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Zusammenfassung

Die hier vorliegende Arbeit beschäftigt sich mit der Modellierung von Festkörper-
phasenübergängen, im Besonderen mit der Martensittransformation. Die beiden Al-
lotrope Austenit und Martensit sind für technische Anwendungen wichtig. Während
Austenit duktil und deshalb im Bauteilinneren erwünscht ist, ist es die härtere Mar-
tensitphase an der Oberfläche. In Fertigungsprozessen wird dieser Phasenübergang
durch schnelles Kühlen hervorgerufen. So ist der Martensitgehalt in Oberflächennä-
he höher als im Bauteilinneren. Typischerweise bilden spanende Fertigungsverfahren,
so wie Drehen und Fräsen, und die Wärmebehandlung zum Oberflächenhärten des
Bauteils eine Prozesskette. Das heißt sie werden nacheinander durchgeführt. Ein Pro-
zess, dessen Ziel es ist einen dieser Prozessschritte zu eliminieren, ist das kryogene
Drehen. Hierbei wird der Bauteiloberfläche ein kryogener Kühlschmierstoff zugeführt.
Als Kühlschmierstoff wird hier zum Beispiel kryogener CO2-Schnee verwendet (Heep,
Bickert und Abele, 2019; Mayer, Kirsch und Aurich, 2014). Der kryogene Drehprozess
vereint somit das Drehen und die normalerweise nachgestellte Wärmebehandlung.

Für den Modellierungsaspekt dieser Arbeit ist die Kontinuumsmechanik von entschei-
dender Bedeutung. Um eine theoretische Grundlage zu schaffen, werden zunächst
kinematische Beziehungen eingeführt. Somit ist es möglich anhand gegebender Ver-
schiebungen den Verschiebungsgradienten zu berechnen, der als Vorraussetzung für
Verzerrungsmaße dient. Mit Hilfe von Bilanzgleichungen können anhand von Kraft-
und Momentengleichgewicht, oder genau anhand von Implus- und Drehimpulsgleich-
gewicht die Feldgleichungen hergeleitet werden. Weiterhin wird das Konzept der Span-
nung motiviert. Zur weiteren Information dienen die Werke von Gurtin (1982), sowie
Becker und Gross (2013).

Allotropie ist eine Eigenschaft von Kristallen. Eisen, aber auch Stahl, weisen in tech-
nischen Anwendungen auf der Miktrostrukturebene eine Vielzahl von Allotropen auf.
Die Martensittransformation ist aufgrund der Nanostruktur des Martensits von ent-
scheidender Bedeutung (Bhadeshia, 2017). Diese Transformation ist diffusionslos. Sie
verläuft dadurch im Vergleich zu diffusionsbehafteten Phasenübergängen schnell und
lokalisiert. Hierbei ordnen sich Atome auf einer neuen Gitterstruktur an. Die Atom-
bewegung sind auf interatomare Distanzen beschränkt. Dadurch ist es möglich, die
Transformation mit Hilfe einer Orientierungsbeziehung, die das untransformierte und
das transformierte Gitter ins Verhältnis setzt, zu beschreiben. Eine Übersicht findet
sich in Bhadeshia (2017) und in Kelly (2012). Die phänomenologische Theorie der
martensitischen Kristallstruktur (PTMC), welche von Bowles und Mackenzie (1954)
und Wechsler, Lieberman und Read (1953) zeitgleich entwickelt wurde, erklärt die
Diskrepanz zwischen der Orientierungsbeziehung und der undeformierten Habitus-
ebene. Die Triebkräfte der Martensittransformation sind zum Einen die Dehnung und
externe Last, da bei der Transformation eine Dehnung eingeführt wird. Weiterhin ist
die chemische freie Energie temperaturabhängig. Die Martensittransformation erfolgt,
wenn durch eine Umwandlung die freie Energie, bestehend aus einem elastischen und
einem chemischen Teil, minimiert werden kann.
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Mit Hilfe der Phasenfeldmethode können Phasenübergänge modelliert werden. Die
Methode ist nahezu ubiquitär und wurde zur Modellierung von Erstarrungsvorgängen
(Wang und Urbassek, 2012), Strukturoptimierung (Muench, Gierden und Wagner,
2018), Bruchvorgängen (Kuhn und Müller, 2010; Miehe, Welschinger und Hofacker,
2010), Weißschen Domänen (Schrade, Mueller, Xu und Gross, 2007; Dornisch, Schra-
de, Xu, Keip und Müller, 2019; Nadgir, Dornisch, Müller und Keip, 2019), Fluide
(Diewald u. a., 2018; Heida, 2013), aber auch der Martensittransformation eingesetzt.
Als Referenz dienen hier die Werke von Wang und Khachaturyan (1997) und Schmitt,
Wang und Urbassek (2013b). Der Ordnungsparameter dient zur Identifikation der
allotropen Phasen. Mit einem skalaren Ordnungsparameter können zwei Allotrope,
Austenit und Martensit, dargestellt werden. Mit Hilfe eines Vektors als Ordnungs-
parameter kann ein multivariantes Phasenfeld beschrieben werden, in dem mehrere
Martensitvarianten berücksichtigt werden können. Die Phasenfeldmethode beruht auf
Minimierung der freien Energie. Unter Einhalten des ersten Hauptsatzes der Ther-
modynamik können mit Hilfe der Clausius-Duhem-Ungleichung die Feldgleichungen
für das Phasenfeld und das mechanische Problem hergeleitet werden. Die Kopplung
beider Gleichungen geschieht durch die Einführung einer Transformationsdehnung. Im
multivarianten Fall ist zudem die Interpolation entscheidend. Hier wird eine Methode
vorgestellt, in der eine skalare Interpolationsfunktion zum Interpolieren von Größen
in einem multivarianten Phasenfeld dient. Als Ergebnis zeigt sich, dass eine lineare
Interpolation nur bei maximal zwei Phasen uneingeschrängt zulässig ist. Im Gegensatz
zum Khachaturyanmodell kann sie nicht im Voigt/Taylor-Modell verwendet werden,
da so die Ableitungen zweiter Ordnung verschwinden. Abhilfe schafft zum Beispiel
eine kubische Interpolation.

Die oben angesprochene chemische Energie ist temperaturabhängig. Deswegen wird
hier eine temperaturabhängige Modellierung vorgestellt. Zunächst wird der Modellie-
rung von Schmitt, Wang und Urbassek (2013b) im Khachaturyanmodell gefolgt. Die
normierte chemische Energie kann durch ein Landau-Polynom beschrieben werden.
Mit Hilfe von Molekulardynamik-Simulationen können dessen Parameter tempera-
turabhängig identifiziert werden. Im Folgenden werden die Parameter des Landau-
Polynoms als Funktion der Temperatur beschrieben. Mit Hilfe von Konfigurations-
kräften kann die Geschwindigkeit der Phasentransformation ermittelt werden. Das
Modell wurde mit Hilfe der Finiten Elemente Methode gelöst. Es wurde in FEAP
implementiert. Numerische Beispiele dienen zur Illustration der Eigenschaften des
Modells.

Um mehrere Martensitorientierungsvarianten berücksichtigen zu können, kann ein
multivariantes Phasenfeldmodell verwendet werden. Die Methode nach Khachaturyan
beschreibt die effektiven Materialparameter in Abhängigkeit der Phasenzusammen-
setzung. Somit ist die Wahl des Konstitutivgesetzes direkt von der Phase abhängig,
sodass zur numerischen Lösung für jedes Materialgesetz indivduelle Residuen und da-
zugehörige Tangenten aufgestellt werden müssen. Eine Generalisierung ist kompliziert.
Einen Ausweg bietet hier die Voigt/Taylor-Methode. Hier wird die elastische Ener-
gie homogenisiert, sodass eine Schnittstelle für Konstitutivgesetze in den einzelnen
Phasen geschaffen wird. Ein Nachteil dieser Methode ist allerdings, dass für jede Pha-
se ein Materialgesetz gelöst werden muss. Eine Parallelisierung ist jedoch trivial. Die
Beschreibung des Modells erfolgt für eine beliebige Anzahl an Phasen. Dank der Unab-
hängigkeit der Materialgesetze erfolgt die Implementierung in FEAP und in Zébulon
generalisiert. Weiterhin wurde die in Schmitt, Wang und Urbassek (2013b) vorgestellte
Methode um eine beliebige Anzahl an Phasen erweitert und es wurde eine Schnitt-
stelle für eine beliebige Interpolationsfunktion geschaffen. Anhand von numerischen
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Beispielen werden die oben genannten Methoden verglichen. In einigen Fällen liefern
beide Methoden die gleichen Endzustände. In der Literatur wird im Khachaturyan-
Modell die lineare Interpolation verwendet. Dies kann zu unphysikalischen oder zu
falschen Ergebnissen führen. Eine Lösung ist das Verwenden einer nichtlinearen In-
terpolationsmethode. Dadurch, dass die Interpolation der elastische Energie in dem
Voigt/Taylor-Modell und in dem Khachaturyan-Modell unterschiedlich erfolgt, erge-
ben sich unterschiedliche Geschwindigkeiten der Phasentransformation.



vi

Abstract

This thesis is concerned with the modeling of the solid-solid phase transformation,
such as the martensitic transformation. The allotropes austenite and martensite are
important for industry applications. As a result of its ductility, austenite is desired
in the bulk, as opposed to martensite, which desired in the near surface region. The
phase field method is used to model the phase transformation by minimizing the free
energy. It consists of a mechanical part, due to elastic strain and a chemical part, due
to the martensitic transformation. The latter is temperature dependent. Therefore,
a temperature dependent separation potential is presented here. To accommodate
multiple orientation variants, a multivariant phase field model is employed. Using the
Khachaturyan approach, the effective material parameters can be used to describe
a constitutive model. This however, renders the nodal residual vector and elemental
tangent matrix directly dependent on the phase, making a generalization complicated.
An easier approach is the use of the Voigt/Taylor homogenization, in which the energy
and their derivatives are interpolated creating an interface for material law of the
individual phases.
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1 Introduction

1.1 Motivation

Allotropes exhibit different material properties. A well known example for an allotrope
is martensite. In contrast to its austenitic parent phase, martensite is less ductile, but
less susceptible to force and wear, making it desired in the near surface region. Heat
treatment is a process, where, due to rapid cooling, a phase transformation from
the austenitic to the martensitic phase is induced. Typically, machining and surface
hardening are subsequential steps in the manufacturing process. However, cryogenic
turning is a process which unifies these subsequential steps into a single one. A sub
zero cooling agent is applied to the cut region, where the tool acts on the workpiece.
Therefore, not only the temperature, but as an addition to heat treatment a load is
applied to the workpiece.

The martensitic transformation is a process which is dependent on the temperature,
but also on the load state, as the transformation introduces a strain. This transfor-
mation strain is crucial for the phase transformation. The temperature and the strain
interact through the chemical and the mechanical energy, where the phase transfor-
mation is driven by the minimization of the free energy. Therefore in this work, a
temperature dependent separation potential is developed.

Phase field models are a versatile tool for a variety of interfacial problems. They
allow to regularize the sharp interface by the introduction of a phase field variable or
order parameter, which identifies the local chemical composition of the material. This
simplifies the solution process, as there is no need to track the interface. Often, in
literature, a Khachaturyan approach is presented. While it is flexible, as it allows to
define a material law in dependence of phase dependent effective material parameters,
it comes with the disadvantage that introducing a new material requires to change the
numerical implementation of the phase field model. Furthermore, the material law
chosen in the Khachaturyan approach needs to comply with each individual phase,
e.g., the constitutive model is a unified material law for all the phases. The approach is
in contrast to homogenization schemes, such as the Voigt/Taylor and the Reuss/Sachs
model. Here, a phase dependent mechanical energy is interpolated. This allows to
choose individual material laws within the individual phases. Additionally, the nu-
merical implementation can be generalized to introduce an interface to material laws.
That way it is possible to choose the material law of the individual phases freely. A
Voigt/Taylor approach is presented, which is compared to a Khachaturyan approach.
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1.2 Outline

The second chapter of this thesis is concerned with the theory of continuum mechanics.
Here, kinematic equations relating the displacements with the strain measures are
established. The linearization to small strain is introduced. Balance equations help to
identify the governing field equations. Furthermore, the concept of stress is introduced.

The third chapter demonstrates a brief literature review of the martensite transfor-
mation. Common orientation relationships are examined, relating the parent and the
transformed child phase geometrically. The Wechsler-Lieberman-Read (WLR), and
the Bowles-Mackenzie (BM) theories of martensite transformation are discussed. They
both explain the mismatch of the shape strain, exhibiting an invariant plane strain,
and the strain derived from the orientation relationship. Together, they form the
phenomenological theory of martensite transformation. The knowledge of the trans-
formation strain is crucial for the martensitic transformation. The driving forces, such
as the temperature, strain, and stress, are laid out. The martensitic transformation
depends on energy minimization, leading to an interplay of the chemical energy due to
the phase transformation, and of the mechanical energy because of the transformation
strain and the load situation.

In the forth chapter the phase field method is introduced. The model equations for a
phase field with a single variant and a multivariant phase field are presented. The en-
ergetic setup is crucial for the martensitic transformation. Additionally, interpolation
methods in a multivariant phase field are outlined, where an interpolation method
for the vector valued order parameter is presented. This method allows to use scalar
interpolation functions, simplifying subsequent implementations.

The fifth chapter is concerned with a temperature dependent separation potential.
With the use of data from molecular dynamics simulations, parameters for a tem-
perature dependent chemical potential are identified. A function interpolating those
parameters based on energetic considerations is proposed and the parameters of this
function are determined. As an additional result, the equilibrium temperature can
be determined, such that a temperature dependent energetic landscape can be formu-
lated. The implementation in a finite element scheme is discussed. The kinetics of
the phase transformation are compared to molecular dynamics simulation and to the
literature.

The development of a homogenization approach in a phase field model for martensitic
transformation is presented in the sixth chapter. Here, the advantages and disadvan-
tages are discussed. The Voigt/Taylor model presented in this chapter generalizes
the phase field by homogenization of the elastic energy. Therefore, as an advantage
already implemented material routines can be used in that framework with the dis-
advantage that a constitutive law needs to be solved for every phase individually.
However, parallelization can mitigate this issue to some extend. Here, the Voigt/Tay-
lor approach stands in contrast to the Khachaturyan model, where a single unified
material law is presented by interpolating the effective material parameters. In order
to illustrate the findings, numerical examples are given. The Voigt/Taylor approach
is compared to the Khachaturyan approach.

Finally, the last chapter draws conclusions from the results in the previous two chap-
ters. A brief outlook on further research is given.
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2 Continuum Mechanics

In this work, the martensitic transformation in metastable austenitic steels is the
main focus. While there are a variety of atomistic simulations studying this problem,
modeling larger length and time scales by atomisitc approaches is neither feasible
nor effective. Therefore, the present approach relies on the theory of continuum
mechanics. The characteristic length scales for material structures that are relevant
for the martensitic transformations are in the µm range. For instance the grain size
of an average grain in iron is about 20µm. This is larger by five orders of magnitude
than atomistic length scales which are typically in the rang of 10 - 100 nm.

Consequently, a continuum model is justified. In continuum mechanics a deformable,
material body B is regarded as a continuum, such that its mass occupies a volume,
an area or a line continuously. Therefore, a continuum can be subdivided indefinitely;
the smallest subset on such a body is a material point or a particle. Typically, con-
tinuum mechanics can be divided into kinematics, describing a material body B and
its particles in motion; into deformation and a strain measure, describing the local
deformation due to the relative motion of nearby particles; into the material law, re-
lating the strain measure to stresses, heat energy and entropy; and into the balance
equations, which describe the local force and momentum equilibrium. While kine-
matics and the balance equations are independent of the problem, the material law is
problem specific. For more informations, the textbooks of Gurtin (1982), and Becker
and Gross (2013) prove as excellent resources.
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R

∂R

χt(X)

R0

∂R0

S0

S

X

x

Figure 2.1: A material body B in motion assumes the reference
configuration R0 at time t0 and in the actual configuration R at time t.

2.1 Kinematics

A continuum body B is a set of material points or particles which, in their entirety,
provide the body with local physical properties. A particle of the body B is denoted by
P. The body can be subdivided into a subregion S which, mathematically speaking,
are subsets of B. Due to the motion, the body B occupies several distinct regions or
configurations in Euclidean space R3 and time t. The motion of B is a time dependent
map χ

0
: B × R → R3 such that

x = χ
0
(P, t) , (2.1)

where x ∈ R3 is the location vector pointing from the fixed origin 0 to the point p which
is occupied by the particle P at time t. The vector x is usually represented by its
coordinates in an orthonormal basis coordinate system. Due to the motion the body
occupies several distinct time dependent configurations. The initial, or undeformed
configuration is the reference configuration R0 of B at a fixed time t = t0. A point
in the reference configuration is denoted by P , where X is its respective location
vector. The body assumes several intermediate configurations, eventually leading to
the current configuration R at time t. The map χ

0
is assumed bijective for all times t,

e.g. only one particle occupies one distinct point at a particular point in time. A
subregion S of B is transformed using the map χ

0
by transforming all its particles

into the current subregion S =
{︂
p|p = χ

0
(P, t)∀P ∈ S

}︂
.

The bijectviity of χ
0

allows to define the Lagrangian description of the motion (see
Figure 2.1) from the reference to the actual configuration χ : R0 → R such that

x = χ (X, t) = χ
t
(X) , where χ (X, t) = χ

0

(︂
χ−1
0

(X, t0), t
)︂

. (2.2)

Let EI and ei be the right-handed orthonormal bases with a fixed origin 0 for their
respective location vectors in the reference X and the current configuration x. The
location vector X of a certain particle P in the reference configuration R0 is constant
over time and therefore acts as an identifier for the respective particle. For the current
configuration however, the location vector x is subject to change with respect to time t.
The trajectory or pathline of a point occupying X in the reference configuration is a
function of time χ(t,X). The location vectors of particles in R0 and R in terms of
their respective bases read

X = XIE
I and x = xie

i, (2.3)
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where the Einstein summation convention applies. Transforming an orthogonal coor-
dinate system with a conformal map yields another orthogonal coordinate system. A
conformal map is angle and orientation conserving. The map χt : R0 → R has to be
direction conserving in order to enforce the impenetrability of matter, however it is
not necessarily angle conserving as shear deformations may apply. In the following a
capital symbol or index identifies a measure in the reference configuration, whereas a
small symbol or index refers to a measure in the current configuration. Assuming 2nd

order continuity of the map χ with respect to time t, the velocity and the acceleration
of a particle read

v =
dχ

t
(P)

dt
= ẋ and a =

d2χ
t
(P)

dt2
=

dv

dt
= v̇ = ẍ. (2.4)

Further, the map χt is assumed to be bijective, such that no overlapping of the material
points occur for any intermediate and actual configuration. Consider an infinitesimal
line element dX in the reference configuration, the total differential of (2.2) reads

dx =
∂χ

t
(X)

∂X
dX = F∼ dX. (2.5)

In the following, the distinction between material X and spatial x coordinates is of
importance. In this work, material derivatives, that means derivatives with respect
to X are denoted with uper case initial letters such as “Div” and “Grad” whereas
spatial derivatives, or derivatives with respect to x are denoted with lower case initial
letters such as “div” and “grad”. Additionally (·),I with an uppercase index denotes
a material derivative ∂

∂XI
(·), where (·),i denotes a spatial derivative ∂

∂xi
(·). The

deformation gradient F∼ is defined as the material or Lagrangian derivative of the map
χ
t
:

F∼ =
∂χ(X, t)

∂X
= FiJei ⊗ EJ where FiJ =

∂xi(X, t)

∂XJ
= xi,J . (2.6)

It is a two field tensor, meaning it lives both in the references configuration R0 and
the current configuration R and it has a two field tensor basis, which involves both
ei and EJ . To be precise, the deformation gradient F∼ transforms infinitesimal line
elements dX from the reference into the current configuration R. As the map χ(t,X)

is bijective, or invertible, the inverse F∼
−1 exists. It can be identified as the map that

transforms line elements dx from the current configuration back into the reference
configuration, i.e.

dX = F∼
−1dx =

∂X

∂x
dx. (2.7)

The inverse of the deformation gradient reads

F∼
−1 =

∂X(x)

∂x(t)
or F−1

Ij =
∂XI(X)

∂xj
= XI,j . (2.8)

Using F∼ , in addition to the deformation of an infinitesimal line element 2.5, it is
possible to calculate the deformation of an infinitesimal area element dA and an
infinitesimal volume element dv, reading

da = nda = JF∼
−1NdA = JF∼

−1dA, and (2.9)
dv = detF∼ dv = Jdv. (2.10)

Where equation (2.9) is referred to as Nanson’s formula. The deformation gradient F∼
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RR0
F∼

R∼
V∼

U∼ R∼

Figure 2.2: Using polar decomposition the deformation gradient F∼
can be split up into a symmetric right stretch tensor U∼ or a symmetric

left stretch tensor V∼ and a rotation tensor R∼ .

is positive definite, such that the transformation from R0 to R is direction preserving.
Assuming that no negative volumes appear, the Jacobi determinant J is positive
definite

J = detF∼ > 0. (2.11)

If no deformation has occurred, the deformation gradient F∼ is equal to the two field
identity tensor I∼ = δiJei⊗EJ , where δiJ denotes the Kroenecker symbol. In that case
F∼ maps a point in the reference configuration R0 to itself in the actual configuration R:
x = I∼X. Further, the deformation gradient accounts for both rigid body rotation and
stretching. It can be shown that F∼ can be polar decomposed into a proper orthogonal
rotation tensor R∼ , and either a symmetric left stretch tensor V∼ or a symmetric right
stretch tensor U∼ . See figure 2.2 for a schematic representation.

F∼ = R∼U∼ = V∼ R∼ (2.12)

As the rotation tensor R∼ is proper orthogonal, R∼
⊤R∼ = I∼ applies. In order to define

strain measures, the rotation tensor is not of importance. This allows to define strain
measures as functions of the left and the right stretch tensors, or as functions of
multiplying the deformations gradient F∼ with its transpose F∼

⊤, as the rotational
part then cancels out. The right Cauchy-Green tensor is defined as

C∼ = F∼
⊤F∼ = U∼U∼ = CIJEI ⊗ EJ or CIJ = FkIFkJ . (2.13)

A look at the right Cauchy-Green tensor shows that it is rooted in the reference config-
uration, or before the rotation R∼ is applied. That means it describes the deformation
in the undeformed state. The left Cauchy-Green tensor is defined as

B∼ = F∼F∼
⊤ = V∼ V∼ = Bijei ⊗ ej or Bij = FiKFjK . (2.14)

Again, this tensor has its basis in the actual configuration, describing the deformation
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in the deformed state, or after the rotation R∼ is applied (2.12). Both of the Cauchy-
Green stretch tensors are symmetric and objective

C∼
′ = F∼

′⊤F∼
′ = F∼

⊤Q
∼
⊤Q

∼
F∼ = F∼

TF∼ = C∼ , and (2.15)

B∼
′ = F∼

′F∼
′⊤ = Q

∼
B∼ Q

∼
⊤, (2.16)

where Q
∼

is a transformation matrix. Common strain measures are the Green-Lagrange
E∼ and the Euler-Almansi strain γ

∼
tensor, which are based on the Green-Cauchy strain

tensors

E∼ =
1

2
(C∼ − I∼) , (2.17)

γ
∼

=
1

2

(︁
I∼ −B∼

−1
)︁
. (2.18)

These strain tensors are commonly used to describe the deformation in a large or finite
strain setting.

