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Zusammenfassung

Multidisziplindre Optimierungen (MDOs) sind Optimierungsprobleme, die
diverse Diszipline in einer einzigen Optimierung kombinieren, um gle-
ichzeitig mehrere Designbeschrankungen zu erfiillen. Mann betrachtet z.B.
aerodynamische und strukturelle Kriterien, um eine Form zu entwickeln,
die nicht nur aerodynamische Effizienz besitzt, sondern auch strukturelle
Beschrankungen beachtet. Kombiniert mit CAD-basierte Parametrisierungen,
erzeugt die Optimierung eine verbesserte, herstellbare Form. Fiir Anwen-
dungen auf Turbomaschinen, wurden MDOs erfolgreich mit gradientfreie
Optimierungsmethoden wie z.B. genetische Algorithmen, Surrogatmodellierung
und anderen umgesetzt. Obwohl solche Algorithmen einfach anzuwenden sind,
da kein Zugang zum Quellcode bendtigt wird, ist die notwendinge Anzahl der
Iterationen zur Konvergenz abhéngig von der Anzahl der Designparameter.
Daraus folgen hohe Kosten und ein beschrankter Designraum. Eine konkur-
renzfahige Alternative bieten gradientbasierte Algorithmen mit adjungierte
Methoden an. Hierbei ist die Berechnungskomplexitéat nicht abhangig von der
Anzahl der Designparameter, aber eher von der Anzahl der Ausgaben. Solche
Methoden wurden mit dem Einsatz von adjungierte Stromungsléser und CAD-
basierte Parametrisierungen ausfiihrlich fiir einzeldisziplindre Optimierungen
der Aerodynamik angewandt. Allerdings kommen gerade erst CAD-basierte
MDOs mit dem Einsatz von adjungierten Methoden hervor.

Die vorliegende Dissertation leistet ihren Beitrag zu diesem Forschungs-
gebiet durch die Entwicklung eines CAD-basierten, adjungierten MDO
Frameworks fiir den Entwurf von Turbomaschinen unter Beriicksichtigung der
stromungs- und strukturmechanischen Diziplinen. Um dies zu erreichen, wird
das CAD-basierte Optimierungsframework cado des von Karméan Instituts
durch die Entwicklung eines FEM- Strukturldsers erweitert. Der Strukturloser
wird mit der Hilfe des algorithmischen Differenzierungstools CoDiPack der TU
Kaiserslautern differenziert. Obwohl die Mehrheit des Codes als eine Black-Box
differenziert werden kann, benétigen die iterativen Linear- und EigenlGser eine
Sonderbehandlung um die Préazision zu gewahrleisten und den Speicherbedarf
zu reduzieren. Daraus folgt, dass der Strukturléser sowohl Spannungs- als
auch Vibrationsgradienten mit einem Kosten unabhéngig von der Anzahl der
Designparameter berechnen kann. Fiir die vorgelegte Anwendung der Opti-
mierung einer Radialturbine hat der benétigte Gradient ein Berechnungskosten
von ungefahr 3,14-mal der des Ausgangscodes und einen ungefahr 2,76-fachen
maximalen Speicherbedarf im Vergleich zu dem Ausgangscode.

Der FEM-Léser nutzt objektorientiertes Design aus, um dieselbe Struktur
fiir verschiedene Anwendungen mit minimaler Neu-Differenzierung wieder zu
verwenden. Dies wird durch die Betrachtung eines Testfalls mit Verbundwerk-
stoffen vorgefiihrt, wobei die Gradienten durch die Erweiterung des Designraums
problemlos auch bzgl. Materialparametern berechnet wurden. Zuséatzlich wurde
der Strukturloser fiir eine CAD-basierte Gitterverformung wiederverwendet, die
die FEM-Gittergradienten zu den CAD-Parametern durchpropagiert. Hiermit
wird der Link zwischen der CAD-Form und des FEM-Gitters geschlossen. Let-
zlich wurde das MDO-Framework fiir die Optimierung der aerodynamischen
Effizienz einer Radialturbine unter strukturellen Beschrénkungen angewandst.
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Abstract

Multidisciplinary optimizations (MDOs) encompass optimization problems
that combine different disciplines into a single optimization with the aim of
converging towards a design that simultaneously fulfills multiple criteria. For
example, considering both fluid and structural disciplines to obtain a shape that
is not only aerodynamically efficient, but also respects structural constraints.
Combined with CAD-based parametrizations, the optimization produces
an improved, manufacturable shape. For turbomachinery applications, this
method has been successfully applied using gradient-free optimization methods
such as genetic algorithms, surrogate modeling, and others. While such
algorithms can be easily applied without access to the source code, the number
of iterations to converge is dependent on the number of design parameters. This
results in high computational costs and limited design spaces. A competitive
alternative is offered by gradient-based optimization algorithms combined
with adjoint methods, where the computational complexity of the gradient
calculation is no longer dependent on the number of design parameters, but
rather on the number of outputs. Such methods have been extensively used
in single-disciplinary aerodynamic optimizations using adjoint fluid solvers
and CAD parametrizations. However, CAD-based MDOs leveraging adjoint
methods are just beginning to emerge.

This thesis contributes to this field of research by setting up a CAD-based
adjoint MDO framework for turbomachinery design using both fluid and
structural disciplines. To achieve this, the von Karméan Institute’s existing
CAD-based optimization framework cado is augmented by the development
of a FEM-based structural solver which has been differentiated using the
algorithmic differentiation tool CoDiPack of TU Kaiserslautern. While most
of the code could be differentiated in a black-box fashion, special treatment
is required for the iterative linear and eigenvalue solvers to ensure accuracy
and reduce memory consumption. As a result, the solver has the capability of
computing both stress and vibration gradients at a cost independent on the
number of design parameters. For the presented application case of a radial
turbine optimization, the full gradient calculation has a computational cost of
approximately 3.14 times the cost of a primal run and the peak memory usage
of approximately 2.76 times that of a primal run.

The FEM code leverages object-oriented design such that the same base
structure can be reused for different purposes with minimal re-differentiation.
This is demonstrated by considering a composite material test case where the
gradients could be easily calculated with respect to an extended design space
that includes material properties. Additionally, the structural solver is reused
within a CAD-based mesh deformation, which propagates the structural FEM
mesh gradients through to the CAD parameters. This closes the link between
the CAD shape and FEM mesh. Finally, the MDO framework is applied by opti-
mizing the aerodynamic efficiency of a radial turbine while respecting structural
constraints.

iii



iv



Acknowledgments

I would like to thank
Professors Tom Verstraete and Nicolas Gauger for their guidance, trust, and mentorship

Lasse, Christopher, Mohamed and the whole Turbomachinery Dept. at the von Karmén
Institute for their proficient knowledge in the field

CoDiPack guru Max and the SciComp team at TU Kaiserslautern for their AD wisdom
the European Commission for its funding of the IODA project (grant no. 642959)

Queen Mary University of London and Rolls-Royce Deutschland for hosting me during
my project secondments

all IODA fellows for their comradeship

my parents and wife for their love, support, and patience



vi



Nomenclature

wmRZ N~ Q

~

e

1

Vs

@

1

& Sk

=

load vector

fourth-order stiffness tensor
body forces

identity matrix

single-entry matrix

shape functions

CFD system matrix

CFD residual

strain operator

external surface surface forces / traction forces
FEM displacements
unstructured mesh coordinates
heat flux

unit vector

convective fluxes

body forces

viscous fluxes

normal vector

source terms

vector from origin to point
absolute velocity

entrainment velocity

relative velocity

conservative state variables
stiffness matrix

B-spline curve

isobaric specific heat capacity
isochoric specific heat capacity

inequality constraint threshold
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ds

surface element

total energy

internal energy

Young’s modulus

example function

total enthalpy

inequality constraints

objective function

stiffness matrix

thermal conductivity coefficient
mass matrix

number of FEM nodes

number of design parameters
number of inequality constraints
number of preceding variables
number of intermediate variables
point on mesh

pressure

vibrational penalty term
Prandt]l number

specific gas constant

rotations per minute

B-spline surface

auxiliary variable

sigmoid function

Temperature

time

parametric space coordinates
velocities

edge vertex, contravariant velocity
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w function variable

Yy output variable(s)

«a Runge-Kutta coefficient
CAD design parameters

material design parameters

€ strain tensor

A variable step sizes

P adjoint CFD variables

o Cauchy stress tensor

£ local FEM coordinates

A step size

ou virtual displacement
efficiency

r control surface

¥ heat capacity ratio

A Lamé’s first parameter

Ai i-th eigenvalue

AEo, eigenvalue of engine order N

I viscosity coefficient / Lamé’s second parameter
v Poisson’s ratio

Q control volume

w frequency

wx vibrational constraint weight

We stress constraint weight

wrgo, frequency of engine order NV

10) arithmetic operation
p density

o von Mises stress

T viscous stress

W angular velocity
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AD
CAD
CFD
CSM
FEM
FFD
MDO

Algorithmic/automatic Differentiation
Computer-aided Design
Computational Fluid Dynamics
Computational Structural Mechanics
Finite Element Method

Free Form Deformation

Multidisciplinary Optimization
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1 Introduction

For decades, engineering intuition, experience, and experimentation were the
de facto driving forces in the design cycles that improved machine efficiencies.
However, these developments involved the time-consuming and expensive cycle
of prototype development, experimentation, and assessment, which involved
numerous iterations and errors. The dawn of numerical simulation and
optimization methods perhaps began around 1922 with Richardson’s proposals
of weather predictions by numerical methods [53], when computations still had
to be performed manuallly by human computers. It wasn’t until the late 1950s
that computational resources were adequate enough, resulting in a rapid rise
in numerical modeling developments, especially in the field of computational
fluid dynamics (CFD) [31]. Since its inception in the 1920s, nearly 100 years
later, significant improvements in computational power and numerical methods
has enabled us to perform more high-fidelity design work in the numerical
laboratory, rather than the physical one, at a fraction of the cost.

Especially in the field of aerodynamics, the developments of CFD analysis
and optimization methods have proven indispensable. Applications range from
the exterior shapes of aircrafts, automobiles, wind turbines, watercrafts, and
rockets to the shape of internally used components such as radial turbines,
cooling channels, and even blood vessels. Some of the benefiting industries
include aviation, space, defense, automotive, energy, and medical devices.
Fluids are everywhere. For the majority of these applications, typically the
development of an optimal shape that can deliver the highest efficiency is of
utmost importance. To achieve this goal, numerous optimization techniques
[67] have been developed over the years. Notably, the combination of multiple
disciplines, such as fluid, solid, and thermal, has given rise to so-called multi-
disciplinary optimizations (MDOs) [41] that strive to achieve, e.g., a maximum
aerodynamic performance, while repecting structural and thermal constraints.

In the field of turbomachinery applications, the ubiquity of MDO methods is
continuously growing. Gradient-free MDO frameworks, which include methods
such as genetic algorithms [69, 74], response surfaces [15], and differential evolu-
tion [32, 46] have been successfully applied, often in combination with surrogate
models [62] to accelerate the optimization. However, gradient-free methods
have their limits, which will be discussed in chapter 3, and gradient-based
methods using adjoints offer a competitive alternative for computationally
efficient MDO frameworks as the adjoint method enables gradient calculations
at a cost dependent on the number of outputs, rather than the number of
inputs. This has a significant impact on typical optimization problems where
a single or few objectives are dependent on a large number of design parameters.

Several advancements have been made in the field of adjoint-based MDOs,
especially in the field of external aerodynamics, extensive work has been done
on coupled aerostructural optimizations [1, 39, 37, 43]. From these contribu-
tions, it is evident that the self-adjoint property of the linear elastic equations
can be used to compute the structural adjoint vector without the need of a
differentiated solver. However, the partial derivatives of the structural solver’s
residual with respect to the design parameters are still required and need to



be derived analytically or are approximated by finite differences [38, 40]. This
differentiation procedure can be considerably improved by applying advanced
source-code augmentation techniques such as algorithmic differentiation (AD)
directly on the numerical solver’s source code.

Concerning adjoint optimizations within the field of turbomachinery, a few
recent developments include adjoint formulations for non-ideal compressible
fluid dynamics [79] and reduced order models for unsteady problems [55], both
utilizing a free-form deformation (FFD) parametrization for the optimization.
The choice of an optimal parametrization is a continuous discussion and recent
work [3] compares both FFD and CAD-based parametrizations. While FFD
is highly flexible for shape deformations, CAD-based parametrizations offer
more control over geometric, i.e., manufacturing constraints and is a field of
ongoing research. Both open-source [48] and in-house [57] CAD kernels have
been differentiated using algorithmic differentiation to perform CAD-based
adjoint optimizations, while some parametrizations involve the use of B-Spline
surfaces to maintain a link to the CAD model without having to differentiate
a fully-fledged CAD kernel [75]. Other groups handle the integration of CAD-
based parametrizations into the adjoint optimization chain via a design velocity
approach, i.e., finite-differencing black-box CAD packages [71], which allows
the use of commercial closed-source CAD packages. However, the majority
of these developments remain focused solely on aerodynamic objectives and
constraints. To compensate for the lack of an adjoint structural solver, some
groups have included structural constraints without the use of gradients by
generating a Kriging metamodel based on hundreds of Finite-Element Method
(FEM) simulations [4]. Adjoint-based MDO frameworks using a CAD-based
parametrization and adjoint structural analyses, are only now beginning to
emerge (76, 60].

This thesis seeks to contribute to this continuously evolving community with
the development of a CAD-based adjoint multidisciplinary optimization frame-
work, using state of the art algorithmic differentiation techniques and a 3D
adjoint structural solver. The main contributions of this work can be broken
down into the following three components:

1. the development and algorithmic differentiation of an object-oriented 3D
structural solver to compute stress and vibration gradients at a low com-
putational cost,

2. linking the structural gradients with the CAD kernel via an unstructured
mesh deformation to acquire gradients with respect to the CAD parame-
ters,

3. and combining these modules with an adjoint CFD solver to set up CAD-
based MDOs of turbomachinery components.

For the inclusion of the structural discipline in a gradient-based MDO,
gradients of structural quantities of interest, such as the maximum von Mises
stress or eigenfrequencies, are required. While it is possible to set up an adjoint
structural solver using an analytical approach, this thesis proposes a more



algorithmic approach to leverage object-oriented design. This leads to the devel-
opment of an adjoint computational structural mechanics (CSM) solver based
on the FEM method, which was fully differentiated using operator-overloading
AD. With this solver, stress and vibration gradients can be computed at
a low computational cost, making a gradient-based MDO computationally
feasible and eliminating the need of approximations by finite differences. The
resulting cost is one additional linear system solve for the maximum von
Mises stress gradients and one additional outer product per eigenvalue for
eigenvalue gradients. Additionally, the solver follows an object-oriented design,
such that the differentiated base classes can be extended to implement new
features that are automatically differentiated. For example, an unstructured
mesh deformation based on the linear elastic analogy was implemented as
a child class of the differentiated base solver. As a result, the gradients
could directly be calculated without the need of further code differentiation.
This software design aims to alleviate the problems associated with the code
extensibility and maintainability of AD-differentiated solvers, speeding up code
iterations and paving the way for more complex structural gradient calculations.

As CAD is the de facto standard for digital geometries in the engineering
world, the optimization framework focuses on a CAD-based parametrization.
This not only eliminates the approximation errors of fitting a CAD geometry
to an optimized mesh as a post-processing step, but also enables the inclusion
of geometric constraints to ensure manufacturability of the optimized shape.
Finally, the examination of the optimized CAD parameters gives more insight
to engineers, as values of, e.g., a thickness or angle distribution along a turbine
blade are more comprehensible than the change of coordinates of an arbitrary
FEM node. Within this work, a CAD kernel was differentiated using forward
AD and a CAD-based unstructured mesh deformation was implemented to link
the CAD geometry with the computational mesh, enabling gradient calculations
with respect to CAD parameters. The unstructured mesh deformation profits
from the differentiated structural solver base class to efficiently propagate
gradients through the CAD kernel.

Similar to an integration test, the differentiated modules are ultimately
coupled together to test their applicability as a whole. An optimization
framework where the entire chain from CAD parameters to objective function
has been differentiated with the aid of AD is set up. This demonstrates the
relevance of the efficiently calculated gradients for gradient-based optimizations.
The chain is first tested with a CAD-based structural optimization of a radial
turbine. Subsequently, this is combined with an adjoint CFD solver to set
up a CAD-based MDO framework involving objectives and constraints from
multiple disciplines - aerodynamics, stress, and vibration.

