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Foreword

This text constitutes a faithful transcript of the lecture Modular Representation Theory held at the TU
Kaiserslautern during the Winter Semester 2019/20 together with Niamh Farrell (14 Weeks, 4SWS
Lecture + 2SWS Exercises).

Together with the necessary theoretical foundations the main aims of this lecture are to:
e provide students with a modern approach to finite group theory;

e learn about the representation theory of finite-dimensional algebras and in particular of the
group algebra of a finite group;

e establish connections between the representation theory of a finite group over a field of positive
characteristic and that over a field of characteristic zero;

e consistently work with universal properties and get acquainted with the language of category
theory.

We assume as pre-requisites bachelor-level algebra courses dealing with linear algebra and elementary
group theory, such as the standard lectures Grundlagen der Mathematik, Algebraische Strukturen, and
Einfiihrung in die Algebra. The lecture is built, so that you don’t need to have attended Commutative
Algebra and Character Theory of Finite Groups prior to this lecture. However, both these lectures share
common ideas with Representation Theory. Therefore, in order to complement these pre-requisites, but
avoid repetitions, the first chapter will deal formally with some background material on module theory,
but some proofs will be omitted.

Sections marked with a star symbol (*) are presented in this Skript, for the sake of completeness, under
a much more detailed version than in the lecture. The two main reasons are the following. Firstly, these
notions are dealt with in details in the Commutative Algebra lecture, where the the commutativity of
rings is most of the time indeed not needed. Secondly these notions are partly well-known from either
group theory or linear algebra and easily pass over to modules with the same arguments.

The proofs of the results in these sections are not subject to direct exam questions.

Acknowledgement: We are grateful to Gunter Malle who provided us with the Skript of his lecture
"Darstellungstheorie" hold at the TU Kaiserslautern in the WS 12/13, 13/14, 15/16 and 16/17, which we
used as a basis for the development of this lecture. We are also grateful to the students who mentionned
typos in the preliminary versions of these notes. Further comments, corrections and suggestions are of
course more than welcome.



Conventions

Unless otherwise stated, throughout these notes we make the following general assumptions:

- all groups considered are finite;

- all rings considered are associative and unital (i.e. possess a neutral element for the
multiplication, denoted 1);

- all modules considered are left modules.
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Chapter 0. Background Material: Module Theory

The aim of this preliminary chapter is to introduce (resp. recall) the basics of the theory of modules
over finite dimensional algebras, which we will use throughout. We review elementary definitions and
constructions such as quotients, direct sum, direct products, tensor products and exact sequences, where
we emphasise the approach via universal properties.

The main aim of this lecture is to study the so-called representation theory of finite groups, which
amounts to studying modules over a specific ring, called the group ring (or group algebra), which is built
from the group itself as a vector space with a basis given by the group elements. Hence we already get
a first feeling that "juggling with algebraic structures" will be one of the recurrent feature of this lecture.

Notation: throughout this chapter we let R and S denote rings, and unless otherwise specified, all
rings are assumed to be unital and associative.

Most results are stated without proof, as they have been / will be studied in the B.Sc. lecture Commu-
tative Algebra. As further reference we recommend for example:

References:

[Rot10] J. ). Rotman. Advanced modern algebra. 2nd ed. Providence, Rl: American Mathematical
Society (AMS), 2010.

1 Modules, submodules, morphisms®

Definition 1.1 (Left R-module, right R-module, (R, S)-bimodule)

(@) A left R-module is an ordered triple (M, +, ), where (M, +) an abelian group and - : R x
M — M, (r,m) — r-m is a scalar multiplication (or external composition law) such that
the map

A R — End(M)
r — A=A M—Mm-r-m,

is a ring homomorphism.



b) A right R-module is defined analogously using a scalar multiplication - : M x R — M,
9 g y 9
(m,r) — m-r on the right-hand side.

(c) An (R, S)-bimodule is an abelian group (M, +) which is both a left R-module and a right
S-module, and which satisfies the axiom

r-(m-s)y=(r-m)-s VreR,¥YseS,VmeM.

Convention: Unless otherwise stated, in this lecture we always work with left modules. When no
confusion is to be made, we will simply write "R-module" to mean "left R-module", denote R-modules
by their underlying sets and write rm instead of r - m. Definitions for right modules and bimodules are
similar to those for left modules, hence in the sequel we omit them.

Definition 1.2 (R-submodule)
An R-submodule of an R-module M is a subgroup U < M such that r-ue UV reR,Vuel.

Definition 1.3 (Morphisms)

A (homo)morphism of R-modules (or an R-linear map, or an R-homomorphism) is a map of R-
modules ¢ : M — N such that:

(i) ¢ is a group homomorphism; and
(i) @(r-m)=r-@(m)¥YreR, Y meM.

An injective (resp. surjective) morphism of R-modules is sometimes called a monomorphism (resp.
an epimorphism) and we often denote it with a hook arrow "—" (resp. a two-head arrow "—").

A bijective morphism of R-modules is called an isomorphism (or an R-isomorphism), and we write
M = N if there exists an R-isomorphism between M and N.

A morphism from an R-module to itself is called an endomorphism and a bijective endomorphism is
called an automorphism .

Notation: We let fMod denote the category of left R-modules (with R-linear maps as morphisms), we
let ModRr denote the category of right R-modules (with R-linear maps as morphisms), and we let fMods
denote the category of (R, S)-bimodules (with (R, S)-linear maps as morphisms). For the language of
category theory, see the Appendix.

Example 1

(a) Exercise: Prove that Definition 1.1(a) is equivalent to requiring that (M, +, ) satisfies the
following axioms:

(M1) (M, +) is an abelian group;

(M2) (r1+r2)-m=ry-m++ry-mfor each ri,r; € R and each m e M;
(M3) r-(m1+ m3) =r-mq+r-m;for each re R and all my, m; € M;
(M4) (rs)-m=r-(s-m) for each r,s € R and all m e M.

(M5) 12 - m = m for each m e M.




In other words, modules over rings satisfy the same axioms as vector spaces over fields. Hence:

Vector spaces over a field K are K-modules, and conversely.

(b) Abelian groups are Z-modules, and conversely.
Exercise: check it! What is the external composition law?

(c) If the ring R is commutative, then any right module can be made into a left module, and
conversely.
Exercise: check it! Where does the commutativity come into play?

(d) If ¢ : M — N is a morphism of R-modules, then the kernel ker(¢) := {m e M | ¢(m) = On}
of ¢ is an R-submodule of M and the image Im(¢) := (M) = {@(m) | m € M} of ¢ is an
R-submodule of N.

If M = N and ¢ is invertible, then the inverse is the usual set-theoretic inverse map ¢~
is also an R-homomorphism.
Exercise: check it!

T and

(e) Change of the base ring: if ¢ : S — R is a ring homomorphism, then every R-module M
can be endowed with the structure of an S-module with external composition law given by

i SXM—M,(s,m)—s-m:=¢(s) -m.

Exercise: check it!

Notation 1.4

Given R-modules M and N, we set Homg(M, N) := {¢ : M — N | ¢ is an R-homomorphism}.
This is an abelian group for the pointwise addition of maps:

+: Homg(M,N) x Homg(M,N) — Homg(M, N)
(¢, ) = @+ M— N.om = g(m) + ¢(m).

In case N = M, we write Endg(M) := Homg(M, M) for the set of endomorphisms of M and

Le

Autr(M) for the set of automorphisms of M, i.e. the set of invertible endomorphisms of M.

mma-Definition 1.5 (Quotients of modules)

Let U be an R-submodule of an R-module M. The quotient group M/U can be endowed with the
structure of an R-module in a natural way via the external composition law

R x M/U —> M/U
(r,m+U)»—>r-m+U

The canonical map 7 : M — M/U,m — m + U is R-linear and we call it the canonical (or

natural) homomorphism.

Proof: We assume known from the "Algebraische Strukturen" that s is a group homomorphism.

Exercise: check that st preserves the scalar multiplication. ]

Definition 1.6 (Cokernel, coimage)

Let ¢ € Homg(M, N). The cokernel of ¢ is the quotient R-module coker(¢) := N/Im ¢, and the
coimage of ¢ is the quotient R-module M/ ker ¢.
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Theorem 1.7 (The universal property of the quotient and the isomorphism theorems)

(@) Universal property of the quotient: Let ¢ : M — N be a homomorphism of R-modules.
If U is an R-submodule of M such that U < ker(¢), then there exists a unique R-module
homomorphism @ : M/U — N such that po i = ¢, or in other words such that the following
diagram commutes:

M —— N

M/U

Concretely, o(m + U) = ¢(m) V. m+ U e M/U.

(b) 1st isomorphism theorem: With the notation of (a), if U = ker(¢), then

@ M/ker(p) — Im(¢)
is an isomorphism of R-modules.

(c) 2nd isomorphism theorem: If Uy, U, are R-submodules of M, then so are Uy n U, and Uy + Uy,
and there is an isomorphism of R-modules

(U1 + Uz)/Uz x~ U1/(U1 N Uz).

(d) 3rd isomorphism theorem: If U; < U, are R-submodules of M, then there is an isomorphism
of R-modules

(M/U) [ (U uy) = M/ U

(e) Correspondence theorem: If U is an R-submodule of M, then there is a bijection

{R-submodules X of M | U < X} «— {R-submodules of M/U}
X - XU
7 1(2) — 7.

Proof: We assume it is known (e.g. from the "Einfiihrung in die Algebra") that these results hold for abelian
groups and morphisms of abelian groups.
Exercise: check that they carry over to the R-module structure. ]

Definition 1.8 (Generating set | R-basis [ finitely generated/free R-module)
Let M be an R-module and let X € M be a subset. Then:

(@) M is said to be generated by X if every element m € M may be written as an R-linear
combination m = erx AxX, i.e. where A, € R is almost everywhere 0. In this case we write
M={(X)ror M =73 _yRx.

(b) M is said to be finitely generated if it admits a finite set of generators.

(c) X is an R-basis (or simply a basis) if X generates M and if every element of M can be written
in a unique way as an R-linear combination )}, ., A, X (i.e. with A, € R almost everywhere 0).
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(d) M is called free if it admits an R-basis X, and | X| is called R-rank of M.
Notation: In this case we write M = @,y Rx.

Warning: If the ring R is not commutative, then it is not true in general that two different bases of a
free R-module have the same number of elements.

Proposition 1.9 (Universal property of free modules)

Let M be a free R-module with R-basis X. If N is an R-module and f : X — N is a map (of

sets), then there exists a unique R-homomorphism f: M —> N such that the following diagram
commutes:

X 14N
o7
T
M

inc

We say that f is obtained by extending f by R-linearity.

Proof: Given an R-linear combination ), _, Axx € M, set ?(erx Ax) = Y ex Af(X). The claim follows. W

2 Algebras

In this lecture we aim at studying modules over specific rings, which are in particular algebras.

Definition 2.1 (Algebra)

Let R be a commutative ring.

(a) An R-algebra is an ordered quadruple (A, +, -, %) such that the following axioms hold:
(A1) (A, +,-) is a ring;
(A2) (A, +,#) is a left R-module; and
(A3) r=(a-b)=(r*a)-b=a-(r+xb)VYa,beAVreR

(b) A map f: A— B between two R-algebras is called an algebra homomorphism iff:

(i) f is a homomorphism of R-modules;

(ii) f is a ring homomorphism.

Example 2 (Algebras)

(@) The ring R itself is an R-algebra.

[The internal composition law "" and the external composition law "" coincide in this case.]

(b) For each n e Z>1 the set M,(R) of n x n-matrices with coefficients in R is an R-algebra for
its usual R-module and ring structures.

[Note: in particular R-algebras need not be commutative rings in general!]
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(c) Let K be a field. Then for each n € Z>4 the polynom ring K[Xj, ..., X,] is a K-algebra for
its usual K-vector space and ring structure.

(d) R and C are Q-algebras, C is an R-algebra, ...

(e) Rings are Z-algebras.
Exercise: Check it!

Example 3 (Modules over algebras)

3

(@) A = M,(R) = R" is an A-module for the external composition law given by left matrix
multiplication A x R" — R", (B, x) — Bx.

(b) If K is a field and V a K-vector space, then V becomes an A-algebra for A := Endg(V)
together with the external composition law

AxV —V, (g v)— ).
Exercise: Check it!

(c) An arbitrary A-module M can be seen as an R-module via a change of the base ring since
R — A, r— r«14 is a homomorphism of rings by the algebra axioms.

Exercise 2.2

Let R be a commutative ring.
(@) Let M, N be R-modules. Prove that:

(1) Endr(M), endowed with the pointwise addition of maps and the usual composition of
maps, is a ring.

(2) The abelian group Homg(M, N) is a left R-module for the external composition law
defined by

(rf)(m) := f(rm) = rf(m) VreR,VfeHomg(M,N), Yme M.

(b) Let now A be an R-algebra and M be an A-module. Prove that Endgr(M) and Enda(M) are
R-algebras.

Direct products and direct sums*

Let {M;}ic/ be a family of R-modules. Then the abelian group [ [,;; M, that is the direct product of
{Mi}ics seen as a family of abelian groups, becomes an R-module via the following external composition
law:

RxHMi—>HMi

il il

(r (mi)ier) — (r-mi) g

Exercise: check it!
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Proposition 3.1 (Universal property of the direct product)

For each j € I, we let 7; : [[;c; Mi — M denotes the j-th projection from the direct product to
the module M;. If {(p[ : L —> M;}ies is a collection of R-linear maps, then there exists a unique
morphism of R-modules ¢ : L — [[,.; M; such that 70 ¢ = ¢; for every j e /.

Pk Mk
o 7
e
L----- e Hiel M;
O g
?j Mj

In other words, the map

Homp (L, [T M) —> T Homa(L, M)
(] — (JT[ (e] (p)l

is an isomorphism of abelian groups.

Proof: Exercise! ]
Let now @,.; M; be the subgroup of [ [,.; M; consisting of the elements (m;);; such that m; = 0 almost
everywhere (i.e. m; = 0 except for a finite subset of indices i € /). This subgroup is called the direct

sum of the family {M;},c; and is in fact an R-submodule of the product. Exercise: check it!

Proposition 3.2 (Universal property of the direct sum)

For each j e I, we let n; : Mj — @, M denote the canonical injection of M; in the direct sum.
If {f,- : Mi —> L} is a collection of R-linear maps, then there exists a unique morphism of
R-modules ¢ : @;c; M; — L such that f o n; = f; for every j e I.

il
M; f
X o
DM T L
" O
My ;

In other words, the map

Homp (@i ML) — [Ty Home(M; L)
f — (fo m)i

is an isomorphism of abelian groups.

Proof: Exercise! [ |
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Remark 3.3
It is clear that if |/| < o0, then @, M = [ [;c; M.

The direct sum as defined above is often called an external direct sum. This relates as follows with the
usual notion of internal direct sum:

Definition 3.4 (“Internal” direct sums)

Let M be an R-module and Ny, N> be two R-submodules of M. We write M = Ny @ N if every
m € M can be written in a unique way as m = n1 + n2, where nq € Ni and ny € N,.

In fact M = Ny @ N, (internal direct sum) if and only if M = Ny + N, and Ni n Np = {0}.

Proposition 3.5
If N1, N2 and M are as in Definition 3.4 and M = N; @ N> then the map

@: M — Ny x Nop = N1 @ N, (external direct sum)
m=ny+ny — (n,ny)

defines an R-isomorphism.
Moreover, the above generalises to arbitrary internal direct sums M = @, N..

Proof: Exercise! [ |

4 Exact sequences”

Exact sequences constitute a very useful tool for the study of modules. Often we obtain valuable infor-
mation about modules by plugging them in short exact sequences, where the other terms are known.

Definition 4.1 (Exact sequence)

A sequence L > M %, N of R-modules and R-linear maps is called exact (at M) if Im ¢ = ker .

Remark 4.2 (Injectivity/surjectivity/short exact sequences)

(@) L > Mis injective <= 0 — L %5 M is exact at L.
(b) M o Ns surjective <= M YN —0is exact at N.

() 0 — L oM LN — 0 is exact (Le. at L, M and N) if and only if ¢ is injective, ¢ is
surjective and ¢ induces an R-isomorphism ¢y : M/Im¢@ — N, m + Im ¢ — ((m).

Such a sequence is called a short exact sequence (s.e.s. for short).

(d) If ¢ € Homg(L, M) is an injective morphism, then there is a s.es.

0— L -2 M2 coker(p) — 0

where s is the canonical projection.
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(e) If ¢ € Homg(M, N) is a surjective morphism, then there is a s.e.s.

0 — ker(¢) > M- N—0,

where i is the canonical injection.

oposition 4.3

Let Q be an R-module. Then the following holds:

(@) Homg(Q, —) : kMod — Ab is a left exact covariant functor. In other words, if

0—L-%MYN—0isasesof R-modules, then the induced sequence

0 —— Homg(Q, L) —*= Homg(0, M) —“~ Homg (0, N)

is an exact sequence of abelian groups. Here ¢, := Homg(Q, ¢), that is ¢.(a) = ¢ o a for
every a € Homg(Q, L) and similarly for .

(b) Homg(—, Q) : RMod — Ab is a left exact contravariant functor. In other words, if

0—L-%M i> N — 0 is a s.e.s of R-modules, then the induced sequence

0 — Homg(N, 0) —> Homr(M, Q) ~*~ Homg(L, Q)

is an exact sequence of abelian groups. Here ¢* := Homg(¢, Q), that is ¢*(a) = a o ¢ for
every o € Homgp(M, Q) and similarly for .

Notice that Homg(Q, —) and Homg(—, Q) are not right exact in general. Exercise: find counter-
examples!

Proof: One easily checks that Homg(Q, —) and Homg(—, Q) are functors. Exercise!

Le

(a) - Exactness at Homg(Q, L): Clear.
- Exactness at Homg(Q, M): We have

Bekeryy, <= yoB=0<ImBckery=Imep
<= Vqe Q,3! [, € Lsuch that B(q) = ¢(ly)
<= Jamap A: Q — L which sends q to [; and such that poA =8
2% 3¢ Homg(Q, L) which send g to [, and such that p oA = B

<= Belmg,.

(b) Similar. Exercise! u

mma-Definition 4.4 (Split short exact sequence)

Ases 0 — L2 M- N — 0 of R-modules is called split if it satisfies one of the following
equivalent conditions:
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(@) ¢ admits an R-linear section, i.e. if 3 € Homg(N, M) such that ¢y o g = Idp;
(b) @ admits an R-linear retraction, i.e. if 3 p € Homg(M, L) such that po ¢ = Id;;

(c) 3 an R-isomorphism a : M — L @ N such that the following diagram commutes:

0 [~ MY N 0
IdLl O la @) J{ld/\/
0—>l—SIaNLN—>0,

where i, resp. p, are the canonical inclusion, resp. projection.

Proof: Exercise! [ |

Remark 4.5

If the sequence splits and ¢ is a section, then M = ¢(L) @ a(N). If the sequence splits and p is a
retraction, then M = ¢(L) @ ker(p).

Example 4

The sequence
¢

0 zZ/2Z Z22®Z72/2Z —"~2/2Z 0

defined by ¢([1]) = ([1],[0]) and where s is the canonical projection onto the cokernel of ¢ is
split but the sequence

0——>2z/22-Y~7/47 "5 7/27 0

defined by ¢([1]) = ([2]) and 7 is the canonical projection onto the cokernel of ¢ is not split.
Exercise: justify this fact using a straightforward argument.

5 Tensor products®

Definition 5.1 (Tensor product of R-modules)

Let M be a right R-module and let N be a left R-module. Let F be the free abelian group (= free
Z-module) with basis M x N. Let G be the subgroup of F generated by all the elements

(mq +my,n)— (my,n)— (mz,n), ¥Ymqy,myeM,¥neN,
(m,ny +nz)— (m,ny) —(m,ny), ¥YmeM,Vny,nye N, and
(mr,n)—(m,rn), VYmeM,¥ne N,VreR.

The tensor product of M and N (balanced over R), is the abelian group M ®g N := F/G. The
class of (m,n) € F in M®g N is denoted by m ® n.




Remark 5.2
(@) MRRN={m®n|meM,ne N)z.
(b) In M®g N, we have the relations

(m+m)@®n=m®n+my®n, Ymy,myeM,VneN,
m®(nm +n)=mn +mny, YmeM,V¥ni,n,eN, and
mr@®n=m®rn, VYmeM,¥Yne N,VreR.

In particular, n®0=0=0®n VY meM,VneNand (—m)®@n=—-(m®n) =m® (—
VmeM, V¥ neN.

Definition 5.3 (R-balanced map)

R-balanced if

f(my + my,n) = f(my,n)+f(my,n), VYmy,myeM,¥neN,
f(m,n1+ ny) =f(m,ny) +f(m,ny), VYmeM,Vny,neN,
f(mr,n) =f(m,rn), VYme M,¥ne N,VreR.

Remark 5.4
The canonical map t : M x N — M®gr N, (m,n) — m ® n is R-balanced.

Proposition 5.5 (Universal property of the tensor product)

the following diagram commutes: Mx N—"5A

1

7
t -
i/f

M®r N

Proof: Let 1 : M x N — F denote the canonical inclusion, and let ;t : F — F/G denote the canonical
projection. By the universal property of the free Z-module, there exists a unique Z-linear map f : F — A
such that for = f. Since f is R-balanced, we have that G < ker(f). Therefore, the universal property of
the quotient yields the existence of a unique homomorphism of abelian groups f : F/G — A such that

G

M@g N = F/G

fom=Ff

N A

74
/

/

/

e

<7‘n<7><

Clearly t = mo 1, and hence fot =fomor=for=f.

Let M and N be as above and let A be an abelian group. A map f : M x N — A is called

Let M be a right R-module and let N be a left R-module. For every abelian group A and every
R-balanced map f : M x N — A there exists a unique Z-linear map f : M ®r N — A such that
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Remark 5.6
Let M and N be as in Definition 5.1.

(a) Let {M;}ie/ be a collection of right R-modules, M be a right R-module, N be a left R-module
and {N;}ic; be a collection of left R-modules. Then, we have

P M @r N =P (M Qr N)

iel iel
M@R (—D Nj = @(M QR N/)
jel jel

(This is easily proved using both the universal property of the direct sum and of the tensor
product.)

(b) There are natural isomorphisms of abelian groups given by R@r N = N via r®n — rn, and
MRRrRR=Mviam®rw— mr.

(c) It follows from (b), that if P is a free left R-module with R-basis X, then N®r P =~ @, .« N,
and if P is a free right R-module with R-basis X, then P ®r M = @Xex M.

(d) Let Q be a third ring. Then we obtain module structures on the tensor product as follows:

() f M is a (Q,R)-bimodule and N a left R-module, then M ®g N can be endowed with
the structure of a left Q-module via

g-(m®n)=q-m®n Yqge Q,Yme M,¥ne N.

(it) If M is a right R-module and N an (R, S)-bimodule, then M®g N can be endowed with
the structure of a right S-module via

(m®n)-s=gm®n-s YseS,VmeM,¥ne N.

(iit) If M is a (Q, R)-bimodule and N an (R, S)-bimodule. Then M ®g N can be endowed
with the structure of a (Q, S)-bimodule via the external composition laws defined in (i)
and (ii).

(e) Assume R is commutative. Then any R-module can be viewed as an (R, R)-bimodule. Then,
in particular, M ®r N becomes an R-module (both on the left and on the right).

(f) For instance, it follows from (e) that if K is a field and M and N are K-vector spaces with
K-bases {x;}ie; and {y;}c; resp., then M®x N is a K-vector space with a K-basis given by

{(xi ®yj}ijerx)-

(g) Tensor product of morphisms: Let f : M — M’ be a morphism of right R-modules and
g : N — N’ be a morphism of left R-modules. Then, by the universal property of the
tensor product, there exists a unique Z-linear map f® g : M®r N — M’ ®g N’ such that

(f®g)(m®n) = f(m)®g(n).

Proof: Exercise! [ |
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Exercise 5.7

(@) Assume R is a commutative ring and / is an ideal of R. Let M be a left R-module. Prove that
there is an isomorphism of left R-modules R/ ®r M = M/IM.

(b) Let m, n be coprime positive integers. Compute Z/nZ ®z Z/mZ, Q®z Q, and Q/Z®z Q.

(c) Let K be a field and let U, V' be finite-dimensional K-vector spaces. Prove that there is a
natural isomorphism of K-vector spaces:

HomK(U, V) ~ U* Rk V.

Proposition 5.8 (Right exactness of the tensor product)

(@) Let N be a left R-module. Then —®gr N : Modr — Ab is a right exact covariant functor.

(b) Let M be a right R-module. Then M ®r — :r Mod — Ab is a right exact covariant functor.

Remark 5.9
The functors — ®r N and M ®gr — are not left exact in general.




Chapter 1. Foundations of Representation Theory

In this chapter we review four important module-theoretic theorems, which lie at the foundations of
representation theory of finite groups:

1. Schur’s Lemma: about homomorphisms between simple modules.
2. The Jordan-Holder Theorem: about "uniqueness" properties of composition series.
3. Nakayama’s Lemma: about an essential property of the Jacobson radical.

4. The Krull-Schmidt Theorem: about direct sum decompositions into indecomposable submodules.

Notation: throughout this chapter, unless otherwise specified, we let R denote an arbitrary unital and
associative ring.

Again results which intersect the Commutative Algebra lecture are stated without proof.
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6 (Ir)Reducibility and (in)decomposability

Submodules and direct sums of modules allow us to introduce the two main notions that will enable us
to break modules in elementary pieces in order to simplify their study.
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Definition 6.1 (simple/irreducible module | indecomposable module)

(@) An R-module M is called reducible if it admits an R-submodule U such that 0 < U < M.
An R-module M is called simple (or irreducible) if it is non-zero and not reducible.

(b) An R-module M is called decomposable if M possesses two non-zero proper submodules
Mji, My such that M = My @ M,. An R-module M is called indecomposable if it is non-zero
and not decomposable.

Remark 6.2

Clearly any simple module is also indecomposable. However, the converse does not hold in general.
Exercise: find a counter-example!

Exercise 6.3

Prove that if (R, +, -) is a ring, then R° := R itself maybe seen as an R-module via left multiplication
in R, i.e. where the external composition law is given by

RxR>— R°, (r,m)—r-m.

We call R° the reqular R-module.

Prove that the R-submodules of R° are precisely the left ideals of R. Moreover, /< R is a maximal
left ideal of R < R°/I is a simple R-module, and /< R is a minimal left ideal of R < [ is simple
when regarded as an R-submodule of R°.

7 Schur’s Lemma

Schur’s Lemma is a basic result, which lets us understand homomorphisms between simple modules,
and, more importantly, endomorphisms of such modules.

Theorem 7.1 (Schur’s Lemma)

(@) Let V, W be simple R-modules. Then:

(i) Endr(V) is a skew-field, and
(it) if V 22 W, then Homg(V, W) = 0.
(b) If K is an algebraically closed field, A is a K-algebra, and V' is a simple A-module such that

dimg V < o0, then
Enda(V) = {Aldy | Ae K} =K.

Proof:

(a) First, we claim that every f € Homg(V, W)\{0} admits an inverse in Homg(V, W).
Indeed, f # 0 = kerf & V is a proper R-submodule of V and {0} # Imf is a non-zero R-
submodule of W. But then, on the one hand, ker f = {0}, because V is simple, hence f is injective,
and on the other hand, Imf = W because W is simple. It follows that f is also surjective, hence



(b)

bijective. Therefore, by Example 1(d), f is invertible with inverse =1 € Homg(W, V).

Now, (i) is straightforward from the above. For (i), recall that Endg (V) is a ring, which is obviously
non-zero as Endg(V) 3 Idy and Idy # 0 because V # 0 since it is simple. Thus, as any f €
Endr(V)\{0} is invertible, Endg(V) is a skew-field.

Let f € Enda(V). By the assumptions on K, f has an eigenvalue A € K. Let v € V\{0} be an
eigenvector of f for A. Then (f — Aldy)(v) = 0. Therefore, f — Aldy is not invertible and

f—aldy e Enda(V) -2 f-tldy=0 — f=2Aldy.

Hence Enda(V) < {Aldy | A € K}, but the reverse inclusion also obviously holds, so that

Enda(V) = {Aldy} = K.

8 Composition series and the Jordan-Holder Theorem?®

Definition 8.1 (Composition series | composition factors | composition length)

Let M be an R-module.

(@) A series (or filtration) of M is a finite chain of submodules

O=MycMic...cM, =M (neZxp).

(b) A composition series of M is a series

O=MycMyc...cM, =M (neZxo)
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From Chapter 2 on, we will assume that all modules we work with can be broken into simple modules
in the sense of the following definition.

where M;/M;_1 is simple for each 1 < i < n. The quotient modules M;/M;_4 are called the
composition factors (or the constituents) of M and the integer n is called the composition

length of M.

