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Foreword

This text constitutes a faithful transcript of the lecture Character Theory of Finite Groups held at theTU Kaiserslautern during the Summer Semester 2020 (14 Weeks, 2SWS Lecture + 1SWS Exercises).
Together with the necessary theoretical foundations the main aims of this lecture are to:
‚ provide students with a modern approach to finite group theory;
‚ learn about the ordinary character theory of finite groups;
‚ learn about the applications of the latter theory to finite group theory, such as for example theproof of Burnside’s paqb-Theorem.We assume as pre-requisites bachelor-level algebra courses dealing with linear algebra and elemen-

tary group theory, such as the standard lectures Grundlagen der Mathematik, Algebraische Strukturen,and Einführung in die Algebra.
The exercises mentioned in the text are important for the development of the lecture and the generalunderstanding of the topics. Further exercises can be found in the fortnightly exercise sheets.
The content of the appendix is important for the lecture. Some of you may have encountered (or willencounter) this material in other algebra lectures. For this reason, no direct question on the appendixwill be asked in the oral exam.
Books and lecture notes which were used to prepare these lecture notes are the following.
Textbooks:

[Dor71] L. Dornhoff. Group representation theory. Part A: Ordinary representation theory. MarcelDekker, Inc., New York, 1971.[Hup98] B. Huppert. Character theory of finite groups. Vol. 25. Walter de Gruyter & Co., Berlin, 1998.[Isa94] I. M. Isaacs. Character theory of finite groups. Dover Publications, Inc., New York, 1994.[JL01] G. James and M. Liebeck. Representations and characters of groups. Second. CambridgeUniversity Press, New York, 2001.[LP10] K. Lux and H. Pahlings. Representations of groups. Vol. 124. Cambridge University Press,Cambridge, 2010.



Skript zur Vorlesung: Charaktertheorie SS 2020 iv
[NT89] H. Nagao and Y. Tsushima. Representations of finite groups. Academic Press, Inc., Boston,MA, 1989.[Rot10] J. J. Rotman. Advanced modern algebra. 2nd ed. Providence, RI: American MathematicalSociety (AMS), 2010.[Ser77] J.-P. Serre. Linear representations of finite groups. Springer-Verlag, New York-Heidelberg,1977.[Ser78] J.-P. Serre. Représentations linéaires des groupes finis. revised. Hermann, Paris, 1978.[Web16] P. Webb. A course in finite group representation theory. Vol. 161. Cambridge University Press,Cambridge, 2016.
Lecture Notes:

[Gec14] M. Geck. Algebra: Gruppen, Ringe, Körper (mit einer Einführung in die Darstellungstheorie
endlicher Gruppen). Edition Delkhofen, 2014.[Kül13] B. Külshammer. Darstellungstheorie. 2013. url: http : / / www . minet . uni - jena . de /
algebra/skripten/dt/dt-2010/dt.pdf.[Mal16] G. Malle. Characters of finite groups. Lecture Notes SS 2016, TU Kaiserslautern. 2016.[Thé05] J. Thévenaz. Représentations linéaires des groupes finis. Lecture Notes WS 2004/05, EPFL.2005.

Acknowledgement: I am grateful to Gunter Malle who provided me with the Skript of his lecture"Charaktertheorie" held at the TU Kaiserslautern in the SS 2015, SS 2016, and SS 2018, which wasused as a basis for the development of this lecture. I am also grateful to Birte Johannson and BernhardBöhmler for reading and commenting a preliminary version of these notes. Further comments, correctionsand suggestions are welcome.
Kaiserslautern, April 2020Caroline Lassueur

http://www.minet.uni-jena.de/algebra/skripten/dt/dt-2010/dt.pdf
http://www.minet.uni-jena.de/algebra/skripten/dt/dt-2010/dt.pdf


Conventions

Unless otherwise stated, throughout these notes we make the following general assumptions:
¨ all groups considered are finite;
¨ all vector spaces considered are finite-dimensional;
¨ all rings considered are associative and unital (i.e. possess a neutral element for themultiplication, denoted 1);
¨ all modules considered are left modules.
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Chapter 1. Linear Representations of Finite Groups

Representation theory of finite groups is originally concerned with the ways of writing a finite group Gas a group of matrices, that is using group homomorphisms from G to the general linear group GLnpK qof invertible nˆ n-matrices with coefficients in a field K for some positive integer n.
Notation: throughout this chapter, unless otherwise specified, we let:

¨ G denote a finite group (in multiplicative notation);
¨ K denote a field of arbitrary characteristic; and
¨ V denote a K -vector space such that dimK pV q ă 8.

In general, unless otherwise stated, all groups considered are assumed to be finite and all K -vectorspaces considered are assumed to be finite-dimensional.
1 Linear Representations
Definition 1.1 (K -representation, matrix representation, faithfullness)

(a) A K -representation of G (or a (linear) representation of G (over K )) is a group homomorphism
ρ : G ÝÑ GLpV q ,

where V is a K -vector space of dimension n P Zą0. (Here GLpV q :“ AutK pV q is the group ofinvertible K -endomorphisms of V .)
(b) A matrix representation of G is a group homomorphism R : G ÝÑ GLnpK q, where n P Zą0.

In both cases the integer n is called the degree of the representation. An injective (matrix) repre-sentation of G is called faithful.
Remark 1.2We see at once that both concepts of a representation and of a matrix representation are closelyconnected.Recall that every choice of an ordered basis B of V yields a group isomorphism

7
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αB : GLpV q ÝÑ GLnpK q

φ ÞÑ pφqBwhere pφqB denotes the matrix of φ in the basis B. Therefore, a K -representation ρ : G ÝÑ GLpV qtogether with the choice of an ordered basis B of V gives rise to a matrix representation of G:
RB :“ αB ˝ ρ : G GLpV q GLnpK qρ αB

Explicitly, RB sends an element g P G to the matrix `

ρpgq
˘

B of ρpgq in the basis B.Another choice of a K -basis of V yields another matrix representation!!Conversely, any matrix representation R : G ÝÑ GLnpK q gives rise to a K -representation
ρ : G ÝÑ GLpK nq

g ÞÑ ρpgq : K n ÝÑ K n, v ÞÑ Rpgqvwhere we see v as a column vector expressed in the standard basis of K n and Rpgqv is then thestandard matrix multiplication. (Here we set V :“ K n.)
Throughout the lecture, we will favour the approach using representations rather than matrix represen-tations in order to develop theoretical results. However, matrix representations are essential to carryout computations. Being able to pass back and forth from one approach to the other will be an essentialfeature.Also note that Remark 1.2 allows us to transfer terminology/results from representations to matrixrepresentations and conversely. Hence, from now on, in general we make new definitions for represen-tations and use them for matrix representations as well.
Example 1(a) If G is an arbitrary finite group and V :“ K , then

ρ : G ÝÑ GLpK q – Kˆ
g ÞÑ ρpgq :“ IdK Ø 1K

is a K -representation of G, called the trivial representation of G.Similarly ρ : G ÝÑ GLpV q, g ÞÑ IdV with dimK pV q “: n ą 1 is also a K -representation of Gand is called a trivial representation of G of degree n.(b) If G is a subgroup of GLpV q, then the canonical inclusion
G ãÑ GLpV q
g ÞÑ g

is a faithful representation of G, called the tautological representation of G.(c) Let G :“ Sn (n ě 1) be the symmetric group on n letters. Let te1, . . . , enu be the standardbasis of V :“ K n. Then
ρ : Sn ÝÑ GLpK nq

σ ÞÑ ρpσq : K n ÝÑ K n, ei ÞÑ eσpiqis a K -representation, called the natural representation of Sn.
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(d) More generally, if X is a finite G-set, i.e. a finite set endowed with a left action ¨ : GˆX ÝÑ X ,and V is a K -vector space with basis tex | x P Xu, then

ρX : G ÝÑ GLpV q
g ÞÑ ρX pgq : V ÝÑ V , ex ÞÑ eg¨x

is a K -representation of G, called the permutation representation associated with X .Notice that (c) is a special case of (d) with G “ Sn and X “ t1, 2, . . . , nu.If X “ G and the left action ¨ : G ˆ X ÝÑ X is just the multiplication in G, then
ρX “: ρreg

is called the regular representation of G.
We shall see later on in the lecture that K -representations are a special case of a certain algebraic
structure (in the sense of the lecture Algebraische Strukturen). Thus, next, we define the notions thatshall correspond to a homomorphism and an isomorphism of this algebraic structure.
Definition 1.3 (Homomorphism of representations, equivalent representations)Let ρ1 : G ÝÑ GLpV1q and ρ2 : G ÝÑ GLpV2q be two K -representations of G, where V1, V2 aretwo non-zero K -vector spaces.

(a) A K -homomorphism α : V1 ÝÑ V2 such that ρ2pgq ˝ α “ α ˝ ρ1pgq for each g P G is called a
homomorphism of representations (or a G-homomorphism) between ρ1 and ρ2.

V1 V1
V2 V2

ρ1pgq
α ö α

ρ2pgq
(b) If, moreover, α is a K -isomorphism, then it is called an isomorphism of representations (or a

G-isomorphism), and the K -representations ρ1 and ρ2 are called equivalent (or isomorphic).In this case we write ρ1 „ ρ2.
(c) Two matrix representations R1, R2 : G ÝÑ GLnpK q are called equivalent iff D T P GLnpK qsuch that

R2pgq “ TR1pgqT´1 @g P G .In this case we write R1 „ R2.
Remark 1.4(a) Equivalent representations have the same degree.(b) Clearly „ is an equivalence relation.(c) In consequence, it essentially suffices to study representations up to equivalence (as it es-sentially suffices to study groups up to isomorphism).
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Remark 1.5If ρ : G ÝÑ GLpV q is a K -representation of G and E :“ pe1, . . . , enq, F :“ pf1, . . . , fnq are twoordered bases of V , then by Remark 1.2, we have two matrix representations:

RE : G ÝÑ GLnpK q
g ÞÑ

`

ρpgq
˘

E
and RF : G ÝÑ GLnpK q

g ÞÑ
`

ρpgq
˘

FThese matrix representations are equivalent since RF pgq “ TREpgqT´1 @g P G, where T is thechange-of-basis matrix.
2 Subrepresentations and (Ir)reducibility
Subrepresentations allow us to introduce one of the main notions that will enable us to break repre-sentations in elementary pieces in order to simplify their study: the notion of (ir)reducibility.
Definition 2.1 (G-invariant subspace, irreducibility)Let ρ : G ÝÑ GLpV q be a K -representation of G.

(a) A K -subspace W Ď V is called G-invariant if
ρpgq

`

W
˘

Ď W @g P G .

(In fact in this case the reverse inclusion holds as well, since for each w P W we can write
w “ ρpgg´1qpwq “ ρpgq

`

ρpg´1qpwq˘ P ρpgq`W ˘, hence ρpgq`W ˘

“ W .)
(b) The representation ρ is called irreducible if it admits exactly two G-invariant subspaces: 0and V itself. Else it is called reducible (i.e. if it admits a non-trivial proper G-invariantsubspace t0u Ĺ W Ĺ V ).

Notice that V itself and the zero subspace 0 are always G-invariant subspaces.
Definition 2.2 (Subrepresentation)If ρ : G ÝÑ GLpV q is a K -representation and 0 ‰ W Ď V is a G-invariant subspace, then

ρW : G ÝÑ GLpW q
g ÞÑ ρW pgq :“ ρpgq|W : W ÝÑ Wis called a subrepresentation of ρ. (This is clearly again a representation of G.)

With this definition, it is clear that a representation ρ : G ÝÑ GLpV q is irreducible if and only if ρdoes not possess any proper subrepresentation.
Remark 2.3Let ρ : G ÝÑ GLpV q be a K -representation and 0 ‰ W Ď V be a G-invariant subspace. Nowchoose an ordered basis B1 of W and complete it to an ordered basis B of V . Then for each g P G
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the corresponding matrix representation is of the form

`

ρpgq
˘

B “

»

—

—

—

—

–

B1 BzB1

fi

ffi

ffi

ffi

ffi

fl

˚0
˚

´

ρW pgq
¯

B1 .

Example 2

(a) Any K -representation of degree 1 is irreducible.
(b) Let ρ : Sn ÝÑ GLpK nq be the natural representation of Sn (n ě 1) and let B :“ pe1, . . . , enqbe the standard basis of V “ K n. Then for each g P G we have

ρpgq
´

n
ÿ

i“1 ei
¯

“

n
ÿ

i“1ρpgqpeiq “
n
ÿ

i“1 ei ,where the last equality holds because ρpgq : te1, . . . , enu ÝÑ te1, . . . , enu, ei ÞÑ egpiq is abijection. Thus
W :“ x n

ÿ

i“1 ei yKis an Sn-invariant subspace of K n of dimension 1. It follows that ρ is reducible if n ą 1.
(c) More generally, the trivial representation of a finite group G is a subrepresentation of anypermutation representation of G. [Exercise 2(a), Sheet 1]
(d) The symmetric group S3 “ xp1 2q, p1 2 3qy admits the following three non-equivalent irre-ducible matrix representations over C:

ρ1 : S3 ÝÑ Cˆ, σ ÞÑ 1
i.e. the trivial representation,

ρ2 : S3 ÝÑ Cˆ, σ ÞÑ signpσq
where signpσq denotes the sign of the permutation σ , and

ρ3 : S3 ÝÑ GL2pCq
p1 2q ÞÑ

` 0 11 0 ˘
p1 2 3q ÞÑ

` 0 ´11 ´1 ˘.
See [Exercise 1(a), Sheet 1].We will prove later in the lecture that these are all the irreducible C-representations of S3up to equivalence.
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Properties 2.4Let ρ1 : G ÝÑ GLpV1q and ρ2 : G ÝÑ GLpV2q be two K -representations of G and let α : V1 ÝÑ V2be a G-homomorphism.

(a) If W Ď V1 is a G-invariant subspace of V1, then αpW q Ď V2 is G-invariant.
(b) If W Ď V2 is a G-invariant subspace of V2, then α´1pW q Ď V1 is G-invariant.
(c) In particular, kerpαq and Impαq are G-invariant subspaces of V1 and V2 respectively.

Proof : [Exercise 3, Sheet 1] .
3 Maschke’s Theorem
We now come to our first major result in the representation theory of finite groups, namely Maschke’sTheorem, which provides us with a criterion for representations to decompose into direct sums of irre-ducible subrepresentations.
Definition 3.1 (Direct sum of subrepresentations)Let ρ : G ÝÑ GLpV q be a K -representation. If 0 ‰ W1,W2 Ď V are two G-invariant subspacessuch that V “ W1 ‘W2, then we say that ρ is the direct sum of the subrepresentations ρW1 and

ρW2 and we write ρ “ ρW1 ‘ ρW2 .
Remark 3.2With the notation of Definition 3.1, if we choose an ordered basis Bi of Wi (i “ 1, 2) and considerthe ordered K -basis B :“ B1\B2 of V , then the corresponding matrix representation is of the form

`

ρpgq
˘

B “

»

—

—

—

—

—

—

–

B1 B2

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

´

ρW2pgq
¯

B20
0´

ρW1pgq
¯

B1
@g P G .

The following exercise shows that it is not always possible to decompose representations into directsums of irreducible subrepresentations.
Exercise 3.3 (Exercise 4, Sheet 1)Let p be an odd prime number, let G :“ Cp “ xg | gp “ 1y, let K :“ Fp, and let V :“ F2

p with itscanonical basis B “ pe1, e2q. Consider the matrix representation
R : G ÝÑ GL2pK q

gb ÞÑ
` 1 b0 1 ˘ .(a) Prove that Ke1 is G-invariant and deduce that R is reducible.
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(b) Prove that there is no direct sum decomposition of V into irreducible G-invariant subspaces.

Theorem 3.4 (Maschke)Let G be a finite group and let ρ : G ÝÑ GLpV q be a K -representation of G. If charpK q - |G|,then every G-invariant subspace W of V admits a G-invariant complement in V , i.e. a G-invariantsubspace U Ď V such that V “ W ‘ U .
Proof : To begin with, choose an arbitrary complement U0 to W in V , i.e. V “ W ‘ U0 as K -vector spaces.(Note that, however, U0 is possibly not G-invariant!) Next, consider the projection onto W along U0,that is the K -linear map

π : V “ W ‘ U0 ÝÑ Wwhich maps an element v “ w ` u with w P W,u P U0 to w , and define a new K -linear map
rπ : V ÝÑ V

v ÞÑ 1
|G|

ř

gPG ρpgqπρpg´1qpvq .
Notice that it is allowed to divide by |G| because the hypothesis that charpK q - |G| implies that |G| ¨ 1Kis invertible in the field K .We prove the following assertions:(1) Im rπ Ď W : indeed, if v P V , then

rπpvq “ 1
|G|

ÿ

gPG
ρpgqπρpg´1qpvq

looooomooooon

PW
looooooooomooooooooon

PW (G-invariance)
P W .

(2) rπ |W “ IdW : indeed, if w P W , then
rπpwq “ 1

|G|
ÿ

gPG
ρpgqπ ρpg´1qpwq

looooomooooon

PW(by G-invariance)
looooooomooooooon

“ρpg´1qpwq(by def. of π)

“
1
|G|

ÿ

gPG
ρpgqρpg´1q
looooomooooon

“ρpgg´1q
“ρp1Gq
“IdV

pwq “ 1
|G|

ÿ

gPG
w “ w .

Thus (1)+(2) imply that rπ is a projection onto W so that as a K -vector space
V “ W ‘ kerprπq .(3) ker rπ is G-invariant: indeed, for each h P G we have

ρphq ˝ rπ “
1
|G|

ÿ

gPG
ρphqρpgq
loooomoooon

“ρphgq

πρpg´1q

“
1
|G|

ÿ

gPG
ρphgqπρpphgq´1hq

s:“hg
“

1
|G|

ÿ

sPG
ρpsqπρps´1hq

“

´ 1
|G|

ÿ

sPG
ρpsqπρps´1q¯ρphq “ rπ ˝ ρphq .

Hence rπ is a G-homomorphism and it follows from Property 2.4(c) that its kernel is G-invariant.Therefore we may set U :“ kerprπq and the claim follows.
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Definition 3.5 (Completely reducible/semisimple representation / constituent)A K -representation which can be decomposed into a direct sum of irreducible subrepresentations iscalled completely reducible or semisimple. In this case, an irreducible subrepresentation occuringin such a decomposition is called a constituent of the representation.
Corollary 3.6If G is a finite group and K is a field such that charpK q - |G|, then every K -representation of G iscompletely reducible.
Proof : Let ρ : G ÝÑ GLpV q be a K -representation of G.

¨ Case 1: ρ is irreducible ñ nothing to do X.
¨ Case 2: ρ is reducible. Thus dimK pV q ě 2 and there exists an irreducible G-invariant subspace0 ‰ V1 Ď V . Now, by Maschke’s Theorem, there exists a G-invariant complement U Ď V , i.e.such that V “ V1 ‘ U . As dimK pV1q ě 1, we have dimK pUq ă dimK pV q. Therefore, an inductionargument yields the existence of a decomposition

V “ V1 ‘ V2 ‘ ¨ ¨ ¨ ‘ Vr pr ě 2q
of V , where V1, . . . , Vr are irreducible G-invariant subspaces.

