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Abstrakt
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Reflected Anticipated Backward Stochastic Differential Equations with Default
risk, Numerical Algorithms and Applications

von Jingnan Wang

Die Hauptthemen dieser Doktorarbeit sind die theoretischen Eigenschaften numerischer
Algorithmen und zugehoriger Anwendungen reflektierter antizipativer stochastischer
Riickwirtsdifferentialgleichungen (RABSDE), die von einer Brownschen Bewegung und
einem von ihr unabhédngigen Martingal in einer standardmafligen Umgebung gener-
iert werden. Der Generator einer RABSDE enthilt die gegenwaértigen und zukiinfti-
gen Werte der Losung. RABSDES finden Anwendung in der Finanzmodellierung (z.B.
optimales Stoppen mit Ausfallrisiko oder amerikanische Spieloptionen) oder auch in
biologischen Modellen (z.B. Populationsmodelle), wenn die Dynamik der zugrunde
liegenden Prozesse nicht nur von ihrem Barwert, sondern auch von einigen zukiinfti-
gen Informationen abhéangt.

Die vorliegende Arbeit besteht aus zwei Teilen, dem theoretischen Hintergrund
von (R) ABSDE, einschliefSlich grundlegender Theoreme, theoretischer Beweise und
Eigenschaften (Kapitel 2-4) sowie numerischer Algorithmen und Simulationen fiir (R)
ABSDES (Kapitel 5). Fiir den theoretischen Teil untersuchen wir ABSDEs (Kapitel
2), RABSDEs mit einem Hindernis (Kapitel 3) und RABSDEs mit zwei Hindernissen
(Kapitel 4) unter Standardvoraussetzungen, einschliefilich der zugehorigen Existenz-
und FEindeutigkeitssdtze, Anwendungen und des Vergleichssatzes fiir ABSDEs, sowie
ihre Beziehungen zu PDEs und stochastischer Delay-Gleichungen (SDDE). Im Kapi-
tel tiber numerischen Algorithmen (Kapitel 5) fithren wir zwei Hauptalgorithmen ein,
ein diskretes Penaltyverfahren und ein diskretes reflektiertes Schema, das auf einer
diskreten Approximation der Brownschen Bewegung sowie einer diskreten Approxi-
mation des Standard-Martingals basiert. Wir geben die Konvergenzergebnisse der Al-
gorithmen an, geben ein numerisches Beispiel und eine Anwendung bei amerikanis-
chen Spieloptionen, um die Funktionsweise der Algorithmen zu veranschaulichen.
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Reflected Anticipated Backward Stochastic Differential Equations with Default
risk, Numerical Algorithms and Applications

by Jingnan Wang

The main subjects of this thesis are the theoretical properties, numerical algorithms and
related applications of reflected anticipated backward stochastic differential equations
(RABSDE) driven by a Brownian motion and a mutually independent martingale in a
defaultable setting. The generator of a RABSDE includes the present and future values
of the solution. RABSDES have applications in financial modeling (such as optimal
stopping with default risk or American game options) and also in biological models
(e.g. population growth) when the dynamics of the underlying processes are not only
depending on their present value but also on some future information.

This thesis consists of two parts, i.e. the theoretical background of (R)ABSDE in-
cluding basic theorems, theoretical proofs and properties (Chapter 2-4), as well as nu-
merical algorithms and simulations for (R)ABSDES (Chapter 5). For the theoretical
part, we study ABSDEs (Chapter 2), RABSDEs with one obstacle (Chapter 3) and RAB-
SDEs with two obstacles (Chapter 4) in the defaultable setting respectively, including
the existence and uniqueness theorems, applications, the comparison theorem for ABS-
DEs, their relations with PDEs and stochastic differential delay equations (SDDE). The
numerical algorithm part (Chapter 5) introduces two main algorithms, a discrete penal-
ization scheme and a discrete reflected scheme based on a random walk approximation
of the Brownian motion as well as a discrete approximation of the default martingale;
we give the convergence results of the algorithms, provide a numerical example and
an application in American game options in order to illustrate the performance of the
algorithms.
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Chapter 1

Introduction

To give the reader a sound introduction to the thesis, we collect some basic notations
and previous research background in this chapter that are necessary to understand the
topic of the thesis.

1.1 Basic Notations
We first introduce the following basic notations and spaces (p € [0, ®)):
e LP(Gr;R) := {¢ € R| ¢ is a Gr-measurable random variable and E|¢|? < co};

. L’Z(O, tERY) = {¢ : Qx[0,t] = R?| ¢ is Gi-progressively measurable and
E [, s/ ds < oo};

o SQP(O, ER) = {¢: Q x[0,t] = R| ¢ is G-progressively measurable rcll process
and [E [SUPOSSSt |90s\p] <oo};

e L7 (0, t,.]lik) = {p:Qx[0,t] — ]Rk]pgot is G;-progressively measurable and
t t ]
E|fy | 9ol Lrsayvsds| = B | f5 T5 1 gisl "1 roap7ids| < 00}

. AZ(O, T;R) := {K: Qx [0,T] — R| K¢ is a Gi-adapted rcll increasing process
and Ko = 0, Kr € L(Gr;R) };

e T stands for the set of all stopping times with values in [0,T], and 7; = {v €
T, t<v<Th.

1.2 Backward Stochastic Differential Equations

The backward stochastic differential equation (BSDE) theory plays a significant role in
financial modeling, which will be shown below. Given a probability space (O}, F,P),
where B := (Bt)i>0 is a d-dimensional standard Brownian motion, F := (F¢);s is
the associated natural filtration of B, ; = ¢(Bs; 0 < s < t), and F{ contains all P-
null sets of F. We first consider the following form of BSDE with the generator f and
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the terminal value ¢ under the smooth square integrability assumption for ¢ and the
Lipschitz condition for f:

Y, :§+/tTf(s,YS,ZS)ds—/tTZSdBS, t € 1[0,T]. (1.1)

The setting of this problem is to find a pair of F;-adapted processes (Y, Z) € S%(0,T; R)
x L£2(0, T; R?) satisfying the BSDE (1.1).

BSDEs with linear generators first appeared as the adjoint processes in option pric-
ing and the maximum principle for the stochastic control problems. It was first intro-
duced by Bismut [1] (1973), when he studied the maximum principle in stochastic op-
timal control. Pardoux and Peng [2] (1990) studied the general non-linear BSDEs, they
gave a probabilistic interpretation of a solution of the second order quasi-linear partial
differential equation and proved the existence and uniqueness of the adapted solution
under the certain assumptions. Duffie and Epstein [3] (1992) independently used a
class of BSDEs to describe the stochastic differential utility function theory in uncertain
economic environments. Since then, the BSDE theory has been studied in many differ-
ent areas, such as mathematical finance, stochastic control, economical management,
etc. More about BSDEs and related applications can be found in El Karoui et. al [4]
(1997), Lepeltier and Martin [5] (1998), Peng [6] (1999), Kobylanski [7] (2000), Rozkosz
[8] (2003), Jiang [9] (2004), Buckdahn and Ichihara [10] (2005), Jiang [11] (2005), Briand
and Hu [12] (2006), Jiang [13] (2006), Crépey [14] (2011), etc.

Example 1.2.1. (Pricing of contingent claims) In the complete market, the expected return
of a contingent claim at the terminal time T can be replicated by a dynamic portfolio, where
the solution Y and Z can be represented as its wealth process and the related hedging strategy
respectively (see e.g. El Karoui and Quenez [15] (1997), El Karoui et. al [4] (1997)). For the
case of the incomplete market, El Karoui and Quenez [16] (1995) studied that for a contingent
claim, there exists an upper process which can be obtained as the increasing limit of a sequence
of processes associated with the solutions of non-linear BSDEs. More can be found in El Karoui
[17](1997), Buckdahn and Hu [18] (1998), Kohlmann and Zhou [19] (2000), etc.

We consider a complete market model consisting of a riskless asset and a risky asset with the
following price process:

dS; = ytStdt + 03S:dBy, t e [0, T]

The strategy mt; is the amount of money invested in Sy at time t. The investor can borrow or lend
money at a riskless rate r. Y is the wealth process obtained from trading with a self-financing
strateqy 7t and a riskless asset in the market. Then we can obtain

dYt :%dSt + Vt(Yt — ﬂt)dt
t
:(I”th + 7Tt(,ut — Tt))dt + 71:0+d By, t e [O, T]

Suppose that we want to construct a portfolio with a final payoff ¢ at the terminal time T (for
example European call option). We plan to get the minimal amount of Yy so that we can cover ¢
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by a strategy 7t at the terminal time T, i.e. YT = ¢. Consider the BSDE (1.2) as below:

T T
Yi=¢— /t (rsYs + 75 (ps — 1s) ) ds — /t ns0sdBs,  t€10,T], (1.2)

where (Y, 1) is the solution of the BSDE (1.2). Set Z = 7o, the BSDE (1.2) can be transformed
into the following form:

T Us — Ts r
Y; =¢ —/t <rsYS + > Zs> ds —/t ZsdBs, te [0, T). (1.3)

S

The BSDE (1.3) has an explicit solution:

Y, = EQ [ée‘ ftT rsds

]-"t] , te€[0,T],

where Q is the risk-neutral measure.

Example 1.2.2. (Stochastic control problem) Bismut [1] (1973) studied the maximum prin-
ciple in a stochastic optimal control problem by a linear BSDE approach. See more in Peng [20]
(1993), Hamadene and Lepeltier [21] (1995), etc. Consider the following controlled function:

{ dX? = b(t, Xy, v1)dt + o (t,X¢,01)dB;,  t€[0,T); ",

U __
Xo—x.

A feasible control (v;)o<i<T is a continuous adapted process valued in a compact set V € RY.
Denote by V the set of the feasible controls. Our aim is to maximize the objective function below:

T
J(0) = [s(x3) + [ £06,x7,00dB:].
Define the following Hamiltonian function:

H(t,x,p,q) =b(t,x,0)p+o(tx,0v)g+ f(tx,0).

We can get the associated BSDE:

* T * T
Pr= 9:g(X7) + / 9 H(t, X7, Py, Qs )ds — / Q.dBs, tel0,T),

t t
where the optimal control v* is given by

v* =argmax H(t, X{, v, P, Q).

veV

Example 1.2.3. (Representation of non-linear f-expectations) Peng [22] (1997) intro-
duced the notion of f-expectation. We first give the definition of the non-linear expectation:

A nonlinear expectation € : L> — R is an operator, such that
o X <Y = E[X]<E[Y], moreover, X =Y < E(X)=E(Y), P —as,;
e forany constantc € R, £(c) =c.
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Apart from the property of linearity, f-expectations preserve all the other properties of classical
expectation. Similarly to the classical case, we can define a related conditional f-expectation
with respect to F. For the BSDE (1.1), the generator f is Lipschitz uniformly in (Y, Z), More
precisely, the f-expectation for a random variable ¢ is defined as the initial value Y of a classical
BSDE (1.1), i.e. we denote by f-expectation the operator Ef, where Ef (&) = Yo.

Example 1.2.4. (Feynman-Kac representation of PDEs) There is a connection between
semi-linear parabolic equations and BSDEs (see e.g. Nualart and Schoutens [23], Hu and Ma
[24] (2004), Peng and Wang [25] (2016), etc.). Let X be the forward solution with the following
form:

{ dX; = b(t, Xt)dt + U'(t, Xt)dBt, t e [0, T]; (1 5)

X():x.

Denote by L the operator Lo(t,x) = b(t,x)0x0(t,x) + 302(t,x)9%,0(t, x). Let u be the
solution of the PDE (1.6) below:

{ dro(t,x) + Lo(t,x) + f (¢, x,0(t x),000(t,x)) =0, (16)

o(T,x) = g(x).

We can get the solution of the PDE (1.6) by the Feynman-Kac approach with the following
BSDE (1.7). Set Yy := u(t, X¢), Z = oxu(t, Xt), apply the It0’s formula, we know that (Y, Z)
is the solution of the BSDE (1.7) below:

T T
Y, :g(xT)Jr/t f(s,Ys,Zs)ds—/t Z.dB;,  te0,T). (1.7)

This approach allows us to replace the numerical schemes for PDEs with BSDEs by Monte
Carlo simulation (especially in higher dimensions). Similarly, we can also solve BSDEs by the
viscosity solutions of PDEs.

1.2.1 Backward Stochastic Differential Equations with Jumps

In connection with optimal stochastic control, Tang and Li [26] (1994) considered the
following form of BSDE (1.8) driven by a Brownian motion and an independent Poisson
random measure ji:

T T T
Yt=c+/t f(S/Ys/Zs/Vs)dS—/t stBs—/t /]EVs(e)ﬁ(ds,de), te[0,T], (1.8)

where fi is the compensated measure associated with p. Suppose that the filtration is
generated by the following two mutually independent processes:

e ad-dimensional standard Brownian motion B := (B;)>0;

e a Poisson random measure y on Rt x [E, where E := R*\ {0} is equipped with
its Borel fields £, with compensator y(dt, de) = dtA(de), such that {fi([0,t] x A) =
(u —v)([0,t] x A)}o<t<T is a martingale, for any A € £ satisfying A(A) < co. The
measure A is assumed to be o-finite on (I, £) satisfying [, (1A [e[*) A(de) < oo.
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It was first introduced by Tang and Li [26] (1994), then Barles et al. [27] (1997) proved
the existence and uniqueness theorem under the smooth square integrability assump-
tion and the Lipschitz condition, they also studied the relation with integral-partial
differential equations. More can be found in Buckdahn and Pardoux [28] (1994), Situ
[29] (1999), Hassani and Ouknine [30] (2002), Yin and Situ [31] (2003), Becherer [32]
(2006), etc.

1.2.2 Reflected Backward Stochastic Differential Equations with One
Obstacle

Reflected BSDE with one continuous lower reflecting obstacle driven by a Brownian
motion was first considered by El Karoui et al. [33] (1997). A triple (Y,Z,K) :=
(Y:, Zt, Kt )o<t<T is a solution of the RBSDE (1.9) with the generator f, the terminal value
¢ and the lower obstacle L:

() Yi=¢&+ [[f(s,Ys, Zs)ds + Kr — K¢ — [, ZsdBs, t€[0,T];
(i) Ye>1Ly, te€l0,T]; (1.9)
(iii) [ (Y; — Ly)dK; = 0,

where K is a continuous increasing process to push upward the process Y above the
obstacle L in a minimal way, the constraint (iii) expresses the fact that K; only increases
when Y; = L;. The obstacle L satisfies L € 35(0, T;R) and Lt < &r. El Karoui et al.
[33] (1997) proved the existence and uniqueness of RBSDEs under the smooth square
integrability assumption and the Lipschitz condition through the two methods below:

e Penalization method: they considered the following classical penalized BSDE:

T T
Yt”:<§+/ f(s,Y;’,Z;l)derK’Tl—K{’—/ Z'dB,, te[0,T],
t t

where ;
Kl = n/ (Y — Ly)~ds.
0

The comparison theorem for BSDE (Pardoux and Peng [2]) implies the conver-
gence of the sequence (Y"),>o, where Y" < Y"*1. There exists an F-adapted
solution (Y, Z, K), which is the limit process of (Y”, Z", K") in the following sense:

lim E

n—o0

T
sup |Yf—Yt|2+/ |Z" — Zg|?ds + sup |K!' —K;|?| =0.
0<t<T 0 0<t<T

e Snell envelope method: at each step of a Picard-type iterative procedure, any
solution of the RBSDE with one obstacle is also the value of an optimal stopping
problem.

After that, Hamadene and Ouknine [34] (2003) studied RBSDE with one obstacle driven
by a Brownian motion and an independent Poisson random measure, and gave the
existence and uniqueness theorem. Hamadéne [35] (2008) and Essaky et al. [36] (2008)
studied RBSDEs with one obstacle under different conditions. RBSDE with one obstacle
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can be applied in the pricing problem for American options (see El Karoui et. al [37]
(1997)). See more in Kobylanski et. al [38] (2002), Peng and Xu [39] (2010), Essaky and
Hassani [40] (2011), etc.

1.2.3 Reflected Backward Stochastic Differential Equations with Two
Obstacles

Cvitanic and Karatzas [41] (1996) first studied reflected BSDE with a continuous con-
tinuous lower obstacle and a continuous upper obstacle under the smooth square in-
tegrability assumption and the Lipschitz condition. A quadruple (Y,Z,K*,K™) :=
(Yt, Zt, K7, K, )o<t<r is the solution of the RBSDE (1.10) with the generator f, the ter-
minal value ¢ and the obstacles L and V:

(

(i) Ye=¢+ ] f(s, Y Zo)ds + (Kf — K) — (K7 — K7)
— [ Z:dB;, t € [0,T];

(ZZ) Vi>Y: > Ly, t e [0, T],

| (i) [y (Vi = L)dK; = [i (Vi = Yy)dK] =0.

(1.10)

where K™ and K~ are continuous increasing processes, K™ is to keep Y above the lower
obstacle L, while K™ is to keep Y under the upper obstacle V. When V = coand K™ =0,
we obtain a RBSDE with one lower obstacle (see Section 1.2.2). Cvitanic and Karatzas
[41] proved that at each step of a Picard-type iterative procedure, any solution of a RB-
SDE with two obstacles can also be represented as the value of a Dynkin game (Dynkin
and Yushkevich [42] (1969)). They further applied the penalization method and estab-
lished the existence and uniqueness theorem of RBSDE (1.10) under a condition that the
obstacles can be approximated by semi-martingales with absolutely continuous finite
variation parts.

The existence of a solution of a RBSDE with two obstacles was obtained under one
of the following two assumptions:

A.1 One of the obstacles L and V is regular (see e.g. Cvitanic and Karatzas [41] (1996),
Hamadene et al. [43] (1997);

A.2 Mokobodski’s condition, which requires that a process exists which is the differ-
ence between two non-negative super-martingales and lies between the obstacles
Land V (see e.g. Hamadeéne and Lepeltier [44] (2000), Lepeltier and Xu [45] (2007).

However, both of these two conditions have disadvantages, A.1 is somewhat restrictive,
A.2 is difficult to verify in practice. See more in Bahlali and Mezerdi [46] (2005), Essaky
et. al [47] (2005), Hamadeéne and Hdhiri [48] (2006), Xu [49] (2007), etc.

1.2.4 Anticipated Backward Stochastic Differential Equations

A new type of BSDE, called anticipated BSDE whose generator includes the values of
both the present and the future, was introduced by Peng and Yang [50] (2009), with the
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following form:

i) YeSi0,T+T%R), Ze LE0,T+T5RY;

iy Yi=cr+ [l f(s,Y,Y, Lo(s)r Zss Zs s (s) ) s — [l 7B, telo,T;
i) Yy=¢, te(T,T+T;

iv) Zi=a, te(T,T+T,

(
(
: (1.11)
(

where the anticipated processes ¢ and « satisfy the assumption H 2.1, the anticipated
times ¢! and 62 satisfy H 2.2, the generator f satisfies the Lipschitz condition. Peng and
Yang [50] gave the existence and uniqueness theorem and the comparison theorem for
anticipated BSDE (1.11), showed the duality between anticipated BSDEs and stochastic
differential delay equations. Qksendal et al. [51] (2011) extended this topic to ABSDEs
driven by a Brownian motion and an independent Poisson random measure. Jeanblanc
et al. [52] (2017) studied ABSDEs driven by a Brownian motion and a single jump
process (with a jump at time 7). More can be seen in Wu et. al [53] (2012), Lu and Ren
[54] (2013), Yang and Elliott [55] (2013), Yang and Elliott [56] (2016). etc.

1.2.5 Numerical Algorithms for Backward Stochastic Differential Equa-
tions

Chevance [57] (1997) provided the numerical methods for backward stochastic differen-
tial equations, [57] used the random time discretization scheme introduced by Bally [58]
(1997) for the discrete algorithms and theoretical convergence proof. Ma and Zhang [59]
(2005), Bouchard and Chassagneux [60] (2008) studied the representations and regulari-
ties of discrete RBSDE. Peng and Xu [61] (2011) studied numerical algorithms for BSDEs
driven by Brownian motion. Gobet and Turkedjiev [62] (2011) used the least-squares
regression method for the approximation of discrete BSDE. Xu [63] (2011) introduced a
discrete penalization scheme and a discrete reflected scheme for RBSDE with two ob-
stacles. Later Dumitrescu and Labart [64] (2016) extended to RBSDE with two obstacles
driven by Brownian motion and an independent compensated Poisson process. Lin
and Yang [65] (2014) studied the discrete BSDE with random terminal horizon.

1.2.6 Stochastic Differential Delay Equations

Stochastic differential delay equation (SDDE) is a new kind of SDE with coefficients
containing present and past values of the solution process X. SDDEs can be applied
in the area of finance, where the delay part can represent the memory or inertia in the
financial system. It can also be employed in the area of biology, delays occur natu-
rally in population dynamics models, e.g. the optimal harvesting problem of biological
systems. SDDE was first introduced by It6 and Nisio [66] (1964).

X =1; (1.12)

dXs = f(s, Xs, Xs_s)ds + g(s, X5, Xs_5)dBs, s € [t, T+ 6];
XS:O, SE[t—&,t).
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where coefficients f and g satisfy local Lipschitz condition and linear growth condition.
Mohammed [67] (1984) and Mao [68] (2007) gave the existence and uniqueness theo-
rem of the following SDDE driven by a Brownian motion by the standard technique
of Picard’s iteration. Buckwar [69] (2000), Baker and Buckwar [70] (2000) studied the
numerical algorithms for SDDEs.

1.3 Backward Stochastic Differential Equations with De-
fault Risk

Default risk is the risk that an investor suffers a loss due to the inability of taking back
the initial investment, it arises from a borrower failing to make required payments.
The loss may be complete or partial (more see Kusuoka [71] (1999), Elliott et al. [72]
(2000)). Blanchet-Scalliet and Jeanblanc [73] (2004) provided a concise exposition of
theoretical results that appear in the defaultable model. Jeanblanc and Le Cam [74]
(2009) proposed a study of the set of equivalent martingale measures in the context of
credit modeling. Peng and Xu [75] (2009) studied BSDEs with default risk. Jiao and
Pham [76] (2011) studied the optimal investment with counterparty risk. Song [77]
(2014) studied the optional splitting formula in a progressively enlarged filtration and
developed practical sufficient conditions for validity in the defaultable model. Jiao et
al. [78] (2013) continued the research on the optimal investment under multiple default
risk through a BSDE approach. Cordoni and Di Persio [79] (2016) studied the BSDE
with delayed generator in a defaultable setting. In this paper, we focus on the study of
reflected anticipated BSDE with two obstacles and default risk.

Peng and Xu [75] (2009) gave the existence and uniqueness theorem and the related
comparison theorem for the following BSDE (1.13) with default risk in the enlarged
filtration G:

T T T
Y, =&+ / F(s,Ys) Zs, Us)ds — / Z,dB, — / UdMs, tel0,T].  (113)
t t t

In the defaultable financial market, the terminal value ¢ represents a contingent claim
aimed to be replicated at the terminal time T, (Z, U) represents the hedging strategies.

1.3.1 Basis of the Defaultable Model

Lett = {7; i = 1,2,.., k} be k non-negative random variables on a probability space
(Q), G, P) satisfying

P(; >0)=1 P(>t)>0,Vt>0;, P(=71)=0, i#]

For each i (i = 1,...,k), we define a right-continuous default process H' := (H});>q

by setting H} := 17, and denote by H' := (H});>0 the associated filtration 7} :=
o(Hi; 0 < s < t). We assume that J is trivial (it follows that G is trivial as well).
For the fixed terminal time T > 0, there are two kinds of information:

e one is from the assets prices, denoted by F := (F¢)o<t<T;

e the other is from the default times {7; i = 1, ..., k}, denoted by {H; i=1,..k}.

8
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Barlow [80] (1978) presented a martingale approach to work on the decomposition
of a process into its past and future relative to a random time and studied the related
enlarged filtration. Al-Hussaini and Elliott [81] (1987) studied the enlarged filtrations
for diffusions. Song [82] (2013) provided the local solution methods for the problem of
enlarged filtrations. Jeanblanc and Song [83] (2015) considered the martingale repre-
sentation property in progressively enlarged filtrations.

For the defaultable model, the enlarged filtration is denoted by G := (Gi)o<t<T,
where G; = F; V ?—[1 V..V Hk Generally, the processes H ‘ (i =1,..., k) are obviously G-
adapted, but they are not necessarﬂy F-adapted, i.e. a G- stoppmg time is not necessar-
ily an F-stopping time. Let G := G;, where G; = P(t > t|F}), ie. Gl = P(1; > t|F),
for each i = 1,.., k. In the following, G' is assumed to be continuous. The random
default times T; are totally inaccessible G-stopping times.

We introduce the following assumptions (see Kusuoka [71] (1999), Bielecki et al. [84]
(2007)):

H 1.1. There exist F-adapted processes v >0 (i=1,..,k), such that

. . t .
M = Hi = [ 1(o7ids
are G-martingales under IP.

H 1.2. Every F-local martingale is a G-local martingale.

For the sake of simplicity, we denote
12 g\ T 1 22 K\’
Hy = (Ht,Ht,...,Ht> ;o M= (Mt,M,...,Mt> ;
T
Loyt = (1{T1>t}7}z1{T2>t}’7t2/---z1{rk>t}7'f> :

where (- ) is the transpose.

Remark 1.3.1. (Interpretation of intensity) Bielecki et al. [84] (2007) studied the G-intensity
of the default times 7; (i = 1,..., k) and gave the explicit formula to compute it. From the sub-
martingale property of G and the Doob-Meyer decomposition theorem, we know that G =
Z'+ Al, where Z' is an F-martingale and A’ an F- predzctable increasing process. Since the
process G' is assumed to be continuous, from Proposition 3.1.2 in Bielecki et al. [84], it follows
that the process M' is a G-martingale independent of the Brownian motion B,

: ! dA!
M;:H;—/O oo poods tE0T].
S

Suppose that the increasing process Al is absolutely continuous with respect to the Lebesgue
measure, then there exists an F-adapted process y* which is called as the intensity process, such
that .
dA;

Edt.

1-Gi

i

V=
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From Lemma 3.1.5 in Bielecki et al. [84], it follows that the intensity process <y has the following
form

, te|0,T|.
A0 AP(7 > t|Fr) 0,7]

1.3.2 Some Results for BSDEs with Default Risk

Peng and Xu [75] (2009) introduced the following assumptions for the terminal value
and the generator:

H 1.3. The terminal value ¢ € L?(GT;R).
H 1.4. The generator f(w,t,y,z,u) : QO x [0,T] x R x R? x R¥ — R, satisfies:
(@) f(-,0,0,0) € L5(0, T;R);

(b) Lipschitz condition: for any (t,y,z,u), (t,y,2',u") € [0,T] x R x R? x RX, there
exists a constant L > 0 such that

Flty,z )= (Y 2 ) S L(ly =y |+ 2= 2|+ |u— |1y v
() forany (t,y,z) € [0, T] x R x RY, (' — @)1 5i-4y7; # O, the following holds:

fltyz i) = flbyza)
(u' — al)l{ri>t}%

1 52

where ii' = (', d>,..., @, u' ™, ..., u), ul is the i-th element of u.

Then we introduce the existence and uniqueness theorem (Theorem 3.1 in Peng and
Xu [75]).

Theorem 1.3.1. (Existence and uniqueness theorem for BSDEs with default risk) Sup-
pose that the terminal value ¢ and the generator f satisfy the assumptions H 1.3 and H 1.4 (a),
H 1.4 (b). Then the BSDE (1.13) has the unique triple solution (Y, Z,U) € SZ(0,T;RR) X

L2(0, T;RY) x LZ7(0, T; RF).

Peng and Xu [75] also gave the comparison theorem for 1-dimensional BSDEs with
default risk (Theorem 3.2 in [75]), where it needs the assumption H 1.4 (c) for u.

Theorem 1.3.2. (Comparison theorem for BSDEs with default risk) Suppose that the ter-
minal value ¢ and the generator f satisfy the assumptions H1.3and H14. f € Eé(O, T;R).

(Y, Z,U) is the unigue solution of the BSDE (1.13), and (Y, Z, U) is the unique solution of the
following equation:

T _ T _ T _
Yi=¢+ / fsds — / ZsdB; — / UsdMs, t€[0,T). (1.14)
t t t

Ifé > ¢rand f(t, Y4, 21, Us) > fi, ae.,as, then Yy > Y, ace.,a.s. .
Besides, the strict comparison theorem holds true, ie. Yo = Yo < & =&, f(t,Y:, Zt, Uy) = fr.

10
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From Kusuoka [71] (1999), there exists the following martingale representation the-
orem.

Theorem 1.3.3. (Kusuoka’s martingale representation theorem) Suppose that the assump-
tions H 1.1 and H 1.2 hold, for any G-square integrable martingale (@;)o<t<T, there exist the
G-adapted processes 17 : QO x [0, T] — R and p := (u*, 42, ..., u*)T : Q x [0, T] — R, such
that the martingale ¢ has the following unique representation:

t t
pr=E [900] +/O 775st +/O ]/ldes; t e [O/ T]/

where )
‘ -
/Oydes ::Z/O uidM,,  te[0,T],
i=1

and satisfying

T . )
E {/0 <|175|2 + |y§|21{T,'>S}’)/;) ds} <o, i=1,..k

For completeness, we also give we the Itd’s formula for rcll semi-martingale (Protter
[85]).

Theorem 1.3.4. (Itd’s formula for rcll semi-martingale) Let X := (X;)o<t<T be a rcll
semi-martingale, g be a real value function in C2. Therefore, ¢(X) is also a semi-martingale,
such that

$06) =g(X0) + [ /(X )X+ 5 [ g (X)X
© T [9K) - 8K 061K,

where [X] is the second variation of X, [X|€ is the continuous part of [X], AXs = AXs — AX—.

1.4 Dissertation Structure

The dissertation is organized as follows:
Chapter 2 Anticipated BSDEs with Default Risk

In Chapter 2, we study ABSDEs with default risk and its applications. A triple (Y,zZ,U) :=
(Yy, Zy, Uy) 0<t<T4T0 1S a solution of the ABSDE with the generator f, the terminal value

11
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T, the anticipated processes &, « and B, and the anticipated times 5%, 62, 6°, such that
p p p

(i) YeS830,T+T5R), Ze L£E(0,T+T5RY),
U e L37(0, T+ T%RE);
(i) Yy=¢r+ ftTf(S’ Ys, Ys+51(s)' Zs, Zs+52(s)/ Us, us+(53(s))ds
— [ z,dBs — [ UsdM;,  t€[0,T]; (115)
(ZZZ) Y; = gt, t e (T,T—f- Ta],'
(iv) Zi=wa;, te(T,T+T;
(U) U; = [Bt, t e (T,T+ T(s]

\

In Section 2.2, we prove the existence and uniqueness theorem of the ABSDE (1.15).
Section 2.4 illustrates the duality between anticipated BSDEs and the stochastic differ-
ential delay equations (SDDE). Section 2.5 represents an application in stochastic con-
trol problem in the default setting. We study the relation between ABSDEs and obstacle
problems for non-linear parabolic PDEs in a defaultable setting in Section 2.6.

Chapter 3 Reflected Anticipated BSDEs with One Obstacle and Default Risk

In Chapter 3, we study RABSDEs with one obstacle and default risk and the relevant
applications. A quadruple (Y, Z, U, K) := (Y, Zt, Uy, Kt)g<p< 1 7s is a solution for the
following RABSDE (1.16) with the generator f, the terminal value ¢r, the anticipated
processes ¢, « and S, the anticipated times o1 62,53, and the obstacle L, such that

(

(i) YeS&%(0,T+T%R), Ze LE(0,T+T%RY),
u653w€+TMMLKeAaaﬂRx

(i)  Ye=Cr+ [p f(s,Ys, Yors1(s) Zss Zsror(s)r Us Us i35 ) d3
+Kr —K; — [ ZdBs — [ UsdM;,  t€[0,T];

(iii) Y, >L, telo,T]; (1.16)

(iv) Yy,=¢&, te(T,T+T;

(v) Zi=ay, te(T,T+T;

(vi) U;=p;, te(T,T+T;

(vii) [ (Yi — Ly)dK; = 0.

\

In Section 3.2, we use two methods, i.e. penalization method and Snell envelope method
to prove the existence and uniqueness theorem of the RABSDE (1.16). Section 3.3 rep-
resents an application in optimal stopping-control problem in the default setting. We
illustrate the relation between linear RABSDEs with one obstacle and stochastic differ-
ential delay equations in a defaultable setting in Section 3.4.

Chapter 4 Reflected Anticipated BSDEs with Two Obstacles and Default Risk
In Chapter 4, we study RABSDEs with two obstacles and default risk and the relevant

applications. (Y,Z,U,K",K™) := (Y;, Z, Uy, K:F,K;)Ogtgprps is a solution for RAB-
SDE with the generator f, the terminal value {1, the anticipated processes ¢, «, 3, the

12
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anticipated times o1 62, 63, and the obstacles L and V, such that

(i) Y eSi0,T+T%R), Ze LE(0,T+T%5RY,

U e L“(o T+ T%RF); K* € A%(0, T;R);
(i) Ye=&r+ f Fs Yo Yernne) Zo, Zs+52<s>f Us, Uy 53(s) ) ds

+(Kf =K = (Kp =K ) — [ ZdBs — [ UsdMs, £ € [0,T);

i) Vi>Y,>L, te[0,T; (1.17)
(iv) Yi=¢&, te(T,T+T;
(’0) Zy = «y, t e (T,T+ T(S],'
(vi) Uy=B;, te (T, T+T;
(vii) [i (Vi — L)dK;" = [ (Vi — Y;)dK; = 0.

\

In Section 4.2, we combine the penalization method and the fixed point method to
prove the existence and uniqueness theorem of the RABSDE (1.17). We represent the
relation between linear RABSDEs with two obstacles and stochastic differential delay
equations in a defaultable setting in Section 4.3. Section 4.4 illustrates the relation be-
tween RABSDEs and obstacle problem for non-linear parabolic PDEs in a defaultable
setting.