2.1.1 Linear theory

For a small or infinitesimal deformation it is useful to simplify the strain measures by
linearizing. Let the displacement vector u = uiei = UIEI be the difference between
the position of a particle in the reference and the current configuration

u = x−X. (2.19)

By introducing a displacement gradient

H∼ = Gradu = F∼ − I∼ or HiJ =
∂ui
∂XJ

= ui,J , (2.20)

the Green-Lagrange strain tensor can be expressed as

E∼ =
1

2

(︂
H∼ +H∼

⊤ +H∼
⊤H∼

)︂
, (2.21)

where the superscript (·)⊤ denotes the transpose. The verbose notation of the Green-
Lagrange strain tensor E∼ reads

EIJ =
1

2

(︃
∂uI
∂XJ

+
∂uJ
∂XI

+
∂uk
∂XI

∂uk
∂XJ

)︃
. (2.22)

In linear theory, the deformations are assumed to be small. Therefore, the displace-
ment gradient is considered infinitesimal HiJ = ui,J → 0, such that its square uk,Iuk,J
is small of higher order. Using the basic kinematic relation x = u+X (Eq. 2.19) the
displacement gradient can be expressed

HiJ = ui,J = ui,kxk,J = ui,k (δkJ + uk,J)
linear
= ui,j . (2.23)

That means that in linear theory the material and the spatial derivative are equiva-
lent, no distinction between the reference and the actual configuration is made. For
instance, both the Green-Lagrange strain tensor E∼ and Euler-Almansi strain tensor
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γ
∼

coincide in that case.

ε∼ = E∼

⃓⃓⃓⃓
lin.

= γ
∼

⃓⃓⃓⃓
lin.

, where εij =
1

2
(ui,j + uj,i) (2.24)

The linearized or infinitesimal strain tensor ε∼ is symmetric. Neglecting the distinction
between the reference and the actual configuration from this point on, only small
indices are used.

2.2 Balance Equations

Balance equations are fundamental to continuum mechanics, constituting the behavior
of material continua. Here they are formulated in current configuration. Consider a
field q(t, x), which is distributed smoothly across a region R in the material body
B with the outer boundary of the region ∂R and the corresponding outer normal
vector n. The field Q be may be a scalar, vector, tensor or a tensor of higher order,
then let the field quantity be Q(t) =

∫︁
R q(t, x)dv. The general form of the balance

law is given by

Q̇(t) =
d

dt

[︃∫︂
R
q(t, x)dv

]︃
=

∫︂
∂R

q · nda+

∫︂
R
(p+ s) dv, (2.25)

relating the change Q̇(t) with the flux q of a across the boundary ∂R into the region R,
the internal production p and the external source or sink s of the field quantity a.

2.2.1 Mass Conservation

The total mass m in a system is constant when assuming no flux of mass across the
boundary, and with no internal volumetric production or external source. With ρ
being the mass density the integral form of the mass balance over a material body R
is

ṁ =
d

dt

∫︂
R
ρdv = 0. (2.26)

Reynolds transport theorem relates the change of an integral quantity to the local
change. Therefore the above mentioned mass balance can be rewritten by applying
the material time derivative and subsequently the divergence theorem as

d

dt

∫︂
R
ρdv =

∫︂
R

(︃
dρ

dt
+ ρ (div v)

)︃
dv = 0, (2.27)

where v is the velocity. Since the control volume V can be chosen arbitrarily, the use
of the localization theorem yields the local form of the mass balance

∂ρ

∂t
+ ρ (div v) = 0, (2.28)

which may be simplified further using the chain rule

∂ρ

∂t
+ div (ρv) = 0. (2.29)
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2.2.2 Linear and Angular Momentum Balance

Euler’s balance laws of linear and angular momentum are essential for continuum
mechanic calculations. The balance of linear momentum is analogous to Newton’s
second law of motion, stating that the change of a body’s momentum is equal to the
force acting on it. Consider a infinitesimal volume element dv with mass density ρ and
the velocity v. Assume two types of external forces, the contact force or traction t per
unit area which is acting on the boundary, and an external body force density f per
unit mass. The presence of a contact moment or body moment are neglected. Using
the general form of the balance law in integral form, given in (2.25), the integral form
of the linear momentum balance is established

d

dt

∫︂
R
vdm =

∫︂
R
fdm+

∫︂
∂R

tda. (2.30)

The rate of change of the momentum is equal to the flux of momentum or traction
t across the boundary ∂V and the external production f . The local form of the
linear momentum balance can be derived in the same matter as the local form of the
mass balance with the use of Reynolds transport theorem. Additionally, applying the
mass balance in the local form (2.28), another representation of the linear momentum
balance is obtained ∫︂

R
ρadv =

∫︂
R
ρf +

∫︂
R
tdadv, (2.31)

where the vector a represents the acceleration. In a similar fashion, the angular
momentum balance can be derived. Consider a volume element dv with an arbitrary
location x with a velocity v

d

dt

∫︂
R
x× ρvdv =

∫︂
R
x× ρfdv +

∫︂
∂R

x× tda. (2.32)

The change of the angular momentum with respect to time is equal to the moment
on the boundary of the region and within the region. Again, the above mentioned
integral form of the angular momentum balance can be simplified by using Reynolds
transport theorem and mass conservation (2.28)∫︂

R
x× ρadv =

∫︂
R
x× ρfdv +

∫︂
∂R

x× tda. (2.33)

2.2.3 Stress

Until here, the kinematics, the motion of a body, its intrications in terms of deforma-
tion and balance equations have been discussed. So far, no assumption of the cause
of this motion has been made. Here, the concept of stress is discussed. Figure 2.3
shows a region of a body with its volume R cut in half. It is divided into two mutually
disjoint subregions R1 and R2 that do not overlap, separated by an arbitrary smooth
cut surface ∂A. The boundary of the region R is ∂R, and it is made up of the outer
boundaries of the subregions ∂R1 and ∂R2. In short, the following equations hold:
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t+

t−

n

−n

R1

∂R1

∂A

∂A

R2

∂R2

Figure 2.3: The region R is split up into two parts, R1 and R2. The
cut surface ∂A is subject to the tractions t+ and t−.

R = R1 ∪R2 and R1 ∩R2 = ∅, (2.34)
∂R1 = ∂R∗

1 ∪ ∂A and ∂R∗
1 ∩ ∂A = ∅, (2.35)

∂R2 = ∂R∗
2 ∪ ∂A and ∂R∗

2 ∩ ∂A = ∅, (2.36)
∂R = (∂R1 ∪ ∂R2)/∂A. (2.37)

The boundary ∂R is subject to external traction and the region R is subject to body
forces. Corresponding points of the cut surface ∂A between the partial regions R1

and R2 have opposite normal vectors n and −n, respectively. The tractions t+ and
t− are continous on the cut surface ∂A. The linear momentum balance (2.31) holds
for the region R. Likewise the linear momentum balance holds for both subregions
R1 and R2. The difference of the linear momentum balance between the region R
and the sum of the subregions R1 and R2 lies in the surface integral of the tractions
t− and t+ over the cut surface ∂A. The localization theorem yields Cauchy’s lemma,
which is equivalent to Newton’s third law, stating that the tractions are oposed and
of equal magnitude

t− = t+. (2.38)

Consider a tetrahedron as shown in Figure 2.4. Three of its triangular surfaces A1,
A2 and A3 lie within the x1, the x2 and x3 plane and are perpendicular to the corre-
sponding axes. The inclined face A is subject to a surface traction t, while the other
triangular faces are subject to the surface tractions t1, t2, and t3. Volumetric body
forces f may be present in the volume of the tetrahedron. Using Cauchys lemma, the
linear momentum balance is∫︂

R
aρdv =

∫︂
R
fρdv +

∫︂
A
tda−

∫︂
A1

t1da−
∫︂
A2

t2da−
∫︂
A3

t3da. (2.39)
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Figure 2.4: The Cauchy tetrahedron consists of the inclined face A
subject to the surface traction t and three faces Ai perpendicular to
the respective coordinate axis xi, subject to the surface tractions ti.

Let the tetrahedron shrink down to an infinitesimal volume. While the surface integals
decrease with the length scale squared, the volume integrals on the left side of the
above equation decrease with the length scale cubed. Therefore volumetric and inertia
forces may be neglected, leading to

t =
Ai

A
ti. (2.40)

Cauchy’s integral theorem states that the traction vector t can be related to the
Cauchy stress tensor σ∼ uniquely by projecting it into direction of the normal vector
n. In other words, the Cauchy stress tensor maps the normal vector of an infinitesimal
area element da to the traction vector t

t = σ∼
⊤n. (2.41)

In order to identify the components of the Cauchy stress tensor σ∼ , it is useful to regard
a infinitesimal cubic volume element with its faces oriented in the axis direction of
the Cartesian coordinate system e1, e2, e3. The normal vectors of the faces coincide
ni = ei and the corresponding traction vectors are

ti = σ∼
⊤ni = σ∼

⊤ei. (2.42)

where the components can be identified with

tij = σ∼
⊤ei · ej = σij and ti =

⎡⎣ σi1
σi2
σi3

⎤⎦ . (2.43)

This allows to represent the stress tensor in the form

σ∼ = σijei ⊗ ej =

⎡⎣ σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

⎤⎦ . (2.44)

Using Cauchy’s integral theorem on the traction vector t (2.41), applying Greens
identity on the boundary term, and with mass conservation established (2.28), the
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Figure 2.5: Infinitesimal volume element with components of the
stress tensor σ∼ on the positive faces

local form of the equlibrium balance in (2.31) can be expressed as

ρa = ρf + div σ∼ . (2.45)

In view of the linear momentum balance (2.31) and the localization theorem, the local
form of the angular momentum balance of the Cauchy tetrahedron can be written with
regard of Cauchy’s integral theorem (2.41)

x,i × ti = ei ×
(︂
σ∼
⊤ej
)︂
= 0. (2.46)

The components σij and σji are equal and constitute the symmetry of the Cauchy
stress tensor

σ∼ = σ∼
⊤. (2.47)
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3 Martensite Transformation

Iron and steels form crystal structures. That means they form an ordered crystal
lattice. Allotropy is the occurrence of different physical manifestations tantamount
to the crystal structure of a chemical material. The different crystal structures are
allotropes, which exhibit different mechanical and chemical properties as shown by
Yardley and Payton (2014), Kelly (2012), and Strangwood (2012). The different
material properties are of importance in technical processes, including but not lim-
ited to, surface hardening (Brinksmeier, Garbrecht, and Meyer, 2008; Brinksmeier,
Garbrecht, Meyer, and Dong, 2008), cryogenic turning (Aurich et al., 2014; Mayer,
Skorupski, Smaga, Eifler, and Aurich, 2014), casting (Yamagata, 2005), and welding
(Deng, 2009). Martensite is interesting for technical application as it remains the only
nanostructured material that can be produced in bulk (Bhadeshia, 2017).

Martensite forms from the austenitic parent phase in a process called martensitic
transformation. This transformation stands in contrast to diffusive processes, (Fick,
1855a; Fick, 1855b), such as the formation of ferrite, bainite and pearlite, which base
the transformation on random particle movement and therefore change the makeup of
the material locally (Bhadeshia, 2019). A diffusionless transformation is displacive due
to small and orderly atom motion reordering atom bonds while retaining the chemical
components. The martensitic transformation belongs to the latter. The atom move-
ment is restricted to interatomic distances1, resulting in a very fast transformation.
Typical durations are in the order of magnitude 10−7 s. Modes of transformation
can be grouped in ones, that do not change the shape and structure of the crystal,
so called shuffle transformations, and those transformations, termed lattice-distortive
which change the crystal lattice. The focus in this work lies on lattice-distortive trans-
formations. They are not dominated by shuffles and induce a dilation (expansion or
contraction) or a shear (Christian, Olson, and Cohen, 1995; Cohen, Olson, and Clapp,
1979). The martensitic transformation produces an eigenstrain due to the lattice mis-
match, and can be induced by a combination of quenching and stress. Furthermore,
dislocations introduced to the model can drive the nucleation of martensite (Zhang,
Jin, and Khachaturyan, 2007; Olson and Cohen, 1986). The interested reader is re-
ferred to the works of Porter, Easterling, and Sherif (2009), Vvedensky (“Diffusionless
transformations”), Banerjee and Mukhopadhyay (2010), and Bhadeshia (2017) for
more information on the martensitic transformation.

In this work three effects of the formation of the martensite phase are of importance.
First, the martensitic transformation distorts the lattice, resulting in a mismatch be-
tween the crystal lattice of the parent austenitic phase and the transformed marten-
sitic phase. This mismatch can be described by the orientation relationship. Histor-
ically, the transformation mechanism proposed by Bain and Dunkirk, 1924 remains
the case with the fewest possible ways of transformation. The arrangement of parti-
cles or atoms in a crystal lattice is typically described by the smallest non-repeating
unit called the unit cell and the lattice parameters (West, 1999). Figure 3.1 depicts

1distances smaller than the crystal constant
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Figure 3.1: Two fcc unit cells contain a distorted bcc unit cell. The
austenite lattice is depicted on the left. The bcc lattice after the
martensitic transformation is depicted on the right. The Nishiyama-
Wasserman OR is equivalent to transforming using the Bain OR and
then applying a rotation of 9.7356° about the [110]fcc direction. The
habit plane is drawn in grey. The Arrows indicate the direction of

atom movement.

Table 3.1: Common orientation relationship

OR plane direction var. angle
Bain (001)fcc || (001)bcc [100]fcc || [110]bcc 3 -
NW (111)fcc || (110)bcc [110]fcc || [111]bcc 12 9.7356° about [110]fcc
KS (111)fcc || (110)bcc [101]fcc || [001]bcc 24 9.7356° about [110]fcc and

5.2644° about [111]fcc

two face-centered cubic (fcc) austenite cells, containing a distorted body-centered
cubic (bcc) martensite cell. The Bain orientation relationship transforms from the
austenitic to the martensitic phase by contraction in z-direction and expansion in x
and y-direction, obtaining an undistorted bcc unit cell. Due to the symmetry, there
are 3 possible ways of transforming. Even though being the case with the fewest ways
of transformation, or orientation variants, the Bain orientation ship is not observed
experimentally (Sandoval, Urbassek, and Entel, 2009; Kundu, Verma, and Sharma,
2012). Common orientation relationships have been identified for the transformation
fcc to bcc. A comprehensive overview is given in Kelly (2012). Other orientation re-
lationships include the Nishiyama-Wasserman (NW) (Nishiyama, 1934; Wassermann,
1935), the Kurdjumov-Sachs (KS) (Kurdjumow and Sachs, 1930), Greninger-Troiano
(Greninger and Troiano, 1949) and the Headley-Brooks (Headley and Brooks, 2002).
The mismatch can be described by matching preseverd directions and planes in the fcc
cell to those in the bcc cell. All orientation relationships can be derived by a full body
rotation of the Bain orientation relationship, see, e.g., Koumatos and Muehlemann
(2017), Wechsler, Lieberman, and Read (1953), Bowles and Mackenzie (1954), and
Mackenzie and Bowles (1954). Table 3.1 shows common orientation relationships and
their relation to one another.

Secondly, the martensitic transformation is driven by temperature. Quenching or
rapid undercooling favors the martensitic phase. A characteristic variable is the
martensite start temperature which strongly depends on the composition of the ma-
terial. It can be observed experimentally or predicted using molecular dynamic simu-
lations. Often weighted linear interpolation is employed when discussing the alloyed
elements (Wang, Wolk, and Zwaag, 2000). The temperature dependency is typically



3.1. Lattice Mismatch and Shape Strain 15

described with a chemical potential assumed to be proportional to a Landau polyno-
mial.

Thirdly the martensitic transformation is influenced by stress. Nucleation can be both
strain induced and stress assisted, which has been observed experimentally (Patel and
Cohen, 1953). Dislocations and inhomogeneities can favor the martensitic transfor-
mation. The elastic energy is of importance here. Transforming from the austenitic to
the martensitic phase can be energetically more stable. The combination of chemical
and elastic potential is crucial for understanding this phase transformation (Olson
and Cohen, 1976a; Olson and Cohen, 1976b; Olson and Cohen, 1976c).

3.1 Lattice Mismatch and Shape Strain

As discussed above the martensitic transformation leads to a lattice mismatch. The
correspondence matches unrotated directions and planes before and after the trans-
formation. The motion of single atoms is not tracked, rather the positions that corre-
spond the untransformed lattice to the transformed one. While the presence of shuffles
has to be admitted, they do not account for a shape change during the transformation
and are therefore ignored (Christian, 1997). The lattice mismatch can be described by
the Bain strain tensor (Koumatos and Muehlemann, 2017; Wechsler, Lieberman, and
Read, 1953). The Bain orientation relationship is obtained by assuming a so called
least atom movement. Each atom in the austenitic lattice is matched with the closest
atom in the martensitic lattice. The corresponding transformation matrices for the
Bain orientation relationship read

B∼ 1 =

⎡⎣ β 0 0
0 α 0
0 0 α

⎤⎦ , B∼ 2 =

⎡⎣ α 0 0
0 β 0
0 0 α

⎤⎦ , and B∼ 3 =

⎡⎣ α 0 0
0 α 0
0 0 β

⎤⎦ , (3.1)

where the parameters α and β are determined by the ratios of the lattice constants

α =
√
2
a

a0
and β =

c

a0
=

a

a0
. (3.2)

In a more general case of a body centered tetragonal (bct) lattice, c ≥ a. However,
here the bcc lattice is considered, therefore c = a. The transformation for B∼ 3 can be
derived by comparing lengths before the transformation in the fcc lattice to ones in the
transformed bcc lattice (Figure 3.1). The z-direction is contracted by a

a0
. The edge

in the [100]fcc-direction has the length a0 and is transformed to the [110]bcc-direction
with a length of

√
2a thus obtaining α. Conversely, the [110]fcc-direction with a length

of
√
2
2 a is transformed to the [100]fcc-direction. The three different transformation

matrices B∼ i correspond to the three modes of transformation in the Bain model. In
view of Equations (2.20), (2.21) and after linearizing according to Equation (2.23)
the transformation strain tensor or eigenstrain for the Bain orientation relationship is
obtained

ε∼
∗
3 =

⎡⎢⎣
√
2 a
a0

− 1 0 0

0
√
2 a
a0

− 1 0

0 0 a−a0
a0

⎤⎥⎦ . (3.3)
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Analogously, the strain tensors ε∼
∗
1 and ε∼

∗
2 can be identified. Transformations within

orientation relationships other than the Bain can be described by rotating the trans-
formation matrices. They are of the form

T∼ = R∼B∼ , (3.4)

where R∼ is a proper rotation matrix. Considering the NW orientation relationship as
an example (see Figure 3.1), the shear or gliding in [112]fcc direction in the (111)fcc
habit plane corresponds to a rotation of 9.7356° about [11̄0] after transforming with
the Bain transformation tensor

T∼ = R∼ ([11̄0], 9.7356°)B∼ 3. (3.5)

The circumstance above motivates the presence of an unrotated plane and an unro-
tated direction m. More precisely, this planes normal n maps onto itself

λnn = cof(T∼n) and λmm = T∼m. (3.6)

Therefore, the vectors n and m are eigenvectors of the transformation and can be
identified with the orientation relationship. Any transformation T∼ of the form given
in equation (3.5) obtains the right crystal structure. Experimentally however, a con-
served plane, the habit plane, is observed (Kim and Miyazaki, 2018). The shape
strain S∼ within the habit plane is an invariant plane strain, consisting of an in-plane
shear and a dilation (expansion or contraction) perpendicular to that plane as shown
in Figure 3.2. The orientation, size and shape of the habit plane are conserved. While
it is possible to transform a invariant plane strain S∼ with a rotation to a simple strain,
the reverse is not true. The Bain transformation cannot be rotated to obtain a invari-
ant plane strain S∼ . However, an invariant line strain can be obtained. Likewise, the
macroscopic invariant plane strain S∼ obtains the wrong crystal structure when applied
to the austenite lattice. Additionally, the habit plane and slip planes of austenite do
not coincide in general.

Both the Wechsler-Lieberman-Read (WLR), and the Bowles-Mackenzie (BM) solve
this discrepancy between the experimentally observed habit plane and the orientation
relationship. They explain the presence of an invariant plane strain by applying a
strain which is invariant to the crystal structure, a so called lattice invariant strain.
Both theories are equivalent and constitute the phenomenological theory of marten-
site crystallography (PTMC) (Wechsler, Lieberman, and Read, 1953; Bowles and
Mackenzie, 1954; Mackenzie and Bowles, 1954; Bilby and Christian, 1956; Ledbetter
and Dunn, 2000). The WLR theory assumes a lattice invariant strain L∼ , which yields
the invariant plane strain

S∼ = R∼B∼L∼ . (3.7)

The BM theory assumes a homogeneous shape strain S∼ with a habit plane. Any
vector within that plane is unrotated. An inhomogeneous invisible second shear H∼

∗

is introduced that has to vanish when rotating the Bain strain tensor to account for the
lattice deformations. As H∼

∗ causes no observable change, the localized displacements
have to counteract the shape change e.g. twinning and slip. The relation is given by

S∼H∼
∗ = R∼B∼ . (3.8)

Figure 3.3 sums up the relation between the invariant plane strain S∼ , the lattice corre-
spondence R∼B∼ and the invisible shear H∼

∗ of the BM theory and the lattice invariant
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S∼
γ

ξ

S∼

Austenite Martensite
habit plane

Figure 3.2: Rotated in plane view of the habit plane. The invariant
plane strain S∼ consists of an in-plane shear γ and a dilation ξ per-
pendicular to the habit plane. During the MT the habit plane stays

undistorted.

Austenite MartensiteS∼

R∼B∼

L∼

H∼

Figure 3.3: Applying R∼B∼ and the invariant plane strain S∼ to leads
to a discrepancy in crystal structure (Martensite) and experimentally
observed shape. The invisible shear H∼ and the lattice invariant strain
S∼ close the gap and explain twinning and slip by introducing inhomo-

geneous displacements. Adapted from (Bhadeshia, 2017)

strain L∼ of the WLR theory. The correct shape is obtained by applying the invariant
plane strain S∼ which is made up of the lattice correspondence R∼B∼ and a strain invari-
ant to the lattice (the crystal structure is not changed) and therefore invisible when
looking at the atom position without considering the atom motion by integer indexed
lattice directions. The total strain is inhomogeneous as the mechanisms twinning and
slip are predominantly observed. Simulations in two spatial dimensions require the
transformation strain to be mapped to a plane. This can be done by considering
the habit plane aligned with the planes normal and the shear perpendicular to that
normal as shown in Figure 3.2. As the habit plane is undeformed and unrotated dur-
ing the transformation plane strain is obtained. Every invariant plane strain can be
transformed to a simple strain. In two dimensions, the inverse relation holds true: a
simple strain can be transformed into an invariant plane strain. The invariant plane
strain tensor can be expressed in its principal axis system according to Bhadeshia
(2017) as

ε∼S =

⎡⎣ ϵ1 0 0
0 ϵ2 0
0 0 0

⎤⎦ , where ϵ1 ≥ 0 and ϵ2 ≤ 0. (3.9)

Consider an invariant plane strain S∼ as described before. Chose a plane such that all
deformations occur in that plane, for example as shown in Figure 3.2. The strain S∼
is now applied to an ellipsoid. In order to obtain a habit plane, a rotation is applied.
This rotation is ambiguous, that means that two possible habit planes exist, obtaining
two crystallographic twins.