Remark 3.7

(a) The hypothesis of Maschke’s Theorem requiring that charpK q - |G| is always verified if K isa field of characteristic zero. E.g. if K “ C,R,Q, . . .

(b) The converse of Maschke’s Theorem holds as well. It will be proved in the M.Sc. lecture
Representation Theory.

(c) In the literature, a representation is called an ordinary representation if K is a field ofcharacteristic zero (or more generally of characteristic not dividing |G|), and it is called a
modular representation if charpK q | |G|.

In this lecture we are going to reduce our attention to ordinary representation theory and, most ofthe time, even assume that K is the field C of complex numbers.
Exercise 3.8 (Alternative proof of Maschke’s Theorem over the field C. Exercise 5, Sheet 2.)Assume K “ C and let ρ : G ÝÑ GLpV q be a C-representation of G.

(a) Prove that there exists a G-invariant scalar product x , y : V ˆ V ÝÑ C, i.e. such that
xg.u, g.vy “ xu, vy @g P G,@u, v P V .

[Hint: consider an arbitrary scalar product on V , say p , q : V ˆ V ÝÑ C, which is not necessarily G-invariant.Use a sum on the elements of G, weighted by the group order |G|, in order to produce a new G-invariant scalarproduct on V .]
(b) Deduce that every G-invariant subspace W of V admits a G-invariant complement.[Hint: consider the orthogonal complement of W .]



Chapter 2. The Group Algebra and Its Modules

We now introduce the concept of a KG-module, and show that this more modern approach is equivalentto the concept of a K -representation of a given finite group G. Some of the material in the remainderof these notes will be presented in terms of KG-modules. As we will soon see with our second funda-mental result – Schur’s Lemma – there are several advantages to this approach to representation theory.
Notation: throughout this chapter, unless otherwise specified, we let:

¨ G denote a finite group;
¨ K denote a field of arbitrary characteristic; and
¨ V denote a K -vector space such that dimK pV q ă 8.

In general, unless otherwise stated, all groups considered are assumed to be finite and all K -vectorspaces / modules over the group algebra considered are assumed to be finite-dimensional.
4 Modules over the Group Algebra
Lemma-Definition 4.1 (Group algebra)The group ring KG is the ring whose elements are the K -linear combinations řgPG λgg with λg P K ,and addition and multiplication are given by

ÿ

gPG
λgg`

ÿ

gPG
µgg “

ÿ

gPG
pλg ` µgqg and `

ÿ

gPG
λgg

˘

¨
`

ÿ

hPG
µhh

˘

“
ÿ

g,hPG
pλgµhqgh

respectively. In fact KG is a K -vector space with basis G, hence a K -algebra. Thus we usuallycall KG the group algebra of G over K rather than simply group ring.
Note: In Definition 4.1, the field K can be replaced with a commutative ring R . E.g. if R “ Z, then
ZG is called the integral group ring of G.
Proof : By definition KG is a K -vector space with basis G, and the multiplication in G is extended by

K -bilinearity to the given multiplication ¨ : KG ˆ KG ÝÑ KG. It is then straightforward to check that
KG bears both the structures of a ring and of a K -vector space. Finally, axiom (A3) of K -algebras (seeAppendix B) follows directly from the definition of the multiplication and the commutativity of K .

15



Skript zur Vorlesung: Charaktertheorie SS 2020 16
Remark 4.2Clearly 1KG “ 1G , dimK pKGq “ |G|, and KG is commutative if and only if G is an abelian group.
Proposition 4.3(a) Any K -representation ρ : G ÝÑ GLpV q of G gives rise to a KG-module structure on V , wherethe external composition law is defined by the map

¨ : KG ˆ V ÝÑ V
p
ř

gPG λgg, vq ÞÑ p
ř

gPG λggq ¨ v :“ ř

gPG λgρpgqpvq .
(b) Conversely, every KG-module pV ,`, ¨q defines a K -representation

ρV : G ÝÑ GLpV q
g ÞÑ ρV pgq : V ÝÑ V , v ÞÑ ρV pgqpvq :“ g ¨ v

of the group G.
Proof : (a) Since V is a K -vectore space it is equipped with an internal addition ` such that pV ,`q is anabelian group. It is then straightforward to check that the given external composition law definedabove verifies the KG-module axioms.(b) A KG-module is in particular a K -vector space for the scalar multiplication defined for all λ P Kand all v P V by

λv :“ p λ 1G
loomoon

PKG

q ¨ v .

Moreover, it follows from the KG-module axioms that ρV pgq P GLpV q and also that
ρV pg1g2q “ ρV pg1q ˝ ρV pg2q

for all g1, g2 P G, hence ρV is a group homomorphism.See [Exercise 7, Sheet 2] for the details (Hint: use the remark below!).
Remark 4.4In fact in Proposition 4.3(a) checking the KG-module axioms is equivalent to checking that for all

g, h P G, λ P K and u, v P V :(1) pghq ¨ v “ g ¨ ph ¨ vq;(2) 1G ¨ v “ v ;(4) g ¨ pu` vq “ g ¨ u` g ¨ v ;(3) g ¨ pλvq “ λpg ¨ vq “ pλgq ¨ v ,or in other words, that the binary operation
¨ : G ˆ V ÝÑ V

pg, vq ÞÑ g ¨ v :“ ρpgqpvqis a K -linear action of the group G on V . Indeed, the external multiplication of KG on V is justthe extension by K -linearity of the latter map. For this reason, sometimes, KG-modules are alsocalled G-vector spaces. See [Exercise 6, Sheet 2] for the details.
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Lemma 4.5Two representations ρ1 : G ÝÑ GLpV1q and ρ2 : G ÝÑ GLpV2q are equivalent if and only if V1 – V2as KG-modules.
Proof : If ρ1 „ ρ2 and α : V1 ÝÑ V2 is a K -isomorphism such that ρ2pgq “ α ˝ ρ1pgq ˝ α´1 for each g P G,then by Proposition 4.3(a) for every v P V1 and every g P G we have

g ¨ αpvq “ ρ2pgqpαpvqq “ αpρ1pgqpvqq “ αpg ¨ vq .Hence α is a KG-isomorphism.Conversely, if α : V1 ÝÑ V2 is a KG-isomorphism, then certainly it is a K -homomorphism and for each
g P G and by Proposition 4.3(b) for each v P V2 we have

α ˝ ρ1pgq ˝ α´1pvq “ αpρ1pgqpα´1pvqq “ αpg ¨ α´1pvqq “ g ¨ αpα´1pvqq “ g ¨ v “ ρ2pgqpvq ,hence ρ2pgq “ α ˝ ρ1pgq ˝ α´1 for each g P G.
Remark 4.6 (Dictionary)More generally, through Proposition 4.3, we may transport terminology and properties from KG-modules to representations and conversely.This lets us build the following dictionary:

Representations Modules
K -representation of G ÐÑ KG-moduledegree ÐÑ K -dimensionhomomorphism of representations ÐÑ homomorphism of KG-modulessubrepresentation / G-invariant subspace ÐÑ KG-submoduledirect sum of representations ρV1 ‘ ρV2 ÐÑ direct sum of KG-modules V1 ‘ V2irreducible representation ÐÑ simple (“ irreducible) KG-modulethe trivial representation ÐÑ the trivial KG-module Kthe regular representation of G ÐÑ the regular KG-module KGCorollary 3.6 to Maschke’s Theorem: ÐÑ Corollary 3.6 to Maschke’s Theorem:If charpK q - |G|, then every K -represen- If charpK q - |G|, then every KG-moduletation of G is completely reducible. is semisimple.
. . . . . .Virtually, any result, we have seen in Chapter 1, can be reinterpreted using this translation table.E.g. Property 2.4(c) tells us that the image and the kernel of homomorphisms of KG-modules are

KG-submodules, ...
In this lecture, we introduce the equivalence between representations and modules for the sakeof completeness. In the sequel we keep on stating results in terms of representations as much aspossible. However, we will use modules when we find them more fruitful. In contrast, the M.Sc.Lecture Representation Theory will consistently use the module approach to representation theory.
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5 Schur’s Lemma and Schur’s Relations
Schur’s Lemma is a basic result concerning simple modules, or in other words irreducible representa-tions. Though elementary to state and prove, it is fundamental to representation theory of finite groups.
Theorem 5.1 (Schur’s Lemma)

(a) Let V ,W be simple KG-modules. Then the following assertions hold.
(i) Any homomorphism of KG-modules φ : V ÝÑ V is either zero or invertible. In otherwords EndKGpV q is a skew-field.(ii) If V fl W , then HomKGpV ,W q “ 0.

(b) If K is an algebraically closed field and V is a simple KG-module, then
EndKGpV q “ tλ IdV | λ P K u – K .

Notice that here we state Schur’s Lemma in terms of modules, rather than in terms of representations,because part (a) holds in greater generality for arbitrary unital associative rings and part (b) holds forfinite-dimensional algebras over an algebraically closed field.
Proof :(a) First, we claim that every φ P HomKGpV ,W qzt0u admits an inverse in HomKGpW,V q.Indeed, φ ‰ 0 ùñ kerφ Ĺ V is a proper KG-submodule of V and t0u ‰ Imφ is a non-zero

KG-submodule of W . But then, on the one hand, kerφ “ t0u, because V is simple, hence φ isinjective, and on the other hand, Imφ “ W because W is simple. It follows that φ is also surjective,hence bijective. Therefore, by Properties A.7, φ is invertible with inverse φ´1 P HomKGpW,V q.Now, (ii) is straightforward from the above. For (i), first recall that EndKGpV q is a ring (seeNotation A.8), which is obviously non-zero as EndKGpV q Q IdV and IdV ‰ 0 because V ‰ 0 sinceit is simple. Thus, as any φ P EndKGpV qzt0u is invertible, EndKGpV q is a skew-field.(b) Let φ P EndKGpV q. Since K “ K , φ has an eigenvalue λ P K . Let v P V zt0u be an eigenvector of
φ for λ. Then pφ ´ λ IdV qpvq “ 0. Therefore, φ ´ λ IdV is not invertible and

φ ´ λ IdV P EndKGpV q paq
ùñ φ ´ λ IdV “ 0 ùñ φ “ λ IdV .

Hence EndKGpV q Ď tλ IdV | λ P K u, but the reverse inclusion also obviously holds, so that
EndKGpV q “ tλ IdV u – K .

Exercise 5.2 (Exercise 8, Sheet 2)Prove that in terms of matrix representations the following statement holds:
Lemma 5.3 (Schur’s Lemma for matrix representations)Let R : G ÝÑ GLnpK q and R 1 : G ÝÑ GLn1pK q be two irreducible matrix representations. Ifthere exists A P Mnˆn1pK qzt0u such that AR 1pgq “ RpgqA for every g P G, then n “ n1 and Ais invertible (in particular R „ R 1).
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The next lemma is a general principle, which we have already used in the proof of Maschke’s Theorem,and which allows us to transform K -linear maps into KG-linear maps.
Lemma 5.4Assume charpK q - |G|. Let V ,W be two KG-modules and let ρV : G ÝÑ GLpV q, ρW : G ÝÑ GLpW qbe the associated K -representations. If ψ : V ÝÑ W is K -linear, then the map

rψ :“ 1
|G|

ÿ

gPG
ρW pgq ˝ ψ ˝ ρV pg´1q

from V to W is KG-linear.
Proof : Same argument as in (3) of the proof of Maschke’s Theorem: replace π by ψ and apply the fact that a

G-homomorphism between representations corresponds to a KG-hmomorphism between the corresponding
KG-modules.

Proposition 5.5Assume charpK q - |G|. Let ρV : G ÝÑ GLpV q and ρW : G ÝÑ GLpW q be two irreducible K -representations.
(a) If ρV  ρW and ψ : V ÝÑ W is a K -linear map, then

rψ “ 1
|G|

ÿ

gPG
ρW pgq ˝ ψ ˝ ρV pg´1q “ 0 .

(b) Assume moreover that K “ K and charpK q - n :“ dimK V . If ψ : V ÝÑ V is a K -linear map,then
rψ :“ 1

|G|
ÿ

gPG
ρV pgq ˝ ψ ˝ ρV pg´1q “ Trpψq

n ¨ IdV .

Proof : Since ρV and ρW are irreducible, the associated KG-modules are simple. Moreover, by Lemma 5.4,both in (a) and (b) the map rψ is KG-linear. Therefore Schur’s Lemma yields:
(a) rψ “ 0 since V fl W .(b) rψ “ λ ¨ IdV for some scalar λ P K . Therefore, on the one hand

Trprψq “ 1
|G|

ÿ

gPG
Tr `ρV pgq ˝ ψ ˝ ρV pg´1q˘
looooooooooooooomooooooooooooooon

“Trpψq
“

1
|G| |G|Trpψq “ Trpψq

and on the other hand Trprψq “ Trpλ ¨ IdV q “ λTrpIdV q “ n ¨ λ ,hence λ “ Trpψq
n .

Next, we see that Schur’s Lemma implies certain "orthogonality relations" for the entries of matrixrepresentations.
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Theorem 5.6 (Schur’s Relations)Assume charpK q - |G|. Let Q : G ÝÑ GLnpK q and P : G ÝÑ GLmpK q be irreducible matrixrepresentations.

(a) If P  Q, then 1
|G|

ř

gPG PpgqriQpg´1qjs “ 0 for all 1 ď r, i ď m and all 1 ď j, s ď n.
(b) If charpK q - n, then 1

|G|
ř

gPG QpgqriQpg´1qjs “ 1
nδijδrs for all 1 ď r, i, j, s ď n.

Proof : Set V :“ K n, W :“ Km and let ρV : G ÝÑ GLpV q and ρW : G ÝÑ GLpW q be the K -representationsinduced by Q and P , respectively, as defined in Remark 1.2. Furthermore, consider the K -linear map
ψ : V ÝÑ W whose matrix with respect to the standard bases of V “ K n and W “ Km is the elementarymatrix

»

—

—

–

i 1
j

fi

ffi

ffi

fl

“: Eij P MmˆnpK q

(i.e. the unique nonzero entry of Eij is its pi, jq-entry).(a) By Proposition 5.5(a),
rψ “ 1

|G|
ÿ

gPG
ρW pgq ˝ ψ ˝ ρV pg´1q “ 0

because P  Q, and hence ρV  ρW . In particular the pr, sq-entry of the matrix of rψ with respectto the standard bases of V “ K n and W “ Km is zero. Thus,
0 “ 1

|G|
ÿ

gPG

“

PpgqEijQpg´1q‰rs “ 1
|G|

ÿ

gPG
Ppgqri ¨ 1 ¨Qpg´1qjs

because the unique nonzero entry of the matrix Eij is its pi, jq-entry.(b) Now we assume that P “ Q, and hence n “ m, V “ W , ρV “ ρW . Then by Proposition 5.5(b),
rψ :“ 1

|G|
ÿ

gPG
ρV pgq ˝ ψ ˝ ρV pg´1q “ Trpψq

n ¨ IdV “ # 1
n ¨ IdV if i “ j,0 if i ‰ j.

Therefore the pr, sq-entry of the matrix of rψ with respect to the standard basis of V “ K n is
1
|G|

ÿ

gPG

“

QpgqEijQpg´1q‰rs “
#

` 1
n ¨ IdV ˘rs if i “ j,0 if i ‰ j.

Again, because the unique nonzero entry of the matrix Eij is its pi, jq-entry, it follows that1
|G|

ÿ

gPG
QpgqriQpg´1qjs “ 1

nδijδrs .

6 C-Representations of Finite Abelian Groups
In this section we give an immediate application of Schur’s Lemma encoding the representation theoryof finite abelian groups over the field C of complex numbers.
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Proposition 6.1If G is a finite abelian group, then any simple CG-module has dimension 1.(Equivalently, any irreducible C-representation of G has degree 1.)
Proof : Let V be a simple CG-module, and let ρV : G ÝÑ GLpV q be the associated C-representation (i.e.as given by Proposition 4.3).Claim: any C-subspace of V is in fact a CG-submodule.Proof: Fix g P G and consider ρV pgq. By definition ρV pgq P GLpV q, hence it is a C-linear endomorphismof V . We claim that it is in fact CG-linear. Indeed, as G is abelian, @ h P G, @ v P V we have

ρV pgqph ¨ vq “ ρV pgq
`

ρV phqpvq
˘

“
“

ρV pgqρV phq
‰

pvq
“

“

ρV pghq
‰

pvq
“

“

ρV phgq
‰

pvq
“

“

ρV phqρV pgq
‰

pvq
“ ρV phq

`

ρV pgqpvq
˘

“ h ¨
`

ρV pgqpvq
˘

and it follows from Remark 4.4 that ρV pgq is CG-linear. Now, because C is algebraically closed,by part (b) of Schur’s Lemma, there exists λg P C (depending on g) such that
ρV pgq “ λg ¨ IdV .

As this holds for every g P G, it follows that any C-subspace of V is G-invariant, which in terms of
CG-modules means that any C-subspace of V is a CG-submodule of V .To conclude, as V is simple, we deduce from the Claim that the C-dimension of V must be equal to 1.

Theorem 6.2 (Diagonalisation Theorem)Let ρ : G ÝÑ GLpV q be a C-representation of an arbitrary finite group G. Fix g P G. Then, thereexists an ordered C-basis B of V with respect to which
`

ρpgq
˘

B “

»

—

—

—

—

–

ε1 0 00 ε2
00 0 εn

fi

ffi

ffi

ffi

ffi

fl

,

where n :“ dimCpV q and each εi (1 ď i ď n) is an opgq-th root of unity in C.
Proof : Consider the restriction of ρ to the cyclic subgroup generated by g, that is the representation

ρ|xgy : xgy ÝÑ GLpV q .
By Corollary 3.6 to Maschke’s Theorem, we can decompose the representation ρpgq|

xgy into a direct sumof irreducible C-representations, say
ρ|xgy “ ρV1 ‘ ¨ ¨ ¨ ‘ ρVn ,where V1, . . . , Vn Ď V are xgy-invariant. Since xgy is abelian dimCpViq “ 1 for each 1 ď i ď n byProposition 6.1. Now, if for each 1 ď i ď n we choose a C-basis txiu of Vi, then there exist εi P C
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(1 ď i ď n) such that ρVipgq “ εi and B :“ px1, . . . , xnq is a C-basis of V such that

`

ρpgq
˘

B “

»

—

—

—

—

–

ε1 0 00 ε2
00 0 εn

fi

ffi

ffi

ffi

ffi

fl

.

Finally, as gopgq “ 1G , it follows that for each 1 ď i ď n,
εopgqi “ ρVipgq

opgq “ ρVipg
opgqq “ ρVip1Gq “ 1C

and hence εi is an opgq-th root of unity.
Scholium 6.3If ρ : G ÝÑ GLpV q is a C-representation of a finite abelian group, then the C-endomorphisms

ρpgq : V ÝÑ V with g running through G are simultaneously diagonalisable.
Proof : Same argument as in the previous proof, where we may replace "xgy" with the whole of G.



