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Abstract

In this papeér we present a domain decomposition approach for the coupling
of Boltzmann and Euler equations. Particle methods are used for both-equa-
tions. This leads to a simple implementation-of the coupling procedure and
to natural interface conditions between the two domains. “Adaptive time and
space discretizations and a direct coupling procedure lead to considerable gains
in CPU time compared to a solution of the full Boltzmann equation. Several test
cases involving a large range of Knudsen numbers are numerically investigated:

Keywords. domain decomposition, particle methods, kinetic equations, fluid dy-
namic equations, adaptive grid generation

1  Introduction

Boltzmann- and fluid dynamic equations (such as Euler or Navier-Stokes equations)
are used to model hypersonic gas flows.  Numerical simulations of such flows are
useful for example in the design of space vehicles, in particular, in understanding
the behavior of the early phases of reentry flights.

Such flows are usually far from any kind of local equilibrium states. This means
that variants of the Boltzmann equation have to be used as first principle equations
instead of fluid dynamic equations. However, when the mean free path of molecules
becomes small - for example during the reentry - standard numerical methods for the
Boltzmann equation become exceedingly expensive i computing time.. Therefore,
gas dynamics equations should be used if possible, 1. in other words; near local
equilibrium states and outside of shock and boundary layers. These considerations



prompt the use of domain decomposition strategies, where the Boltzmann equation
is to be solved only in regions others than those mentioned above.

BEssentially three problems have to be solved in order to compute a solution of the
domain decomposition problem: First one has to choose suitable codes for Boltz-
mann and Euler equations. Second, the regions, where the fluid dynamic equations
can be used, have to be determined.  Once this is done the third problem is the
matching of the Boltzmann code with the Euler or Navier= Stokes solver. We refer
to [18, 17, 5, 4, 21, 11, 13, 14, 28] for different domain decomposition approaches. In
this paper Boltzmann and Euler equations are solved by particle methods. Numer-
ical codes for the Boltzmann equation are usually based on particle methods, see
(1,2, 3, 23]. Although for the Euler equations a variety of other methods exist; we
did choose for the domain decomposition approach a particle method as well, since
they are particularly suited for the coupling to the Boltzmann code. To determine
the equilibrinm or Euler domains automatically we use an approach derived from
Grad’s thirteen moment ansatz, see [27, 26, 15]. The two equations are coupled
together by a natural condition guaranteeing the equality of fluxes at the interface.
Moreover, we use an adaptive grid refinement procedure for the spatial and temporal
discretization. The refinement is adapted to the stability requirements on the time
step in each of the domains.

The main focus of the present paper is a study of the coupled solution for the whole
range of mean free paths and of the possible gain in CPU time, which depends
strongly on the size of the mean free path. In particular, the use of an adaptive
time and space discretization in the two domains yields a considerable gain in CPU
time. CPU time is shown to be smaller by a factor 10 and more compared to a full
Boltzmann solution for certain situations and ranges of the mean free path.

The paper is organized in the following way: Section 2 describes shortly the equations
to be coupled and the numerical codes to solve them. Section 3 describes in more
detail the coupling algorithm. Section 4 gives a presentation of our numerical results
and a comparison of the CPU times for different Kumudsen numbers.

2 Equations and Numerical Methods

2.1 Equations

The Boltzmann equation describes the time evolution of a distribution function
F(t,z.v) for particles of velocity v € B at point 2 € D ¢ R and time + € Ry, Tt
is given by
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where the Knudsen number ¢ is proportional to the mean free path and
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For more details we refer to [9]. For ¢ tending to 0, i.e. for small mean free paths, one
can prove [7] that the Boltzmann distribution function f tends to a local Maxwellian
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where the parameters p,u, T'(¢, ) are given by the solution of the compressible Euler
equations:
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We solve Boltzmann- and Euler equations by particle method. The methods are
described in 2.2 and 2.3 respectively.

2.2 Particle Method for the Boltzmann equation

The solution method for the Boltzmann equation is explained in detail in [2] or [23].
It is based on the time splitting of the equation. Introducing fractional steps one
solves first the free transport equation in [0, At]:
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If the particle approximation of the initial value f(0;z,v) of (4) is given by some
discrete measure Z,‘]-\;l @0z 0y then the time evolution of this particle ensemble
18 simply
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During the free flow boundary and interface conditions are taken into account.