In summary, the homogeneous Bain strain or any rotational variation therefrom ex-
plains the structural change from one lattice to the other, it is however not observed
macroscopically. A combination of lattice invariant shear and twins can explain the
invariant plane strain on the macro scale however.
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Figure 3.4: Gibbs free energy for the austenitic and the martensitic
phases (a), Stress and strain inducing the martensitic transformation

(b) according to Maalekian and Kozeschnik (2011)

3.2 Driving Forces

The martensitic transformation occurs because the martensitic phase is energetically
more favorable. The energy landscape is defined by an interplay of the chemical and
elastic potential. It is therefore possible to drive the transformation by both temper-
ature, and stress or strain. Phenomenologically, there are four temperatures to char-
acterize the martensitic transformation: The equilibrium temperature M1 at which
both phases are equally stable, and the martensite start temperature MS at which
the transformation is induced spontaneously, the martensite finish temperature MF
under which no further transformation happens, and a temperature MD above which
the chemical driving force is primarily causing the transformation. The martensitic
transformation is athermal: The fraction of austenite transforming to martensite dur-
ing cooling to a temperature below the martensite start temperature MS is time
independent (Maalekian and Kozeschnik, 2011). The characteristic temperatures de-
pend on the chemical composition of the material (Kobasko, Aronov, Powell, and
Vanas, 2009). The experimentally observed martensite finish temperature cannot be
explained theoretically. For further reading the reader is referred to, e.g., Guggenheim
(1993).

The Helmholtz free energy or simply free energy describes the amount of obtainable
work, whereas the Gibbs free energy is the free enthalpy describing the amount of
work that can be reversed at a constant temperature (Helmholtz, 1882; Gibbs, 1873).
The Gibbs free energy takes the enthalpy into account. Typically, in the context of
phase field modeling of the martensitic transformation, or in the context of martensitic
transformations in general, those terms are used interchangeably. The work is thought
to vanish, negating the difference between the Helmholtz and the Gibbs free energy
at, e.g., constant pressure. In this work, to be precise, the terms free energy and
chemical free energy are used in the same fashion as Gibbs free energy. The Gibbs
free energy is crucial for the stability of phases in multi phase system. The diagram
after Ellingham (1944) is useful to discuss the stability of the components making up
this system. It shows the Gibbs free energy at a constant pressure in dependence of
the temperature. They are a useful tool to predict equilibrium temperatures in, e.g.,
metallurgy.

Figure 3.4 (a) illustrates schematically the chemical free energy of the austenitic and
martensitic bulk phases as a function of the temperature. The bulk energies of the
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Figure 3.5: Normalized chemical energy (a) and Eshelby inclusion
with parent matrix in light grey and transformed inclusion in dark

grey, adapted from (Khachaturyan, 2013) (b)

austenitic and the martensitic phase are equal at the equilibrium temperature T0.
However, martensite does not form spontaneously at temperatures below this equilib-
rium. It forms if the temperature falls below the martensite start temperature MS.
That is because the energy difference ∆GS is high enough to overcome an activation
energy, separating the bulk phases during the transformation. Both the austenitic and
the martensitic phase are thought of as thermodynamically stable. Drawing a parallel
to undercooled liquids, the austenite is in a metastable condition (Ishihara, Maeda,
and Shingu, 1985). That means it is in an equilibrium state, however transformation
to the martensitic phase minimizes the free energy globally. An aid in transform-
ing is a mechanical energy contribution for example the elastic energy. It helps to
overcome the activation energy such that transformations at temperatures T1 above
the martensite start temperature MS and below the equilibrium temperature T0 are
possible. The energy difference ∆G1 and the mechanically released energy ∆Gu add
up to the energy difference ∆GS at the martensite start temperature MS.

Figure 3.4 (b) shows the temperature at which martensite starts to transform for
different load states. At the martensite start temperature MS, the martensitic trans-
formation happens spontaneously. However, applying stress or strain, the temperature
at which martensite forms can be increased considerably. Below M1, the stress re-
quired to start the martensitic transformation increases linearly with the temperature.
In this region, the transformation is stress-assisted (Patel and Cohen, 1953). Marten-
site forms where stress is concentrated, such as grain boundaries, cracks, and other
inhomogeneities. Above M1 and below MD, the martensitic transformation is strain
induced. Plastic strain in the austenitic phase lowers the stress threshold for the
martensitic transformation. The temperature MD marks the point above which the
chemical driving force is too small to allow for a transformation and the deformation
occurs in the austenitic phase only.

The martensitic and the austenitic phase are the thermodynamically stable phases. A
transformation from the austenitic to the martensitic phase can be modeled by, e.g.,
applying a transformation derived from the orientation relationship. Figure 3.5 (a)
shows the chemical free energy in dependence of the state of the transformation. A
transformation from the austenitic (ϕ = 0) to the martensitic phase (ϕ = 1) undergoes
intermediate states (0 < ϕ < 1). Those intermediate states arise from the positions the
atoms occupy during the transformation while switching from the fcc atom lattice to
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Figure 3.6: inheritance of plastic deformation (a), and crystallo-
graphic defects (b), such as vacanies, dislocations (⊥), interstitials
(black), and antisites (dark grey) during the martensitic transforma-

tion.

the bcc atom lattice. In a modeling context, the transformation strain is interpolated
and acts as a function of the order parameter ϕ indicating the state of the material.
The way how the atoms move from the fcc to the bcc lattice can be characterized
by, e.g., molecular dynamics simulations (Sandoval, Urbassek, and Entel, 2009; Song
and Hoyt, 2012; Song and Hoyt, 2013). However, no matter how the atoms move, the
intermediate atom positions represent energetically non stable states, such that the
atoms eventually fall in the austenitic or the martensitic phase. Here, the austenitic
phase is considered metastable. It is locally stable, however a transformation to the
martensitic phase releases energy. The martensitic phase can be considered stable.
The difference between the maximum and the metastable minimum is the activation
energy ∆fL needed to trigger the martensitic transformation. This is in accordance
with the Ellingham diagram discussed above and explains why the martensite start
temperature MS is considerably lower that the equilibrium temperature T0. The
chemical free energy is temperature dependent (Schmidt, Dornisch, and Müller, 2017a;
Schmidt et al., 2016; Wang and Khachaturyan, 1997).

In addition to the temperature aspect, another important driving force is the me-
chanical aspect. The martensitic transformation can be facilitated by applying a
deformation to the work piece, thus leading to a stress assisted or strain induced
transformation. Stress assisted means the activation energy is lowered by the me-
chanical energy as shown in Figure 3.4. Strain assisted means that plastic strain
drives the transformation (Novelli, Maurel, Weiss, Grosdidier, and Bocher, 2017).

The Eshelby inclusion was first conceptualized and solved by Eshelby (1957). An
ellipsoidal inclusion as shown in Figure 3.5 is transformed in order to introduce an
inhomogeneity. The problem is depicted in Khachaturyan (2013). The resulting
elastic field can be found by cutting the ellipsoid out of the surrounding matrix, then
transforming it. The transformation is assumed to introduce a shape strain and a
change of elastic constants. In order to re-insert it into the untransformed matrix
after the transformation, stress has to be applied. After accommodating the ellipsoid
back into the matrix and ensuring kinematic compatibility, it is relaxed. This leads
to a deformation of both the matrix and the inclusion. The elastic field outside can
be determined as well (Eshelby, 1959). The elastic energy of the ellipsoidal inclusion
vanishes when a pure shape strain is applied (Kelly, 2006). The pure shape strain is
tantamount to the existence of a habit plane. A further aspect are the different elastic
constants of the austenitic and the martensitic phases (Persson, 2015). Martensite is
stiffer and more brittle than austenite. Depending on the load situation, transforming
to the martensitic phase can be energetically beneficial.
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Plasticity is characterized by a permanent shape change. Typically an elastic thresh-
old has to be passed, fulfilling a plastic yield criterion, in order for plastic deformation
to occur. Figure 3.6 (a) shows a plastic deformation prior and after the transforma-
tion. The plasticity is retained and therefore inherited. Inhomogeneities are an other
important factor of the martensitic transformation. A schematic representation of
crystallographic defects is shown in Figure 3.6 (b). For example dislocations, intersti-
tials, vacancies, and antisites persist throughout the transformation. That means the
chemical composition is left unchanged and crystallographic defects remain.

Inheritance from the austenitic parent phase to the martensitic child phase is observed
experimentally in, e.g., Li et al. (2016) and modeled theoretically in, e.g., Schmitt,
Kuhn, and Müller (2017). In industry, the martensitic transformation is useful in the
application of so called transformation induced plasticity (TRIP) steels. Metastable
austenite is retained such that a sufficiently high deformation can trigger the marten-
sitic transformation (Olson and Cohen, 1982). Twinning induced plasticity (TWIP)
steels make use of the martensitic transformation as well. Given a high enough stack-
ing fault energy to prevent an athermal martensitic transformation, a deformation
of the TWIP steel induces crystallographic twins. Those twins are beneficial for the
strength of the material (Cooman, Kwon, and Chin, 2012).
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4 Phase Field Models

Phase field models are a versatile tool for a variety of interfacial problems, as they
introduce a mathematical regularization of the sharp interface approach, scaling phase-
dependent values with an additional degree of freedom, the order parameter (Qin and
Bhadeshia, 2010). The order parameter is also referred to as phase field parameter.
Phase field models are typically used to evolve structures. Possible scenarios include,
but are not restricted to, the evolution of allotrope phases and phase transformations
(Wang and Khachaturyan, 1997; Artemev, Wang, and Khachaturyan, 2000; Artemev,
Jin, and Khachaturyan, 2001), solidification (Wang et al., 1993; Echebarria, Folch,
Karma, and Plapp, 2004), the optimizing of material structures (Muench, Gierden,
and Wagner, 2018), fracture (Kuhn and Müller, 2010; Miehe, Welschinger, and Ho-
facker, 2010), magnetic domains (Schrade, Mueller, Xu, and Gross, 2007; Dornisch,
Schrade, Xu, Keip, and Müller, 2019; Nadgir, Dornisch, Müller, and Keip, 2019),
and fluids (Diewald et al., 2018; Heida, 2013; Aihara, Takaki, and Takada, 2019). In
contrast to sharp interface approaches, the domain is regularized by a smooth order
parameter field, which is also called phase field. In the context of phase field modeling,
the term phase is used synonymously with broken or unbroken materials, allotrope
phases, and physical phases. Therefore, a phase represents a bulk domain with bulk
properties and a material behavior unique to that phase. The interface is identified by
intermediate values of the order parameter and thus by a presence of the gradient of
the order parameter. This gradient can be used to define properties of the interface.

The order parameter is used to either classify or to quantify. Quantification occurs
when e.g. liquid and vapor phases are present or in multi phase flows. Here the
order parameter is tantamount to the concentration. In the case of solid-solid phase
transformation or crack propagation the order parameter is used as a means of classi-
fication. Typically the order parameter is binary, thus identifying at most two phases,
where the absence of one phase corresponds to the presence of another. Cases with
a ternary order parameter are however possible (Schmitt, Kuhn, Müller, and Bhat-
tacharya, 2014). A good review on phase field models is given by Steinbach (2009).
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4.1 Multivariant Phase Field

A multivariant phase field is a phase field where a set of order parameters, e.g., a vector
valued order parameter is used to identify a number of phases. This stands in contrast
to a scalar value order parameter. Consider a scalar valued order parameter ϕ. The
untransformed, or the parameter phase is assumed if ϕ = 0. A transformation to the
child phase, or in this case the martensitic phase, is indicated if ϕ = 1. One degree
of freedom is used to identify two phases. Typically, the parent phase is described in
dependence of the child phases. The absence of the child phase means the presence
of the parent phase. In contrast to sharp interface models, the phase field presents a
mathematical regularization by allowing interfacial values 0 < ϕ < 1, such that the
order parameter ϕ is living on [0, 1].

This allows the characterization of the energy density f as a function of the order pa-
rameter. However, as the model relies on energy minimization, a term dependent on
the gradient is introduced. This so called gradient term widenes the interface. There
are severals ways of transforming from the austenitic parent phase to the martensitic
child phases. The transformation strain introduced by the child phase can be iden-
tified by the orientation relationship. Therefore a vector valued order parameter is
introduced

ϕ = ϕαeα ∈ IRn, (4.1)

where Einstein summation convention applies. The vector eα is the basis vector. The
index α identifies the phase or orientation variant and ranges from 1 to n, where
n is the number of orientation variants. The components identify the state of the
transformation. They are independent. If ϕα = 1 the child phase α is locally present,
and if ϕα = 0 the phase α is locally absent. The admissible range of every component
is [0, 1], which is analogous to the scalar order parameter. However, the presence of
two phases co-existing locally is not valid, as this would mean two transformation
strains would have to be applied to the austenite lattice. An additional requirement
has to be introduced. A dependent order parameter for the parent phases solves this
issue. The order parameter ϕ0 describes the presence of the parent phase. It is not a
component of the vector valued order parameter ϕ, but it is defined by it

ϕ0 = 1−
n∑︂

α=1

ϕα. (4.2)

Therefore, the sum of the components of the vector valued order parameter ϕ plus the
dependent order parameter ϕ0 for the parent phase, or the sum of the order parameters
ϕα for all phases α = 0 . . . n is constant

ϕ0 +

n∑︂
α=1

ϕα =

n∑︂
α=0

ϕα = 1. (4.3)

The introduction of a vector valued order parameter simplifies the discussion in sec-
tion 4.4. Using the basis vector and the null vector, the phases can be identified. The
presence of the phase α can be written as

ϕ = eα. (4.4)
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As stated above the parent phase is present when all other phases are absent, such
that the vector valued order parameter becomes the null vector

ϕ = 0. (4.5)

With this vector valued order parameter ϕ, the crystallographic state at any mate-
rial point can be identified. A set of evolution equations (section 4.3) evolves each
individual component ϕα. In the following chapters, a phase field model with a single
martensitic variant (chapter 5) and a multivariant phase field model (chapter 6) are
presented.

4.2 Energetic Setup

The phase field model relies on minimization of the total free energy as discussed above
in section 3.2. For the chemical part of the problem, a chemical energy is introduced.
This chemical energy is a function of the order parameter ϕ and the temperature T .
It therefore depends on the local chemical composition

f ch = f ch(ϕ, T ). (4.6)

With this potential, the stability of the phase is determined. The chemical energy
strongly depends on the temperature, influencing the kinetics of the phase transfor-
mation and the stability of the phases (Schmidt, Dornisch, and Müller, 2017b). The
chemical part of the model is coupled with the elastic energy. The elastic energy is a
function of the order parameter ϕ, the elastic strain ε∼

e, and as thermal strain present
in general, of the temperature T as well, reading

fu = fu(ε∼
e, ϕ, T ). (4.7)

Without further assumptions, it is not possible to determine either the chemical or the
elastic energy. A possible choice for the chemical energy is a metastable double well
potential as presented in chapter 5 of this work. The elastic energy depends on the
choice of the homogenization method employed. Here, an interpolation of the effective
material parameters, such as in the Khachaturyan model in chapter 5, is as viable as a
homogenization of the elastic energy assuming a uniform strain across the individual
phases, such as in the Voigt/Taylor model presented in chapter 6. However, further
choices for either the chemical energy and the elastic energy exist. The interested
reader is referred to the work of Ammar, Appolaire, Cailletaud, and Forest (2009)
and Khachaturyan (2013).

Both the chemical and the elastic energy assume their respective bulk values within
the phases. However their behavior in the interface region is not defined. In the case
of the martensitic transformation, the chemical energy exhibits local minima for the
bulk phase, ensuring stability for the bulk phases. That means that the chemical
energy has to be at a maximum state in the interface region. Therefore minimizing
the interface width would also minimize the free energy. In order to mitigate this, a
gradient term is introduced. It attributes energy to the gradient of the phase field,
therefore widening the interface

fgrad = fgrad(∇ϕ1, . . .∇ϕn) ∝
n∑︂

α=1

(∇ϕα)
2. (4.8)
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Physically the combination of the chemical free energy and the gradient term consti-
tute the interface energy. The free energy density is additively split up, consisting of
the above mentioned chemical energy, the elastic energy, and the gradient term

f(ε∼
e, ϕ, T ) = f ch(ϕ, T ) + fu(ε∼

e, ϕ, T ) + fgrad(∇ϕ1, . . .∇ϕn), (4.9)

where the global free energy is given by

E =

∫︂
V
fdV . (4.10)

The phase field model relies on minimization of the global free energy. Therefore
the order parameter ϕ has to evolve towards a minimum of the global free energy.
Depending on the type of phase transformation there are a variety of suitable evolution
equations, some of which are presented in the following section.

4.3 Evolution Equation

In a phase field model, evolution equations evolve the order parameter towards an
equilibrium state. The evolution equations used can be chosen in dependence of
the physical process underlying the phase transformation. The Allen-Cahn evolution
equation (Allen and Cahn, 1979; Cahn and Allen, 1977) and the Cahn-Hilliard evolu-
tion equation (Cahn and Hilliard, 1958; Cahn, 1959) are reaction-diffusion equations.
Using the Cahn-Hillard equation, the order parameter is conserved over the domain,
such that a balance law can be formulated (section 2.2). This equation models the
process of spinoidal decomposition and has been applied, for example, to the cases
of Oswald ripening (Fan, Chen, Chen, and Voorhees, 2002), topology optimization
(Zhou and Wang, 2007), alloy solidification (Wheeler, Boettinger, and McFadden,
1993), and dentrific growth (Kobayashi, 1993). The order parameter in the Allen-
Cahn equation is non-conserved, making it suitable for physical processes involving,
for example, growth, relaxation and phase change. It has been applied for, e.g., the
evolution of ferromagnetic domains (Choudhury, Li, Krill III, and Chen, 2005; Su
and Landis, 2007; Wang and Zhang, 2013), crack growth (Schlüter, Willenbücher,
Kuhn, and Müller, 2014; Kuhn and Müller, 2010), and phase transformations. In
order to achieve a conserving behavior using the Allen-Cahn equation, a Lagrange
multiplicator can be introduced (Diewald et al., 2018). The Allen-Cahn equation is
also known as the time dependent Ginzburg-Landau equation. Apart from the above
mentioned evolution equations, in the case of magnetization evolution, the Landau-
Lifshitz-Gilbert equation can be used (Jin, 2009).

Here, in the case of the martensitic transformation, the Allen-Cahn equation is chosen.
In the works of Fried and Gurtin (1993) and Fried and Gurtin (1994), a generalized
Ginzburg-Landau equation is derived based on the micro force balance (Gurtin, 1994).
A good overview is given in Su and Landis (2007). Here, a scalar valued order param-
eter ϕ is assumed, without the loss of generality. Following Fried and Gurtin (1993),
a vector stress ξ is introduced, acting on the rate ϕ̇. The expended power due to the
change of the phase field in a subregion R is equal to the power transfered over the
boundary ∂R, reading ∫︂

∂R
ϕ̇ξ · ndA = −

∫︂
R
πdV. (4.11)
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Considering a constant ϕ for non-interface regions, the microforce balance can be
formulated in integral form, reading∫︂

∂R
ξ · ndA+

∫︂
R
(π + γ) dV = 0. (4.12)

The internal and external forces are represented by π and γ, respectively. With the
microforce balance and the balance of linear and angular momentum in (2.31), the
local form of the first law of thermodynamics reads∫︂

R
ė = −

∫︂
∂R

q · ndA+

∫︂
R
rdV +

∫︂
∂R

ϕ̇ξ · ndA+

∫︂
R
ϕ̇γdV +

∫︂
R
σ∼ : ε̇∼edV. (4.13)

The temperature is assumed to be constant, thus the heat flux q, and the external
heat supply r can be neglected. The free energy reads

f = e− TS, (4.14)

where S is the entropy and e is the internal energy. The second law of thermodynamics
reads ∫︂

R
T ṠdV ≥ −

∫︂
∂R

q · ndA+

∫︂
R
rdV (4.15)

As the process is isothermal, the Clausius-Duhem inequality can be established. It
reads, in local form

− ḟ − γϕ̇+ ξ · ∇ϕ+ σ∼ : ε̇∼e ≥ 0. (4.16)

The free energy is a function of the order parameter ϕ, its gradient ∇ϕ and the elastic
strain ε∼e

f = f(ϕ,∇ϕ, ε∼e). (4.17)

Therefore, the total derivative yields

−
(︃
γ − ∂f

∂ϕ

)︃
ϕ̇+

(︃
ξ − ∂f

∂ (∇ϕ)

)︃
∇ϕ̇+

(︃
σ∼ − ∂f

∂ε∼
e

)︃
: ε∼e ≥ 0. (4.18)

0 The equations of state can be identified using (4.18). The balance of linear and
angular momentum holds. The field equation for the order parameter is the Allen-
Cahn evolution equation

ϕ̇ ∝ ∂f

∂ϕ
−∇ ·

(︃
∂f

∂∇ϕ

)︃
. (4.19)

The Gibbs free energy is modeled as a function of the order parameter ϕ. In the
multivariant phase field the evolution equation is described component wise.