This work is structured as follows. In chapter 2, this thesis will introduce
the governing equations relevant for the multidisciplinary optimization (MDO),
i.e., the fluid and solid disciplines. Afterwards, the optimization framework as
a whole is described in chapter 3, including a discussion of optimization meth-
ods, the adjoint method for gradient calculations, CAD-based parametrization,
mesh generation for the fluid and structural solvers, as well as the adjoint com-
putational fluid dynamics (CFD) solver used in this work. Chapter 4 will then



detail the design of the CSM solver that was developed within the scope of this
thesis. The following chapter, chapter 5, will then go into further detail of the
application of algorithmic differentiation (AD) on the developed CSM solver
and CAD kernel to enable gradient calculations using the adjoint method in an
efficient, algorithmic manner. This chapter also discusses how the differentiated
base solver facilitates gradient calculations for child-class contributions. Finally,
chapter 6 showcases applications of the developed CAD-based MDO framework
with optimization test cases before concluding in chapter 7.



2 Governing Equations

This section introduces the governing fluid and structural equations considered
in this thesis. The Navier-Stokes equations define the governing fluid equations,
which are formulated in a rotating frame of reference for turbomachinery sim-
ulations. For the structural equations, this mainly includes the linear stress
analysis and vibration analysis, which are described by linear elasticity and free
dynamic vibration.

2.1 Navier-Stokes Equations

The Navier-Stokes [7] equations describe the physical conservation laws of a
fluid given by the conservation of mass, momentum, and energy within a control
volume 2. These can be formulated as the rate of change of conservative state
variables over time, their spatial flux, and source terms:

8 g — — —
a/QstHin (Fc—Fv)dS—/ﬂQdQ (1)

The vector W contains the conservative state variables
W=|pv|, (2)

where p denotes the density, u,v,w the velocities in x, y, and z directions,
respectively, and E the total energy. The spatial fluxes represent the rate of
change through the boundary 92 of the control volume and are made up of two
components F. and F,. The first represents the convective fluxes

pV
N puV + ngp
Foe= | poV +nyp |, (3)
pwV +np
pHV

whereby H defines the total enthalpy, p the pressure, and V the contravariant
velocity
V=77 =n.u+nyv+n,w. (4)

The second term defines the viscous fluxes

0
. NgTrx + Ny Tay + N2 Trz
Fv = NgTyx + Ny Tyy + NzTyz | » (5)
NgTzx + Ny Tzy +NeTrz

g0y + 1,0, + 1.0,



where the influence of heat conduction and viscous stress is categorized into the
terms

oT

Op = UTyg + VTgy + WTy, + k% (6)
oT

Oy = uTyy + vTyy + w7y, + ka—y (7)
orT

O, = uT,y + VT + WT,, + k& (8)

Here T defines the temperature, k the conductivity coefficient, and 7 the viscous
stress tensor. The source term () represents the effects of body forces and
volumetric heating and is given as

0
pfe,x
Pley : (9)
plez
pfe : 77"" (jh

Q1
|

The body forces are defined as f;, and ¢y represents the heat flux.

2.1.1 1Ideal Gas Law

The Navier-Stokes equations (1) comprise a system of five equations with seven
unknowns: p, u, v, w, E, p, T. Two additional state equations are introduced
to close the system of equations. The ideal gas law gives the relationship between
pressure, density, and temperature as

p=pRT (10)

with the specific gas constant defined by R. Additionally, the following rela-
tionship between the internal energy e and temperature T holds:

e=c,T, (11)

where ¢, is the isochoric specific heat capacity and the internal energy is defined
as o
e=F— % (12)

The temperature T' can thus be directly computed via (11) and (12) using
the conservative variables. To determine the pressure p from the conservative
variables, the specific heat capacity definitions

@

R=c,—c¢y, 7= (13)

Cv



can be used. From (11) and (10), one derives

e
p=pR—
Co
R
p=p_—e
Co
p=py—1e

p=p(y—1) <E—7722>

Alternatively, the temperature T can be directly plugged into (10) if it has
already been computed via (11).

Finally, the coefficients p and k have to be computed, which represent the
dynamic viscosity and thermal conductivity, respectively. The coefficients are
computed using Sutherland’s law [65]

1.45T%
=" .10 14
= T¥110 (14)
and for thermal conductivity
1
k=cp,— 1
Cp Pr’ ( 5)

where Pr represents the dimensionless Prandtl number. The Prandtl number
represents the ratio between momentum and thermal diffusivity and is generally
Pr = 0.72 for air, closing our system of equations for the fluid discipline.

2.1.2 Rotating Frame of Reference

For turbomachinery applications, which typically undergo a rotating motion, it
is necessary to formulate the Navier-Stokes equations (1) for a rotating frame
of reference. Assuming the considered system rotates with a constant angular
velocity of & around the z-axis, such that & = (w 0 0), the absolute velocity is
given as

Uy = Up + U = Up + & X T. (16)

Here ¥, defines the relative velocity, ¥, the entrainment velocity and 7 the
vector from the coordinate system origin to the considered point. Consequently,
additional forces, namely the Coriolis and centrifugal forces are introduced into
the Navier-Stokes equations (1). The Coriolis force is given as

foor = —2/(3 x T,) (17)
and the centrifugal force as
foen = —@ X (& x 7) = W7y, (18)

where 7, defines the perpendicular vector from the axis of rotation to the con-
sidered point. Both forces affect the momentum equations, while only the cen-
trifugal forces influence the energy equation. As a result, the Navier-Stokes



equations generally take the same form as given in (1), but with some modified
terms. Thus, the total energy is now given as
|77r|2 |17€|2 B u2 +U2 +w2 w2|,,:*n|2

FE = = — . 19
e+ 5 5 e+ 5 5 (19)

The convective fluxes change to

pV
puV +ngp
E =|pov+ nyp |, (20)
pwV +n,p
pIV

where the variable I represents the rothalpy

|7, B |Te|? — g w2 |7 |

I=h+— 21
+ 2 2 2 (21)

The contravariant velocity V is defined as
V = nzu+ nyv + n,w, (22)

and u, v, and w define the cartesian velocity vectors in the rotating frame, such

that
U

v=|v|. (23)
w

The Coriolis (17) and centrifugal (18) forces augment the source terms to

0
. pleq
Q= | pw (yw +2w) + pfey | . (24)
pw (zw —2v) + pfe -
p.ﬁ'gr‘i’(jh

Finally, the pressure is now computed by

u? + v? 4 w2 —w2|Fn\2
2 )

p=(C-1p|E-
closing the Navier-Stokes equations for a rotating frame of reference.

2.2 Linear Elasticity

For the structural constraints of a turbomachinery optimization, the stress and
vibration analyses play a vital role. To derive the system of equations for the
static linear stress analysis, one starts with the equilibrium equation

V-o+f=0, (26)

the strain-displacement equations

1
€=3 Vu + (Vu)T} , (27)



and the constitutive equations based on Hooke’s law
oc=0C g (28)

where C' : € defines the inner product Cjje;; [63], and C defines the stiffness
tensor. f := ( fo fy fz)T denotes the body forces and o the stress tensor

Or Taxy Taz
o= |Tye 0y Ty |. (29)
Tze Tzy Oz

The principle of virtual work is commonly used to derive the discrete, alge-
braic form of the linear elastic equations solved by the FEM method. Consider
a virtual displacement field du, which vanishes on the boundary du = 0|g,. As
a result of the virtual displacement, a virtual strain follows through (27):

Se — % [Vou + (Vou)"| = Sou, (30)

where S is defined as a linear differential operator. The internal virtual work is
defined as

/ Sel adf (31)
Q

and external virtual work as
/ su’l fdQ + / Su'tdrl, (32)
Q r

where f are external body forces and ¢ the external surface or traction forces
of the form

ts NgOyx + Ny Ty +N2Tzrz
t= |ty | = | NaToy +Nyoy + 12Ty | . (33)
t, NgTez + NyTy, + N0,

Equating the internal virtual work with the external virtual work leads to
/ belod = | sul fdQ + / sultdrl, (34)
Q Q r

which is essentially the weak form of the equilibrium equations [82], considering
a body with the domain 2 and boundary I'. Applying the Galerkin method on
(34) leads to the finite element formulation, which is described in more detail
in section 4.1.1.

2.3 Free Dynamic Vibration

When taking vibrational effects into account, mainly two additional forces are
considered [82]. The first is the inertial force —pi, with the density p and
acceleration 4. The second force is the frictional resistance, which, in a simple
linear case is —pt, with a given viscosity . In a static problem, this results in
the body force f replaced by

f=17f—pi— pa, (35)



whereby the external body forces are now defined in f. In the case of a free
vibration problem, the damping term is dropped, resulting in

f=7F-pi. (36)

This is then plugged into the weak form of the equilibrium equations (34). The
finite element formulation for the free vibration analysis is discussed in section
4.1.2.

10



3 Optimization Framework

In this section, the building blocks for a CAD-based adjoint multidisciplinary
optimization framework are introduced. First, gradient-free and gradient-based
optimization methods are discussed, followed by an introduction of the adjoint
method for computing gradients efficiently. The CAD-based MDO framework is
then layed out, which includes the CAD-based parametrization, mesh generation
for the fluid and solid domains, mesh deformation for the solid domain, and
finally the adjoint CFD solver. The adjoint structural solver is thoroughly
discussed in the follower chapter 4.

3.1 Optimization Methods

A general optimization problem is formulated by first defining an objective J(«x)
that is dependent on the design variables o € R™, where n is the number of
design variables. The goal is to minimize the objective J by finding the optimal
design

a” = argmin J(a)
(a7

such that h;(a™) < d;(a*), i =0,...,n5 — 1 (37)

where h;(a*) < d;(a*) are the inequality constraints that need to be satisfied
by the optimum and ny, is the number of constraints. The methods for solving
this optimization problem are divided into two main branches: gradient-free
and gradient-based methods, which are discussed in the next two sections.

3.1.1 Gradient-Free Optimization Methods

Gradient-free optimization methods are typically non-deterministic optimiza-
tion methods, which do not require gradient information. These methods are
based on heuristics or inspired by natural processes to find potentially multiple
local optima. Popular methods include evolutionary algorithms, such as genetic
algorithms [26] and differential evolution [64], simulated annealing [33], and
partical swarm optimization [16].

Such methods are rather straightforward to implement and non-invasive,
meaning that the source code of, e.g., the CFD solver is not required and can
be regarded as a black-bozx. This is advantageous from the user’s perspective, as
the choice of numerical solvers, CAD, and mesh generation tools is not limited
by the source code requirement, allowing users to opt for commercial black-
box solutions. Gradients are not required, and thus the optimization problem
does not have to be differentiable and could even be noisy. This is practical
in cases where gradients are difficult or not possible to obtain. However, the
number of iterations, and thus evaluations of J, required to reach an optimal
design generally increases with the number of design variables. This curse of
dimensionality [52] can easily lead to significantly high, or even prohibitive,
computational costs, depending on the size of the design space [10].

11



3.1.2 Gradient-Based Optimization Methods

Gradient-based optimization methods use gradient information to converge to-
wards a local optimum with less iterations. The simplest canon example of a
gradient-based optimization method is the steepest descent method

oJ
Q11 = O — Aafa, (38)
where A represents the step size. Recall that the gradient provides the
information of how much the objective J changes with respect to changes in
the design variable a. The basic idea behind steepest descent is then to update
the variable a in the direction of the gradient such that the value of J is reduced.

The downside of gradient-based methods is that the gradient g—i e R" is
required. Not only does this require the objective to be differentiable, but
computing the gradient can be computationally expensive. Using a non-invasive
approach, such as finite-difference (FD) perturbations, leads to a computational
cost proportional to the number of design parameters n. For first-order FD
approximations, n + 1 evaluations of J would be required and 2n evaluations
for second-order FD. Thus, the number of design parameters, and in effect the
richness of the design space, is also restricted due to the linearly increasing
computational costs associated with the gradient calculation.

3.1.3 The Adjoint Method

The adjoint method, which was first applied in aerodynamic optimizations by
Pironneau [51] and Jameson [28, 30] using continuous adjoints, offers a remedy
to the high computational costs associated with gradient calculations. In
short, the cost of computing gradients using the adjoint method is proportional
to the dimension of the output J, rather than the input «. This offers a
considerable cost advantage for optimization problems where the dimension
of the objective function is typically far less than the number of design
parameters. Additionally, a much richer design space can be used, since the
cost of computing the gradient is independent of the size of the design space.
As opposed to finite differences, which is a gradient approximation method
that introduces truncation errors, the adjoint method is numerically stable.

To derive the adjoint model that this method requires, there are two general
possibilities. One can analytically derive the adjoint equations from the primal
equations considered, e.g., the adjoint model of the Navier-Stokes equations
[29], and then discretize the adjoint equations to solve them numerically.
This is commonly referred to as the continuous adjoint approach. The other
approach inverts the order - first discretize your equations, e.g. Navier-Stokes,
and then derive the adjoint model of the discretized equations. This is called
the discrete adjoint approach.

The continuous adjoint approach offers more physical insight into the adjoint
model and can be suitably discretized to be solved efficiently. However, deriving
the continuous adjoint equations from the primal equations is a meticulous
and arduous task. Additionally, the task of deriving the continuous adjoint
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equations would need to be repeated every time different primal equations are
considered. The discrete adjoint approach, on the other hand, is dependent on
the discretization of the primal equations and the quality of the numerical code.
Using a technique called algorithmic differentiation (AD), an adjoint model of
the discretized equations can be derived by differentiating the numerical code
directly. The advantage here is that differentiation process is semi-automated
once set up, meaning that new additions to the primal code automatically lead
to a differentiated code for the gradient calculation. Moreover, the discrete
adjoint method does not necessarily require anlaytical differentiability of the
underlying equations, as long as the discretized equations are algorithmically
differentiable [44, 9].

In this thesis, the discrete adjoint approach is considered, using an algorith-

mic differentiation tool to derive the adjoint code. This is discussed in more
detail in chapter 5.
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Figure 1: Flowchart of the CAD-based MDO framework
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3.2 CAD-Based MDO Framework

A multidisciplinary optimization (MDO) is an optimization problem that takes
more than one discipline into consideration. For example, a typical setting
for shape optimizations in aerospace or automotive applications consists of an
aerodynamic objective and a structural constraint. To perform an efficient
MDO with adjoints, adjoint models of both disciplines are required, as well as
an appropriate parametrization. This thesis now introduces the components
that constitute the MDO framework, including the parametrization (sec. 3.3),
mesh generation (sec. 3.4), and the adjoint solvers for the fluid (sec. 3.5) and
solid (chap. 4) disciplines.

The typical goal of a turbomachinery optimization would be to maximize
the efficiency 7, while respecting structural constraints, such as keeping
the maximum von Mises stress o, below a defined threshold to avoid
structural failure. Consider the workflow as shown in figure 1, which begins
with CAD parameters a, which serve as the design parameters for the
optimization. The CAD parameters a serve as the inputs for the CAD
kernel, which generates the CAD geometry. At this point, the generated
geometry can be exported into the STEP file format, which is an ISO standard
for CAD models. In section 3.3, this parametrization is discussed in more detail.

Next, the fluid structured mesh and solid unstructured mesh are generated
based on the internal representation of the CAD geometry. During the mesh
generation process, a conformity between the outer mesh faces and the CAD
surfaces is ensured, minimizing errors between the computational meshes and
the geometry. An in-house CFD solver [45] and CSM solver [58] are then used
to perform the CFD and CSM analyses, respectively. The resulting quantities
of interest, such as the efficiency n and maximum von Mises stress 0,42, can
be combined into a single objective function J (1, 0pmaz)-

The optimization problem is now formulated as solving for the optimal CAD
parameters a* that minimize the objective function J (37). Using a gradient-
based optimization method, this requires the gradients of the objective function
with respect to the design parameters %, which involves components from the
entire MDO chain of figure 1. While the adjoint CFD and CSM solvers deliver
sensitivities with respect to the computational meshes, i.e. 8w?«znum’ g;’";m ,
these still have to be multiplied with the sensitivities of the mesh with respect
to the CAD parameters via the chain rule:

dn _ o 0T fiuid
do awflm‘d 156"

damam - aO—rnaac awsolid
do O%so1ia O

(39)

The primal and differentiated models used to compute the gradients required
by (39) are introduced in the following sections.
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3.3 CAD-Based Parametrization

For the majority of engineering applications, and turbomachinery design and
production in particular, CAD models are ubiquitous. Not only are they used
to design 3D models, but also to exchange designs between departments, and
are ultimately passed on to the production deparment for manufacturing.
Maintaining a link to the master CAD geometry during an optimization
has several advantages. For instance, CAD-free shape optimizations would
typically output a point cloud or parametrized B-Spline as the resulting shape.
Afterwards, a CAD model would still need to be fitted to the optimized shape,
resulting in fitting errors between the optimized shape and the CAD geometry.
Working with the master CAD geometry directly during an optimization
eliminates this fitting error. Additionally, manufacturing constraints are more
easily applied to a CAD geometry to, e.g., maintain curvature or straight edges
where needed, while respecting a minimal thickness. Last but not least, a CAD
parametrization is more intelligible for engineers and provides more insight into
how the optimizer is manipulating the shape to minimize the objective.