Chapter 3. Characters of Finite Groups

We now introduce the concept of a character of a finite group. These are functions χ : G ÝÑ C,obtained from the representations of the group G by taking traces. Characters have many remarkableproperties, and they are the fundamental tools for performing computations in representation theory.They encode a lot of information about the group itself and about its representations in a more compactand efficient manner.
Notation: throughout this chapter, unless otherwise specified, we let:

¨ G denote a finite group;
¨ K :“ C be the field of complex numbers; and
¨ V denote a C-vector space such that dimCpV q ă 8.

In general, unless otherwise stated, all groups considered are assumed to be finite and all C-vectorspaces / modules over the group algebra considered are assumed to be finite-dimensional.
7 Characters
Definition 7.1 (Character, linear character )Let ρV : G ÝÑ GLpV q be a C-representation. The character of ρV is the C-valued function

χV : G ÝÑ C
g ÞÑ χV pgq :“ Tr `ρV pgq˘ .We also say that ρV (or the CG-module V ) affords the character χV . If the degree of ρV is one,then χV is called a linear character.

Remark 7.2(a) Again, we allow ourselves to transport terminology from representations to characters. Forexample, if ρV is irreducible (faithful,. . . ), then the character χV is also called irreducible(faithful,. . . ).With this terminology, it makes sense to let IrrpGq denote the set of irreducible charactersof G.(b) Recall that in linear algebra (see GDM) the trace of a linear endomorphism φ may be con-
23
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cretely computed by taking the trace of the matrix of φ in a chosen basis of the vector space,and this is independent of the choice of the basis.Thus to compute characters: choose an ordered basis B of V and obtain @ g P G:

χV pgq “ Tr `ρV pgq˘ “ Tr´`ρV pgq˘B¯
(c) For a matrix representation R : G ÝÑ GLnpCq, the character of R is then

χR : G ÝÑ C
g ÞÑ χRpgq :“ Tr `Rpgq˘ .

Example 3The character of the trivial representation of G is the function 1G : G ÝÑ C, g ÞÑ 1 and is called
the trivial character of G.

Lemma 7.3Equivalent representations have the same character.
Proof : If ρV : G ÝÑ GLpV q and ρW : G ÝÑ GLpW q are two C-representations, and α : V ÝÑ W is anisomorphism of representations, then

ρW pgq “ α ˝ ρV pgq ˝ α´1 @ g P G .Now, by the properties of the trace (GDM) for two C-endomorphisms β, γ of V we have Trpβ ˝ γq “Trpγ ˝ βq, hence for every g P G we have
χW pgq “ Tr `ρW pgq˘ “ Tr `α ˝ ρV pgq ˝ α´1˘ “ Tr `ρV pgq ˝ α´1 ˝ α

loomoon

“IdV
˘

“ Tr `ρV pgq˘ “ χV pgq .

Properties 7.4 (Elementary properties)Let ρV : G ÝÑ GLpV q be a C-representation and let g P G. Then the following assertions hold:
(a) χV p1Gq “ dimC V ;
(b) χV pgq “ ε1 ` . . .` εn, where ε1, . . . , εn are opgq-th roots of unity in C and n “ dimC V ;
(c) |χV pgq| ď χV p1Gq;(d) χV pg´1q “ χV pgq;(e) if ρV “ ρV1 ‘ ρV2 is the direct sum of two subrepresentations, then χV “ χV1 ` χV2 .

Proof :(a) ρV p1Gq “ IdV because representations are group homomorphisms, hence χV p1Gq “ dimC V .(b) This follows directly from the diagonalisation theorem (Theorem 6.2).(c) By (b) we have χV pgq “ ε1 ` . . . ` εn, where ε1, . . . , εn are roots of unity in C. Hence, applyingthe triangle inequality repeatedly, we obtain that
|χV pgq| “ |ε1 ` . . .` εn| ď |ε1|

loomoon

“1
` . . .` |εn|

loomoon

“1
“ dimC V

(a)
“ χV p1Gq .
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(d) Again by the diagonalisation theorem, there exists an ordered C-basis B of V and opgq-th roots ofunity ε1, . . . , εn P C such that

`

ρV pgq
˘

B “

»

—

—

—

—

–

ε1 0 00 ε2
00 0 εn

fi

ffi

ffi

ffi

ffi

fl

.

Therefore
`

ρV pg´1q˘B “
»

—

—

—

—

–

ε´11 0 00 ε´12
00 0 ε´1
n

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

ε1 0 00 ε2
00 0 εn

fi

ffi

ffi

ffi

ffi

fl

and it follows that χV pg´1q “ ε1 ` . . .` εn “ ε1 ` . . .` εn “ χV pgq .(e) For i “ 1, 2 let Bi be an ordered C-basis of Vi and consider the C-basis B :“ B1 \B2 of V . Then,by Remark 3.2 for every g P G we have
`

ρV pgq
˘

B “

»

—

—

—

—

—

—

–

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

´

ρW2pgq
¯

B20
0´

ρW1pgq
¯

B1
,

hence χV pgq “ Tr `ρV pgq˘ “ Tr `ρV1pgq
˘

` Tr `ρV2pgq
˘

“ χV1pgq ` χV2pgq .

Corollary 7.5Any character is a sum of irreducible characters.
Proof : By Corollary 3.6 to Maschke’s theorem, any C-representation can be written as the direct sum ofirreducible subrepresentations. Thus the claim follows from Properties 7.4(e).
Notation 7.6Recall from group theory (Einfürung in die Algebra) that a group G acts on itself by conjugationvia

G ˆ G ÝÑ G
pg, xq ÞÑ gxg´1 “: gx .The orbits of this action are the conjugacy classes of G, we denote them by rxs :“ t gx | g P Gu,and we write CpGq :“ trxs | x P Gu for the set of all conjugacy classes of G.The stabiliser of x P G is its centraliser CGpxq “ tg P G | gx “ xu and the orbit-stabiliser theoremyields

|CGpxq| “
|G|
|rxs| .

Moreover, a function f : G ÝÑ C which is constant on each conjugacy class of G, i.e. such that
fpgxg´1q “ fpxq @ g, x P G, is called a class function (on G).
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Lemma 7.7Characters are class functions.
Proof : Let ρV : G ÝÑ GLpV q be a C-representation and let χV be its character. Again, because by theproperties of the trace (GDM) Trpβ ˝ γq “ Trpγ ˝ βq for all C-endomorphisms β, γ of V , it follows thatfor all g, x P G we have

χV pgxg´1q “ Tr `ρV pgxg´1q˘ “ Tr `ρV pgqρV pxqρV pgq´1˘
“ Tr `ρV pxqρV pgqρV pgq´1

looooooomooooooon

“IdV
˘

“ Tr `ρV pxq˘ “ χV pxq .

Exercise 7.8 (Exercise 9, Sheet 3)Let ρV : G ÝÑ GLpV q be a C-representation and let χV be its character. Prove the followingstatements.
(a) If g P G is conjugate to g´1, then χV pgq P R.
(b) If g P G is an element of order 2, then χV pgq P Z and χV pgq ” χV p1q pmod 2q.

Exercise 7.9 (The dual representation / the dual character [Exercise 10, Sheet 3])Let ρV : G ÝÑ GLpV q be a C-representation.
(a) Prove that:(i) the dual space V ˚ :“ HomCpV ,Cq is endowed with the structure of a CG-module via

G ˆ V ˚ ÝÑ V ˚
pg, fq ÞÑ g.fwhere pg.fqpvq :“ fpg´1vq @ v P V ;(ii) the character of the associated C-representation ρV˚ is then χV˚ “ χV ; and(iii) if ρV decomposes as a direct sum ρV1 ‘ ρV2 of two subrepresentations, then

ρV˚ “ ρV˚1 ‘ ρV˚2 .
(b) Determine the duals of the 3 irreducible representations of S3 given in Example 2(d).

8 Orthogonality of Characters
We are now going to make use of results from the linear algebra (GDM) on the C-vector space of
C-valued functions on G in order to develop further fundamental properties of characters.
Notation 8.1We let FpG,Cq :“ tf : G ÝÑ C | f functionu denote the C-vector space of C-valued functions on G.Clearly dimC FpG,Cq “ |G| because tδg : G ÝÑ C, h ÞÑ δgh | g P Gu is a C-basis (see GDM).Set ClpGq :“ tf P FpG,Cq | f is a class functionu. This is clearly a C-subspace of FpG,Cq, calledthe space of class functions on G.
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Exercise 8.2 (Exercise 11, Sheet 3)Find a C-basis of ClpGq and deduce that dimC ClpGq “ |CpGq|.
Proposition 8.3The binary operation

x , yG : FpG,Cq ˆ FpG,Cq ÝÑ C
pf1, f2q ÞÑ xf1, f2yG :“ 1

|G|
ř

gPG f1pgqf2pgqis a scalar product on FpG,Cq.
Proof : It is straightforward to check that x , yG is sesquilinear and Hermitian (Exercise 11, Sheet 3); it ispositive definite because for every f P FpG,Cq,

xf , fy “ 1
|G|

ÿ

gPG
fpgqfpgq “ 1

|G|
ÿ

gPG
|fpgq|2
loomoon

PRě0
ě 0

and moreover xf , fy “ 0 if and only if f “ 0.
Remark 8.4Obviously, the scalar product x , yG restricts to a scalar product on ClpGq. Moreover, if f2 is acharacter of G, then by Property 7.4(d) we can write

xf1, f2yG “ 1
|G|

ÿ

gPG
f1pgqf2pgq “ 1

|G|
ÿ

gPG
f1pgqf2pg´1q .

The next theorem is the third key result of this lecture. It tells us that the irreducible characters of afinite group form an orthonormal system in ClpGq with respect to the scalar product x , yG .
Theorem 8.5 (1st Orthogonality Relations)If ρV : G ÝÑ GLpV q and ρW : G ÝÑ GLpW q are two irreducible C-representations with characters

χV and χW respectively, then
xχV , χW yG “

1
|G|

ÿ

gPG
χV pgqχW pg´1q “

#1 if ρV „ ρW ,0 if ρV  ρW .

Proof : Choose ordered C-bases E :“ pe1, . . . , enq and F :“ pf1, . . . , fmq of V and W respectively. Then foreach g P G write Qpgq :“ `

ρV pgq
˘

E and Ppgq :“ `

ρW pgq
˘

F .If ρV  ρW compute
xχV , χW yG “

1
|G|

ÿ

gPG
χV pgqχW pg´1q “ 1

|G|
ÿ

gPG
Tr `Qpgq˘Tr `Ppg´1q˘

“
1
|G|

ÿ

gPG

`

n
ÿ

i“1Qpgqii
˘`

m
ÿ

j“1Ppg
´1qjj˘

“

n
ÿ

i“1
m
ÿ

j“1
1
|G|

ÿ

gPG
QpgqiiPpg´1qjj

looooooooooooomooooooooooooon

“0 by (a) of Schur’s Relations
“ 0
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and similarly if W “ V , then P “ Q and

xχV , χV yG “
n
ÿ

i“1
m
ÿ

j“1
1
|G|

ÿ

gPG
QpgqiiQpg´1qjj

looooooooooooomooooooooooooon

“ 1
n δijδij by (b) of Schur’s Relations

“

n
ÿ

i“1
1
n “ 1 .

9 Consequences of the 1st Orthogonality Relations
In this section we use the 1st Orthogonality Relations in order to deduce a series of fundamentalproperties of the (irreducible) characters of finite groups.
Corollary 9.1 (Linear independence)The irreducible characters of G are C-linearly independent.
Proof : Assume řs

i“1 λiχi “ 0, where χ1, . . . , χs are pairwise distinct irreducible characters of G, λ1, . . . , λs P
C and s P Zą0. Then the 1st Orthogonality Relations yield

0 “ x s
ÿ

i“1 λiχi, χjyG “
s
ÿ

i“1 λi xχi, χjyGlooomooon

“δij

“ λj

for each 1 ď j ď s. The claim follows.
Corollary 9.2 (Finiteness)There are at most |CpGq| irreducible characters of G. In particular, there are only a finite numberof them.
Proof : By Corollary 9.1 the irreducible characters of G are C-linearly independent. By Lemma 7.7 irrre-ducible characters are elements of the C-vector space ClpGq. Therefore there exists at most dimC ClpGq “

|CpGq| ă 8 of them.
Corollary 9.3 (Multiplicities)Let ρV : G ÝÑ GLpV q be a C-representation and let ρV “ ρV1 ‘ ¨ ¨ ¨ ‘ ρVs be a decomposition of

ρV into irreducible subrepresentations. Then the following assertions hold.
(a) If ρW : G ÝÑ GLpW q is an irreducible C-representation of G, then the multiplicity of ρW in

ρV1 ‘ ¨ ¨ ¨ ‘ ρVs is equal to xχV , χW yG .
(b) This multiplicity is independent of the choice of the chosen decomposition of ρV into irre-ducible subrepresentations.

Proof : (a) We may assume that we have chosen the labelling such that
ρV “ ρV1 ‘ ¨ ¨ ¨ ‘ ρVl ‘ ρVl`1 ‘ ¨ ¨ ¨ ‘ ρVs ,
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where ρVi „ ρW @ 1 ď i ď l and ρVj  ρW @ l ` 1 ď j ď s. Thus χVi “ χW @ 1 ď i ď l byLemma 7.3. Therefore the 1st Orthogonality Relations yield

xχV , χW yG “
l
ÿ

i“1xχVi , χW yG `
s
ÿ

j“l`1xχVj , χW yG “
l
ÿ

i“1 xχW , χW yGlooooomooooon

“1
`

s
ÿ

j“l`1 xχVj , χW yGlooooomooooon

“0
“ l .

(b) Obvious, since xχV , χW yG depends only on V and W , but not on the chosen decomposition.
We can now prove that the converse of Lemma 7.3 holds.
Corollary 9.4 (Equality of characters)Let ρV : G ÝÑ GLpV q and ρW : G ÝÑ GLpW q be C-representations with characters χV and χWrespectively. Then:

χV “ χW ô ρV „ ρW .

Proof : “ð”: The sufficient condition is the statement of Lemma 7.3.“ñ”: To prove the necessary condition decompose ρV and ρW into direct sums of irreducible subrepre-sentations
ρV “ ρV1,1 ‘ ¨ ¨ ¨ ‘ ρV1,m1

loooooooooomoooooooooonall „ρV1
‘ ¨ ¨ ¨ ‘ ρVs,1 ‘ ¨ ¨ ¨ ‘ ρVs,ms

loooooooooomoooooooooonall „ρVs
,

ρW “ ρW1,1 ‘ ¨ ¨ ¨ ‘ ρW1,p1
loooooooooomoooooooooonall „ρV1

‘ ¨ ¨ ¨ ‘ ρWs,1 ‘ ¨ ¨ ¨ ‘ ρWs,ps
loooooooooomoooooooooonall „ρVs

,

where mi, pi ě 0 for all 1 ď i ď s and the ρVi ’s are pairwise non-equivalent irreducible C-representations of G. (Some of the mi, pi’s may be zero!) Now, as we assume that χV “ χW , foreach 1 ď i ď s Corollary 9.3 yields
mi “ xχV , χViyG “ xχW , χViyG “ pi ,hence ρV „ ρW .

Corollary 9.5 (Irreducibility criterion)A C-representation ρV : G ÝÑ GLpV q is irreducible if and only if xχV , χV yG “ 1.
Proof : “ñ”: holds by the 1st Orthogonality Relations.“ð”: As in the previous proof, write

ρV “ ρV1,1 ‘ ¨ ¨ ¨ ‘ ρV1,m1
loooooooooomoooooooooonall „ρV1

‘ ¨ ¨ ¨ ‘ ρVs,1 ‘ ¨ ¨ ¨ ‘ ρVs,ms
loooooooooomoooooooooonall „ρVs

,

where mi ě 1 for all 1 ď i ď s and the ρVi ’s are pairwise non-equivalent irreducible C-representations of G. Then, using the assumption, the sesquilinearity of the scalar product and the1st Orthogonality Relations, we obtain that
1 “ xχV , χV yG “ s

ÿ

i“1m
2
i xχVi , χViyG
loooomoooon

“1
“

s
ÿ

i“1m
2
i .

Hence, w.l.o.g. we may assume that m1 “ 1 and mi “ 0 @ 2 ď i ď s, so that ρV “ ρV1 is irreducible.
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Theorem 9.6The set IrrpGq is an orthonormal C-basis (w.r.t. x , yG) of the C-vector space ClpGq of class functionson G.
Proof : We already know that IrrpGq is a C-linearly independent set and also that it forms an orthonormalsystem of ClpGq w.r.t. x , yG . Hence it remains to prove that IrrpGq generates ClpGq. So let X :“ xIrrpGqyCbe the C-subspace of ClpGq generated by IrrpGq. It follows that

ClpGq “ X ‘ XK

where XK denotes the orthogonal of X with respect to the scalar product x , yG (see GDM). Thus it isenough to prove that XK “ 0. So let f P XK, set f̆ :“ ř

gPG fpgqg P CG and we prove the followingassertions:(1) f̆ P Z pCGq (the centre of CG): let h P G and compute
hf̆h´1 “ ÿ

gPG
fpgqhg ¨ h´1 s :“ hgh´1

“
ÿ

sPG
fph´1shq
loooomoooon

“fpsq

s “
ÿ

sPG
fpsqs “ f̆ .

Hence hf̆ “ f̆h and this equality extends by C-linearity to the whole of CG, so that f̆ P Z pCGq.(2) If V is a simple CG-module with character χV , then the external multiplication by f̆ on V is scalarmultiplication by |G|dimC V xχV , fyG P C: first notice that the external multiplication by f̆ on V , i.e. the map
f̆ ¨ ´ : V ÝÑ V , v ÞÑ f̆ ¨ v

is CG-linear. Indeed, for each x P CG and each v P V we have
f̆ ¨ px ¨ vq “ pf̆ xq ¨ v “ pxf̆q ¨ v “ x ¨ pf̆ ¨ vq

because f̆ P Z pCGq. Therefore, by Schur’s Lemma, there exists a scalar λ P C such that f̆ ¨ ´ “ λ IdV .Moreover,
λ “ 1

n Trpλ IdV q “ 1
n Trpf̆ ¨ ´q “ 1

n
ÿ

gPG
fpgqTr `mult. by g on V ˘

loooooooooooomoooooooooooon

“χV pgq

“
1
n
ÿ

gPG
fpgqχV pgq “

|G|
n xχV , fyG .

