
A STEADY-STATE PARTICLE METHOD FOR THE BOLTZMANN 
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Abstract. We present a particle method for the numerical simulation of boundary value prob- 
lems for the steady-state Boltzmann equation. Referring to some recent results concerning steady- 
state schemes, the current approach may be used for multi-dimensional problems, where the collision 
scattering kernel is not restricted to Maxwellian molecules. The efficiency of the new approach is 
demonstrated by some numerical results obtained from simulations for the (two-dimensional) Be- 
nard’s instability in a rarefied g<as flow. 
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1. Introduction. The dynamic behaviour of a rarefied gas is described by the 
Boltzmaun equation, the fundamental transport equation in the kinetic theory of gas 
flows. The Boltzmann transport equation uses a mesoscopic picture of a rarefied gas: 
macroscopic quantities, like the mass density or the temperature, are obtained from 
the moments of the density function described by the Boltzmann equation. On the 
other hand, t,he dynamic behaviour of the density itself, as given by the Boltzmann 
equation, is derived from a microscopic picture, where one considers the molecular 
dynamic of single particles, in the limit, when the particle number in the gas tends 
to infinity. 

Besides the more theoretical problems concerning the Boltzmann equation, t,he 
numerical simulation of rarefied gas flows plays a central role in the kinetic theory 
of gases. In particular, due to the ongoing speed up of the existing computer hard- 
ware, above all massively-parallel systems, one is able to perform complex three- 
dimensional simulations of rarefied gas flows, even close to the continuum regime, 
including real gas effects and chemical reactions in a gas mixture. 

Numerical simulation techniques are nearly exclusively based on so-called particle 
methods, where one uses a finite set of part~icles to approximate the density function 
described by the Boltzmann equation. Moreover, these particle methods are in general 
applied to time-dependent problems, i.e. the time-dependent Boltzmann equation, 
although a lot of applications in the kinetic theory of gases are described by boundary 
value problems for the steady-state equation. 

The derivation of time-dependent particle methods is based on a splitting scheme, 
which separates the two phenomena appearing in a rarefied gas, namely the free 
transport of gas particles in the spatial domain and the binary collisions between gas 
particles. The t,reatment of collisions uses in general an explicit time difference scheme 
for the space-homogeneous Uoltzmann equation, which leads to a first order scheme 
in time together with a restriction on the size of the time step. Hence, one may think 
about to improve the accuracy of the time integration using higher order schemes 
as well as to obtain more robust schemes using an implicit time integration. Here, 
time-dependent particle schemes may be called robust, if they include a control on 
the conserved quantities of the Boltzmann equation (during the simulation of binary 
collisions). 
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Besides the derivation of generalized integration techniques, which lead to more 
flexible particle methods for time-dependent problem, there is still a need to obtain 
a particle method, which can directly applied to the steady-state equation. In Ref. 
[I], Babovsky discussed time averaging techniques, when applying a time-dependent 
particle method to stationary kinetic equations. The material presented there clearly 
indicates, that a time-dependent code yields in general deviations from the steady- 
state solution, due to some systematic errors. 

In the present paper we discuss a particle method for the steady-state Boltzmann 
equation, which was recently introduced by Bobylev and the author in Refs. [4] and 
[5]. The idea is to apply an iteration process directly to the steady-state equation, 
which is derived from a formal solution of the steady-state problem. This approach 
was restricted to one-dimensional problems with Maxwellian molecules and the aim 
of the current investigation is to show, how to use a similar method in the case of a 
multi-dimensional setup and arbitrary scattering kernels. 

2. A Steady-State Particle Method. The steady--state Boltzmann equation 
(for Maxwellian molecules) on a bounded domain R c D?‘“, n 2 1 is given by 

(2.1) v. Of + fgf = iQ+(f) 

together with appropriate boundary conditions on 80. Here, the collision operator 
Q+(f) is given by 

where v’ and v: are the post-collisional velocities, which can be expressed in the 
center-of-mass system in the form 

v’ = ; (v i-v, - (Iv - v*lln) v!+ = i (v + v* + IIv - v,lln) 

CJ is the (normalized) angular-dependent scattering kernel for Maxwellian molecules 
and p(x) denotes the mass density, i.e. p(x) = J f(x, v)dv. 
For one-dimensional problems, i.e. Q = [O,L] c IR, one may simplify Eq. (2.1) by 
introducing the so-called mass coordinate y, which is defined by 

z 

Y= 
I 

p(z’)dz’ 

0 

Then, the one-dimensional steady-state Boltzmann equation reads 

(2.2) 
af &O --+f= 

YdY 
-j&Q+(f) 

where zly denotes the velocity along the slab geometry [0, L]. 
In Ref. [4] it was proposed to solve the one-dimensional steady-state equation directly 
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where F(f) = jQ+(f) and the bracket denotes t,he time-averaging where F(f) = jQ+(f) and the bracket denotes t,he time-averaging 

(it(t)) = Te--f%(i)f (it(t)) = Te--f%(i)f 

0 0 

ItEMARK 2.1. This iterative process is derived formally as follows: the steady- ItEMARK 2.1. This iterative process is derived formally as follows: the steady- 
state solution of (2.2) may be expressed by state solution of (2.2) may be expressed by 

f(y,v) = (l-i- d?)-l f(y,v) = (l-i- d?)-l &Q+(f) &Q+(f) 

where D denotes the differential operator ~~6. where D denotes the differential operator ~~6. Now the inverse of the operator Now the inverse of the operator 
(1 + ED) can be written in the form (1 + ED) cm be written in the form 

