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Abstract

In this paper the kinetic model for vehicular traffic developed in
[3, 4] is considered and theoretical results for the space homogeneous
kinetic equation are presented. Existence and uniqueness results for the
time dependent equation are stated. An investigation of the stationary
equation leads to a boundary value problem for an ordinary differential
equation. Existence of the solution and some properties are proven. A
numerical investigation of the stationary equation is included.



1 Introduction

Kinetic or Boltzmann-like models for vehicular traffic have been developed
for example in [8], [6, 7], [5, 2] In [3, 4] a new kinetic multilane model is
described and numerically investigated. Here we give a theoretical investi-
gation of the space homogeneous model presented in the above cited papers.
We are especially concerned with the solution of the stationary equation,
i.e. the counterparts of the Maxwellian distributions in the kinetic theory of
gases. These stationary solutions are used in [3, 4] to derive the coefficients
of macroscopic equations based on the kinetic model.

The paper is organized in the following way: In Section 2 we describe the
equation under consideration and prove some basic properties. Section 3
contains an investigation of the stationary equation. We prove existence of
solutions. Finally in the last section we present some numerical results.

2 The Space Homogeneous Kinetic Equation

Let f = f(v,t),v € [0,w],t € [0,00) be the time dependent velocity distri-
bution of vehicles in a space homogeneous situation. w denotes the max-
imal velocity of the cars. We set w = 1. The density p is defined as
p(t) = [ f(v,t)dv. p may vary between 0 and a maximal density p,,, which
we set equal to 1 as well. We consider, compare [3, 4], the equation

O f =C(f) (1)
with the interaction operator C(f) defined by

C(f) = Gp(f) — Le(f) + Ga(f) — La(f),

where G g, Lp, G 4, L 4 denote the kinetic gain and loss terms due to braking
and acceleration. The gain term due to braking is given by

Go(N) =+ [ [ Poor,vs, Dlor = wlon(v, v)a(or, 1)f 1) (wa)dvrdos
P V1>



op expresses the fact that a driver with velocity v; approaching its leading
car with velocity v < vy is braking into a range of velocities below v1. The
loss term due to braking is

Lg(f) = - Pg(v,v2, f)lv — v2|qB (v, f) f(v) f(v2)dva.

The gain term due to acceleration is

Ga =3 [ [ lor=valoaw.aaton, 1110 (o2)dosdo

with
1
min(1, avi) — vy

oa(v,v) = X[or,min(1,a0,)] (v),1 <a< .
This expresses the fact that a driver with velocity v; having a leading car
with velocity vy > vy is accelerating into a range of velocities above v;. The

loss term due to acceleration is

La(h) =5 [ o= volaa(w. 1)1 () (o).
P Ju<wvs

qB(v, f),qa(v, f) denote correlation functions. They fulfill fol gp(v, f)dv =1
and fol ga(v, f)dv = 1. For an explicit example we refer to [3]. Pg(vi, v, f)
denotes the probability of braking. It depends in general on the velocities of
the cars involved in the braking interaction and on the distribution function
itself.

One observes immediately that, due to the fact that integrating op and o4
with respect to v gives 1, the density p = [ f(v)dv is a conserved quantity
during the evolution.

For simplicity we restrict ourselves in this paper to quantities gg, g4, Pp of
the following form, for more complicated situations, see [3]: The correlation
functions ¢p, g4 are assumed to depend only on p. For high densities, i.e.
p near 1, the number of possible braking interactions must be much higher
than the number of acceleration interactions; in contrast, for small densities,
i.e. p near 0, the number of possible braking and acceleration interactions is
approximately equal. This means the relation gg(p)/qa(p) ranges from 1 to
oo for p ranging from 0 to 1. The probability of braking Pp is also assumed
to depend only on p. Pp ranges from Pg(p = 0) = 0to Pg(p=1) =1
corresponding to the fact that for low densities the probability of braking



is small and for high densities the probability of braking is 1. Thus, we
introduce the parameter k = k(p) defined by k£ = %&fj(p). Due to the
above k ranges from 0 to oo as p tends from 0 to 1. Moreover, we set § = 0
and a = .

