyperbolic balance laws, the obtained results hold only locally
in time and with small total variation, [18, 19]. Instead, the setting in this thesis allows to
prove the existence of a global in time solution without any restrictions on the total variation
of the initial data. This is in accordance with the results obtained in the Ph.D. thesis [71] by
Falk Hante about the well-posedness of switched linear balance laws on bounded domains.
It should be remarked that the results obtained in [71] do not cover the case in this thesis.
This is due to the fact that (1.1) is a so-called loop system; i.e., the boundary condition (1.1b)
at one side can depend on the trace of the solution at the other side. The present setting
can also include the case of networks. In the BV setting, only the special case of DAEs of
index one is treated. This is due to the fact that solutions to DAEs with index greater than
one are in general distributions; hence, they do not have the minimum regularity that source
terms of hyperbolic PDEs require. The results are global in time as long as the inputs have
a finite (not necessarily small) total variation. In this thesis, the well-posedness of (1.1) is
proven by using an iterative converging procedure, based on the solutions to both PDEs and
DAEs. Concerning the hyperbolic balance laws (1.1a)-(1.1b), the well-known definition of
broad solutions is employed, see for example [24], based on the concept of characteristic
curves. Using the Banach fixed point theorem, the results on bounded intervals, which are
studied in [71], are extended to the case of looped systems. Moreover, suitable bounds on
the total variation are obtained, which allow one to consider the traces of the solution at the
boundaries. Regarding DAEs, well-known results and estimates are employed, see [81].

In this coupled system, the values of the switched DAE provide the boundary condi-
tions for the PDE and the values of the PDE at its boundaries serve as an input to the DAE.
As an initial example, consider the linear advection equation with the initial and boundary
conditions with the output

∂tv(t,x)+∂xv(t,x) = 0, t ∈ [0,∞), x ∈ [0,∞),

IC v(0,x) = v0(x),

BC v(t,0+) =: b(t),

output yP(t) := v(t,0).

(1.2)

There exists a unique solution to (1.2) as it is well-known from the classical hyperbolic PDE
theory.

Consider now the following DAE of the form Eẇ = Hw+Bq with the output[
1 0
0 0

][
ẇ
ż

]
=

[
1 0
0 1

][
w
z

]
−
[

0
1

]
q,

yD(t) :=
[
0 1

][w
z

]
,

(1.3)

where q : [0,∞)→ R is some input of the system. There exists a unique solution to the DAE
if and only if the matrix pair (E,H) is regular; i.e., det(sE−H) is not the zero polynomial
for s ∈ R, [130]. Consider now the coupling between these two systems, (1.2) with (1.3),
via their inputs and outputs; i.e., b(t) = yD(t) and q(t) = yP(t). According to these coupling
rules, however, it is not possible to describe a well-defined coupled system as the output of
the PDE is equals to its boundary condition, which yields an algebraic loop for the DAE as
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follows

yD(t) = b(t) = yP(t) = q(t),

which makes the coupling ill-posed. Here, the delicate issue takes place while designating
the coupling rules so that the information PDE provides as an input to the swDAE needs to
be specified in terms of only outgoing waves of the PDE.

Solutions of switched DAEs in general contain jumps and derivatives thereof, i.e. Dirac
impulses [130, 132], hence the solution concept of the PDE has to be extended to allow for
jumps and Dirac impulses at the boundary. In particular, this is a wider class compared to
the solutions of small bounded variation, e.g. used in [19] where a nonlinear hyperbolic PDE
is coupled to an ODE. Similarly, in [5, 73], the investigations of switched linear PDEs with
source terms are restricted to solutions with bounded variation. In [123], Dirac impulses are
introduced at the position of an interface of nonlinear PDEs. A more general appearance
of Dirac impulses is allowed in [36, 141] for a partially linear system. Since arbitrary high
derivatives of Dirac impulses can occur as solutions of switched DAEs, the aforementioned
approaches are not suitable to handle the coupled systems studied here. Indeed, the first
main contribution is a suitable extension of the 1D piecewise-smooth distributional solution
framework, which was developed to handle switched DAEs in [130, 131], to a 2D piecewise-
smooth distributional solution framework. This solution space allows trace evaluation on the
boundaries of the domain. Towards the main existence and uniqueness result for solutions
of the coupled system, a relationship between the solutions of the coupled systems and the
solution of switched delay DAEs is established as well. For the latter, a recent existence and
uniqueness result for delay DAEs in [133] is generalized. After defining a 2D solution space,
a condition is stated on systems to be coupled such that the coupling is well-defined.

This thesis is structured as follows. First, several results about the well-posedness of
linear hyperbolic balance laws are summarized and the classical solution theory of linear
hyperbolic PDEs in Chapter 2, theory of distributions in Chapter 3 and the solution theory of
switched DAEs in Chapter 4 are reviewed. In Chapter 5, the coupled problem of hyperbolic
balance laws and switched DAEs is investigated. Then, distributions in a 2D space are defined
in Chapter 6. Later, a novel distributional solution framework for linear hyperbolic PDEs is
introduced in Chapter 7, which is then used in the distributional setting to study coupled
systems with linear transport equations and linear swDAEs of arbitrary index in Chapter 8
and to establish a link between the coupled system and the solutions of switched delay DAEs.
Finally, the results are illustrated by numerical simulations of a simple power grid and blood
flow examples.
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Chapter 2

Hyperbolic partial differential
equations

Exploiting hyperbolic partial differential equations is an effective tool to model physical sys-
tems and engineering problems. Furthermore, they enjoy wide range of applications, such
as describing traffic flow, [22, 32, 33, 75, 137], open channel hydraulics [31], irrigation sys-
tems [88], chemical processes [137], transmission line networks [91, 122], gas flow networks
[10, 137], blood flow networks [96, 98, 105], air traffic management [12], supply-chain mod-
els [7, 62, 70], cell movement in biology [47, 100] and heat exchangers [144]. Many of
the aforementioned PDE systems can be modeled as balance or conservation laws. This
chapter begins with some existing results of semilinear balance laws and method of charac-
teristics. The existing theoretical results are reviewed and extended such that looped systems
are included. By using the Banach fixed point theorem, the results on bounded intervals are
extended to the case of looped systems. Moreover, suitable bounds on the total variation
are obtained, which allow to consider the traces of the solution at the boundaries. For linear
conservation laws, an explicit solution formula to these systems in terms of their initial and
boundary data is provided. Finally, the formulation of the solution to linear conservation
laws at boundaries is expressed in terms of boundary data and solutions at previous time
shifts which depend on the domain and wave speeds.

2.1 Semilinear balance laws

Consider the following semilinear initial boundary value problem (IBVP)

∂tu(t,x)+A(t,x)∂xu(t,x) = s(t,x,u(t,x)), (2.1a)(
P0

a(t) P1
a(t)

P0
b(t) P1

b(t)

)(
u(t,a)
u(t,b)

)
= b(t), (2.1b)

u(t0,x) = ut0(x), (2.1c)

where x ∈ [a,b], t ≥ t0 with the following assumptions:

(H-1): The map A : [t0,∞)× [a,b]→ Rn×n is a C2 function.

(H-2): The source term s : [t0,∞)× [a,b]×Rn→ Rn is bounded, measurable with respect to
t, and Lipschitz continuous with respect to x and u. In particular, there exists Ls > 0
such that

|s(t,x,u)| ≤ Ls, |s(t,x1,u1)− s(t,x2,u2)| ≤ Ls |x1− x2|+Ls |u1−u2|

for every t ≥ t0, x,x1,x2 ∈ [a,b], and u,u1,u2 ∈ Rn.
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(H-3): The system is strictly hyperbolic; i.e., A(t,x) has n real and distinct eigenvalues,
namely λ1(t,x) < · · · < λn(t,x), and corresponding left li(t,x) and right ri(t,x) eigen-
vectors for each i = 1, . . . ,n. It is further assumed that

‖ri‖2 = 1, l j · ri =

{
1, if i = j,
0, if i 6= j,

where ‖·‖2 is the Euclidean norm.

(H-4): There exist c > 0 and ` ∈ {1,2, . . . ,n−1} such that λ`(t,x)<−c and λ`+1(t,x)> c
for every (t,x) ∈ [t0,∞)× [a,b].

(H-5): P0
a,P1

a ∈C0
(
R;R(n−`)×n

)
and P0

b,P
1
b ∈C0

(
R;R`×n

)
are locally Lipschitz continuous

and satisfy

det

(
P0

a(t) [r`+1(t,a) · · · rn(t,a)] P1
a(t) [r1(t,b) · · · r`(t,b)]

P0
b(t) [r`+1(t,a) · · · rn(t,a)] P1

b(t) [r1(t,b) · · · r`(t,b)]

)
6= 0

for every t ∈ [t0,∞).

Remark 2.1

Left- and right eigenvectors li and ri of A(t,x) are Lipschitz continuous with respect to t
and x, by the implicit function theorem. Hence, by Rademacher’s theorem, [106], partial
derivatives of li and ri exist everywhere up to a set of measure zero.

2.1.1 The method of characteristics

Under the previous assumptions, the system (2.1) can be rewritten in a diagonal form by
defining the n×n matrices L and R as

L(t,x) = [l1(t,x) . . . ln(t,x)]> and R(t,x) = [r1(t,x) . . . rn(t,x)] ,

whose components are respectively the left- and right eigenvectors of the matrix A(t,x), and
the n× n diagonal matrix Λ(t,x), which is composed of the eigenvalues of A(t,x). Note
that, the Assumptions (H-3) and (H-4) imply that the matrices L, R, and Λ are non-singular.
Multiplying Equation (2.1a) with the matrix L on the left decouples the left hand side into a
system of scalar equations

vt(t,x)+Λ(t,x)vx(t,x) = h(t,x,v(t,x)), (2.2)

where
h(t,x,u) := L(t,x)s(t,x,u(t,x))+ [Lt(t,x)+Λ(t,x)Lx(t,x)]v(t,x), (2.3)

with h = [h1 . . . hn]
> and the characteristic variable v = [v1 . . . vn]

> such that

vi(t,x) = li(t,x) ·u(t,x), ∀i = 1,2, . . . ,n. (2.4)

Note that multiplying Equation (2.1a) with the matrix R−1 on the left would decouple the
equation into scalar equations as in (2.2), as well.
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Remark 2.2

As a result of Remark (2.1), the maps hi, for i = 1,2, . . . ,n, are measurable with respect
to t and x; and locally Lipschitz continuous with respect to v.

Solutions to (2.1) are considered in the sense of broad solutions, which are based on the
concept of characteristic curves.

Definition 2.3

An absolutely continuous function t 7→ xi(t;τ,σ) is called i-th characteristic curve if it
satisfies

d
dt xi(t;τ,σ) = λi(t,xi(t;τ,σ)) with xi(τ;τ,σ) = σ,

almost everywhere on [t0,∞)× [a,b], where xi(t;τ,σ) is defined.

The system (2.2) consists of n scalar advection equations of the form

∂tvi(t,x)+λi(t,x)∂xvi(t,x) = hi (t,x,v(t,x)) , (2.5)

where λi(t,x) is the wave speed for i = 1, . . . ,n.
Each equation in (2.5) can be reduced to an ODE along the integral curve xi(t;τ,σ) in the

vector field (1,λi) passing through (τ,σ). Let

dt
dτ

= 1, d
dτ

xi (t;τ,σ) = λi (t,xi (t;τ,σ)) ,

with xi(τ;τ,σ) = σ, then it holds

d
dτ

vi (t,xi (t;τ,σ)) = ∂tvi (t,xi (t;τ,σ)) dt
dτ
+∂xvi (t,xi (t;τ,σ)) dx

dτ

= ∂tvi (t,xi (t;τ,σ))+λi (t,xi (t;τ,σ))∂xvi (t,xi (t;τ,σ))

= hi (t,xi (t;τ,σ) ,v(t,xi (t;τ,σ))) .

As a result, each equation in (2.5) for i = 1, . . . ,n can be considered as an ordinary dif-
ferential equation of the form

d
dt vi(t;τ,σ) = hi (t,xi (t;τ,σ) ,v(t,xi (t;τ,σ))) ,

along the characteristic curves xi(t;τ,σ).
Let v−(t,x) and v+(t,x) be vectors composed of left- and right- going characteristic vari-

ables such that

v−(t,x) := [v1 . . .v`]> and v+(t,x) := [v`+1 . . .vn]
> ,

where v− : [t0,∞)× [a,b]→ R` and v+ : [t0,∞)× [a,b]→ Rn−`.

Remark 2.4

By defining

R−(t,x) := [r1(t,x) · · · r`(t,x)] and R+(t,x) := [r`+1(t,x) · · · rn(t,x)] ,
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the boundary condition (2.1b) can be rewritten in the form(
Na(t) Ma(t)
Mb(t) Nb(t)

)(
v+(t,a)
v−(t,b)

)
= b(t)− N̂(t)

(
v−(t,a)
v+(t,b)

)
, (2.6)

with

Na(t) = P0
a(t)R

+(t,a) , Ma(t) = P1
a(t)R

−(t,b) , Mb(t) = P0
b(t)R

+(t,a) ,

Nb(t) = P1
b(t)R

−(t,b) , and N̂(t) =
(

P0
aR−(t,a) P1

aR+(t,b)
P0

bR−(t,a) P1
bR+(t,b)

)
.

Due to Assumption (H-5), the n×n matrix

M̂(t) :=
(

Na(t) Ma(t)
Mb(t) Nb(t)

)
is invertible; and hence Equation (2.6) can be rewritten as(

v+(t,a)
v−(t,b)

)
=
(
M̂(t)

)−1 b(t)−
(
M̂(t)

)−1 N̂(t)
(

v−(t,a)
v+(t,b)

)
, (2.7)

that is, 
v+(t,a) = b+(t)+N+(t)

(
v−(t,a)
v+(t,b)

)
,

v−(t,b) = b−(t)+N−(t)
(

v−(t,a)
v+(t,b)

)
,

(2.8)

with appropriate choices b−(t)∈R`, b+(t)∈Rn−`, N−(t)∈R`×n and N+(t)∈R(n−`)×n.

Remark 2.5

Since the map A is of class C2, it holds that the eigenvalues and the eigenvectors have
the same regularity. In particular the source term h, defined in (2.3), for the diagonal
equation (2.2) satisfies the following estimates: For every T > t0, there exists a constant
Lh > 0 such that

|h(t,x,v)| ≤ Lh, |h(t,x1,v1)−h(t,x2,v2)| ≤ Lh |x1− x2|+Lh |v1−v2| ,

for a.e. t ∈ [t0,T ] and for every x,x1,x2 ∈ [a,b] and v,v1,v2 ∈ Rn.

Remark 2.6

By Assumption (H-4), the function t 7→ xi(t;τ,σ) is invertible as the eigenvalues are
bounded away from zero. In the sequel, the inverse function is denoted by x 7→ ti(x;τ,σ).

In the following, regarding hyperbolic balance laws, broad solutions, see for example [24],
based on the concept of characteristic curves, are defined.
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Definition 2.7

Fix T > t0. A function u : C0
(
[t0,T ];L1 ((a,b);Rn)

)
is a broad solution to (2.1) if,

defining for every i ∈ {1, . . . ,n} the i-th component vi of u as in Equation (2.4), and
consequently writing u as

u(t,x) =
n

∑
i=1

vi(t,x)ri(t,x) = R(t,x)v(t,x) on [t0,T ]× [a,b], (2.9)

the following conditions hold:

(1): For every i ∈ {1, . . . ,n}, τ ∈ [t0,T ], and for a.e. σ ∈ [a,b], the equation

d
dt vi (t;xi(t;τ,σ)) = hi (t,xi(t;τ,σ),v(t,xi(t;τ,σ))) ,

holds for a.e. t, where the characteristic curve xi(t;τ,σ) exists.

(2): The boundary condition (2.1b), or the alternative formulation (2.7), holds for
a.e. t ∈ [t0,T ].

(3): For every i ∈ {1, . . . ,n}, the initial condition

vi (t0,x) = li(t0,x) ·ut0(x)

holds for a.e. x ∈ [a,b].

In the following lemma, a priori estimate on the total variation of broad solutions to (2.2)
is established. As it will be seen in the sequel, the bound on the total variation will yield the
well-posedness of solutions to (2.1).

Lemma 2.8

Assume that hypotheses (H-1)-(H-5) hold and that x ∈ [0,1] and t0 = 0 for brevity. Let v
be a broad solution to (2.2) with boundary conditions (2.8). Then, for every 0 < t ≤ 1

λmax
,

where λmax := max
i=1,...,n

|λi|, there exists a constant C > 0, depending on λmax, h, N+, and

on N−, such that

TV(v(t, ·))≤C
(
1+TV(v̄)+TV(b+)+TV(b−)

)
exp(Ct)

+C
(
‖v‖L∞ +

∥∥b+
∥∥

L∞ +
∥∥b−

∥∥
L∞

)
exp(Ct) .

(2.10)

Proof. First, note that the choice t ≤ 1
λmax

implies that the characteristic curves starting from
one boundary do not reach the other boundary within time 1

λmax
. Denote by L a uniform bound

and a Lipschitz constant for h in
[
0, 1

λmax

]
× [0,1]×Rn; see Remark 2.5. Since v is a broad

solution to (2.2), for every i ∈ {1, . . . , `} and 0≤ t ≤ 1
λmax

,

vi(t,x)=


v̄i(xi(0; t,x))+

t∫
0

hi(τ,xi(τ; t,x),v(τ,xi(τ; t,x)))dτ, if x < xi (t;0,1) ,

m1
i (ti(1; t,x))+

t∫
ti(1;t,x)

hi(τ,xi(τ; t,x),v(τ,xi(τ; t,x)))dτ, if x > xi (t;0,1) ,

(2.11)
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while, for every i ∈ {`+1, . . . ,n} and 0≤ t ≤ 1
λmax

,

vi(t,x)=


m0

i (ti(0; t,x))+
t∫

ti(0;t,x)

hi(τ,xi(τ; t,x),v(τ,xi(τ; t,x)))dτ, if x < xi (t;0,0) ,

v̄i(xi(0; t,x))+
t∫

0

hi(τ,xi(τ; t,x),v(τ,xi(τ; t,x)))dτ, if x > xi (t;0,0) ,

(2.12)

where ti denotes the inverse of the i-th characteristic curve, see Remark 2.6, m0
i and m1

i are
i-th elements of v+(t,a) and v−(t,b), respectively, see (2.8), such that

m0
1(t)

m0
2(t)
...

m0
n(t)

= b+(t)+N+(t)
(

v−(t,0)
v+(t,1)

)
,


m1

1(t)
m1

2(t)
...

m1
n(t)

= b−(t)+N−(t)
(

v−(t,0)
v+(t,1)

)
.

(2.13)

For i ∈ {1, . . . , `} and 0 < t ≤ 1
λmax

, one has

TV(vi(t, ·)) = TV(vi(t, ·); [0,xi (t;0,1)))+TV(vi(t, ·);(xi (t;0,1) ,1])

+
∣∣vi
(
t,xi (t;0,1)+

)
− vi

(
t,xi (t;0,1)−

)∣∣ . (2.14)

while, for i ∈ {`+1, . . . ,n} and 0 < t ≤ 1
λmax

,

TV(vi(t, ·)) = TV(vi(t, ·); [0,xi (t;0,0)))+TV(vi(t, ·);(xi (t;0,0) ,1])

+
∣∣vi
(
t,xi (t;0,0)+

)
− vi

(
t,xi (t;0,0)−

)∣∣ . (2.15)

Consider the first term on the right hand side of (2.14) and points 0 ≤ x0 ≤ ·· · ≤ xN <
xi (t;0,1). By using (2.11), the following is obtained

N

∑
j=1

∣∣vi (t,x j)− vi (t,x j−1)
∣∣≤ TV(v̄i)+

N

∑
j=1

t∫
0

∣∣hi (τ,xi(0; t,x j),v(τ,xi(0; t,x j)))

−hi (τ,xi(0; t,x j−1),v(τ,xi(0; t,x j−1)))
∣∣dτ

≤ TV(v̄i)+Lt +L
t∫

0

TV(v(τ, ·))dτ,

and hence

TV(vi(t, ·); [0,xi (t;0,1)))≤ TV(v̄i)+Lt +L
t∫

0

TV(v(τ, ·))dτ. (2.16)

Similarly, the first term on the right hand side of (2.15) can be estimated by

TV(vi(t, ·);(xi (t;0,0) ,1])≤ TV(v̄i)+Lt +L
t∫

0

TV(v(τ, ·))dτ. (2.17)
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Consider now the second term on the right hand side of (2.14) and points xi (t;0,1) < x0 ≤
·· · ≤ xN ≤ 1. By using (2.11), one obtains

N

∑
j=1

∣∣vi (t,x j)− vi (t,x j−1)
∣∣≤ N

∑
j=1

∣∣m1
i (ti(1; t,x j))−m1

i (ti(1; t,x j−1))
∣∣

+
N

∑
j=1

∣∣∣∣∣∣∣
t∫

ti(1;t,x j)

hi(τ,xi(τ; t,x j),v(τ,xi(τ; t,x j)))dτ

−
t∫

ti(1;t,x j−1)

hi(τ,xi(τ; t,x j−1),v(τ,xi(τ; t,x j−1)))dτ

∣∣∣∣∣∣∣ .

Defining K := sup
t∈[0, 1

λmax ]

{
sup

ξ∈Rn\{0}

|N−(t)(ξ)|
|ξ| , sup

ξ∈Rn\{0}

|N+(t)(ξ)|
|ξ|

}
and using the relations (2.11),

(2.12), and (2.13) yield

N

∑
j=1

∣∣m1
i (ti(1; t,x j))−m1

i (ti(1; t,x j−1))
∣∣≤ TV

(
b−
)
+KnTV(v̄)+2KnLt

+KnL
t∫

0

TV(v(τ; ·))dτ,

while using the assumptions on h and triangular inequalities

N

∑
j=1

∣∣∣∣∣∣∣
t∫

ti(1;t,x j)

hi(τ,xi(τ; t,x j),v(τ,xi(τ; t,x j)))dτ

−
t∫

ti(1;t,x j−1)

hi(τ,xi(τ; t,x j−1),v(τ,xi(τ; t,x j−1)))dτ

∣∣∣∣∣∣∣
≤2Lt +L

t∫
0

TV(v(τ; ·))dτ.

Therefore, the second term on the right hand side of (2.14) can be estimated by

TV(vi(t, ·);(xi (t;0,1) ,1])≤ TV
(
b−
)
+KnTV(v̄)+2(Kn+1)Lt

+(Kn+1)L
t∫

0

TV(v(τ; ·))dτ.
(2.18)

Similarly, the second term on the right hand side of (2.15) can be estimated by

TV(vi(t, ·); [0,xi (t;0,0)))≤ TV
(
b+
)
+KnTV(v̄)+2(Kn+1)Lt

+(Kn+1)L
t∫

0

TV(v(τ; ·))dτ.
(2.19)
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Consider now the third term on the right hand side of (2.14). By using the relations (2.11),
(2.12), (2.13), and the assumptions on h, one obtains

∣∣vi
(
t,xi (t;0,1)+

)
− vi

(
t,xi (t;0,1)−

)∣∣≤ ∣∣∣∣ lim
τ→0+

m1
i (τ)

∣∣∣∣+ ∣∣v̄i(1−)
∣∣

+

∣∣∣∣∣∣
t∫

0

hi
(
τ,xi (τ; t,xi (t;0,1)) ,v

(
τ,xi (τ; t,xi (t;0,1))+

))
dτ

−
t∫

0

hi
(
τ,xi (τ; t,xi (t;0,1)) ,v

(
τ,xi (τ; t,xi (t;0,1))−

))
dτ

∣∣∣∣∣∣
≤
∣∣b−(0+)∣∣+(2K +1)‖v̄‖L∞ +L

t∫
0

TV(v(τ, ·))dτ.

(2.20)

Similarly, the third term on the right hand side of (2.15) can be estimated by∣∣vi
(
t,xi (t;0,0)+

)
− vi

(
t,xi (t;0,0)−

)∣∣
≤
∣∣b+(1−)

∣∣+(2K +1)‖v̄‖L∞ +L
t∫

0

TV(v(τ, ·))dτ.
(2.21)

Inserting (2.16), (2.18) and (2.20) into (2.14) yields

TV(vi(t, ·))≤ TV(v̄i)+TV
(
b−
)
+KnTV(v̄)+(2Kn+3)Lt

+(Kn+3)L
t∫

0

TV(v(τ; ·))dτ

+
∣∣b−(0+)∣∣+(2K +1)‖v̄‖L∞ .

(2.22)

A similar estimate for (2.15) holds. Consequently,

TV(v(t, ·))≤
(
1+Kn2)TV(v̄)+ `TV(b−)+(n− `)TV(b+)

+(2Kn+3)nLt +n(2K +1)‖v‖L∞ + `
∣∣b−(0+)∣∣

+(n− `)
∣∣b+(1−)

∣∣+(2+Kn)nL
t∫

0

TV(v(τ, ·))dτ .

An application of Gronwall Lemma implies that (2.10) holds.

The following is an existence and uniqueness theorem to systems of the form (2.1) and
the basic idea is the same as [24, Theorem 3.2], where the result is proved in the case of no
boundaries. The proof in the case of two separate boundaries, which is considered in the
work [71], does not cover the situation in this thesis. This is due to the fact that the boundary
data depend on the trace of the solution at the other boundary.

Theorem 2.9

Let x ∈ [0,1], T > 0, u(0,x) =: ū and let hypotheses (H-1)-(H-5) hold. There exists a
process

P : [0,T ]×D→ L1((0,1);Rn)
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where

D =
{
(ū,b) ∈ L1((0,1);Rn)×L1((0,T );Rn) : TV(ū)+TV(b)<+∞

}
satisfying:

(1): u(t, ·) = P (t, ū,b) is the solution to (2.1) in the sense of Definition 2.7.

(2): P (0, ū,b) = ū for every (ū,b) ∈D .

(3): For every 0≤ t1 ≤ t2 ≤ T and (ū,b) ∈D , it holds:

P (t2, ū,b) = P (t2− t1,P (t1, ū,b) ,b(·+ t1)) .

(4): There exists L > 0 such that∥∥P (t, ū,b)−P
(
t, ū0, b̃

)∥∥
L1(0,1)≤L

[
‖ū−ū0‖L1(0,1)+

∥∥b−b̃
∥∥

L1(0,T )

]
(2.23)

for a.e. t ∈ [0,T ] and for all ū, ū0 ∈ L1 (0,1), and b, b̃ ∈ L1 (0,T ).

(5): There exists L > 0 such that, for a.e. t ∈ [0,T ],

TV[0,1] (P (t, ū,b))≤ LeLt [1+TV[0,1] (ū)+TV[0,t] (b)
]

+LeLt
[
‖ū‖L∞(0,1)+‖b‖L∞(0,t)

]
.

(2.24)

(6): There exists L > 0 such that, for a.e. t ∈ [0,T ],∥∥P (·, ū,b)(0+)−P
(
·, ū0, b̃

)
(0+)

∥∥
L1(0,t) ≤ L‖ū− ū0‖L1(0,1)

+L
∥∥b− b̃

∥∥
L1(0,T )

(2.25)

(7): There exists L > 0 such that, for a.e. t ∈ [0,T ],∥∥P (·, ū,b)(1−)−P
(
·, ū0, b̃

)
(1−)

∥∥
L1(0,t) ≤ L‖ū− ū0‖L1(0,1)

+L
∥∥b− b̃

∥∥
L1(0,T ) .

(2.26)

Proof. The local existence and uniqueness of solutions will be proven by employing the
contraction mapping theorem. Global existence is then shown by using the a priori estimates
and local existence and uniqueness of solutions. By Remark 2.4, the proof is focused on the
diagonal version of system (2.1) and is divided in various steps as follows.

Local existence and uniqueness. Fix an initial condition ū ∈ L1 ((0,1);Rn) with finite
total variation and a boundary condition b∈L1 ((0,T );Rn) with finite total variation. Denote
with v̄(x) = L(0,x) ū(x) the corresponding initial condition for the diagonal system (2.2) and
with b−, b+ the corresponding boundary conditions; see (2.8). Define

K = sup
t∈[0,T ]

{
sup

ξ∈Rn\{0}

|N−(t)(ξ)|
|ξ| , sup

ξ∈Rn\{0}

|N+(t)(ξ)|
|ξ|

}
(2.27)

M = n(2K +1)TV(v̄)+nTV(b)+2n‖v̄‖L∞ +1 (2.28)

λmax = max{|λi(s,x)| : i ∈ {1, . . . ,n} , s ∈ [0,T ], x ∈ [0,1]} (2.29)

Λ = max
{
‖λi‖C1([0,T ]×[0,1]) : i ∈ {1, . . . ,n}

}
. (2.30)
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Note that both λmax and Λ are finite due to (H-1) and (H-3). Choose t̄ ∈ (0,T ] such that

t̄ < min
{

1
λmax

,
1

nL(4K +2KM+3M+3)

}
(2.31)

and
n(2+nK)eΛt̄ Lt̄ ≤ 1

2
, (2.32)

where L is a uniform bound and a Lipschitz constant for h in [0,T ]× [0,1]×Rn; see Remark
2.5.

Note that the choice of t̄ implies that every characteristic curve starting form a boundary
does not arrive to the other boundary within time t̄. Now, the aim is to construct a map whose
fixed points are solutions to the diagonal IBVP and hence to (2.1). First, introduce the space

X =

v ∈ C0 ([0, t̄ ];L1([0,1];Rn)
)

:
sup

i∈{1,...,n}
sup

t∈[0,t̄ ]
TV(vi(t))≤M

v(0) = v̄

 , (2.33)

equipped with the norm

‖v‖X :=
n

∑
i=1
‖vi‖C0([0,t̄ ];L1([0,1];R)) =

n

∑
i=1

sup
t∈[0,t̄ ]

1∫
0

|vi(t,x)|dx, (2.34)

so that X is a Banach space. Now define the operator

M : X −→ X

v 7−→ M(v) = (M1(v), . . . ,Mn(v)) ,

according to the following four cases.

(1): For every i ∈ {1, . . . , `}, 0 < t ≤ t̄, and x ∈ [0,xi (t;0,1)], define

Mi(v)(t,x)= v̄i(xi(0; t,x))+
t∫

0

hi(τ,xi(τ; t,x),v(τ,xi(τ; t,x)))dτ. (2.35)

It is claimed that for every 0≤ t ≤ t̄,

TV(Mi(v)(t, ·); [0,xi (t;0,1)))≤ TV(v̄i)+L(1+M) t̄, (2.36)

and that
TV(Mi(v)(·,0); [0, t̄ ])≤ TV(v̄i)+L(2+M) t̄. (2.37)

For later use, for 0≤ t ≤ t̄ denote

Mb,0(v)(t) =

 M1(v)(t,0+)
...

M`(v)(t,0+)

 , (2.38)

which is well defined by (2.35) and has a finite total variation by (2.37).
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To prove (2.36), fix N ∈ N \ {0}, a time 0 ≤ t ≤ t̄, and points 0 ≤ x0 < · · · < xN ≤
xi (t;0,1); using the notation x̃ j(τ) = xi (τ; t,x j), one has

N

∑
j=1

∣∣Mi(v)(t,x j)−Mi(v)(t,x j−1)
∣∣≤ N

∑
j=1

∣∣v̄i (x̃ j−1(τ))− v̄i (x̃ j−1(τ))
∣∣

︸ ︷︷ ︸
I1

+
N

∑
j=1

∣∣∣∣∣∣
t∫

0

hi(τ, x̃ j(τ),v(τ, x̃ j(τ)))−hi(τ, x̃ j−1(τ),v(τ, x̃ j−1(τ)))dτ

∣∣∣∣∣∣︸ ︷︷ ︸
I2

.

Clearly, the term I1 is estimated by TV(v̄i). For the term I2, one has

I2 ≤
N

∑
j=1

t∫
0

∣∣hi(τ, x̃ j(τ),v(τ, x̃ j(τ)))−hi(τ, x̃ j−1(τ),v(τ, x̃ j(τ)))
∣∣dτ

+
N

∑
j=1

t∫
0

∣∣hi(τ, x̃ j−1(τ),v(τ, x̃ j(τ)))−hi(τ, x̃ j−1(τ),v(τ, x̃ j−1(τ)))
∣∣dτ

≤ L
N

∑
j=1

t∫
0

(∣∣x̃ j(τ)− x̃ j−1(τ)
∣∣+ ∣∣v(τ, x̃ j(τ))−v(τ, x̃ j−1(τ))

∣∣)dτ

≤ Lt +LMt,

and thus, (2.36) is obtained.

To prove (2.37), fix N ∈ N\{0} and times 0≤ t0 < · · ·< tN ≤ t̄; by using the notation
x̂ j(τ) = xi (τ; t j,0), one has

N

∑
j=1

∣∣Mi(v)(t j,0)−Mi(v)(t j−1,0)
∣∣≤ N

∑
j=1

∣∣v̄i (x̂ j(0))− v̄i (x̂ j−1(0))
∣∣

︸ ︷︷ ︸
I3

+
N

∑
j=1

∣∣∣∣∣∣
t j−1∫
0

(hi(τ, x̂ j(τ),v(τ, x̂ j(τ)))−hi(τ, x̂ j−1(τ),v(τ, x̂ j(τ))))dτ

∣∣∣∣∣∣︸ ︷︷ ︸
I4

+
N

∑
j=1

∣∣∣∣∣∣
t j−1∫
0

(hi(τ, x̂ j−1(τ),v(τ, x̂ j(τ)))−hi(τ, x̂ j−1(τ),v(τ, x̂ j−1(τ))))dτ

∣∣∣∣∣∣︸ ︷︷ ︸
I5

+
N

∑
j=1

∣∣∣∣∣∣
t j∫

t j−1

hi(τ, x̂ j(τ),v(τ, x̂ j(τ)))dτ

∣∣∣∣∣∣︸ ︷︷ ︸
I6

.
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Clearly, the term I3 is estimated by TV(v̄i). For the remaining terms I4, I5, and I6, one
has

I4 ≤ L
N

∑
j=1

t j−1∫
0

∣∣x̂ j(τ)− x̂ j−1(τ)
∣∣dτ≤ Lt̄

I5 ≤ L
N

∑
j=1

t j−1∫
0

∣∣v(τ,xi(τ; t j,0))−v(τ,xi(τ; t j−1,0))
∣∣dτ≤ LMt̄

I6 ≤ Lt̄,

therefore, (2.37) is proved.

(2): For every i ∈ {`+1, . . . ,n}, 0 < t ≤ t̄, and x ∈ [xi (t;0,0) ,1], the following is de-
fined

Mi(v)(t,x) = v̄i(xi(0; t,x))+
t∫

0

hi(τ,xi(τ; t,x),v(τ,xi(τ; t,x)))dτ. (2.39)

Similarly, one obtains, for every 0≤ t ≤ t̄,

TV(Mi(v)(t, ·);(xi (t;0,0) ,1])≤ TV(v̄i)+L(1+M) t̄ (2.40)

and that
TV(Mi(v)(·,1); [0, t̄ ])≤ TV(v̄i)+L(2+M) t̄. (2.41)

For 0≤ t ≤ t̄, denote

Mb,1(v)(t) =

 M`+1(v)(t,1−)
...