Chapter 5 Numerical Algorithms for RABSDEs with Two Obstacles and Default
Risk

In Chapter 5, we study numerical algorithms for RABSDEs with two obstacles and de-
fault risk. We introduce the implicit and the explicit versions of two discrete schemes,
i.e. the discrete penalization scheme in Section 5.2 and the discrete reflected scheme in
Section 5.3. Section 5.4 completes the convergence results of the numerical algorithms
which were provided in the previous sections. In Section 5.5 and Section 5.6, we illus-
trate the performance of the algorithms by a simulation example and an application in
American game options in the defaultable setting.

5.2.1 Implicit Discrete Penalization Scheme

v ylﬂ + (" g 2 A Tk
zV” ”AB;l+1 —ul’ ”AMfH, € [0,n—1];
Lok ), e -1
ki "= pAt "=V, ielon—1];
Ly =8 i € [n,n’],

13
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5.2.2 Explicit Discrete Penalization Scheme

(g =gl B ) T Al A kP — kP
5P nABfH ~pnAMZ”+1, ieo,n—1];
o .
k7 =pAr @l -1, iel0n—1];
];:_p — pAn (yl _ ‘/in)+, l c [0,7’1 . 1]’

”p” =, i€ [n,n‘s],

\ i

5.3.1 Implicit Discrete Reflected Scheme

([ oyl = %+1 (Y g 2 ) AT K — kT
TOABL —wAM L ie [0n—1);

v >yt > L, iel0,n—1j;

kK> 0, k" >0, KMkt =0, iel0,n—1];
(v = LK™ = (v =V " =0, ie[on—1];
| yr=ap i € [n,n°.

5.3.2 Explicit Discrete Reflected Scheme

(

gy = 0+ B[ ) g 2 A AT Rk
—Z/AB} ) — ”AMZLP ielon—1];

vegr> L, ieon—1];

k" >0, k" >0, ch"E;”:o, ieo,n—1;

(" — Lk = (" =V =0,  ieo,n—1];

(Ui =& i€ [n,n.

where /" = EY W i=i+ (2]

14



Chapter 2

Anticipated BSDEs with Default Risk

Peng and Yang [50] (2009) introduced anticipated BSDEs whose generator includes the
values of both the present and the future. Jksendal et al. [51] (2011) extended this
topic to ABSDEs driven by a Brownian motion and an independent Poisson random
measure. Jeanblanc et al. [52] (2017) studied ABSDEs driven by a Brownian motion
and a single jump process (with a jump at time 7). More previous research can be seen
in Section 1.2.4.

In this chapter, we study anticipated backward stochastic differential equations driven
by a Brownian motion and a mutually independent martingale in a defaultable setting.
It can be used in financial and other natural models (e.g. population growth), where
people’s memory plays a role in the dynamics system.

This chapter is organized as follows, Section 2.1 states the basic assumptions for AB-
SDEs with default risk. In Section 2.2, we prove the existence and uniqueness theorem
of the ABSDE (2.1). Section 2.4 illustrates the duality between anticipated BSDEs and
the stochastic differential delay equations (SDDE). Section 2.5 represents an application
in stochastic control problem in the default setting. We study the relation between AB-
SDEs and obstacle problems for non-linear parabolic PDEs in a defaultable setting in
Section 2.6.

2.1 Basic Assumptions

In this Chapter, we consider the following ABSDE with default risk and the coefficient
(f, & a,B,6',6%6%). Atriple (Y, Z,U) := (Y3, Zt, Ut) g< <710 is a solution of the ABSDE
with the generator f, the terminal value {7, the anticipated processes ¢, « and 8, and
the anticipated times o1, 62, 53, such that

(i) YeSZ0,T+T%R), Ze LE(0,T+T5RY),
Ue Ly (0,T+T%5RE;
(i) Yr=¢r+ ftTf(Sf YS’Y5+(51(S)' ZSrZs+52(s)/ Us, us+(53(s))ds
— [ zdB, — [T UdM;,  te[0,T); 1)
(iii) Y, =&, te(T,T+T°;
(iv) Zy=wy, te(T,T+T;
(v) Uy=By, te(T, T+T.

\

We first introduce the following assumptions for the ABSDE (2.1) (Peng and Yang [50]):
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H 2.1. The anticipated processes § € L3(T, T+ T%5RY), a € LE(T, T+ T%R?), B €
EZQ’T(T, T + T%;RF), here & a and B are the given processes.

H2.2. 5'(), 6%(-) and 53(-) : [0, T] — R* are continuous functions satisfying:
(a) there exists a constant T° > 0, such that forany t € [0, T):

E+OM () < THT°, t4+8*(t) <T+T°, t+8(t) <T+T%

(b) there exists a constant L° > 0, such that for any t € [0, T] and any non-negative
integrable function g(-):
T T+T°
Q(s)ds, / g(s +6%(s))ds < L‘S/ Q(s)ds,
t

t

T+T°

/tTg(s +6%(s))ds < L‘s/

t
T+T0

T
/ g(s +0%(s))ds < L‘S/ g(s)ds.
t t
H 2.3. The generator f(w,t,y, s, z,Zr,u,0y) : Q x [0, T + T‘S] x R x Sé(t,T + T%R) x
RY x L2(t, T + T%RY) x RF x LX7(t, T+ T4 RF) — R satisfies:

(a) f(-,0,0,0,0,0,0) € £L(0, T+ T%R);

(b) Lipschitz condition: foranyt € [0,T),r € [t, T+ T°],y, ¥ € R,z,2 € R, u,u’ €
R 5,5 € S(t, T+T%R), 2,2 € L(t, T+ T4RY), i, 1’ € LH (T +T%RE),
there exists a constant L > 0, such that

}f(t/ y/ ]Zr/ z, ZI’/ u, ar) - f(t/ ]//,]7;; Z// Z:‘/ u// I/_l;,)‘
<L(ly -y +E5, — 71l + |2 — 2| + B[z, — 2

= o [y /77 + B9y = 11y V1)

(c) foranyt € [0, T),r € [t,T+T°],y,y € R,z 7 € RY, u, u' € Rk, 7,7 € Eé(t, T+
T%;R), z 7 € Ezg(t, T+T%RY), a,a € Eé’T(t, T + T°;R¥), the following holds:
71/ IZT) —f(t/y/y_rzzzzr/ ﬁil er)

f(t/ y/ 91’/ Z/ 21’/ ui
F— )iy

> —1,
(u

where i’ = (at, 2, ..., it uitl uk), u' is the i-th element of u.

Remark 2.1.1. U := (Uy)o<¢<T is well defined only on [0, T AT] N {t; v+ # 0}, i.e. dM; =0
on [TAT, T|U{t; v+ = 0}.

Remark 2.1.2. For any t € [t AT, T|, the generator is independent of u, i.e. we have
f(t,y,9r,2,2r,u,1,) = f(t,Y,9r,2,2). The financial explanation is that contingent claim
is no longer influenced by default risk after the default has taken place.
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2.2 Existence and Uniqueness Theorem for ABSDEs with
Default Risk

We first introduce the following approximation lemma (Lemma 3.1 in Peng and Xu [75]
(2009)).

Lemma 2.2.1. For a fixed & € L?(Gr;R), let g(t) be a Gi-adapted process satisfying

T 2
E ([ lsr) <o
there exists a unique triple of processes (y,z,u) € £2g (0, T, RY™4), satisfying the BSDE below:
T
yi=C+ / s)ds — / 24dBs — / usdMs,  teo,T). 2.2)
t t

Ifg € Eé(O, T;IR), th.en (y.,z.,u.) € Sé(O, T;R) x Eé(O, T;RY) x EZQ’T(O, T; R¥). We have
the following basic estimation:

T c
‘ytlz _|_]Egt |:/t oC(s—t) (_‘ySF + |Zs’2 + |us|21{r>s}’)/5> d8:|

(2.3)
<E9 [eT01g2] 4 2 [ B9 [ e Dg(s) .
t
In particular,
2 T cs 1 2 2 2
o+ | [ e (Gt sl + Py 2 ) ]
5 T (2.4)
< cT|x|2 = / cs 2
<k [T + 28 | [ elgto) s
where ¢ > 0 is an arbitrary constant. Moreover,
sup y:|*| < KE [\612 / lzds} (2.5)
0<t<T

where K is a constant depending only on T.

Now we use the fixed point method to obtain the existence and uniqueness theorem
for anticipated BSDEs with default risk in the general frame.

Theorem 2.2.1. (Existence and uniqueness theorem for ABSDEs with default risk) Sup-
pose that the anticipated processes ¢, « and B satisfy the assumption H 2.1, the generator f
satisfies H 2.3 (a) and H 2.3 (b). 61, 6% and &3 satisfy H 2.2. Then ABSDE (2.1) has the unique

triple solution (Y, Z,U) € SG(0, T+ T%R) x LZ(0,T + T; RY) x £2g’T(O, T + T%RF).
Proof. Define D := S3(0,T + T%R) x £Z(0, T + T%R?) x LZ(0, T + T R¥). Define

the following mapping:
d: DD

17



Chapter 2. Anticipated BSDEs with Default Risk

(y,z,u) = ®(y,z,u) = (Y, Z,U).
First, we prove that ® is a contraction mapping. Set

( Yi= Cr+ ftTf(S/yS'ys—i-(Sl(s)/ZS/ Zs+52(s)/usfus+(53(s))ds
— [ zsdB, — [T UdM;,  te[0,T);
o= & te(T,T+T; (2.6)
Zi= &, te(T,T+T;
u; = ,Bt/ t e (T,T—f—T(s]

For any (y,z,u), (y,z',u’") € D, denote:

=y—y;, 2=z-2; N=u—u;
=Y-Y;, Z=7-Z7; u=u-u.

Applying the Itd’s formula for rcll semi-martingale (Theorem 1.3.4), we can obtain
T
Yol + [ e (el Faf? + |26 + |01 sy s ) s
-2 /OT eCSYS}f(s,ys,ys+51(s),zs,zs+52(s),us, us+(53(s))
— f(8: Y5 vy m (S),z;, Z;—I—(Sz(s)’ us, ”;+53(s)) |ds
—2 /O TeCSYSZSdBS — /O Tecs <2YS_US + |f15|2) dMs,

where ¢ > 01is a constant. Since fOT eCSYS(n)ZS(n)dBS and fOT e’ <2YS@ fls(n) + |Us(n) |2> dM;

are G-martingales, |Y(§n) \2 > 0, by the Fubini’s Theorem, H 2.2 and the Lipschitz condi-
tion for the generator f, it follows

]E/TeCS(EIY]2+\Z\2+]CI]21 1) ds
0 2 s s s {T>S} s

T A
gzlE [/ €Y,
c 0

f (S, YsrYs151(s)r Zsr Zs4-52(s)r Uss us+(53(s))

2
oY1 o e W W) | 5

212 T i [1n X . .
ST]E[/O e[ Y| (|y5| + ]Egs|ys+51(s)| + |2 +]Egs|zs+52(s)|
2
+ |85 1oy /s + ]Egs|ﬁs+53(s)|1{r>s}\/%> ds]
1212

T
gT]E [/0 e (|}25|2 + |25|2 + |ﬁ5|21{1>s}75) ds}

1212L° T+T° X ) )
+ B[ e (106P # 8P [P ) s

1202 + 121218 _ (T+T ) \ .
<SRBT 1) ).

18



2.3. Comparison Theorem for 1-dimensional ABSDEs with Default Risk

where L > 0, L° > 0 are constants. Set ¢ = 12L? + 12L?L° + 2, consequently,

T+T° Civ 152 112
E /0 e <§|Y5| +1Zs]° + |US| 1{T>s}’)’5) ds
1 T+T° A A .
<E /O e (Iysl2 + |52 + |Ms|21{r>s}’rs) dS] :

Therefore, ® is a contraction mapping on D equipped with the norm defined as below:

1Y, Z, ) = {IE [

From the Banach fixed point theorem, there exists a unique fixed point (Y,Z,U) €
LE(0, T+ T%R) x £2(0, T + T%RY) x LZT(0, T + T% RF), which is the solution of the
ABSDE (2.1). By H2.3 and H 2.2, it follows that f (¢, Y, i1ty 2t Zysrry Ut Ut+53(t)) €
Eé(O, T+ T R), by Lemma 2.2.1, we can obtain that Y € Sé(O, T+ T R). O

)

2
e <|Ys|2 + |Zs|2 + |us|21{r>s}’)/5) ds} .

2.3 Comparison Theorem for 1-dimensional ABSDEs with
Default Risk

Now we give the comparison theorem for 1-dimensional ABSDEs with default risk
(Theorem 2.3.1), which can be used to compare the solutions of two ABSDEs, in order
to get the upper price of a contingent claim in the evaluation or hedging problem. Here
we need the third assumption H 2.3 (c) for u, which is stronger than the conditions for
the existence and uniqueness theorem.

Theorem 2.3.1. (Comparison theorem for ABSDEs with default risk) Suppose that the
anticipated processes ¢V), #(2) satisfy the assumption H 2.1, the generator fy, f» satisfy H 2.3
(a), H 2.3 (b) and H 2.3 (c), ¢ satisfies H2.2. (Y1), z(M) UMW) and (Y2, 22, Uu?) are the
unique solutions of the two 1-dimensional anticipated BSDEs below:

W= e Y, 2 U ds - [ 2B,
— ul'dM,,  teo,T]; 2.7)

Y= & te(T,T+T17,
wherei = 1,2. Forallt € [0,T],r € [t, T+ T°,,yc R, ze R, u c RK, 7,7 ¢ Lé(t,T—f—

T5;1R),f2(t,y,y‘,z,u) is increasing in i, i.e. if j > i, then fo(t,y,,z,u) > folt,y,7,z,u).
The following result holds:

If

M) & #2) 1.
{(1) &' =4, te[L,T+T; 2.8)

(2) fl(tlylgrl ZI Zi’/ l/l, 111’) 2 fz(t/y/yr, Z,Zr, 1/[, I/_lr), T G [T, T + T‘S],
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Chapter 2. Anticipated BSDEs with Default Risk

then, the following holds,
YV >v®,  te(0,T+T, ae, as.

Besides, suppose that f,(t,v,7,z,u) is strictly increasing in i and [T, T+ T°] C {t+6(t),t €
[0, T]}, then the following holds true (strict comparison theorem):
1) ¢V=¢?,  te[T,T+T
- 1 1
Yo=Y < { ) ALY, ),Yt(+)5( o2 ut)
1 1
= AV 20 ), el
Proof. Define the following BSDE (2.9):
2 T 3) (1
&+ [ fals v Ys:(+)(5() 29, u)ds — [ 28,
— [TuPam,,  telo, T], (29)
e? te(T,T+T).

From Theorem 2.2.1, there exists a unique G-adapted solution (Y(3), Z (3), U(?’)) < Sé (0, T+
T R) x £2(0, T; R?) x £LZ7(0, T; R¥) of the BSDE (2.9). Then we set

fe=fi e Y 0, 20 ) = ey 20 u);

7 T t46(s)” 7 T t4-5(s)”
v =y —y?); 7 =279 - 20,
o-uf-u® a=g -

Consequently, (Y, Z,U) can be regarded as the solution of the linear BSDE (2.10):

Y= ¢r+ ftT (asYs + bsZs + csUs + f5)ds — ftT Z.dBq
- ftT UsdM;, te]0,T]; (2.10)
Yi= &, te(T,T+T,

where
(D) 1) (1) (1) (3) (1) (1) ;1)
A 2w ) =R (P i 2 ab) YOy,
= vy , t<1) t(3>,
0, Y, =Y,";
(3) 1) 1) ;1) (3) y(1) (3) ;)
) AP Y020 ) 2‘f2(3';'Yt Vg4 u) 20279
i 2
0, zM=7®);
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2.3. Comparison Theorem for 1-dimensional ABSDEs with Default Risk

N R )
i

b= (ut(1>i_ul‘(3)i)1{ri>t}7t
0/ (ufl)l_ut(3)l)1{Ti>t}’7£:0/

1)i 3)i i .
, (uf uy? )1{Ti>t}71t7é0’

here U’ = (U(3)1, u®z  y®i g+t U(l)k), Ui is the i-th element of uw,
Since f, satisfies the Lipschitz condition, thus, |a;| < L, |b;| < L and ¢} > —1. Set

t t 1 gt t t
Q= exp{/o asds—i—/o bsdBs — E/o bgds—l—/o In(1+ cs)dHs —/0 csl{DS}fysds}.

Applying the Ito formula for rcll semi-martingale (Theorem 1.3.4) to Q;Ys, it follows

dQsYs =— Qs (CSU51{1>5}')’5 +fs) ds + Qs (Zs + bsYs) dBs
+ Qs (Us + CSYS—) dMs + Qs—CsYs—st
= — Qsfsds + Qs (Zs + bsYs) dBs + Qs— (Us + ¢sYs— + csUs) d M.

Integrate from ¢ to T, and taking conditional expectation on both sides, since O:Yr =
¢t >0, fs > 0, we can obtain

T
Q;Y; = EY {QTYT—F/ stsds} >0, a.e.,a.s. (2.11)
t
Hence,
YV >Y®,  ae,as. (2.12)
Then, define the following BSDE (2.13):
4 2 T 4) (3
v = C(T)+ft 25, Y ¥y, 20 U s — [T 2,
- [fulam,  teoT); (2.13)

Y = &, te(T,T+T).
Similarly to the proof of (2.12), we can deduce
Yt(3) > Yt(4), a.e., a.s. (2.14)
Forn = 5,6, ..., we consider the following BSDE:

2 T -1
e 4 ft fg(s vl 2, ulyas — [z a,
—ft MaM,,  te 0, T);
Ct , te (T, T+T°.
By induction on nn > 5, similarly, we can obtain
Y2y >y > >y e as. (2.15)
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Chapter 2. Anticipated BSDEs with Default Risk

For any n > 4, denote
vy — ym) _ym=1). 5 _ 7zn) _ 70-1). ) — g0 _qpn=1),

By Lemma 2.2.1, we can obtain

~(n T C . v(n 5 (n ~(n
E|Y >\2+1E[/0 e (S 212072 4 100 sy v )

2 T (n) (n=1) (n) ;(n)
SEIE[/O e fas, Vs, Vg Zs o UsT)
— fals, YU R 2 ”)) ds|
2L2 T R
Gs
<71EU0 eCS(\Y |+ B+ 1287+ 10 sy v >ds}
8L2 T o) 2 | a2 )2
<SR[ [T e (1HP 4 200 + |0 P sy ) ]
276 T+T° N
_|_8L L lE/ eCS|YS(”_1)|2dS
8L2 ,
]E/ (n)|2+|Z |2—|—|U |21{T>S}’)/S> ds

8L2L° (=
+ ]E/ eCS|YS(n 1)|2ds.
c 0
Set ¢ = 2412 + 2412L° + 3, it follows
2 T - N N
5]E/ €S <|Ys(i’l)|2+ |ZS(7Z)|2 4 |us(n)|21{‘t>s},)/5> ds
0
1 T s
g—]E/ e V"V s
1) 1)
< [ (HIP 4 2P 4100 DLy
Hence, ,
]E/O oS (\Ys(n)|2_i_ |Zs(n)’2+ |l:[s(n)‘21{r>s}')’5> ds
n—4 T
< (L ]E/ e <|174|2 + |23 + U811 ’ys> ds.
=13 0 s s sl H{r>s}

Then we know that (Y.(n))n24, (Z.(n))n24 and (U.(n))n24 are Cauchy sequences on the
Banach spaces L’é(O, T+ T%R), L’é(O, T; R4 ) and EZQ’T(O, T; IRk) respectively. Let Y, Z
and U be their limits respectively. Since the generator f satisfies the Lipschitz condi-
tion, when n — oo, we can obtain
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2.3. Comparison Theorem for 1-dimensional ABSDEs with Default Risk

T
]E / eCS
0

2w [T s (1) 2 (n) 2 (n) 2
<4L ]E/() e <|YS —Ys| +|ZS —Zs| +|us _US| 1{‘[>s}’)’s>d5

2

F (s, Y, YN 70 Ul — fo(s, Ve, Yoyogs) Zso Us) | ds

7 Ts+4(s)

T
+ 4121 / SV _y, 2ds — 0.
0
Therefore, (Y, Z, U) satisfies the following anticipated BSDE:
Yi= &+ [T fo (5 Yo Yora(s) Zo Us ) ds — [T ZedB
— [TudmMs,  teo,T);
o= &%, te(T,T+T.

By Theorem 2.2.1, we know that (Y, Z, U) is the unique solution. Hence,

Y, = Yt(z), a.e.,a.s.

4) 2)

Combining (2.12), (2.14) and (2.15), it follows that YV > v > v >y, = y/?,

consequently,
Yt(l) > Yt(z), a.e.,a.s.

Now we continue to prove the strict comparison theorem.

Step 1. (—>) Suppose that Yél) = éZ). By the comparison theorem for BSDE with
default risk (Theorem 1.3.2), for any ¢ € [0, T|, we can get

1 1 1 1 1 2 1 1
A0 20, 0) = (e, 2, 20, U,

Since Y(gl) > Yée’) > YO(Z), it follows that Yél) = YéS). Again by the comparison theorem
for BSDE with default risk (Theorem 1.3.2), we know

1 1 1 1 1 1 1 1
fl (t, Yt( )/Yt(Jr)(s(t)/Zt( ),Ut( )) :fZ(t' Yt( )rYt(Jr)(s(t)/Zt( ),Ut( )>-

Therefore, it follows

1 1 1 1 1 2 1 1
fZ(tf Yt( )/Yt(Jr)(s(t)/Zt( ),Ut( )) :fZ(tf Yt( )rYt(Jr)(s(t)/Zt( ),Ut( )>'

Forany (t,y,z,u) € [0,T] x R x R? x R¥, f,(t,y,7,z,u) is strictly increasing in , hence,
for any t € [0,T], Yt(i)é( = Yt(izs( 0 In particular, when t € [t t + J], we can get that
£ a@),
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Chapter 2. Anticipated BSDEs with Default Risk

Step 2. (<=) Suppose

(1) ¢§”=c§2>, te [T, T+ T

Yo=Y < (2) ALY, , t(Jlr)(s(t),Z(l),Ut(l))
1 1) 5.1
:fz(t,Yt( ezt ), e,
Then, by (2.11), we get

_ T
Y=y -y = g [QTYT + / Q. fsds]

— E% [QT§T+ / stsds] — 0.

Hence,
1
Yt(): CT +ft (S YS )r S(+)5() () )ds_ft dBS
— [TuPam,, telo,T];
YW = &2 re(T, T+ 1)
By Theorem 2.2.1, we know that Yt(l) = Yt(z), a.e., a.s. In particular, Yél) = Yé2). O

Remark 2.3.1. The comparison theorem for ABSDEs with default risk (Theorem 2.3.1) needs
the third assumption H 2.3 (c) for u and requires that f, is increasing in the anticipated term of

Y. If f contains anticipated terms of Z and U, this theorem can not hold (e.g. Example 5.3 in
Peng and Yang [50]).

Corollary 2.3.1. Suppose that the anticipated processes &, a and B, generator f and 6'() satisfy
the assumptions H2.1, H2.3 and H2.2. f(t,y,7,z,u) is increasing in ij. Let (Y(l), z1), U(l))
and (Y?),72), U(Z)) be the solutions for the following anticipated BSDEs:

§T+ft Fle 0¥ o 20 ul)ds — ff 2 aB,

- fu Wam,  telo,T); (2.16)

&, te(T,T+T,
wherei =1,2. If

Y(l) (s > Y(l) 2y a.e., a.s.,
then the following holds
Yt(l) > Yt(z), a.e., a.s.

Proof. Define the following BSDE (2.17):

Yt(3) _ TJFftT (S Ys(g),Yii)(s(z),Zs(3)fUs(3))ds B ftT 7 4B,
— [TuPam, telo,1]; (2.17)

Y® = &,  te(T,T+T.
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2.4. Duality Between Linear Anticipated BSDEs and the SDDEs

By Theorem 2.2.1, there exists a unique G-adapted solution (Y(3), ASS U(3)) € Sé (0, T+
T%R) x L2(0, T;RY) x LF7(0, T;R¥) for (2.16). Since f(t,y,§,z,u) is increasing in 7,
then we can get

(1) (1)
f(t/y’ Yt+5(l)(t)’z’u> Z f(t’ y’ Yt+5(2)(t)’z’ u)'

From the comparison theorem for ABSDEs with default risk (Theorem 2.3.1), it follows
Yt(l) > Yt(?’), a.e., a.s.

Similarly to the proof of Theorem 2.3.1, we can obtain
Yt(l) > Yt(z), a.e., a.s.

]

2.4 Duality Between Linear Anticipated BSDEs and the
SDDEs

El Karoui et. al [4] (1997) studied the duality relation between BSDEs and SDEs. In this
section, we consider the duality between anticipated BSDEs and the stochastic differ-
ential delay equations (SDDE). We can use this duality to solve the stochastic control
problem in Section 2.5. Consider the following anticipated BSDE (4 is a given constant,
to is the initial time, B is a d-dimensional standard Brownian motion):

(

—dY; = (Uth + 09 [V p5] + ZiBr + B9 Z 5106 + Ul 5y

FE [Up 5] ] ey + lt)dt — Z:dB; — UdM;,  t € [t, T;
Y; =G4, te (T, T+4); (2.18)
Zt = uy, te (T, T+
. Ui =B te (T, T+4),

and the following stochastic differential delay equation with default risk (SDDE):

dXs = (0:Xs + 0L ;Xs_5) ds + (X607 + X407 ;) dBs
+ (Xsf.usTl{T>s} + Xsféﬁz;_5)_1{r>s}> dMs, sel[t,T+¢];, (219
XS:O, Se[t_5,t),

where o, 7, 0, 6, u and fi are uniformly bounded. o, & € Eé(to —-0,T+4;R), 0, 0
L(tg— 0, T+ &R, u, i € LY (tg— 6, T+ 6RF). £ € SA(T, T+ 5R), a € LE(T, T+
5RY), B € LT(T,T+5RE).

We give the main result of the duality between the ABSDE (2.18) and the SDDE
(2.19) as below.
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Chapter 2. Anticipated BSDEs with Default Risk

Theorem 2.4.1. The solution Y of the above anticipated BSDE (2.18) can be given by the closed
formula:

T+6

Y, = 18 Xrér + T (gsﬁs—é + “sés—zS + ﬁsﬁs—51{7>s})Xs—5d5

(2.20)

T
+/ Xslsds |, a.e., a.s.,
t

where X is the solution of the SDDE (2.19).

Proof. Step 1. First, we prove that the SDDE (2.19) has a unique solution.

When s € [t,t + 6], SDDE (2.19) can be transformed into the SDE (2.21) with the fol-
lowing form:

(2.21)

{ dX, = 0, Xeds + X0TdBs + s Xs_dMs, s €[t t+0];
X =1,

obviously, there exists a unique solution X () for the SDE (2.21) above.

Whens € [t + 0, 4 2], there exists a unique solution X (2) for the following SDE (2.22):

dX, = (X, + oL ;X ) ds + (x,07 + XVOL ;) dB
(2.22)
+ <Xs_ysT + Xs(”ﬁ(sfé)f) dMs.

When s € [t + 26,t + 36], there exists a unique solution X for the following SDE
(2.23):
dX, = (0% + 07 sxP) ds + (x.07 + XV B,
(2.23)
+ <Xsf.”z- + XS(Z)ﬁ(s—é)—) dMs.

By the induction on [t + 36, t + 49], [t + 46,t + 5J],..., we can prove that there exists a
unique solution for the SDDE (2.19).

Step 2. Applying the Itd formula to X;Y; on [t, T], and taking conditional expectation
under G;, we can obtain

E% [XrYr] — XY
af [* g 5 G A
=]E~! [/t (Ysa—s—(sXs—(S — E¥s [YS—F(S]&SXS + ZSeS—(SXs—(S — E S[Zs—l-(s]esxs

+ Usfls— 5 X551 (ras) — B9 [Usys]sXs Loy — Xsls>ds] .
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2.5. Application in Stochastic Control Problem

Whens € [t —§,t), Xs =0, and X; = 1, it follows
T T T+6
Y =E9 [Xryy + / X, lods — / Y.t sXo_sds + / Yab, sXo_sds
t t t+0

T T+6
- / Z595—5X5—5d5 + / ngs—éxs—éds
t t+6

T+6

T
—/t usﬁs—éxs—él{r>s}ds+/t usﬁs—éxs—él{r>s}ds]

+4

T T+6 A
—EY% [XTCT + /t Xlsds + /T (Gs05—5 + s +ﬁsﬁs—51{r>s})Xs—5dS] :

Consequently, we prove (2.20). O

2.5 Application in Stochastic Control Problem

El Karoui et. al [4] (1997) applied the duality between BSDEs and SDEs to stochastic
control problems. In this section, we use the duality between ABSDEs and SDDEs
studied in Section 2.4 to solve the stochastic control problem in the defaultable setting.
We consider the following controlled function (6 > 0 is a given constant):

dx? = (0’(5, vs) XY 40 (s — 9, 05_5)X§_5> ds + X267 (s, vs)dB;

+X2 ul(s—,vs_)dMs, s€[t,T+4); (2.24)
X7 =1;
X0 =0, selt—6t),

where ¢(t,v) : RxR? = R, ¢(t,0) : RxRY = R, 8(t,v) : R x RY — RY, u(t,v) :
R x R? — R are adapted processes uniformly continuous with respect to (t,v), and
uniformly bounded. A feasible control (v¢)_s<t<T4s is a continuous adapted process
valued in a compact set V € R?. Denote by V the set of feasible controls. Our aim is to
maximize the following objective function:

T T+6
J(v) =E [ TCr —|—/0 XZ1(s,vs)ds —i—/T Cs0 (s —0,v5_5)XI_5ds|,

where & € S3(T, T + 6;R) is the anticipated process, I(t,v) is an adapted process uni-
formly continuous with respect to (¢,v) and uniformly bounded, I(w, t, v;)o<t<T is the
running cost associated with the control process v. Consider the following linear antic-
ipated BSDE:

—ay = ((t, o) Y} + (o) B (Y, ] + Z§0(t, o)

U (o) s +l(tfvt)>df — Z{dB; — UpdM;, t € [0,T);

) W =& t € [T, T+6); (2.25)
7y = ay, t e (T, T +6);

uy = B, te (T, T+4]
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Chapter 2. Anticipated BSDEs with Default Risk

From Theorem 2.4.1, we know that J(u) = Y§, where (Y?, Z%, U") is the solution of the
ABSDE (2.25), Y7 has the following form:

T T+06
Y = EYt { 7CT —l—/ X{1(s, vs)ds -l—/ Cs0(s —06,vs_6) XY sds|, a.e., as. (2.26)
t T

For the sake of simplicity, for all t € [0,T], r € [t,T+J],y € R, z € RY, u € RK,
S Sé(t, T + 6;R), we denote:

Fo Y, Tr 2, u) =0(t o)y + 0 (t, v)E9[G,] + 20(t, 0¢) + up(t, 0)1eny + 1(t,01);
fr(t, Y, §r z,u) =esssup f°(t,Y,Jr, 2, Zr, U, ily).

veV
(2.27)
Consider the following ABSDE (2.28):
—dY} = <0’(t, Ut)Yt* +0(t, Z)t)IEgt [Yt*—i—é] + Z?Q(t, vr) + u;k“l/l(t, Ut)l{r>t}
HI(t, vt)>dt — ZdB, — UfdM;, te[0,T);
(2.28)

Yy =g, te [T, T+6);
ZF =ay, te (T,T+6;
| U =B, te (T, T+

We suppose that o(t,v), 0(t,v), 0(t,v) and p(t,v) are uniformly bounded by a constant
M >0, forallt € [0,T],s € [T, T+6],r€[t,T+6], v,y €R,z, 2 € R, u,u’ € R, 7,
7 € S&(t, T+ 5;R). It follows

6y, grzu) - (LY, 5,2, 0")

<esssup (k1) (y —y') + 0 (6,0 (7r — 7)) + (2= 2)0(t,01)
veV

+ (= w)p(t,0) ey
<M|ly = y'| + E9gr = 71l + |z = 2| + [u = 1 rspy .
Since E fOT |£(t,0,0,0,0)|>dt < M?T, we know that the ABSDE (2.28) has a unique
solution (Y*, Z*,U*) (Theorem 2.2.1).

Theorem 2.5.1. The solution Y* of the ABSDE (2.28) is the value function of the stochastic
control problem abouve, i.e.

Y] =esssup Y/, t €0, T].

veY

Proof. Since for all v € V, f°(t,y,¥r,z,u) is increasing in ¥, and f°(t,y,¥r,z,u) <
f*(t,y,7r,z,u), by the comparison theorem for ABSDEs with default risk (Theorem
2.3.1), we can get that Y; > Y/, therefore, Y; > Y}, a.e., a.s.
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By the definition of f* (2.27), we know for any € > 0 and any (w,t) € Q x [0,T),
the following set is not empty:

{ Fwb Yy @), Y s(w), 2 (), Ui (w))
<o(t,0)Y{ (w) + &(t, 0)E9 [V 5 (w)] + Z{ (w)8(t, 0)
+ Up (w)u(t, o)l zopy + H(w, t,0) + € } + @.
By Benes’ selection theorem (Bene$ [86] (1971)), there exists a v¢ € V), such that
Y Y 25U < FO (87, Y s 2, UF) +e,  ae.,as. (2.29)
Denote by (Y, Z%, U”) the solution of the ABSDE with the coefficient (%", &).