In a second step the homogeneous Boltzmann equation
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1s solved. To simulate equation (5) by a particle method an explicit Euler step is
used and equation (5) is written in the discretized form

/
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F(AL©) = F(0.0) + =21 71(0.0) (6)

f(AT,v) is then used in the next time step as the new initial condition for the free
flow. One considers equation (6) in a weak formulation, 1. e:

/' ®(v) (AL, v)d (7)
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for test functions ¢. To solve equation (7) we need an approximation of the product
measure
dw(n) f(0,v) f(0,w)dwdv

. . N P . .
this problem is solved and )~ ;0 y 1s determined, one can compute the

time evolution of the measure due to (7): The factor 1 — %’ k is interpreted as a

probability for a dummy collision; keeping the old velocities. %i k is the probability
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for a real collision, changing v; — v; = Ty, 4, (n;). For more details about the
solution procedure for the space homogeneous Boltzmann equation we refer to the

above cited references.

One observes that, to guarantee the positivity of the function f(At,v), we need the
following restriction on the time step

-2, (8)

This means that for e — 0 the time step At has to be shrinked with ¢, the equations
are becoming stiff. The method becomes exceedingly expensive for small Knudsen
numbers.

2.3 Particle method for solving the Euler equation

For small Knudsen numbers € and outside of shock and boundary layers the solution
of the Euler equations is a good alternative to the solution of the full Boltzmann
problem. In these regimes the solution of the kinetic problem is approximated by
the Euler equations with good accuracy. Moreover, to obtain stability for the Fuler



CFL condition for Eulers equations.

We solve the Euler equations by a particle method based on kinetic schemes. Here,
we give only a short deséription of the method which will be used in the calculation

and refer to [10]; [16], [24], [25] for further details about kinetic schemes and particle
methods based on kinetic scheme.

One defines the macroscopic quantities p, pu, T as the moments of a distribution
funetion f(t.z,v):
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Then one tries to find a simple evolution for the density f such that this evolution
approximates the compressible Euler equations for p, pu, T'. This evolution consists
of two steps as in the Boltzmann case. In each time step we proceed as follows:

First, a simple free flow is performed, 1.¢. - we solve:
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The particle approximation is done as in the Boltzmann case.

Second a projection onto an equilibrium distribution function G = Glp,u,T](v),
which is uniquely defined by the first five moments, is performed. The projection
is given by computing the moments p,u, T of f and determining the associated
equilibrium function Gp, u, T}(v). The resulting function is then used as the initial
distribution for the next free flow step. The particle approximation of the projection
step is done by caleulating the moments p,u, T of the particle distribution after the
free flow evolution. The particles are then generated again according to the new
equilibrium distribution Glp, u, T]. The class of equilibrium distribution functions G
is chosen in such a way that the approximation of the Euler evolution is guaranteed.
We consider an equilibrium class of the form

I U= U
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where y 1 R ig an integrable function with



Example 1
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e” 27, then Glp, u, T](v) is a Maxwellian distribution of the form

Example 2

Define y (&) = —4+ - 1p (£), where denotes the characteristic function of
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the ball in R® with radius v/5. This gives the Kaniel equilibrium distribution for
monatomic gas introduced in [16].

3 The Domain Decomposition Algorithm

In this section we describe. the coupling algorithm: inmore: detail. = To compute
plmg - alg

an approximation of the stationary solution of the Boltzmann problem by a direct

coupling procedure we proceed in the following way:

In each time step Boltzmann and Euler domains are determined using a criterion
described in subsection 3.1. This leads to a separation of the computational domain
D intoa Boltzmann domain Dp and an Euler domain Dy To. obtain suitable
boundary conditions at' the interface between the two domains, the equations are
coupled together in-a natural way: The use of a particle method based on-a kinetic
scheme for the Euler equations leads to coupling conditions based on the equality of '
fluxes at the interface. This is described in (3.2). Boltzmann and Euler equations are
then solved for one time step in their respective domains by the methods described
in section 2 taking coupling and boundary conditions into account.

To save CPU time by the coupling procedure the essential point is to use a space and
time discretization which 1s adapted to the stiffness of the problem. These aspects
are described in section (3.3). '

3.1 Criteria of local equilibrium

As discussed above, the BEuler equations are valid if the Boltzmann distribution
function is near to a local equilibrium distribution of the form (2). Therefore, a test
is needed whether the particle distribution is close to a Maxwellian or not.