(3) If V is a simple CG-module with character χV , then the external multiplication by f̆ on V is zero:indeed, xχV , fyG “ 0 because f P XK and the claim follows from (2).(4) f “ 0: indeed, as the external multiplication by f̆ is zero on every simple CG-module, it is zero onevery CG-module, because any CG-module can be decomposed as the direct sum of simple submodulesby the Corollary to Maschke’s Theorem. In particular, the external multiplication by f̆ is zero on CG.Hence 0 “ f̆ ¨ 1CG “ f̆ “
ÿ

gPG
fpgqg

and we obtain that fpgq “ 0 for each g P G because G is a C-basis of CG. But then fpgq “ 0 for each
g P G and it follows that f “ 0.
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Corollary 9.7The number of pairwise non-equivalent irreducible characters of G is equal to the number of con-jugacy classes of G. In other words,

| IrrpGq| “ |CpGq| .
Proof : By Theorem 9.6 the set IrrpGq is a C-basis of the space ClpGq of class functions on G. Hence

| IrrpGq| “ dimC ClpGq “ |CpGq|

where the second equality holds by Exercise 8.2.
Corollary 9.8Let f P ClpGq. Then the following assertions hold:

(a) f “ ř

χPIrrpGqxf , χyG χ ;
(b) xf , fyG “ ř

χPIrrpGqxf , χy2G ;
(c) f is a character ðñ xf , χyG P Zě0 @ χ P IrrpGq; and
(d) f P IrrpGq ðñ f is a character and xf , fyG “ 1.

Proof : (a)+(b) hold for any orthonormal basis with respect to a given scalar product (GDM).(c) ’ñ’: If f is a character, then by Corollary 9.3 the complex number xf , χiyG is the multiplicity of χias a constituent of f , hence a non-negative integer.’ð’: If for each χ P IrrpGq, xf , χyG “: mχ P Zě0, then f is the character of the representation
ρ :“ à

χPIrrpGq
mχ
à

j“1 ρpχq
where ρpχq is a C-representation affording the character χ .(d) The necessary condition is given by the 1st Orthogonality Relations. The sufficient condition followsfrom (b) and (c).

Exercise 9.9 (Exercise 12, Sheet 3)Let V be a CG-module (finite dimensional) with character χV . Consider the C-subspace VG :“
tv P V | g ¨ v “ v @g P Gu. Prove that

dimC VG “
1
|G|

ÿ

gPG
χV pgq

1. considering the scalar product of χV with the trivial character 1G ;
2. seeing VG as the image of the projector π : V � V , v ÞÑ 1

|G|
ř

gPG g ¨ v .
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10 The Regular Character
Recall from Example 1(d) that a finite G-set X induces a permutation representation

ρX : G ÝÑ GLpV q
g ÞÑ ρX pgq : V ÝÑ V , ex ÞÑ eg¨xwhere V is a C-vector space with basis tex | x P Xu (i.e. indexed by the set X ). Given g P G writeFixX pgq :“ tx P X | g ¨ x “ xu for the set of fixed points of g on X .

Proposition 10.1 (Character of a permutation representation)Let X be a G-set and let χX denote the character of the associated permutation representation ρX .Then
χX pgq “ |FixX pgq| @ g P G .

Proof : Let g P G. The diagonal entries of the matrix of ρX pgq expressed in the basis B :“ tex | x P Xu are:
´

`

ρX pgq
˘

B

¯

xx
“

#1 if g ¨ x “ x0 if g ¨ x ‰ x
@ x P X .

Hence taking traces, we get χX pgq “ ř

xPX

´

`

ρX pgq
˘

B

¯

xx
“ |FixX pgq|.

For the action of G on itself by left multiplication, by Example 1(d), ρX “ ρreg is the regular represen-tation of G. In this case, we obtain the values of the regular character.
Corollary 10.2 (The regular character )Let χreg denote the character of the regular representation ρreg of G. Then

χregpgq “
#

|G| if g “ 1G ,0 otherwise.
Proof : This follows immediately from Proposition 10.1 since FixGp1Gq “ G and FixGpgq “ H for every

g P Gzt1Gu.
Theorem 10.3 (Decomposition of the regular representation)The multiplicity of an irreducible C-representation of G as a constituent of ρreg equals its degree.In other words,

χreg “ ÿ

χPIrrpGqχp1qχ .
Proof : By Corollary 9.3 we have χreg “ ř

χPIrrpGqxχreg, χyG χ , where for each χ P IrrpGq,
xχreg, χyG “ 1

|G|
ÿ

gPG
χregpgq
loomoon

“δ1g|G|by Cor. 10.2
χpgq “ |G|

|G|χp1q “ χp1q .
The claim follows.
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Remark 10.4In particular, the theorem tells us that each irreducible C-representation (considered up to equiv-alence) occurs with multiplicity at least one in a decomposition of the regular representation intoirreducible subrepresentations.
Corollary 10.5 (Degree formula)The order of the group G is given in terms of its irreducible character by the formula

|G| “
ÿ

χPIrrpGqχp1q2 .
Proof : Evaluating the regular character at 1 P G yields

|G| “ χregp1q “ ÿ

χPIrrpGqχp1qχp1q “
ÿ

χPIrrpGqχp1q2 .
Exercise 10.6 (Exercise 13(b), Sheet 4)Use the degree formula to give a second proof of Proposition 6.1. In other words, prove that if G isa finite abelian group, then IrrpGq “ tlinear characters of Gu .



Chapter 4. The Character Table

In Chapter 3 we have proved that for any finite group G the equality | IrrpGq| “ |CpGq| “: r holds. Thusthe values of the irreducible characters of G can be recorded in an r ˆ r-matrix, called the character
table of G. The entries of this matrix are related to each other in subtle manners, many of which areencapsulated in the 1st Orthogonality Relations and their consequences, as for example the degreeformula. Our aim in this chapter is to develop further tools and methods to compute character tables.
Notation: throughout this chapter, unless otherwise specified, we let:

¨ | IrrpGq| “ |CpGq| “: r ;
¨ G denote a finite group;
¨ K :“ C be the field of complex numbers;
¨ IrrpGq “ tχ1, . . . , χru denote the set of pairwise distinct irreducible characters of G;
¨ C1 “ rg1s, . . . , Cr “ rgrs denote the conjugacy classes of G, where g1, . . . , gr is a fixed set ofrepresentatives; and
¨ we use the convention that χ1 “ 1G and g1 “ 1 P G.

In general, unless otherwise stated, all groups considered are assumed to be finite and all C-vectorspaces / modules over the group algebra considered are assumed to be finite-dimensional.
11 The Character Table of a Finite Group
Definition 11.1 (Character table)The character table of G is the matrix XpGq :“ ´

χipgjq
¯

ij
P MrpCq .

Example 4 (The character table of a cyclic group)Let G “ xg | gn “ 1y be cyclic of order n P Zą0. Since G is abelian,IrrpGq “ tlinear characters of Guby Proposition 6.1 and | IrrpGq| “ |G| “ n. Moreover, each conjugacy class is a singleton:
@ 1 ď j ď r : Cj “ tgju and we set gj :“ gj´1.

34
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Let ζ be a primitive n-th root of unity in C, so that tζi | 1 ď i ď nu are all the n-th roots of unity.Now, each χi : G Ñ Cˆ is a group homomorphism and is determined by χipgq, which has to be an
n-th root of 1C . Therefore, we have n possibilities for χipgq. We set

χipgq :“ ζi´1 @ 1 ď i ď n ñ χipgjq “ ζpi´1qj @ 1 ď i ď n, 0 ď j ď n´ 1
Thus the character table of G is

XpGq “
´

χipgjq
¯1ďiďn1ďjďn “

´

χipgj´1q¯1ďiďn1ďjďn “
´

ζpi´1qpj´1q¯1ďiďn1ďjďn ,which we visualise as follows: 1 g g2 ¨ ¨ ¨ gn´1
χ1 “ 1G 1 1 1 . . . 1
χ2 1 ζ ζ2 . . . ζn´1
χ3 1 ζ2 ζ4 . . . ζ2pn´1q
. . . . . . . . . . . . . . . . . .
χn 1 ζn´1 ζ2pn´1q . . . ζpn´1q2

Example 5 (The character table of S3)Let now G :“ S3 be the symmetric group on 3 letters. Recall from the AGS/Einführung in die
Algebra that the conjugacy classes of S3 are

C1 “ tIdu, C2 “ tp1 2q, p1 3q, p2 3qu, C3 “ tp1 2 3q, p1 3 2qu
ñ r “ 3, |C1| “ 1, |C2| “ 3, |C3| “ 2 .In Example 2(d) we have exhibited three non-equivalent irreducible matrix representations of S3,which we denoted ρ1, ρ2, ρ3. For each 1 ď i ď 3 let χi be the character of ρi and ni be its degree,so that n1 “ n2 “ 1 and n3 “ 2. Hence

n21 ` n22 ` n23 “ 6 “ |G| .
Therefore, the degree formula tells us that ρ1, ρ2, ρ3 are allthe irreducible matrix representations of S3, up to equivalence.We note that n1 “ n2 “ 1, n3 “ 2 is in fact the uniquesolution (up to relabelling) to the equation given by the degreeformula! Taking traces of the matrices in Example 2(d) yieldsthe character table of S3.

Id p1 2q p1 2 3q
χ1 1 1 1
χ2 1 -1 1
χ3 2 0 -1

In the next sections we want to develop further techniques to compute character tables of finite groups,before we come back to further examples of such tables for larger groups.
Exercise 11.2 (Exercise 13(c), Sheet 4)Compute the character table of the Klein-four group C2 ˆ C2.
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12 The 2nd Orthogonality Relations
The 1st Orthogonality Relations provide us with orthogonality relations between the rows of the char-acter table. They can be rewritten as follows in terms of matrices.
Exercise 12.1 (Exercise 14, Sheet 4)Let G be a finite group. Set X :“ XpGq and

C :“
»

—

—

—

—

–

|CGpg1q| 0 00 |CGpg2q|
00 0 |CGpgrq|

fi

ffi

ffi

ffi

ffi

fl

P MrpCq .

Use the Orbit-Stabiliser Theorem in order to prove that the 1st Orthogonality Relations can berewritten under the form
XC´1XTr

“ Ir ,where XTr denotes the transpose of the complex-conjugate X of the character table X of G.Deduce that the character table is invertible.There are also some orthogonality relations between the columns of the character table. These caneasily be deduced from the 1st Orthogonality Relations given above in terms of matrices.
Theorem 12.2 (2nd Orthogonality Relations)With the notation of Exercise 12.1 we have

XTr X “ C .

In other words,
ÿ

χPIrrpGqχpgiqχpgjq “ δij
|G|
|rgis|

“ δij |CGpgiq| @ 1 ď i, j ď r .

Proof : Taking complex conjugation of the formula given by the 1st Orthogonality Relations (Exercise 12.1)yields:
XC´1XTr

“ Ir ùñ XC´1XTr “ IrNow, since X is invertible, so are all the matrices in the above equations and hence XTr “ `

XC´1˘´1.It follows that
XTr X “ `

XC´1˘´1X “ CX´1X “ C .The second formula is now obtained by considering the entry pi, jq in the above matrix equation for all1 ď i, j ď r.
Exercise 12.3 (Exercise 13(a), Sheet 4)Prove that the degree formula can be read off from the 2nd Orthogonality Relations.
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13 Tensor Products of Representations and Characters
Tensor products of vector spaces and matrices are recalled/introduced in Appendix C. We are now goingto use this construction to build products of characters.
Proposition 13.1Let G and H be finite groups, and let ρV : G ÝÑ GLpV q and ρW : H ÝÑ GLpW q be C-representations with characters χV and χW respectively. Then

ρV b ρW : G ˆH ÝÑ GLpV bC W q
pg, hq ÞÑ pρV b ρW qpg, hq :“ ρV pgq b ρW phq(where ρV pgqbρW phq is the tensor product of the C-endomorphisms ρV pgq : V ÝÑ V and ρW phq :

W ÝÑ W as defined in Lemma-Definition C.4) is a C-representation of G ˆ H , called the tensor
product of ρV and ρW , and the corresponding character, which we denote by χVbCW

, is
χVbCW “ χV ¨ χW ,

where χV ¨ χW pg, hq :“ χV pgq ¨ χW phq @ pg, hq P G ˆH .
Proof : First note that ρV b ρW is well-defined by Lemma-Definition C.4 and it is a group homomorphismbecause

`

ρV b ρW
˘

pg1g2, h1h2qrv b ws “ `

ρV pg1g2q b ρW ph1h2q˘rv b ws
“ ρV pg1g2qrvs b ρW ph1h2qrws
“ ρV pg1q ˝ ρV pg2qrvs b ρW ph1q ˝ ρW ph2qrws
“ ρV pg1q b ρW ph1q“ρV pg2qrvs b ρW ph2qrws‰
“

`

ρV pg1q b ρW ph1q˘ ˝ `ρV pg2q b ρW ph2q˘rv b ws
“

`

ρV b ρW
˘

pg1, h1q ˝ `ρV b ρW ˘

pg2, h2qrv b ws
@ g1, g2 P G, h1, h2 P H , v P V , w P W . Furthermore, for each g P G and each h P H ,
χVbCW pg, hq “ Tr `pρV b ρW qpg, hq˘ “ Tr `ρV pgq b ρW phq˘ “ Tr `ρV pgq˘ ¨ Tr `ρW phq˘ “ χV pgq ¨ χW phqby Lemma-Definition C.4, hence χVbCW

“ χV ¨ χW .
Remark 13.2The diagonal inclusion ı : G ÝÑ G ˆ G, g ÞÑ pg, gq of G in the product G ˆ G is a grouphomomorphism with ıpGq – G. Therefore, if G “ H , then

G ı
ÝÑ G ˆ G χV ¨ χW

ÝÑ C, g ÞÑ pg, gq ÞÑ χV pgq ¨ χW pgqbecomes a character of G, which we also denote by χV ¨ χW .
Corollary 13.3If G and H are finite groups, then IrrpG ˆHq “ tχ ¨ ψ | χ P IrrpGq, ψ P IrrpHqu.
Proof : [Exercise 15(c), Sheet 4]. Hint: Use Corollary 9.8(d) and the degree formula.
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Exercise 13.4 (Exercise 15(a)+(b), Sheet 4)

(a) If λ, χ P IrrpGq and λp1q “ 1, then λ ¨ χ P IrrpGq.
(b) The set tχ P IrrpGq | χp1q “ 1u of linear characters of a finite group G forms a group for theproduct of characters.

14 Normal Subgroups and Inflation
Whenever a group homomorphism G ÝÑ H and a representation of H are given, we obtain a represen-tation of G by composition. In particular, we want to apply this principle to normal subgroups N Ĳ Gand the corresponding quotient homomorphism, which we always denote by π : G ÝÑ G{N,g ÞÑ gN .
We will see that by this means, copies of the character tables of quotient groups of G all appear in thecharacter table of G. This observation, although straightforward, will allow us to fill out the charactertable of a group very rapidly, provided it possesses normal subgroups.
Definition 14.1 (Inflation)Let N Ĳ G and let π : G ÝÑ G{N,g ÞÑ gN be the quotient homomorphism. Given a C-representation ρ : G{N ÝÑ GLpV q, we set

InfGG{Npρq :“ ρ ˝ π : G ÝÑ GLpV q .
This is a C-representation of G, called the inflation of ρ from G{N to G. If the character of ρ is
χ , then we denote by InfGG{Npχq the character of InfGG{Npρq and call it the inflation of χ from G{N
to G.Note that some texts also call InfGG{Npρq (resp. InfGG{Npχq) the lift of ρ (resp. χ) along π.

Remark 14.2The values of the character InfGG{Npχq of G are obtained from those of χ as follows. If g P G, then
InfGG{Npχqpgq “ Tr `pρ ˝ πqpgq˘ “ Tr `ρpgNq˘ “ χpgNq .

Exercise 14.3 (Exercise 16, Sheet 4)Let N Ĳ G and let ρ : G{N ÝÑ GLpV q be a C-representation of G{N with character χ .
(a) Prove that if ρ is irreducible, then so is InfGG{Npρq.(b) Compute the kernel of InfGG{Npρq provided that ρ is faithful.

Definition 14.4 (Kernel of a character )The kernel of a character χ of G is kerpχq :“ tg P G | χpgq “ χp1qu.
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Example 6

(a) χ “ 1G the trivial character ñ kerpχq “ G.
(b) G “ S3, χ “ χ2 the sign character ñ kerpχq “ C1 Y C3 “ xp123qy; whereas kerpχ3q “ t1u.(See Example 5.)

Lemma 14.5Let ρ : G ÝÑ GLpV q be a C-representation of G with character ψ. Then kerpψq “ kerpρq, thus isa normal subgroup of G.
Proof : [Exercise 17(a), Sheet 5]
Theorem 14.6Let N Ĳ G. ThenInfGG{N : tcharacters of G{Nu ÝÑ tcharacters ψ of G | N ď kerpψqu

χ ÞÑ InfGG{Npχqis a bijection and so is its restriction to the irreducible characters
InfGG{N : IrrpG{Nq ÝÑ tψ P IrrpGq | N ď kerpψqu

χ ÞÑ InfGG{Npχq .
Proof : First we prove that the first map is well-defined and bijective.

¨ Let χ be a character of G{N afforded by the C-representation ρ : G{N ÝÑ GLpV q. By Remark 14.2,
N is in the kernel of InfGG{Npχq, hence the first map is well-defined.

¨ Now let ψ be a character of G with N ď kerpψq and assume ψ is afforded by the C-representation
ρ : G ÝÑ GLpV q.

G GLpV q
G{N

π

ρ

ö

D! rρ
By Lemma 14.5 we have kerpψq “ kerpρq ě N . Therefore, by theuniversal property of the quotient, ρ induces a unique C-representation
rρ : G{N ÝÑ GLpV q with the property that rρ ˝ π “ ρ.

It follows that ρ “ InfGG{Nprρq and ψ “ InfGG{Npχq. Thus the 1st map is surjective. Its injectivity isclear.The second map is well-defined by the above and Exercise 14.3(a). It is injective because it is just therestriction of the 1st map to the IrrpG{Nq, whereas it is surjective by the same argument as above as theconstructed representation rρ is clearly irreducible if ρ is because rρ ˝ π “ ρ.
Exercise 14.7 (Exercise 17(b), Sheet 5)Let G be a finite group. Prove that if N Ĳ G, then

N “
č

χPIrrpGq
NĎkerpχq

kerpχq .



Skript zur Vorlesung: Charaktertheorie SS 2020 40
It follows immediately from the above exercise that the lattice of normal subgroups of G can be readoff from its character table. The theorem also implies that it can be read off from the character table,whether the group is abelian or simple.
Corollary 14.8(a) Inflation from the abelianisation induces a bijection

InfGG{G1 : IrrpG{G1q tψ P IrrpGq | ψp1q “ 1u„ ;
in particular, G has precisely |G : G1| linear characters.

(b) The group G is abelian if and only if all its irreducible characters are linear.
Proof : (a) First, we claim that if ψ P IrrpGq is linear, then G1 is in its kernel. Indeed, if ψp1q “ 1, then

ψ : G ÝÑ Cˆ is a group homomorphism. Therefore, as Cˆ is abelian,
ψprg, hsq “ ψpghg´1h´1q “ ψpgqψphqψpgq´1ψphq´1 “ ψpgqψpgq´1ψphqψphq´1 “ 1

for all g, h P G, and hence G1 “ xrg, hs | g, h P Gy ď kerpχq. In addition, any irreducible characterof G{G1 is linear by Proposition 6.1 because G{G1 is abelian. Thus Theorem 14.6 yields a bijection
IrrpG{G1q tψ P IrrpGq | G1 ď kerpψqu “ tψ P IrrpGq | ψp1q “ 1u ,„InfGG{G1

as required.(b) If G is abelian, then G{G1 “ G. Hence the claim follows from (a).
Corollary 14.9A finite group G is simple ðñ χpgq ‰ χp1q @ g P Gzt1u and @ χ P IrrpGqzt1Gu.
Proof : [Exercise 18, Sheet 5]
Exercise 14.10 (Exercise 19, Sheet 5)Compute the complex character table of the alternating group A4 through the following steps:

1. Determine the conjugacy classes of A4 (there are 4 of them) and the corresponding centraliserorders.
2. Determine the degrees of the 4 irreducible characters of A4.
3. Determine the linear characters of A4.
4. Determine the non-linear character of A4 using the 2nd Orthogonality Relations.

