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Abstract

In the present paper we investigate the Rayleigh-Bénard convection in rarefied gases and
demonstrate by numerical experiments the transition from purely thermal conduction to a
natural convective flow for a large range of Knudsen numbers from 0.02 downto 0.001. We
address to the problem how the critical value for the Rayleigh number defined for incom-
pressible viscous flows may be translated to rarefied gas flows. Moreover, the simulations
obtained for a Knudsen number Kn = 0.001 and Froude number Fr = 1 show a further
transition from regular Rayleigh—-Bénard cells to a pure unsteady behaviour with moving
vortices.

1 Introduction

The Rayleigh-Bénard convection is a well-known example in continuum fluid dynamics for
a temperature—driven flow phenomena, which yields a natural convective flow: assume that
a viscous fluid layer is enclosed between two horizontal walls, where the lower one is heated
from below. If the temperature gradient between the two walls exceeds a certain critical value,
there occurs a transition from purely thermal conduction to a natural convective flow together
with the formation of the so—called Rayleigh-Bénard cells. Due to the vortices appearing in
each Rayleigh—Bénard cell, a convective flow is generated up- and downwards along the normal
direction of the horizontal walls.

An independent measure for the transition from thermal conduction to convective flow is given
by the Rayleigh number Ra, which should exceed the critical value Ra. > 1708 in the case of
incompressible viscous fluids. This value was already derived by Rayleigh itself in 1916 [22]
applying a stability analysis for the incompressible Navier—Stokes equations in the Boussinesq
approximation (see also [3]).

The transition to natural convection for incompressible viscous fluids is widely studied in the
literature: see [1], [28] for experimental data, [13], [20] for numerical simulations on the basis of
the incompressible Navier—Stokes equations. Recently, several authors investigate the existence
of a Rayleigh-Bénard instability in rarefied gases, see Refs. [11], 23] and [24], and demonstrate
by numerical experiments the formation of a vortical structure. Moreover, in Refs. [23] and [24],
the authors discussed the characterization of this first transition in terms of the critical value
Ra, for the Rayleigh number.

In the present paper we give a further investigation on the Rayleigh-Bénard problem and the
transition to natural convection in rarefied gases. In particular, we give a wide range of numerical
experiments applying a particle simulation scheme for the monoatomic Boltzmann equation and
discuss the definition of the Rayleigh number in rarefied gas flows.
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Remark 1

An investigation of the Rayleigh-Bénard problem by means of molecular dynamics and the
microscopic simulation of instabilities was given by Mareschal in Ref. [16] as well as by Mareschal
and Kestermont in Ref. [17].

As mentioned above, we will study in the following the Rayleigh—Bénard convection in rarefied
gases: we consider a monoatomic rarefied gas enclosed between two parallel plates with two
different temperatures T, and Tyouy (see Fig. 1).
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Fig. 1 Rayleigh-Bénard Problem

Moreover, we assume that the gas is heated from below, i.e. Ty, = Tc < Ty = Tyouyn, and
there acts a (gravitational) force F = m(0,0, g)!, which accelerates each gas particle vertically
downwards.

Then, the Rayleigh—-Bénard problem in rarefied gases is described by the time-dependent Boltz-
mann equation with external force on Q C IR? given by

(1.1) fe+vVxf — g0, f = Q(f)

where x = (2,y,2) € Q and v = (vg,vy,v,) € IR® are the spatial coordinates and velocities,
respectively, and Q = [0, L] x [0, Ly| x [0, L;]. The collision operator in (1.1) — assuming that
f describes the number density of the rarefied gas — is given by [6]
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where k = |v — v,|o(|[v — vi|,n) and o denotes the differential cross section describing the
interactions between particles.
Equation (1.1) is equiped with an initial condition at time ¢ = 0 in the form

f(0,x,v) = fo(x,V)

and some boundary conditions on 9€2: at the two parallel plates we assume diffusive reflection
with complete thermal accomodation according to the temperatures Ty and T, i.e.

f(t,X,V) = f(t,x,y, O,V) :MH(V) / |v,lz|f_(t’x;y’0’vl)dvl if Uy > 0

v4, <0
Ft,x,v) = f(t,2,y, Lo, v) = Mo(v) / LI+ (8 2,9,0,v')dv' if o, <0
v, >0

where M and My denote (scaled) halfspace Maxwellians

1 v2
Mx(v) = T P (_E) , Xe{CH}

For the other walls involved in our problem we use specular reflecting boundary conditions in
x—direction and periodicity in the y—direction.