Definition 8.2 (Chain conditions | Artinian and Noetherian rings and modules)

Notice that, clearly, in a composition series all inclusions are in fact strict because the quotient modules
are required to be simple, hence non-zero.

Next we see that the existence of a composition series implies that the module is finitely generated.
However, the converse does not hold in general. This is explained through the fact that the existence
of a composition series is equivalent to the fact that the module is both Noetherian and Artinian.

a) An R-module is said to satisty the descending chain condition (D.C.C.) on submodules
An R-module M d fy the d di hai diti D.C.C bmodul
(or to be Artinian) if every descending chain M = My 2 My 2 ... 2 M, 2 ... 2 {0} of
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submodules eventually becomes stationary, i.e. 3 mg such that M, = M,,, for every m > my.

(b) An R-module M is said to satisfy the ascending chain condition (A.C.C.) on submodules (or to
be Noetherian) if every ascending chain 0 =My c My < ... € M, < ... € M of submodules
eventually becomes stationary, i.e. 3 mg such that M,, = M, for every m = mo.

(c) The ring R is called left Artinian (resp. left Noetherian) if the reqular module R° is Artinian

(resp. Noetherian).

Theorem 8.3 (Jordan-Halder)

Any series of R-submodules 0 = My € My € ... € M, = M (r € Z>¢) of an R-module M may be
refined to a composition series of M. In addition, if

O=MycMi<c..cM, =M (n€Z>Q)

and
O=MycMic...cM, =M (meZs)

are two composition series of M, then m = n and there exists a permutation m € &, such that
M /Mi_y = My(iy/My(i)—1 for every 1 < i < n. In particular, the composition length is well-defined.

Proof: See Commutative Algebra. |

Corollary 8.4
If M is an R-module, then TFAE:

(@) M has a composition series;
(b) M satisfies D.C.C. and A.C.C. on submodules;

() M satisfies D.C.C. on submodules and every submodule of M is finitely generated.

Proof: See Commutative Algebra. |

Theorem 8.5 (Hopkins’ Theorem)
If M is a module over a left Artinian ring, then TFAE:

(@) M has a composition series;
(b) M satisfies D.C.C. on submodules;
(c) M satisfies A.C.C. on submodules;

(d) M is finitely generated.

Proof: See Commutative Algebra. (Or Exercise: deduce it from the properties of the Jacobson radical and
semisimplicity, which we are going to develop in the next sections.) ]
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9 The Jacobson radical and Nakayama’s Lemma*
The Jacobson radical is one of the most important two-sided ideals of a ring. As we will see in the next

sections and Chapter 2, this ideal carries a lot of information about the structure of a ring and that of
its modules.

Proposition-Definition 9.1 (Annihilator | Jacobson radical)

(a) Let M be an R-module. Then anng(M) :={re R|rm =0 ¥ m € M} is a two-sided ideal
of R, called annihilator of M.

(b) The Jacobson radical of R is the two-sided ideal

J(R) := ﬂ anng(V) ={xeR|1—axbe R* Ya,beR}.

V simple
R-module

(c) If V is a simple R-module, then there exists a maximal left ideal / < R such that V =~ R°//
(as R-modules) and

I<R,

| maximal
left ideal

Proof: See Commutative Algebra. ]

Exercise 9.2

(a) Prove that any simple R-module may be seen as a simple R/J(R)-module.

(b) Conversely, prove that any simple R/J(R)-module may be seen as a simple R-module.
[Hint: use a change of the base ring via the canonical morphism R — R/J(R).]

(c) Deduce that R and R/J(R) have the same simple modules.
Theorem 9.3 (Nakayama’s Lemma)
If M is a finitely generated R-module and J(R)M = M, then M = 0.

Proof: See Commutative Algebra. ]

R_emark 9.4

One often needs to apply Nakayama's Lemma to a finitely generated quotient module M/U, where
U is an R-submodule of M. In that case the result may be restated as follows:

M=U+JRM — U=M
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Indecomposability and the Krull-Schmidt Theorem

We now consider the notion of indecomposability in more details. Our first aim is to prove that inde-
composability can be recognised at the endomorphism algebra of a module.

Definition 10.1

Example 5

Pr

(@) Any field K is local because K\K* = {0} by definition.
and deduce that R is local.

(c) Exercise: Let K be a field and let R := {A =

R\R* = {A€ R | ay =0} and deduce that R is local.

oposition 10.2

Let R be a ring. Then TFAE:

(@) R is local;

(c) R/J(R) is a skew-field.

Proof: Set N := R\R*.

A ring R is said to be local ;<<= R\R* is a two-sided ideal of R.

ay ay ...
0 ag ...

00 ..

(b) R\R* = J(R), i.e. J(R) is the unique maximal left ideal of R;

(b) Exercise: Let p be a prime number and R := {7 € Q | p |b}. Prove that R\R* = {7 € R | p|a}

an
ap—1

€ /VI,,(K)}. Prove that

aq

(@)=(b): Clear: < R proper left ideal = / = N. Hence, by Proposition-Definition 9.1(c),

JR) = () IN.
/<R,

| maximal
left ideal

Now, by (a) N is an ideal of R, hence N must be a maximal left ideal, even the unique one. It

follows that N = J(R).

: If J(R) is the unique maximal left ideal of R, then in particular R # 0 and R/J(R) # 0. So let

re R\J(R) © RX Then obviously r + J(R) € (R/J(R))*. It follows that R/J(R) is a skew-field.

=(a): Since R/J(R) is a skew-field by (c), R/J(R) # 0, so that R # 0 and there exists a € R\J(R).
Moreover, again by (c), a + J(R) € (R/J(R))*, so that 3b € R\J(R) such that

ab+J(R) =1+ J(R) e R/I(R)

Therefore, 3 ¢ € J(R) such that ab = 1—¢, which is invertible in R by Proposition-Definition 9.1(b).
Hence 3d € R such that abd = (1 — ¢)d =1 = a € R*. Therefore R\J(R) = R*, and it follows

that R\R* = J(R) which is a two-sided ideal of R.
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Proposition 10.3 (Fitting’s Lemma)

Let M be an R-module which has a composition series and let ¢ € Endg(M) be an endomorphism
of M. Then there exists n € Z-¢ such that

(i) @"(M) = " (M) for every i > 1;
(i) ker(¢") = ker(¢"*) or every i > 1; and

(i) M = ¢" (M) @ker(g").

Proof: By Corollary 8.4 the module M satisfies both A.C.C. and D.C.C. on submodules. Hence the two chains

of submodules
(M) 2 g* M) 2.,

ker(¢p) < ker(¢?) < ...

eventually become stationary. Therefore we can find an index n satisfying both (i) and (ii).
Exercise: Prove that M = ¢"(M) @ ker(¢"). |

Proposition 10.4

Let M be an R-module which has a composition series. Then:

M is indecomposable <= Endr(M) is a local ring.

Proof: “=": Assume that M is indecomposable. Let ¢ € Endg(M). Then by Fitting’s Lemma there exists
n € Z-o such that M = ¢"(M) @ ker(¢"). As M is indecomposable either ¢"(M) = M and
ker(¢") = 0 or ¢"(M) = 0 and ker(¢") = M.
- In the first case ¢ is bijective, hence invertible.
- In the second case ¢ is nilpotent.
Therefore, N := Endg(M)\ Endg(M)* = {nilpotent elements of Endg(M)}.
Claim: N is a two-sided ideal of Endg(M).
Let ¢ € N and m € Z-( minimal such that ¢™ = 0. Then

m

9" (pp) = 0= (pp)¢"~" ¥ peEndr(M).

As ™1 %0, pp and pp cannot be invertible, hence ¢p, pp € N.

Next let @, p € N. If ¢ + p =: ¢y were invertible in Endg(M), then by the previous argument we
would have ¢~"p, y~'p € N, which would be nilpotent. Hence

Y~ =ldu—¢'p

would be invertible.

(Indeed, ¢~"p nilpotent = (Idy —¢ ' p)(Idp +¢~ "o+ (¢ p)2 + -+ + (Y~ p)?~") = Idys, where
a is minimal such that (¢~"p)? = 0.

This is a contradiction. Therefore ¢ + p € N, which proves that N is an ideal.

Finally, it follows from the Claim and the definition that Endg(M) is local.

“<": Assume M is decomposable and let My, M, be proper submodules such that M = M; @ M,. Then
consider the two projections

m My @My — My @ My, (mq, ma) — (m4,0)
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onto M; along M, and
o My @ My — My @ My, (myq, my) — (0, my)

onto M, along M. Clearly my, 7, € Endg(M) but 711, 712 ¢ Endr(M) ™ since they are not surjective
by construction. Now, as ;1 = Idy —7r1 is not invertible it follows from the characterisation of the

Jacobson radical of Proposition-Definition 9.1(b) that 711 ¢ J(Endg(M)). Therefore
Endr(M)\ Endr(M)* # J(Endg(M))

and it follows from Proposition 10.2 that Endg(M) is not a local ring. ]

Next, we want to be able to decompose R-modules into direct sums of indecomposable submodules. The
Krull-Schmidt Theorem will then provide us with certain uniqueness properties of such decompositions.

Proposition 10.5
Let M be an R-module. If M satisfies either A.C.C. or D.C.C., then M admits a decomposition into
a direct sum of finitely many indecomposable R-submodules.

Proof: Let us assume that M is not expressible as a finite direct sum of indecomposable submodules. Then
in particular M is decomposable, so that we may write M = My @ W, as a direct sum of two proper
submodules. W.Lo.g. we may assume that the statement is also false for Wj. Then we also have a
decomposition Wi = M, @ W,, where M, and W, are proper sumbodules of Wj with the statement being
false for W,. Iterating this argument yields the following infinite chains of submodules:

WyaoWw,oW; 2.,
MicMeMyc MM, Mz < -+

The first chain contradicts D.C.C. and the second chain contradicts A.C.C.. The claim follows. [ |

Theorem 10.6 (Krull-Schmidt)

Let M be an R-module which has a composition series. If

M=M® &M, =M ®---dM, (n,n" € Z-y)
are two decomposition of M into direct sums of finitely many indecomposable R-submodules, then

n = n’, and there exists a permutation 7 € &, such that M; >~ M;/r(i) for each 1 < i < n and

n
MIM,/T(U@'“@M,/T(,)@‘E{—?”M,- for every 1 < r < n.
j=r

Proof: Foreach 1 < i< n let
o M=M®--dM, > M,m +...+m, — m;
be the projection on the i-th factor of first decomposition, and for each 1 < j < n’ let
Yy M=M@ - dM, —»/\/I;,mq + ...+ m), »—»m;-

be the projection on the j-th factor of second decomposition.
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Claim: if ¢y € Endgr(M) is such that 7y o ¢o|py, : My — My is an isomorphism, then
M = g[l(/Vh)@Mz@@Mn and L/l(/\/h) = /\/’1 .

Indeed: By the assumption of the claim, both |y, : My — Y(My) and m1|yas,) @ Y(Mi) — My must be
isomorphisms. Therefore ¢s(My) n ker(;r1) = 0, and for every m € M there exists m} € y(My) such that
71 (m) =y (m}), hence m — m) € ker(7y). It follows that

M = (M) + ker(m) = y(My) @ ker(m) = y(M) @M, @ --- DM, .

Hence the Claim holds.

Now, we have Idy, = 27/:1 Y, and so Idy, = 27;1 71 © Yj|m, € Endr(My). But as M has a composition
series, so has M, and therefore Endr(M,) is local by Proposition 10.4. Thus if all the my o j|m, €
Endgr(My) are not invertible, they are all nilpotent and then so is Idy,, which is in turn not invertible.
This is not possible, hence it follows that there exists an index j such that

71 0 gyl - My — M

is an isomorphism and the Claim implies that M = (;(My) @M, @ --- @ M, and ;(Mq) = M.
We then set (1) := j. By definition ;(M;) € M} as M; is indecomposbale, so that

gi(Mh) = M; = My g .

Finally, an induction argument (Exercise!) yields:

M=My® - @M, & D M,
j=r+1

mit /\/I;r(l.) >~ M; (1 <i<r). In particular, the case r = n implies the equality n = n’. |



Chapter 2. The Structure of Semisimple Algebras

In this chapter we study an important class of rings: the class of rings R which are such that any R-
module can be expressed as a direct sum of simple R-submodules. We study the structure of such rings
through a series of results essentially due to Artin and Wedderburn. At the end of the chapter we will
assume that the ring is a finite dimension algebra over a field and start the study of its representation
theory.

Notation: throughout this chapter, unless otherwise specified, we let R denote a unital and associative
ring.
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11  Semisimplicity of rings and modules

Proposition-Definition 11.1 (Completely reducible module | semisimple module)

An R-module M satisfying the following equivalent conditions is called completely reducible or
semisimple:

(@) M = @®ie/S; for some family {S;}ie/ of simple submodules of M;
(b) M = >, Si for some family {S;}ic/ of simple submodules of M;

(c) every R-submodule My € M admits a complement in M, i.e. 3 an R-submodule M, € M
such that M = My & M,.
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Proof:

(a)

(b)=>(c): Write M = 3,

=(b): is trivial.

) Siv where S; is a simple R-submodule of M for each i € I. Let N = M be an
R-submodule of M. Then consider the family, partially ordered by inclusion, of all subsets J < /
such that

(1) 2liey Si is a direct sum; and
2 NaXY,., S =0.

Clearly this family is non-empty since it contains the empty set. Thus Zorn’s Lemma yields the
existence of a maximal element Jy. Now, set

M:=N+)Y Si=N®). S,
i€y i€lo

where the second equality holds by (1) and (2). Therefore, it suffice to prove that M = M’, ie.
that S; € M’ for every i € I. But if j € | is such that S; & M’, the simplicity of S; implies that
S;n M’ =0 and it follows that

M+@—N@<Z$>@g

i€l
in contradiction with the maximality of Jy. The claim follows.
=(a): follows from the argument above with N = 0.

=(b): Let M; be the sum of all simple submodules in M. By (c) there exists a complement M, € M to
My, te. such that M = My @ M,. If M, = 0, we are done. If My # 0, then M, must contain a
simple R-submodule (Exercise: prove this fact), say N. But then N € M, a contradiction. Thus
M, =0 and so M = M. m

Example 6

Th

(@) The zero module is completely reducible, but neither reducible nor irreducible!

(b) It Sy,..., S, are simple R-modules, then their direct sum $1®...@S, is completely reducible
by definition.
(c) The following exercise shows that there exists modules which are not completely reducible.

Exercise: Let K be a field and let A be the K-algebra {((8 ;1) | a1, a0 € K}. Consider the
A-module V := K?, where A acts by left matrix multiplication. Prove that:

(1) {(5) | x e K} is a simple A-submodule of V; but

(2) V is not semisimple.

(d) Exercise: Prove that any submodule and any quotient of a completely reducible module is
again completely reducible.

eorem-Definition 11.2 (Semisimple ring)

A ring R satisfying the following equivalent conditions is called semisimple:

(@) All short exact sequences of R-modules split.
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(b) All R-modules are semisimple.
(c) All finitely generated R-modules are semisimple.

(d) The reqular left module R° is semisimple, and is a direct sum of a finite number of minimal
left ideals.

Proof: First, (a) and (b) are equivalent as a consequence of Lemma 4.4. The implication (b) = (c) is trivial,
and it is also trivial that (c) implies the first claim of (d), which in turn implies the second claim of (d).
Indeed, if R° = @, Li for some family {L;}i; of minimal left ideals. Then there exists a finite number
of indices i1,...,i, € I such that T = x;; + ... + x;, with x;; € L;, for each 1 < j < n. Therefore each
a € R may be expressed in the form

a=a-1g=ax;, +...+ax,

and hence R° = L;, + ...+ L;,. Therefore, it remains to prove that (d) = (b). So, assume that R satisfies
(d) and let M be an arbitrary non-zero R-module. Then write M = > _\ R - m. Now, each cyclic
submodule R - m of M is isomorphic to a submodule of R°, which is semisimple by (d). Thus R - m
is semisimple as well by Example 6(d). Finally, it follows from Proposition-Definition 11.1 that M is
semisimple. ]

Example 7

Fields are semisimple. Indeed, if V is a finite-dimensional vector space over a field K of dimension n,
then choosing a basis {e1, -, e,} of V yields V = Ke1 @ ... ® Ke,, where dimg(Ke;) = 1,
hence Ke; is a simple K-module for each 1 < i < n. Hence, the claim follows from Theorem-
Definition 11.2(c).

Corollary 11.3

Let R be a semisimple ring. Then:
(@) R° has a composition series;

(b) R is both left Artinian and left Noetherian.

Proof:

(@) By Theorem-Definition 11.2(d) the reqgular module R° admits a direct sum decomposition into a
finite number of minimal left ideals. Removing one ideal at a time, we obtain a composition series

for R°.
(b) Since R° has a composition series, it satisfies both D.C.C. and A.C.C. on submodules by Corol-
lary 8.4. In other words, R is both left Artinian and left Noetherian. m

Next, we show that semisimplicity is detected by the Jacobson radical.

Definition 11.4
A ring R is said to be J-semisimple if J(R) = 0.

Proposition 11.5
Any left Artinian ring R is J-semisimple if and only if it is semisimple.




Proof: “=": Assume R # 0 and R is not semisimple. Pick a minimal left ideal Iy < R (e.g. a minimal

element of the family of non-zero principal left ideals of R). Then 0 # Iy # R since Iy seen as an
R-module is simple.

Claim: [y is a direct summand of R°.

Indeed: since
h#0=JR)y= () I
I<R,

| maximal
left ideal

there exists a maximal left ideal mg < R which does not contain fy. Thus [y nmy = {0} and so we
must have R° = [y @ my, as R/my is simple. Hence the Claim.

Notice that then m, # 0, and pick a minimal left ideal /; of m,. Then 0 # /1 # my, else R would
be semisimple. The Claim applied to /; yields that /; is a direct summand of R°, hence also in my.
Therefore, there exists a non-zero left ideal my such that mg = /1 @ mq. Iterating this process, we
obtain an infinite descending chain of ideals

my2my 2my 2 -

contradicting D.C.C.

: Conversely, if R is semisimple, then R° ~ R/J(R) @ J(R) by Theorem-Definition 11.2 and so as

R-modules,

J(R) =J(R) - (R/J(R)®J(R)) = J(R) - J(R)
so that by Nakayama’s Lemma J(R) = 0.

Exercise 11.6

Let R = Z. Prove that J(Z) = 0, but not all Z-modules are semisimple. In other words, Z is
J-semisimple but not semisimple.

Pr

oposition 11.7

The quotient ring R/J(R) is J-semisimple.

Proof: Since by Exercise 9.2 the rings R and R := R/J(R) have the same simple modules (seen as abelian
groups), Proposition-Definition 9.1(a) yields:

JRY = (] amg(V)= [ anng(V)+J(R)=J(R)/JR) =0

Vsimple Vsimple
R—module R—module

12 The Artin-Wedderburn structure theorem
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The next step in analysing semisimple rings and modules is to sort simple modules into isomorphism
classes. We aim at proving that each isomorphism type of simple modules actually occur as direct
summand of the reqular module. The first key result in this direction is the following proposition:



33

Proposition 12.1

Let M be a semisimple R-module. Let {M;};/ be a set of representatives of the isomorphism classes
of simple R-submodules of M and for each i € / set

H; = Z V.

VM
V%Mi

Then the following statements hold:
) M= @ Hi:
(ii) every simple R-submodule of H; is isomorphic to M;;
(itt) Homg(H;, Hy) = {0} if i # i’; and

(v) it M = (—Bjej Vj is an arbitrary decomposition of M into a direct sum of simple submodules,

then
Fie 3 V= @ V- Ho
jel jel
Vj%/\/’l‘ Vj;Mz’

Proof: We shall prove several statements which, taken together, will establish the theorem.
Claim 1: If M = @, V; as in (iv) and W is an arbitrary simple R-submodule of M, then 3 j € J such
that W = V;.
Indeed: if {m; : M = @jej V; — Vj}je; denote the canonical projections on the j-th summand, then
3 j € J such that m;(W) # 0. Hence mj|w — V; is an R-isomorphism as both W and V; are simple.

Claim 2: if M = @, V; as in (iv), then M = D
ltl,- is isomorphic to M.

Indeed: the 1st statement of the claim is obvious and the 2nd statement follows from Claim 1 applied
to H,‘.

el H; and for each i € /, every simple R-submodule of

Claim 3: If W is an arbitrary simple R-submodule of M, then there is a unique i € [ such that W < H;.
Indeed: it is clear that there is a unique i € [ such that W =~ M;. Now consider w € W\{0} and write
w = >l W € @, V; with w; € V;. The proof of Claim 1 shows that if any summand w; # 0, then

(W) # 0, and hence W = V. Therefore w; = 0 unless V; = M;, and hence w € ﬁ/i, so that W < ltl,-.
Claim 4: Homg(H;, Hy) = {0} if i # i".

Indeed: if 0 # f € Homg(H;, Hr) and i # i, then there must exist a simple R-submodule W of H; such
that f(W) # 0, hence as W is simple, |y : W — f(W) is an R-isomorphism. It follows from Claim 2,

that f(W) is a simple R-submodule of Hy isomorphic to M;. This contradicts Claim 2 saying that every
simple R-submodule of H is isomorphic to My % M.

Now, it is clear that /tl,- C H; by definition. On the other hand it follows from Claim 3, that H; < ltli.
Hence H; = H; for each i € I, hence (iv). Then Claim 2 yields (i) and (ii), and Claim 4 yields (iii). ]

We give a name to the submodules {H;}; defined in Propostion 12.1:

Definition 12.2

(b) We let M(R) denote a set of representatives of the isomorphism classes of simple R-modules.
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(@) If Mis asemisimple R-module and S is a simple module, then the S-homogeneous component
of M, denoted S(M), is the sum of all simple R-submodules of M isomorphic to S.

Exercise 12.3

Let R be a semisimple ring. Prove the following statements.

(@) Every non-zero left ideal / is generated by an idempotent of R, in other words 3 e € R such
that e2 = e and | = Re. (Hint: choose a complement /” for /, so that R° = | @ I’ and write
1=e+ e withee/and e €/l Prove that | = Re.)

(b) If I is a non-zero left ideal of R, then every morphism in Homg(/, R°) is given by right
multiplication with an element of R.

(c) If e € R is an idempotent, then Endg(Re) =~ (eRe)°P (the opposite ring) as rings via the map
f — ef(e)e. In particular Endg(R°) =~ R°P via f — f(1).

(d) A left ideal Re generated by an idempotent e of R is minimal (i.e. simple as an R-module) if
and only if eRe is a division ring. (Hint: Use Schur’'s Lemma.)

(e) Every simple left R-module is isomorphic to a minimal left ideal in R.

We recall that:

Definition 12.4

Th

The centre of a ring (R, +,:) is Z(R) :={aeR|a-x=x-a VYV xeR}.

eorem 12.5 (Wedderburn)

Let R be a semisimple ring. Then the following statements hold:

(@) If Se M(R), then S(R°) # 0. Furthermore,

M(R)| < oo.

(b) We have
R° = @ S(R%),

SeM(R)

where each homogenous component S(R°) is a two-sided ideal of R and S(R°)T(R°) =0 if
S#TeM(R).

(c) Each S(R?) is a simple left Artinian ring, the identity element of which is an idempotent of R
lying in the centre of R.

Proof:

(@) By Exercise 12.3(d) every simple left R-module is isomorphic to a minimal left ideal of R, i.e. a
simple submodule of R°. Hence if S € M(R), then S(R°) # 0. Now, by Theorem-Definition 11.2,
the reqular module admits a decomposition

R-@V,

j€l
into a direct sum of a finite number of minimal left ideals V; of R, and by Claim 1 in the proof of
Proposition 12.1 any simple submodule of R° is isomorphic to V; for some j € J. Hence [M(R)| < .
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(b) Proposition 12.1(iv) also yields S(R°) = @V,;S V; and Proposition 12.1(a) implies that

- P sk

SEM(R)

Next notice that each homogeneous component is a left ideal of R, since it is by definition a sum of
left ideals. Now let L be a minimal left ideal contained in S(R°), and let x € T(R°) fora T € M(R)
with S # T. Then Lx € T(R°) and because ¢, : R° — R°,m — mx is an R-endomorphism
of R°, then either Lx = ¢, (L) is zero or it is again a minimal left ideal, isomorphic to L. However,
as S # T, we have Lx = 0. Therefore S(R°)T(R°) = 0, which implies that S(R°) is also a right
tdeal, hence two-sided.

(c) Part (b) implies that the homogeneous components are rings. Then, using Exercise 12.3(a), we may
write 1 = s (r) €5, Where S(R°) = Res with es idempotent. Since S(R°) is a two-sided ideal,
in fact S(R°) = Res = esR. It follows that es is an identity element for S(R°).

To see that es is in the centre of R, consider an arbitrary element a € R and write @ = X7 (r) 0T
with a7 € T(R®). Since S(R°)T(R°) =01if S # T € M(R), we have eser = dstes. Thus, as er
is an identity element for the for the T-homogeneous component, we have

esa = es Z ar = es Z erar = Z eserar

TeM(R) TeM(R) TeM(R)
= ésds
= dseés
= Z areres = ( Z arer)es = ( Z ar)es = aes.
TeM(R) TeM(R) TeM(R)

Finally, if L # 0 is a two-sided ideal in S(R°), then L must contain all the minimal left ideals of
R isomorphic to S as a consequence of Exercise 12.3 (check it!). It follows that L = S(R°) and
therefore S(R°) is a simple ring. It is left Artinian, because it is semissimple as an R-module. u

Scholium 12.6

If R is a semisimple ring, then there exists a set of idempotent elements {es | S € M(R)} such that
() es € Z(R) for each S € M(R);
(i) eser = dstes forall S, T € M(R);

(ii)) TR = Xsem(r) €5

(v) R = @scm(r) Res, where each Res is a simple ring.

Idempotents satisfying Property (i) are called central idempotents, and idempotents satisfying Prop-
erty (ii) are called orthogonal.

Remark 12.7
Remember that if R is a semisimple ring, then the reqular module R° admits a composition series.
Therefore it follows from the Jordan-Holder Theorem that

RR= P SR~ P é;s

SeM(R) SeM(R) i=1

for uniquely determined integers ns € Z-.
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Theorem 12.8 (Artin-Wedderburn)

If R is a semisimple ring, then, as a ring,

R= ] Mns(Ds),
SeM(R)

where Ds := Endg(S5)°P is a division ring.

Before we proceed with the proof of the theorem, first recall that if we have a direct sum decomposition
U=U@® - ®U, (r e Z=o), then Endg(U) is isomorphic to the ring of r x r matrices in which the
(i, /) entry lies in Homg(U;, U;). This is because any R-endomorphism ¢ : U — U may be written as

a matrix of components ¢ = (¢ij)1<ij<r where ¢;; : U; e,y 2, ¢ U=—= proj; U;, and when viewed in this
way R-endomorphisms compose in the manner of matrix multiplication. (Known from the GDM-lecture
if R is a field. The same holds over an arbitrary ring R.)

Proof: By Exercise 12.3(c), we have
Endg(R°) = R

as rings. On the other hand, since Homg(S(R°), T(R°)) = 0 for S % T (e.g. by Schur’s Lemma, or by
Proposition 12.1), the above observation yields

Endr(R°) = [] Ender(S(R%)),
SeM(R)

where Endgr(S(R°)) = M, (Endr(S)) = M, (Endg(S5)°)°P. Therefore, setting Ds := Endg(S)°P yields
the result. For by Schur’s Lemma Endg(S) is a division ring, hence so is the opposite ring . |

13 Semisimple algebras and their simple modules

From now on we leave the theory of modules over arbitrary rings and focus on finite-dimensional
algebras over a field K. Algebras are in particular rings, and since K-algebras and their modules
are in particular K-vector spaces, we may consider their dimensions to obtain further information. In
particular, we immediately see that finite-dimensional K-algebras are necessarily left Artinian rings.
Furthermore, the structure theorems of the previous section tell us that if A is a semisimple algebra
over a field K, then
- @ s = @ @s
SeM(A) SEM(A) i

where ns corresponds to the multiplicity of the isomorphism class of the simple module S as a direct
summand of A° in any given decomposition of A° into a finite direct sum of simple submodules. We shall
see that over an algebraically closed field the number of simple A-modules is detected by the centre
of A and also obtain information about the simple modules of algebras, which are not semisimple.

Exercise 13.1

Let A be an arbitrary K-algebra over a commutative ring K.

(a) Prove that Z(A) is a K-subalgebra of A.
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(b) Prove that if K is a field and A # 0, then K — Z(A),A — Al4 is an injective K-
homomorphism.

(c) Prove that if A= M,(K), then Z(A) = Kl,, i.e. the K-subalgebra of scalar matrices. (Hint:
use the standard basis of M,(K).)