The kinetic equation is now rewritten in terms of the normalized distribution

function F' = F(v,t) with f = pF, fol F(v)dv = 1. One obtains
O F = Cy(F,F), (2)
where the collision operator Ci(F, G) is defined by
Cu(F,G) = kG(F,G) + GA(F,G) — kLp(F,G) — L(F,G)

with

1 V1 1
Go(F,6) = [ [ (00 =02 F01)G(02) —xio.) (v)dvado

1 1 1
GA(F,G) = /0 (12 = 01) P (02)G (02) = -Xjoy1)(0)dvacl
v1

Ly(F,G) — /0 (v — v2) F(v)G (v dvy
Li(F,G) = / (0 — 0 F(0) G (g dos

k is a parameter ranging from 0 to oo, corresponding to a range of interac-
tions which are purely dominated by acceleration to interactions dominated
by braking.

We start the investigation of equation (2) by determining the collision in-
variants of the interaction operator Cj, i.e. we have to find the functions
© = p(v) such that

|| o) (F )yt =0

for any functions F' and G, i.e. the functions ¢ that are not changed during
an interaction process.

As already stated the above equality is true for all constant functions ¢ =
constant. This expresses the conservation of the number of cars during an
interaction. The constants are the only conserved quantities due to



Proposition 1
Let ¢ € C'[0,1]. fol ©(v)Cx(F,G)(v)dv = 0 for any function F' and G in
C°[0,1]. Then ¢ = constant.

Proof:
Multiplying the interaction operator Cy(F,G) with ¢, integrating with re-
spect to v and changing variables in the gain terms gives

k/ol /Ol(v — v2) F(v) G (v2) X[0,0) (v2)[p(v) — %/Ov o (5)dB)dvadv

+[ [ - 0P@e@x o) - 1 [ e

This is assumed to be equal to 0 for all F,G € C°[0,1]. We obtain

B~ )Xo (2)lo(0) — [ (@)

1 vl
= (v = v2)X[v,1)(v2)[p(v) — T—v/, p()d?]

for all v,vy € [0,1]. Considering 0 = v2 < v we get

vo(w) = [ s

or
p(v) + vy’ (v) = p(v)

This gives immediately ¢ = constant, since ¢ is continuous. |

Remark:

In comparison to the gas dynamic case, where density, mean velocity and
energy is conserved in a collisison, we have in the present case only conser-
vation of the density, i.e. conservation of the number of cars.

One can easily prove existence and uniqueness of the solutions of the non-
stationary equation:

Proposition 2
There exists a unique solution F(-,t) € £]0,1], fol F(v,t)dv =1,F > 0 of
the time dependent kinetic equation

OF = Ck(Fa F)
with inital value F(v,0) = Fy(v) € £1[0,1], fy Fo(v)dv = 1, Fy > 0.



Proof:
The following estimates are obtained straightforwardly: Defining for f €
£0,1],f >0

R(f) = k/ov(v — v9) f(ve)dvy + /Ul('uz — ) f(vg)dvs

one obtains

1
1RGN <M [ fw)do
with a positive constant M. Moreover, for f,g € £1]0,1] one has

1Ck(f, 9)lx < M| fll1llglls

since for example the gain term due to braking can be estimated by
1 1 U1 1
/ [/ / (v1 — v2) f (v1)g(v2) —X[0,0,) (v)dv2dv1]dv
o Jo Jo V1
1,1 g1 1
< / / / f(v1)g(v2) —X[0,01) (v)dvdvaduy
0o Jo Jo V1

= /01 fw)dv /01 g(v)dv

One can proceed with the proof exactly as in the case of the homogeneous
Boltzmann equation, see, e.g. [1]. [ |

A more challenging problem is to find stationary solutions of the kinetic
equation, i.e. solutions of the equation Cy(F,F) = 0,k € [0,00]. This will
be treated in the next section.

Counsidering the stationary equation a first simplification arises from the
fact that due to the following proposition it is sufficient to consider the case
k € [0,1]. The other cases are found by symmetry arguments:

Proposition 3
Let the functions F*(v) be defined by F*(v) = F(1 —v), then

Cr(F,F) = 0, iff C1 (F*, F*) =0, k € [0,1].