To finish this section we show how to compute the character table of the symmetric group S4 combiningseveral of the techniques we have developed in this chapter.
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Example 7 (The character table of S4)Again the conjugacy classes of S4 are given by the cycle types. We fix

C1 “ tIdu, C2 “ rp1 2qs, C3 “ rp1 2 3qs, C4 “ rp1 2qp3 4qs, C5 “ rp1234qs
ñ r “ 5, |C1| “ 1, |C2| “ 6, |C3| “ 8, |C4| “ 3, |C5| “ 6 .Hence | IrrpGq| “ |CpGq| “ 5 and as always we may assume that χ1 “ 1G is the trivial character.

Recall that V4 “ tId, p1 2qp3 4q, p1 3qp2 4q, p1 4qp2 3qu Ĳ S4 with S4{V4 – S3 (AGS or Einführungin die Algebra!). Therefore, by Theorem 14.6 we can "inflate" the character table of S4{V4 – S3 to
S4 (see Example 5 for the character table of S3). This provides us with three irreducible characters
χ1, χ2 and χ3 of S4:

Id p1 2q p1 2 3q p1 2qp3 4q p1 2 3 4q
|CGpgiq| 24 4 3 8 4
χ1 1 1 1 1 1
χ2 1 -1 1 1 -1
χ3 2 0 -1 2 0
χ4 . . . . .
χ5 . . . . .Here we have computed the values of χ2 and χ3 using Remark 14.2 as follows:

¨ Inflation preserves degrees, hence it follows from Example 5 that χ2pIdq “ 1 and χ3pIdq “ 2.(Up to relabelling!)
¨ As C4 “ rp1 2qp3 4qs Ď V4, p1 2qp3 4q P kerpχiq for i “ 2, 3 and hence χ2pp1 2qp3 4qq “ 1 and
χ3pp1 2qp3 4qq “ 2.

¨ By Remark 14.2 the values of χ2 and χ3 at p1 2q and p1 2 3q are given by the correspondingvalues in the character table of S3. (Here it is enough to argue that the isomorphism between
S4{V4 and S3 must preserve orders of elements, hence also the cycle type in this case.)

¨ Finally, we compute that p1 2 3 4q “ p1 2q P S4{V4, hence χipp1 2 3 4qq “ χipp1 2qq for
i “ 2, 3.

Therefore, it remains to compute χ4 and χ5. To begin with the degree formula yields
5
ÿ

i“1χipIdq2 “ 24 ùñ χ4pIdq2 ` χ5pIdq2 “ 18 ùñ χ4pIdq “ χ5pIdq “ 3 .
Next, the 2nd Orthogonality Relations applied to the 3rd column with itself read

5
ÿ

i“1χipp1 2 3qqχipp1 2 3qq “ 5
ÿ

i“1χipp1 2 3qqχipp1 2 3q´1q “ |CGpp1 2 3qq| “ 3 ,
hence 1` 1` 1` χ4pp1 2 3qq2 ` χ5p1 2 3qq2 “ 3 and it follows that χ4pp1 2 3qq “ χ5pp1 2 3qq “ 0.Similarly, the 2nd Orthogonality Relations applied to the 2nd column with itself / the 4th columnwith itself and the 5th column with itself yield that all other entries squared are equal to 1, hence
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all other entries are ˘1.The 2nd Orthogonality Relations applied to the 1st and 2nd columns give the 2nd column, i.e.
χ4pp1 2qq “ 1 and χ5pp1 2qq “ ´1 (up to swapping χ4 and χ5).Then the 1st Orthogonality Relations applied to the 3rd and the 4th row yield

0 “ 5
ÿ

k“1
1

|CGpgkq|
χ3pgkqχ4pgkq “ 624 ` 14χ4pp1 2qp3 4qq ñ χ4pp1 2qp3 4qq “ ´1 .

Similar with the 3rd row and the 5th row: χ5pp1 2qp3 4qq “ ´1. Finally the 1st Orthogonal-ity Relations applied to the 1st and the 4th (resp. 5th) row yield χ4pp1 2 3 4qq “ ´1 (resp.
χ5pp1 2 3 4qq “ 1). Thus the character table of S4 is:

Id p1 2q p1 2 3q p1 2qp3 4q p1 2 3 4q
|CGpgiq| 24 4 3 8 4
χ1 1 1 1 1 1
χ2 1 -1 1 1 -1
χ3 2 0 -1 2 0
χ4 3 1 0 -1 -1
χ5 3 -1 0 -1 1

Remark 14.11Two non-isomorphic groups can have the same character table. E.g.: Q8 and D8, but Q8 fl D8. Sothe character table does not determine:
• the group up to isomorphism;
• the full lattice of subgroups;
• the orders of elements.

Exercise 14.12 (Exercise 20(a), Sheet 5)Compute the character tables of D8 and Q8.[Hint: In each case, determine the commutator subgroup and deduce that there are 4 linear characters.]
Exercise 14.13 (The determinant of a representation / Exercise 20(b), Sheet 5)If ρ : G ÝÑ GLpV q is a C-representation of G and det : GLpV q ÝÑ C˚ denotes the determinanthomomorphism, then we define a linear character of G via

detρ :“ det ˝ρ : G ÝÑ C˚ ,

called the determinant of ρ. Prove that, although the finite groups D8 and Q8 have the samecharacter table, they can be distinguished by considering the determinants of their irreducible
C-representations.
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Exercise 14.14 (Exercise 21, Sheet 6)Prove the follwing assertions:

(a) If G is a non-abelian simple group (or more generally if G is perfect, i.e. G “ rG,Gs), thenthe image ρpGq of any C-representation ρ : G ÝÑ GLpV q is a subgroup of SLpV q.(b) No simple group G has an irreducible character of degree 2.Assume that G is simple and ρ : G ÝÑ GL2pCq is an irreducible matrix representation of G with character χ andproceed as follows:
1. Prove that ρ is faithful and G is non-abelian.3. Determine the determinant detρ of ρ.4. Prove that |G| is even and G admits an element x of order 2.5. Prove that xxyC G and conclude that assertion (b) holds.



Chapter 5. Integrality and Theorems of Burnside’s

The main aim of this chapter is to prove Burnside’s paqb theorem, which provides us with a solubilitycriterion for finite groups of order paqb with p, q prime numbers, which is extremely hard to proveby purely group theoretic methods. To reach this aim, we need to develop techniques involving theintegrality of character values and further results of Burnside’s on the vanishing of character values.
Notation: throughout this chapter, unless otherwise specified, we let:

¨ G denote a finite group;
¨ K :“ C be the field of complex numbers;
¨ IrrpGq :“ tχ1, . . . , χru denote the set of pairwise distinct irreducible characters of G;
¨ C1 “ rg1s, . . . , Cr “ rgrs denote the conjugacy classes of G, where g1, . . . , gr is a fixed set ofrepresentatives; and
¨ we use the convention that χ1 “ 1G and g1 “ 1 P G.In general, unless otherwise stated, all groups considered are assumed to be finite and all C-vectorspaces / modules over the group algebra considered are assumed to be finite-dimensional.

15 Algebraic Integers and Character Values
First we investigate the algebraic nature of character values.
Recall: (See Appendix D for details.)An element b P C which is integral over Z is called an algebraic integer. In other words, b P C is analgebraic integer if b is a root of monic polynomial f P ZrX s.Algebraic integers have the following properties:

¨ The integers are clearly algebraic integers.
¨ Roots of unity are algebraic integers, as they are roots of polynomials of the form Xm´1 P ZrX s.
¨ The algebraic integers form a subring of C. In particular, sums and products of algebraic integersare again algebraic integers.
¨ If b P Q is an algebraic integer, then b P Z. In other words tb P Q | b algebraic integeru “ Z.

44
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Corollary 15.1Character values are algebraic integers.
Proof : By the above, roots of unity are algebraic integers. Since the algebraic integers form a ring, so aresums of roots of unity. Hence the claim follows from Property 7.4(b).

16 Central Characters
We now extend representations/characters of finite groups to "representations/characters" of the centreof the group algebra CG in order to obtain further results on character values, which we will use in thenext sections in order to prove Burnside’s paqb theorem.
Definition 16.1 (Class sums)The elements pCj :“ ř

gPCj g P CG (1 ď j ď r) are called the class sums of G.
Lemma 16.2The class sums tpCj | 1 ď j ď ru form a C-basis of Z pCGq. In other words, Z pCGq “Àr

j“1 CpCj .
Proof : Notice that the class sums are clearly C-linearly independent because the group elements are.’Ě’: @ 1 ď j ď r and @ g P G, we have

g ¨ pCj “ gpg´1
pCjgq “ pCj ¨ g .

Extending by C-linearity, we get a¨pCj “ pCj ¨a @ 1 ď j ď r and @ a P CG. Thus Àr
j“1 CpCj Ď Z pCGq.’Ď’: Let a P Z pCGq and write a “ ř

gPG λgg with tλgugPG P C. Since a is central, for every h P G, wehave
ÿ

gPG
λgg “ a “ hah´1 “ ÿ

gPG
λgphgh´1q .

Comparing coefficients yield λg “ λhgh´1 @ g, h P G. Namely, the coefficients λg are constant onthe conjugacy classes of G, and hence
a “

r
ÿ

j“1 λgj pCj P
r
à

j“1 CpCj .

Now, notice that by definition the class sums pCj (1 ď j ď r) are elements of the subring ZG of CG,hence of the centre of ZG.
Corollary 16.3

(a) Z pZGq is finitely generated as a Z-module.
(b) The centre Z pZGq of the group ring ZG is integral over Z; in particular the class sums pCj(1 ď j ď r) are algebraic integers.
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Proof :(a) It follows directly from the second part of the proof of Lemma 16.2 that the class sums pCj (1 ď j ď r)span Z pZGq as a Z-module.(b) The centre Z pZGq is integral over Z by Theorem D.2 because it is finitely generated as a Z-moduleby (a).
Notation 16.4 (Central characters)If χ P IrrpGq, then we may consider a C-representation affording χ , say ρχ : G ÝÑ GLpCnpχqq “AutCpCnpχqq with npχq :“ χp1q. This group homomorphism extends by C-linearity to a C-algebrahomomorphism

rρχ : CG ÝÑ EndCpCnpχqq
a “

ř

gPG λgg ÞÑ rρχpaq “
ř

gPG λgρχpgq .Now, if z P Z pCGq, then for each g P G, we have
rρχpzqrρχpgq “ rρχpzgq “ rρχpgzq “ rρχpgqrρχpzq .

As we have already seen in Chapter 2 on Schur’s Lemma this means that rρχpzq is CG-linear. Thisholds in particular if z is a class sum. Therefore, by Schur’s Lemma, for each 1 ď j ď r there existsa scalar ωχppCjq P C such that
rρχppCjq “ ωχppCjq ¨ Inpχq .The functions defined by

ωχ : Z pCGq ÝÑ C
pCj ÞÑ ωχppCjqand extended by C-linearity to the whole of Z pCGq, where χ runs through IrrpGq, are called the

central characters of CG (or simply of G).
Remark 16.5If z P Z pGq, then rzs “ tzu and therefore the corresponding class sum is z itself. Therefore, we maysee the functions ωχ |ZpGq : Z pGq ÝÑ C as representations of Z pGq of degree 1, or equivalently aslinear characters of Z pGq.
Theorem 16.6 (Integrality Theorem)The values ωχppCjq pχ P IrrpGq, 1 ď j ď rq of the central characters of G are algebraic integers.Moreover,

ωχppCjq “
|Cj |
χp1qχpgjq @ χ P IrrpGq, @ 1 ď j ď r .

Proof : Let χ P IrrpGq and 1 ď j ď r. By Corollary 16.3 the class sum pCj is an algebraic integer. Thus thereexist integers n P Zą0 and a0, . . . , an´1 P Z such that pCn
j ` an´1pCn´1

j ` . . . ` a0 “ 0. Applying ωχyields ωχppCjqn ` an´1ωχppCjqn´1 ` . . .` a0 “ ωχp0q “ 0, so that ωχppCjq is also an algebraic integer.Now, according to Notation 16.4 we have
χp1qωχppCjq “ Tr `rρχppCjq˘ “ Tr ` ÿ

gPCj

ρχpgq
˘

“
ÿ

gPCj

Tr `ρχpgq˘ “ ÿ

gPCj

χpgq “ |Cj |χpgq ,
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where the last equality holds because characters are class functions. The claim follows.

Corollary 16.7If χ P IrrpGq, then χp1q divides |G|.
Proof : By the 1st Orthogonality Relations we have

|G|
χp1q “ |G|

χp1q xχ, χyG “ 1
χp1q ÿgPG χpgqχpg´1q “ 1

χp1q r
ÿ

j“1 |Cj |χpgjqχpg
´1
j q “

r
ÿ

j“1
|Cj |
χp1qχpgjq
looooomooooon

ωχ ppCjq

χpg´1
j q .

Now, for each 1 ď j ď r, ωχpgjq is an algebraic integer by the Integrality Theorem and χpg´1
j q is analgebraic integer by Corollary 15.1. Hence |G|{χp1q is an algebraic integer because these form a subringof C. Moroever, clearly |G|{χp1q P Q. As the algebraic integers in Q are just the elements of Z, weobtain that |G|{χp1q P Z, as claimed.

Example 8 (The degrees of the irreducible characters of GL3pF2q)The group G :“ GL3pF2q is a simple group of oder
|G| “ # F2-bases of F32 “ p23 ´ 1qp23 ´ 2qp23 ´ 22q “ 168 “ 23 ¨ 3 ¨ 7 .

For the purpose of this example we accept without proof that G is simple and that it has 6 conjugacyclasses.
Question: can we compute the degrees of the irreducible characters of GL3pF2q?(1) By the above | IrrpGq| “ |CpGq| “ 6 and the degree formula yields:

1` 6
ÿ

i“2χip1q2 “ |G| “ 168 .
(2) Next, as G is simple non-abelian, G “ G1 and therfeore G has |G : G1| “ 1 linear charactersby Corollary 14.8, namely

χip1q ě 2 for each 2 ď i ď 6 .Thus, at this stage, we would have the following possibilities for the degrees of the 6 irre-ducible characters of G:
χ1p1q χ2p1q χ3p1q χ4p1q χ5p1q χ6p1q1 2 4 5 6 91 2 3 3 8 91 2 5 5 7 81 2 4 7 7 71 3 3 6 7 8

p3q By Corollary 16.7 we now know that χip1q | |G| for each 2 ď i ď 6. Therefore, as 5 - |G| and9 - |G|, the first three rows can already be discarded:
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χ1p1q χ2p1q χ3p1q χ4p1q χ5p1q χ6p1q1 2 4 5 6 �A91 2 3 3 8 �A91 2 �A5 �A5 7 81 2 4 7 7 71 3 3 6 7 8

p4q In order to eliminate the last-but-one possibility, we apply [Exercise 21(b), Sheet 6] sayingthat a simple group cannot have an irreducible character of degree 2. Hence
χ1p1q “ 1 , χ2p1q “ 3 , χ3p1q “ 3 , χ4p1q “ 6 , χ5p1q “ 7 , χ6p1q “ 8 .

Exercise 16.8 (Exercise 22, Sheet 6)Let G be a finite group of odd order and, as usual, let r denote the number of conjugacy classesof G. Use character theory to prove that
r ” |G| pmod 16q .

[Hint: Label the set IrrpGq of irreducible characters taking dual characters into account. Use the divisibility property ofCorollary 16.7]

17 The Centre of a Character
Definition 17.1 (Centre of a character )The centre of a character χ of G is Z pχq :“ tg P G | |χpgq| “ χp1qu.
Note: Recall that in contrast, χpgq “ χp1q ô g P kerpχq.
Example 9Recall from Example 5 that the character table of G “ S3 isId p12q p123q

χ1 1 1 1
χ2 1 -1 1
χ3 2 0 -1Hence Z pχ1q “ Z pχ2q “ G and Z pχ3q “ tIdu.

Lemma 17.2If ρ : G ÝÑ GLpV q is a C-representation with character χ and g P G, then:
|χpgq| “ χp1q ðñ ρpgq P Cˆ IdV .

In other words Z pχq “ ρ´1`Cˆ IdV ˘.
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Proof : Let n :“ χp1q. Recall that we can find a C-basis B of V such that pρpgqqB is a diagonal matrixwith diagonal entries ε1, . . . , εn which are opgq-th roots of unity. Hence ε1, . . . , εn are the eigenvaluesof ρpgq. Applying the Cauchy-Schwartz inequality to the vectors v :“ pε1, . . . , εnq and w :“ p1, . . . , 1qin Cn yields

|χpgq| “ |ε1 ` . . .` εn| “ |xv, wy| ď ||v || ¨ ||w|| “ ?n?n “ n “ χp1qand equality implies that v and w are C-linearly dependent so that ε1 “ . . . “ εn “: ε . Therefore
ρpgq P Cˆ IdV . Conversely, if ρpgq P Cˆ IdV , then there exists λ P Cˆ such that ρpgq “ λ IdV . Thereforethe eigenvalues of ρpgq are all equal to λ, i.e. λ “ ε1 “ . . . “ εn and therefore

|χpgq| “ |nλ| “ n|λ| “ n ¨ 1 “ n .

Proposition 17.3Let χ be a character of G. Then:
(a) Z pχqE G;
(b) kerpχqE Z pχq and Z pχq{ kerpχq is a cyclic group;
(c) if χ is irreducible, then Z pχq{ kerpχq “ Z pG{ kerpχqq.

Proof : Let ρ : G ÝÑ GLpV q be a C-representation affording χ and set n :“ χp1q.(a) Clearly Cˆ IdV ď Z pGLpV qq and hence Cˆ IdV EGLpV q. Therefore, by Lemma 17.2,
Z pχq “ ρ´1`Cˆ IdV ˘E G

as the pre-image under a group homomorphism of a normal subgroup.(b) By the definitions of the kernel and of the centre of a character, we have kerpχq Ď Z pχq. There-fore kerpχq E Z pχq by (a). If g P Z pχq, then by Lemma 17.2 restriction to Z pχq yields a grouphomomorphism
ρ|Zpχq : Z pχq Cˆ IdV

with kernel kerpχq. Therefore, by the 1st ismomorphism theorem, Z pχq{ kerpχq is isomorphic to afinite subgroup of Cˆ IdV – Cˆ, hence is cyclic (C.f. e.g. EZT).(c) By the arguments of (a) and (b) we have
Z pχq{ kerpχq – ρ

`

Z pχq
˘

ď Z
`

ρpGq
˘

.