YU

Step 1. First, whent € [T — 6, T], it follows that Y;* Cise

s = By (2.29), it follows

o (t, YY, t+c5' roup ) fr( Y Y 6 21, Uf)
> (t, YY, t—|—(5' - Uf)—fve(trytz t—|—(SIZtrut)
=a; (Y = Y7) + b (2] — Z]) + o (Uf - Uf) —

Whent € [T — 4, T], denote

£ Yo,z e ) — £ (7 Yozt uee)

€ .
ar = Y —y; ’ Y7 #Y
€
0, Y=Yy
€ € € € € € €
P ) P ) e
by := Zve Z; ’ i #Zi5
0, 7¥° =77,

FE(bye Y5z ) (tY* Y52 U

¢l = i -upn ’

Y (U Uiy 120
>t

0, (U?E*ut*)l{ﬂ»}ﬂzol
where U = (U, U*2, ..., U™, U”*1, ., U"F), U is the i-th element of U”,i = 1,2, ...k.
Therefore, for all t € [T — 6, T], we can obtain
€ T € € €
Y, =Y/ 2/ [as(Ys” — Y+ bs(Z28 —ZF) +cs(UY —US) — €| ds
t

T € T €
- [ @ - zas - [ s - ugam.
t t
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Chapter 2. Anticipated BSDEs with Default Risk

Denote by Yt(l) the solution of the BSDE below:

W) _ /t (a0 + 0,2V + 0" — € ) ds — /t ZVaB,
"aWam,
- t Srs E [T - 5, T]
t

By the comparison theorem for ABSDEs with default risk (Theorem 2.3.1), we can ob-
tain

Denote

1 s s s 1 2
Qs =exp ardr+ | bdB,+ | In(1+c,)dH, ]br dr
0 0 0

S
— /0 C71{7>r}’)/rd1’},

since |a;| < M, |b] < M, |¢t| < M and ¢; > —1, applying the Itd formula for rcll semi-
71

martingale (Theorem 1.3.4) to QS s~ on [t,T| and taking conditional expectation on
both sides, we can get

. T
YU = g% [ / Qﬁ”ds} , te[T—45,T]
t
Hence, there exists a constant p1 > 0, such that
Y v >V > —ple,  te[T—6,T) (2.30)
where p depending only on M, T and .

Step 2. Second, when t € [T —26,T — 6], then t + 5 € [T —,T], we have that
Y/ s < Y% s+ ple. By (2.29) and (2.30), it follows
FEYE Y ZE,U) = £ (6 Y, Ys 21, UF)
vae(tfytve/ WAL Uy ) —f" (& Y7, Y s 21, U ) —
>f (Y Vs 28, UE ) — £ (6 Y Y 24, U )
Y Y ZE U ) — F7 (Y t+5/thut)
vae(t/ thef t+5' Zy /ut ) fve(tr Y7 Y, t+5/ Ztrut) MP €—€
=ar (Y7 = Y7) +be(Z] = Zf) + (U] = Uf) —e(Mp' +1).

Whent € [T — 25, T — ¢, similarly to the proof of Step 1, denote

{ £ Yz ) = (e g 28 )

€ .
T LAY

0, Y=Yy,
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2.5. Application in Stochastic Control Problem

£ (87 Yozt ) — £ (1 YLz )
by := 7577 ’

€
0, 79 =7;;

2475

SN : u* —UuH1, ;. .vi#0;
(U?E’—U?’)l{fi»ﬂi r U U iy 1707

€ * € * 77i—1 € * € * 171

{ FE(Ye Y25z ) — 1 (Y7 Y2 525,
€ « .

0, uy 7ut)1{-ri>t}'ﬂ:0/

where U = (U, U2, ..., U™, u”*1, ., U"F), U is the i-th element of U”,i = 1,2, ...k.

Therefore, forall t € [T — 26, T — 6],
€ € T—o € €
VY S =Y [ [ ) b2 - 2)
€ T—o €
(U = UD) —e(Mp! +1)]ds — [z — z2)a:
T-6 .
- [ - uam.
t
Consequently, Y — Y} > Yt(z), where Yt(Z) is the solution of the following BSDE:
/2y oy @ 4y s® L g® 1
YO v vt /t [0V + 5,28 + T — e(Mp! +1) | ds

T—6 T-6
t t

Since |a;| < M, |bi] < M, |c¢| < M and ¢; > —1, we can get

~ € * T_§
Yt(2) — E% {(Yh — YT%) Q(TZLS +/t e(Mp! + 1)Q£2)ds} ,

here 2 s ; ; e
Q! :exp{/ ardr—l—/ brdBr-i—/ In(1+¢,)dH, — = [ |b,dr
0 0 0

2 Jo
S
_/0 crl{Dr}'yrdr}.

Since Y%i s— Y7 52> —pl, therefore, there exists a constant p2 > 0, such that
¢ vk -(2) < 2 . .
Y{ Yy >V, > —p%, te[T—-25T-4|.

T
Similarly, there exist constants p?, p*..., p[f] 1> 0, such that

Y'Y > —ple, te[T—nd,T—(n—1)0], n=34,.., H
Y - Y7 > —plsltie, telo,T— g] 5].
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Chapter 2. Anticipated BSDEs with Default Risk

Set p := {p!, pz...,p[%]ﬂ}, we can obtain
YO Y > —pe, tel0,T]
Since the <Y/, ase — 0, we can get
Y =Y, a.e., a.s.

So we can prove
Y; =Y/, a.e., a.s.

O

2.6 Relation with the Obstacle Problems for Non-linear
Parabolic PDEs

Example 1.2.4 in Section 1.2 illustrates the connection between semi-linear parabolic
equations and BSDEs. In this section, we will show that the ABSDE studied in the
previous sections allows us to give a probabilistic representation of the solution of some
obstacle problems for PDEs. For that purpose, we will put the ABSDE in a Markovian
framework. Consider the following PDE (2.31). We want to get the solution of ABSDE
with the following PDE:

{ oo(t, x,h) + L v(t, x,h) + fH*(t,x,h) = 0; (2.31)

o(T,x,h) = ¢(x,h),

where hh := {0,1},0v:[0,T] x R x {0,1} = R,

L%t x, 1) = (8, )30(t, 3, 1) + 2626, 1), 008, 1)
+ (Av(t, x) — pu(t, x)oxv(t, x,h)) (1 — h)ys
(8, x,h) == f(t,x,h,0(t,x, 1), E9o(t + 0, %, k)], 0(t, x)9x0(t, x, ),
0(t, x)E9[0y0(t + 6, %, k)], Av(t, x), E9 [Av(t + 6, %)]);
Av(t,x) = ov(t,x + u(t,x),1) —o(t,x,0),

where X = x;,.5, h = h;_5.
Then we consider a state process X, for each initial time ¢ € [0, T| and each initial
condition x € R, let X"* be the solution of the following SDE (2.32):

{ dXY* = o (s, X )ds 4 0(s, X2¥)dBs + (s, X )dMs, s € [t,T]; 232)

Xf’x = x.
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2.6. Relation with the Obstacle Problems for Non-linear Parabolic PDEs

and the ABSDE (2.33) below:

;

—dYP = f(s, X¢*, He, YO, BS YY), 28 B9 (21 4],
—Z*dBs — Ul*dMs, st T);

Y = (XY, Hy), s€ [T, T+9);

\ VA se (T, T+6);

us™ = Bs, se (T, T+

T
E [ (IYé"‘I2 +1Z5 P+ |u§'x|21{r>s}) ds < oo,

J U™, B9 U] ds

(2.33)

\

where o : [0,T| xR —-R,0:[0,T|xR—R,u:[0,T]xR—-R,¢:Rx{0,1} = R,
f:0T]xRxRXxRXRXxRxRxR—R.

We introduce the following assumptions to make sure the existence of the SDE (2.32)
and the ABSDE (2.33) above.

(a) o(t,x) and 6(t, x) are continuous and invertible mappings, y(t, x) is progressively
measurable and invertible, ¢(x,0) and ¢(x,1) are continuous in x. ¢~ !(t, x),
0-1(t,x) and u~(t, x) are bounded;

(b) o(t,x),0(t,x), u(t,x), (x,0) and ¢(x,1) are uniformly with respect to t and Lip-
schitz with respect to x, i.e. V(t,x), (t,x’) € [0,T] x R, there exists a constant
Cy; > 0, such that

lo(t,x) —o(t,x")| +10(t,x) — 0(t,x")| < Cq|x —X|;
[9(x,0) — (x,0)] + |p(x,1) — @(x', 1)| < Ci]x — x|;
u(t, x) = u(t, x| < Crlx = X [1rnpy
(c) f is continuous in t uniformly with respect to x, y, z and u, and continuous in
x uniformly with respect to y, z and u. There exists a constant C3 > 0, for any

te[0,T,re[t, T+T, v,y €eR z 2 eRuu' €R, 7,7 € Si(t, T+65R), 2,

z e Eé(t, T+6R),a,i € £2g’7(t, T 4 6;R), there exists a constant L > 0, such
that
Ft 0y 9,250,0) — 65y, 7,2,2,0,)

<L(ly—y| +E9 g —§| + |z - 2| +1ngrz—z|
= ' [y /e + B9 = 71 oy /7).

Remark 2.6.1. v(t,x,0) is called the pre-default pricing function, while v(t, x,1) is called the
post-default pricing function. X'~ represents the dynamics of wealth process, go(Xth ,Hr) is the
contingent claim which we want to replicate. Y™ also relies on H. As for the case of multiple
assets, we can set y; = 0 for the assets without default risk, y; = —1 for the assets with total
default risk, 0 # u; > —1 for the assets with a non-zero recovery.

Theorem 2.6.1. Suppose that v(t,x,0), v(t,x,1) € CV2([0, T] x R,R), then we have

Y/ = o(t, X", Hy).
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Chapter 2. Anticipated BSDEs with Default Risk

and
Y™ = v(s, XI¥, Hy); Zb = 0(s, X1)0,0(s, X1*, Hy);

ub™ = Av(s, X1).

Proof. Denote As := v(s, X¢™, Hs). We know that A, only has jumps at the default times,
AAS = AS - Asf,

AAs = 1r_g [v(s, X4%,1) — s, ngf,O)] = 1{r—qA0(s, X15).
Applying the It6’s formula for rcll semi-martingale (Theorem 1.3.4) to As,
dAs =0;v(s, XU, H_)ds + 9,v(s, X\, Hy_ )d X!~
+ %92(5, X Ya2, 0(s, X, Hy_ )ds
+ [Av(s, X1 = (s, XYy (s, X1, Hsf)} dH, (2.34)
= [atv(s, XU, Hy ) + L7 0(s, Xé’f,HS,)} ds
+6(s, Xb¥)0,0(s, X1, Hs_ )dBs + Av(s, X2 )dMs,

where At = ¢(X%*, Hr). By (2.31), it follows
t
/ 9r0(s, X' H_ ) + L'%0(s, X', Hq_ )ds
0

t
:—/0 (s, X, Hs)ds

t
:_/0 £ (5, X0%, Hyyols, XU2, Hy ) B9 [o(s + 8, X7 5 Hiws) ),

0(s, X1*)0xv(s, X1, Hs ), 0(s, X\ )EY [0,0(s 4 5, XE’;(;)_, Hs 521,

Ao(s, XI5, B [Ao(s + 8, X[, 5)_)]) ds
t
_ / f(s, X%, H,, (s, XU¥, Hy), E%[o(s + 6, X'%5, Hyys)),
0
0(s, X1¥)oyv(s, Xi*, Hy), 0(s, XU¥)E% [0y0(s + 8, X, Hyys)],

s+47
No(s, XI%), B9 [Mo(s +6,XI7, )] ds,

and
t t
/ 6(s, X1*)ax0(s, X', H_ )dBs = / 0(s, X)a,0(s, X!*, Hy)dBs.
0 0

In (2.34), we set
Yst'x = ’(J(S, Xé/x/ HS); Z;'x = 9(51 Xé'x)axv(s, Xélxl Hs);

ub™ = Ao(s, XI).
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Obviously, (Y, ZE*, ULY) is the unique solution for ABSDE (2.33). When s = ¢, we get
that Y/ = v(t, X", H;). O
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Chapter 3

Reflected Anticipated BSDEs with One
Obstacle and Default Risk

Reflected BSDEs with one continuous lower reflecting obstacle driven by a Brownian
motion was first considered by El Karoui et al. [33] (1997). Guo and Xu [87] (2013)
studied RBSDE with one obstacle and default risk, they provided the existence and
uniqueness theorem and an application in optimal stopping-control problem. More
previous research about reflected BSDEs can be seen in Section 1.2.2.

In this chapter, we study reflected anticipated backward stochastic differential equa-
tions (RABSDE) with one obstacle driven by a Brownian motion and a mutually inde-
pendent martingale in a defaultable setting. The generator of a RABSDE includes the
present and future values of the solution. The proof of the existence theorem for RAB-
SDEs with one obstacle and default risk is the foundation of the proof for RABSDEs
with two obstacles and default risk in Chapter 4. We study the theoretical existence
and uniqueness result and provide the related applications of RABSDE with one obsta-
cles and default risk.

This chapter is organized as follows, Section 3.1 states the basic assumptions for
RABSDEs with one obstacle and default risk. In Section 3.2, we use two methods,
i.e. penalization method and the Snell envelope method to prove the existence and
uniqueness theorem of the RABSDE (3.1). Section 3.3 represents an application in opti-
mal stopping-control problem in the default setting. We illustrate the relation between
linear RABSDEs with one obstacle and stochastic differential delay equations in a de-
faultable setting in Section 3.4.

3.1 Basic Assumptions

In this Chapter, we consider the following RABSDE (3.1) with one obstacle and default
risk with the coefficient (f, &, a, B,5',6%,8%,L).

A quadruple (Y, Z,U,K) = (Y, Zt, Uy, Kt)0§t§T+T‘5 is a solution for the RABSDE
with the generator f, the terminal value ¢7, the anticipated processes ¢, a« and S, the
anticipated times o1, 82, 53, and the obstacle L. K is a continuous increasing process
to keep Y above obstacle L, therefore the jumps of Y are only from default part. The
anticipated time ', 6 and 4° satisfy H 2.2.
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(i) Ye&8E0,T+T%R), Ze LE(0,T+T%5RY),
Ue ,cgﬁ(o,? T RF), K e A%(0, T;R);
(i)  Ye=3r+ [p f(s,Ys, Yors1(s)r Zss Zsror(s)r Us Us i35 ) d3
+Kr — K¢ — [ ZdBs — [ UsdM,,  t € [0,T];
(i) Yi>L, tel0,T]; (3.1)
(iv) Yi=¢&, te(T,T+T);
(v) Zi=wa, te(T,T+T;
(vi) U;r=p;, te(T,T+T;
(vii) [y (Vi — Li)dK; =0,

\

Now we introduce the following assumptions for RABSDE with one obstacle and de-
fault risk (3.1):

H 3.1. The anticipated processes ¢ € Eé(T,T + T%RY), a € EZg(T,T + T%RY), B €
£é’T(T, T + TY; le), here ¢, w and B are given processes;

H 3.2. The generator f(w,t,v, 7, 2,2, u,i,) : Q x [0,T 4+ T°] x R x Sa(t, T+ T, R) x
RY x L2(t, T+ T%R?) x RF x LX(t, T+ T RF) — R satisfies:

(b) Lipschitz condition: foranyt € [0,T),r € [t, T+ T°],y, v € R, z,z € RY, u,u’ €
R 5,7 € Lg(t, T+ T%R), 2, 2" € L(t, T+ T%RY), 0,1’ € LH(t, T+ TR,
there exists a constant L > 0 such that

f(&y, Gr 220w, 00) — f(8Y, 5,2, 2,0, 107 |
<L(ly—y'| +B|g, — 71| + |z — 2| + Bz, — 2

|1 = ' Loy /77 + B9 — 1oy V1)

(c) foranyt € [0,T],r € [t, T+ T°],y, vy € R,z 2 € R, u,u' e RK, 3,7 € Eé(t, T+
T%R),z 2 € £2g(t, T+ T5RY), 4,4 € Eé’r(t, T + T?;R¥), the following holds:

_11 ZZT’) _f(tzyzyrrzlzr/ zZi/ 1/_[1‘)

f(tl y/ yi’/ ZI 27’1 ﬂi
(! =) 1z 7}

> -1,

Va2, ... i, u™, ., ub), ulis the i-th element of u.

where ii' = (i
Then we introduce the assumption for the obstacle process L & Sé (0, T+ T R):

H 3.3. The obstacle L is rcll (right continuous with left limits), and its jumping times are totally
inaccessible, such that:
LT < CT, P —a.s.

38



3.2. Existence and Uniqueness Theorem for RABSDEs with One Obstacle and Default
Risk

3.2 Existence and Uniqueness Theorem for RABSDEs with
One Obstacle and Default Risk

3.2.1 Uniqueness Theorem for RABSDEs with One Obstacle and De-
fault Risk

Theorem 3.2.1. (Uniqueness theorem for RABSDEs with one obstacle and default risk)
Suppose that the anticipated processes ¢, a and B, the generator f and the obstacle process L
satisfy assumptions H 3.1, H 3.2 and H 3.3. &', 6% and & satisfy H 2.2. Then RABSDE
(3.1) with the coefficient (f, &, &, B,8',%,8°, L) has no more than one solution (Y,Z,U,K) €
SE(0, T+ T%R) x L3(0, T+ TSR x LZ7(0, T + T4 RF) x AZ(0, T; R).

Proof. Suppose that (Y,Z,U,K) and (Y’,Z’,U’,K’) are two solutions of RABSDE (3.1).
Denote:

Y=Y-Y, 7Z=7-7, u=u-u, K=K-K.

Applying the It&’s formula for rcll semi-martingale (Theorem 1.3.4) to | Y;|? on [t, T], we
can obtain

VPt [ 12+ [ IOy reds
T —_
:z/t |YS| [f(sf Y, Ys+(51(s)/ZS/ Zs+(52(s)/ Us, us+z53(s)>
- f(s, Ys, Ys+(51(s)/ Zs, Zs+52(s)/ Us, us+(53(s))} ds
T _ T _ _ T _ _ _
+2/ stKs—z/ YSZSdBS—z/ (200 + [0 dM,
t t t

Since the generator f satisfies the Lipschitz condition, ftT Y, ZsdBs and ftT [2Y,_U; + |Us|?] dMs
are G;-martingales, and

T _ T T
/t YSdKS :/t' (Ys_ - LS—)dKS -I_ /t' (Ls— - YS/—)dKS
T T
+/ (Yi_ — Ls—)dK] +/ (Ls— — Ys—)dK] < 0.
t t

Therefore, from the Fubini’s Theorem and assumption H 2.2. Taking expectation in
both sides, it follows

B[R+ [ 2%+ [ |0 oy s
AN AT 7 | 4 %7
L[ [ 19l (1] + B Vopgrgq | 126 + E*|Ze 2|

— _ 2
1061 sy /s + E® Uy [ sy /s ) |
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T —_ —_ — —
= Al CAR AR T
5 T+T° _ _ _
+2LL°E /t |YS|(|Y5| +1Zs| + |Us|1{r>s}\/%)ds
2L2 T _ T _ _
< (ZL + T) E [/t |Ys|2ds} + AE {/t <|ZS| + |US|1{T>5}%) ds}
2762 T+T0
+ <2L+ 2LL >1E / 1Y, [2ds
A t
T+T° , _
/t (‘Zs‘ + !Us\l{m}%) ds

2 2762 T+T0
202 42121 )113 / IYslzdSI
t

A
T+T° , _ _
| (1210 g ) s

where L > 0, A > 0 are constants. Set A = }1, it follows

+AE

< <4L+

+2AE

_ T+T° ) T+T° )
E |Yt| +/t |Z5| dS+/t \LIS\ 1{T>s}')’sd5

T+T°
/ 1Y, [2ds | .
t

Since the process Y is right continuous, by Gronwall’s inequality, we can obtain that
Y = Y’. Consequently, we can get

< (4L+812+ 8L2L52> E

(Y,Z,U,K) = (Y,Z,Uu,K).

]

3.2.2 Existence Theorem for RABSDEs with One Obstacle and De-
fault Risk

Similarly to the methodology used in El Karoui et. al [33] (1997), we prove the existence
theorem for the RABSDE (3.1) through two methods, i.e. the penalization method in
Section 3.2.2.1 and the Snell envelope method in Section 3.2.2.2. The comparison the-
orem for ABSDEs with default risk (Theorem 2.3.1) requires that the generator f is
increasing in the anticipated term of Y and can not contain the anticipated terms of Z
and U. Thus, for both of the methods, we suppose that the generator is independent on
(y,z,u), then use the fixed point method to obtain the result in the general frame.
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3.2.2.1 Existence Theorem — Penalization Method

In this section, we use the penalization method to prove the existence of the RABSDE
(3.1). We first introduce the following penalized BSDE associated to RABSDE (3.1):

[ x-es I slods + K~ Ky [ Z2aBs - Turams, v T

K} = ”fo Y — 5)_ds, t €0, T].

where the terminal value {r satisfies the assumption H 3.1, the generator g is indepen-
denton (y,z,u),ie. forall (w,t) € Q x [0,T], f(w,t,y,z,u) = g(w,t). For any n € N,
the triple (Y",Z",U") € R x R? x RF is a G-adapted solution of the penalized BSDE
(3.2).

In order to prove the existence theorem for the RABSDE (3.1), we first use penal-
ization method to prove the existence of the penalized BSDE (3.2). For the proof of the
existence theorem for the penalized BSDE (3.2) (Theorem 3.2.2), we introduce Lemma
3.2.1, Lemma 3.2.2 and Lemma 3.2.3. Lemma 3.2.1 represents the approximation of the
penalized BSDE (3.2). Lemma 3.2.2 illustrates the existence of the limiting process Y of
Y" in the sense of (3.9). Lemma 3.2.3 completes the existence of the limiting processes
(Z,U,K)of (Z",U",K").

Lemma 3.2.1 represents the approximation of the penalized BSDE (3.2).

Lemma 3.2.1. Suppose that the triple (Y",Z",U") € R x RY x RF is the unique G-adapted
solution of penalized BSDE (3.2), then there exists a constant C > 0 independent of n, for all
t € [0, T], such that

<C, neN. (33)

sup |Y/ |2+/ |Z”|2ds+/ \U”|21{T>S}'ysds+|K B
0<t<T

Proof. Step 1. First we prove
E|IP+ [IziPas s [ WP s + KR <G G4)

where C; > 0 is a constant. Since K} is continuous, then Y/" only has jumps from the
random default times, applying Itd formula for rcll semi-martingale (Theorem 1.3.4) to
| Ys|? on [t, T], we can obtain

T T
|ﬂ%+/|zww+/|uWﬂﬂ

(3.5)
= T2+2 ds+2 W%K” 2 ymz%ms—z Y”U%M@,
Yig(s
therefore,

2 T n|2 T n12

YR [ 1z Ps 4 [ U P e
T T T

#&%+2l‘ﬁg@%+2l ﬂﬁm—al‘ﬂzwa (3.6)

T
—z/ e u + |uz ] am
t
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Since ftT Y!'Z!dB, and |, tT (YU + |U?|?] dM; are Gi-martingales, 6!, 62, and &° satisfy
H 2.2. Taking expectation in both sides, it follows

T T
B [y [ 2P [ 2P s
T T
=E|¢r|? + 2E {/ YS”g(s)ds} +2E {/ YS”ng}
t t
T T
<E|¢r|*+E [/t (Y2 + |g(s)|2)ds} +21E[/t L’;dK;“]
T T
<E|¢r|*+E U !Ys’“lzds} +E U |g(s)\2ds]
t t

sup |Li|*| + ME |KE: — KP?,

0<t<T

1
—F
5

where A1 > 0 are constants. Since

T T T
Kb — K = Y} — & — /t 2(s)ds + /t Z1dBs + /t urdMs,

hence,

T
E K} — K <AE [P+ [erf+ [ [g(s)Pds
! (3.7)

T
122+ U2 Py i) s

where A, > 0is a constant. Hence,
2 T 2 T 2
B[P [ 122Rds [ 102 oy ]

T
< (14 MA) E|Er? + MAE|Y! >+ E M |Y£|2d5]

+ (1+ A)E {/tT |g(s)|2ds} + %E

sup |Lt|2]
0<t<T

T
+ MAE |:/t (|Zg|2 + |usn|21{~(>s}')’s)d5:| .
Set AMAy = %, by the assumption H 3.1, we can obtain
n|2 1 T n|2 1 T n|2 T n|2
B|YP+5 [ 1Z0Pds+ 5 [ WPl vds| < Co 14 [ |v2Pds]

where C; > 0 is a constant. By Gronwall’s inequality, it follows consequently that
[E|Y?"|? is bounded, therefore, IE [ftT | Z" |2d5} and E UtT ur |21{T>S}'ysds} are bounded.
By (3.7), we know |K%|? is bounded, then we can get (3.6).
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Step 2. Then we prove there exists a constant C3 > 0, such that for all n € N,

sup |[Y}']*| < Gs. (3.8)

0<t<T

By (3.5), we can obtain

T T
sup V?| <E sup |+ [ (z2pas+ [ urar ]
0<t<T 0<t<T t t
<E|&r|? + 2 [/ ds]+21E sup/ Y!dK?
0<t<T
+2E | sup / Y Z"dB,| + 2E | sup / Y UM,
0<t<T 0<t<T

<EigrP | [ P 4 | [ lg(o)as

1
+ = sup |L;"|*+ AE|K%|?
A 0<t<T

+2E +2E

sup / Y"Z"dB,

0<t<T

sup / Y& U”dMS] ,

0<t<T

where A > 0 is a constant. By Burkholder-Davis-Gundy inequality (Theorem A.1.1), it
follows

] . - .
sup / Y'Z'dB! | < —E | sup |Y!'|?| + C4E {/ |Z;1|2ds} ;
0<t<T 4 |o<t<T 0

E

1 T
sup / U”dMS < —E| sup |[Y/'|*| + CsE {/ |Ug|21{T>S}'ysds} ,
0<t<T Cs |o<i<r . 0

where C4, C5 > 0 are constants. Therefore, we obtain (3.8). So we can prove (3.3). [

The following Lemma 3.2.2 illustrates the existence of the limiting process Y of Y"
in the sense of (3.9).

Lemma 3.2.2. (Y"),>( is a non-decreasing sequence. For any t € [0, T|, (Y]')n>0 converges
to Yy, and satisfies
Y; = lim Y}

n—o00

sup |(Y{' — L¢)~|?
0<t<T

(3.9)
Iim E

n—oo

=0, a.s.

Proof. Step 1. By the comparison theorem for BSDEs with default risk (Theorem 1.3.2),
we know that (Y"),>¢ is non-decreasing,

IEY}SIEYF]E[li_me] < lim BY}’ <C,

n—00 n—00
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where C > 0is a constant. That is
Y'1Y;, n—oo, P—as.

Moreover, Lebesgue’s dominated convergence theorem implies

T
E {/ \Yt”—Yt|2dt} — 0, as., n— oo
0

Step 2. Then, let (Y,Z, U) be the solution of the following BSDE with the coefficient
(8 —nly—L),¢):

T T T
V=gt [ [g(s) - n (W~ Lolds— [ 72, [ Grdm,
t t t
By the comparison theorem for BSDEs with default risk (Theorem 1.3.2), we know for
any t € [0, T},
Y > Y]
On the other hand, let e~ Y] be the solution of the following BSDE with the coefficient
(e7"(g —nL),e"¢):
) T T _ T )
oMY — T 4 / e (g(s) + nlLs) ds — / e 7B, — / e ST dM,.

t t t

Taking conditional expectation on both sides, let v be a G-stopping time, such that

T
Y = EY {e”(TU)gT _|_/ e~ Ms=0) (g(s) +nLs) ds} .

Since the obstacle L is right continuous, and

< ([ |g<s>|2ds)%,

as n — oo, we have the following convergences in £2(Q; P):

T
/U e "5 g (s)ds

T
/ g(s)e™ ™ Vds »0,, P —as;
(%

T
e*”(T*v)CT + n/ e ") ds Srl—1y + Lolgpery, P—as,
(4

Consequently,
Y; — ng{U:T} + Lvl{v<T}/ n—>o0, P—as., Iin ,CZ(Q;]P).

Therefore,
Yz] Z L'UI ]I) - ﬁl.S.
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By the section theorem (Theorem A.1.2), we deduce that for any ¢ € [0, T],
Yt 2 Lt, P - a.s.,
consequently,
(Y'—Ly) |0, P—as.

Since Y" 1 Y, we know that PY" 1 PY and PY > PL (Y X is the predictable projection of
the process X). For any n € IN, the jumps of Y" are from the default process H, which
are inaccessible (the default times are inaccessible). Therefore, for any predictable stop-
ping time o, we have Y] = Y/, it follows that PY" = Y”. Similarly, we can obtain
PL = L_, since the obstacle process L only has the inaccessible jumps.

Consequently, we can prove

Y = PY"4PY >PL=[_,

hence,
(Y ~L) 1 (PY—L) >0,

it follows that, for any ¢ € [0, T],
(V" —Li~)~ 10, mn—oo, P—as.
From a weak version of Dini’s theorem (Theorem A.1.3), we deduce that

sup (Y/—Li)~ 10, n—oo, P—as.
0<t<T

Since Y} — L7 < Y — Ly, then (Y" — L)~ < |Y}| + L7, by the Lebesgue’s dominated
convergence theorem, it follows (3.9). Il

The following Lemma 3.2.3 completes the existence of the limiting processes (Z, U, K)
of (Z",U",K").

Lemma 3.2.3. There exist G-adapted processes Z = (Zi)o<t<1, U = (Ut)o<t<T and K =
(K¢)o<t<T, Such that

T T
lim | sup |V = Yil2+ [ 120 = ZPds+ [ U2 = UsP ey s
n—oo 0§f§T 0 0
(3.10)
+ sup |KI! —Ki|*| =0.
0<t<T
Proof. Step 1. We first prove
: T n 2 T n 2
nlg{}o]E {/o |Z! — Z| ds+/0 |Ug — Us| L yrusy7sds | = 0. (3.11)
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Applying the Itd6 formula for rcll semi-martingale (Theorem 1.3.4) to |Y" — Y*|2 on
t, T], we can obtain, for any m > n > 0,

T T
vy -y [z -z s U - u P s
t t
T
—2 | [ = v - k)|
t
T T
<2F U (" — Ls)‘dK;“} +2E [/ (Y — Ls)—ng]
t t

<(x ) o (o

By Lemma 3.2.1 and Lemma 3.2.2, when n — oo, it follows

sup |(Y' — L)~ |?
0<t<T

sup |(Y{" —Ly)~ |
0<t<T

1
2
) e

T T
E [/ |z — z;“|2ds+/ ur — Uf|21{r>s}'ysds] — 0.
0 0

Therefore, (Z"),>o and (U"),>¢ are Cauchy sequences in complete spaces, then there
exist G-progressively measurable processes Z and U, such that sequences (Z"),,>¢ and
(U™) >0 converge to Z and U in L3(0, T; R%) and € £é’r(0, T;R¥) respectively. Then
we can obtain (3.11).

Step 2. Then, we prove

Iim E

n—oo

sup |Y{' — Yt|2 + sup |K{ — Kt\z
0<t<T 0<t<T

=0. (3.12)

Similarly to the proof of Lemma 3.2.1, by the Burkholder-Davis-Gundy inequality

E | sup \Y[Z—th|2

0<t<T

T T
<E sup 7 <P [ 120 -z [ |z - ur P
0<t<T t t

T
<2E[ sup [ (00— ¥)d(K! — K]
0<t<T /I

T T
+ 2| sup/ Y72 — 72)dBy] + 2K sup/ YEL (U7 — U2 dM|
0<t<T /1 0<t<T /1

N—

(B sup 107107 F]) x

<(E| sup |07~ L))

0<t<T
T T
+ AE U |z — Z;”|2ds] + AE U ur — U;”|21{T>S}'ysds}
0 0

2
+ —E[ sup |Y!' — y;ﬂ\z],
A 0<t<T
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where A > 0 is a constant. When n, m — oo, we get

E | sup |Y! —Y"]?| =0, n, m— oo.
0<t<T
Thus,
E | sup Y/ —Yi]*| =0, n— oo,
0<t<T
here Y = (Yi)o<t<r € S3(0, T;R).
Since t t ,
K?:muwr—/g@myy/zw&+/igwg
0 0 0
it follows
E | sup |K!'—K!"*| =0, n, m — oo.
0<t<T

Hence there exists a G;-adapted increasing process K = (K;)o<t<1, Ko = 0, such that

Iim E =

n—o00

sup [K}' — Ki/?
0<t<T

So we have proved (3.12), it follows (3.10). Il
Therefore, we have the following existence theorem for the penalized BSDE (3.2).

Theorem 3.2.2. (Existence theorem for the penalized BSDE (3.2)) (Y",Z",U",K"),>0
has a limit process (Y, Z, U, K), which is the solution of the following RBSDE with one obstacle
associated with the coefficient (g,¢,L):

(i) Yi=¢&r+ [/ g(s)ds+ Ky —Ki — [ ZsdBs — [ UsdM;, t€[0,T);
(i) Yi>L, te0,T]; (3.13)
(iii) [} (Y;—L)dKi =0, TP —as.

Proof. From Lemma 3.2.2 and Lemma 3.2.3, lim,, E [supogth (Y] — Lt)*|2] =0,

we can obtain
Yt Z Lt, t e [O, T], P —a.s.

Then, we give the proof of the condition (iii) of (3.13).
By Lemma 3.2.3, there exists a subsequence of (K"),>o (we still denote as (K"),>0),
such that

lim [E

n—oo

sup |K} —K|| =0.