Mn(v)(t,1−)

 , (2.42)

which is well defined by (2.39) and has a finite total variation by (2.41).

(3): For every i ∈ {1, . . . , `}, 0 < t ≤ t̄, and x ∈ (xi (t;0,1) ,1], define

Mi(v)(t,x) = m1
i (ti(1; t,x))+

t∫
ti(1;t,x)

hi(τ,xi(τ; t,x),v(τ,xi(τ; t,x)))dτ, (2.43)

where ti denotes the inverse of the i-th characteristic curve, and m1
i is the i-th element

of the following vector
m1

1(t)
m1

2(t)
...

m1
n(t)

= b−(t)+N−(t)
(

Mb,0(v)(t)
Mb,1(v)(t)

)
, (2.44)

see (2.8), (2.38), and (2.42).

It is claimed that for every 0≤ t ≤ t̄

TV(Mi(v)(t, ·);(xi (t;0,1) ,1])≤ TV
(
b−
)
+2KTV(v̄i)

+L(4K +2KM+M+2) t̄ .
(2.45)
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To prove (2.45), fix N ∈ N \ {0}, a time 0 ≤ t ≤ t̄, and points xi (t;0,1) ≤ x0 < · · · <
xN ≤ 1; by using the notations x̃ j(τ) = xi (τ; t,x j) and t̃ j = ti (1; t,x j), one has

N

∑
j=1

∣∣Mi(v)(t,x j)−Mi(v)(t,x j−1)
∣∣≤ N

∑
j=1

∣∣m1
i (t̃ j)−m1

i (t̃ j−1)
∣∣

︸ ︷︷ ︸
I7

+
N

∑
j=1

∣∣∣∣∣∣∣
t∫

t̃ j

(hi(τ, x̃ j(τ),v(τ, x̃ j(τ)))−hi(τ, x̃ j(τ),v(τ, x̃ j−1(τ))))dτ

∣∣∣∣∣∣∣︸ ︷︷ ︸
I8

+
N

∑
j=1

∣∣∣∣∣∣∣
t∫

t̃ j

(hi(τ, x̃ j(τ),v(τ, x̃ j−1(τ)))−hi(τ, x̃ j−1(τ),v(τ, x̃ j−1(τ))))dτ

∣∣∣∣∣∣∣︸ ︷︷ ︸
I9

+
N

∑
j=1

∣∣∣∣∣∣∣
t̃ j−1∫
t̃ j

hi(τ, x̃ j−1(τ),v(τ, x̃ j−1(τ)))dτ

∣∣∣∣∣∣∣︸ ︷︷ ︸
I10

.

By using (2.27), (2.37), (2.41), and (2.44), one obtains

I7 ≤ TV
(
b−
)
+K TV(Mb,0(v)(·))+K TV(Mb,1(v)(·))

≤ TV
(
b−
)
+2K [TV(v̄i)+L(2+M) t̄ ] .

For the remaining terms I8, I9, and I10, one has

I8 ≤ L
N

∑
j=1

t∫
t̃ j

∣∣v(τ, x̃ j(τ))−v(τ, x̃ j−1(τ))
∣∣dτ≤ LMt̄,

I9 ≤ L
N

∑
j=1

t∫
t̃ j

∣∣x̃ j(τ)− x̃ j−1(τ)
∣∣dτ≤ Lt̄,

I10 ≤
N

∑
j=1

t̃ j−1∫
t̃ j

∣∣hi(τ, x̃ j−1(τ),v(τ, x̃ j−1(τ)))
∣∣dτ≤ Lt̄,

which prove (2.45).

(4): For every i ∈ {`+1, . . . ,n}, 0 < t ≤ t̄, and x ∈ [0,xi (t;0,0)), define

Mi(v)(t,x) = m0
i (ti(0; t,x))+

t∫
ti(0;t,x)

hi(τ,xi(τ; t,x),v(τ,xi(τ; t,x)))dτ, (2.46)
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where ti denotes the inverse of the i-th characteristic curve, and m0
i is the i-th element

of the following 
m0

1(t)
m0

2(t)
...

m0
n(t)

= b+(t)+N+(t)
(

Mb,0(v)(t)
Mb,1(v)(t)

)
, (2.47)

see (2.8).

Similarly, it is deduced that, for every 0≤ t ≤ t̄,

TV(Mi(v)(t, ·); [0,xi (t;0,0)))≤ TV
(
b+
)
+2KTV(v̄i)

+L(4K +2KM+M+2) t̄ .
(2.48)

By using (2.35) and (2.43), note also that it holds, for every i ∈ {1, . . . , `} and 0 < t ≤ t̄,∣∣∣∣∣ lim
x→xi(t;0,1)

−
Mi(v)(t,x)− lim

x→xi(t;0,1)
+

Mi(v)(t,x)

∣∣∣∣∣≤ 2‖v̄i‖L∞ +LMt̄. (2.49)

The same inequality holds in the case i ∈ {`+1, . . . ,n}.
By using (2.36), (2.40), (2.45), (2.48) and (2.49), one observes, for every 0 ≤ t ≤ t̄ and

i ∈ {1, . . . ,n},

TV(Mi(v)(t, ·))≤ TV(b)+(2K +1)TV(v̄i)+2‖v̄i‖L∞

+L(4K +2KM+3M+3) t̄
(2.50)

and hence, by the choice of t̄ (2.31),

TV(M(v)(t, ·))≤M, (2.51)

which implies that the operator M(v) is well defined. Note that the proof that t 7→M(v)(t) is
continuous from [0, t̄] to L1 ((0,1);Rn) is straightforward and hence omitted.

Fix v,v∗ ∈ X . For every t ∈ [0, t̄ ] and i ∈ {1, . . . , `}, one has

‖Mi(v)(t, ·)−Mi(v∗)(t, ·)‖L1 =

1∫
0

|Mi(v)(t,x)−Mi(v∗)(t,x)|dx

≤
xi(t;0,1)∫

0

|Mi(v)(t,x)−Mi(v∗)(t,x)|dx+
1∫

xi(t;0,1)

|Mi(v)(t,x)−Mi(v∗)(t,x)|dx.

By using (2.35) and the change of variable ξ = xi (τ; t,x), one obtains

xi(t;0,1)∫
0

|Mi(v)(t,x)−Mi(v∗)(t,x)|dx≤
xi(t;0,1)∫

0

t∫
0

|hi(τ,xi(τ; t,x),v(τ,xi(τ; t,x)))

−hi(τ,xi(τ; t,x),v∗(τ,xi(τ; t,x)))|dτdx

≤ L

xi(t;0,1)∫
0

t∫
0

|v(τ,xi(τ; t,x))−v∗(τ,xi(τ; t,x))|dτdx
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≤ eΛt̄L
t∫

0

1∫
0

|v(τ,ξ)−v∗(τ,ξ)|dξdτ≤ eΛt̄Lt̄ ‖v−v∗‖X .

By using (2.43), the following is obtained

1∫
xi(t;0,1)

|Mi(v)(t,x)−Mi(v∗)(t,x)|dx≤ K
1∫

xi(t;0,1)

|Mb,0(v)(ti (1; t,x))−Mb,0(v∗)(ti (1; t,x))|dx

︸ ︷︷ ︸
I11

+K
1∫

xi(t;0,1)

|Mb,1(v)(ti (1; t,x))−Mb,1(v∗)(ti (1; t,x))|dx

︸ ︷︷ ︸
I12

+I13,

where

I13 =

1∫
xi(t;0,1)

t∫
ti(1;t,x)

|hi(τ,xi(τ; t,x),v(τ,xi(τ; t,x)))

−hi(τ,xi(τ; t,x),v∗(τ,xi(τ; t,x)))|dτdx.

For the term I11, using (2.35) and (2.38), it holds that

I11 ≤
`

∑
j=1

1∫
xi(t;0,1)

∣∣M j (v)(ti (1; t,x) ,0)−M j (v∗)(ti (1; t,x) ,0)
∣∣dx

≤
`

∑
j=1

1∫
xi(t;0,1)

∣∣∣∣∣∣
ti(1;t,x)∫

0

h j (τ,x j (τ; ti (1; t,x) ,0) ,v(τ,x j (τ; ti (1; t,x) ,0)))

−h j (τ,x j (τ; ti (1; t,x) ,0) ,v∗ (τ,x j (τ; ti (1; t,x) ,0)))

∣∣∣∣∣∣dτdx

≤ L
`

∑
j=1

1∫
xi(t;0,1)

ti(1;t,x)∫
0

∣∣v∗ (τ,x j (τ; ti (1; t,x) ,0))

−v∗ (τ,x j (τ; ti (1; t,x) ,0))
∣∣dτdx

≤ L`eΛt̄ t̄ ‖v−v∗‖X .

Similarly, the following can be obtained

I12 ≤ L (n− `) eΛt̄ t̄ ‖v−v∗‖X .

For the remaining term I13, by using the change of variable ξ = xi (τ; t,x), the following is
obtained

I13 ≤ L
1∫

xi(t;0,1)

t∫
ti(1;t,x)

|v(τ,xi(τ; t,x))−v∗(τ,xi(τ; t,x))|dτdx
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≤ eΛt̄L
t∫

0

1∫
0

|v(τ,ξ)−v∗(τ,ξ)|dτdξ≤ eΛt̄Lt̄ ‖v−v∗‖X .

Therefore, for every t ∈ [0, t̄ ] and i ∈ {1, . . . , `}, it holds

‖Mi(v)(t, ·)−Mi(v∗)(t, ·)‖L1 ≤ (2+Kn)eΛt̄ Lt̄ ‖v−v∗‖X . (2.52)

Analogous calculations allow to prove that, for every i ∈ {`+1, . . . ,n} and t ∈ [0, t̄ ],

‖Mi(v)(t, ·)−Mi(v∗)(t, ·)‖L1 ≤ (2+Kn)eΛt̄ Lt̄ ‖v−v∗‖X . (2.53)

Hence, using (2.32), (2.34), (2.52), and (2.53), for every t ∈ [0, t̄ ], it holds

‖M(v)−M(v∗)‖X ≤
n

∑
i=1

sup
t∈[0,t̄ ]

‖Mi(v)(t, ·)−Mi(v∗)(t, ·)‖L1([0,1];R)

≤ n (2+Kn)eΛt̄ Lt̄ ‖v−v∗‖X ≤
1
2
‖v−v∗‖X ,

which proves that M is a contraction; hence, a unique solution exists in the time interval
[0, t̄ ].

Global existence in [0,T ]. Assume by contradiction that the solution v does not exist on
the whole time interval [0,T ] and define

T̂ = sup{t ∈ [0,T ] : v is defined in [0, t]} . (2.54)

By contradiction T̂ < T . Moreover

lim
t→T̂−

TV(v(t, ·)) = +∞, (2.55)

otherwise the construction in the first part of the proof can be applied, violating the maximal-
ity of T̂ .

If T̂ ≤ λmax, then Lemma 2.8 implies that TV(v(t, ·)) is bounded in the time interval[
0, T̂
]
, contradicting (2.55).

If T̂ ≤ λmax, then one can apply the previous considerations on time intervals of length
λmax, obtaining a contradiction with the definition of T̂ .

Stability estimates in [0,T ]. Here, the proofs are briefly sketched for the L1-estimates
(2.23), (2.25), and (2.26). Only the case t ≤ t̄ is considered, the final estimates follow by an
iterative procedure. One starts with the four cases in the construction of M. Let v and v∗ be
the solutions to the diagonal system (2.2) with the initial and boundary conditions v̄, b and
respectively v̄∗ and b∗.

(1): For i ∈ {1, . . . , `}, t ≤ t̄, and x ∈ [0, x̄i], where x̄i = xi(t;0,1), one obtains

x̄i∫
0

|Mi(v)(t,x)−Mi(v∗)(t,x)|dx

≤ ‖v̄− v̄∗‖L1(0,1)+

x̄i∫
0

t∫
0

|hi(τ,xi(τ; t,x),v(τ,xi(τ; t,x)))

− hi(τ,xi(τ; t,x),v∗(τ,xi(τ; t,x)))|dτdx
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≤ ‖v̄− v̄∗‖L1(0,1)+L
t∫

0

‖v(τ, ·)−v(τ, ·)‖L1(0,1) dτ.

Similarly, for t̃ ∈ (0, t), it can be deduced the estimate for the trace

t∫
t̃

∣∣Mi(v)(τ,0+)−Mi(v∗)(τ,0+)
∣∣dτ≤

t∫
t̃

|v̄i(xi(t̃;τ,0))− v̄∗i (xi(t̃;τ,0))|dτ

+

t∫
t̃

t∫
0

|hi(τ,xi(θ;τ,0),v(τ,xi(θ;τ,0)))

− hi(τ,xi(θ;τ,0),v∗(τ,xi(θ;τ,0)))|dθdτ

≤ ‖v̄− v̄∗‖L1(0,1)+L
t∫

0

‖v(τ, ·)−v(τ, ·)‖L1(0,1) dτ.

(2.56)

(2): In the same way, for i ∈ {`+1, . . . ,n}, t ≤ t̄, and x ∈ [x̄i,1], where x̄i = xi (t;0,0),

1∫
x̄i

|Mi(v)(t,x)−Mi(v∗)(t,x)|dx≤ ‖v̄− v̄∗‖L1(0,1)+L
t∫

0

‖v(τ, ·)−v(τ, ·)‖L1(0,1) dτ,

and for t̃ ∈ (0, t)

t∫
t̃

∣∣Mi(v)(τ,1−)−Mi(v∗)(τ,1−)
∣∣dτ

≤ ‖v̄− v̄∗‖L1(0,1)+L
t∫

0

‖v(τ, ·)−v(τ, ·)‖L1(0,1) dτ.

(2.57)

(3): For i ∈ {1, . . . , `}, t ≤ t̄, and x ∈ [x̄i,1], where x̄i = xi (t;0,1), by using (2.56) and
(2.57), the following is obtained

1∫
x̄i

|Mi(v)(t,x)−Mi(v∗)(t,x)|dx≤
1∫

x̄i

|mi(ti(1; t,x))−m∗i (ti(1; t,x))|dx

+

1∫
x̄i

t∫
ti(1;t,x)

|hi(τ,xi(τ; t,x),v(τ,xi(τ; t,x)))

−hi(τ,xi(τ; t,x),v∗(τ,xi(τ; t,x)))|dτdx

≤‖b−b∗‖L1(0,T )

+K
`

∑
j=1

t∫
t j(1;t,x̄i)

∣∣M j(v)(τ,0+)−M j(v∗)(τ,0+)
∣∣dτ

+K
n

∑
j=`+1

t∫
t j(1;t,x̄i)

∣∣M j(v)(τ,1−)−M j(v∗)(τ,1−)
∣∣dτ
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+L
t∫

0

‖v(τ, ·)−v(τ, ·)‖L1(0,1) dτ

≤‖b−b∗‖L1(0,T )+nK ‖v̄− v̄∗‖L1(0,1)

+nKL
t∫

0

‖v(τ, ·)−v(τ, ·)‖L1(0,1) dτ.

(4): Analogous calculations imply that for i ∈ {`+1, . . . ,n}, t ≤ t̄, and x ∈ [0, x̄i], with
x̄i = xi (t;0,0)

x̄i∫
0

|Mi(v)(t,x)−Mi(v∗)(t,x)|dx≤ ‖b−b∗‖L1(0,T )+nK ‖v̄− v̄∗‖L1(0,1)

+nKL
t∫

0

‖v(τ, ·)−v(τ, ·)‖L1(0,1) dτ.

By combining the estimates that are obtained in the previous four cases, one has

‖v(t, ·)−v∗(t, ·)‖L1 ≤ 2‖b−b∗‖L1(0,T )+(2nK +2)‖v̄− v̄∗‖L1(0,1)

+(2nKL+2)
t∫

0

‖v(τ, ·)−v(τ, ·)‖L1(0,1) dτ,

for every t ≤ t̄. By using Gronwall Lemma, one obtains (2.23). Moreover, estimates (2.25)
and (2.26) follow from (2.56), (2.57), and (2.23).

Total variation estimate. The total variation estimate (2.24) follows from Lemma 2.8.

2.2 Linear conservation laws

In this section, the following conservation law is studied

∂tu(t,x)+A∂xu(t,x) = 0, (2.58)

where x ∈ R, t ≥ t0 ∈ R, A ∈ Rn×n with Assumptions (H-3)-(H-4) and initial condition
(2.1c).

By applying the coordinate transformation v=R−1u, it can be seen that the system (2.58)
is equivalent to a decoupled system of scalar PDEs, i = 1,2, . . . ,n,

∂tvi(t,x)+λi∂xvi(t,x) = 0, (2.59)

with the initial condition
vi(t0,x) =: vt0

i (x), (2.60)

where vt0
i = liut0 , where li is the i−th left eigenvector. In order to give a solution formula in

a compact form, two shift operators are defined as follows.

Definition 2.10: 2D shift operator for functions

Denote with F (A→ B) the set of all functions from some set A to some set B. Let T ⊆R
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and X ⊆R, then the time shift operator S λ,x0
time with speed λ∈R and initial position x0 ∈ X

is

S λ,x0
time : F (T → R) 7→ F (T ×X → R), f 7→

[
(t,x) 7→ f

(
t− x−x0

λ

)]
,

with the convention that f (s) = 0 if s 6∈ T . The space shift operator S λ,t0
space with speed

λ ∈ R and initial time t0 ∈ T is

S λ,t0
space : F (X → R) 7→ F (T ×X → R), g 7→

[
(t,x) 7→ g

(
x−λ(t− t0)

)]
,

with the convention that f (y) = 0 if y /∈ X .

By the method of characteristics, [44], it is easily seen that the unique solution of each
scalar PDE (2.59) with differentiable initial data vt0

i is given by vi(t,x) = v0
i (x−λi(t− t0)) or,

equivalently, in terms of the space shift operator by

vi = S λi,t0
spacevt0

i .

Corollary 2.11

2D time shift operator for functions S λ,x0
time commutes with (partial) derivative operator

∂t and 2D space shift operator for functions S λ,t0
space commutes with (partial) derivative

operator ∂x, where λ, x0, t0 ∈ R

S λ,x0
time∂

(n)
t f (t) = ∂

(n)
t S λ,x0

time f (t), and S λ,t0
space∂

(n)
x f (x) = ∂

(n)
x S λ,t0

space f (x),

for f : R→ R and n ∈ N.

Proof. Let f : R→ R and S λ,x0
time be the time shift operator. It holds, for n = 1,

∂tS λ,x0
time f (t) = ∂t f

(
t− x−x0

λ

)
= f ′

(
t− x−x0

λ

)
= S λ,x0

time f ′(t)

= S λ,x0
time∂t f (t).

Assume the claim holds for n≥ 1. Then, for n+1, one obtains

S λ,x0
time∂

(n+1)
t f (t) = S λ,x0

time∂
(n)
t ∂t f (t)

= ∂
(n)
t S λ,x0

time∂t f (t)

= ∂
(n+1)
t S λ,x0

time f (t),

hence, by induction, the claim follows. Analogous steps can be conducted to prove the
commutativity of S λ,t0

space and ∂x.

In the original coordinates, the solution u to (2.58) is given as in the following lemma.

Lemma 2.12
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Consider the system (2.58) satisfying Assumption (H-3) with differentiable initial data
ut0 . Then the unique solution is given by

u =
n

∑
i=1

ΠiS λi,t0
spaceut0 =: S Λ,R,t0

space ut0 , (2.61)

where Πi := R diag(ei) R−1, ei ∈ Rn is the i-th directional unit vector, and the space
shift operator S λ,t0

space is canonically extended to S λ,t0
space : F (X → Rn) 7→ F (T ×X → Rn)

by applying the space shift to each component of the vector-valued functions.

Remark 2.13

The operator S Λ,R,t0
space : F (X → Rn) 7→ F (T ×X → Rn) is also an extension of S λ,t0

space ;
however, it is not a canonical extension due to the structure of the eigenvector matrix R
unless R = I.

The following simple example illustrates the reasoning behind Remark 2.13.

Example 2.14

Consider the coefficient matrix A =
[

0 1
1 0

]
whose eigenvalues are λ1 = −1, λ2 = 1 and

the matrix of right eigenvectors R =
[

1 1
−1 1

]
and the vector ut0 =

(
ut0

1 ut0
2

)>. Then from
the formula (2.61), it follows

S Λ,R,t0
space ut0 =

1
2

(
S λ1,t0

spaceut0
1 −S λ1,t0

spaceut0
2 +S λ2,t0

spaceut0
1 +S λ2,t0

spaceut0
2

−S λ1,t0
spaceut0

1 +S λ1,t0
spaceut0

2 +S λ2,t0
spaceut0

1 +S λ2,t0
spaceut0

2

)
,

while the canonical extension S Λ,I,t0
space yields the following

S Λ,I,t0
space ut0 =

(
S λ1,t0

spaceut0
1

S λ2,t0
spaceut0

2

)
.

2.2.1 Bounded spatial domain

When the spatial domain is assumed to be bounded, say x ∈ [a,b], for the system (2.58),
it is necessary to prescribe some boundary conditions at the boundaries x = a and/or x = b.
Hence, in addition to Assumptions (H-3) and (H-4), assumptions on boundary characteristics
must be considered, as well.

In Figure 2.1, characteristics emerging from initial and boundary conditions of a linear
PDE, which has two unknowns for which λ1 < 0 and λ2 > 0 hold, are depicted.

The boundary conditions, say ba(t) and bb(t) at x = a and x = b, respectively, for the
PDE system (2.58) with the initial condition (2.1c) are defined as

Pau(t,a) = ba(t),

Pbu(t,b) = bb(t),
t > t0, (2.62)

where Pa ∈ R(n−`)×n, Pb ∈ R`×n, ba : R→ Rn−` and bb : R→ R`.
In this section, the following modified assumptions on the system and on boundary con-

ditions which are originated from (H-5) are considered.



2.2. Linear conservation laws 25

x = a x = b

t

FIGURE 2.1: Left- and right going characteristics for a linear PDE with two
unknowns over the domain [t0,∞)× [a,b], a < b. Lines with negative slope
are for λ1 < 0 and with positive slope for λ2 > 0. Each different color repre-
sents inputs from initial or boundary conditions for λ1 and λ2. Information

travels along characteristics.

(H’-3): The system (2.58) is hyperbolic; i.e., A has n real and distinct eigenvalues, namely
λ1 ≤ λ2 ≤ . . . ≤ λn where λi 6= 0 for each i = 1, . . . ,n, and corresponding left li and
right ri eigenvectors for each i = 1, . . . ,n.

(H’-5): Pa ∈ R(n−`)×n is such that

det
(
PaR+(t,a)

)
6= 0

for t ∈ [t0,∞). Thus, there exists an (n− `)× (n− `) invertible matrix M2(t) with
entries mi, j(t) such that

M2(t) = PaR+(t,a),

where R+(t,a) is the submatrix of R(t,a) whose columns are the eigenvectors corre-
sponding to the eigenvalues λ`+1 > 0 for ` ∈ {1,2, . . . ,n−1}. Further, the (n− `)×n
matrix can be defined as

M(t) := [M1(t) M2(t)] = PaR(t,a),

where M1 ∈ R(n−`)×` is some matrix.

(H’-6): Pb ∈ R;R`×n is such that
det
(
PbR−(t,b)

)
6= 0

for t ∈ [t0,∞). Thus, there exists an `× ` invertible matrix N1 with entries ni, j(t) such
that

N1(t) = PbR−(t,b),

where R−(t,b) is the submatrix of R(t,b) whose columns are the eigenvectors corre-
sponding to the eigenvalues λ` < 0 for ` ∈ {1,2, . . . ,n−1}. Similarly, the `×n matrix
can be defined as

N(t) := [N1(t) N2(t)] = PbR(t,b),

where N2 ∈ R`×(n−`) is some matrix.

The boundary conditions in terms of characteristic variables can then be written

[M1(t) M2(t)]
(

v−(t,a)
v+(t,a)

)
= ba(t) ,

[N1(t) N2(t)]
(

v−(t,b)
v+(t,b)

)
= bb(t) ,
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which yields
v+(t,a) =−(M2(t))−1M1(t)v−(t,a)+M−1

2 ba(t) ,

v−(t,b) =−(N1(t))−1N2(t)v+(t,b)+N−1
1 bb(t) .

(2.63)

The decoupled system (2.5) on the bounded domain [a,b], on the other hand, has v+ :
[t0,∞)× [a,b]→ Rn−` incoming waves (the waves that enter the domain at the boundary)
and v− : [t0,∞)× [a,b]→ R` outgoing waves at x = a regarding characteristics. Similarly, at
x = b, the same system has v− incoming waves and v+ outgoing waves.

The boundary conditions (2.62) for the characteristic variables are of the form

Mv(t,a) = ba(t),

Nv(t,b) = bb(t),
t > t0 , (2.64)

where M =
[
M1 M2

]
∈ R(n−`)×n and N =

[
N1 N2

]
∈ R`×n are given by[

PaR− PaR+

PbR− PbR+

]
=

[
M1 M2
N1 N2

]
,

where R− , R+ are submatrices of R such that R− := [r1 . . .r`] and R+ := [r`+1 . . .rn] ; and
M2, N1 are invertible matrices, and, therefore, (2.64) can be resolved further as (2.63).

Remark 2.15

In the case that the wave speed λi = 0, the equation (2.59) is simply ∂tvi = 0, meaning
that the change in the solution with respect to time is zero, with the initial condition
given as in (2.60). Hence, the solution is given by the initial condition vi(t,x) = vt0

i (x).

2.2.2 Explicit solution formula in terms of characteristic variables

Consider the system (2.5) with the initial condition (2.60) and the boundary conditions (2.64).
To ease the notation, let K− := {1, . . . , `} and K+ := {`+ 1, . . . ,n}. The solution to each
scalar PDE in (2.5) can be found individually in terms of the initial condition vt0

i (x) and
boundary conditions vi(t,a) =: vL

i (t), vi(t,b) =: vR
i (t). The solution v(t,x) is expressed in

terms of v−(t,x) and v+(t,x) separately below.
For the left-going waves, the solution is of the form

vi(t,x) =


(

S λi,t0
spacevt0

i

)
(t,x), if x−b≤ λi(t− t0),(

S λi,b
timevR

i

)
(t,x), if x−b > λi(t− t0),

where i ∈ K−, t ≥ t0 and x ∈ [a,b].
Then the vector of all the left-going waves, v−(t,x), is formulated as

v−(t,x) = ∑
i∈K−

diag(ei)
[
1{x−b≤λi(t−t0)} S λi,t0

spacevt0
−+1{x−b>λi(t−t0)} S λi,b

timevR
−
]
(t,x),

where ei ∈ R` is the i-th directional unit vector for i ∈ K−, vt0
− : [a,b]→ R` the initial condi-

tion, and vR
− : [t0,∞)→ R` the boundary condition at x = b. At the left boundary x = a, the

values of the vector v−(t,a) can be written as follows

v−(t,a) = ∑
i∈K−

diag(ei)
(

S λi,b
timevR

−
)
(t,a),



2.2. Linear conservation laws 27

x = a x = b

t0

t ≤ t0

t ≤ t0 + b−a
−λ

t

FIGURE 2.2: The Cauchy-Kovaleskaya procedure, an illustration of the ex-
tension of initial condition for t < t0 for a single wave with negative velocity
and initial time t0. The red lines show the extension on the boundary for
x ∈ [a,b] while blue lines represent the information from initial condition.

where (
S Λ−,I,b

time vR
−
)
(t,a) := ∑

i∈K−
diag(ei)

(
S λi,t0

spacevt0
−
)
(t,a), on

[
t0, t0 + b−a

−λi

]
,

which can be interpreted as the extension of the boundary condition for negative times in
terms of the initial values, see Figure 2.2 (cf. the Cauchy-Kovalevskaya procedure, [44]).

In a similar fashion, the solution to right-going waves is of the form

v j(t,x) =


(

S λ j,t0
spacevt0

j

)
(t,x), if x−a≥ λ j(t− t0),(

S λ j,a
time vL

j

)
(t,x), if x−a < λ j(t− t0),

where j ∈ K+ and x ∈ [a,b].
Similarly, the solution for the right-going waves v+(t,x) is

v+(t,x) = ∑
j∈K+

diag(e j)
[
1{x−a≥λi(t−t0)} S λi,t0

spacevt0
++1{x−a<λi(t−t0)} S λi,a

timevL
+

]
(t,x),

where e j ∈ Rn−` is the j-th directional unit vector for j ∈ K+, and vt0
+ : [a,b]→ Rn−` the

initial condition, and vL
+ : [t0,∞)→ Rn−` the boundary condition at x = a.

At the right boundary x = b, the solution for the right-going waves v+(t,b) can be written
as

v+(t,b) = ∑
j∈K+

diag(e j)
(

S λ j,a
time vL

+

)
(t,b),

where (
S Λ+,I,a

time vL
+

)
(t,b) := ∑

i∈K+

diag(ei)
(

S λi,t0
spacevt0

+

)
(t,b), on

[
t0, t0 + b−a

λi

]
.

The solutions v−(t,x) and v+(t,x) together form the solution v(t,x) to the system (2.5)
with the initial condition (2.60) and the boundary conditions (2.64). Hence, v(t,x) is given
by

v(t,x) = ∑
i∈K−

[
diag(ei)
0n−`,`

][
1{x−b≤λi(t−t0)}S

λi,t0
spacevt0

−+1{x−b>λi(t−t0)}S
λi,b
timevR

−
]
(t,x)

+ ∑
j∈K+

[
0`,n−`

diag(e j)

][
1{x−a≥λ j(t−t0)}S

λ j,t0
spacevt0

++1{x−a<λ j(t−t0)}S
λ j,a
time vL

+

]
(t,x),
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where ei ∈ R` and e j ∈ Rn−`. Using the formulae (2.63), the vector values of the solution at
x = a and x = b then are of the form

v(t,a) =
[

0`,n−`
M−1

2

]
ba(t)+

[
I`,` 0`,n−`

−M−1
2 M1 0n−`,n−`

]
∑

i∈K−

[
diag(ei)
0n−`,`

](
S λi,b

timevR
−
)
(t,a),

v(t,b) =
[

N−1
1

0n−`,`

]
bR(t)+

[
0`,` −N−1

1 N2
0n−`,` In−`,n−`

]
∑

j∈K+

[
0`,n−`

diag(e j)

](
S λ j,a

time vL
+

)
(t,b),

where I`,` ∈ R`×` and In−`,n−` ∈ R(n−`)×(n−`) are identity matrices.

2.2.3 Solution framework for the linear hyperbolic system

In this section, the solution u(t,x) to the system (2.58) with the initial and boundary con-
ditions (2.1c) and (2.62) will be formulated by using the results from Section 2.2.2. As the
change of coordinates explained in Section 2.2.1 allows to pass from the linear hyperbolic
PDE system to the decoupled system (2.59), the inversion of the coordinate change; i.e.,
u = Rv, is of use to formulate the solution u(t,x) similarly.

Let uL := u(t,a), uR := u(t,b) be the boundary values of the solution u and Πi :=
R diag(ei) R−1, where ei ∈ Rn is the i-th directional unit vector. Then

u(t,x) = ∑
i∈K−

Πi

(
1{x−b≤λi(t−t0)} S λi,t0

spaceut0 +1{x−b>λi(t−t0)} S λi,b
timeuR

)
(t,x)

+ ∑
j∈K+

Π j

(
1{x−a≥λ j(t−t0)} S λ j,t0

spaceut0 +1{x−a<λ j(t−t0)} S λ j,a
time uL

)
(t,x),

(2.65)

is the solution to the IBVP.

Lemma 2.16

Consider the PDE (2.58) on [t0,∞)× [a,b] satisfying Assumptions (H-3), (H’-5) and
(H’-6) with some given initial trajectory ut0 as in (2.1c) and boundary conditions ba, bb

as in (2.62). Let uL and uR satisfy the following

uL(t) =

∑i∈K− Πi

(
S λi,t0

spaceut0
)
(t,a), t ≤ t0 + b−a

λi
,

Faba(t)+∑
n
k=1 Dab

k

(
S λk,b

time uR
)
(t,a), t > t0 + b−a

λk
,

uR(t) =

∑ j∈K+ Π j

(
S λ j,t0

spaceut0
)
(t,b), t ≤ t0 + b−a

−λ j
,

Fbbb(t)+∑
n
k=1 Dba

k

(
S λk,a

time uL
)
(t,b), t > t0 + b−a

λk
,

(2.66)

where Πp :=
[
R− R+

]
diag(ep)

[
R− R+

]−1, with ep ∈ Rn, K− = {1, . . . , `}, K+ =
{`+1, . . . ,n},

Fa = R
[

0`,n−`
M−1

2

]
, Fb = R

[
N−1

1
0n−`,`

]
, (2.67)

Dab
p = R

[
I`,` 0`,n−`

−M−1
2 M1 0n−`,n−`

]
R−1

Πp , (2.68a)
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Dba
p = R

[
0`,` −N−1

1 N2
0n−`,` In−`,n−`

]
R−1

Πp, (2.68b)

and where it is assumed that ut0(x) = 0 for x /∈ [a,b]. Then every classical solution is
given by

u(t,x) = ∑
i∈K−

Πi

(
S λi,b

timeuR
)
(t,x)+ ∑

j∈K+

Π j

(
S λ j,a

time uL
)
(t,x).

For any initial condition ut0(x), and boundary conditions ba(t), bb(t), there exist unique
solutions uL(t) and uR(t) given in (2.66).