0.025

0.02

0.015

Beta [deg]
R [m]

0.01

0.005

(a) Blade angle parametrization (b) Meridional shape parametrization

Figure 2: CAD-based parametrizations

CADO [73], the von Kérméan Institute’s (VKI) CAD-based optimization
framework, provides the benefits noted above and is extended to support mul-
tidisciplinary optimizations within this work. Internally, the geometries are
described using BSpline and NURBS to define the curves and surfaces, which
are generated based on the user’s inputs, i.e., the CAD parameters a. For
a radial turbine, for example, typically the shape of the blade can be deter-
mined by user-defined blade angle and thickness distributions. This can also
be used to create the shape of the wheel hub and shroud, while other compo-
nents such as the back plate can be described using BSplines. An example of
a CAD parametrization for a radial turbine can be seen in figure 2. Here the
red dots represent the control points which are essentially the design parame-
ters a for the optimization. The arrows on these control points represent the
degrees of freedom, which can be used to define geometrical constraints. Dur-
ing an optimization, these control points are moved to change the shape of the
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geometry. For different applications, e.g., for axial compressors, radial turbines
or radial compressors, corresponding application-specific algorithms have been
developed that generate CAD geometries for each geometry, using the same
underlying CAD kernel of CADO.

3.4 Mesh Generation
3.4.1 Fluid Mesh Generation

For the CFD analysis, a 3D multi-block structured mesh is utilized, which is
generated using a CAD-based approach within CADQO. This is achieved by first
creating a topology layer based on the CAD geometry (figure 3). In contrast to
the geometry, which defines the shape, the topology describes the connectivity
among the vertices, edges, faces, and surfaces of the geometry. For example,
the toplogy information of a face would include the bordering edges and the
order in which they form a closed loop. Using the CAD geometry and topology
as a starting point ensures that the resulting mesh follows the geometry’s
shape with high accuracy (figure 4). The assembly and types of grids used, i.e.
C-grids, O-grids, and H-grids, depends on the application, e.g. a radial turbine
or axial fan blade CAD geometry.

The size and quality of the mesh is set by the user by specifying, e.g., the
number of mesh points and the cell size along given boundaries. Based on
these inputs, an initial mesh is generated, which is then refined using an elliptic
smoother technique [68], whereby the user can specify the number of smooth-
ing iterations performed. The node count and topology of the fluid mesh re-
mains constant if the mesh quality settings are unchanged, allowing a direct
link between the CAD geometry o and the fluid mesh @ ¢4 through the mesh
generation.

geometry topology

Figure 3: Tllustrative example of connection between shape geometry (left) and
topology layer (right). The geometry defines the shape, while the topology
defines the connectivity.

3.4.2 Solid Mesh Generation

The CSM analysis uses an unstructured mesh which is generated based on the
famous TetGen [61] mesh generation algorithm. Analogously to the fluid mesh
generation, the CAD geometry and topology information is used as the starting
point of the unstructured mesh generation. This information is passed on to
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Figure 4: Solid unstructured mesh (green) and fluid structured mesh (white,
orange) of a radial turbine

the mesh generation algorithm, which takes a hierarchical approach, going
through the vertices, edges, faces, and finally generating the 3D solid mesh
T soliq as portrayed in figure 5.

First, the vertices are simply meshed to be in the same position as their
corresponding points according to the topology. The edges formed by the ver-
tices are then meshed based on user-specific quality metrics and the curvature.
After the edges have been meshed, the surrounded faces are initially meshed in
parametric space using a Delaunay triangulation. The internal domain is then
meshed based on the the grid size and quality defined by the user. Finally,
the meshed faces serve as boundaries surrounding an internal volume, which is
meshed using a 3D Delaunay triangulation. The resulting conformity with the
CAD geometry is shown in figure 4, which shows the generated solid and fluid
meshes.
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Figure 5: Flowchart of unstructured meshing procedure
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(a) axial view (b) radial view

Figure 6: CAD geometry (gray shade) and unstructured mesh (orange)

3.4.3 Linking Unstructured Mesh and CAD Geometry

As the CAD geometry is updated during the optimization, the unstructured
mesh must be updated as well. Recall that the CAD surface serves as the
interface between the geometry and the mesh (figure 6). Using this interface,
a CAD-based mesh deformation method is implemented to ensure the link
between FEM mesh and CAD geometry remains intact.

The optimization algorithm requires the gradients with respect to the CAD
parameters 6"5&” , which can be acquired via the chain rule

00maz  O0maz 0T

daa ~ Ox Oda’

(40)

The first term 3—"5’;& is computed by the adjoint structural solver and represents
the stress gradients with respect to the FEM mesh nodes. The second term g—ﬁ
could be computed by differentiating either the unstructured mesh generation

or a corresponding mesh deformation.

For the fluid discipline, remeshing the structured mesh at each design
iteration keeps the mesh topology in tact, such that a differentiated mesh
generation can be easily used. However, for the solid discipline, rerunning the
unstructured mesh generation for each design step could potentially change
the mesh topology and mesh node count, resulting in discontinuities in the
objective function.

Take for example the plots shown in figure 7, which show the change in
maximum von Mises stress based on the value changes of two different CAD
parameters. The initial value o is increasingly perturbed by a value A. For
one CAD parameter (figure 7a, A = 107%), the maximum von Mises stress value
remains constant for certain regions of parameter values and the discontinuities
can be associated with mesh topology changes. Other CAD parameters, on the
other hand, are even more sensitive and have different maximum von Mises
stress values for each parameter update (figure 7b, A = 1078). This can be
avoided by remeshing as little as possible and morphing the mesh instead,

20



649.25 —e— remesh 649
= 649.00 —— morph =
S S
= 648.75 2648
@ @
o o
= 648.50 5
w v 647
0 0
9 648.25 3
= =
5 648.00 5 646
> >
% 647.75 %
= = 645 —e— remesh

647.50 —<— morph

0 1 2 3 4 5 6 0.00 025 050 075 100 125 150
Relative value change [%] le-3 Relative value change [%] le-3
-6 -8
(a) o =0.3, A=10 (b) a0 = 0.01146789, A = 10
Blade.TESweep.Point.3.X Meridional.Patch2.HubPoint.2.Y

Figure 7: Comparison of ¢,,4, over 20 iterations of updating parameters after
remeshing (black) or deforming the mesh (grey). The initial CAD parameter
value o, is perturbed by A over 20 iterations. The relative value change is
with respect to the initial value «; g.

which, as seen in both plots of figure 7, has no significant effect on the quantity
of interest. Thus, a CAD-based mesh deformation that maintains the mesh
topology is preferred.

The mesh deformation is based on the method described in [77] and can be
summarized as a three-step process:

1. morph edge nodes
2. morph face nodes
3. morph inner nodes

In contrast to the original work, the inner mesh nodes are displaced using a
linear elastic analogy instead of an inverse distance interpolation. The first two
steps of the mesh deformation are forward differentiated using AD, while the
third step makes use of the adjoint linear elastic solver. This method makes
use of the adjoint structural solver and has shown to require less remeshing
than the inverse distance method with this geometry [59]. The remainder
of this section is dedicated to explaining the three steps of the mesh deformation.

1. Morph Edge Nodes

The edges of the mesh as shown in figure 8 are deformed based on the dis-
placed edges of the corresponding CAD geometry. The CAD edges are defined
using a B-spline curve C(u), where the first and last points C(ug), C(ug) are
identical to the first and last vertex points of the mesh edge. From the CAD
update, the displacements of ug,ur are known and can be used to define the
displacements of the first and last vertices of the corresponding mesh edge.
The end vertices are then used to solve for the remaining interior edge mesh
points in parametric space. Solving for these mesh points in parametric space
reduces the dimension to 1 (u) and implicitly applies the constraint of keeping

21



-51%;?—-‘_:6'_‘"‘"1# £

RTATTAY
RS

I
Talari)
i
¥

=5

i
t (Iﬁ?‘m
ALY
WA

e

AR
vaavary
S
=
T

et
a

aa
i

LTS
LTATAE A,
300
A

v

:‘1
Fog
i,
Lt

=1
"y
o

e
5]
LT,
R
Sl
==
o

Figure 8:

| ] N

I T
ul WMl

Figure 9: Deformation of mesh edge. Left:

in 2D Cartesian space. Right: in
1D parametric CAD space

the mesh points along the B-spline curve.

Figure 9 illustrates this procedure. The original B-spline curve C' with end
vertices Vg and Vg is morphed to curve CM. As a result, the end points are

morphed to VAT and V2!, which can be directly computed from C(ul), C'(u}).
The inner point P has to be morphed to PM = C(u™). This is done in para-

metric space by solving

M M UJ]\E/[_UB
u” =up + ——= (u—up), (41)
U —up

followed by a relaxation using the linear spring analogy. Applying this

procedure for each edge along the CAD faces results in the deformation of the
mesh edge nodes.
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Interpolated from boundary displacements

Figure 10: Morphing of face mesh nodes. Left: 3D Cartesian space. Right: 2D
parametric CAD space.

2. Morph Face Nodes

Once the mesh nodes along all edges have been updated, the rest of the
outer mesh nodes need to be updated as well. These nodes coincide with the
CAD faces, which are defined by B-spline surfaces S(u,v). Using the morphed
edges from the previous step, the deformation of the inner nodes on the face
can be computed. This is illustrated in figure 10, where the face S is updated
to SM. The edges of the face C™ are already known from the previous step
and can be used as boundary conditions to solve for the inner mesh points PM
using an inverse distance interpolation. Analogously to the previous step, this
is done in parametric (u,v) space to reduce the dimensionality to 2 and to
constrain the deformation on the B-spline surface. This process is repeated for
each face of the geometry, which completes the deformation of all outer mesh
nodes.

3. Morph Inner Nodes

After the outer mesh nodes have been deformed by the previous two steps, a
linear elastic problem can be set up to solve for the remaining inner mesh node
deformations w;,ner. This is achieved by defining the previously computed outer
node deformations e, as the boundary conditions of a linear elastic problem

Au = b, (42)

which can be solved using the CSM solver discussed in chapter 4. The computed
displacements u can then be used to update the entire mesh according to
et =2l +u, (43)

keeping the mesh topology unchanged. The new mesh can then be used to
perform CSM simulations for the next optimization iteration.
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3.5 Computational Fluid Dynamics Solver

Primal

To numerically model the fluid dynamics that is typical for turbomachinery
applications, the Navier-Stokes equations for a rotating frame of reference are
augmented by a turbulence model. In this work, the widely-used compressible
steady state Reynolds-Averaged Navier Stokes (RANS) formulation is used,
where the Navier-Stokes equations are averaged using Reynolds time-averaging.

The in-house developed RANS solver of Miiller [45, 47] is utilized, which uses
a cell-centered finite volume method for its spatial discretization. The RANS
formulation is closed using the negative Spalart-Allmaras turbulence model [2],
assuming a fully turbulent inflow condition. For the temporal discretization,
an implicit time integration scheme based on the JT-KIRK scheme [81] is used,
utilizing a multistage Runge-Kutta time-stepping method of the form

WO = wt (44)

P [W“) - W@)} — R (W“”) (45)
(46)

P00 - 70 =~k (1500) )
WL = W+ AW ™), (48)

with time step t, Runge-Kutta coefficients ., and m Runge-Kutta stages.

Using an approximation of the Jacobian 22 based on the first order residual

~ ow
R, the system matrix P is defined as
Q OR
At oW

with the control volume 2 and identity matrix I.

The solver is parallelized with Open MPI [17] and the time integration is
accelerated by the use of local time-stepping and geometric multigrid methods
[50]. The spatial discretization of the inviscid fluxes is implemented using a
Roe flux-splitting scheme [54] with second-order accuracy due to the MUSCL
reconstruction scheme [70]. A van-Albada flux limiting method [72] is used
to handle shock oscillations and the numerical dissipation is treated using the
entropy correction according to Harten and Hyman [23].

Adjoint

As discussed in section 3.1.3, the adjoint method is preferred in gradient
calculations when the number of outputs is far less than the number of inputs.
For CAD-based optimizations, one may typically have numerous CAD design
variables a € R™ and a one-dimensional objective J € R. The adjoint formula-
tion of the CFD solver, which is discussed e.g. in [18], can be derived by first
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differentiating the steady state RANS solution
R (W) —0 (50)
by the design parameters a:

dR _OROW  OR

= 4+ =0. 1
do o o " da 0 (51)
This can then be reformulated as
2 -1
ow  OR™OR (52)

e " oW da
Next, the objective function J (W, «) is differentiated as

dJ 9] | 9J OW

— = — 4+ —— 53
daa O« + oW O (53)
and the derivative of the state variables (52) is inserted
dJj  dJ 0J OR ' OR
AL AL e (54)
daa O« oW oW O«
—_——————
=T
dJ dJ +0R
— = — —_— 55
dae  da Y da’ (55)
where 1) defines the adjoint variable and the remaining partial derivatives
g—i, ‘,3—3 can be computed with minimal computational effort. The adjoint vari-

able @ can be solved for via the adjoint equation

T T

and the adjoint residual R, is defined as

oJ T  ORT
v=or T ow ( (57)
g—V%T is the transpose of the Jacobian of the primal R(W) = 0. In principal,

solving the linear system of equation of (56) would directly lead to the adjoint
solution . However, in practice, this linear system is very stiff and requires
a significant effort to solve. This is the reason for choosing the approximate
Jacobian in equation (49) to solve the primal.

To solve equation (56) with the same logic as the primal, the equation is
rewritten as (57) and the same time-marching method used to solve the primal
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flow equations is employed, except with the transpose of the system matrix P:

O = gt (58)
pr {1/)(1) . Qp(o)} — —iRy (VT/,q/;(O)) (59)
: (60)
pT |:,l/)(m) _ w(o)} — —amRy (W’d](m—l)) (61)
N e’
Ap(m)
Pt = bt Agp(m) (62)

The system matrix P is given by the steady state solution of the primal. Because
merely a transpose of the primal system matrix P7 is required, the adjoint
solver has approximately the same memory requirements as the primal solver.

In practice, its memory foot print is slightly higher, because g—v?/ is stored in

memory for the convenience of evaluating (57) immediately. Additionally, the
transposed system matrix P7 has the same eigenspectrum as P, resulting in
an adjoint convergence rate equivalent to that of the primal solver, where P is
frozen during the last iterations and no longer updated. The partial derivatives
in equation (56) are computed via hand-differentiated AD with aid of the source
code transformation tool Tapenade [24]. A more detailed discussion of the CED

solver and its adjoint counterpart can be found in the doctoral dissertation of
Miiller [45].
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4 Computational Structural Mechanics Solver

This chapter introduces the computational structural mechanics (CSM) solver
which was developed and differentiated within this work. The corresponding
governing equations are the linear elastic equations (72) and the free vibration
equations (81). In order to solve these equations numerically, the finite element
method (FEM) discretization is used. Additionally, structural gradients are re-
quired for the gradient-based optimization (39), which are preferrably computed
at a low computational cost. This chapter introduces the FEM code’s structure,
which enables a straightforward discretization using algorithmic differentiation,
discussed in chapter 5.

4.1 Finite Element Method

The finite element method (FEM) [83] is a widely used numerical discretization
method for solving partial differential equations. The basic idea of the FEM
method is to reduce the continuous problem, i.e. the domain, into multiple finite
discrete problems (fig. 11), which can be solved using algebraic equations.

PVavavare
tt».-y-vé;'

(a) CAD geoemetry of a radial turbine (b) FEM mesh of a radial turbine
Figure 11: FEM divides a continuous (left) domain into a set of multiple discrete
elements (right)

This is achieved by using the Galerkin method to approximate a continuous
variable, e.g., the displacement u, by a linear combination of the form

U~ Up
up = E u; Ny,
i

where N; are so-called test or shape functions. The shape functions are
dependent on the type of finite elements chosen for the discretization, e.g., 2D
linear squares (4 nodes), 3D linear hexahedral elements (8 nodes) and quadratic
tetrahedral elements (10 nodes). Furthermore, the shape functions determine
the polynomial form of the quantity over the element - e.g. whether the value
of the displacement u changes linearly or quadratically within the element.
The accuracy of the discretization is thus highly dependent on the elements
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chosen, as well as the number of elements used, i.e., how fine the FEM mesh is.
In the context of a linear stress and free vibration analysis, the size of the re-
sulting systems (72), (81) is directly dependent on the number of FEM nodes m.