Applying again the first isomorphism theorem we have ρpGq – G{ kerpρq, hence
Z
`

ρpGq
˘

– Z
`

G{ kerpρq˘ “ Z
`

G{ kerpχq˘ .
Now let g “ g kerpχq P Z pG{ kerpχqq. As χ is irreducible, ρpgq “ λ IdV for some λ P Cˆ by Schur’sLemma. Thus g P Z pχq and it follows that

Z
`

G{ kerpχq˘ ď Z pχq{ kerpχq .
Exercise 17.4 (Exercise 23, Sheet 6)Prove that if χ P IrrpGq, then Z pGq ď Z pχq and deduce that ŞχPIrrpGq Z pχq “ Z pGq.
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Remark 17.5 (See [Exercise 24, Sheet 6])If χ is an irreducible character of degree n then n divides |G : Z pχq|, and hence divides |G : Z pGq|.
This allows us to prove an important criterion, due to Burnside, for character values to be zero.
Theorem 17.6 (Burnside)Let χ P IrrpGq and let C “ rgs be a conjugacy class of G such that gcdpχp1q, |C |q “ 1. Then

χpgq “ 0 or g P Z pχq.
Proof : As gcdpχp1q, |C |q “ 1, there exist u, v P Z such that uχp1q ` v |C | “ 1 Set α :“ χpgq

χp1q . Then
α “ χpgq

χp1q ¨ 1 “ χpgq
χp1q `uχp1q ` v |C |˘ “ uχpgq ` v |C |χpgqχp1q “ uχpgq ` vωχpCq

is an algebraic integer because both χpgq and ωχpCq are. Now, set m :“ |xgy| and let ζm :“ e 2πi
m . As

χpgq is a sum of m-th roots of unity, certainly χpgq P Qpζmq. Let G be the Galois group of the Galoisextension Q Ď Qpζmq. Then for each field automorphism σ P G, σpαq is also an algebraic integer because
α and σpαq are roots of the same monic integral polynomial. Hence β :“ś

σPG σpαq is also an algebaricinteger and because σpβq “ β for every σ P G, β is an element of the fixed field of G, namely β P Q(Galois theory). Therefore β P Z.If g P Z pχq, then there is nothing to do. Thus we may assume that g R Z pχq. Then |χpgq| ‰ χp1q, sothat by Property 7.4(c) we must have |χpgq| ă χp1q and hence |α| ă 1. Now, again by Property 7.4(b),
χpgq “ ε1 ` . . . ` εn with n “ χp1q and ε1, . . . , εn m-th roots of unity. Therefore, for each σ P GztIdu,we have σpχpgqq “ σpε1q ` . . . ` σpεnq with σpε1q, . . . , σpεnq m-th roots of unity, because ε1, . . . , εnare. It follows that

|σpχpgqq| “ |σpε1q ` . . .` σpεnq| ď |σpε1q| ` . . .` |σpεnq| “ n “ χp1q
and hence

|σpαq| “ 1
χp1q |σpχpgqq| ď χp1q

χp1q “ 1 .
Thus

|β| “ |
ź

σPG
σpαq| “ |α|

loomoon

ă1
¨

ź

σPGztIdu |σpαq|loomoon

ď1
ă 1 .

The only way an integer satisfies this inequality is β “ 0. Thus α “ 0 as well, which implies that
χpgq “ 0.

Corollary 17.7Assume now that G is a non-abelian simple group. In the situation of Theorem 17.6 if we assumemoreover that χp1q ą 1 and C ‰ t1u, then it is always the case that χpgq “ 0.
Proof : We see that then either χpgq “ 0 or Z pχq is a non-trivial proper normal subgroup of G. Indeed, if

χpgq ‰ 0, then Theorem 17.6 implies that g P Z pχq, so Z pχq ‰ 1. Now, as G is non-abelian simple wehave Z pχq “ G. On the other hand, the fact that G is simple also tells us that kerpχq “ 1 (if it were G,then χ would be reducible). Then it follows from Proposition 17.3 that
G “ Z pχq{ kerpχq “ Z pG{ kerpχqq “ Z pGq “ 1 .

A contradiction.
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18 Burnside’s paqb-Theorem
Character theory has many possible applications to the to the structure of finite groups. We considerin this section on of the most famous of these: the proof of Burnside’s paqb theorem.
Example 10To begin with we consider two possible minor applications of character theory to finite groups. Bothare results of the Einfürung in die Algebra, for which you have already seen purely group-theoreticproofs.(a) G finite group such that |G| “ p2 for some prime number p ùñ G is abelian.

¨ Proof using character theory. By Corollary 16.7 we have χp1q | |G| for each χ P IrrpGq.Thus
χp1q P t1, p, p2u .Therefore the class equation reads

p2 “ |G| “ ÿ

χPIrrpGqχp1q2 “ 1Gp1q2
loomoon

“1
`

ÿ

χPIrrpGq
χ‰1G

χp1q2 ,
which implies that it is not possible that the degree of an irreducible character of G is
p or p2. In other words, all the irreducible characters of G are linear, and thus G isabelian by Corollary 14.8.(b) G is a non-trivial p-group ùñ G is soluble.[Recall from the Einfürung in die Algebra that a finite group G is soluble if it admits a chainof subgroups 1 “ G0 ă G1 ă . . . ă Gs “ Gsuch that for 1 ď i ď s, Gi´1CGi and Gi{Gi´1 is cyclic of prime order. Moreover, we have thefollowing very useful solubility criterion, sometimes coined "the sandwich principle": if H EGis a normal subgroup, then the group G is soluble if and only if both G and G{H are soluble.]

¨ Proof using character theory. By induction on |G| “: pa (a P Zą0). If |G| “ p or
|G| “ p2, then G is abelian (cyclic in the former case). Finite abelian groups are clearlysoluble because they are products of cyclic groups of prime power order.Therefore, we may assume that |G| ě p3. As in (a) Corollary 16.7 implies that

χp1q P t1, p, p2, . . . , pau for each χ P IrrpGq .
Now, again the degree formula yields

pa “ |G| “ 1` ÿ

χPIrrpGq
χ‰1G

χp1q2 .
and for this equality to hold, there must be at least p linear characters of G (includingthe trivial character). Thus it follows from Corollary 14.8 that G1 ň G. Hence both
G1 and G{G1 are soluble by the induction hypothesis ñ G is soluble by the sandwich
principle.
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Theorem 18.1 (Burnside)Let G be a finite non-abelian simple group. If C is a conjugacy class of G such that |C | “ pa with

p prime and a P Zě0, then C “ t1u.
Proof : Assume ab absurdo that C ‰ t1u and choose g P C . In particular g ‰ 1. Since G is non-abeliansimple G “ G1 and it follows from Corollary 14.8 that the unique linear character of G is the trivialcharacter. Hence for each χ P IrrpGqzt1Gu we have either p | χp1q or gcdpχp1q, |C |q “ 1. Thus χpgq “ 0if p - χp1q and χ ‰ 1G by Corollary 17.7. Therefore the Second Orthogonality Relations read

0 “ 1` ÿ

χPIrrpGq
χ‰1G

χpgq
loomoon

“0 if
p-χp1q

χp1q
loomoon

“χp1q
“ 1` ÿ

χPIrrpGq
p|χp1q

χpgqχp1q
and dividing by p yields

ÿ

χPIrrpGq
p|χp1q

χp1q
p

loomoon

PZ

χpgq
loomoonalgebraicinteger

looooooooooomooooooooooonalgebraic integer

“ ´
1
p P QzZ .

This contradicts the fact that rational numbers which are algebraic integers are integers. It follows that
g “ 1 is the only possibility and hence C “ t1u.

As a consequence, we obtain Burnside’s paqb theorem, which can be found in the literature under twodifferent forms. The first version provides us with a "non-simplicity" criterion and the second versionwith a solubility criterion, which is extremely hard to prove by purely group theoretic methods.
Theorem 18.2 (Burnside’s paqb Theorem, "simple" version)Let p, q be prime numbers and let a, b P Zě0 be integers such that a`b ě 2. If G is a finite groupof order paqb, then G is not simple.
Proof : First assume that a “ 0 or b “ 0. Then G is a q-group with q2 | |G|, resp. a p-group with p2 | |G|.Therefore the centre of G is non-trivial (Einfürung in die Algebra), thus of non-trivial prime power order.Therefore there exists an element g P Z pGq of order q (resp. p) and 1 ‰ xgyCG is a proper non-trivialnormal subgroup. Hence G is not simple.We may now assume that a ‰ 0 ‰ b. Let Q P SylqpGq be a Sylow q-subgroup of G (i.e. |Q| “ qb).Again, as Q is a q-group, we have Z pQq ‰ t1u and we can choose g P Z pQqzt1u. Then

Q ď CGpgqand therefore the Orbit-Stabiliser Theorem yields
|rgs| “ |G : CGpgq| “ pr

for some non-negative integer r ď a. If r “ 0, then pr “ 1 and G “ CGpgq, so that g P Z pGq. Hence
Z pGq ‰ t1u and G is not simple by the same argument as above. If pr ą 1, then G cannot be simple byTheorem 18.1.

Theorem 18.3 (Burnside’s paqb Theorem, "soluble" version)Let p, q be prime numbers and a, b P Zě0. Then any finite group of order paqb is soluble.
Proof : Let G be a finite group of order paqb. We proceed by induction on a` b.

¨ a` b P t0, 1u ùñ G is either trivial or cyclic of prime order, hence clearly soluble.
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¨ a ` b ě 2 ùñ G is not simple by the "simple" version of Burnside’s paqb theorem. Hence thereexists a proper non-trivial normal subgroup H in G and both |H|, |G{H| ă paqb. Therefore both Hand G{H are soluble by the induction hypothesis. Thus G is soluble by the sandwich principle.



Chapter 6. Induction and Restriction of Characters

In this chapter we present important methods to construct / relate characters of a group, given charac-ters of subgroups or overgroups. The main idea is that we would like to be able to use the charactertables of groups we know already in order to compute the character tables of subgroups or overgroupsof these groups.
Notation: throughout this chapter, unless otherwise specified, we let:

¨ G denote a finite group, H ď G and N E G.
¨ K :“ C be the field of complex numbers;
¨ IrrpGq :“ tχ1, . . . , χru denote the set of pairwise distinct irreducible characters of G;
¨ C1 “ rg1s, . . . , Cr “ rgrs denote the conjugacy classes of G, where g1, . . . , gr is a fixed set ofrepresentatives; and
¨ we use the convention that χ1 “ 1G and g1 “ 1 P G.In general, unless otherwise stated, all groups considered are assumed to be finite and all C-vectorspaces / modules over the group algebra considered are assumed to be finite-dimensional.

19 Induction and Restriction
We aim at inducing and restricting characters from subgroups, resp. overgroups. We start with theoperation of induction, which is a subtle operation to construct a class function on G from a given classfunction on a subgroup H ď G. We will focus on characters in a second step.
Definition 19.1 (Induced class function)Let H ď G and φ P ClpHq be a class function on H . Then the induction of φ from H to G isIndGHpφq “: φÒGH : G ÝÑ C

φ ÞÑ φÒGH :“ 1
|H|

ř

xPG φ˝px´1gxq ,
where for y P G, φ˝pyq :“ #

φpyq if y P H,0 if y R H.
54
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Remark 19.2With the notation of Definition 19.1 the function φ ÒGH is again a class function, because for every

g, y P G,
φÒGH py´1gyq “ 1

|H|
ÿ

xPG
φ˝px´1y´1gyxq s:“yx

“
1
|H|

ÿ

sPG
φ˝ps´1gsq “ φÒGH pgq .

Moreover, the map IndGH : ClpHq ÝÑ ClpGq, φ ÞÑ φÒGH is C-linear [Exercise 25(d), Sheet 7].
In contrast, the operation of restriction is based on the more elementary idea that any map can be re-stricted to a subset of its domain. For class functions / representations / characters we are essentiallyinterested in restricting these (seen as maps) to subgroups.
Definition 19.3 (Restricted class function)Let H ď G and ψ P ClpGq be a class function on G. Then the restriction of ψ from G to H is

ResGHpψq “ ψ ÓGH“ ψ|H .This is obviously again a class function on H .
Remark 19.4If ψ is a character of G afforded by the C-representation ρ : G ÝÑ GLpV q, then clearly ψ ÓGH is thecharacter afforded by the C-representation ρ|H : H ÝÑ GLpV q.
Exercise 19.5 (Exercise 25, Sheet 7 )Let H ď J ď G. Prove that:

(a) φ P ClpHq ùñ pφÒJHqÒGJ “ φÒGH (transitivity of induction);
(b) ψ P ClpGq ùñ pψ ÓGJ qÓJH“ ψ ÓGH (transitivity of restriction);
(c) φ P ClpHq and ψ P ClpGq ùñ ψ ¨ φÒGH“

`

ψ ÓGH ¨φ
˘

ÒGH (Frobenius formula).
Theorem 19.6 (Frobenius reciprocity)Let H ď G, let φ P ClpHq be a class function on H , and let ψ P ClpGq be a class function on G.Then

xφÒGH , ψyG “ xφ, ψ ÓGHyH .

Proof : By the definitions of the scalar product and of the induction a direct computation yields:
xφÒGH , ψyG “

1
|G|

ÿ

gPG
φÒGH pgqψpg´1q “ 1

|G|
ÿ

gPG

1
|H|

ÿ

xPG
φ˝px´1gxqψpg´1q

“
1

|G| |H|
ÿ

sPG

ÿ

xPG
φ˝psqψpxs´1x´1q

“
1
|H|

ÿ

sPG
φ˝psqψps´1q “ 1

|H|
ÿ

sPH
φps´1qψpsq “ xφ,ÓGHyH ,

where for the third equality we set s :“ x´1gx and the fourth equality comes from the fact that ψ is aclass function on G.
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Corollary 19.7Let H ď G and let χ be a character of H of degree n. Then the induced class function χ ÒGH is acharacter of G of degree n|G : H|.
Proof : For ψ P IrrpGq by Frobenius reciprocity we can set

mψ :“ xχ ÒGH , ψyG “ xχ, ψ ÓGHyH P Zě0 ,which is an integer because both χ and ψ ÓGH are characters of H . Therefore,
χ ÒGH“

ÿ

ψPIrrpGqmψψ

is a non-negative integral linear combination of irreducible characters of G, hence a character of G.Moreover,
χ ÒGH p1q “ 1

|H|
ÿ

xPG
χ˝p1q “ 1

|H| |G|χp1q “ χp1q|G : H| .
Example 11

(a) The restriction of the trivial character of G from G to H is obviously the trivial character of H .
(b) If H “ t1u, then 1t1u ÒGt1u“ χreg . Indeed, if g P G then

1t1u ÒGt1u pgq “ 1
|t1u| ÿxPG 1˝t1upx´1gxq

loooooomoooooon

“0 unless g“1
“ δ1g|G| “ χregpgq

by Corollary 10.2.(c) Let G “ S3, H “ xp1 2qy, and let φ : H Ñ C with φpIdq “ 1, φpp1 2qq “ ´1 be the signhomomorphism on H . By the remark, it is enough to compute φ ÒGH on representatives of theconjugacy classes of S3, e.g. Id, p1 2q and p1 2 3q:
φÒGH pIdq “ 12 ÿ

xPS3
φ˝pIdq “ 3 ,

φÒGH pp1 2 3qq “ 12 ÿ

xPS3
φ˝px´1p1 2 3qxq “ 0 ,

φÒGH pp1 2qq “ 12 ÿ

xPS3
φ˝px´1p1 2qxq “ φ˝pp1 2qq`φ˝pp1 3qq`φ˝pp2 3qq “ ´1`0`0 “ ´1 .

Moreover we see from the character table of S3 (Example 5) that φÒGH“ χ2 ` χ3. But we canalso compute with Frobenius reciprocity, that0 “ xφ, χ1 ÓGHyH “ xφÒGH , χ1yGand similarly1 “ xφ, χ2 ÓGHyH “ xφÒGH , χ2yG and 1 “ xφ, χ3 ÓGHyH “ xφÒGH , χ3yG .
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Example 12 (The character table of the alternating group A5)The conjugacy classes of G “ A5 are

C1 “ tIdu , C2 “ rp1 2qp3 4qs , C3 “ rp1 2 3qs , C4 Y C5 “ t5-cyclesu ,i.e. g1 “ Id, g2 “ p1 2qp3 4q, g3 “ p1 2 3q and g P C4 ñ opgq “ 5 and g´1 P C4 but g2, g3 P C5 sothat we can choose g4 :“ p1 2 3 4 5q and g5 :“ p1 3 5 2 4q. This yields:
| IrrpA5q| “ 5 and |C1| “ 1, |C2| “ 15, |C3| “ 20, |C4| “ |C5| “ 12 .We obtain the character table of A5 as follows:

¨ We know that the trivial character 1G “ χ1 is one of the irreducible characters, hence weneed to determine IrrpA5qzt1Gu “ tχ2, χ3, χ4, χ5u.
¨ Now, H :“ A4 ď A5 and we have already computed the character table of A4 in Exercise 14.10(cf. solution of Exercise 19, Sheet 5). Therefore, inducing the trivial character of A4 from A4to A5 we obtain that

1HÒGH pIdq “ 1 ¨ |G : H| “ 5 (see Cor. 19.7)
1HÒGH

`

p1 2qp3 4q˘ “ 112 ¨ 12 “ 1
1HÒGH

`

p1 2 3q˘ “ 112 ¨ 24 “ 2
1HÒGH p5-cycleq “ 112 ¨ 0 “ 0Now by Frobenius reciprocity

x1HÒGH , χ1yG “ x1H , χ1 ÓGH
loomoon

“1H

yH “ 1 .
It follows (check it) that x1HÒGH ´χ1,1HÒGH ´χ1yG “ 1, so 1HÒGH ´χ1 is an irreducible charac-ter, say χ4 :“ 1HÒGH ´χ1. The values of χ4 are given by p4, 0, 1,´1,´1q on C1, C2, C3, C4, C5respectively.