To obtain a criterion the distribution function f(4,z,v) 18 written in the form
f=full+ ). (10)

where far is the local Maxwellian with first five moments p,u and 1" equal to those
of f. ¢ denotes the deviation from the equilibriuin, see [8]. The size of ¢ is then
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estimated with an appropriate norm ||-[|. Local thermal equilibrium can be assumed
it ||¢ll <« 1. Kinetic theory suggests to define a Hilbert space, where the scalar
product is defined by [8]

< pytp == / Ifl{qf)'z,/)dfv. (11)
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The first five moments of f are those of fay jle.
/ $fardv =0, (12)
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One defines the heat flux
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o 2z
and the stress tensor
T o= / (v =u)-{v= w)t fdv — pRTI
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with the identity matrix I. Heat flux and stress tensor of a local Maxwellian distri-
bution are 0. Therefore

Lor .
5 / (v = w)o —ul* ¢ fardv = q (15)
R
and :
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The non-vanishing of the symmetric stress tensor 7 and of the heat flux vector ¢ is
due to the deviation of the distribution function from a Maxwellian distribution.

With the help of the above thirteen equations (12)-(16) we express ¢ as a polynomial:
Following Grad [12] we make the ansatz

p=a+b(v—u)+w=uwtC (v=u)+d (v-u)v-—ul? (17)
where @ is a scalar, b, d are vectors in R* and ¢ is a (3 x 3) symmetric matrix.

Now, all coeflicients of the polynomial (17) are determined with the help of (12)-(16)
by substituting ¢. We obtain with 7 = (1)
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A short calculation gives
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where ||7]|p is the Euclidean norm of the stress tensor matrix. ||¢|| gives a criterion
of equilibrium, which identifies the Boltzmann and Euler cells during the simulation.
Heat flux vector and stress tensor have to vanish in order to yield the closure relations
for the Euler equations. If |[¢]| is small compared to unity, the particle system is
close to a Maxwellian distribution. Otherwise, it is far away from it.

We mention that if we do not take into account the stress tensor and consider only the
heat flux vector then the present ansatz turns out to be equivalent to the criterion
of local thermal equilibrium used by Kreuzer, Meixner, Boyd et al. [19, 6, 22].
Similarly, if we neglect the effect. of the heat flux vector in (19), then a criterion
similar to the one used by Leipmann et al. [20] is obtained.

In our experience, taking into account only the heat flux vector or only the shear
stress tensor, one does not obtain a good criterion. For example, to capture the
nonequilibrium domain in the shock region, the consideration of the heat flux vector
is sufficient. However, on the boundary and in the wake the shear stress is significant.
Finally, we mention that since we solve both Boltzmann and Euler equations by a
particle method; one can compute heat flux vector and stress tensor easily for both
equations. In particular, a nonvanishing heat flux and stress tensor can also be
obtained in the Euler cells after performing the free flow step. '

The above criterion yields domains which depend on the Knudsen number. For ¢
large, a large Boltzniann domain is obtained, whereas for very small ¢ the Boltzmann
domain is essentially reduced to a small shock and boundary layer. See Figure 1 for
an example,

3.2  Coupling conditions

The coupling conditions for the two equations at the interface between Boltzmann
and Euler domain are given by the following:

Consider the Boltzmann and Euler domains Dy and Dg. Let n denote the normal
at the interface I between Dp and Dy pointing into the Boltzmann domain D .
After the projection step in the kinetic scheme we have the following situation: The
boundary condition for the free flow equation for the distribution function fz in the
kinetic scheme i Dp is given by

feltiwie) = fpt,z,v), veon < (20)
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for z € I. Since the distribution function in the Euler domain is an equilibrium
distribution, the outgoing function is an equilibrium distribution. Therefore; we can

compute the flux at the boundary as

fe(v)dv (21)

v >0

Since after the projection step the distribution function i
cells, the above fluxes are equal at the boundary to the f
computed in the kinetic scheine | i.e.