Proof. As from the previous discussion above, by the method of characteristics, a solution
u(t,x) to the initial boundary value problem (2.58) with the initial condition ut0 and boundary
conditions ba, bb is of the form

u(t,x) = ∑
i∈K−

Πi

(
1{x−b≤λi(t−t0)} S λi,t0

spaceut0 +1{x−b>λi(t−t0)} S λi,b
timeuR

)
(t,x)

+ ∑
j∈K+

Π j

(
1{x−a≥λ j(t−t0)} S λ j,t0

spaceut0 +1{x−a<λ j(t−t0)} S λ j,a
time uL

)
(t,x),

which satisfies the initial condition u(t0,x) = ut0 . The partial derivatives are

∂tu = ∑
i∈K−

Πi

(
(−λi)1{x−b≤λi(t−t0)} S λi,t0

space
(
ut0
)′
+1{x−b>λi(t−t0)} S λi,b

time

(
uR)′)(t,x)

+ ∑
j∈K+

Π j

(
(−λ j)1{x−a≥λ j(t−t0)} S λ j,t0

space
(
ut0
)′
+1{x−a<λ j(t−t0)} S λ j,a

time

(
uL)′)(t,x),

∂xu = ∑
i∈K−

Πi

(
1{x−b≤λi(t−t0)} S λi,t0

space
(
ut0
)′
+
(
− 1

λi

)
1{x−b>λi(t−t0)} S λi,b

time

(
uR)′)(t,x)

+ ∑
j∈K+

Π j

(
1{x−a≥λ j(t−t0)} S λ j,t0

space
(
ut0
)
+
(
− 1

λ j

)
1{x−a<λ j(t−t0)} S λ j,a

time

(
uL))(t,x),

which proves ∂tu+Λ∂xu = 0 and concludes the proof of existence.
Let t̃i := t− b−x

−λi
, for i ∈ K− and t̂ j := t− x−a

λ j
, for j ∈ K+. With the manipulations

uR(̃ti) = ut0(b−λit̃i), for t̃i < t0,

uL(t̂ j) = ut0(a−λ jt̂ j), for t̂ j < t0,

with the convention that ut0(x) = 0 for x /∈ [a,b]. The solution u(t,x) can now be written as

u(t,x) = ∑
i∈K−

Πi

(
S λi,b

timeuR
)
(t,x)+ ∑

j∈K+

Π j

(
S λ j,a

time uL
)
(t,x) , (2.69)

where x ∈ [a,b] and the boundary values uL(t) and uR(t) are defined as in (2.66) and ut0(x) =
0 for x /∈ [a,b]. If ũ(t,x) is another solution, by linearity û(t,x) := u(t,x)− ũ(t,x) solves

∂t û(t,x)+A∂xû(t,x) = 0, (2.70)

with the initial condition û(t0,x) = 0 and boundary conditions b̂a(t) = 0, b̂b(t) = 0. A
solution û(t,x) to (2.70) is given by the formula (2.69) which yields û(t,x) = 0. Hence,
u(t,x) = ũ(t,x). As a result, there exist unique solutions uL(t), uR(t) given in (2.66).
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Definition 2.17: 1D time shift operator for functions

In addition to the 2D shift operator defined as in Definition 2.10, the 1D time shift
operator S τ

time with τ ∈R for functions f : T ⊆R→R is analogously defined as follows

S τ
time : F (T → R) 7→ F (T → R),

f 7→ [t 7→ f (t− τ)] ,
(2.71)

where F is the set of all functions from some set T to R and with the convention that
f (s) = 0 if s /∈ T for f ∈ F .

Remark 2.18

Similar to Corollary 2.11, 1D time shift operator for functions S τ
time with τ∈R commutes

with the derivative operator.

Remark 2.19

Let uab(t) :=
(

uL(t)>,uR(t)>
)>
∈ R2n, where uL(t) and uR(t) satisfy (2.66). Below,

uab is expressed in a compressed form in terms of the 1D time shift operator S τ
time

uab(t) =
[

Fa 0n,n−r

0n,r Fb

][
ba(t)
bb(t)

]
+

n

∑
k=1

[
0n,n Dab

k
Dba

k 0n,n

](
S τk

timeuab(t)
)
, (2.72)

where τk =
b−a

sgn(λk)λk
, the matrices Fa,Fb,Dab

k ,Dba
k , for k = 1,2, . . . ,n, are given in (2.67)-

(2.68) and extensions of initial conditions as boundary conditions for t ≤ t0 + b−a
sgn(λk)λk

,
are adapted as in the proof of Lemma 2.16. Then the equality (2.72) follows from the
equations in (2.66).
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Chapter 3

Theory of distributions

A function f from a set A to a set B uniquely relates each element of A with an element
of B. Therefore, evaluation of functions τ 7→ f (τ) is an operation defined for elements of
the domain of the function f . On the other hand, measuring physical quantities at a point
is not possible in real world. What can be measured is, however, their mean values over
some neighborhood of a certain point. These mathematical objects are called distributions,
which generalize the notion of functions. These generalized functions act on a set of so-
called test functions. In this chapter, following the works [30, 40, 78, 90, 130], the theory of
distributions is briefly explained.

3.1 Preliminary Notions

In this section, some preliminary notions which are employed throughout this thesis are re-
viewed.

Definition 3.1: Support of a function

The support of a function f : Ω⊆ Rd → R, d ∈ N\{0}, is

supp f (τ) = cl{τ ∈Ω | f (τ) 6= 0}.

Definition 3.2: Test functions

The space of test functions is denoted by C ∞
0 and is defined as

C ∞
0 (Rd ;R) :=

{
f ∈ C ∞(Rd ;R)

∣∣ supp f (τ) is compact
}
,

where d ∈N\{0} and C ∞(Rd ;R) is the space of real-valued functions that are infinitely
differentiable.

The space of test functions C ∞(Rd ;R) is a topological vector space, [16]. In the sequel, the
space C ∞(Rd ;R) is assumed to be equipped with the topology given in [16].

Definition 3.3: Convergence in C ∞
0 (R;R)

The sequence ϕn ∈ C ∞
0 (Rd ;R) converges to ϕ ∈ C ∞

0 (Rd ;R) if there exists a compact set
K ⊆Rd such that suppϕn⊆K for all n∈N and the sequence {ϕ(k)

n } converges uniformly
to ϕ(k) in K for every k = (k1,k2, . . . ,kd) with ki ∈ N for i = 1,2, . . . ,d as n→ ∞; i.e.,

lim
n→∞

sup
τ∈Rd

∣∣∣ϕ(k)
n (τ)−ϕ

(k)(τ)
∣∣∣→ 0, ∀k ∈ Nd ,
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where

ϕ
(k) := ∂

(k1)
τ1 ∂

(k2)
τ2 . . .∂

(kd)
τd ϕ.

Definition 3.4: Locally integrable functions

A Lebesgue measurable function f : Ω⊆ Rd → R is called locally integrable if∫
K

| f (τ)|dτ < ∞,

on all compact subsets K ⊂ Ω. The space of locally integrable functions is denoted by
L1

loc(Rd ;R).

3.2 Distributions in time domains

In this section, taking the definitions from Section 3.1 into account with d = 1, distributions
in R are studied.

Definition 3.5: Distributions

A functional D : C ∞
0 (R;R)→ R is called a distribution if it is linear and continuous.

Linearity in this context means

D(αϕ1 +βϕ2) = αD(ϕ1)+βD(ϕ2),

for all α,β ∈ R and ϕ1,ϕ2 ∈ C ∞
0 . As the space of test functions is equipped with the

suitable topology, continuity is characterized by the limit property. In other words, if ϕn

converges to ϕ in C ∞
0 , then

lim
n→∞

D(ϕn) = D(ϕ).

The space of distributions is denoted by D(C ∞
0 (R;R);R) (or in short D), which is, by

definition, the dual space of C ∞
0 (R;R).

Lemma 3.6: Regular distributions

Let f ∈ L1
loc(R;R). A regular distribution fD that is induced by f is defined by

fD : C ∞
0 → R

ϕ 7→
∫
R

ϕ f . (3.1)

The space of regular distributions is given by

Dreg =
{

fD
∣∣ f ∈ L1

loc(R;R)
}
.

Regular distributions are distributions.

Proof. Assume that ϕ ∈ C ∞
0 (R;R) and suppϕ = K. Then, K is a compact set and the integral

(3.1) is well-defined

fD =
∫
K

f ϕ < ∞,
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where f ∈ L1
loc(R;R). Hence, fD is well-defined. The linearity follows from

fD(αϕ1 +βϕ2) =
∫

K1

f (αϕ1 +βϕ2) = α fD(ϕ1)+β fD(ϕ2),

where ϕ1, ϕ2 ∈ C ∞
0 (R;R), α,β ∈ R and suppϕ1,suppϕ2 ⊆ K1. To show continuity of fD,

suppose the sequence ϕn converges to ϕ in C ∞
0 (R;R) as in Definition 3.3. Therefore, suppϕ,

suppϕn ⊆ K1 and thus

lim
n→∞
| fD(ϕ)− fD(ϕn)| ≤ lim

n→∞

∫
K1

| f | |ϕn−ϕ| ≤ lim
n→∞

sup
τ∈R
|ϕn−ϕ|

∫
K1

| f | → 0,

since ϕn converges uniformly to ϕ.

Remark 3.7

Functions that belong to the space L1
loc(R;R) are not required to exhibit any nice be-

havior. For example, the function f (τ) = e|τ| belongs to the space L1
loc(R;R) but f /∈

L1(R;R).

Example 3.8

The Heaviside function H0 ∈ L1
loc(R;R) defined as

H0(τ) =

{
1, if τ≥ 0,
0, if τ < 0,

induces a regular distribution; i.e., for all ϕ ∈ C ∞
0 (R;R)

(H0)D(ϕ) :=
∫
R

H0ϕ =
∫

∞

0
ϕ < ∞,

as the support of ϕ is bounded.

Example 3.9: Dirac impulse

The Dirac impulse δτ at τ ∈ R given by

δτ : C ∞
0 (R;R)→ R

ϕ 7→ δτ(ϕ) := ϕ(τ),

is a distribution which is not induced by any locally integrable function.

Definition 3.10: Singular distributions

Distributions that are not induced by any locally integrable function are called singular.

Dirac impulse δτ, τ ∈ R, given in Example 3.9 is a well-known singular distribution.



34 Chapter 3. Theory of distributions

Proposition 3.11

The space of regular distributions Dreg is a proper subspace of distribution space D, [78].

3.3 Operations on distributions

Derivatives of distributions Let f ∈ L1
loc(R;R) such that its derivative f ′ exists and is in

L1
loc(R;R). The derivative of distribution induced by f is

( fD)′ =
∫
R

f ′ϕ

=−
∫
R

f ϕ
′

=− fD(ϕ′), ∀ϕ ∈ C ∞
0 (R;R),

where ϕ vanishes at ∓∞ as it has a bounded support. Hence, the derivative of an arbitrary
distribution can also be defined similarly.

Definition 3.12

The distributional derivative of D ∈ D is

D′ := Ḋ := dD
dτ

D : D→ D
D 7→ −D(ϕ′),

where ϕ ∈ C ∞
0 (R;R).

Proposition 3.13

For D ∈ D, the distributional derivative D′ is linear and continuous, hence in D. Any
distribution D ∈D is infinitely differentiable as test functions are elements of C ∞(R;R).
Hence, higher order derivatives of a distribution D ∈ D are(

dD
dτ

)(k)
: D→ D

D 7→ (−1)(k)D
(( d

dτ

)(k)
ϕ

)
,

for k ∈ N. Furthermore, (
f (k)
)
D
= ( fD)

(k) ,

where f ∈ C k(R;R), [30].

Example 3.14

The distributional derivative of the Heaviside function Hτ is the Dirac impulse δτ

dD
dτ
(Hτ)D(ϕ) =−(Hτ)D

(
dD
dτ

ϕ

)
=−

∫
R

Hτϕ
′
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=−
∫

∞

τ

ϕ
′

= ϕ(τ) = δτ(ϕ), ∀τ ∈ R.

Definition 3.15

The addition of any distributions D1,D2 ∈ D is defined as, [30],

D1 +D2 : C ∞
0 (R;R)→ R

ϕ 7→ D1(ϕ)+D2(ϕ), ∀ϕ ∈ C ∞
0 (R;R).

Definition 3.16

The multiplication of any distribution D ∈ D with any smooth function g ∈ C ∞(R;R) is
defined as, [30],

gD : C ∞
0 (R;R)→ R

ϕ 7→ D(gϕ), ∀ϕ ∈ C ∞
0 (R;R), gϕ ∈ C ∞

0 (R;R).

Corollary 3.17

For D ∈ D and g ∈ C ∞(R;R),

(gD)′ = g′D+gD′. (3.2)

Proposition 3.18

For any D ∈ D and g ∈ C ∞(R;R), gD ∈ D, and for any f ∈ L1
loc(R;R), g fD = (g f )D,

[78, 131].

Definition 3.19

The support of a distribution D ∈D is the smallest closed set outside of which the distri-
bution D is zero; i.e.,

suppD := R\
⋃{

T0 ⊆ R
∣∣∣∣ T0 is open, ∀ϕ ∈ C ∞

0 (R;R) :
suppϕ⊆ T0⇒ D(ϕ) = 0

}
.

The set of all distributions with support in M ⊆ R is

DM := {D ∈ D | suppD⊆M} .

Similarly, the set of all distributions with point support at τ ∈ R is

D{τ} = {D ∈ D | suppD⊆ {τ}} .
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Theorem 3.20

Note that a distribution Dτ has point support {τ} if and only if there exist c0, . . . ,cdτ
∈R,

dτ ∈ N such that

Dτ =
dτ

∑
i=0

ciδ
(i)
τ , (3.3)

where δ
(k)
τ is the k-th derivative of the Dirac impulse δτ at τ ∈ T , [30].

3.4 The space DpwC ∞(T ) of piecewise smooth distributions

Definition 3.21: Piecewise-smooth functions

Let T ⊆ R be an open set. A function α : T → R is called piecewise-smooth if and only
if

α = ∑
i∈Z

(αi)[τi,τi+1), (3.4)

where the functions αi : T →R, i ∈ Z, are (globally) smooth and the set {τi ∈ T | i ∈ Z}
is an ordered discrete set, i.e. τi < τi+1 for all i∈Z and the intersection with any compact
subset of T only contains finitely many points. The set of all piecewise-smooth functions
is denoted by C ∞

pw(T ;R).

Definition 3.22: Piecewise-smooth distributions, [130]

A distribution D ∈ D(T ) is called piecewise-smooth if

D = αD+ ∑
τ∈∆

Dτ, (3.5)

where α ∈ C ∞
pw(T ;R), ∆ ⊆ T is a finite discrete set, T ⊆ R is an open set and Dτ has

a point support; i.e., suppDτ ⊆ {τ} for all τ ∈ ∆. The space of all piecewise-smooth
distributions is denoted by DpwC ∞(T ).

In Figure 3.1, an illustration of a piecewise-smooth distribution with the representation
(3.5) is shown.

τ

D

FIGURE 3.1: A visualisation of a distribution D∈DpwC ∞(T ) having the rep-
resentation D = αD+∑τ∈∆ Dτ with different magnitudes of Dirac impulses

(red arrows) and a piecewise-smooth function α (blue).

It is easily seen that the space of piecewise-smooth distributions DpwC ∞(T ) is closed with
respect to differentation and contains the space of piecewise-smooth functions C ∞

pw(T ;R) as
a subspace.
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Definition 3.23: Pointwise evaluation, [130]

For D ∈ DpwC ∞(T ), where D is of the form (3.5), the left and right sided evaluations at
τ ∈ R are

D(τ−) := lim
ε→0

α(τ− ε), D(τ+) := lim
ε→0

α(τ+ ε),

where ε > 0.

Definition 3.24: Impulsive and regular parts, [130]

For any piecewise-smooth distribution D ∈ DpwC ∞(T ) of the form (3.5), the impulsive
part of D at τ and impulsive part of D are defined as, [130],

D[τ] :=

{
Dτ, τ ∈ ∆,

0, τ /∈ ∆,

and

D[·] := ∑
τ∈∆

D[τ] = ∑
τ∈∆

Dτ,

respectively. The regular part of D is defined as

Dreg := αD = D−D[·].

Remark 3.25

For a distribution D ∈ DpwC ∞(T ), Definition 3.23 and 3.24 for left- and right-sided eval-
uations and impulsive part are well-defined, [130]. To see this, consider D1, D2 ∈
DpwC ∞(T ) with

D1 = (α1)D+ ∑
τ∈∆1

D1
τ and D2 = (α2)D+ ∑

τ∈∆2

D2
τ .

Then the following holds

D1 = D2 ⇐⇒


α1 = α2,
D1

τ = D2
τ , ∀τ ∈ ∆1∩∆2,

D1
τ = 0, ∀τ ∈ ∆1 \∆2,

D2
τ = 0, ∀τ ∈ ∆2 \∆1,

which justifies the claims.

Proposition 3.26: Derivative of piecewise-smooth distributions, [131]

For D ∈ DpwC ∞(T ) of the form

D = αD+ ∑
τ∈∆

Dτ, with α = ∑
i∈Z

(αi)[τi,τi+1), (3.6)
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the derivative of D is

D′ =

(
∑
i∈Z

(α′i)[τi,τi+1)

)
D

+∑
i∈Z

(
D(τ+i )−D(τ−i )

)
δτi +D[·]′.

If D ∈ DpwC ∞(T ), then D′ ∈ DpwC ∞(T ).

Proposition 3.27

Piecewise-smooth distributions have unique antiderivatives in DpwC ∞(T ), [78, 131],

F =
∫

τ0

D, where D ∈ DpwC ∞(T ), τ0 ∈ R ,

such that F ′ = D and F(τ−0 ) = 0.

A distribution is piecewise-smooth if and only if locally it is equal to a finite derivative of
a piecewise-smooth function, [130], in other words, for all D ∈ DpwC ∞(T ) and all compact
subsets K ⊆ T ⊆ R there exist k ∈ N and α ∈ C ∞

pw(T ;R) such that

D(ϕ) = (αD)
(k)(ϕ) ∀ϕ ∈ C ∞

0 (T ;R) with suppϕ⊆ K.

Definition 3.28: Distributional restriction

Let D ∈ DpwC ∞(T ), as in Definition 3.22 and M ⊆ R an interval. The distributional
restriction DM of D on M is defined as, [131],

DM := (αM)D+ ∑
τ∈∆∩M

Dτ. (3.7)

Hence, αM ∈ C ∞
pw(T ;R). Furthermore, ∆∩M is a finite discrete set; thus, DM is a well-

defined distribution. Distributional restriction DM satisfies the following properties

(R-1): DM ⊆ (DpwC ∞(T ))clM, for each D ∈ DpwC ∞(T ) and is a projection for any
fixed M.

(R-2): For f ∈ C ∞
pw(T ;R), it holds that

( fM)D = ( fD)M.

(R-3): For every ϕ ∈ C ∞
0 (T ;R), D ∈ DpwC ∞(T ) and M ⊆ R,

suppϕ⊆M⇒ DM(ϕ) = D(ϕ),

suppϕ∩M = /0⇒ DM(ϕ) = 0.

(R-4): For any D ∈ DpwC ∞(T ),

DM = ∑
i∈N

DMi ,

where Mi, for i ∈ N, are pairwise disjoint union of a countable family of intervals
such that M :=

⋃
i∈N Mi. Moreover, for any pairwise disjoint sets Mi, M j ⊆ R,
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with i 6= j, it holds that

(DMi)M j
= 0.

Corollary 3.29: Restrictions and derivatives, [131]

Let T ⊆ R. For any D ∈ DpwC ∞(T )(
D[τ1,τ2)

)′
=
(
D′
)
[τ1,t)

+D(τ1
−)δτ1−D(τ2

−)δτ2 ,(
D(τ1,τ2)

)′
=
(
D′
)
(τ1,t)

+D(τ1
+)δτ1−D(τ2

−)δτ2 ,(
D(τ1,τ2]

)′
=
(
D′
)
(τ1,τ2]

+D(τ1
+)δτ1−D(τ2

+)δτ2 ,(
D[τ1,τ2]

)′
=
(
D′
)
[τ1,τ2]

+D(τ1
−)δτ1−D(τ2

+)δτ2 ,

where τ1,τ2 ∈ [−∞,∞] and δ∓∞ = 0.

Theorem 3.30

Properties (R-1)-(R-4) cannot be satisfied simultaneously by arbitrary distributions in D,
[130].

Example 3.31

Let D ∈ D given by

D : ϕ 7→
∞

∑
i=0

dnϕ(dn),

where dn := (−1)n

n+1 , n ∈ N. The restriction of D to (0,∞) is not well-defined as the sum
does not converge, although the distribution D is well-defined. See [130] for details and
proof of Theorem 3.30.

Remark 3.32

It is impossible to define multiplication of any distributions within the space of dis-
tributions D, [109]. Even if the distributions are induced by locally integrable func-
tions, the product of these functions does not necessarily have to be locally integrable.
For example, consider the function f (τ) = 1√

|τ|
∈ L1

loc whose multiplication with itself

f 2(τ) = 1
|τ| /∈ L1

loc. On the other hand, within the space DpwC ∞(T ), an associative multi-
plication of two distributions is defined by the Fuchsteiner multiplication, [13, 52, 130],
yet this multiplication is not commutative.

Definition 3.33

Assume D,E ∈ DpwC ∞(T ), with the representations

D = αD+ ∑
τ∈∆D

D[τ], E = βD+ ∑
τ∈∆E

E[τ],
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as in Definition 3.22. Using (3.3) and (3.9), the multiplication of D and E is given by,
[131],

DE = (αβ)D+ ∑
τ∈∆E

αDE[τ]+ ∑
τ∈∆D

D[τ]βD.

Proposition 3.34: Multiplication and restriction, [130]

For any D,E ∈ DpwC ∞(T ), τ1 ≤ τ2 ∈ R∪{∓∞}, ε > 0

(DE)(τ1,τ2)
= D(τ1,τ2)E(τ1,τ2),

(DE)[τ1,τ2)
= D[τ1,τ2)E[τ1,τ2)+D[τ1]E(τ1−ε,τ1),

(DE)(τ1,τ2]
= D(τ1,τ2]E(τ1,τ2]+D(τ2,τ2+ε)E[τ2],

(DE)[τ1,τ2]
= D[τ1,τ2]E[τ1,τ2]+D(τ2,τ2+ε)E[τ2]+D[τ1]E(τ1−ε,τ1),

with D[∓∞] = 0, E[∓∞] = 0.

Definition 3.35: Multiplication of a distribution with the Dirac impulse, [131]

Let D ∈DpwC ∞(T ) with the representation (3.5) and τ ∈ ∆. The multiplication of D with
δτ from the left and right are defined by

δτD := D(τ−)δτ,

Dδτ := D(τ+)δτ,
(3.9)

and, exploiting (3.2), the following relations can be deduced inductively

δ
(k+1)
τ D :=

(
δ
(k)
τ D

)′
−δ

(k)
τ D′, ∀k ∈ N,

Dδ
(k+1)
τ :=

(
Dδ

(k)
τ

)′
−D′δ(k)τ , ∀k ∈ N.

Remark 3.36

The multiplication with distributions does not commute; i.e., DE 6= ED, for D,E ∈
DpwC ∞(T ), [130].

Example 3.37

Consider the multiplication of the Heaviside function (Hτ)D with the Dirac impulse δτ

δτ(Hτ)D = 0 6= δτ = (Hτ)Dδτ.
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Chapter 4

Switched differential algebraic
equations

Differential equations are appropriate tools to model dynamical systems of physical mecha-
nisms. However, if the physical system to be modeled has any constraints, such as conserva-
tion laws, then the mathematical model of the process admits algebraic constraints, as well.
Such systems are called differential algebraic equations (DAEs), which have a general form

F(t, ẇ,w) = 0, (4.1)

where w is the unkown to be determined of the system, F : R×Rm×Rm→ Rn, m,n ∈ N.
DAE systems with a switching signal governing the transitions between these systems

lead to switched DAEs (swDAEs). Switched DAEs are used to model electrical networks
[89, 124], complementary metal-oxide-semiconductor ring oscillator [92], power systems
[134], lumped parameter models [99], gas supply networks [66], water flow networks [77,
114] and district heating systems [65]. For physical processes are fundamentally nonlinear
and time-variant, certain simplifications are typically imposed while modelling these sys-
tems. Nevertheless, the simplified model needs to serve sufficiently accurate performance to
properly exhibit actual behaviors of the physical system while maintaining essential proper-
ties of the system. In this chapter, a brief overview on linear switched differential algebraic
equations is provided where the considered swDAE is of the form

Eσẇ = Hσw+ fσ, (4.2)

where Eξ,Hξ ∈ Rn×m, fξ : R→ Rn for ξ = 1,2, . . . ,N and the switching signal σ : R→
{1,2, , . . . ,N}, N ∈N, denotes switches between DAE systems. Moreover, the matrix Eξ can
be singular. On the other hand, if the matrix Eξ is invertible for every ξ, then one obtains a
switched ODE system by multiplying Equation (4.2) with the inverse of Eξ; i.e., E−1

ξ
, on the

left.

4.1 Mathematical structure

Consider the swDAE of the form

Eσẇ(t) = Hσw(t)+Bσq(t)+ f(t), (4.3)

with the output yD(t) := CDσ(t)w(t), where w : [t0,∞)→Rm, m∈N is the state variable of the
system, σ : R→{1,2, . . . ,N}, N ∈N, is a piecewise constant switching signal with a locally
finite set of jump points and is right-continuous, Eξ,Hξ ∈ Rn×m for each ξ ∈ {1,2, . . . ,N}
and f : [t0,∞)→ Rm is some inhomogeneity, Bξ ∈ Rm×ν, q : [t0,∞)→ Rν is the input, yD :
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[t0,∞)→ Rm1 , m1 ∈ N, CDξ
∈ Rm1×m. Note that the matrix Eξ is not assumed to be non-

singular.

Definition 4.1: Classical solution

Let w ∈ C((t0,∞);Rm) be any differentiable function. If w satisfies the system (4.3) for
all t > t0, it is called a classical solution.

For the existence and uniqueness of solutions to (4.3), the following definition of regu-
larity of matrix pairs will be employed.

Definition 4.2: Regularity of a matrix pair

The matrix pencil sEξ−Hξ ∈ Rn×m[s], ξ ∈ {1,2, . . . ,N}, N ∈ N, is called regular if and
only if n=m and det(sEξ−Hξ) is not the zero polynomial. The matrix pair (Eξ,Hξ) and
the corresponding mode ξ for the swDAE (4.3) are called regular if sEξ−Hξ is regular.

Definition 4.3: Nilpotency index, [81]

Let N∈Rm×m be any matrix. The nilpotency index ν∈N of the matrix N is the minimum
value such that Nν = 0.

Definition 4.4: Index of DAEs, [8]

Consider the following DAE

Eẇ = Hw+ f, (4.4)

where E, H ∈ Rm×m, f ∈ Rm and (E,H) is regular. The index of the DAE (4.4) is the
smallest number of the steps taken to analytically differentiate the DAE in order to have
an explicit ODE system for every unknown of the DAE.

Note that switched DAEs are formulated by using DAEs without switches of the form (4.4)
for each mode. In the following, the explicit solution formula for the DAEs will be presented.
To this end, following [14, 55, 132, 135], quasi-Weierstrass form of a regular matrix pair
(E,H) and its consistency projector, differential and impulse selectors are defined.

Theorem 4.5: Quasi-Weierstrass form, [14, 135]

Assume (E,H)∈Rm×m is a regular matrix pair. There exist invertible matrices S∈Rm×m

and T ∈ Rm×m which forms the matrix pair (E,H) into the quasi-Weierstrass from

(SET,SHT) =
([

I 0
0 N

]
,

[
J 0
0 I

])
, (4.5)

where J ∈ Rp×p, p ∈ N, N ∈ Rk×k is nilpotent, and k = m− p.

For later use, let S1 ∈ Rp×m and S2 ∈ Rk×m such that(
S1
S2

)
= S, (4.6)

where S is the invertible matrix given as in Theorem 4.5. To evaluate the invertible matrices
S, T ∈ Rm×m in Theorem 4.5, Wong sequences can be employed, [14, 140], as described in
the following theorem.
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Theorem 4.6: Wong sequences, [14, 140]

Let (E,H) be a regular matrix pair. The Wong sequences Vk, Wk are defined as

V0 := Rm, Vi+1 := H−1 (EVi) , i = 0,1,2, . . . ,

W0 := {0}, W j+1 := E−1 (HW j) , j = 0,1,2, . . . .
(4.7)

From (4.7), it can be concluded that Vi+1 ⊆ Vi, W j+1 ⊇W j and there exist i∗, j∗ ∈
{0,1, . . . ,N} such that

V ∗ :=
⋂
i∈N

Vi = Vi∗ , W ∗ :=
⋃
j∈N

W j = W j∗ .

Let V, W be any full rank matrices such that imV = V ∗ and imW = W ∗. By defin-
ing T := [V,W] and S := [EV,HW]−1, for which both T−1 and S−1 exist, the quasi-
Weierstrass form of (E,H) can be achieved.

Remark 4.7

By applying the quasi-Weierstrass form, the DAE (4.4) is decoupled into an ODE and a
pure DAE part

ODE : ẇ1 = Jw1 + f1,

DAE : Nẇ2 = w2 + f2,

where N is nilpotent, T−1w =
(
w>1 ,w>2

)> and Sf =
(
f>1 , f>2

)>.

Definition 4.8: Consistency projector, differential and impulse selectors, [121, 138]

For a regular matrix pair (E,H) with E,H∈Rm×m, its consistency projector, differential
and impulse selectors are respectively defined as

Π(E,H) := T
[

Ip×p 0
0 0

]
T−1 ,

Πdiff
(E,H) := T

[
Ip×p 0

0 0

]
S , Π

imp
(E,H) := T

[
0 0
0 Ik×k

]
S ,

(4.8)

where p+ k = m and S,T ∈ Rm×m are transformation matrices of the matrix pair (E,H)
in order to obtain its quasi-Weierstrass form which can be obtained from Wong se-
quences.

Remark 4.9

The consistency projector, differential and impulse selectors defined in (4.8) do not de-
pend on the choice of S or T, [130].
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Theorem 4.10: Explicit solution formula, [132]

All (classical) solutions to (4.4) with a regular matrix pair (E,H), for sufficiently smooth
f and for some w0 ∈ Rm have the form

w(t) = eHdiff(t−t0)Π(E,H)w0 +
∫ t

t0
eHdiff(t−s)

Π
diff
(E,H) f(s)ds

−
n−1

∑
i=0

(Eimp)i
Π

imp
(E,H) f(i)(t) ,

(4.9)

where Π(E,H) is the consistency projector, Πdiff
(E,H),Π

imp
(E,H) are differential and impulse

selectors of (E,H) as in (4.8) and

Hdiff = Π
diff
(E,H)H, Eimp = Π

imp
(E,H)E, (4.10)

and for every w0, the initial value w(t0) ∈ Rm of the DAE (4.4) is given by

w(t0) = Π(E,H)w0−
n−1

∑
i=0

(Eimp)i
Π

imp
(E,H)f

(i)(t0) ,

where the solution w is given by the formula (4.9).

Note that if the inhomogeneity f ∈ (DpwC ∞(T ))m includes jumps or Dirac impulses, the
antiderivative F of the term φ(·, t0)−1

D Πdiff
(E,H)f, where φ(·, t0) = eHdiff(·−t0), has to be defined

such that

F =
∫

t0
φ(·, t0)−1

D Π
diff
(E,H)f,

where φ(·, t0)−1 := φ(t0, ·) and

F′ = φ(·, t0)−1
D Π

diff
(E,H)f and F(t−0 ) = 0,

so that the solution formula (4.9) is still valid.

4.2 Distributional swDAEs

As can be seen from the solution formula (4.9), the initial value w(t0) for the DAE (4.4)
cannot be prescribed arbitrarily. Therefore, prescribed initial conditions might be inconsis-
tent for the DAE system description. Systems that have such inconsistent initial values may
contain jumps and Dirac impulses in the solution. Furthermore, swDAEs might also lead
to inconsistent initial values for its DAE subsystems within the system while changing its
modes. However, to find solutions to inconsistent initial value problems within the space
Rm is not feasible. Therefore, the solution space must be carefully chosen so that it con-
tains distributions. Indeed, a proper solution space which allows to include distributions is
the space of piecewise-smooth distributions DpwC ∞(T ) given in Definition 3.22. So, the un-
known w and the inhomogeneity fσ in (4.3) are vectors of distributions in DpwC ∞(T ); i.e.,
w, fσ ∈

(
DpwC ∞(T )

)m. On the other hand, conceptually, it does not suffice merely to change
the solution space, as neither might classical nor distributional solutions exist, for distribu-
tions cannot be evaluated at a certain point. In other words, from a distributional point of
view w(t0) = w0 has no meaning. Even if distributions could be evaluated at initial times,
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inconsistent initial values would not be allowed. To illustrate, consider the following DAE

Eẇ = Hw+ f

with E = 0, H = I and f = 0. The only (distributional) solution is w = 0. Hence, any non-
zero initial value will not yield a solution. Thus, the notion of a solution to such inconsistent
initial value problems needs to be developed so that a distributional solution exists in the
space DpwC ∞(T ). The idea of how to describe distributional solutions to inconsistent initial
value problems in a proper way is that: Assume that the considered DAE gets activated at
t0 ∈ R, and before t0 the DAE can be inactive or governed by different conditions. There
cannot exist any inconsistent initial values at any tµ after t0. To this end, the so-called initial
trajectory problem (ITP) arises

w(−∞,t0) = wt0
(−∞,t0)

,

(Eẇ)[t0,∞) = (Hw+ f)[t0,∞) ,
(4.11)

where wt0 : (−∞, t0)→ Rm is an initial trajectory. However, if the initial value wt0(t0) is
inconsistent for the ITP, the solution will be in DpwC ∞(T ), and so are the components of the
ITP (4.11) and initial trajectory.

Theorem 4.11: Unique solution to the ITP, [130]

Consider the ITP (4.11) with a regular matrix pair (E,H). Let the quasi – Weier-
strass form of (E,H) be given by (4.5), where the matrix N has the nilpotency in-
dex ν ∈ N. Then for any initial trajectory wt0 ∈ (DpwC ∞(T ))m and any inhomogeneity
f ∈ (DpwC ∞(T ))m there exists a unique solution to the ITP. Assume that the inhomo-
geneity f is ν− 1 times differentiable on (t0,∞) and f(−∞,t0) = 0. The unique solution
w ∈ (DpwC ∞(T ))m on (t0,∞) is given by the formula (4.9). Furthermore, the impulse at
t0 is

w[t0] =
n−2

∑
i=0

(Eimp)
i+1 (w(t+0 )−wt0(t−0 )

)
δ
(i)

where

w(t+0 ) = Π(E,H)wt0(t−0 )−
ν−2

∑
i=0

(
Eimp)i

Π
imp
(E,H)f

(i)(t+0 ),

where Eimp is given as in Equation (4.10) and Πimp is the impulse selector.

The following existence and uniqueness result follows from the fact that swDAEs are
considered as a set of ITPs which get activated successively.

Theorem 4.12: Existence and uniqueness, [130]

Consider the switched DAE given in (4.3) with regular matrix pairs (Eξ,Hξ) for ξ ∈
{1,2, . . . ,N} and assume for the switching signal σ

σ ∈

σ : R→{1,2, . . . ,N}

∣∣∣∣∣∣
σ has locally finitely

many switches,
σ(−∞,t0) is constant

 , (4.12)

where the switching times are the initial times for the ITP (4.11). Then, for every ini-
tial trajectory wt0 ∈

(
DpwC ∞(T )

)m with the initial time t0 ∈ R and any inhomogeneity
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f ∈
(
DpwC ∞(T )

)m, there exists a globally defined solution w ∈
(
DpwC ∞(T )

)m which is
uniquely given by wt0(t−0 ).