¨ Next, as A5 is a nonabelian simple group A5{rA5, A5s “ 1, hence the trivial character is theunique linear character of A5 and χ2p1q, χ3p1q, χ5p1q ě 3. (You have also proved in Exercise20, Sheet 5 that simple groups do not have irreducible characters of degree 2.) Then thedegree formula yields
χ2p1q2 ` χ3p1q2 ` χ5p1q2 “ |A5| ´ χ1p1q2 ´ χ4p1q2 “ 20´ 1´ 16 “ 43 .As degrees of characters must divide the group order, it follows from this formula that

χ2p1q, χ3p1q, χ5p1q P t3, 4, 5, 6u, but then also that it is not possible to have an irreduciblecharacter of degree 6. From this we easily see that only possibility, up to relabelling, is
χ2p1q “ χ3p1q “ 3 and χ5p1q “ 5. Hence at this stage, we already have the following part ofthe character table:

C1 C2 C3 C4 C5
|Ck | 1 15 20 12 12

|CGpgkq| 60 4 3 5 5
χ1 1 1 1 1 1
χ2 3 . . . .
χ3 3 . . . .
χ4 4 0 1 ´1 ´1
χ5 5 . . . .
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¨ Next, we have that

gcdpχ2p1q, |C3|q “ gcdpχ3p1q, |C3|q “ gcdpχ5p1q, |C4|q
“ gcdpχ5p1q, |C4|q “ gcdpχ5p1q, |C5|q “ 1 ,

so that the corresponding character values must all be zero by Corollary 17.7 and we get:
C1 C2 C3 C4 C5

|Ck | 1 15 20 12 12
|CGpgkq| 60 4 3 5 5

χ1 1 1 1 1 1
χ2 3 . 0 . .
χ3 3 . 0 . .
χ4 4 0 1 ´1 ´1
χ5 5 . . 0 0

¨ Applying the Orthogonality Relations yields:1st, 3rd column ñ χ5pg3q “ ´1 and the scalar product xχ1, χ5yG “ 0 ñ χ5pg2q “ 1.
¨ Finally, to fill out the remaining gaps, we can induce from the cyclic subgroup Z5 :“
xp1 2 3 4 5qy ď A5: choosing the non-trivial irreducible character ψ of Z5 which was denoted"χ3" in Example 4 gives

ψ ÒGZ5“ p12, 0, 0, ζ2 ` ζ3, ζ ` ζ4qwhere ζ “ expp2πi{5q is a primitive 5-th root of unity. Then we compute that
xψ ÒGZ5 , χ4yG “ 1 “ xψ ÒGZ5 , χ5yG ùñ ψ ÒGZ5 ´χ4 ´ χ5 “ p3,´1, 0,´ζ ´ ζ4,´ζ2 ´ ζ3q

and this character must be irreducible, because it is not the sum of 3 copies of the trivialcharacter. Hence we set χ2 :“ ψ ÒGZ5 ´χ4 ´ χ5 and the values of χ3 then easily follow fromthe 2nd Othogonality Relations:
C1 C2 C3 C4 C5

|Ck | 1 15 20 12 12
|CGpgkq| 60 4 3 5 5

χ1 1 1 1 1 1
χ2 3 ´1 0 ´ζ ´ ζ4 ´ζ2 ´ ζ3
χ3 3 ´1 0 ´ζ2 ´ ζ3 ´ζ ´ ζ4
χ4 4 0 1 ´1 ´1
χ5 5 1 ´1 0 0

Remark 19.8 (Induction of KH-modules)If you have attended the lecture Commutative Algebra you have studied the tensor product of
modules. In the M.Sc. lecture Representation Theory you will see that induction of modules isdefined through a tensor product, extending the scalars from CH to CG. More precisely, if M isa KH-module, then the induction of M from H to G is defined to be KG bKH M . Moreover, if Maffords the character χ , then KG bKH M affords the character χ ÒGH .
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20 Clifford Theory
Clifford theory is a generic term for a series of results relating the representation / character theory ofa given group G to that of a normal subgroup N E G through induction and restriction.
Definition 20.1 (Conjugate class function / inertia group)Let H ď G, let φ P ClpHq and let g P G.

(a) We define gφ P ClpgHg´1q to be the class function on gHg´1 defined by
gφ : gHg´1 ÝÑ C, x ÞÑ φpg´1xgq .

(b) The subgroup IGpφq :“ tg P G | gφ “ φu ď G is called the inertia group of φ in G.
Exercise 20.2 (Exercise 26, Sheet 7 )With the notation of Definition 20.1, prove that:

(a) gφ is indeed a class function on gHg´1;
(b) IGpφq ď G and H ď IGpφq ď NGpHq;(c) for g, h P G we have gφ “ hφ ô h´1g P IGpφq ô gIGpφq “ hIGpφq;(d) if ρ : H ÝÑ GLpV q is a C-representation of H with character χ , then

gρ : gHg´1 ÝÑ GLpV q, x ÞÑ ρpg´1xgq
is C-representation of gHg´1 with character gχ and gχp1q “ χp1q;

(e) if J ď H then gpφÓHJ q “ p gφqÓ
gHg´1
gJg´1 .

Lemma 20.3

(a) If H ď G, φ, ψ P ClpHq and g P G, then x gφ, gψygHg´1 “ xφ, ψyH .
(b) If N E G and g P G, then we have ψ P IrrpNq ô gψ P IrrpNq.
(c) If N E G and ψ is a character of N , then pψ ÒGNqÓGN“ |IGpψq : N|řgPrG{IGpψqs

gψ.
Proof : (a) Clearly

x gφ, gψygHg´1 “
1

|gHg´1|
ÿ

xPgHg´1
gφpxq gψpxq

“
1
|H|

ÿ

xPgHg´1 φpg
´1xgqψpg´1xgq

y :“ g´1xg
“

1
|H|

ÿ

yPH
φpyqψpyq “ xφ, ψyH .
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(b) As N E G, gNg´1 “ N . Thus, if ψ P IrrpNq, then on the one hand gψ is also a character of

N by Exercise 20.2(d), and on the other hand it follows from (a) that x gψ, gψyN “ xψ,ψyN “ 1.Hence gψ is an irreducible character of N . Therefore, if gψ P IrrpNq, then ψ “ g´1
p gψq P IrrpNq,as required.(c) If n P N then so does g´1ng @ g P G, hence

ψ ÒGNÓGN pnq “ ψ ÒGN pnq “
1
|N|

ÿ

gPG
ψpg´1ngq “ 1

|N|
ÿ

gPG

gψpnq “ |IGpψq|
|N|

ÿ

gPrG{IGpψqs

gψpnq.

Notation 20.4Given N E G and ψ P IrrpNq, we set IrrpG | ψq :“ tχ P IrrpGq | xχ ÓGN , ψyN ‰ 0u.
Theorem 20.5 (Clifford Theory)Let N E G. Let χ P IrrpGq, ψ P IrrpNq and set I :“ IGpψq. Then the following assertions hold.

(a) If ψ is a constituent of χ ÓGN , then
χ ÓGN“ e

ÿ

gPrG{IGpψqs

gψ ,

where e “ xχ ÓGN , ψyN “ xχ, ψ ÒGNyG P Zą0 is called the ramification index of χ in N (or of
ψ in G). In particular, all the constituents of χ ÓGN have the same degree.

(b) Induction from I “ IGpψq to G induces a bijection
IndGI : IrrpI | ψq ÝÑ IrrpG | ψq

η ÞÑ ηÒGI

preserving ramification indices, i.e. xηÓI
N , ψyN “ xηÒGIÓI

N , ψyN “ e.
Proof :(a) By Frobenius reciprocity, xχ, ψ ÒGNyG “ xχ ÓGN , ψyN ‰ 0. Thus χ is a constituent of ψ ÒGN andtherefore χ ÓGN is a constituent of ψ ÒGNÓGN .Now, if η P IrrpNq is an arbitrary constituent of χ ÓGN (i.e. xχ ÓGN , ηyN ‰ 0) then by the above, wehave

xψ ÒGNÓGN , ηyN ě xχ ÓGN , ηyN ą 0 .Moroever, by Lemma 20.3(c) the constituents of ψ ÒGNÓGN are preciely t gψ | g P rG{IGpψqsu. Hence
η is G-conjugate to ψ. Furthermore, for every g P G we have

xχ ÓGN , gψyN “
1
|N|

ÿ

hPN
χphqgψph´1q “

1
|N|

ÿ

hPN
χphqψpg´1h´1gq

χPClpGq
“

1
|N|

ÿ

hPN
χpg´1hgqψpg´1h´1gq

s:“g´1hgPN
“

1
|N|

ÿ

sPN
χpsqψps´1q “ xχ ÓGN , ψyN “ e .

Therefore, every G-conjugate gψ (g P rG{IGpψqs) of ψ occurs as a constituent of χ ÓGN with thesame multiplicity e. The claim about the degrees is then clear as gψp1q “ ψp1q @g P G.
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(b) Claim 1: η P IrrpI | ψq ñ ηÒGI P IrrpG|ψq.Since I “ IIpψq, (a) implies that ηÓI

N“ e1ψ with e1 “ xηÓI
N , ψyN “

ηp1q
ψp1q ą 0. Now, let χ P IrrpGqbe a constituent of ηÒGI . By Frobenius Reciprocity we have

0 ‰ xχ, ηÒGI yG “ xχ ÓGI , ηyI .It follows that ηÓI
N is a constituent of χ ÓGIÓI

N and
e :“ xχ ÓGN , ψyN “ xχ ÓGIÓI

N , ψyN ě xηÓI
N , ψyN “ e1 ą 0 ,

hence χ P IrrpG|ψq. Moreover, by (a) we have e “ xχ ÓGN , gψyN ě e1 for each g P G. Therefore,
χp1q“e ÿ

gPrG{Is

gψp1q paq“ e|G : I |ψp1q ě e1|G : I |ψp1q “ |G : I |ηp1q “ ηÒGI p1q ě χp1q .
Thus e “ e1, ηÒGI“ χ P IrrpGq, and therefore ηÒGI P IrrpG|ψq.
Claim 2: χ P IrrpG | ψq ñ D! η P IrrpI | ψq such that xχ ÓGI , ηyI ‰ 0.Again by (a), as χ P IrrpG | ψq, we have χ ÓGN“ e

ř

gPrG{Is
gψ, where e “ xχ ÓGN , ψyN P Zą0.Therefore, there exists η P IrrpIq such that

xχ ÓGI , ηyI ‰ 0 ‰ xηÓI
N , ψyNbecause χ ÓGN“ χ ÓGIÓI

N , so in particular η P IrrpI | ψq. Hence existence holds and it remains to seethat uniqueness holds. Again by Frobenius reciprocity we have 0 ‰ xχ, η ÒGI yG . By Claim 1 thisforces χ “ ηÒGI and ηÓI
N“ eψ, so e is also the ramification index of ψ in I .Now, write χ ÓGI“ ř

λPIrrpIq aλ λ “ ř

λ‰η aλλ ` aηη with aλ ě 0 for each λ P IrrpIq and aη ą 0. Itfollows that
paη ´ 1qηÓI

N `
ÿ

λ‰η
aλλÓI

N“ χ ÓGN
loomoon

“e
ř

gPrG{Is
gψ

´ ηÓI
N

loomoon

“eψ

“ e
ÿ

gPrG{Iszr1s
gψ.

Since ψ does not occur in this sum, but occurs in ηÓI
N , the only possibility is aη “ 1 and λ R IrrpI |ψqfor λ ‰ η. Thus η is uniquely determined as the only constituent of χ ÓGI in IrrpI | ψq.Finally, Claims 1 and 2 prove that IndGI : IrrpI | ψq ÝÑ IrrpG | ψq, η ÞÑ η ÒGI is well-defined andbijective, and the proof of Claim 2 shows that the ramification indices are preserved.

Example 13 (Normal subgroups of index 2)Let N ă G be a subgroup of index |G : N| “ 2 (ñ N C G) and let χ P IrrpGq, then either(1) χ ÓGN P IrrpNq, or(2) χ ÓGN“ ψ ` gψ for a ψ P IrrpNq and a g P GzN .Indeed, let ψ P IrrpNq be a constituent of χ ÓGN . Since |G : N| “ 2, we have IGpψq P tN,Gu.Theorem 20.5 yields the following:
¨ If IGpψq “ N then IrrpIGpψq | ψq “ tψu and ψ ÒGN“ χ , so that e “ 1 and we get χ ÓGN“ ψ`gψfor any g P GzN .
¨ If IGpψq “ G then G{IGpψq “ t1u, so that

χ ÓGN“ eψ with e “ xχ ÓGN , ψyN “ xχ, ψ ÒGNyG .
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Moroever, by Lemma 20.3(c),

ψ ÒGNÓGN“ |IGpψq : N| ÿ

gPG{IGpψq

gψ “ 2ψ .
Hence 2ψp1q “ ψ ÒGNÓGN p1q ě χ ÓGN p1q “ χp1q “ eψp1q ñ e ď 2 .Were e “ 2 then we would have 2ψp1q “ ψ ÒGN p1q, hence χ “ ψ ÒGN and thus

1 “ xχ, ψ ÒGNyG “ xχ ÓGN , ψyN “ e “ 2
a contradiction. Whence e “ 1, which implies that χ ÓGN P IrrpNq. Moreover, ψ ÒGN“ χ `χ 1 forsome χ 1 P IrrpGq such that χ 1 ‰ χ .

Remember that we have proved (Exercise 24, Sheet 6) that the degree of an irreducible character ofa finite group G divides the index of the centre |G : Z pGq|. The following consequence of Clifford’stheorem due to N. Itô provides us with yet a stronger divisibility criterion.
Theorem 20.6 (Itô)Let A ď G be an abelian subgroup of G and let χ P IrrpGq. Then the following assertions hold:

(a) χp1q ď |G : A|; and
(b) if AE G, then χp1q ˇˇ |G : A|.

Proof :(a) Exercise 27, Sheet 7.(b) Let ψ P IrrpAq be a constituent of χ ÓGA , so that in other words χ P IrrpG | ψq. By Theorem 20.5(b)there exists η P IrrpIGpψq | ψq such that χ “ η ÒGIGpψq and η ÓIGpψq
A “ eψ (proof of Claim 2). Now,as A is abelian, all the irreducible characters of A have degree 1 and for each x P A, ψpxq is an

opxq-th root of unity. Hence @ x P A we have
|ηpxq| “ |ηÓIGpψq

A pxq| “ |eψpxq| “ e|ψpxq| “ e ¨ 1 “ e “ ηp1q ñ A Ď Z pηq .Therefore, by Remark 17.5, we have
ηp1q ˇˇ

ˇ
|IGpψq : Z pηq| ˇˇ

ˇ
|IGpψq : A|

and since χ “ ηÒGIGpψq it follows that
χp1q “ |G : IGpψq|ηp1q ˇˇˇ |G : IGpψq| ¨ |IGpψq : A| “ |G : A| .

21 The Theorem of Gallagher
In the context of Clifford theory (Theorem 20.5) we understand that irreducibility of characters is pre-served by induction from IGpψq to G. Thus we need to understand induction of characters from N to
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IGpψq, in particular what if G “ IGpψq. What can be said about IrrpG | ψq?
Lemma 21.1Let N E G and let ψ P IrrpNq such that IGpψq “ G. Then

ψ ÒGN“
ÿ

χPIrrpGq eχ χ
where eχ :“ xχ ÓGN , ψyN is the ramification index of χ in N; in particular

ÿ

χPIrrpGq e
2
χ “ |G : N| .

Proof : Write ψ ÒGN“ ř

χPIrrpGq aχ χ with suitable aχ “ xχ, ψ ÒGNyG . By Frobenius reciprocity, aχ ‰ 0 if andonly if χ P IrrpG | ψq. But by Theorem 20.5: if χ P IrrpG|ψq, then χ ÓGN“ eχψ, so that
eχ “ xχ ÓGN , ψyN “ xχ, ψ ÒGNyG “ aχ .

Therefore,
|G : N|ψp1q “ ψ ÒGN p1q “ ÿ

χPIrrpGqaχ χp1q “
ÿ

χPIrrpGq eχ χp1q “
ÿ

χPIrrpGq e
2
χ ψp1q “ ψp1q ÿ

χPIrrpGq e
2
χ

and it follows that |G : N| “ ř

χPIrrpGq e2
χ .

Therefore the multiplicities teχuχPIrrpGq behave like the irreducible character degrees of the factor group
G{N . This is not a coincidence in many cases.
Definition 21.2 (Extension of a character )Let N E G and χ P IrrpGq such that ψ :“ χ ÓGN is irreducible. Then we say that ψ extends to G,and χ is an extension of ψ.
Exercise 21.3 (Exercise 28, Sheet 7 )Let N E G and χ P IrrpGq. Prove that

χ ÓGNÒGN“ InfGG{Npχregq ¨ χ ,where χreg is the regular character of G{N .
Theorem 21.4 (Gallagher)Let N E G and let χ P IrrpGq such that ψ :“ χ ÓGN P IrrpNq. Then

ψ ÒGN“
ÿ

λPIrrpG{Nq λp1q InfGG{Npλq ¨ χ,
where the characters tInfGG{Npλq ¨ χ | λ P IrrpG{Nqu of G are pairwise distinct and irreducible.
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Proof : By Exercise 21.3 we have ψ ÒGN“ InfGG{Npχregq ¨ χ , where χreg denotes the regular character of G{N .Recall that by Theorem 10.3, χreg “ ř

λPIrrpG{Nq λp1q λ, so that we have
ψ ÒGN“

ÿ

λPIrrpG{Nq λp1q InfGG{Npλq ¨ χ .
Now, by Lemma 21.1, we have

|G : N| “ ÿ

χPIrrpGq e
2
χ “ xψ ÒGN , ψ ÒGNyG “

ÿ

λ,µPIrrpG{Nqλp1qµp1qxInfGG{Npλq ¨ χ, InfGG{Npµq ¨ χyG
ě

ÿ

λPIrrpG{Nqλp1q2 “ |G : N| .
Hence equality holds throughout. This proves that

xInfGG{Npλq ¨ χ, InfGG{Npµq ¨ χy “ δλµ.

By Erercise 13.4, InfGG{Npλq ¨χ are characters of G and hence the characters tInfGG{Npλq ¨χ | λ P IrrpG{Nquare irreducible and pairwise distinct, as claimed.
Therefore, given ψ P IrrpNq which extends to χ P IrrpGq, we get InfGG{Npλq ¨ χ (λ P IrrpG{Nq) as furtherirreducible characters.
Example 14Let N ă G with |G : N| “ 2 (ñ N E G) and let ψ P IrrpNq. We saw:

¨ if IGpψq “ N then ψ ÒGNP IrrpGq;
¨ if IGpψq “ G then ψ extends to some χ P IrrpGq and ψG “ χ ` χ 1 with χ 1 P IrrpGqztχu. Itfollows that χ 1 “ χ ¨ sign, where sign is the inflation of the sign character of G{N – S2 to G.



Appendix: Complements on Algebraic Structures

This appendix provides a short recap / introduction to some of the basic notions of module theory usedin this lecture. Tensor products of vector spaces and algebraic integers are also recapped.
Reference:

[Rot10] J. J. Rotman. Advanced modern algebra. 2nd ed. Providence, RI: American MathematicalSociety (AMS), 2010.

A Modules
Notation: Throughout this section we let R “ pR,`, ¨q denote a unital associative ring.
Definition A.1 (Left R-module)A left R-module is an ordered triple pM,`, ¨q, where M is a set endowed with an internal compo-

sition law
` : M ˆM ÝÑ M

pm1, m2q ÞÑ m1 `m2and an external composition law (or scalar multiplication)
¨ : R ˆM ÝÑ M

pr, mq ÞÑ r ¨msatisfying the following axioms:
(M1) pM,`q is an abelian group;
(M2) pr1 ` r2q ¨m “ r1 ¨m` r2 ¨m for every r1, r2 P R and every m P M;
(M3) r ¨ pm1 `m2q “ r ¨m1 ` r ¨m2 for every r P R and every m1, m2 P M;
(M4) prsq ¨m “ r ¨ ps ¨mq for every r, s P R and every m P M .
(M5) 1R ¨m “ m for every m P M .