A short introduction of the finite element formulations for the linear stress
and vibration analyses is given here. For a thorough discussion of the basics
of the FEM method, the interested reader is referred to the book of Zinkiewicz
[83] and for its application in structural mechanics within turbomachinery, the
book of Dhondt [12].

4.1.1 Linear Stress Analysis

For the derivation of the FEM formulation [82], we begin by rewriting the gov-
erning equations of linear elasticity introduced in section 2.2 into matrix form.
The strain-displacement equation (27) can be written as

. -
€x o g 0
€y 0 dy g u
0 0 =
e=| “|= 5 5 92 v | = Su, (63)
2 2
Vaz dy ox w
9 9
’yyz 0 aZ E%g
Ie
Vzz | 52 0 e

with the differential operator S and the displacement field 4. The matrix form
of the equilibrium equations (26) can be formulated as

STe+b=0 (64)

and the constitutive equations (28), also known as the stress-strain equations,
can be written as
o = D(e— &) + 0o, (65)

with the elasticity matrix D. €y and oy denote the initial strains and initial
stresses, respectively, which may be present at rest, i.e., before loads are applied.
The elasticity matrix for isotropic materials is given as

(1-v) v v 0 0 0
v (1-v) v 0 0 0
_ v v (1-v) 0 0 0
D=Co| 0 0 (1—2)/2 0 o |
0 0 0 0 (1-2v)/2 0
0 0 0 0 0 (1-2v)/2
(66)
with Poisson’s ratio v, Young’s modulus F, and
E
C, = (67)

A+v)(1—2v)

Plugging (65) into the principle of virtual work (34), the approximate weak form
is given by

/ 5eT (o0 + D (e — €)] dQ = / sul fdQ+ [ suTtdl. (68)
Q Q T
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Here the boundary I' is divided into I', and T';, whereby the virtual displace-
ments are zero du = 0 along the boundary I',. The boundary conditions are
given by the traction forces £ on the boundary I'; and known displacements @ on
the boundary I';, where u = w. Using the Galerkin method, the displacements
are approximated as

ur i =Y N (69)
i
and the strains are approximated as
W o 0
ION;
0 By 0
0 0 2N .
G%GZZ ON; ON; %’Z ui:ZBiui. (70)
i oy ox i
Oz oy
L 0z Oz J

Introducing the approximations (69) and (70) into the weak form (68), leads to

Sl Uﬂ B[00 + D (Bju; — €)] dQ} =oal Uﬂ Nifdﬂ—k/rt Nitdl“} . (71)

This equation holds for any virtual displacement du;, such that the multipliers
must be equal and d@! can be dropped. Rearranging the result finally leads to
a linear system of equations of the form

Ka+b=0, (72)

where K € R3™*3™ ig the stiffness matrix, b € R3™ the load vector, and
u € R¥" the displacements. Splitting up the integrals into summations of
integrals over a number of finite elements, the global matrix K and load vector
b can be assembled together from elemental components

Kij=> K§, bi=> b (73)

The elemental stiffness matrix K¢ and load vector b® are computed via
K = / BI'DB;dQ
Qe

bS = / [Bf (00 — Deg) — Ni f] d2 — | Nitdl'.
e Ff

The number of FEM nodes is given by m and the factor 3 in R3™ is due
to this being a three-dimensional formulation. The linear system is typically
solved using an iterative linear system solver provided by, e.g., the Eigen [21]
or PETSc library [5], whereby smaller linear systems can also be solved using
a direct linear solver.

The stiffness matrix and load vector are mainly dependent on the given

material properties and the loads defined by the problem. For turbomachin-
ery applications, the most significant loads are given by the centrifugal forces,
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which are generated by high rotational speeds. For structural constraints result-
ing from a stress analysis, the quantity of interest is the maximum von Mises
stress omaz € R, which can be evaluated as a post-processing step after the
displacements u have been computed. This is achieved by first computing the
strains via the strain-displacement equation (27, 70) and then determining the
stress tensor according to the stress-strain equations (28, 65), which is typically
done on the integration points of the FEM elements. The von Mises stress oym
for each integration point can then be computed via

0'2 =

wm (00,0 = 01,1)* + (01,1 — 02.2)* + (02,2 — 00,0)* +6(07 5 + 05 + 05 1)]

(74)

NN

4.1.2 Free Vibration Analysis

The discrete form of the free vibration analysis results from plugging the body
force vector (36), including inertial forces, into the Galerkin approximation of
the principle of virtual work (71) [82]. This essentially results in the body force
term being replaced by

— | NTfiQ=—-| NTfiQ+ | NTpidsQ, (75)
Qe Qe Qe
whereby the body forces are now defined in f. In matrix form, this results in

Ku+ Mii=b (76)

with the mass matriz M € R¥*3™  where the elemental mass matrix M¢ is
computed by

M = /Q NI pN;dQ. (77)

Without external forcing terms, the load vector is simplified to b = 0, such that
the equation reduces to
Ku+ M4 = 0. (78)

The proposed solution of '
u = upe'“rt (79)

leads to a generalized eigenvalue system of the form
Kuy, — wiMuy = 0. (80)
From the defintion )\, := w,% follows
(K(x) — MM (x)) up, =0, (81)

where )y is the k-th eigenvalue and wuy the k-th eigenvector. K is the same
stiffness matrix used in the linear stress analysis (72) and can thus be recycled
without additional costs. The generalized eigenvalue system (81) can be solved
using an iterative eigenvalue solver provided, e.g., by the SLEPc library [25],
resulting in the eigenvalues A and the eigenvectors u.
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4.2 Finite Element Code Structure

Applied to structural mechanics, the FEM method essentially boils down to
solving one global linear system (72) for the linear elastic analysis and one
generalized eigenvalue problem (81) for the free vibration analysis. While the
process of assembling and solving these global systems is generally the same,
the building blocks, i.e., the shape of the individual elements or the stiffness
matrix calculations can differ. For example, one could choose to discretize their
FEM model using either linear 3D brick elements or quadratic 3D tetrahedral
elements, both using different shape functions. The stiffness of the material
could also be computed differently, e.g. either for isotropic materials or
composite materials.

To take these different constellations into account and facilitate future
code contributions, a modularized, object-oriented design is used. This
section introduces the structure of the developed FEM code, followed by its
differentiation in the following section, section 5.

4.2.1 Shape Functions

The most basic building block of the FEM method is the underlying shape
function IN used within the element. For all the different element shapes, a
parent class Shape is defined that has the following pure virtual functions:

e ShapeFunction - defines the shape function IN of the element

e ShapeDerivative - defines the derivative % of the shape function with

respect to the local coordinates

e ExtrapolateValue - extrapolates a value from the integration points to
the FEM nodes

Each of the implemented child classes overload the virtual functions of the par-
ent class Shape. Shape-specific features, such as the extrapolation matrix,
integration weights, and integration points are defined in the corre-
sponding constructors of the child classes.

For the same kind of element, e.g., tetrahedral elements, one can have
linear shape functions with four nodes or quadratic shape functions with ten
nodes. This is visualized in figure 12, where e.g. the FourNodeTetrahedra class
defines 1st order tetrahedras and the TenNodeTetrahedra class defines 2nd
order tetrahedras. Both classes have their own shape functions and derivatives,
but share the same extrapolation matrix. The FEM solver only deals with the
parent class Shape, such that additional element shapes, e.g., Brick elements,
can be added with minimal code refactoring.

4.2.2 Finite Elements

The Element class is used to define the structure of the element, i.e., the nodes
that belong to it, as well as the physical side of the modelling, i.e., calculating the
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Shape

Vector integration_weights
Matrix integration_points
Matrix extrapolation_matrix

ShapeFunction()
ShapeDerivative()
ExtrapolateValue()

AN

Tetrahedra Brick
ExtrapolateValue() ExtrapolateValue()
FourNodeTetrahedra TenNodeTetrahedra
ShapeFunction() ShapeFunction()
ShapeDerivative() ShapeDerivative()

Figure 12: Class diagram of parent class Shape and child classes Tetrahedra
and Brick, with the child classes of Tetrahedra: FourNodeTetrahedra (1st
order elements) and TenNodeTetrahedra (2nd order elements)

local stiffness matrix, mass matrix, and load vector. These can differ e.g. when
using an isotropic or composite material. This class also has a Shape object to
define its shape as described above. The parent class Element contains functions
for the assembly phase, which can be overloaded by child classes:

e ComputelLocalStiffnessMatrix - computes the element-local stiffness
matrix K,

e ComputeLocalMassMatrix - computes the element-local mass matrix M,
e ComputeLocalRHS - computes the element-local load vector b,

A visualization is shown in figure 13, where two child classes IsotropicElement
and CompositeElement are implemented with assembly functions that overload
the parent class functions. With this design, alternative stiffness and mass
matrix, as well as load vector calculations can be easily introduced by imple-
menting a child class of Element. The algorithm for adding the element-local
matrix contributions to the global matrix is independent of the local matrix
calculation, as the assembly algorithm only requires the parent class Element.

4.2.3 System Assembly

The global stiffness matrix K, mass matrix M, and right-hand side b are
constructed by looping over all discrete elements and adding their local
contributions K., M., and b. to the global system. For a three dimensional
problem, the dimension of the global matrices is 3m x 3m and 3m for the
load vector, where m is the total number of FEM nodes. The size of the
local matrices is dependent on the choice of shape functions, i.e., the number
FEM nodes in each element. The local matrix and vector contributions are
computed using element-level functions as described in the previous section.
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Element

int element_ID
vector<int> node_IDs
Shape element_shape

ComputeLocalStiffnessMatrix()
ComputeLocalMassMatrix()
ComputeLocalRHS()

IsotropicElement CompositeElement

ComputeLocalStiffnessMatrix() ComputeLocalStiffnessMatrix()
ComputeLocalMassMatrix() ComputelocalMassMatrix()

Figure 13: Class diagram of parent class Element and child classes
IsotropicElement and CompositeElement

When the local contributions are added to the global system, the indices
of the contributions depend on the unique global index of the correspond-
ing FEM nodes. A visualization of the assembly procedure is shown in figure 14.

Assembly

for each element e:

K, < compute local stiffness matrix

b. < compute local RHS

add local contributions to global system(—Ki’ b;

Kiy1,bi1

K, b

Figure 14: Visualization of system assembly. The global system matrix K and
load vector b are made up of element-level local contributions.

Due to the sparse form of the resulting global matrices K, M and vector
b, SparseMatrix and SparseVector types of the Eigen [21] library are used.
To speed up the assembly, the sparsity pattern is computed before actually
computing the local element contributions. This is done by looping over all
elements once and storing the number of global indices of the local contributions
per row in a sparsity vector. The required size per row is then pre-allocated
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using the reserve(sparsity) function for Eigen’s sparse matrices, resulting in
an efficient system assembly.

4.2.4 Linear Stress Analysis

As discussed in section 3.2, the goal of differentiating the linear stress analysis
is to be able to compute the gradient

8Uma:r

5 € R3™ (82)

efficiently using AD. To allow a more straightforward differentiation using AD,
the stress analysis was logically divided into three major steps:

1. Assembly of K and b
2. Solution of linear system Ku = b
3. Calculation of maximum von Mises stress o q. ()

These steps are visualized in figure 15, where the node coordinates x are
considered as the input parameters to the chain of functions. One of the main
reasons for segregating the code into these three distinct steps is to enable
the specific handling of differentiating a linear solver (sec. 5.2) and reducing
the memory consumption of the assembly phase (sec. 5.4). Additionally,
segragating the linear solver in this manner allows one to select a suitable
iterative linear solver from different third party libraries. The three major
steps are handled by the Solver class, where the inputs and outputs of the
corresponding functions are clearly defined as in figure 15.

Linear Solver

Stress Evaluation

Omax

Figure 15: Outline and data flow of linear stress analysis algorithm

The implemented code of the three basic steps outlined above and shown in
figure 15 uses only the parent class Element, allowing an easy extension of the
code with different element types, as well as their implicit AD differentiation,
as discussed in section 5.6.
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4.2.5 Free Vibration Analysis

Analogously to the linear stress analysis implementation discussed in section
4.2.4, the free vibration analysis code is broken down into modular steps to ease
the application of AD. The two main steps are visualized in figure 16, where the
node coordinates x are considered the input variables and the eigenvalues A as
the output variables. Mainly, these steps are given as:

1. Assembly of K, M

2. ITterative solution of generalized eigenvalue problem (81)

K, M

Eigenvalue Solver

A

Figure 16: Outline and data flow of free vibration analysis algorithm

The first step, which is the assembly, is an extension of the same assembly
function called in the linear stress analysis, since the stiffness matrix K is
required for both analyses. A boolean flag withVibration is set to true
when the mass matrix M is required. This way, while the elements are being
looped over to compute the local stiffness matrix, the local mass matrix
(ComputeLocalMassMatrix) is correspondingly computed and directly added
into the global mass matrix.

For the second step, as was also done with the linear stress analysis, the
iterative solver of the generalized eigenvalue system is separated from the rest
of the code as it requires special treatment in differentiation, which is discussed
in section 5.3. The iterative solver used in this thesis is the generalized eigen-
value solver using the Krylov-Schur method provided by the SLEPc¢ library [25].

These steps are also handled by the Solver class, where a boolean flag
from the input file triggers the use of the vibration analysis. In this case, the
assembly also constructs the mass matrix M and calls the eigenvalue solver for
the vibration analysis in addition to the linear solver for the stress analysis.

4.2.6 Mesh Deformation

The CSM solver, especially the linear elastic solver (sec. 4.2.4), discussed in this
section mainly solves physical, structural problems. However, the same solver
can be reused to tackle the mesh morphing of the unstructured mesh during
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Solver

Solve()
SolveAdjoint()
SolveTangent()

MeshMorpher

Solve()
SolveAdjoint()
SolveTangent()

Figure 17: Class diagram of parent class Solver and child class MeshMorpher

the optimization by using a linear elastic analogy. A MeshMorpher class that
inherits from the Solver class is defined to deal with any deformation-specific
algorithms (fig. 17). These are mainly present in the tangent and adjoint version
of the morpher, where different inputs and outputs are used compared to the
adjoint linear stress analysis as described in section 5.5.1. The mesh deformation
method is discussed in more detail in section 3.4.3 and its role in the gradient
calculation is discussed in section 5.5.1.

von_mises
4. 1Be+067E Jetb

—3e+6

2e+6

E—]eﬂ&
O_

Figure 18: Rotating cantilever beam test case with von Mises stress oy s con-
tours and displacement u vectors
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4.3 Validation of FEM Solver

To validate the FEM solver implemented in this work, the well-known Calculiz
FEM solver [14, 12] is used as a reference. Two test cases are carried out:

1. A rotating beam test case consisting of a total of 90 FEM nodes (fig. 18)

2. A rotating axial fan blade test case consisting of a total of 11,382 FEM
nodes (fig. 19)

Both test cases use quadratic, ten-node tetrahedral elements. The cado FEM
solver can work with Calculiz input files, hence identical input files are used for
both FEM solvers in the following tests.