Remark 4.13

The condition in (4.12) that σ has locally finitely many switches is significant. Consider
a swDAE (4.3) whose switching signal does not fulfill the condition that it has locally
finitely many switches. Assume w ∈ (DpwC ∞(T ))m with a point support is the solution
to the considered swDAE. However, the infinite sum of w might diverge. Or even if it is
a well-defined distribution, its restriction to an interval may fail to be well-defined. This
remark is also the reasoning behind the idea that ∆ in Definition 3.22 is a finite discrete
set.
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Chapter 5

Coupling hyperbolic balance laws
with switched DAEs of index one

In this chapter, the well-posedness of coupled switched systems consisting of semi-linear
hyperbolic balance laws and switched DAEs is studied. Since solutions to DAEs whose
index is more than one are in general distributions, they do not have the minimum regularity
that nonlinear source terms of hyperbolic PDEs require. Therefore, only the special case of
swDAEs of index one is considered. By employing an iterative converging procedure that
is based on the solutions to PDEs and DAEs, the well-posedness of such systems is proven.
Broad solutions, [24], which are based on the concept of characteristic curves, will be of
use concerning hyperbolic balance laws. Then, the well-posedness of the coupled system is
shown.

5.1 Coupled system

In this section, the following coupled system is considered, where a semi-linear hyperbolic
balance law on a bounded interval has the form

∂tu(t,x)+Aσ(t,x)∂xu(t,x) = sσ(t,x,u(t,x)), (5.1a)

where u : [0,T ]× [0,1]→ Rn, n ∈ N, is the n-dimensional vector of unknowns of the PDE,
Aξ : [0,T ]× [0,1]→ Rn×n, ξ = 1,2, . . . ,N, sξ ∈ Rn is a source term, the switching signal
σ : R→ {1,2, . . . ,N}, N ∈ N denotes the switches. The boundary conditions of the PDE
have the form

Pσ(t)
(

u(t,0+)
u(t,1−)

)
= Pw,σ(t)w(t)+pσ(t), (5.1b)

where Pξ : [0,T ]→ Rn×2n, Pw,ξ : [0,T ]→ Rn×m, pξ : [0,T ]→ Rn constitute the boundary or
coupling conditions and the initial condition is given as

u(0,x) = ū(x), ū : [0,1]→ Rn.

The switched DAE of the coupled system is given as follows

Eσẇ = Hσw+K0,σ(t)u(t,0+)+K1,σ(t)u(t,1−)+ f(t), t ≥ 0, (5.1c)

where w : [0,T ]→ Rm is the solution to the swDAE, Eξ,Hξ ∈ Rm×m, K0,ξ,K1,ξ : [0,T ]→
Rm×n, f : [0,T ]→ Rm and whose initial condition is

w(0) = w, w̄ ∈ Rm.
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In this chapter, the analysis of the coupled system (5.1) is restricted to the case of a swDAE
system with index ν = 1.

Note that (5.1b) is an algebraic equation and (5.1c) contains algebraic equations. There-
fore, the coupled problem cannot be addressed simply as a combination of the two separate
subsystems. Relations (5.1b) and (5.1c) have to be chosen such that the PDE provides only
information via the outgoing characteristics and sufficient data is given as boundary condi-
tions, as the following trivial example illustrates. In the following example, two simple DAE
and PDE systems are coupled, where both have unique solutions and it is shown that the
resulting coupled system has no solution as the DAE loses its regularity.

Example 5.1

Consider the scalar advection equation with characteristic speed equal to 1 and the initial
condition given as

∂tv(t,x)+∂xv(t,x) = 0, t ∈ [0,1], x ∈ [0,∞), (5.2)

v(0,x) = v0(x),

and with the boundary condition b(t) := v(t,0+). Hence, its solution is completely de-
termined by the initial data and the left boundary data. Let the output of the advection
equation yP(t) := v(t,0). From the classical PDE theory, it is known that there exists
a unique solution to (5.2). And assume the following DAE with a regular matrix pair
(E,H) [

1 0
0 0

]
︸ ︷︷ ︸

E

[
ẇ
ż

]
︸︷︷︸

ẇ

=

[
1 0
0 1

]
︸ ︷︷ ︸

H

[
w
z

]
−
[

0
1

]
︸︷︷︸

P

q, (5.3)

where q is an input. Let the output of the swDAE (5.3) be

yD(t) :=
[
0 1

][w
z

]
.

Similarly, from the classical DAE theory, [130], it is known that there exists a unique
solution to (5.3). Now let the advection equation (5.2) be coupled with the DAE (5.3) at
x = 0 of the PDE domain. The coupling between these systems is achieved via b(t) =
yD(t) and q(t) = yP(t). Since v(t,0+) is the incoming wave for (5.2), the term Pq has to
be written in a way that it is contained in Hw[

1 0
0 0

][
ẇ
ż

]
=

[
1 0
0 0

][
w
z

]
.

However, this kind of coupling rule yields the matrix pair

(E,H) =

([
1 0
0 0

]
,

[
1 0
0 0

])
,

which is no more regular; i,e., det(sE−H) = 0. In this example, the differential alge-
braic equation is unable to select the boundary data, since the DAE and the boundary
conditions coincide. In other words, the boundary condition does not contain any infor-
mation; thus, the transport equation has infinitely many solutions.

To avoid settings as in Example 5.1, the PDE is rewritten into its characteristic variables
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and the DAE is decomposed into pure algebraic part and pure ODE part as in Remark 4.7.
The resulting system then has the form

∂tv+Λ(t,x)∂v = h(t,x,v),(
v+(t,0+)
v−(t,1−)

)
=

(
Pw1,0(t) Pw2,0(t)
Pw1,1(t) Pw2,1(t)

)(
w1(t)
w2(t)

)
+

(
p0(t)
p1(t)

)
+

(
N−(t)
N+(t)

)(
v−(t,0)
v+(t,1)

)
,

v(0,x) = v̄(x) ,

ẇ1(t) = Jw1(t)+S1K0(t)R(t,0)
(

v−(t,0+)
v+(t,0+)

)
+S1K1(t)R(t,1)

(
v−(t,1−)
v+(t,1−)

)
+S1f(t) ,

w2(t) =−S2K0(t)R(t,0)
(

v−(t,0+)
v+(t,0+)

)
−S2K1(t)R(t,1)

(
v−(t,1−)
v+(t,1−)

)
−S2f(t) ,

w1(0) = w̄1 .

(5.4)

The algebraic conditions do not conflict with the boundary conditions, provided that

(C-1): For the coupled system (5.1)

S2K0(t)R+(t,0) = 0 and S2K1(t)R−(t,1) = 0,

hold, where S2 is chosen as in (4.6). Furthermore, S1K0(t), S1K1(t) and f(t) are
measurable in time.

Remark 5.2

Note that if this condition is not satisfied, it might be possible to transfer these algebraic
relations into the formulation of the coupling conditions.

With Condition (C-1), one can decouple the algebraic equations and replace w2 in the
boundary conditions so that the new system reads

∂tv+Λ(t,x)∂v = h(t,x,v),(
v+(t,0+)
v−(t,1−)

)
=

(
Pw1,0(t)
Pw1,1(t)

)
w1(t)+

(
p̃0(t)
p̃1(t)

)
+

(
Ñ−(t)
Ñ+(t)

)(
v−(t,0)
v+(t,1)

)
v(0,x) = v̄(x) ,

ẇ1(t) = Jw1(t)+S1K0(t)R(t,0)
(

v−(t,0+)
v+(t,0+)

)
+S1K1(t)R(t,1)

(
v−(t,1−)
v+(t,1−)

)
+S1f(t) .

(5.5)

Note that the terms Ñ− and Ñ+ in (5.5) can be different from zero, even if in (5.4) N−= 0 and
N+ = 0. Moreover, the dependencies on v+(t,0+) and v−(t,1−) in the ODE can be replaced
with boundary conditions.
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The system (5.5) can be rewritten in a more compact form as follows

∂tu(t,x)+A(t,x)∂xu(t,x) = s(t,x,u(t,x)),

B(t)
(

u(t,0+)
u(t,1−)

)
= Bw1(t)w1(t)+b(t),

u(0,x) = ū(x),

ẇ1(t) = Jw1(t)+
(
G0 G1

)(u(t,0+)
u(t,1−)

)
+g(t) ,

w1(0) = w̄1,

(5.6)

with the choices

B(t) =
(
−Ñ−0 I 0 −Ñ−1
−Ñ+

0 0 I −Ñ+
1

)
, Bw1 =

(
Pw1,0(t)
Pw1,1(t)

)
, b =

(
p̃0(t)
p̃1(t)

)
,

and G0 = S1K0, G1 = S1K1, g = S1f. System (5.6) is equivalent to (5.1) due to Condition
(C-1). For this system, the analytical results are provided below.

Definition 5.3

Fix T > 0. A pair (u,w1) is a solution to (5.6) on the time interval [0,T ] if the following
conditions hold.

(1): u is a broad solution on [0,T ] to the system
∂tu+A(t,x)∂xu = s(t,x,u),

B(t)
(

u(t,0+)
u(t,1−)

)
= Bw1(t)w1(t)+b(t),

u(0,x) = ū,

in the sense of Definition 2.7.

(2): w1 ∈ C0 ([0,T ];Rp) satisfies

w1(t) = w̄1 +
∫ t

0
(Jw1(s)+G(s))ds,

for every t ∈ [0,T ], where

G(t) = G0(t)u(t,0+)+G1(t)u(t,1−)+g(t),

for a.e. t ∈ [0,T ].

The following lemma from [19] will be employed to prove well-posedness of the solution
to the coupled system (5.6).

Lemma 5.4: Lemma 4.2 from [19]

Assume that the sequence hn ∈ C0 ([0,T ];R+) satisfies

hn(t)≤ α+β

∫ t

0
hn−2(τ)dτ, with h0(t) ∈ [0,H] and h1(t) ∈ [0,H],
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for positive numbers α,β and H. Then for all n≥ 1,

max{h2n(t),h2n+1(t)} ≤ α

n−1

∑
i=0

βit i

i!
+H

βntn

n!
.

Theorem 5.5

Assume that
(
Eξ,Hξ

)
is regular for each ξ = 1,2, . . . ,N and that Condition (C-1), hy-

potheses (H-1)-(H-5) hold. Then, for every T > 0, there exists a semigroup

S : [0,T ]×D −→D,

where
D =

{
(ū, w̄1) ∈ L1((0,1);Rn)×Rp : TV(ū)<+∞

}
,

satisfying the following conditions

(1): (u(t,x),w1(t)) = S (t, ū, w̄1)(x), for every (ū, w̄1) ∈ D , is the solution to the
coupled system (5.1) (or to the alternative form (5.6)) in the sense of Defintion
5.3.

(2): S(0, ū, w̄1) = (ū, w̄1) for every (ū, w̄1) ∈D .

(3): For every 0≤ t1 ≤ t2 ≤ T and (ū, w̄1) ∈D , it holds:

S (t2, ū, w̄1) = S (t2− t1,S (t1, ū, w̄1)) .

(4): There exists L > 0 such that

‖S (t, ū, w̄1)−S (t, ũ, w̃1)‖L1(0,1)≤L
[
‖ū−ũ‖L1(0,1)+‖w̄1−w̃1‖L1(0,t)

]
(5.7)

for a.e. t ∈ [0,T ] and for all (ū, w̄1) ∈D and (ũ, w̃1) ∈D .

Proof. The solution to the system (5.6) is constructed by passing to the limit of a sequence
of approximate solutions. The proof is divided into several steps.

Construction of approximate solutions. Set u0(t,x) ≡ ū(x) and w10(t) ≡ w̄1. For every
k ≥ 1, given uk−1 and w1k−1 , recursively define uk as the solution to

∂tuk(t,x)+A(t,x)∂xuk(t,x) = s(t,x,uk) ,

B(t)
(

uk(t,0+)
uk(t,1−)

)
= Bw1(t)w1k−1(t)+b(t) ,

uk(0,x) = ū .

(5.8)

Note that Theorem 2.9 applies to the system (5.8) hence the solution uk exists and is unique.
Moreover define w1k ∈C0 ([0,T ];Rp) as the solution to the linear non homogeneous system{

ẇ1k(t) = Jw1k(t)+G0(t)uk−1(t,0+)+G1(t)uk−1(t,1−)+g(t) ,
w1k(0) = w̄1 .

(5.9)
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Classical theory of ODEs implies that the previous system admits a unique solution, since,
by Theorem 2.9 and Condition (C-1), the function

t 7−→G0(t)uk−1(t,0+)+G1(t)uk−1(t,1−)+g(t)

is measurable; see [25, Theorem 3.1].

w1k is a Cauchy sequence. For k ≥ 2 and t ∈ [0,T ], by using (5.9), one obtains

∣∣w1k(t)−w1k−1(t)
∣∣≤ ∫ t

0

∣∣J (w1k(s)−w1k−1(s)
)∣∣ds

+
∫ t

0
|G0(s)(uk−1(s,0)−uk−2(s,0))|ds

+
∫ t

0
|G1(s)(uk−1(s,1)−uk−2(s,1))|ds

≤ ‖J‖
∫ t

0

∣∣w1k(s)−w1k−1(s)
∣∣ds

+LG

∫ t

0
|uk−1(s,0)−uk−2(s,0)|ds

+LG

∫ t

0
|uk−1(s,1)−uk−2(s,1)|ds,

where LG := max
{

supt∈[0,T ] ‖G0(t)‖ ,supt∈[0,T ] ‖G1(t)‖
}

. By Gronwall Lemma, for k ≥ 2
and t ∈ [0,T ], the following is obtained∣∣w1k(t)−w1k−1(t)

∣∣≤ e‖J‖tLG ‖uk−1(·,0)−uk−2(·,0)‖L1(0,t)

+ e‖J‖tLG ‖uk−1(·,1)−uk−2(·,1)‖L1(0,t) .
(5.10)

By using (2.25) and (2.26), one obtains that, for k ≥ 3,∣∣w1k(t)−w1k−1(t)
∣∣≤ e‖J‖tLGL

∥∥Bw1

(
w1k−2−w1k−3

)∥∥
L1(0,t)

≤ e‖J‖tLGL‖Bw1‖
∫ t

0

∣∣w1k−2(s)−w1k−3(s)
∣∣ds.

By applying Lemma 5.4, [19, Lemma 4.2], with α = 0, β = e‖J‖tLGL‖Bw1‖ and hk(t) =∣∣w1k(t)−w1k−1(t)
∣∣ to the inequality

hn(t)≤ α+β

∫ t

0
hn−2(τ)dτ,

one obtains for all n≥ 1

max{h2n(t),h2n+1(t)} ≤ α

n−1

∑
i=0

βit i

i!
+Y

βntn

n!
,

where Y ≥max{‖h0‖ ,‖h1‖}.
Thus, there exists a positive constant C1 such that

∥∥w1k −w1k−1

∥∥
C0([0,T ]) ≤C1

(
e‖J‖T LG L‖Bw1‖

)k
T k

k!
,
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for every k ≥ 3. Therefore, for every k > j ≥ 3,

∥∥w1k −w1 j

∥∥
C0([0,T ]) ≤

k

∑
i= j+1

∥∥w1i−w1i−1

∥∥
C0([0,T ])

≤C1

k

∑
i= j+1

(
e‖J‖T LG L‖Bw1‖

)i
T i

i!
,

which proves that w1k is a Cauchy sequence in C0 ([0,T ]). Thus, there exists w1
∗ ∈C0([0,T ])

such that w1k converges to w1
∗ in C0 ([0,T ]) as k→+∞.

uk is a Cauchy sequence. By using (2.23), one obtains the existence of a constant C > 0
such that, for every k and k′, the estimate

‖uk(t, ·)−uk′(t, ·)‖L1(0,1) ≤C
∥∥w1k−1−w1k′−1

∥∥
L1(0,T )

≤CT
∥∥w1k−1−w1k′−1

∥∥
C0([0,T ])

holds for every t ∈ [0,T ]. Thus uk is a Cauchy sequence in C0
(
[0,T ];L1(0,1)

)
, proving the

existence of u∗ ∈ C0
(
[0,T ];L1(0,1)

)
such that uk converges to u∗ in C0

(
[0,T ];L1(0,1)

)
as

k→+∞.

The couple (u∗,w1
∗) is a solution to (5.6). First, it is shown that w1

∗ is the solution to the
ODE with the input from u∗. Due to (5.9), one has, for every t ∈ [0,T ],

w1k(t) = w̄1 +
∫ t

0
Jw1k(s)ds+

∫ t

0

[
G0(s)uk−1(s,0+)+G1(s)uk−1(s,1−)+g(s)

]
ds.

By using again (2.25) and (2.26), it holds that both the sequences uk (·,0+) and uk (·,1−) are
Cauchy sequences in L1 (0,T ) and the limits are u∗ (·,0+) and u∗ (·,1−), respectively, since
the non-characteristic condition (H-4) holds, see [2]. By passing to the limit k→∞, one thus
obtains

w1
∗(t) = w̄1 +

∫ t

0
Jw1

∗(s)ds+
∫ t

0

[
G0(s)u∗(s,0+)+G1(s)u∗(s,1−)+g(s)

]
ds,

proving that w1
∗ satisfies Condition (2) of Definition 5.3.

Conversely, define ũ as the solution to the hyperbolic system
∂t ũ(t,x)+A(t,x)∂xũ(t,x) = s(t,x, ũ) ,

B(t)
(

ũ(t,0+)
ũ(t,1−)

)
= Bw1(t)w1

∗(t)+b(t) ,

ũ(0,x) = ū .

Due to (2.23), for t ∈ [0,T ] and k ≥ 1, one has

‖ũ(t)−uk(t)‖L1(0,1) ≤ L‖w1
∗−w1k−1‖L1(0,t) ,

for some positive constant L. Since w1k is a Cauchy sequence and uk converges to u∗ in
C0
(
[0,T ];L1 (0,1)

)
, it holds ũ = u∗ in C0

(
[0,T ];L1 (0,1)

)
, proving that u∗ satisfies Condi-

tion (1) of Definition 5.3.
Well-posedness estimate. Consider two initial conditions, namely (ū, w̄1) and (ũ, w̃1) with
TV(ū)+TV(ũ)<+∞. Denote with (ūk, w̄1k) and with (ũk, w̃1k) the sequences constructed
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as in the first part of the proof for the initial conditions given by (ū, w̄1) and, respectively, by
(ũ, w̃1). By (2.23), there exists a constant C1 > 0 such that

‖ūk(t)− ũk(t)‖L1(0,1) ≤C1 ‖ū− ũ‖L1(0,1)+C1

∫ t

0
|w̄1k(s)− w̃1k(s)|ds, (5.11)

for a.e. t ∈ [0,T ]. Moreover, there exists C2 > 0 such that, for every t ∈ [0,T ],

|w̄1k(t)− w̃1k(t)| ≤ |w̄1− w̃1|+C2

∫ t

0
|w̄1k(s)− w̃1k(s)|ds

+C2

∫ t

0
|ūk(s,0)− ũk(s,0)|ds

+C2

∫ t

0
|ūk(s,1)− ũk(s,1)|ds.

(5.12)

By using (2.25) and (2.26) in (5.12), one obtains that there exists C3 > 0 such that

|w̄1k(t)− w̃1k(t)| ≤ |w̄1− w̃1|+C2

∫ t

0
|w̄1k(s)− w̃1k(s)|ds+C3 ‖ū− ũ‖L1(0,1) , (5.13)

for every t ∈ [0,T ], and hence, by Gronwall Lemma,

|w̄1k(t)− w̃1k(t)| ≤
[
|w̄1− w̃1|+C3 ‖ū− ũ‖L1(0,1)

]
eC2t

≤
[
|w̄1− w̃1|+C3 ‖ū− ũ‖L1(0,1)

]
eC2T ,

(5.14)

for every t ∈ [0,T ]. Inserting (5.14) in (5.11), one obtains, for a.e. t ∈ [0,T ],

‖ūk(t)− ũk(t)‖L1(0,1) ≤
(

C1 +
C3
C2

(
eC2T −1

))
‖ū− ũ‖L1(0,1)

+ C1
C2
|w̄1− w̃1|

(
eC2T −1

)
.

(5.15)

By passing to the limit as k→+∞ in (5.14) and in (5.15), it follows that (5.7) holds.

Corollary 5.6

Let T > 0 and σ : [0,T ]→ N be a given switching signal with finitely many switching
points. Then, under the above hypotheses, system (5.1) has a unique solution (u,w) on
[0,T ].

A proof can be obtained by iteratively applying Theorem 5.5.
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Chapter 6

Theory of distributions in time and
space

In Section 2.2.1, the classical solution to linear hyperbolic PDEs has been reviewed. How-
ever, considering a coupling with switched DAEs of arbibtrary index, the boundary data for
the PDE is given by piecewise smooth distributions. Thus, the solutions to the PDEs need
to be extended in the distributional sense, including Dirac impulses and derivatives of Dirac
impulses. In other words, impulsive boundary conditions for the PDEs need to be allowed.
However, if one considers distributions on R×R, the necessary properties of solutions would
not be captured in this space. The reason is that the traces at initial time and the boundaries
are still need to be evaluated. In this space, it would not be possible to capture the information
at the PDE boundaries or in the initial condition. Therefore, an appropriate solution space
called the space of piecewise-smooth distributions in time and space is constructed. In this
chapter, this new space, which is denoted by DpwC ∞(T ×X), is established and properties of
distributions that belong to this space are demonstrated.

In this chapter, the tools which are defined in Section 3.1 are employed. In order to work
with distributions in time and space domains, the mathematical structures in Section 3.1 are
adapted for d = 2.

6.1 Distributions in time and space domains

In this section, test functions are considered in C ∞
0 (R×R;R) and distributions acting on

those test functions are studied.

Definition 6.1: Distributions in R×R

A continuous linear functional D : C ∞
0 (R×R;R)→R is called a distribution in time and

space. It is linear if
D(aϕ+bϑ) = c1D(ϕ)+ c2D(ϑ),

for all a,b ∈R and ϕ,ϑ ∈ C ∞
0 (R×R;R), and it is continuous if {ϕn}n∈N converges to ϕ

in C ∞
0 (R×R;R), then

lim
n→∞

D(ϕn) = D(ϕ).

The space of distributions in time and space is denoted by D(C ∞
0 (R×R;R);R), which

is the dual space of C ∞
0 (R×R;R).

In the sequel, instead of writing D(C ∞
0 (R×R;R);R), in short hand notation D (or D(R×

R)) is used to denote the space of distributions in (R×R), which will not mean the same
space of distributions in time domain as defined and used in Chapter 3 unless specified.
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Lemma 6.2: Regular distributions

Let f ∈ L1
loc(R×R;R), that is, on every compact set K ⊂ R×R, the Lebesgue integral

of f is finite. Then the regular distribution fD induced by f is given by

fD : C ∞
0 (R×R)→ R

ϕ 7→
∫
R

∫
R

ϕ f , (6.1)

and the space of regular distributions is denoted by Dreg

Dreg =
{

fD
∣∣ f ∈ L1

loc(R×R;R)
}
.

Regular distributions in R×R are distributions.

Proof. The proof is similar to the proof of Lemma 3.6, therefore, it is omitted here.

Proposition 6.3

The space of regular distributions Dreg(R×R) is a proper subset of the space of distri-
butions D(R×R), [79].

Proposition 6.4

Let f ,g ∈ L1
loc(R×R;R) be any two functions. The regular distributions fD,gD induced

by f ,g satisfies fD = gD if and only if f = g almost everywhere, [78].

Derivatives of distributions Let f ∈ L1
loc(R×R;R) such that its partial derivatives ∂t f and

∂x f exist and are in L1
loc(R×R;R). The distributional partial derivatives of the distribution

fD induced by f are

∂t fD =
∫
R

∫
R

∂t f ϕ ∂x fD =
∫
R

∫
R

∂x f ϕ

=−
∫
R

∫
R

f ∂tϕ =−
∫
R

∫
R

f ∂xϕ

=− fD(∂tϕ), =− fD(∂xϕ),

for every ϕ ∈ C ∞
0 (R×R;R) where ϕ vanishes at ∓∞ as it has a bounded support. Hence, the

distributional partial derivatives of any distribution in D(R×R) can also be defined similarly.

Definition 6.5: Distributional partial derivatives

The distributional partial derivatives of a distribution D ∈ D(R×R) are

Dt := ∂tD := ∂D
∂t D : D→ D

D 7→ −D(∂tϕ),

Dx := ∂xD := ∂D
∂x D : D→ D

D 7→ −D(∂xϕ),

where ϕ ∈ C ∞
0 (R×R;R).
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Corollary 6.6

The space D(R×R) is closed under differentiation; i.e., Dt ,Dx ∈ D(R×R) for any
distribution D ∈ D(R×R).

Proof. Let ϕ∈ C ∞
pw(R×R;R). As D∈D is well-defined, the distributional partial derivatives

Dt = −D(∂tϕ), Dx = −D(∂xϕ) are also well-defined. Linearity and continuity of Dt ,Dx

follow from those of D, as well.

Corollary 6.7

Higher order distributional partial derivatives of a distribution D ∈ D(R×R) are given
by (

∂D
∂t

)(k)
: D→ D, D 7→ (−1)(k)D

((
∂

∂t

)(k)
ϕ

)
,(

∂D
∂x

)(k)
: D→ D, D 7→ (−1)(k)D

((
∂

∂x

)(k)
ϕ

)
,

for k ∈ N and ϕ ∈ C ∞
0 (R×R;R).

Lemma 6.8: Multiplication with smooth functions

For any D ∈ D(R×R) and g ∈ C ∞(R×R;R), the multiplication gD is defined by

gD : C ∞(R×R;R)→ R
ϕ 7→ D(gϕ).

Furthermore, multiplication of a distribution with a smooth function is a well-defined
distribution; i.e., gD ∈ D(R×R) and

∂t(gD) = (∂tg)D+g(∂tD), ∂x(gD) = (∂xg)D+g(∂xD).

Proof. Linearity of gD is obvious. As g ∈ C ∞(R×R) and ϕ ∈ C ∞
pw(R×R), the product

gϕ ∈ C ∞
pw(R×R). Thus, continuity of D(gϕ) follows, so does gD. Moreover,

∂t(gD) =−gD(∂tϕ)

=−D(g∂tϕ+∂tgϕ)+D(∂tgϕ)

= (∂tg)D+g(∂tD)

which yields the last property.

Definition 6.9: Support of a distribution

The support of a distribution D ∈ D is

suppD := (R×R)\
⋃{

To×Xo ⊆ R×R
∣∣∣∣ To×Xo open sets, ∀ϕ ∈ C ∞

pw :
suppϕ⊆ To×Xo⇒ D(ϕ) = 0

}
.



58 Chapter 6. Theory of distributions in time and space

Proposition 6.10

For every f ∈ L1
loc(R×R;R), supp fD has measure zero if and only if fD = 0.

Proof. Let S = supp fD, then by definition Sc := R×R \ S is open and for all ϕ ∈ C ∞
0 (R×

R;R) with suppϕ⊆ Sc it holds fD(ϕ) = 0. Let

Bρi(ti,xi) =

{
(t,x)

∣∣∣∣√(t− ti)2 +(x− xi)2 < ρi

}
denote an open ball with rational numbers ti,xi as well as ρi > 0 such that (ti,xi) is its center
with ρ > 0 its radius. Then, every open set in R×R is a countable union of such open balls
Bρi(ti,xi) with ti,xi ∈Q and ρi ∈Q+, i ∈ N, [142], such that

Sc =
⋃
i∈N

Bρi(ti,xi).

Let ϕ ∈ C ∞
0 (R×R;R). For ti,xi ∈R, ρi ∈R+, let σ ∈R+ and φσ

Bρi
∈ C ∞

0 (R×R;R) such
that

φσ

Bρi
(t,x) =

{
1, if (t,x) ∈ Bρi(ti,xi),

0, if (t,x) /∈ Bρi+σ(ti,xi),

and 0≤ φσ

Bρi
(t,x)≤ 1 for every (t,x) ∈ R×R. For ε > 0, choose εi > 0, i ∈ N, such that

εi < min
{

ε

2i+2 ,
ρi

4

}
.

Let

ϕε := ϕ∏
i

(
1−φ

εi
Bρi−εi

)
.

Then, ϕε ∈ C ∞
0 (R×R;R) and supp(ϕ−ϕε)⊆ Sc. Thus, fD(ϕ) = fD(ϕε). Moreover,

suppϕε ⊆ S∪Sc
ε,

where

Sc
ε :=

⋃
i∈N

(
Bρi \Bρi−2εi

)
. (6.2)

Taking into consideration that |ϕε(t,x)| ≤ |ϕ(t,x)|, ϕε(t,x) = 0 on Sc \Sc
ε and S has measure

zero, (6.2) yields

| fD(ϕ)|= | fD(ϕε)|

≤
∫
R

∫
R

|ϕε| | f |

=
∫
S

|ϕε| | f |+
∫
Sc

ε

|ϕε| | f |+
∫

Sc\Sc
ε

|ϕε| | f |

=
∫
Sc

ε

|ϕε| | f |
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= ‖ϕ‖L∞

∫
Sc

ε

| f | .

The Lebesgue measure µ(Sc
ε) of Sc

ε is

µ(Sc
ε) = ∑

i∈N
4πε

2
i < ∑

i∈N
π

ε2

22i = πε
2,

thus,
∫
Sc

ε

| f | → 0 as ε→ 0. Hence, fD = 0 since ϕ is chosen arbitrarily.

6.2 The space DpwC ∞(T ×X) of piecewise smooth distributions

Definition 6.11: Polyhedral partition

Denote by T ⊆ R (time) and X ⊆ R (space) open sets. A family of subsets (Pi)i∈I of
T ×X for some index set I is said to be a polyhedral partition of T ×X if and only if Pi

are polyhedral sets; i.e., the intersection of finitely many (open or closed) half-spaces in
T ×X which are pairwise disjoint and

⋃
i∈I Pi = T ×X .

Definition 6.12: Piecewise-smooth functions in time and space

Let T ⊆ R and X ⊆ R be open sets. A function β : T ×X → R is called (polyhedral)
piecewise-smooth if and only if there exists a locally finite polyhedral partition

⋃
i∈I Pi

of T ×X ; that is, the intersection of {Pi | i ∈ I} with any compact subset of T ×X only
contains finitely many elements of the polyhedral partition; and a family of smooth
functions βi : T ×X → R, i ∈ I such that

β = ∑
i∈I

χPiβi, (6.3)

where χPi is the characteristic function of the set Pi ⊆ T ×X . The space of piecewise-
smooth functions in time and space is denoted by C ∞

pw(T ×X ;R).

For a piecewise smooth function β : T ×X → R, it is easily seen that for any t ∈ T and
x ∈ X , the functions β(t, ·) and β(·,x) are scalar piecewise-smooth functions as in Definition
3.21.

Definition 6.13: Dirac segment, [85, 120, 141]

Let L⊆ T ×X be a line segment; i.e., there exists t0, t1 ∈ T , x0,x1 ∈ X such that

L = {(t0 +α(t1− t0),x0 +α(x1− x0)) |α ∈ [0,1]} . (6.4)

Then the Dirac segment on L is

δL : C ∞
0 (T ×X ;R)→ R

ϕ 7→
∫

L
ϕ , (6.5)
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where
∫

L ϕ is the usual line integral given by∫
L

ϕ =
∫ 1

0
ϕ(t0 +α(t1− t0),x0 +α(x1− x0))

√
∆t2 +∆x2 dα ,

where ∆t = t1− t0 and ∆x = x1− x0, see Figure 6.1. Furthermore, for unbounded lines;
i.e., α ∈ R in (6.4) and for some ∆t ≥ 0, ∆x ≥ 0 with the condition ∆t2 +∆x2 > 0, the
line integral is of the form∫

L
ϕ =

∫
∞

−∞

ϕ(t0 +α∆t,x0 +α∆x)
√

∆t2 +∆x2 dα .

Note that if ∆t 6= 0 then, the parametrization of the line can be formulated as

L =
{(

t,x0 +
∆x
∆t (t− t0)

) ∣∣ t ∈ R
}

and the Dirac segment on L∫
L

ϕ =
∫ t1

t0
ϕ(t,x0 +

∆x
∆t (t− t0))

√
1+ ∆x2

∆t2 dt , (6.6)

and, similarly, if ∆x 6= 0 then, the parametrization of the line can be written as

L =
{(

t0 + ∆t
∆x(x− x0),x

) ∣∣x ∈ R
}

and the Dirac segment on L∫
L

ϕ =
∫ x1

x0

ϕ(t0 + ∆t
∆x(x− x0),x)

√
1+ ∆t2

∆x2 dx . (6.7)

Conjecture 6.14

Let T ⊆ R, X ⊆ R be open, L⊆ T ×X be some parametrized line and D ∈ D(T ×X) be
a distribution whose support is the line L. Then D can be written as a linear combination
of Dirac segments on L

D =
m

∑
i=0

n

∑
j=0

ai, j∂
(i)
t ∂

( j)
x δL where m, n ∈ N.

Proposition 6.15

For any g ∈ C ∞(R×R;R), and any m,n ∈ N, the product of the smooth function g with
the partial derivatives of Dirac segment δL on L is

g∂
(m)
t ∂

(n)
x δL =

m

∑
i=0

n

∑
j=0

(−1)i+ j (m
i )(

n
j )∂

(i)
t ∂

( j)
x g|L ·∂

(m−i)
t ∂

(n− j)
x δL, (6.8)

where L is some parametrized line and g|L is given by

g|L := gφL,ε, (6.9)
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where an arbitrarily small ε > 0 and φL,ε ∈ C ∞
c (T ×X ;R), with T, X ⊆ R, such that

φL,ε(t,x) =


1, if

⋃
(tL,xL)∈L

Bε/2(tL,xL),

0, if (T ×X)\ ⋃
(tL,xL)∈L

Bε(tL,xL)

where

Br(t̃, x̃) =
{
(t,x)

∣∣∣∣√(t̃− t)2 +(x̃− x)2 < r, r ∈ R+
⋃
{0}
}
.

−5
0 5 100

10

x
t

δ
L

δL
L

FIGURE 6.1: The Dirac segment δL on some line segment L.

Proof. Let T,X ⊆R and L= {(t0 +α∆t,x0 +α∆x) |α ∈ R} a parametrized line where t0 ∈ T ,
x0 ∈ X . Let φL,ε ∈ C ∞

c (T ×X ;R) such that φL,ε(t,x) = 1 on
⋃

Bε/2(tL,xL) where (tL,xL) ∈ L
and φL,ε(t,x) = 0 on (T × X) \⋃Bε(tL,xL). If ε ∈ (0,1], for any ϕ ∈ C ∞

c (T × X ;R), the
following holds

ϕ(t,x) = ϕ(t,x)φL,ε(
t
ε
, x

ε
) for (t,x) ∈ Bε/2(tL,xL) ∀(tL,xL) ∈ L.