Remark 2
Like stated in the previous work by Stefanov and Cercignani [24] this corresponds to periodic
boundary conditions on a larger domain Q with size [0,2L,] x [0, Ly] x [0,L,] and therefore

reduces the computational effort performing numerical simulations on 2.

The paper is organized as follows: in Section 2, we discuss the definition of the Rayleigh number
Ra, when studying the Rayleigh—Bénard convection in a rarefied gas, because there exists various
possibilities to define the parameters appearing in the definition of the Rayleigh number itself.
In particular, the different possibilities yield — in contrast to incompressible viscous fluids — even
large deviations in the Rayleigh number and this makes it more complicated to define a reliable
critical value Ra., where a first transition occurs.

Section 3 gives a brief overview on the numerical scheme, which is used in the present paper
to simulate the monoatomic Boltzmann equation and we mainly focuse on the way how to
include the external gravitational force in the (stochastic) particle approach. Finally, we present
a large number of numerical simulations in Section 4: in Section 4.1, we give results obtained
from numerical simulations for Knudsen numbers between 0.05 and 0.008 and various values
for the temperature ratio T¢ /Ty and the Froude number. Here, we discuss how the critical
value Ra, = 1708 from continuum flows can be used to characterize the transition to natural
convective flow in rarefied gases. In Section 4.2, we give first results on numerical simulations
performed at a Knudsen number Kn = 0.001 and show how a second transition to an unsteady
motion with moving vortices appears in the Rayleigh-Bénard problem, which was not observed
before by the authors in Refs. [23] and [24].

2 The Rayleigh Number in Rarefied Gases

As mentioned in the introduction, an independent measure for the transition from pure thermal
conduction to natural convection in the Rayleigh—-Bénard problem is the Rayleigh number, which
should exceed the critical value Ra, = 1708 in the case of an incompressible viscous fluid. In
this section we address to the problem how one may translate the Rayleigh number to the case
of a rarefied gas.

The classical definition of the Rayleigh number Ra in continuum theory, like found in Ref. [7],
is given by

gap 4
2.1 =<
(2.1) Ra K d

where g denotes the acceleration due to gravity, d the depth of the layer, i.e. in our problem the
distance between the two horizontal walls. Moreover, §(= |dT/dz|) denotes the uniform adverse
temperature gradient, which is assumed to be fixed, o, K, and v are the coefficients for the
volume expansion, the thermometric conductivity and the kinematic viscosity, respectively.

In order to “translate” the definition of the Rayleigh number given by (2.1) from continuum
theory to rarefied gases, it is important to understand how to choose the coefficients in the
definition of the Rayleigh number and there arise directly the following two problems: the first
is connected with the coefficient a for the volume expansion, the second one with the definition
of the coefficient of thermometric conductivity K.

In Ref. 7], the author used the so—called Boussinesq approximation, that is to assume that the
physical properties of the fluid, which are involved in the Rayleigh number are temperature
independent, except the density (hypothesis of incompressible fluid), in which the coefficient
of thermometric conductivity is related with the heat conduction coefficient k¥ via the formula
K = k/(pocy), where pg is the density and ¢, the specific heat at constant volume. On the other



hand in Ref. [9], the authors define the thermometric conductivity coefficient for incompressible
fluids by K = k/(pocp), where ¢, is the specific heat at constant pressure.

We observe, that the difference between these two definitions is negligible for incompressible
fluids, but it is not in the case of a compressible one. In Ref. [4], the authors consider the
case of a dilatable fluid together with the definition K = k/(pocp). They find, that the critical
value Ra. can be different from 1708, which defines the critical value for the first transition for
incompressible fluid. In the case of compressible fluids, the difference in the definition of the
coefficient of thermometric conductivity yields a difference in the definition of Ra of a factor
¢y/cp, and for a monoatomic gas one has ¢p/c, = 5/3. Hence, we will use in the following both
definitions for Ra and denote them by Ra., and Ra.,, respectively.