That means a solution Fj(v) of the stationary equation for k£ € [1,00] can
be found from a solution Gy, for k € [0, 1] by defining Fj(v) = G% (1—-v),k €
[1, 0]



Proof:

Looking at the gain terms we get

Ga(F,F)v) = /v/ml(vz—m)F(m)F(Uz)l_lv
_ / / (1 — 1292 P (o)) (0 ) dvados

1—’01

d’UQd'Ul
1

Substituting now vh =1 — vy and v] =1 — v; we get

/1 / _1 _02 VE(1 —v))F(1 — v)dvhdv}
v
—/1 / (1= 2)F* (o) F* (ve)dvador = G(F*, F*)(1 = ).
In the same way one obtains
Ly(F,F)(v) = Lg(F*,F*)(1 —v).

This yields for all v € [0, 1]

LC(F, F)(0)
= Gs(F,F)(v) + 1Ga(F, F)w) — Lo(F, F)(v) — - La(F, F)(0)
— GA(F*, F*)(1—v) + %GB(F*,F*)(l —v)

~LA(F, F)(1 ~v) = £ Ly(F*, F*)(1 )
= Ci(F", F)(1-0).

The statement follows immediately. |

3 Existence of Solutions for the Stationary Equa-
tion

In this section we consider the equation Cy(F,F) = 0,k € [0,00]. In order
to investigate the equation we distinguish between two sets of values for the
parameter k, namely k = 0,00 and k € (0, 00).



The first case k = 0 corresponds to a situation where only acceleration
interactions are present. One expects the stationary solutions to be the §
distribution at 1 for £ = 0 (all cars are driving with maximal speed). Using
Proposition 3 the corresponding solution for & = oo is a ¢ distribution at 0
(all cars have velocity zero).

However, as one observes immediately, the other d-functions d,,,vy € [0,1]
are solutions of the stationary equation as well for £ = 0,00. This corre-
sponds to the unstable case of cars having the same velocity and moving, in
spite of a high density, with high speed very close to each other. We prove

Proposition 4

Let £ = 0,00. Then, the support of the solutions of the stationary equation
is concentrated in one point vy with vy € [0,1]; the only solutions of the
stationary equation are the J-distributions dy,(v).

Proof:

We show that the support of F' is concentrated in a single point. Due to
Proposition 3 we restrict to the case k = 0.

Multiplication of 0 = Ci(F, F') with a test function ¢ and integration with
respect to v gives for k = 0:

/01 / 1(vz —v)F(v)F(v2)[p(v) — 1 / 1 ©(%)dd)dvydv = 0.

1—w

Considering this equation the following Lemma 1 shows that

/01 /1)1(’122 — ) F(v)F(v2)t(v)dvadv = 0

for all 4 € C1[0,1], =% € £1]0,1]. This gives

? 1—w

1 1
/ [ / (5 1](02) (3 — ) F (v) F (v )dwa]sp (v)d = 0
0 0

or for all v

/0 0 1)(02) (02 — v)F(0) F(v)dy = 0.



Since xw, 1](v2)(v2 — v) F(v) F(v2) > 0 for all v,v2 we get
X[vs 1) (v2) (v2 — v)F(v)F(v2) = 0

or F(v)F(ve) = 0 for vg > v. In other words for F(vy) # 0 we have
F(v) = 0,v # vg. This shows that the support of F' is concentrated in one

point and F' is a é-distribution. |
Lemma 1
Let ¢ € C'[0,1], 1% € £[0,1]. Then there exist ¢ € €°[0,1] with
1o
Y=o - [ e@)d.
Proof:
Define
Lap(d)
o) = p0) +9() ~ [ X0
v —v
Then
(v
&) =9 (w) + 2
or

Integrating gives

(- =(-vo— [ o@
[ |

A much more difficult problem is to find the solutions of the stationary equa-
tion with parameters k& € (0,00). Again the J-functions d,,,vo € [0,1] are
solutions of the stationary equation associated to the above mentioned un-
stable traffic flow situations. However, additionally smooth solutions exist.
One expects a unique stable smooth solution.