FATANAPAY:

Figure 19: Mesh of axial fan blade test case with displacement vectors
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4.3.1 Linear Stress Analysis Validation

To validate the linear stress solver, a static linear stress analysis was performed
for both the beam (fig. 18) and axial fan (fig. 19) test cases. The resulting
displacements w and von Mises stresses oy computed by both cado and
Calculiz were compared with each other. The results for the beam are shown
in figure 20 and the comparison of the resulting axial fan displacements and
von Mises stresses is shown in figure 21. Both test cases show an excellent
agreement between the two solvers.
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(a) Comparison of displacements [u| (b) Comparison of von Mises stress ov

Figure 20: Calculiz (black) and cado (gray) comparison using beam test case
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Figure 21: Calculiz (z-axis) and cado (y-axis) comparison using axial fan test
case

In figure 22a, a comparison of the maximum von Mises stress of the radial
turbine test case used in the MDO applications is shown (figure 47, chapter
6). Tested with various numbers of FEM nodes, figure 22b shows that the
relative error of cado’s structural solver remains less than 1% when compared
with the maximum von Mises stress calculated by Calculix. However, as is
also exhibited in figure 22a, there is a slight negative bias of the maximum
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von Mises stress calculated by cado when compared to Calculix. This may be
attributed to the use of different linear solver libraries which do not converge
to exactly the same tolerance.
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Figure 22: Calculiz and cado maximum von Mises stress comparisons

4.3.2 Free Vibration Analysis Validation

To validate the vibration solver implemented in cado, a free vibration analysis of
both beam and axial fan test cases is performed, where the 10 lowest eigenvalues
are to be computed. The resulting eigenvalues A\x computed by both cado and
Calculiz were compared and are also in good agreement with one another, as
shown in figure 23a for the beam test case and figure 23b for the axial fan test

case.
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Figure 23: Calculiz (black) and cado (gray) comparison of eigenvalues Ay
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5 Efficient and Maintainable Code
Differentiation

This section introduces the application of Algorithmic Differentiation, the core
method used in this thesis to differentiate the structural solver’s source code to
obtain the structural sensitivities required for the adjoint-based MDO frame-
work. The introduction of AD encompasses the two differentiation methods of
AD - tangent (forward) mode and adjoint (reverse) mode, as well as typical
gradient approximations used to assess their accuracy. Then the application of
AD on the structural solver is discussed, in particular the differentiation of the
stress and vibration analyses, as well as the CAD kernel and mesh generation,
i.e., deformation. Finally, the extensibility and maintainability of the differen-
tiated code is demonstrated by augmenting the primal code with new features
that are automatically differentiated due to polymorphism.

5.1 Algorithmic Differentiation

Algorithmic differentiation (AD), also known as automatic differentiation or
computational differentiation, is a source code augmentation method for com-
puting exact derivatives of coded algorithms [20]. One of the main ideas behind
AD is that every source code, no matter how complex, is ultimately a long list
of elementary unary or binary operations such as

w1 = T
wq = sin(wi)
w3 = Wi + Wa.

Yo

w3
This can be denoted as
w; = ¢j(Wig,s ey Wi, )ixj, £OT j=m,.n+np +m—1, (83)

where n denotes the number of independent inputs, n;,; the number of
intermediate variables, and m the number of resulting outputs. The subscript
i < j denotes that the previously computed n, variables w; precede the variable
w; in the source code, where ¢ is within the index set {0,1,2,...,5 — 1} and
¢; represents the elementary function that maps the variables w; to w;. For
unary operations n, = 1 and for binary operations n, = 2. This notation of
listing elementary operations is also known as single-assignment code (SAC),
where the value of a variable w; is assigned only once [49].

The basic task of AD can be summarized as interpreting a complex code
as SAC and performing the known differentiations of each basic operation ¢;.
This operation can either be performed manually by hand or by using AD tools
which can be found on the community website www.autodiff.org [8]. Note
that while this section discusses AD using SAC examples, the actual code does
not need to be written in SAC - this is handled by most AD tools automatically.

This section will introduce two short examples to illustrate the usage of
AD to compute first-order derivatives using the tangent, also called forward,
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mode and using the adjoint, also called reverse, mode. Afterwards, the two
common AD tool branches will be discussed - source code transformation and
operator overloading methods. Gradient approximation methods are also briefly
discussed, as these will be used to assess the accuracy of the AD implementation
in this thesis.

5.1.1 Tangent (Forward) Mode

For the computation of first-order derivatives, consider the following function
F, that takes an input x and outputs a variable y:

y="F(z), z,y eR (84)
The first-order derivative VF(x) is a linear mapping
i —VF-i, VF:R >R, (85)

where the dot notation & is used to represent a first-order derivative with respect
to an auxiliary variable s, such that

,7dx

&= (86)

With this definition, applying the chain rule of differentiation on (84) delivers

. dy dFdx )

This is also known as the tangent model of F(x). Setting s = = and thereby
& =1 seeds the tangent model to compute the derivative with respect to = as

j=VF(z)-1. (88)

Analogously, this procedure can be applied on an arbitrarily complex func-
tion F' by deriving the tangent model of the single-assignment code (83) of the

function F*: 06
;=D G (89)

i<J

While this can be coded manually by hand, it is a time-intensive and error-prone
procedure. AD tools algorithmically break down complex functions F' into
SAC and derive the tangent (also known as forward) model (89) by applying
the chain rule algorithmically.

This is a one-dimesional example with = € R, which can easily be extended
to higher dimensions of * € R" and y € R™, where the dot notation & now
represents a first-order partial derivative with respect to an auxiliary variable s

Ox
P = —. 90
T = (90)
The Jacobian now induces a linear mapping of
T —VF &, VF:R" - R™, (91)

42



where n would be, e.g., the number of design parameters and m would be the
number of objectives, which is often reduced to m = 1. This is a common setup
of an optimization problem, where n design parameters serve as inputs and a
single-dimensional objective function, e.g., ¥ € R, has to be minimized. In this
case, the tangent model takes the form

j=VF(z)- . (92)
Seeding the tangent model (92) with the unit vector
0

0
where the i-th entry is equal to 1, would compute the i-th derivative g—i. Thus,
to compute the entire gradient VF(x), n evaluations of the tangent model (92)
are required, each seeded with the respective unit vector to compute the i-th
derivative. To summarize, the gradient computation using the tangent model
requires a computational cost of the order O(n) - cost(F'), where n is number
of input variables and cost(F') is the computational cost of a single evaluation
of F. Note that cost(F') is not necessarily equal to cost(VF), but differs by a
small constant factor such that cost(VF) has a computational complexity of
O(1) - cost(F). Thus, the gradient calculation using the tangent model has a
complexity of O(n) - cost(F).

As a short example, this procedure is visualized in the directed acyclic graph
(DAG) in figure 24, where the simple calculation of a function

y = sin((z1 - x2)2) (94)

is considered. For the sake of brevity, the single assignments of the input vari-
ables to intermediate variables and intermediate variables to output variables
is omitted. The function takes two inputs, (z1, z2), and produces one output
y. In SAC, this algorithm can be broken down into three elementary arithmetic
operations

w1, = T1 -T2

Wo = w%
y = sin(wsz) (95)

and the corresponding intermediate variables wi, wy. A forward differentiated
version of this SAC essentially starts with the seeds 1,42 and is given as

w1:i1'$2+$1'i‘2
11')2:2’11)1"(1')1

¥ = cos(wy) - Wa.
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Figure 24: Directed Acyclic Graph of primal evaluation of y = sin((z; - 72)?)
(95). Node labels represent primal variables. Edge labels represent arithmetic
operations performed on the incoming data.

Seeding this procedure with #; = 1, Z43 = 0 would generate the gradient

Y = E%le while the seed ©; = 0, 2 = 1 produces the gradient y = %’2. The full

gradient z% thus requires two evaluations of the tangent model. This is also
visualized in figure 25, which shows that the inputs &1, @2 share the same path
to the output, thus one evaluation for each input is required. In some cases,
where inputs do not share the same computational path towards an output,
these values can both be seeded and the respective gradients can be computed
simultaneously.

5.1.2 Adjoint (Reverse) Mode

While the tangent model introduced in the previous section 5.1.1 enables the
algorithmic calculation of gradients, the cost is dependent on the number of
design parameters n. As a richer design space is explored and n increases, this
method directly suffers from an increasing computational cost, resulting in
prohibitively expensive gradient calculations. The adjoint method, which was
discussed in section 3.1.3, offers a remedy to this situation, where the gradients
can be evaluated at a computational cost proportional to the number of
outputs, i.e., the dimensionality of the objective function. This is typically far
less than the number of design parameters. Additionally, being able to compute
gradients at a cost independent of the number of design parameters enables
the exploration of richer design spaces to perform more complex optimizations.
This section gives a background on how AD tools derive the required adjoint
models.

The adjoint model of a function F' with input variable 2 and output y (84)
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X cos(ws)

Figure 25: Directed Acyclic Graph of tangent evaluation of y = sin((z1 - 72)?)
(95). Node labels represent tangent variables. Edge labels represent arithmetic
operations performed on the incoming data.

is given as

T=VF(z)" 7, (96)
where the bar notation T denotes adjoint variables. In contrast to the tan-
gent variables, the adjoints § and Z are defined as the partial derivatives of an
auxiliary variable s with respect to y or x:

0s

as

g=—, T=— 97
Y=oy " on o7)

Equivalently, for higher dimensions

dsT ds T

y=— ,T=— . 98

With the chain rule, this results in

a9s™  oy" os”

=20 =Y * —VF(z)" g (99)

ox %

Analogously to the tangent model, the adjoint model is seeded with § = 1 to
compute the gradient for the scalar case

ox

T=VF(z)" 1. (100)
For higher dimensions where € R"™, the adjoint model takes the form

VE(z)" -y, (101)

8
Il

whereby a single run with § = 1 would compute the entire gradient

z=VF(z)" 1. (102)
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AD tools interpret the function F' in the form of single-assignment code to
derive an adjoint model. In SAC representation, the adjoint model has the

following form:
W=y 09 4, (103)
8wi J

Jii<j

Note in (103) that the adjoint variable w; consists of a sum of gradients of
arithmetic operations ¢;, for all j that are preceded by ¢. This means that the
adjoint of the SAC code is essentially a reverse accumulation of gradients, which
is why this technique is often referred to as reverse mode AD. The reverse accu-
mulation of gradients through the example DAG (fig 24), is shown in figure 26.
The adjoint, or reverse, run of this order of operations, which is the application
of (103), is given as

0 W . cos(wy)
= — = w
2 Bws Y 2)Y
_ Ows
w1 :—-wg—le w2
8101
_ owy  _
1 — W1 =2 W1
8x1
Bwl
Tg=—— W1 =1 - W1. 104
2= B0, 1 Wi (104)
Seeding this series of operations with ¥ = 1 would result in the derivatives
0 0
F= L gy =L (105)

-, T2 = .
81517 8%2

Note that in the adjoint SAC (104), the intermediate variables w; and wsy are
required, which are first computed in a forward primal evaluation of (95).

To summarize, the evaluation of an adjoint model first requires an eval-
uation of the primal model, as well as certain intermediate variables. These
are commonly referred to as the forward and reverse runs of an adjoint gradi-
ent evaluation. Additionally, the intermediate variables are stored in memory,
which is referred to as the tape. A manually differentiated code requires extra
care from the user to manage this storage, while AD tools take care of the tape
automatically and, most likely, more efficiently. While this procedure works on
complex codes in a semi-automatic black-box fashion, the resulting code may
be inefficient. These issues are discussed further in sections 5.2, 5.3, and 5.4 for
the particular application in this thesis.

5.1.3 Source Code Transformation Methods

Source code transformation tools, such as the widely used Tapenade [24],
generate a new differentiated source code based on the primal source code
supplied by the user. The original source code is not modified, but rather a
new differentiated source code is generated, which can then be compiled and
executed to compute derivatives.

The advantage with this method is that the differentiated source code can
profit from compiler optimizations as any other piece of source code does, and
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Figure 26: Directed Acyclic Graph of adjoint evaluation of y = sin((z; - 72)?)
(104). Node labels represent adjoint variables. Edge labels represent arithmetic
operations performed on the incoming data.

it is applicable on the Fortran programming language, which is widely used in
scientific computing applications. Additionally, the differentiated code can be
scrutinized by an experienced user to double-check the differentiation and to
perform manual code optimizatons. However, any change in the primal code
requires an explicit re-differentiation to generate updated tangent or adjoint
codes.

5.1.4 Operator Overloading Methods

On the other side of the spectrum are operator overloading (OO) tools
such as ADOL-C [80], dco/c++ [35], and CoDiPack [56]. These tools
cater mostly to object-oriented languages such as C++. In this thesis, the
tool CoDiPack is utilized, which offers low tape memory consumption and
competitive tape evaluation performance due to the use of expression templates.

The OO AD tools are applied by using the AD tool-specific variable type,
e.g. codi::RealForward and codi: :RealReverse, instead of the double type.
The general idea is that the AD types contain the gradient information in
addition to the primal value, which can be set and retrieved using tool-specific
functions as shown in algorithm 1. Once an input variable is registered, the
execution of the program would store the required primal and gradient values of
intermediate variables in memory commonly referred to as the tape. Evaluating
the tape effectively performs the elementary adjoint operations, i.e., the reverse
run, to compute the derivative of the registered input variable. The advantage
of OO AD methods is that changes in the primal code are automatically
reflected in the differentiated code and an explicit re-differentiation is usually
not required.
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// AD-type variable z contains the primal and gradient
values

x.PrimalValue;

x.GradientValue;

// This would set PrimalValue = 5
r = 5;

// This would return PrimalValue
z.GetValue();

// This would set GradientValue = 1
z.SetGradient (1);

// This would return GradientValue
x.GetGradient ();

Algorithm 1: Basic data structure of AD type

For a basic usage example of forward AD with two inputs xz1 and z2,
see algorithm 2. Because we have two inputs, two evaluations have to be
peformed, one for each variable. The i-th input variable is seeded with
the fuction x_i.setGradient(1). After computing the output variable y,
calling the getGradient() function would return the gradient a%~ The
seed gradient is then reset to zero using a call to x_i.setGradient(0),
ensuring we have a clean unit vector for the next input variable ;. This is

repeated for each input variable until the entire graident % has been computed.

For the reverse AD counterpart, the corresponding pseudocode is given in
algorithm 3. The inputs are first registered using tape.registerInput (x)
and the tape is activated to start recording operations. The variable y is then
computed. Afterwards, the recording of the tape is stopped and the outputs are
registered. The adjoint model isaseeded with ¥ = 1 and the tape is evaluated,

Yy

computing both gradients %7 5.5 With a single evaluation. The gradients can

be read directly from the input variables using x_i.getGradient ().

This implementation is greatly simplified if the source code makes use of
a custom typedef for double types, e.g., typedef double REAL. Adjusting
the code to use different AD types, e.g., for forward or reverse differentiation,
is a matter of changing the declaration to typedef AD_TYPE REAL. For more
experienced users, some AD tools, such as CoDiPack, have different AD types
that offer trade-offs between memory consumption and runtime. For a more
in-depth tutorial on the usage of CoDiPack, the interested reader is referred to
the CoDiPack website www.scicomp.uni-k1.de/codi.
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for 7i=0; i<2; <++ do

// seed input variable 2; =1
r;.setGradient (1);

zl = 3;

x2 = 4;

// compute y
vl = bx2 + Txl;
v2 = vl - 22+ cos();

y = vl-Vv2;
Oy

// returns gradient g’

% = y.getGradient ();

// seed is reset to zero to prepare for next loop
iteration

x;.setGradient (0);

end

Algorithm 2: Basic usage of operator-overloading forward AD

// register xl, 2 as inputs and start recording tape
tape.registerInput(zl);

tape.registerInput (z2);

tape.setActive();

zl = 3;

x2 = 4;

// evaluate function
vl = bx2 + Txl;
v2 = vl - 22 4 cos(2);

xl
y =vl-Vv2;

// stop recording tape and register outputs
tape.setPassive();
tape.registerOutput (y);

// seed adjoint model and evaluate tape (run adjoint model)
y.setGradient (1);
tape.evaluate();

dy Oy

// get gradients %, 5.5

% = rl.getGradient ();
5.5 = r2.getGradient ();

Algorithm 3: Basic usage of operator-overloading reverse AD
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5.1.5 Finite Differences & Complex Step Method

To assess the accuracy of gradients computed by an AD-differentiated code,
alternative gradient approximation methods are used as a comparison. These
are typically the finite difference (FD) and complex step methods, which are
briefly introduced in this section.

The finite difference approximation can be easily applied on code in a black-
box fashion or on software that does not offer any source code access at all. It
is the least intrusive, but also least accurate, method for approximating deriva-
tives. The approximation error can be derived from the Taylor series expansion
[11]. First-order gradient approximations, also called forward difference, are

thus given as
of fl@+A)—f(z)
or A

where A is the step size, and second order approximations, also known as central

difference, as
of f@+d)—f@-A)
or A

+0(4), (106)

+0(A%). (107)

Note that for second-order accurate gradient approximations, two function
evaluations per input are required. The truncation error is dependent on
the step size A, which is theoretically minimized as the step size decreases.
However, due to computer round-off errors, and cancellation errors when
applying the differencing operator on numbers that are nearly the same, the
condition error of the FD method increases as the step size decreases [27].

Another method used for computing derivatives is the complezx step method
[42, 36], which is similar to forward AD mode. It boils down to the gradient
approximation

of _Im[f (x+iA)]

ox A ’
which, as opposed to finite differences, is independent of a differencing operator.
As a result, this eliminates the cancellation errors which plague the finite
differences method when selecting a step size A. The approximation error is
of the order O(A?) and the step size A can be set to extremely small values
without any adverse effects [42]. To implement the complex step method, a
typedef approach can also be used by using a complex type and evaluating
the derivative according to (108) after performing a forward evaluation
with the complex types. While this method is more accurate and efficient
than finite differences, its overall cost is still dependent on the number of inputs.