4.4 Interpolation

As mentioned above, phase field models rely on interpolating quantities across the
interface. While a linear interpolation is sufficient in most cases, in some cases a linear
interpolation yields wrong results or results in numerical instabilities. In this section
different modes of interpolation are discussed and an example of how to interpolate
correctly if using a multivariant phase field model is presented. Consider a quantity a
which may be a scalar, vector, matrix, a tensor, or any quantity supporting scalar
multiplication. This is an exception to the notation previously used. This quantity a
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is generally dependent on the phase field, such that

a = a(ϕ). (4.20)

The quantity can represent any parameter dependent on the state of the phase compo-
sition, including, but not limited to, chemical energy, mechanical energy, fluid density,
elastic parameters, yield stress, material integrity, and transformation strain. A rea-
sonable dependence can be found for some parameters. For example the chemical
energy can be identified directly by the Gibbs free energy in molecular dynamics
simulations, as can the fluid density (Diewald et al., 2018). It is either difficult or
ambiguous to identify a function in dependence of the phase field for other param-
eters. Consider the martensitic transformation for example, where the phase field
identifies the state of the transformation. In addition to the chemical energy, the
elastic material parameters and the transformation strain have to be interpolated.
The transformation strain can be identified by means of the orientation relationship
(chapter 3), where the elastic material parameters for the bulk phases are determined
(Persson, 2015). Using the PTMC it is not clear how the lattice mismatch can be
described in the interface. Likewise, the determination of the elastic material param-
eters in this region is not feasible. However, any interpolation is required to assume
the bulk values in the respective bulk phases

a(eα) = aα, (4.21)

where a is an arbitrary measure and aα the value in the bulk phase α. Here, the idea
is to use a scalar interpolation function h, with known first derivative h′ and second
order derivative h′′ in order to construct a multivariant interpolation. Assume a scalar
function h ∈ IR which is continuous and smooth on [0, 1], where

h(0) = 0 and h(1) = 1 (4.22)

hold. Commonly, a linear interpolation function is used, however a cubic or a tangens
hyperbolicus are further examples. They are given by

hlinear(ϕ) = ϕ, (4.23)
hcubic(ϕ) = 3ϕ2 − 2ϕ3, and (4.24)

htanh(ϕ) =
1

2
tanh

(︁
θ
(︁
ϕ− 1

2

)︁)︁
+

1

2
, (4.25)

where it is shown easily that (4.22) holds. Numerical implementations often require
first and second order derivatives with respect to the degrees of freedom, or in this case
with respect to the degrees to the components of the order parameter. The function h
can be used to construct an interpolation for the quantity a, dependent on the state
of the chemical composition defined by the order parameter ϕ. In view of (4.21), a
possible choice is the linear combination of the bulk phase values aα, multiplied by a
phase dependent interpolation function hα, such that

a(ϕ) =

n∑︂
α=0

hα(ϕ)aα. (4.26)

Note, that the sum presented here ranges from α = 0 . . . n, where a0 represents the
bulk value for the dependent parent phase (section 4.1). The phase dependent inter-
polation function hα is 1, if ϕ represents the corresponding phase α. If ϕ represents
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a phase β different from α, the phase dependent interpolation function hα vanishes.
This is related to (4.22) and can be expressed with

hα(eβ) =

{︄
1, if α = β

0, otherwise.
(4.27)

The behavior of hα on the interface is yet to be determined. However, the choice of
hα is not trivial. In view of (4.22), a possibility is to define hα analogously for all
given phases α = 0 . . . n by using the same scalar interpolation function h and the
identifier for the respective phase ϕα. The analogous approach reads

hα = han
α = h(ϕα). (4.28)

The interpolation function hα for the respective phase is therefore dependent on the
parameters for the specific phase ϕα, only. Furthermore, as there is no case dependency
introduced, the implementation is straight forward. Here it is shown, that while this
approach is present in many implementations, it is only valid for a certain number of
phases or a linear interpolation function h. In the general case, this interpolation is
unphysical and can lead to wrong solutions and numerical instabilities. An alternative
is provided by introducing a case dependency, mitigating shortcomings of the approach
presented above. The case dependent approach reads

hα(ϕ) = hif
α(ϕ) =

{︄
1−

∑︁n
α=1 h(ϕα), if α = 0

h(ϕα), if α > 0.
(4.29)

In the following, both approaches will be compared by considering a linear, a sym-
metric, and an arbitrary function h where (4.22) holds, while varying the numbers of
phases present.

First, there is o restriction on the number of phases, and a linear interpolation function
is assumed. In view of (4.28) and (4.29), it is sufficient to show that hif

0 = han
0 . Recall

equation (4.2), where the dependent order parameter for the parent phase is defined.
In the case of a linear h(ϕ) = ϕ the function can be rearranged

han
0 (ϕ) = h(ϕ0) = h(1−

n∑︂
α=1

ϕα)
h(ϕ)=ϕ
= h(1)−

n∑︂
α=1

h(ϕα)
(4.22)
= hif

0(ϕ). (4.30)

That means, if hif is a valid choice, then han is valid as well for any number of phases
present using a linear h.

Second, assume the presence of two phases only and a symmetric interpolation func-
tion h. A wide range of interpolation functions, for instance (4.23), (4.24), and (4.25),
are point symmetric

h(ϕ) = 1− h(1− ϕ). (4.31)

Considering two phases (n = 1), the interpolation function for the parent phase reads

han
0 (ϕ) = h(ϕ0) = h

(︄
1−

n∑︂
α=1

ϕα

)︄
symmetry

= 1− h

(︄
n∑︂

α=1

ϕα

)︄
n=2
= 1− h(ϕ1) = hif

0(ϕ).

(4.32)
Therefore both cases han and hif are equivalent using a symmetric h with only two
phases present. However, in general, the number of phases can be higher. Both
cases differ for an arbitrary function h, even if assuming symmetry (4.31). This can
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Figure 4.1: Comparison of the analogous interpolation approach han

using a tanh interpolation, where θ = 5 (a), and the case dependent
interpolation approach hif for any scalar interpolation function (b).
The bulk values are constant, aα = 1. The dashed lines (-) indicate
the boundary of the region where ϕ is admissible. The thick lines are

contour lines.

lead to mixtures exceeding bulk phase values such that drop-offs and local minima
might occur. Thirdly, assume a system of n phases, with a non-linear interpolation
function h. The validity of an interpolation function for a measure a will be discussed
by the example of a three phase system, without loss of generality. Figure 4.1 shows
the two interpolation methods, han and hif for a system of three phases (n = 2). Here,
the tanh interpolation using the analogous approach is compared to a case dependent
interpolation. The bulk values are constant for all phases

aϕ = 1. (4.33)

The scalar interpolation function h chosen for the case dependent approach does not
change the function shown in Figure 4.1 (b). For the sake of completeness, further
examples are given in the appendix. The dashed lines indicate states where at most
two phases are present. The presence of two phases α and β can be expressed math-
ematically with

ϕ = ϕ
αβ

= ϕeα + (1− ϕ)eβ , where ϕ ∈ [0, 1]. (4.34)

Here, the parameter ϕ is the curve parameter. In view of equation (4.32), the equiva-
lence of han and hif can be shown for a system of n phases where locally at most two
phases are present. This relation can be verified visually: both interpolation functions
assume the value one when following the dashed lines where (4.34) holds

han(ϕ
αβ

) = hif(ϕ
αβ

) for all α, β ∈ [0 . . . n]. (4.35)

Considering (4.34) only, both interpolation methods are valid as they succeed to rep-
resent a constant value. This criterion is necessary for a valid interpolation, but not
sufficient as Figure 4.1 (b) demonstrates. An interpolation should be able to represent
a constant value for any valid ϕ. Coincidentally, the dashed lines mark the boundary
of the triangle shaped area of an admissible order parameter ϕ. The analogous case
han leads to a drop even if the order parameter moves within the valid range and even
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Table 4.1: Applicability of the analogous and the case dependent
approach for different number of phases. Where possible, literature

references are provided. The x marks a successful calculation.

n = 2 n = 3
han hif han hif

hlinear
Schmitt, Müller,
and Kuhn, 2012 ≡ han Schmitt et al., 2013 ≡ han

hcubic x x wrong solution x

htanh
Muench, Gierden,
and Wagner, 2018 x no convergence x

though the symmetric, scalar interpolation function used here never exceeds the valid
domain [0, 1]. A further downside is, that the choice of parameters effectively scales
the drop as rearranging of (4.28) reveals

aan(ϕ) = act

n∑︂
α=0

han
α (ϕ). (4.36)

This means for negative values act minima are inverted to maxima, and vice versa, thus
changing the stability. Therefore, depending on the given bulk phase values aϕ, a(ϕ)
can be minimised by moving into the interface, or by exceeding the admissible range
of ϕ. The case dependent interpolation function mitigates those problems, because
the sum of all the individual interpolation functions hif

α is one, reading

aif(ϕ) = act

n∑︂
α=0

hif
α(ϕ) = act. (4.37)

To summarize, for the interpolation it is required that either

1. h is linear, or

2. at most two phases (n < 2) are present in the system at once, or

3. the sum of interpolation functions hα(ϕ) becomes one for all admissible ϕ.

Following from the latter, in addition to the sum of order paramters to be one (4.2),
the partition of unity for the set of interpolation functions hα has to hold

n∑︂
α=0

hα(ϕ) = 1. (4.38)

The partition of unity is a concept employed in finite element modeling. Any ansatz
function is bound to fulfill this criterion. In return, any set of ansatz functions can
be used to construct a valid interpolation function. The partition holds automatically
for any number of phases when using the case dependent interpolation approach hif

(4.37). It holds as well when using a linear interpolation function as a consequence of
(4.30), or in view of (4.32) for at most two phases. Implementation wise both cases
hif and han coincide in the case of a linear h. Table 4.1 provides a summary of the
two interpolation approaches presented here. Where possible, a literature reference
is provided, otherwise, the test was conducted with the Voigt/Taylor homogenization
phase field model presented in Chapter 6. In the case of a linear interpolation function,
the two approaches are equivalent. They are successfully employed in, e.g., Schmitt,
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Müller, and Kuhn (2012) and Schmitt, Müller, Kuhn, and Urbassek (2013a). A linear
function, the case dependent approach hif is equivalent to the analogous approach han.
A tangens hyberbolicus interpolation is presented in Muench, Gierden, and Wagner
(2018) for two phases present. A successful test using the Voigt/Taylor approach is
marked with an x. In the case of three phases and a non-linear interpolation function,
a correct solution is not obtained. In the case of a cubic interpolation function,
convergence is obtained, however the solution is wrong. In the case of a tangens
hyberbolicus interpolation function there is no convergence.

The linear interpolation function fails in the Voigt/Taylor approach, because its
codomain is not limited, its first order derivative does not vanish in the bulk phases,
and its second order derivative vanishes. A non vanishing first order derivative leads
to a driving force. In combination with an unrestricted codomain this may lead to
solutions outside the admissible range.

This behavior can be mitigated by using a non linear interpolation function with a
non vanishing second order derivative, which either limits the functions codomain or
with a vanishing first order derivative in the bulk phases. The cubic interpolation
function fulfills the latter. Its first order derivative vanishes in the bulk phases

h′cubic(ϕ) = 0 for ϕ = 0, 1. (4.39)

Therefore no driving force appears in the bulk phases. The tangens hyperbolicus
interpolation has a restricted codomain, given by

htanh(ϕ) : IR → [0, 1], (4.40)

such that it stays within an admissible range. That means even if ϕ leaves its ad-
missible range of [0, 1], the interpolation htanh cannot assume inadmissible values.
Using either of the interpolation functions, the problems of the linear interpolation
can be mitigated. This, however, renders the implementation more complicated as
this introduces a distinction between the case dependent and the analogous interpo-
lation approach. The interested reader is referred to the appendix in 8.2, where more
interpolation examples of the two approaches are presented.
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5 A Temperature Dependent
Separation Potential

As discussed in the previous chapters, the martensitic transformation is tempera-
ture dependent. The temperature dependency can be introduced by a temperature
dependent separation potential. This potential is crucial for the formation of the
martensitic phase. The martensitic phase is stable below the equilibrium tempera-
ture, but it does not form above the so called martensite start temperature. These
features need to be represented by the separation potential. The separation potential
is typically described using a Landau polynomial. Its parameters and their tempera-
ture dependence have been discussed in, e.g., Schmitt, Müller, and Kuhn (2012) and
Urbassek and Sandoval (2012), such that here a function for the parameters is mo-
tivated and proposed. Using the Gibbs free energy obtained by molecular dynamics
simulations, the parameters can be identified. As a consequence, the function yields
the equilibrium temperature.



34 Chapter 5. A Temperature Dependent Separation Potential

A/C0 1
0

1

fL

ϕ

∆fL

stable

metastable

Figure 5.1: Landau polynomial where A = 20, B = 72, C = 52, and
D = 1. The metatstable (ϕ = 0) and the stable phase (ϕ = 1) are
indicated for those parameters. The maximum is located at ϕ = A

C .

5.1 Parameters of the Separation Potential

The separation potential, also termed chemical energy, is proportional to the Landau
polynomial. It is crucial for the evolution of the order parameter

f ch(ϕ, T ) =
G

L
fL(ϕ, T ), (5.1)

where G is the specific interface energy density. Here, a scalar valued order param-
eter is used, meaning one martensitic orientation variant is considered. The Landau
polynomial is a function of the order parameter and the temperature. It is given by

fL =
A(T )

2
ϕ2 − B(T )

3
ϕ3 +

C(T )

4
ϕ4 +D(T ). (5.2)

The Landau polynomial is shown in Figure 5.1, where the parameters are A = 20,
B = 72, C = 52, and D = 1. The Landau polynomial has a metastable and a stable
minimum at ϕ = 0 and ϕ = 1, such that a transformation from the metastable to the
stable minimum releases energy. The parameter D determines their location

D =

{︄
1 if ϕmin = 1

0 if ϕmin = 0,
(5.3)

where ϕmin is the location of the stable minimum. Due to the location of the metastable
minimum, the remaining parameters A, B, and C can be determined according to Ya-
manaka, Takaki, and Tomita (2008). The first derivative of the Landau polynomial
reads

∂fL(ϕ)

∂ϕ
= f ′

L(ϕ) = Aϕ−Bϕ2 + Cϕ3. (5.4)

The second derivative can be used to determine if the extremal points are minima,
maxima, or saddle points

∂fL(ϕ)

∂ϕ
= f ′′

L(ϕ) = A− 2Bϕ+ 3Cϕ2. (5.5)

The derivative vanishes automatically for ϕ = 0. The minimum at ϕ = 1 can be
achieved fulfilling the condition

f ′
L(ϕ = 1) = 0, yielding C = B −A. (5.6)
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The Landau polynomial should be normalized, such that the difference between the
stable and the metastable minimum becomes one. In view of (5.3), there are two
different cases. The value for

fL(ϕ = 0) = D, (5.7)

which is the stable minimum if D vanishes, and it is the metastable minimum of D is
one. Therefore

fL(ϕ = 1)
!
= 1−D (5.8)

should hold. Using (5.6), the parameter B can be determined.

B = 3A− 12 + 24D. (5.9)

Thereby, the parameters B and C are dependent on A and D. The parameter D
identifies the location of the stable and the metastable minimum. It can either be one
or zero (5.7). In order to achieve a minimum, A needs to be positive. The magnitude
of A scales the size of the global maximum. With the knowledge of the parameters
A and D, the location of the global maximum and its height can be determined by
solving

f ′
L(ϕ) = ϕ (ϕ− 1) (Cϕ−A)

!
= 0. (5.10)

Therefore, the global maximum is located at ϕ = A
C . Hence, the normalized energy

barrier ∆fL, which has to be overcome in order to change from the metastable to the
stable phase can be determined

∆fL = fL

(︃
A

C

)︃
− 1. (5.11)
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Figure 5.2: Landau polynomial (solid lines) and normalized free
energy (+) from molecular dynamics simulations at T = 700K (a)

and T = 900K (b) (Sandoval, Urbassek, and Entel, 2009).

5.1.1 Temperature Dependency

The parameters A, B, C, and D are temperature dependent as discussed, e.g., in
Sandoval, Urbassek, and Entel (2009) or Schmidt et al. (2016). Parameter D influences
which phase is stable and which phase is metastable. As lined out in chapter 3,
martensite is stable below the equilibrium temperature T0. Conversely, above the
equilibrium temperature, austenite becomes chemically stable. Figure 5.2 shows the
Landau polynomial for a temperature T = 700K and T = 900K, where the pluses (+)
indicate the normalized free energy obtained from molecular dynamics simulation of
pure iron during phase transformation (Sandoval, Urbassek, and Entel, 2009). The
free energy has been normalized such that the energy difference between the stable
and the metastable phase is one.

Martensite is the stable phase for T = 700K. Therewith, austenite is considered to
be metastable. Therefore the temperature T is below the equilibrium temperature T0.
The parameters can be fitted accordingly, for example

A(T = 700K) = 56.7504, and D(T = 700K) = 1. (5.12)

The remaining parameters B and C can be calculated according to (5.6) and (5.9).
The energy barrier ∆fL increases when approaching the equilibrium temperature T0.
For a temperature of T = 700K, the dimensionless energy barrier is ∆fL(T =
700K) = 2.4968. The temperature T = 900K in Figure 5.2 (b) is above the equilib-
rium temperature T0, as the martensitic phase is metastable and austenite is stable.
Similarly, the parameters can be obtained

A(T = 900K) = 88.1414, and D(T = 900K) = 1. (5.13)

The parameter D specifies which phase is stable. Here, the Landau polynomial repre-
sents the normalized free energy, where the normalization is according to the energy
difference between the stable and the metastable phase, such that

|fL(0)− fL(1)| = 1, (5.14)
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Figure 5.3: Energy barrier ∆fL as a function of A for D = 1 (solid
line) and D = 0 (dashes, - -)

which can be achieved by either one of the conditions

(fL(0) = 1 ∧ fL(1) = 0) ∨ (fL(0) = 0 ∧ fL(1) = 1). (5.15)

Therefore, D has to be either one or zero, leading to the requirement in (5.7) with
only assuming that fL is normalized. With regard of the parameters in (5.12) and
(5.13), a temperature dependent parameter D can be constructed

D(T ) =

{︄
1, if T ≤ T0

0, if T ≥ T0.
(5.16)

The parameter A directly influences the height of the energy barrier ∆fL for a con-
stant D. Passing the equilibrium temperature T0, the parameter D changes from 1
to 0. This necessarily leads to a jump, as shown in Figure 5.3. While ∆fL(A,D = 1)
and ∆fL(A,D = 0) are parallel for increasing A, their relative distance decreases,
mitigating the influence of the jump in D

lim
A→∞

∆fL(A,D = 1)−∆fL(A,D = 0)

∆fL(A,D = 0)
→ 0. (5.17)

In other terms, as A approaches infinity, so does the energy barrier without dependence
on D, where

lim
A→∞

∆fL → ∞. (5.18)

This leaves room for a discontinuous change of D, without affecting the Landau poly-
nomial. Considering the previously discussed equations, a function A(T ) with the
following assumptions is proposed

1. At a temperature T = 0K, the parameter A is assumed to be zero, because the
molecular dynamic simulations suggest it. With

A(T = 0) = 0, (5.19)

the energy barrier vanishes (Figure 5.3), leading to a considerably fast transfor-
mation speed. As the temperature region in proximity of absolute zero are not
of interest in this model, this behavior is ignored.
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2. Conveniently, and due to sparse data above the equilibrium temperature T0, the
parameter A is assumed to be symmetric, e.g.,

A(T0 − T ) = A(T0 + T ). (5.20)

3. The parameter A goes to infinity approaching the equilibrium temperature T0

(5.21), ensuring that no transformation takes place while simultaneously allow-
ing the parameter D to change from 1 to 0 in view of (5.18). The following
condition is imposed on the parameter A as it approaches the equilibrium tem-
perature T0 from either side

lim
T→T±

0

A(T ) → ∞. (5.21)

Considering (5.19), (5.19), and (5.21), a possible choice for the function A is

A(T ) = θ
T (2T0 − T )

|T0 − T |γ
, (5.22)

where γ controls the curvature, and θ is a scaling factor. Note that the equilibrium
temperature is not assumed here, but it drops out as a result when fitting A(T )
to values from the molecular dynamics simulations. The curvature γ influences the
behavior of A exponentially. Already small changes in γ lead to big changes in A. It
is therefore useful to choose the scaling factor θ such that in cancels out changes due
to γ for an arbitrary temperature Tfix

θ = θ̂|T0 − Tfix|γ , (5.23)

where θ̂ is the adjusted scaling factor. Furthermore, this mitigates the unit problem
of θ, simplifying (5.22) to

A(T ) = θ̂T (2T0 − T )

(︃
|T0 − Tfix|
|T0 − T |

)︃γ

, (5.24)

where θ̂ is dimensionless. Figure 5.4 shows the function A for different curvatures γ.
Since the scaling factor is chosen in dependence of the curvature, the function does
not vary for the temperature Tfix. Additionally, it exhibits a pole at T0, allowing for
a change of the parameter D.
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Figure 5.4: Parameter A as a function of the temperature T for
varying curvatures where γ1 ≤ γ2 ≤ γ3 according to (5.24)

5.1.2 Parameter Identification

In order to chose the parameters θ̂, γ, and T0 properly, values for A(T ) are required.
A molecular dynamics simulation provides the chemical energy at the temperatures
T = 100K, 300K, 500K, 700K, 900K, and 1300K. As a first step, for each tem-
perature, a sixth order polynomial has been fitted to the chemical free energy of the
molecular dynamics simulation using the method of least squares, because it is the
smallest order polynomial that approximates the data sufficiently well. The derivative
of the polynomial yields the extremum points, its minima, and its maximum, as well
as the energy barrier ∆fL. The energy difference in the stable and the metastable
minima are used to normalize chemical free energy. Thereby, the molecular dynamics
simulation can be fitted to the independent parameters A and D. As the relation
between the stable and the metastable minimum is known, D is easily determined
according to (5.16). The parameter A influences the height of the energy barrier
∆fL, and subsequently its location ϕmax = A

C . Either one of those measures can
be used to determine the remaining parameter A. With the addition of the method
of least squares, this leads to three different methods to determine A for each given
temperature:

1. using the location of the maximum ϕmax = A
C as given, yielding Aϕmax ,

2. using the height of the energy barrier ∆fL as given, yielding A∆fL , or

3. the method of least squares, yielding Alsq.

Keep in mind, while the first two methods seem to incorporate only one characteristic
value of the molecular dynamics simulation, they have been determined after fitting a
sixth order polynomial first. This is needed for the normalization. The implementation
of the ϕmax method is straight forward. With parameter D already known, and the
location of the maximum ϕmax obtained from the normalized chemical free energy,
parameter A drops out directly using (5.6) and (5.11), yielding

Aϕmax = ϕmax
24D − 12

1− 2ϕmax
. (5.25)
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Table 5.1: Parameter A over temperature T for different interpola-
tion methods

T 0K 100K 300K 500K 600K 700K 900K 1300K

Alsq 0.544 5.366 10.942 19.753 31.537 57.054 88.149 12.096
A∆fL 0.244 3.296 8.743 18.748 31.105 57.167 88.486 11.718
Aϕmax 0 2.981 11.844 20.675 30.980 59.716 73.602 12.000

Using the energy barrier ∆fL as given is more difficult. In view of (5.11), the equation

A∆fL = f−1 (∆fL + 1)
D − 12

1− 2f−1 (∆fL + 1)
. (5.26)

requires to invert the Landau polynomial in order to find A. This is rather impractical
as the inverse exists only for part of the functions domain. Implementation wise, the
relation is represented as

R (A∆fL) = fL

(︃
A∆fL

C(A∆fL)

)︃
−∆f − 1

!
= 0, (5.27)

where R denotes a residuum. It can be minimized using bisection. Consider two
values A+

i∆fL
, and A−

i∆fL
, where

R(A+
i∆fL

) > 0, and R(A−
i∆fL

) < 0, (5.28)

A new value A±
i∆fL

on the interval Ii = (A−
i∆fL

, A+
i∆fL

) is arbitrary. The sign of
residuum of this new value defines another interval

Ii+1 =

{︄
(A−

i∆fL
, A±

i∆fL
), if R(A±

i∆fL
) > 0

(A±
i∆fL

, A+
i∆fL

), if R(A±
i∆fL

) ≤ 0,
(5.29)

leading to increasingly smaller intervals as i increases. In this implementation, A±
i∆fL

is determined using the bisection method

A±
i∆fL

=
A+

i∆fL
−A−

i∆fL

2
. (5.30)

Therefore the residuum R, a measure for the error in A∆fL , converges quadratically.