Then, for m = 0 = n, one obtains

gδL = δL (gϕ)

=
∫

L
gϕ

=
∫

L
gϕφL,ε

= (gφL,ε)δL =: g|L ·δL,

where gφL,ε = g for (t,x) ∈ Bε/2(tL,xL) and 0 otherwise.
For m = 1 = n, it holds

g∂t∂xδL = ∂t∂xδL(gϕ)

=
∫

L
∂t∂xg|L ·ϕ+

∫
L

∂xg|L ·∂tϕ+
∫

L
∂tg|L ·∂xϕ+

∫
L

g|L ·∂t∂xϕ

= ∂t∂xg|L ·δL−∂xg|L ·∂tδL−∂tg|L ·∂xδL +g|L ·∂t∂xδL



62 Chapter 6. Theory of distributions in time and space

=
1

∑
i=0

1

∑
j=0

(−1)i+ j ( 1
i

)( 1
j
)

∂
(i)
t ∂

( j)
x g|L ·∂

(1−i)
t ∂

(1− j)
x δL.

Assume, the claim holds for m≥ 1. For m+1, n = 1, one obtains the following

g∂
(m+1)
t ∂xδL = ∂

(m+1)
t ∂xδL(gϕ)

= (−1)∂t(−1)m+1
∂
(m)
t ∂x

∫
L

gϕ

= (−1)∂t

m

∑
i=0

1

∑
j=0

(−1)i+ j (m
i )
( 1

j
)

∂
(i)
t ∂

( j)
x g|L ·∂

(m−i)
t ∂

(1− j)
x δL

=
m+1

∑
i=0

1

∑
j=0

(−1)i+ j (m+1
i

)( 1
j
)

∂
(i)
t ∂

( j)
x g|L ·∂

(m+1−i)
t ∂

(1− j)
x δL.

It follows in a similar fashion for the case n+1, m = 1 by assuming the claim holds for n≥ 1,
m = 1. Therefore, by induction on m and n, the claim (6.8) holds true.

Remark 6.16

The product gφL,ε = g|L in (6.9) can be considered to be the evaluation of g on the line L
as φL,ε has a support that is in ε-neighborhood of L for arbitrarily small ε > 0.

Lemma 6.17

Assume that T = R, X = R and consider the unbounded line given by

L = {(t0 +α∆t,x0 +α∆x) |α ∈ R}

for some t0 ∈ T , x0 ∈ X and ∆t > 0,∆x > 0. For the step function along L, see Figure
6.2, given by

HL(t,x) =

{
1, t− t0 ≥ ∆t

∆x(x− x0),

0, otherwise ,
=

{
1, x− x0 ≤ ∆x

∆t (t− t0),
0, otherwise ,

it holds
∂tHLD =

1√
1+
(

∆t
∆x

)2
δL, ∂xHLD =− 1√

1+
(

∆x
∆t

)2
δL,

in particular,

∂tHLD =−∆x
∆t ∂xHLD .

Proof. Recall the general definition of the partial derivative of a distribution D on T ×X :

(∂tD)(ϕ) =−D(∂tϕ) and (∂xD)(ϕ) =−D(∂xϕ) .
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Hence, the following holds

(∂tHLD)(ϕ) =−
∫

X

∫
T

HL(t,x)∂tϕ(t,x)dt dx

=−
∫

∞

−∞

∫
∞

t0+
∆t
∆x (x−x0)

∂tϕ(t,x)dt dx

=
∫

∞

−∞

ϕ(t0 + ∆t
∆x(x− x0),x)dx =

1√
1+
(

∆t
∆x

)2

∫
L

ϕ,

(6.10)

(∂xHLD)(ϕ) =−
∫

T

∫
X

HL(t,x)∂xϕ(t,x)dxdt

=−
∫

∞

−∞

∫ x0+
∆x
∆t (t−t0)

−∞

∂tϕ(t,x)dxdt

=−
∫

∞

−∞

ϕ(t,x0 +
∆x
∆t (t− t0))dt =− 1√

1+
(

∆x
∆t

)2

∫
L

ϕ.

(6.11)

Hence, the claims follow.

Corollary 6.18

Let T ⊆R, X ⊆R and P⊆T×X be a polyhedral set with the line segments L1,L2, . . . ,Lp

as its boundaries. Then the partial derivatives of χPD is a linear combination of Dirac seg-
ments δL1 , δL2 , . . . , δLp(

∂
(m)
t ∂

(n)
x χPD

)
(ϕ) =

p

∑
i=1

ξi ∂
(m−1)
t ∂

(n−1)
x δLi (6.12)

where ξi ∈ R.
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0

5
10

−5

0

5

10

1
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FIGURE 6.2: An illustration of the step function in time and space along
some parametrized line L (in black).
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Proof. Consider the characteristic function χP of a polyhedral set P given by

χP(t,x) =

{
1, if (t,x) ∈ P,
0, else ,

and assume the boundary Γ of the set P consists of lines and/or line segments L1,L2, . . . ,Lp,
p ∈ N\{0} that are parametrized as

Li =
{(

t i
0 +α∆it,xi

0 +α∆ix
) ∣∣α ∈ [0,∞)

}
,

Li =
{(

t i
0 +α∆it,xi

0 +α∆ix
) ∣∣α ∈ [0,1]

}
,

for i = 1, . . . , p.

Then, one obtains

(∂tχPD)(ϕ) =−
∫
P

χP(t,x)∂tϕ(t,x)dP

=
∫
Γ

ϕ(t,x)dΓ =
p

∑
i=1

1√
1+
(

∆it
∆ix

)2

∫
Li

ϕ(t,x)

=
p

∑
i=1

aiδLi ,

where ai ∈ R. Similarly,

(∂xχPD)(ϕ) =−
∫
P

χP(t,x)∂xϕ(t,x)dP

=−
∫
Γ

ϕ(t,x)dΓ =−
p

∑
i=1

1√
1+
(

∆ix
∆it

)2

∫
Li

ϕ(t,x)

=
p

∑
i=1

biδLi ,

where bi ∈ R. Assume for m≥ 1, n = 1 the following holds(
∂
(m)
t ∂xχPD

)
(ϕ) =

p

∑
i=1

ξi ∂
(m−1)
t δLi ,

where ξi ∈ R. For m+1, n = 1, one obtains(
∂
(m+1)
t ∂xχPD

)
(ϕ) =

(
∂t∂

(m)
t ∂xχPD

)
(ϕ)

= ∂t

p

∑
i=1

ξi ∂
(m−1)
t δLi =

p

∑
i=1

ξi ∂
(m)
t δLi .

Similar steps can be conducted to prove the result for n+1, m = 1 assuming it holds for n≥ 1
and m = 1. Hence, by induction on m and n, the claim follows as in (6.12).

Definition 6.19: Piecewise-smooth distributions in time and space

A distribution D : C ∞
0 (T ×X ;R)→ R is called piecewise smooth if and only if there
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exists a piecewise smooth function β : T ×X →R and a locally finite family of line seg-
ments (L j) j∈J in T ×X and coefficients α

k,`
j ∈R, k = 0,1, . . . ,nt

j, nt
j ∈N `= 0,1, . . . ,nx

j,
nx

j ∈ N such that

D = βD+ ∑
j∈J

∑
k,`

α
k,`
j ∂

(k)
t ∂

(`)
x δL j . (6.13)

The space of piecewise-smooth distributions in T ×X is denoted by DpwC ∞(T ×X).

In Figure 6.3, a visualisation of a piecewise-smooth distribution in time and space can be seen
where polyhedral partition of the considered domain, Dirac segments and piecewise-smooth
functions over polyhedral sets are presented.

x
t

D

FIGURE 6.3: A 3D illustration of a distribution D in DpwC ∞(T ×X) consist-
ing of four polyhedral sets. The blue region is polyhedral partition of T ×X ,
four polyhedral piecewise-smooth functions are defined over each polyhe-
dral set, on each black line there is a Dirac segment. Magnitudes of Dirac

segments are kept small for the ease of visualisation.

Proposition 6.20

Let D ∈ DpwC ∞(T ×X) given by (6.13) and (6.3), then

∂tD ∈ DpwC ∞(T ×X) and ∂xD ∈ DpwC ∞(T ×X),

where ∂t and ∂x indicate distributional partial derivatives.

Proof. It suffices to show that the (partial) derivative of (the induced distribution by) a
piecewise-smooth function (in the sense of Definition 6.12) is a piecewise-smooth function.
Since the sum in (6.3) is locally finite, it furthermore suffices to consider only a single sum-
mand and since the multiplication with a smooth function is well-defined for general distri-
butions, it suffices to show that the partial derivatives of the indicator function χP for any
polyhedral set P⊆ T ×X is a piecewise-smooth distribution, which was already established
in Corollary 6.18. Consider the piecewise-smooth function β given as (6.3), for each i ∈ I ,

∂D
∂t (χPi ·βi)D = ∂D

∂t (βi · (χPi)D)

= ∂tβi · (χPi)D+βi
∂D
∂t (χPi)D

= (χPi∂tβi)D+βi

p∗i

∑
i=1

aiδLi ,
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where ai ∈ R, p∗i ∈ N is the number of lines that form the boundaries of the polyhedral set
Pi ⊆ T ×X , hence finite. As a result, if D ∈ DpwC ∞(T ×X), then ∂tD ∈ DpwC ∞(T ×X).

Lemma 6.21

Let D ∈ DpwC ∞(T ×X) given by (6.13) and (6.3), then the restriction of D to any poly-
hedral set P⊆ T ×X given by

DP :=

(
∑
i∈I

χPi∩Pβi

)
D

+ ∑
j∈J

∑
k,`

α
k,`
j ∂

(k)
t ∂

(`)
x δL j∩P (6.14)

is well-defined and a piecewise-smooth distribution.

Proof. First note that the intersection of two polyhedral sets is again a polyhedral set, hence
∑i∈I χPi∩Pβi is a piecewise-smooth function and (∑i∈I χPi∩Pβi)D is a well-defined piecewise-
smooth distribution with support contained in the closure P of P. Furthermore, the intersec-
tion of a line segment with a polyhedral set is again a line segment (or empty), for any test
function ϕ ∈ C ∞

0 (T ×X), the summand

∑
j∈J

∑
k,`

α
k,`
j ∂

(k)
t ∂

(`)
x δL j∩P

is also a finite sum and hence well-defined with the support contained in P. Therefore, DP

as in (6.14) defines a distribution. Moreover, for each ϕ ∈ C ∞
0 (T ×X), D ∈ DpwC ∞(T ×X)

and P⊆ T ×X , if suppϕ⊆ P, then DP(ϕ) = D(ϕ) and if suppϕ∩P = /0, then any k-th order
partial derivative of ϕ is zero for every k ∈N and for all (t,x)∈ P; thus, ϕ = 0 and DP(ϕ) = 0
(since any derivative of any order of test functions have zero value on a compact set). For
any pairwise disjoint polyhedral sets P̃i such that P =

⋃
i∈N P̃i it also holds DP = ∑i∈N DP̃i

considering the aforementioned arguments. Hence DP as in (6.14) is again a well-defined
piecewise-smooth distribution.

In the following, for any (t,x)∈ T×X , the partial evaluations D(t+, ·), D(t−, ·), D(·,x−),
D(·,x+) are defined such that they are piecewise-smooth distributions in X or T , respectively,
and such that (partial) differentiation commutes with the partial evaluation; i.e.,

(∂xD)(t±, ·) = D(t±, ·)′ and (∂tD)(·,x±) = D(·,x±)′,

where (·)′ denotes the (scalar) differentiation in DpwC ∞(X) or DpwC ∞(T ), respectively. Con-
sidering the representation (6.13), it is obvious that for piecewise-smooth functions such an
evaluation is trivially defined as

β(t+, ·)D := lim
ε↘0

β(t + ε, ·) = β(t, ·), β(·,x+)D := lim
ε↘0

β(·,x+ ε) = β(·,x),

β(t−, ·)D := lim
ε↘0

β(t− ε, ·) = β(t, ·), β(·,x−)D := lim
ε↘0

β(·,x− ε) = β(·,x),
(6.15)

where ε > 0. To define partial evaluations of Dirac segments, consider, for instance,

(∂tHLD)(·,x−) = HLD(·,x−)′ ,

where HLD(·,x−) ∈ DpwC ∞(T ) whose scalar differentiation is the one dimensional Dirac im-
pulse δt0+ ∆t

∆x (x−x0)
and (∂tHLD) expressed as in (6.10). Therefore, due to commutativity re-

quirement concerning differentiation and evaluation, and taking Lemma 6.17 into consider-
ation, there is only one possible choice to define partial evaluations of Dirac segments as
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δL(t+, ·) :=


√

1+ ∆x2

∆t2 δ
x0+

∆x
∆t (t−t0)

, t ∈ [t0, t1),

0, otherwise,

δL(t−, ·) :=


√

1+ ∆x2

∆t2 δ
x0+

∆x
∆t (t−t0)

, t ∈ (t0, t1],

0, otherwise,

δL(·,x+) :=


√

1+ ∆t2

∆x2 δ
t0+

∆t
∆x (x−x0)

, x ∈ [x0,x1),

0, otherwise,

δL(·,x−) :=


√

1+ ∆t2

∆x2 δ
t0+

∆t
∆x (x−x0)

, x ∈ (x0,x1],

0, otherwise.

(6.16)

Remark 6.22

The factors in front of δ distributions in (6.16) are due to the parametrization of the line
L which yields transformation of axes, such as rotation, reflection and translation, which
is also the case in Lemma 6.17 when differentiating the step function. Therefore, it is
easy to see the connection of the step functions; and hence Dirac impulses, in one- and
two-dimension. Given the parametrized line L, if sufficient transformations of axes are
carried out to obtain such a coordinate system whose x-axis is the line L, then at some
specific x, the Heaviside step function 1[t,∞) in 1D is obtained.

Definition 6.23

Let D ∈ DpwC ∞(T ×X) given by (6.13) and (6.3). Then for any (t,x) ∈ T ×X , partial
evaluations of D are given by

D(t±, ·) := β(t±, ·)D+ ∑
j∈J

∑
k,`

α
k,`
j ∂

(k)
t ∂

(`)
x
(
δL j(t

±, ·)
)
,

D(·,x±) := β(·,x±)D+ ∑
j∈J

∑
k,`

α
k,`
j ∂

(k)
t ∂

(`)
x
(
δL j(·,x±)

)
,

where β(t±, ·)D, β(·,x±)D and δL(t±, ·), δL(·,x±) are given as in (6.15) and (6.16),
respectively.

Corollary 6.24

For this choice of evaluation, it holds that for ε > 0, t ∈ T and x ∈ X

D(t+, ·)(ϕ(t, ·)) = lim
ε↘0

1
ε

D(t,t+ε)×X(ϕ),

D(·,x+)(ϕ(·,x)) = lim
ε↘0

1
ε

DT×(x,x+ε)(ϕ),

D(t−, ·)(ϕ(t, ·)) = lim
ε↘0

1
ε

D(t−ε,t)×X(ϕ),

D(·,x−)(ϕ(·,x)) = lim
ε↘0

1
ε

DT×(x−ε,x)(ϕ),
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where D ∈ DpwC ∞(T ×X).

Proof. The first relation is proved as the rest is akin. Let D ∈ DpwC ∞(T ×X) with the rep-

resentation (6.13) and L j =
{(

t,x0 j +
∆x j
∆t j

(
t− t0 j

)) ∣∣∣ t ∈ R, ∆t j = 0
}

be the parametrized

line for j ∈ J . This parametrization yields δL j(t
+, ·) = 0 and also L j ∩ ((t, t + ε)×X) = /0

for t ∈ R, where L j = {(t0,x) |x ∈ X}. Now let the parametrized line L j be given by L j ={(
t,x0 j +

∆x j
∆t j

(
t− t0 j

)) ∣∣∣ t ∈ R, ∆t j > 0
}

for j ∈ J . Then

lim
ε↘0

1
ε

D(t,t+ε)×X(ϕ) = lim
ε↘0

1
ε

(
∑
i∈I

χPi∩((t,t+ε)×X)βi

)
D

(ϕ)

+ lim
ε↘0

1
ε

∑
j∈J

∑
k,`

α
k,`
j ∂

(k)
t ∂

(`)
x δL j∩((t,t+ε)×X)(ϕ)

= lim
ε↘0

1
ε

 t+ε∫
t

∫
X

∑
i∈I

χPiβiϕ


+ ∑

j∈J
∑
k,`
(−1)k

α
k,`
j ∂

(`)
x lim

ε↘0

1
ε

t+ε∫
t

∂
(k)
τ ϕ

(
τ,x0 j +

∆x j
∆t j

(τ− t0 j)
)√

1+
∆x2

j

∆t2
j
dτ

=

(
∑
i∈I

βi(t, ·)(ϕ(t, ·))
)

+ ∑
j∈J

∑
k,`
(−1)k

α
k,`
j ∂

(`)
x ∂

(k)
t ϕ

(
t,x0 j +

∆x j
∆t j

(t− t0 j)
)√

1+
∆x2

j

∆t2
j

= β(t, ·)(ϕ(t, ·))+ ∑
j∈J

∑
k,`

α
k,`
j ∂

(`)
x ∂

(k)
t δ

x0 j+
∆x j
∆t j

(t−t0 j)
(ϕ(t, ·))

√
1+

∆x2
j

∆t2
j

= β(t+, ·)D (ϕ(t, ·))+ ∑
j∈J

∑
k,`

α
k,`
j ∂

(k)
t ∂

(`)
x
(
δL j(t

±, ·)
)
(ϕ(t, ·))

= D(t+, ·)(ϕ(t, ·)) ,

where ε > 0 and Equation (6.6) (as ∆t j 6= 0) and the mean value theorem are employed. Note
that ∆x j/∆t j is independent of ε for each j ∈ J as the slopes of parametrized lines remain the
same.

Remark 6.25

Note that due to Lemma 6.17, when ∆t = 0 the partial evaluations δL(t±, ·) are defined
as 0. Similarly, for ∆x = 0 the partial evaluations δL(·,x±) = 0.

Proof. This is a consequence of Lemma 6.17; i.e., the relations between partial derivatives of
the step function and Dirac segments. For the temporal partial derivative in (6.10), the line L,
on which the Dirac segment is taken, is parametrized such that

{
(t0 + ∆t

∆x(x− x0)),x
∣∣x ∈ R

}
where ∆x 6= 0. And for the spatial partial derivative in (6.11), the line L is parametrized such
that

{
t,(x0 +

∆x
∆t (t− t0))

∣∣ t ∈ R
}

where ∆t 6= 0.
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Chapter 7

Distributional solutions for linear
hyperbolic PDEs

In this chapter, the solutions of linear hyperbolic PDEs in the space of piecewise-smooth
distributions in time and space DpwC ∞(T ×X) are studied. The solutions are interpreted in
the distributional sense, therefore, thanks to this solution framework, they can have jumps,
Dirac impulses and arbitrary high order of their derivatives. The space DpwC ∞(T ×X) allows
the trace evaluation on the boundaries of PDEs which is required for coupling PDEs with
swDAEs as solutions to swDAEs can include jumps and Dirac impulses. Hence, the solution
space for PDEs must be chosen suitably according to solutions of swDAEs. Furthermore, an
explicit distributional solution formula to linear hyperbolic PDEs is provided and then the
uniqueness result for the constructed solution is shown.

7.1 Scalar advection equation

Before addressing linear systems, the following scalar advection equation is studied

∂tv+λ∂xv = 0, (7.1)

where λ ∈ R is the wave speed and the initial condition is prescribed as

I.C. v(t+0 , ·) = vt0 , (7.2)

where vt0 ∈ DpwC ∞((a,b)) and the boundary condition given by

B.C.

{
v(·,a+) = vL, if λ > 0,

v(·,b−) = vR, if λ < 0,
(7.3)

where vL,vR ∈ DpwC ∞((t0,∞)).
Now the definition of the shift operator for continuous functions in Definition 2.10 is

expanded to distributions.

Definition 7.1: 2D shift operators for Dirac impulses

Let T,X ⊆ R be open sets. The distributional time shift operator of a Dirac impulse
δt∗ ∈ DpwC ∞(T ) at t∗ ∈ T with speed λ 6= 0 and initial position x0 is given by

S λ,x0
timeδt∗ :=

1√
1+ 1

λ2

δ
L

λ,(t∗ ,x0)
time

,
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where Lλ,(t∗,x0)
time := {(t,x0 +λ(t− t∗)) | t ∈ T}⋂(T × X). Moreover, the distributional

space shift operator of a Dirac impulse δx∗ ∈ DpwC ∞(X) at x∗ ∈ X with speed λ and
initial time t0 is given by

S λ,t0
spaceδx∗ :=

1√
1+λ2

δ
L

λ,(t0 ,x
∗)

space
,

where Lλ,(t0,x∗)
space :=

{
(t0 + 1

λ
(x− x∗),x)

∣∣x ∈ X
}⋂

(T ×X).

Note that the factors 1/
√

1+1/λ2 and 1/
√

1+λ2 in the definition of the shift operator
for Dirac impulses are necessary to obtain the following equalities(

S λ,x0
timeδt∗

)
(·,x±) = δ

t∗+ 1
λ
(x−x0)

and
(

S λ,t0
spaceδx∗

)
(t±, ·) = δx∗+λ(t−t0) .

In particular, (
S λ,x0

timeδt∗
)
(·,x±0 ) = δt∗ and

(
S λ,t0

spaceδx∗
)
(t±0 , ·) = δx∗ .

An illustration of the time- and space shift of Dirac impulses can also be found in Figure
7.1.

x=a x*
1 x*

2 x*
3 x*

4 x*
5 x*

6 x*
7

x=b

t*1

t*2

t*3

t*4

FIGURE 7.1: PDE domain (t0,∞)× (a,b), λ > 0. An example of Dirac im-
pulses prescribed in initial and boundary conditions at certain locations in
space, x∗m, m = {1,2, . . . ,7}, and time domains, t∗i , i = {1,2,3,4}, respec-
tively. The blue and red lines correspond to the the Dirac segments on these

lines and show how Dirac impulses are shifted within the domain.

Definition 7.2: 2D shift operators for piecewise-smooth distributions

Let T ⊆ R, X ⊆ R be open sets. Let DT ∈ DpwC ∞(T ) and DX ∈ DpwC ∞(X) be given by

DT = dT
D+ ∑

t∗∈T ∗
DT

t∗ and DX = dX
D + ∑

x∗∈X∗
DX

x∗ , (7.4)

where dT ∈ C ∞
pw(T ), dX ∈ C ∞

pw(X), T ∗ ⊂ T and X∗ ⊂ X are locally finite sets, and for
each t∗ ∈ T ∗ and x∗ ∈ X∗, there exist nt∗ ∈ N and nx∗ ∈ N, ct∗

i ∈ R, i = 0,1, . . . ,nt∗ and
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cx∗
j ∈ R, j = 0,1, . . . ,nx∗ such that

DT
t∗ =

nt∗

∑
i=0

ct∗
i ∂

(i)
t δt∗ and DX

x∗ =
nx∗

∑
j=0

cx∗
i ∂

( j)
x δx∗ .

Then the distributional time shift of DT with speed λ and initial position x0 is given by

S λ,x0
timeDT := (S λ,x0

timedT )D+ ∑
t∗∈T ∗

nt∗

∑
i=0

ct∗
i ∂

(i)
t S λ,x0

timeδt∗ ,

and the distributional space shift of DX with speed λ and initial time t0 is given by

S λ,t0
spaceDX := (S λ,t0

spacedX)D+ ∑
x∗∈X∗

nx∗

∑
j=0

cx∗
j ∂

( j)
x S λ,t0

spaceδx∗ .

Corollary 7.3

2D distributional time and shift operators, S λ,x0
time , S λ,t0

space, where λ, t0, x0 ∈ R, commute
with distributional partial derivative operators ∂

(n)
t , ∂

(n)
x for n ∈ N.

Proof. Below, the claim is proven for the Dirac impulse/segment as for piecewise-smooth
functions it has been proven in Chapter 2. Let δt∗ ∈ DpwC ∞(T ) for some t∗ ∈ R. Then for
n = 1

∂tS λ,x0
timeδt∗ = ∂tδL

λ,(t∗ ,x0)
time

=−δ
L

λ,(t∗ ,x0)
time

(∂tϕ)

=−
∫

L
λ,(t∗,x0)
time

∂tϕ

=−∂t

∫
L

λ,(t∗ ,x0)
time

ϕ

= ∂tS λ,x0
timeδt∗ .

Assume the claim holds for n≥ 1. Then, for n+1, the following is obtained

S λ,x0
time∂

(n+1)
t δt∗ = S λ,x0

time∂
(n)
t ∂tδt∗

= ∂
(n)
t S λ,x0

time∂tδt∗

= ∂
(n+1)
t S λ,x0

timeδt∗ .

Thus, by induction, the claim follows. Analogously, the above steps are followed to prove
the commutativity of S λ,t0

space and ∂
(n)
x .

Assume λ > 0 and let vt0 and vL be given as in (7.2) and (7.3) with the representations
as in (7.4). With the distributions vt0 ,vL, below the distributional solution to Equation (7.1)
in terms of the distributional space/time shift operators S λ,t0

space, S λ,a
time is formulated. As seen in
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Section 2.2.1, since the solution is constant along the characteristics, exploiting the distribu-
tional space and time shift operators given in Definition 7.2, it can be written as

v =
((
1{x−a≥λ(t−t0)}

)
D S λ,t0

spacevt0 +
(
1{x−a<λ(t−t0)}

)
D S λ,a

timevL
)
. (7.5)

Then, the distributional solution to the differential equation (7.1) at the right boundary
with λ > 0 takes the form

v(·,b−) =
((

1(
t0,t0+

b−a
λ

))
D

S λ,t0
spacevt0 +

(
1(

t0+
b−a

λ
,∞
))

D
S λ,a

timevL
)
(·,b−),

which can be put in the form

v(·,b−) =
(

S λ,a
timevL

)
(·,b−),

where (
S λ,a

timevL
)
(·,b−) :=

(
S λ,t0

spacevt0
)
(·,b−), on

(
t0, t0 + b−a

λ

)
.

Now assume λ< 0 and let vt0 and vR be given as in (7.2) and (7.3) with the representations
as in (7.4). The solution formulae to Equation (7.1) with λ < 0 are now of the form

v =
((
1{x−b≤λ(t−t0)}

)
D S λ,t0

spacevt0 +
(
1{x−b>λ(t−t0)}

)
D S λ,b

timevR
)
,

Similarly, the distributional solution to the differential equation (7.1) with λ < 0 at the
left boundary can be written as

v(·,a+) =
((

1(
t0,t0+

b−a
−λ

))
D

S λ,t0
spacevt0 +

(
1(

t0+
b−a
−λ

,∞
))

D
S λ,b

timevR
)
(·,a+),

which is then of the form
v(·,a+) = S λ,b

timevR(·,a+),
where (

S λ,b
timevR

)
(·,a+) :=

(
S λ,t0

spacevt0
)
(·,a+), on

(
t0, t0 + b−a

−λ

)
.

7.2 Linear systems of partial differential equations

As a system of PDEs with boundary conditions, the following system is considered

∂tu+A∂xu = 0, (7.6a)

I.C. u(t+0 , ·) = ut0 , (7.6b)

B.C. Pau(·,a+) = ba, and Pbu(·,b−) = bb, (7.6c)

with the unknown u ∈
(
DpwC ∞ ((t0,∞)× (a,b))

)n and initial condition ut0 ∈
(
DpwC ∞ (a,b)

)n

and ba ∈
(
DpwC ∞ ((t0,∞))

)n−`, bb ∈
(
DpwC ∞ ((t0,∞))

)` are left and right boundary conditions
with Pa ∈ R(n−`)×n, and Pb ∈ R`×n.
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As in Section 2.2.1 with Assumption (H-3), the system is decomposed into its distribu-
tional characteristic variables v ∈

(
DpwC ∞ ((t0,∞)× (a,b))

)n with the initial condition

v
(
t+0 , ·

)
=

(
v−(t+0 , ·)
v+(t+0 , ·)

)
=:
(

vt0
−

vt0
+

)
, (7.7)

where vt0
− ∈

(
DpwC ∞ (a,b)

)`, vt0
+ ∈

(
DpwC ∞ (a,b)

)n−` and the boundary conditions take the
form

Mv(·,a+) = ba, and Nv(·,b−) = bb,

where the boundary conditions for the right- and left-going waves can be expressed as

v+(·,a+) = b̃a, (7.8a)

v−(·,b−) = b̃b, (7.8b)

where boundary conditions b̃a ∈
(
DpwC ∞(T )

)n−`, b̃b ∈
(
DpwC ∞(T )

)`, v =
(
v−>,v+>

)> and

vt0 =
(

vt0
−
>
,vt0

+
>)> where v− ∈

(
DpwC ∞ ((t0,∞)× (a,b))

)` stands for the left-going waves,

whilst v+ ∈
(
DpwC ∞ ((t0,∞)× (a,b))

)n−` for the right-going waves.
The distributional solution v to the decomposed system of (7.6a), as was done similarly

to (2.5), with the initial condition (7.7) and boundary conditions (7.8a)-(7.8b) can be written
in terms of the solutions of the left- and right-going waves

v = ∑
i∈K−

[
diag(ei)
0n−`,`

]((
1{x−b≤λi(t−t0)}

)
D S λi,t0

spacevt0
−+

(
1{x−b>λi(t−t0)}

)
D S λi,b

timeb̃b
)

+ ∑
j∈K+

[
0`,n−`

diag(e j)

]((
1{x−a≥λ j(t−t0)}

)
D

S λ j,t0
spacevt0

++
(
1{x−a<λi(t−t0)}

)
D S λ j,a

time b̃a
)
,

(7.9)

where K− := {1, . . . , `} and K+ := {`+1, . . . ,n} and ei ∈ R` and e j ∈ Rn−` are the i-th and
j-th directional unit vectors, respectively.

The distributional solution u to the IBVP (7.6) is now formulated via inversion of the
distributional characteristic variables u = Rv. Let Πp := R diag(ep) R−1 with ep ∈ Rn the
p-th directional unit vector. The solution is

u = ∑
i∈K−

Πi

((
1{x−b≤λi(t−t0)}

)
D S λi,t0

spaceut0 +
(
1{x−b>λi(t−t0)}

)
D S λi,b

timeuR
)

+ ∑
j∈K+

Π j

((
1{x−a≥λi(t−t0)}

)
D S λ j,t0

spaceut0 +
(
1{x−a<λi(t−t0)}

)
D S λ j,a

time uL
)
,

or, in the compact form

u = ∑
i∈K−

Πi

(
S λi,b

timeuR
)
+ ∑

j∈K+

Π j

(
S λ j,a

time uL
)
, (7.10)

with (
S Λ−,I,b

time uR
)

:= ∑
i∈K−

Πi

(
S λi,t0

spaceut0
)
, on

(
t0, t0 + b−x

−λi

)
,(

S Λ+,I,a
time uL

)
:= ∑

i∈K+

Πi

(
S λi,t0

spaceut0
)
, on

(
t0, t0 + x−a

λi

)
.
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At the left- and right-end of the spatial domain, the distributional solution u is as follows

u(·,a+) = R
[

0`,n−`
M−1

2

]
ba(·)

+R
[

I`,` 0`,n−`
−M−1

2 M1 0n−`,n−`

]
R−1

∑
i∈K−

Πi

(
S λi,b

timeuR
)
(·,a+),

u(·,b−) = R
[

N−1
1

0n−`,`

]
bb(·)

+R
[

0`,` −N−1
1 N2

0n−`,` In−`,n−`

]
R−1

∑
j∈K+

Π j

(
S λ j,a

time uL
)
(·,b−),

(7.11)

where uL := u(·,a+), uR := u(·,b−) and with(
S Λ−,I,b

time uR
)
(·,a+) := ∑

i∈K−
Πi

(
S λi,t0

spaceut0
)
(·,a+), on

(
t0, t0 + b−a

−λi

)
,

(
S Λ+,I,a

time uL
)
(·,b−) := ∑

i∈K+

Πi

(
S λi,t0

spaceut0
)
(·,b−), on

(
t0, t0 + b−a

λi

)
.

(7.12)

Similar to the 1D time shift defined in Definition 2.17, below the 1D distributional time
shift S τ

time for Dirac impulses and piecewise-smooth distributions D ∈ DpwC ∞(T ) is defined.

Definition 7.4: 1D distributional time shift operator for Dirac impulses

Let T ⊆ R be an open set. The 1D distributional time shift operator S τ
time with τ ∈ R of

a Dirac impulse δt∗ ∈ DpwC ∞(T ) at t∗ ∈ T is defined by

S τ
timeδt∗ := δt∗+τ.

Definition 7.5: 1D distributional time shift operator for piecewise-smooth distribu-
tions

Let T ⊆ R be an open set. Let D ∈ DpwC ∞(T ) be given by

D = dD+ ∑
t∗∈T ∗

Dt∗ ,

where d ∈ C ∞
pw(T ), T ∗ ⊂ T is a locally finite set, and for each t∗ ∈ T ∗, there exist nt∗ ∈N,

ct∗
i ∈ R, i = 0,1, . . . ,nt∗ such that

Dt∗ =
nt∗

∑
i=0

ct∗
i ∂

(i)
t δt∗ .

Then the 1D distributional time shift of D is given by

S τ
timeD := (S τ

timed)D+ ∑
t∗∈T ∗

nt∗

∑
i=0

ct∗
i ∂

(i)
t S τ

timeδt∗ .
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Remark 7.6

Similar to Corollary 7.3, 1D distributional time shift operator S τ
time for τ ∈ R commutes

with the distributional derivative operator dD
dt .

Remark 7.7

Let uab :=
(

uL>,uR>
)>
∈
(
DpwC ∞(T )

)2n, where uL and uR are defined in (7.11). Be-
low, uab is expressed in a compressed form in terms of the 1D distributional time shift
operator S τ

time

uab = F
[

ba

bb

]
+

n

∑
k=1

DkS τk
timeuab, (7.13)

where

F =

[
Fa 0n,`

0n,n−` Fb

]
, Dk =

[
0n,n Dab

k
Dba

k 0n,n

]
,

τk =
b−a

sgn(λk)λk
, k = 1,2, . . . ,n,

where the matrices Fa,Fb,Dab
k ,Dba

k are given in (2.67)-(2.68). The extensions of initial
conditions as boundary conditions for t ≤ t0 + b−a

sgn(λk)λk
are adapted from (7.12). Hence,

the equality (7.13) follows from the equations in (7.11).

So far, a piecewise-smooth distributional solution to the IBVP (7.6) has been constructed.
In the following theorem, the uniqueness of the constructed solution is shown.

Theorem 7.8: Uniqueness of the distributional solution

For all initial and boundary conditions, the IBVP (7.6) has a solution in the space of
piecewise-smooth distributions DpwC ∞ . Moreover, for each initial and boundary condi-
tion, there is only one solution given by Equation (7.10).