(2.4) (2.4) (1 + ,en)--1 = me-t(l+d+& = _?. me--.‘/~e-~Ddt, (1 + ,en)--1 = me-t(l+d+& = _?. me--.‘/~e-~Ddt, 
J J E E J J 0 0 0 0 

such that the formal solution reads such that the formal solution reads 

(2.5) (2.5) f(~, v) = (ewetD~Q+tf)) f(~, v) = (ewetD~Q+tf)) 

which yields an implicit equation for f(y) v)~ The natural way to solve (2.5) is to which yields an implicit equation for f(y) v)~ The natural way to solve (2.5) is to 
apply an iteration apply an iteration 

f (4 cy, v) = (,@D 1 f (4 cy, v) = (,@D 1 pt(f’“‘)) /,Qi-(f")) 

and this exactly yields the equation given above. and this exactly yields the equation given above. 
The crucial point is, that the iterative process is in particular suited when applying The crucial point is, that the iterative process is in particular suited when applying 

a particle method to simulate rarefied gas flows: a particle method to simulate rarefied gas flows: 
1. using the previous results on particle methods for the time-dependent Boltz- 1. using the previous results on particle methods for the time-dependent Boltz- 

mann equation, like discussed in the review article [7], it is straightforward how to mann equation, like discussed in the review article [7], it is straightforward how to 
derive a particle approximation for the expression iQ+(f), assuming that an approx- derive a particle approximation for the expression iQ+(f), assuming that an approx- 
imation for the density f is given. imation for the density f is given. 

2. the operator exponential eetD 2. the operator exponential eetD i is simply the solution of the free flow equa- i is simply the solution of the free flow equa- 
tion tion 

Of Of 
g + v,,- = 0 g + v,,- = 0 . 3y . 3y 

together with the initial condition f(0, y,v) = fo(y,v). Moreover, one is able to together with the initial condition f(0, y,v) = fo(y,v). Moreover, one is able to 
incorporate the corresponding boundary conditions into this free flow equation. incorporate the corresponding boundary conditions into this free flow equation. 
It remains to discuss t,he meaning of the time averaging (.) over the Poisson dis- It remains to discuss t,he meaning of the time averaging (.) over the Poisson dis- 
tribution with mean value E: tribution with mean value E: suppose that a particle approximation in the form suppose that a particle approximation in the form 
{(~\~,y~,v~)}~~~,,..,,~ for the expression iQ+ is given. Then applying the operator {(~\~,y~,v~)}~~~,,..,,~ for the expression iQ+ is given. Then applying the operator 
eetD on $Q+ means to solve for the given particle ensemble the characteristic system eetD on $Q+ means to solve for the given particle ensemble the characteristic system 

yjd = (I$/); vi = 0 yjd = (I$/); vi = 0 

Now, the time averaging (.) may be realized by choosing for each particle an individual Now, the time averaging (.) may be realized by choosing for each particle an individual 
Poisson-distributed time step ti and to solve the characteristic equations on the time Poisson-distributed time step ti and to solve the characteristic equations on the time 
interval [0, t,]. interval [0, t,]. 
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REMARK 2.2. Formally, this method is derived by considering the weak formu- 
lation of the iteration (2.3), i.e. 

L L 

JJ @(y, v)f(“+‘)(y, v)dvdy = JJ +(y,v)(eCiDIQ+(f(,)))dvdy 
P 0 R3 0 R3 

The corresponding equation in terms of measures reads 

pb”fl) = ( K x zm) 0 7-l 

where K denotes the measure with density $e-‘iE on lR+, T-l denotes the free stream 
operator 

w4 f(4 Y, VI> = f(Y + twy> v) 

and ~(~+r) is the measure with density f(‘“+‘)(y,v). Moreover, ~(“1 represents the 
gain term pQ+ due to collisions of the measure ~(~1 with density f(“) and may be 
expressed in the usual way by 

J4 = (/J4 x p(4 x u) 0 p-1 

with 

P(v, v,, n) = f(v + v, - j[v - v* IIn) 

REMARK 2.3. If one does not pass to the mass coordinate y, the resulting char- 
acteristic system reads 

1 

x=povx 
+=o 

and the solution on the basis of a particle ensemble is no longer trivial. This is the 
reason, why the result presented in Ref. [5] is restricted to the one-dimensional case. 

The resulting particle scheme for the one-dimensional steady-state equation on 
the basis of the iterative process given above is quite similar to time-dependent 
schemes and one may interpret the scheme as a generalization of the classical splitting 
method: 

1. in the free flow step, each particle is equipped with an individual time step, 
which is Poisson-distributed with mean value (t) = E, whereas in a time-dependent 
scheme, the particles are moved according to the given time step At, 

2. in the collision step, each particle undergoes a collision, i.e. no collision prob- 
ability appears in the simulation, whereas in a time-dependent scheme the collision 
probability is proportional to the time step At. 
In Ref. [5] this steady-state approach was used to simulate the one-dimensional steady 
heat transfer problem with diffusive boundary conditions and the numerical results 
showed, that the steady-state scheme yields a much faster convergence compared to 
a time-dependent scheme, at least for Knudsen numbers around unity. In the next 
sections we describe, how the results may be generalized to the multi-dimensional 
case with arbitrary collision scattering kernels. 
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2.1. The Multi-Dimensional Equation for Maxwellian Molecules, The 
natural generalization of the iterative process from the previous section is to write 
the formal solution of multi-dimensional Boltzmann equation (2.1) as 

f(X>V) = (1 f &w-l-&Q.+~f! 

and to apply the iteration 

pl)(X,V) = (1 f -$$V)+&?+(f’“‘) 

Together wit,h t,he operator identity (2.4), the direct analogon to (2.3) is given by 

(2.6) fcn+l)(x, v) = (e 
-t@“) 1 

;;r;;rW”!) 

where the bracket denotes again a time-averaging over the Poisson-distribution and 
IN”) = v . V/p(“)(x). 
Although this is the natural generalization from the previous section, applying a par- 
ticle method is more complicated, because the operator D(“) depends on the macro- 
scopic density of the TLth iteraCon step: if we define g(t, x, v) = eWtD(“) &Q+(f(‘“)), 
then g is the solution of the free flow equation 

(2.7) 
&I 
Ft+ 

--J-vvg = 0 
p(“)(x) 

with initial condition -&Q+(S(‘“)). Eq. (2.7) is solved by the characteristic system 

1 kt-------v +=o 
p(‘l) (x) 

which yields a nonlinear system. 
In particular, applying a particle method to the iterative process (2.6), one has to use 
a certain smoothing kernel @“(x,x,) to derive the density p(‘l) at some point x E R, 
i.e. 

where 6,,trt)(,..,) denotes a particle approximation of the density f(‘“). Even using 
the standard smoothing kernel, which defines a partition of R into a fixed cell sys- 
tem, yields a complicated system of differential equations for the particle trajectories. 
Moreover, due to the fluctuations, which are inherently contained using a particle 
method, one might expect some deviations or numerical artifacts using this kind of 
approach. 
Hence, t,he generalization of t,he one-dimensional method to obtain a steady-state 
scheme, where one overcomes the problem by introducing the mass coordinate, to the 
multi-dimensional case is not trivial. 