In the following we want to prove the existence of a smooth solution of the
stationary equation. We consider again the weak formulation

1 v v
k /0 /0 (v — v2) F () F (w2 [() — % /0 o(5)dv]dvady

1,1
—I—/O /v (va —v)F(v)F (v2)[(v) — ﬁ /1;1 ©(0)dv]dvadv = 0

Since adding a constant to the test function ¢ will not change the equation
we can restrict to test functions ¢ € C°[0, 1] fulfilling

/01 w(v)dv = 0.

We will derive in the following a boundary value problem for an ordinary dif-
ferential equation which is equivalent to the above integral equation. Defin-
ing

we have
P (v) = p(v)
Since fol @(v)dv = 1 we have as well
$(0) =0 = 9(1).
Moreover,
o) = - [ o@ds =) - 19(0)
1
o) = 1 [ o®)ds =) + b ().

This yields
E[ [ 0w FE ) — Ly
1 rl
- /0 / (vs — v) F(0) F(w2) [/ (v) + ﬁw(v)]dvgdv ~0.

Using partial integration and 1(0) = 0 = 4)(1) one obtains
1 rv

/0 /0 (v —v2) F(v) F(v2)3) (v)dvadv

= /01 /OU[F(U) + (v — UQ)FI(U)]F(UQWJ(’U)dvgdU

10



and

/ / (02 — 0)F W (v)dvady
/ / [F(v) = (03 — 0) F" (0)]F (v9)1h(v) duodv.
Alltogether we get
k / / (v — v2) F' () — (v—UQ)F(U)%]F(UQ)w(U)dde
+ [ [1F®) ~ 02~ )P 0) + (02 - )P @) o))y =0

1—w

for all 4 € C}[0,1]. That gives

b [ IF@) + 0= 0)F'(0) + (0 = 02) F(0) 3 F(0n)doy

1
1—w

= /v [F(v) — (vg —v)F'(v) + (vg — v)F(v)

]F(’Ug)d’l)g
k/ (vo)dva[2F (v) + vF' (v)]
+k/ V9 F(v3)dva|—F' (v) — F(v )%]
/ F(o)dua[F(0)(1 = ) + vF'(0)]

1
1—1)]'

/U "o (03)dvs|—F'(0) + F(v)

/ / ’UQ d’l)2 d’U1

G(v) = /OU vo F'(v2)dv,.

We define the functions
and
Then

K'(v) = /O”F(UQ)dqu
K'(v) = F



Moreover
K(0)=0,K'(0)=0,K'(1) =1,

where the last equality is due to [y F(v)dv = 1. Since G'(v) = vF(v) =
vK"(v) = (vK'(v))! — K'(v) and K(0) = 0, we get

Moreover, we have
/1,1 Floo)dvs = 1—K'(v)
/v1 vaf(vo)dvy = 1—K(1)—vK'(v) + K(v).
Using these expressions in (3) we get
kK (0)[2K" (0) + oK™ (0)] + k(oK' (v) — K (v))(—K" (v) — %K”(v))

= (1 K'(v)[K"()(1 — —

) +vK" (v)]

+ (1-K(1)—vK'(v) + K(v))[-K" (v) + ﬁK”(’U)]'

Reordering gives

K"W)[(k+1)K(@w) —v+1—K(1)]

K(1) — K(v)
1—w

K
FK"@)[(1 + k)K'(v) — 2+ k 1()”) + =0
with K(0) =0,K'(0) = 0,K'(1) = 1. We mention that K, K’ and K" must
fulfil 0 < K <1,0 < K' <1 and 0 < K” due to the definition of K and
the properties of F.

We define

a(K(v),v) = (k+1)K(v) —v+1— K(1),
K(v) K(1) —K(v).

b(K(),K'(v),v) = -1+ k)K'(v)+2—k T —»

The dependence on K (1) is neglected in the notation. One obtains the
equation

K" (v)a(K (v),v) = K" (v)b(K (v), K’ (v),v). (4)

12



with K(0) = 0,K’(0) = 0,K'(1) = 1. In the following we want to prove
existence of smooth solutions K of the above boundary value problem.

By straightforward formal manipulations we can transform equation (4) in
the following way: We integrate
(K")'(v) _ b(K(v), K'(v), )
K"(v) — a(K(v),v)

and obtain

(K" () = [

This yields

v
* 2 d% + constant.

v (K (0),K'(v),0) ,.