0<t<T

For any w € (), since the function Y(w) — L(w) : t € [0, T| — Yi:(w) — L¢(w) is rcll, then
there exists a sequence of staircase functions (I"(w)),>0, which converges uniformly to
Y(w) — L(w) on [0, T]. From Lemma 3.2.3, it follows that, for any €! > 0, there exists a
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constant N¢, such that for all n > NF¥,

) (3.14)
K’%(w) S KT(ZU) +€
Since
T T
/ (Y — L)dK! = —n/ (Y — L)~ [2dt <0,
0 0
hence, by (3.14), for all n > N¢, we get
T
/ (Y; — L)dK? < e'Kp(w) + €2. (3.15)
0

On the other hand, there exists a constant M€, such that for all n > M,
[Yiw) — Li(w) — ()| < €,

since I (w) is a staircase function, then fOT hi*(w)d (K¢ — K}') — 0, as n — oo. Therefore,
it follows

[ 06— Ly~ k)
OT T

:/ (Yt—Lt—l;”(w))d(Kf—K?)+/ 1 (w)d(K; — KV
0 . 0

<e! (Kr(w) = Ki (@) + [ 1 (@)d(Ki = K) = 2'Kr(w).

Thus, we can obtain

lim [ sup /OT(Yt — L)d(K; — K" | < 2¢e'Kr(w). (3.16)

=00 | o<t<T

Finally, by (3.15) and (3.16), we can get

T T T
/0 (Y; — Ly)dK: :/0 (Y — Lo)d(K; — K7 +/0 (Y} — L;)dK]
<3e'Kr(w) + €%
As el and €? are arbitrary, and Y < L, consequently, we can prove (iii) fOT(Yt — Ly)dK; =
0. O

3.2.2.2 Existence Theorem — Snell Envelope Method

In this Section, we use the Snell envelope method to prove the existence of the RABSDE
(3.1). Some definitions, properties and theorems of Snell envelope theory for the proof
of the existence theorem for RABSDE can be found in the Appendix. More previous
research about the Snell envelope theory can be seen in Meyer [88] (1966), El Karoui
[89] (1981), Hamadene [35] (2008), etc.
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Similarly to the penalization method in Section 3.2.2.1, we introduce the following
RBSDE whose generator is independent on (y, z, 1), as below:

(3.17)

Y = &r+ [ g(s)ds + Ky — Ki — [] ZsdBs — [T UsdMs, t € [0, T];
Y, =&, te(T,T+T,

where the terminal value &1 and the obstacle process L satisfy H 3.1 and H 3.3. ¢!, 6
and ¢° satisfy H 2.2. K is a continuous increasing process.

Lemma 3.2.4. There exists a solution (Y;, Zy, Uy, K¢)o<i<T for RBSDE (3.17) with the coeffi-
cient (g,¢,L).
Proof. Step 1. Define 6 := (6;)o<i<T as below:

t
0 = &1l i1y + Lilgpory + /0 ¢(s)ds,  telo,T], (3.18)

therefore, 0 is rcll and has the same inaccessible jumping times [0, T) as the obstacle L
(may have a positive jump at the terminal time T). Moreover,

sup |6;| € L2(Q).

0<t<T

By the Definition A.1.2, its Snell envelop (S¢(0))o<;<T is of class D (Definition A.1.1)
and satisfies

E

sup |St(9)|2] < oo. (3.19)

0<t<T

Hence, from Doob-Meyer decomposition theorem for Snell envelope (Theorem A.1.4),
the Snell envelop S;(6) has the following decomposition:

Si(0) = EY [Q‘T + /Otg(s) + KT} — K,

where (K;)o<t<T is a Gi-adapted rcll non-decreasing process, Ko = 0. By (3.19) and
Theorem A.1.4, consequently, [E|K7|? < co. Therefore,

E

2
| <

sup ’Ing [T + K]
0<I<T

By Kusuoka martingale representation theorem (Theorem 1.3.3), there exist two pro-
cesses (Zt)o<t<t and (U;)o<t<T, such that

N; :=E% [‘:T + /tg(s) +KT}
0 (3.20)

t t
—E[&7 + Kr] + /O Z,dB, + /0 UdMs,  te[0,T),

where
T ) )
E |:/O <’Zs| + ‘us‘ 1{T>S},YS> d5:| < o0,
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Chapter 3. Reflected Anticipated BSDEs with One Obstacle and Default Risk

Step 2. Set

Y; = ess sup ]Egt {‘:Tl{v—T} + Ltl{v<T} + / g(S)dS} ,
oeTy ¢

then it follows
Yt+/ s)ds = S¢(0) = My — Ky,

from the definition of 6 (3.18), we can obtain
Yy > L.

Combining (3.20), it follows

Yi+ / E[¢r + Kr] + / Z.dBs + / UdM, — K, te[0,T].

Hence, for any ¢ € [0, T],

T+/ §)ds + Ky — K; — /ZdBS /udeS, te o).

Step 3. Then we prove that K is continuous.

By Theorem A.1.4, we know that {AK? > 0} C {S_(#) = 6_}, i.e. the jumping times
of K are included in the set {S_(6) = 6_}, where limsup,, 05 = 6.

Let v be a predictable stopping time on [0, T]. Since the process 6 only has the in-
accessible jumps on [0, T) (may have a positive jump at t = T). Hence, when K has a
jump at time v, it follows

E [Sv—(e)l{AKv>O}} =E :90—1{AKU>0}}

<E _901{AKD>0}] (3.21)

<E _SU(G)l{AKv>O}] :

If there is no jump of K at v, since the jumping times of M are from default part which
are inaccessible, then M, = M, it follows

E (80 (0)1iak,0)| =E [(Mo- +Ko)1ar,—0))

<E [(My + Ko)1ak,—0y (3.22)

<E _30(9)1{AKU:0}} -
Combining (3.21) and (3.22), we can get
E[S,-(6)] <E[Sy(0)],
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since S(0) is a super-martingale, it follows that, for any predictable stopping time v,
E[Sy-(6)] = E[So(6)] -

Thus, from Definition A.1.3, we know that S(0) = S_(0), i.e. S(8) is regular, conse-
quently, the process K is continues.

Step 4. Finally we prove fOT(Yt — Ly)dK; = 0.

Define
U 1= il’lf{S Z t; KS Z Kt} VAN T,

Since §(0) is regular, by Theorem A.1.5, it follows that v; is optimal on [t, T], conse-
quently,
Sp,(0) = 6y,.
Therefore, for any s € [t,v;],
(S:(0) — 0:)dK; = 0
:(Yt — Lt)th

It follows that fOT(Yt — Ly)dK; = 0. O

Then we use Theorem 3.2.1 and Theorem 3.2.3 to prove the existence of RABSDE
(3.1).

3.2.2.3 Existence Theorem for the RABSDE (3.1) in the general frame

We have proved the existence of the penalized BSDE (3.2) through the penalization
method in Section 3.2.2.1, and the existence of RBSDE (3.17) through the Snell envelope
method in Section 3.2.2.2. By the uniqueness theorem (Theorem 3.2.1) in Section 3.2.1,
we can use the fixed point method (Banach fixed-point theorem) to prove the following
existence and uniqueness theorem of RABSDE (3.1) in the general frame.

Theorem 3.2.3. (Existence and uniqueness theorem for RABSDEs with one obstacle
and default risk) Suppose that the anticipated processes ¢, « and B, the generator f and the
obstacle process L satisfy the assumptions H 3.1, H 3.2 and H 3.3. ', 6% and &° satisfy H
2.2. Then RABSDE (3.1) with the coefficient (f,¢, &, B,6%,6%,6%,L) has a unique solution
(Y,Z,U,K) € 83(0, T+ T%;R) x L3(0, T+ T%RY) x LZ7(0, T+ T%;RF) x AZ(0, T;R).

Proof. Define D := S3(0, T + T%R) x L£Z(0, T + T%RY) x LZ7(0, T + T%R¥). Define
the following mapping;:

d: D—D;
(y,z,u) = ®(y,z,u) = (Y, Z,U).

First, we prove that ® is a contraction mapping of D.
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We define

t
K =Y; — Yo — / F(8: e Yora1(6) Zor Zorsa(s) Us Uss)) s
0 (3.23)

t t
+ / Z.dBs + / UdM,,  te0,T),
0 0

then (Y, Z, U, K) solves the penalized BSDE with the generator g(s) = (s, Ys, Y, 5 (5 Zs1 Zs52(s)s
Us, U 53 (s)), i.e. (Y,Z,U,K) is the solution of the following RABSDE:

Yy =¢r+ ﬁTf(s,yS,ys+51(s),zs,zs+5z(s),us,us+53(s))ds
+Kr — K; — [ ZdBs — [ UsdM;,  t€[0,T];
Y, >L, te[0,T];
Y, =¢&, te(T,T+T%; (3.24)
Zi=w;, te(T,T+T;
U =p, te(T,T+T;
[y (Vi —L)dK; =0, P —as.

\

From Theorem 3.2.1, (Y, Z,U) is the unique solution of the penalized BSDE (3.2). For
any (y,z,u), (y,z',u") € D, denote:

=y—y, 2=z-172, h=u—1u;
=Y-Y, 72=7-7, Od=u-u, K=K-K.

= <>

Applying the Itd’s formula for rcll semi-martingale (Theorem 1.3.4), we can obtain
v |2 T cs v |2 7 12 T 12
V2 [ (el e 4 126 4106y 7 ) s
T A
:Z/t ecsys}f(sr]/sfyswl(s)/ZSrZs+(52(s)r“s/ “s+<53(s))
T A A
P51V 10y P W W) s +2 [ e Vel aR,
T .. T o .
- 2/ eCSYSZSdBS - / ECS <2YS—US + |US|2> dMS/
t t

where ¢ > 01is a constant. Since ftT eCS?§”)Z§”>dBS and ftT e (2175@ l:ls(n) + |l:ls(n) |2> dM;

are G-martingales, |Yt(n) > >0, ftT eCS\YS|dKS < 0, by the Fubini’s Theorem, H 2.2 and
the Lipschitz condition for f, it follows

E/TeCS(EyY|2+\Z|2+ya\21 7.) ds
. 5l ts s sl H{r>s}'[s
L2
C

T A
E |: /t eCSYs |f(S; ys; str(Sl (5)/ Zs, ZS_A,_(SZ(S)/ Us, us+53 (5))

2
— f(S/ y;/ ngr(sl(S)/Zg/Z;_HSZ(S)’ ng, u;+(53(s))| ds]
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212 T es (1 Gs |y % s |5
g—]E[/O e (!ys\JrlE Psrs1()| T 12s| +E* |25 025

c
2
151 ) /s + E® [ s) [T (o) /75 ) ]

1212 T sio1 (1a . N
<ZEE| [ ] (1968 [+ 18 g 7) ]

c
T+T
J

1212 4+ 121219 T+T° . . .
< - E ﬂi fSO%F+ﬂ%F%%HA%h>g%>dS~

where L > 0, L® < 0 are constants. Set ¢ = 12L% 4+ 12L2L°% + 2, it follows

1212L° °
+ E

oS (ms|2 + ‘25’2 + ‘ﬁs‘21{1>s}75> dS]

T+T° Covr 1mm . i
]E /0 eCS (§|Ys| + |Zs| + |US| 1{T>s}75> ds
1 T+T° S b .
SEIE /O e (|ys| + |Zs| + |u5| 1{T>s}')’s> ds| .

Therefore, @ is a contraction mapping on D equipped with the norm defined as below:

0,2, e = {]E [

From the Banach fixed-point theorem, there exists a unique fixed point (Y,Z,U) €
L2(0, T+ T%R) x L3(0, T + T%R?) x LET(0, T + T RF), with K (defined as (3.23)), is
the solution of the RABSDE (3.1). Combining with the assumptions H 2.3 and H 2.2, it
follows that f(t, Yt, Yt+51(t)/ Zt, Zt+(52(t)/ Ut, ut+(53(t)) S Eé (0, T+ T(S; ]R) ]

)

2
e <|Ys|2 + |Zs|® + |us|21{r>s}’)’s> ds} .

3.3 Application in Optimal Stopping-Control Problem

El Karoui et al. [33] (1997) studied the relation between RBSDEs with one obstacle
and optimal stopping-control problems. Guo and Xu [87] (2013) extended this topic to
RBSDEs with default risk. More research on this topic can be found in Ren and Xia [90]
(2006), Elliott and Siu [91] (2013), Dumitrescu [92] (2016), etc.

In this section, we study the relation between RABSDEs with one obstacle and op-
timal stopping-control problems in the default setting. We take the conditional expec-
tation of the anticipated terms in (3.25) to make the system adapted. Consider the
following RABSDE (3.25) with one obstacle and default risk (6 is a given constant),
(Y,Z,U,K) € S3(0, T+ &R) x LZ(0, T + & RY) x LZT(0, T + 5 RF) x AZ(0, T;R) is a
solution of the RABSDE (3.25):
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Y = éT + ftTf(S/ Y, EYs [YS—HS]/ Zs, E [Zs—i—(S]I Us, IE [us+(5])ds
+(Kf —K;) = (Kp —K;) — [ ZdBs — [ UsdM;, € [0,T];
Y, > Ly, te[0,T+94);
=, te[T,T+0); (3.25)
zf:at, te (T, T+0;
U; = By, te (T, T+9;
| [ (Y= Li)dK: =0,

The following Theorem 3.3.1 illustrates that the solution Y of the RABSDE (3.25)
above corresponds to the value of a optimal stopping-control problem.

Theorem 3.3.1. Let (Y, Z,U,K) € S3(0, T+6;R) x L3(0, T+ 6;RY) x LZT(0, T+ 6;RF) x
.Azg(O, T;R) be the unique solution of the RABSDE (3.1) with the coefficient (f,¢,L,5). The

anticipated process ¢, the generator f and the obstacle process L satisfy the assumptions H 3.1,
H3.2and H 3.3. Then forall t € [0, T:

0
Y; = esssup EY [ /t f (s, Y, E%[Y, 4], Zs, E% [ZS+5],US,]EgS[US+5]> ds
veT;

+ Lolppory + §T1{v:ir}]r
where Ty = {v € T|t <v < T}, T is the set of all the stopping times on [0, T|.
Proof. Step 1. First, we prove (3.26) as below:

T
Kr—Ki= sup (&r+ | f (s Yo B9 Yol Zo B®[Zo 1o, Us E®[Us ] ) ds
rsrst ' (3.26)

T T —
- / ZSdBS - / udeS - Lr)
r r

Since
T G G G
YTft :CT + /T—tf (51 Ys/]E S[Ys—l—é]/ ZS/IE S[Zs+(5]/ us/]E S[us+5]> ds
T T
YKy — K — / Z.dB,— [ U.dM,,
t—T T—t
and
Yr_y > Lr_y,
T
/ (Yi_ — Li_)dK; = 0.
0
Set

Xt = gT + / 5 Ys, E [YS+5], Z, E% (Zs 15, Us, E% [uer(S]) ds

t—T t—T
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ki = (Kt — Ki—1) (w);

ye =Yt = L1 ) (w).
by the Skorohod lemma (Lemma A.1.1), consequently it follows that (3.26).

Step 2. Denote
D;=inf{r <t<T; Y, =L},

with the convention that D; = T,if Y, > L, and r < t < T. By the condition fOT(Yt —
L)dK; = 0, it follows
Kp, — K; = 0.

Since
Y, =Y [ /t ' (s, Y, E%[Ys 5], Zs, E% [ Z, o], Us, EY [us+5]> ds+ Yo+ Ky — Kt]
>EY [/tvf <s, Ys, B9 (Y 6], Zs, BY [Zs16], USr]Egs[ueré]) ds
+ Lolgpery + CTl{v:T}} ,

we can obtain
D
Yt :]Egt [ /t f (5/ Ys/ IEQS [Ys+5]/ Zs; ]Egs [Zs+(5]/ Us/ ]Egs [us—f—é]) ds

+ Lp,1{p,<1} + CTl{thT}]-

Hence, the result follows. O

3.4 Linear Reflected Anticipated BSDEs with One Obsta-
cle and Stochastic Differential Delay Equations

Similarly to Section 2.4, we study the relation between linear RABSDEs with one obsta-
cle and SDDEs. Consider the following RABSDE (3.27) with one obstacle and default
risk (J is a given constant, t( is the initial time, B is a d-dimensional standard Brow-

nian motion). (Y,Z,U,K) € 83(0,T + &R) x £3(0, T + §RY) x LZT(0,T + &;R¥) x
Aé (0, T; R) is a solution of the RABSDE (3.27):

"

—dY; = ((Tth + OB Yyy 5] + 61 Zt 4+ OIE9 [ Zyy 5] + pellil oy
+ B9 Uy )1 ey + lt>dt +dK; — Z,dB; — UdM;, t€[0,T];
Y > Ly, t e [to, T+9);
Yi =G, te [T, T+4); (3.27)
Zy = 04, tE(T,T+5];
Ut:ﬁt, t€(T,T—|—5],‘
Ji (i = Ly)dK; = 0,
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and the following stochastic differential delay equation with default risk (SDDE):

dXs — (JSXS + a'S—(SXS—é) dS + (XSGS + XS—JéS—(S) dBS
4‘<X&4%7*‘X@—&—ﬁ@—@_>dhk, se[t,T+0];

Xy =1;

XSZO/ SE[t_é,t),

(3.28)

where o, 0, 6, p and fi are uniformly bounded. ¢, 0 € Eé(to —0,T+6,R), 0, 0 e
L%(tg— 0, T+5RY), € LG (tg— 6, T+5RF), 1 € L(ty, T;R), & € SA(T, T+5;R),
a € LE(T, T+ 6RY), pe LE(T,T+5RF).

Theorem 3.4.1. The solution Y of the RABSDE (3.27) above can be given in the following
form:

v
Y; = esssup EY [/ [sXsds + LoXolipery + 81XT1 (0T}
veT; f (3.29)

T+o X
Flpmny [ (@0 abos Bl ol rasy) X,

where X is the solution of the SDDE (3.28), Ti = {v € T|t <v < T}, T is the set of all the
stopping times on [0, T].

Proof. From Theorem 2.4.1, we know that the SDDE (3.28) has a unique solution. Ap-
plying the 1t6’s formula for rcll semi-martingale (Theorem 1.3.4) to X;Y; on [t, T|, and
taking conditional expectation under G;, we can obtain

XY — Xt Yy
T ~
:/t (Ys&sféxsfé - IEgs [Yer(S]O'sXs + Zsesféxsfé - IEgs [Zs+(5]95Xs
+ Usfly— X551 grog) — B9 Uy g] Xl ragy — Xsls>ds
T T A
- /t XsdKs ‘Jl‘/t [Ys (ngs + Xsfégsfé) + XSZS} dBs
T
% (Xeome + Xy s gy ) + Xl dM.
Whens € [t —§,t), Xs =0, and X; = 1, it follows:
T T T
XY =X1Yr + / Xlods + / X.dK, — / Yoy sX,_sds
t t t
T+6 T T+5
+ / Ysa's—(SXs—(SdS - / Zses—(SXs—(Sds + / ZSQS—5XS—(5dS
t+6 t t+6

T+6

T
_/t Usﬁs(ng(gl{Ds}ds—i—/t

s usﬁsféxsf§1{1>s}ds

T A
+ [ [ (X600 + X sys) + X 23] dB
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T
+/t [Ys <Xs—,us + Xs—&ﬁ(s—5)7> + Xsus} dMs
T T+06 ~
“Xrer+ [ X+ [ (@00a+ 0o s+ ool ray) Xl

; . ) (3.30)
+ /t XsdKs +/t [Ys (Xses + Xs—ées—é) + XSZS] dBs

* /tT [YS (XS_VS - XS—5ﬁ(S—§)—> + Xsusi| dMs.

Denote .
Y = XiYy;

Zr =Yy (Xebr + Xi—s0r—s) + XeZs;
Y=Y, (th]/lt + théﬁ(t—é)—> + XUy
A t
ki = / XodK.

0

Therefore, (Y, 7, U, K) is a solution of RBSDE (3.30), with the lower obstacle X;L;, and

the terminal value X1¢1 + fTTH (Csﬁs_g + asly_5 + ,Bs,ﬁs—él{r>s}) X;_sds, the generator
Xilt. By Theorem 3.3.1 and the condition X; = 1, we can obtain (3.29). O
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Chapter 4

Reflected Anticipated BSDEs with Two
Obstacles and Default Risk

Cvitanic and Karatzas [41] (1996) first introduced RBSDEs with two obstacles in the
framework of Brownian filtration. The existence theorem of RBSDEs with two obstacles
can be obtained under the assumptions A.1 and A.2 (see Section 1.2.3). Due to the
disadvantages of the above assumptions, we use the assumption H 4.1 for the obstacles.
More previous research can be seen in Section 1.2.3.

In this chapter, we study reflected anticipated backward stochastic differential equa-
tions with two obstacles driven by a Brownian motion and a mutually independent
martingale in a defaultable setting. The generator of a RABSDE includes the present
and future values of the solution. We study the theoretical existence and uniqueness
result and provide the related applications of RABSDE with two obstacles and default
risk.

This chapter is organized as follows, Section 4.1 states the basic assumptions for
RABSDEs with two obstacles and default risk. In Section 4.2, we combine penalization
method and fixed point method to prove the existence and uniqueness theorem of the
RABSDE (4.1). We represent the relation between linear RABSDEs with two obstacles
and stochastic differential delay equations in a defaultable setting in Section 4.3. Sec-
tion 4.4 illustrates the relation between RABSDEs and obstacle problem for non-linear
parabolic PDEs in a defaultable setting.

4.1 Basic Assumptions

In this chapter, we consider the RABSDE (4.1) below with two obstacles and default
risk with the coefficient (f, ¢, «, B, 51,82,8%,L,V).

(Y,Z,U,K*,K) := (Y3, Zs, Uy, K;r, K; )o<¢<T4 10 is a solution for RABSDE with the
generator f, the terminal value ¢r, the anticipated processes ¢, a, B, the anticipated
times 01, 62, 63, and the obstacles L and V. Kt and K~ are continuous increasing pro-
cesses, the jumps of Y only originate from the default part. K™ is to keep Y above the
lower obstacle L, while K™ is to keep Y under the upper obstacle V. If we take V = oo
and K~ = 0, we can obtain a RABSDE with one obstacle and default risk in the Chapter
3.
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(i) YeS8%(0,T+T%R), Ze LE(0,T+T%RY),

Ue Eé’T(O,ZJr T%RF); K+ € A%(0,T;R);
(i)  Ye=C8r+ [ f(s,Ys, Yorsr(sy Zss Zsisr(s), Us, Usy 53(s) ) d

+(Kf —K}) = (Kp —K;) — [ ZdBs — [ UsdMs, t € [0,T);

(iii) V;>Y;>1L;, tel0,T]; (4.1)
(iv) Y,=¢&, te(T,T+T;
(v) Zi=way, te(T,T+T;
(vi) U;r=p;, te(T,T+T;
(vi) [i (Vi — L)dK;" = [ (Vi — Y;)dK; =0,

Suppose that the anticipated processes §, « and B satisfy H 3.1, the generator f
satisfies H 3.2. 6!, 6 and ¢° satisfy H 2.2. Similarly to the design of Assumption 4 in
Lepeltier and San Martin [93] (2004), we introduce the following assumptions for the
obstacles L and V:

H 4.1. The obstacle processes L and V € S3(0, T + T°;R) and satisfy:
(a) forany t € [0,T], Vr > & > Ly, Land V are separated, i.e. Vi > Ly, P —a.s.;

(b) Land V are rcll, whose jumping times are totally inaccessible,

E sup (V,7)?| < oo;

0<t<T 0<t<T

sup (Lf)zl <o, E

(c) there exists a process with the following form:

t t
Xt = XO — / Us(l)dBS — / US(Z)dMs + A:r — At_’
0 0

where Xr = ¢r, oM € L2(0,T;RY), 0@ € LZT(0,T;RF), A* and A~ are G-
adapted increasing processes, E[| AL |*> + | AT |?] < oo, such that

‘/tZXtZLt/ t e [O,T], P—a.s.

Remark 4.1.1. From the assumption H 4.1 (a), for any t € [0,T], V; > Ly, P —a.s., it
follows that there is no common jump of the increasing processes K+ and K~ on [0, T], i.e.
dK;" - dK; = 0.
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4.2 Existence and Uniqueness Theorem for RABSDE with
Two Obstacles and Default Risk

4.2.1 Uniqueness Theorem for RABSDE with Two Obstacles and De-
fault Risk

Theorem 4.2.1. Suppose that the anticipated processes ¢, « and B, the generator f, the obstacle

processes L and V satisfy assumptions H 3.1, H 3.2 and H 4.1 respectively. Then RABSDE (4.1)

with the coefficient (f,¢, L, V, 51,62,58%) has no more than one solution (Y,Z,U,K+,K~) €

SE(0, T+ T%R) x LZ(0, T+ T RY) x LZ7(0, T + T%RF) x AZ(0, T;R) x AZ(0, T; R).

Proof. Assume that (Y,Z,U,K*,K™) and (Y/,Z’,U’,K'",K'") are two solutions of the

RABSDE (4.1). Denote

=Y-Y, Z=2-7, u=u-u,

Kt =K' - KT, K=K —-K".

=

Applying Itd’s formula for rcll semi-martingale (Theorem 1.3.4) to |Y¢|? on [t, T], we can
obtain

72 +/t 17,2 ds +/t (AT PR
T —_
:2/t |YS| [f(sl Y, Ys+51(s)/ Zs, Zs+(52(s)' Us, us+53(s))
- f(s Ys, Ys+51(s)' Zs, Zs+(52(s)' Us, us+<53(s))} ds
T _ _ T _ _ _
+2/ (AR — —2/ Y.Z.dB —2/ (2% T+ [TL[2) dM,.
t t

The generator f satisfies the Lipschitz condition, |, tT Y,Z;dB; and ftT (2Ys—Us + |Us|*) dMs
are G;-martingales, and

T T T
/ Y, (AR — dR7) = / (Yoo — Y/_)dR — / (Yo — Y/_)dRs <.
t t t

Hence, similarly to the proof of the uniqueness theorem for RABSDEs with one obstacle
and default risk 3.2.1, we can obtain
T+T°
[ s,
t

where M > 0 is a constant. Since the process Y is right continuous, by Gronwall’s
inequality, we can obtain that Y = Y’. Consequently, we get

_ T+ _ T+
|Yi] +/t |Zs| ds"_/t |Us| 1{T>s}')’sd5 < ME

(Y,Z,U K", K" )= Y,z U, ,K*,K").
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4.2.2 Existence Theorem for RABSDE with Two Obstacles and De-
fault Risk

4.2.2.1 Existence Theorem for the Penalized RBSDE (4.2)

We use the penalization method to prove the existence theorem for RABSDE with two
obstacles. We first suppose that the generator is independent on (y,z, u) and provide
the existence theorem in this special frame (4.2) as below, then use fixed-point method
to obtain the existence result in the general frame.

Y =Cr+ ) g(s)ds + (K" — K — (K" = K")
— [ zraB, — [l urdM,,  telo,T];
K" =n [ (Yl —Vi)tds, t€[0,T); (4.2)
O —LydK" =0, P —as;
Y'>1L, tel0,T],

\

where the terminal value {r satisfies the assumption H 3.1, the generator g is indepen-
denton (y,z,u),ie. forall (w,t) € Q x [0,T], f(w,t,y,z,u) = g(w,t). For any n € N,
(Y™, Z", U",K™") is a G-adapted solution of the penalized RBSDE (4.2) with the coeffi-
cient (§ —n(y — V)™, &, L). From the comparison theorem for RBSDEs with default risk
(Theorem 4.2 in Agram et.al [94] (2018)), it follows that (Y"),,>0 is decreasing.

In order to prove the existence theorem for the penalized RBSDE (4.2) (Theorem
4.2.2), we introduce Lemma 4.2.1, Lemma 4.2.2 and Lemma 4.2.3. Lemma 4.2.1 rep-
resents the approximation of the penalized RBSDE (4.2). Lemma 4.2.2 illustrates the
existence of the limiting process Y of Y" in the sense of (4.9). Lemma 4.2.3 completes
the existence of the limiting processes (Z, U, K™) of (Z",U",K™™").

Through the fixed point method (Banach fixed-point theorem), the existence theo-
rem for the RABSDE (4.1) (Theorem 4.2.3) in the general frame consequently follows.

Lemma 4.2.1. Suppose that (Y",Z",U",K™") € R x RY x RF x R is the unique G-adapted
solution of penalized RBSDE (4.2), then there exists a constant C > 0 independent of n, for all
t € [0, T|, such that

T T
E| sup [YPP+ [ 1Z2Pds+ [ UL ey reds + [KEP
0<t<T 0 0
(4.3)
T 2
+(/ n(Y:—VS)Ws) <C, n € N.
t
Proof. Let (Y™K, Zk, UI"*) be the solution for the following BSDE:
T T - T i
Yt”'k =Cr +/ g(s)ds + k/ (Yf'k - Ls> ds — n/ (Yg'k - VS> ds
t t t (44)

T T
- / 7% dB, — / urkam, te[o,T].
t t
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Since g(s) + k (st,k — Ls> —n (st,k — Vs>+ satisfies the Lipschitz condition, by the
existence and uniqueness theorem for BSDEs with default risk (Theorem 1.3.1), there
exists a unique solution (Y™K, Z"k U"*) for BSDE (4.4). Applying Itd formula for rcll
semi-martingale (Theorem 1.3.4) to |Y?*|2 on [t, T], we can obtain

T T
k , ,
Yy ‘2+/t ‘ng‘2d5+/t |ng‘21{r>s}%ds
T T _
=|gT|2+2/t YS”'kg(s)ds—l—Z/t ky!k (YS”"‘—LS> ds
T + T (45)
+2 / nyok (yek = v) " ds -2 / YKz 4B
t t
T n,kq n,k nk|2
_z/t YUk uk P s,

Since | tT Yk zk B and [ tT [YS”;kUS" kur ’k|2} dM; are Gi-martingales. Taking expec-
tation in both sides, it follows

n,k |2 T n,k
B+ [z

T
2ds +/t |usn’k 21{T>S}’)/Sd5:|
T T _
—E|&7[? + 2 [/ Ygfkg(s)ds] 4 2F U o (Yek - 1) ds]
t t
T +
42 [ / myek (v - Vi) ds]
t

T 1 T
<ElcrP 4 M | [ eas| + LE| [ g
T - 2
+ME U k(vek—1) ds]
t
T + 2
+ME {/ n (Yg'k - VS> ds}
t

(4.6)

LT
+ —E | sup (L)?
M | 0<t<T

1
+ —E | sup (Vt_)2
M | 0<t<T

where A1 > 0 is a constant.

Step 1. First, we prove that for any t € [0, T], there exists a constant C; > 0, such

that
E {/fk(l/f'k—LS)ds] +E UtT" (Yﬁ'k—%>+ds}

T
<C [1+1E/t (1Z2%2 4 U 21 sy ds} .

2 2

(4.7)

Similarly to the methodology of Lemma 2 in Lepeltier and San Martin [93] (2004), we
consider the sequences of stopping times (s;);—1,.. and (/;)i—1,, . with the following
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forms:
s =inf{t <r < T; YY" >V,}AT;

=inf{s; <r<T; Y'"=LJIAT, i=12.;
si=inf{li_1 <r<T; Y""=V,}AT, i=2,3..

Since for any t € [0,T), V; > L;, P — a.s. (H 4.1 (a)), we can obtain thats; — T,l; — T,
as i — oo. Since for any r € [s;, 1], an,k > [, it follows

l; l; + l; l;
Yok — vk / o(r)dr —n / (Y —v,) dr— / 7% 4B, — / urkdm,.
S; Si S; S;

1

Moreover, by H 4.1 (c), it follows

Y;jfk = X5, = &1, s; = T;
YST > Xsi/ si < T;
YE =X, =¢r, L =T;
Ynk > Xll-/ I; <T.

Hence, foranyi =1,2,....,

n /li (Yr”'k - V}>+ ds
s

1

<X) — X + / r)dr — / 7B, — / UM,

g/ ]g(r)\dr—/ (7% 4 o1 ))dBT—/ (U 4+ o?)am,

i

+A+—A+—A*+A*

I;
/ g(r)|dr — /(z"k+a£ ))dBr—/ Uk + o®yam,
+AIj+AS—i.

Since for any r € [I;,si41], Y/* < V,,

n/tT (Yr”'k— Vr)+ds
:gn/: <Y,”'k— Vr>+ds

< [ lstlar— [ (@) (L 1003,

—/t(u”k+ar (215, ))AM, + Af + Az,
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it follows
T + 2
E {/t n (Yf’k — Vs> ds]
T T T

ME[ [C1g)Par+ [ 1205+ o Par+ [Tt 40P P g

+ (AF + (A7)
T k|2 k|2
<ha|1HE [ (122 + U8 P g ) ]

here A1, Ay > 0 are constants. Similarly, we can prove there exists a constant A3 > 0,
such that

T ~ 12 T
IE{/ k(vek-1) ds] < A3 {1+1E/ <|Z§’k\2+!LIQ’k|21{T>S}%>ds],
t t

consequently, we prove (4.7).

Step 2. Combining (4.6) and (4.7), we can get

E |Yn,k|2 len,k|2d T|un,k|21 d
t + ; s s+ ; s {T>s5}Ts4S

T 1 T 1
<E|¢r* + ME {/t |Yf’k|2ds] + A_llE {/t |g(s)|2ds] + /\—1]}3

sup (L?)Zl (4.8)

0<t<T

+ iIE sup (V)2
M

T
+MQEP+/"OwHLH%W%ﬁNWQ%}
0<t<T t

Set A{Cq = %, it follows
NP BT T TP R S
B4R g [ 2R [ UL s
T
< {1 —HE/t (\Zg,k|2 + |U§Z’k|21{r>s}’)’5> ds} ,
where C; > 0 is a constant. By the Gronwall’s inequality, we can obtain that ]E|Yt"’k 2 is

bounded, therefore, E UtT |Z§’k|2ds} and E [ftT |U§”k]21{1>s}'ysds} are bounded. Con-
sequently, there exists a constant C3 > 0, such that
2

E UtTk(ygfk—Ls)_ds] +E UtT" (Ys’“'k—\fs)+ds} < Cs.