(d) Assume A is the algebra of 2 x 2 upper-trianqular matrices over K. Prove that

ZA) = {(§2) lack}

We obtain the following Corollary to Wedderburn’s and Artin-Wedderburn’s Theorems:

Eeorem 13.2

Let A be a semisimple finite-dimensional algebra over an algebraically closed field K, and let
S € M(A) be a simple A-module. Then the following statements hold:

(a) S(A°) = M, (K) and dimk(S(A°)) = nZ;
(b) dimk(S) = ns;

(c) dimk(A) = Xsepa) dimk (S)?;

(d) IM(A)] = dimk (Z(A)).

Proof:

(a) Since K = K, Schur’s Lemma implies that Enda(S) =~ K. Hence the division ring Ds in the
statement of the Artin-Wedderburn Theorem is Ds = Enda(S)® =~ K° = K. Hence Artin-
Wedderburn (and its proof) applied to the case R = S(A°) yields S(A°) ~ M,.(K). Hence
dimg (S(A°)) = n2.

(b) Since S(A°) is a direct sum of ns copies of S, (a) yields:

n% =ns-dimg(S) = dimk(S) = ns

(c) follows directly from (a) and (b).
(d) Since by Artin-Wedderburn and (a), we we have A = [ [sc 4y Mns (K), clearly

Z(A)= H Z(M”5<K))= H = Kl,s,

SeM(A) SeM(A)

where dimg (Kl,,) = 1. The claim follows. -

Remark 13.3

Notice that in the above Theorem, we require the field K to be algebraically closed, so that we
can apply Part (b) of Schur’'s Lemma. This condition is in general too strong: in fact it would be
sufficient that the field K has the property that Enda(S) =~ K for all simple A-modules. Such a
field K is called a splitting field for A.
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Corollary 13.4

Let A be a finite-dimensional algebra over an algebraically closed field K. Then the number of
simple A-modules is equal to dimg (Z(A/J(A))).

Proof: We have observed that A and A/J(A) have the same simple modules (see Exercise 9.2), hence
IM(A)| = |[M(A/J(A))|. Moreover, the quotient A/J(A) is J-semisimple by Proposition 11.7, hence
semisimple by Proposition 11.5 because finite-dimensional algebras are left Noetherian rings. Therefore
it follows from Theorem 13.2(d) that

IM(A)] = [M(A/J(A))| = dimk (Z(A/J(A))) -

Corollary 13.5

Let A be a finite-dimensional algebra over an algebraically closed field K. If A is commutative, then
any simple A-module has K-dimension 1.

Proof: First assume that A is semisimple. As A is commutative, A = Z(A). Hence parts (d) and (c) of
Theorem 13.2 yield
IM(A)] = dime(A) = > dim(S)?,
SeM(A) T

=1

which forces dimg(S) = 1 for each S € M(A).

Now, if A is not semissimple, then again we use the fact that A and A/J(A) have the same simple modules
(that is seen as abelian groups). Because A/J(A) is semisimple and also commutative, the argument
above tells us that all simple A//(A)-modules have K-dimension 1. The claim follows. |



Chapter 3. Representation Theory of Finite Groups

Representation theory of finite groups is originally concerned with the ways of writing a finite group G
as a group of matrices, that is using group homomorphisms from G to the general linear group GL,(K)
of invertible n x n-matrices with coefficients in a field K for some positive integer n. Thus, we shall first
define representations of groups using this approach. Our aim is then to translate such homomorphisms
G — GL,(K) into the language of module theory in order to be able to apply the theory we have
developed so far. In particular, our first aim is to study the consequences of the Artin-Wedderburn
Theorem for the representations theory of finite groups.

Notation: throughout this chapter, unless otherwise specified, we let GG denote a finite group and K be
a commutative ring. Moreover, in order to simplify some arguments, we assume that all KG-modules
considered are free of finite rank when regarded as K-modules. (This implies, in particular, that they
are finitely generated as KG-modules.)
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14 Linear representations of finite groups

We start by reviewing some elementary notions and examples about representations of finite groups.
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Definition 14.1 (K-representation, matrix representation)

(a) A K-representation of G is a group homomorphism p : G — GL(V), where V =~ K"
(n € Z~¢) is a free K-module of finite rank.

(b) A matrix representation of G is a group homomorphism X : G — GL,(K) (n € Z~9).

In both cases the integer n is called the degree of the representation.

Often, a representation is called an ordinary representation if K is a field of characteristic zero (or
more generally of characteristic not dividing |Gl), and it is called a modular representation if K is a
field of characteristic p dividing |G|.

Remark 14.2

Recall that every choice of a basis B of V yields a group isomorphism
ag : GL(V) — GLy(K), ¢ — (¢)B

(where (@) denotes the matrix of ¢ in the basis B). Therefore, a K-representation p : G — GL(V)
together with the choice of a basis B of V gives rise to a matrix representation of G:

G —2— GL(V) —5 GL,(K)

Conversely, any matrix representation X : G — GL,(K) gives rise to a K-representation

p: G — GL(K")
g = p(g):K"—K"v—X(g)v,

namely we set V = K", see v as a column vector expressed in the standard basis of K" and X(g)v
denotes the standard matrix multiplication.

Example 8

(@) If G is an arbitrary finite group, then

is a K-representation of G, called the trivial representation of G.

(b) Let G = S, (n = 1) be the symmetric group on n letters. Let {eq,...,e,} be the standard
basis of V := K". Then

p: S, — GL(K")
o — p(o): K" — K" e eg

is a K-representation, called natural representation of S,.

(c) More generally, if X is a finite G-set, i.e. a finite set endowed with a left action - : Gx X — X,
and V is a free K-module with basis {e, | x € X}, then
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px: G — GL(V)
g = px(g):V-—V, e ey

is a K-representation of G, called permutation representation .
Clearly (b) is a special case of (c) with G =S, and X ={1,2,..., n}.

If X = G and the left action - : G x X — X is just the multiplication in G, then px =: preq
is called the reqular representation of G.

Definition 14.3 (Equivalent representations)

Let p1 : G — GL(V4) and py : G —> GL(V2) be two representations of G, where V4, V5 are two
free K-modules of finite rank. Then p1 and p, are called equivalent (or similar, or isomorphic) if
there exists a K-isomorphism a : V4 — V5 such that py(g) = a0 p1(g) o a™ for each g € G.

In this case, we write p1 ~ po.

Clearly ~ is an equivalence relation.

15 The group algebra and its modules

We now want to be able to see K-representations of a group G as modules, and more precisely as
modules over a K-algebra depending on the group G, which is called the group algebra:

Lemma-Definition 15.1 (Group algebra)

The group ring KG is the ring whose elements are the linear combinations >
and addition and multiplication are given by

Z Agg + Z Hgg = Z(Ag +Hg)g  and (Z Aq9) - (Z pnh) = Z (Agkn)gh

geG geG geG geG heG g,heG

geG Agg with Ag € K,

respectively. Thus KG is a K-algebra, which as a K-module is free with basis G. Hence we usually
call KG the group algebra of G over K rather than simply group ring.

Proof: By definition KG is a free K-module with basis G, and the multiplication in G is extended by K-
bilinearity to the given multiplication - : KG x KG — KG. It is then straightforward that KG bears both
the structures of a ring and of a K-module. Finally, axiom (A3) of K-algebras follows directly from the
definition of the multiplication and the commutativity of K. ]

Remark 15.2

Clearly the K-rank of KG is |G| and G < (KG)*. Moreover, KG is commutative if and only if G is
an abelian group. Also note that if K is a field, then it is clear that KG a left Artinian ring because
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we may consider K-dimesnions, so that by Hopkin's Theorem a KG-module is finitely generated if
and only if it admits a composition series.

Proposition 15.3

(@) Any K-representation p : G —> GL(V) of G gives rise to a KG-module structure on V, where
the external composition law is defined by the map

GxV — V
(gv) = g-v:i=p(g)(v)

extended by K-linearity to the whole of KG.

(b) Conversely, every KG-module (V, +,-) defines a K-representation

pv: G — GL(V)
g = pvig):V—V,vpy(g)i=g-v

of the group G.

Proof:

(a) Since V is a K-module, it is equipped with an internal addition + such that (V, +) is an abelian
group. It is then straightforward to check that the given external composition law makes (V, +)
into a KG-module.

(b) Clearly, it follows from the KG-module axioms that py(g) € GL(V) and also that py(g1g2) =
pv(g1) o pv(gz) for all g1, g2 € G, hence py is a group homomorphism. -

Notice that, since G is a group, the map KG — KG such that g — g~ for each g € G is an anti-
automorphism. It follows that any left KG-module M may be regarded as a right KG-module via the
right G-action m - g :== g~—' - m. Thus the sidedness of KG-modules is not usually an issue.

Example 9

The trivial representation of Example 8(b) corresponds to the so-called trivial KG-module, that is
the commutative ring K itself seen as a KG-module via the G-action

i GxK—K
(g.A)—g-A:=2

extended by K-linearity to the whole of KG.

Exercise 15.4

Let G be a finite group and let K be a commutative ring. Prove that the regular representation p;eq
of G defined in Exampale 8(c) corresponds to the reqular KG-module KG° via Proposition 15.3.

Remark 15.5

More generally, through Proposition 15.3, we may transport terminology and properties from KG-
modules to representations and conversely.
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For instance, we say that a representation is irreducible (or simple) if the corresponding KG-module
is irreducible (= simple). (Notice that it is tradition to use the term simple for modules, and the
term irreducible for representations.)

mma 15.6

Two representations p1 : G — GL(V4) and p2 : G —> GL(V2) are equivalent if and only if V4 = V;
as KG-modules.

Proof: If p1 ~ p and @ : Vi — V5 is a K-isomorphism such that p,(g) = a o pi(g) o a~ ! for each g € G,

then by Proposition 15.3 for every v € V4 and every g € G we have

g-a(v) = p2Ag)(a(v)) = alpi(g)(v)) = a(g - v),
hence a is a KG-isomorphism. Conversely, if o : Vj — V5 is a KG-isomorphism, then certainly it is a
K-homomorphism and for each g € G and by Proposition 15.3 for each v € V, we have

aopi(g)oa(v) = alpi(g)(a” (V) = alg-a™'(v)) = g ala™'(v) = g-v = pa(g)(v),
hence py(g) = ao pi(g) o a™' for each g € G. |

Finally we introduce an ideal of KG which encodes a lot of information about KG-modules.

Pr

oposition-Definition 15.7 (The augmentation ideal)

The map € : KG — K,dec Agg — dec Ag is an algebra homomorphism, called augmentation
homomorphism (or map). Its kernel ker(e) =: I/(KG) is an ideal and it is called the augmentation
ideal of KG. The following statements hold:

(@) I(KG) ={>gec A9 € KG | Xye Ag = 0} = annkq(K) and if K is a field /(KG) 2 J(KG);
(b) KG/I(KG) = K as K-algebras;
(c) I(KG) is a free K-module of rank |G|-1 with K-basis {g — 1| g € G\{1}};

Proof: Clearly, the map € : KG — K is the unique extension by K-linearity of the trivial representation

G — K* <€ K,g — 1k to KG, hence is an algebra homomorphism and its kernel is an ideal of the
algebra KG.

(@) I(KG) = ker(e) = {X4ec 299 € KG | DyegAg = 0} by definition of €. The second equality is

obvious by definition of annks(K), and the last inclusion follows from the definition of the Jacobson
radical.

(b) follows from the 1st isomorphism theorem.
(c) Let X ,ccAgg € I(KG). Then 3 Ay = 0 and hence
ZAgg: Z)‘QQ*OZ ZAQQ*ZAQZ Z)‘g(g*U: Z Aglg = 1),
geG geC geG geG geG geG\{1}
which proves that the set {g — 1 | g € G\{1}} generates /(KG) as a K-module. The above
computation also shows that
Do Aglg=1)=0 — >ig=0
geG\{1} geC

Hence A; = 0 V g € G, which proves that the set {g—1 | g € G\{1}} is also K-linearly independent,
hence a K-basis of /(KG). m
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Lemma 15.8
If K is a field of positive characteristic p and G is p-group, then /(KG) = J(KG).

Exercise 15.9 (Proof of Lemma 15.8. Proceed as indicated.)

(a) (Facultative: you can accept this result and treat (b), (c) and (d) only.) Recall that an ideal /
of a ring R is called a nil ideal if each element of / is nilpotent. Prove that if / is a nil left
ideal in a left Artinian ring R then / is nilpotent.

(b) Prove that g — 1 is a nilpotent element for each g € G\{1} and deduce that /(KG) is a nil
ideal of KG.

(c) Deduce from (a) and (b) that /(KG) < J(KG) using Exercise 10 on Exercise Sheet 2.

(d) Conclude that /(KG) = J(KG) using Proposition-Definition 15.7.

16 Semisimplicity and Maschke’s Theorem

‘ Throughout this section, we assume that K is a field.

Our first aim is to prove that the semisimplicity of the group algebra depends on both the characteristic
of the field and the order of the group.

Theorem 16.1 (Maschke)
If char(K)

Proof: By Proposition-Definition 11.2, we need to prove that every s.es. 0 — L MY N0 of KG-
modules splits. However, the field K is clearly semisimple (again by Proposition-Definition 11.2). Hence
any such sequence regarded as a s.e.s. of K-vector spaces and K-linear maps splits. So letg: N — M
be a K-linear section for ¢y and set

5:=|1T|decg_1ag: N — M
n. - fﬁzgecgqff(g”)

We may divide by |G|, since char(K) { |G| implies that |G| € K*. Now, if h € G and n € N, then

d(hn) Zg Ya(ghn) = Z gh)”'a(ghn) = ha(n)
IG\ ICI
and ’
~ L/JKG lin
Yo(n) = ¢ (g 'algn) g~ 'Yo(gn) = g~ 'gn =
@ 24 P |c| 2
where the last-but-one equality holds because g = Idy. Thus ¢ is a KG-linear section for (. ]
Example 10

If K = C is the field of complex numbers, then CG is a semisimple C-algebra, since char(C) = 0.
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It turns out that the converse to Maschke’s theorem also holds. We obtain it using the properties of
the augmentation ideal.

Theorem 16.2 (Converse of Maschke’s Theorem)

If KG is a semisimple K-algebra, then char(K) t |G|.

Proof: Set char(K) =: p and let us assume that p | |G]. In particular p must be a prime number. We have
to prove that then KG is not semisimple.

Claim: If 0 # V < KG is a KG-submodule of KG°, then V n I(KG) # 0.
Indeed: Let v =3} ;A9 € V\{0}. If £(v) = 0 we are done. Else, set t:= 3, h. Then

g(t) =Y 1=|G =0
heG

as char(K) | |G]. Hence t € I(KG). Now consider the element tv. On the one hand tv e V since V is a
submodule of KG°, and on the other hand tv € I(KG)\{0} since

tV:(Z h) ( Z Agg) Z <1K'Ag)h9=2 (Z )\g)X:Z e(v)x = s(tv)=2 e(v) = |Gle(v)=0.
heG geCG , eG geG

h,geG xeG xeG

The Claim implies that /(K'G), which is a KG-submodule by definition, cannot have a complement inKG°.
Therefore, by Proposition-Definition 11.1, KG° is not semisimple and hence KG is not semisimple by
Theorem-Definition 11.2. ]

In the case the filed K is algebraically closed, the following Exercise offers a second proof exploiting
Artin-Wedderburn.

Exercise 16.3 (Proof of the Converse of Maschke’s Theorem for K = K)

Assume K = K is an algebraically closed field of characteristic p with p | |G|. Set T := (2gec K-
(a) Prove that we have a series of KG-submodules given by KG° 2 I(KG) =2 T 2 0.
(b) Deduce that KG° has at least two composition factors isomorphic to the trivial module K.

(c) Deduce that KG is not a semisimple K-algebra using Theorem 13.2.

17 Simple modules over algebraically closed fields

Throughout this section, we assume that K = K is an algebraically closed field.

As mentioned in Chapter 2, §13 this hypothesis may always be replaced by the
weaker assumption that the field K is a splitting field for the group algebra KG,
which we simply call a splitting field for G.

We state here some elementary facts about simple KG-modules, which we obtain as consequences of
the Artin-Wedderburn structure theorem.
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Corollary 17.1

There are only finitely many isomorphism classes of simple KG-modules, or equivalently, there are
only finitely many irreducible K-representations of G, up to similarity.

Proof: Since K = K, the first claim follows from Corollary 13.4 and the equivalent characterisation from
Proposition 15.3. ]

Corollary 17.2

If G is an abelian group, then any simple KG-module is one-dimensional, or equivalently, all
irreducible K-representations of GG have degree one.

Proof: Since K = K and KG is commutative the first claim follows from Corollary 13.5 and the equivalent
characterisation from Proposition 15.3. ]

Corollary 17.3

Let p be a prime number. If G is a p-group and char(K) = p, then the trivial module is the unique
simple KG-module, up to isomorphism.

Proof: By Lemma 15.8 we have J(KG) = I(KG). Thus KG/J(KG) =~ K as K-algebras by Proposition-
Definition 15.7. Now, as K is commutative, Z(K) = K, and it follows from Corollary 13.4 that

IM(KG)| = dimg Z(KG/J(KG)) = dimg K = 1.

Remark 17.4

Another standard proof for Corollary 17.3 consists in using a result of Brauer’s stating that | M (KG)|
equals the number of conjugacy classes of G of order not divisible by the characteristic of the field K.

Corollary 17.5
If char(K) 1 |G

 then |Gl = Yse (k) dimk (S)*.

Proof: Since char(K) {1 |G
from Theorem 13.2 that

, the group algebra KG is semisimple by Maschke's Theorem. Thus it follows

D1 dimk(S)? = dimg (KG) = |G
SeM(KG) u



Chapter 4. Operations on Groups and Modules

In this chapter we show how to construct new KG-modules from old ones using standard module op-
erations such has tensor products, Hom-functors, duality, or using subgroups or quotients of the initial
group. Moroever, we study how these constructions relate to each other.

Notation: throughout this chapter, unless otherwise specified, we let GG denote a finite group and K be
a commutative ring. All modules over group algebras considered are assumed to be finitely generated
and free as K-modules, hence of of finite K-rank.
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18 Tensors, Hom's and duality

Definition 18.1 (Tensor product of KG-modules)

If M and N are two KG-modules, then the tensor product M ®x N of M and N balanced over K
becomes a KG-module via the diagonal action of G. In other words, the external composition law
is defined by the G-action

GX(/\/’@K/\/) — Mk N
(g.m®n) — g (m®n):=gm®gn

extended by K-linearity to the whole of KG.
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Definition 18.2 (Homs)

If M and N are two KG-modules, then the abelian group Homg (M, N) becomes a KG-module via
the so-called conjugation action of G. In other words, the external composition law is defined by
the G-action

G x Homg(M,N) — Homg (M, N)
(g.f) — g f:M—N,mw—(g-f)(m):=g-f(g~"-m)

extended by K-linearity to the whole of KG.

Specifying Definition 18.2 to N = K yields a KG-module structure on the K-dual M* = Homk (M, K).

Definition 18.3 (Dual of a KG-module)

(@) If M is a KG-module, then its K-dual M* becomes a KG-module via the external composition
law is defined by the map

Gx M — M*
(g.f) = g-f:M—Km—(g-f)(m):=1f(g" m)

extended by K-linearity to the whole of KG.

(b) If M, N are KG-modules, then every KG-homomorphism p € Homgg(M, N) induces a KG-
homomorphism

prr N* — M*
f - p*(f):M— K,m— p*(f)(m) :=fop(m).

(See Propotion 4.3))

‘ For the remainder of this section, assume that K is a field.

Properties 18.4
Let M, N be KG-modules. Then the following properties hold:

(@) If p: M — N is an injective (resp. surjective) KG-homomorphism, then p* : N* — M* is
surjective (resp. injective).
Conclude that if X < N is a KG-submodule, there exists a KG-submodule Y € N* such that
Y =~ (N/X)* and N*/Y =~ X*.

(b) M = (M*)* as KG-modules (in a natural way).
(c) M*®N* = (M®N)* and M* ®k N* = (M®k N)* as KG-modules (in a natural way).

(d) M is simple, resp. indecomposable, if and only if M* is simple, resp. indecomposable.

Proof: Exercise. [ |
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Lemma 18.5
If M and N are KG-modules, then Homg (M, N) ~ M* ®x N as KG-modules.

Proof: By Exercise 3(c), Sheet 1, there is a K-isomorphism

6= 9/\//’/\/: M* ®K N —> HomK(/\/I, /\/)
f®n —  0(f®n):M— N,m— 6(f®n)(m)=f(m)n

Now, for every g € G, f e M*, n € N and m € M, we have on the one hand
6(g - (f®n))(m)=06(g-f®@g-n))(m)=(g-f)(m)g-n
=f(g™"-m)g-n
and on the other hand
(g-0(f@m)(m)=g-(6(f@n)(g~'m) =g-(f(g~'mn) =f(g~"-m)g-n,
hence 6(g - (f®n)) = (g- 6(f @ n)) and it follows that 6 is in fact a KG-isomorphism. |

Remark 18.6

In case M = N the above constructions yield a KG-module structure on Endx (M) = M* @k M.
Moroever, if dimg (M) =:n, {mq,...,m,} is a K-basis of M and {m?,...,my} is the dual K-basis,
then Idy € Endk (M) corresponds to the element r:= >"_; m¥ ® m; € M* ®k M. (Exercise!)

This allows us to define the KG-homomorphism:

I K — M'®cM

1 — T

Definition 18.7 (Trace map)

If M is a KG-module, then the trace map associated to M is the KG-homomorphism

Try: M*@QeM — K
f®&m —  f(m).

&)tation 18.8

If M and N are KG-modules, we shall write M | N to mean that M is isomorphic to a direct
summand of N.

Lemma 18.9
If dimg (M) € K*, then K | M* ®x M.

Proof: By Lemma-Definition 4.4(c) it suffices to check that ;—
M* @k M = ker(Trpr) @ K, hence K | M* ®¢ M. So let A€ K. Then

ﬁl is a KG-section for Trpy, because then

)\ n .
Tr/\/]()\r) = WTI’M(; m[ ®m[)

dLmK zm ml
dlmK 21 = A

1 1
[TW ° dimg (M) '](A) = dimg (M)
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Hence Try o WI = ldgk. ]
Exercise 18.10
" [Let K be a field and let M be a KG-module. Prove that:
(@) Trap is @ KG-homomorohism and Trp o 9/\7,%4 coincides with the ordinary trace of matrices;
(b) M| M®x M* @k M,
(c) if p | dimg (M), then MAM | M @k M* @k M.

19 Fixed and cofixed points

Fixed and cofixed points explain why in the previous section we considered tensor products and Hom's
over K and not over KG.

Definition 19.1 (G-fixed points and G-cofixed points)
Let M be a KG-module.

(a) The G-fixed points of M are by definition M := {meM|g-m=mVge G}.
(b) The G-cofixed points of M are by definition Mg := M/(I(KG) - M).

In other words MY is the largest KG-submodule of M on which G acts trivially and Mg is the largest
quotient of M on which G acts trivially.

Lemma 19.2
If M, N are KG-modules, then Homg (M, N)¢ = Homgg(M, N) and (M @k N)g = M ®kc N.

Proof: A K-linear map f : M — N is a morphism of KG-modules if and only if f(g - m) = g - f(m) for all
g€ G and all m € M, that is if and only if g=" - f(g - m) = f(m) for all g € G and all m € M, which
happens if and only if g - f(~1-m) = f(m) for all g € G and all m € M. This is exactly the condition that
f is fixed under the action of G.

Second claim: similar, Exercise! [ |

Exercise 19.3

Let K be a field and let 0 —> [ -5 M i» N — 0 be a s.e.s. of KG-modules. Prove that if
M = L@ N, then the s.e.s. splits.

[Hint: Consider the exact sequence induced by Homk (N, —) (as in Proposition 4.3(a)) and use the
fact that the modules considered are all finite-diemensional.|
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20 Inflation, restriction and induction

In

this section we define new module structures from known ones for subgroups, overgroups and quo-

tients, and investigate how these relate to each other.

Remark 20.1

(@) If H < G is a subgroup, then the inclusion H — G, h — h can be extended by K-linearity
to an injective algebra homomorphism ¢ : KH — KG, > .y Anh — > pcpy Anh. Hence KH is
a K-subalgebra of KG.

b) Similarly, if U < G is a normal subgroup, then the quotient homomorphism G — G/U,
y g
g — gU can be extended by K-linearity to an algebra homomorphism 7 : KG — K[G/U].

It is clear that we can always perform changes of the base ring using the above homomorphism in order

to

obtain new module structures. This yields two natural operations on modules over group algebras

called inflation and restriction.

Definition 20.2 (Inflation)

Let U < G is a normal subgroup. If M is a K[G/U]-module, then M may be regarded as a
K G-module through a change of the base ring via s, which we denote by Infg/u(/\/l) and call the
inflation of M from G/U to G.

Definition 20.3 (Restriction)

Let H < G be a subgroup. If M is a KG-module, then M may be regarded as a KH-module
through a change of the base ring via t, which we denote by Resf,(/\/l) or simply Mlﬁ and call the
restriction of M from G to H.

Remark 20.4

Le

(@) f H < G is a subgroup, M is a KG-module and p : G — GL(M) is the associated
K-representation, then the K-representation associated to M lg is simply the composite
morphism

H- G- GLm).

(b) Similarly, if U < G is a normal subgroup, M is a K[G/U]-module and p : G/U — GL(M)
is the associated K-representation, then the K-representation associated to Im‘g/U(/\/l) is
simply

G5 G/UL GLM).

mma 20.5 (Properties of restriction)

(@) If H < G and My, M, are two KG-modules, then (My @ M) |4 = MG dMa] &

(b) (Transitivity of restriction.) If L < H < G and M is a KG-module, then /Vll,f,iLH: /\/Ilf.
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Proof: (a) Straightforward from the fact that the external composition law on a direct sum is defined
componentwise.

(b) If ¢y 4 : L — H denotes the canonical inclusion of L in H, tyy ¢ : H — G the canonical inclusion
of Hin G and ;¢ : L — G the canonical inclusion of L in G, then

LHGOlH=LUG-

Hence performing a change of the base ring via (; ¢ is the same as performing two successive
changes of the base ring via first t;y,c and then t; 5. Hence M [&|1'= M | €. [ |

A third natural operation comes from extending scalars from a subgroup to the initial group.

Definition 20.6 (/nduction)

Let H < G be a subgroup and let M be a KH-module. Regarding KG as a (KG, KH)-bimodule,
we define the induction of M from H to G to be the left KG-module

Ind& (M) := KG ®xpy M.

We sometimes also write M1 instead of Ind$(M).

Example 11 (Fundamental example)

If H= {1} and M = K, then K 1{,= KG &« K = KGC.

First, we analyse the structure of an induced module in terms of the left cosets of H.

Remark 20.7

Recall that G/H = {gH | g € G} denotes the set of left cosets of H in G. Moreover, we write
[G/H] for a set of representatives of these left cosets. In other words, [G/H] = {g1,...,g|G.H}
(where we assume that g1 = 1) for elements g1, ..., g|g.y € G such that g;H # g;H if i # j and
G is the disjoint union of the left cosets of H, so that

G= |_| gH=g1HI_|...I_lg|G:H|H.
g9elG/H]

It follows that
KG= & gKH,
ge[G/H]
where gKH = {g > cyAnh | An € K Vh € H}. Clearly, gKH = KH as right KH-modules via
gh — h for each h € H. Therefore

KG= @ KH=(KH) "
9€[G/H]

and hence is a free right KH-module with a KH-basis given by the left coset representatives
in [G/H].

In consequence, if M is a given KH-module, then we have

KGeknM=( B gKH)@knM= @ (GKH@kuM)= P (geM),
ge[G/H] ge[G/H] ge[G/H]
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where we set
gOM:={g®em|meM} < KC®xnM.

Clearly, each g ® M is isomorphic to M as a K-module via the K-isomorphism
gOM — M, gRm— m.

It follows that
rki (Ind§(M)) = |G : H| - rkx(M) .

Next we see that with its left action on KG ®ky M, the group G permutes these K-submodules:
for if x € G, then xg; = g;h for some h € H, and hence

x-(gi®m)=xg;®m=gh®m=g;®hm.
This action is also clearly transitive since for every 1 < i,j < |G : H| we can write
9;9; (g ®M) = g; @M.

Exercise: Prove that the stabiliser of g1 ® M is H (where g1 = 1) and deduce that the stabiliser of
giOMis gngf1.

Proposition 20.8 (Universal property of the induction)

Let H < G, let M be a KH-module and let j : M — KG ®kny M, m — 1 ® m be the canonical
map (which is in fact a KH-homomorphism). Then, for every KG-module N and for every KH-
homomorphism ¢ : M — Resf,(N), there exists a unique KG-homomorphism @ : KGQxyM — N
such that o j = ¢, or in other words such that the following diagram commutes:

M—% N

o 7
i Y

Ind§ (M)

Proof: The universal property of the tensor product yields the existence of a well-defined homomorphism of
abelian groups

(PZ KG@KHM — N
a®m — a-@(m) .

which is obviously KG-linear. Moreover, for each m € M, we have oj(m) = p(1®m) = 1-¢(m) = @(m),
hence @ o j = ¢. Finally the uniqueness follows from the fact for each a € KG and each m € M, we have

pla@m) =¢(a-(1®@m)) =a-p(1@m)=a-(poj(m))=a-¢g(m)

hence there is a unique possible definition for . ]

Induced modules can be hard to understand from first principles, so we now develop some formalism
that will enable us to compute with them more easily.