In the following we describe a new approach, which leads to a characteristic system 
like in the one-dimensional case. To perform the analysis, we have to assume, that 
the densities p(“)(x) are bounded on R (uniformly with respect to n), i.e. 



6 J.STRUCKMEIER 

REMARK 2.4. From a theoretical point of view, this assumption might be a se- 
vere restriction applying the present steady-state particle method: obtaining a priori 

bounds on the (local) density is crucial in proving the existence of steady-state solu- 
tions. We refer the reader to Ref. [6], where the authors give a global existence result 
for the one-dimensional slab geometry with diffusive boundary conditions. Here, it is 
crucial that the collision scattering kernel is truncated at small velocities to obtain a 
priori bounds on the (local) density in terms of the momentum flux. Otherwise, the 
arguments of the proof given there will not go through. On the other hand, applying 
a standard time-dependent particle scheme for the (multi-dimensional) Boltzmann 
equation implicitly includes the assumption, that the density is locally bounded; this 
assumption is even necessary for Maxwellian molecules. 

Assuming condition (2.8), we may consider the iteration 

EV . vf(“+l) + f 
thlax 

which leads to 

Cn+l) = (1 - e!) f”“’ + .2&Q+(f”“‘) 

(2.9) 

where 

Wf’“‘l= (l-~)~(n)+~~+(~~l.)), D=-J.-&V 

In contrast to the previous iteration process, the operator D is now again independent 
of x and n, such that eUtDq is the solution of the free flow equation 

af v 
-z + Pmax 

-Vf =o 

with initial condition %. Moreover, the resulting characteristic system reads 

(2.10) 
V 

jc=----- +=o 
PIIKXC 

which yields a system of equations for the particle trajectories in the free flow step, 
which is as simple as in the one-dimensional case. 

It remains to study in more detail the operator S[f]: a straightforward observation 
is, that the operator m conserve the first five moments of the density f, i.e. we have 

f (VW 

Moreover, passing to the weak form of tP[f], the operator may be identified as an 
explicit time-discretization of a spatial homogeneous Boltzmann equation with initial 
condition f(v): first, we consider the normalized density f = $ f together with the 

corresponding equation for f. With the notation p&[J] = Q[f] the transformed 
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and J fdv = 1 for all x E R. 
The (normalized) density function f(x, v) is for x E s2 fixed the density of a probability 
measure on R3 with respect to v. Then, @[i] is identified as the solution of an explicit 
time discretization of the space-uniform Boltzmann equation, where the positivity of 
@[!I is guaranteed by (2.8). 

REMARK 2.5. In particular, because f is normalized to one, we can write 

/ Wff’ljlWdv = J’ @(VI (gQ+ii, + (I- g) i) dv 
w 123 

= s ( 
.‘lir”Lqvy+ (l-g)qv)). 
ihr1ax 223 x R3 x 9 

s(n)J(v)j(v,)dw(n)dv,dv 

Hence, if we denote by pa, and p the measures with densities @[f](v) and f(v), 
respectively, the corresponding measure formulation for $[fll reads 

(2.12) pa = (p x p x Lcl x A) 0 T--l 

where X denotes the uniform measure on [0, I] and the transformation T is given by 

i 

V’ if s I d’L)/pIIIRX 
T(v, v*, 12, s) = 

V else 

Because the multi-dimensional steady-state scheme is a generalization of the one 
used in the one-dimensional case, we describe in the following only the differences 
in the corresponding particle algorithms: Both schemes use a generalized splitting 
method to separate the free flow from binary collisions. 

1. in both schemes each particle (xi, v,) is equipped with an individual Poisson- 
distributed time step ti. The particle trajectory in the one-dimensional case is given 
by za(ti) = Zi + tivi; whereas in the multi-dimensional case the particle moves with 
the modified velocity v;/p,,,,,. 

2. in the collision stage, each particle undergoes a collision in the one-dimen- 
sional case; whereas in multi-.dimension there is a collision probability p(“l/p,,,,, for a 
collision. In particular, the collision probability if independent of the particle velocities 
and only depends on the local density P(~‘)(x). 
In order t!o determine the collision probability P(‘~) /p,,,,, in the collision stage, one has 
to evaluate the density at the n-th iteration step using the given particle ensemble 
for the density f(‘“) . This part is obviously related with the collision process itself and 
the smoothing kernel /3’(x, x,) applied to perform the collisions is used to compute 
p(“), 
In particular, using the standard smoothing kernel based on a partition of R into a cell 
system, the parameter ,Orrlax has to be specified as the maximal particle number per 
cell occurring during the simulation. Then, the collision probability is simply given as 
the ratio of the present particle number at the n-th iteration and the maximal value 
PIWLX * 
Because the collision process is based on some stochastic elements, one may expect 
that the fluctuations on the particle numbers are less severe than using the direct 
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analogon of the one-dimensional steady-state scheme discussed in the previous sec- 
tion. One may validate this conjecture by numerical experiments: in Section 3, we 
give some results on the numerical simulation using steady-state schemes. In particu- 
lar, we compute the numerical solution of the one-dimensional heat transfer problem, 
which was already investigated by Bobylev and the author in Ref. [5]; but using the 
steady-state scheme described above, i.e. we perform a simulation without using the 
mass coordinate. 