Let k — oo, we can obtain Y™ — Y" in Eé(O, T;R), Znk s 71 in Ezg(O, T; IRd),
urk — U in £37(0, T;R¥), [Tk (YS”"‘ - Ls>7 ds — K" in £2(Gr; R).

2
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On the other hand,

E | sup Y4

0<t<T

T T
<E sup {|Yt”’k|2+/ |Z§Z'k|2ds—|—/ |U;l’k|2st}
0<t<T t t

T
sup /t Y;“'de;“’k

T
<E|¢r|* +2E {/ Y;“'kg(s)ds] +2E
0 0<t<T

T
1 2E | sup / Yk zikgB, | 4 2

0<t<T/t

T T
<EiGr+ 058 | [ tpas] + LB | [ lg(o)Pas
0 As 0

T
sup / YRR M
0<t<T/t

sup (V;)
0<t<T

1 1
—E L2 + —E
A sup (L))" + P

0<t<T

+

T k|2 k|2
A 1t [ (12854 ULy )

T
+2E sup/ Y, Z!dBs| + 2

o<t<T/t

T
sup/ Y UlldMs |,
0<t<T Vi

Similarly to the proof of Lemma 3.2.1, by the Burkholder-Davis-Gundy inequality, there
exists a constant C4 > 0, such that

E | sup |Y*]?| <,

0<t<T

Let k — oo, it follows (4.3). [

Lemma 4.2.2 below illustrates the existence of the limiting process Y of Y" in the
sense of (4.9).

Lemma 4.2.2. (Y"),> is a non-increasing sequence. For any t € [0, T], (Y}')n>0 converges
to Yy = lim,_, ., Y{' and satisfy

Iim E

n—oo

sup [(Y/' = V)"
0<t<T

=0, a.s. 4.9)

Proof. By the comparison theorem for RBSDEs with default risk (Theorem 4.2 in Agram
et.al [94]), we know that (Y"),>¢ is non-increasing. Similarly to the proof of Lemma
3.2.2, firstlet (Y, Z, U) be the solution of the following RBSDE with the coefficient (g —

n(y—V),¢ L)

T T T
Y =er+ [ [8(s) = n(¥ = Vo)lds+Rr—Ri— [ Z0dB.— | QldM.
t t

66



4.2. Existence and Uniqueness Theorem for RABSDE with Two Obstacles and Default
Risk

By the comparison theorem for RBSDEs with default risk (Theorem 4.2 in Agram et.al
[94]), we know for any ¢ € [0, T},

Y <Y, P-—as
On the other hand, let e ™Y/" be the solution of the following RBSDE with the coeffi-
cient (e (g —nL),e "¢, e "L):
— T —_ —
e MY —e a4 / e " (g(s) +nLs)ds + e TRy — e ™K,
t
T ) T )
- / e Z1dB, — / e~ d M.
t t

By Proposition 2.3 in El Karoui et. al [33] and the definition of X (H 4.1 (c)), let v be a
G-stopping time, such that

g
Y!' =ess sup EY [/ e ") (g(s) + nVe)ds + e "TIEr L,y
%

o>v
+ e—n(a—v)Lal{U:T}]
o
<ess sup EY [e‘”(‘f_v)CTl{U:T} + e_”(”_”)Xgl{KT} + /v ne ") X ds

+1§: [/Te n(s=v) (g( )+ n(Vs — S))ds]

=ess sup ]Eg” Xo + / n(s—v dXs
o>
+E% [ / " pnts—o) (g(s) + (Vs — Xs))ds]

T

<&rl{pot} + Xolpper) + EP [/ e "d(AS +As_)}

0

+ E% [/UT e (570 (g(s) +n(Vs — X5)>ds] :

It follows T
/ e—n(s—v)d(A;F + AS—) — 0, n—oo, P—as..
0

in £2(Q;P). Since

/UT e*n(S—U)g(s)ds < % (/UT ]g(5)|2d8) : ,

and the definition of X (H 4.1 (c)), we can obtain

T
/U e "5V g(s)ds — 0;

T
/ e—n(s—v)n(vs — Xs)ds — (Vo — XU)1{0<T}/ n—oo, P—as.
v
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in £2(Q);P). Consequently,
YZ’} — ng{v:T} + Vvl{v<T}/ n—oo, P —a.s.
in £2(Q;P). Therefore,

Y, < lim Y] < Crlip—r) + Volipery < Vo, P —as.

n—oo
By the section theorem of Meyer [88] (p.220), we deduce that for any ¢ € [0, T],
Y; <V, P—as,
therefore,
Y/ —=Vv)Tlo, P —a.s.

Since Y" | Y, we know that?Y" | PY and Y < PV. Forany n € R", the jumps of Y" are
from the default process H, which are inaccessible (the default times are inaccessible).
Then for any predictable stopping time ¢, we have Y} = Y, therefore PY" = Y". So

we can prove that
Y =FY" [ FY LV,

hence,
Y"-v)1+(PYy-V) <0,

it follows that for any ¢ € [0, T},
(Y- —V)T 10, n—o, P-—as.
From a weak version of Dini’s theorem (Meyer [88], p.202), we deduce that

sup (Y —=V)T 10, n—o0, P—as.
0<t<T

Since (Y — Vi)* < |Y}| + VT, from the Lebesgue’s dominated convergence theorem,
we can obtain (4.9). O

From Lemma 4.2.1 and Lemma 4.2.2, we can prove that there exist the limiting pro-
cess G-adapted processes (Z,U,K™) of (Z",U",K™™).

Lemma 4.2.3. There exist G-adapted processes Z = (Zt)o<i<1, U = (Ut)o<i<T and KT =

(Ki")o<t<T, such that

T T
lim E| sup |Y!—Y;|? —1—/ |ZI — Zs|*ds +/ Uy — Us|21{r>s}’sts
n—»00 0<t<T 0 0 (4 10)

+ sup |K,™" —Kt+|2] = 0.
0<t<T

Proof. Step 1. First, we prove

T T
lim [/ \Z — Z[2ds + / i — us|21{f>s}%ds} —0. 4.11)
0 0

n—o00
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Applying the Itd6 formula for rcll semi-martingale (Theorem 1.3.4) to |Y" — Y*|2 on
[t, T, since ftT(Ys” —YMd(KS" — Ki™) <0, forany m > n > 0, it follows

T T
B |1y =y [ 122 - 2P [ U2 ULy s
t t
T
—2E | [ (0 - Y - k)
t
T
+2E [/ (Y2 = Y) (n(Y? = Vo)™ — m(Y" — Vo)) ds}
t

<2 UtT(Yg1 — Vo) Tm(Y" — VS)+dS} +2E [/tT(YSm — Vo) Tn(Y! - VS)+dS}
7 T 2\ 2

< (1}3 ) - <1E [/t m(Y!" —VS)JFds] )
+<1E >%-<1E UTn(YS”Vsﬁdsr)%.

From Lemma 4.2.1 and Lemma 4.2.2, when n — oo, it follows

sup |(Y}' = Vi) 7|
0<t<T

sup |(Y{" — Vi) *[?
0<t<T

T T
E [/ |zg-z;ﬂ|2ds+/ |ug—u;“|21{T>s}%ds] 0.
0 0

Therefore, (Z"),>0 and (U"),>¢ are Cauchy sequences in complete spaces, then there
exist G-progressively measurable processes Z and U, such that sequences (Z"),,>¢ and
(U™) >0 converge to Z and U in L3(0, T; R?) and € Eé’T(O, T;RF) respectively. Then
we can obtain (3.11).

Step 2. Then, we prove

Iim E

n—r00

sup Y/ = Yi[> + sup K" —K/|?
0<t<T 0<t<T

— 0. (4.12)

Similarly to Lemma 3.2.3, by Burkholder-Davis-Gundy inequality, it follows

E | sup [} - ']

0<t<T

T T
<E sup {|Y;“—th|2+/ |Z§—z;“yzds+/ |u;1—u;"|2st}
0<t<T t t

T
<2E | sup / (Y'=Y") (n(Y! = Vo))" —m(Y" = V) ') ds
0<t<T /¢t
T T
+2E sup/ Y!"(Z" — Z™)dBs | + 2 sup/ YiL (U — Ug")dMs
o<t<T/t o<t<T/t
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§<IE >%<]E [/tTm(YfVS)ersr)%
+<]E >%-<]E [/tTn(Yg%ﬁdsr)%

sup [(Yf' = Vi)~ |?
0<t<T

sup [(Y" — Vi) *[?
0<t<T

T T
+2E | sup / Y!(Z! — Z")dB, | + 2E | sup / Yr (U — umydMs |,
0<t<T /! 0<t<T /1
we can get
E | sup Y/ —Y/"|*| —0, n, m — oo.
0<t<T

Thus,

E | sup Y/ —Y;]*| —0, n— oo,

0<t<T

here Y = (Yt)OgtST € 85(0, T,‘ ]R)
Since for any t € [0, T],

t t t t
K :yg;_ygz_/o g(s)ds—/o n(yg—x/s)+ds+/0 zgst+/0 UndM;,

it follows

E | sup |[K/™" — K| — 0, n, m— co.

0<t<T

Hence there exists a G;-adapted non-decreasing process K™ = (K" )o<t<1, Kj = 0, such
that

E | sup |[K;™" — K ]*| —0, n — oo.
0<t<T
So we have proved (4.12), it follows (4.10). O

Therefore, we have the following existence theorem for the penalized RBSDE (4.2).

Theorem 4.2.2. (Existence theorem for the penalized RBSDE) (Y",Z",U", K", K™") ;>0
has a limit process (Y, Z,U, K", K™), which is the solution of the following RBSDE with two
obstacles associated with the coefficient (g,¢, L, V):

(i) Ye=&r+ [, glo)ds + (Kf — K1) = (Ky —K;)
— [ Z,dB; — [ UdMs,  t€[0,T];
(i) Vi>Y,>L, tel0T);
(i) [ (Vi — L)dK = [[ (Vi = Y))dK; =0, P —as.

(4.13)

Proof. From Lemma 4.2.2 and Lemma 4.2.3, lim;,,« E [Supogth (Y] — Vt)ﬂz} =0,

since Y{' > Ly, for any t € [0, T], as n — oo, we can obtain

‘/tZYtZLt/ t e [O,T], P—a.s.
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Taking limit of the penalized RBSDE (4.2), we can obtain

Y, =&r + / (s)ds + (K — KF) — (K7 — / 7,dB
(4.14)

_ / UdM,, te[0,T], P —as.
t
Then, we give the proof of the condition (iii) of (4.13).
Step 1. Firstly, we prove fo — Ly)dK;" = 0.

Since . .
/ (Y — Ly)dK!" = —n/ (Y! — L)~ 2dt < 0,
0 0

Moreover, Y" convergesto Y, Y" > Y > L, hence, for all n > N€¢, we get
T T T
0< / (Ye — Ly)dK! = / (Ye — Y/)dK!t +/ (Y] — Ly)dK!'* <0,
0 0 0

it follows . T
0= / (Y — Lo)dK! — / (Y — LK, n - co.
0 0

Step 2. Then, we prove that fOT(Vt —Y;)dK; = 0.

Lemma 4.2.3 implies the convergence of fot n(Y!" — Vi) *dsin £2(Q); P) to a non-decreasing
process that we denote by K~, here K~ € AZ(0, T;R). There exists a subsequence of
(K" ) ;>0 (we still denote as (K"~ ),>0), such that

lim E

n—o00

sup |K{™ — K|
0<t<T

= 0.

For any w € ), since function V(w) — Y(w) : t € [0,T] — Vi(w) — Yi(w) is rcll, then
there exists a sequence of staircase functions (v" (w) ), >0, which converges uniformly to
Vi(w) — Y¢(w) on [0, T]. Since Y" converges to Y and Y" > Y,V > Y, by Lemma 4.2.3,
it follows, for any el > 0, there exists N¢, such that for all n > N¥,

Vi(w) = Yi(w) < Vi(w) = Y}'(w) + €';

o i : (4.15)
K7 (w) < Ky (w) +e€.
Since
T T
| = vtk = —n [0 - vyt Par <o,
0 0
hence, by (4.15), there exists e; > 0, for all n > N€¢, we get
T
/ (Vi — Y))dK'™ < e'Kr (w) + €2 (4.16)
0
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On the other hand, there exists M€, such that for all n > M¢,
Vi(w) = Yi(w) — o' (w)| < €,

since v"(w) is a staircase function, then fOT vf(w)d(K; — K{'~) — 0, as n — oo. There-
fore, it follows

T
/(Vt Y))d(K; — K')
_/ (Vi = Yo = of (w)) (dKy —K7) + [ of (w)d(K; —Kj™)
T

<e' (K7 (w) — K& (w)) + i W (w)d(K; — KI'™) — 2e'Kz (w).

Thus, we can obtain

T

lim | sup / (Vi — Y1)d(K; — K'Y | < 2¢'K5 (w). (4.17)

n—oo OStST 0
Finally, by (4.16) and (4.17), we can get

T
/ (Vi — Y)dK;
T
_/ (Vi — Y)d(K; — KI'™) +/ (Vi — YK~ < 3e'K7 (w) + €2,
0

As €' and €? are arbitrary, and Y < L, then we have (iii) fo —Y:)dK; = 0. O

4.2.2.2 Existence Theorem for the RABSDE (4.1) in the general frame

We have proved the existence of the penalized RBSDE (4.2), by the uniqueness theorem
(Theorem 4.2.1) in Section 4.2.1, we can use the fixed point method (Banach fixed-point
theorem) to prove the following existence and uniqueness theorem of RABSDE with
two obstacles (4.1) in the general frame.

Theorem 4.2.3. (Existence and uniqueness theorem for RABSDEs with two obstacles
and default risk) Suppose that the anticipated processes ¢, « and B, the generator f, the ob-
stacles L and 'V satisfy the assumptions H 3.1, H 3.2 and H 4.1. Then RABSDE (4.1) with
the coefficient (f,&,a,B,8',0%,8%,L, V) has a unique solution (Y, Z,U,KT,K~) € Sé (0, T+

T R) x £2(0, T + T%RY) x LZT(0, T + T%RF) x A%(0, T;R) x A%(0, T;R).
Proof. Denote D := S3(0,T + T R) x L%(0, T + T%R?) x LZT(0, T + T R¥). Define
the following mapping;:
d: D—D;
(y,z,u) =» ®(y,z,u) := (Y, Z,U).

For any (y,z,u) € D, there exist the increasing processes K™ and K~ € AZ(0,T;R),
such that (Y, Z, U, K", K™ ) is the solution of RABSDE with the coefficient ( f (s, Ys, Y, 5 (s)r

S
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Risk
us+(53(s))/ ¢, L, V)'

ZS/ Zs+§2 (s)” uS/
First, we prove that ® is a contraction mapping of D

u'

For any (y,z,u), (y,2z,u’") € D, denote:
7T=y—y, t=z-172, 0=u—
Y=Y-Y, 7=7-7, U=u-u,
Kt=K"—K*, K =K —K~

Applying the It6’s formula for rcll semi-martingale (Theorem 1.3.4), we have
av T C12 1% 12 17T 12
M +/t e (e Vo + 126 + |0 P ey 15 ) ds

T A
=2 /0 eYs|f (5, s, Ysrin ()7 27 Zs4-82(s) s Uss Us 63 (s))
—f(s, 3/§/3/2+51(s)122r25+52(s)r us, ”§+53(s)) |ds

T A A A
+2/ eS|Yu| (R — dRD)
t
T A T R R R
) / eV, ZsdBs — / e (20,0 + L) dM,
t t

Since ftT ¥ 2" 4B, and ftT e (ZYS@ al + \LAIS(n) 2)dM; are G-martingales, |Yt(n) > >
0, ftT e®|Y;s|(dKF — dK;) < 0, by the Fubini’s Theorem, H 2.2 and the Lipschitz condi-

tion for f, it follows
T c o . N
E {/ e <§|Ys|2 + |ZS|2 + |US|21{T>s}r)’S> ds}

2 T
EIE |: /t ECSYS }f(s, ]/s/ ]/S_|_51 (5)/ Zs, ZS+52(5)/ Us, us+53 (S))
2
;+52(s)’u;’u;+(53(s))| ds]

_ f(S,]/;/y;_H;l(s), Zg,Z

2
JLIEN

T cs |1 Gs .y 5 Gs |2
=7 [/ € <|y5|+]E 5|y5+51(s)|+|zs|+lE S|Zs+(52(s)|

2
+ 1851 s v/ 75 + B[y g3(s) |1{r>s}\/%> dS}

2
§12L E

T A
- {/t 5|V, | (|ys|2 + |2s]* + |u5|21{7>5}%) ds]

/T+
t

2 276
§12L +12L°L r
c

1212L° T . . .
E P <|ys|2 —+ |Zs|2 + |u5|21{T>S}’yS) dS]

T+T° ) ) )
[ e (1P + 12P 4 1P g s ds
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where L > 0, L° < 0 are constants. Set ¢ = 1212 + 12L2L° + 2, it follows

THT rCioa s 2. iy 2
E /0 e (§|Ys| + |ZS| + |uS| 1{T>S},YS> ds
1 T+T° A A A
SEIE /0 e <|ys|2 + |Zs|2 + |”S|21{r>s}’)’5> dS] .

Therefore, ® is a contraction mapping on D equipped with the norm

1Y, Z, ) = {IE I

From the Banach fixed-point theorem, there exists a unique fixed point (Y,z,U) €
L5(0, T+ T%R) x L3(0, T+ T%RY) x L57(0, T + T% RF), with K and K~ is the so-
lution of RABSDE (4.1). Combining with assumption H 2.3 and H 2.2, it follows that
f(t, Yz, Yiis1(t) Zts Zigs2 (), Ut ut+53(t)) € £2g (0, T + T%R). O

%)

2
e <|Ys|2 + |Zs|2 + |us|21{r>s}r)’5) dS} .

4.3 Linear RABSDEs with Two Obstacles and Stochastic
Differential Delay Equations

Similarly to Section 2.4 and Section 3.4, we study the relation between linear RABS-
DEs with two obstacles and SDDEs. Consider the following reflected anticipated BSDE
with two obstacles and default risk (6 is a given constant, ¢y is the initial time, B is
a d-dimensional standard Brownian motion). (Y,Z,U,K",K™) € 85(0, T+ 6R) x
LE(0,T + &RY) x LZ7(0,T + &RF) x AZ(0, T;R) x AZ(0, T;R) is a solution of the
RABSDE (4.18):

(

—dY; = (0’th + &t]Egt [Yt+(5] + Z:6; + EYt [ZtJr(S]ét + Ut‘utl{T>t}
FE Uy o) il ey + lt>dt +dK, — dK;

—Z:dBy — Uyd Mg, t € [to, T],'
Vi > Yy > Ly, te [0, T+d; (4.18)
Yt:(:t/ t e [T,T+5],

Zy = g, tE(T,T—|—5],’
Ut:ﬁt, tE(T,T—l—5],’
[ (Y = LdK; = [ (Vi = Yo)dK; =0,

\
and the following stochastic differential delay equations with default risk (SDDE):
dXs = (0:Xs + 07 ;X5 5) ds + (Xs07 + X507 ;) dBs
+ (Xl + X ol )dMs, s E[LT+3]; 19)
Xs =0, set—9o,t).
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where 0, ¢, 0, u and ji are uniformly bounded. o, & € Eé(to — 5, T+ T%R), 6, 0
L(tg— 6, T+ TERY), p, i € LT (to— 6, T+ T4RF). ¢ € SHT, T+ T5R), a
LE(T, T+T%5RY), B e LIT(0,T+ T RF).

€
€

The following Theorem 4.3.1 illustrates the main result of this section.

Theorem 4.3.1. The solution Y of the above RABSDE with two obstacles (3.27) can be given
by the following form:

v A2
Y, = ess inf_ess sup E /t L Xods + Loy Xoy1 (5,200 1) + Vir Xer L{o; <o)

v €T; 02€T;

T+6 .
+ 1{01202:T} /T (gs&sfé + “5957(5 + ﬁsﬁsf§1{1>s})xsf§d5

+ XTng{vlzvzzT}]

N
— ess sup ess inf Y /t L Xods + Loy Xoy (g <01 <1} + Vir Xou ] (17 <03)

0267; 0167—1‘

T+o R )
+ 1o =0,=1} . (85055 + asOs 5 + Bsfls—s1 7=y ) Xs—sds

+ XT@'Tl{vl—vz—T}] ,

(4.20)
where X is the solution of the above SDDE (4.19).

Proof. From Theorem 2.4.1, we know that the SDDE (3.28) has a unique solution. Ap-

plying the It6 formula to XsYs on's € [t, T], and taking conditional expectation under
G:, we can obtain

XrYr — Xt}
T A A
:/t <YSO\-S*5XS*(5 — E% [V 16]05Xs 4 Zobs—sXs—s — B[ Zy45]0s X

+ Usfly—5Xs— 51 (rogy — E%[Usyg]0sXs 1 frag) — Xsls)ds
T T

- / XodKF + / XedK

t t

T ~

n /t [ (X607 + X, 561, ) + X7 dB,

+ /tT [Ys (XstsT + Xsf&ﬁg;_(g)_) + Xsus} dM,
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Whens € [t —§,t), Xs =0, and X; = 1, it follows:
T T T T
XY =X1 Yy + / X, ds + / XedKs — / XedKo — / Y., sX._sds
t t t t

T+6 T T+o

‘|‘/ Ysﬁs—cSXs—(SdS_/ Z595—5X5—5d5+/ ngs—éxs—éds
t+6 t t46
r T+é

_ /t Usfly X, 51(rogds + /w Usfly 5 Xs 51 (ro)ds

T
+ /t Yo (X607 + X, 01 5) + X:Zs] dB, -
+ /tT Yo (Xompd + Xoostly_) ) + XUs | dM,

T T+6 .
=Xrer+ [ X+ [ (@00s+ 0o+ Pilesl o)) Xl

T T T A
+ /t XodKZ — /t XedKo + /t (Yo (X607 + X560 ) + X.7:) B,
. s s (s—0)—
Denote .
Yy = XiYy
Zi=Y; (XtQZF + Xt—ééz_5> + XiZy;
Yi =Y <Xt—PltT + Xt—(sﬁ(Tt,(g),) + XUy
A t - t -
R = /O XdK:; R = /0 XedK: .

Therefore, (Y, 7, U, K*,K‘) is a solution of the RBSDE (4.21), with the lower obsta-
cle L;X;, the generator [;X;, the terminal condition X7¢1 + fTTM (Csﬁs_g + asb,_s5 +
ﬁsﬁs_(gl{T>S})Xs_5ds. By Theorem 3.3.1, X; = 1, it follows (2.6.1). ]

4.4 Relation with the Obstacle Problems for Non-linear
Parabolic PDEs

Harraj et. al [95] (2005) studied the relation between RBSDEs with two obstacles and
Poisson jump and parabolic PDEs. In this section, we study the relation between RAB-
SDEs with two obstacles mentioned above and non-linear parabolic PDEs in the de-
faultable setting.

We first consider a state process X which has an influence on the risk measure and
the position. For each initial time ¢ € [0, T + T°] and each initial condition x € R, let X**
be the unique solution of the following SDE (for simplicity, we consider a defaultable
model of a single random default time):

S S S
X = x +/ o(r, X\ dr + / 0(r, X*)dB, +/ u(r, Xt*)dm,, (4.22)
t t t
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with the following assumptions:
H42. 0: [0, T+ T ] xR - R, 0:[0,T+T°]xR =R, u:[0,T+T°] xR — R, and
satisfy:
(a) o(t,x) and 6(t,x) are continuous mappings, p(t,x) is progressively measurable and
invertible;

(b) o(t,x),0(t,x)and u(t, x) are uniformly with respect to t and Lipschitz with respect to
x, i.e. Y(t,x), (t,x") € [0, T] x R, there exists a constant C1, Cp, C3 > 0, such that
lo(t,x)| + 160t x)| < Ci(1+ |x]);
lo(t,x) —o(t,x")]| +[0(t,x) — 0(t,x")| < Co|lx —x'|;
u(t,x) — p(t, x')| < Calx — X' [1gray;

We consider the RABSDE below with two obstacles and default risk:

. T
(i)Y' =g(Hr, X¢) + [J f(r He X5 0 0 0 20 2 s
t,x t,x t,x,+ t,x,+ t,x,— t,x,—
u ,U+53())ds4;(KT — KET) — (K - k)
— [l zt*aB, — [ ut*am,, selo,T;
(ii)  L(s, X\*) <Y <v(s,Xt), se[0,T+T;
(i) YI* = ¢(1,XE), se (T, T+T; (4.23)
(iv) ZF = as, se (T, T+T;
(v) U= ,BS, se (T, T+T;
(vi)  fo (Ys — L(s, X)) AR = [1(V(s, X5¥) — Yo)dKEY™ = 0;
(

vii) E [ (yy;ﬂ2+|z§’f\2 U Py ) ds < oo,

\

with the following assumptions:
H43. ¢ € C(R), f: [0, T+ T x{0,1} x RxRxRxRxRxRxR — R, L :
[0, T+ T] xR =R, V:[0,T+T°] x R — R satisfy:

(a) g(h,x) has at most polynomial growth at infinity, i.e. there exists constants C4 > 0

and p € R, such that
|g(h, %) < Ca(1+ |x[P).

(b) f(t,h,x,y,Gr 2, 2, u, i) is globally Lipschitz in (y, Jr, z, Z;, u, il,) uniformly with re-
spect to (t,x). There exists constants C5 > 0 and p € R™, forany t € [0,T],
ret,T+T,yy €eRz7Z e Ruu e€R 7§ € SGtT+T%5R), 2
Z e LGt T+ T%R), i, i € Ezg'T(t, T 4 T?;R), there exists a constant L > 0, such
that

[f(£,h,%,0,0,0,0,0,0)] < C5(1 + |x[F);
(1 X, Y, §r 2, 2, ) — f(6 1, XY 2 20 0 0|
L(ly—y| +E95, — 7] + |z — 2| + B[z, — 2

+ | — 'Ly /7t + E9 1, — ﬂill{m}ﬁ);

77



Chapter 4. Reflected Anticipated BSDEs with Two Obstacles and Default Risk

(c) L(t,x) and V(t,x) are jointly continuous in t and x. There exist constant C¢ > 0 and
p € R, for any (t,x) € [0, T] x R%

Lt x) <Co(1+|x[P),  V(tx) = =Co(1+ |x[F);
L(t,x) < V(t,x), L(T,x) < g(h,x) < V(T,x).

Remark 4.4.1. Forany s € [0,t] , we extent (Y2, ZL*, U™, K, KL by
Yir=v)r, zZlr=ulr =kt =K =0, se04,

under the assumptions H 4.2 and H 4.3, from the existence and uniqueness theorem for RABS-
DEs with two obstacles and default risk (Theorem 4.2.3), it follows that for each (t,x) € [0, T +
T°] x R, there exists a unique G!-progressively measurable solution (Y'*,Z!*, Ut~ Kb+,
K%~ for the RABSDE (4.23). Here we define G = o{Bs — B;;t <s < T+ T°} V o{H;s —
Hyt <s<T+T°.

44.1 Related Parabolic PDEs

We consider the following related obstacle problem for a parabolic PDE:

(

min (u(t, h,x) — L(t,x),
~ 9t h,x) — Lu(t b, x) — fA( h,x)) = 0;

max (u(t, hx) — V(tx), (4.24)
~ 9t h,x) — Lu(t b, x) — fA( h,x)) = 0;

u(T,h,x) =g(h,x),

\

where h := {0,1},u : [0, T+ T°] x {0,1} x R — R,

2
CHu(t b, x) ::a(t,x)g—u(t, %) + %Qz(t,x)aau(t, %)
9
+ (Au— y(t,x)a—u(t,h,x)) (1 — )i
X
t,x 1 du
FE(E R, x) s=f (41, x, u(t b, x),u (t+(5 (t),h,x) 0(,%) 5~ (1,1, %),
au 2 3
0(t,%)5- (t+(5 (t),h,x),Au(t,x),Au(t+5 (1), %)),
X

Au(t,x) :=u(t,1,x+ u(t,x)) —u(t,0,x).

Remark 4.4.2. In a defaultable market, X' in (4.22) is the dynamics of asset with default risk,
g(Hr, X}£¥) is the contingent that we want to replicate. We denote by u’(t, x) := u(t,0,x) the
pre-default pricing function, and u'(t,x) := u(t,1,x) the post-default pricing function (see
more in Remark 2.6.1 in Section 2.6).

78



4.4. Relation with the Obstacle Problems for Non-linear Parabolic PDEs

Since the function u defined in (4.24) is not smooth, we introduce the following
definition of a viscosity solution of the parabolic obstacle problem (4.24) in a weaker
sense (see more in Soner [96] (1988), Barles et al. [27] (1997), etc).

Definition 4.4.1. (Viscosity solution) Define u(t,h,x) € C([0,T + T°] x R) (h = 0,1),
u(T,h,x) = g(h,x).

(a) u is a viscosity subsolution of (4.24), if the following hold:
u(t,h,x) < V(t,x), forall (t,x) € [0,T+T°] xR, (h =0,1);

e forany q € C2([0, T+ T°] x R), (t,x) € [0, T+ T?) x R is a global maximum point of
u — q, such that

min (u(t, h,x) — L(t,x),

(4.25)
— %(t,h,x) - Etxq(t h,x) — f(t,h,x,u,q)) <0.

(b) u is a viscosity supersolution of (4.24), if the following hold:
o u(t,h,x) > L(t,x),forall (t,x) €[0,T+T°] xR, (h=0,1);

e forany q € C*([0, T+ T°] x R), (t,x) € [0, T + T°) x R is a global minimum point of
u — q, such that

max (u(t, h,x)—V(t, x),

(4.26)
=4 by x) — L% x) — (L hx,u,0)) >0,

where

F(t,hyx,u,q) ==F (8,1, x,u(t,h,x),u (t + 51(t),h,x) ,G(t,x)g—q(t, hx),
X

0(t,x)5 (1+ 820, x) , Aa(t, ), Mgt + (), ),
Aq(t,x) :==q (t,1,x+ u(t,x)) —q(t,0,x).

(c) u is defined to be a viscosity solution of parabolic obstacle problem (4.24) if it is both a
viscosity subsolution and supersolution.

(4.27)

Similarly to the Definition 8.1 in El Karoui et. al [33], we introduce the definition of
parabolic subjet and superjet below.

Definition 4.4.2. (Parabolic subjet and superjet) Let u(t,h,x) € C([0,T + T°] x R),
(h=0,1), forany (t,x) € [0, T] x R.

o P Fy is the parabolic subjet of u with respect to (t,x), (h = 0,1), i.e. the set of the
triple (p, 9, X) € R x R x R, such that

u(s,h,x') >u(s,h,x) +p(s —t) +q(x' —x) + % (X(x" —x),x" —x)
+o(ls =t + |2 —x[);
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o PNy is the parabolic superjet of u with respect to (t,x), (h = 0,1), i.e. the set of the
triple (p, 9, X) € R x R x R, such that

u(s,h,x") <u(s,h,x) +p(s—t)+q(x' —x) + % (X(x" —x),x" —x)

+o(]s —t|+ |x — x|2).

Lemma 4.4.1. Ytt’x defined in (4.23), then there exists a constant C > 0, for all (t,x), (¥, x") €
[0,T+T°] xR, p € RY, such that

E | sup ]Yst'x|2 < C(1+ |x|P);
0<s<T
! A 2
E | sup |YI*—Yyl~x
0<s<T
t . (4.28)
<CE ([, x) — gt x7)])

T
t, t, t,x t, t,x t, t,x
+E A ‘1[,5,]“] (S) <f (S, H, XS x’ YS x, Ys+(51(5)’ ZS x’ ZS+52(5)’ us x’ uS_HSS(S))

2
t’,x’ t’,x' t’,x’ t’,x’ t/,x/ t,,x/ t/’x/
- f(S, HS/ Xs ’ YS 7 syl (S), ZS g 5+52(S)/ us " s t03 (S)) ds.

2

Proof. Applying the Itd’s formula for rcll semi-martingale (Theorem 1.3.4) to | Y| on

t, T], and taking expectation on both sides, we can obtain

T
2+/t ‘Zé,x

2 T
+2E /t YE (dKE — dKE)

t,x 2 T tx|2
E||v® ds-i—/t U1 gy yeds

T
t,x tx vtx ytx tx 7tx t,x t,x
+21E/t Y f (8, Ho X5 Y5 Y o) 26 2oy Us ™ Ul o)) 5
Similarly,
tx t’x’2 T tx t’x’2 T t,x t’x’2
]E[YS' —y +/t ztx _ 7t ds+/t ‘us' —ut 1{T>S}’ysds}
;o |2
—E |g(Hr, X{) — g(Hr, X{"")
T ! A
+2F /t (Yl = i) (dKrt — i)
T tx tx t,x,— 1t,x,—
—Z]E/t (Yl = YI) (it — ki)
T
t,x tx vtx ytx tx r7tx t,x t,x
+2]E/t Y (s, Hy, XET YIS 7, 70 U Ul )

H ol At x At X oy ot x gt X
— f(s, Ho, XEX Y0¥ YI2 78, 2 Ut ,US+53(S))>ds.
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By the Lipschitz condition of the generator f, the assumptions H 4.3 (a) and (b), and
Gronwall’s inequality, similarly to the proof of Lemma 4.2, we can obtain

IE[ sup ]Yt"’k|2}

0<s<T
<CE (1 + | (Hr, X2 g /O " (s, Hs X,0,0,0,0, 0,0)ds) (4.29)
<C(1+[x]?).
where C > 0 is a constant. It follows (4.28) consequently. O
4.4.2 Main Result
We now define
u(t,h,x):=Y", (t,x)€[0,T+T°] xR, h={0,1}, (4.30)

since Ytt s gtt-measurable, hence u is a deterministic function.