§ in equilibrium in the Kuler
luxes of the Euler equations

= [w-n| v G(p,u,T)(v)dv

where p,u, T are the solutions of the Euler equations. This is the equality of fluxes
at the boundary.” We mention that the above considerations are equivalent to the
consideration of the half range fluxes for v-n < 0. In this way we obtain conditions at
the interface for the Euler equations. In turn the ingoing function for the Boltzmann

region is given by the outgoing function of the Euler region:

feleivt) = GlpuT), 0: (23)

The above conditions are naturally realized in the particle scheme. The particles
are simply transfered from Boltzmann to Euler cells or vice versa in the free flow
step, keeping their velocities. Then they are handeled by the projection and collision
procedure, respectively. This has to be adapted, if different time steps and grid siz¢

are used.



3.3 Choice of time step and adaptive grid refinement

An adaptive time step and clioice of the spatial grid is essential to gain CPU time.
Using the same grid and step size in both domains one does not obtain a major gain
in CPU time. Instead one has to take into account the stability criterion in a proper
way.

The size of the time step for the Boltzmann equation is given by (8), i.e. in particular
by the value of the Knudsen number. As mentioned above, in order to gain CPU
time one has to use the possibility of choosing a larger time step for the Kuler
equations:- The time step for- the Euler equations is only governed by accuracy
requirements and the CFL condition and does not depend on the Knudsen number.
These considerations lead to the use of small time steps in the Boltzmann domain
according to the value'of the mean free path. In contrast, in the Kuler domain larger
time steps are used.. We mention that the choice of different time discretization in
the two domains leads to the implementation of an inner time loop for the Boltzmann
equation for-each Euler time step.

For the Boltzmann region the spatial grid size has to be choosen according to. the
values of the mean free path. Since the solution in the Euler domain is only varying
slowly in space (on a macroscopic time scale) the use of coarser grids in the Buler
domain is appropriate. In other words the space discretization is choosen for both
equations according to the time discretization. An example of such a grid structure
is shown in Figure 2.

Using now the same total number of particles for all calculations in the compu-
tational domain one can observe how much CPU time is gained by the adaptive
choice of the time step. In this case CPU time is only gained by using the time step
appropriate to the stability requirements and not by a reduction of the number of
particles. See Table 1 for a comparison of the CPU time.

A further gain in CPU time is achieved by using the difference in the spatial grid
size in Boltzmann and Euler domain.  To obtain approximately the same velocity
discretization - which is determined by the number of particles per cell = we use on
the average in each spatial cell no'matter whether it is Euler'or Boltzmann the same
number of particles. This is:achieved by determining the total number of particles
from the number of cells used in the calculation. It leads to a strong reduction of
particles for flows with larger Euler domain, i.e. flows with small Knudsen numbers,
compared to a full Boltzmann solution. A further gain in CPU time is obtained in
this way, see Table 2.



4 - Numerical results

We consider the hypersonic flow of monatomic gas around an ellipse. The Boltzmann
equation (1) is solved with the initial condition

)50 {.Y—uxlz
f(O,:II,"L)) = _.._.._1)3_:,% e 121{71;0 . (24)
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The boundary condition is given by an ingoing function of the form

s
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at the left boundary of the domain D and absorbing boundary conditions on the
other outer boundaries: On the boundary of the ellipse we use diffuse reflection with
thermal accomodation as boundary conditions.

The input parameters are the following: at infinity the characterictics of the flow are
Ueo = 4126m/sec, T = 200K and gas constant R = 208Jkg/ K, which corresponds
to a Mach number 15. The temperature of the body is 1000K: The angle of attack is
equal to 30°. The major and minor axes of the ellipse are 1 m and 0.5 m, respectively.

We perform all calculations (full Boltzmann, hybrid code and Euler code) using

in one series of comparisons the same total number of particles. In another series

we perform calculations with approximately the same number of particles in each
cell. The second series yields the correct comparison of the CPU times due to the

statements in subsection 3.3.

The value of ||¢|| is computed straightforwardly for Boltzmann and Euler cells using
the particle approximations of the distribution functions. As a criterion of local
equilibrium we assume that, if ||¢]] is less than a small number 6 in cach cell, then
we denote this cell an Euler cell, otherwise it is a Boltzmann cell. Then collisions
in Boltzmann cells and a projection onto the Kaniel or Maxwell distribution in the
Euler cells are done.. We mention that a kinetic scheme based on the projection
onto the Maxwellian fits better to the above described criterion to determine the
equilibrium domains. However, the projection onto Kaniel is faster.

We perform the above process in every cell and at every time step. During the

JS \ . 1 &
simulation of-one Euler time step a- munber of Boltzimann: time steps: has to be
performed in an inner loop.