2.2. The Treatment of Non-Maxwellian Molecules. With the same idea 
like in the previous section, i.e. to assume a bounded collision frequency in each 
iteration step (as defined by assumption (2.8)), one may derive a particle scheme 
for the full multi-dimensional Boltzmann equation with arbitrary scattering kernels. 
Besides assumption (2.8), we further have to assume that the given collision scattering 
kernel is truncated to obtain a bounded collision frequency. 
Here, we consider the steady-state Boltzmann equation given by 

v. Vf + *f = iQ+(f) 

with collision operator 

Q+(f) = / /g (Iv - v*l, ‘;yvu~~*;‘) f(v’)f(v:)dndv, 
Ii? 9 

and 

4flb4 = / / cfWdndv* 
l-v s2 

Like in the previous section, the straightforward iteration reads 

(2.13) p+qx, v) = (1 + &vv)-’ &Q+ (f’“‘) 

but applying the iterative process (2.13) is even more complicated than in the previous 
one using Maxwellian molecules. Here, the collision frequency is even a v-dependent 
function, which in general is unbounded on IR3. The corresponding characteristic 
system for the free transport equation 

%l 
at + .[fW] 

-J--vg=o 

which is obtained applying the operator identity (2.4) now reads 

1 
f = qf’“,](x,v)V + = O 

In order to determine the particle trajectories using a particle method even means 
to evaluate the collision frequency v[f(“)]( x, vi) for a given particle velocity vi. It is 
obvious, that this kind of approach will lead to a computational effort much higher 
than applying a standard time-dependent particle method. The resulting particle 
code will have a computational effort of order r&, where nioC denotes, e.g., the local 
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particle number per cell, whereas in standard scheme the effort is linear in nloC. 
Hence, the iteration (2.13) is substituted by 

(2.14) -2...-Vvf(f~+I) 
411,x 

+p+lL (l-e&y~~+-&J+(/‘“‘) 

which is obtained from the assumption that the collision frequencies v[f(‘“)] are uni- 
formly bounded by v,~~~,~, i.e. 

(2.15) z.#‘“‘](X,V) 5 z$,,ax vv E R3, x E R, n 2 0 

BEMARK 2.6. Condition (2.15) implicitly includes the assumption, that the den- 
sities p(“) are uniformly bounded, because the collision frequency is homogeneous in 
the density. Furthermore, we have to subst,itnte the scattering kernel g in the collision 
integral by a truncated kernel j. This kind of cut-off is general used in numerical 
methods for the Boltzmann equation and even necessary in the case of time-dependent 
scheme, when using non-Maxwellian molecules. 

Following the same lines as in the previous section, we can write Eq. (2.14) in the 
more compact form 

(2.16) f(W = (e-‘q/[f”“‘]) 

where lz([f(‘“‘] is now given by the formula 

(2.17) !I![f(‘“)] = (1 - QJ f”“’ 4 -&?+(I’“‘) 

and the operator D is given by D = vVO/V,,,~~~. 
Moreover, one notices, t,hat the collision term given in Eq. (2.17) is quite sim- 

ilar to the corresponding expression for Maxwellian molecules. Like in the previous 
section, the collision term P conserves the first five moments of the density function 
and describes an explicit time discretization of the space-homogeneous Boltzmann 
equation. Again, we have to be a little bit careful, because here we cannot assume, 
that the densities f’“) are normalized to one, i.e. to perform the collisions, we have 
to consider the normalized densities, like discussed in the previous section: we denote 
by f the normalized density of f in the form f = f/p, where p = Jf(x,v)dv # 1 
and write p%[j] = Q[fl. Th en, the transformed collision operator reads 

(2.18) $ir[fb)] = ( 1 _ P(~~)$)l) p + L!F&p,, 

and referring to the previous section, Eq. (2.18) is an explicit discretization for the 
normalized density f(‘“’ with artificial time step P(‘~)/v,,,,,. 

Hence, the steady--state particle method for non-Maxwellian molecules in the 
multi-dimensional case may again be seen as a generalized splitting method: to de- 
rive a simulation algorithm one applies the iteration process (2.16) together with an 
appropriate beginning condit,ion f (“I. In particular, the density fcn41) is derived from 
the previous iteration by two fractional steps, which may be denoted as a generalized 
splitting method. 

1. In a first step, one computes a particle approximation for the (modified) col- 
lision operator !l?‘[f(“)] defined be (2.17). This is done by performing an explicit time 
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discretization for the space-homogeneous Boltzmann equation with initial condition 
f(n) = f(n)/p(n), i.e. the normalized density of the n-th iteration f(“). In partic- 
ular, the collision probability of two colliding particles is given by p(“)/vmax, which 
corresponds to an artificial time step p(n)/z+,aX (for the normalized density i(“)), 

2. The resulting particle approximation for !i?[f(“)] is used in a second step to 
apply a time averaging on the operator eWtD9[f(“)] over a Poisson distribution with 
mean value (t) = E. Here, each particle is equipped with an individual time step 
(Poisson-distributed) and this time step is used to compute the particle trajectory 
according to the characteristic system 

V x=------- , +=o 
%nax 

The boundary conditions for the steady-state problem are incorporated in the same 
way as for time-dependent schemes: if the particle trajectory crosses the boundary 
of the computational domain, one modifies the trajectory according to the given 
boundary condition. 

3. Numerical Examples. 

3.1. One-Dimensional Heat Transfer Problem. As first example for steady 
flow simulations, we compute the solution for the one-dimensional heat transfer prob- 
lem between two parallel plates with diffusive boundary conditions, which was already 
investigated in by Bobylev and the author in Ref. [5]. Here, we use, in contrast to the 
previous results, the particle method for the multi-dimensional Boltzmann equation 
as derived in Section 2.1; in particular, we consider the original slab geometry and do 
not pass to the mass coordinate along the slab. 

We compare a standard time-dependent simulation based on the splitting method 
with the iterative particle scheme derived from the steady-state Boltzmann equation. 
In particular, the iterative scheme for the steady-state equation is based on the as- 
sumption, that the densities pen) at each iteration step are uniformly bounded by 
pmax and the parameter pmax is included in the simulation procedure within the free 
flow of particles and the collision stage: in the free flow step, the velocity of each 
particle is modified by the factor l/pmax; in the collision step the probability of a 
binary collision is equal to p(“)/~,~,,. 