Proof. As the considered PDE is linear, it is sufficient to show that the i-th characteristic com-
ponent vi ≡ 0 is the only solution to the problem with zero initial and boundary conditions.
Let T ⊆ R, X ⊆ R be open sets and δL is the Dirac segment on the line segment L ⊆ T ×X .
First, it is verified that δL is a solution to the i-th characteristic component of the PDE, if the
line segment L has slope 1/λi, where λi ∈ R\{0} and crosses the boundaries of the domain.
Let ϕ ∈ C ∞

pw(T ×X ;R) be a test function with suppϕ⊂ T ×X and the parametrization of the
line segment L be given by L =

{
(t,x0 +

∆x
∆t (t− t0))

∣∣ t ∈ R
}

where t0 ∈ R, ∆t 6= 0, ∆x 6= 0.
Recall the partial derivatives of the Dirac segment δL are

(∂tδL)(ϕ) =−
t1∫

t0

∂1ϕ
(
t,x0 +

∆x
∆t (t− t0)

)√
1+ ∆x2

∆t2 dt,

(∂xδL)(ϕ) =−
t1∫

t0

∂2ϕ
(
t,x0 +

∆x
∆t (t− t0)

)√
1+ ∆x2

∆t2 dt,
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where ∂1 and ∂2 represent partial derivatives with respect to the first and second components.
Using the chain rule

d
dt

ϕ =
∂ϕ

∂x
dx
dt

+
∂ϕ

∂t
dt
dt
,

the following is obtained

∂tδL +λi∂xδL = ∂t

(
∑
k,`

αk,`∂
(k)
t ∂

(`)
x δL

)
(ϕ)

+λi ∂x

(
∑
k,`

αk,`∂
(k)
t ∂

(`)
x δL

)
(ϕ)

−∑
k,`

αk,`∂
(k)
t ∂

(`)
x

√
1+ ∆x2

∆t2

( t1∫
t0

[
∂1ϕ

(
t,x0 +

∆x
∆t (t− t0)

)

+λi∂2ϕ
(
t,x0 +

∆x
∆t (t− t0)

)]
dt

)

−∑
k,`

αk,`∂
(k)
t ∂

(`)
x

√
1+ ∆x2

∆t2

( t1∫
t0

[
d
dt ϕ
(
t,x0 +

∆x
∆t (t− t0)

)

+
(
λi− ∆x

∆t

)
∂2ϕ

(
t,x0 +

∆x
∆t (t− t0)

)]
dt

)

−∑
k,`

αk,`∂
(k)
t ∂

(`)
x

(
ϕ
(
t1,x0 +

∆x
∆t (t1− t0)

)
+ϕ(t0,x0)

−
√

1+ ∆x2

∆t2

(
λi− ∆x

∆t

) t1∫
t0

∂2ϕ(t,x0 +
∆x
∆t (t− t0))dt

)
.

This expression is zero for all ϕ ∈ C ∞
pw(T ×X ;R), if λi =

∆x
∆t , (t0,x0) /∈ suppϕ, and (t1,x1) /∈

suppϕ. Thus, the slope ∆t/∆x of the line segment L is the multiplicative inverse of the
characteristic speed λi and the line segment L has to fully cross the considered domain. But
at the points, where the line segment L hits the initial time or the boundaries of the domain, the
solution has to satisfy the imposed conditions. Therefore, the strength of the Dirac segment
is equal to zero; i.e., the factor αk,` is zero. Due to the linearity of the considered PDE,
the above computation can be extended directly to any combination of spacial and temporal
derivatives of δL; and hence, the uniqueness of the solution to the IBVP (7.6) follows.

Remark 7.9

The proof of Theorem 7.8 states that there cannot exist any Dirac segments which ap-
pear and/or disappear only within the domain without having any connections to the
boundaries of the considered domain.
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Chapter 8

Coupling linear PDE systems with
switched DAE systems

In this chapter, a linear hyperbolic partial differential equation is coupled with a switched
differential algebraic equation via boundary conditions, see Figure 8.1. The closed loop
setting illustrated in Figure 8.1 can include general network structures. In this coupled system
the values of the switched DAE provide the boundary conditions for the PDE and the values
of the PDE serve as input to the DAE. After a detailed description of the coupled system
including examples of a simple power network and a part of a simplified circulatory system,
an existence and uniqueness result for general switched delay DAEs is established and the
existence and uniqueness of solutions of the coupled system is concluded. At the end of this
chapter, numerical results for the power grid and circulatory sytsem examples are explained
and illustrated.

PDE(u)
BC (u,yD)
output yP

swDAE(w)
input yP

output yD

yPyD

FIGURE 8.1: Coupling of a PDE with a switched DAE via boundary condi-
tions.

8.1 System class

In this section, linear hyperbolic PDEs on a bounded interval, which have the following form,
are considered

∂tu(t,x)+A∂xu(t,x) = 0, x ∈ [a,b], t ≥ t0, (8.1a)

yP(t) = CPuab(t), t ≥ t0 (8.1b)

where a,b, t0 ∈ R with a < b, u : [t0,∞)× [a,b]→ Rn, n ∈ N, is the n-dimensional vector of
unknowns of the PDE, A ∈ Rn×n and yP : [t0,∞)→ Rν, ν ∈ N is the ν-dimensional output of
the PDE depending on uab(t) := (u(t,a)>,u(t,b)>)> ∈ R2n and CP ∈ Rν×2n. The boundary
conditions of the PDE have the form

Puab(t) = yD(t), t > t0, (8.1c)
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where P ∈ Rn×2n and yD : [t0,∞)→ Rn is the output of the switched DAE

Eσẇ(t) = Hσw(t)+BσyP(t)+ fσ(t), t ≥ t0, (8.1d)

yD(t) = CDσw(t), t ≥ t0, (8.1e)

with the m-dimensional vector of unknowns w : [t0,∞)→ Rm, m ∈ N, the switching signal
σ : R→{1,2, . . . ,N}, N ∈N, and Eξ,Hξ ∈Rm×m, Bξ ∈Rm×ν, fξ : [t0,∞)→Rm, CDξ ∈Rm×n

for each ξ ∈ {1,2, . . . ,N}.
The coupled system (8.1) has to be equipped with initial conditions

u(t0,x) = ut0(x), x ∈ [a,b], (8.2a)

w(t0) = wt0 , (8.2b)

where ut0 : [a,b]→ Rn and wt0 ∈ Rm.

Remark 8.1

The coupling structure in (8.1) is quite general, in fact, arbitrary networks whose edges
represent PDEs and whose nodes represent (switched) DAEs which couple different
PDEs are covered. Consider for example a network as illustrated in Figure 8.2a, where
on each edge Ei, i= 1, . . . ,5, the quantity uEi is governed by a linear PDE uEi

t +AuEi
x = 0.

At each node N j, j = 1, . . . ,4, algebraic and/or differential conditions combine possi-
ble internal states wN j with certain boundary values qN j from the connected uEi ; i.e.,
EN j

σ ẇN j = HN j
σ wN j +BN j

σ yN j
P + fN j

σ . This setup can be rewritten in the form (8.1) by first
rescaling the spatial domain (which simply modifies the coefficient matrices AEi by a
constant multiple) so that all PDEs are defined on the same interval and can be viewed
as a single PDE where the new unknown u consists of the unknowns uEi of each edge Ei

stacked over each other (the A-matrix is then a block diagonal matrix). In a similar way,
the unknowns wN j and inhomogeneities fN j

σ of switched DAEs for each node N j can
be stacked over each other leading to the new vector variable w and inhomogeneity fσ.
Furthermore, arranging the corresponding coefficient matrices of each swDAE in such
a way that resulting coefficient matrices form block diagonal matrices results a single
swDAE together with the unknown w and inhomogeneity f, see Figure 8.2b. Hence, by
rearranging PDEs and swDAEs, a network (loop) consisting of a single node and a single
edge is obtained, see Figure 8.2c. A similar reduction is used in [72]. In the sequel, this
method is employed for the specific examples of a simple power grid with a switching
transformer and a simplified part of the circulatory system in a human body.

8.1.1 Power grid example

In this section, the simple electrical power grid with a switching transformer is considered,
which is illustrated in Figure 8.3.

Each line Ei, i = 1, . . . ,4, is modeled by the telegrapher’s equations given by

∂tIi(t,x)+ 1
Li

∂xVi(t,x) = 0,

∂tVi(t,x)+ 1
Ci

∂xIi(t,x) = 0,
(8.3)

where x ∈ [ai,bi], bi > ai, Ii and Vi stand for the current and voltage, respectively, and the
constants Li and Ci are inductance and capacitance, respectively. In particular, each line
Ei has a position-dependent current Ii and voltage Vi. By appropriate scaling of the spatial
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N1 N2

N3

N4

E1

E4E2 E5
E3

(a) Illustration of a network.

N1

N2

N3

N4

E1

E2

E3

E4

E5

a

a

a

a

a

b

b

b

b

b

(b) Reduction of the network and common scaling of
spatial domains.

N
E

(c) Reduced network, single edge, sin-
gle node.

FIGURE 8.2: An example of a network consisting of four nodes and five con-
necting edges and how to reduce it to one node and one edge (loop) network

which still has all the features of the original network.

domains of each edge for the telegrapher’s equations, it can be assumed that all PDEs are
defined on the common domain T ×X = [0,∞)× [a,b]. At the nodes there is a coupling
between corresponding boundary values, where the “outputs” of the telegrapher’s equations
are the boundary currents Ii for each line Ei. A generator is located at the first node, where
an externally given voltage is assumed. This algebraic constraint is modeled by the algebraic
relations

0 = z1− vG, (8.4)

y1
D = z1,

where vG : [0,∞)→ R is the externally given time-varying voltage of the generator together
with the boundary condition V1(·,a+) = y1

D. On the consumption nodes, all voltages are
assumed to be equal and it is assumed that the consumption is modeled as a simple Ohm’s
resistance; i.e., the sum of the (directed) currents at the boundary of the lines is proportional
to the voltage at the node, which is modeled by the DAE

0 = z24−R24(I4(·,a+)− I2(·,b−)), y24
D = z24,

0 = z34−R34(I3(·,b−)+ I4(·,b−)), y34
D = z34,

(8.5)

where R24,R34 > 0 are the resistive loads. Furthermore, the following boundary conditions
are imposed

V2(·,b−) = y24
D , V3(·,b−) = y34

D ,

V4(·,a+) = y24
D , V4(·,b−) = y34

D .

Finally, the switching transformer node is governed by the electric circuit given in Figure
8.4.
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Generatorvoltage switching
transformer

node

node

consumption

consumption

E1

E2

E3

E4

FIGURE 8.3: Simple electrical power grid with one generator node, one
switching transformer node and two consumption nodes.

N1

N2

N3

N4

i13

i12

L12
v12

L13
v13

I1,V1

I3,V3

I2,V2

I4,V4

κ12

κ13

FIGURE 8.4: A node connecting three power lines with a switching trans-
former.

The switch independent equations governing this switching transformer node are as fol-
lows

L12
d
dt i12 = v12, L13

d
dt i13 = v13,

V2(·,a+) = κ12v12, V3(·,a+) = κ13v13,
(8.6)

where κ12,κ13 > 0 are amplifiers. Note that, in this example, amplifiers are used only for the
voltage values, so the power grid example is a simplified model.

If the switch connects E1 and E2, then the following three algebraic constraints hold

0 = i12− I1, i13 = 0, V1(·,b−) = v12,

and, otherwise,

i12 = 0, 0 = i13− I1, V1(·,b−) = v13.

Let w̃ = (i12, i13,v12,v13)
> be the state vector, then the rules governing the switching trans-

former node can be compactly written as a switched DAE

Ẽσ
˙̃w = H̃σw̃+ B̃σỹP

ỹD = C̃Dσ
w̃,
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where

Ẽ1 = Ẽ2 =

[L12 0 0 0
0 L13 0 0
0 0 0 0
0 0 0 0

]
, H̃1 = H̃2 =

[ 0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

]
,

B̃1 =

[ 0 0 0
0 0 0
−1 0 0
0 0 0

]
=: [B̃1

1,0,0], B̃2 =

[ 0 0 0
0 0 0
0 0 0
−1 0 0

]
=: [B̃1

2,0,0],

C̃1 =

[
0 0 1 0
0 0 κ12 0
0 0 0 κ13

]
, C̃2 =

[
0 0 0 1
0 0 κ12 0
0 0 0 κ13

]
,

and the coupling via the boundaries of E1, E2 and E3 are as follows

ỹP = (I1(·,b−), I2(·,a+), I3(·,a+))>, ỹD = (V1(·,b−),V2(·,a+),V3(·,a+))>.

Thus, the overall coupled system has the form (8.1) with

A =

[
A1 0 0 0
0 A2 0 0
0 0 A3 0
0 0 0 A4

]
where Ai =

[
0 1

(bi−ai)Li
1

(bi−ai)Ci
0

]
∀i = 1, . . . ,4, (8.7)

u =
(
u>1 ,u>2 ,u>3 ,u>4

)> with ui = (Ii,Vi)
>, the output of the PDE (used as an input to the

switched DAE) are all currents at the boundaries of the power lines; i.e., the coefficient
matrix for the output is

CP =


1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

 ,
the switched DAE has the state vector w = (z1, i12, i13,v12,v13,z24,z34)

> and the following
coefficient matrices

Ek =

[
0 0 0 0
0 Ẽk 0 0
0 0 0 0
0 0 0 0

]
, Hk =

[
1 0 0 0
0 H̃k 0 0
0 0 1 0
0 0 0 1

]
,

Bk =

[ 0 0 0 0 0 0 0 0
0 0 0 0 B̃1

k 0 0 0
0 0 0 −R24 0 R24 0 0
0 0 0 0 0 0 −R34 −R34

]
,

CDk =


1 0 0 0
0 [0,1,0] 0 0
0 [0,0,1] 0 0
0 0 1 0
0 [1,0,0] 0 0
0 0 1 0
0 0 0 1
0 0 0 1

 ·
[

1 0 0 0
0 C̃k 0 0
0 0 1 0
0 0 0 1

]
, fk =


−vG

0
0
0
0
0
0

 ,
(8.8)

where k = 1,2 stands for the different modes of the swDAE and the coupling matrix P=
[

Pa
Pb

]
for the boundary values of the PDE is given by

Pa = Pb =

[ 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

]
.

8.1.2 Multi-scale blood flow modelling

In this section, a representative modelling of pulmonary circulation, heart and systemic circu-
lation is given. The wave propagation in pulmonary venous and ascending aorta is expressed
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in terms of PDEs while the dynamics of the left heart is modeled using swDAEs. First, it is
explained how these models are derived and then how they are coupled with each other.

1D Blood Flow Model

One-dimensional blood flow models for vessels are derived from the incompressible Navier-
Stokes equations, [15, 51],

ut +u ·∇u−∆u+∇P = 0,
divu = 0,

t > 0,

under some simplifying assumptions on a cylindrical domain Ω which is considered as a por-
tion of a vessel, which changes in time because blood vessels contract and expand depending
on changes in volume and pressure.

For brevity, the vessels are assumed to be straight cylinders with circular cross-sectional
areas, [50, 101].

Integrating the Navier-Stokes equations over the circular cross-sectional area results in
the following one-dimensional blood flow PDEs for vessels, [48, 86, 94, 101],

∂tA(t,x)+∂xQ(t,x) = 0,

∂tQ(t,x)+∂x

(
α

Q(t,x)2

A(t,x)

)
+ A(t,x)

ρ
∂xP(t,x) =− ffr(t,x)

Q(t,x)
A(t,x) ,

(8.9)

where t > 0, x ∈ [a,b] with b > a, A : R+× [a,b]→ R+ cross-sectional area of the vessel,
Q : R+× [a,b]→ R flow rate, P : R+× [a,b]→ R+ mean internal pressure over the cross-
sectional area, ffr : R+× [a,b]→ R+ friction force on blood that is exerted by vessel walls,
ρ ∈ R+ density of the blood, α a dimensionless momentum-flux correction factor, called
Boussinesq coefficient, depending on velocity profile, since the velocity across a section is
not always uniform, [27]. However, arterial blood flow has been proven to have a uniform
velocity profile in general, [46]. Therefore, the momentum-flux correction term is considered
α = 1, [86, 94].

The unknowns of the system (8.9) are A,Q and P, whereas the system has only two
equations. Therefore, to close the system (8.9), the following pressure law is employed,
[49, 94],

P(t,x) = Pext(t,x)+Ψ(A;A0,K,P0), (8.10)

where Pext(t,x) is the external pressure which is assumed to be constant Pext = 0, and Φ(t,x)
is the transmural pressure1 given by

Ψ(A(t,x);A0(x),K(x),P0) = K(x)φ(A(t,x);A0(x))+P0,

where A0 and P0 are the reference cross-sectional area and reference pressure and assumed
to be constant; and K(x) is a function given by

K(x) =
h(x)E(x)
(1−σ2)R0

, K(x)> 0,

where E(x) is the Young modulus, h(x) is the wall elasticity, σ is the Poisson ratio, and R0
is the reference vessel radius. For incompressible fluids, σ = 1/2. In the literature, there are
different approaches to link the pressure P and cross-sectional area A, see [82, 129].

1Transmural pressure is the pressure difference between the internal; i.e., pressure in the vessel, and external
pressure.
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For simplicity, K is assumed to be constant. The function φ(A(t,x),A0) is given by

φ(A(t,x),A0) =

(
A
A0

)m

−
(

A
A0

)n

,

where m and n are constants which are related to mechanical and geometrical properties of
vessels, [126]. It is assumed m = 0.5 and n = 0, [93, 94]. From the relation between pressure
P and cross-sectional area A (8.10), the following is obtained

∂xP = ∂AP∂xA =
K

2A0

1√
A

∂xA,

which yields the nonconservative form of the system (8.9) in (P,Q) variables

∂t

(
P
Q

)
+

(
0 ∂AP

−Q2

A2 ∂PA+ A
ρ

2 Q
A

)
∂x

(
P
Q

)
=

(
0 0
0 − ffr

A

)(
P
Q

)
, (8.11)

with suitable boundary conditions.
The system (8.9) can also be formulated without the pressure term P as a balance law

∂tu(t,x)+∂xf(u(t,x)) = g(x, t,u(t,x)), (8.12)

where

u =

(
A
Q

)
, f(u) =

(
Q

Q2

A + K
3ρA0

A3/2

)
, g =

(
0

− ffr
Q
A

)
,

with u being the unknown vector, f corresponding flux function, and g source term. The
Jacobian J of the flux function f is computed as

∇uf(u) = J(u) =

(
0 1

−
(

Q
A

)2
+ K

2ρA0

√
A 2 Q

A

)
, (8.13)

where V = Q/A is the mean velocity of the blood through the cross-sectional area A and let

c :=

√
K
ρ

A
∂P
∂A

=

√
K

2ρA0

√
A,

which is the propagation speed of waves.
The Jacobian matrix J has two real and distinct eigenvalues λ1 and λ2, which can be

computed by solving det(J−λI) = 0 for λ,

det

(
−λ 1

K
2ρA0

√
A−V 2 2V −λ

)
= 0,

for which the eigenvectors λ1 and λ2 are found as

λ1 =V −
√

K
2ρA0

√
A =V − c, and λ2 =V +

√
K

2ρA0

√
A =V + c,
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with a complete set of right-eigenvectors r1 and r2 corresponding to the eigenvalues λ1 and
λ2 given by

r1 =

(
1

V − c

)
, and r2 =

(
1

V + c

)
,

respectively.

Definition 8.2: Sub- and supercritical flow, [69, 112]

The flow is said to be subcritical if the velocity of the flow is smaller than the wave speed.
If the flow speed is larger than the wave speed, then the flow is called supercritical.

Remark 8.3

Under physiological conditions, the wave speed c for arterial blood flow is much greater
than the flow speed, [59, 110, 112, 139]. As a result, λ1 < 0 and λ2 > 0; hence, the blood
flow is subcritical for arterial blood flow.

Linearization of the blood flow model

If the small perturbations are considered, a linear PDE system can be obtained by linearizing
the system (8.12). Furthermore, as pointed out in [43, 111], under physiological conditions,
the equations that model the blood flow are only weakly nonlinear. As a result, linearizing
the sytem (8.12) can grasp the features of the blood flow.

Below the system (8.12) is linearized around the equilibrium point us = (As,Qs)
>, where

As > 0, by a Taylor series expansion

u(t,x) = us + εw(t,x)+O(ε), (8.14)

where us is constant in x and t, and ε > 0 is small. Higher order terms O(ε) in (8.14) are very
close to zero for (As,Qs) sufficiently close to (A,Q), and hence, they can be dropped out to
attain the approximation u(t,x) = us + εw(t,x). Inserting this approximation u(t,x) into the
nonlinear system (8.12) yields

ε∂tw(t,x)+∂x f (us + εw(t,x)) = g(x, t,us,w),

∂tw(t,x)+∇us f (us)∂xw(t,x) = 1
ε
g(x, t,us,w),

evaluating ∇usf(us) results in the following linearized system

∂t

(
A
Q

)
+∂x

(
0 1

−
(

Qs
As

)2
+ K

2ρA0

√
As 2 Qs

As

)
∂x

(
A
Q

)
=

(
0

− ffr
As

Q

)
,

or, similarly,

∂t

(
A
Q

)
+

(
0 1

c2
s −V 2

s 2Vs

)
∂x

(
A
Q

)
=

(
0

− ffr
As

Q

)
, (8.15)

where cs =
√

K
2ρA0

√
As and Vs = Qs/As are constant.

Let Js be the constant coefficient matrix in (8.15); i.e.,

Js =

(
0 1

c2
s −V 2

s 2Vs

)
,
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whose eigenvalues λ1 = Vs− cs and λ2 = Vs + cs are distinct and real with the correspond-
ing eigenvectors r1 = (1,Vs− cs)

> and r2 = (1,Vs + cs)
>, respectively. Hence, the waves

move at characteristic speeds λ1 and λ2. Therefore, the constant coefficient matrix Js is R
diagonalizable

Js = RΛR−1,

where

R =

(
1 1

Vs− cs Vs + cs

)
, Λ =

(
Vs− cs 0

0 Vs + cs

)
. (8.16)

It is assumed that As = A0 and Vs = 0 and in a similar fashion, the nonlinear system (8.11)
can be linearized around an equilibrium point (A0,0) as

∂t

(
P
Q

)
+

(
0 K

2A0
√

A0
A0
ρ

0

)
∂x

(
P
Q

)
=

(
0
− ffr

A0
Q

)
. (8.17)

In the case that the source term g = 0, by applying the coordinate transformation v =
R−1u, the system (8.17) is decoupled into a system of scalar PDEs

∂tv+Λ∂xv = 0, (8.18)

where the characteristic variable v, the diagonal matrix of eigenvalues Λ and the matrix of
right eigenvectors R are as follows

v(u(t,x)) =
(

v−(u(t,x))
v+(u(t,x))

)
=

1
2c0

(
−Q(t,x)+ c0P(t,x)

Q(t,x)+ c0P(t,x)

)
,

Λ =

(
−c0 0

0 c0

)
, R =

(
1 1
−c0 c0

)
,

(8.19)

with c0 = c(A0) =
√

K
2ρA0

√
A0.

Along the characteristics λ1,λ2, changes in pressure and mean velocity move backward
and forward in x-direction, respectively. Therefore, at each boundary of the spatial domain,
one boundary condition has to be prescribed such as

Pau(t,a+) = ba(t),

Pbu(t,b−) = bb(t),

where Pa,Pb ∈ R1×2, ba : [0,∞)→ R and bb : [0,∞)→ R.

Deriving the lumped parameter models from 1D models

In the previous section, the 1D blood flow equations for elastic vessels derived from Navier-
Stokes equations have been studied. On the other hand, blood flow in the heart and in smaller
vessels; namely arteriols, capillaries and venules, is modeled via lumped parameter models.
To obtain the lumped parameter models for the blood flow equations from 1D blood flow
equations, the linearized 1D equations (8.17) are integrated over the spatial domain, with
some assumptions.

The system (8.17) can be written in a simpler form as

C̄∂tP+∂xQ = 0,

L̄∂tQ+∂xP =−R̄Q,
(8.20)
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where

C̄ =
2A0
√

A0

K
, L̄ =

ρ

A0
, R̄ =

ρ ffr

A2
0
.

Integrating both equations in (8.20) over x yields

C d
dt P̄+QR−QL = 0,

L d
dt Q̄+PR−PL =−RQ,

(8.21)

where QL(t) = Q(a, t), QR(t) = Q(b, t), PL(t) = P(a, t), PR(t) = P(b, t), C = bC̄, L = bL̄,
R = bR̄, and P̄ and Q̄ represent the average pressure and flow rate

P̄ =
1

b−a

∫ b

a
P(t,x)dx and Q̄ =

1
b−a

∫ b

a
Q(t,x)dx.

Given two boundary conditions to the system (8.17), let PL and QR be given to close the
system (8.21), it is assumed

P̄≈ PR and Q̄≈ QL,

as the pulse wave velocity is between the values 3.12− 13.4 meter/second, [39]; that is,
waves move very fast, relating the mean values P̄, Q̄ to pointwise values P,Q is physiologi-
cally reasonable. Then the lumped parameter model can be written as

C d
dt PR +QR−Q0 = 0,

L d
dt Q0 +PR−P0 =−RQ.

The blood flow models can be related to electrical circuits including a resistor, capacitor
and inductance. Using this analogy, blood flow rate and pressure are expressed by Kirch-
hoff’s law in the next section. The analogous representation is shown in Table 8.1. Vessel
compliance C is the volume of blood that the vessel can store in response to transmural pres-
sure. Vascular resistance R opposes to blood flow and corresponds to the electrical resistance
that opposes to the current. And the momentum of the blood is the inertia L.

TABLE 8.1: Analogy of electrical circuits and circulatory system.

Circulatory system Symbol Electrical circuit Symbol

Blood pressure P Potential difference V

Flow rate Q Current I

Vascular resistance R Electrical resistance R

Inertia of blood L Inductance L

Vessel compliance C Capacitance C

Modeling the left heart as a system of switched DAEs

The dynamics of the cardiac chambers are described by the time-varying elastance model
given as in [116, 117, 118] by

Ela(t) = Elaa ela(t)+Elab, (8.22a)

Elv(t) = Elva elv(t)+Elvb, (8.22b)
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where Elaa,Elva are active elastances; i.e, systolic elastance coefficients, while Elab,Elvb are
passive elastances; i.e., diastolic elastance coefficients. Moreover, ela, elv are normalized
time-varying elastances for left ventricle and left atrium, respectively, given by, as in [86, 94],

ela =



0.5
(

1+ cos
(

π(t+T0−trla)
Trpla

))
, if 0≤ t ≤ trla +Trpla−T0,

0, if trla +Trpla−T0 < t ≤ tcla,

0.5
(

1− cos
(

π(t−tcla)
Tcpla

))
, if tcla < t ≤ tcla +Tcpla,

0.5
(

1+ cos
(

π(t−trla)
Trpla

))
, if tcla +Tcpla < t ≤ T0,

elv =


0.5
(

1− cos
(

πt
Tcplv

))
, if 0≤ t ≤ Tcplv,

0.5
(

1+ cos
(

π(t−Tcplv)
Trplv

))
, if Tcplv < t ≤ Tcplv +Trplv,

0, if Tcplv +Trplv < t ≤ T0,

(8.23)

where Tcplv, Tcpla, Trplv, Trpla stand for durations of left ventricular contraction, left atrial
contraction, left ventricular relaxation, left atrial relaxation, tcla and trla are the times when
the left atria starts contracting and relaxing, respectively, and T0 represents the length of one
complete cardiac cycle.

The time variation of chamber volumes vch is formulated in terms of incoming and out-
going blood flow

d
dt vch = qin−qcv, (8.24)

where qin is the blood flowing into the heart chamber.
Moreover, time varying blood pressure-volume relations in each cardiac cycle are given

by, [94],

pla(t) = pla,e +Ela(t)(vla− vla,0)+Sla
d
dt vla,

plv(t) = plv,e +Elv(t)(vlv− vlv,0)+Slv
d
dt vlv,

where pla,e, plv,e are external pressures and Sla, Slv are viscoelasticity coefficients of the car-
diac walls of left atrium and left ventricle, respectively; vla,0, vlv,0 are dead chamber volumes
of the corresponding heart chambers. The external pressures and dead volumes of chambers
of the heart are assumed to be zero.

The time variation of flow rate through cardiac valve is described by the relation, [86, 94],

d
dt qcv =

∆pcv−Rcvqcv−Bcvqcv|qcv|
Lcv

, (8.26)

where ∆pcv stands for the pressure difference on its both sides cardiac valve, Lcv (mmHg·s2·
ml−1), Rcv (mmHg·s2· ml−1) and Bcv (mmHg·s2· ml−2) represent inertance, resistance, and
Bernoulli’s resistance, respectively.

The swDAE model for the volume of the cardiac chamber and flow rate through the valve
assumes the state variable (vch,qcv)

>, where the time variation of the volume vch is given by
(8.24) and qcv is modified as in [1, 99]. When the valve is open, it is expressed as

d
dt qcv =

∆pcv−Rcvqcv

Lcv
,

and when the valve is closed, the flow rate through cardiac valve is set to zero

qcv = 0,
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Lungsoxygen-poor blood left
atrium

left
ventricle Body consumption

pulmonary
venous

ascending
aorta

FIGURE 8.5: A simple illustration of the left heart with lungs, left atrium,
left ventricle, a consumption node (body). Blood flows in the direction of
arrows. Cardiac valves are located between left atrium-left ventricle and

between left ventricle-ascending aorta.

which contributes to the algebraic constraint in the system.

8.1.3 Coupled circulatory system

In this section, the blood flow PDE model is coupled with swDAE model where both systems
are explained in previous sections, see Figure 8.5. The blood flows through pulmonary ve-
nous into the left atrium then through the mitral valve into the left ventricle, and then through
the aortic valve to the ascending aorta.

The flow through pulmonary venous and ascending aorta are modeled as a linear system
of conservation laws, respectively, given as ∂tApv +∂xQpv = 0,

∂tQpv +
K

2ρ
√

(A0)pv
∂xA = 0, ∂tAaa +∂xQaa = 0,

∂tQaa +
K

2ρ

√
(A0)aa

∂xA = 0,

(8.27)

where x ∈ [a j,b j] with b j > a j, for j = 1 for pulmonary venous and j = 2 for ascending
aorta, Apv : R+× [a1,b1]→ R+, Qpv : R+× [a1,b1]→ R and Ppv : R+× [a1,b1]→ R+ are
cross sectional area, flow rate and internal pressure of pulmonary venous, respectively, with
the pressure law given by (8.10). Similarly, Aaa : R+× [a2,b2]→R+, Qaa : R+× [a2,b2]→R
and Paa : R+× [a2,b2]→R+ cross sectional area, flow rate and internal pressure of ascending
aorta, respectively. Let upv =

(
Apv,Qpv

)> and uaa = (Aaa,Qaa)
> denote the unknowns in

(8.27). It is assumed that the following initial and boundary conditions are prescribed for the
systems in (8.27)

upv(0,x) = u0
pv(x), uaa(0,x) = u0

aa(x),[
0 1

]
upv(t,0+) = QG(t) ,

[
1 0

]
upv(t,b−1 ) = bP(t),[

0 1
]

uaa(t,0+) = bQ(t) ,
[
1 0

]
uaa(t,b−2 ) = PG(t),

where u0
pv : [a1,b1]→ R2, u0

aa : [a2,b2]→ R2, and QG : [0,∞)→ R, PG : [0,∞)→ R+ are
boundary conditions for the flow rate at the left end of the spatial domain of the pulmonary
venous and for the pressure values at the right end of the spatial domain of the ascending
aorta whereas bP : [0,∞)→ R+, bQ : [0,∞)→ R are boundary conditions for pressure and
flow rate of pulmonary venous and ascending aorta, respectively, that are assigned to the
PDE system by the switched DAE system. So, conservation rules determine its inputs as a
function of outputs of the swDAE.
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N2 N3

N4Ppv,Qpv
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qav Paa,Qaa

FIGURE 8.6: Mitral and aortic valves allowing blood flow from left atrium
to left ventricle and from left ventricle to aorta, depicted as switches.

The switched DAE model for the left atrium is given as

d
dt vla = Q̃−qmv d

dt qmv =
Elavla+Rla

d
dt vla−Elvvlv−Rlv

d
dt vlv−Rlaqmv

Lmv
, if pla− plv > 0,

qmv = 0, if pla− plv ≤ 0,

(8.28)

where vla : [0,∞)→ R+, vlv : [0,∞)→ R+, qmv : [0,∞)→ R, pla, plv : [0,∞)→ R+ are
volume of the left atrium and left ventricle, blood flow rate through the mitral valve, and
pressures of the left atrium and ventricle, respectively. Ela ∈ R+ stands for the elastance of
the left atrium, Rla ∈ R+ resistance of the left atrium and Lmv ∈ R+ inertance of the mitral
valve, Q̃ : [0,∞)→ R is the external blood flow coming from pulmonary circulation.

In a similar fashion, switched DAE model for the left ventricle is

d
dt vlv = qmv−qav d

dt qav =
Elvvlv+Rlv

d
dt vlv−P̃−RaaCaa

d
dt P̃−Rlvqav

Lav
, if plv− P̃ > 0,

qav = 0, if plv− P̃≤ 0,

(8.29)

where qav : [0,∞)→ R is the blood flow rate through the aortic valve. Elv ∈ R+, Rlv ∈ R+

stand for the elastance and resistance of the left ventricle, respectively, and Lav ∈R+ inertance
of the aortic valve, P̃ : [0,∞)→ R+ is the external blood pressure of the ascending aorta.

The dynamics of the valves is governed by the pressure gradient, see Figure 8.6. Below,
the switch independent equations governing motions of cardiac valves in the left heart are
gathered

d
dt vla = Q̃−qmv ,

d
dt vlv = qmv−qav , Rla

d
dt vla = pla−Elavla ,

bQ = qav , bP = pla .

If the mitral valve opens and aortic valve shuts, then the following equations hold

Lmv
d
dt qmv−Rla

d
dt vla +Rlv

d
dt vlv = Elavla−Elvvlv−Rlaqmv ,

qav = 0 ,

if the mitral valve closes and aortic valve opens

qmv = 0 ,

Lav
d
dt qav−Rlv

d
dt vlv = Elvvlv− P̃−RaaCaa

d
dt P̃−Rlvqav ,
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where Ela,Elv are given by (8.22a)-(8.22b), and if both valves shut, then the following holds

qmv = 0 ,

qav = 0 .

Remark 8.4

It is physiologically not possible that both the mitral and aortic valves are open at once
for a healthy heart, [45].