(108)

5.2 Differentiating a Structural Sress Solver with AD

For structural stress constraints, the main quantity of interest is the maxi-
mum von Mises stress 0,4, € R, which is typically required to be under a
given threshold value 0,4, such that 0,40 < 0req. To include the structural
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constraints within an adjoint-based MDO framework, the gradient % is re-

quired, as shown in
00maz _ O0maz 0T

da oz da (109)
oz

The second term g7 is supplied by the differentiated mesh deformation as
discussed in section 3.4.3. In this section, the computation of the first term,

9% max

Znaz s discussed.

The maximum von Mises stress 0,4 can be computed from the displace-
ments u that result from a linear elastic problem (sec. 4.1.1). The finite element
formulation [12] of the linear elastic equations is given as

Ku + Mii = b, (110)

where @ = 0 for a static linear stress analysis. This reduces the static linear
stress analysis to a linear system of the form

K(x)u = b(x), (111)

where K € R3™%3™ represents the stiffness matrix and b € R3™ represents the
load vector. This system can be solved for u using an iterative linear solver
provided by, e.g., the Eigen [21] or PETSc [5] library.

T T

K I b K T{ b
[linear solver} [linear solver}
! !

l |

cost function cost function

Omazx Omax

Figure 27: Flowchart of linear stress analysis with inputs and outputs.
Left: Primal problem. Right: Adjoint problem

In terms of active inputs and outputs, the mesh coordinates x serve as inputs
to the linear system (111), which outputs w (fig. 27). This is then passed on
as an input to the stress calculation to finally output the maximum von Mises
stress omqe- The inverse holds for the adjoint problem, where the seed &4, = 1
serves as the input and the final output is

e R3™, (112)
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Figure 28: maximum von Mises stress sensitivities computed using reverse

AD, forward AD, and FD

While a black-box AD differentiation of the assembly and stress calculation
functions can be completed without a problem, differentiating through an it-
erative linear solver is generally not recommended. Not only would taping the
iterative solver result in a high memory consumption, but the reverse run would
use the same amount of iterations and the same Krylov basis vectors used by
the primal solver. This could result in unconverged derivatives in the reversed
iterative solver, which would propagate through the rest of the reverse run, re-
sulting in inaccurate derivatives. To circumvent this problem, the adjoint of a
linear system is typically reformulated into the well-known form [66] of

B = KﬁT'lTL, K@j = —Ujl;i. (113)

Thanks to the self-adjoint properties of the matrix K for linear elastic problems,
this system can be further simplified to

KB = ﬂ, Ki,j = —’U/jBi, (114)

allowing one to recycle the same system matrix K as in the primal problem to
solve the linear system for b once @ has been computed from the reverse run of
the stress calculation. K can then be directly evaluated. Finally, b and K can
be used to seed the reverse assembly run to compute &.

5.2.1 Gradient Comparison and Computational Cost

To assess the accuracy of the gradients calculated via the adjoint linear stress
analysis, a cantilever beam test case with 90 degrees of freedom was used
(figure 18). The sensitivities 99maz computed using reversed AD, forward AD,
and finite differences (FD) were compared (figure 28). The comparison shows
a good agreement among the computed gradients.

For the computational cost comparison, an axial fan blade test case with ap-
proximately 200,000 degrees of freedom was used (figure 19). The linear systems
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Primal Gradient Evaluation Ratio

P GE GE/P
Peak Memory [GB] | 0.85 24.55 28.88
Wall-clock time [s] | 341.37 1296.09 3.79

Table 1: Memory and wall-clock run time comparison between primal linear

stress analysis and a full gradient evaluation of 8”8";1' using a forward and

reverse run

are solved in parallel with 8 cores using Eigen’s conjugate gradient solver, while
the rest of the code is serial. In table 1, the performance results of an adjoint
linear stress analysis are summarized. In the first column, the primal code has
a wall-clock run time of approximately 5 minutes and 40 seconds and a peak
memory consumption of 0.85 GB. For the gradient computation, a forward and
reverse run is required, which amounts to two linear system solves. Compared
to a primal run, a full gradient evaluation requires approximately 3.79 - time(P)
wall-clock time and a peak memory of approximately 28.88-memory(P). While
the wall-clock time is within a competitive range, the memory consumption ra-
tio is still relatively high and potentially infeasible for larger problems. The
reduction of this memory consumption is detailed in section 5.4.

5.3 Differentiating a Structural Vibration Solver with AD

Besides structural stress constraints, vibration constraints are essential in
turbomachinery design. In this section, the differentiation of a structural
vibration solver using AD is introduced, which enables the calculation of
gradients pertaining to vibration constraints.

A free vibration analysis departs from the linear elastic equations in unloaded
form:
Ku+ Mu = 0. (115)

Using a proposed solution of '
u = upert, (116)

a generalized eigenvalue problem of the form
Kuy, = wiMuy, (117)

is obtained. Let A\ € R define the k-th eigenvalue with Ay := w,% and uy € R3™
define the k-th eigenvector. Reformulated, the system can be written as

(K () — MM () g = 0, (118)

where the same stiffness matrix K from the linear stress analysis (111) can be
recycled. An additional matrix, the mass matrix M € R3™*3™  needs to be
computed prior to solving this system. Note that both matrices K and M are
symmetric, such that

K=K" M=MT, (119)

and the eigenvectors are mass-normalized by

ui Muy, = 1. (120)
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Figure 29: Flowchart of vibration analysis with inputs and outputs. Left: Pri-
mal problem. Right: Adjoint problem

The system (118) can be solved using an iterative generalized eigenvalue solver
provided by, e.g., the SLEPc library [25]. Analogously to the linear stress anal-
ysis, the vibration analysis can be visualized in terms of inputs and outputs
(figure 29), with the gradient of interest being the eigenvalue sensitivities with
respect to the mesh nodes

O 3m
5o SR (121)

The assembly phase can be AD differentiated in a black-box manner, but the
iterative eigenvalue solver has to be treated separately. The tangent model of
the vibration analysis will be introduced next, as this will be used to derive the
adjoint model.

5.3.1 Tangent Model

To derive the tangent model of the vibration analysis, one begins by differenti-
ating (118) by a;:

0 (K — )\kM) Ouy,

oz, ug + (K — )\kM) D, =0 (122)
oK 8>\k oM 8uk

—up — — Mup — A\p—— K — ) \eM = 12

8.1‘1' Yk axi Uk k 83:1- Uk + ( k ) 8$i 0 ( 3)
This is followed by a left multiplication by w}
oK a)\k oM 8uk

T2 gy — ul 228 My, — ul )\ —— (K — MM = 124
uj, 6xiuk uj, oz, Up — Uj, Ak oz, u + ug, ( A M) oz, 0 (124)

Due to the definition of the eigenvalue problem (118) and the symmetry of
matrices K and M (119), it follows that

(K = NcM)u, =0
(K — ANeM)ug]" =07
uf (KT =NM") =0
ui (K —\M) = 0. (125)
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With this, as well as the mass normalization (120), the system can be further
simplified to

oK Ok oM uy
uf B, uy — oz, up Muy, —quk—axi up +ujp (K — A\ M) oz, 0 (126)
-1 0
0K ) OM
TY"* _ 7]{: _ T _
uj, o U Bz, AU, e up =0. (127)

Finally, this is rearranged to yield

O 7 oK oM
81‘1' = Uy (8.73L >\k axi ) Uk (128)
}\k = ug (K — )\kM) ug (129)

as the tangent model of (118). Given the right-hand side of (129) has been

computed, this can be used to evaluate the sensitivities %.

5.3.2 Adjoint Model

For generalized eigenvalue problems, previous work done by Lee [34] provides
an adjoint formulation constructed using an augmented response function. The
method leads to solving a linear system for the adjoint variables which are then
used as inputs to a differentiated response function to compute the eigenvalue
sensitivities (121). However, this formulation requires the gradients of the mass
and stiffness matrices %—ZI, %—5, which may not be readily available. Dhondt et
al. [13] used a symbolic approach to derive the adjoint model of the generalized
eigenvalue problem, but used a perturbation approach to compute the mass
and stiffness matrix gradients, which led to numerically unstable results.

In contrast, the method outlined in this thesis focuses on an adjoint
formulation based on algorithmic differentiation, where the mass and stiffness
matrix sensitivities are not required beforehand. Analogously to the iterative
linear solver in the adjoint stress analysis, the iterative generalized eigenvalue
solver of the vibration analysis has to be treated explicitly. For linear solvers,
the differentiation technique is well understood [66], but has not yet been
thoroughly explored for generalized eigenvalue solvers. The differentiation
method is explained in this section.

The adjoint model for the vibration analysis can be viewed as

aAkTX

67 ks (130)

T =
where \;, = 1 is seeded to compute the gradients of the k-th eigenvalue. Looking
at the adjoint implementation in figure 29, the adjoint problem involves an
adjoint generalized eigenvalue solver. To avoid the problematic black-box
differentiation of an iterative eigenvalue solver, an adjoint model is derived to
compute K, M, which are then passed on as inputs to the AD-differentiated
assembly function.
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Consider the generalized eigenvalue solver as a function

)\k:)\k(KaM)7

(131)

which takes the matrices K and M as inputs and outputs the eigenvalue \g.

The adjoint of Kj;; is defined as

_ 0s
R = r,
¥
SO
9 0N, 0K
_ O\
Kii = M\, .
J OK,j

Ok

(132)

To derive an equation for oK, One starts by differentiating the eigenvalue

problem (118) by Kj;:

0
K-\ M =0
e [( kM) uy]
oK Ok oM Ouy,
— M — M —— K- \M)———=
0K, 0Ky koK, | W M) 5
——
=0
oK 6)\;.3 8uk
— M K —\eM =
(amj 9K ; ) un + (K = AM) 5
Left multiplying by u” and using the relation (125) leads to
oK Oy Ouy,

T — M T(K — MM =
b (aKij 0K, )“’”“k (K= Xe) e =0
0K Ok Ouy,

T _ T (g0 _
o (g, ~ g, M) e + U Xe) e <o

0K O\
T . k _
uy (aKij 8KZ~M) ur =0

Finally, the mass normalization (120) and the fact that % =

entry matriz, is used to further simplify to

K
uf(a MM)ukzo

0Ki; 0Ky
0K Ok
ui oK, " 0K, M_ 0
\,—/ =1
=J,;
O
Uk, iUk, — 5‘7 =0
ij
o\
L Uk, iUk, 5
oK, MTh
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The result of (133) is then plugged into (132) to give the adjoint of the stiffness
matrix B -
Kij = Aug,iug,j. (134)

This results in a computational cost of one outer product to compute the entire
matrix:

K =\ [ur ® ug) (135)

The result (134) is now used to derive the adjoint of the mass matrix M.
It is known that the following dot product relationship [20, 49] between the
tangent and adjoint models holds:

<R;K>+<MJW>:<&H&> (136)
The tangent model (129) is plugged into (136), leading to
<R;K>+<MJW>:<u£(K—Auw)uhXQ (137)
(KK )+ (31,00 ) = (wl Kug, M)+ (= wud Mg, Ay ) (138)
This can also be expressed in index notation as

Z Kijf_(ij + Z MijMij = S\k Z Kijukﬂ-uk’j — j\k/\k Z Mijumuk,j. (139)
(2] .3 4,3

0]

Plugging in the adjoint stiffness matrix (134) and simplifying leads to

N Z Kijuk,iuk,j + Z MijMij = Ak Z Kijuk,iuk,j — XAk Z Mz‘juk,iuk,j

1,7 1,7 1,9 7,9
Z M;jMij = =My Z M jug sy
©,J 4,7
Vjj = —Ae Ak, iUk, j
M;j = =\ Aug iuk

=Ky

which gives the adjoint mass matrix as a function of the adjoint stiffness matrix
and the k-th eigenvalue

M;j = =\ K
M= MK, (140)

Once the eigenvalue \; and eigenvector uy have been computed, the adjoint
stiffness matrix can be directly evaluated via equation (134) and a chosen seed
\i. Afterwards, the adjoint mass matrix can be directly computed using equa-
tion (140). The adjoint matrices K, M can now be plugged into the reverse run
of the AD—differentiateéi)\ assembly function (figure 29) to finally arrive at the

k

required gradient & = 5k .
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Figure 30: Comparison of eigenvalue gradients \%| of a rotating cantilever
beam computed using finite differences, forward AD, and reverse AD for k =
0,1,2,3

5.3.3 Gradient Comparison and Computational Cost

To assess the accuracy of the adjoint vibration analysis, the eigenvalue gradients
% of four modes are compared with the gradients computed using finite
differences and forward AD (figure 30) using a rotating cantilever beam test
case (figure 18). The figure shows an excellent agreement among the computed

sensitivities.

The computational performance of the gradient evaluation (GE) using
the adjoint is assessed by comparing the wall-clock time required versus
the wall-clock time of a primal vibration analysis. Additionally, the peak
memory consumption is considered, as this can often be relatively high for
AD-differentiated codes. For the performance comparison, an axial fan blade
test case (figure 31) is used with apprixmately 200,000 degrees of freedom
and 10 eigenvalues are evaluated, such that A € R and the entire gradient

% € R10%3m g evaluated.

The axial fan blade test case is used for the computational performance
measurements (figure 19). The results are summed up in table 2, where one
can see that a full gradient evaluation for this test case uses up to 12.41 times
as much memory as the primal vibration analysis does. The wall clock time for
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Figure 31: Eigenvalue sensitivities % of an axial fan blade
Primal Gradient Evaluation Ratio
P GE GE/P
Peak memory [GB] 2.04 25.31 12.41
Wall-clock time [min] | 156.28 171.25 1.09

Table 2: Peak memory and wall-clock run time comparison between primal
vibration analysis and a full gradient evaluation of 22 € R9*3™ using a forward
and reverse run, including adjoint stress analysis of an axial fan blade.

computing the entire gradient for all 10 eigenvalues is only 1.09 times as long as a
primal vibration analysis. This is due to the fact that adjoint vibration analysis
described in section 5.3.2 does not involve any additonal linear or eigenvalue
problems to solve, only a direct evaluation of the adjoint mass and stiffness
matrices M, K.

5.4 Reducing Assembly Memory Consumption Using
Checkpointing

The assembly of the matrices K and M used in the linear stress and vibration
analyses can be easily differentiated in a black-box fashion using AD. While
the computed gradients are accurate and can be used for an optimization,
the memory consumption can become considerably high for problems with a
greater mesh node count. This is because the dimension of the matrices K and
M is proportional to the number of mesh nodes m. Additionally, the matrices
are assembled by looping over each element and computing local stiffness K;
and mass M; matrices, which are then added into the global matrices K and
M at each iteration (algorithm 4), by converting the local (element-wise)
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node indices to global node indices. A black-box differentiaton of this algo-
rithm will cause the tape to grow proportional to the number of elements. To
rectify this problem, a technique commonly known as checkpointing [20] is used.

Input : mesh coordinates x
Output: stiffness matrix K, mass matrix M

// Initialize global matrices to zero
K.SetZero();
M .SetZero();

foreach element [ do

// Compute local matrices

K; = ComputeLocalStiffnessMatrix(l,z);
M; = ComputeLocalMassMatrix(l,z);

// Add local matrices to global matrix
AddLocalContribution(K;,K);
AddLocalContribution(M;,M);

end

Algorithm 4: Pseudocode of assembly phase

T x
Avbl Assembly
; Assembly ; Checkpointed

K, b K, b
IR T S
i Linear Solver ! i Linear Solver!
_________ R
u U
|Stress Evaluation| | Stress Evaluation]
Omazx Omaz = 1

Figure 32: Flow chart of forward (left) and reverse (right) run of linear stress
analysis using checkpointing in the assembly phase. Boxes with dashed lines
represent that no taping is required.