The third fitting method uses the method of least squares on the normalized chemical
free energy. It relies on minimizing the squared residuals for all data points deviating
from a model function. The interested reader is referred to the original work of Gauss
(1823). In view of (5.2), (5.6), and (5.9), the model function can be expressed in the
form

fL(ϕ) = Alsq

(︃
1

2
ϕ2 − ϕ3 +

1

2
ϕ4

)︃
+D + (24D − 12)

(︃
1

4
ϕ4 − 1

3
ϕ3

)︃
. (5.31)

With the knowledge of parameter D, the only model parameter yet to determine is
Alsq. Table 5.1 is a summary of the parameter A applying the different fitting methods
outlined above. The difference in the fitting methods is marginal. Each data set is
a good fit. One may choose between these three data sets in order to determine the
parameters of the function A(T ) described in 5.24.
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Table 5.2: Parameters γ, θ̂ and T0 determined using the method of
least squares

γ θ̂ · 102 T0 in K
start 0.8 0.8 800

lower limit 0.1 0.1 700
upper limit 2.0 2.0 900

fit 0.8799 1.0321 823.748
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40
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80

100
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Figure 5.5: Parameter A as a function of T (solid line) fitted to value
pairs (T,Alsq) in Table 5.1 (+)

The data pairs (T,Alsq) in Table 5.1 have been used to determine the parameters of
the function in (5.24), The scaling factor is chosen in dependence of γ (5.23), where
the difference |T0 − Tfix| is held constant

|T0 − Tfix| = 100K. (5.32)

The model parameters are the adjusted scaling factor θ̂, the curvature γ, and the
equilibrium temperature T0. That means, as a result, the equilibrium temperature is
obtained. Conversely, if assuming an equilibrium temperature a priori, it has to lie
between 700K and 900K, as the parameter D changes from 1 to 0 (5.7). Here, the
method of least squares is used to fit the function. Table 5.2 displays the starting
values, the lower and upper limit, and the result for the fit. Hence, the chemical po-
tential is a function of both the order parameter ϕ and the temperature T . Figure 5.5
shows the graph for A as a function of the temperature T . The function is in good
agreement with the value pairs (T,Alsq).
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5.2 Model Equations

Following the work of Schmitt, Müller, and Kuhn (2012), the model has been im-
plemented in the finite element framework FEAP in two spatial dimensions. The
above mentioned temperature dependent chemical energy f ch is used to describe the
chemical driving force of the phase field model. For the mechanical part, small strain
elasticity is used, where the effective material parameters, the transformation strain
ε∼
∗ and the elastic constants C∼∼

are interpolated linearly

ε∼
∗(ϕ) = ϕε∼

∗
1, and C∼∼

(ϕ) = C∼∼ 0
+ ϕ

(︂
C∼∼ 1

−C∼∼ 0

)︂
. (5.33)

Therewith, the elastic strain and the elastic energy can be calculated, reading

ε∼
e = ε∼(u)− ε∼

∗(ϕ), and fu =
1

2
ε∼

e(u, ϕ) : C∼∼
(ϕ) : ε∼

e(u, ϕ), (5.34)

respectively. The infinitesimal strain tensor is determined according to (2.18). The
material law is given by

σ∼ =
∂fu

∂ε∼
= C∼∼

ε∼
e (5.35)

The energy is additively split up

f = fu(ε∼, ϕ) + f ch(ϕ) + fgrad(∇ϕ), where fgrad(∇ϕ) =
1

2
GL|∇ϕ|2. (5.36)

The field equations read

∇ · σ∼ = 0, and (5.37)

1

M
ϕ̇+

∂fu

∂ϕ
+

∂f ch

∂ϕ
−∇ · ∂f

grad

∂∇ϕ
= 0. (5.38)

The elastic energy f ch is proportional to the Landau polynomial given in (5.1).
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5.3 Implementation

Applying the flux-divergence and using Green’s identity, the weak forms can be de-
termined ∫︂

V

(︁
∇⊗ ηu

)︁
: σ∼dV =

∫︂
∂V

ηu · (σ∼n) dVt, (5.39)∫︂
V

1

M
ϕ̇ηϕ +

∂fu

∂ϕ
ηϕ +

∂f ch

∂ϕ
ηϕ + (∇ϕ) · (∇ηϕ) dV =

∫︂
∂V

ηϕ (∇ · n) dVq. (5.40)

The outer normal vector is n. The test functions are denoted by η
u

and ηϕ. The
discretizations for the phase field ϕ and the displacements u are

uh =
N∑︂
I=1

NI ûI , and ϕh =
N∑︂
I=1

NI ϕ̂I , (5.41)

where N is the number of element nodes, I is the nodal index, and NI is the ansatz
function. Discretized quantities are denoted with a superscript h (·h), and nodal
quantities with a superset hat (̂·I). The discretizations for the strain tensor and the
gradient of the phase field read

εh =

N∑︂
I=1

B∼
u
I · ûI , and ∇hϕ =

N∑︂
I=1

Bϕ
Iϕ, (5.42)

where ε is the strain in Voigt notation. The matrices in two dimensions read

B∼
u
I =

⎡⎣NI,1 0
0 NI,2

NI,2 NI,1

⎤⎦ and Bϕ
I = ∇NI . (5.43)

5.3.1 Residual and Elemental Stiffness Matrix

The nodal residual vector and the elemental tangent matrix can be determined using
the weak forms in equation (5.41), t. The nodal degrees of freedom d̂I , and their rates
ˆ̇
dI at each node I are the displacements and the scalar valued order parameter,

d̂I =

[︃
ûI
ϕ̂I

]︃
, and ˆ̇

dI =

[︃
0

ϕ̂I

]︃
. (5.44)

The nodal residual vector is a function of the nodal degrees of freedom and their rate,
consisting of a residual vector for the mechanical problem and a scalar residual for
the chemical part

RI =

[︃
R

u
I

Rϕ
I

]︃
. (5.45)

The residual for the mechanical problem is

R
u
I =

∫︂
V

(︂
B∼

u⊤
I σ

)︂
dV, (5.46)
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where the stress σ is in Voigt notation. The residual for the evolution of the order
parameter is

Rϕ
I =

∫︂
V

ϕ̇

M
NI +

∂fu

∂ϕ
NI +

∂f ch

∂ϕ
NI +GL (∇ϕ)Bϕ

I dV. (5.47)

The tangent matrices can be obtained by deriving the residual vector with respect to
d. Here, a symmetric tangent matrix is obtained

K∼ IJ =
∂RI

∂d̂J
=

[︄
K∼

uu
IJ K

uϕ
IJ

K
ϕu
IJ Kϕϕ

IJ

]︄
. (5.48)

In order to determine the entries of the tangent matrix, several first and second order
derivatives are needed. The derivatives of the chemical energy are given in (5.1), (5.4),
and (5.5). The derivatives of the elastic energy read

∂fu

∂ϕ
=

∂fu

∂C∼∼

∂C∼∼
∂ϕ

+
∂fu

∂ε∼
e
∂ε∼

e

∂ϕ

=
1

2
ε∼

e :
[︂
C∼∼ 1

−C∼∼ 0

]︂
: ε∼

e + ε∼
e : C∼∼

: [−ε∼
∗
1], (5.49)

∂2fu

∂ϕ2
= −2ε∼

e :
[︂
C∼∼ 1

−C∼∼ 0

]︂
: ε∼

∗
1 + ε∼

∗
1 : C∼∼

: ε∼
∗
1, and (5.50)

∂2fu

∂ε∼∂ϕ
=

∂σ∼
∂ϕ

=
[︂
C∼∼ 1

−C∼∼ 0

]︂
: ε∼ −C∼∼

: ε∼
∗
1. (5.51)

The matrix entries are

K∼
uu
IJ =

∂R
u
I

∂ûI
=

∂R
u
I

∂ε∼

∂ε∼
∂ûI

=

∫︂
V

(︁
B∼

u
I

)︁⊤
C∼
(︁
B∼

u
J

)︁
dV, (5.52)

where C∼ are the material constants in Voigt notation. The stiffness matrix entry for
the phase field problem is a scalar

Kϕϕ
IJ =

∂Rϕ
I

∂ϕ̂J

=

∫︂
V
NI

(︃
∂2fu

∂ϕ2
+

∂2f ch

∂ϕ2

)︃
+GLBϕ

I ·Bϕ
JdV. (5.53)

The mixed entries read

K
uϕ
IJ =

∂R
u
I

∂ϕ̂J

=

∫︂
V

(︁
B∼

u
I

)︁⊤ ∂σ∼
∂ϕ

NJdV, (5.54)

K
ϕu
IJ =

∂Rϕ
I

∂ûJ
= (K

uϕ
IJ )

⊤. (5.55)

Hence the field equations can be solved using a finite element scheme.
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5.4 Interface Propagation

In order to test the temperature dependent separation potential, the interface propa-
gation on a two dimensional beam is determined. The material parameters for pure
iron are used in order to compare it to molecular dynamics simulation. Recalling
chapter 3, the martensitic transformation is temperature dependent. This leads to a
temperature dependent chemical energy as outlined in section 5.1.

Two examples are presented here. First, no load is applied to the beam, such that the
interface between the austenitic and the martensitic phase can progress unobstruct-
edly. Furthermore, the influence of the mobility is discussed. In the second example,
a load is applied to the far ends of the beam, which influences the propagation speed
of the martensitic phase.

Consider a beam of 176 nm length and 35.2 nm height. The parameters for the tem-
perature dependent chemical potential are chosen according to Table 5.2. They read

γ = 0.8799, θ̂ = 1.0321 · 102, T = 823.748K, and Tfix = 723.748K. (5.56)

In order to ensure comparability, the material parameters are according to (Schmitt,
Müller, Kuhn, and Urbassek, 2013a). The transformation strain is determined ac-
cording to the Bain orientation relationship in (3.3), yielding

ε∼
∗
1 =

[︃
−0.2217 0

0 0.1007

]︃
(5.57)

The parameters for the elastic constants in the austenitic and the martensitic phase
in Voigt notation are

C∼ 0 =

⎡⎣2.219 1.498 0
1.498 2.219 0
0 0 0.3

⎤⎦ · 105Nmm−2, and (5.58)

C∼ 1 =

⎡⎣2.927 1.062 0
1.062 2.927 0
0 0 0.932

⎤⎦ · 105Nmm−2, (5.59)

respectively. The parameters for the phase field problem are fitted by Schmitt, Wang,
and Urbassek (2013b) to the molecular dynamics simulation by Sandoval, Urbassek,
and Entel (2009). They read accordingly

G = 0.97 Jm−2, L = 10nm, and M = 9.6mN−1 s−1. (5.60)

Calculations at two hundred different temperatures have been conducted. In order to
accommodate for the change in the parameter A, the temperatures have been chosen
according to

Tk = T0 + 8T0

(︃
k − 1

N
− 1

2

)︃3

, where k = 1, 2, . . . , N. (5.61)

This ensures that temperatures close to the equilibrium temperature, where the change
in A is bigger, are spaced closer together. Consequently temperatures further from
the equilibrium temperature are spaced further apart as the change in A is minor.
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Figure 5.6: Interface motion for T = 94.95K
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Figure 5.7: Interface motion for T = 1311.99K

Figure 5.6 shows the interface motion for a temperature of T = 94.95K. At this tem-
perature, the martensitic phase is stable. That means, austenite forms into martensite.
The initial configuration is shown at the time t = 0. The left half of the beam is ini-
tialized with austenite (ϕ = 0), whereas the right side of the beam is initialized with
martensite (ϕ = 1). The bottom left node is pinned and the bottom right node is a
simple support allowing movement in x1-direction only. There is no load applied on
the far end of the beam.

As austenite transforms into martensite, the interface moves to the left. A snapshot
for t = 1.1 ns is shown. The curvature of the interface is due to the introduction
of the transformation strain ε∼

∗
1 and the phase dependent material constants C∼ . The

interface position is identified where ϕ = 0.5, or in other terms where austenite and
martensite have a 50% share of the chemical composition. At t = 3.1 ns, the interface
is at the left end of the beam. This allows to manually calculate the interface velocity
to vman (T = 94.95K) = −28.46m s−1. The minus sign is equivalent to a motion to
the left against the x1-direction. Given this specific initial configuration, it is also
tantamount to a transformation from the austenitic to the martensitic phase.

In Figure 5.7 the same initial configuration and boundary conditions as in example
prior are used, where only the temperature has been changed to T = 1311.99K. The
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Figure 5.8: Interface velocity over time for T = 94.95K

temperature above the equilibrium temperature causes the austenitic phase to be sta-
ble. Therefore the interface motion is to the right. At the time t = 2.54 ns, the
interface reaches the far right end of the beam. The interface velocity was manually
determined to be vman (T = 1311.99K) = 34.74m s−1. The positive sign indicates a
motion to the right. Consequently, in view of the initial setup, this is synonymous to a
transformation from the martensitic to the austenitic phase. Manually calculating the
interface velocity is tedious, and with an increasing number of simulations not feasible.
Typically, post-processing is automated in order to determine quantities unrelated to
the solution of the problem. Here, the use of configurational forces is employed, al-
lowing for an ad-hoc evalution of the velocity (and also further quantities) during
the solution process without potentially computationally expensive post-processing.
Kuhn (2013) uses configurational forces in her work to get a better insight into the
energetic driving mechanisms in a phase field model for fracture. The works of Gurtin
(1999), and Kuhn and Müller (2010) give a good introduction into the realm of con-
figuration forces. Following Kuhn (2013), the dissipative part of the configurational
forces balance reads

Gdis =

∫︂
V
−gdisdV =

∫︂
V
− ϕ̇

M
∇ϕdV. (5.62)

The phase field ϕ(x, t) is thought to be translated. This is for example true in the
examples above, as the interface progresses either to the right, or left, however there
is no change in topology, size, or shape. With that assumption, the configuration at
a time t can be expressed in terms of its initial state ϕ(x, 0), therefore

ϕ(x, t) = ϕ(x− xpos
1 (t)e1, 0), (5.63)

where xpos
1 (t) denotes the x1-position of the interface at time t. Differentiation of ϕ

yields

∇ϕ =
∂ϕ

∂x1
e1 (5.64)

Furthermore, the time derivative of the phase field can be determined.

ϕ̇ =
∂ϕ

∂t
=

∂ϕ

∂x

∂x

∂t
= ∇ϕ · ∂x

∂t
= −∇ϕ

∂xpos
1 (t)

∂t
e1 =

∂ϕ

∂x1
ẋpos
1 , (5.65)
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Figure 5.9: Interface velocity over time for T = 1311.99K

where ẋpos
1 = v is the velocity of the interface. Substituting (5.65) and (5.64) back

into (5.62), the interface velocity reads

v(t) =
MGdis∫︁

V

(︂
∂ϕ
∂x1

)︂2
dV

, where v(t) = v(t) · e1 (5.66)

is the velocity in x1-direction. Using the above relation a time dependent velocity can
be determined as for example shown in Figure 5.8 for a temperature of T = 94.95K, or
as shown in Figure 5.9 for a temperature of T = 1311.99K. As previously discussed,
the negative sign means a transformation from the austenitic to the martensitic phase
takes place. Conversely, in this example, the positive sign indicates a transformation
from the martensitic to the austenitic phase. Initially, until about t = 0.7 ns for
T = 94.95K, and t = 1ns for T = 1311.99K, the interface velocity speeds up. That
is because in this stage the interface forms.

After that, the interface velocity is constant. Here, the interface translates, such
that the assumption in (5.63) still holds. The interface motion is in a steady state.
This phase is until t = 2.8 ns and 2.2 ns for the temperatures T = 94.95K and
1311.99K, respectively. In this steady state the mean interface velocity can be calcu-
lated. The interface during the transformation from austenite to martensite progresses
at −27.87m s−1 (T = 94.95K), and the interface for the reverse transformation pro-
gresses at 33.26m s−1.

After the steady state, the absolute value of the velocity rapidly increases. However,
here there should be no speed at all. The term in the denominator of (5.66) is
a measure for the gradient term. The term decreases faster than the dissipative
configurational force Gdis, eventually reaching 0, which causes a virtual increase in
the velocity. Therefore the value for the interface velocity in the final stage cannot be
used for evaluation.

Table 5.3 compares interface velocities, which have been obtained manually, by using
configurational forces, and from literature. The manually obtained velocity validates
the velocity obtained from the dissipative part of the configurational forces balance.
Furthermore, they are in the same order of magnitude as the velocities calculated
in Schmitt, Wang, and Urbassek (2013b). The appendix provides further plots for



5.4. Interface Propagation 49

Table 5.3: Comparison of the interface velocities obtained manually
(vman), using configuration forces (v̄cf), and from literature (Schmitt,

Wang, and Urbassek, 2013b)

T vman v̄cf Schmitt, Wang, and Urbassek, 2013b
94.95K −28.46m s−1 −27.78m s−1 −25.11m s−1 (at 100K)

1311.99K 34.74m s−1 33.26m s−1 28.52m s−1 (at 100K)
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Figure 5.10: Mean interface velocity v̄cf obtained using configura-
tional forces over the temperature. The inset on the top left shows the
region around the equilibrium temperature in detail. The pluses (+)

mark the data points.

the interface velocity for temperatures close to the equilibrium temperature, see Fig-
ures 8.1 and 8.2. The absolute velocities for the temperatures T = 654.57K and
992.93K is considerably higher. This is expected, as the energy barrier ∆f increases
while approaching the equilibrium, therefore slowing down the transformation.

5.4.1 Temperature Dependency of the Interface Propagation

As a consequence of using the dissipative part of the configurational force balance,
the post-processing is redundant, and the calculation of the interface velocity is ad-
hoc with measures already calculated during the simulation. This allows to represent
the interface velocity in dependence of the temperature as in Figure 5.10. Again,
velocities with a negative sign correspond to a transformation from the austenitic to
the martensitic phase. The same applies in reverse for velocities with a positive sign.
The inset shows a zoomed in view of the region around the equilibrium tempera-
ture T0 = 823.75K. In its vicinity, between 805.66K and 838.24K, there is no motion
of the interface at all, e.g., the interface velocity vanishes. The interface velocity goes
to zero, as for one the parameter A goes toward infinity (5.24), and as a consequence
the energy barrier ∆fL, grows indefinitely. While there is still an energy difference
between the stable and the metastable phases, it is marginal small compared to the
barrier ∆fL in proximity of the equilibrium temperature, such that numerical errors
smooth the difference away. For temperatures far from the equilibrium temperature,
the interface velocity is almost linear. While A is symmetric to T0, the energy barrier
∆fL is not, as illustrated in Figure 5.3. This leads to another representation of the
interface velocity. In view of (5.11), the energy barrier is a function of A. Here, A is
a function of the temperature, described in (5.24). Substituting the aforementioned



50 Chapter 5. A Temperature Dependent Separation Potential

10−4 10−3 10−2 10−1 100 101 102

∆fL

−30

−20

−10

0

10

20

30

v̄ c
f

in
m s

24.466 K
71.935 K

262.39 K

528.92 K

753.58 K

805.67 K

838.23 K

933.02 K

1094.4 K

1229.9 K
1277.9 K

Figure 5.11: Mean interface velocity v̄cf obtained using configura-
tional forces over the energy barrier ∆fL with temperatures corre-

sponding to the respective velocities (+)

equations, each temperature can be mapped to the energy barrier ∆fL through the
relation

∆fL = ∆fL (A (T )) . (5.67)

With the results in Figure 5.10, a map from the temperature T to the velocity is given.
Using the relation in (5.67), the temperature scale can be remapped to the energy
barrier ∆fL. The corresponding plot is shown in Figure 5.11. This representation
v(∆fL) has several advantages compared to the representation v(T ). It is symmetric
for small ∆fL < 0.5, such that

∆fL (v̄cf) = ∆fL (−v̄cf) . (5.68)

Furthermore, it is independent of T . However, if a function A(T ) is provided, the cor-
responding temperatures can be calculated. Here they are indicated with a plus (+).
In addition, this allows to design a function ∆fL(T ) or A(T ), if the interface velocity v
is known at specific temperatures T .

Secondly, the model parameters can be verified on the fly without re-running the
simulation. For example Schmitt, Wang, and Urbassek (2013b) use A = 6 and D = 1
for a temperature of T = 100K. At this temperature the martensitic phase is stable.
In view of equation (5.11) the energy barrier ∆fL can be determined to be 0.0547.
Using the graph in Figure 5.11, and with the knowledge that a transformation from
the martensitic to the austenitic phase leads to a negative interface velocity, the
determined interface velocity is v∆fl = −24.64m s−1. This value corresponds well
to the value of v∆fL = −24.11m s−1 determined in the work of Schmitt, Wang, and
Urbassek (2013b).

The same applies for a temperature of 1300K. The parameters A = 15 and D = 0
have been used. The austenitic phase is stable. The value can be determined to be
∆fL = 0.0127, leading to an interface velocity of v∆fL = −28.01m s−1, which is well
in agreement with the literature value in Table 5.3.
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5.4.2 Influence of Load on the Interface Propagation

The influence of load and temperature on the kinetics of the martensitic transforma-
tion has been discussed in e.g. Schmidt et al. (2016). Here, the same parameters as
above have been used. However, a load b in x1-direction is applied to the far ends of
the beam. In total, velocities from 777 simulations are represented in Figure 5.11 at 21
distinct loads and 37 distinct temperatures. The mean interface velocity is obtained
through the use of configurational forces. The load influences the interface propa-
gation. Here, a compression favors a transformation towards the austenitic phase,
whereas a tensile load favors a transformation towards the martensitic phase. Hence,
depending on the temperature, it is possible to increase or to decrease the interface
velocity. That is with the exception of temperatures in the vicinity of the equilibrium
as shown for example in Figure 5.10. Between T = 805.66K and 838.24K, there is
no motion of the interface at all. Applying a load does not change this circumstance.
That is due to the pole in the function A(T ) at the equilibrium temperature, causing
the energy barrier ∆fL to increase indefinitely. Therefore the elastic energy in that
temperature range is unimportant and does not influence the kinetics.

The thick contour lines show lines of constant velocity, spaced apart by 5m s−1. With
temperatures further from the equilibrium temperature, the contour lines curve away
from the load axis. Therefore the influence of the load on the velocity increases. Con-
sider for example the contour line of v̄cf = 10m s−1. This contour is exclusively below
the equilibrium temperature. With no load applied, the temperature is about 700K.
In order to achieve the same velocity of 10m s−1 at 400K, a load of b = −0.2MNm−2

has to be applied. However, in order to achieve the same velocity at 550K, the load is
about −0.16MNm−2. That means as the energy barrier ∆fL decreases, the influence
of the load is higher. An explanation is the relation between the mechanical and the
chemical energy.
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5.5 Locally Varying Temperature Field

The process of cryogenic turning makes use of temperature effects. The cooling agent,
for instance liquid nitrogen or carbon dioxine snow, cools down the workpiece and
the tool near the surface. The observed effects are a reduction of the cutting temper-
ature leading to higher machining accuracy, less tool wear, and lower cutting forces
(Dhananchezian, Kumar, and Sornakumar, 2011). In the case of metastable austenitic
steels, such as AISI 437, a phase transformation is possible, inducing an increase in
martensite content in the near surface region (Mayer, Kirsch, and Aurich, 2014). The
temperature for this process has been quantified locally and in time using a set of
thermocouples. The work of Becker et al. (2018) supplements the measurements with
a finite element model, yielding a transient temperature field.

s =
0.9

0.8

0.7

0.6

t =

ϕ
1.0

0.5

0.0

0.0 ns 0.1 ns 0.5 ns 1.0 ns
x1

x2

2.0 ns

Figure 5.13: Martensitic transformation at different times t with
different initializations s.