In a second step, we have to choose the coefficient o, which defines the volume expansion and
even here there are several possibilities to do this: for a dilute gas, we know that o = T~! and
one possible value for T is to take the mean value (T +T¢)/2 of the two wall temperatures T¢
and Tx. Another possibility is to use T as the spatial average given by

T=

ISHR

d
/T(x)da:
0

where T'(z) is given as the solution of the Navier—Stokes equations

0 oT

—(k(T)— ) =0

oz < ( >8m)
where k(T) = ¢V T assuming a hard-sphere interaction law. Hence, this choice yields the
temperatur 7" as

5/2 5/2

- T —T,

(2.2) 7-3TH ¢

B 13/2 3/2
5 Ty —T¢
and we denote these two volume expansion coefficients by a; and as, respectively.

Remark 3

In the classical Rayleigh-Bénard problem from continuum theory, the temperature ratio T /Ty
is typically close to unity. Hence, the difference between the mean value (T + Tx)/2 and the
spatial average T given by (2.2) is negligible. Moreover, if the heat conduction coefficient % is
assumed to be weakly dependent of the temperature, both definitions for T are nearly equal,
even for larger temperature ratios.

Together with the definition of the critical coefficients in the expression (2.1) of the Rayleigh
number, i.e. the volume expansion coefficient a as well as the coefficient of thermometric conduc-
tivity, one may relate the Rayleigh number Ra to the characteristic parameters of the Rayleigh—
Bénard problem in rarefied gases. These dimensionless parameters are the Knudsen number Kn
of the rarefied gas, the Froude number Frr, which relates the thermal speed with the acceleration
vertically downwards due to gravity, and the temperature ratio between the heated and cooled
walls. In particular, we have the following expressions for the Knudsen number based on the
mean free path \g = (v/270%ng)~! and the Froude number Fr, based on the thermal speed
vy = V2RTy, where R = kp/m, kp the Boltzmann constant and m the mass,



Remark 4
In the following, we will also consider the scaled Froude number Fr* = Fr/Kn.

Finally, we have to specify the expressions for the viscosity coefficient 4 and the heat conduction
coefficient k of a rarefied gas: using the well-known Chapman—Enskog approximation [8], we
have a viscosity coefficient u = 1.016px(), where

1
5 kpmT\ 2 5

(1) = B -
a 1602 ( T ) 16 Ao VT

and the kinematic viscosity v is given by v = p/pg. In Ref. [8], we even find a first approximation
k() for the heat conduction coefficient in the form

5 3
KO = 240c, = 240,

In the case for which K = k/(pgc,), we obtain

KO = 2,0
2 )
if we consider K = k/(pocp), we have
x_ 3
2

Together with 8 = AT/d, and k = 1.02513%k() we finally obtain the formulas

AT (2
Ra,, =313 - a—— (—)

FrKn? \5
AT 2
Racp =3.13- am (g)

and the ratio is given by Rac,/Rac, = 3/5 = cy/cp.

Finally, we like to clarify, that the authors of Refs. [23] and [24] used a slightly different definition
for the Rayleigh number in rarefied gases: in Ref. [23], Sone et al. used a Rayleigh number in
the form

(2.3) Ro—¥01-7)

T rFrKn?’
whereas Stefanov and Cercignani [24] defined the Rayleigh number as

T:Tc/TH

512 (1)

(2:4) Ra = 757 rFrKn2’

r=Tc/Ty

In both definitions, it is assumed, that the volume expansion coefficient is given by a = 1/T¢
and both used implicitely the definition of Curle and Davies [9] to define the thermometric
conductivity coeflicient in the form K = k/(pocp). Hence, besides the difference in the volume
expansion coefficient, the Rayleigh numbers given in (2.3) and (2.4) corresponds to the value
Ra,, given above. The difference in the definitions (2.3) and (2.4) comes from the fact, that Sone
et al. used a simplified BGK—-model to study the Rayleigh—Bénard convection, whereas Stefanov
and Cercignani considered, like in the present investigation, the full Boltzmann equation together
with the hard-sphere interaction model [2].



3 Simulation Schemes for the Boltzmann Equation

Numerical simulation schemes for rarefied gas flows are nearly exclusively based on (stochastic)
particle methods, like, e.g., the Direct Simulation Monte Carlo (DSMC) schemes by Bird [5] or
the Finite-Pointset Method (FPM) as presented in Ref. [18]. In the following we shortly recall
the main ideas of such schemes — following the ideas given in [18] — and explain how to include
the gravitational force in the free flow of particles.