The general idea behind checkpointing is to cut a section of code out of the
taping procedure to save memory and to re-evaluate this portion of code during
the reverse accumulation. The inputs necessary to perform the re-evaluation
are typically stored in memory. The trade-off here is tape memory reduction in
exchange for an increase in run-time due to the required re-evaluation. Because
the assembly phase is computationally cheap compared to the linear system
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Input : A M

Output:

foreach element | do

// Start taping, store position
start = tape.GetPosition();
tape.SetActive();
tape.RegisterInput(x);

// Compute local matrices
A; = ComputelLocalStiffnessMatrix(l,x);
M; = ComputeLocalMassMatrix(l,x);

// Add local matrices to global matrix
AddLocalContribution(A4;,A);
AddLocalContribution (M;,M);

// Register new matrix contributions as outputs and
evaluate tape

end = tape.GetPosition();

tape.SetPassive();

tape.RegisterOutput (A;,M;);

tape.Evaluate (start,end);

// Add local adjoint contributions
x; = tape.GetGradient();
T +=x;
end
Algorithm 5: Pseudocode of element-level taping and evaluation during
the reverse run of the assembly phase.

solve, the cost of re-running the assembly in exchange for the memory savings
is warranted. Additionally, the inputs for the assembly routine do not need to
be explicitly stored for the re-evaluation, as these do not change during the
forward run.

The objective is to accumulate the adjoint contribution ®; of each loop
in algorithm 4 directly into the global & element-wise. This is achieved by
taping only the element-level code and performing local reverse runs for each
element to obtain Z; (algorithm 5), as opposed to taping the entire loop and
performing a single reverse run to compute & directly. As a result, in the
forward run the assembly routine does not need to be taped (fig. 32). However,
in the reverse run, a forward run of the assembly is repeated with the tape
storage and evaluation limited to the element-level assembly routines (fig.
33). At this point in time the adjoint stiffness and mass matrices K, M have
already been computed according to the methods described in sections 5.2
and 5.3.2, which are required to seed the local reverse runs of the assembly phase.

Registering the entire matrix K, M and vector b as inputs for the local
assembly would generate unnecessary memory and runtime overhead. Thus, a
mapping of used matrix indices for each element

indicesMap[element_index] = vector(K_row_indices,K_ column indices)
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Figure 33: Flowchart of Assembly Checkpointed function. Element-local for-
ward runs of the assembly are taped and directly evaluated. The gradients are
then accumulated into & at each iteration.

14

element [

matrix K

Figure 34: Illustrative example of index mapping of element [ to indices within
matrix K

is used to register the required matrix elements at each iteration (illustrated in
figure 34) - analogously for vector indices. These indices are tracked and stored
during the forward assembly phase. During the reverse run, at each element
iteration, only the mapped matrix and vector indices are registered as inputs
using tape.registerInput(). After the tape evaluation of each element-local

assembly contribution, the gradients are accumulated into &, such that the

entire gradient & = 8"3’"” has been computed after the reverse assembly phase.

x

62



251

20 A

peak memory consumption [GB]

0

back-box
—¢ checkpointing

wall-clock run time [s]

~

o

S
!

back-box
—>¢— checkpointing

@
1<)
S

%

=}

S
!

.

o

S
.

w

1<

S
!

o

o

S
.

-

=3

S
.

0

0 20000 40000

60000 80000 100000 120000

number of nodes

(a) Peak memory consumption [GB]

0 20000 40000

80000 100000 120000

number of nodes

(b) Wall-clock run time [s]

Figure 35: Performance comparison between a black-box differentiation and a
checkpointed differentiation of the matrix assembly

FEM Nodes | Black-box [GB] | With Checkpointing [GB] | Primal [GB]
5990 241 0.55 0.33
27097 11.94 2.68 0.98
55131 25.07 5.6 2.03
87527 Killed 9.02 3.23
124201 Killed 12.9 4.68

Table 3: Comparison of Peak Memory Consumption [GB] of Adjoint Linear
Stress Analysis Using a Black-box Differentiated Assembly vs Using Check-
pointing vs Primal Run

As a result, the size of the tape for the assembly is dependent on the number
of operations performed per element, rather than dependent on the number
of elements. Ultimately, this results in a drastic total memory reduction of
approximately 77% (table 3) in exchange for an acceptable run-time cost
increase of approximately 27% (table 4). Looking at the additional memory
generated by the adjoint code with respect to the primal code, this has reduced
by approximately 84%. The performance tests were made using a radial turbine
test case.

A comparison of the peak memory consumption and wall-clock run time as a
function of the number of elements is shown in figure 35. For the peak memory

FEM Nodes | Black-box [mm:ss] | With Checkpointing [mm:ss]
5990 0:13.58 0:14.53

27097 1:17.61 1:28.73

55131 3:01.37 3:51.5

87527 Killed 7:27.58

124201 Killed 11:18.70

Table 4: Comparison of Wall-clock Runtime [mm:ss] of Adjoint Linear Stress
Analysis Using a Black-box Differentiated Assembly vs Using Checkpointing
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Primal Gradient Evaluation Ratio

P GE GE/P
Peak Memory [GB] | 4.68 12.9 2.76
Run-time [s] 215.97 678.7 3.14

Table 5: Performance comparisons between primal run and forward + reverse
run of a radial turbine test case with 124,201 nodes

consumption, the black-box measurements show a much stronger dependence
on the number of elements compared to the memory consumption when using
checkpointing for the assembly (figure 35a). On the other hand, the trade-off
is apparent in figure 35b, where a longer run time was measured when using
the checkpointing technique. For meshes with more than 80,000 nodes, the
simulations of the black-box differentiated adjoint were killed by the operating
system due to the excessive memory usage. Ultimately, this leaves us with a
run-time ratio of 3.14 - time(P) and peak memory ratio of 2.76 - memory(P) for
a full gradient evaluation compared to a single primal run (table 5) when using
the largest test case of 124,201 nodes.

5.5 Differentiating from CAD Kernel to Mesh with AD

The adjoint models of the CFD solver (section 3.5) and the CSM solver (sections
5.2, 5.3.2), are used to compute gradients with respect to the computational
mesh ( Bw?iid’ Bwas;]m ). However, the gradients of the computational mesh with
respect to the CAD parameters are also required for both the structural and
fluid meshes in order to compute the gradients required by the optimizer:

A Oz 0J 0xgo1ia  O0J
Ja o 15/6" Bxflm-d 156" 8wsalid

(141)

This section discusses the use of forward AD to compute the fluid and solid
S tbiag 9% fluid O solid ;
mesh sensitivities —5-== and “%2ld | respectively.

5.5.1 Solid Mesh Sensitivities

For the solid side, the mesh deformation method described in section 3.4.3 is
used, which boils down to three steps:

1. morph edge nodes
2. morph face nodes
3. morph inner nodes

This essentially boils down to a dependency of

Lsolid = Lsolid (wface (wedge» y (142)

where the first two steps are used to compute the outer mesh nodes, T 4ce and
Tedge, and the last step computes the remaining mesh nodes x;0;4 using the
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Figure 36: Linking structural gradients to CAD. The left-hand side shows the
forward-differentiation of the CAD-based mesh deform up to the outer mesh
nodes 89;,"7;:6_ The right-hand side shows the reverse-differentiated inner mesh
deformation based on the linear elastic analogy. Seeding the adjoint mesh de-
formation with the previously computed structural gradients 09 maz propagates

0% soli
these gradients through to the CAD parameters. e

linear elastic mesh deformation. This results in a chain rule of the form

aUrnaz o 8Un’ba:v a:Esolid
Oa 0Zsolid O
aU—Tnam o 8O—maz 8Ccsolid a-’Bface 8medge

7

Oa B a:Esolid aa—“’face a:L'edge Oa

reverse AD forward AD

whereby the first two terms are computed using the adjoint linear solver and
the last two terms are computed using a black-box forward AD differentiation
of the CAD-based mesh deformation code. This procedure is also illustrated in
figure 36.

For the adjoint linear solver terms, one must take care that the inputs and
outputs are properly defined. The adjoint linear stress analysis defines x4
as inputs and 0,4, as the output, while the mesh deformation defines @ f4cc as
the inputs and x.;;4 as the outputs. For the adjoint linear stress solver, it is
clear that ,,,, = 1 and a single run is required. The adjoint mesh deformation,
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Figure 37: Total runtime breakdown for components of gradient evaluation
9 mazx — O0max OFsolid 8mface
Ja 0T solid OTface Ot

however, has a high dimensional &.;;4 seed input

_ _ 8wsolid ’ _
L face = W Tsolid- (143)

As discussed in section 5.1.2, the computational cost of computing a gradient via
reverse AD is proportional to the number of outputs, i.e., in this case the dimen-

sion of @ ,,;q. However, because the gradient product O9maz OTsolid hag to be
O so1id 6wface
o)

"ma_zd, the adjoint mesh deformation

calculated, rather than just the gradient 52 :

can be seeded with

Tsolid = (144)
as an input, which would then directly compute the Jacobian-vector product
%% with a single evaluation.

As a test case, a radial turbine geometry (figure 47) based on 24 CAD
parameters o was used. The first two steps of the mesh deformation are
differentiated using forward AD and can be evaluated efficiently, costing
approximately 9 seconds per CAD parameter. Furthermore, the forward AD
evaluations can also be parallelized. With 24 CAD parameters and 8 CPU
cores for parallelizations, time measurements have shown a runtime of 34.8
seconds for computing the gradients of the first two steps and approximately
47.8 seconds for the last step, the linear elastic deformation. Compared to
the calculation of the stress gradients using the adjoint CSM solver, the
mesh gradient calculation is significantly faster. A breakdown of the gradient
calculation steps on the solid side is shown in figure 37.
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Figure 38: Accuracy comparison of gradient
ange) and forward AD (blue) differentiation

5.5.2 Fluid Mesh Sensitivities

The fluid mesh sensitivities % were originally calculated using the complex

step method. In this work, the complex step differentiation was replaced by
a forward AD differentiation with CoDiPack, which encompasses the CAD
kernel and structured fluid mesh generation. This is achieved by replacing the
complex type by the forward AD type codi::Real Forward and extracting
the sensitivities from each mesh node using the getGradient () function.

To assess the accuracy and performance of the forward AD differentiated
CAD kernel and fluid mesh generation, a comparison is made with a complex
step differentiation (section 5.1.5). As a test case, the CAD-based fluid mesh
generation of a radial turbine was used, using 24 CAD parameters a and
approximately 750,000 fluid mesh points.

To compare the accuracy, the gradient of the total-to-static efficiency nrg
with respect to the CAD parameters « is computed, whereby the full gradient

is calculated via
Inrs _ Onrs Oz

daa Oz Oa’

The first component nga;s is provided by the adjoint CFD solver, while the

second term g—z is provided by the forward differentiated CAD kernel and mesh
generation.

(145)

For both the complex step and forward AD methods, this requires one evalu-
ation per CAD parameter, i.e., 24 evaluations. The accuracy comparison (figure
38) shows a good agreement between the calculated gradients and both meth-
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Figure 39: Performance comparison for the forward differentiation of the CAD
kernel and fluid mesh generation between complex step (orange) and forward
AD (blue) differentiation

| Wall-clock time [min] | Peak working memory [MB]
complex step | 7.23 205.34
forward AD | 5.96 205.1

Table 6: Performance comparison between a single forward AD evaluation and
a single complex step evaluation of the fluid CAD-based mesh generation
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e
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Figure 40: Total runtime breakdown for components of gradient evaluation
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ods use approximately the same amount of peak working memory (figure 39b,
table 6). The run time comparison for a single evaluation is shown in figure 39a,
where a performance advantage using forward AD is evident. A single forward
AD evaluation was measured to be 17.57% faster than a complex step differen-
tiation. A full gradient calculation of g—z requires 24 evaluations. However, this
can be easily parallelized, allowing an efficient gradient calculation. A runtime
component breakdown is shown in %gure 40, which shows that the parallel (8
€T

cores) forward AD evaluations for §2 take up 39% of the total aerdoynamic

gradient evaluation time. The remaining 61% of runtime are dedicated to the

. - . . on
primal and adjoint CFD evaluations to compute the gradient =5Z=.

5.6 Reusability of Differentiated Framework - Design
Space Extension

One of the main advantages of using the adjoint method for gradient com-
putations is its cost independence of the design space. Not only does this
allow one to use a rich design space for shape optimization, but it enables the
extension of the design space to other possible design variables that not only
influence the shape. Additionally, with an operator-overloading AD approach,
an object oriented framework can be used to easily introduce primal code
contributions without any additional AD implementations. In this section, the
idea of extending the design variables from shape variables to include material
variables with minimal code changes is introduced.

In previous sections, the gradients of quantities of interest such as the
maximum von Mises stress o4, or the eigenvalues A\ were computed with
respect to the unstructured mesh nodes . These mesh sensitivities would then
be multiplied with the CAD kernel sensitivities g—z to compute gradients with
respect to CAD parameters «, enabling a CAD-based shape optimization. It
seems like it is the default behavior of the adjoint CSM solver to compute
gradients with respect to the mesh nodes @, but actually the mesh nodes
are registered as inputs using the AD tool. This is done by calling the
register_input(x) function of CoDiPack, whereby x is an input variable
(algorithm 5). In order to compute gradients with respect to additional input
variables, one would need to register additional input variables in the same
manner.

Inputs

Isotropic T
Assembly Iterative Solvers ——>

Composite z,3

Figure 41: Isotropic elements are dependent on the shape x. Composite ele-
ments are dependent on both the shape & and the material properties 3.

For instance, to introduce material design parameters 3, the design space
could be extended as (« B)T. The parameters 3 could, e.g., describe the lami-
nation parameters that are used in the definition of composite materials [6, 22].
To include the computation of gradients with respect to 3, the additional
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IsotropicElement e CompositeElement e

£r a:a/B

Assembly Assembly
for e in elements: for e in elements:
e.localStiffness e.localStiffness
e.localMass e.localMass
addContribution addContribution
K,M K,M

Figure 42: Use of polymorphism in assembly function. IsotropicElement (red)
and CompositeElement (blue) both inherent from Element class. Using the
CompositeElement class instead of the IsotropicElement class results in dif-
ferent local matrix calculations. Composite elements result in an additional

input 3.

variables simply need to be registered as inputs using the register_input (x)
function, resulting in gradients with respect to  and 3 when using the adjoint
CSM solver (figure 41).

Additionally, for composite material applications, the stiffness matrix K is
computed differently and is dependent on both the mesh nodes « and material
parameters (3, such that K (x, 3). Because the assembly function has previously
been differentiated and CoDiPack is an operator-overloading tool, no additional
AD code has to be implemented to handle the composite material stiffness
matrix. This is achieved by implementing composite material capabilities using
an object-oriented design approach. The algorithm flowcharts as shown in
figures 32 and 33 remain the same.

In algorithms 4 and 5, the ComputeLocalStiffnessMatrix(1l,x) and
ComputeLocalMassMatrix(1l,x) functions are called on an element-level basis,
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Figure 44: composite flat plate free vibration test case with perturbations of
the fourth eigenmode

i.e., these local stiffness and mass matrix functions are members of the element
class. A child class CompositeElement (fig. 13) is implemented with its
own ComputelLocalStiffnessMatrix(x) function specifically for composite
material applications. As a result, the AD tool will automatically differentiate
through the local stiffness matrix computation implemented for composite
materials as shown in figure 42.

To assess the accuracy of this approach, the gradients computed using AD
and FD are compared in figure 43 using a flat-plate free vibration test case (fig.
44). The results show a positive agreement between the AD computed (both
in forward and reverse AD) gradients and the gradients computed using FD.
The gradients with respect to material properties B could potentially be used
to perform material optimizations simultaneously with shape optimizations.

Using an object-oriented design approach to structure an AD-differentiated
framework promotes code reusability and maintainability. The core functions,
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such as the assembly, iterative solver, and postprocessing only have to be
differentiated once using the parent classes. This allows developers to focus
on further development of the primal code by implementing subclasses of
the already differentiated parent classes, enabling gradient calculations of
additional features with minimal code maintenance from an AD perspective.

5.7 Computational Costs of MDO Framework

To assess the overall computational costs of the MDO framework and its in-
dividual components, a single optimization step is measured. The results are
visualized in figure 45, where the MDO chain is broken down into the differ-
ent components of the required gradients to assemble g—i as shown in equation
(141).

Xfluid
Ja

Xsolid
Ja

aomax

Xsolig
A

Xsolid

anNrs
Xfyid

Figure 45: Run time breakdown including mesh generation and deformation,
CFD, stress, and vibration calculations (primal + adjoint) with a total runtime
of 153.38 minutes using 24 CAD parameters a, a CFD mesh of ~ 750, 000 nodes
and a CSM mesh of &~ 90,000 nodes.
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6 Validation and Application of MDO
Framework

Throughout the development of the adjoint structural solver and its integration
into the MDO framework, several applications were tested with each achieved
milestone. In this section, the different optimization applications of the devel-
oped work are introduced. First, the structural gradients with respect to CAD
parameters calculated via the adjoint method are compared against finite dif-
ference approximations. The utility of the adjoint stress analysis is portrayed
by performing an adjoint structural shape optimization of a radial turbine in
(section 6.2). The adjoint stress analysis is then combined with the adjoint
CFD solver to perform a MDO of a radial turbine (section 6.3). Finally, the
adjoint vibration analysis is introduced to perform a MDO through optimizing
efficiency, while adhering to mechanical stress and vibration constraints (section
6.4). All test cases use a CAD-based parametrization, where the CAD kernel
and unstructured solid mesh are coupled via a mesh deformation method.