Using the temperature dependent chemical energy developed in the previous chapter,
it is possible to vary the temperature field spatially. Hence the chemical energy changes
depending on the spatial position. Consider a plate of 345 nm width and height, where
the bottom left node is pinned and the bottom right node is a simple support allowing
for displacement in x1-direction. This plate is divided up into a grid of 24 · 24 = 576
equally spaced quadratic subregions. Initially, each of these regions may either be
austenite or martensite. A pseudo random number generator is used to determine
value on the interval [0, 1). A threshold s is chosen for the whole plate. Subregions
endowed with a value above this threshold s are initialized as purely martensitic,
otherwise they are austenite. Therefore this threshold s is a measure for the initial
austenite content.

The temperature is considered to be constant in time, but varying locally in x2-
direction. The temperature is scaled using a third degree polynomial with continuity
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in the first order derivative

T (ζ) =

⎧⎪⎨⎪⎩
Tbot if ξ < 0

Ttop if ξ > 1

Tbot + (Ttop − Tbot)hcubic(ξ) otherwise,
(5.69)

where hcubic is the cubic interpolation function defined in (4.24). The x2-coordinate
is remapped to ξ

ξ =
x2 − 0.25 · 345 nm

0.5 · 345 nm
. (5.70)

Therefore in the bottom quarter the temperature is constant at Tbot, it is interpolated
until reaching the top quarter where it is at Ttop. The temperatures are Tbot = 600K,
and Ttop = 300K. The transformation strain ε∼

∗
1, as well as all further parameters such

as the elastic constants for the austenitic and the martensitic phase, C∼∼ 0
and C∼∼ 1

, the
mobility M , the interface width L, and the interface energy G are chosen according
to chapter 5.4.

Snapshots in Figure 5.13 at the distinct simulation times t = 0ns, 0.1 ns, 0.5 ns,
1 ns, and 2 ns for the initialization thresholds s = 0.6, 0.7, 0.8, and 0.9 are shown
in Figure 5.13. The martensitic phase (ϕ = 1) is displayed in light gray, and the
austenitic phase (ϕ = 0) is displayed in dark gray. The martensitic content almost
exclusively increases with progressing time and decreasing s. This behavior is due
to the chemical potential, as here the temperature is always below the equilibrium
temperature T0. Another temperature dependent effect is the width of the transition
zone. In the upper region where the temperature is at 600K, the interface region in
black is narrower than in the bottom region where the temperature is at 300K. The
energy barrier ∆fL is the cause of this issue, as it increases when the temperature
reaches the equilibrium T0.

The martensite content is dependent on the temperature. In the top region, the
martensite content is considerably higher than in the bottom region. As the time
progresses, the martensite in the top region forms faster than in the bottom region,
with the exception of s = 0.9. Here, martensite transform into austenite due to the
small initial martensite content. As a conclusion, the martensitic transformation is
temperature dependent. It can vary locally due to a changing temperature field.
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6 A Homogenization Phase Field
Approach

6.1 Motivation

A Voigt/Taylor homogenization phase field approach is presented in this chapter. The
Voigt/Taylor approach shares many properties with the related Reuss/Sachs approach.
In contrast with the Khachaturyan approach presented in the previous chapter, this
model does not rely on a unified material law by assuming the behavior of the effective
material parameters such as amongst others the material tangent and the transforma-
tion strain, see chapter 5 and the works of Schmitt, Kuhn, Müller, and Bhattacharya
(2014), Ammar, Appolaire, Cailletaud, and Forest (2009), and Rancourt, Appolaire,
Forest, and Ammar (2016). As an advantage, a different material law can be chosen for
the individual phases. The flexibility of choosing material laws independently comes
at a cost: the material laws in the individual phases need to be solved individually.
However, as they are independent, e.g., there is no input from one phase to another,
they can be solved separately. This makes parallelization straightforward, mitigating
this issue partially.

Another important factor is the presence of history variables. Typically, structure
and therefore plasticity and transformation history is retained. This phenomenon
is referred to as inheritance and was discussed in section 3.2 above. It makes sense
theoretically (Schmitt, Kuhn, Müller, and Bhattacharya, 2014) and is observed exper-
imentally as well (Li et al., 2016). Implementation wise, in the purely elastic case, no
history variables are needed at all. However when an individual material law for each
individual phase is present, it is important to unify the history fields. When regard-
ing similar plasticity theories for the individual phases, for example crystal plasticity,
but with phase dependent yield strengths and slip directions, the same set of history
variables is used to record the plastic deformation. Inheritance is implemented by
accessing the same history variable field with no dependence of the phases. This is
not the case if plasticity theories for the individual phases are assumed, like kine-
matic hardening in one and isotropic hardening in another phase. In order to inherit
the plasticity, the kinematic hardening history variables need to be considered in the
isotropic hardening material law and vice versa.

The effective material parameters follow from the state of the mixture indicated by the
phase field parameter. Consequently, already existing and implemented materials laws
can be used with no additional need for implementation, as long as they share a com-
mon interface with the homogenization phase field method presented here. Typical
inputs for material routines are the total strain, and the history variables. Outputs
include the stress, the material tangent, and the updated history variables. In the
case of this phase field homogenization scheme, the elastic energy is a required out-
put. Finite Element frameworks, such as ANSYS, FEAP and Comsol have material
subroutines, where typically well-known material laws are provided out of the box
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(Taylor, 2014; Pepper and Heinrich, 2017). Furthermore, users have the possibility to
implement their custom material laws. This makes this homogenization phase field
approach viable even for user defined material subroutines.

To sum up, the Voigt/Taylor and the Reuss/Sachs approach have the following fea-
tures:

1. It is possible to chose individual material laws for the individual phases. This
makes cases where plasticity occurs in the austenitic phase only, or transformed
anisotropic material with different anisotropic directions easy to implement.

2. As a downside, it is necessary to solve the material laws of the phases indi-
vidually. However, parallelization mitigates this issue. The implementation is
straightforward.

3. The effective material parameters follow by assuming uniform strain (Voigt/-
Taylor) or uniform stress (Reuss/Sachs). As a consequence already implemented
material laws can be re-used as long as they interface with the homogenization
scheme.

4. The implementation of individual and separate history variable fields for the
individual phases is straightforward. However, when mixing, e.g., kinematic
hardening and isotropic hardening plasticity, there is a need to translate the
history variables.

Phase field models with homogenization schemes have first been proposed in Ammar,
Appolaire, Cailletaud, and Forest (2009). They have been applied in, e.g., Rancourt,
Appolaire, Forest, and Ammar (2016). For an extended introduction to phase field
homogenization methods the interested reader is referred to the works of Mosler,
Shchyglo, and Hojjat (2014).

6.2 Assumptions

In the Voigt/Taylor approach the strain is assumed to be uniform in each phase and in
the diffuse interface, see e.g. (Hori and Nemat-Nasser, 1999; Ammar, Appolaire, Cail-
letaud, and Forest, 2009; Mosler, Shchyglo, and Hojjat, 2014; Rancourt, Appolaire,
Forest, and Ammar, 2016)

ε∼ = ε∼1 = . . . = ε∼α = . . . = ε∼n. (6.1)

In contrast to the Reuss/Sachs model, this allows to formulate the material law within
the phases with the elasticity tensor rather than the compliance tensor. The stress in
a phase α is defined as the derivative of the energy with respect to the elastic strain

σ∼α =
∂fα
∂ε∼

e
= C∼∼ α

: ε∼
e
α. (6.2)

In the interface region, the stress is interpolated. In view of (4.22), a scalar function h
which can be used to interpolate within a vector valued phase field

σ∼ = σ∼0h
0(ϕ1, . . . , ϕn) +

n∑︂
α=1

σ∼αh(ϕα). (6.3)
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Figure 6.1: Flow chart of the Voigt/Taylor homogenization approach
for a phase field for the martensitic transformation.

The local elastic energy is therefore

fu = fu0h
0(ϕ1, . . . , ϕn) +

n∑︂
α=1

fuαh(ϕα). (6.4)

There are several advantages of interpolating the elastic energy directly. Choosing the
proper interpolation functions as in (4.29) in view of (4.38), the elastic energy does
not exceed the bulk values if ϕ ∈ [0, 1]. This stands in contrast to the Khachaturyan
approach (see Figure 6.3 and Chapter 6.2.2). However, the elastic energy for ϕ < 0
and ϕ > 1 is not bounded in general.

A closer look at (6.4) and (6.3) reveals that the mechanical behavior within the phases
can be chosen independently of how the phase field parameter evolves. Therefore the
derivative of the elastic energy with respect to the elastic strain remains the sum
of all the derivatives within the phases. The same applies for the derivatives of the
stress with respect to the strain. Figure 6.1 shows the flow chart for the Voigt/Taylor
approach. The inputs are the state of the phase field noted by the phase field pa-
rameter ϕ and the strain ε∼, which is for example obtained from the displacement in
a FEM calculation. Additional input parameters, such as the temperature or history
variables are possible. Here they are neglected, without the loss of generalization.
Furthermore, material parameters are not shown in this flow chart. Typically, they
are constant for each phase and are therefore regarded as intrinsic. From an imple-
mentation standpoint however, they still need to be provided in the material routines.
An individual material law is implemented for each individual phase from 0 (parent
phase), 1, through n (child phases). Here, any material law that provides stress, the
derivative of stress w.r.t elastic strain, and the elastic energy can be implemented.
The phase field independence of the material laws makes it also versatile. Not only
custom material laws can be used, the Voigt/Taylor scheme also provides an inter-
face for already implemented material routines. The versatility comes at a cost: each
individual material law needs to be solved individually. However, as the flow chart
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Figure 6.2: Flow chart of the Khachaturyan approach for a phase
field for the martensitic transformation.

shows, they can be run in parallel. The output parameters of the individual phases are
needed as input in the subsequent homogenization step. The phase field determines
the homogenized quantities, such as stress, the derivative of stress w.r.t. elastic strain,
and first and second order derivatives of the elastic energy w.r.t the phase field pa-
rameter. Only non-zero components contribute to the homogenized quantities. This
offers a potential optimization of the flow chart by adding a preemptive homogeniza-
tion step, where the material law is only solved in phases where the corresponding
order parameter component is non-zero. This step would not change the dependency
of the material law; it would just assign the program to skip phases which are not
needed in the homogenization subsequent to solving the material law in the individual
phases. It can’t be compared to the homogenization in the Khachaturyan approach
which happens prior to solving the material law. The phase field model provides the
chemical free energy and its first and second order derivatives with respect to the
order parameter components ϕα, where α assumes values from 1 through n. Given
the quantities from the homogenization and the phase field model, the residual and
the tangent can be formed.

Figure 6.2 shows a flow chart of the Khachaturyan approach. Here, the input param-
eters are the phase field parameter ϕ and the strain ε∼. Additional parameters for the
homogenization step are possible. They are neglected, without loosing generality. In
the homogenization step, the effective material parameters are calculated driven by the
phase field model. In contrast to the homogenization of the Voigt/Taylor approach,
where the homogenization depends on the number of phases only, the homogenization
in the Khachaturyan approach depends on the type of input parameters needed for
the material law in addition to the number of phases, see for example Schmitt, Kuhn,
Müller, and Bhattacharya (2014). That leads to a homogenization depending on the
material law. However, only one material routine needs to be solved. This is an ad-
vantage to the Voigt/Taylor approach. In terms of implementation, there is no need
to generalize for n number of phases. In fact, a generalization would require to ac-
count for different types of input parameters and numbers of phases and it is therefore
not practicable. The homogenization is adapted depending on the material law and
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the number of phases. That makes the Khachaturyan approach more flexible because
the interface between the homogenization step and the material law is not rigid as
for example in the Voigt/Taylor apporach. The material law provides the quantities
stress, stress w.r.t. strain, and the first and second order derivatives of the elastic
energy w.r.t. to the phase field parameter. The phase field model yields the first
and second order derivatives of the chemical free energy w.r.t to the order parameter.
Hence, the residual and the tangent can be formed. In the finite element code, the
assembly of the residual and tangent matrices is the same for both the Khachaturyan
and the Voigt/Taylor approach.

6.2.1 Constitutive Law and Field Equations

Until here, no assumptions about the material behavior within the phase has been
made. The only requirement in (6.3) is the derivative of the stress w.r.t. strain.
Following (2.18) in linear theory, the constitutive law in (6.2) withing the individual
phase α is formulated with

ε∼α = ε∼
e
α + ε∼

*
α. (6.5)

6.2.2 Elastic Energy

Figure 6.3 shows the elastic energy in a uniform strain setting of two phases (α = 0, 1)
with using different interpolation methods for the Voigt/Taylor (red) and the Khachatu-
ryan (blue) approach as a function of the order parameter. In the following, the
parameters and quantities are nondimensionalized and are chosen in order to point
out the difference between the two approaches presented here. The Young’s modulus
is E0 = 1 for the parent phase. The material reacts stiffer in the child phase, where
E1 = 1.1. As does martensite when compared to the austenitic parent phase (Persson,
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2015). The Poisson’s ratio is held constant at ν = 0.25. The strain is uniform

ε∼ = ε∼uni = ε∼0 = ε∼1 =

[︃
0.09 0
0 0

]︃
. (6.6)

That is synonymous to a strain uniform across the phases for the Voigt/Taylor ap-
proach as in (6.1). The strain across the phases of the Khachaturyan approach,
however, is not uniform in the general case. Furthermore, a transformation strain is
present in the child phase only

ε∼
∗
0 = 0∼ and ε∼

∗
1 =

[︃
0.02 0
0 0.05

]︃
. (6.7)

The elastic energy behaves as described in (6.4), where the elastic energy of the
individual phases α = 1, 0 is

fu
α =

1

2

[︁
ε∼uni − ε∼

∗
α

]︁
: C∼∼ α

:
[︁
ε∼uni − ε∼

∗
a

]︁
. (6.8)

For the Voigt/Taylor case, using the linear interpolation function however, the first
order derivative for ϕ = 0 and ϕ = 1 does not vanish as shown in Figure 6.3. This
can lead to a driving force and does not ensure that an extremal point is reached in
the bulk phases, neither at ϕ = 0 nor at ϕ = 1. That means solutions that exceed
the valid range of ϕ ∈ [0, 1] can exist. However, with the coupling of the chemical
free energy, providing metastable minima in the bulk phases, this can be partially
mitigated. A better solution would be to choose an interpolation function with a
vanishing first order derivative at ϕ = 0 and ϕ = 1, such as the cubic interpolation
function proposed in (4.24). Another possibility is limiting the codomain of the inter-
polation function to [0, 1], as for example with the scaled tangens hyperbolicus scaling
function in (4.25). Numerical implementations can require second order derivatives,
for example FEM. Using a linear interpolation function the second order derivative
vanishes in the Voigt/Taylor case. For the reasons mentioned above, a non-linear in-
terpolation function is more suitable. Here, however, one should take the partition of
unity in (4.38) into consideration. A viable interpolation scheme is for example given
in (4.29). The non-linear interpolation functions used here, the cubic and the scaled
tangens hyperbolicus interpolation function, provide the model with a non-vanishing
second order derivative of the elastic energy on the interface region. Additionally, for
the bulk phases at ϕ = 0 and ϕ = 1, the first order derivative vanishes. Therefore, in
the Voigt/Taylor homogenization approach, a non-linear interpolation function, such
as the ones presented here, is the right choice.

In the Khachaturyan case, the energy is determined by the elastic strain and the
elastic material moduli. In a uniform strain setting, the elastic strain ε∼

e is a function
of the order parameter only, as are the elastic material moduli C∼∼ . The elastic energy
is therefore given by

fu =
1

2
ε∼

e(ϕ) : C∼∼
(ϕ) : ε∼

e(ϕ) =
[︁
ε∼uni − ε∼

∗(ϕ)
]︁
: C∼∼

(ϕ) :
[︁
ε∼uni − ε∼

∗(ϕ)
]︁
. (6.9)

The choice of the interpolation function for the transformation strain ε∼
∗ and the

material moduli C∼∼ is arbitrary, as long as they assume the bulk values in the respective
phases (4.21) and satisfy (4.38). Following the interpolation scheme in (4.29), the
scalar interpolation function h employed is linear. This is for example the case in,
but not limited to Zhang and Chen (2005), Wang and Khachaturyan (1997), Schmidt,
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Table 6.1: Summary of the interpolation function used for deter-
mining or interpolating the elastic energy in the Voigt/Taylor and the

Khachaturyan apprach

interpolation condition Voigt/Taylor Khachaturyan

linear h(ϕ) = ϕ
vanishing second
order derivative

non-vanishing second
order derivative

non-vanishing first order derivative
vanishing first
order derivative

∂h
∂ϕ = 0|ϕ=0,1

mitigates the driving force in the
bulk phase

restricted codomain h(ϕ) : IR → [0, 1] mitigates inadmissible order parameter

Dornisch, and Müller (2017a), and Schmitt, Kuhn, Müller, and Bhattacharya (2014).
A linear interpolation function, for instance, leads to a non-linear behavior of the
elastic energy, where h(ϕ) = ϕ

1

2

[︁
ε∼uni − h(ϕ)ε∼

∗]︁ : (C∼∼ 0
+ h(ϕ)(C∼∼ 1

−C∼∼ 0
)) :

[︁
ε∼uni − h(ϕ)ε∼

∗]︁ = 1

2
ε∼uni : C∼∼ 0

: ε∼uni+

1

2
h(ϕ)

[︂
ε∼uni : (C∼∼ 1

−C∼∼ 0
) : ε∼uni − 2ε∼uni : C∼∼ 0

: ε∼
∗
]︂
+

1

2
h(ϕ)2

[︂
ε∼
∗ : C∼∼ 0

: ε∼
∗ − 2ε∼uni : (C∼∼ 1

−C∼∼ 0
) : ε∼

∗
]︂
+

1

2
h(ϕ)3

[︂
ε∼
∗ : (C∼∼ 1

−C∼∼ 0
) : ε∼

∗
]︂
.

(6.10)

This also shows when regarding Figure 6.3. This is an advantage to the Voigt/Taylor
approach. Numerical implementations, such as the finite element method, require
second order derivatives. With the Khachauryan approach, those derivatives don’t
vanish. A disadvantage of the Khachaturyan approach is the drop of the elastic energy
in the interface. Simplifying (6.10) the magnitude of the drop can be quantified

fu(ϕ) = Afu +Bfuh(ϕ) + Cfuh(ϕ)2 +Dfuh(ϕ)3. (6.11)

Assuming an arbitrary monotonically increasing function h(ϕ) on ϕ ∈ [0, 1] and
ϕ′ ∈ [0, 1], there exists a map k with k(h(ϕ)) = ϕ. That means that for every in-
terpolation function h and another interpolation function h′ of the same type sharing
the same codomain, for every ϕ ∈ [0, 1], there is at least one ϕ′ such that h(ϕ) = h′(ϕ′).
Therefore the magnitude of the drop in (6.10) does not depend on the choice of h and
can be determined by any h, for example h(ϕ) = 0, without loss of generality

∂fu(ϕ)

∂ϕ

!
= 0, and ϕ =

−Cfu ±
√︂
C2
fu − 3DfuBfu

Bfu
. (6.12)

That means that the interpolation of the elastic energy in the Khachaturyan approach
is not necessarily limited by its bulk values, even if ϕ stays within [0, 1]. Similar to
the Voigt/Taylor approach the first order derivative of the elastic energy w.r.t. the
order parameter does not vanish. Therefore there is no extremal point which can lead
to a driving force. As Figure 6.3 shows, this can be mitigated by choosing a cubic
interpolation function such that the first order derivative is zero for the bulk phases,
or by choosing a scaled tangens hypberbolicus interpolation function, which ensures
that the codomain of the interpolation function is in the admissible range [0, 1]. To
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summarize, the linear interpolation function can lead in both the Voigt/Taylor and
the Khachaturyan approach to an unwanted driving force in the bulk phase. In most
cases, with the interplay of the chemical energy, the order parameter does not notably
exceed the interval [0, 1]. Mitigation can take place by forcing the order parameter
within the admissible domain by using an obstacle potential such as proposed by
Tschukin et al. (2017). As this approach may lead to instabilities using implicit time
integration schemes, the same concept can be employed by a more flexible interpola-
tion, by either choosing a interpolation with vanishing first order derivatives for the
bulk phases, or by restricting the codomain. The Voigt/Taylor approach does not
allow a linear interpolation because of the non-vanishing second order derivatives of
the elastic energy. Table 6.1 sums up the behavior of the elastic energy using different
interpolation methdods in the Voigt/Taylor and the Khachaturyan approach.

6.3 Implementation

The Voigt/Taylor approach is implemented as user routine in the finite element analy-
sis program FEAP (Taylor, 2014). The degrees of freedom are the vector valued order
parameter ϕ ∈ IRn and the displacement vector u. The number of phases considered is
n. The number of spatial dimensions is d. As discussed above, the components of the
order parameter are ϕα and indicate the presence of a phase α. They are associated
with the corresponding transformation strain ε∼

∗
α within the individual phase. The

number of phases n depends on the number of martensitic orientation variants to be
considered, which is intertwined with the orientation relationship. The fewest number
of variants is the Bain orientation relationship. One orientation variant is introduced
with each spatial dimension.

The field equations are the balance of linear and angular momentum for the mechanical
problem, and the Ginzburg Landau time dependent evolution equation for the phase
field problem

∇ · σ∼ = 0, (6.13)

ϕ̇

M
+

∂fu

∂ϕ
+

∂f ch

∂ϕ
−∇ · ∂fgrad

∂∇⊗ ϕ
= 0. (6.14)

Subsequently, the flux-divergence theorem can be applied. Using Green’s identity, the
weak for of the mechanical and the weak form of the phase field problem is obtained.
They read ∫︂

V

(︂
∇⊗ η

u

)︂
: σ∼dV =

∫︂
∂Vt

η
u
· (σ∼n)dS (6.15)∫︂

V

[︄
ϕ̇α

M
ηϕα +

∂fu

∂ϕα
ηϕα +

∂f ch

∂ϕα
ηϕα + (∇ϕα) · (∇ηϕα)

]︄
dV =

∫︂
∂Vq

ηϕα(∇ϕα · n)dS

(6.16)

where n is the outer normal vector. The test functions for the mechanical and the
chemical problem are η

u
, and η

ϕ
. The values u and ϕ are discretized with nodal ansatz

functions NI . The index of the node is represented with I. A superset h indicates a
discretized quantity (·h). They can be calculated using the ansatz function and the
nodal quantities. A nodal quantity is superset with a hat (̂·I), where the index I
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identifies the node. The discretizations read

uh =
N∑︂
I=1

NI ûI , and ϕh =
N∑︂
I=1

NI ϕ̂I
, (6.17)

where N is the number of element nodes. The discretizations for the strain and the
gradient of the components of the order parameter ϕα are

ε=
N∑︂
I=1

B∼
u
I · ûI and ∇ϕα =

∫︂ N

I=1
B∼

ϕ
I · ϕ̂

I
, (6.18)

respectively. The matrix B∼
u
I can be determined by applying a discretization to the

small strain tensor in (2.18). Analogously, the matrix B∼
ϕ
I is obtained by applying the

gradient to both sides of the discretization for the order parameter in (6.17). The
matrices read

B∼
u
I =

⎡⎢⎢⎢⎢⎢⎢⎣

N,1 0 0
0 N,2 0
0 0 N,3

0 N,3 N,2

N,3 0 N,1

N,2 N,1 0

⎤⎥⎥⎥⎥⎥⎥⎦ , and B∼
ϕ
I = ∇NI ∈ IR. (6.19)

6.3.1 Residual and Elemental Stiffness Matrix

Using the weak forms, the nodal residual vector can be determined. The nodal degrees
of freedom d̂J , and ˆ̇

dJ at a node J are the displacements and the order parameter, as
well as the time derivatives, reading

d̂J =

[︃
ûJ
ϕ̂
J

]︃
, and ˆ̇

dJ =

[︄
0
ˆ̇
ϕ
J
.