The kinetic density function f(t,x,v) on the phase space Q x IR3 is approximated using a
stochastic particle system (x;(t), vi(t))i=1,...n of particles, where x; and v; denote the spatial
coordinate and velocity of the i—th particle, respectively. Then, the time evolution of the particles
is derived from a time and space—discretized form of the Boltzmann equation (1.1). In particular,
one uses a so—called splitting method in order to separate the free-flow of particles, described
by the left hand side of (1.1), from binary collisions defined by the collision operator Q(f) in
the Boltzmann equation.

The splitting method is defined as follows: take the discrete time steps t;, = kAt, k = 0,1,...
and solve on the time intervals [t,t511] successively the two equations

(31) ft +v- V:Bf_ gavzf = Oa f(tk,X,V) = f(tk,X,V)

(3.2) f(fe) = Q(f), flte,x,v) = f(trs1,%,V)

On the level of the (stochastic) particle system, the first part of the splitting method, Eq. (3.1)
yields the particle trajectories

(3.3) x; = (0,0,—g)t, i=1,...,n

which reduces by direct computation to the formula

(At)?
2

The boundary conditions are incorporated into Eq. (3.3) on the basis of a single gas—surface

interaction between one particle and the wall.

Remark 5

In contrast to the Boltzmann equation without force term, the particle trajectories are no longer
straight lines, but parabolic curves in the z—component. Hence, the treatment of the boundary
conditions becomes more complicated, in particular, if g < 1.

Xi(tr41) = xi(tr) + Atvy(ty) + (0,0,—9)"  Vi(trs1) = vi(tr) + At(0,0, —g)*

The derivation of binary collisions for the particle system from Eq. (3.2) is quite more com-
plicated and the crucial part in the numerical simulation. The main problem arises from the
locality of the collision operator in the space variable. To overcome this problem, one has to
introduce a smoothed collision operator Q? defined by

SN = [ [ [ Boxx k(v = vil,w{f f: - 11 }dndv.dx,
Q R3 5_2'_
fl = f(t,X,VI), fi = f(t,x*,vi) etc.

using an appropriate smoothing kernel 3(x,x,). The most simple choice for §(x,x,), which is
also used in the present paper, is to use a spatial grid to perform collisions, i.e. we use the
smoothing kernel 8(x, x,) defined by

(3.4) B(x,x,) = Z ZQ B )

D



m
where Ty, = {Q,...,Q,} denotes a disjoint partition of the domain Q, i.e. @ = [J Q; and
i=1

K3
QNQ;=0,if i #j.
With the special choice of the smoothing kernel given in (3.4), the second part of the splitting
method is reduced to a system of spatial-homogeneous Boltzmann equation on 7, because two
particles can only undergo a binary collision, if they are located in the same cell. Moreover,
during this part of the splitting method, the spatial coordinates of the particles will remain
constant.
The collision process itself is derived from a time—discretized Boltzmann equation for each cell
Q; € Tp, and typically one uses an explicit Euler step to discretize the time derivative 9f/9t, but
one may even use an implicit Euler step as well as a mixed implicit—explicit Crank—Nicholson—
type scheme. Passing to the weak form of the discretized equation, one finally obtains a collision
mechanism on each cell ; € T on the basis of the given particle approximation. Here, we refer
the reader to Refs. [18] and [19].
The numerical simulations presented in the Section 4 are based on partially dimensionless quan-
tities: the spatial domain is kept fixed for different Knudsen numbers, i.e. the space coordinates
are not scaled with respect to the mean free path of the gas. On the other hand, we use scaled
velocities and temperatures; scaled with respect to the thermal speed vy = +/2RTy and the
hot-wall temperature Tp. This scaling yields a (scaled) gravitational acceleration of the form
5= 9/vk = 1/(Fr*Ae).
For typical values Kn and Fr* used in the following, the parameter § turns out to be much less
than unity and this influences the way how to treat boundary conditions in the free—flow step of
the splitting method given by Eq. (3.3): if the particle undergoes an interaction with the upper
or lower wall, one has to determine the intersection point of the particle trajectory with the,
e.g., z = 0—plane and to recompute the remaining time step after the interaction. This means
to solve the quadratic equation

(3.5) %A# AT+ 2= 0
for the time variable A7. If § < 1, Eq. (3.5) may be considered as singular perturbed and

the correct solution (which remains finite as § — 0) may be computed using an asymptotic
expansion (see Ref. [25]).