Remark 4.4.3. Set YI* = Y/ on [0,t], let (tn, xn)new be a sequence of [0, T + T°] x R
converging to (t, x). Applying Ité formula for rcll semi-martingale (Theorem 1.3.4) to |Yfg'x” -

Y/ |> on [0, T + T°] and taking expectation on both sides, similarly to the proof of Lemma 4.2.1,
we can obtain

}u(tnlh/ xl’l) - l/l(t, h, .X')‘Z = ‘Ytt:/xn _ Ytt,x‘z
il
|

<CE Ug(HT, Xhn) — o(Hy, X&)
T
tn,Xn tn,Xn tn,Xn En,Xn tn,Xn tn,Xn tn,Xn
+]E/O Hl[m(r) (f(r,Hr,Xr X Y tn rYr+51(r)'Zr x ,Zr+52(r),ur x ,UVMW))

<E| sup |Yiv*—Yl*
0<s<T+T?

2

— f(r Hy, X775, Y7, Y:j—cél(r)’ Z/, Zi,—i&z(r)’ u;*, urt'j:ﬁ(r))) ‘ } dr.

From Lemma 4.4.1, it follows that u(t,, h,x,) — u(t,h,x) as (ty, h,x,) — (t,h,x), hence,
ueC([0,T+T°] xR).

We are going to use the approximation of the RABSDE (4.23) through the penaliza-

tion method, which has been studied in Section 4.2.2.1. For each (t,x) € [0, T + T°] x R,
n € N, let ("Y{*," Z&* " Ui™) <4<, 10 be the solution of the penalized ABSDE below:

T
"y =g(Hr, X5) + /S S He, X XY 2P 2 U ) ) ds
T T
+ n/ (Y —L(s, X)) ds — n/ (Y =V (s, Xé"‘))Jr ds
T T °
- / nzti4B, — / "M, s e[t T+ T,
’ i (4.31)
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Lemma 4.4.2. Consider the following penalized parabolic PDE:

aa”” (b11,x) — L (b, x) — F1(ET,x) = 0, (%) € [0,T+T] xR, h={0,1};
un(T, h,x) = g(h,x), xR, h={0,1}.
(4.32)
where

ou,

Ox
0t ) % (14 82(1), b, %), Au (1), A1+ 5°(1)))

— 1 (un(t,h,x) — L(t, %)) +n (un(t,h,x) = V(t,x))";
Auy(t) :=uy (5,1, x + u(t,x)) — uy(t,0,x).

f”(t,h,x)::f(t,h,x,un(t,h,x),un<t+(51(t),h,x>,6( ) 2 (41, %),

uy, defined in (4.32) has the following relation with the penalized ABSDE (4.31):
"I =u,(t, Hy,x),  (tx) €[0,T+T°] xR, h={0,1},

moreover,

duy,
Ox
"W =1y (ua(t 1,2+ u(tx)) —ua(t,0,x)), (tx) €[0,T+T°] xR

nZIX =0(t, XI) =2 (t, Hy, X),

Proof. Since u € C([0, T + T°] x R), applying It6 formula for rcll semi-martingale (The-
orem 1.3.4) to u,(s, H, X;x), by (4.22), we can get

dity (s, Hs, Xb%) a;’t”( H,_, X'"*)ds +a%(s Hs—, X*)dXE"
1 2 t,x aZ t,x
+50%(s, X2 ) —— (s, Hs—, X;¥)ds
2 )

ou
+ (Aun(s) — (s, X)) == (s, Hs—, X)) )dH,
(Aun(s) = (s, XE2) 5 ))dH, .

(aun + cb xun) (s,Hs—, X;’f)ds
o

+ 851,1( H;_, X')0(s, X! )dBs + Auy(s)dMs;
X

un (T, Hr, X¥*) =g(Hr, X¥°),

where Auy,(s) is the jump at the default time 7

Butn(5) 1= Loy (15,1, X5 — (5,0, X))
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From (4.32) and Theorem 2.4.4 in Xu [97] (2010), it follows

(%04 £ (s, Heo, XE)
t

=f"(s, HS—/X;'f)
=f(s, Ho_, X7, un (s, Hy, X), 1 (s + (51(5),HS_,X§'f> ,

aun aul/l
ax ax

Bty (s,), D (s +6°(5))) —n (s (s, Hoo, XI7) — L(s, XEY)) -

0(s, XE*) S (s, Ho, XI2), 005, X S (5 + 2(s), Hoo, XUF)

+
+ n (un (S/ HS—/ Xé’f) - V(S/ Xélx))
= (s, He, X2t (5, H, XU¥), 1t (54 61 (s), Hi, X2,
d Aty
0(s, X*) S (5, Hi, X1%), 0(s, XE) 52 (5 + 6%(s), Hs, XE),
Oy Ox
Aty (s), Dy (s + 6°(s))) — n (un(s, Hs, XI*) — L(s, X%)) ™
11 (un (£, Hs, X%) — V (s, X0)) T

and
Yo(s, X0 M (s H X VaB, = [ 6(s, X0 2 (s HL, XUV dB
(s, X)) (s, Hs—, X" )dBs = (s, X5™) (s, Hs, X" )dBs.
0 ax 0 ax
Set
nYt,x _ H. Xt,x nZt,x -0 th a H th
s _uﬂ(sf Sr 4xg )/ s ( )ax( Ss )
UL =1 oy (100l 1, XE) = 0a(s,0, X))
consequently, ("Y!*," ZL*  UY™) is the unique solution of ABSDE (4.31). O

Theorem 4.4.1. Defined by (4.30), u is a viscosity solution of the parabolic obstacle problem
(4.24).

Proof. Lemma 4.4.2 implies that L(t,x) < u(t,h,x) < V(t,x), for any (t,x) € [0,T +
T°] x R, and u(T, h,x) = g(h, x).

Step 1. We first prove that u is a viscosity subsolution.

Let g € C?([0,T + T°] x R), (t*,x*) € [0,T + T°) x R be a global maximum point
of u —q. If u(t*,h, x*) = L(t*, x*), it follows (4.25).

Now we prove that if u(t*,h,x*) > L(t*, x*), then

— 2 (t,h,x) — Lq(t,h,x) — f(t,h,x,u,q) <0, (4.34)

where f is defined in (4.27). By Lemma 4.2.3, we can obtain that "Y/* — Y/**, Since
u, and u are continuous, from Dini’s theorem, it follows that u,(t,h,x) — u(t, h,x)
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Chapter 4. Reflected Anticipated BSDEs with Two Obstacles and Default Risk

uniformly in compact set of [0, T + T?] x R. Hence, there exists N € IN, for alln > N,
un(t*, h,x*) > L(t*,x*), and (#*, x*) is a maximum point of 1, — g, such that

—?(t*,h,x*) - Et’xq(t*,h,x*) — f(t*, h,x*,uy,q)
t

—n (un(t*, h,x*) — L(+*,x%)) " +n (u, (£, h,x*) — V(t‘*,x*))Jr <0,
Let n — 0, it follows that (4.25), therefore, u is a viscosity subsolution.

Step 2. Then we prove that u is a viscosity supersolution.

Let g € C*([0,T + T°] x R), (t*,x*) € [0,T + T?) x R is a global minimum point of
u—q. u(t*, hx*) = V(" x*), it follows (4.26).

Now we prove that if u(t*, h, x*) < V(t*,x*), then

— ?(t, h,x)— LYq(t,h,x) — f(t,h,x,u,q) >0, (4.35)
t

where f is defined in (4.27). Since u,(t,h,x) — u(t, h,x) uniformly in compact set of
[0, T + T°] x R, there exists N € N, for all n > N, u,,(t*, h, x*) < V(t*,x*), and (t*, x*)
is a minimum point of 1, — g, such that

_3—? (F, 1, x*) = Lq (8, b, x*) = (1, %", un, q)

—n (un(t*, h,x*) — L(+*,x%)) " +n (u, (%, h,x*) — V(t‘*,x*))Jr >0,

Let n — 0, it follows that (4.26), therefore, u is a viscosity supersolution. So we prove
that u is a viscosity solution of the parabolic obstacle problem (4.24). O
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Chapter 5

Numerical Algorithms for RABSDEs
with Two Obstacles and Default Risk

In this chapter, we study numerical algorithms for RABSDEs with two obstacles driven
by a Brownian motion and a mutually independent martingale in a defaultable setting.
The generator of a RABSDE includes the present and future values of the solution. We
introduce two main algorithms, a discrete penalization scheme and a discrete reflected
scheme both based on a random walk approximation of the Brownian motion as well
as a discrete approximation of the default martingale, and we study these two methods
in both the implicit and explicit versions respectively. We give the convergence results
of the algorithms, provide a numerical example and an application in American game
options in order to illustrate the performance of the algorithms.

This chapter is organized as follows, we first introduce the discrete time framework
in Section 5.1. We study the implicit and the explicit methods of two discrete schemes,
i.e. the discrete penalization scheme in Section 5.2 and the discrete reflected scheme in
Section 5.3. Section 5.4 completes the convergence results of the numerical algorithms
which were provided in the previous sections. In Section 5.5 and Section 5.6, we illus-
trate the performance of the algorithms by a simulation example and an application in
American game options in the defaulable setting.

Consider the RABSDE (5.1) below with two obstacles and default risk with coef-
ficient (f,¢&,6,L, V). (Y,Z,U,K",K™) := (Y3, Z;, Uy, K;F/Kf)ogthM is a solution for
RABSDE with the generator f, the terminal value ¢r, the anticipated processes ¢, the
anticipated time J (§ > 0 is a constant), and the obstacles L and V, such that

(i) YeS30,T+4&R), Ze L£E(0,T;RY),
U e L37(0,T;RF), K* € AZ(0,T;R);
(i) Yi=cr+ [] f(s,Ye BE[Ys o], Zs, Us)ds + (Kf — K
—(K; —K;) — [ ZdBs — [ UsdM;,  t€[0,T); (5.1)
(lll) Vi>Y > L, t e [O, T],
(ZU) Y, = ét/ t e (T,T+ 5],
| (0)  f) (i~ LdK; = [ (Vi — Yp)dK; = 0.

where K* and K™ are continuous increasing processes, therefore the jumps of the pro-
cess Y are only from the default part. K™ is to keep Y above the lower obstacle L, while
K™ is to keep Y under the upper obstacle V.

Suppose that the terminal value ¢ and the generator f satisfy the assumptions H 3.1
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and H 3.2, f(t,y, ¥z, u) is increasing in ¥, the obstacles L and V satisfy H 4.1. When
U = +oo (L = —o0), the corresponding RABSDE becomes a RABSDE with one lower
obstacle L (upper obstacle U). In this chapter, we consider the following special case:

H 5.1. Assume that the obstacles L and V are Ito processes with the following forms:

t t t
L= Lo+ / 1Ms 4+ / 194, + / 19am;
0 0 0
t t t
Vi = Vo—l—/ vgl)ds—l—/ vgz)dBS—i—/ v§3)dMs,
0 0 0

where the processes 1V) and vV are rcll, the processes 12), 13), v(2) and v®) are predictable,
moreover, IE[fOT (|lt(1)‘2 + |lfz)|2 + ‘lt(e')|2 + ‘051)’2 + }vgz)‘z + {v§3)|2)dt] < 0.

Remark 5.0.1. If V > L, we can easily check that the assumption H 4.1 is satisfied. We can
justset X = L(X = U), eV =12 (¢1) = 9(2)), ¢2) = [O) (¢2) =), A* = o lgl)’ids
(A% = [, o\V"% ds), where 100 is the positive or negative part of IV,

5.1 Discrete Time Framework

The basic idea is to approximate the Brownian motion by a random walk approxima-
tion based on the binomial tree model, and a discrete approximation of the default
martingale. In order to discretize [0, T], for n € N, we introduce A" := % and an

equidistant time grid (t;);_o; _,, s With step size A", where t; := iA", n’ = n + [£:].

5.1.1 Random Walk Approximation of the Brownian Motion

We use a random walk to approximate the 1-dimensional standard Brownian motion:

By =0;
t/A")

[
Pi=var Yy el e (0,T)
=1

AB! :=B!' —BI' | = VA"e!,  ic[1,n,

where (€!')i=1,.n is a {—1,1}-value i.i.d. Bernoulli sequence with IP(e!' = 1) = P(e}! =
—1) = 3. Denote FI' = o{e?,...€"}, for any i € [1,n°]. By Donsker’s invariance prin-
ciple (Theorem A.2.1) and Skorokhod representation theorem (Theorem A.2.2), there
exists a probability space, such that supy; 1,5 |B — B| = 0,in £L*(G1.44), as n — oo
(sincee; € L78%), here L2+ is the space_of_ the random variables satisfying E[e2+2"] <
00,

5.1.2 Approximation of the Defaultable Model

We consider a defaultable model of a single uniformly distributed random default time
T € (0, T]. We define the discrete default process h]' = hi. = 1y, (i € [1,n]). Partic-
ularly, when i € [n+ 1,1°], h = 1 (since default case already happened). We have the
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conditional expectations of k! under G" ;:

E[hf =1hi_y =1] =P(r < tijt < ti1) =1, i €[1,n];
Ai’l
E [h} = 1|k} ; =0] =P(t < ti|t > tiq) = T ie[l,n];
—tiq
n n T_ti .
E [hz = Oyhi—l = } ZIP(T > ti‘T > tifl) = T_f o’ 1e [1,71].
—ti1

We have the following approximation for the discrete martingale M} directly based on
the definition of the martingale M (H 1.1):

My =0;
[t/A"]
MY =hi g — A" Y (L=1])yf,  t€(0,T] (5.2)
j=1
AM =} — = A" (1= h}')o, ie[ln],

where the discrete intensity process ;' = . > 0is an F;'-adapted process. Denote
G := {G" i€ [0,n°]}, GI = {Q,@}, foranyi € [1,n], G' = o{€},..€", h!'}; for any
i € [n+1,n%, G = og{et,..€, h'}, where I; is independent from €7,...e". From the
martingale property of M;, we can get

E9" 1 [AM]] = B9 [hf — k!, — A" (1—h!)9!] =0, i€ [ln],

therefore, the discrete intensity process has the following form (by the projection on
JT'-Z'n,l):
]P(t',l <Tt< t|./—"n_ ) 1 . T
"= —mes e = ror €W g
AP(T > H|FL)  T—4 A

Note that 7/ = 0, wheni = Oand i € [[F:] +1,n]. If we set §) = Viyan (€
[0, T]), then as n — oo, from Remark 1.3.1 about the intensity process, it follows that §}
converges to ;.

5.1.3 Approximations of the Anticipated Processes and the Generator

Consider the approximation ¢;; of the terminal value ¢, we have the following assump-
tion:

H 5.2. (¢}')icinne) is Gf'-measurable, ¥ : {1, —1}" — R is a real analytic function, such that

& =Y (e, el 1), icnn,

particularly, the terminal value {!' =¥ (e}, ..., hl') is Gl'-measurable.

For the approximation (f"(t;,vy,7, Zr”))ie[o,n] of the generator f, we introduce the
assumption below:

H 5.3. forany i € [0,n], f"(t;,y,7,2,u) is G'-adapted, and satisfies:
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(a) there exists a constant C > 0, such that foralln > 14 2L + 412,

n—

1
E [A" Y |f"(-0,0,0,0)*| <C.
0

=

(b) for‘ amyie[0,n—1,y,yY e R,z 2 e Ruu' eR, 3,7 € Sé(t, T + 6;R), there
exists a constant L > 0, such that

"ty Gizow) — (4, Y, g1, 2 ')
<L (ly =y |+ B = 7l + |z = 2| + |u— 0/ [Lrry Vi)

n

where §; = B9 [y;], i = i + [ & ].

Asn — oo, f*([ 4], Y, 7,2, u) converges to f(t,y,7,z,u) in S3(0, T + &;R).

5.1.4 Approximation of the Obstacles

(LY)icpo,n and (V]")ic[o,n are the discrete versions of L and V, by Assumption 4.1, we
can have the following approximations:

i1 ) i-1 ) i1 3
L =Lo+A") 17+ ) L7VABl + ) VAM]
=0 j=0 =0

Vv At Y o N @ AR Y o A
P =Vt ,Zévj +,Zé”j fe Lo AM
= = =

where l](k) = lt(jk), v](k) = vt(;{) (k =1,2,3). By the Burkholder-Davis-Gundy inequality, it
follows

V"> L}, supE |sup(L})"*+sup(V}")"*| < co.
n i i

We introduce the discrete version of assumption H 4.1 (c):
H 5.4. There exists a process X' with the following form:

i—1

i—1
Xln = Xg — 2 U}(l)AB?+1 - U]'(Z)AM?JFI + Aj’” o A;n'
j=0

j=0

where A" and A;™ are G'-adapted increasing processes, E [|A;7"? +|A;"|?] < oo, such
that
L < X' <V}, i€ [0,n].

We introduce two numerical algorithms below, discrete penalization scheme in Sec-
tion 5.2 and discrete reflected scheme in Section 5.3. For each scheme, we study the
implicit and explicit versions.
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5.2. Discrete Penalization Scheme

5.1.5 Computing the Conditional Expectations

When i € [1,n — 1], we use the following formula to compute the conditional expecta-
tion for the function f : R™*2 — RR:

EY9" [f (g’f, e €141, ?+1)]

1
:§<f(€§lr-- € L) n —ypomy TS €l =L 1) o g 1)
A?l n n 1 1

+m(f(€1/---/€i/ ’ ) n :1hn Ohn 1_1

(e e, =L ) [ g pomn, =1 )
T—tin

) (f (el el 1,0) | k0

+f(€§l, -1 O) €y =—Lhi=0hi ;=0 )

When i € [n,1n°], we have the following conditional expectation for the function f :
R2 — R:
B9 [f (], €fir )]

1 1
:Ef( €81, 1) ot Ef (e1,...€,—1,1)

+1

5.2 Discrete Penalization Scheme

We first use the methodology of penalization for the discrete scheme below. El Karoui
et al. [33] (1997) proved the existence of RBSDE with one obstacle under a smooth
square integrability assumption and Lipschitz condition through penalization method.
Lepeltier and Martin [93] (2004) used the similar penalization method to prove the ex-
istence theorem of RBSDE with two obstacles and Poisson jump. Similarly to Lemma
4.2.1 in the Chapter 4, we consider the following special case of the penalized ABSDE
for RABSDE (1.10):

—dY] =f"(t, Y}, E9\Y ;) zf, ul )dt + dK, — dK,; — Z[dB, — uldM,;, t € [0,T],

Y] =¢&, t € [T, T+ 4],
(5.3)
where

T T
K7 = p/t (Y~ L) ds, K= p/t (YF = Vi) *ds.

By the existence and uniqueness theorem for ABSDEs with default risk (Theorem 3.2.3),
there exists the unique solution for this penalized ABSDE (5.3). We will give the con-
vergence of penalized ABSDE (5.3) to RABSDE (1.10) in Theorem 5.4.1 below.

5.2.1 Implicit Discrete Penalization Scheme

We first introduce the implicit discrete penalization scheme. In this scheme, p repre-
sents the penalization parameter. In practice, we can choose p which is independent of
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n and much larger than 7, this will be illustrated in the simulation Section 5.6.

(

7 -y , _|_ , -,
yzp _y1+1 +fn(tllyl nlylp / ulpn)An+klpn_klpn
2}’ nAB:l-l-l uf’ nAM?H' ielon—1]
+pn .
k"= pA”( — L"), iel0,n—1]; (5.4)
—pn _ . )
kP =pAn (Pt — v, i€e0,n—1];
\ yi - :'1, i€ [7’1,7’1 ]

where 77" = B9 [yP"], i = i+ [4:].

For the theoretical convergence results in Section 5.4, we first prove the convergence
(Theorem 5.4.2) of implicit discrete penalization scheme (5.4) to the penalized ABSDE
(5.3), then combining with Theorem A.2.3, we can get the convergence of the explicit
discrete penalization scheme. By Theorem A.2.4 and Theorem 5.4.1, we can prove the
convergence of the implicit discrete reflected scheme (5.10).

From Section 5.1.5, taking conditional expectation under G/', we can calculate gf’ "
as follows:

(1
pn pn
2 (yi n=1,1=1 /i _—1,h;¢_1>
0 pn pn
M + 2(T —t;) (y; el =1, =0,n=1 Y 4:1,}:7:0,}:;1:1)
EY [yP"] = (5.5)
: LTt 5(@ X ) ielin—1;
2(T —t;) Vi er=1,1=0,1 =0 Vi el=—1=0n"=0/" ’ ’
1 n n ) - 6
~(an L , i€ [n,n.
\ 2 (gl /=1 * Cl er=-1 [ ]
Similarly, z!"" and u!"" (i € [0,n — 1]) are given by
n gi n
P EY; [%HAB?—H] _ E [yzﬂ A €z+l}
' EY; [(AB?.H) ] o [( An€1+1) ]
pn ey
1 ]Eg‘rl |: pn n ] _ yl+1 €l+1:1 yl+1 €i+l:_1_
~ JAn Yit1€iv1] = AR ’
P :lEg [%HAM?H] (5.6)
b EY[(aMy,)?]

:]Egﬁ il (R = — AP = h ) yii) ]
B9 [(h .y — b — A"(1 =R )7i41)?]

n

— P (T — ti1) Ay,
Bi=0t1 =1 y1+1( i+1) A"y

A" + (T — tit1) (A"yit1)?

Yina

h,-:O,h,-+1 :O
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5.2. Discrete Penalization Scheme

Note that u!" only exists on [0, [ ] — 1] (i.e. before the default event happens). By

taking the conditional expectation of (5.4) in G/, it follows:

/

g = (@) (B9 ), e fon—1;
K= pAn (P L), e (on—1];

1

kit=parylt = vt ieon-1j;

1

| wr=al i€ [n,n);
2" = BN yiheta],  ielon-1];
r o p,
u;ﬂ,n _ EY g[lr{?fl(h?ﬂ_h?—An(l—hﬁl)%H)] i o, [ﬁ} —1].
L E7i (1}, =} —A"(1=h! ) vig1)?]

(5.7)

where ®P(y) = y — f'(t;,y, 50", 20" ul™) A" — pA"(y — L")~ + pA"(y — VI')*. For

the continuous time version (Y, ZP", UP", K 77", K, P o< <1
pn. __ . pH pm _ pn pmo _ o ph
Y= Yie/an VASRES 21y an)y u,” = L
N t/a [t/A7]
pn_ pn —pn _ —pn
i=0 i=0

5.2.2 Explicit Discrete Penalization Scheme

In many cases, the inverse of mapping ® is not easy to get directly, for example, if f is
not a linear function with respect to y. So we introduce the following explicit discrete

penalization scheme, we replace y!"" in f" by EY [y!""|] in (5.4), it follows

~D, ~P, nr~p, ~F 4 4 ~+ 4 P
(7" = yf+n1 + f(t;, Y T A I TR S R
—Zf’”AB?H - ﬁf’nAMznﬂf ie[on—1f;
ptpn _ i - ] ;
M= parglt -1, ielon-1];

=A@l vt iefon 1)

1

\ gzplnzgfll ZE [n/n(s]/

(5.8)

where §/" = B9 [ng’”], =i+ [i]. g7", 2" and a!"" can be calculated as (5.5) and

AT[
(5.6). From Section 5.1.5, we can computer EY [y} "] as follows:

_p,n

gripmy 1
E* | er —1w—1 T Yit1

%‘+1] :i(lﬁfl

e?ﬂzflfh?:l)

_p,n
e =Lr=0i =1 T Vit

A?’l ~p,n
T 1) (ym

n T—ti <~p,n 4 y~p,n
2(T — ¢; i+1lel | =1h'=0h =0 i+1lel  =—1h!=0h]
( j
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By taking the conditional expectation of (5.8) under G', we have the following explicit
penalization scheme:

(g =B[N+ B[ g Al A
—Hﬁpn—k. Pt iel0,n—1];
7+pn _ pA" noro n ~P” P” Tlade
ki _ 1—’ZpA” (Eg [y ] +fn( I’IEg [szrl] Yi /% Y )A
—L;ﬂ) . ielon—1;

r—pn _ noro P,
ki 7= 1+pA” <]Eg (775 ] + (4, B9 ) 7 () A" (5.9)
_|_
—vi”) . ieon—1);
gf/ :’l, Z e [ 5].
o ; .
Zj QNIEQ (el ielon—1];
gn n_An
all}/” _ E% g[lerl( i+1 —hi—=A (1- hz+1)71+1)], ic [0’ [ﬁ] _ 1].
\ g [( 1+1_hn An(l h+1)7t+1) }
For the continuous time version (Y, Z/", 0", KP", R P™) o<y
P P 7pn ~P” TP SPm
Y= Ut/ am VA 21y an) u,” = 0y
o [t/A"] o o [t/ A" o
Kt’::;)ki’, Kt’::;)ki’.
1= 1=

Remark 5.2.1. We give the following explanations of the derivation of I%;rp " and I%;p g

o IV > g > L wecanget kP =k P = 0;

o if " < LI wecanget k" = 2% (B9 [gP] + o, B g2, 50 2D al " A
—L") and k; P = 0. From (5.9), we know that p should be much larger than n to keep
yi " above the lower obstacle L};

e A" ne =pn pn

o if ! Pt > v, wecangetk G 1£pAn (]EQ (7 z+1} —i—f”(tl,]Eg [3/?4:11] P”’ pn Pﬂ)An
—VZ.”) and k;rp " = 0. From (5.9), we know that p should be much larger than n to keep
gf " under the upper obstacle 1%

5.3 Discrete Reflected Scheme

We can obtain the solution Y by reflecting between the two obstacles and get the in-
creasing processes Kt and K~ directly. So we can see clearly how the increasing pro-
cesses work during the time interval [0, T].
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5.3.1 Implicit Discrete Reflected Scheme

We have the following implicit discrete reflected scheme,

(V=i YT ) A R =R
—zI'AB! , —ulAM?,, i€ [0,n—1];
Vizyl=Ly, o ielon—1]; 10
kKM >0, ki">0, kk"=0, iel0,n—1]; (-10)
W' — Lk =yl —Vk;" =0, i€[0,n—1];
Lyt =2¢n, i€ [n,n.

where ! = EY/ i, i=i+ [%} . ¥,z and ul' can be calculated as (5.5) and (5.6). By
taking conditional expectation of (5.10) under G, it follows

(=B Y g u A+ K -, e [0, —1);
vt >yt > L7, iel0,n—1];

Kf">0, k">0 ki"k"=0, iel0,n—1];

(i =LK™ = (v} = V)K" =0, ie[on—1];

. ! (5.11)
yr =2, i€ nn;
1 EGn ; :
2 = BN [ylely],  ielon—1];
B [yt (W~ =" ()i .
= Egpalia O L e o [E] -1
\ E”i [(h,‘+1_hi —A (1_hi+1)%’+1) ]
Lemma 5.3.1. If A" is small enough, (5.11) is equivalent to
v = (EXy)+ —k), e fon-1);
i = (B9 Ty ] + f (6, LY L2 20w A = L) i€ [0, —1];
n = + .
= (B [yty) + F1 (8, VL V2 2 ) A = V) e [0 1)
y;’l — ;1’ = [Tl, n(S]’. (5.12)

z} = 2\/1E]Eg’?1 [y;z+1€?+l] / i€l0n—1]

]Egln[ n (h” —h"—A”(l—h" ) . )]
u — gi+1 i1 i+1)Vi+1
: BT [(h7,y —h — A (1=, 1) Yi41)?]

, i 0 [ 1]

here ®(y) =y — f"(t;,y, 7}, 2}, ul ) A".

Proof. Similarly to Section 4.1 in Xu [63], for any y # 1/, since f satisfies the Lipschitz
condition, we can obtain

[@(y) - ()] (y—y) = (1-A"L)(y—y)* > 0.
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When A" is small enough, it follows that ® is invertible and strictly increasing in y.
Therefore,
y 2 L == @(y) = ®(L);

y <V = o(y) < (V).

Step 1. (5.11) = (5.12).
If V' > L, we can obtain that {y — L' = 0} and {y! — V" = 0} are disjoint.
When vy > L7, it follows that kf” = 0, from the monotonicity of ®,
E9 [y}, — (L)) = O(y}) — (L)) + k7 > 0,
When y!' = L, it follows that k; " = 0. On the other hand,
E9 [yf] — ®(L}) = @(y}') — ®(L]) — k" <0,

hence,

= (L)~ B9 [yfa] = (B ] - @(L)

Moreover, we assume that V" = LY, therefore, V" = L!' = y¥, it follows that =0or

k" =0.

+n
ki

If k" = k;" = 0, we can get

O(y}) = E% [ylq] = (L)) = D(V]").

1

If k;’” > 0and k; " = 0, it follows

7 = @(07) — B 2] = ®(L)) ~ B Iy = (BT i) - @(L))

Similarly,
n +
k" = (B9 [y ] — @ (V)

1 1

N——

It follows (5.12).
Step 2: (5.12) = (5.11).
If k;r” > (0, we can obtain that
(V") > d(L]) > EX [y} ],
hence, k; " = 0. It follows that k;’”ki_” = 0. So we can obtain

D(y)) = E9 [yf] + K = (L))

1
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Therefore, y = L!" (P is a one to one map), then (y” — L?)k;" = 0. Similarly, we can
prove that (y! — V")k; " = 0.

Then we prove that y!' > LY. We assume that y} < L}, when k! = 0, it follows that
EY: [yl ,] > @(L}). Then ®(y}') = EY: [y1] > @(L}). But @ is non decreasing, so it
leads to absurdity. O

For the continuous time version (Y, Z!*, U, K™, K; " )o<i<T:

n

Ytn = yﬁ/A”]’ Z;/l = Zﬁ'/A”]’ Ut = uﬁ/A”],

[t/ A"] [t/ A"]

K= LK = L K"

5.3.2 Explicit Discrete Reflected Scheme

We introduce the following explicit discrete reflected scheme by replacing vy in the
generator f" by E[y7 ;]G] in (5.10).

.

T = T+ F (0 B (), 71 20, A AT 4 K R

—ZTABP,, — ”AMfH, ielon—1;
Vit2g; 2 L, € [0,n—1j;

- o 5.13
kKf">0, k">0 k""" =0, i€0n—1]; 19

(7 — Lk = (7' — V" =0,  ieo,n—1];
(7 =4 i € [n,n°.

where ! = EY/ 7], i =i+ [%} .y, 2! and @i} can be calculated as (5.5) and (5.6). By
taking conditional expectation of (5.13) under G*:

(

g =B [} ] + F (6, B9 [7],4], 77 2 AT
R =k, ieon—1];

v >yl > LI, iel0,n—1j;

k>0, k">0, kt'k;"=0, ie[0,n—1];

(7 — Lk = (g —VMk;" =0,  ie[0,n—1]; (5.14)
g =2ar, i € [n,n;

Zl = 2\/1EIEQ;1 [7a€lal,  i€l0n—1];

gy
Pt = E™ [5?+1(hzn+1 B A (1R ) Vi) ] ic|o [ln:| —1]
. 7 7 .
: B9 ()~ =07 (LI ) 711 P .
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Similarly to the implicit reflected case (Lemma 5.3.1), we can obtain
(g =BG (B () 52 A A
LB E ie0n—1);

K = (B9 [g2] + £ (6, B9 (g7, 57, 20, ) A"

—L;?)i, ie[0n—1);

k= (B[] + £ (6 B (0], 5020 )" (5.15)
—vl.">+, icl0n—1);

g =cr, i€ [n,n‘s];

4= zx}F]Egi (771604 ] i€0,n—1];

Ghr.
Pt = E™ []n/znﬂ(h?ﬂfh?*An(l*h?ﬂ)'yiH)]
S ET [y b= A (LR )i 2]

,iel0,[&] —1].

For the continuous time version (Y7, ZI", U, K", K, " )o<i<T:

Vi =T amy Z = Zjp an), U} = 1 pm,s
B [t/A"] _ ~ [t/A"] _
K;r” = Z k;r”, K"e= Z ki

i=0 i=0

54 Convergence Results

We first state the convergence result from the Penalized ABSDE (5.16) to the RABSDE
(1.10) in Theorem 5.4.1, which is the basis of the following convergence results of the
discrete schemes we have studied above. We prove the convergence (Theorem 5.4.2)
from the implicit discrete penalization scheme (5.4) to the penalized ABSDE (5.3) with
the help of Lemma 5.4.1. Combining with Theorem A.2.3, we can get the convergence
(Theorem 5.4.3) of the explicit discrete penalization scheme (5.8). By Theorem A.2.4,
Lemma 5.4.1 and Theorem 5.4.1, we can prove the convergence of the implicit discrete
reflected scheme (5.10). By Theorem A.2.3, Theorem 5.4.6 and Lemma A.2.4, the conver-
gence (Theorem 5.4.5) of the explicit penalization discrete scheme (5.13) then follows.
We first introduce the following discrete Gronwall’s inequality (Lemma A.2.1). Theo-
rem A.2.3, Theorem A.2.4, Lemma A.2.4 can be found in the Appendix A.2.

5.4.1 Convergence of the Penalized ABSDE to the RABSDE (1.10)

Theorem 5.4.1. Suppose that the anticipated process &, the generator f satisfy H 3.1 and H 3.2,
f(t,y,9r,z,u) is increasing in i, the obstacles L and V satisfy H 4.1 and H 5.1. We consider
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the following special case of the penalized ABSDE for RABSDE (5.1):

(

—dyl = f" (t, Ytp’IEgt [Yf+5]lzf, Utp)dt + dK;rP —dK; P

—Z0dB; — Ul'dM;, tel0,T);

K = [y p(Yf — L)~ ds, te[0,T); (5.16)
K P = [y p(Y —Vi)tds, te0,T];
| =g, t € [T, T+ 4.