65
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Remark A.2

(a) Note that in this definition both the addition in the ring R and in the module M are denotedwith the same symbol. Similarly both the internal multiplication in the ring R and the externalmultiplication in the module M are denoted with the same symbol. This is standard practiceand should not lead to confusion.
(b) Right R-modules can be defined analogously using a right external composition law

¨ : M ˆ R ÝÑ R, pm, rq ÞÑ m ¨ r.
(c) Unless otherwise stated, in this lecture we always work with left modules. Hence we simplywrite "R-module" to mean "left R-module", and as usual with algebraic structures, we simplydenote R-modules by their underlying sets.
(d) We often write rm instead of r ¨m.

Example A.3

(a) Modules over rings satisfy the same axioms as vector spaces over fields. Hence:vector spaces over a field K are K -modules, and conversely.
(b) Abelian groups are Z-modules, and conversely.(Check it! What is the external composition law?)
(b) If the ring R is commutative, then any right module can be made into a left module by setting

r ¨m :“ m ¨ r @ r P R,@ m P M , and conversely.(Check it! Where does the commutativity come into play?)
Definition A.4 (R-submodule)An R-submodule of an R-module M is a subgroup U ď M such that r ¨ u P U @ r P R , @ u P U .
Properties A.5 (Direct sum of R-submodules)If U1, U2 are R-submodules of an R-module M , then so is U1`U2 :“ tu1` u2 | u1 P U1, u2 P U2u.Such a sum U1 ` U2 is called a direct sum if U1 X U2 “ t0u and in this case we write U1 ‘ U2.
Definition A.6 (Morphisms)A (homo)morphism of R-modules (or an R-linear map, or an R-homomorphism) is a map of R-modules φ : M ÝÑ N such that:

(i) φpm1 `m2q “ φpm1q ` φpm2q @ m1, m2 P M; and
(ii) φpr ¨mq “ r ¨ φpmq @ r P R , @ m P M .

A bijective morphism of R-modules is called an isomorphism (or an R-isomorphism), and we write
M – N if there exists an R-isomorphism between M and N .A morphism from an R-module to itself is called an endomorphism and a bijective endomorphism iscalled an automorphism.
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Properties A.7If φ : M ÝÑ N is a morphism of R-modules, then the kernel

kerpφq :“ tm P M | φpmq “ 0Nu
of φ is an R-submodule of M and the image

Impφq :“ φpMq “ tφpmq | m P Mu

of φ is an R-submodule ofN . IfM “ N and φ is invertible, then the inverse is the usual set-theoretic
inverse map φ´1 and is also an R-homomorphism.

Notation A.8Given R-modules M and N , we set HomRpM,Nq :“ tφ : M ÝÑ N | φ is an R-homomorphismu.This is an abelian group for the pointwise addition of maps:
` : HomRpM,Nq ˆHomRpM,Nq ÝÑ HomRpM,Nq

pφ, ψq ÞÑ φ ` ψ : M ÝÑ N,m ÞÑ φpmq ` ψpmq .In case N “ M , we write EndRpMq :“ HomRpM,Mq for the set of endomorphisms of M . This is aring for the pointwise addition of maps and the usual composition of maps.
Lemma-Definition A.9 (Quotients of modules)Let U be an R-submodule of an R-module M . The quotient group M{U can be endowed with thestructure of an R-module in a natural way via the external composition law

R ˆM{U ÝÑ M{U
`

r, m` U
˘

ÞÝÑ r ¨m` U .

The canonical map π : M ÝÑ M{U,m ÞÑ m ` U is R-linear and we call it the canonical (or
natural) homomorphism.

Proof : Similar proof as for groups/rings/vector spaces/...
Theorem A.10 (The universal property of the quotient and the isomorphism theorems)

(a) Universal property of the quotient: Let φ : M ÝÑ N be a homomorphism of R-modules.If U is an R-submodule of M such that U Ď kerpφq, then there exists a unique R-modulehomomorphism φ : M{U ÝÑ N such that φ ˝π “ φ, or in other words such that the followingdiagram commutes:
M N

M{U

π

φ

ö

D!φ

Concretely, φpm` Uq “ φpmq @ m` U P M{U .
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(b) 1st isomorphism theorem: With the notation of (a), if U “ kerpφq, then

φ : M{ kerpφq ÝÑ Impφq
is an isomorphism of R-modules.

(c) 2nd isomorphism theorem: If U1, U2 are R-submodules of M , then so are U1XU2 and U1`U2,and there is an isomorphism of R-modules
pU1 ` U2q{U2 – U1{pU1 X U2q .

(d) 3rd isomorphism theorem: If U1 Ď U2 are R-submodules of M , then there is an isomorphismof R-modules
pM{U1q { pU2{U1q – M{U2 .

(e) Correspondence theorem: If U is an R-submodule of M , then there is a bijection
tR-submodules X of M | U Ď Xu ÐÑ tR-submodules of M{Uu

X ÞÑ X{U
π´1pZ q Ð[ Z .

Proof : Similar proof as for groups/rings/vector spaces/...
Definition A.11 (Irreducible/reducible/completely reducible module)An R-module M is called:

(a) simple (or irreducible) if it has exactly two submodules, namely the zero submodule 0 anditself;
(b) reducible if it admits a non-zero proper submodule 0 Ĺ U Ĺ M;
(c) semisimple (or completely reducible) if it admits a direct sum decomposition into simplesubmodules.

Notice that the zero R-module 0 is neither reducible, nor irreducible, but it is completely reducible.
B Algebras
In this lecture we aim at studying modules over the group algebra, which are specific rings.
Definition B.1 (Algebra)Let R be a commutative ring.(a) An R-algebra is an ordered quadruple pA,`, ¨, ˚q such that the following axioms hold:

(A1) pA,`, ¨q is a ring;
(A2) pA,`, ˚q is a left R-module; and
(A3) r ˚ pa ¨ bq “ pr ˚ aq ¨ b “ a ¨ pr ˚ bq @ a, b P A, @ r P R .
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(b) A map f : AÑ B between two R-algebras is called an algebra homomorphism iff:

(i) f is a homomorphism of R-modules; and(ii) f is a ring homomorphism.
Example 15

(a) A commutative ring R itself is an R-algebra.[The internal composition law "¨" and the external composition law "˚" coincide in this case.]
(b) For each n P Zě1 the set MnpRq of nˆ n-matrices with coefficients in a commutative ring Ris an R-algebra for its usual R-module and ring structures.[Note: in particular R-algebras need not be commutative rings in general!]
(c) Let K be a field. Then for each n P Zě1 the polynom ring K rX1, . . . , Xns is a K -algebra forits usual K -vector space and ring structure.
(d) If K is a field and V a finite-dimensional K -vector space, then EndK pV q is a K -algebra.
(e) R and C are Q-algebras, C is an R-algebra, . . .
(f ) Rings are Z-algebras.

Definition B.2 (Centre)The centre of an R-algebra pA,`, ¨, ˚q is Z pAq :“ ta P A | a ¨ b “ b ¨ a @b P Au.
C Tensor Products of Vector Spaces
Throughout this section, we assume that K is a field.
Definition C.1 (Tensor product of vector spaces)Let V ,W be two finite-dimensional K -vector spaces with bases BV “ tv1, . . . , vnu and BW “

tw1, . . . , wmu (m,n P Zě0) respectively. The tensor product of V and W (balanced) over K is bydefinition the pn ¨mq-dimensional K -vector space
V bK W

with basis BVbKW “ tvi b wj | 1 ď i ď n, 1 ď j ď mu.
In this definition, you should understand the symbole "vi b wj " as an element that depends on both viand wj . The symbole "b" itself does not have any hidden meaning, it is simply a piece of notation: wemay as well write something like xpvi, wjq instead of "vi b wj ", but we have chosen to write "vi b wj ".



Skript zur Vorlesung: Charaktertheorie SS 2020 70
Properties C.2

(a) An arbitrary element of V bK W has the form
n
ÿ

i“1
m
ÿ

j“1 λijpvi b wjq with  

λij
(1ďiďn1ďjďm Ď K .

(b) The binary operation
BV ˆ BW ÝÑ BVbKW
pvi, wjq ÞÑ vi b wj

can be extended by C-linearity to
´b´ : V ˆW ÝÑ V bK W

`

v “
řn
i“1 λivi, w “ řn

i“1 µjwj˘ ÞÑ v b w “
řn
i“1 řm

j“1 λiµjpvi b wjq .
It follows that @ v P V ,w P W, λ P K ,

v b pλwq “ pλvq b w “ λpv b wq ,

and @ x1, . . . , xr P V , y1, . . . ys P W ,
`

r
ÿ

i“1 xi
˘

b
`

s
ÿ

j“1yj
˘

“

r
ÿ

i“1
s
ÿ

j“1 xi b yj .
Thus any element of V bK W may also be written as a K -linear combination of elements ofthe form v bw with v P V ,w P W . In other words tv bw | v P V ,w P W u generates V bK W(although it is not a K -basis).

(c) Up to isomorphism V bK W is independent of the choice of the K -bases of V and W .
Definition C.3 (Kronecker product)If A “ `

Aij
˘

ij P MnpK q and B “ `

Brs
˘

rs P MmpK q are two square matrices, then their Kronecker
product (or tensor product ) is the matrix

Ab B “

»

—

–

A11B A1nB
An1B AnnB

fi

ffi

fl

P Mn¨mpK q

Notice that it is clear from the above definition that TrpAb Bq “ TrpAqTrpBq.
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Example 16E.g. the tensor product of two 2ˆ 2-matrices is of the form

„

a b
c d



b

„

e f
g h



“

»

—

—

–

ae af be bf
ag ah bg bh
ce cf de df
cg ch dg dh

fi

ffi

ffi

fl

P M4pK q .
Lemma-Definition C.4 (Tensor product of K -endomorphisms)If f1 : V ÝÑ V and f2 : W ÝÑ W are two endomorphisms of finite-dimensional K -vector spaces Vand W , then the tensor product of f1 and f2 is the K -endomorphism f1 b f2 of V bK W defined by

f1 b f2 : V bK W ÝÑ V bK W
v b w ÞÑ pf1 b f2qpv b wq :“ f1pvq b f2pwq .Furthermore, Trpf1 b f2q “ Trpf1qTrpf2q.

Proof : It is straightforward to check that f1 b f2 is K -linear. Moreover, choosing ordered bases BV “

tv1, . . . , vnu and BW “ tw1, . . . , wmu of V and W respectively, it is straightforward from the definitionsto check that the matrix of f1 b f2 w.r.t. the ordered basis BVbKW “ tvi b wj | 1 ď i ď n, 1 ď j ď mu isthe Kronecker product of the matrices of f1 w.r.t. BV and of f2 w.r.t. to BW . The trace formula follows.

D Integrality and Algebraic Integers
We recall/introduce here some notions of the Commutative Algebra lecture on integrality of ring ele-ments. However, we are essentially interested in the field of complex numbers and its subring Z.
Definition D.1 (integral element, algebraic integer )Let A be a subring of a commutative ring B.

(a) An element b P B is said to be integral over A if b is a root of monic polynomial f P ArX s,that is fpbq “ 0 and f is a polynomial of the form Xn ` an´1Xn´1 ` . . . ` a1X ` a0 with
an´1, . . . , a0 P A. If all the elements of B are integral over A, then we say that B is integralover A.

(b) If A “ Z and B “ C, an element b P C integral over Z is called an algebraic integer.
Theorem D.2Let A Ď B be a subring of a commutative ring and let b P B. TFAE:

(a) b is integral over A;
(b) the ring Arbs is finitely generated as an A-module;
(c) there exists a subring S of B containing A and b which is finitely generated as an A-module.

Recall that Arbs denotes the subring of B generated by A and b.
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Proof :(a)ñ(b): Let a0, . . . , an´1 P A such that bn ` an´1bn´1 ` . . . ` a1b ` a0 “ 0 (˚). We prove that Arbs isgenerated as an A-module by 1, b, . . . , bn´1, i.e. Arbs “ A`Ab` . . .`Abn´1. Therefore it sufficesto prove that bk P A` Ab` . . .` Abn´1 “: C for every k ě n. We proceed by induction on k :

¨ If k “ n, then (˚) yields bn “ ´an´1bn´1 ´ . . .´ a1b´ a0 P C .
¨ If k ą n, then we may assume that bn, . . . , bk´1 P C by the induction hypothesis. Hencemultiplying (˚) by bk´n yields

bk “ ´an´1bk´1 ´ . . .´ a1bk´n`1 ´ a0bk´n P Cbecause an´1, . . . , a0, bk´1, . . . , bk´n P C .(b)ñ(c): Set S :“ Arbs.(c)ñ(a): By assumption Arbs Ď S “ Ax1` . . .`Axn, where x1, . . . , xn P B, n P Zą0. Thus for each 1 ď i ď nwe have bxi “ řn
j“1 aijxj for certain aij P A. Set x :“ px1, . . . , xnqTr and consider the nˆ n-matrix

M :“ bIn ´ paijqij P MnpSq . Hence
Mx “ 0 ñ adjpMqMx “ 0 ,where adjpMq is the adjugate matrix of M (i.e. the transpose of its cofactor matrix). By theproperties of the determinant (GDM), we haveadjpMqM “ detpMqIn ,Hence detpMqxi “ 0 for each 1 ď i ď n, and so detpMqs “ 0 for every s P S. As 1 P S this givesus detpMq “ 0. It now follows from the definition of M that b is a root of the monic polynomialdetpX ¨ In ´ paijqijq P ArX s, thus integral over A.

Corollary D.3Let A Ď B be a subring of a commutative ring. Then tb P B | b integral over Au is a subring of B.
Proof : We need to prove that if b, c P B are integral over A, then so are b` c and b ¨ c. By Theorem D.2(b)and its proof both Arbs “ A` Ab` . . .` Abn´1 and Arcs “ A` Ac ` . . .` Acm´1 for some n,m P Zą0.Thus S :“ Arb, cs is finitely generated as an A-module by tbicj | 0 ď i ď n, 0 ď j ď mu. Theorem D.2(c)now yields that b` c and b ¨ c are integral over A because they belong to S.
Example 17All the elements of the ring Zris of Gaussian intergers are integral over Z, hence algebraic integers,since i is a root of X2 ` 1 P ZrX s.
Lemma D.4If b P Q is integral over Z, then b P Z.
Proof : We may write b “ c

d , where c and d are coprime integers and d ě 1. By the hypothesis there exist
a0, . . . , an´1 P Z such that

cn
dn ` an´1 cn´1

dn´1 ` . . .` a1 cd ` a0 “ 0 ,hence
cn ` dan´1cn´1 ` . . .` dn´1a1 ` dna0

looooooooooooooooooooomooooooooooooooooooooondivisible by d
“ 0 .

Thus d | cn. As gcdpc, dq “ 1 and d ě 1 this is only possible if d “ 1, and we deduce that b P Z.
Clearly, the aforementionnend lemma can be generalised to integral domains (=Integritätsring) andtheir field of fractions.



Index of Notation

General symbols
C field of complex numbers
Fq finite field with q elements
i

?
´1 in CIdM identity map on the set MImpfq image of the map fkerpφq kernel of the morphism φ

N the natural numbers without 0
N0 the natural numbers with 0
P the prime numbers in Z
Q field of rational numbers
R field of real numbers
Z ring of integer numbers
Zěa,Ząa,Zďa,Zăa tm P Z | m ě a (resp. m ą a,m ě a,m ă aqu
|X | cardinality of the set X
δij Kronecker’s delta
Ť union
š disjoint union
Ş intersection
ř summation symbol
ś, ˆ cartesian product
‘ direct sum
b tensor product
H empty set
@ for all
D there exists
– isomorphism
a complex conjugate of a P C
a | b , a - b a divides b, a does not divide b
f |S restriction of the map f to the subset S
Group theory
An alternating group on n letters
Cm cyclic group of order m in multiplicative notation
CGpxq centraliser of x in G
CpGq set of conjugacy classes of G
D2n dihedral group of order 2nFixX pgq set of fixed points of g on X
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rG,Gs or G1 commutator subgroup of G
G{N quotient group G modulo NGLnpK q general linear group over K
H ď G, H ă G H is a subgroup of G, resp. a proper subgroup
N Ĳ G N is a normal subgroup G
NGpHq normaliser of H in GPGLnpK q projective linear group over K
Q8 quaternion group of order 8
Sn symmetric group on n lettersSLnpK q special linear group over KSylppGq set of Sylow p-subgroups of the group G
Z pGq centre of the group G
Z{mZ cyclic group of order m in additive notation
|G| order of the group G
|G : H| index of H in G
rxs conjugacy class of x
rg, hs commutator of g and h
xgy cyclic group generated by g
xg | gm “ 1y cyclic group of order m generated by g
Rings and linear algebra
RrX s ring of polynomials in an indeterminate X overthe ring R
Rˆ group of units of the ring RcharpK q characteristic of the field Kdet determinant of a matrix/linear transformationdimK K -dimensionEndK pV q endomorphism ring of the K -vector space VGLpV q set of invertible linear transformations ofthe vector space V
xx1, ¨ ¨ ¨ , xnyK K -linear span of the set tx1, ¨ ¨ ¨ , xnu
MnˆmpK q ring of nˆm-matrices with coefficients in K
MnpK q ring of nˆ n-matrices with coefficients in K
K algebraic closure of the field KTr trace of a matrix/linear transformation
W ď V W is a K -subspace of V
te1, ¨ ¨ ¨ , enu a basis of K n

pe1, ¨ ¨ ¨ , enq an ordered basis of K n

Representations and characters
C1, . . . , Cr the conjugacy classes of G
xC1, . . . ,xCr the class sums of G
ClpGq C-vector space of class functions on G
IGpψq inertia group of ψ in GInfGG{N inflation from G{N to GIndGH , ÒGH induction from H to GIrrpGq “ tχ1, . . . , χru set of irreducible characters of GIrrpG|ψq set of irreducible characters of G above ψ
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kerpχq kernel of the characters of χ
FpG,K q space of K -valued functions of G
KG group algebra of G over the field KResGH , ÓGH restriction from G to H
Z pKGq center of KG
Z pχq center of the character χ
ρ „ ρ1 ρ is equivalent to ρ1
ρreg the regular representation of G
ρV representation associated to the G-vector space V
χreg regular character of G
χV character of the G-vector space V
ω1, . . . , ωr the central characters of G
x´,´yG scalar product on ClpGq
1G the trivial character of G

Greek Alphabet

lower-case letter upper-case letter name
α A alpha
β B beta
γ Γ gamma
δ ∆ delta
ε, ε E epsilon
ζ Z zeta
η H eta
θ Θ theta
ι I iota
κ K kappa
λ Λ lambda
µ M mu
ν N nu
ξ Ξ xi
o O omicron
π,π Π pi
ρ, ρ P rho
σ, ς Σ sigma
τ T tau
υ Υ upsilon
φ, φ Φ phi
χ X chi
ψ Ψ psi
ω Ω omega
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