4 Numerical Results and Discussion

In the following we give numerical results for the Rayleigh-Bénard convection in rarefied gases
using the particle schemes described in the previous section. In particular, we performed two
different sets of simulations

e two-dimensional computations for Knudsen numbers Kn > 0.008 in order to validate the
previous results obtained by Stefanov and Cercignani [24] and to give a more complete set
of data

¢ two—dimensional computations for a Knudsen number Kn = 0.001 in order to investigate
the behaviour of the Rayleigh-Bénard convection close to the continuum limit covered by
the Navier—Stokes equations.

The numerical results are obtained using a three-dimensional program with only one single
cell in the y—direction and specular reflection at the two walls in y—directions as well as using
a real two—dimensional program. The results obtained from the two different approaches are

qualitatively the same®.

Remark 6

All simulations are performed using massively—parallel systems with a fully parallelized par-
ticle code, where the parallelization is done similar to the approach given in Ref. [26]: the
computational domain is divided into subdomains along the z—direction and neighbouring pro-
cessors need to communicate during the free—flow step of the splitting method. In particular,
the simulation were done on a parallel system nCUBE 2S with up to 64 processors installed at
the Department of Mathematics, University of Kaiserslautern and a Cray T3E with up to 256
processors installed at the Regional University Computer Center, University of Stuttgart.

4.1 Two—Dimensional Simulations for Kn > 0.008

Some results from numerical simulations, where one expects the first transition to natural convec-
tive flow with the formation of Rayleigh—Bénard cells and vortices are presented in the following.
The simulations are performed on a fixed spatial domain with size 300 x 100 using three different
spatial grids

e a coarse grid with 192 x 64 cells for Kn > 0.02,
e a fine grid with 384 x 128 cells for 0.008 < Kn < 0.02,
e 3 super fine grid with 576 x 192 cells for Kn = 0.008

Hence, the size of a single cell is 1.5625 for the coarse, 0.78125 for the fine and 0.52083 for the
super fine grid, where a Knudsen number Kn = 0.01 yields a mean free path A = 1.0. Even when
using massively—parallel systems like in the present investigation, the computational effort to
perform numerical simulations is quite high, because one has to perform long—time simulations
in order to detect the first transition. Moreover, one should vary, keeping the Knudsen number
Kn fixed, the temperature gradient AT as well as the Froude number Fr in order to be able
to characterize the first transition. Therefore, the simulations are performed with an averaged
number of 10 particles per cell, which yields about 1.2 - 10° particles on the coarse, 4.8 - 10°

In a subsequent paper the authors will give numerical results for the Rayleigh-Bénard convection in rarefied
gase using fully three—dimensional simulations



particles on the fine and 1.1-108 particles on the super fine grid. The (scaled) discrete time step
for all simulation is equal to the spatial grid size.
We tabulate the different simulations in terms of the characteristic parameters cases in Tab. 1.

Table 1 Numerical results for Kn € [0.008,0.05] and various parameters T¢ /Ty and Fr*.

Kn Tg/Tyg Fr* stable Rac,a, Rac,a, Rac,a Rac,a,
0.05 0.05 12 yes 1510 1307 2517 2179
0.05 0.1 12 yes 1365 1216 2276 2027

0.05 0.1 200 yes 81 72 136 121
0.03 0.1 50 yes! 1517 1351 2529 2252
0.03 0.1 100 yes 758 675 1264 1126
0.03 0.1 300 yes 252 225 421 375
0.03 0.1 400 yes? 189 168 316 281

0.02 0.1 50 yes! 5121 4560 8536 7601
0.02 0.1 100 no 2560 2280 4268 3800
0.02 0.1 300 no 853 760 1422 1266
0.02 0.1 400  yes? 640 570 1067 950
0.02 0.2 50 yes! 4173 3869 6955 6448
0.02 0.2 100 no 2086 1934 3477 3224
0.02 0.2 200  yes? 1043 967 1738 1612
0.02 0.4 100 yes 1341 1300 2235 2167

0.01 0.1 100  yes! 20487 18243 34145 30406
0.01 0.1 200 no 10243 9121 17072 15203
0.01 0.1 800 no 2560 2280 4268 3800
0.01 0.1 1600  yes 1280 1140 2134 1900
0.01 0.2 100 yes 16693 15477 27822 25795
0.01 0.2 200 no 8346 7738 13911 12897
0.01 0.2 400 no 4173 3869 6955 6448
0.01 0.2 800 yes 2086 1934 3477 3224
0.01 0.4 200 yes 5365 5202 8942 8671