To begin with, there is, in fact, a further operation that relates the modules over a group G and a
subgroup H called coinduction. Given a KH-module M, then the coinduction of M from H to G is the
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left KG-module Coind%(M) := Homkx(KG, M), where the left KG-module structure is defined through
the natural right KG-module structure of KG:

KG x Homgp(KG,M) — Homgy(KG, M)
(9.6) = g-0:KG— M, x—(g-0)(x) :=6(x-g)
Example 12
If H= {1} and M = K, then Co'mdﬁ}(K) ~ (KG)* (i.e. with the KG-module structure of (KG)* of
Definition 18.3).
Exercise: exhibit a KG-isomorphism between the coinduction of K from {1} to G and (KG)*.

Now, we see that the operation of coinduction in the context of group algebras is just a disquised
version of the induction functor.

Lemma 20.9 (Induction and coinduction are the same)

If H < G is asubgroup and M is a KH-module, then KG®kxyM = Homg(KG, M) as KG-modules.
In particular, KG =~ (KG)* as KG-modules.

Proof: Mutually inverse KG-isomorphisms are defined by

[ KG@KH M I HomKH(KG, M)
g®m —  P(g®m): KG— M, x — (xg)m

and

Y. HomKH(KC, M) — KG@KHM
0 = Dgerem 9® 097

It follows that in the case in which H = {1} and M = K,
KG =~ KG ®k K =~ Homg (KG, K) =~ (KG)*

as KG-modules. Here we emphasise that the last isomorphism isn’t an equality. See the previous
example. |

Theorem 20.10 (Adjunction | Frobenius reciprocity /| Nakayama relations)

Let H < G be a subgroup. Let N be a KG-module and let M be a KH-module. Then, there are
K-isomorphisms:

(@) Homg (M, Homkg(KG, N)) = Homgg(KG @k M, N),
or in other words, Homg (M, Niﬂ) > HomKC(/\/ITE,, N);

(b) HomKH(/\/ig, /V’) = HomKG(N, MTE,) .

Proof: (a) Since induction and coinduction coincide, we have Homg¢(KG, N) =~ KG ®kxc N = N as KG-
modules. Therefore, Homx(KG, N) =~ N |& as KH-modules, and it suffices to prove the second
isomorphism. In fact, this K-isomorphism is given by the map

®: Homgy(M,NLE) — Homgg(M1§, N)
¢ -
where @ is the KG-homomorphism induced by ¢ by the universal property of the induction. Since
@ is the unique KG-homomorphism such that @ o j = ¢, setting
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g HOch(/V’Tf,,N) — HomKH(/\/I,/\/lf,)
o = Yoj
provides us with an inverse map for ®. Finally, it is straightforward to check that both ® and ¥
are K-linear.

(b) Exercise: Check that the so-called exterior trace map
~G
Try: HomKH(/\/lf,, M) —>  Homgg(N, /\/ITg)
Gy G 1
@ = Try(e) :N— Mg ne= 36 g @el(g'n)

provides us with the required K-isomorphism. ]

Proposition 20.11

Let H < G be a subgroup. Let N be a KG-module and let M be a KH-module. Then, there are
KG-isomorphisms:

Proof: (a) It follows from the associativity of the tensor product that
(M @k N1i)1i= KG ®kn (M @k N1jj) = (KG®kn M) @k N = M1j; &N
(b) Exercise! ]
Exercise 20.12
" [Let L < H < G. Prove that:
(a) (transitivity of induction) if M is a KL-module, then M1&= (M11)1%;
(b) if M is a KH-module, then (M*)1&> (M15)*; and

(c) if M is a KG-module, then (M*) |G~ (M |&)*.

Exercise 20.13
Let K be a field.

(a) Let U, V, W be KG-modules. Prove that there isomorphisms of KG-modules:

(i) Homk (U ®k V, W) = Homg (U, V* ®« W); and
(it) Homkg(U®k V, W) =~ Homkg (U, V* @k W) =~ Homkg (U, Homk (V, W)).

(b) Prove Proposition 20.11(b) using Proposition 20.11(a).




Chapter 5. The Mackey Formula and Clifford Theory

The results in this chapter go more deeply into the theory. We start with the so-called Mackey de-
composition formula, which provides us with yet another relationship between induction and restriction.
After that we explain Clifford’s theorem, which explains what happens when a simple representation is
restricted to a normal subgroup. These results are essential and have many consequences throughout
representation theory of finite groups.

Notation: throughout this chapter, unless otherwise specified, we let GG denote a finite group and K be
a commutative ring. All modules over group algebras considered are assumed to be free of finite rank
as K-modules (hence, in particular, they are finitely generated as KG-modules).
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21 Double cosets

Definition 21.1 (Double cosets)
Given subgroups H and L of G we define for each g € G

Hgl = {hgke G | he H,k e L}

and call this subset of G the (H, L)-double coset of g. Moreover, we let H\G/L denote the set of
(H, L)-double cosets of G.
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First, we want to prove that the (H, L)-double cosets partition the group G.

Lemma 21.2
Let H,L < G.

(a) Each (H, L)-double coset is a disjoint union of right cosets of H and a disjoint union of left
cosets of L.

(b) Any two (H, L)-double cosets either coincide or are disjoint. Hence, letting [H\G/L] denote
a set of representatives for the (H, L)-double cosets of G, we have

G= || HgL.
ge[H\G/1]

Proof:

(@) If hgk € HgL and ky € L, then hgk - ky = hg(kky) € HgL. It follows that the entire left coset of
L that contains hgk is contained in HgLl. This proves that HgL is a union of left cosets of L. A
similar argument proves that Hgl is a union of right cosets of H.

(b) Let g1,g2 € G. If higiki = hagaky € HgiL n HgaL, then g1 = hy 'hagakok; ' € Hgal so that
HgiL = Hg,L. Similarly Hg,L = Hg4L. Thus if two double cosets are not disjoint, they coincide. g

If X is a left G-set we use the standard notation G\X for the set of orbits of G on X, and denote a set
of representatives for theses orbits by [G\X]. Similarly if Y is a right G-set we write Y/G and [Y/G].
We shall also repeatedly use the orbit-stabiliser theorem without further mention: in other words, if X
is a transitive left G-set and x € X then X =~ G/Stabg(x) (i.e. the set of left cosets of the stabiliser of
x in G), and similarly for right G-sets.

Exercise 21.3

(a) Let H,L < G. Prove that the set of (H, L)-double cosets is in bijection with the set of orbits
H\(G/L), and also with the set of orbits (H\G)/L under the mappings

HglL — H(glL) e H\(G/L)
Hgl — (Hg)L € (H\G)/L.
This justifies the notation H\G/L for the set of (H, L)-double cosets.
(b) Let G = Ss3. Consider H =L := S, = {ld, (1 2)} as a subgroup of S;5. Prove that
[S2\S3/S2] = {Id, (1 2 3)}

while

52\53/52 = {{Id, (1 2)},{(123),(132),(13),(23)}}.
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22 The Mackey formula

If H and L are subgroups of G, we wish to describe what happens if we induce a KL-module from L to
G and then restrict it to H.

Remark 22.1

We need to examine KG seen as a (KH, KL)-bimodule (i.e. with left and right external laws by
multiplication in G). Since G = |_|ge[H\G/L] Hgl, we have

KG= @ K{Hgl)
ge[H\G/L]

as (KH, KL)-bimodule, where K{(HgL) denotes the free K-module with K-basis HgL.
Now if M is a KL-module, we will also write IM for g ® M, which is a left K(9L)-module with

(gkg™") - (g@m) = g®@km
for each k € L and each m € M. With this notation, we have
K{HgL) = KH ®kHna) (g ®KL),

where hgk € HgL corresponds to h® g ® k.

Theorem 22.2 (Mackey formula)
Let H,L < G and let M be a KL-module. Then, as KH-modules,

MglE= @D (ML) Hina -
ge[H\G/L]

Proof: It follows from Remark 22.1 that as left K H-modules we have

MGG~ (KGR M) G~ @  K(HgL)®ki M

ge[H\G/L]
> P KH®kw~u) (g®KL) QM
ge[H\G/L]
> @ KH®kwAw) (gOM)|ijna
ge[H\G/L]
= @ (ngiIngL)TﬂmgL .
ge[H\G/L] m

Remark 22.3

Given an arbitrary finite group Z, write xzmod for the category of KZ-modules which are free of
finite rank as K-modules. Then, expressed in categorical terms, the Mackey formula says that we
have the following equality of functors from x;mod to xymod:

Resf olnd{ = @ Ind} 4 o Res;t 4 olnn(g)
ge[H\G/L]

where Inn(g) is conjugation by g € G.
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Exercise 22.4

Let H,L < G, let M be a KL-module and let N be a KH-module. Use the Mackey formula to
prove that:

(@) M1F @kN1E= Dgepmnc (M ima kN a) Tina

(b) Homg (M 1§, N1E) = @Dgeprn gy (Homa (ML [T o N o)) Mo -

23 Clifford theory

We now turn to Clifford’s theorem, which we present in a weak and a strong form. Clifford theory is a
collection of results about induction and restriction of simple modules from/to normal subgroups.

’ Throughout this section, we assume that K is a field.

First we emphasise again, that this is no loss of generality: indeed if S were a simple KG-module
with K an arbitrary commutative ring, then letting / be the annihilator in K of S, we have that / is a
maximal ideal of K, so that K/I is a field and S is a (K/I)G-module.

Theorem 23.1 (Clifford’s Theorem, weak form)

If U< G is anormal subgroup and S is a simple KG-module, then Slg is semisimple.

Proof: Let V be any simple KU-submodule of S|§. Now, notice that for every g € G, gV := {gv | ve V}
is also a KU-submodule of Slg, since U 4 G for any u € U, we have

u-gV=g-(g"'ug)V =gV
-
eu
Moroever, gV is also simple, since if W were a non-trivial proper KU-submodule of gV then g~'W

would also be a a non-trivial proper submodule of g~'gV = V. Now decgv is non-zero and it is a
K G-submodule of S, which is simple, hence >} .; gV = S. Restricting to U, we obtain that

Sig=> gV
geCG
is a sum of simple KU-submodules. Hence Sig is semisimple. ]

Remark 23.2
The KU-submodules gV which appear in the proof of Theorem 23.1 are isomorphic to modules we
have seen before: more precisely the map

gV — gV

gV = gv

is a KU-isomorphism, since U < G implies that 9U = U and hence the action of U on g ® V (see
Remark 22.1) and gV is prescribed in the same way.




Theorem 23.3 (Clifford’s Theorem, strong form)

Let U < G be a normal subgroup and let S be a simple KG-module. Then we may write

Sli=Si'®---@ S

multiplicities ay, ..., a, respectively. Moreover, the following statements hold:
(i) the group G permutes the homogeneous components of Slg transitively;
(i) a1 =ay=---=a, and dimk(S1) = --- = dimg(S;); and

(ii)) S=(5/")1f;, as KG-modules, where H; = Stabg(S]").

Proof: The fact that S |§ is semisimple and hence can be written as a direct sum as claimed follows from
Theorem 23.1. Moreover, by the chapter on semisimplicity of rings and modules, we know that for each
1 < i < r the homogeneous component S/ is characterised by Proposition 12.1: it is the unique largest
K U-submodule which is isomorphic to a direct sum of copies of S;.

Now, if g € G then g(S{") = (gS:)%, where gS; is a simple KU-submodule of S| (see the proof
of the weak form of Clifford’s Theorem). Hence there exists an index 1 < j < r such that g5; = S; and
g(S/") < S;” (alternatively to Proposition 12.1, the theorem of Krull-Schmidt can also be invoked here).
Because dim(S;) = dimk(gS;), we have that a; < a;. Similarly, since S; = g~'S;, we obtain a; < a;.
Hence a; = a; holds. Because

SIG=9(S1E) =g(S{H@--@9(5"),

we actually have that G permutes the homogeneous components. Moreover, as decg(Sf‘) is a non-

zero KG-submodule of S, which is simple, we have that 3} . g(5{") = S, and so the action on the
homogeneous components is transitive. This establishes both (i) and (ii).
For (iii), we define a K-homomorphism via the map

o (S))1,= KC®kH, ST' = Dyefop 9@ ST — S
g®m — gm

that is, where g®m € g®S;". This is in fact a KG-homomorphism. Furthermore, the K-subspaces g(S;")
of S are in bijection with the cosets G/H;, since G permutes them transitively by (i), and the stabiliser
of one of them is Hy. Thus both KG ®xy, S;' and S are the direct sum of |G : H;| K-subspaces g ® S}
and g(S7") respectively, each K-isomorphic to S{' (via g ® m <> m and gm < m). Thus the restriction
of ® to each summand is an isomorphism, and so ¢ itself must be bijective, hence a KG-isomorphism.

One application of Clifford’s theory is for example the following Corollary:

Corollary 23.4

for some subgroup H < G.

Proof: We proceed by induction on |G|.

If |G| =1 or |G] is a prime number, then G is abelian and any simple module S is 1-dimensional, so
H =G, X =S and we are done.
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where r € Z-p and Sq,..., S, are pairwise non-isomorphic simple KU-modules, occurring with

Assume K is a splitting field for G of arbitrary characteristic. If p is a prime number and G is a
p-group, then every simple KG-module has the form XTE,, where X is a 1-dimensional K H-module
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So assume |G| = p? with b > 1, and let S be a simple KG-module and consider the subgroup
U={geGlg-x=x VxeS5}.

This is obviously a normal subgroup of G since it is the kernel of the K-representation associated to S.
Hence S = Infg/U(T) for a simple K[G/U]-module T.

Now, if U # {1}, then |G/U| < |G], so by the induction hypothesis there exists a subgroup H/U < G/U

and a 1-dimensional K[H/U]-module Y such that T = Indg%(Y). But then

S = Infg,,(T) = InfZ, o Indy}5(Y) = Indfy o Inff}(Y),

so that setting X := Ian/U(Y) yields the result. Thus we may assume U = {1}.

If G is abelian, then all simple modules are 1-dimensional, so we are done. Assume now that G is not
abelian. Then G has a normal abelian subgroup A that is not central. Indeed, to construct this subgroup
A, let Z;(G) denote the second centre of G, that is, the preimage in G of Z(G/Z(G)) (this centre is
non-trivial as G/Z(G) is a non-trivial p-group). If x € Z,(G)\Z(G), then A := (Z(G), x) is a normal
abelian subgroup not contained in Z(G). Now, applying Clifford’s Theorem yields:

Sl{=Sl'"@---®S”

where r € Z.g, S1,...,S, are non-isomorphic simple KA-modules and S = (S{“)Tfh, where H; =
Stabg(S7'). We argue that V := SJ" must be a simple KH;-module, since if it had a proper non-
trivial submodule W, then W TE,1 would be a proper non-trivial submodule of S, which is simple: a

contradiction. If Hy # G then by the induction hypothesis V = X Tﬁ, where H < H; and X is a
1-dimensional KH-module. Thefore, by transitivity of the induction, we have

S = (SN = (X116 = X156,

as required.
Finally, the case Hy = G cannot happen. For if it were to happen then

Si§=Sly=s",

is simple by the weak form of Clifford’s Theorem, hence of dimension 1 since A is abelian. The elements
of A must therefore act via scalar multiplication on S. Since such an action would commute with the
action of G, which is faithful on S, we deduce that A = Z(G), which contradicts the construction of A. B

Remark 23.5

This result is extremely useful, for example, to construct the complex character table of a p-group.
Indeed, it says that we need look no further than induced linear characters. In general, a KG-
module of the form NTg for some subgroup H < G and some 1-dimensional KH-module is called
monomial. A group all of whose simple CG-modules are monomial is called an M-group. (By the
above p-groups are M-groups.)




Chapter 6. Projective Modules for the Group Algebra

We continue developing techniques to describe modules that are not semisimple and in particular inde-
composable modules. The indecomposable projective modules are the indecomposable summands of the
regular module. Since every module is a homomorphic image of a direct sum of copies of the reqular
module, by knowing the structure of the projectives we gain some insight into the structure of all modules.

Notation: throughout this chapter, unless otherwise specified, we let G denote a finite group and K
be a field. (We will understand in the coming chapters, why it is enough for our purpose to focus on
fields, when considering projective module over the group algebra.) All modules over group algebras
considered are assumed to be finite-dimensional over K, hence finitely generated as KG-modules.
When no confusion is to be made, we denote the regular module simply by KG instead of KG°.
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24 Radical, socle, head

Before focusing on projective modules, at this point we examine further the structure of KG-modules
which are not semisimple, and try to establish connections with their semisimple submodules, semisimple
quotients, and composition factors. This leads us to the definitions of the radical and the socle of a
module.
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Definition 24.1

Let M be a KG-module.

63

(@) The radical of M is its submodule rad(M) := ﬂ\/EMaX(M) V where Max(M) denotes the set

of maximal KG-submodules of M.

(b) The head of M is the quotient module hd(M) := M/ rad(M).

(c) The socle of M, denoted soc(M) is the sum of all simple submodules of M.

Notice that in our setting (i.e. K is a field) KG-modules are always Noetherian, so provided M # 0 the
above intersection is non-empty and hence rad(M) # M. Also, informally (talks/spoken mathematics)
one also uses the words top and bottom instead of head and socle, respectively.

Lemma 24.2
Let M be a KG-module. Then the following KG-submodules of M are equal:

(1) rad(M);

(2) J(KG)M;

(3) the smallest KG-submodule of M with semisimple quotient.

Recall that if V < M is a maximal submodule, then M/V is simple. Moreover, if V4,..., V, (r € Z~y)
are maximal submodules of M, then the map

o: M — MVi®---@M/V,
m — (m+V...,m+V,)
is a KG-homomorphism with kernel ker(¢) = V4 n--- V.. Hence M/(Vi n---n V) = Im(p) is

semisimple, since it is a submodule of a semisimple module. Therefore M/rad(M) is a semisimple
quotient. It remains to see that it is the smallest such quotient.

If X < M is a KG-submodule with M/X semisimple, then by the Correspondence Theorem, there
exists KG-submodules Xi, ..., X; of M (r € Z-¢) containing X such that

M/X =X/ XX, /X and Xi/X is simple V1 <i<r.

For each 1 < i < r, let Y; be be the kernel of the projection homomorphism M — M/X — X;/X, so
that Y; is maximal (as X;/X is simple) and X = Y; n... " Y,. Thus X 2 rad(M), as required.

: Observe that the quotient module M/J(KG)M is a KG/J(KG)-module as

J(KG) (M/J(KG)M) = 0.

Now, as KG/J(KG) is semisimple (by Proposition 11.5 and Proposition 11.7), M/J(KG)M is a
semisimple KG/J(KG)-module by definition of a semisimple ring, but then it is also semisimple as
a KG-module. Since we have already proved that rad(M) is the largest KG-submodule of M with
semisimple quotient, we must have that rad(M) < J(KG)M.

: If Z € M is any KG-submodule for which M/Z is semisimple, certainly J(KG) - M/Z = 0, because

J(KG) annihilates all simple KG-modules by definition, and it follows that J(KG)M < Z. Thus,
again as we already know that (1)=(3), we obtain that J(KG)M < rad(M).
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Example 13

If M is a semisimple KG-module, then soc(M) = M by definition, rad(M) = 0 by the above Lemma,
and hence hd(M) = M.

mma 24.3
Let M be a KG-module. Prove that the following KG-submodules of M are equal:

(1) soc(M);
(2) the largest semisimple KG-submodule of M;
(3) {me M| J(KG)-m = 0}.

Proof: Exercise. [Hint: {m € M | J(KG) - m = 0} is the largest KG-submodule of M annihilated by J(KG),

and hence may be seen as a KG/J(KG)-module.] |

Remark 24.4 (Socle, radical and Loewy layers)

Ex

We can iterate the notions of socle and radical: for each KG-module M and each n € Z-, we define
inductively

rad" (M) := rad (rad”*1 (/VI)) and s0c”(M)/soc"~ (M) := soc(M/soc" " (U))
where we understand that rad' (M) = rad(M) and soc' (M) = soc(M).
Exercise. Prove that:
(a) rad" (M) = J(KG)" - M and soc"(M) = {m e M | J(KG)" - m = 0};
(b) --- < rad*(M) < rad*(M) < rad(M) € M and 0 < soc(M) < soc?(M) < soc3(M) < - -

The chains of submodules in (b) are called respectively, the radical series and socle series of M.
The radical series of M is also known as the Loewy series of M. The quotients rad”~'(M)/rad” (M)
are called the radical layers, or Loewy layers of M, and the quotients soc”(M)/soc"' (M) are
called the socle layers of M.

ercise 24.5

Let M and N be KG-modules. Prove the following assertions.
(a) Foreveryn e Zxq, rad"(M®N) = rad" (M)@®rad” (N) and soc"(M@®N) = soc”(M)@soc” (N).

(b) The radical series of M is the fastest descending series of KG-submodules of M with semisim-
ple quotients, and the socle series of M is the fastest ascending series of M with semisimple
quotients. The two series terminate, and if r and n are the least integers for which rad" (M) = 0
and soc”(U) = M then r = n.

Definition 24.6

The common length of the radical series and socle series of a KG-module M is called the Loewy
length of M. (By the above, we may see it as the least integer n such that J(KG)" - M = 0.)
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25 Projective modules

For the sake of clarity, we recall the general definition of a projective module through its most standard
equivalent characterisations.

Proposition-Definition 25.1 (Projective module)

Let R be an arbitrary ring and let P be an R-module. Then the following are equivalent:

(@) The functor Homg(P, —) is exact. In other words, the image of any s.e.s. of R-modules under
Homg(P, —) is again a s.es.

(b) If ¢ € Homgp(M, N) is a surjective morphism of R-modules, then the morphism of abelian
groups . : Homg(P, M) — Homg(P, N) is surjective. In other words, for every pair of
R-morphisms

P
M — N

where ¢ is surjective, there exists a KG-morphism B : P — M such that a = ¢8.

() If 1 : M — P is a surjective R-homomorphism, then s splits, i.e., there exists o €
Hompg (P, M) such that mo o = Idp.

(d) The module P is isomorphic to a direct summand of a free R-module.

If P satisfies these equivalent conditions, then P is called projective. Moroever, a projective inde-
composble module is called a PIM of R.

Example 14

(@) Any free module is projective.

(b) If e is an idempotent element of the ring R, then R =~ Re ® R(1 — e) and Re is projective,
but not free if e # 0, 1.

(c) It follows from condition (d) of Proposition-Definition that a direct sum of modules {P;};/ is
projective if and only if each P; is projective.

(d) If R is semisimple, then on the one hand any projective indecomposable module is simple, and
conversely, since R° is semisimple. It follows that any R-module is projective.

26 Projective modules for the group algebra

We have seen that over a semisimple ring, all simple modules appear as direct summands of the reqular
module with multiplicity equal to their dimension. For non-semisimple rings this is not true any more,
but replacing simple modules by the projective modules, we will obtain a similar characterisation.
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To begin with we review a series of properties of projective KG-modules with respect to the operations
on groups and modules we have introduced in Chapter 4, i.e. induction/restriction, tensor products, ...

Proposition 26.1

Assume K is an arbitrary commutative ring. Then the following assertions hold.

(@) If P is a projective KG-module and M is an arbitrary KG-module which is free of finite rank
as a K-module, then P ®x M is projective.

(b) If P is a projective KG-module and H < G, then P|$ is a projective KH-module.

(c) If H< G and P is a projective KH-module, then P15 is a projective KG-module.

Proof:

(@) Since P is projective, by definition it is a direct summand of a free KG-modul, so there exist a
KG-module P’ and a positive integer n such that P @ P’ =~ (KG)". Therefore,

(KG)"@k M= (POP)Qk M=PRk M® P @ M

and it suffices to prove that (KG)"®x M is free. So observe that Example 11(a), Proposition 20.11(a)
and the properties of the tensor product yield
~ G ~ G \+G ~ G
KG@x M= (K1(y) @ M = (K®@k MIE) THhy =M1,

~ (KrkK(M)>Tg}; (KT{G”)H(K(M) ~ (Kc)rkK(M)

since Mlﬁ} is just M seen as K-module, and, as such, is free of finite rank. It follows immediately
that (KG)" @k M = (KG)"™«M) s a free KG-module, as required.
(b) We have already seen that as a KH-module,

KGlS~KH®--- @ KH

where KH occurs with multiplicity |G : H|, so KG | is a free KH-module. Hence the restriction
from G to H of any free KG-module is a free KH-module. Now, by definition P | F for some free
KG-module F, so that P& | F % and the claim follows.

(c) Exercise!
[Hint: prove that KH1&~ KG| -

We now want to prove that the PIMs of KG are in bijection with the simple KG-modules, and hence
that there are a finite number of them, up to isomorphism. We will then be able to deduce from this
bijection that each of them occurs in the decomposition of the reqular module with multiplicity equal
to the dimension of the corresponding simple module.

Theorem 26.2

(a) If P is a projective indecomposable KG-module, then P/rad(P) is a simple KG-module.

(b) If M is a KG-module and M/rad(M) =~ P/rad(P) for a projective indecomposable KG-
module P, then there exists a surjective KG-homomorphism ¢ : P — M. In particular, if M
is also projective indecomposable, then M/rad(M) = P/rad(P) if and only if M =~ P.



(c)

Proof:
(a)

There is a bijection

jective ind bl ~ ~ impl. ~
(P G modues /= {G modutes) / =

P —  P/rad(P)

and hence the number of pairwise non-isomorphic PIMs of KG is finite.

By Lemma 24.2, P/rad(P) is semisimple, hence it suffices to prove that it is indecomposable, or
equivalently, by Proposition 10.4 that Endkg(P/rad(P)) is a local ring.

Now, if ¢ € Endkg(P), then by Lemma 24.2, we have
p(rad(P)) = ¢(J(KG)P) = J(KG)p(P) = J(KG)P = rad(P).

Therefore, by the universal property of the quotient, ¢ induces a unique KG-homomorphism
@ : P/rad(P) — P/rad(P) such that the following diagram commutes:

p—* P

HPJ( O J{mﬁ
P/rad(P) - P/rad(P)

Then, the map

b EndKG(P) —_—> Ench(P/ rad(P))
¢ = P

is clearly a K-algebra homomorphism. Moreover & is surjectiv. Indeed, if ¢y € Endgg(P/rad(P)),
then by the definition of a projective module there exists a KG-homomorphism ¢ : P — P such
that ¢y o tp = 7p o . But then  statisfies the diagram of the universal property of the quotient
and by uniqueness ¢ = .

Finally, as P is indecomposable Endgg(P) is local, hence any element of Endkg(P) is either
nilpotent or invertible, and by surjectivity of ® the same holds for Endkg(P/ rad(P)), which in turn
must be local.

Consider the diagram
P

J{mv

M — M/rad(M) —— P/rad(P)

where 7y and sp are the quotient morphisms. As P is projective, by definition, there exists a
KG-homomorphism ¢ : P — M such that tp = yo mpr 0 .

It follows that M = @(P) + rad(M) = ¢(P) + J(KG)M, so that ¢(P) = M by Nakayama’s Lemma.
Finally, if M is a PIM, the surjective homomorphism ¢ splits by definition of a projective module,
and hence M | P. But as both modules are indecomposable, we have M =~ P. Conversely, if
M =~ P, then clearly M/rad(M) =~ P/rad(P).

The given map between the two sets is well-defined by (a) and (b), and it is injective by (b). It
remains to prove that it is surjective. So let S be a simple KG-module. As S is finitely generated,
there exists a free KG-module F and a surjective KG-homomorphism ¢y : F — S, But then
there is an indecomposable direct summand P of F such that ¢)|p : P — S is non-zero, hence
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surjective as S is simple. Clearly rad(P) < ker(¢|p) since it is the smallest KG-submodule with
semisimple quotient by Lemma 24.2. Then the universal property of the quotient yields a surjective
homomorphism P/rad(P) — S induced by ¢|p. Finally, as P/rad(P) is simple, P/rad(P) = S

by Schur’s Lemma. -

Definition 26.3 (Projective cover of a simple module)

If S is a simple KG-module, then we denote by Ps the projective indecomposable KG-module
corresponding to S through the bijection of Theorem 26.2(c) and call this module the projective

cover of S.

Corollary 26.4

able KG-module occurs with multiplicity dimg(P/rad(P)). In other words, with the notation
Definition 26.3,

KG= @ (Ps)™
S simple

ns = dimg S.