]︄
, (6.20)

where the problem is quasi static for the mechanical model. The nodal displacements
ûJ , and the nodal phase field parameter ϕ̂

J
and its rates ˆ̇

ϕ
J

are vectors

ûJ ∈ IRd, ϕ̂
J
∈ IRn, and ˆ̇

ϕ
J
∈ IRn. (6.21)

The number of martensitic phases is n. It depends on the number of martensitic
variants to be considered. The number of spatial dimensions d is 2 in the 2D case,
and 3 in the 3D case. The nodal residual of a node I is a function of the nodal degrees
of freedom and their rates

RI =

[︄
R

u
I

R
ϕ

I

]︄
, where R

ϕ

I =

⎡⎢⎣R
ϕ1

I
...

Rϕn

I

⎤⎥⎦ ∈ IRn. (6.22)

The residual R
ϕ

I for the phase field problem is a vector of residuals Rϕα

I of the com-
ponents ϕα of the vector valued order parameter ϕ The residuals for the mechanical
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and the phase field problem are R
u
I and Rϕα

I , respectively. They read

R
u
I =

∫︂
V

(︂
B∼

u
I
⊤
)︂
σdV (6.23)

Rϕα

I =

∫︂
V

[︄
ϕ̇α

M
NI +

∂fu

∂ϕα
NI +

∂fch

∂ϕα
NI +GL(∇ϕα) ·Bϕ

I

]︄
dV . (6.24)

The component wise notation in (6.24) can also be expressed with the vector valued
order parameter ϕ, effectively summarizing (6.24) and the right side of (6.22)

R
ϕ

I =

∫︂
V

[︄
ϕ̇

M
NI +

∂fu

∂ϕ
NI +

∂fch

∂ϕ
NI +GL(∇⊗ ϕ)⊤ ·Bϕ

I

]︄
dV . (6.25)

The stiffness matrix represents the change of the nodal residual w.r.t the nodal degrees
of freedom. The size of the elemental stiffness matrix K∼ depends on the number of
element nodes N , and the number of degrees of freedom n+ d

K∼ =

⎡⎢⎢⎢⎢⎢⎢⎣
K∼ 11 · · · K∼ 1J · · · K∼ 1N

...
. . .

...
. . .

...
K∼ I1 · · · K∼ IJ · · · K∼ IN

...
. . .

...
. . .

...
K∼ N1 · · · K∼ NJ · · · K∼ NN

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ IRN(n+d)×N(n+d). (6.26)

The stiffness matrix K∼ IJ for the node pair I and J can be divided up into a purely

mechanical part K
uu
IJ , and a purely phase field dependent part K

ϕϕ

IJ on the diagonal.
The mixed terms K

uϕ

IJ , and K
ϕu

IJ , which arise due to the coupling of the phase field
model with the material law through the elastic energy, are on the antidiagonal. The
elemental stiffness matrix reads

K∼ IJ =
∂RI

∂d̂J
=

[︄
K

uu
IJ K

uϕ

IJ

K
ϕu

IJ K
ϕϕ

IJ

]︄
, where K

uu
IJ ∈ IRd×d, and K

ϕϕ

IJ ∈ IRn×n. (6.27)

The stiffness matrix represents the change of the residual when varying the nodal
degrees of freedom. The matrix entries can be determined by the derivative of the
residual w.r.t the individual nodal degrees of freedom. The stiffness matrix entries for
the mechanical problem are

K
uu
IJ =

∂R
u
I

∂ûJ
=

∂R
u
I

∂ε

∂ε

∂ûJ
=

∫︂
V

(︁
B∼

u
I

)︁⊤ ∂σ

∂ε

(︁
B∼

u
J

)︁
dV . (6.28)

Analogously, the entries of the stiffness matrix for the phase field problem can be
determined. First, however, it is useful to determine their entries

K
ϕϕ

IJ = K
ϕαϕβ

IJ eα ⊗ eβ , (6.29)
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where eα and eβ represent the unit vectors introduced in chapter 4.1. The entries read

K
ϕαϕβ

IJ =
∂Rϕα

I

∂ϕ̂βJ

=

∫︂
V

[︄
∂2
(︁
f ch + fu)︁
∂ϕα∂ϕβ

NINJ +GLBϕ
I

∂ (∇ϕα)

∂ (∇ϕβ)

∂ (∇ϕβ)

∂ϕ̂βJ

]︄
dV

=

∫︂
V

[︄
∂2
(︁
f ch + fu)︁
∂ϕα∂ϕβ

NINJ +GLBϕ
I δαβB

ϕ
J

]︄
dV . (6.30)

Expressing (6.30) using a vector, the stiffness matrix becomes

K
ϕϕ

IJ =

∫︂
V

[︄
∂2f ch

∂ϕ2 NINJ +
∂2fu

∂ϕ2 NINJ +GLBϕ
I I∼B

ϕ
J

]︄
dV . (6.31)

The mixed entries follow symmetry in I and J , such that

K
uϕ

IJ =
(︂
K

ϕu

IJ

)︂⊤
= K

ϕu

JI (6.32)

holds. This can be shown by calculating both entries. The top-right antidiagonal
entry can be expressed in vector notation directly, yielding

K
uϕ

IJ =
∂R

u
I

∂ϕ̂
J

=

∫︂
V

(︁
B∼

u
I

)︁⊤ ∂σ

∂ϕ̂
J

dV =

∫︂
V

(︁
B∼

u
I

)︁⊤ ∂σ

∂ϕ
NJdV . (6.33)

The bottom-left antidiagagonal entry is calculated using the component wise notation
of the order parameter

K
ϕαu
IJ =

∂R
u
I

∂ϕ̂αJ

=

∫︂
V

∂2
(︁
f ch + fu)︁
∂ϕα∂ûJ

NIdV

=

∫︂
V

∂

∂ϕα

(︃
∂fu

∂ε

∂ε

∂ûJ

)︃
NIdV

=

∫︂
V

∂
(︁
σ⊤B∼

u
J

)︁
∂ϕα

NIdV =

∫︂
V
NI

(︃
∂σ

∂ϕα

)︃⊤
B∼

u
JdV . (6.34)

Replacing the derivative of the strain w.r.t the order parameter component ϕα with
its vector notation counterpart, the symmetry can be shown

K
ϕu

IJ =
(︂
K

uϕ

IJ

)︂⊤
=

∫︂
V
NI

(︃
∂σ

∂ϕ

)︃⊤
B∼

u
JdV . (6.35)

The elemental damping matrix D∼ contains the derivatives of the residual w.r.t to the

nodal rates ˆ̇
dJ . In view of (6.26) and (6.26), the elemental damping matrix entries

are

D∼ IJ =
∂RI

∂
ˆ̇
dJ

=

[︄
0∼ 0∼
0∼ D∼

ϕϕ

IJ

]︄
. (6.36)

The terms concerned with the mechanical part of the problem vanish as they are
considered to be quasi static. The pure phase field damping matrix is a diagonal
matrix

D∼
ϕϕ

IJ =

∫︂
V

NI

M
I∼dV ∈ IRn×n. (6.37)
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With the nodal residual vector R
ϕ

I , and the corresponding stiffness and damping
matrices K∼ IJ and D∼ IJ , respectively, the field equations in (6.13) and (6.14) can be
solved. The time integration is carried out with the backward Euler implicit method.
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Figure 6.4: Landau polynomial fL for A = 10 and D = 1 as a func-
tion of two order parameter components ϕ1 and ϕ2 (a). The derivative
w.r.t. ϕ1 is shown in (b). The thick lines indicate contour lines of con-
stant height. Contour lines above 2 in (a) and above 10 in (b) are
projected down to the height of 2 and 10, respectively. The boundary

of the admissible range is indicated by the dashed lines (-).

6.3.2 Derivatives of the Elastic Energy

The elastic energy in the Voigt/Taylor approach is an interpolation of the elastic
energies within the individual phases. In view of (6.3) and (6.4), derivatives of the
elastic energy w.r.t the vector valued order parameter ϕ can be provided with the
knowledge of the stress σ∼α, and the elastic energy fu

α of the phases α = 0 . . . n, as well
as providing first and second order derivatives for the scalar interpolation function h.
Using the case dependent approach in (4.29), the derivatives of the elastic energy w.r.t
the order parameter read

∂fu

∂ϕα
= fu

0

∂h0(ϕ)

∂ϕα
+

n∑︂
α=1

fu
α

∂h(ϕα)

∂ϕα
= h′(ϕα)(f

u
α − fu

0 ), and (6.38)

∂2fu

∂ϕα∂ϕβ
=

{︄
h′′(ϕα), if α = β

0, if α ̸= β
. (6.39)

Using the case dependent interpolation for the mixed terms in (6.33) and (6.35), the
derivative is given by

∂σ∼
∂ϕα

= σ∼0

∂h0(ϕ)

∂ϕα
+

n∑︂
α=1

σ∼α

∂h(ϕα)

∂ϕα
= h′(ϕα)(σ∼α − σ∼0). (6.40)

6.3.3 Derivatives of the Chemical Energy

The chemical energy is a function of the vector valued order parameter. In contrast
to the derivatives of the elastic energy, they need to be implemented individually.
Following Schmitt, Kuhn, Müller, and Bhattacharya (2014) and Yamanaka, Takaki,
and Tomita (2008), the chemical energy is proportional to a multivariant Landau
polynomial

f ch(ϕ) = GLfL(ϕ), (6.41)
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where G is the specific interface energy density and L is a parameter related with the
width of the smooth transition zone in the phase field model. The Landau polynomial
is given by

fL(ϕ) = D +
1

2
A

n∑︂
α=1

[︁
ϕ2
α

]︁
− 1

3
B

n∑︂
α=1

[︁
ϕ3
α

]︁
+

1

4
C

[︄
n∑︂

α=1

[︁
ϕ2
α

]︁]︄2
. (6.42)

Figure 6.4 (a) depicts the Landau polynomial for two phases (n = 2). As discussed in
chapter 5, the parameter D identifies the stable and the metastable phases, whereas
A scales the maximum of the Landau polynomial. As a consequence, the parameters
of the Landau polynomial are temperature dependent. Here, a constant temperature
is assumed. The multivariant Landau polynomial and its first order derivative are
depicted in Figure 6.4. The Landau polynomial fL exhibits three minima at ϕ = [0, 0],
at ϕ = [0, 1], and at ϕ = [1, 0], where the latter two are stable minima. The dashed
lines indicate the boundary of the admissible region of the order parameter. The
gradient outside this admissible region points towards the inside. That means there
is no purely stable chemical state here. The derivative of the Landau polynomial
∂fL/∂ϕ1 w.r.t. the first order parameter ϕ1 in Figure 6.4 (b) vanishes for the three
minima. The same applies for the second order parameter ϕ2. That means there are
no chemical driving forces in either of the stable and metastable minima. In Schneider,
Schoof, Huang, Selzer, and Nestler (2016), a so called third phase term is introduced,
in order to mitigate an unphysical minimum on a triple junction of the phase field.
As both first order derivatives vanish only in the bulk phases, e.g.

∂fL

∂ϕ1

⃓⃓⃓⃓
ϕ

· ∂fL

∂ϕ1

⃓⃓⃓⃓
ϕ

!
= 0 =⇒ ϕ ∈ [0, e1, e2] , (6.43)

it is not necessary to introduce a third phase term. Visually, that means that the
height lines of the first order derivatives only intersect in the bulk phases.

6.3.4 Technical Details

The model has been implemented in the finite element framework FEAP (Taylor,
2014) and the finite element solver Zébulon for verification purposes. For the imple-
mentation in FEAP Fortran 95 was used. The advantage of Fortran 95 over Fortran
77 is the free form, making code more readable. Furthermore it allows for dynamic
memory allocation and with the introduction of modules, it makes testing and devel-
opment more versatile. For example Fortran modules interface with Python 3 using
the f2py compiler. In order to compile Fortran 95 source code along with FEAP, the
sources in the concerning makefiles need to be adjusted

SOURCES = $(sort $(wildcard $(FSOURCE)*.$(FEXT)) $(wildcard $(CSOURCE)
↪→ *.$(CEXT)) $(wildcard $(FSOURCE)*.f95))

The ↪→ indicates a line break. The Fortran 95 source files are selected with the wild-
card expansion. Sorting the source files using $(sort ...) and setting the system locale
to C ensures a consistent order across systems. Prefixing the module with a 0 ensures
that they are compiled prior to all the element files. In order to access the module
subroutines within python, which is useful for plotting, testing and verification, the
command

python3 -m numpy.f2py -c feap_sources -m python_module
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can be used, where feap_sources is a list of the feap source module files, in order to
create a python module of the name python_module.

The model has been implemented in 2D using 4 node quadrilateral element, and in
3D using 8 node brick elements. Three interpolation functions are available. The code
has been generalized to accommodate n phases.
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6.4 Basic Considerations

The Voigt/Taylor model should be able to reproduce the effects found in the Khachatu-
ryan model. Therefore martensite is the metastable phase for temperatures below the
equlibrium temperature. With no load applied, the martensitic phase is stable. How-
ever, depending on the load state, the austenitic face can be more favorable, as the
martensitic tranformation introduces an eigenstrain. However, the eigenstrain, de-
pends on the martensitic orientation variant. Likewise, one martensitic orientation
variant might be more favorable than another variant.

Here, a beam of 176 nm length and 35.2 nm height at a constant temperature of
T = 300K in two spatial dimensions is considered. With the temperature dependent
separation potential presented in chapter 5, the parameters of the Landau polynomial
can be determined according to Schmidt et al. (2016) and Schmidt, Dornisch, and
Müller (2017a), where

A = 9.7187, B = 41.1562, C = 31.4375, and D = 1. (6.44)

correspond to a temperature of T = 300K. The D = 1 indicates that martensite
is the stable phase, and austenite is the metastable phase. The formulation in the
residuals (6.24), and the tangent matrix entries (6.28), (6.30), and (6.33), require the
stress σ∼α, the derivative of the stress w.r.t. strain

∂σ∼α
∂ε∼α

, and the elastic energy fu
α of

each individual phase α. Any material law, providing the aforementioned measures,
can be chosen. Here, a linear elastic material law with constant eigenstrain is used.
The material law can be expressed using the following equations

ε∼
e
α = ε∼α − ε∼

∗
α, (6.45)

fu
α =

1

2
ε∼

e
α : C∼∼ α

: ε∼
e
α, (6.46)

σ∼α =
∂fu

α

∂ε∼α

= C∼∼ α
: ε∼

e
α, and (6.47)

∂σ∼α

∂ε∼α

= C∼∼ α
, (6.48)

where the material constants are represented by C∼∼
. For the austenitic parent phase

(α = 0), no eigenstrain is assumed. The eigenstrain in the martensitic phases varies.
In order to discuss the influence of the eigenstrain in the results, they have been
simplified

ε∼
∗
1 =

[︃
0.05 0
0 0

]︃
, and ε∼

∗
2 =

[︃
0 0
0 0.05

]︃
, (6.49)

such that the first orientation variant imposes a strain in x1-direction, and the second
strain imposes a strain in x2-direction. Therefore a strain, or force in x1-direction
influences the elastic energy and therefore the formation of the first orientation vari-
ant strongly compared to the formation of the second orientation variant, which is
unaffected, with the exception of effects like the lateral strain. The same applies for
a strain, or force in x2-direction, and the second orientation variant, however, inter-
changed. Furthermore, a total strain of 5% is well within the small strain regime.
Given such a strain setting, it is possible choosing the right load setting, to make
either the austenitic or the martensitic phase energetically more stable.

Consider a beam under load, realized as displacement of the far ends of the beam
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Figure 6.5: Time evolution for different levels of mesh refine-
ments. The solid colored regions indicate the interface region where
0.8 > ϕ1 > 0.2 (left, dark gray), and where 0.8 > ϕ2 > 0.2 (right,
light gray). The austenitic phase is present in the center (A), with the
martensitic orientation variants to the left (M1) and to the right (M2).

about on another. The bottom left node is pinned. The bottom right node is a simple
support allowing for movement in x1-direction only. The left side of the beam is held
in place in x1-direction only, allowing for movement in x2-direction. The right side is
displaced by a certain magnitude, however without restricting motion in x2-direction.
The initial condition is shown in 6.5 (a). The middle section of the beam endowed
with the austenitic phase, where the left quarter and the right quarter contain the
pure martensitic orientation variant one and two, respectively.

Before discussing the simulation, some basic considerations for the stability of the
phases are presented. First, disregard the elastic energy, or assume the elastic energy
is equal for each individual phase. Therefore, in order to minimize the free energy,
the chemical energy is to be minimized. Here, as a temperature of about 300K is
assumed, the martensitic phase is more stable. As the eigenstrain can no longer
amount for differences, the martensitic phases are chemically and mechanically equal.
Due to geometric symmetry, simulation wise, the interfaces M1-A and M2-A would
progress at the same speed and eventually meet in the center.

Second, disregard the chemical energy, considering the mechanical energy only. Fur-
thermore, assume no lateral strain, and no varying material constants C∼∼ α

. Here, in
terms of elastic energy, the austenitic phase and the second orientation variant are
equal. The displacement on the right side of the beam is varied between 0 and 8.8 nm,
which amounts to a total strain of 5%. If the displacement is 8.8 nm, the elastic energy
in the first orientation variant is smaller than the elastic energy in the austenitic and
the second orientation variant. Therefore the interface M1-A would proceed to evolve
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to the right, passing the interface M2-A, and leading eventually to a beam of pure
martensite M1. Any strain above or equal to 5% leads to the same final configuration.
Given a total strain of 0, however, the austenitic phase is more stable than the first
orientation variant. This leads to a motion of the M1-A to the left, while the M2-A
interface does not move as the austenitic phase and the second orientation variant are
energetically equal. The end configuration is a beam of austenite, with a portion of
retained martensite M2 beyond the M2-A interface. Therefore the end configuration
can be determined by the position of the M1-A interface only. Any strain smaller or
equal to 0 leads to the same final configuration. Given a displacement between 0 nm
and 8.8 nm, however, the final configuration is determined by the position of the M1-A
interface only. For example given a displacement of 4.4 nm (2.5%), the position of
the M1-A interface would be at about 50% length of the beam, as then the eigen-
strain within the first orientation variant amounts for the displacement. Therefore,
in this case, the following relation for the position of the interface x1(M1−A) can be
determined

x1(M1−A) =
d

ε11
l, (6.50)

where l is the length of the beam, and d is the displacement applied on the right side.
For example a strain of 2%, tantamount to a displacement of d = 3.52 nm, leads to a
position of the M1-A interface of x(M1−A) = 70.4 nm, neglecting the chemical energy
and the lateral strain. Likewise, a displacement of 5.28 nm (3% total strain) yields
an interface position of x1(M1−A) = 105.6 nm.

The simulation in Figure 6.5 assumes the elasticity matrices of pure iron for the
austenitic and the martensitic phase, given by

C∼ 0 = C∼ Fe, fcc, simpl. =

⎡⎣2.2 1.5 0
1.5 2.2 0
0 0 0.3

⎤⎦ · 105Nmm−2, and (6.51)

C∼ 1 = C∼ 2 = C∼ Fe, bcc, simpl. =

⎡⎣2.9 1.6 0
1.6 2.9 0
0 0 0.6

⎤⎦ · 105Nmm−2. (6.52)

Please note, that in contrast to (Schmitt, Wang, and Urbassek, 2013b), the parameters
have been simplified. However, they are in the right order of magnitude. That is in line
with the transformation strain ε∼

∗
α chosen in (6.49). As an initial guess, the parameters

for the chemical energy and the time evolution are

G = 0.96 · 10−6 J

mm
, L = 30nm, and M = 9.6 · 10−3 mm

Nns
, (6.53)

In Figure 6.5 the initial configuration (a), and the time evolution (b, c), leading to
the final configuration (d) are shown. The displacement is d = 3.52 nm. Initially, the
motion of the interface M1-A is to the right, and of the interface M2-A to the left.
This leads to a transformation of the austenitic phase to the first and the second ori-
entation variant, respectively. That means, that both martensitic orientation variants
are energetically more stable than the austenitic phase. This can be explained illus-
tratively: Both the first and the second martensitic orientation variant are chemically
more stable than the austenitic phase. As the strain of the beam is in x1-direction,
the transformation strain entry ε∗11α is of importance. In terms of the elastic energy,
the second orientation variant and the austenitic phase are almost equal, where the
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Table 6.2: Interface position

mesh nel nelx1
nelx2

nelx1

L
l x1(M1−A)

coarse 720 60 12 10.23 67.48 nm
standard 2880 120 24 20.45 67.54 nm

fine 11520 240 48 40.91 67.55 nm
analytic - - - - 70.4 nm

transformation strain entries vanish ( ε∗110 = ε∗111 = 0). However due to the chem-
ical energy, the second martensitic orientation variant is preferred to the austenite.
The interface motion between the time frames is indicated schematically by the lines
connecting the contours of constant ϕ1 = 0.5, and ϕ2 = 0.5.

The velocity of the M2-A interface is marginally higher than the velocity of the M1−A
interface. That is because the second martensitic orientation variant is, in terms of the
elastic energy, slightly more favorable than the first martensitic orientation variant.
The phases move towards each other as depicted in Figure 6.5 (b). Eventually, they
join, forming a mutual interface. Thereafter, they proceed to move towards the left
as shown in Figure 6.5 (c). As both martensitic phases are chemically equally stable,
equation (6.50) provides a good approximation for the final configuration. Considering
the elastic energy only, with no lateral strain and without varying elasticity matrices,
this leads to an interface position of 70.4 nm. The interface position in the simulations
can be calculated by averaging the x1-position where ϕ1 = ϕ2 over the x2-coordinate.
The simulation has been conducted with three differently refined meshes, termed
coarse, standard, and fine. The standard mesh consists of 2880 elements, while the
coarse mesh is four times coarser amounting to 720 elements. The fine mesh is at
11520 elements. The positions for the interface M1-M2 are at 67.48 nm for the coarse
mesh, 67.54 nm for the standard refined mesh, and 67.55 nm for the fine mesh. This
is well in line with the prediction in (6.50). The results are summed up in Table 6.2,
where in addition to the number of elements in x1 and in x2 direction, nelx1

, and
nelx2

, respectively, the mesh density as elements per specific interface width L is given
(nelx1

L
l ). The coarse mesh has about 10 elements per interface width L, where the

values for the standard and the fine mesh are twofold and fourfold higher. As the
result for the coarse mesh does not considerably vary from the fine mesh, even less so
the result obtained using the standard mesh, a number of ten elements per interface
width L is sufficient.
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Figure 6.6: Example 1. Order parameter for the parent phase ϕ0

(solid, dash-dot), and the martensitic orientation variants ϕ1 (dashes-
dash-dot-dot), and ϕ2 (small dashes, dots) for the Khachaturyan (K,
blue), and the Voigt/Taylor approach (VT, red). The static iteration

is on the left, the evolution after t = 4.5 ns is on the right.