6.1 Gradient Comparison from CAD to Stress and
Vibration Outputs

Within the previous chapter (ch. 5), the components required to compute struc-
tural gradients algorithmically were introduced and validated. One more vali-
dation of the whole chain, from CAD to maximum von Mises stress and eigen-
values, is warranted to demonstrate its applicability in a MDO framework. The
adjoint gradients were calculated as described in section 5.5.1:

aJnLam 8O—maib amsolid a$face

156" 8wsolid awface oo
reverse AD forward AD
% - 0N 0T solid 8(13face
o )
Ja amsolicl 6mface oo

reverse AD forward AD

which is how they are computed in practice when using the differentiated solver.
For comparison, second-order finite difference approximations of the same gra-
dients were calculated using a range of step sizes A = 1073,107%,...,10~7. The
median result of the FD approximations is compared against the adjoint results
as shown in figure 46, which generally show a good agreement with one other.

6.2 Structural Shape Optimization of a Radial Turbine

In this test case, a CAD-based shape optimization of a radial turbine is
performed with the objective of minimizing the maximum von Mises stress
Omaz- This application showcases that the sensitivities obtained from the
adjoint structural solver can be used to successfully perform a structural shape
optimization. Additionally, the CAD kernel, which defines the geometry, is
coupled with the FEM mesh via a mesh deformation method as described in
section 3.4.3.
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Figure 46: Comparison of structural gradients with respect to CAD parameters
«a calculated using the adjoint implementation and black-box finite differences.
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Figure 47: Unstructured mesh of radial turbine with von Mises stress contours

6.2.1 Numerical Setup

The unstructured mesh generated from the CAD geometry is discretized using
quadratic tetrahedral elements, containing a total of approximately 85,000 nodes
(figure 47). The objective of the optimization is to minimize the maximum von
Mises stress 0,,4.- To ensure continuity of the objective, the maximum stress
is approximated using a p-norm of the form

1
m—1 P
Omax = (Z Uf) ) (146)
=0

instead of using the discontinuous max function. A total of 7 CAD parameters
« are used in this test case. For the optimization, a steepest descent algorithm

of the form
00 maz

aai

is used with a constant step size of A = 1078.

o1 — O — A (147)

6.2.2 Optimization Results

The initial geometry is shown in figure 49 with contours of the von Mises stress
o distribution. Especially from the side view in figure 49b, the high stress area is
observed to be at the fillet region connecting the blade to the hub. By extending
the back plate near near the radial center, the optimizer is able to significantly
reduce the overall stresses as shown in figure 50. A total reduction of 9.88%
in the maximum von Mises stress g,,q. is achieved within 49 iterations. The
convergence history of the optimization is shown in figure 48. At iteration 28,
when the objective was no longer significantly updated, a new structural mesh
was generated, causing a kink in the convergence plot (recall the unstructured
mesh generation vs deformation discussion in section 3.4.3). Aside from this
iteration, all other design updates used a mesh deformation to update the mesh.
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von_mises
7.1e+08~

“6e+8

Ede+8
2e+8

v

(a) Bottom view (b) Side view

Figure 49: Baseline geometry of radial turbine with von Mises stress o distri-
bution

A total runtime of approximately 535 minutes was required to complete this
optimization.

6.3 Aerodynamic Shape Optimization of a Radial Turbine
Under Stress Constraints

After performing a structural CAD-based optimization to verify the utility of

the adjoint structural solver (section 6.2), the structural and fluid disciplines

are combined to perform an adjoint multidisciplinary optimization. The goal is

to maximize the total-to-static efficiency nrg while keeping the maximum von
Mises stress below a defined threshold o0z < Opeq-

6.3.1 Numerical Setup

A radial turbine geometry with 24 CAD parameters « is used for this test case.
The quantities of interest g and 0,4, from the fluid and solid disciplines are
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Figure 50: Optimized geometry of radial turbine with von Mises stress o distri-
bution

combined into a single objective function

J=(1=nrs)+ws - Sig (Omaz) - (M)z (148)
Ureq
where the total-to-static effiency nrg is defined as
Too _
nrs = TMT (149)

(P_2) T
Po,1

The maximum von Mises stress 0,4, is approximated using the p-norm (146)
with p = 50. The sigmoid function

1

1§ e @mar—area) (150)

Slg (Umaz) =

is used to provide a continuous penalty term to the objective function, where
wy is the penalty weight. This sums up the optimization problem to minimizing
J, which is solved using a steepest descent algorithm

oJ
i1 =0 — Ao —, 151
Qip1 = ° 9 (151)
where the o operator represents the Hadamard product
. 8. . a7 \"
Ao— =g =— e, Ap—1 . 152
° da ( 0 8040’ 1 8&1 ) ) 1 8an_1 ) ( )

Different fixed step sizes are defined in the vector A due to the different orders
of magnitude and units used in the CAD parameters c.

The optimization is performed in two steps. First, using a coarser CFD
mesh of around 750,000 nodes to achieve an improvement at a cheaper
computational cost within the fist 24 iterations. Starting at the 25th iteration,
a finer CFD mesh with around 1.4 million nodes is used to go through the
second half of the total optimization iterations.
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nodes | iterations | runtime [days] | Anrg

~ 750k | 24 3.5 2.77%
~ 1l4m | 15 4 3.97%
~ 1l4m | 10 2.5 4.03%

Table 7: Summary of optimization computational costs and efficiency improve-
ments

| Baseline | Optimized | A [%]

Isentropic Efficiency (TS) [-] | 0.7464 0.7765 4.0327

Isotropic Efficiency (TT) [] 0.8516 0.8482 -0.3946
Power [kW] 1.2535 | 1.3854 10.5255
Max von Mises Stress [M Pa] | 681.801 | 662.159 -2.8809

Table 8: Aerodynamic and structural quantities of interest at baseline design
and optimized design

6.3.2 Optimization Results

Figure 52 shows a convergence history of the optimization. It can be seen
that the optimizer is able to continuously reduce the objective J and increase
the efficiency nrg. The stress constraint is initially violated by the baseline
design, but immediately corrected by the optimizer in the first iteration. As the
optimization runs its course, the stress constraint ., < 0req is successfully
obeyed. At iteration 25, a kink can be seen in the plots. This is due to the
finer CFD mesh being used, resulting in a higher accuracy.

As shown in table 7, the first 24 iterations were performed within 3.5 days,
resulting in an improvement in efficiency by 2.77%. With 15 more iterations
using the finer mesh, a total efficiency improvement of 3.97% was achieved with
an additional 4 days of runtime. The remaining iterations until iteration 49,
using the finer mesh, took an additional 2.5 days to complete. The optimization
was performed on an 8-core Intel i7-4790K machine. The primal and adjoint
CFD runs were performed with 6 cores for optimal load-balancing. The forward
differentiated CFD mesh generation and the adjoint CSM solver utilized all 8
cores in parallel.

Overall, this led to an efficiency improvement of 4.03% and a power
improvement of 10.53% (table 8). As a result, the blades of the turbine are
more heavily loaded and an increase in entropy generation at the leading edge
of the blades can be observed (figure 51). A mass flow boundary condition was
used to ensure the inlet and outlet mass flows remain unchanged (table 9). As
a result, the total inlet pressure increased by around 4.5%.

Figure 53 shows the von Mises stress distribution of the baseline and optimal
geometries. The maximum von Mises stress was reduced by 2.88% to 662.16
M Pa, slightly violating the threshold of o,.q = 660M Pa by approximately
0.33%. In the baseline geometry, the von Mises stresses are concentrated around
the fillet area, where the blade and hub connect. During the optimization, the
trailing edge of the blade is straightened, resulting in a distribution of stresses
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(a) Baseline design

Figure 51: Contours of entropy generation of the basline and optimized design

(b) Optimized design

Baseline Optimized | A [%)]
Inlet Mass Flow [£] 10.1506 10.1506 0
Outlet Mass Flow [<] 10.1496 10.1496 0
Total Inlet Pressure [kPal) 185.002 193.7433 4.5118
Static Outlet Pressure [kPa] | 101.8099 | 102.357 0.5374
Total Inlet Temperature [K] | 1050.0379 | 1050.0447 | 0.0006

Table 9: Aerodynamic quantities of interest at baseline design

and optimized

design

™ 0.244

0.77 1
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& 0.76 1

0.75 A
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Figure 52: Plot of optimization history showing objective J, efficiency nrg, and
maximum von Mises stress 0,4, over each optimization iteration. The orange
line represents 0,.cq = 660 M Pa.
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Figure 54: Comparison of CAD paremeters. Red: Baseline parameters. Blue:
Optimized parameters

onto the blade. Figure 54 shows a comparison of CAD parameters from the
baseline and optimal designs. In figure 54b, the CAD parameters along the
shroud have moved considerably, leading to a straightening of the blade’s trailing
edge. As a result, the size of the outlet has increased and that of the inlet has
slightly decreased.

6.4 Aerodynamic Shape Optimization of a Radial Turbine
Under Stress and Vibration Constraints

Building on the adjoint-based MDO shown in section 6.3, the structural con-
straints can be further augmented. To achieve this, the adjoint free vibration
analysis discussed in section 5.3 is used to compute eigenvalue sensitivities %l.
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Figure 55: Visualization of the vibrational objective of maximizing the distance
between the fundamental eigenvalue )y and the ninth engine order Agog by
reducing \g

6.4.1 Numerical Setup

For the most part, the same numerical setup introduced in section 6.3 is used.
In addition, the vibrational constraints are introduced. For turbomachinery
applications, the vibration requirements mainly involve the avoidance of
resonance with dominant engine frequencies. As a result, the lowest natural
frequency, also known as the fundamental eigenfrequency, should not coincide
with dominant engine order frequencies. For instance, assuming the radial
turbine is surrounded by nine stator vanes, the turbine will be subjected to
periodic disturbances nine times per revolution. Hence, the ninth engine order
is significant. This goal is also visualized in figure 55, where the delta between
the fundamental eigenvalue and the ninth engine order should be increased as
the optimization progresses.

The engine frequency is computed as

RPM

where N represents the engine order number and RP M the rotations per minute
of the radial turbine. The engine order eigenvalue is thus computed as

AEON = Who - (154)
The vibrational penalty term is then formulated as

[ABoy — Aol

P)\ = W) (155)

AEON
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| Baseline | Optimized | A [%]

Isentropic Efficiency (TS) [—] | 0.7464 0.7654 2.55%
Power [kW] 1.2535 1.3379 6.73%
Max VM Stress [M Pal) 681.801 | 661.433 -2.99%
o — Apos| [s72] 1.514¢8 | 1.945¢8 | 28.47%

Table 10: Aerodynamic and structural quantities of interest at baseline design
and optimized design
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Figure 56: Plot of optimization history showing objective J, efficiency nrg, max-
imum von Mises stress 0,q,, Where the orange line represents o,..q = 660 M Pa,
and the fundamental eigenfrequency wgy, where the orange line represents the
ninth order engine frequency wgog.

with a fixed coefficient wy, which is then added to the objective function to
finally receive

2
J = (1= nrs) + W - Sig(0maz) (0’”‘“”0") P (156)

Oreq

6.4.2 Optimization Results

The optimization history is shown in figure 56 and the results are tabulated in
table 10. Similar results have been obtained as with the previous MDO (sec.
6.3). The objective has continuously decreased, leading to an overall efficiency
increase of 2.55%, which in turn led to a power increase of 6.73%. The max-
imum von Mises stress has been reduced by 2.99%. While slightly violating
the stress constraint, the final value is only 0.22% above the set threshold of
Oreq = 660 M Pa. For the vibrational aspect, the difference between the funda-
mental eigenvalue and ninth engine order eigenvalue was successfully increased
by 28.47%.
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7 Conclusion and Outlook

This thesis has introduced a CAD-based multidisciplinary optimization
framework using the adjoint method. In particular, the development and
integration of an adjoint CSM solver, differentiated using AD, was discussed.
The optimization framework was introduced in chapter 3, which highlighted
how the entire optimization chain departs from the CAD design parameters.
Based on these inputs, the CAD geometry and computational meshes are
generated. The CAD surface acts as the interface that links the two disciplines,
fluid and solid, together. The mesh generation for the fluid discipline was
differentiated using forward AD to enable gradient calculations of the CFD
mesh with respect to CAD parameters. For the solid discipline, on the other
hand, a linear-elastic mesh deformation using the differentiated CSM solver
was developed to compute the structural mesh gradient contributions. The
CAD kernel was differentiated using forward AD.

For the gradients of the performance parameters, such as aerodynamic
efficiency and maximum von Mises stresses, adjoint CFD (section 3.5) and CSM
solvers were utilized. Within this thesis, the adjoint CSM solver was developed
to perform a static linear stress analysis and free vibriation analysis (chapter
4). The developed solver was validated against the widely-used open-source
solver Calculix and both the stress and vibration analysis were differentiated
using the AD tool CoDiPack (chapter 5). To obtain computationally efficient
results for the gradient calculations, a tandem differentiation of black-box AD
and special treatment of the iterative linear and eigenvalue solvers was carried
out. As a result, the maximum von Mises stress gradients could be computed
at an additional cost of one linear system solve using the same stiffness matrix
and the eigenvalue gradients can be calculated at an additional cost of one
outer product per eigenvalue. The computational cost of an entire gradient
evaluation, including the forward and reverse run, has a peak memory usage of
2.76 times a primal run, including the calculation of both the stiffness and mass
matrices. The run time ratio for a stress gradient calculation is approximately
3.14 times a primal run.

Additionally, this thesis explored how the object-oriented design of a
solver, differentiated using operator-overloading AD, can be exploited to easily
calculate gradients for different applications. The gradient calculation of the
unstructured mesh deformation based on a linear elastic analogy reuses the
differentiated base classes of the linear stress analysis (section 5.5.1). Gradients
with respect to additional input parameters are also easily obtainable. This
was discussed in section 5.6, where a different element class for composite
elements was implemented to compute gradients with respect to material
properties in addition to the usual shape parameters. Gradients for this case
were directly available due to the differentiated parent class implementations,
reducing AD-differentiation overhead that may occur otherwise.

Finally, the differentiated CAD kernel, adjoint CSM and CFD solvers, were
integrated into a CAD-based adjoint MDO framework. Its application was then
tested by performing a shape optimization of a radial turbine (chapter 6). First,
a structural optimization was performed to validate the applicability of the
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computed stress gradients and differentiated unstructured mesh deformation.
This test case was then further extended into a multidisciplinary optimization
with the objective of maximizing isotropic efficiency, while maintaining maxi-
mum stress levels below a given threshold. Finally, the differentiated vibration
analysis was included in the MDO framework to extend the test case’s objective
with the minimization of resonance.

With the optimization framework set up and the base structural solver
differentiated, the road is paved for future developments. This thesis used
gradient descent with a fixed step size, while future contributions could make
use of more advanced techniques, e.g., the inclusion of step size adaptation
methods or using a third party optimization library such as SNOPT [19] or
SciPy [78]. The composite element component could be further extended by a
corresponding CAD kernel, mesh generation and objective functions to peform
an MDO not just for shape optimization, but also for simultaneous material op-
timization. Additionally, more physically-relevant effects such as thermal loads,
centrifugal stiffening, up to a fully coupled fluid-structure interaction could be
implemented in the structural solver and MDO framework. If possible, future
code contributions should take advantage of the differentiated base classes to
minimize the code differentiation efforts. The CAD kernel could be updated to
a more object-oriented differentiation, similar to the CSM solver. Such a differ-
entiated base CAD kernel would facilitate an accelerated development cycle for
different CAD applications, such as radial turbines, axial fans, compressors, etc.

With continuous advances in this field, multidisciplinary optimizations
will easily become multi-component optimizations, where not just multiple
physical discplines are combined, but multiple mechanical components are
combined and optimized simultaneously to achieve a well-defined common
objective. Building on that, the objectives of future optimizations would
eventually no longer be as low-level as isotropic efficiency, but rather high-level
objectives such as maximizing fuel economy, overall life-span of components,
or other industry objectives. In fact, the optimization framework introduced
in this thesis could be generalized, i.e., modularized even further to provide
an optimization software suite where the user could easily piece together an
optimization problem of different fidelities.
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