Proof: Let KG =Py ®---@® P, (r € Z-) be such a decomposition. In particular, Py, ... P, are PIMs. Then
J(KG) = J(KG)KG = J(KG)P1®---®J(KG)P, =rad(Py) ® - - - @rad(P;)
by Lemma 24.2. Therefore,
KG/J(KG) = Py/rad(Py)® - @® P,/ rad(P;)

where each summand is simple by Theorem 26.2(a). Now as KG/J(KG) is semisimple, by Theorem 13.2,
any simple KG/J(KG)-module occurs in this decomposition with multiplicity equal to its K-dimension.

Assume K is a splitting field for G. Then, in the decomposition of the reqular module KG into
a direct sum of indecomposable KG-submodules, each isomorphism type of projective indecompos-

of

where more preciely S runs through the set of isomorphism classes of simple KG-modules and

Thus the claim follows from the bijection of Theorem 26.2(c). |

The Theorem also leads us to the following important dimensional restriction on projective modules.

Corollary 26.5
Assume K is a splitting field for G of characteristic p > 0. If P is a projective KG-module, then

‘G‘p ’ dimK(P).

(Here |G|, is the p-part of |G|, Le. the exact power of p that divides the order of G.)

Proof: Let Q € Syl,(G) be a Sylow p-subgroup of G. By Lemma 26.1, Pig is projective. Moreover, by
Corollary 17.3 the trivial KQ-module is the unique simple KQ-module, hence by Theorem 26.2(c) KQ
has a unique PIM, namely KQ itself, which has dimension |Q| = |G|,. Hence

Plg; (KQ)" for some me Zg.

Therefore,
dimg(P) = dimK(Plg) =m-dimg KQ=m-|Q| = m-|Gl|,

and the claim follows. [ |
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27 The Cartan matrix

Now that we have classified the projective KG-modules we turn to one of their important uses, which
is to determine the multiplicity of a simple module S as a composition factor of an arbitrary finitely
generated KG-module M (hence with a composition series). We recall that if

O=MycMicMyc---cM,_1cM, =M

is any composition series of M, the number of quotients M;/M;_1 (1 < i < n) isomorphic to S is
determined independently of the choice of composition series, by the Jordan—-Holder theorem. We call
this number the multiplicity of S in M as a composition factor.

Proposition 27.1

Let S be a simple KG-module and let Ps be its projective cover.

(@) If T is a simple KG-module then

dimg Endgg(S) ST,

dimg H P T) =
my Homi (Ps, T) {0 fS%T.

(b) If M is an arbitrary KG-module, then the multiplicity of S as a composition factor of M is

dimg Homkg (Ps, M)/ dimk Endkg(S) .

Proof: Exercise. [Hint: (b) can be proved by induction on the composition length of M.] ]

Definition 27.2

(@) If S and T are simple KG-modules, then the integer
cs7 1= multiplicity of S as a composition factor of Pr

is called the Cartan invariant associated to the pair (S, T).

(b) The matrix C := (cgy) with rows and columns indexed by the isomorphism classes of simple
KG-modules is called the Cartan matrix of KG.

It follows immediately from Proposition 27.1 that the Cartan invariants can be computed as follows.
Corollary 27.3
If S and T are two simple KG-modules, then
cs7 = dimg Homkg (Ps, P1)/ dimk Endka(S) .
In particular, if the ground field K is a splitting field for G, then

cs7 = dimg Homke(Ps, Pr) .
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We will see later that there is an extremely effective way of computing the Cartan matrix using another
matrix associated to the simple KG-modules, called the the decomposition matrix.

28 Symmetry of the group algebra

We now want to obtain information about projective KG-modules using duality.
Recall that we have already proved in the exercises that (KG)* =~ KG as KG-modules. This allows us
to deduce that projectivity is preserved by taking duals.

Proposition 28.1

If P is a KG-module, then P is projective if and only if P* is.

Proof: As P** ~ P as KG-modules it suffices to prove one implication. Now, by (a), if P is a direct summand
of (KG)" (n € Zx1), then P* is a direct summand of ((KG)")* =~ ((KG)*)" = (KG)", and so is also
projective. |

Next we want to investigate the relationship between head and socle of projective modules. For this
purpose, we recall the following properties of submodules, quotients and duality, seen in the Exercise
classes:

W < V KG-submodule = V* has a KG-submodul M such that M =~ (V/W)* and V*/M ~ W*

Corollary 28.2

Every projective indecomposable KG-module P has a simple socle. More precisely,

soc(P) = (P*/rad(P*))*.

Proof: As one the one hand P*/rad(P*) is simple by Theorem 26.2 and on the other hand rad(P*) is the
smallest KG-submodule of P* with semisimple quotient by Lemma 24.2, its dual is the largest semisimple
KG-submodule of P** >~ P, hence isomorphic to soc(P), which has to be simple, as required.

Alternatively, we could argue that as the socle is by definition the sum of all simple submodules,
it suffices to prove that P has a unique simple KG-submodule. Because P* is projective by Proposi-
tion 28.1(b), if S is any simple KG-module, then by duality the KG-homomorphisms S — P are in
bijection with the KG-homomorphisms P* — S* and it follows that

dimg Hong(S, P) = dimg HomKG(P*, 5*>
Moroever S* is also simple. Thus it follows from Proposition 27.1(a) that

dimg Endgc(S*) if P* is the projective cover of S*,

dim/( Hoch(P*, S*) =
0 else.

Therefore, the claim follows from the fact that dimg Endkg(S*) = dimg Endgg(S) (again by duality). W

In fact, we can obtain a more precise statement and prove that the head and the socle of a PIM are
isomorphic. For this purpose, we need the fact that the group algebra is a symmetric algebra.
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Remark 28.3

The map
(,):GxG— K, (g,h):= Og,h—1

extended by K-bilinearity to
(,):KGxKG—->K

defines a K-bilinear form, which is symmetric, non-degenerate and associative. (Associative means
that (ab, c) = (a,bc) ¥V a, b, c € KG).

More generally, a K-algebra endowed with such a symmetric, non-degenerate and associative
K-bilinear form is called a symmetric algebra.

Theorem 28.4
If P is a projective indecomposable KG-module, then P/rad(P) =~ soc(P).

Proof: Put S := P/rad(P), which we know is simple as P is a PIM of KG, and assume S % soc(P). Write
KG = R® Q, where Q = P" (n € Z-) is the direct sum of all the indecomposable direct summand of
KG isomorphic to P and P { R. Then

soc(Q) = soc(P)"

and Q does not contain any KG-submodule isomorphic to S. Next, consider the sum of all KG-submodules
of KG isomorphic to S and denote it by /, so that clearly 0 # [ = R and / is a left ideal of KG. However,
as (/) < I for every ¢y € Endgg(KG), I is an ideal of KG. Now set J := {¢ € Endkc(KG) | Im(¢)) < I},
so that J is clearly an ideal of Endkc(KG). Let 7 : KG — Q be the projection onto Q with kernel R.
Then:

¢ € /] = rad(KG) < ker(¢p)

as the image of ¢ is semisimple, because it is a KG-submodule of /, which is itself a KG-submodule.
Thus, |z =0, as St hd(R), and it follows that

pomr=¢@und roep =20

(as @(KG) < ) and hence
p=@pom—moQ Veel. (%)
Let now 0 # ¢ € J (exists since S = hd(P) < hd(KG)), and let a € Endkg(KG), so ¢ o a € J and

pa = gam — aea by (x).

and it follows from Remark 28.3 that
(a,b) = (ab,1) = (cab,1) — (abc,1) = (¢,ab) — (ab,c) = 0.

This is true for every a € Endkg(KG), and hence every a € KG. Finally, as (, ) is non-degenerate, we
have b = 0 and hence ¢ = 0. Contradiction! ]
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Corollary 28.5
Let S be a simple KG-module.

(a) If Pis any projective KG-module, then the multiplicity of S in P/rad(P) equals the multiplicity
of S in soc(P). In particular

dimg (PY) = dimg (Pg) = dimg (P*)¢ = dimg (P*) (.

(b) We have (Pg)* = Pg..

Proof:

(@) By Theorem 28.4, the first claim holds for the PIMs of KG, hence this is also true for any finite direct
sum of PIMs, because taking socles and radicals commute with the direct sum by Exercise 24.5(a).
Next the taking S = K yields the equalities dimg (P%) = dimg (P) = dimg (P*)% = dimg (P*) .

(b) We have seen in the proof of Corollary 28.2 that (Ps)* is the projective cover of the simple module
(soc(Ps))*. Moreover, by Theorem 28.4

(soc(Pg))* =~ (Ps/rad(Ps))* =~ S*.
Hence (Pg)* = Pg,. |

Finally, we see that the symmetry of the group algebra also leads us to the symmetry of the Cartan
matrix.

Theorem 28.6
If S and T are simple KG-module, then

cs7 - dimg Endkg(S) = c75 - dimg Endke(T) .

In particular, if K is a splitting field for G, then the Cartan matrix of KG is symmetric.

Proof: By Corollary 27.3,
cst = dimg Homgg(Ps, Pr)/ dimk Endke(S)

and
¢ = dimg Homge (Pr, Ps)/dimg Endke(T),

so it is enough to prove that dimg Homgg(Ps, Pr) = dimg Homke (Pr, Ps).
Now, by Lemma 19.2 and Lemma 18.5 we have

Homke(Ps, Pr) = Hom (Ps, Pr)¢ = ((Ps)* @« Pr)“
and

Homc(Pr, Ps) = Homk (Pr, Ps)© = ((Pr)* ®« Ps)°.
Moreover, as (Ps)* ®x Pr is projective by Proposition 26.1(a), it follows from Corollary 28.5(a), that

dimk (((Ps)* ®k Pr)©) = dimg (((Ps)* ®« Pr)*)%).

But ((Ps)* ®k Pr)* =~ Ps®x (Pr)* = (Pr)* ®« Ps, thus we have proved that dimg Homkg(Ps, Pr) =
dim/( Hoch(PT, Ps).

Finally, if K is a splitting field for G, then by definition Endks(S) =~ K = Endks(T), so that the
dimension of both endomorphism algebras is one and we have cs; = c;s and we conclude that the
Cartan matrix is symmetric. ]
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Chapter 7. The Green Correspondence

The goal of this chapter is to prove Green's correspondence. First we will generalise the idea of
projective modules seen in Chapter 6 by defining what is called relative projectivity. In the second
section we will define vertices and sources of indecomposable modules. Finally, in the third section
we will state and prove Green’s correspondence.

Notation: throughout this chapter, unless otherwise specified, we let GG denote a finite group and let
K denote a field of characteristic p. All modules over group algebras considered are assumed to be
finitely generated, hence of finite K-dimension.

References:

[Alp86]  I. L. Alperin. Local representation theory. Vol. 11. Cambridge Studies in Advanced Mathe-
matics. Cambridge University Press, Cambridge, 1986.

[Web16] P. Webb. A course in finite group representation theory. Vol. 161. Cambridge Studies in
Advanced Mathematics. Cambridge University Press, Cambridge, 2016.

27 Relative Projectivity

Relative projectivity is a refinement of the idea of projectivity seen in Chapter 6. A projective module
is a summand of a free module. For H < G, we will first define H-free modules. Then a module
is relatively H-projective if it is a summand of an H-free module. Relative projectivity enables us to
explore the relationship between representations of a group and representations of its subgroups. This
is a very important tool for modular representation theory.

Definition 27.1

Let H < G. A KG-module is H-free if it is of the form VTE, for some KH-module V. A KG-module
is relatively H-projective, or H-projective, if it is isomorphic to a direct summand of an H-free

module — that is, if it is isomorphic to a direct summand of a module of the form VTE, for some
KH-module V.

Remark 27.2

o Free «— {1}-free: a free KG-module is of the form (KG°)" for some n € N. But KG° =
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KTﬁ} (see Example 11) so (KG°)" =~ (K”)Tﬁ}. Hence being free and {1}-free is the same.
Therefore H-freeness is a generalisation of freeness.

e Projective <= {1}-projective: A KG-module is projective < it is a summand of a free
module < it is a summand of a {1}-free module < it is relatively {1}-projective. Therefore
relative projectivity is a generalisation of projectivity.

Exercise 27.3 (Relative freeness)

Ex

Let H < G. Suppose that V is a relatively H-free KG-module with respect to a KH-submodule X,
and suppose that W is a relatively H-free KG-module with respect to a KH-submodule Y. Prove
that if X = Y as KH-modules, then V =~ W as KG-modules.

ercise 27.4 (Relative projectivity)

Let H < J < G. Let U be a KG-module and let V be a K/-module. Prove the following statements.
(@) If U is H-projective then U is J-projective.
(b) If U is a summand of VTJG and V is H-projective, then U is H-projective.

(c) Forany g € G, U is H-projective if and only if 9U is 9H-projective.

Notation 27.5 (Induction and restriction of homomorphisms)

Let H < G. Let ¢ : Uy — U, be a KH-homomorphism. Then the induced KG-homomorhpism

ldkg ® ¢ : Un — ot
gRu g p(u).
is denoted by (pT,g.

On the other hand, since a KG-homomorhpism ¢ : Vi — V5 is also a KH-homomorhpism
V1lf,—> Vzlf,, we just denote the KH-homomorphism by ¢ again, without any arrows.

The following notation will be needed in the proof of the next proposition about characterisations of

rel

ative projectivity.

Notation 27.6 (The p and € maps)

Let H < G. Let U be a KH-module and recall that Uf§= Dyefc/ry 9 ® U (see Remark 20.7), and

restricting back to H gives a KH-module UTE,lf,z @ge[G/H] g ® U. We denote the inclusion map
from U onto the summand with g =1 by p:

peU— UGl
ur—1Qu.

Let V be a KG-module. Then V| 515= Dyera/m g®(V|£) and we define a KG-module homorphism
€ as follows.

e:VIGE - v

gRv > gv
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for g€ G and v e V|5. Note that for any v e U, eop(u) = e(1®@u) = u, so y is a KH-section for
€.

Now consider the following maps:

® : Homkg(UTE, V) — Homgy (U, VIS)
Yoy

Y : Homgy (U, V1) — Homkg(UTS, V)
B — €0 Blf;

It is possible to show that these are mutually inverse, so W(®(y))) = ¢ for all ¢ € Hom(U1§, V),
®(W(B)) = B for all B € Homgy (U, VL) and

Homkc (U1, V) = Homgy (U, VIS).

Moreover, these isomorphisms are natural in U and V' which means in particular that for any
KH-homomorphism y : U — U, the following diagram commutes,

)
HomKG(Uﬁ,E,, V) E— HomKH(U1, Vlg)

_onyﬁ [_OY

Homkg (U>14, V) —% Homgp (Ua, VIG)

and for any KG-homomorphism «a : Vj — V5, the following diagram commutes.

()
HomKH(U, V1lf,) _— HomKG(UTf,, V1)

HomKH(U, Vzllg) T HomKG(UTg, Vz)

Proposition 27.7 (Characteristics of relative projectivity)

Let H < G. Let U be a KG-module. Then the following are equivalent.

(@) The KG-module U is relatively H-projective.

by f ¢y : U - W is a KG-homomorphism, ¢ : V. — W is a sur- U
jective KG-homomorphism and there exists a KH-homomorphism
ay Ulf,—» Vlf, such that ¢ o ay = ¢ on Ulg, then there ex- ¢ l‘l’
ists a KG-homomorphism ag : U — V such that ¢ o ag = ¢ so that
the diagram on the right commutes. 4 —q)» w

(c) Whenever ¢ : V — U is a surjective KG-homomorphism such that the restriction
@ \/i,f,—> ULE, is a split surjective KH-homomorphism, then ¢ is a split surjective KG-
homomorhpism.
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(d) The following surjective KG-homomorphism is split.

UlG16= KG @y U — U

XQ@u— xu

(e) The KG-module U is a direct summand of UlﬁTg.

Proof:

(a)=(b): First we consider the case where U = T1§ is an induced module. Suppose that we have KG-
homomorphisms ¢ : T1%— W and ¢ : V — W as shown in the the diagram on the left. Suppose
that there exists a KH-homomorhpism oy : TTﬁlg—» Vlﬁ such that ¢y = po ay on TTE,lﬁ, that is,
the diagram on the right commutes.

T T
P’ % P
V—p W VG ——5— WiE

letp: T — T151% and € : T|41%— T be as defined in Notation 27.6, so y is an injective KH-
homomorphism and € is a surjective KG-homomorphism. Then the following triangle of KH-modules

and KH-homomorphisms commutes.
T
s [

Vi — WG

By the naturality of ® and W from Notation 27.6, since ¢ : V — W is a KG-homomorphism, we
have the following commutative diagram.

Homgy (T, Vlﬁ) L HomKC(TTf,, V)

goo_L Lqm_

HomKH(T, ng) T HomKG(TTﬁ, W)

Hence the following two KG-homomorphisms T1&— W are equal.

W(po(ayop)) =gpo(W(anon)

By the commutativity of the previous triangle, the left hand side of this equation is equal to
W(pop)=YP(@(Y)) = ¢ since W and ® are inverse to one another. Thus

g =@oeo((anoplf)

and so the following triangle of KG-homomorphisms commutes, proving the implication for U = T1§
an induced module.



(b)=(c):

(c)=(d):

(d)=(e):
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g

€0 ((GHOH)T/ﬁ/ Llp

Now let U be any summand of T15. Let U = T15%%> U denote the inclusion and projection maps.
Suppose that there is a KH-homomorphism a : UL%— V] such that ¢ o ay = ¢ on ULG.

ulg

>

VG ——» Wi

@
Then we have the following diagrams.
T TThlh Tth
PJOH GH/ Moﬂ % VOH
V—yp W Vi — Wi V—0yp W

The first is a diagram of KG-homomorphisms. The middle diagram of KH-homomorphisms commutes
by definition of @y, and hence by the first part there is a KG-homomorphism ag : T15%— V such
that ¢ 0 ag = Y o 7, so the third diagram of KG-homomorhpisms also commutes.

Now poagot=omotr=1,soazot: U — Visa KG-module homomorphism such that
@ o (ag o) = ¢ and the following triangle commutes, as required.

U

V—(p»W

Let ¢ : V — U be a surjective KG-homomorphism which is split as a KH-homomorphism. Suppose
that ay is @ KH-section for ¢, so we have the following commutative diagram of KH-modules.

ulg

>

VG —tp» uls

Then assuming (b) is true, there exists a KG-homomorphism ag : U — V such that ¢ o ag = Idy.
In particular, ag is a KG-section for ¢, so ¢ : V — U is a split surjective KG-homomorphism.

As mentioned in Notation 27.6, y is a KH-section for €, so € : U|415— U is split as a KH-
homomorphism. Hence by part (c), € : U|5&15%— U is split as a KG-homomorhpism, showing part

(d).

immediate
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(e)=(a): immediate m

Exercise 27.8 (Relative projectivity)

Let H < G. Let U be a KG-module. Prove that if U is H-projective and W is a KG-module, then
U ®k W is H-projective.

In the next theorem we see a situation where we can always find relatively projective modules.

Theorem 27.9
Let H < G such that H contains a Sylow p-subgroup of G. Then every KG-module is H-projective.

Before proving this theorem, let us consider its application to the case when H = 1.
Example 15

Let H = 1. If H contains a Sylow p-subgroup of G then the Sylow p-subgroups of G are trivial, so
p does not divide the order of G. The theorem then shows that all KG-modules are {1}-projective
and hence projective. We know this already, however! If p does not divide the order of G then KG
is semisimple (Maschke's Theorem 16.1), and so all KG-modules are projective by Example 14 (c).

Proof: Let V be a KG-module and let H < G such that H contains a Sylow p-subgroup of G. Let ¢ : U — V
be a surjective KG-homomorphism which splits as a KH-homomorhpism. We will show that ¢ splits as

a KG-homomorphism, and hence V satisfies Theorem 27.7 (c) so V is H-projective.
Then U =~ W ® V as KH-modules, where W := ker(¢). Let f : U — W be a projection map onto
the first factor. Note that since H contains a Sylow p-subgroup of G, | G : H | is coprime to p. Thus

| G: H | is invertible in K because K is of characteristic p. We can therefore define a map f: U — W
as follows:

f(u) = \G Z g 'f(qu) forue U,
gE[G/H]
where the sum runs over a set of left coset representatives of H in G. Since gu € U (U is a KG-module),
and f(gu) € W by definition of f, f(u) € W so the map is well defined. Also, for any g’ € G,

F(g'u) iy Z g~ 'f(gg'u)
QE[G/H]
= TGTH] > d'(g9) ' f(gg'u)
ge[G/H]
| | Z g // 1f )
' g9"€[G/H]
— n—1
9T 2, 0
g9"€[G/H]
= g'f(u).
Thus, f: U — W is in fact a KG-homomorphism.
Now, for any w € W we have
- 1 _
f(w) = G Z g 'flgw) = CH g 'gw | Z w=w,
96 [G/H] 9€[G/H] 9€[G/H]
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which shows that ker(f) n W = {0} and 72 = f.
Finally, for any u € U we have u = (u — f(u)) + f(u), so

fu) = f(u—F(u)) + F(u) = Fu — f(u)) + f(u).

In particular, f(u — f(u)) = 0 and u — f(u) € ker(f). Hence every element of U can be expressed as the
sum of an element in ker(;‘) and an element of W, so U ~ W @ker f as KG-modules. Hence ¢ splits as

a KG-homomorphism, so V' is H-projective by Theorem 27.7. ]
Corollary 27.10

Suppose that a subgroup H of G contains a Sylow p-subgroup of G. Then a KG-module U is
projective if and only if Ulg is projective.

Proof:
=: Lemma 26.3.
«<: Suppose that U] is projective and H contains a Sylow p-subgroup of G. Then U|¢ is a summand
of a free module (KH®)", and every KG-module is H-projective. In particular, U is H-projective so

U is a summand of Ulf,Tf, by Theorem 27.7. Hence U is a summand of Ulf,Tf, which is a summand

of (KH*)" &= (KG°)", so U is projective. -

28 Vertices and Sources
Theorem 28.1
Let U be an indecomposable KG-module.

(@) There is a unique conjugacy class of subgroups Q of G that are minimal subject to the property
that U is Q-projective.

(b) Let Q be a minimal subgroup of G such that U is Q-projective. There is an indecomposable
K Q-module T that is unique up to conjugacy by elements of Ng(Q) such that U is a direct
summand of TT8~ Such a T is necessarily a direct summand of Ul8~

Proof:

(@) Suppose that U is both H- and K-projective for subgroups H and K of G. Then U is a direct
summand of U|%1% and U|$¢1$ by Proposition 27.7 (e). Hence U is also a direct summand of
ULG161¢1¢. By the Mackey formula and transitivity of induction and restriction, it follows that

ULTELTE = (ULE)TEL)1E

_< D (Ui zigH)TEmgH)E
g€l

K\G/H]

= @ (gUllger)Tgqu~

ge[K\G/H]

Therefore U is a direct summand of some module induced from K n 9H for some g € G. In other
words, U is relatively K n 9H-projective. Suppose that both K and H are minimal such that U is
projective with respect to these groups. Then K n 9H = K so K <€ 9H and H < 97'K, hence H
and K are G-conjugate.



(b) Let Q be a minimal subgroup relative to which U is projective. Then U is a direct summand of

Ulng so it is a direct summand of TTg for some indecomposable direct summand T of Ulg. If
T’ is another indecomposable KQ-module such that U is a direct summand of T’Tg, then T is a
direct summand of T’Tglg. Mackey'’s formula says that

T515= @D (Tlgh)ono -
ge[Q\G/0Q]

Hence T is a direct summand of (W’lgi gQ)TgmgQ, and therefore U is relatively Q n 9Q-projective,
for some g € G. Since Q is a minimal subgroup relative to which U is projective, Q = Q n 9Q and
hence g € Ng(Q). It follows that T is actually a direct summand of 977, for this g € G. Since T
and T’ are indecomposable, however, this means that T = 977, so T is unique up to conjugacy by
elements of Ng(Q).

Now T = 97’ is an idecomposable direct summand of Ulg by definition, so 7' = 97T is a direct
summand of (9_1U)l8. However, U =~ 9 'U as KG-modules, so this means that T’ is also a direct

summand of Ul8~

Definition 28.2

Exercise 28.3
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Let U be an indecomposable kG-module. A vertex of U is a minimal subgroup Q of G such that U
is relatively Q-projective. The vertices of U are unique up to G-conjugacy.
A KQ-source, or simply source of U is a KQ-module T for which U is a direct summand of TTg,
for some vertex Q of U. For a fixed vertex Q, the sources of U are unique up to Ng(Q)-conjugacy.

Let H < G and J < G. Let U be a KG-module. If U is H-projective and W is an indecomposable
direct summand of Uljc then W is / n 9H-projective for some element g € G, and there is a vertex
of W that is contained in this subgroup J n 9H.

The idea is that the closer the vertex of a module is to the trivial group, the closer the module is to
being projective: a KG-module U with trivial vertex is {1}-projective and hence projective.

Proposition 28.4

Proof:

(@) The vertices of an indecomposable KG-module are p-groups.
(b) If P is a p-group and H is a subgroup of P then K1£ is an indecomposable K P-module.

(c) The vertices of the trivial KG-module K are Sylow p-subgroups of G.

(@) By Theorem 27.9, we know that every KG-module is projective relative to a Sylow p-subgroup of

G. Therefore vertices are contained in Sylow p-subgroups, and hence are themselves p-groups.

(b) Because P is a p-group, the only simple KP-module is the trivial module K (see Cor. 17.3).

Moreover,
dimsoc(K1£) = dim Homgp (K, K15)
= dim Homgy (K5, K)

by Frobenius reciprocity (Theorem 20.10 (b)). But Homgy(K |5, K) =~ K so this, and hence
soc(KTf,), has dimension 1. If Klg is decomposable then Klgz U@ V for some KP-modules
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U and V, and hence soc(K|H) = soc(U) @ soc(V). This contradicts the fact that soc(K1£) has
dimension 1, therefore KTZ is indecomposable.

(c) Let Q be a vertex of K and let P be a Sylow p-subgroup of G which contains Q. Then K | KTg, so
K|§ is a summand of K1§|5= Dyer
g € G. By part (b), since P is a p-group, KTgmgQ is indecomposable. Thus K|$= KT,’;MQ and
hence P n 9Q = P, so Q is a Sylow p-subgroup of G. m

p\G/0] K1hnso and hence is a summand of K175, for some

29 The Green Correspondence

The Green correspondence is used to reduce questions about indecomposable modules to a situation
where the vertex of the module is a normal subgroup. This technique is very useful in many situations,
particularly in block theory. Many properties in modular representation theory are believed to be
determined by normalisers of p-subgroups.

We will need the following easy properties of vertices and sources in the proof of Green'’s correspon-
dence.
Exercise 29.1

Prove the following Lemma.
Lemma 29.2
Let Q be a p-subgroup of G and let L be a subgroup of G containing Ng(Q).

(@) Suppose that V' is an indecomposable KL-module with vertex Q and let U be a direct
summand of VTLG such that V is a direct summand of ULLG. Then Q is also a vertex of U.

(b) Suppose that V' is an indecomposable KL-module which is Q-projective and there exists
an indecomposable direct summand U of VTE with vertex Q. Then V also has vertex O.

Exercise 29.3

Let U be an indecomposable KG-module with vertex Q and let L be a subgroup of G containing Q.
Prove that there exists an indecomposable direct summand of Ulf with vertex Q.

Theorem 29.4 (Green Correspondence)

Let Q be a p-subgroup of G and let L be a subgroup of G containing Ng(Q).

(@) Let U be an indecomposable KG-module with vertex Q. Then in any decomposition of Ulf into
a direct sum of indecomposable modules, there is a unique indecomposable direct summand
with vertex Q which we denote by f(U). Writing U&= f(U) @ X, then every direct summand
of X is projective relative to a subgroup of the form L n *Q for some x € G\L.

(b) Let V be an indecomposable KL-module with vertex Q. Then in any decomposition of VTLG into
a direct sum of indecomposable modules, there is a unique indecomposable direct summand
with vertex Q which we denote by g(V). Writing V1&= g(V)@®Y, then every direct summand
of Y is projective relative to a subgroup of the form Q n *Q for some x € G\L.

(c) With this notation, we then have g(f(U)) = U and f(g(V)) = V.




Proof: We first note some properties of the groups Q n *Q and L » *Q for x € G\L.

e Since N¢(0Q) < L, x does not normalize Q and hence Q n *Q is a proper subgroup of Q.

o [ N *Q may be the same size of Q, in which case it is equal to *Q.
e Suppose that L n *Q is conjugate to Q in L: L n *Q = “Q for some z € L. Then *Q = “Q so

ZqXQ = O and hence z7'x € Nc(Q) < L. Therefore x € zL = L. This contradicts x € G\L
Therefore L n *Q is not conjugate to Q in L.

Let V be an indecomposable KL-module with vertex Q.