Let w̃ = (vla,qmv,vlv,qav, pla)
> be the state vector, then the switched DAE equations

governing transitions of valves can be written as follows

Ẽσ
˙̃w = H̃σw̃+ B̃σỹP ,

ỹD = C̃Dσ
w̃ ,

where the coefficient matrices are

Ẽ1 =

[ 1 0 0 0 0
−Rla Lmv Rlv 0 0

0 0 1 0 0
0 0 0 0 0

Rla 0 0 0 0

]
, H̃1 =

 0 −1 0 0 0
Ela −Rla −Elv 0 0
0 1 0 −1 0
0 0 0 1 0
−Ela 0 0 0 1

 , B̃1 =

[ 0 0 1
0 0 0
0 0 0
0 0 0
0 0 0

]
,

Ẽ2 =

[ 1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 −Rlv Lav 0

Rla 0 0 0 0

]
, H̃2 =

 0 −1 0 0 0
0 1 0 0 0
0 1 0 −1 0
0 0 Elv −Rlv 0
−Ela 0 0 0 1

 , B̃2 =

[ 0 0 1
0 0 0
0 0 0
−1 −RaaCaa 0
0 0 0

]
,

Ẽ3 =

[ 1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0

Rla 0 0 0 0

]
, H̃3 =

[ 0 −1 0 0 0
0 1 0 0 0
0 1 0 −1 0
0 0 0 1 0
−Ela 0 0 0 1

]
, B̃3 = B̃1,

C̃D1 =
[

0 0 0 1 0
0 0 0 0 1

]
, C̃D2 = C̃D1 , C̃D3 = C̃D1 ,

where Rla,Lmv,Rlv,Lav,Raa,Caa are physiological constants given in Table 8.3 and the cou-
pling via boundaries of pulmonary venous and ascending aorta are given by

ỹP =
(
Paa(·,a+2 ), d

dt Paa(·,a+2 ),Qpv(·,b−1 )
)>

, ỹD =
(
Qaa(·,a+2 ),Ppv(·,b−1 )

)>
,

where P̃ := Paa(·,a+2 ) and Q̃ := Qpv(·,b−1 ).
For the complete coupled model, an externally given blood flow is assumed, where blood

flows in from lungs at the first node N1 in Figure 8.6. The algebraic relations are

0 = qL−QG ,

y1
D = qL ,

where QG : [0,∞) → R is the externally given blood flow from lungs with the boundary
condition Qpv(·,a+1 ) = y1

D. Moreover, at the last node N4 in Figure 8.6, an externally given
blood pressure is assumed, for which the algebraic relations are

0 = pB−PG,

y4
D = pB ,

where PG : [0,∞)→ R+ is the externally given blood pressure with the boundary condition
Paa(·,b−2 ) = y4

D.
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The complete coupled system is then of the form (8.1) where

A =

[
A1 0
0 A2

]
with A j =

[
0 1

b j−a j
1

b j−a j
c2

j 0

]
for j = 1,2, u =

(
upv
uaa

)
,

and the output of the PDE is

yP =
(
Qpv(·,a+1 ),Qaa(·,a+2 ),Ppv(·,b−1 ),Paa(·,b−2 )

)>
,

with the following coefficient matrix

Cp =

[ 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

]
,

and the switched DAE now has the state vector w = (qL,vla,qmv,vlv,qav, pla, pB)
>, and coef-

ficient matrices

Ek =

[
0 0 0
0 Ẽk 0
0 0 0

]
, Hk =

[
1 0 0
0 H̃k 0
0 0 1

]
, Bk =

[
0 0 0
0 B̃k 0
0 0 0

]
,

CDK =

[
1 0 0
0 C̃k 0
0 0 1

]
, fk =


−QG

0
0
0
0
0
−PG

 ,
for k = 1,2 and the coupling matrix P =

[
Pa
Pb

]
is

Pa =
[

0 1 0 0
0 0 0 1

]
, Pb =

[
1 0 0 0
0 0 1 0

]
.

Parameter values for the blood flow example are given in Tables 8.2 and 8.3.

TABLE 8.2: Parameter values depending on medical data for the left heart
chambers and cardiac valves, [86, 94, 99].

Elaa Elab Elva Elvb Tcplv Tcpla Trplv Trpla tcla trla T0

0.070 0.090 2.750 0.080 0.300 0.170 0.150 0.170 0.800 0.970 1

TABLE 8.3: Modified parameter values for the left heart cardiac valves and
pulmonary circulation, [86, 94, 99, 117].

Lmv Lav Rla Rlv Lpv Rpv Caa Raa Sla Slv

0.0002 0.0005 0.001 0.003 0.0005 0.005 0.1 0.01 0.0005pla 0.0005plv

8.2 The coupled system

In this section, the distributional solution framework for linear hyperbolic PDEs introduced
in Chapter 6 is used to establish a link between the coupled system of PDE-swDAE and
the solutions of a switched delay DAE. Then, the existence and uniqueness result for general
switched delay DAEs is demonstrated and the main result about the existence and uniqueness
of solutions of the coupled system can be concluded.
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8.2.1 Existence and uniqueness of solutions of the coupled system

In the following, the switched DAE (8.1d) with output yD given by (8.1e) together with the
boundary behavior uab :=

(
u(·,a)>,u(·,b)>

)> of the PDE (8.1a) is studied. Based on the
results from Chapter 6, the solution w and uab of the coupled system can now be related
one-to-one with the solution of a switched delay DAE as follows.

Theorem 8.5

Consider the coupled system (8.1) satisfying Assumptions (H-3), (H’-5) and (H’-6).
Then z := (w>,u>ab)

> is a solution of the coupled system if and only if z solves the
switched delay DAE (swDDAE)[

Eσ 0
0 0

]
ż =

[
Hσ BσCP

FCDσ −I

]
z+

d

∑
k=1

([
0 0
0 Dk

]
S τk

timez
)
+

[
fσ

0

]
, (8.30)

where τk, uab and the matrices F and Dk are given as in Remark 7.7 and its components
as in Equations (2.67)-(2.68).

Proof. (⇐) Assume that z = (w>,u>ab)
> solves the swDDAE (8.30). From Equation (8.30),

the following swDAE is obtained

Eσẇ = Hσw+BσCPuab + fσ,

where w is the solution with the input yP = CPuab as shown in Theorem 4.12. And also, from
the swDDAE (8.30), the traces at the boundaries of the PDE are obtained as

u(·,a+) = Faba +
n

∑
i=1

Dab
k

(
S τk

timeub
)

= Faba +
n

∑
i=1

Dab
k

(
S λk,b

time ub
)
(·,a+),

u(·,b−) = Fbbb +
n

∑
i=1

Dba
k
(
S τk

timeua)
= Fbbb +

n

∑
i=1

Dba
k

(
S λk,a

time ua
)
(·,b−),

where
[ba

bb

]
= CDσ

w, which together yield the solution u

u = ∑
i∈K−

Πi

(
S λi,b

timeub
)
+ ∑

j∈K+

Π j

(
S λ j,a

time ua
)
,

where (
S Λ−,I,b

time ub
)

:= ∑
i∈K−

Πi

(
S λi,t0

spaceut0
)
, on

(
t0, t0 + b−x

−λi

)
,(

S Λ+,I,a
time ua

)
:= ∑

j∈K+
Π j

(
S λ j,t0

spaceut0
)
, on

(
t0, t0 + x−a

λ j

)
,

where Πp := R diag(ep) R−1 with ep ∈ Rn is the p-th directional unit vector.
(⇒) Assume that w is the solution to the swDAE (8.1d)

Eσẇ = Hσw+BσyP + fσ,
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where yP = CPuab and that u is the solution to the PDE (8.1a) given as in Equation (7.10).
Then uab is of the form

uab(t) = FCDσ
w+

n

∑
k=1

DkS τk
timeuab,

where
[ba

bb

]
= CDσ

w. Hence, z = (w>,u>ab)
> solves the swDDAE (8.30).

Since the solution of the coupled system on the whole domain can be recovered via
Equation (7.10), it has been shown that the solution properties of the coupled system can
equivalently be characterized by the swDDAE (8.30).

The following result establishes conditions for existence and uniqueness of solutions for
general swDDAEs.

Theorem 8.6: Existence and uniqueness of solutions for swDDAEs

Consider the following switched delay differential algebraic equations having d ∈ N
delays such that 0 < τ1 < τ2 < .. . < τd

Eσż = Hσz+
d

∑
j=1

D jS
τ j
timez+gσ, (8.31)

with σ :R→{1,2, . . . ,N}, N ∈N, Eξ,Hξ,D1, . . . ,Dd ∈Rm×m for each ξ∈ {1,2, . . . ,N}.
Assume that (Eξ,Hξ) is regular for each ξ ∈ {1,2, . . . ,N}, then for any initial trajectory
zt0 ∈

(
DpwC ∞

)m and any inhomogeneity gξ ∈
(
DpwC ∞

)m, the corresponding initial trajec-
tory problem has a unique solution.

Proof. The result is a simple consequence from the “method of steps” and the details for
DDAEs with a single delay d = 1 can be found in [133]. In the following proof, the prime
notation (′) is adapted to indicate the derivative of distributions in addition to the dot notation
(˙) since the derivative of a distribution restricted to an interval and restricting a derivative of
a distribution to an interval do not have the same meaning. In other words, the operations
restriction to an interval and differentiation of a distribution do not commute.

Let τ be the smallest delay within the set {τ1, . . . ,τd}. Then the solution to the swDDAE
system (8.31) is shown to be expressed as

z = zt0
(−∞,t0)

+
∞

∑
k=1

zk
[̃tk−1 ,̃tk)

, (8.32)

where t̃k := t0+kτ, k ∈N, t̃0 := t0, and zk ∈
(
DpwC ∞

)m is the unique solution to the non-delay
swDAE, (Theorem 4.12),

zk
(−∞,̃tk−1)

= zk−1
(−∞,̃tk−1)(

Eσżk
)
[̃tk−1,∞)

=
(

Hσzk + g̃σ

)
[̃tk−1,∞)

, (8.33)

where g̃σ :=
(

∑
d
j=1 D jS

τ j
timezk−1 +gσ

)
. Let T ⊆ R and X ⊆ R be open sets. For all φ ∈

C ∞
pw(T ×X ;R), z(φ) is a well-defined distribution as test functions φ have compact supports

and, hence, the sum in (8.32) is taken over locally finite sets. Therefore, the sum is finite
for each φ ∈ C ∞

pw(T ×X ;R). Moreover, z ∈
(
DpwC ∞

)m since it is a linear combination of
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piecewise-smooth distributions. For any k ≥ 1,

(Eσż)[̃tk−1 ,̃tk) = Eσ

((
zt0
(−∞,t0)

)′
+

∞

∑
p=1

(
zp
[̃tp−1 ,̃tp)

)′)
[̃tk−1 ,̃tk)

= Eσ

(
ż0
(−∞,t0)− zt0(t−0 )δt0

+
∞

∑
p=1

(
żp
[̃tp−1 ,̃tp)

+ zp(̃t−p−1)δt̃p−1
− zp(̃t−p )δt̃p

))
[̃tk−1 ,̃tk)

=
(

Eσżk
)
[̃tk−1 ,̃tk)

=
(

Hσzk + g̃σ

)
[̃tk−1 ,̃tk)

= Hσz[̃tk−1 ,̃tk)+
d

∑
j=1

D j

(
S τ j

timezk−1
)
[̃tk−1 ,̃tk)

+gσ[̃tk−1 ,̃tk)

=

(
Hσz+

d

∑
j=1

D jS
τ j
timez+gσ

)
[̃tk−1 ,̃tk)

,

where the relations in Corollary 3.29 are exploited. Hence, z given in (8.32) is the unique
solution to (8.31).

Remark 8.7

The existence and uniqueness result in Theorem 8.6 can easily be extended to the case
that the delay coefficient matrices D j, j = 1,2, . . . ,d in (8.31) are switch dependent; i.e.,
Equation (8.31) becomes

Eσż = Hσz+
d

∑
j=1

D j,σS τ j
timez+gσ.

However, for this case, technical details are omitted as such switch dependent delay
terms do not occur in the applications studied in this thesis.

The main result about existence and uniqueness of solutions of the coupled system can
now be stated.

Corollary 8.8

Consider the coupled system (8.1) with a hyperbolic PDE (Assumption (H-3)) and suit-
able boundary conditions (Assumption (H’-5)-(H’-6)). Furthermore, assume that for all
ξ ∈ {1, . . . ,N} the matrix pairs (Eξ,Hξ+BξCPFCDξ) with F as in Remark 7.7 are regu-
lar. Then for any initial value ut0 ∈ DpwC ∞(X)n, wt0 ∈ Rm and external inhomogeneities
fξ ∈ DpwC ∞(T )m, there exists a unique solution (u,w) ∈ DpwC ∞(T ×X)n×DpwC ∞(T )m

of the coupled system.

Proof. This is a consequence of Theorems 8.5 and 8.6 and the fact that det(sEξ−Hξ) =
det
(
sEξ− (Hξ +BξCPFCDξ)

)
.
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Remark 8.9

In Corollary 8.8, the condition on the regularity of matrix pairs (Eξ,Hξ+BξCPFCDξ) for
all ξ ∈ {1, . . . ,N} ensures that the coupling rules define a well-defined coupled system.
In other words, only outgoing characteristics of the PDE can provide information to the
swDAE.

8.3 Numerical results

In this section, it is explained how the examples of power grid and circulatory system de-
scribed in Sections 8.1.1 and 8.1.3 are solved numerically, and the numerical results are
illustrated.

8.3.1 General setup for the PDE discretization

Each spatial domain is considered I = [a,b], b > a. To discretize the spatial domain I into
N ∈ N computing cells, multiple grid cells Ii = [xi−1/2,xi+1/2] are considered such that the
interiors of cells are pairwise disjoint and the union of all cells covers the domain. Denote
by ∆x = xi+1/2− xi−1/2 cell length, which is assumed to be constant; i.e., ∆x = (b− a)/N.
Thus, all boundaries of cells are of the form xi+1/2 = i∆x. The center of each cell Ii is
xi = (i−1/2)∆x. Furthermore, boundary conditions at x = a and x = b are required to define
the values at the interfaces x1/2 and xN+1/2 so that the numerical scheme can update the
very left and very right cells I1 and IN of the discretized domain for the next time step tn+1.
Ghost cells I0 = [a−∆x,a] and IN+1 = [b,b+∆x] are placed at boundaries. In other words,
imaginary data are created in these ghost cells, see Figure 8.7. Moreover, at x1/2 and xN+1/2,
intermediate states are obtained. The discretization of the time variable is done in accordance
with time step size ∆t = tn+1− tn, such that the Courant-Friedrichs-Lewy (CFL) number C,
[60, 84], for the numerical scheme is smaller than 1

∆t = C
∆x
|λ|max

,

where |λ|max is the largest wave speed in amplitude of the system.

uI

u`

ur

x 1
2
= a

. . . . . .Ii

x
i− 1

2
x

i+ 1
2

xi

FIGURE 8.7: Imaginary, intermediate and right states, u`,uI ,ur, at the left
end of the domain x1/2 = a are shown. Furthermore, a general cell structure
is depicted with the cell Ii, cell center xi and boundaries of the cell Ii, namely

xi−1/2 and xi+1/2.

8.3.2 The power grid

Note that the matrix pairs (Eσ,Hσ) in the power grid example are regular. Denote by
E := {E1,E2,E3,E4} the set of edges in the coupled network, over which the PDE is dis-
cretized. For discretizing the spatial domain [a,b], consider xk = (k− 1/2)∆x, k = 1, . . . ,N,
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∆x = (b−a)/N, where N is the number of cells in the mesh. Then two ghost cells I0 and IN+1
are inserted at both ends of the computational domain which are treated as boundaries. The
CFL number is assumed to be C = 1 and denote by un

j = u(x j, tn) the approximated solution
at time tn and position x j. Denote by (uk)

n
j = ((u1

k)
n
j ,(u

2
k)

n
j)
> to have a suitable representation

for the unknowns for every edge k ∈ E. Before the initialization to solve the coupled system
at each time, first, the discretized PDE over each edge k ∈E is decomposed into its character-
istic variables (vk)

n
j as left-going, (v−k )

n
j , and right-going characteristic waves, (v+k )

n
j , where

(u1
k)

n
j = (v−k )

n
j +(v+k )

n
j and (u2

k)
n
j =−(v−k )n

j +(v+k )
n
j . To solve the decomposed PDE numeri-

cally, the upwind scheme is used, [61, 83, 97, 127, 125], and implicit Euler method, [125], for
the swDAE. At each time iteration, the decomposed PDE is solved numerically, then, (uk)

n+1
j

is updated via inverse coordinate change (uk)
n+1
j =Rk(vk)

n+1
j , where (vk)

n
j =((v−k )

n
j ,(v

+
k )

n
j)
>

and Ak = RkΛkR−1
k for k ∈ E, where Ak is the coefficient matrix given as in (8.7). The equa-

tions in (8.5) together result in coupling conditions in terms of the characteristic variables as
follows

(v−2 )
n
N+1 = 2(v−4 )

n
−1− (v+2 )

n
N+1, (v−4 )

n
N+1 =−2

3(v
+
3 )

n
N+1 +

1
3(v

+
4 )

n
N+1,

(v+4 )
n
−1 = 2(v+2 )

n
N+1− (v−4 )

n
−1, (v−3 )

n
N+1 =

1
3(v

+
3 )

n
N+1− 2

3(v
+
4 )

n
N+1,

which are four out of eight of boundary conditions for the decoupled PDE, and hence, they
build up the inputs to the swDAE as

(u1
4)

n
0 = (v−4 )

n
−1 +(v+4 )

n
−1, (u1

2)
n
N = (v−2 )

n
N+1 +(v+2 )

n
N+1,

(u1
3)

n
N = (v−3 )

n
N+1 +(v+3 )

n
N+1, (u1

4)
n
N = (v−4 )

n
N+1 +(v+4 )

n
N+1.

The remaining four inputs to the swDAE are given in terms of characteristic variables (v−1 )
n
−1,

(v+1 )
n
N+1, (v−2 )

n
−1 and (v−3 )

n
−1. Then, at each time step, the swDAE is solved and the bound-

ary conditions (v+1 )
n
−1, (v−1 )

n
N+1, (v+2 )

n
−1 and (v+3 )

n
−1 are obtained. At N1 in Figure 8.4, the

boundary condition is assigned as (u2
1)

n
0 = vG, where vG is the prescribed constant voltage

source, and hence, the boundary condition for the characteristics (v+1 )
n
−1 = vG +(v−1 )

n
−1. At

N2 over E1, the input to the swDAE is (u1
1)

n
N = (v−1 )

n
N +(v+1 )

n
N+1 and the boundary condi-

tion for the characteristic variable is (u2
1)

n
N = −(v−1 )

n
N +(v+1 )

n
N+1. The swDAE assigns this

boundary condition according to (8.6)

in+1
1η

= (u1
1)

n
N

vn+1
1η

= d
dt in+1

1η

(u2
1)

n
N = vn+1

1η

⇔


in+1
1η

= 2(v+1 )
n
N− vn+1

1η

d
dt

(
2(v+1 )

n
N+1− vn+1

1η

)
= vn+1

1η

(v−1 )
n
N+1 = (v+1 )

n
N− vn+1

1η
,

where η = 2 or η = 3 depending on to which edge the switching transformer connects E1
and in12, i

n
13,v

n
12,v

n
13 are discretized state variables for the swDAE at time tn. If η = 2, vn+1

12 is
computed as above, then the boundary condition (v−1 )

n
N+1 = (v+1 )

n
N−vn+1

12 is assigned, hence,
in+1
12 = (v+1 )

n
N +(v−1 )

n
N+1. Furthermore, in+1

13 = 0 and

vn+1
13 = d

dt in+1
13

=
in+1
13 −in13

∆t .
(8.36)

If η = 3, then in+1
12 = 0 and vn+1

12 is found similarly as in (8.36). Then, the boundary
conditions (u2

2)
n
0 = κ12vn

12 and (u2
3)

n
0 = κ13vn

13 are assigned, thus, the boundary conditions in
characteristic variables (v+2 )

n
−1 = (v−2 )

n
−1 +(u2

2)
n
0 and (v+3 )

n
−1 = (v−3 )

n
−1 +(u2

3)
n
0 are assigned.

Then, the solution for (uk)
n+1
j is updated, for all k ∈ E by using the eigenvector matrix Rk
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and (v−k )
n+1
η , η = 0,1, . . . ,N and (v+k )

n+1
γ , γ = 1,2, . . . ,N +1. Until the prescribed final time

is reached, the time is updated; i.e., tn+1 = tn +∆t, and the above steps are repeated.
If, instead of solving for (vk)

n
j , one attempts to solve for (uk)

n
j and assigns inputs/outputs

without considering them in characteristic variables, oscillations might occur at boundaries
at each time step. The method described in this section covers the Dirac impulses and ensures
that such oscillations do not take place. Therefore, the numerical steps defined above should
be carried out in characteristic variables and then the original unknown variables (uk)

n
j should

be updated accordingly.

Remark 8.10

In numerical simulations, the amplitude of the Dirac delta becomes larger as the width
of the grid cell becomes smaller. In other words, the Dirac delta is spread over the
numerical cells in the numerical examples.

Discontinuous initial condition

The computational domain is considered [a,b] = [0,0.5], initial time t0 = 0, and final time
tmax = 1.5, the number of cells N = 150, ∆x = 3.3× 10−3. The constant voltage at N1 is
vG = 0.5. The constants are assumed to be L12 = 1, L13 = 1, κ12 = 1, κ13 = 1, R24 = 1,
R34 = 1, Lk = 1 and Ck = 1 for each k ∈E. The initial conditions for the PDE are I1(0,x) = 0,
x ∈ [0,0.5], V1(0,x) = 0 for x ∈ [0,0.3) and V1(0,x) = 1 for x ∈ [0.3,0.5], Ik(0,x) = 0 and
Vk(0,x) = 0, x ∈ [0,0.5], for k = 2,3,4, see Figure 8.8. The switching transformer initially
connects the edges 1 and 2 for t ∈ [0,0.4) and then connects the edges 1 and 3 for t ∈
[0.4,0.7). For t ∈ [0.7,1.5], it connects the edges 1 and 2 again. In Figure 8.9, the plots for
all edges are shown at t = 0.5. After the first switch at t = 0.4, a Dirac impulse occurs on
E2. In Figure 8.10, the plots for all edges at t = 0.8 are shown. After the second switch at
t = 0.7, there happens another Dirac impulse on E3. And in Figure 8.11, the solution over
the whole domain (t,x) ∈ [0,1.5]× [0,0.5] is shown for all edges where the lines in the plot
of the solution for the edges E2,E3 and E4 show how Dirac impulses move in the domain.

Dirac impulse as initial condition

The setup of this example is the same as the previous example. The only difference from the
previous example is that the initial condition on the first edge E1 is given zero everywhere for
both the voltage and current values except at x = 0.3 the voltage has a Dirac impulse, as seen
in Figure 8.12. Initial conditions for E2,E3,E4 are prescribed as zero for both currents and
voltages. The switch initially connects the edges 1 and 2 for t ∈ [0,0.4) and then connects
the edges 1 and 3 for t ∈ [0.4,0.7). For t ∈ [0.7,1.5], it connects the edges 1 and 2 again. In
Figure 8.13, the plots for all edges are shown at t = 0.25. Dirac impulse on E1 moves along
E1 and then to E2. In Figure 8.14, the results at t = 0.6 are shown. After the first switch
at t = 0.4, a Dirac impulse occurs on E2. And on E3, the information from E1 enters the
domain. In Figure 8.15, the plots for all edges at t = 0.8 are shown. After the second switch
at t = 0.7, there happens another Dirac impulse on E3. In Figure 8.16, the solution over the
whole domain (t,x) ∈ [0,1.5]× [0,0.5] is shown for all edges where the lines on E1,E2,E3
and E4 show how Dirac impulses move in the domain.
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FIGURE 8.8: Initial conditions for the power grid example.
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FIGURE 8.9: t = 0.5. After the first switch at t = 0.4, the peak on E2 occurs
when E1 and E2 are disconnected. On E3 and E4 edges, no changes have

happened yet.
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FIGURE 8.10: t = 0.8. After the second switch at t = 0.7, switching trans-
former disconnects E1 and E3, therefore, peak on E3 occurs.
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FIGURE 8.11: PDE solutions for the power grid example with initial condi-
tion having a discontinuity on E1, on edges for the domain (t,x) ∈ [0,1.5]×
[0,0.5]. The switching times at t = 0.4 and t = 0.7. The plots on the left
show values for Ik whereas on the right for Vk for the edges Ek, k = 1,2,3,4,

(Ik = (u2
k), Vk = (u1

k) in discretized variables).
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FIGURE 8.12: The initial conditions for edges E1,E2,E3,E4 at time t = 0.
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FIGURE 8.13: At time t = 0.25. Switching has not happened yet, Dirac
impulse on E2 is due to the initial condition on E1. On E3 and E4 there
occurs no change as the information from E1 or E2 has not reached there

yet.
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FIGURE 8.14: At time t = 0.6. After the first switch at t = 0.4, the Dirac
impulses on E2 brought about by the initial condition and switch are shown.

Along E3, the information coming from E1 travels in after the switch.

8.3.3 The simplified circulatory system

In this section, the numerical methods are shown to numerically solve the coupled PDE
system (8.27) with the switched DAE (8.28) and (8.29) for the nonlinear blood flow example
by applying the Roe scheme to the PDE, [107, 125, 127], and explicit Euler method to the
swDAE. Even though this example includes a nonlinear system of equations, the same results
hold as in the linear case due to the linearization of the scheme. Moreover, the numerical
results obtained by MATLAB are demonstrated.



8.3. Numerical results 105

0 0.1 0.2 0.3 0.4 0.5

−100

−80

−60

−40

−20

0

x

t = 0.8, edge 1

I
V

0 0.1 0.2 0.3 0.4 0.5

−200

−150

−100

−50

0

50

100

150

200

x

t = 0.8, edge 2

I
V

0 0.1 0.2 0.3 0.4 0.5

−50

−40

−30

−20

−10

0

x

t = 0.8, edge 3

I
V

0 0.1 0.2 0.3 0.4 0.5

0

50

100

150

200

250

300

350

400

x

t = 0.8, edge 4

I
V

FIGURE 8.15: At time t = 0.8. After the second switch at t = 0.7, on E3
Dirac impulse is caused by the second switch and on E4 Dirac impulse is due

to E2.
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FIGURE 8.16: PDE solutions for the power grid example with initial con-
dition having a Dirac impulse on E1, on edges for the domain (t,x) ∈
[0,1.5]× [0,0.5]. The switching times at t = 0.4 and t = 0.7. The plots on the
left show values for Ik whereas on the right for Vk for the edges k = 1,2,3,4,

(Ik = (u2
k), Vk = (u1

k) in discretized variables).
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Roe approximation

First, the matrix (8.13) is linearized and intermediate states that satisfy coupling conditions
at coupling points are evaluated. To replace the Jacobian matrix of f(u) given in (8.13) with
a Roe matrix Ai+1/2, Roe’s linearization method is employed, [107, 125, 128]. The averaged
Roe state variables Ai+1/2 and Vi+1/2 are given by, [128],

Ai+1/2 =
Ai +Ai+1

2
, and Vi+1/2 =

Vi
√

Ai +Vi+1
√

Ai+1√
Ai +
√

Ai+1
,

where Ai, Vi and Ai+1, Vi+1 are variables in cells Ii and Ii+1, respectively. These averaged
variables then yield the Roe matrix Ai+1/2

Ai+1/2 =

(
0 1

c2
i+1/2−V 2

i+1/2 2Vi+1/2

)
, (8.37)

where ci+1/2 =
√

K
2ρA0

√
Ai+1/2. One of the properties that the Roe matrix (8.37) has, is being

diagonalizable, cf. [107]. Hence,

Ai+1/2 = Ri+1/2 ·Λi+1/2 ·R−1
i+1/2,

where Λi+1/2 is the diagonal matrix whose entries are the eigenvalues of the Roe matrix
Ai+1/2 and Ri+1/2 is the matrix whose columns are the corresponding right eigenvectors
to those eigenvalues of the Roe matrix Ai+1/2. From the Roe flux Fi+1/2, [84, 136], left
fluctuations are defined as

D−i+1/2(ui,ui+1) := Fi+1/2(ui,ui+1)− f(ui)

= ∑
λi<0

αiλir(i)

= Ri+1/2Λ
−
i+1/2R−1

i+1/2(ui+1−ui)

= Ri+1/2Λ
−
i+1/2~αi+1/2

where ~αi+1/2 is the wave strength, Λ
−
i+1/2 represents the diagonal matrix whose entries are

zeros and negative eigenvalues of the Roe matrix Ai+1/2 and Ri+1/2 is the matrix whose
columns are the corresponding right eigenvectors. Similarly, right fluctuations are defined as

D+
i+1/2(ui,ui+1) := f(ui+1)−Fi+1/2(ui,ui+1)

= ∑
λi>0

αiλir(i)

= Ri+1/2Λ
+
i+1/2R−1

i+1/2(ui+1−ui)

= Ri+1/2Λ
+
i+1/2~αi+1/2

with Λ
+
i+1/2 diagonal matrix whose entries are zeros and positive eigenvalues of Ai+1/2 and

Ri+1/2 is the matrix whose columns are the corresponding right eigenvectors. Assuming that
over the spatial domain x, the direction where x increases is considered positive, the term
D−i+1/2 contains all contributions of left-going waves at the interface xi+1/2, whereas D+

i+1/2
includes all right-going waves at xi+1/2.
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To find the intermediate states uI
pv, uI

aa at the coupling points, see Figure 8.7, the follow-
ing numerical conditions are imposed

D−N+1/2(uN ,uN+1) = F1/2(uN ,uN+1)− f(uN)
!
= 0, (8.38a)

D−1/2(u0,u1) = F1/2(u0,u1)− f(u0)
!
= 0, (8.38b)

which means that under the assumption that at the coupling points at x = b and x = a for
x ∈ [a,b], the backward flux must be equal to zero, as the backward-going waves cannot be
tracked at x = b and x = a. The state u0 in (8.38b) and uN+1 in (8.38a) can be considered
imaginary states. The intermediate states uI

pv and uI
aa can be connected to the right state uN+1

from (8.38a) and u1 from (8.38b) by the waves that are inward direction to those coupling
points. The conditions D−N+1/2 = 0 and D−1/2 = 0 mean α1 = 0, where ~α = (α1,α2)

>. So,
the wave strengths for the backward going waves are zero. Thus, regarding the conditions
(8.38), backward going waves from coupling points contribute the numerical conditions.

Numerical results

The spatial domains Ipv, Iaa to be discretized are assumed to be [0,2]. Equidistant mesh
points xk = (k−1/2)∆x, k = 1, . . . ,N , with ∆x = (b−a)/N, where N = 50. Two ghost cells
for each domain, Ipv

0 , Ipv
N+1, Iaa

0 and Iaa
N+1, are placed at left and right ends of the computational

domains Ipv, Iaa. As the scheme used is explicit, the CFL condition has to be satisfied. Thus,
C = 0.9. Furthermore, the time step ∆t is calculated according to C, and then the time
variable is updated; i.e., tn+1 = tn +∆t. The approximated solution of the PDE at time tn and
position x j is denoted by un

j = u(x j, tn), where

un
j =
(
(u>pv)

n
j
, (u>aa)

n
j

)>
with


(upv)

n
j =
(
(Apv)

n
j , (Qpv)

n
j , (Vpv)

n
j , (Ppv)

n
j

)>
,

(uaa)
n
j =
(
(Aaa)

n
j , (Qaa)

n
j , (Vaa)

n
j , (Paa)

n
j

)>
,

where A,Q,V and P stand for cross-sectional area, blood flow rate, velocity and pressure.
The velocity V is expressed as V = Q/A. Similarly, the approximated solution of the swDAE
at time tn is denoted by wn = w(tn), where wn =

(
vn

la,v
n
lv,q

n
mv,q

n
av, pn

la, pn
lv

)
, where v, q and p

represent volume, flow rate and pressure.
Depending on physiological parameters, [6, 28, 64], initial conditions for PDE are as-

signed as follows

(Qpv)
0
j = 150 ml/s, (Ppv)

0
j = 666.65 Pa,

(Qaa)
0
j = 50 ml/s, (Paa)

0
j = 1.3333×104 Pa,

from which (Apv)
0
j and (Aaa)

0
j are calculated

(Apv)
0
j = Av

0

(
(Ppv)

0
j −Pv

0 −Pv
ext

Kv
+1

)2

, (Aaa)
0
j = Aa

0

(
(Paa)

0
j −Pa

0 −Pa
ext

Ka
+1

)2

,

where Av
0 = π(rv

0)
2 cm2 with reference vessel radius rv

0 = 0.7 cm stands for reference cross-
sectional area for pulmonary venous, Aa

0 = π(ra
0)

2 cm2 with ra
0 = 1.4 cm reference cross-

sectional area for ascending aorta, Pv
0 = 666.65 Pa (≈ 5 mmHg) reference pressure for pul-

monary venous, Pa
0 = 1.3333×104 Pa (≈ 100 mmHg) reference pressure for ascending aorta,
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Pv
ext = 0, Pa

ext = 0 mmHg external pressures for pulmonary venous and ascending aorta, me-
chanical/geometrical constants Kv = 2(cv

0)
2
ρ, Ka = 2(ca

0)
2
ρ, ρ = 1.05× 103 kg/m3 density

of the blood and reference wave speeds cv
0 = 1.053,ca

0 = 5.11 m/s, [94]. Similarly, regarding
physical measurements of the heart, [115], initial conditions for swDAE are

vla = 50 ml, vlv = 80 ml,

qmv = 50 ml/s, qav = 100 ml/s,

pla = 10 mmHg, plv = 100 mmHg.

Taking into account physiological values of the flow rate in vivo, which have been mea-
sured using Doppler2 and two dimensional echocardiography3, [37, 54, 108], at the left end
of the pulmonary venous, Ipv

0 , the prescribed flow rate is taken as a sinusoidal wave, see
Figure 8.17,

(Qpv)0 = max(0,sin(2π(t−0.15)))200+ sin((t−0.1)4π)130.

The boundary condition at the right end of the pulmonary venous (Ppv)
n
N+1 is assigned

by the state variable pn
la of the swDAE as follows

(AI
pv)

n
= Av

0

(
pn

la−Pv
0 −Pv

ext

Kv
+1
)2

, (8.39)

where (AI
pv)

n is the cross-sectional area of the intermediate state uI
pv at xN+1/2 between cells

Ipv
N and Ipv

N+1, then (Apv)
n
N+1 is updated as

(Apv)
n
N+1 = 2(AI

pv)
n− (Apv)

n
N ,

and finally pressure law yields

(
Ppv
)n

N+1 = Pv
e +Pv

0 +Kv

(√
(Apv)

n
N+1√

Av
0
−1

)
.

Then ghost cells for
(
Qpv
)n

N+1 and
(
Vpv
)n

N+1 are filled

(Qpv)
n
N+1 = (Qpv)

n
N ,

(Vpv)
n
N+1 = (Qpv)

n
N/(Apv)

n
N .