Then we have the limiting process (Y, Z,U,K*,K~) of (Y?,ZP,UP,K*P,K™F), ie., as p —
0, Y[ = Yy in S3(0, T+ &R), ZI' — Z; weakly in L5(0,T;R), U] — U; weakly in
LF(0,T;R), K7 (K 7) — K} (K;) weakly in A%(0, T;R). Moreover, there exists a con-
stant CC,f,L,V depending on &, £(t,0,0,0,0), L and V, such that

T T
E| sup |Yf—Yt|2+/0 |Zf—Zt|2dt+/0 U} — U1 s gy yedt

0<t<T

+ - _
+ sup |(Ktp_Kt+)_(Ktp_Kt )|2
0<t<T

1
< ﬁcg, fLV-

Proof. First, we introduce the following ABSDE:
—dYPT =f (¢, YD, B YA, 2P0, ul M dt + q(Y]T — Ly)~dt

5.17
—p(YP" V) Tdt — zPaB, — uldmy, t€[0,T). (5:17)

By the existence and uniqueness theorem for ABSDEs with default risk (Theorem 2.2.1),
there exists the unique solution for ABSDE (5.17). Similarly to Lemma 4.2.1, it follows
that as g — oo, Y"1 ¥} in 83(0, T+ &R), Z]"" — Z] in L(0, T;R), U}"" — U] in
LF(0,T;R), Joa(Y?" — Lg)=ds — K} in A%(0, T;R). (Y7, ZP,UF,KP) is a solution of
the following RABSDE with one obstacle L:

—dY] =f (6, Y], (Y, )], 27, Uf)dt + K] (5.18)
—p(Y} — V) Tdt — Z2PdB, — UldM;, te[o,T).
Let p — oo, it follows that Y} | ¥ in S3(0,T + & R), Z}' — Z;in £3(0, T;R), U} — U,
in Lé’T(O, T;R). By the comparison theorem for ABSDEs with default risk (Theorem
2.3.1), we know that I_(ij is increasing, then K’% 0 K;p and K’%H — KFT] > suposth[KfJrl —

Kf] > 0, therefore, Kf — Kj P in Aé(O, T;R). By Lemma 4.2.2, there exists a constant
C; depending on ¢, f(¢,0,0,0,0), §, L and V, such that

T T
E|sup [} =i+ [ 20—z dt+ [ |uf— U 1y et <&

0<t<T \/ﬁ

Similarly, let p — oo in (5.17), it follows that Ytp,q + ?? in Sé(O, T+ 6;R), Zf’q — Zf
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in £2(0, ;R), U}’ — U} in £37(0,T;R), [y p(X! — Vi)*ds — K] in A%(0, T;R).
(Y?,Z7,T",K") is a solution of the following RABSDE with one obstacle V'

AV = f (VB Y], ], Z0, T dt + (¥ — L)

A _ (5.19)
—dK! —Z]dB; — UldM;, te[o,T].

Let g — oo, it follows that Y{ | Y;in S2(0, T+ &;R), Z{ — Zyin £3(0, T;R), U] — Uy in
£2g'r(0, T;R), K} — K, " in AZ (0, T; R). Moreover, there exists a constant C, depending
on¢, f(¢,0,0,0,0), 4, L and V, such that

g 2 T _, 2 T, 2 C,
E | sup ‘Yt—Yt‘ +/O (zt—zt‘ dt+/0 ]ut—ut‘ o yedt| < =2,

0<t<T Va

By the comparison theorem for ABSDEs with default risk (Theorem 2.3.1), it follows
that YY < YP <Y}, for any t € [0, T]. Therefore,

‘2 < &,

NG
where C3 > 0is a constant. Similarly to the proof of Lemma 4.2.3, applying It6 formula
for rcll semi-martingale (Theorem 1.3.4), we can obtain

E | sup ‘Ytp — Y}

0<t<T

B[ [ 12 -z [ g - P ar] <
0 0 VP
where C4 > 0 is a constant. Since
t
K —KP =Yl -y - /0 F(s, Y0 EE[YY
- /Ot 70 dB, — /Ot uldMs;

t
Kf K =Yo—Yi— /O F(5 Yo E% [Ys 4], Zs, Us) ds

t t
_ / Z.dB, — / UM,
0 0

By the convergence of Y?, Z?, UP and the Lipschitz condition of f, it follows

],z ul)ds

_|_ — —
E | sup |(K; p_K?—)_ (K; p_Kt )’2
0<t<T
2 T T C
<AE | sup |Y/ - Y| +/O |Zf—Zt|2dt+/0 U} — U1 s gy yedt g\/—%,

0<t<T

where A, Cs5 > 0 are constants. Since 1E[|I<}r P12+ |K;"|?] < oo, there exist processes K"
and K~ in Azg (0, T;R) are the weak limits of K™7 and K~ 7 respectively. Since for any
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elo,T,Y <Y/ < Y}, we can get

dK, P =p(YF — Ly)~dt < p(Y! — Ly)~dt = dK,';
di; " =p(Y) — V)Tt > p(Y} — Vi) Tdt = dK; "
Hence, dK;” < dK;",dK; > dK; , it follows that dK;" — dK; < dK;} — dK; . On the other

hand, the limit of Y? is Y, so dK;" — dK; = dK; — dK;, it follows that dK;" = dK;",
dK; =dK; ,then K = K, K7 = K. 0

5.4.2 Convergence of the Implicit Discrete Penalization Scheme

We first introduce the following lemma to prove the convergence result from penalized
ABSDE (5.16) to implicit penalization scheme.

Lemma 5.4.1. Under H 5.2 and H 5.3, (Y}, Z]"",Ul"") converges to (Y, ZF, U') in the
following sense:

T T
lim | sup Y] =Y+ [ (2" = zZfPat+ [ (U - U Pl vt | =0,
n—oo OSiST 0 0

(5.20)
forany t € [0,T],as n — oo, K/ — K, 7" — K,P — K, 7 in £3(0, T; R).

Proof. Step 1. First, we consider the continuous and discrete time equations by Picard’s
method.

In the continuous case, set Y7V = 7zpP°0 — P20 — (), then let (Ytp ’oo’mH, Zf ’Oo’mH,
Utp ’oo’mﬂ) be the solution of the following BSDE:

R A T
+ [Tq(yPem — L) ~ds — [T p(YP®" — Vi) tds
— [hzbemtapg - fulemtaM,,  te o, T

Ytp,oo,m+1 — ét, f c (T,T+5],

(5.21)

\

where (Y[, zP%™ ul"®™) is the Picard approximation of (Y}, Z}, U}).

In the discrete case, set yp no _ zp mo uf m0 0 (for any i = 0,2,...n), then let

" ml z" e ubl™ m+1) be the solution of the discrete BSDE below:

ylp,n m—+1 yf—,’—nl,m—&—l + fn (ti/ yl N, ml yf,n ,m p,n m, uf,n,m)An
p n,m+1 p n,m+1 pn —
ABﬂ-l u; AM?—H + pAn (yi - L?) (5.22)
—PA”(yl —Vh', ieon-1j;
1,m+-1
y"m =g, e [n,n’].

i

here (Y™™, ZP"™™, Ul™™) is the continuous time version of the discrete Picard approx-
pnm pnm p,n,m)

imation of (y; U
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Step 2. Then, we consider the following decomposition:
Yp,i’l _ Yp — (Yp,?’l _ Yp,n,m) + (Yp,n,m _ Yp,oo,m) + (Yp,oo,m _ Yp) .

By Proposition 1 and Proposition 3 in Lejay et. al [98] and the definition of L} and V",
it follows (5.20). [

Theorem 5.4.2. (Convergence of the implicit discrete penalization scheme) Under H 3.1
and H 5.3, (Ytp & Zf & Utp n) converges to (Y, Zy, Uy) in the following sense:

lim lim E
p%oo n—oo

T T
sup [Y/" —Yi* + / 2" — 74| dt +/ jur" — ut|21{T>t}%dt] =0,
0<t<T 0 0
(5.23)

forany t € [0,T],as p — oo, n — o0, K,/ 7" — K, 7" — K}t — K; in L3(0,T;R).

Proof. By Lemma 5.4.1 and Theorem 5.4.1, as p — oo, n — o9, it follows

T T
e 7+ [ 5 [ e
0<t<T 0 0
<O | sup [¥)" = ¥/[2+ [Nz -z Pare [ Ul - U P gt
0<t<T 0 0
p 2 T p 2 T p 2
1 2E | sup Y — Vi) +/ Z" — z,| dt+/ U~ W2 oy et — 0.
0<t<T 0 0

For the increasing processes K7 and K7, by Theorem 5.4.1, we can obtain

_ 72

E[ (K" -k - (K - K]
2
+p, -p, + -
R T N i)
2
+ - _
+2E | (K7 = K7) = (K = K7)]|
C

2
B [(KP" - k) - (K7 -k +—,

VP
where C > 0 is a constant depending on ¢, f(t,0,0,0,0), 6, L and V. For each fixed p,
t
S LS VL /O £ (s, Y BS (YP, 2P, ul ™) ds
t t
— [ zprasr — [ umam
0 0
B t
K7 —KP =Y - YP - /0 £(s, Y0, BE[Y?, ], 2L, Ul ds

t t
—/ zdes—/ Ul dM,.
0 0
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By Corollary 14 in Briand et. al [99], we know that as n — oo, fo Zf’nng’ — fo ZPdB,
in Sé(O, T;R), fo uramr — fo ufdM; in Sé(O, T;R). By the Lipschitz condition of f
and the convergence of Y7, it follows that K:r Pt _ K, Pt _, I<t+ — K in Lé(O, T;R).

]

5.4.3 Convergence of the Explicit Discrete Penalization Scheme

By Theorem 5.4.2 and Theorem A.2.3, we can obtain the following convergence result
of explicit penalization discrete scheme.

Theorem 5.4.3. (Convergence of the explicit discrete penalization scheme) Under H 3.1
and H5.3, (YP", ZP", TP'™) converges to (Y1, Zt, Uy) in the following sense:

lim B[ sup [V — Y’ +/ 2"~ 7, dt +/ " — U1 sy ytt] =0,
n—oo OStST 0 0

(5.24)
foranyt € [0,T], as n — oo, K;Lp’n ~ K" KK in Eé(O, T;R).

5.4.4 Convergence of the Implicit Discrete Reflected Scheme

By Theorem A.2.4, Lemma 5.4.1 and Theorem 5.4.1, we can prove the convergence of
the implicit discrete reflected scheme (5.10).

Theorem 5.4.4. (Convergence of the implicit discrete reflected scheme) Under H 5.3 and
H3.1, (Y]',Z},U}") converges to (Yy, Zt, Uy) in the following sense:

lim E

n—o00

T T
sup ]Yt”—Yt|2+/ |Zf—Zt\2dt+/ U — Up Py medt | =0, (5.25)
0<t<T 0 0

and for any t € [0,T], as n — oo, K" — Ki" — K" — K in LZ(0, T; R).

Proof. First, we prove (5.25).

From Theorem A.2.4, Lemma 5.4.1 and Theorem 5.4.1, we choose p much larger than .
For the fixed p € N, as n — oo, it follows

T T
E | sup |Yt”—Yt|2+/ |Z?—zt|2dt+/ |Uf—ut|21{T>t}7tdt]
0<t<T 0 0
n P/" 2 T n Pz” 2 T n P/" 2
<3E | sup |Y}' —Y/"| +/0 |zt — 7 |dt+/0 Uf — UP" PLspy yedt

0<t<T

T T
+3E | sup [Y" —Y/)P+ / |ZP" — 7P |2dt +/ Uy — U P s gy yedt
| 0<t<T 0 0

T T
+3E | sup \Yf—Yt|2+/ |Zf—Zt|2dt+/ |Uf—ut\21{r>t}%dt]
| 0<t<T 0 0
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T T
<3E | sup [Y/" —Y')?+ /O |ZP" — 7P |2dt + /0 ul" —uf !21{T>t}%dt]

0<t<T

3 3
+ _Cij,f,L,V + _/\L,T,(Scf”,@'”,L”,V” — 0.

VP VP
For the increasing processes, for the fixed p € IN, as n — oo,

E[|(K" =K = (K = K7) ]

<3E U (K" =K = (K7 =K )

|
s |7 k) - (k)
+3E “ (Kj” - K;’”) — (K —K;) ﬂ

< (k717 - (677

3 3
+ —C LV + —AL,T,(5C ngn [nymn — 0.
VP T gt

5.4.5 Convergence of the Explicit Discrete Reflected Scheme

By Theorem A.2.3, Theorem 5.4.6 and Lemma A.2.4, we can get the convergence result
of explicit penalization discrete scheme.

Theorem 5.4.5. (Convergence of the explicit discrete reflected scheme) Under H 3.1 and
H5.3, (Y, Z!, Ul converges to (Y, Zt, Uy) in the following sense:

Iim E

n—o00

sup [/ = Yil2+ [1170 = zifdt+ [0 — WP oyt | =0, (526
0<t<T 0 0

forany t € [0,T], as n — oo, K" — K, " — KF — K[ in Lé(O,T;IR).

5.4.6 Distance between implicit discrete reflected and explicit dis-
crete reflected schemes

Theorem 5.4.6. (Distance between implicit discrete reflected and explicit discrete re-
flected schemes) Assumptions H 3.1 and H 5.3 hold, for any p € IN:

\/11 n|2 T TN n|2 T ~Tn n|2
IE Sup ‘Yt _Yf} +/0 |Zt _Zt‘ dt+/() {Ut _ut| 1{T>t}lytdt

0<t<T

(5.27)
+ (K=K — (K=K ™) \2] < ALIT,gcfnlgn,Ln,vn,p(A”)Z.
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where Ay, 75 > 0is a constant depending on Lipschitz coefficient L, T and 6, Cyn gn an pn yn p >
0 is a constant depending on f"(t;,0,0,0,0),¢", L", V" and p.

Proof. From the definitions of the implicit discrete reflected scheme (5.4) and the explicit
discrete reflected scheme (5.13), and the Lipschitz condition of f", we can obtain

na{m;?—y7|2+A"\z?—z7|2+A"\aﬂ—u;?\2<1—h;?m,-ﬂ]
:E’g7+1_y7+1‘2+2An1E[(fn(t B [%H] 3/;1 n)
"Gy 52 ) (17? )]
— (V| "y 702 ) — £ (B [0, 72 )
7 k) = 7 k)
P2 ((5 ) 67 =) = (7] ) (&7 k)
<20"LE| (1B [7,1] = v} | + 17} — 9| + |2} — 2/

17— =) ) (7 - 7).

(5.28)

since

(7 ) G =k = (37 - ) B o = ) o

— ()R (L) K <o
(7 =) & =i = (77 = vy ) R (o = ) o

— (= vp) k= (7 - V) k=0

Taking sum from j = i,...,n — 1, it follows

’ A" n—1 2 A" n—1 2
7 =i+ L - 5 L ] =)
j=i
n—1
G~ ,
<2N'LE Y | |E9 (7] - v v

j=i

+ (2A"L +4A"L*)E

n—1 2
zlg-uf|

j=i

By (5.14) and the Lipschitz condition of f", it follows

y}ﬂ
<2A"LE ; H( [7714] ?}Z) + (377 _«’/7)

2A"LE HIE Mgl -

3\.
HN

-yl
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<2A"LE Hi (

j=i

£ B gL 72 A A T

+|77 -v]) |7 -]
n—1
S(ALYE Y (2057 P + 12+ [ PO = 1) v
j=i
A EN [17(t,0,0,0,00P] +E Y [ 4 £
j=i j=i
n—1 " " 2 no—1
+(8(A”L)2+2A”L)1E Y| =y (arL2E | Yl
i=j i=n
From Lemma A.2.4, we can obtain
~n n|2 A" = =1 n 2 A = ~n n 2 n
E | |7 —vil +72 Zj —Zj +72 i —ui | (L=h\q)vjn
= 1 = (5.29)
n— 2
< (4A"L+ 4012+ (ALY ) E | Y |7 — v || + Cpugninynt
j=i

where Cyugn anpnyn > 0 is a constant depending on f”(t]-, 0,0,0,0), ¢", L™ and V". By
the discrete Gronwall’s inequality (Lemma A.2.1), when (4A"L +4A"L? + 8(A"L)?) <
1, we can get

_ 2 AL +41248A"[2)T
supIE |y;1 — y:ll S Cf”,{;'",L”,V” (A”)ze( + + ) ,
1
from (5.29), it follows
n—1 2 n—1 2 )
E 2 Z;Z - Z;Z + Z 17[7 - le;-q (1 - I’l;lJrl)’YjJrl < Cf”,é‘”,L”,V" (An) .
I

J=t

Reconsidering (5.28), we take square, sup and sum over j, then take expectation, by
Burkholder-Davis-Gundy inequality for the martingale parts, we can obtain

n—1

E ):]EW?—yﬂZ] < CTsupB |7} —y}'|.
i=0 1

1

sup |7/ — y"|2] < CA"
1

It follows (A.13). O]

5.5 One Numerical Simulation Example of RABSDE with
Two Obstacles and Default Risk

For the convenience of computation, we consider the case when the terminal time T =
1, the calculation begins from yj; = ¢", and proceeds backward to solve (y?, zi,uf, k;r”, ki_”)
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fori = n—1,n-2,..,1,0. We use Matlab for the simulation. We consider a sim-
ple situation: the terminal value {7 = ®(Br, M) and anticipated process ¢; = ®(By)
(t c (T, T+ (5]), the obstacles L; = \Pl(t, Bs, M,{) and V; = Tz(t, By, Mt), where &, ¥,
and ¥ are real analytic functions defined on R, [0, T] x R and [0, T] x R respectively.
We take the following example (n = 200, anticipated time 6 = 0.3):

f(t,y,y',z,u):’%Jrz’Jerru, te[0,T|;

N

®(By) = |Bf| + My,  t€[T,T+4];
Tl(t,Bt,Mt):|Bt|+Mt—|—T—t, t e [O,T],'
Tz(t,Bt,Mt):|Bt|+Mt+2(T—t), t e [O,T],

This example satisfies the assumptions H 3.1, H 3.2 and H 4.1 in the theoretical section.
We choose the default time 7 as a uniformly distributed random variable.

As the inverse for both implicit schemes in (5.7) and (5.12) is not easy to get directly,
we only use explicit schemes below. We are going to illustrate the behaviors of the
explicit reflected scheme by looking at the pathwise behavior for n = 400. Further,
we will compare the explicit reflected scheme with the explicit penalization scheme for
different values of the penalization parameter.

Figure 5.1 represents one path of the Brownian motion, Figure 5.2 and Figure 5.3
represent one path of the Brownian motion and one path of the default martingale
when the default time T = 0.7 and 0.2 respectively.

Trajectories of the Brownian motion

0.8 qu‘ T
My A Ly
| I|I l‘ i Il | |
o4r | "I |II V"l II | I|
oz A My Vo H
fll [\ ! ‘I II'I”
m | | I |
T V-
LI Lo
02 L J | |||‘ ‘ﬂ,' l\','ll l'\ﬂll'”
0.4 I\ I‘ IHI |
sl M1
“Ha‘“
‘D-BD D:Z 04 DjS 08 1 12 14

FIGURE 5.1: One path of the Brownian motion
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Trajectories of the default martinagle Trajectories of the default martinagle

0.8

T T T
Detault martinagle Default martinagle

02} \ 06}
N
™
04t 1 0.4}
\\
=06} \‘\\ E = o2}
081 N 0
‘\\‘ -,
1 ‘\\\. 02
\|
Az . . . : . : . . 04 : . . . . : . . .
0 01 02 0.3 04 05 06 o7 08 09 1 0 01 02 03 04 05 06 07 0.8 08 1
t t
FIGURE 5.2: One path FIGURE 5.3: One path
of the default martingale of the default martingale
(t=20.7) (t=0.2)

Figure 5.4 and Figure 5.5 represent the paths of the solution 7", increasing processes
K™ and K=" in the explicit reflected scheme where the random default time T = 0.7.
We can see that for all 7, g;ﬂ stays between the lower obstacle L? and the upper obstacle
V", the increasing process K" (resp. K") pushes § upward (resp. downward), and
they can not increase at the same time. In this example for n = 400, default time v = 0.7,
we can get the reflected solution 7 = 1.2563 from the explicit reflected scheme.

Figure 5.4 and Figure 5.6 illustrate the influence of the jump on the solution " at
the different random default times, the reflected solution " moves downwards after
the default time (which can not be shown in Figure 5.7). From the approximation of the
default martingale (5.2), M" is larger with a larger default time.

Trajectories of the explicit reflected solution Trajectories of increasing processes of the explicit reflected scheme
25 T T . T . : . . T 3.5 T . . T . T : T .
o Lower obstacle ket
My W Upper obstacle 3t k- 4
2L \ Reflected solution | reflected solution
W \ ——
251 f

2

1 x 15} Val
i) 1r e
05} Lr . i
' 05 ,—/’;
o Jf ~ . W
ol .
05 . L . - t : L . L 05 : L . . t : L 3 L
0 01 02 0.3 04 05 06 07 08 09 1 0 01 02 03 04 05 08 07 08 08 1
t t
FIGURE 5.4: One path FIGURE 5.5: The paths of
of 7" in the explicit re- the increasing processes
flected scheme (t = 0.7) in the explicit reflected

scheme (T = 0.7)
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Trajectories of the explicit reflected solution

Lower obstacle
Upper obstacle

i Reflacted solution
251 f T

L L I L I L L L
0 01 02 03 04 05 06 o7 08 09

FIGURE 5.6: One path
of 7" in the explicit re-
flected scheme (7 = 0.2)

25 Trajectories of the explicit reflected solution (without default)
W

Lower obstacle
| Upper obstacle
A \ Reflected salution

05

FIGURE 5.7: One path
of 7" in the explicit re-
flected scheme without

default risk.

Table 5.1 and contains the comparison between the explicit reflected scheme and the
explicit penalization scheme by the values of §jj and ]70’” with respect to the parameters
n and p. As n increases, the reflected solution #jj increases because of the choice of
the coefficient. For fixed n, as the penalization parameter p increases, the penalization
solution 7" converges increasingly to the reflected solution §#, which is obvious from
the comparison theorem of BSDE with default risk. If p and n have a smaller difference
(when n = 10%, p = 10%), the penalization solution " is far from the reflected solution
7. Hence,the penalization parameter p should be chosen as large as possible. Table
5.2 illustrates the comparison between the reflected solution 7 and 7;*. Figure 5.7
represents the situation without the default risk, the reflected solution #;j* has a larger

value than in the situation when the default case happens (Figure 5.4).

TABLE 5.1: The values of the penalization solution gg'” (t=0.7).

7" p=10° p=10* p=10° p=10°

n=200 12369 1.2394 1.2428 1.2452
n =400 12458 1.2482 1.2496 1.2511
n=1000 1.2343 1.2497 1.2527 1.2630

TABLE 5.2: The values of the reflected solution 7 (T = 0.7) and ™.

Yo W
n =200 1.2469 1.5451
n =400 1.2563 1.5507
n=1000 1.2644 1.5614
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5.6 Application in American Game Options in a Default-
able Setting

5.6.1 Model Description

American game options are a kind of a new derivative security, which enables both the
broker and the trader to stop the contract at any time before the maturity. The trader
can exercise the right to buy or sell a specified underlying security for a certain agreed
price. The broker must pay a certain amount of penalty if the contract is terminated
from his side. Hamadene [100] (2006) studied the relation between American game
options and RBSDE with two obstacles driven by Brownian motion. See more in Kifer
[101] (2000), Ma and Cvitani¢ [102] (2001), etc.

In this section, we consider the case with default risk. An American game option
contract with maturity T involves a broker c¢; and a trader c;:

e The broker c; has the right to cancel the contract at any time before the maturity
T, while the trader c; has the right to early exercise the option;

e the trader c; pays an initial amount (the price of this option) which ensures an
income L, from the broker c1, where 7y € [0, T| is an G-stopping time;

e the broker has the right to cancel the contract before T and needs to pay V=, to c,.
Here, the payment amount of the broker c¢; should be greater than his payment
to the trader c; (if trader decides for early exercise), i.e. Vi, > L, Vi, — Ly, is the
premium that the broker ¢; pays for his decision of early cancellation. 1, € [0, T|
is an G-stopping time;

e if 1 and ¢y both decide to stop the contract at the same time 7, then the trader c;

gets an income equal to Q-1 o7y + {ly—1y.

5.6.2 The value of the American Game Option

Consider a financial market M, we have a riskless asset C; € R with risk-free rate r:

dC; = rCudt, t e (0, T],
(5.30)
Co =c, t=0
one risky asset S; € IR:
dS; = S; (udt + odB; + xdM;), te€ (0,T],
t e (u ¢+ xdMy) (0, T} (5:31)
So =s0, t=0,

where B; is a 1-dimensional Brownian motion, u is the expected return, ¢ is the volatil-

ity, x is the parameter related to the default risk.
Consider a self-financing portfolio 77 € R? with strategy 77 = (ﬁél), ﬁgz))se[t T) trad-

ing on C and S respectively on the time interval [t, T|. A™* is the wealth process with
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the value a? at time t, here is a non-negative F;-measurable random variable.

am = gllc, 1 s, se [t T);
AT = g Ay /t gldc, + /t Bds,, sel[tT]; (5.32)

T
|81+ (B 502 du < oo
Let L be a positive local martingale with the following form:

dly = —Li—oc Yu—r)dB;, te(0,T],
Ly =1, t=0,

As for reasons of option pricing, we need a risk-neutral market setting, we will perform

a change of measure. For simplicity, we only consider the case where the risk premium

is removed by a Girsanov type transformation of the Brownian motion (Other transfor-

mations are possible, but we do not consider them here). By Girsanov’s theorem, let Q
be the corresponding equivalent measure of IP:

2
Blor =11 = exp {—a—w L ) T},

here let EQ be the expectation, B2 and M® be the Brownian motion and the default
martingale under the measure Q:

BR =B+ ' (u—1)t;
M? I:Mt.
Hence, the risky asset S; defined in (5.31) can be converted into the following form

under measure Q:

{dst =S (fdtdet +7cht>' te 0.1, (5.33)

So =sp, t=0.

Denote by R(s, 0) the amount that the broker c; has to pay if the option is exercised by
cp at s or canceled at the stopping time 0,

R(S, 9) = V91{9<s} + L51{5<9} + Q51{9:s<T} + Cl{st:T}/ s € [t, T], P—as.

Denote by (77,0) a hedge for the broker against the American game option after time ¢,
where 77 is defined in (5.32), 6 € [t, T] is a stopping time, satisfying

A% > R(s,0), selt,T], P—as. (5.34)

The hedging strategy (7t,6) for the broker has two components, a portfolio 77 and a
stopping time 0. In an American game option contract, the broker is allowed to cancel
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the contract, so he only needs to hedge with a portfolio up to its cancellation time.

Similarly to El Karoui et. al [37] (1997), Karatzas and Shreve [103] (1998), we define
the value of the option at time ¢ by J;, where (J;)o<;<r is an rcll (right continuous with
left limits) process, for any ¢ € [0, T],

J: :== essinf a > 0; G;-measurable such that there exists a hedge
g

(71,0) after t, 7t is a self-financing portfolio after ¢ (5.35)

with corresponding wealth at time # is a”t.

Consider the following RBSDE with two obstacles and default risk, for any t <
[0, T], there exist a stopping time 6;, a process (Z;"") and the increasing processes

(KT and (K{"*7) such that

1<s<T’

t<s<T

t<s<T

Ytn,a _ Yéj’“ + (K;Tt,a,—&- . K;‘L’,Dé,-‘r) . (K;Tt,a— . K;r,a—) . fs9¢ Z;T’“dB;Q

— [Puiramg, s € [t,0];
YA =T, (5.36)
e "Ly < Y{ < eV, s €[t T];

U O = LRI = [V YK = 0;

Forany s € [t, T], " Y™ is the value of the option , i.e. ]} = ¢"'Y/"" (see Theorem 5.6.1).
Similarly to Proposition 4.3 in Hamadene [100], we set

0 :=inf{s > t; Y[ = e "V;} AT =inf {s > t; K"~ > 0};
(5.37)
vy :i=inf{s > £ Y["* = e "L} AT =inf {s > t; KI'"*" > 0}.

The main result is represented in Theorem 5.6.1 below, for any s € [t, T], e"'Y/"" is the
value of the game option, i.e. J; = €'Y/,

Theorem 5.6.1. For any s € [t, T|, let the RBSDE (5.36) have a unique solution and assume
that there exists a portfolio process 7 such that the infimum in (5.35) is attained. Then, e"Y]""
is the value of the game option, i.e. J; = e"Y["".

Proof. Step 1. We first prove J; > e Y™

Similarly to the proof method of Theorem 5.1 in Hamadene [100], for any fixed time
t € [0, T], there exists a hedge (7, 0) after time ¢ for the broker against the American

game option. By (5.34) and (5.35), it follows that § > t, = = ([351), /552))5 clt.T]

financing portfolio whose value at time ¢ is A, satisfying AZ* > R(s,0), here s € [t, T].
By (5.32) and the It formula for rcll semi-martingale (Theorem 1.3.4), we can obtain

is a self-

sAf SAB
e TN0) AT _p=riyA | / p2erugs,dBQ + / B e, dMQ
t t

(5.38)
> "MR(s,6).
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Let v € [t, T] be a G-stopping time, set s = v and take the conditional expectation in
(5.38), it follows

~rtyA > EQ [ (UAO)R(U,Q)‘gt] .

Hence, similarly to the result of Proposition 4.3 in Hamadene [100],

e "a?t >esssup EQ [e*r(v/\g)R(v,G) ‘Qt}
v>t

>ess inf ess sup E® [e_T(MQ)R(U, 6) ‘gt}
0 v>t

:YtT(,DC.
It follows J; > e"tY[™".
Step 2. Then prove J; < 'Y/

By the definition of 6] in (5.37), it follows
Jr
YA, = Y[ - KT / | ZmapQ 4 / U dmS. (5.39)

Since
T, _ _—r0F —r0f
Yo Lior<ry = € " Uor Lygrary = €7 Qorlipr <1y

therefore, by (5.39), we can obtain
Y;}‘g* =Y 15001y + Yﬂ;’al{exs} + Y?al{s:();‘<T} + Clis—p: <1}

>e " Lslgscqry +e " Up gy <ty + 7 Qo1 psmgyar) + Sl (s—gycry
:e—r(s/\G?‘)R(S’ Qt*)

It follows
TT,0 SAGF e R0 SAOF TT,0 Q —r(sN6;) *
Y© +/t 27 dBS +/t U dMQ > e "R (s,07), s € [t T).
Set
<Y’”‘+ / " gmagpQ 4 / u”“dMQ)
( FH(0Ss) T+ U (XSs) ™ )1{s§9;‘};

! =( .~ B >ss)c;1.
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Obviously, A; = ,851)(?5 + /5§2>SS. Applying the It6 formula for rcll semi-martingale
(Theorem 1.3.4), we can obtain

- s _ S S
A =Y / r Audu + / e 7 o dBY + / U gy AMO
t t - t -

s s
:ersYtn,a+/ emﬁg)dcu—f—/ em‘Bng)dSu-
t t

So = (5&”, ﬁéz))s c[r1) 18 @ self-financing portfolio with value e"Y["* at time t. Since
for any s € [t, T], Asper > R(s,0;), then (77, 6;) is a hedge strategy against this Ameri-
can game option, it follows that J; < e"'Y/"". O

Therefore, from Theorem 5.6.1, we can obtain
Ri(v,0;) < Y™ = Ri(v},6;) < Re(v},6),

where
Ri(v,6) := E° [649‘/91{9@} +e Lol fycgy + e " Qol{p_pery

+ e_rTé‘l{Q:U:T} \gt} , P —a.s.

5.6.3 Numerical Simulation

To calculate the value of the American game option, we use the same calculation method

asin Section 5.5, starting from Y,;** = ¢, and proceeding backward to solve (Y/™*, Z™*, U™", K?’“, K™
fori = n—1,..,1,0 with step size A". The forward SDEs (5.30) and (5.31) can be nu-

merically approximated by the Euler scheme on the time grid (;)i—g1 .

Ciy1 =C; +rCGA";
Siv1 =Si+S; (uA" + ocAB! + xAMY).
In this case, we consider parameters as below:
so=15 T=1 r=11, uy=15 c=05 x=02
Li=(S—1", i=2(S,-1)", ¢=12(S-1)",

In the case n = 400, Figure 5.8 represents one path of the Brownian motion, Figure 5.9
and Figure 5.10 represent the paths of the solution Y’*#, increasing processes K™*~ and
K%~ in the explicit reflected scheme where the random default time 7 = 0.2. We can
see that Y/™* stays between the lower obstacle e "'L; and the upper obstacle ¢e~"'V;. In
this example for n = 400, default time T = 0.2, we can get the solution Yér’“ = 0.6857
from the explicit reflected scheme, i.e. the value of the game option at ¢t = 0 in the
defaultable model. In the case without the default risk, Y;”* = 0.7704, which means the
occurrence of the default event could reduce the value of Y**. Figure 5.11 represents
the situation without the default risk, the solution Y"* has a larger value than in the
situation when the default case happens (Figure 5.9).
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Appendix A

Appendix

A1 Appendix for Chapter 3

Theorem A.1.1. (Burkholder-Davis-Gundy inequality) (Meyer [88] (1966), p.304)
For any p € [1,00), there exist the positive constants C} and C}, such that, for all the local
martingales X with Xy = 0 and stopping times v, the following inequality holds:

14
CVE {[x]g} <E | sup |X|”

0<s<w

< ot |(x)F,

where [X] is the second variation of X.

Theorem A.1.2. (Section theorem) (Meyer [88] (1966), p.220)
Let X and Y be the stochastic processes, we can obtain the results below:

e Measurable selection: If X and Y are jointly measurable and for each F-measurable
random time T, X = Yz a.s., then it follows that X =Y.

e Optional section: If X and Y are optional and for each stopping time T, X+ = Y a.s.,
then it follows that X =Y.

e Predictable section: If X and Y are predictable and for each predictable stopping time T,
Xt =Yy as., then it follows that X =Y.