Claim: Any decomposition of VTLGLLG into a direct sum of indecomposable KL-modules has a unique
direct summand with vertex Q, and all other direct summands are projective relative to subgroups of the
form L n *Q with x ¢ L.

Pf of claim

Pf of (b)

Let T be a KQ-source for V and write TT6= V@ Z for some KL-module Z. Let V' and Z’ denote
K L-modules such that V1&|¢= V@V’ and Z1¢|¢= Z @ Z'. Then, on the one hand we have

oL

lle

(Ve2rfle
= VIFIf @217 1Y
=VeVaezez.
On the other hand, by Mackey we also have

L= @ CTL2. 00
xe[L\G/0Q]

TTb@( @ (*Tiiixo)ﬁw>

x€[L\G/Q], x¢L

lle

VeZa ( @ (XTlngQ)TmeQ)

x€[L\G/Q], x¢L
Therefore

VeV ezrezr=veze ( @ (Xlegxo)Tfm@) :
xe[L\G/Q], x¢L
Clearly all direct summands not in V @ Z are projective relative to subgroups of the form L n *Q
for some x ¢ L. We already saw that L n *Q is not conjugate to Q for any x ¢ L. Hence V is the
unique direct summand of V1§ |¢= V@ V/ with vertex Q, and all other direct summands in V' are
projective relative to subgroups of the form L n *Q with x ¢ L.

We continue with the notation above, with V an indecomposable KL-module with vertex Q. Write
VTLG as a direct sum of indecomposable KG-modules and pick a direct summand U such that UlLG
has V as a direct summand. By Lemma 29.2 (a), since Q is a vertex of V, Q is also a vertex of U.
Therefore VTLG has at least one direct summand with vertex Q.

Let U’ be another direct summand of V1. Then V1¢= U@ U’ @ X for some KG-module X, so
in the notation of the claim, V@ V’/ = ULLG @U’lf @le. Therefore U'if is a direct summand
of V" and hence every indecomposable direct summand of U’|¢ is projective relative to a subgroup
L~ Y0, for some y ¢ L. Now since V is a direct summand of TTb and U’ is a direct summand of

VTLC, it follows that U’ is a direct summand of TTg and hence U’ is projective relative to Q. Hence
U’ has a vertex Q" which is a subgroup of Q.
Let S be a KQ’-source of U’. Theorem 28.1 (b) shows that S is a direct summand of U’lg,,

Since Q' < L, U’lg,: U’lflb, and hence S is a direct summand of Ylb, for some indecomposable
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Pf of (a)

Pf of (c)

direct summand Y of U'lf. It follows from Exercise 29.3 that Q' is also a vertex of Y. But the
indecomposable direct summands of U’lLC are projective relative to subgroups of the form L n YQ
for some y ¢ L. Therefore one of the subgroups L n YQ with y ¢ L contains an L-conjugate of Q' —
in other words, ?Q’ < L n Y0 for some z€ L. Hence Q' < Z_WyQ where z71y ¢ L. This shows that
Q' < Q n *Q for some x ¢ L, proving part (b) with g(V) := U.

Suppose now that U is an indecomposable KG-module with vertex Q and let T be a KQ-source of
U. Then U is a direct summand of TT8= TTETLG, so there is an indecomposable direct summand
V of TT%2 such that U is a direct summand of V1£. This means that V is Q-projective (since it is
a direct summand of TTb), and so by Lemma 29.2 (b), Q is a vertex of V.

By Exercise 29.3, there exists an indecomposable direct summand Y of UlLG with vertex Q. But UlLG
is a direct summand of V1¢|% and the claim shows that the only direct summand of V1&|& with
vertex Q is V. Therefore Y =~ V and in any expression of U] as a direct sum of indecomposables,
one direct summand is isomorphic to V and the rest are projective relative to subgroups of the form
L~ *Q for some x ¢ L. This proves part (a).

Finally, part (c) follows from parts (a) and (b) and the fact that U is isomorphic to a direct summand
of UL“1§ and V is isomorphic to a direct summand of V1¢|¢.
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Chapter 8. Splitting p-modular systems and Brauer Reciprocity

The goal of this chapter is to define splitting p-modular systems and to prove Brauer Reciprocity for
group algebras. A p-modular system is a triple (K, O, k) such that K is a field of characteristic 0, O
is a discrete valuation ring contained in K which has unique maximal ideal J(O), and k is a field of
characteristic p such that k = O/J(O). We will use p-modular systems and Brauer reciprocity in the
subsequent chapters to get information about kG (which is complicated) from KG (which is semisimple
and therefore much better understood) via the group algebra OG.

Notation: All modules in this chapter are assumed to be finitely generated.
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[NT89] H. Nagao and Y. Tsushima. Representations of finite groups. Academic Press, Inc., Boston,
MA, 1989.
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30 Lifting ldempotents

Definition 30.1

A discrete valuation ring is a principal ideal domain O with a surjective valuation map
v: O\{0} — Np such that for all a, b € O\{0},

e v(a) =0

[ ]
<

e VvV

(
(ab) = v(a) + v(b), and
(a + b) = min{v(a), v(b)},

and v(0) = co. The map v is called an exponential valuation. The ring O has a maximal ideal
{a € O] v(a) = 1}. Since it is the unique maximal ideal of O it is equal to the Jacobson radical
J(O). Note that O* = O\J(O) so O is a local ring.

For a more general introduction to valuation rings, see [Web16, Appendix A]. For the rest of this section
let O denote a discrete valuation ring with maximal ideal J(O), and assume that O is complete with
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respect to the valuation v; that is, every sequence in O which is Cauchy with respect to v converges.

Let k := O/J(O) be the residue field of O. For a finitely generated free O-algebra A, we write A for
the k-algebra A/J(O)A, and for any x € A we let X denote its image in A.

Example 16 (Complete discrete valuation ring)

Let p be a prime and let O := Z, be the ring of p-adic integers — that is,

oe}
sz{Za;pi|keZ>0 and a[e{O,...,p—1}}.

i=k

Let v denote the exponential p-adic valuation defined by v(a;p‘) = i forall a; € {0,...,p—1} and
i = 0. Then O is a discrete valuation ring and is complete with respect to v, with maximal ideal
J(O) = pZ, and residue field Z,/pZ, = F),.

Proposition 30.2

Let A be a finitely generated O-algebra.
(a) For every idempotent x € A, there exists an idempotent e € A such that @ = x.
(b) A ={acAlaeA"}.

(c) If e1,e2 € A are idempotents such that ey = e, then there is a unit v € A* such that
—1
e = ueyu

(d) The quotient map “: A — A induces a bijection between the central idempotents of A and the
central idempotents of A.

Proof: (a) Let x € A be an idempotent. Let xop € A be a pre-image of x under the quotient map A — A
and define a sequence (x,), in A by x, 11 := 3x2 — 2x> for n > 0. We will show that this sequence
converges to a limit e € A which is an idempotent such that e = x.

For n > 0, define y, := x? — x,,.
Claim: y, € J(O)?" for all n.

Proof of claim: By induction on n. When n = 0 we have yo = x3 —xo and gg = x> —x = 0
because x is an idempotent. Hence yg is in the kernel of the quotient map. In other words,
yo € J(O) so the hypothesis holds for n = 0. Now suppose that y, € J(O)?". Then

Yn1 = fo — Xpp1 = W+ Ax0 —12x0 — 3x2 4+ 2x3 = 43 — 342,

and this is an element of J(0)2""" because y, € J(0)?", and the claim is proved.

We have x,11 — x, = 3x2 — 2x2 — x, = yn(1 — 2x,) € J(O)?" because J(O)? is an ideal. Hence
(xn)n is @ Cauchy sequence in A. But A is a finitely generated O-module and O is complete so
there exists a limit e := lim,_, X, € A.

2

Now e? — e = lim, .0 (X2 — x,) = lim, 0 (y,) = 0 because y, € J(O)?, so e is an idempotent.

Finally, for all n = 1 we have x, —xo = (xs —Xpn—1) + (Xp—1—Xn—2) + - -+ (x2—x1) + (x1 —x0) € J(O),
so lim,—00 (X, — x0) = € — xp € J(O) and therefore & = X = x.

(b) Let u € A such that U € A” is a unit with inverse V. Let v be a preimage of V under the quotient
map. Then y :=1—uv € J(O). It follows that y" € J(O)", therefore >,.° ; y" converges in A and

o0 [}
uv Yy =(T—y) Y y" =1.
n=0

n=0



(c)
(d)

Hence u has a right inverse in A. Similarly, v has a left inverse in A, so u e A*.
. L . . _ = . _ = _ =X
The other direction is clear: if u € A* has inverse ve A, then t € A has inverse veE A, sou e A™.

Fixu:=1—e;—ey+2eie;. Then & = 1— 267 + 2672 = 1 because e; is an idempotent. Hence by
part (b), u € A* and furthermore, e1u = e1 — e% —eqe; —|—2e126‘2 = uey so e = ueu” as required.

Firstly, the image of a central idempotent of A under the quotient map is a central idempotent of
A. It remains to show that the restriction of the quotient map to the central idempotents of A is a
bijection.

Suppose that eq, e; € A are two central idempotents such that €, = @,. Then by part (c), e; and
e, are conjugate in A. But e1 and e, are central so this means that e; = e,. Thus the quotient
map is injective on central idempotents.

Let @ € A be a central idempotent. By part (a), there exists a preimage e € A of @ under the quotient
map which is an idempotent. We will show that e is central. The quotient map sends (1 — e)Ae to
0 because e is central. Therefore (1 —e)Ae = J(O)(1 — e)Ae so (1 — e)Ae = 0 by Nakayama’s
Lemma (Theorem 9.3). Similarly eA(1 — e) = 0. Therefore

A=(e+1—e)Ale+1—e)=ceAe+ (1 —e)A(1 —e),

so every element x € A can be written as x = eae+ (1 —e)b(1—e) for some a, b € A. In particular,
all elements of A commute with e so e is central.

We will need the following result for the next corollary.

Exercise

A

30.3

Lemma 30.4

Let A be a finitely generated algebra over a commutative ring R. Let P be a projective in-
decomposable A-module. Prove that there exists an idempotent e € A such that P =~ Ae as

-modules.

Corollary 30.5

Proof: By Lemma 30.4 there exist idempotents fy,...,f, € A such that V =~ Af{ @ - - - ® Af,. It then follows
from Proposition 30.2 (a) that we can choose idempotents eq, ..., e, € A such that e; is a pre-image of
fiin Aforeach 1 <i<r. LetM:=Ae1 @ ---P Ae,. Then M is projective (see Example 14) and
M/J(OM = V.

31 Splitting fields

87

(Continue with the notation from before Exercise 30.3.) Let V be a projective A-module. Then there
exists a projective A-module M such that V = M/J(O)M.

Let R and S be commutative rings and suppose that there exists a ring homomorphism ¢ : R — S.
Then there is a right action of R on S given by s.r := s@(r) for all s € S, r € R. This allows us to

tensor S

Notation

by R on the right.

311

Let A be an R-algebra and let U be an A-module. Then A® := S®g A is an S-algebra with action

of S given by s.(s’ ® a) = ss'®a for all 5,5’ € S and a € A; and U° := S®g U is an A>-module



88

with action of A° given by (s1 ®a).(s; ®u) =s1s;®a.u forall s1,s,€ S,ae A, ueU.

Definition 31.2

If R is contained in S and ¢ : R — S is the inclusion map, then the process above is called
extension of scalars. We say that the module U® is obtained from U by the extension of scalars.

Definition 31.3 (Splitting field for an algebra)

Let F be a field and let A be a finite dimensional F-algebra. An extension field E of F is a splitting
field for A if and only if Ende(S) = E for all simple AF-modules S.

Exercise 31.4 (Splitting fields for an algebra)

Lemma 31.5
Let F be a field and let A be a finite dimensional F-algebra. Prove the following.

(a) The algebraic closure F of F is a splitting field for A.

(b) There is a finite extension F4 | F such that Fq is a splitting field for A.

Definition 31.6 (Splitting field for a group)

Let G be a finite group. A splitting field for G is a field F which is a splitting field for the group
algebra FG.

&emark 31.7

The character theory of a group over a splitting field of characteristic 0 is the same as the character
theory of a group over C, which you may have seen in previous courses.

Example 17

Let G be a p-group and suppose that F is a field of characteristic p. Then the trivial module F is
the only simple F G-module (see Corollary 17.3) and Endrg(F) = F, so F is a splitting field for G.

32 O-forms

Definition 32.1

Let O be a complete discrete valuation ring and let F := frac(O) be the fraction field of O. Let
A be a free O-algebra of finite rank, and let V' be an AF _module. An O-form of V is an O-free
A-submodule of V which has an O-basis which is also an F-basis of V.

Proposition 32.2

There exists an O-form of V.

Proof: Let vq,..., v, be an F-basis of V and let M := Avy + --- 4+ Av,. Then M is a finitely generated A-
module which is torsion free and hence free over O (since O is a principal ideal domain). Let mq,..., m;
be an O-basis of M. Then the m; span V. We will show that the m; are also linearly independent over
F, and hence t = r and mq, ..., m; is an F-basis for V, so M is an O-form for V.
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Suppose that Aymq + --- + Aymy = 0 for some A; € F. Because F is the field of fractions of O, for
each i e {1,..., t} we can write A; = Zfi where a;, b; € O. Therefore yymq + -+ + ysm; = 0 where
Vi = a,']_[je{1 ’’’’ By, bj. Now since {m;} is an O-basis, this implies that y; = 0, and hence a; = 0, for all

1< i<t Inparticular, A; = 0 for all 1 < i < t and hence the m; are linearly independent over F. Thus
my,..., m; is an F-basis for V. |

33 Splitting p-modular systems

Definition 33.1 (p-modular systems)

(a) A triple (K, O, k) is a p-modular system if

- O is a complete discrete valuation ring with unique maximal ideal J(O),
- K := frac(O) is a field of characteristic 0, and
- k:=0/J(O) is a field of characteristic p.

K+—0O — k

(b) [Splitting p-modular system for an algebra] Let (K, O, k) be a p-modular system. If A 'is a
free O-algebra of finite rank, K is a splitting field for AK ‘and k is a splitting field for A, then
(K, O, k) is a splitting p-modular system for A.

(c) [Splitting p-modular system for a finite group] Let (K, O, k) be a p-modular system. If G is a
finite group and (K, O, k) is a splitting p-modular system for OG, then we say that (K, O, k)
is a splitting p-modular system for GC.

R_emark 33.2

Let (K, O, k) be a p-modular system and let G be a finite group with exponent m. If K contains a
primitive m-th root of unity then (K, O, k) is a splitting p-modular system for G.

34 Brauer Reciprocity

We will need the following results for the proof of Brauer Reciprocity.
Exercise 34.1

Let A be a finite dimensional algebra over a commutative ring R. Let V be an A-module and e € A
an idempotent. Prove that

Homa(Ae, V) >~ eV

as Enda(V)-modules.

For the rest of this section we let G be a finite group and let (K, O, k) be a splitting p-modular system
for G.

Notation 34.2

Recall that Theorem 26.2(c) showed that for a group algebra over a field there is a bijection between
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projective indecomposable modules (up to isomorphism) and simple modules (up to isomorphism).
Let S be a simple KG-module or a simple kG-module. We let Ps denote a projective cover of S,
that is the PIM corresponding to S via this bijection.

eorem 34.3 (Brauer Reciprocity)
Let V4,...,V; be a complete set of representatives of isomorphism classes of simple KG-modules,
and let Sq,..., St be a complete set of representatives of isomorphism classes of simple kG-modules.

(@) If V'is a KG-module and M is an O-form of V, then the number of composition factors of
M := M/J(O)M isomorphic to S; for each 1 < j < t does not depend on the choice of the
O-form M.

(b) Let eq,...,e; € OG be idempotents such that kGe; is a projective cover of S; for each
1 <j<t Let Py be a projective cover of V; for 1 < i < [. Define d;; to be the number of
composition factors of the reduction of an O-form of V; which are isomorphic to S; (by part
(a), this is well defined). Then

l
KCE/ = @ dijP\/,-~
i=1

Proof: (a) Let M be an O-form for V. Let M = My > M; > --- > M, = 0 be a composition series for the

quotient module M. Fix a j € {1,...,t} and let Ps, be a projective cover of S;. By Lemma 30.4
and Proposition 30.2, there exists an idempotent e; € OG such that Ps, = kGe;.

For any 1 < i < r, we have an exact sequence of kG-modules 0 > M; - M;_y — M,_1/M; — 0.
It then follows from Proposition-Definition 25.1 (a) that

0 — Homkc(Psl.,M,') — Hoka(ng,/\/I[_1) — Hoka(Pgl., M[_1/M[) — 0

is exact. Hence

dimy Homyg(Ps;, M) = dim Homic(Ps,, M)
= dimy Homy¢(Ps;, Mq) + dimg Homy g (Ps;, Mo /M)
= dimy Homy¢(Ps;, Ma) + dimy Homyg (Ps;, My /M)
+ dimg HomkG(st,/\/lo//\/h)

= Z dimy Homkc(Psl, Mi—1/Mi)-
i=1

By Proposition 27.1(a), we know that for each 1 < i <r,
dimk Endkc(S/) if M[_1//VI[ = Sj
dimg Homyc(Ps;, Mi—1/M;) =

otherwise.

Since k is a splitting field for G, Endic(S;) = k so dim(Endk(S;)) = 1. Therefore the dimension
dimg Homk(;(Psl,M) just counts the number of composition factors of M isomorphic to S,

On the other hand, Exercise 34.1 shows that HomkG(ng,M) =~ g;M. Since O is a principal ideal
domain and e;M < M is a submodule of a free O-module, e;M is also free over O. Hence

dimi(e;M) = dim,(e;M/J(O)e;M) = rank(e;M). By Proposition 32.2, rank(e;M) = dimg(e;V).
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Thus, for any 1 < j < t, the number of composition factors of M isomorphic to S; is equal to
dimg (e;V), and is therefore independent of the choice of the O-form M.

(b) By Theorem 26.2(b), {Py,}!_; is a complete set of representatives of the isomorphism classes of
projective indecomposable KG-modules. Since K is a splitting field for G Theorem 13.2 holds for
KG (see Remark 13.3) and hence Corollary 26.2 also applies. It follows that the reqular module

KG®° decomposes into a direct sum of Py.'s, each appearing dimg Py./rad(Py,) = dimg V; times.
Hence, for any 1 < j < t, there exist non-negative integers dfj such that

l
KGe; = D d;;Pv,
i=1

where dj; = dimg Homq(KGe;, Vi). Fixie {1,..., [} and je {1,...,t}. It only remains to show
that df]- = d;j. Choose an O-form M; of V;. We have,

di; = dimg Homgo(KGej, Vi)

= dimg e;V; by Exercise 34.1

= rank(e;M;) by Proposition 32.2
= dimg @l»ﬂ,»

= dimy Homy¢(kGe;, M)

= dj.

Definition 34.4

The decomposition matrix of G is the matrix D := (dl-j)Kig[,KK,, where the d;; are positive
integers defined in the previous theorem.

Remark 34.5

The decomposition matrix D is independent of the choice of splitting p-modular system (K, O, k)
for G.




Chapter 9. Character Theory and Decomposition Matrices

The goal of this chapter is to define a character theory for modular representations of finite groups and
to use character theory to learn more about the decomposition matrices of finite groups.

Notation: Throughout, G denotes a finite group and (K, O, k) is a splitting p-modular system for G.
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1998.

[Web16] P. Webb. A course in finite group representation theory. Vol. 161. Cambridge Studies in
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35 Ordinary Characters

In this section we will briefly review some important definitions and results from ordinary character
theory. We work over K, a splitting field for G of characteristic 0. In particular, KG is semisimple. The
character theory of G over K is the same as the character theory of G over C, which you have probably
seen in an earlier course.

Definition 35.1
Let p: G — GL(V) be a K-representation of G for some V =~ K”, n > 1. Then

x: G- K
g — tr(p(9))

is the character of p, or the character afforded by p. If p has degree one then y is called a linear
character. If p is an irreducible representation then x is called an irreducible character. We denote
the set of irreducible characters of G by Irr(G).
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Remark 35.2
e Let X : G — GL,(K) be a matrix representation of G of degree n = 1. Then

x: G- K
g — tr(X(g))
is the character of X or the character afforded by X.

o E(ercise 35.3

Show that two similar matrix representations afford the same character.

E(ercise 35.4

Lemma 35.5

Let X : G — GL,(C) be a complex representation of G of degree n > 1 and let y be the
character afforded by X.

(@) x(1) =n.

(b) x(g) is a sum of o(g)-th roots of unity for all g € G.

(c) |x(g)] < x(1) for all g € G.
(d) X is also a character of G, defined by x(g) = x(g~') for all g € G.

(e) x(g) = x(h~'gh) for all g, h € G, i.e. characters are class functions.

Notation 35.6

Let (3, ..., Cy be the conjugacy classes of G and denote the class sums by
(Ajl' = Z g
geC

for each 1 < i < d. Let Cl(G) denote the set of complex valued class functions of G.

Theorem 35.7
The class sums G, L, (A:d are a basis for Z(KG).

Proof: Let h e G. Then forany 1 <i<d,

he; = Z hg = Z hgh='h = Cih
geG; geCi

since as g runs over G, so doesAhgh”. Hence C; € Z(KG) for any 1 < i < d. Since {g € G} is a basis
for KG, the set of class sums {Ci}1<i<q is linearly independent since they are sums of disjoint sets of
elements of G.
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Let h € G and let z € Z(KG) such that z = 3} . agg. Then
Z a4g =2z = h='zh = Z aghqgh = Z aggh.
geG geG geG

Equating coefficients in the sums shows that a, is constant on conjugacy classes so z = Z;; ag, G,
where g; € G. In particular, Z(KG) < (G, and hence (1, ..., G, is a basis for Z(KG). |

Remark 35.8

Two irreducible representations with the same character are similar. Thus by the arguments in
Chapter 3 we have the following bijections

Irr(G) < { Irreducible K-reps of G } - { Simple KG-modules }

up to equivalence up to isomorphism.

and since KG is semisimple, these sets are of size dimg (Z(KG)) by Corollary 13.4.

Corollary 35.9

The number of conjugacy classes of G is equal to | Irr(G)]|.

Proof: Immediate from Remark 35.8 and Theorem 35.7. [ |

Definition 35.10

The reqular character is the character y;eq afforded by the regular representation preq of G (see
Example 8).

Lemma 35.11
For any g € G,

_J Gl idg=1
Xreg(g) = { 0 otherwise

Proof: Let g € G. Then preq(g) = (ank)nrec Where

{1 thg=k
M= 0 otherwise.

. G ifg=1
I partcular, os(9) = t(pro(9)) = #(h e G [ hg = b = { " SO0

Proposition 35.12
We have xreq = 2y cin(c) X ()X

Proof: By Theorem 13.2, since K is a splitting field for G and KG is semisimple, every irreducible repre-
sentation X of G appears in the regular representation pr.q exactly dimg (X) times. The result follows. W
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Exercise 35.13

Corollary 35.14 (Degree forumla)
Let Irr(G) = {x1, ..., xa}. Then |G| = 3%, xi(1)2

Notation 35.15

Let x € Irr(G) and let X be an irreducible representation of G affording x. Let S be the simple
module corresponding to X as in Proposition 15.3. Then fix e, := es, where the latter is the central
primitive idempotent associated to S as in Scholium 12.6.

Remark 35.16

We can linearly extend a matrix representation of G to a representation of the group algebra KG,
X : KG — M, (K).

The character of X is defined by x : KG — K, x(g) = tr(X(g)) for all g € G and its restriction to

G is just a character of GG. We can therefore consider characters acting on elements of KG and not
just on elements of G.

Proposition 35.17

For any x € Irr(G), we have

T |G|ZX

geG

Proof: Write e, = >} . agg. By Lemma 35.11, we have for any g € G,

Xreg(exgq) = Xreg <Z ahhg1> = Z atheg(hgq) = a4/G].

heG heG

On the other hand, Proposition 35.12 shows that

Xreg(€49 ") Z G(1)plexg™).
el (G)

Now e,g~' € e,KG, so by the orthogonality of the idempotents, e, g is in the kernel of ¢ for all

€ Irr(G) such that ¢  x. Therefore a4|G| = x(1)x(e,g~"). But the idempotent e, is the identity in
e,KG, so x(e,g™") = x(g~") for all g € G, x € Irr(G). Hence

1
Eagg—zx |Ge‘xg g—|é|2x(1)x(g‘1)g,

geCG geG geCG
as claimed. |
Theorem 35.18 (First Orthogonality Relations)
For all h e G and all x, ¢ € Irr(G),
x(h)
x(gh)y = 0y ==t
|c| 2,x(9 ()

geCG
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In particular, for h =1 we have

|1(;| 2 x(9glgh) = { (1) iy —

otherwise
geCG

Proof: Let e, and ey be the central primitive idempotents associated to the irreducible characters x and ¢
as in Notation 35.15. Since they are orthogonal idempotents, e, e, = 0,ye,. Hence from the formula
given in Proposition 35.17, we have

|Gley ey = ‘%‘ DI xMYMx(h)d(g™"Yhg = 8,ylGley = 8y Y x(Nx (k™ k.

heG geG keG

Comparing coefficients for k € G and dividing by x (1) shows that

1 _ _ _
ﬁ Z Y()x(h~"g(g™") = X (k ".
g.heG,hg=k
Hence with h = kg7,
1 _ _ _
il DT (Mx(gk™lg™") = Sux (k™).
geG
Now writing h instead of k throughout we get the desired result. |

Proposition 35.19
The map

(, >: Cl(G) x Cl(C) —C
(0 8) = O ) = |10| S x(@)i(g™)

geCG

is a symmetric C-bilinear form. The irreducible characters Irr(G) form an orthonormal basis for
ClL(G) with respect to {, ). Further, {, ) is positive definite.

Proof: e Bilinearity: Exercise
e Symmetry: Exercise
e C-linear independence of Irr(G): Exercise
e Irr(G) is an orthonormal basis for CL(G): Exercise

e Positive definiteness: Exercise [ |

Corollary 35.20

(@) Let f be a class function of G. Then f = erlrr(6)<f'X>X'

(b) A character x of G is irreducible if and only if (x, x) = 1.

Proof: (a) For ¢ € Irr(G) we have

Doy )= ) ool =gy

x€lrr(G) Xx€Elrr(G)



by the first orthogonality relations. Hence
f— ) <f,x>,¢>=0
Xx€Elrr(G)

for all ¢ € Irr(G). Therefore f — 3 . ) <f, x) = 0 by Proposition 35.19, so f =} ... ) {F. X0

(b) Since Irr(G) is a basis for the class functions of G by Proposition 35.19, and characters are class
functions by Lemma 35.5 (e), ¢ is a character of G if and only if

= Z nyx

x€Elrr(G)

for some n, > 0. Thus,
oy =D nyny iy = D nynby, = .
X Xl Xl

Therefore (i, ) = 1 if and only if there exists a unique x € Irr(G) with n, =1 and n, = 0 for all
@ € Irr(G) such that ¢ # x. In other words, (¢, ¢) =1 if and only if Y = x € Irr(G).

Theorem 35.21 (Second Orthogonality Relations)
For all g, h € G, we have

1y _ | |Cc(g)| if g is conjugate to h
e;G)X(g)X(h )= { 0 otherwise
XEIrr

Proof: The first orthogonality relations (Theorem 35.18) shows that since characters are class functions, for
any x, Y € Irr(G) we have

x(g)|Cly(gi).

UK

|Gl = Y x(9)¢(g™") =

geC i=1
where g1, ..., g4 is a set of representatives of the conjugacy classes Cy, ..., Cg of G. Define the following
d x d matrices:
lq := the identity matrix
X = (x(9i))yelr(c)1<i<d

X = (X(gi_1))xelrr((}),1<i<d
dlag (|C1 Cd|)

o
i

Then the equation above can be expressed as
|G|ly = XDX,
so ﬁX is a left inverse of DX', and therefore also a right inverse so we have
|G|l; = DX'X,
which gives, for each 1 < i,j < d,

Glo; = ) |GIx(g: x(g))-
x€Elrr(G)

97
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Hence, since ‘lgl‘ =1Cs(g:)

, we have

5;1Calg)l = > x(gix(g))
x€lrr(G)

for all g; € C.. [ |

R_emark 35.22

Let p: G — GL(V) be a representation of G for some V =~ K", n = 1, and define a KG-module
structure on V' as in Proposition 15.3. Since KG is semisimple, V' = @/_; S; for simple KG-modules
Si. Therefore any matrix representation X associated to p is similar to a diagonal representation

X1 0 ... 0
X 0 X '

A

0o ... 0 X

where X; are irreducible representations of G called the irreducible constituents of X. Let
Xi € Irr(G) denote the character of X; for each 1 < i < r. Then X};_; x; is the character of
X.

Proposition 35.23

Representations with the same character are similar.