To determine the output of the PDE over pulmonary venous (QI
pv)

n at xN+1/2, first define the
intermediate value for velocity (V I

pv)
n as

(V I
pv)

n
=

√
(Apv)

n
N(Qpv)

n
N+1 +

√
(Apv)

n
N+1(Qpv)

n
N

(Apv)
n
N

√
(Apv)

n
N+1 +(Apv)

n
N+1

√
(Apv)

n
N

, (8.40)

2Doppler echocardiography is a technique using Doppler ultrasonography to analyse functions of the heart,
[6]. Doppler ultrasonography is used to determine blood flow in vessels by measuring high-frequency sound
waves that echo moving tissues or blood, [119].

3Echocardiography is a procedure employing sound waves to produce images of the heart[9].
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which constitutes together with (AI
pv)

n given as in (8.39), the following Roe matrix

AI
pv =

[
0 1

(cI
v)

2− ((V I
pv)

n
)2 2(V I

pv)
n

]
, where cI

v =

√
Kv
√

(AI
pv)

n

2ρ
√

Av
0

, (8.41)

so that wave strength~αpv is defined as

~αpv :=
(
(αpv)1
(αpv)2

)
= R−1

pv
(
(upv)

n
N+1− (upv)

n
N

)
,

where Rpv is the matrix whose columns correspond to the eigenvalues of the matrix given in
(8.41), denote by Λpv the diagonal matrix whose entries are those eigenvalues. Let Λ−pv :=
min

(
02×2,Λpv

)
. Then the left fluctuation matrix D−pv at xN+1/2 is defined as

D−pv :=
(
(Dpv)1
(Dpv)2

)
= RpvΛ

−
pv~αpv.

Therefore, the numerical output (QI
pv)

n at xN+1/2 is formulated as

(QI
pv)

n
=
(
Qpv
)n

N +
(
Dpv
)

1.

Over the ascending aorta, the right boundary is assigned by the solution of the PDE in
the last physical cell

(Paa)
n
N+1 = (Paa)

n
N ,

while the left boundary condition (Qaa)
n
0 is determined by the swDAE according to the nu-

merical coupling condition explained in the previous section. To this end, the MATLAB
built-in function fsolve is employed which tries to find the solution y = (y1,y2)

> with the
given tolerance to the following problem: Let (uI

aa)
n be the intermediate state at x1/2 over

ascending aorta and let (AI
aa)

n
, (V I

aa)
n be the components of (uI

aa)
n that are

(AI
aa)

n
=

y1 +(Aaa)
n
1

2
, and (V I

aa)
n
=

√
y1(Qaa)

n
1 +
√
(Aaa)

n
1y2

√
y1(Aaa)

n
1 +
√

(Aaa)
n
1y1

,

which contribute to the following Roe matrix

AI
aa =

[
0 1

(cI
a)

2− (V I
aa)

2 2V I
aa

]
, where cI

a =

√
Ka
√

(AI
aa)

n

2ρ
√

Aa
0
, (8.42)

from which the wave strength~αaa is determined

~αaa :=
(
(αaa)1
(αaa)2

)
= R−1

aa
(
(uaa)

n
N+1−y

)
,

where Raa is the matrix whose columns correspond to the eigenvalues of the matrix given in
(8.42), denote by Λaa the diagonal matrix whose entries are those eigenvalues. Let Λ−aa :=
min(02×2,Λaa). Then left fluctuation matrix at x1/2 is

D−aa :=
(
(Daa)1
(Daa)2

)
= RaaΛ

−
aa~αaa.
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As the numerical coupling condition imposes, the following has to be satisfied

(Daa)1 + y2−qn+1
av

!
= 0,

(αaa)1
!
= 0.

As fsolve finds the solution y, ghost cells can be updated as follows

(Aaa)
n
0 = y1, (Qaa)

n
0 = y2, (Vaa)

n
0 =

(Qaa)
n
0

(Aaa)
n
0
,

(Paa)
n
0 = Pa

ext +Pa
0 +βa

(√
(Aaa)

n
0√

Aa
0
−1
)
,

(uaa)
n
N+1 = (uaa)

n
N .

The output
(
PI

aa
)n over ascending aorta is then evaluated as

(AI
aa)

n
=

(Aaa)
n
0 +(Aaa)

n
1

2
,

(PI
aa)

n = Pext +Pv
0 +βa

(√
(AI

aa)
n

√
Aa

0
−1
)
.

Next, the time variable is updated according to the CFL number C. Hence, |λ|max of the PDE
system has to be found at every iteration.

To update the PDE solution, the Roe scheme is used

(uη)
n+1
j = (uη)

n
j −

∆t
∆x

(
(Aη

j−1/2)
+
(
(uη)

n
j − (uη)

n
j−1

)
+ (Aη

j+1/2)
−(

(uη)
n
j+1− (uη)

n
j

))
,

(8.43)

with η = {pv,aa} for j = 1, . . . ,N, where Aη

j+1/2 is assumed to be the Roe matrix of the PDE
given by

Aη

j+1/2 =

[
0 1

(cξ)
2
j −
(
(V I

η) j
n
)2

2(V I
η) j

n

]
, (8.44)

where

(AI
η) j

n
=

(Aη)
n
j +(Aη)

n
j+1

2
, (cξ) j =

√
Kξ

√
(AI

η) j
n

2ρ

√
Aξ

0

,

(V I
η) j

n
=

√
(Aη)

n
j(Qη)

n
j+1 +

√
(Aη)

n
j+1(Qη)

n
j

(Aη)
n
j

√
(Aη)

n
j+1 +(Aη)

n
j+1

√
(Aη)

n
j

,

j = 1, . . . ,N−1,

for ξ = {v,a}. As a result, for each tn, |λ|max can be found as the eigenvalues of PDE at each
interface can be calculated by using the matrix Aη

j+1/2 where

Aη

j+1/2 = (Rη) j+1/2(Λη) j+1/2(R
−1
η ) j+1/2.

Moreover, increments of the solution

(Aη

j+1/2)
±(

(uη)
n
j+1− (uη)

n
j

)
= (Rη) j+1/2(Λη)

±
j+1/2(R

−1
η ) j+1/2

(
(uη)

n
j+1− (uη)

n
j

)
.
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can be computed to update the numerical soltuion. After finding |λ|max, the solution is up-
dated according to the Roe scheme (8.43) as ∆t is determined.

With the necessary input and sufficient information which will pass to the swDAE, now
the numerical method to solve the swDAE is explained. Given the time period T0 = 1 of one
cardiac cycle and time instances tn+1, before solving swDAE, time-varying elastances of the
left atrium Ela and left ventricle Elv are calculated, at each iteration tn+1

∗ := mod (tn+1,T0),
as

En+1
la = Elaaen+1

la +Elab,

En+1
lv = Elvaen+1

lv +Elvb,

where normalized time-varying elastances ela,elv are evaluated as in Formulae (8.23); and
values of Elaa, Elva Elab, Elvb are given as in Table 8.2. For the numerical results of Ela and
Elv, see Figure 8.18. After the values of elastances at tn+1

∗ are calculated, swDAE is solved
by passing the values En+1

la ,En+1
lv , (QI

pv)
n
,(PI

aa)
n and ∆t

vn+1
la = vn

la +∆t
(
(QI

pv)
n−qn

mv

)
,

vn+1
lv = vn

lv +∆t (qn
mv−qn

av) ,

pn+1
la = En+1

la vn+1
la ,

pn+1
lv = En+1

lv vn+1
lv ,

if pn+1
la > pn+1

lv holds

qn+1
mv = qn

mv +∆t
En+1

la vn+1
la +Rla pn+1

la

(
(QI

pv)
n−qn

mv
)

Lmv

− En+1
lv vn+1

lv +Rlv pn+1
lv (qn

mv−qn
av)+Rlaqn

mv

Lmv
,

else qn+1
mv = 0,

if pn+1
lv > (PI

aa)
n holds

qn+1
av = qv

av +∆t
En+1

lv vn+1
lv +Rlv pn+1

lv

(
qn+1

mv −qn
av
)

Lav

− Rlvqn
av +(PI

aa)
n +RaaCaa

(
(PI

aa)
n− (PI

aa)
n−1
)

Lav

else qn+1
av = 0.

The scheme runs as explained above until tmax. The results are shown in Figures 8.19,
8.20, 8.21, 8.22, 8.23, 8.24. In Figure 8.19, the numerical results for the volumes of the left
atrium and ventricle are demonstrated while in Figure 8.20 for pressures of those are dis-
played. Once the value of the aortic pressure is exceed by the value of the left ventricular
pressure, blood starts being ejecting into the aorta by the left ventricle. Blood ejection con-
tinues until the pressure value of the aorta is higher than that of the left ventricle, see Figure
8.21. The scheme is able to produce the well-known feature of the aortic valve, which is
blood flowing backwards while valve closure resulting from interactions between the pres-
sure gradient and mechanical properties of tissues, see 8.21, [67]. In Figure 8.22, it is also
reproduced that pressure increases at the closure of the aortic valve. In Figure 8.24, the nega-
tive flow in the pulmonary venous is caused by the atrial contraction. In the results for blood
flow rate through aortic valve, an unusual and unphysical behavior is observed, which is a
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kink immediately after closure of the aortic valve, see Figure 8.25. Once the aortic valve
closes for the first time in one cardiac cycle, it instantenously keeps opening and closing
again. To address and analyse this problem, in the next section, a much simpler system is
studied, which still has the same framework.
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FIGURE 8.17: Prescribed left boundary data for the pulmonary venous, flow
rate (Qpv)
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FIGURE 8.18: Elastances for the left atrium, Ela, and left ventricle, Elv, over
two cardiac cycles with cycle period T0 = 1 second.

8.3.4 Coupling a simpler system

In this section, the reader is referred to Appendix to get an intuitive grasp of the reasoning of
this section. In the numerical results of blood flow example in Section 8.3.3, certain behav-
iors, which resemble Zeno behavior as briefly explained in Appendix, have been observed.



114 Chapter 8. Coupling linear PDE systems with switched DAE systems

6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8

30

40

50

60

70

80

90

100

t

m
l

Volumes of the left heart chambers

vla
vlv

FIGURE 8.19: Volumes of the left atrium and left ventricle.
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FIGURE 8.20: Pressure values of the left atrium and left ventricle.
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FIGURE 8.21: Blood flow rate through mitral valve and aortic valve. While
one cardiac valve in the left heart is open, the other valve remains closed.
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FIGURE 8.22: Pressure (mmHg) and flow rate (ml/s) values of the ascend-
ing aorta at its left end.
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FIGURE 8.23: Pressure (mmHg) values of the left ventricle and ascending
aorta at the coupling point.
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FIGURE 8.25: Unphysical behavior during cardiac cycle. After the aortic
valve shuts, it keeps opening and closing instantaneously.

To investigate whether there is indeed such way of behaving in results of blood flow exam-
ple, in this section, much simpler systems are coupled, which still have the same structure,
inputs and outputs as blood flow model given in Section 8.1.3. Furthermore, there is one
valve between these systems that opens and shuts according to the pressure difference on
both sides.

Consider the following switched DAE

Eσẇ(t) = Hσw(t)+Bσz(t), t ≥ t0, (8.45)

with two modes m1 and m2 where coefficient matrices are as follows

E1 =
[

1 0
0 1

]
, H1 =

[
0 −1
1 0

]
, B1 =

[
0
−1
]
,

E2 =
[

1 0
0 0

]
, H2 =

[
0 −1
0 1

]
, B2 =

[
0
0

]
,

(8.46)

respectively. The state vector and input of the system (8.45) are, respectively, w = (p,q)>

and z := P̂; with the initial condition w := (p,q)> = w(t0), and output of the system (8.45)
yD := q, is coupled to the PDE system

ut +

(
0 1
1 0

)
ux = 0, t ≥ t0, x ∈ [a,∞), (8.47)

where u = (P,Q)>, at its left boundary. Further, the output of (8.47) is yP := P(·,a+). For
the swDAE (8.45), switching between modes m1 and m2 occurs according to the pressure
difference; i.e., for p > P̂, mode m1 is active and for p ≤ P̂, mode m2 is active. In other
words, when p > P̂, the valve is open; while p≤ P̂ holds, the valve is closed.

From Assumption (H’-5), only one boundary condition has to be prescribed for (8.47)

Pau(t,a+) = ba(t) where Pa ∈ R1×2 .

Assume ba(t) = Q(t,a+); so, Pa =
[
0 1

]
. Hence, the coupling between swDAE and PDE

systems is constructed via ba(t) = yD and q = yP.
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In the following, the PDE system (8.47) is reduced to algebraic conditions by considering
it in its characteristic variables (8.18) with (8.19) (where c0 = 1) only at the coupling point
x = a

P̂(t) = v1(t)+ v2(t), (8.48)

Q̂(t) =−v1(t)+ v2(t),

where P̂ :=P(·,a), Q̂ :=Q(·,a), v1 := v−(·,a) and v2 := v+(·,a) with v− and v+ representing
left- and right going waves and the boundary condition in terms of characteristic variables is
formulated as follows

Mv(·,a) =
[
−1 1

][v−(·,a)
v+(·,a)

]
= Q(t,a),

where M = PaR and R is given in (8.19). In other words, the boundary condition can be
found as

v+(·,a) = v−(·,a)+Q(·,a).

Hence, the unknown P̂ in (8.48) can be written in terms of the known variables as

P̂ = 2v1 +ba, (8.49)

where ba = yD.
By inserting the equality (8.49) into the swDAE system (8.45), the coefficient matrices

H1, B1 and the input z take the form

H1 =
[ 0 −1

1 −1

]
, B1 =

[
0
−2
]
, z = v1, (8.50)

whereas the rest of the system (8.45) stays as it is given in (8.46).
In the following, the solution to the ODE system from (8.45) with matrices E1,H1,B1 is

given and the initial condition is assumed as y = (p,0) since as p ≤ P̂ holds, say at time ts,
the valve shuts and immediately p(t+s ) > P̂(t+s ) follows again due to P̂(ts) > P̂(t+s ). Hence,
switching from m1 to m2 then back to m1 happens at a time instance.

The eigenvalues λ1, λ2 and corresponding eigenvectors r1, r2 of the matrix H1 in (8.50)
are

λ1,2 =−1
2 ∓ i

√
3

2 , r1 =
( 1
−λ1

)
, r2 =

( 1
−λ2

)
.

The solution w̃ to the ODE system from (8.45) with matrices and input as in (8.50) is as
follows

w̃(t) = 2v1
i
√

3

(
λ2(1−eλ1(t−t0))−λ1(1−eλ2(t−t0))

eλ1(t−t0)−eλ2(t−t0)

)
− p

i
√

3

(
−λ2eλ1(t−t0)+λ1eλ2(t−t0)

eλ1(t−t0)−eλ2(t−t0)

)
= (p−2v1)e−

1
2 (t−t0)

 cos
(√

3
2 (t−t0)

)
+

1√
3

sin
(√

3
2 (t−t0)

)
2√
3

sin
(√

3
2 (t−t0)

)
+2v1

(
1
0

)
.

The times t∗k , k = 1,2, . . . , can now be found such that p(t∗k ) = P̂(t∗k ) holds. From (8.49),
p(t∗i ) = 2v1 + q(t∗i ) is solved, which gives t∗k = kt∗ where t∗ = 2

√
3π

9 . Therefore, there is no
Zeno behavior as jump times t∗k , k = 1,2, . . . , remain the same and there is no accumulation.
Each jump time kt∗, k = 1,2, . . . , becomes an initial time t0,k for time intervals [kt∗,(k+1)t∗]
for the ODE system. Therefore, the solution w̃k = (pk,qk)

> to the ODE system for t ∈
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[kt∗,(k+1)t∗], k = 1,2, . . . , can be written as

yk(t) = (pk−2v1)e−
1
2 (t−t0,k) Γ+2v1

(
1
0

)
,

with

Γ :=

 cos
(√

3
2 (t−t0,k)

)
+

1√
3

sin
(√

3
2 (t−t0,k)

)
2√
3

sin
(√

3
2 (t−t0,k)

)
 ,

where pk = pk(t0,k) for t ∈ [kt∗,(k+1)t∗], k = 1,2, . . . . To be more precise, p0 := p0(0) :=
p(0) is given and pk = pk−1(kt∗), k = 1,2,3, . . . . By induction, the value of the solution
w̃k ((k+1)t∗) at jump times can be found as well

pk ((k+1)t∗) = (pk−2v1) e−
1
2 t∗+2v1,

qk ((k+1)t∗) = (pk−2v1) e−
1
2 t∗ ,

with which, in the following, size of jumps, call it Jk, is evaluated in each time interval. By
using iteration on pk, pk is rewritten in terms of p0

pk = pk−1(kt∗)

= (p0−2v1) e−
k
2 t∗+2v1.

Furthermore, with the formula for pk(t) expressed in terms of p0, pk(t) and qk(t) can be
rewritten in terms of p0 as following

pk(t) = (p0−2v1)e−
1
2 t
[
cos(τt)+

1√
3

sin(τt)
]
+2v1,

qk(t) = 2√
3
(p0−2v1)e−

1
2 t sin(τt) ,

where

τt =
√

3
2 (t− kt∗) .

The total area under the solution plot in Figure 8.26a gives the total flux Qtotal entering
the PDE domain at x = a. Let Aq,k denote the area under the graph over each time interval
[kt∗,(k+1)t∗], k = 1,2, . . . . Then

Aq,0 = (p0−2v1)

(
1− e−

1
2 t∗
)
.

Similarly, Aq,1 can be found as follows

Aq,1 = (p0−2v1)

(
1− e−

1
2 t∗
)

e−
1
2 t∗ .

As a result, Aq,k can be formulated as

Aq,k = Aq,0 e−
1
2 kt∗ .
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The total flux flowing is then formulated as

Qtotal =
∞

∑
k=0

Aq,k

= p0−2v1.

Hence, blood flow in the system is conserved.
The size of difference in pressure values, J0, is evaluated in the first time interval [0, t∗]

J0 = p0− p0(t∗)

= (p0−2v1)

(
1− e−

t∗
2

)
,

(8.51)

where t∗ = 2
√

3π

9 .
For the next time interval [t∗,2t∗], the difference of pressure values, J1, is

J1 = p1− p1(2t∗)

= e−
1
2 t∗J0,

where J0 is given in (8.51). Similarly, for J2, the expression is as follows

J2 = p2− p2(3t∗)

= e−
1
2 2t∗J0,

where J0 is given in (8.51).
By iteration on Jk for k = 1,2, . . ., a general formula for the jump size Jk in [kt∗,(k+1)t∗]

is found in terms of J0 as

Jk = e−
1
2 kt∗J0, (8.52)

where J0 is given in (8.51). From (8.52), difference of pressures on both sides of the valve
converges to 0. As a result, the Zeno-like behavior in the numerical results for the blood flow
example in Section 8.3.3 reflects the outcome of the Riemann problem, not the Zeno behavior,
at every time instance when the valve shuts as the pressure value for the PDE system starts
decreasing, which makes the pressure value for the switched DAE system get larger than the
one of the PDE.

Remark 8.11

If, instead, one considers the ODE equations to model the opening and closure of valves,
which are given below, the Zeno behaviour, which is present in the coupled nonlinear hy-
perbolic PDE-DAE model for the circulatory system, would be cured. The valve opening
and closure rates are respectively determined by instantaneous pressure difference ∆p on
both sides of the valve and the state υ of the valve as, [95],

d
dt υ = (1−υ) Kop(∆p−∆pop), if ∆p > ∆pop,
d
dt υ = υ Kcl(∆p−∆pcl), if ∆p > ∆pcl,

where Kop, Kcl are the valve opening and closure coefficients and ∆pop, ∆pcl are treshold
pressure differences for opening and closing, respectively. With these ODEs, one can
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model the lumped parameter model of the circulatory system as an ODE system instead
of DAEs. This model including only ODEs for the valve motion suits the framework
studied in [17].

Numerical results

In this section, it is explained how the coupled system in Section 8.3.4 is solved numerically
for blood flow rate, QN , and difference in pressure values, ∆PN , using MATLAB. The results
for ∆PN and QN are shown in Figure 8.25b and Figure 8.26b along with the analytic solutions
of ∆P and Q in Figure 8.25a and Figure 8.26a, respectively.

The spatial domain [a,b] for the PDE system is considered to be I = [0,1] and is parti-
tioned into N = 50 computational cells. Furthermore, two ghost cells are placed at left- and
right ends of the computational spatial domain I; namely I0 and IN+1, respectively. The time
variable t is discretized and updated as tn+1 = tn+∆t according to the CFL number C which
is chosen to be 1. Initial time t0 = 0 and maximum time tmax until which the numerical com-
putations run is taken as 17. Denote by un

j = u(x j, tn) the approximated solution at time tn

and position x j of the PDE system (8.47) such that un
j =
(

Pn
j ,Q

n
j

)>
. Furthermore, denote by

wn = w(tn) the approximated solution at time tn of the switched DAE (8.45) with coefficient
matrices given in (8.46) such that wn = (pn,qn)>. At each time step, the discretized PDE
system (8.47) is decomposed via change of coordinate vn

j = R−1un
j , where

R =

(
1 1
−1 1

)
, such that A = RΛR−1 with A =

(
0 1
1 0

)
,

into its characteristic variables vn
j =
(
(v−)n

j ,(v
+)

n
j

)>
with left- and right going waves (v−)n

j

and (v+)n
j , respectively, where Pn

j = (v−)n
j +(v+)n

j and Qn
j = −(v−)n

j +(v+)n
j and solve this

decomposed PDE numerically for the next time step tn+1. The decomposed PDE system is
solved by using the upwind scheme,(

v−
)n+1

j =
(
v−
)n

j +
∆t
∆x

((
v−
)n

j+1−
(
v−
)n

j

)
, for j = 1,2, . . . ,N ,(

v+
)n+1

j =
(
v+
)n

j −
∆t
∆x

((
v+
)n

j −
(
v+
)n

j−1

)
, for j = 1,2, . . . ,N ,

and the swDAE system is solved by using implicit Euler. After the PDE is solved for its
characteristic variables vn+1

j , the unknown un+1
j of the original PDE system is updated via

inverse coordinate change un+1
j = Rvn+1

j .
The initial conditions for the switched DAE and PDE are given as follows

(p0,q0) = (1,0) ,(
P0

j ,Q
0
j
)
= (0, 0.9) , ∀ j = 0,1, . . . ,N +1 ,

respectively, so that the initial pressure value p0 of the swDAE is larger than the initial pres-
sure value P0

0 of the PDE in order for the valve to open. If, as an initial condition, p0 were
smaller than P0

0 , the valve between two systems would never open as it opens and shuts
according to the pressure difference.

Boundary conditions at I0 and IN+1 are assigned on characteristic varaibles (v+)n
0 and

(v−)n
N+1, respectively, as (

v+
)n

0 = qn +
(
v−
)n

1 ,(
v−
)n

N+1 =
(
v−
)n

N ,
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where qn is the output of the swDAE at time tn.
To update solutions (v−)n+1

0 and (v+)n+1
N+1 in ghost cells I0 and IN+1, the following assign-

ment is numerically performed (
v−
)n+1

0 =
(
v−
)n+1

1 ,(
v+
)n+1

N+1 =
(
v+
)n+1

N .

At each iteration after the PDE is solved numerically, Pn+1
0 is assigned to the swDAE as

an input. Then, with the given input, the swDAE system is solved

pn+1 = pn +∆t (−qn) ,{
qn+1 = qn +∆t

(
pn+1−Pn+1

0

)
, if pn+1 > Pn+1

0 ,

qn+1 = 0, if pn+1 ≤ Pn+1
0 .

Then the time variable tn is updated for the next time step and iterated until the maximum
time tmax is reached.

The numerical results support the analytical ones for this simple system. It also explains
why there occurs a kink in numerical results of flow rate in circulation system example.
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FIGURE 8.26: Analytical and numerical difference in pressure values with
initial conditions p(0) = 1, P(0,0) = 0.9, tmax = 17. Analytical and numer-

ical results coincide with each other.
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FIGURE 8.27: Analytical and numerical solution for blood flow q(t), initial
condition q(0) = 0, tmax = 17. Analytical and numerical results coincide

with each other.
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Chapter 9

Appendix

9.1 Zeno behavior

In this section, the definitions of a hybrid system and Zeno behavior, which can arise in
these systems, are briefly explained. In the last decade, Zeno behavior has been of great
importance as its occurence can be troublesome from analytical and numerical points of
view, [4, 74, 113, 143].

height

gx1

ground

ball

(a) Setup of a ball (red) dropped from height
x1 onto rigid surface.

ẋ2 = −g
x1 > 0

bounce
x1 = 0
x2 ≤ 0

x+2 := −κx−2
GuardReset

ẋ1 = x2

(b) Bouncing ball model as a hybrid system
with a guard expression and a reset map.

FIGURE 9.1: Bouncing ball on a rigid surface showing Zeno behavior.

If a continuous and discrete behavior interacts with each other in a dynamical system,
then such systems are called hybrid systems, [68, 87]. Roughly speaking, physical systems
that have modes, transitions and switches can be modeled as hybrid systems, [23, 26]. In
hybrid systems, if discrete transitions occur infinitely many times in finite time, this notion
is called Zeno behavior, [26, 87]. However, in physical world it is infeasible that any system
has Zeno behavior. The following is a classical example of this Zeno behavior.

Example 9.1: Bouncing ball

A ball which is dropped from some height onto the rigid surface with or without velocity
shows the Zeno behavior. In Figure 9.1a, the setup of of the ball dropped from height x1
is shown. Denote by x2 and g velocity of the ball and gravity of Earth, respectively. The
hybrid system for bouncing ball model, see Figure 9.1b, is

ẋ = Ax+B,
y = Cx,

(9.1)
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FIGURE 9.2: Simulation of the bouncing ball that is dropped from height
x1 = 1 onto a rigid surface, the Zeno-time τ∞ = 8.5833.

where x is the unknown vector and y is output of the system

x =

[
x1
x2

]
, A =

[
0 1
0 0

]
, B =

[
0
−g

]
, C =

[
1 0

]
,

with the guard expression [
1 0

]
x = 0 ∧

[
0 1

]
x≤ 0,

and with the reset map at bounces

x :=
[

1 0
0 −κ

]
x ,

where κ ∈ [0,1] is the restitution coefficient.
Solving the system (9.1) for the output y yields

y = x1(t0)+ x2(t− t0)− g
2(t− t0)2,

and for κ ∈ [0,1), the time τn at which the n-th bounce happens is as follows

τn = t0 + τ1 +
2x2(τ1)

g

n

∑
i=1

κ
i−1, (9.2)

where t0 is the initial time and τ1 is the first bounce time

τ1 = t0 +
x2(t0)+

√
x2

2(t0)+2gx1(t0)
g .
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From (9.2), τ∞ := limn→∞ τn < ∞. Hence, beyond τ∞, the hybrid system is undefined and
simulation crashes.

The vertical position of the ball is shown in Figure 9.2. As the ball bounces off the
ground, time intervals for the ball to bounce off again get smaller and smaller although it
never stops bouncing. Hence, the ball bounces infinitely many times in finite time, which
is called the Zeno time. Denote by τ∞ the Zeno time. For this bouncing ball example,

τ∞ =

√
8x1
g

1−κ
−
√

2x1

g
,

for x2 = 0.

9.1.1 Numerical results of bouncing ball

For the numerical scheme, denote by yn and vn the position and velocity variables, respec-
tively. For the spatial discretization, explicit Euler scheme is employed

yn+1 = yn +∆tẏn,

where vn = ẏn from equations of motions ∆t > 0 is the time step, which is assumed to be
∆t = 0.01.

If the ball has not touched the ground yet; i.e., yn+1 > 0, implicit Euler step is applied for
the velocity

vn+1 = vn +∆t(−g), (9.3)

where g is the gravitational acceleration an assumed to be g = 9.8.
The initial time is t = 0, number of iteration is N = 1000, final time tmax = N∆t, the

restituion coefficient is assumed to be κ= 0.9, and initial conditions are given as y0 = 1, v0 =
0.

Once the ball touches the ground; i.e., yn+1 ≤ 0,

∆v =−(1+κ)vn,

and if ∆v >−g; i.e., the ground cannot pull, then the velocity vn+1 at tn+1 is updated as

vn+1 = vn +∆v,

if ∆v >−g does not hold, then the implicit Euler step (9.3) applies to the velocity variable.
Figure 9.2 shows the result of a ball that is dropped from a height x1 = 1 comes to rest in

finite amount of time, which is the Zeno-time τ∞ = 8.5833, with infinitely many bounces.

9.2 Algorithm for the power grid example

Below, the algorithm for the example – power grid with switching transformer – is provided.

Algorithm 1 Coupled power grid
Input: t0, tmax, xmin , xmax, N, C, u y, ts1 , ts2 , CD1 , CD2 , vG, parameters Output:

u, y
1: discretize x,
2: ∆x← (xmax− xmin)/N
3: λmax← 0
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4:
(
I1 V1 I2 V2 I3 V3 I4 V4

)
← u

5:
(
z1 i12 i13 v12 v13 z24 z34

)
← y

6: function GHOSTCELLS&EIGENVALUES(Ik, Vk, λmax) Output: u, w, y, Rk, λk
P, λk

N ,
λmax

7: for k← 1 to 4 do
8: create ghost cells for each Ek, copy values from neighboring cells
9:

[
Dk Rk

]
← eigenvalues & eigenvectors of Ak-matrix

10: λk
N ← negative & λk

P← positive eigenvalue
11: λmax←max(λmax, |λk|)
12: wk←

[
wk1
wk2

]
← inverse coordinate change & uk←

[
Ik
Vk

]
13: end for
14: update u, w
15: end function

16: procedure COUPLEDSCHEME(swDAE,PDE)
17: while t < tmax do
18: ∆t← C(∆x/λmax)
19: t← t +∆t

20: function BOUNDARYCONDITIONS(z1, w) Output: I2, I3, I4
21: w21(N +2)← 2w41(1)−w22(N +2)
22: w42(1)← 2w22(N +2)−w41(1)
23: w41(N +2)←−2/3w32(N +2)+1/3w42(N +2)
24: w31(N +2)← 1/3w32(N +2)−2/3w42(N +2)
25: w12(1)← z1 +w11(1)
26: I4(1)← w41(1)+w42(1)
27: I2(N+2)← w21(N +2)+w22(N +2)
28: I3(N+2)← w31(N +2)+w32(N +2)
29: I4(N+2)← w41(N +2)+w42(N +2)
30: update Ik, wk for k = 1, . . . ,4
31: end function

32: function IMPLICITEULER(y, t, ts1 , ts2 , ∆t, vG, w12, I2, I3, I4, CD1 , CD2 , parameters)
Output: y, w, Voltage

33: z1← vG

34: z24← R24(I4(1)− I2(N +2))
35: z34← R34(I3(N +2)+ I4(N +2))
36: if t < ts1 or t > ts2 then
37: v12← v12+2w12(N+1)−2w12(N+2)

1+∆t
38: w11(N +2)← w12(N +1)− v12
39: i12← w12(N +1)+w11(N +2)
40: ip← i13
41: i13← 0
42: v13← L13

i13−ip
∆t

43: update y
44: Voltage←CD1y
45: else
46: ip← i12
47: i12← 0
48: v12← L12

i12−ip
∆t
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49: vp← v13

50: v13← vp+2w3−2w4
1+∆t

51: w11(N +2)← w12(N +1)− v13
52: i13← w12(N +1)+w11(N +2)
53: update y
54: Voltage←CD2y
55: end if
56: update w with w11(N +2)
57: end function

58: procedure BOUNDARYCONDITIONS(Voltage, w ) Output: w
59: w22(1)← Voltage(1) +w21(1)
60: w32(1)← Voltage(3) +w31(1)
61: update w with w22(1), w32(1)
62: end procedure

63: function UPWIND(w, x, ∆t, ∆x, λk
N , λk

P) Output: uk, wk
64: for k← 1 to 4 do
65: j← 1 to length(x)
66: wk1( j+1)← wk1( j)−λk

N
∆t
∆x(wk1( j+1)−wk1( j))

67: j← 2 to length(x)+1
68: wk2( j+1)← wk2( j)−λk

P
∆t
∆x(wk2( j)−wk2( j−1))

69: wk←
[

wk1
wk2

]
& uk ←

[
Ik
Vk

]
← Rk

[
wk1( j−1)

wk2( j)

]
70: end for
71: end function

72: end while
73: end procedure

9.3 Algorithm for the circulatory system example

Below, the algorithm for the example – simplified circulatory system in the left heart is given.

Algorithm 2 Coupled circulatory system
Input: t0, tmax, xmin, xmax, N, C, u, y, parameters Output: u, y

1:
(
upv uaa

)
← u

2: discretize x
3: ∆x← (xmax− xmin)/N
4: λmax← 0
5: create ghost cells for Ipv, Iaa, copy values from neighboring cells
6: while t < tmax do

Pulmonary venous
7: function BOUNDARYCONDITIONS&OUTPUT(upv, pla, parameters) Output: upv,

QI
pv

8: solve for AI
pv, then update Apv(N +2) and Ppv(N +2)

9: Qpv(N +2)← Qpv(N +1), update Vpv(N +2), and V I
pv

10: construct AI
pv-matrix,

[
D R

]
← eigenvalues & eigenvectors of A

11: find~αpv, D−pv and QI
pv at xN+3/2

12: update upv with boundary values
13: end function
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Ascending aorta
14: function BOUNDARYCONDITIONS&OUTPUT(uaa, qav, parameters) Output: uaa,

PI
aa

15: update values in Iaa
0 by fsolve via~αaa, D−aa

16: find AI
aa and PI

aa
17: uaa(N +2)← uaa(N +1)
18: update uaa with boundary values
19: end function

20: function FLUCTUATIONS(upv, uaa, parameters) Output: λmax, D−pv, D+
pv, D−aa,

D+
aa

21: construct Apv- and Aaa-matrices via AI
pv, V I

pv, AI
aa, V I

aa at each interface
22: for i← 1 to N +2 do
23:

[
Dpv Rpv

]
,
[
Daa Raa

]
← eigenvalues & eigenvectors of AI

pv, AI
aa

24: λpv←max(0,λpv) & λaa←max(0,λaa)
25: find~αpv, ~αaa, D−pv, D+

pv D−aa, D+
aa

26: end for
27: λmax←max(λpv,λaa)
28: end function

29: ∆t← C∆x/λmax
30: t← t +∆t
31: update upv and uaa by Roe scheme & u←

(
upv uaa

)
Left heart
32: function (t, y, u, PI

aa, parameters) Output: y
33: t∗← t mod T0
34: Ela← F (t∗,ela), Elv← F (t∗,elv)
35: update vla, vlv
36: pla← Elavla, plv← Elvvlv
37: if pla > plv then
38: update qmv
39: else
40: qmv← 0
41: end if
42: if plv > PI

aa then
43: update qav
44: else
45: qav← 0
46: end if
47: update y
48: end function

49: end while
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