K” — K” / ? ? .
) = K" Opeap( | LED B0 g
Choosing K"”(0) in such a way that K’ (1) =1 is fulfilled we get

The resulting equation is

v b(K(9),K'(5),0) A
k() = P etk ) 5)
fo exp([? 7[)(1(((12,5)(5)) U)dA)df)

with K(0) = 0 and K'(0) = 0. Integrating twice one obtains
S S exp(f3 2L 45) i

d
(v) = OB . (6)
Jo exp(J§ "Ry o) do

In the following we restrict to the case k£ = 1. In this case an additional
symmetry property of the solutions allows to use formulation (6) and a
fixpoint argument to prove the existence of a solution of the boundary value
problem (4). Our main result is

Theorem 1
Let k = 1. Then, there exists a solution K € C3[0,1] such that

K" (v)a(K (v),v) = K" (v)b(K (v), K'(v),v) (7)

13



with

a(K(v),v) =2K(@w) —v+1— K(1)
K@) K1) - K@)
v 1—-w

b(K (v),K'(v),v) = —2K'(v) + 2 —

K(0)=0,K'(0)=0,K'(1)=1
Furthermore, the function K has the following properties:

1. For all v € [0, 3]:

1 1 1 1
KIII(§ +'U) — —K"I(§ _'U) , KII(§ +'U) — KII(E _ U)

1 1 1 1
K'(§ + v) :1—K'(§—'u) ) K(§ + v) :v+K(§—fu).

2. There exists an €y € (0, 1) such that for all v € [0, 3]:

cov? < K(v) < g . 2 < K"(v).
1 1 1

Proof:

The key to the proof is the restriction to solutions which satisfy the sym-
metry condition

K'(:+0) = K'(s—wv). ®)
2 2

Indeed let us assume that there exists a solution of (7) which satisfies (8).
Then it is easy to verify that K"(3 +v) = —K"'(3 —v) and K'(3 +v) =
K'(1) + K'(0) — K'(3 —v) for all v € [0, 5]. Making use of the boundary
conditions K'(0) = 0 and K'(1) = 1 gives K'(3 +v) = 1 — K'(3 — v)
for all v € [0, 3], especially K'(3) = 4. We furthermore get K (5 +v) =
v— 2+ K(1) — K(0) + K(3 —v) for all v € [0, 1]. The boundary condition
K(0) =0 gives K(3+v) =v—3+K(1)+ K(3 —v) for all v € [0, 5]. Setting
v = 0 we deduce K(1) = 1 and therefore K(3 + v) = v+ K(3 —v) for all
v € [0,1].

We conclude: Any solution K of (7) and (8) satisfies 1. and 3.

14



The symmetry condition (8) has two important consequences. First, the
value K (1) which arises in the model equation is known: K (1) = 3. Second,
it sufficies to determine K (v) for all v € [0,1], because due to 1. we get
Kw)=v—1+K(1—wv)foralve (3,1].

Let f denote the restriction of K to the interval [0, 1]. Then f will satisfy

F"@)a(f (v),0) = f"(©)b(f (), ['(v),0) 9)
with
a(f(v),v) = 2f(v) — v+ %
l - v
b(f (v), f'(v),v) = —2f'(v) +2 — fff) - ! ( )
£(0) =0, f'(0) =0, f’(%) _ %

Until now we have assumed that there exists a solution K of (7) and (8).
Now let us assume that f € C3[0, 5] is a solution of (9). We extend f to a
function K defined on [0, 1] by

| flw), if 0<w
K('u)—{ v— 2+ f(l—-v), if 3 <v

IA IA
— Nl

Using the boundary condition f’ (%) = % the reader will have no difficulty to

verify that K € C3[0,1]. It is also easy to see that K satisfies properties 1.
and 3. The sensitive question is whether K is a solution of (7). This can be
seen as follows. First of all we observe that due to K (1) = 3 the equations
(7) and (9) coincide on [0, 1]. Since f is a solution of (9) and since K = f
on [0, 1] we get: K satisfies (7) on [0, 3]. It remains to prove that K satisfies
(7) for all v € (3,1]. We calculate for all v € (3, 1]:

K"(v)=—-f"(1-») , K'(v)=f"1-v) , K@) =1-f(1-v)
as well as

a(K (w),v) = 2f(1 —v) +v— 3 = a(f(L—v),1 )

and

b(K((),K'(v),v) = 2f'(1—-v)—2—




Hence

—K"(v) a(K(v),v) + K"(v) b(K (v), K’ (v),v
= f"1-v)a(f1-v),1—v) = f"(1—v) b(f(
= 0,
since 1 — v € [0, 1) and f solves (9) on [0, 1].
We conclude: If (9) has a solution f € C3[0, 3] and if K € C3[0,1] is con-
structed from f as described above, then K will be a solution of (7) which
satisfies 1. and 3.

It remains to prove that problem (9) possesses a solution f € C3[0, %], which
has the additional property 2., i.e. there is an €y € (0, 1) such that for all
v € [0, %]

ev® < f(v) < g . 2 < f"(v).

Using the same formal manipulations as those leading to (5) and writing b
as

b(f (v), f'(v),v) = bi(f(v),v) + ba(f'(v),v)
with

one obtains

f(v) = T[f](v),

where

T[f](v) =

1 ag (1) mear(s atf 5 40)
o -

213 ararecn (s 4 ds)as
On the other hand it is easy to verify that any g € C2[0, %] with

a(g(v),v) >0
9" (v) = Tlg](v)

belongs to C3[0, 5] and is a solution of problem (9).

16



Hence problem (9) can be reformulated as fixed point problem: Find an
f €C?[0, 1] such that

W =81 = [ [* Tin@)dsa (10)

We prove by means of the Schauder theorem that (10) has a solution. We
have to find a convex, closed (in an appropriate topology) set M such that
S maps M continuously into a compact subset of M.

For € € (0, 1) we introduce the set
€ 1 17 2 v
M :{QEC[O,E],G’U Sggg}

We observe: M€ is a closed, convex subset of C'[0, 1]. We shall prove that
there exists an ¢ € (0, 1) such that S maps M C'[0, 1]-continuously into
a C'[0, 3]-compact subset of M.

First of all we observe that b (g(v),v) belongs to C°[0, 3] for all g € C*[0, 5].
Furthermore we have for all g € M€

1 1
2ev? — v + 2 < a(g(v),v) < ) (11)
and
0 < bi(g(v),v) < %_U —6'02(1 — 1 ) (12)
T 1—w v 1—w

Hence for all g € M*:
a(g(v),v) >0

This settles: S is well defined on M€ . Furthermore, we easily get: S maps
M¢ CH0, 4]-continuosly into C1[0, 5].

We also observe that for all g € M€ the following is true: S[g] € C2[0, ] and
0 < S[g](v) <

0 < (S[g])' (v)
0, (S[g])’(0)

I
I IA
C NI~ N -

S1g](0)

Hence for all g € M*:

0 < Sgl(v) <

17



Now let us consider (S[g])”(v). If we can find an € € (0, 1) such that
(Slg)" (v) > 2e0,

then S will map M into M€, because then for all v € [0

¢ € [0, 3] such that

,%] there is a

Slgl(v) = S[g}(0) + S[g])"(0)v + %(5[9])"(61))@2 > eov’.

To get a lower estimate for (S[g])"” we make use of the previous estimates

(11) and (12):

N =

1 1
—v + 5 <2 —v+ ) <a(g(v),v)

and b1 (g(v),v) > 0 give

1 v 0), 0
exp(/ 1(9(?)’?)0#) S
a(g(v),v) o al(g(d),9)
Moreover, from
3= 2(1 _ 1 5=
b(gw),y) iz -G —=) i 1
a(g(v),v) 2ev2 —v+ 1 “i-v 1-w
we get
1 - 1
2 1 v h v)), 0 2 1 1
/2fexp(/ Mdﬁ)dﬁ < /2 517 40
o a(g(d),) o a(g(?),9) 0 202 —H+51—0

1 ~
/5 do
0 202 —i+ 5

The last integral can be calculated explicitly (where we make use of the fact

that € < §):

/% d L (VT2 1-VI-4
= n . .
0 2et2—9+3 1—4e 1+vVI—4e 1—y1T—4e—2¢

1) and a constant C € (0, 00) such

4

We observe that there exists an €* € (0,

that for all € € (0,€*]:
dv 1
/ % <om().
0 2e? —9v+ 5 €
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Hence, for all € € (0,€¢*] and all g € M*:

2
T[g] > el

We observe that eln(%) tends to 0 as € tends to 0. Hence there exists an
€ € (0, 1) such that

T[g] > 2¢p
for all v € [0, ]. We conclude: S maps M into M.