Proof: Let X and X’ be representations of G with characters >;;_; x; and 37 x/ respectively, where
Xoxj € Irr(G) for all 1 < i < r, 1 < j <s. Then since the irreducible characters of G are linearly
independent, if >}/, x; = 2;21 X; then r = s and without loss of generality, x; = x; forall 1 <i<r.
Thus each of the irreducible constituents X; of X is similar to the corresponding irreducible constituent
X! of X', so X is similar to X'. |

36 Brauer Characters
&)tation 36.1

We will now fix a particular splitting p-modular system for G.

e let Xj,..., X, be a complete system of representatives for the isomorphism classes of irre-
ducible representations of G over a splitting field of finite degree over Q.

e Let Yi,...,Ys be a complete system of representatives for the isomorphism classes of irre-
ducible representations of G over a splitting field of finite degree over F.

o Let k1 | F, be generated by a |G|,/- root of unity and the entries in the matrices Y;(g) for all
ge G, 1<i<s. Then kq is a finite extension of F),, so ky = F4 for some g = pf, f>=1.

o Let K | Q, be generated by a (g-1)th root of unity and the entries in the matrices X;(g) for
allge G,1<i<r.

e Let O be the integral closure of Z, in K.
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e Define k := 0/J(O).

It is possible to show that the ring O is a complete discrete valuation ring. Thus J(O) is its unique
maximal ideal. The residue class k contains ky = F4, and both K and k are splitting fields for G.
Thus (K, O, k) is a splitting p-modular system for G.

Lemma 36.2
Let X be a k-representation of G. Then the eigenvalues of X(g) are contained in k for all g € G.

Proof: Let g € G and write o(g) = p"m for n = 0 and m > 1 such that (p, m) = 1. Then m | |G|, .
Let & be an eigenvalue of X(g). Then &9 =1, so

0= r;(p”m 1= (Em_»l)pn’

because k has characteristic p. Therefore {" = 1. By construction, k contains ki which contains the
|G|,y-th roots of unity. The result follows since m | |G|,. |

Notation 36.3
Let * : O — k be the natural quotient map and let U denote the set of p’-roots of unity in K*.

U:={aeK*|a™ =1foran me N such that (m,p) =1} < O.

Proposition 36.4

The restriction of * to U defines an injective homomorphism of multiplicative groups * : U — k*
which is surjective on the |G|, th roots of unity.

Proof: First of all we will show that J(O)nZ = pZ. Itis clear that pZ < J(O)nZ. Suppose that m € J(O)nZ
is not divisible by p. Then there exist integers a@ and b such that ap + bm = 1. Therefore 1 € J(O),
which is a contradiction, so every element of J(O) n Z is divisible by p and hence J(O) n Z = pZ.

Let 1 # ( € U be a primitive mth root of unity. Then

m—1
x™ =1

THx+x2 4+ x" = 1 H(X—Ci)
i=1

Setting x = 1 we see that m is divisible by 1 — {. Suppose that {* = 1. Then m* = 0 so m € J(O). But
m is p’ so this contradicts J(O) nZ = pZ. Hence the only { € U such that * =1 1is { =1, so the *
map is injective on U.

Now since K contains a (g — 1)th root of unity and |G|, divides g —1, it is clear that the map * is
surjective onto the |G|, th roots of unity. |

Definition 36.5

Denote the set of p-reqular elements of G by

G°:={geCG|ptolg)}

Let X : G — GL,(k) be a matrix representation of G. By the setup of Notation 36.1, for any g € G°,
the eigenvalues By, ..., B, of X(g) lie in k*. Thus Proposition 36.4 shows that there exist uniquely
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determined roots of unity &,..., &, € U such that & = B; for 1 < i < n. The map
p: G >0
g &+t &

is called the Brauer character of the representation X of G. The degree of ¢ is n. We note the
following.

* ¢(g) € O = Q, even though X(g) € GL, (k).

e Often the values of Brauer characters are considered as complex numbers (sums of complex
roots of unity). In that case then ¢(g) depends on the choice of embeddding of U into C. For
a fixed embedding, ¢(g) is uniquely determined up to similarity of X.

Definition 36.6

The Brauer character ¢ is irreducible if X is irreducible. We let IBr(G) denote the set of all
irreducible Brauer characters of G. The Brauer character of the trivial representation G — GL1(k),
g — 1 is denoted by 1¢-. We say that a Brauer character A is linear if A(1) = 1.

Notation 36.7
Let CL(G®) denote the set of C-valued class functions on G°.

Lemma 36.8
Let X : G — GL,(k) be a representation of G for some n > 1. Then for all g € G°, X(g) is similar
to a diagonal matrix diag(&y, ..., &) for some &, ..., &, e U.

Proof: Let g € G°. Consider the restriction of X to the cyclic group {g). Since {g) is abelian, it follows
from Corollary 17.2 that all irreducible representations of {(g) have degree 1. Since (o(g),p) = 1, the
characteristic of k does not divide |(g)| and hence by Maschke’s Theorem 16.1, k(g) is semisimple.
Therefore X(g) is similar to a diagonal matrix diag(By, ..., B,) for some By, ..., B, € k*. This yields the
result if we let & € U be the unique root of unity such that & = B; for each 1 < i < n. [ |

Proposition 36.9

Let ¢ be a Brauer character of G.
(@) @€ Cl(G®).
(b) Forany ge G° ¢(g7") = ¢(g).
(c) The function @: G° — C, g — @(g~") is a Brauer character

(d) For H< G, ¢ := ¢ |n° is a Brauer character of H.

Proof: Let X be a matrix representation affording ¢.
(a) For any g,h € G°, X(g") = X(h=")X(g)X(h) so the X(g) and X(g") are similar and therefore
have the same eigenvalues. Thus ¢(g) = @(g") for any g, h e G°.

(b) It follows from Lemma 36.8 that for any g € G°, the matrix X(g) is similar to a diagonal matrix
diag(&,..., &) for some &,...,& € U. Hence X(¢g7') = X(g)7' is similar to
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diag((& )", ..., (&7")*). Now each & is a root of unity so &' = &, for 1 < i < n, and hence
@(g™") = ¢(g) for all g € G°.
(c) By (b), the map Y : G — GL,(k), g — Y(g) := X(g~")! is a representation with character @.

(d) The restriction Xy is a representation of H with character ¢p. m

mark 36.10

Suppose that p : G — GL(V) is a representation of G for some V = k", n > 1, and let X be a
matrix representation associated to p as in Remark 35.22. Since kG is not semisimple in general,
we cannot conclude that X is similar to a diagonal representation. We can however, show the
following.

Let 0 = Vp < --- <V, = V be a composition series for V for some r € N. Choose a basis for V;.
Extend this to a basis of V2, and so on, until you get a basis of V. For this choice of basis, the
matrix representation associated to p is an upper triangular block matrix of the form

D
0 X
0o ... 0 X

where X; is an irreducible representation corresponding to the simple kG-module V;/V;_; for
1 < i < r. Hence by abuse of language, we say that X is similar to a representation in upper
block diagonal form. 1t follows from Jordan-Hélder that the simple modules V;/V;_1 are determined
up to isomorphism by V, and hence the irreducible representations X; are uniquely determined up
to similarity by X. As in the semisimple case, the irreducible representations X; are called the
irreducible constituents of X.

eorem 36.11

A class function ¢ € CL(G?) is a Brauer character if and only if it is a non-negative integer linear
combination of elements of IBr(G).

Proof: By Remark 36.10, if a class function ¢ is a Brauer character afforded by representation X then X is

similar to a representation in upper block diagonal form and ¢ is just the sum of the irreducible Brauer
characters afforded by the irreducible constituents of X. ]

Notation 36.12

n

For g € G, let g = g,g, be the splitting of g into its p-part and its p’-part. Then if o(g) = p"m

with (p,m) =1 and 1 = ap” + bm, then g, = g®™ and g, = g".

Proposition 36.13

Let X be a representation of kG and let ¢ be the trace function on X, ¢ : kG — k, Y(g) = tr X(g))
for all g € G. Let ¢ be the Brauer character afforded by X, and define ¢* : G — k* by ¢*(g) =
@(gp)* for all g € G. Then,

(@) ¥(g) = ¢(gp) forall g€ G,

(b) Y(g) = @(gp)* forall g € G, and



102
(c) {¢* | ¢ € IBr(G)} is the set of trace functions of the irreducible kG-representations.

Proof:

(@) Since X is similar to a representation in upper block diagonal form, we can assume that X is
irreducible. There is also no loss of generality if we assume that G = (g). Then all the irreducible
representations of G are one dimensional. Therefore ¢y = X : G — k* is a group homomorphism
so ¢(g) = ¥(g,)¢(g,). But g, has p-power order. Therefore ()(g,) € k* also has p-power
order. But in a field of characteristic p, the only element with order a power of p is 1. Therefore

Y(g) = ¢(gp), forall g e G.
(b) This holds by definition of ¢ and part (a).
(c) This holds because ¢*(g) = ¢(g,/)* =tr X(g) = ¢)(g) for all g € G. -

Theorem 36.14

The set of irreducible Brauer characters of G, IBr(G), is linearly independent over C and hence

|IBr(G)| < dimg CL(G®) = The number of conjugacy classes of p’-elements in G

Proof: Omitted. [}

37 Decomposition Matrices of Finite Groups

In this section we continue with (K, O, k) the splitting p-modular system for G defined in Notation
36.1. We now want to look at the connections between representations of G over K (or C), and
representations of G over k.

Notation 37.1

For a complex class function y € ClL(G), we denote the restriction of y to G° by x° € CL(G®). We
denote the set of class functions of G which vanish on G\G° - i.e. the x € Cl(G) for which x(x) =0
for all x € G\G® - by CLl°(G).

Corollary 37.2

Let x be an ordinary character of G. Then x° is a Brauer character of G.

Proof: Let X be an (ordinary) representation of G which affords the character y. Then X is similar to a
representation X’ in block diagonal form, with some irreducible representations of G on the diagonal.
Thus the entries in X’(g) are contained in K for all g € G (see the setup in Notation 36.1). Hence by
Proposition 32.2, there exists an O-form of the KG-module corresponding to X’. In other words, X is
similar to some representation of G with matrix entries in O.

Let X* denote the representation of G over k given by X*(g) := X(g)* for all g € G. Fix an element
g€ G° and let &, ..., &, be the eigenvalues of X(g), where n € N is the degree of X. Since (p,0(g)) =1,
the eigenvalues &, ..., &, are p’-roots of unity so they lie in U. Then &, ... & are the roots of the
polynomial det(x/ — X(g))* = det(x/ — X*(g)), and hence &, ..., & are the eigenvalues of X*(g).
Therefore X* is a representation of G over k with Brauer character x°. ]
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Corollary 37.3

The set IBr(G) is a basis of Cl(G®°) over C. In particular,
classes of G.

IBr(G)| is the number of p’-conjugacy

Proof: By Theorem 36.14, IBr(G) is linearly independent over C. It remains to show that IBr(G) is a
generating set for CL(G®). Let y € Cl(G®°) and let a € Cl(G) be an extension of y to a class function of
G. Then by Proposition 35.19, since Irr(G) is a C-basis for CL(G),

a= Z axX
Xx€Elrr(G)

for some a, € C, so

x€Elrr(G)
By Corollary 37.2 each x° is a Brauer character, and hence by Theorem 36.11, each x° is a non-
negative integer linear combination of irreducible Brauer characters. Therefore p is a linear combination
of irreducible Brauer characters over C, so IBr(G) is a generating set for CL(G°). The final claim is then
immediate. ]

Remark 37.4
Let x € Irr(G). Corollary 37.3 says that there exist positive integers d,,, > 0 such that

x° = Z dye®.
@elBr(G)

Note that if we translate this from characters to modules, we see that the dye are the same as the
decomposition numbers from Definition 24.4 and Brauer’s Reciprocity, so the decomposition matrix
of G with respect to p is

D = (dy)yelrr(G) elBr(G)-

Corollary 37.5
The decomposition matrix D has full rank | IBr(G)].

Proof: Since Irr(G) is a basis of ClL(G), {x° | x € Irr(G)} spans CL(G®). There is therefore a subset
B < {x° | x € Irr(G)} which forms a basis for CL(G°). By Corollary 37.3, the columns of the matrix
(dye)yeB.geiBr(G) are linearly independent. Hence D has full rank. |

In particular, D has no zero-columns so every ¢ € IBr(G) is a constituent of at least one x°, for some
x € Irr(G). This gives us a route to IBr(G), at least in principle.

Definition 37.6
The Cartan matrix of G (with respect to p) is defined to be

C:=D'D.

Since D has maximum rank, C = (Cgy)gpelBr(G) is @ positive definite symmetric matrix with non-
negative integer entries. Note that for any ¢, y € IBr(G),

Cou = Z dypdyu-
Xx€Elrr(G)
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Definition 37.7

Let ¢ € IBr(G) be an irreducible Brauer character afforded by an irreducible k-representation X of
G, and let S be a simple kG-module associated to X. Let Ps denote the projective cover of S and
let Qs denote a lift of Ps to OG as in Corollary 30.6. We say that the character of KG ®pg Qs is
the projective indecomposable character of ¢, and denote it by ®,,.

Corollary 37.8
Let ¢ € IBr(G). Then

(a) q)‘P = erlrr(C) dX(PX' and
(b) &, = ZpelBr(G) CouH-

Proof: (a) This result follows from Brauer reciprocity.

(b) This follows from part (a) because

&, = Z dyox” = Z dxe Z dyub = Z CouH
Xx€Elrr(G) Xx€Elrr(G) pelBr(G) pelBr(G) [ ]
Theorem 37.9

If p1]G]|, then IBr(G) = Irr(G) and the decomposition matrix of G is the identity matrix when the
characters are ordered in the same way for the rows and for the columns.

Proof: If p 1|G]|, then by Maschke’s theorem, kG is semisimple. By Theorem 13.2 (c), since k is a splitting
field for G, |G| = dimk(kG) = X eimi(c) ©(1)%. We also know that |G| = ] )X(1)2 by Exercise
35.14. Now

x€elrr(G

2
Gl = 2 XU)Z: Z ( Z dX<P‘P(1)) = Z Z dx<pdxu‘P(1)U(1)

x€Elrr(G) x€lrr(G) \ ¢elBr(G) x€lrr(G) @,uelBr(G)
> D 2 (d)le(1) = )] Y, () o= > e(1)?=1dl,
x€lrr(G) gelBr(G) @elBr(G) \ xelrr(G) @elBr(G)

where the last inequality follows from the fact that for every ¢ € IBr(G), there is some x € Irr(G) with
dye # 0. Hence d,,d,, = 0 if ¢ # p, and for every ¢ € IBr(G) there exists a unique x € Irr(G) with
dye #0. Infact dy, = 1. [

Definition 37.10
For ¢, ¢ € CL(G) or CL(G®), we define

o 1 TN
o) =15 > e(9)d(g).

Note that (¢, /)° = (i, @)°.

The following theorem is a replacement for the orthogonality relations from ordinary character theory.
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Theorem 37.11
The set {d, | ¢ € IBr(G)} is a basis for CLI°(G). For every ¢, ¢ € IBr(G) we have
(@, ®y)° = dpy = (P, )",

and therefore C~1 = ((q, U)°) . uelBr(G)-

Proof: Let x € G and y € G° and let C; and C, be their respective conjugacy classes in G.. By the second
orthogonality relations (Theorem 35.21), we have

dc.c,|Ca() = Y x(x(y).
x€Elrr(G)

Since y € G°, we know that x(y) = X () dxe®(y). Hence

(+) SeclCal= 2, | 2 deax() o) = 2, @(e(y)
@eIBr(G) \ xelrr(G) @€lBr(G)
by Corollary 37.8. Thus for any x € G\G°, we have X, g, P ®,(x)p = 0. But Theorem 36.14 shows
that IBr(G) is a linearly independent set, so ®,(x) = 0 for all x € G\G° and therefore ®,, is a class
function which vanishes on G\G°, ®, € Cl°(G).
Let x1,..., x, be a system of representatives for the conjugacy classes C; ..., C; in G° (r € N). Define
the following r x r matrices.

I, := the identity r x r matrix
= (¢¢(Xi))¢e|8r(c),i=1 ..... r

Y = (@(X))) peiBr(G),j=1,....r
E :=diag(|Cs(x1)|, ..., |Cc(x/)])

Then the equation (*) can be expressed as

I, =®'YE"
Thus YE~" is a right inverse, and hence a left inverse, for @', so
I = YET'®'.

It follows that

<pu Z (P Xl 1)‘ (Xi)'

Now since ||g|‘ = |Ce(xi)|
000" = 17 3 98] = g X e0IICIBD = 3 o) o ) = O
geGe i=1 =1

Thus the set of projective indecomposable characters {®, | ¢ € IBr(G)} is linearly independent. Since
dimc CI°(G) = dimc CL(G°) = |IBr(G)| by Corollary 37.2, it follows that {®, | ¢ € IBr(G)} is a basis
for CI°(G).

Finally, by Corollary 37.8, for any p € IBr(G), ®; = >’,cg,() Cyuty- Thus for any ¢ € IBr(G),

Dol ) =(o. Y cp)” =, 0)° = (9, D) = b,

YelBr(G) YelBr(G)

Therefore ({@, ¢)°) 4 yeiBr() is the inverse of the Cartan matrix C. |



Chapter 10. Blocks and Defect Groups

We can break down the representation theory of finite groups into its smallest parts by studying the
blocks of group algebras. First we will define blocks for any ring A. For the remainder of the course
we will then return to the situation of a finite group G and a splitting p-modular system (K, O, k). We
will briefly talk about the blocks of KG and OG, and then move on to focus on the blocks of kG.
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38 Blocks

We first define blocks for any ring A with an identity.

Proposition 38.1

Let A be an arbitrary ring with an identity.
(@) The set of decompositions of A into a direct sum of two-sided ideals
A= A1 @ - Ar

(for some r € N) biject with the set of decompositions of 14 into a sum of orthogonal central
idempotents,
Ta=er+---+e

where e; is the identity of A; and A; = Ae; for 1 <i<r.

(b) For each 1 < i < r, the direct summand A; = Ae; of A is indecomposable as a ring if and
only if the corresponding central idempotent e; is primitive.

(c) The decomposition of A into indecomposable two-sided ideals is unique.
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Proof:

(@) Decompose A into a direct sum of two-sided ideals, A= A1 @ --- ® A,. Then the identity element
of A decomposes into 14 = ey +--- + e,, where e; € A; for each 1 < i < r. For any element a € A,
a=14a=(e1+---+e)a=eja+---+e.a with eja e A. If a; € A; then eja; = a; and eja; = 0
for j # i. In other words, e; is the identity of A; and e? = e; so {e;}/_, is a set of orthogonal
central idempotents of A, and A; = Ae; for 1 < i< r.

Conversely, if {e;}/_; is a set of central orthogonal idempotents of A such that 14 = }}/_, e;, then
@;_, Ae; is a direct sum decomposition of A into two-sided ideals.

(b) = Suppose that A; = Ae; and e; = f + j for orthogonal idempotents f, j. Then A; = Af @ Aj,
where the sum is direct because if a € Af n Aj then @ = af and a = aj, hence a = afj = 0.
Thus, if e; is not primitive, then A; is not indecomposable.
< Now suppose that A; = Ae; and A; = L1 @ L, for two two-sided ideals Ly and L; of A. Then
e; =f+jforsome f € Ly, je L,. Since Ly n L, ={0} and fj € L1 n Ly, we have fj = 0. As e;
is the identity in A;, we also see that f = e;f = (f + j)f = f> + jf = f? and similarly, j* = j,
hence f and j are orthogonal idempotents, so e; is not primitive.

(c) Finally, suppose that A= A1 @ --- @ A, for some r € N, and suppose that L is an indecomposable
direct summand of A from a different decomposition of A. Every x € L has a decomposition x =
a1+ ---+a, witha; € A forall 1 < i <r. Then e;x = a;, and this is an element of L because L
is a two-sided ideal. Hence L = (LN Ay) +---+ (L~ A,). This is a decomposition of L, which was
indecomposable, hence L = L n Ay, for some 1 < m < r. By the indecomposability of A, this must
be the whole of A,. Thus the decomposition of A into indecomposable two-sided ideals is unique. g

Definition 38.2

Let A = A1 @ - @A, be the unique decomposition of A into a direct sum of indecomposable
two-sided ideals such that A; = Ae; for 1 < i < r, as above. Each A; is a block of A and the
corresponding primitive central idempotent e; is called the block idempotent of A; . Note that the
blocks of A are direct summands of A, and therefore are projective as A-modules.

Definition 38.3

Pr

Let M be an A-module. Then M lies in the block A; = Ae; if eM = M and e;M = 0 for all j # i.

oposition 38.4

Let M be an A-module. Then M has a unique direct sum decomposition M = My ®- - - ® M, where
M; lies in the block A; for 1 < i < r. In particular, every indecomposable A-module lies in a
uniquely determined block of A.

Proof: Let me M. Then m =1aym =eym+---+em, so M = e M+ --- + e, M. Denote e,M by M; for

1 < i < r. Suppose that x € M; n M; for some i # j. Then x = e;x and x = e;x (because the e,’s act
as the identity on their respective blocks for 1 < n < r), so x = ej(ejx) = 0. Thus the sum is direct.
Moreover, e,M; = e;eeM = eeM = M; and e;M; = 0 for all j # i, so M; lies in the block A; for each
1<i<r.

Suppose that M = N; @ --- @ N, is another direct sum decomposition of M with N; in block A;
for 1 < i< r. Then N; = ¢,N; € eeM = M; (because N; € M) and hence (since N; and M; are
indecomposable), N; = M; foreach 1 <i<r.

The final claim follows immediately from the first. |
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Corollary 38.5

Suppose that an A-module M lies in the block A;. Then every submodule and factor module of M
lies in A;.

Proof: Let V < M be a submodule of M. Then for i # j, e;V < ejM = 0 so V must lie in A;. We also have
ej(M/V) < eiM/ejV =0 so M/V also lies in A;. |
Definition 38.6

Let X, Y and Z be A-modules. We say that X is a non-split extension of Y by Z iff there exists a
non-split exact sequence 0 - Y - X — Z — 0.

The following theorem characterises when two modules are in the same block for an algebra over a
field.

Theorem 38.7
Let A be an algebra over a field. Let S, T be simple A-modules. The following are equivalent.

(@) S and T lie in the same block of A.

(b) There exist simple A-modules S = Sy,...,S,, = T such that S;, S;;1 are composition factors
of the same projective indecomposable A-module for 1 <i<m—1.

(c) There exist simple A-modules S = S1,..., S, = T such that there exists a non-split extension
of S; by S;4+1 (or vice versa) for 1 < i < m.

Proof: Omitted. [ |

We now return to the notation of the previous chapter, with G a finite group and (K, O, k) the splitting
p-modular system for G given in Notation 36.1.

Remark 38.8 (Blocks of KG)

Recall that KG is semisimple since K is of characteristic 0. It follows from Scholium 12.6, Proposition
35.17 and Definition 38.2 that

KG = (—D KGe,.
x€elrr(G)

In other words, the blocks of KG are labelled by the ordinary irreducible characters x € Irr(G), and
e, is the block idempotent for the block KGe,,.

Remark 38.9 (Blocks of OG and kG)

We know from Proposition 30.3 (d) that there is a bijection between the central idempotents of OG
and the central idempotents of kG. Hence a decomposition 1o = b1 + --- + b, of the identity
element of OG into a sum of central primitive idempotents of OG corresponds to a decomposition
16 = b1 + --- + b, of the identity element of kG into a sum of central primitive idempotents of
kG. In other words, there is a bijection between the blocks of OG and the blocks of kG. Note that
these are the blocks we are interested in! We sometimes refer to the blocks of kG as the p-blocks
of G.
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Remark 38.10

Let S be a simple kG-module. If S is in a block B of kG then the projective cover Ps of S is also
in B, by Corollary 38.5.

Example 18

Let G be a p-group. Then kG has exactly one simple module by Corollary 17.3. Hence by Theroem
38.7, all indecomposable modules lie in the same block, so kG has just one block.

39 Defect Groups

We continue with the splitting p-modular system (K, O, k) for G. From now on we will only discuss
the blocks of kG. Analogous results hold for the corresponding blocks of OG. In this section we will
study an important block invariant: the defect group.

Top Tip: It will be helpful to recall the definition of the vertex of a module (Defintion 28.2)
before going any further!

R_emark 39.1

The blocks of kG can be viewed as indecomposable modules of k[G x G]. First of all, notice that
kG is a k|G x G]-module with the action of G x G on kG given by

(G x G) x kG — kG
((g1.92), a) — grag; ",

linearly extended to an action of kK[G x G]. A two-sided ideal of kG is, by definition, a submodule
of kG which is closed under left and right multiplication by elements of G. In other words, it is a
submodule of kG closed under the action of G x G as defined above — i.e. a k|G x G]-submodule of
kG. Thus a block of kG can be viewed as an indecomposable k[G x G]-submodule of kG considered
as a k[G x G]-module.

Notation 39.2
Denote the diagonal embedding of G in G x G by

0:G—-GxG
g—1(9,9).
Theorem 39.3

Let B be a block of kG. Every vertex of B, considered as an indecomposable k[G x G]-module, has
the form 0(D) for a p-subgroup D < G. The group D is uniquely determined up to conjugation in
G.

Proof: First we show that the k[G x G]-module B is relatively d(G)-projective. Since B is a direct summand
of kG, it is enough to show that kG is 0(G)-projective. But kG contains the subspace k.1, which is the
trivial k0(G)-module. Further, when we consider the dimension of these k-vector spaces we see that

dimg(kG) = |G| dimg(k.1) = |G x G : 6(G)| dimg(k.1).
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By arguments in Remark 20.7,
GxG__ . .
dimi(k.1)15 )= 1G x G : 6(G)| dimi(k.1).

Consider the homomorphism ¢ : k.1 — kG sending k.1 to k.1. By Proposition 20.8 (the universal
property of induction) there then exists a k[G x G]-homomorphism

@ (k15— kG,

Since kG is generated by k.1, @ is surjective. Since the two modules have the same dimension, @ is an
isomorphism and hence kG =~ (k.‘I)Tg(XG)0. It follows that kG, and therefore B, is d(G)-projective.

By Definition 28.2, then a vertex of B (still considered as a k[G x G]-module) lies in 0(G). This
vertex is a p-group (Proposition 28.4), and thus is the image (D) of some p-subgroup of G, showing
the first part.

We know that (D) is uniquely determined up to conjugacy in G x G. We want to show that D
this is unique up to conjugation by elements of G. Suppose that D’ is another p-subgroup of G such
that 6(D’) is a vertex of B. Then 6(D’) = (91:92)5(D) for some (g1,g2) € G x G. If x € D, then
(91.92)(x, x) = (9'x, 92x) € 6(D’). Hence 9'x € D’ for all x € D. Since D and D’ have the same order, it
follows that 9D = D’. In particular, D is uniquely determined up to conjugation by elements of G. ]

Definition 39.4

Let B be a block of kG. A defect group of B is a p-subgroup D of G such that (D) is a vertex
of B considered as a k[G x G]-module. The defect group of a block is uniquely determined up to
G-conjugacy. If a defect group D of B has order p? then d is called the defect of B.

Why are defect groups useful and important? We will shortly see that they measure how far a block is
from being semisimple.
Lemma 39.5

Let B be a block of kG with defect group D. Then B is relatively D-projective when thought of as
a kG-module via conjugation.

Proof: By definition B is a projective kG-module with the usual module structure given by left multiplication.
We can also think of B as a kG-module by linearly extending the conjugation action, g.x = gxg~" for
all x € B and all g € G. Then since G =~ 0(G), we can define a k[0(G)]-module structure on B via
(g.g).x = gxg~' for all x € B, (g,g) € 6(G). Notice that this k[6(G)]-module is just a restriction of
the k[G x G]-module, Blgxc We will show that B is relatively d(D)-projective as a k[0(G)]-module,
and hence via the lsomorphlsm above, B is relatively D-projective when thought of as a kG-module via
conjugation.

By the definition of defect groups, 6(D) is a vertex of B as a k[G x G]-module. Thus B is a direct
summand of VT(;(XDf for some k[0(D)]-module V. Hence by restricting to 6(G) and applying the Mackey
formula, we have

GxG GxG|GxG , (91:92)5(D) 3(G)
Blé(XG) | VT I l:S(XG = @ ((g1 gZ)Vlg(c)m(Mz)g(D)) Ta(c)m(m.qz)g(p) .
(91,92)€[6(G)\GX G/5(D)]

Therefore B, considered as a k[d(G)]-module, is a sum of induced k[3(G) n (9192)5(D)]-modules for
some g1,g2 € G, and hence is relatively 6(G) n (91:92)5(D)-projective for some g1, g2 € G. It is now
enough to show that these groups are conjugate in 0(G) to a subgroup of 6(D) as this would imply that
B is then relatively o(D)-projective, as required.