0.008 0.1 120 yes! 33345 29693 55575 49489
0.008 0.1 200 no 20007 17816 33345 29693
0.008 0.1 1600 no 2500 2227 4168 3711
0.008 0.1 3200  yes? 1250 1113 2084 1855
0.008 0.2 120 yes 27170 25190 45283 41984
0.008 0.2 200 no 16302 15114 27170 25190
0.008 0.2 800 no 4075 3778 6792 6297
0.008 0.2 1300  yes 2508 2325 4180 3875
0.008 0.4 200 tr’ 10479 10161 17466 16936

!The resulting purely conductive state has an decreasing density profile from the lower to the upper wall
2The resulting purely conductive state has an increasing density profile from the lower to the upper wall
3The resulting steady—state shows no clear transition to natural convective flow, see also Fig. 4



We give some interpretation of the results shown in Tab. 1. First of all, the simulations
show a first transition — with respect to the Knudsen number — to natural convective flow at
Kn = 0.02, for the larger values Kn = 0.03 and Kn = 0.05, the resulting steady—state is detected
as purely conductive.

Remark 7

In Ref. [24], Stefanov and Cercignani reported a first transition at a Knudsen number Kn = 0.01.
For the reduced BGK—model, Sone et al. [23] observed a transition to natural convective flow
even for larger Knudsen numbers than Kn = 0.02.

If we consider at Kn = 0.02 a fixed Froude number Fr* = 100, the resulting critical Rayleigh
number seems to be in good agreement with the value predicted by continuum theory, if the
Rayleigh number is based on the definition given in Ref. [7]. On the other hand, we observe that,
assuming a fixed temperature ratio T¢ /Ty = 0.1, the critical value for the Rayleigh number is
less than Ra. = 1708, for all possible definitions of the Rayleigh number discussed in Section 2.
If the Knudsen number is decreased to Kn = 0.01 and Kn = 0.008, the results of Tab. 1
show that the “window” for a transition to natural convective flow is increased with respect to
the temperature ratio as well as the Froude number. The critical value for a transition is in
agreement with the value from continuum theory only for a fixed temperature ratio T /Ty = 0.1,
for other combinations, e.g. a fixed Froude number, the critical value turns out to be larger than
Ra, = 1708. This result indicates, that the Rayleigh number seems to be not appropriate to
detect the transition in the Rayleigh—Bénard problem in rarefied gases uniformly with respect
to all characteristic parameters, i.e. the Knudsen number, the temperature ratio as well as the
Froude number.

As an example for the transition to natural convective flow, we give some pictures on the vortical
structures obtained from the simulations given in Tab. 1: Fig. 2 shows the vortical structures
obtained at the end of the numerical simulation for Kn = 0.02, Froude number Fr* = 200 and
a temperature ratio T¢ /Ty = 0.1.
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Fig. 2: Vortical structures for Kn = 0.02, Fr* = 200 and T /Ty = 0.1
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The corresponding iso-lines for the temperature and density field are presented in Fig. 3.

Fig. 3: Iso-Temperature (up) and Density Lines (down) for Kn = 0.02,
Fr* =200 and T¢ /Ty = 0.1

In Fig. 4 we give the vortical structures obtained, after a fixed number of discrete time steps, for
the particular case Kn = 0.008, Fr* = 200 and different temperature ratios between the upper
and lower wall. Here, the macroscopic moments are computed as a mean time average over 500
subsequent steps, starting after 13.500 time steps.

For a fixed temperature ratio T¢ /Ty = .35, Fig. 5 shows the vortical structures at different
times during the numerical simulation.
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Fig. 4: Vortical structures for Kn = 0.008, Fr* = 200 and T¢ /Ty = 4,.35,.3,.2 sequentially
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Fig. 5: Vortical structures for Kn = 0.008, Fr* = 200 and T¢ /Ty = .35 at different times:
t1 =5.0-10%, t =5.0- 103, t3 =1.0-10%, ¢4 = 1.4 - 10* and mean averages over 500 time steps



The results shown in Tab. 1 and Figs. 2-5 (representatively), only give a qualitative decision
whether a transition to natural convection occurs for certain values of the characteristic parame-
ters of the problem, i.e. the temperature ratio 7¢ /Ty, the Knudsen number Kn and the Froude
number Fr. In order to get a more quantitive insign of the first transition one may use one of
the following specific quantities:

e the maximal velocity in z—direction, which should be away from zero, if vortices appear in
the flow,

e the heat flux g, at the walls, which should increase in the tranition from pure conduction
to natural convection,

¢ the (dimensionless) Nusselt number Nu.