At the begining all cells are Euler cells. When time advances the Boltzmann and
Euler domains separate automatically, leading to Figure 1 below for the final station-
ary states. The smaller the Knudsen number the smaller is the Boltzmann domain.
Finally the Boltzmann equation is only solved in a small shock and boundary layer.
This means that for small Kuudsen numbers the code is essentially an Euler solver

11



Figure 1: Boltzmann and Euler domains for mean free paths 0.1m, 0.05m,; 0.025m
and 0.0125m
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mean free path (m) | Coupling procedure | Boltzmann | Euler | No. of particles
A= 0.1 3.6 3.9 3.4 96 - 10°
A =0.05 23.7 31.6 14.4 384 - 10°
A = 0.025 91.3 190.1 46.0 1152 - 10°
A =0.0125 3184 1035.2 133.0 3072 103

Table 1: Comparison of CPU time for coupling algorithm and full Boltzmann (Gain
due to reduced time steps in the Euler domains)

in the whole domain. This yields a large gain in CPU time for these situations
compared to a full Boltzmann solution.

We compute numerical solutions for mean free paths ranging from A = 0.1m to
A= 0.006m. The results are compared with those of the pure Boltzmann and Euler
code. Iigures 3 and 4 show the results for the stationary state for mean free path
0.1m. Figure 3 shows contour plots of density (on the left) and temperature (on
the right) for pure Boltzmann code, hybrid code and pure Euler code (from above).
Figure 4 shows the temperature values along the horizontal line in the middle of the
computational domain. One observes here that the Euler shock is thinner than the
Boltzmann shock. Using a scheme for the Euler equations, which captures the shock
in a better way, this effect would have been stronger. In the following figures the
mean free path is chosen as 0.025m. In Figures 5 and 6 all solutions are plotted on the
coarse Euler grid, although, obviously, a fine grid has to be used in the Boltzmann .
domain for the computation. In both cases hybrid code and full Boltzmann solver
essentially yield the same results.

The time steps choosen for the Boltzmann and Euler regions are given by (8) for
the Boltzmann code and the CFL condition for Euler. The spatial grid size for
Boltzmann is chosen according to the mean free path. Denoting the mean free path
by X this leads to Azp = \, Atg = 228 for Boltzmann and Az = 0.1, AN :,\”:f‘
for the Euler region. This means tﬁt‘l,t the relation between the time and space
discretizations in the two domains is given by Axpg = =\—-’—& At = i\—'ﬁ with s =
”M ~. This vields the following comparison of CPU tuno In Table 1 we did note
tho CPU time for a full Boltzmann simulation together with the CPU time of the
coupled solution and the full Buler solution. Table 1 shows:the comparison for: the
same total number of particlés in the whole computational domain, The CPU times
are given in minutes.

Table 2 shows a comparison of the CPU time for a total number of particles propor-
tional to the number of cells used in the calculation. One observes for a mean free
path of A = 0.0125m a gain in CPU time by a factor 13.

For mean free path A = 0.006m a full Boltzmann solution is already extremely time
consuming. For the coupled solution with 20 particles per cell on the average the
CPU time was approximately 440 min.
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Figure 3: Contour plots for Boltzmann, hybrid and Euler codes with A = 0.1m
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Figure 4: Temperature values for A = 0.1m

mean free path (m) | Coupling procedure | Boltzmann | Particles per cell
A=0.1 3.6 3.9 40
A =0.05 10.1 31.6 40
A =0.025 25.3 190.1 30
A= 0.0125 79.7 1035.2 20

Table 2: Comparison of CPU time for coupling algorithm and full Boltzmann (Total
gain)



Figure 5: Contour plots for hybrid and Buler codes with A = 0.025m plotted on the
coarse grids
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Figure 6: Temperature values for A = 0.025m plotted on the coarse grid

Conclusions

o The adaptive coupling procedure proposed in this paper is easily implemented
due to the use of particle codes for Boltzmann and Fuler equations.

o The domain decomposition algorithm allows a transition from large to very
small Knudsen numbers.

e The gain in CPU time compared to a full Boltzmann solution is considerably
using time steps and spatial discretizations appropriate to the problem

o Although standard codes for the Euler equations are faster than the above
particle method, such a method is most appropriate for a coupling procedure
like the one presented in this work.
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