The Knudsen number is varied in a range from 0.02 to 2, where in each simulation 
the number of spatial cells is fixed at M = 128. Moreover, the initial condition is cho- 
sen to be a global Maxwellian distribution with (normalized) density and temperature 
equal to 1 and 200 particles per cell are used to approximate the initial condition, 
which corresponds to 25.600 particles along the complete slab geometry. The two 
wall temperatures are kept fixed at T(0) = 1 T(1) = 2 and we perform the compu- 
tations on a nCUBE 2s parallel computer using 32 nodes, such that each processors 
computes the solution on 4 spatial cells. Finally, the random number generator used 
in the simulation is the standard drand48()-subroutine and on each processor we use 
a different initialization for the generator. The time step for the time-dependent 
simulation is given as the inverse of the number of cells, which is obtained from the 
assumption that the mean velocity of particle is equal to one. The parameter pmax 
for t,he steady-state scheme was varied from 1.1 for E = 2 up to 1.6 for E = 0.02. 

REMARK 3.1. The parameter prnax is chosen using an a priori guess on the 
maximal density along the slab geometry. Numerical experiments show that the 
results are nearly independent of ,omax within a reasonable range of this parameter. 
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The following two figures (Fig. 1 and 2) show the steady-state density and tem- 
perature profiles along the slab geometry. The symbol “A” (solid lines) indicates the 
solutions obtained from the steady-state simulation, the symbol “B” (dotted lines) 
the corresponding results using the time-dependent approach. Due to the small time 
step, which is used in the time-dependent scheme, both methods give nearly identical 
results at various Knudsen numbers (here, E = 2,0.5,0.1 and 0.02) 

FIG. 1. Stationary Density Profile 

In both figures, the results for larger Knudsen numbers are identified by the curves 
with smaller slope. 

2 

Flc:. 2. Stationary Temperature Profile 

It remains to recover the faster convergence of the steady-state simulation com- 
pared with the time-dependent scheme, which was detected in the previous results 
presented in Ref. [5]. Fig. 3 shows the convergence history of the temperature at the 



12 J. STRUCKMEIER 

TABLE 1 

CPU times in min:sec. 

Scheme E = 2.0 E = 0.5 E = 0.1 E = 0.02 
A 85:33 65:04 62:32 57:60 
B 25:29 26:56 30:42 39:29 

right boundary cell, which is obtained as the arithmetic average over the iterations or 

I.2 L 
0 2000 4000 6000 6000 1 OM)0 

lteratiowTime steps 

FIG. 3. Convergence History for the Right Boundary Cell 

Again the steady-state scheme yields a much faster convergence at Knudsen num- 
bers of the order 1; whereas for the smaller Knudsen numbers (here, the smallest 
Knudsen number is E = 0.02) the convergence of both schemes is nearly the same. 

The CPU times for 20.000 iterations or time steps, respectively, are summarized in 
Table 1. Due to the larger number of collisions in the steady-state simulation as well 
as the larger number of gas-surface interactions in the free flow step, the steady-state 
method is again more time-consuming. 

In particular at Knudsen numbers of order 1, this additional effort is compensated 
by the faster convergence of the steady-state scheme. 

3.2. Simulation of Benard’s Instability by Steady-State Schemes. Here 
we are concerned with the natural convection of a gas enclosed between two parallel 
plates, where the gas is heated from below; which is known as the so-called Benard- 
convection. This problem is of special interest, because it contains the formation of 
special flow patterns as well as a transition to turbulence: for moderate temperature 
differences between the upper and lower wall, the gas remains in a stable equilibrium 
state with a density increasing vertically upwards. If the temperature is increased 
over a certain threshold value, which even depends on the distance between the two 
walls, the gas starts to form a certain number of horizontal vortices. Finally, for larger 
temperature differences, a transition to turbulence occurs. 

REMARK 3.2. To detect a transition to turbulence in a rarefied gas certainly 
defines on of the most challenging problems in the numerical simulation of rarfied gas 
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flows. Here, the simulation of Benards’s instability is an appropriate test case, if one 
considers the fully three-dimensional configuration. 

In the following, we consider Benard’s instability for a rarefied gas flow in two 
space dimensions, which was already investigated by Stefanov and Cercignani in Ref. 
[IO] using the (tinie-dependent) Direct Simulation Monte Carlo (DSMC) method of 
Bird [2]. We are in particular interested in applying the steady-state particle scheme 
of Section 2.2, in the cases, where a formation of stable vortices can be observed using 
a time-dependent scheme (see Ref. [lo]). 

FIG. 4. Rarefied gas between two parallel plates 

The (time-dependent) problem is described by the standard (two-dimensional) 
Boltzmann equation; but the equation includes a (gravitational) force F = (O,g)“, 
g > 0, which accelerates each gas particle vertically downwards, 

(3.1) fr + VOf - P%f = $2(f) 

with spatial coordinate x = (zr, y) E 0, velocity v = (u,u,w) E LR3 and density 
function f = f(t, x, v). In the collision operator Q we assume a collision scattering 
kernel describing the hard-sphere interaction model. For the corresponding initial- 
boundary value problem on the spatial domain R = [O, L,] x [O,L,], Eq. (3.1) is 
equipped with an initial condition, 

f(0, x, v) =y (x, v), x E f-2, v E RR3 

and some boundary conditions on dR: at the two horizontal plates, we assume diffusive 
reflection according to the wall temperatures Th and l’(:. For the two other walls 
involved in this problem, we use specular reflecting boundary conditions. 

REMARK 3.3. Like stated in the previous work by Stefanov and Cercignani [lo], 
this corresponds to periodic boundary conditions on a larger domain fi with size 
[0,2L,] x [0, L,,] and tl ierefore reduces the computational effort performing numerical 
simulations on fi. 

It is well-known, t,hat the standard Boltzmann equation without force term con- 
tains two dimensionless parameters, which completely characterize the problem above. 
This two parameters are the Knudsen number E, which balances the influence of bi- 
nary collisions on the free transport of particles as well as the temperature ratio TJT,, 
of the two horizontal walls. 