Concerning the last point, we have the following interpretation for the Nusselt number: if a
steady state is present in the layer of depth d, than there is a constant outward heat flux from
the surface at higher temperature and, if the flow across the layer is entirely due to conduction,
we can write this in the form

EAT
(4.1) Qw="——

d

Remark 8

Actually, Eq. (4.1) only holds, if we assume that the heat conduction coefficient is independent
of the temperature T'. If this is not the case, the temperature difference AT = Ty — T¢ need
to be corrected by introducing an averaged temperature ratio along the layer, because we have

qw = k dT'/dz.

An important consequence of the convective motion is an increase of the heat flux ¢,, across the
layer. If this kind of motion is present, the resulting fluid velocity entails a supplementary heat
flux and the total heat flux is higher than for the pure conductive state. This is expressed by
the so—called Nusselt number Nu defined by
quwd

N = %A
Remark 9
If we assume that the heat conduction coefficient k is independent of the temperature, we have
Nu = 1 provided that Ra < Ra.. For Ra > Ra., the Nusselt number increases and reflects
therefore the increasing part of heat transfer due to natural convection. In the case, when the
heat conduction coefficient depends on the temperature, the Nusselt number is not exactly equal
to unity (see previous remark). Nevertheless, when the transition to natural convection occurs,
one should observe even in this case an increase of the Nusselt number.

Fig. 6 shows, again for the particular case Kn = 0.008 and Fr* = 200, the behaviour of the
maximal velocity in z—direction as well as the heat flux ¢,, at the walls versus different temper-
ature ratios T¢/Ty. The results indicate, that the transition to natural convective flow occurs
around a temperature ratio T /Ty = 0.4. These results even define the critical value Ra, of the
Rayleigh number in terms of the temperature ratio at the walls.

Moreover, one may compute the corresponding behaviour of the Nusselt number Nu versus the
Rayleigh number. Fig. 7 gives the results obtained from the previous curves for a Knudsen
number Kn = 0.008, as well as for Kn = 0.01 and, like before, Fr* = 200.
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At a Knudsen number Kn = 0.008, there is a transition for 7¢ /Ty ~ 0.4 and the corresponding
critical value for the Rayleigh number is Ra, ~ 10.500. On the other hand, the transition for
Kn = 0.01 seems to occur at a smaller Rayleigh number around 8.000. This may indicate,
together with the results given in Tab. 1, that the expression for the Rayleigh number given in
Section 2 does not yields the same critical value Ra, aspected from continuum theory uniformly
with respect to the Knudsen number.

4.2 Two—Dimensional Simulations at Kn= 0.001

The numerical experiments presented above confirm the previous results on the existence of the
Rayleigh-Bénard instability in rarefied gases given in Refs. [23] and [24]; although we are not
able to validate the critical Rayleigh number Ra, = 1708 from continuum flows. Besides the
transition to natural convective flow, the Rayleigh-Bénard problem includes a further transition
connected with the transition from regular to turbulent flows. It is out of the scope of the
present paper to give a review on the existing literature for this second transition; here, we refer
the reader to the textbook of Lichtenberg and Liebermann [14].

We like to mention, that this problem is connected with the existence of strange attractors on
which chaotic motion takes place. This phenomena was first discovered by Lorenz [15], who
studied a simplified system obtained from a truncated Fourier expansion of the Navier—Stokes
equations formulated in terms of the stream function of the motion and the departure of the
temperature profile from a one—dimensional one linearly decreasing with the height.

Although the Lorenz—system is a quite simplified system of the Rayleigh—Bénard problem based
on only three modes in the Fourier expansion, it already contains the important phenomena of
the problem: if one considers a higher number of modes, the system exhibits similar features
like obtained from the Lorenz—system. Moreover, Foias and Prodi [10] showed that the solutions
of the two—dimensional Navier—Stokes equations can be described asymptotically as ¢ — oo by
a finite number of Fourier modes.

The numerical results of the previous section do not show any kind of second transition, which
is in agreement with the results given by Stefanov and Cercignani in Ref. [24], where the authors
even claimed, that it is impossible to simulate the transition to an unsteady turbulent motion,
because the numerical simulations are completely two—dimensional. Hence, if the Rayleigh
number is increased the natural convective flow stabilizes again to pure heat conduction.