111

Let (g1,92) € G x G. Any element of 6(G) n (91:9)3(D) is of the form (91:92)5(d) = (9192)(d, d) for
some d € D such that g1dg; "' = gadg;'. Therefore (91:92)5(d) = (g1dg1, g1dg;") = d(g1)d(d)d(g1)~"
and this is an element of 6(g1)d(D)d(g1)~". It follows that 6(G) n (91:92)3(D) is conjugate in 3(G) to
a subgroup of 6(D). |

Theorem 39.6

Let B be a block of kG with defect group D. Then every indecomposable kG-module in B is
relatively D-projective, and hence has a vertex in D.

Proof: As in the previous lemma, we consider B as a kG-module via the conjugation action. Let V be a
k G-module with the usual action of G via left multiplication. We define a linear map

¢: BV >V

XQVi— xv.

Since g.(x ®@v) = gxg7' ® gv and ¢(g.(x®Vv)) = gxg 'gv = gxv = g.(xv) for all x € B, v e V and
g € G, the map ¢ is a kG-homomorphism.

On the other hand, let b be the block idempotent of B and define another linear map

Y:V->BV
Vi b®v.

For any g € G and v € V, Y(g.v) = b® gv. But b is central in B and we are considering B as a
kG-module via conjugation, so g.b = b and therefore )(g.v) = g.(b®v) for all g € G and v € V. Thus
¢ is also a kG-homomorphism.

If the module V lies in the block B, then for any v e V,

poyg(v)=d(b®v)=bv=v,
so ¢ o is the identity map on V. Therefore ¢ is surjective and ¢ is injective, and hence B®Q V =
V @ ker(¢).

In Lemma 39.5 we showed that B is relatively D-projective. It then follows from Exercise 27.8 that

B® V is also relatively D-projective, and hence, V is D-projective. In particular, every indecomposable
kG-module in B has a vertex in D. [ |

Corollary 39.7

Let B be a block of kG with trivial defect groups. Then B is a simple algebra, and in particular, is
semisimple.

Proof: If B has trivial defect group D = 1, then by Theorem 39.6 every indecomposable kG-module in B
is 1-projective, and hence projective. Thus every submodule of a B-module is a direct summand of that
B-module. Hence B is semisimple as all its modules are semisimple. But B is an indecomposable algebra
by definition. Hence B is simple. ]

We will see later that the converse of this Corollary is also true.

Finally we come to the main theorem of this section. It shows that defect groups are far from arbitrary:
defect groups contain every normal p-subgroup of G, and a defect group is a radical p-subgroup of G.
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Definition 39.8

Let Q be a p-subgroup of G. If Q is the largest normal p-subgroup of Ng(Q) (i.e. Q@ = O,(Ng(Q)),
then Q is a radical p-subgroup of G.

eorem 39.9
Let B be a block of kG with defect group D.

(@) D contains every normal p-subgroup of G.

(b) D is a radical p-subgroup of G.

Proof: Omitted. [ |

Ex

ample 19
Let G be a p-group. We already saw that kG has only one block. Then Theorem 39.9 shows that

this block has defect group D = G.

40 Brauer's Main Theorems
Definition 40.1

Let H < G, let b be a block of kH and let B be a block of kG. Then the block B corresponds to
b if and only if b, as a k[H x H]-module, is a direct summand of the restriction Blﬁif,, and B is

the unique block of kG with this property. We then write B = b". If such a B exists, then we say
the b is defined.

We will need the following technical result for the proofs that follow.
Remark 40.2

Pr

Let H < G,and let Q < H be a p-subgroup such that C5(Q) < H. Note that the restriction
kGigig is a disjoint union of the double H-H-cosets,

kGGG = @ kHtH =kH® @  kHtH.
te[H\G/H] te[H\G/H],t¢H

Fact: if t ¢ H then the k[H x H]-submodule kHtH of kG has no direct summands with vertex
containing 0(Q).

In particular, if X is an indecomposable direct summand of kGlgig with vertex containing 0(Q),

then X is a direct summand of kH, so X is a block of kH.

oposition 40.3 (Facts about b®)

Let H < G and let b be a block of kH with defect group D.
(a) If bC is defined, then D lies in a defect group of h®.
(b) If H< N <G, and bN, (bN)¢ and b" are defined, then b¢ = (bN)C.
(c) If Co(D) < H then bC is defined.




Proof:

(a) Let B := b and let E be a defect group of B. By the definition of defect groups, 6(E) is
a vertex of the k[G x G]-module B, so B is a direct summand of VT?(XE)G for some 0(E)-module

V. Since b is a direct summand of B| 5%, it follows from the Mackey formula that b is a direct

summand of

GxG|GxG xy/1 *0(E) HxH
VT&(E) lHiH = (‘D (( Vl(HxH)mXﬁ(E))l(/fo)m X(S(E)) :
xe[HxH\Gx G/6(E)]

Hence b is a direct summand of a module induced from (H x H) n *0(E), for some x € G x G.
In particular, b is a direct summand of a module induced from a conjugate of a subgroup of 6(E).
Since b has defect group D, (D) is a vertex of b so (D) is minimal such that b is relatively
0(D)-projective. It follows that (D) is conjugate to a subgroup of 0(E).

Suppose that (g1,92)3(D)(g1,g2)~" < 3(E). Then g1Dg;' < E and hence D < g; ' Egy, which
is a defect group of B, showing part (a).

Part (b) follows from the definitions. Since bN is defined, b is a direct summand of bN| V¥, and bV

is the unique such block. Since (bN)% is defined, bN is a direct summand of (bN)¢| %% and (bN)©

is the unique such block. Therefore b is a direct summand of leﬁiﬁ which is a direct summand

of (BN)C XS IN N= (BN 1EXE. However, since b€ is defined, b is also a direct summand of

bC|GX%, and bC is the unique such block. Therefore b¢ = (bN)C.

Suppose now that Cg(D) < H. To prove part (c), it is enough to show that b occurs precisely
once in a decomposition of kG Lf,ig into indecomposable modules, as then there is a unique
indecomposable direct summand of kG (i.e. a block of kG) such that b is a direct summand of the
restriction of that summand to H x H.

As in Remark 40.2,
kGl h=kH® B  kHtH.
te[H\G/H]t¢H

Now kH is, as a k[H x H]-module, a direct sum of blocks of kH, which are not isomorphic to each
other. Thus b is a direct summand of kH with multiplicity one. But b has vertex (D). Remark
40.2 shows that if t ¢ H then no direct summand of kHtH has a vertex containing 6(D). Thus b is
not a direct summand of any kHtH for t ¢ H, so b has multiplicity one in kGlf,if,, as required.
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We now prove a special case of Brauer’s first main theorem. The result holds true for any subgroup N
of G containing Ng (D), but we will only consider the case where N = Ng(D) as this situation gives
rise to the Brauer correspondence.

Theorem 40.4 (Brauer’s First Main Theorem)

{ Blocks of kN with defect group D} — { Blocks of kG with defect group D}
b b©

In this case we call b the Brauer correspondent of b.

Proof: Let b be a block of kN with defect group D. Then d(D) is a vertex of b considered as a k[N x NJ-
module. The Green correspondence (Theorem 29.4) shows that there exists a unique indecomposable
direct summand g(b) of blﬁi% with vertex d(D). Moreover, by the proof of part (b) of the Green

GxG

Correspondence, b occurs as a direct summand of g(b)] % x with multiplicity one.

Let D < G be a p-subgroup and let N := Ng(D). Then b — bC defines a bijection between the
blocks of kN with defect group D, and the blocks of kG with defect group D.
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By Proposition 40.3 (c), the block b® is defined, and hence b® is the unique indecomposable k[G x G]-
module such that b occurs in its restriction to N x N. Therefore h“ = g(b) so b® has vertex §(D) when
considered as a k[G x G]-module. In particular, b¢ has defect group D and so b — b® is an injective
map from blocks of kN with defect group D, to blocks of kG with defect group D.

We now show that this map is surjective. Suppose B is a block of kG with defect group D. Then B is
an indecomposable k[G x G]-module with vertex d(D) and the Green correspondence shows that Bigi%
has a unique direct summand, f(B), with vertex 3(D). As B is a direct summand of kG, B} %S, and hence
f(B), is a direct summand of kG| xS, In Remark 40.2 we saw that any direct summand of kG| $x$, with
vertex containing 0(D) is an indecomposable direct summand of kN. Therefore f(B) is a block of kN
with vertex 6(D) when considered as a k[N x N]-module, so f(B) is a block of kN with defect group D.

It follows from part (c) of the Green Correspondence that B = g(f(B)), and g(f(B)) = f(B)® by the first
part of the proof, so the map b — b® is surjective. ]

Theorem 40.5 (Brauer’s Second Main Theorem)

Let H < G, let B be a block of kG and let b be a block of kH. Suppose that V' is an indecomposable
module in B and U is an indecomposable module in b with vertex Q such that Co(Q) < H. If U is
a direct summand of Vl,g, then b% is defined and % = B.

Proof: First we note that Theorem 39.6 shows that there is a defect group D of b which contains the vertex
Q of U. Hence C;(D) < Cg(Q), which is contained in H by assumption. Thus by Proposition 40.3 (c),
b® is defined.

Suppose that B # bC. Let e be the block idempotent of b so b = kHe = ekH. For a kH-module X,
Proposition 38.4 shows that there is a decomposition X = eX@®(1—e)X, where eX lies in b and (1—e)X
does not. If X = Y@ Z then eX = eY @ eZ is still a direct sum. Applying this to the decomposition of
kG as a k[H x H]-module as in Remark 40.2, if we fix

M:= @  kHtH
te[H\G/H]t¢H

then
ekG=ekH®eM=b®eM

as kH-modules. But kG, b and M are all k[H x H]-modules, and e commutes with all elements of H,
so we also have ekG = b @ eM as k[H x H]-modules.

Now since B is a direct summand of kG, eB is a direct summand of b @ eM as k[H x H]-modules.
But b is an indecomposable k[H x H]-module and is not a direct summand of Blgig by assumption, so
eB is a direct summand of eM, which is a direct summand of M as k[H x H]-modules. Hence by Remark
40.2, no direct summand of the k[H x H]-module eB has a vertex containing 0(Q).

By the Mackey formula, the direct summands of eBlgl(ﬁ; are induced from subgroups of the form
O0(H) n *T, where T is a vertex of an indecomposable summand of eB and x € H x H. It follows that no
direct summand of the k[0(H)]-module eBL?(XHgl has a vertex containing 6(Q). By transport of structure
via the isomorphism H =~ §(H), we see that eB, considered as a kH-module by conjugation (i.e. with
the action of H given by h.ex = hexh= ', forall h € H, x € B), has no direct summands with vertex
containing Q. Hence by Exercise 27.8, eB® eV also has no direct summands with vertex containing Q.
Now since U is a module in b, eU = U. By assumption, U is a direct summand of V/|$ and this implies
that eU = U is a direct summand of eV. Recalling that U has vertex Q, it is then enough to show that
eV is a summand of eB® eV as this will give us a contradiction.

Define a map

p:eV-oeBeV

v ef v,
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where f is the block idempotent of B (so B = kGf). Then for any h € H,
@(hv) = ef @ hv = hefh" @ hv = h(ef ® v) = he(v),

so ¢ is a kH-homomorphism. Define a second map,

Y:eBReV — eV

a®v— av.
This is also a kH-homomorhpism — for all h € H,
W(h(a®v)) = Y(hah™" @ hv) = hah="hv = h(av) = h(Y(a ®v)).
Now since V is a module in B, for any v € eV we have
Y(p(v)) = yYlef ®v) = efv =ev=v.
Hence ¢ is injective and ¢ is surjective and therefore eV is a direct summand of eB® eV, as required
to give a contradiction. |
Lemma 40.6

Let S be a simple kG-module. Then O,(G), the largest normal p-subgroup of G, acts trivially on S.
In particular, the simple kG-modules are precisely the k[G/O,(G)]-modules made into kG-modules
via the quotient homomorphism G — G/0,(G).

Proof: Let P = O,(G) be the largest normal p-subgroup of G and let S be a simple kG-module. Suppose
that W is a simple kP-submodule of S. Then W is the trivial kP-module because P is a p-group. Let

Cs(P):={se S| ps=sforall pe P}.
We have W < Cs(P) so Cs(P) # 0. But P is normal in G, so Cs(P) is a kG-submodule of S, which was

simple, and hence Cs(P) = S. In other words, P acts trivially on S. The final claim follows immediately. H

Corollary 40.7

Let B be a block of kG with defect group D. Then there exists an indecomposable kG-module in
B with vertex D.

Proof: Let b be a block of N := Ng(D) with defect group D such that B is the Brauer correspondent of b,
as defined in Brauer’s First Main Theorem 40.4. As D is a defect group of b, D = O,(N) by Theorem
39.9 (b). Let S be a simple kN-module in b. It follows from Lemma 40.6 that D acts trivially on S and
so S can be thought of as a simple k[N/D]-module. Let Ps be the projective cover of S (so P is a
k[N/D]-module). Corollary 38.5 shows that Ps is also in the block b. We will show that Ps has vertex
D and that the Green correspondent of Ps is an indecomposable kG-module in B with vertex D.

Denote the trivial kD-module by k. The module Ps is an indecomposable projective k[N/D]-module,
so it is a direct summand of the free module k[N/D] =~ k1}. Hence Ps is relatively D-projective. Since
D < N, it follows from Clifford’s Theorem (Theorem 23.2) that k1¥|} is a direct sum of N-conjugates
of k. In other words Ps| is a direct summand of k1|, which is a direct sum of copies of the trivial
kD-module k. The vertex of the trivial kD-module k is a Sylow p-subgroup of D, by Proposition 28.4
(c), and thus is equal to D. Therefore the direct summands of Ps| all have vertex D. By Exercise 29.3,
however, Pslg has at least one direct summand with the same vertex as Ps. Hence D is a vertex of Ps.

Now consider Ps as an indecomposable k[N x N]-module and let V be the indecomposable k[G x G]-
module with vertex D which is the Green correspondent of Ps. Then by Brauer's First Main Theorem
40.4, V lies in B, so B contains an indecomposable kG-module with vertex D. ]

Our final result shows that the opposite direction of Corollary 39.7 also holds.
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Corollary 40.8
A block B of kG is a simple algebra if and only if B has trivial defect groups.

Proof: If B is a block of kG with trivial defect groups then B is a simple algebra by Corollary 39.7.

Suppose now that B is a block of kG which is a simple algebra. Then B is semisimple so all B-
modules are projective. Hence all indecomposable B-modules have trivial vertices so by Corollary 40.7,
B has trivial defect groups. |



Appendix: The Language of Category Theory

This appendix provides a short introduction to some of the basic notions of category theory used in this
lecture.

References:

[Mac98] S. Mac Lane. Categories for the working mathematician. Second. Vol. 5. Springer-Verlag,
New York, 1998.

[Wei94] C. A. Weibel. An introduction to homological algebra. Vol. 38. Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Cambridge, 1994.

A Categories

Definition A.1 (Category)

A category C consists of:

e a class ObC of objects,
e a set Hom¢(A, B) of morphisms for every ordered pair (A, B) of objects, and
e a composition function
Home(A, B) x Home(B,C) —  Home(A, C)
(f.g) — gof
for each ordered triple (A, B, C) of objects,
satisfying the following axioms:

(C1) Unit axiom: for each object A € ObC, there exists an identity morphism 14 € Hom¢(A, A)
such that for every f € Hom¢(A, B) for all B e ObC,

fola=f=1gof.

(C2) Associativity axiom: for every f € Hom¢(A, B), g € Home(B, C) and h € Hom¢(C, D) with
A, B, C,D e ObC,

ho(gof)=(hog)of.
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Let us start with some remarks and examples to enlighten this definition:
Remark A.2

(@) ObC need not be a set!

(b) The only requirement on Hom¢ (A, B) is that it be a set, and it is allowed to be empty.

(c) It is common to write f: A— B or A LN B instead of f € Hom¢(A, B), and to talk about
arrows instead of morphisms. It is also common to write "A € C" instead of "A € Ob(".

(d) The identity morphism 14 € Hom¢(A, A) is uniquely determined: indeed, if f4 € Hom¢(A, A)
were a second identity morphisms, then we would have f4g = fa014 = 14.

Example A.3

(@) C =1 : category with one object and one morphism (the identity morphism):

.91.

(b) C = 2 : category with two objects and three morphism, where two of them are identity
morphisms and the third one goes from one object to the other:

1A(jA*>Bi)1B

(c) Agroup G can be seen as a category C(G) with one object: ObC(G) = {e}, Hom¢(g) (e, 0) = G
(notice that this is a set) and composition is given by multiplication in the group.

(d) The n x m-matrices with entries in a field k for n, m ranging over the positive integers form
a category Mat,: ObMaty = Z.g, morphisms n — m from n to m are the m x n-matrices,
and compositions are given by the ordinary matrix multiplication.

Example A.4 (Categories and algebraic structures)

(@) C = Set, the category of sets: objects are sets, morphisms are maps of sets, and composition
is the usual composition of functions.

b) C = Vecy, the category of vector spaces over the field k: objects are k-vector spaces, mor-
gory P J P
phisms are k-linear maps, and composition is the usual composition of functions.

(c) C = Top, the category of topological spaces: objects are topological spaces, morphisms are
continous maps, and composition is the usual composition of functions.

(d) C = Grp, the category of groups: objects are groups, morphisms are homomorphisms of groups,
and composition is the usual composition of functions.
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e) C = Ab, the category of abelian groups: objects are abelian groups, morphisms are homomor-
C = Ab, th tegory of abelian groups: object belian group phi h
phisms of groups, and composition is the usual composition of functions.

(f) C = Rng, the category of rings: objects are rings, morphisms are homomorphisms of rings,
and composition is the usual composition of functions.

(g) C =rMod, the category of left R-modules: objects are left modules over the ring R, morphisms
are R-homomorphisms, and composition is the usual composition of functions.

(g') C = Modg, the category of left R-modules: objects are right modules over the ring R,
morphisms are R-homomorphisms, and composition is the usual composition of functions.

(g") C =rMods, the category of (R, S)-bimodules: objects are (R, S)-bimodules over the rings
R and S, morphisms are (R, S)-homomorphisms, and composition is the usual composition of
functions.

(h) Examples of your own ...

Definition A.5 (Monomorphism/epimorphism)

Let C be a category and let f € Hom¢(A, B) be a morphism. Then f is called

(a) a monomorphism iff for all morphisms g¢,g2: C — A,
fogi=fogy=—qg1=g>.
(b) an epimorphism iff for all morphisms g1,g> : B— C,

giof=grof = g1 =¢>.

Remark A.6

In categories, where morphisms are set-theoretic maps, then injective morphisms are monomorphisms,
and surjective morphisms are epimorphisms.
In module categories (f/Mod, Modgr, fMods, ...), the converse holds as well, but:

Warning: It is not true in general, that all monomorphisms must be injective, and all epimorphisms
must be surjective.

For example in Rng, the canonical injection ¢ : Z — Q is an epimorphism. Indeed, if C is a ring

and g1, g2 € Hompyg(Q, €)
g
Z-‘sQ—=cC
g1
are such that g1 ot = gy o, then we must have g1 = g, by the universal property of the field of

fractions. However, ¢ is clearly not surjective.
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B Functors

Definition B.1 (Covariant functor)

Let C and D be categories. A covariant functor F : C — D is a collection of maps:
e fF:0bC— ObD, X — F(X), and
e Fap :Home(A, B) — Homp(F(A), F(B)),
satisfying:
(@) IfA B9 C are morphisms in C, then F(gof) = F(g) o F(f); and
(b) F(1a) = 1F(a) for every Ae ObC.

Definition B.2 (Contravariant functor)

Let C and D be categories. A contravariant functor F : C — D is a collection of maps:
e F:0ObC— ObD, X — F(X), and
e Fap :Home(A, B) — Homp(F(B), F(A)),
satisfying:
(@) IfA 1, B-% Care morphisms in C, then F(gof) = F(f) o F(g); and
(b) F(1a) = 1F(a) for every Ae ObC.

Remark B.3

Often in the literature functors are defined only on objects of categories. When no confusion is to

be made and the action of functors on the morphism sets are implicitely obvious, we will also adopt
this convention.

Example B.4
Let Q € Ob(gMod). Then

Homg(Q,—): RMod — Ab
M —  Homg(Q,M),

is a covariant functor, and

Homg(—,Q): fRMod — Ab
M — HomR(/\/I, Q),

is a contravariant functor.

Exact Functors.

We are now interested in the relations between functors and exact sequences in categories where it
makes sense to define exact sequences, that is categories that behave essentially like module categories
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such as fMod. These are the so-called abelian categories. It is not the aim, to go into these details,
but roughly speaking abelian categories are categories satisfying the following properties:

e they have a zero object (in Mod: the zero module)
e they have products and coproducts (tn Mod: products and direct sums)
e they have kernels and cokernels (in ;MMod: the usual kernels and cokernels of R-linear maps)

e monomorphisms are kernels and epimorphisms are cokernels (in ;Mod: satisfied)

Definition B.5 (Pre-additive categories/additive functors)

(@) A category C in which all sets of morphisms are abelian groups is called pre-additive.

(b) A functor F : C — D between pre-additive categories is called additive. iff the maps Fa g
are homomorphisms of groups for all A, B ObC(.

Definition B.6 (Left exact/right exact/exact functors)

Let F : C — D be a covariant (resp. contravariant) additive functor between two abelian categories,

and let 0 — A -5 B -9 C— 0 be a ses. of objects and morphisms in C. Then F is called:

(a) left exact if 0 — F(A) A F(B) b)) F(C) (resp. 0 — F(C) i F(B) =

exact sequence.

F(A))) is an

(b) right exact if F(A) " F(B) E9 F(c) — 0 (resp. F(C) T F(B)

exact sequence.

7 Fa)) — 0) is an

(0) exact if 0 — F(A) "1 F(B) F9 F(0) — 0 (resp. 0 — F(C) 29 F(B) " F(a)) —0)

is a short exact sequence.

Example B.7

The functors Homg(Q, —) and Homg(—, Q) of Example B.4 are both left exact functors. Moreover
Homg(Q, —) is exact if and only if Q is projective, and Homg(—, Q) is exact if and only if Q is
injective.




Index of Notation

General symbols
C

Fq

[dpg

Im(f)

ker (@)

No
O
P

Q

Qp

R

Z

Z>a,Z50:Z<ar Z<a

Zp
|X]

N
~

SRRy ®® x OMIDECS
X

|b,atb
lb)
(K,0, k)
fls
N

field of complex numbers
finite field with g elements
identity map on the set M
image of the map f

kernel of the morphism ¢

the natural numbers without 0
the natural numbers with 0
discrete valuation ring

the prime numbers in Z

field of rational numbers

field of p-adic numbers

field of real numbers

ring of integer numbers
{meZ|m=a (resp. m>a,m>=a,m<a)}
ring of p-adic integers
cardinality of the set X
Kronecker’s delta

union

disjoint union

intersection

summation symbol
cartesian/direct product
semi-direct product

direct sum

tensor product

empty set

for all

there exists

isomorphism

a divides b, a does not divide b
gcd of a and b

p-modular system

restriction of the map f to the subset S
injective map

surjective map



Group theory
Aut(G)

DZn
0:G—->GxG
End(A)

G/N

GL,(K)

Hgl

[H\G/L]
H<G H<G
NG

Nc(H)

N xg H

Sy

SL,(K)

Z/mZ

g
()= G
|G : H|
[G/H]
xe G/N
{13.1

Module theory
Homg (M, N)
Endg(M)
hd(M)

KG

e:KG— K
I(KG)

J(R)

M 1§, Resi(M)
M1, Indfy(M)
g (M)

RX

RO

rad(M)

soc(M)

automorphism group of the group G
alternating group on n letters

cyclic group of order m in multiplicative notation
centraliser of the element x in G
centraliser of the subgroup H in G
dihedral group of order 2n

diagonal map

endomorphism ring of the abelian group A
quotient group G modulo N

general linear group over K

(H, L)-double coset

set of (H, L)-double coset representatives
H is a subgroup of G, resp. a proper subgroup
N is a normal subgroup G

normaliser of H in G

semi-direct product of N in H w.r.t. 6
symmetric group on n letters

special linear group over K

cyclic group of order m in additive notation
conjugate of g by x, i.e. gxg~'

subgroup of G generated by g

index of the subgroup H in G

set of left coset representatives of H

class of x € G in the quotient group G/N
trivial group

R-homomorphisms from M to N
R-endomorphism ring of the R-module M
head of the module M

group algebra of the group G over the commutative ring K
augmentation map

augmentation ideal

Jacobson radical of the ring R

tensor product of M and N balanced over R
G-fixed points of the module M

G-cofixed points of the module M
restriction of M from G to H

induction of M from H to G

inflation of M from G/N to G

units of the ring R

reqgular left R-module on the ring R

radical of the module M

socle of the module M
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XOR R-module generated by the set X
g y
A, M> algebra (resp. module) obtained from A (resp. M) by the
extension of scalars to S

Character and Block Theory

bG

C =D'D

G

CL(G), CL(G?)

D = (dyg)yelrr(G),pelBr(G)
€x

GO

Irr(G)

IBr(G)

X°

Xreg

Preg
)

<?>:Cl(G)xCl(G)—>C

Category Theory
ObC

Hom¢ (A, B)
Set

Vecy

Top

Grp

Ab

Rng

~Mod
Modpg
RMods

the block of G corresponding to b or the Brauer
correspondent of b

Cartan matrix

the ith class sum

the class functions on G or G°

decomposition matrix

primitive central idempotent corresponding to x € Irr(G)
p-regular elements of G

ordinary irreducible characters of G

irreducible Brauer characters of G

restriction of x € Irr(G) to G°

regular character

regular representation

projective indecomposable character of ¢ € IBr(G)
inner product on class functions of G

objects of the category C
morphisms from A to B

the category of sets

the category of vector spaces over the field k
the category of topological spaces
the category of groups

the category of abelian groups
the category of rings

the category of left R-modules
the category of left R-modules
the category of (R, S)-bimodules
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Index

O-form, 83
p-modular system, 84
splitting, 84
p-regular element, 94

algebra, 11
annihilator, 24
augmentation
ideal, 43
map, 43
automorphism, 8

basis, 10
block, 102
block idempotent, 102
corresponding block, 107
lying in a block, 102
Brauer character, 95
irreducible, 95
linear, 95

Cartan matrix, 98
category, 112
pre-additive, 116
centre, 34
change of the base ring, 9
character, 87
irreducible, 87
linear, 87

projective indecomposable, 99

regular, 89
class sums, 88
cofixed points, 50
coimage, 9
coinduction, 53

cokernel, 9
composition factor, 22
composition length, 22
constituent, 22

decomposition matrix, 86
defect
defect group, 105
defect of a block, 105
degree, 40, 95
diagonal embedding, 104
direct product, 12
direct sum, 13
double coset, 56

endomorphism, 8
exact sequence, 14
short, 14

extension
non-split, 103

fixed points, 50
functor
additive, 116
contravariant, 115
covariant, 115
exact, 116
left exact, 116
right exact, 116

generating set, 10
group algebra, 41

head, 62

homogeneous component, 34

homomorphism
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canonical, 9
of algebras, 11
of modules, 8

induction, 52
inflation, 51
isomorphism, 8

Lemma
Fitting's Lemma, 26
Nakayama’'s Lemma, 24
Schur’s Lemma, 21

module
Artinian, 22
bimodule, 8

completely reducible, 29
decomposable, 21
finitely generated, 10
free, 11
indecomposable, 21
irreducible, 21
left module, 7
Noetherian, 23
projective, 64
reducible, 21
regular, 21
right module, 8
semisimple, 29
simple, 21

morphism, 112
epimorphism, 114
monomorphism, 114

object, 112
PIM, 64

radical, 62
Jacobson radical, 24
rank, 11
relative freeness, 69
relative projectivity, 69
representation, 39
equivalent, 41

matrix representation, 39

modular, 40
natural, 40
ordinary, 40

permutation representation, 40
regular representation, 40
trivial, 40

restriction, 51

ring
discrete valuation ring, 80
J-semisimple, 31
local, 25
semisimple, 30

series, 22

composition series, 22
socle, 63
source, 76
split sequence, 15
splitting field, 37, 83
submodule, 8

tensor product, 16

Theorem
Artin-Wedderburn, 36
Brauer’s First Main Theorem, 108
Brauer’s Reciprocity, 85
Brauer’s Second Main Theorem, 109
Clifford’s strong Theorem, 59
Clifford’'s weak Theorem, 59
First Orthogonality Relations, 91
Frobenius Reciprocity, 54
Green Correspondence, 78
Hopkins' Theorem, 23
Jordan-Holder, 23
Krull-Schmidt, 27
Mackey formula, 58
Maschke, 44
Second Orthogonality Relations, 92
Wedderburn, 34

trace map, 49

valuation, 80
exponential, 80
vertex, 76
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