REMARK 3.4. In the case of the corresponding steady-state equation, even the 
total rnass contained in the spatial domain s2 yields a parameter, which characterize 
a steady-state solution. Here, we refer the reader to the discussion given in Ref. [6]. 

The situation changes, if the Boltzmann equation contains a force term like in Eq. 
(3.1): because the particles are accelerated vertically downwards, even the distance 
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between the two horizontal walls yields a free parameter determining the solution of 
the problem. rn Ref. [lo] the authors used the so-called F’roude number Fr based 
on the thermal speed wh = (2RTh)1/2 to specify this third parameter. Moreover, 
the authors related the three dimensionless parameters of the rarefied gas flow to 
the Rayleigh number of the problem applying a continuum fluid model. Rayleigh 
obtained this non-dimensional parameter by analyzing the stability of solutions using 
a linearization of the Navier-Stokes system in the Boussinesq approximation [9]. In 
particular, the Rayleigh number yields the above mentioned threshold value for the 
transition from a stable equilibrium flow to the formation of stable vortices, we refer 
the reader to the material given, e.g., in Ref. [8]). 

The force term in Eq. (3.1) leads to modified particle trajectories applying a 
particle scheme to the time-dependent as well as steady-state equation. In the case 
of time-dependent problems, where one uses the splitting method, the corresponding 
free transport equation reads 

%+vVf -g&f =o 

This equation is solved by the characteristic system 

i = v, ti = 0, ti = -9, .s=o 

and the particle trajectories over the (fixed) discrete time step At of a particle located 
at the position xi = (z(~), ~(~1) with velocity vi = (~(~1, ~(~1, ~(~1) is given by 

i 

z(;) (At) = z(i) + Atw(i) w(;) (At) = u(i) 

(3.2) y(i)(&) = y(i) + Atw(i) - W”gl2 &)(&) = ,(;) - Atg 
#)(At) = z(i) 

Hence, the particle trajectories are no longer straight lines, but parabolic curves in 
the y-component of the particle trajectory; additionally, the particle velocity w does 
not remain constant along the free transport. In particular, one has to change the 
treatment of boundary conditions, when the particle trajectory intersects one of the 
two horizontal walls, where diffusive boundary conditions are prescribed. 

REMARK 3.5. For the other two walls involved in the problem, we assumed 
specular reflecting boundary conditions and the treatment of this kind of boundary 
conditions does not change including the force term, because the force acts parallel 
to the boundaries. 

For particle trajectories, which intersect with the horizontal walls, one has to 
determine the exact intersection point as well as the remaining time step, with which 
the particle will move with new velocity when applying diffusive boundary conditions. 
In particular, this means to solve a quadratic equations for the discrete time step, 
which obviously yields an appropriate parameterization of the trajectory. 

Besides the fact, that one needs to determine the “correct” root of the quadratic 
equation to compute the exact intersection point, the quadratic equation itself is even 
- in general - singular perturbed. Introducing dimensionless quantities, one finds 
that the parameter describing the gravitational force is a small parameter, i.e. g << 1. 
Moreover, this parameter appears in front of the quadratic term of the equation, from 
which one can conclude, that one root of the quadratic equation tends to fco as g 
tends to zero. 

REMARK 3.6. In particular this means, that the particle trajectories degenerate 
in the limit g + 0 again to straight lines. 
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Hence, to reduce the computational effort determining the exact intersection point 
of a given particle trajectory with the horizontal walls, it is reasonable to consider an 
asymptotic expansion for the correct root of the quadratic equation. This is demon- 
strated in the following example. 

EXAMPLE 3.7. Let us assume, that a particle is located at ye > 0 on the y-axis 
and moves with velocity we < 0 in a weak force field according to the trajectory 

t2 
y(t) = yo + zoot - E-$ 

where E < I describes the force field. Moreover, we assume, that there exists a time 
T, such that y(T) < 0, i.e. the particle crosses the origin of the y-axis at some time 
t, and we want to compute this crossing time. Then, we have to solve the quadratic 
equation 

(3.3) 
t2 

,c-- - v!()t = yo, 
2 

which yields the two roots 

(3.4) t$ = k (w, * (w; + 2Eyo)‘9 

In particular, if E = 0, the single root reads t(“) = -yo/zue am1 on of the solutions 
given in (3.4) runs to fco in the limit g + 0. Assuming E <( 1, one may compute the 
correct crossing time Pi using an asymptotic expansion of t: as follows: we assume 
that t: has an asymptotic expansion of the form 

k 
(3.5) tf N xEiti 

k0 

REMARK 3.8. Concerning the notion “asymptotic expansion” we refer the reader 
to the textbook of Bleistein and Handelsmann given in Ref. [3] 

Substituting (3.5) into Eq. (3.3) and comparing powers in E leads to a system of 
equations for {to, . . . , tk} and for the first two coefficients one obtains the relations 

to = -y”/wo t1 = y,“/(2?4 

Hence, the first order expansion for tz is given in the form 

2 
t’ c --~+i‘f$ 

0 

It is trivial to notice, that the zeroth order expansion exactly yields the single solution 
6’) in the lirnit E --f 0. 

The simulation codes applied in the following use - in general - the first order 
expansion for the intersection times of particle trajectories, which cross the two hori- 
zontal planes. Here, in general means, that the first order expansion fails, if the first 
order correction of itself is of order O(l), e.g., if ‘~0 = (J(E) and 20~ = O(E). 