In the following we give first results on a second transition to a pure unsteady behaviour with
moving vortices, which indicates the existence of a strange attractor for the Rayleigh-Bénard
problem in rarefied gases. The results are obtained for a Knudsen number Kn = 0.001, a
temperature ratio T /Ty = 0.1 and a Froude number Frr = 1. Like in Section 4.1, the simulations
are performed on a fixed spatial domain with size 300 x 100; but using a super fine grid of 1536
x 512 cells, which yields a total number of about 7.86 - 10° cells and a particle number of about
7.86-108. The total CPU—-time to run the simulations over 32.000 discrete time steps was about
250 hrs using 64 nodes of the parallel system nCUBE 2S. This even gives a measure for the
computational effort needed to run the various simulations presented in the previous section.

Remark 10

The macroscopic quantities presented in the following are calculated on 8 x 8 subcells in order
to reduce the spatial fluctuations. Moreover, we used a (scaled) discrete time step At = Az/3.3,
where Az denotes the size of a spatial cell.

Fig. 8 shows the vortical structures at different time steps during the simulation: the vortices,
which at the beginning seem to be localized at the upper part of the gas layer, start to move at
later times in an irregular manner through the layer.

16



e e DN e

\ TSt o — N — ;\\r\l\k\h\AIa/ ~ e e —— e — N
& \\A'A/A’A'AIAIAI - I e e —
/ \\»\k\k\k\\mu\Ala/ NN N

s /%mﬂ

Fhin 22
»///AI

YN

'
/
/
/

i e -

' N~ e b e A -

IIITIIIIIIN : NN

e N LY I ((VERETESR N

YA AN S yeZ /1/7/_”‘ 2 R A R _ ,P\////\‘ .\\\n\,//ﬂ

\9.\&\#\/\/\/\(\\,/-\\\? M““\&MHWWN‘ ﬁf\\\,a//ﬂv\%%,_,._f‘/\\\_.
\\\< f ~- N _l P A

NV NCREN . //////vé& = 2R

e // VM. \\ S —_—r - — -

.1 at different times:

3.2-10* and mean averages over 1000 time steps

17

2.6-10%, t4

=210 t3 =

1.4-10%, to

Fig. 8: Vortical structures for Kn = 0.001, Fr = 1 and T¢ /Ty

t1



The corresponding iso-temperature lines are shown in Fig. 9: here, one observes that there
exists no regular patterns like in the case of a steady convective flow with three rolls like shown
in Fig. 3.

Fig. 9: Iso-Temperature Lines for Kn = 0.001, Fr =1 and T¢ /Ty = .1 at different times:
tp =1.4-10% ty =2-10%, t3 =2.6-10% t4 = 3.2 10* and mean averages over 1000 time steps

The results shown in Fig. 8 are certainly of preliminary nature; in the sense, that one should
confirm the existence of a second transition to a pure unsteady natural convective flow using
further numerical experiments — although the computational effort is rather high. In particular,
one should vary the Froude number to lower and higher values in order to classify the resulting
flow field structure.
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Moreover, it is of special interest to perform a spectral analysis for some typical flow quantities
and compare the results with existing experimental data, like the one given by Gollub et al. [12].
The first results in this direction indicate, that it is necessary to perform long—time simulations,
which even will increase the computational costs.

5 Conclusion

In the present investigation we studied the Rayleigh-Bénard problem in rarefied gases and con-
firmed the previous results on the existence of a transition to natural convective flow for various
characteristic parameters. Moreover, we addressed to the question, how the Rayleigh number
from continuum theory can be translated to rarefied gases and discussed how the definitions of
the Rayleigh number proposed previously by various authors is related to our definition.

We were not able to validate the critical value Ra, = 1708 predicted by continuum theory
uniformly with respect to the characteristic parameters, i.e. the Knudsen number, the Froude
number as well as the temperature ratio. Finally, the numerical simulations at a Knudsen
number Kn = 0.001, Froude number Fr = 1 and temperature ratio 7 /Ty = 0.1 indicate the
existence of a second transition to an unsteady convective flow in terms of moving vortices, which
might be related with the existence of an strange attractor for the Rayleigh—Bénard problem in
rarefied gases. This conjecture needs certainly to be confirmed by further numerical experiments
and we will return to this point in a subsequent publication.
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