6.5 Comparison to the Khachaturyan Approach

In this chapter a comparison to the Khachaturyan in chapter 5 approach is presented.
The material parameters are similar to the ones used in the previous section. As
before, a beam of 176 nm length and 35.2 nm height at a constant temperature of
T = 300K in two spatial dimensions is considered, where the bottom left node is
pinned, and the bottom right node is a simple support, allowing for motion in x2-
direction only. A cubic interpolation function is used for the Voigt/Taylor approach.

Three examples with varying material parameters and boundary conditions are dis-
cussed in order to assert their influence. The first example is shown in Figure 6.6
and 6.7. Here, different elastic constants for the individual phases are used, they are
given by

C∼ 0 = C∼ Fe, fcc, simpl. and C∼ 1 = C∼ 1 = C∼ Fe, bcc, simpl., (6.54)

where the parameters are given in (6.52). In order to attribute elastic constants, no
transformation strain is assumed

ε∼
∗
0 = ε∼

∗
1 = ε∼

∗
2 = 0∼. (6.55)

A distributed load in x1-direction of F = 1 · 10−3N is applied to the far ends of
the beam, leading to a total strain within the order of magnitude of 3%. The initial
configuration after the static iteration at t = 0ns, and the evolution after t = 4.5 ns are
shown in Figure 6.6. The distribution of the elastic and the chemical energy is shown
in Figure 6.7, again after the static iteration and after evolving for 4.5 ns. After the
static iteration, there is no difference between the Khachaturyan and the Voigt/Taylor
case. The elastic energy reaches its bulk value in the bulk phases, given the local
strain distribution. The chemical energy vanishes in the bulk child phases, where
ϕ0 = 0 due to the nature of the Landau polynomial (6.4). In the austenitic phase, it
reaches a value of G/L = 0.32MJm−2. Both models rely on energy minimization. A
transformation from any bulk phase to any other bulk phase introduces an interface,
which is widened due to the gradient term. Once the interface is established, the
energy contribution of the chemical energy wants to minimize the interface width,
therefore counteracting the gradient term and thus stabilizing the interface. As does
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Figure 6.7: Example 1. Elastic energy fu (solid, dash-dot) and
chemical energy f ch (dashes, dots) for the Khachaturyan (K, blue), and
the Voigt/Taylor approach (VT, red). The static iteration is shown

on the left, the evolution after t = 4.5 ns is on the right

the mechanical energy. As the terms counteract themselves on the interface, they are
disregarded momentarily.

The elastic and the chemical energy, fu and f ch, respectively, are an indicator for the
stable solution of this problem: The global minimum is a transformation from the
austenitic to the martensitic phase. A transformation releases not only chemical, but
also mechanical energy.

During the transformation, the interface widenes. At 4.5 ns, an intermediate state is
reached. The interface position, where ϕ0 = ϕ2 is almost equal for the two approaches.
In the Voigt/Taylor approach, the bulk values for both the elastic and the chemical
energy are assumed. The chemical setup is austenitic to the left of the interface where
ϕ0 = ϕ2, and it is martensitic to the right. The first orientation variant is absent.
At all times prior and after this intermediate state, the respective bulk values for the
elastic energy are reached. The phase field stays within the admissible range.

However using the Khachaturyan approach, the chemical and the elastic energy exceed
the values for the bulk phases. A comparison with the phase field in Figure 6.7 at
time t = 4.5 ns shows that the order parameter exceeds its valid range. That is due
to the use of a linear interpolation function. This issue can be fixed, either by using
a non-linear interpolation function, such as the cubic, ensuring that exceeding the
values for the bulk phases leads to a bigger energy contribution than staying in the
interface or the bulk. Likewise, a tangens hypberbolicus interpolation function could
be used, limiting the codomain and thus extending the admissible range indefinitely.
A third solution poses the obstacle potential (Tschukin et al., 2017).
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Figure 6.8: Example 2. Order parameter for the parent phase ϕ0

(solid, dash-dot), and the martensitic orientation variants ϕ1 (dashes-
dash-dot-dot), and ϕ2 (small dashes, dots) for the Khachaturyan (K,
blue), and the Voigt/Taylor approach (VT, red). The static iteration

is on the left, the evolution after t = 4.5 ns is on the right.

As a second test, in order to discuss the influence of the transformation strain, the
material moduli are constant for all phases, e.g.

C∼ 0 = C∼ 1 = C∼ 2 = C∼ Fe, fcc, simpl., (6.56)

where the value for C∼ Fe, fcc, simpl. is in (6.52). A transformation strain is introduced
for the second martensitic variant only

ε∼
∗
0 = ε∼

∗
1 = 0∼, and ε∼

∗
2 =

[︃
0.05 0
0 0

]︃
. (6.57)

As discussed in chapter 6.4, a local strain, which is similar to the transformation
strain, causes the transformation to be energetically beneficial. This example uses the
same geometry as in the previous example, but the boundary conditions are modified.
Instead of a load, a strain of 0.05 is applied to the far ends of the beam in x1-direction.
In similar fashion, the phase composition in Figure 6.8 and the energy landscape in
Figure 6.9 are discussed.

The static iterations of the Khachaturyan and the Voigt/Taylor approach differ slightly.
Contrary to what was shown for the uniform strain case in Figure 6.3, the elastic en-
ergy of the Voigt/Taylor approach is exagerated in the interface. Here, the strain
is not uniform. That is due to the mismatch of the transformation strain and the
interpolation of the elastic energy rather than interpolating the effective parameters
as in the Khachaturyan approach. This is unfavorable for numerical implementations,
as the interface needs to be resolved with a finer discretization. However, as shown in
the previous chapter 6.4, a relatively coarse discretization leads to accurate results. A
countermeasure would be to raise the parameter L, which scales the interface width.
As the phases evolve, at 4.5 ns, an intermediate state is obtained. In the Khachaturyan
approach, the interface is considerably wider. That is due to the lower and almost
vanishing energy difference in the elastic energy. However, the order parameters ϕ0,
and ϕ2 exceed their valid range. This is not the case for the Voigt/Taylor approach.

The two examples shown in the Figures 6.6, 6.7, 6.8, and 6.9 all end with the same so-
lution: a beam of pure martensite. In order to show that the results for the Khachatu-
ryan and the Voigt/Taylor case may differ, the boundary condition of the previous
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Figure 6.9: Elastic energy fu (solid, dash-dot) and chemical energy
f ch (dashes, dots) for the Khachaturyan (K, blue), and the Voigt/Tay-
lor approach (VT, red). The static iteration is shown on the left, the

evolution after t = 4.5 ns is on the right
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Figure 6.10: Example 3. Order parameter for the parent phase ϕ0

(solid, dash-dot), and the martensitic orientation variants ϕ1 (dashes-
dash-dot-dot), and ϕ2 (small dashes, dots) for the Khachaturyan (K,
blue), and the Voigt/Taylor approach (VT, red). The static iteration

is on the left, the stable state after the evolution is on the right.

example are modified. The strain is reduced to 0.025. Disregarding the chemical
energy, the position of the interface can be calculated with (6.50). That means, in
terms of the mechanical energy, the initial configuration is in a stable state with the
interface in the center. Adding the chemical energy, the position should shift to the
left, as martensite is chemically more stable. Figure 6.10 shows the phase field in
the initial configuration and the final configuration. The Voigt/Taylor approach is
converged at tVT

1 = 19.5 ns. The position of the interface is at 70.4 nm. The solution
for the Khachaturyan model is obtained at tK1 = 14.5 ns. The bulk phases exceed
the valid range by approximately 6%. The interface position is 61.6 nm, which is a
considerable difference from the Voigt/Taylor approach.
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6.5.1 Using a Non-linear Interpolation Function

A downside of the Khachaturyan approach as presented in chapter 5.1.1 is the linear
interpolation. This was shown illustratively above, and it is discussed in chapter
6.2.2 and in Schmidt, Dornisch, and Müller (2019). In order to mitigate this issue,
a non-linear interpolation function is used. For the sake of completeness, the field
equations, the residual and the tangent matrix for the multivariant Khachaturyian
approach using an arbitrary interpolation function are explained in the following.
The equations for the residual in (6.23) and (6.24), and the equations for tangent
matrix (6.28), (6.30), (6.33), and (6.35) still hold. The mechanical energy fu, and
subsequently their derivatives are changed. The effective material parameters are
given by

C∼∼
(ϕ) =

n∑︂
α=0

C∼∼ α
hif
α(ϕ) = C∼∼ 0

hif
0(ϕ) +

n∑︂
α=1

h(ϕα)C∼∼ α
. (6.58)

Consequently, the transformation strain reads

ε∼
∗(ϕ) =

n∑︂
α=0

ε∼
∗
αh

if
α(ϕ) = ε∼

∗
0h

if
0(ϕ) +

n∑︂
α=1

h(ϕα)ε∼
∗
α. (6.59)

The elastic strain is given by
ε∼

e = ε∼ − ε∼
∗. (6.60)

Thereby, the elastic energy can be determined

fu(ε∼, ϕ) =
1

2
[ε∼ − ε∼

∗(ϕ)] : C∼∼ : [ε∼ − ε∼
∗(ϕ)] . (6.61)

The derivatives read

∂fu

∂ϕα
=

1

2
ε∼

e :
∂C∼∼
∂ϕα

: ε∼
e + ε∼

e : C∼∼
:
∂ε∼

e

∂ϕα
(6.62)

∂2fu

∂ϕα∂ϕβ
=

∂ε∼
e

∂ϕβ
:
∂C∼∼
∂ϕα

: ε∼
e +

1

2
ε∼

e :
∂2C∼∼

∂ϕα∂ϕβ
: ε∼

e

+
∂ε∼

e

∂ϕβ
: C∼∼

:
∂ε∼

e

∂ϕα
+ ε∼

e :
∂C∼∼
∂ϕβ

:
∂ε∼

e

∂ϕα
+ ε∼

e : C∼∼
:

∂2ε∼
e

∂ϕα∂ϕβ
. (6.63)

The derivative of the stress w.r.t. the order parameter is

∂2fu

∂ε∼
e∂ϕα

=
∂σ∼
∂ϕα

=
∂C∼∼
∂ϕα

: ε∼
e +C∼∼

∂ε∼
e

∂ϕα
. (6.64)
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Figure 6.11: Example 4. Order parameter for the parent phase ϕ0

(solid, dash-dot), and the martensitic orientation variants ϕ1 (dashes-
dash-dot-dot), and ϕ2 (small dashes, dots) for the Khachaturyan (K,
blue), and the Voigt/Taylor approach (VT, red). The static iteration

is on the left, the stable state after the evolution is on the right.

The first and second order derivatives of the elastic strain and the effective material
parameters are

∂C∼∼
∂ϕα

= h′(ϕα)
(︂
C∼∼ α

−C∼∼ 0

)︂
,

∂ε∼
e

∂ϕα
= −h′(ϕα)

(︁
ε∼
∗
1 − ε∼

∗
0

)︁
,

(6.65)

∂C∼∼
∂ϕα

=

{︄
h′′(ϕα)

(︂
C∼∼ α

−C∼∼ 0

)︂
, if α = β

0, otherwise,
and (6.66)

∂ε∼
e

∂ϕα
=

{︄
−h′′(ϕα)

(︁
ε∼
∗
α − ε∼

∗
0

)︁
, if α = β

0, otherwise.
(6.67)

Here, h is a scalar interpolation function according to (4.22), for example linear (4.23),
cubic (4.24) or tangens hyperbolicus (4.25). Figure 6.11 shows the evolution of the
phase field at two distinct times. The initial configuration is shown for t = 0ns. The
phase field evolves. The final configuration is reached at 19.5 ns for the Voigt/Tay-
lor approach where the interface is at x1 = 70.4 nm. Using the cubic interpolation
function in the Khachaturyan approach, the stable state is reached at 8.25 ns. The
interface is located at x1 = 69.5 nm. Using the same interpolation function in the two
approaches, the same result within a margin of error is obtained.
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Figure 6.12: Time evolution of two spherical martensitic domains
for the Khachaturyan approach (a), (b), (c), and (d), and for the
Voigt/Taylor approach (e), (f), (g), (h). The first orientation variant
(dark grey), the second orientation variant (black) and the austenitic
parent phase (light grey), are separated by the interface region (white).

The example presented in Figure 6.12 shows the time evolution of two circular marten-
sitic domains embedded in an austenitic matrix. The square region has an edge length
of 176 nm. The number of elements is 200 in both x1 and x2 direction. The parameters
are identical to the ones used in the examples above, with the exception of the spe-
cific length scale which is adjusted to L = 10nm in order to resolve the interface more
clearly. The parameter L is large enough to accommodate more than ten elements
on the interface, leading to accurate result as shown in Table 6.2. The transforma-
tion strain for austenitic phase vanishes, but is present in the first and the second
martensitic orientation variant

ε∼
∗
0 = 0∼, ε∼

∗
1 =

[︃
0.1 0
0 0

]︃
, and ε∼

∗
2 =

[︃
0 0
0 0.1

]︃
. (6.68)

The bottom left node is fixed, and the bottom right node is a simple support. A
displacement of 4.4 nm in x1-direction is applied to the right edge, which is equal to
a total strain of 2.5%.

No convergence was reached using a cubic or a tangens hyperbolicus interpolation
function for the Khachaturyan approach. Therefore the snapshots for the Khachatu-
ryan approach presented in Figure 6.12 (a), (b), (c), and (d) are obtained using the
linear interpolation function. The respective snapshots for the Voigt/Taylor approach
are conducted using a cubic interpolation function. The bulk regions are identified us-
ing the interpolation function. A bulk phase α is present, if its respective interpolation
function reaches a threshold

hα(ϕ)
!
≥ hthres. (6.69)
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Likewise, the interface region, which is represented in white, is identified with the
absence of all bulk phases.

hα(ϕ)
!
< hthres. (6.70)

Here, hthres was chosen to be 0.95.

Compare the static iteration for the Khachaturyan approach and the Voigt/Taylor
approach, in Figure 6.12 (a) and (e), respectively. The interface width in Figure 6.12
(a) is larger than in (e). This is in line with the previous comparison, since the
mismatch in the elastic energy causes a peak of the homogenized elastic energy in the
interface region.

In the Voigt/Taylor approach, the second martensitic orientation variant de-evolves,
as due to the load state the austenitic phase is energetically more stable. Both circular
martensitic regions form a diamond shape in the direction of principal transformation
strain in Figure 6.12 (b, c). After 2 ns, the second martensitic orientation variant
vanishes, obtaining a structure consisting of the austenitic parent phase and the first
orientation variant only as shown in Figure 6.12 (d).

In the Khachaturyan approach, initially, both phases de-evolve, forming a compara-
tively wide interface region in Figure 6.12 (f). However, the second martensitic ori-
entation variant starts to form at the left side in order to mitigate the lateral strain,
while the first orientation variant forms at top and bottom center region, as well as
right to the center g). The configuration obtained in Figure 6.12 (h) consists of a
plate with the second martensitic orientation variant to the left, and three patches of
the second martensitic orientation variant.

The Voigt/Taylor approach produces a different result than the Khachaturyan ap-
proach. This is in line with the observations made in the previous examples. A linear
interpolation function for the Khachaturyan approach is used, which causes the order
parameter field to exceed its valid range locally. For the end solution at t = 2.0 ns, the
excess was found to be 0.091 and 0.06 for the first and second martensitic orientation
variant, respectively. The order parameter field in the Voigt/Taylor approach stays in
the admissible range within a margin of error below machine precision. Therefore in
this case, the latter provides a more accurate result than the Khachaturyan approach.
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7 Conclusions

In chapter 5 the solid-solid phase transformation has been modeled with the phase
field method. Using the Khachaturyan approach, a temperature dependent chemi-
cal potential has been presented. The potential uses data from molecular dynamics
simulations. Hence, the martensitic transformation, and consequently the kinematics,
depend on the temperature. Using finite element simulations, the model has been ver-
ified against the molecular dynamics simulation and an additional phase field model.
The interface velocities obtained are well in agreement. At the equlilibrium tempera-
ture, there is no phase transformation. With increasing distance from the equlibrium,
the energy barrier is lower and thus the transformation, indicated by the interface ve-
locity, is higher. Both, a metastable austenitic and a metastable martensitic phase can
be modeled. Using finite element simulations, the influence of load on the martensitic
transformation has been discussed. The temperature dependent chemical potential
allows to assume a locally varying temperature field (chapter 5.1.1). Lower tempera-
tures lead to a higher martensite content. However, the end result depends strongly
on the initial configuration.

The Voigt/Taylor approach presented in chapter 6 has an advantage to the Khachatu-
ryan approach. It is possible to choose individual material laws for each individual
phase. As a consequence, the equations can be generalized to introduce an interface for
constitutive laws of the individual phases. Here, a multivariant Voigt/Taylor scheme,
modeling the martensitic transformation is presented. The interpolation method is
crucial for the model. A generalized interpolation method, here called the case depen-
dent interpolation method is presented, which works for any number of phases and
any scalar interpolation function. In an initial test, several interpolation functions
have been tested, or literature references are given where applicable. The Voigt/-
Taylor approach does not converge using a linear interpolation function. Instead a
non-linear interpolation function, such as the cubic or a tangens hypberbolicus type
function have to be used. The model has been verified using some basic energetic
considerations. A relatively coarse mesh yields accurate results.

As a second step, the Voigt/Taylor approach has been compared to the Khachaturyan
approach. In some cases, the same problem leads to the same results. However, due
to the different energy landscapes, the models differ during the evolution. A downside
of the Khachaturyan approach is, that its phase field can exceed its admissible range.
In some of the examples shown, this is not an issue as the stable configuration does
not exhibit this feature. Nonetheless, if the mechanical and the chemical energy are
in interplay, the free energy is minimized by assuming inadmissible values or interface
values for the bulk phases, since a linear interpolation was used in the Khachaturyan
model. Therefore the Khachaturyan model has been modified in order to accommo-
date a scalar interpolation function. Using the cubic interpolation function in both
models, for example, the same result was obtained as in the Voigt/Taylor model, thus
cross-verifying the models.
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The code has been implemented in the finite element analysis program FEAP and in
the finite element solver Zébulon. Both models have been developed separately. The
implementation in FEAP is presented in this thesis, the implementation in the finite
element solver Zébulon was conducted by the group of Kais Ammar and Samuel Forest
at the Ecole des Mines Paristech, Paris, France. The results of both implementations
agree, which is a good indicator for their validity. The implemented models feature
the linear elastic Khachaturyan approach with n number of phases and an interface
to an arbitrary scalar interpolation function. The Voigt/Taylor approach features an
interface to material routines for the individual phases, as well as an interface to an
arbitrary scalar interpolation function.
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Figure 7.1: Flow chart of a modified Voigt/Taylor homogenization
approach

7.1 Outlook

The Voigt/Taylor model presented here can be used to model the martensitic transfor-
mation. A more comprehensive test should be made in order to lay out the differences
between the Khachaturyan and the Voigt/Taylor approach. Furthermore, the model
can be used to determine the martensitic content in a more realistic setting. This has
proven to work comparatively well for the Khachaturyan model (Schmidt, Dornisch,
and Müller, 2019).

The Voigt/Taylor model is computationally expensive. Each individual phase contains
an individual material law, which needs to be solved. A first step would be the
parallelization of the individual phases. This is straightforward, as they are parallel
in the algorithm as well. In an additional step, the phases could be determined to be
either active, or inactive before entering the material routines as shown in Figure 7.1.
A criterion if a phase is active or inactive needs to be developed. A possible indicator
for the activity of a phase could be the phase composition.
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8 Appendix

8.1 Additional Plots for the Interface Velocity
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Figure 8.1: Interface velocity over time for T = 654.57K

0 1 2 3 4

t in ns

0.0

2.5

5.0

7.5

10.0

12.5

15.0

v
in

m s

T = 992.93 K

Figure 8.2: Interface velocity over time for T = 992.92K



8.2 Comparison of Interpolation Methods

This section complements chapter 4.4 with further illustrative examples. Figure 8.3
(a) shows the analogous approach using a cubic interpolation function. The triangular
shaped admissible region of the order parameter, delimited by the dashed lines (-),
contains a minimum. Depending on which value is to be interpolated, e.g., the elastic
energy, or the transformation strain, the energy could be minimized by moving towards
this minimum. However, this minimum is not as strongly represented as when using
the tanh interpolation function (Figure 4.1 (a)). Furthermore, the cubic interpolation
function is not bounded. This introduces another possible instability.

Figure 8.3 (b) shows the case dependent approach. The bulk values are constant,
aα = 1. Therefore the representation coincides with any other scalar interpolation
function. Here, the admissible region of the order parameter mitigates the unphysical
minimum and the unbounded nature of the graph in Figure 8.3 (a).

The Figures 8.4, 8.5, and 8.6 show the linear, the cubic and the tangens hyperbolicus
interpolation methods using the analogous han and the case dependent approach hif.
Here, the bulk values vary, a0 = 1, a1 = 2, and a2 = 3. As discussed in chapter 4.4, the
analogous and the case dependent approach are equivalent when using the linear in-
terpolation. A downside of the linear interpolation is, however, that the second order
derivatives vanish. This results in a non-converging behavior using the Voigt/Tay-
lor homogenization approach (chapter 6). Furthermore, the non-vanishing first order
derivatives lead can lead to a driving force in the bulk phases where ϕ ∈ [0, e1, e2]. Ad-
ditionally, the codomain of the linear interpolation is not limited. Therefore solutions
outside the admissible range can exist.

With a non-linear interpolation function, such as the cubic and the tangens hyper-
bolicus, the choice between the analogous and the case dependent approach matters.
Non-linear interpolation functions can be classified into two groups: ones with a lim-
ited codomain, and those ones with a vanishing first order derivative. The cubic
interpolation function shown in Figure 8.5 belongs to the latter, mitigating the occur-
rence of a driving force in the bulk phases. The codomain of the tangens hyperbolicus
interpolation is limited to the interval [0, 1]. Therefore even if the order parameter
exceeds its admissible range, the value of the tangens hyperbolicus interpolation stays
admissible.
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Figure 8.3: Comparison of the analogous interpolation approach han

using a cubic interpolation, where θ = 5 (a), and the case dependent
interpolation approach hif for any scalar interpolation function (b).
The bulk values are constant, aα = 1. The dashed lines (-) indicate the
boundary of the region where ϕ is admissible. Contour lines (thick)

above 2 are projected down to 2.

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.2

0.4
0.6

0.8
1.0

ϕ1

ϕ2

hif = han

Figure 8.4: Linear interpolation, where hif = han, with varying bulk
values vary, a0 = 1, a1 = 2, and a2 = 3. The dashed lines (-) indicate

the boundary of the region where ϕ is admissible.
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Figure 8.5: Comparison of the analogous interpolation approach han

using a cubic interpolation, where θ = 5 (a), and the case dependent
interpolation approach hif for any scalar interpolation function (b).
The bulk values vary, a0 = 1, a1 = 2, and a2 = 3. The dashed lines (-)

indicate the boundary of the region where ϕ is admissible.
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Figure 8.6: Comparison of the analogous interpolation approach han

using a tanh interpolation, where θ = 5 (a), and the case dependent
interpolation approach hif for any scalar interpolation function (b).
The bulk values vary, a0 = 1, a1 = 2, and a2 = 3. The dashed lines (-)

indicate the boundary of the region where ϕ is admissible.
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