For the steady-state schemes of Section 2.2, one includes the force terrn in the 
simulations as follows: the st,eady-state equation reads 

h 

(3.6) va.f -i&f = $f, 
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with the same notations as given above. Based on the assumption, that the (local) 
collision frequencies v[f(“)] are uniformly bounded by umax, one obtains the iteration 
process process 

(3.7) (3.7) 
E E -,vf(“+l) - -,vf(“+l) - 

4nax 4nax 
(n+l) + p+11 (n+l) + p+11 

= (l-gf”“‘+-&Q+(f’“‘) = (l-gf”“‘+-&Q+(f’“‘) 

Hence, Eq. (3.7) leads to the iteration Hence, Eq. (3.7) leads to the iteration 

f(W = (e-“Q[f’“‘]) f(W = (e-“Q[f’“‘]) 

which is exactly the same as in Section 2.2, except that the operator which is exactly the same as in Section 2.2, except that the operator D is now given 
by 

(3.8) D= 2-v - A.-& 
vmax ~max 

Together with Eq. (3.8), the term e -tD*[f(“)] solves the free transport equation with 
force term, i.e. 

l ft + - 
4nax 

(VVf - gauf) = 0 

and initial condition given by @[f(“)]. The corresponding characteristic system reads 

(3.9) 
V 

x=- 9 
> 

CEO, i,= ---) ti=o 
4nax ~Inax 

which defines the particle trajectories exactly in the form given in Eq. (3.2) to- 
gether with a Poisson-distributed time step with mean value E. Hence, to include the 
force term in the steady-state equation, one uses the same approach as in the time- 
dependent scheme, i.e. for each particle one generates a Poison-distributed discrete 
time steps with mean value equal to E and solves the characteristic system given in 
Eq. (3.9) over this time step. The resulting particle trajectories are no longer straight 
lines, but curved lines and the particles are accelerated vertically downwards. As 
in the time-dependent scheme, one may use the asymptotic expansion method given 
above to reduce the computational effort necessary to compute the particle interaction 
with solid walls. 

In the following, we give numerical results on a rarefied gas flow close to the 
continuum limit, where one may expect the formation of vortices. In the previous 
work by Stefanov and Cercignani [lo], the formation of vortices was observed at a 
Knudsen number of 0.01 together with a temperature ratio r = 0.1 and a modified 
F’roude number of Fr” =Fr/Kn= 200. Here, using a similar range for the temperature 
ratio r and the modified Froude number Fr*, we show that Benard’s instability may 
even be detected at larger Knudsen numbers, e.g. Kn = 0.02. 

The two-dimensional computational domain is fixed at a size of [300,100], such 
that a Knudsen number of 0.02 yields a mean free path of 2. This domain in divided 
into 192 x 64 cells, which gives a total number of cells equal to 12.288. Moreover, we 
use approximately 10 particles per cell, i.e. a total number of about 1.2. lo5 particles 
to approximate the solution on the complete phase space. As initial condition for 
the time-dependent simulation as well as beginning condition for the steady-state 
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Averaged over iteration steps 1000-2000 
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FIG. 5. Thmsient Velocity Fields 
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The total CPU-time using 64 nodes of a nCUBE 2s parallel computer was about 
12 hours for 40.000 discrete time steps. Here, the parallelized code uses a domain de- 
composition along the x-axis of the computational domain: each processor computes 
the local solution on a domain of 3 x 64 cells After the free flow step of the splitting 
method, the processors exchange particles, which leave or enter the present processor 
domain. Because the differences in the local particle number of each processor, this 
static partition is kept fixed during the simulation. 

In a second simulation, we apply the steady-state particle scheme of the previous 
secion to the corresponding steady-state problem defined by Eq. (3.6). In particular, 
because the collision scattering kernel describes the hard-sphere interaction model, 
we use the particle method as discussed in Section 2.2 together with the modifications 
to include the force term as given above. For the beginning condition f(e) we use the 
initial condition of the time-dependent problem. 

REMARK 3.10. Due to mass conservation along the complete boundary, the 
steady-state problem contains an additional free parameter, namely the total mass 
on the spatial domain. Using the initial condition of the time-dependent problem 
as beginning condition ensures, that the two simulations (time-dependent or steady- 
state) describe the same problem. 

As mentioned above, the individual (artificial) time step of each particle in the 
iteration is Poisson-distributed with mean value (Atsteady) = 2. Moreover, we have 
to choose n priori an appropriate bound for the collision frequency. Here, we use 
u t,lax = 4, which is later on, i.e. during the numerical simulation, validated as a 
reasonable bound. 

To compare the results obtained from the steady-state simulation with the pre- 
vious time-dependent particle method, we give in the following figures the same se- 
quence of local averages; but now averaged over the iteration process: Fig. 6 shows 
the sequence of transient velocity fields. The results indicate, that although the for- 
mation of vortices starts later than in the time-dependent scheme, the formation of 
the final flow pattern is already achieved after 10.000 iterations. Again, this pattern 
remains constant up to the end of the simulation defined by 40.000 iterations. 

REMARK 3.11. That the formation of vortices starts later than in the time- 
dependent scheme might be explained by the fact, that the bound vnlax slows down 
the particles by the factor ~~~~~~~~ (see the characteristic system given in Eq. (3.9)): 
together with the mean free path, one has (A&,+.)/L+,,~~ = l/2 compared to At = 
IOO/64 of the time-dependent scheme. One may even notice, that the results ob- 
tained from the steady-state method contain slightly higher fluctuations than the 
corresponding time-dependent scheme. This might arise from the fact, that the 
steady-state particle scheme contains a further random variate, namely the Poisson- 
distributed individual time step of each particle applying the generalized splitting 
method. 

The total CPU-time for t,he steady-state simulation using 40.000 iterations was 
about 9 hours, again using 64 nodes of a nCUBE 2s parallel machine. Here, 
parallelization uses the same domain decomposition approach as the time-depend 
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Finally, we compare in Fig. 7 the velocity fields of the two schemes at the end of the 
simulations, i.e. the local averages over the time steps (or iterations) 36.000-43.000. 

Time-Dependent (up) and Steady-State (down) 

FIG. 7. Final Velocity Fields 

One notices, that both schemes give nearly identical results, where again the 
steady-state scheme seems to contain more fluctuations (see the remark given above). 
Some one-dimensional density and temperature profiles along fixed coordinate lines 
are given in Fig. 8 and 9. Here, one observes a small shift in the density and tem- 
perature profiles along the horizontal line at y E 50; on the other hand the results 
obtained from the two schemes nearly coincide along the vertical line at 2 2 200. 

It is not the aim of the current invest,igation to study in more detail Benard’s 
instability in a rarefied gas flow; although this problem turns out to be the starting 
point to investigate the transition to turbulence in a rarefied gas: one should perform 
further simulations using different values for the Knudsen number, the temperature 
ratio as well as for the Froude number to derive an analogous threshold value (probably 
depending on the Knudsen number) like the Rayleigh number in continuum flows. 
Moreover, one should perform fully three-dimensional simulations in order to detect 
some turbulence phenomena. These topics will be discussed in a subsequent paper. 