It is not difficult to obtain an upper estimate for T'[g](v). The reader can
easily verify that there exist Cy,Cy € (0,00) such that for all v € [0, %]and
all g € Me:

C; < , < Cs.
= a(g(v),v) alg(v),v) =
Hence,
1 CoexpCy
Tigl < =———.
9} < 2 CrexpCy

We conclude: S(M®) is a bounded subset of C2[0, 5]. Due to the Arzela As-
coli Theorem we have: S(M®) is a C![0, %]-precompact subset of C[0, %], ie.
S maps M€ C1[0, %]—compactly into M*¢. Now we can apply the Schauder
theorem to get: There exists an f € M such that

f =57l
This finishes the proof of the theorem.
|

Remark:
From Theorem 1 we conclude the existence of a solution F = K" € C'[0,1]
of the original integral equation 0 = C;(F, F). Since K" > 2¢y one obtains
F > 2¢p. Moreover, F' is symmetric with respect to v =

N|—

Remark:
1) The solution K of Theorem 1 belongs to C3[0, 1] and satisfies (8). Aside
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from this function K there is another distributional solution K, € C°[0,1] of
(7) which satisfies (8), namely

K, : [0,1] — [0,00]

A IA
— D[

0,
v = 1
2

bl

= O
IAIA

v
v
2) The reader may wonder why the fixed point argument is settled in a space
with a lower estimate for the second derivative. At first glance a much more

convenient way to prove the existence of a solution of (9) would be to replace
the operator T by an operator 1", n €]0, oo defined as

1 = : T b1 (f(d

n[f](v) = 1 We p( (;Uail(( ((Z))g))d'u)
2 3 -

f02 @ flﬁ 2 emp(fv ;;(f(g ) d'U)d’U

where a”(f(v),v) := max{a(f(v),v),n} and then let n tend to zero. Indeed
it causes no problems to prove (again by Schauder’s fixed point theorem)
the existence of an f7 € C2[0, 5] which satisfies

_ /0 /0 T (5)dodv’.

The difficulty of this approach however lies in the fact that there is no
mechanism in the equation which allows to find bounds for 7"[f"] which
are independent of 7. This is not surprising, because - as mentioned above
- there is a (distributional) solution of (7) which satisfies (8) and whose
second derivative has a d-singularity at v = %
3) For k € (0,1) the additional symmetry properties of the solution used in
the proof are not fulfilled, compare the numerical results in the next section.
Additional arguments would be needed in that case to prove the existence

of solutions of the stationary equation.

4 Numerical Investigations

In this section a numerical investigation of the equations is presented. In
particular, the time dependent equation 0,F = Cy(F, F) is simulated for
different values of the parameter k. To obtain the numerical results shown
here we did use a numerical scheme as described in detail in [4].
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k=0.4

Figure 1: Equilibrium Distributions for £ = 0.4,0.6,0.8,1.0

The stationary distribution functions are computed and shown in Figure 1.
One observes the symmetry of the numerical solution for £ = 1 with respect
tov = % The stationary distributions are then used to determine the mean
velocities for different values of k. This gives a fundamental diagram as in
Figure 2. In the figures we plot only the results for values k € [0, 1].

Despite of the simplicity of this caricature of a traffic flow equation the
obtained results are qualitatively reasonable.

5 Conclusions:

e In this paper a simplification of the kinetic model for vehicular traffic
presented in [3] has been investigated.

e In particular, we did prove the existence of stationary solutions of the
homogeneous equation for the case k = 1.

e The problem of existence for k € (0,1) and of uniqueness of a smooth
solution of the stationary equation in the general case is still open. In
particular, we have not been able to find a counterpart of the Boltz-
mann H-functional for the above equation.
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Figure 2: Mean velocities
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