On the comrary, the numerical simulations given here should demonstrate, that 
the preliminary results on steady-st,ate schemes given in Ref. [5] are not restricted to 
the simple one-dimensional case for Maxwellian molecules; but steady-state scheme 
might even be applied efliciently for multi-dimensional problems together with general 
collision scattering kernels. 

In addition to this, we performed simulations of a rarefied gas flow close to the 
continuum limit: the previous results on steady-state schemes in the one-dimensional 
case showed, that the steady-state scheme yields a faster convergence to the steady- 
state solution than a corresponding time-dependent problem method in particular if 
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FIG. 8. Density and Temperature Profiles at fixed y FZ 51 
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FIG. 9. Density and Temperature Profiles at fired x N 200 

the Knudsen number is of the order 1 and the faster convergence easilv compensates 
the higher computational effort of the steady-state scheme. In the current inves- 
tigation, the steady-state scheme is even more fast than the corresponding time- 
dependent scheme: as mentioned above, we used 12 hours CPU-time to compute 
40.000 discrete time steps compared to 9 hours for 40.000 iteration steps. Moreover, 
the results showed, that the iterative process converges about two times faster than the 
time-dependent method - besides the fact, that we get rid of the time-discretization. 
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Hence, one might state, that the steady-state scheme yields the more efficient nu- 
merical tool than a time-dependent simulation - even close to the continuum limit. 
This conclusion certainly needs to validated by some further numerical simulations of 
boundary value problems for the steady-state Boltzmamr equation. 

4. Conclusion. In the previous sections, we presented some new particle meth- 
ods, which may be used to simulate boundary value problems of the steady-state 
Boltzmann equation directly instead of passing to the corresponding time-dependent 
problem. These schemes may be interpreted as generalized splitting methods, because 
they are based on a similar approach as time-dependent schemes; namely one uses 
fractional steps to separate the collisions among the rarefied gas from the undisturbed 
free transport along particle trajectories defined by the local particle velocity. On the 
other hand, the particle trajectories of the steady-state methods depend on a stochas- 
tic time step for each particle, which is Poisson-distributed with mean value equal to 
t,he Knudsen number of the rarefied gas flow. 

The steady-state particle methods are derived using a formal and implicit ex- 
pression for the steady-state solution of the Boltzmann equation Here, one applies 
an iteration process to solve the implicit equation and finally obtains the above men- 
tioned generalized splitting method together with the necessary modifications in the 
free transport step. 

Concerning the theoretical foundation of steady-state methods, there remain 
some questions, which we either did not discussed up to now or even discussed only 
briefly. First of all, the central question concerns the convergence property of the 
iterative process applied to the formal expression of the steady-state solution. This 
problem is obviously independent of the special numerical realization of the iteration 
using a particle method. In particular, proving the convergence of the iteration pro- 
cess means to prove the existence of a global solution of boundary value problems for 
the steady-state Boltzmann equation, Hence, applying a steady-state method like 
given here implicitly assumes the existence of a steady-state solution as well as the 
convergence of the iteration process applied to the implicit equation” 

The treatment of boundary conditions applying a steady-state particle method 
is certainly related with the previous question. Here, we proposed to include the 
boundary conditions in the same way as in time-dependent schemes, i.e. one modifies 
the particle velocity, if the particle trajectory crosses the boundary of the spatial 
domain during the free transport step of the (generalized) splitting method. Besides 
the theoretical questions concerning the treatment of boundary conditions, we in 
particular did not discussed, how to include inflow boundary conditions for the steady- 
state scheme, which are generic bomldary conditions to simulate hypersonic rarefied 
gas flows around re-emry configurations. 

The final remark concerns the convergence of steady-state schemes itself, i.e. the 
convergence of the discrete particle approximation. Here, on easily finds, that the 
convergence is proved using the same techniques as used for time-dependent particle 
methods, accept that one has to include the stochastic time step in the convergence 
proofs. 

The numerical results turned out to be quite promising: the convergence of the 
steady-state scheme is I-- at least for moderate Knudsen numbers - much faster than 
using a conventional time-dependent method and eve:1 for flow problems close to 
t,he continuum limit, steady-state schemes are at least as good as the conventional 
time-dependent particle methods. 



24 J. STRUCKMEIER 

REFERENCES 

[I] H. BABOVSKY, Time Averages of Simulation Schemes as Approximations to Stationary Kinetic 
Equations, Eur. J. Mech., B/Fluids, 11 (1992), pp. 199-212. 

[2] G.A. BIRD Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, 
Oxford, 1994. 

[3] N. BLEISTEIN AND R.A. HANDELSMANN, Asymptotic Expansions of Integrals, Bolt, Rinehart 
and Winston, New York, 1975. 

[4] A.V. BOBYLEV AND J. STRUCKMEIER, Implicit and Iterative Methods for the Boltzmann Equa- 
tion, TTSP, 25 (1996), pp. 175-195. 

[5] A.V. BOBYLEV AND J. STRUCKMEIER, Numerical Simulation of the Stationary One-Di- 
mensional Boltzmann Equation by Particle Methods, Eur. J. Mech., B/Fluids, 15 (1996), 
pp. 103-118. 

[6] R. ILLNER AND J. STRUCKMEIEI~ Boundary Value Problems for the Steady Boltzmann Equation 
J. Stat. Phys., 85 (1996), pp. 427-454. 

[7] H. NEUNZERT AND J. STHUCKMEIER, Particle Methods for the Boltzmann Equation, in ACTA 
NUMERICA 1995, A. Iserles, ed., Cambridge University Press, Cambridge, 1995, pp. 417- 
457. 

[8] L. PRANDTL, I<. OSWATITSCH AND K. WIEGHARDT, Fiihrer durch die StGmungslehre, Vieweg, 
Braunschweig, 1984. 

[9] LORD RAYLEIGH, On convective currents in a horizontal layer of fluid when the higher temper- 