Theorem A.1.3. (Dini’s theorem) (Meyer [88] (1966), p.202)

Let S be a compact metric space, fy : S — R be a sequence of continuous functions. If (fu)neN
is increasing, i.e. forallx € S,n € N, f,(x) < fu11(x), and (fu)neN converges pointwise to
a continuous function f : S — R, then (fy)neN converges uniformly to f.

Definition A.1.1. (Class D) Let 6 := (6)o<t<T be a G-adapted rcll process. If (0y)eT is
uniformly integrable, then the process 0 is of class D[0, T]. Here T is the set of all the stopping
times on [0, T.

Definition A.1.2. (Snell envelope) Suppose that 6 is of class D|0, T|, then its Snell envelope
is defined as below:
St(0) = esssup E [0,]Gy],

ceT;

where Ty is the set of all the stopping times on [t, T).
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Definition A.1.3. (Predictable projection) Suppose that ¢ := (¢ )o<i<T is of class D[0, T},
then its predictable projection P ¢ is a G-predictable process and satisfies

p(PO' =E [(Pcrlga—] ’

where o is a G-predictable stopping time. Moreover, if Py = ¢y—, V't € [0, T|, we call that ¢ is
reqular.

Proposition A.1.1. §(0) is the smallest rcll super-martingale of class D|0, T| which dominates
process 0, i.e. forany t € [0,T], S¢(60) > 60, IP —as.

Theorem A.1.4. (Doob-Meyer decomposition theorem for Snell envelope) There exists a
unique decomposition of the Snell envelope:

Si(0) =N, —KS—K¥¢,  vtelo,T],

where Ny is a Gi-martingale, K = K¢ + K¥, K¢ (resp. K%) is the continuous (resp. discontinu-
ous) part of K, and K§ = K& = 0. Moreover, the following results hold:

o ifE [SupogtST |st(9)|2} < oo, then E|Kr|? < oo;

° {AKd > 0} C {87(9) = 9,}, and AK? = (07 — 87(6))4_1{87(9):97}.
Theorem A.1.5. Let 6 := (60;)o<;<T be a G-adapted rcll process, and E [Supogth 16¢|?| < 0.
Forany t € [0, T|, define the stopping time vy as below:

vp:=inf{s > t; Ks > K;} AT,

if the Snell envelope S(8) is regular, then K% = 0, and v; is optimal on Ty, i.e. it satisfies:

e E[0,] = sup,~; E 02

o S, (0) = 0y, and (Sp,ns(0))s>t is an Gs-martingale.

Lemma A.1.1. (Skorohod lemma) Let x be a real-valued continuous function on [0, co) with
xo > 0. There exists a unique pair (y, k) of functions on [0, c0), such that

(1) y=x+k
(2) y is positive;
(3) (kt)t<oo is a continuous and increasing process with kg = 0 and fooo yidks = 0.

Then the pair (y, k) is defined as the solution of the Skorohod problem. Moreover, k is given by

ki =supx; .
s<t
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A.2 Appendix for Chapter 5

The following Donsker’s invariance principle is a functional extension of the central
limit theorem.

Theorem A.2.1. (Donsker’s invariance principle) Let (X;);—1 .. be a sequence of indepen-
dent and identically distributed (i.i.d.) random variables with mean 0 and variance 1. Denote
Sy 1= Y. 1 Xj, then the process S := (Sy)ny=12,. is a random walk. Define the diffusively
rescaled random walk as below

te0,1].

Since the random variables taking values in the Skorokhod space D[0, 1], the random function
B" converges in distribution to a standard Brownian motion B := (By)o<t<1, 4S 1 — 0.

yooe

ability measures on a metric space D, such that y, converges weakly to a probability measure yu
which is a distribution with separable support. Then there exists a probability space (Q), F,IP),
as well as the random variables X and (Xy,)n—12,. on this space, such that the laws of X and
X, are y and u" respectively, moreover, for all w € Q), X,,(w) converges weakly to X (w).

Lemma A.2.1. (Discrete Gronwall’s Inequality) Suppose that a, b and c are positive con-
stants, bA < 1, (:Bi)ie]N is a sequence with positive values, such that

i
IBZ'—{—CSLI—FZ?AZ’B]', i €N,
=1

then it follows
sup B; + ¢ < aFa(b),

i<n

where Fp(b) is a convergent series with the following form:
00 bn
FA(b) =1+ ) 7(1 +A)..(1+ (n—1)A).
n=1

Lemma A.2.2. (Estimation result of implicit discrete penalization scheme) Under H 5.2
and H 5.3 hold, for each p € N and A", when (A" +3A"L + AN'L? + (A”L)z) < 1, there
exists a constant Ay 5 depending on the Lipschitz coefficient L, T and 5, such that

n—1 n—1
E| sup P+ ATy |Z]r')’n|2 +A" Y |”f/n’2(1 = hi1)7j+1
1 i=0 i—0
: : (A1)
1 n—1 tpnp o
+ pA” ZO <|k] | + |k] | > S )LL,T,(SCg”,f”,L”,V”/
]:

where Cgn fn 10 yn > 0 is a constant depending on &", f"(t;,0,0,0,0), (L")* and (V")~.
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Proof. By the definition of the implicit penalization discrete scheme (5.4), applying the
It6 formula for rcll semi-martingale (Theorem 1.3.4) to |y i 2 [i,n — 1], it follows

"%+ A Z 27" 2+ A" Z " h?ﬂ)%‘ﬂ]
j=i j=i

Py 7 2 )

} (A2)

—E |&|? +2A”]EZ[
—|—21EZ[ " =y

Since )
e = | -n) | e (g7 -)

B
vk P =pA” {(y’?’” - V-”)+]2 +pALE (y)" - V”)+
] ] J 7 \7] ]

:pin (k577) + vyt ™

Moreover, by the Lipschitz condition of f”, we can obtain

Al n—1
E |3/fn‘2+7 Z ’Z]M‘z Z |} bk — )7
j=i

21’11 +pmp2 P
+Wz(|k 2+ Ik, " 2)

n—1 )
Z f"(¢,0,0,0,0)]

=i

+ A"E

n’—1
&>+ A"L Y

j=n+1

|

n <A”+3A"L+4A"L2+ )

Z v |2]

2
e
+ 1 (Z k+pn> +ME  sup ((L;-1)+)2

Mo\ i<j<n—1

<Zk pn) + ME  sup ((V]-”)_)z.
j=i

i<j<n-—-1
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By the assumption H 5.4, similarly to the proof of Lemma 4.2.1, applying techniques of
stopping times for the discrete case, it follows

n—1 2 n—1 2
E(Y K™ +E( YK
j=i j=i

SCé’n,fn,Xn

n—1

1+ A"E Z (|Z;?/n‘2 + !u}”rn|2(1 — h?+1)'7j+1>] :
j=i

where Cgn ¢n xn > 0 is a constant depending on ¢", f”(tj, 0,0,0,0), X™. Since X" can be

dominated by L" and V", we can replace it by L" and V". By the discrete Gronwall’s

inequality (Lemma A.2.1), when (A" + 3A"L +4A"L? + (A"L)?) < 1, we can obtain

n
A"Y 2P AT
j=0
1
pA”

sup E [y 2] + E

n
" P~ )
i=0

]

_|_

n
Y <|k;rp'n|2 + |kj_p’n|2) ] < AL1sCen fr 10, v,
=0

where Cgn gn 11 yn > 0 is a constant depending on ¢”, f”(tj, 0,0,0,0), (L")* and (V")
Reconsidering (A.2), we take square, sup and sum over j, then take expectation, by
Burkholder-Davis-Gundy inequality for the martingale parts, it follows

2 n—1 9
E [sup [y;"| ] <Cpn pupnyn +CA"| Y E |yl ]
Z i=0
SC(’;n,fn/Ln/Vn + CT SUP]E ‘ylp,n ’2 .
1
It follows (A.1). .

Theorem A.2.3. (Distance between implicit discrete penalization and explicit discrete
penalization schemes) Under H 5.2 and H 5.3, for any p € IN:

B sup [V =" [ 120 = 2 Ptk [0 U P

0<t<T

B - - 2
) (k)

(A.3)

2
S )LL,T,(SCf”,C”,L”,V”,p (An) ,

where A 75 > 0 is a constant depending on the Lipschitz coefficient L, the terminal T and 6,
Cengn an pnyn p > 0is a constant depending on f”(t]-, 0,0,0,0), &", (L")*, (V)™ and p.

Proof. From the definitions of the implicit discrete penalization scheme (5.4) and the
explicit discrete penalization scheme (5.8), as well as the Lipschitz condition of f", it
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follows

2

2
e

(1= 1))

2
pn
Y

2
~ , n g = -
=1E\y§’f1 gt |+ 28] (7 (e, B [, 90 2 )

= g ) (9 - )|
— (AR Uy g 2 ) - S [ g 2 )
+ (P = = (T = i

L L
<2A”L1E[(|]ng AR R A A AR
(" — |<1—hj+1>m) (7" =) |

since the functiony — (y — L)~ — (y — V') is decreasing, then
B[ ) (6" =67 = 6 =)
—pa"E| (77" =) (@=L =" = v)*)

— ("= =" -vr) )| <o

Taking sum from j = i,...,n — 1, it follows

(A.4)

~

P pn2 Al ~pn pn
E| 7" =" "’7; Zim 77

2+A_”712’~pn

012
(1- h;l+1)’7j+1]

g =y

2\*" .

By (5.14), (5.8) and the Lipschitz condition of f", we can obtain

<2A"LE Z BT~y
j=i

+ A"(2L 4+ 4L2)E

n—1 _

28Le Y [ [B9 ) - | 19— "]
j=i -
n—1 _
o | (2757219 + (37 -1") " o]
j=i
AR n—1 _ Ny, g ~pmny =pn ~P P Al ]~(+p'n—]~€_p’n
<A'LE Y (|, B9 ), 50 2 AT F )
j=i -
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~pn_pn ~pnpn
+‘y]- Y )‘y]- Y }
n—1
"LYE Y 205"+ 2P 1B B i
j=i
n—1 ”
A"E Y | [£"(#,0,0,0,0)[
j=i

FpanE Y [( - 1)) ((yf”—vi”ﬁ)z]
j=i

+ (8(A"L)2 +2A"L ) + (A"L)?E

Z ‘~P,

Therefore, there exists a constant Cfnlé’n,Lnlvn > 0 depending on f”(tj, 0,0,0,0), ¢",
(L")* and (V")~, such that

n’—1
)3 |§7|2],

i=n

A il

T L

E| 7"~y + 5

nl2
(1- h?+1)7j+1]

By the discrete Gronwall’s inequality (Lemma A.2.1), when (8(A"L)? + 4A"L + 4A"L[?) <
1, we can get

_p,n

<Cpugn 1wy (A7) + <8(A”L)2 +4ATL + 4A"L2> 7

iE

p/
Y

-7, ny2 2
qu]E ‘yfn _yi | < Cfn o, Vn(A”) ( A"L2 4L +4L )T,
1

from (5.29), it follows

pn 2 n n\2
U; (1- hj+1)’Yj+1 < Cf”,gn,Ln,v”(A )"

Z )~P, pn

n—1
+ L |
j=i

Reconsider (A.4), we take square, sup and sum over j, then take expectation, by Burkholder-
Davis-Gundy inequality for the martingale parts, we can get

E Supwlp,n_ylp,n‘z] <CA” Z]E‘»«Pn Pn’2] SCTSQP]EWIP’”_:V?HZ
i i

it follows

2
-7, N
u;.jn—up

] ]

2 n—1
+A" Y

~7 7 2 n_l o V4 7
E |sup [77" =y + A" Y |20 — 2" <1—h}“+1)7j+1]
i j=0

<SALT6Cpngn pnyn p(A")2.
(A5)
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For the increasing processes, for each fixed p,
3 _ . . t
KPR =Yy —/O F(s, V2" B9 [YP), 20", TP ™) ds
t t
— [ Z2nas: — [ arrams
0
t
ij’” — K, =Yt =y —/0 f(s, Y, EY: Y] +5] zP", ul™)ds
t t
- / 7P B — / ur" dme.
0 0
By the Lipschitz condition of " and (A.5), it follows

e [[(e7 -7 - (77

} < AL,T,écfnlgn,Ln,Vn,p(A")Z.

It follows (A.3). [
Theorem A.2.4. (Distance between implicit discrete penalization and implicit discrete

reflected schemes) Under H 5.2 and H 5.3, for any p € IN:

T T
sup |V = YP"[P+ [ 120 = 2" Pt 4 U = WP P ey et
0<t<T 0 0

(A.6)
1

7

where A 7 5 > 01is a constant depending on the Lipschitz coefficient L, the terminal time T and
8, Cpngn pnyn > 0is a constant depending on f”(t]-, 0,0,0,0),¢&", L" and V".

=K = (k7 =)

] < ALTCpngninym

Proof. By the definitions of the implicit discrete reflected scheme (5.10) and the implicit
discrete penalization scheme (5.4), applying the Itd formula for rcll semi-martingale

(Theorem 1.3.4) to |y;1 - y]rfﬂ ‘2 onj € [i,n — 1], it follows

n—1
n P”

n—1
i ="t g - | A

=i j=i

pn 2 n
”] — U ‘ (1_hj+1)')’j+1

n—1

_IA"E Z “fn(tj/ y]n’ y_}l,z;l, u]n) B fn( ],y;? n, ]7]17 1’1’ , ufz”)‘ (y]n — y?”) ] (A7)
]—z

1 OE Z [ < n ) <k+n k;rp’”) B (y? B y;?,n) <k]—n — k}.‘Pﬂ) ]

Since (v} — L”)k*” = (y" —

V]”) , it follows
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- 1
pn _rn +n +png+n
§<yj L) =k

similarly, we can obtain

(=) (7 =057) = = (=) g = k™

By (A.11), (A.12) and the Lipschitz condition of f", it follows

n pn |2 nn_l n pn 2 nn_l n pmn 2 n
E| |y} —y!"|"+A Z zj —zi" | +A Z uj —u; (1= hi)vjm
j=i j=i
n—1 2
<A"(AL+AL)E | Y |y —y"
j=i

+m§uwum%#ww;mwﬂ
n—1 2

)

j=i

1
n—1 2
+ % (pinlE L (k;rp,n)2>
n—1 o % n—1 %
e (e E ) ()

By Lemma A.2.2, Lemma A.2.3 and the discrete Gronwall’s inequality (Lemma A.2.1),
we can obtain

<A"(4L +4L*)E

g

n—1 n—1

) 2 2
supE| |y —y!"|"| +E|a" Y |z =2+ an Y - (1 - h?ﬂ)'ym]
[ i=0 i=0
1
SAL,T,(SCf”,(:”,L”,V” \/ﬁ

where Cgn gn 1nyn > 0is a constant depending on f ”(tj, 0,0,0,0),¢", L™ and V". Recon-
sider (A.7), we take square, sup and sum over j, then take expectation, by Burkholder-
Davis-Gundy inequality for the martingale parts, it follows
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n—1 n—1

02 12 12
E |sup[yf —y"["+A" ) |2 =277 + A"} [uf —u| (1 —h}“ﬂ)w“]
: j=0 j=0 (A.8)
1
SAL/T/gC n@En [nyn .
P
For the increasing processes, for each p,
t
K — K" =Y0 Y] - /0 £(s, Y0 B9 [Y" ], 20, Ul ds
t t
- [ zear - [Curam;
0 0
t
+p, -p, : , ) P ) ,
AL L VL /O (s, YP" B[P, 20" ul™)ds
t t
_ / ZP" B! — / ul"ame.

0 0

By the Lipschitz condition of f and (A.8), it follows

E “ (K" — K ") — (K;”"” — K;P'”) 2] < AL1oCpngn L
V{2
It follows (A.6). O

Lemma A.2.3. (Estimation result of implicit discrete reflected scheme) Under H 5.2 and
H 5.3, for each p € N and A", when A" + 3A"L + 4A"L? + (A")2L? < 1, there exists a
constant Ay 5 depending on the Lipschitz coefficient L and the terminal time T, such that

n

—1 n—1
E|sup |y/[>+A" Y [z P+ A" Y [uf P(1=hy) i
i j=0 j=0
) ) (A9)
n—1 n—1
+ ZO k;_n + ZO k]—i’l S AL,T,(ng",f”,L”,V"/
= =

where Cen gn 10 yn > 0 is a constant depending on ¢", f"(t;,0,0,0,0), (L") and (V")~.

Proof. From the definition of implicit discrete reflected scheme (5.4), applying It6 for-
mula for rcll semi-martingale (Theorem 1.3.4) to |y}“|2 onj € [i,n—1], since (y! —

LMk = (y" — V/")k;" = 0 and the Lipschitz condition of f", it follows

! — "] e~
j=i j=i

ul

E j

2
(1- h7+1)’7j+1]

n—1
2 _
—E|&?+20"E Y [y;? Fr(t 720 ul)

j=i

] + ZIEZZ;l [y}“k}r” — y;?k]._”]
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n—1

2712 +
i

n—1
Znl? 4+ A" Y £(4,0,0,0,0)[?
j=i

n
<E + %IE

n
Uuj

]

2
. (1- h;l+1)')’j+1]
]:

n—1

Y iR

j=i

2 —
1 n—1
+ A_llE (Z kf”) +ME | sup ((L7)+)2]

j=i [i<j<n—1

+ (A" 4 2A"L 4+ 4A"L2 + (A"L)Z) E +E

nd—1
) |y}7|2]

j=i

n—1 2 i
+ AillE (Z k]-_”> +ME | sup ((V]”)_)Z] :

pr i<j<n-1
(A.10)
where A1 > 0 is a constant. By the estimation of k;’” and k]._” in (5.12), it follows
ki< (B9 [L ) + (5, LY L 2w A" — L)
o= j+1 i R R M| i) (A11)
_ Gn - + )
k< (B9 Vi) + fr(, v 0 2 ) A = V)
where L = V' = ¢V, (i € [n, n‘s]). Therefore, by the Lipschitz condition of f”,
n—1 2 n—1 g 2 ) )
E|Y k™) <6EY an P[LE) = L2+ (AM)2]£7(£1,0,0,0,0)|
J=1 J=1
ny\2 n 2 n 2 n 2 n
+ L2 (2|L ]+ |2 | A= r) )
nd—1 2
+6(A"L)*E 2 o
= (A.12)

2 2 2
+(A")71f7(%;,0,0,0,0)]

n—1 2 n—1 "
£(Lhe) <o LBy

j=i

ny\2 n 2 n 2 n 2 n
+(A"L) (2‘&/]. + |2+ | (1—h]-+1)'y]-+1>]
’ 1’15*1 2
n n
+6(A"L)"E Z ol
j=n
Set A; = 48A"L?, it follows
) A" n—1 2 A" n—1 2
E|lyi| T Z z T Z wi| (L=hj)rjm
J=t J=t
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n’—1 2
= Jaf |
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+ (A" +3ATL +4A"L2 + (A”)2L2> E

j=i

n—1
Y. Iy}“lzl

+ 48A"L2E

sup ((L])*)*+ sup ((Vj”)_)z]

i<j<n-—1 i<j<n—1

2 1 1
} + A" <1+ m) E Z |f”(t]-,0,0,0,0)|2]
1

j=i
n—1 2
gn
+ o E L “15 ML) = Lf ] .
j=i

By the discrete Gronwall’s inequality (Lemma A.2.1), when A" + 3A"L +4A"[2 + (A")2[2 <
1, we can obtain

n—

A" n—1
+5EL |

2 n
L+
j=t

n
Lj

2 Gy n
+‘]E ][Vj+1]_vj

n—1 ) n—1 )
ATY PP AT Y WP By
0 i=0

' ]

sup E|y}* + E
i j=

n—1
+ 2 (’k}*VIIZ + ‘k;n|2> ] < AL/T,(scigrn,fn’Ln,Vn,
=0

where Cgn gn 11 yn > 0 is a constant depending on ¢, f”(tj, 0,0,0,0), (L")* and (V")
Reconsider (A.2), we take square, sup and sum over j, then take expectation, by Burkholder-
Davis-Gundy inequality for the martingale parts, we can get

n

—1
Y E W]

1=0

IE SCC”,f”,L”,V” + CA”

2
sup |y;|
1
SC(’;n,fn/Ln/Vn + CT SupIE |y?|2 .
1

It follows (A.9). O

Lemma A.2.4. (Estimation result of explicit discrete reflected scheme) Under H 5.2 and
H 5.3, for each p € N and A", when %ﬂ 4+ 2A"L + 12A"L2 + 10(A”L)2 < 1, there exists a
constant Ay T 5 depending on the Lipschitz coefficient L, T and J, such that

n—1 n—1
sup |771> + A" Y 2712+ A" Y a1 = B ) v
1 ]:O ]:O

E

(A.13)

n—1 2 n—1_ 2
T E | DR < AunsCeon e,
j=0 j=0

where Cgn gn 1n yn > 0 is a constant depending on g, f”(tj, 0,0,0,0), (L")" and (V")~.
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Proof. By the definition (5.13) of the explicit discrete reflected scheme, since (i7"

— LMk =
] 17
(]7;? — V].”)fc]._” = 0 and the Lipschitz condition of f”, it follows
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Taking sum from j = i,...,n — 1, it follows
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where A1 > 0 is a constant. By the estimation of IE;F” and 12;” in (5.15), it follows
7 g gt
k< (B9 (L) + £ (5 B [ 77 20 AT = L) s
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Therefore, by the Lipschitz condition of f”, we can obtain
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(A.16)
Set A = 48A"[2, when A" is small enough, it follows
A" n—1 2 oAnnly
E(l7P+5 Y |2 —Z" m%i
j=i
2 A" 2 = 2
<EEE + (5 +5"L2 ) E | L [¢)
j=n
5A" nr2 nr\2 2
+{ L+ 12A"L* +5(A"L) 2| Tl
j=i

128



A.2. Appendix for Chapter 5

n
+(A +5(A"L) )
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By the discrete Gronwall’s inequality (Lemma A.2.1), when % +2A"L + 12A"L% +

10(A"L)? < 1, we can obtain

sup E|j}'[* + E
i
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where Cgn gn 11 yn > 0 is a constant depending on ¢”, f”(tj, 0,0,0,0), (L")* and (V")

Reconsider (A.14), we take square, sup and sum over j, then take expectation, by
Burkholder-Davis-Gundy inequality for the martingale parts, it follows

n—1
> E |y7?|2] < CTsupE|7}|*.
1

E |sup Iyﬂz] < cA”
i i=0

It follows (A.13). ]

129






Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[8]

[9]

[10]

[11]

[12]

[14]

[15]

J.M. Bismut. “Conjugate convex functions in optimal stochastic control”. In:
Journal of mathematical analysis and applications 44.2 (1973), pp. 384-404.

E. Pardoux and S. Peng. “Adapted solution of a backward stochastic differential
equation”. In: Systems and control letters 14.1 (1990), pp. 55-61.

D. Duffie and L.G. Epstein. “Stochastic differential utility”. In: Econometrica: Jour-
nal of the Econometric Dociety (1992), pp. 353-394.

N. ElKaroui, S. Peng, and M. C. Quenez. “Backward stochastic differential equa-
tions in finance”. In: Mathematical finance 7.1 (1997), pp. 1-71.

J. P. Lepeltier and ]J.S. Martin. “Existence for BSDE with superlinear-quadratic
coefficient”. In: Stochastics: An International Journal of Probability and Stochastic
Processes 63.3-4 (1998), pp. 227-240.

S. Peng. “Monotonic limit theorem of BSDE and nonlinear decomposition the-
orem of Doob—Meyers type”. In: Probability theory and related fields 113.4 (1999),
pp. 473-499.

M. Kobylanski. “Backward stochastic differential equations and partial differen-
tial equations with quadratic growth”. In: Annals of probability (2000), pp. 558—
602.

A. Rozkosz. “Backward SDEs and Cauchy problem for semilinear equations in
divergence form”. In: Probability theory and related fields 125.3 (2003), pp. 393-407.

L. Jiang. “Some results on the uniqueness of generators of backward stochastic
differential equations”. In: Comptes Rendus Mathematique 338.7 (2004), pp. 575-
580.

R. Buckdahn and N. Ichihara. “Limit theorem for controlled backward SDEs and
homogenization of Hamilton—Jacobi-Bellman equations”. In: Applied Mathemat-
ics and Optimization 51.1 (2005), pp. 1-33.

L. Jiang. “Converse comparison theorems for backward stochastic differential
equations”. In: Statistics & probability letters 71.2 (2005), pp. 173-183.

P. Briand and Y. Hu. “BSDE with quadratic growth and unbounded terminal
value”. In: Probability Theory and Related Fields 136.4 (2006), pp. 604-618.

L. Jiang. “Limit theorem and uniqueness theorem of backward stochastic differ-
ential equations”. In: Science in China Series A: Mathematics 49.10 (2006), pp. 1353—
1362.

S. Crépey. “A BSDE approach to counterparty risk under funding constraints”.
In: Available at grozny. maths. univ-evry. fr/pages perso/crepey (2011).

N. El Karoui and M.C. Quenez. “Non-linear pricing theory and backward stochas-
tic differential equations”. In: Financial mathematics. 1997, pp. 191-246.

131



BIBLIOGRAPHY

[16] N. El Karoui and M. C. Quenez. “Dynamic programming and pricing of contin-
gent claims in an incomplete market”. In: SIAM journal on Control and Optimiza-
tion 33.1 (1995), pp. 29-66.

[17] N. El Karoui. “Backward stochastic differential equations a general introduc-
tion”. In: PITMAN RESEARCH NOTES IN MATHEMATICS SERIES (1997), pp. 7-
26.

[18] R. Buckdahn and Y. Hu. “Pricing of American contingent claims with jump
stock price and constrained portfolios”. In: Mathematics of operations research 23.1
(1998), pp. 177-203.

[19] M. Kohlmann and X. Zhou. “Relationship between backward stochastic differ-
ential equations and stochastic controls: a linear-quadratic approach”. In: SIAM
Journal on Control and Optimization 38.5 (2000), pp. 1392-1407.

[20] S.Peng. “Backward stochastic differential equations and applications to optimal
control”. In: Applied Mathematics and Optimization 27.2 (1993), pp. 125-144.

[21] S. Hamadéne and J.P. Lepeltier. “Backward equations, stochastic control and
zero-sum stochastic differential games”. In: Stochastics: An International Journal
of Probability and Stochastic Processes 54.3-4 (1995), pp. 221-231.

[22] S. Peng. “Backward SDE and related g-expectation”. In: Pitman research notes in
mathematics series (1997), pp. 141-160.

[23] D. Nualart and W. Schoutens. “Backward stochastic differential equations and
Feynman-Kac formula for Lévy processes, with applications in finance”. In: Bernoulli
7.5 (2001), pp. 761-776.

[24] Y. Hu and ]. Ma. “Nonlinear Feynman-Kac formula and discrete-functional-
type BSDEs with continuous coefficients”. In: Stochastic processes and their ap-
plications 112.1 (2004), pp. 23-51.

[25] S.Peng and F. Wang. “BSDE, path-dependent PDE and nonlinear Feynman-Kac
formula”. In: Science China Mathematics 59.1 (2016), pp. 19-36.

[26] S. Tang and X. Li. “Necessary conditions for optimal control of stochastic sys-
tems with random jumps”. In: SIAM: Journal on control and optimization 32.5
(1994), pp. 1447-1475.

[27] G. Barles; R. Buckdahn and E. Pardoux. “Backward stochastic differential equa-
tions and integral-partial differential equations”. In: Stochastics: an international
journal of probability and stochastic processes 60.1-2 (1997), pp. 57-83.

[28] R.Buckdahn and E. Pardoux. “BSDE’s with jumps and associated integro-partial
differential equations”. In: preprint (1994), p. 79.

[29] R. Situ. “Comparison theorem of solutions to BSDE with jumps, and viscosity
solution to a generalized Hamilton-Jacobi-Bellman equation”. In: Control of dis-
tributed parameter and stochastic systems. Springer, 1999, pp. 275-282.

[30] M. Hassani and Y. Ouknine. “Infinite dimensional BSDE with jumps”. In: (2002).

[31] J. Yin and R. Situ. “On solutions of forward-backward stochastic differential
equations with Poisson jumps”. In: (2003).

132



BIBLIOGRAPHY

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

D. Becherer. “Bounded solutions to backward SDEs with jumps for utility op-
timization and indifference hedging”. In: The Annals of Applied Probability 16.4
(2006), pp. 2027-2054.

N. El Karoui et al. “Reflected solutions of backward SDEs and related obstacle
problems for PDEs”. In: Annals of probability 25.2 (1997), pp. 702-737.

S. Hamadene and Y. Ouknine. “Reflected backward stochastic differential equa-
tion with jumps and random obstacle”. In: Electronic journal of probability 8 (2003).

S. Hamadene. “Reflected backward SDEs with general jumps”. In: Theory of prob-
ability and its applications 60.2 (2008), pp. 357-376.

E. H. Essaky. “Reflected backward stochastic differential equation with jumps
and rcll obstacle”. In: Bulletin des sciences mathématiques 132.8 (2008), pp. 690—
710.

N. El Karoui, E. Pardoux, and M.C. Quenez. “Reflected backward SDEs and
American options”. In: Numerical methods in finance 13 (1997), pp. 215-231.

M. Kobylanski et al. “Reflected BSDE with superlinear quadratic coefficient”. In:
Probability and Mathematical Statistics-Wroclaw University 22.1 (2002), pp. 51-83.

S. Peng and M. Xu. “Reflected BSDE with a constraint and its applications in an
incomplete market”. In: Bernoulli 16.3 (2010), pp. 614-640.

E. H. Essaky and M. Hassani. “General existence results for reflected BSDE and
BSDE”. In: Bulletin des Sciences Mathématiques 135.5 (2011), pp. 442-466.

J. Cvitanic and I. Karatzas. “Backward stochastic differential equations with re-
flection and Dynkin games”. In: Annals of probability 24.4 (1996), pp. 2024-2056.

E. B. Dynkin and A. A. Yushkevich. “Theorems and problems on Markov pro-
cesses”. In: Translation: Plenum Press, New York (1969).

S. Hamadene, J. P. Lepeltier, and A. Matoussi. “Double barrier backward SDEs
with continuous coefficient”. In: Pitman research notes in mathematics series (1997),
pp- 161-176.

S. Hamadene and J. P. Lepeltier. “Reflected BSDEs and mixed game problem”.
In: Stochastic processes and their applications 85.2 (2000), pp. 177-188.

J. P. Lepeltier and M. Xu. “Reflected backward stochastic differential equations
with two rcll barriers”. In: ESAIM: Probability and statistics 11 (2007), pp. 3-22.

K. Bahlali and B. Mezerdi. “Backward stochastic differential equations with two
reflecting barriers and continuous with quadratic growth coefficient”. In: Stochas-
tic Processes and their Applications 115.7 (2005), pp. 1107-1129.

E. H. Essaky, Y. Ouknine, and N. Harraj. “Backward stochastic differential equa-
tion with two reflecting barriers and jumps”. In: Stochastic Analysis and Applica-
tions 23.5 (2005), pp. 921-938.

S. Hamadene and I. Hdhiri. “Backward stochastic differential equations with
two distinct reflecting barriers and quadratic growth generator”. In: International
Journal of Stochastic Analysis 2006 (2006).

133



BIBLIOGRAPHY

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[62]

[63]

[64]

M. Xu. “Reflected backward sdes with two barriers under monotonicity and
general increasing conditions”. In: Journal of Theoretical Probability 20.4 (2007),
pp- 1005-1039.

S. Peng and Z. Yang. “Anticipated backward stochastic differential equations”.
In: Annals of probability 37.3 (2009), pp. 877-902.

B. Oksendal, A. Sulem, and T. Zhang. “Optimal control of stochastic delay equa-
tions and time-advanced backward stochastic differential equations”. In: Ad-
vances in applied probability 43.2 (2011), pp. 572-596.

M. Jeanblanc, T. Lim, and N. Agram. “Some existence results for advanced back-
ward stochastic differential equations with a jump time”. In: ESAIM: Proceedings
and surveys 56 (2017), pp. 88-110.

H. Wu, W. Wang, and J. Ren. “Anticipated backward stochastic differential equa-
tions with non-Lipschitz coefficients”. In: Statistics & Probability Letters 82.3 (2012),
pp. 672-682.

W. Lu and Y. Ren. “Anticipated backward stochastic differential equations on
Markov chains”. In: Statistics & Probability Letters 83.7 (2013), pp. 1711-1719.

Z. Yang and R. J. Elliott. “Anticipated backward stochastic differential equa-
tions with continuous coefficients”. In: Communications on Stochastic Analysis 7.2
(2013), p- 9.

Z.Yang and R. J. Elliott. “On anticipated backward stochastic differential equa-
tions with Markov chain noise”. In: Stochastic Analysis and Applications 34.5 (2016),
pp. 749-799.

D. Chevance. “Numerical methods for backward stochastic differential equa-
tions”. In: Numerical methods in finance 232 (1997).

V. Bally. “Approximation scheme for solutions of BSDE”. In: Pitman research
notes in mathematics series (1997), pp. 177-192.

J. Ma and J. Zhang. “Representations and regularities for solutions to BSDEs
with reflections”. In: Stochastic processes and their applications 115.4 (2005), pp. 539-
569.

B. Bouchard and J. Chassagneux. “Discrete-time approximation for continuously
and discretely reflected BSDEs”. In: Stochastic Processes and their Applications 118.12
(2008), pp- 2269-2293.

S. Peng and M. Xu. “Numerical algorithms for backward stochastic differen-
tial equations with 1-d Brownian motion: Convergence and simulations”. In:
ESAIM: Mathematical Modelling and Numerical Analysis 45.2 (2011), pp. 335-360.

E. Gobet and P. Turkedjiev. “ Approximation of discrete BSDE using least-squares
regression”. In: preprint (2011), pp. 19-22.

M. Xu. “Numerical algorithms and simulations for reflected backward stochas-
tic differential equations with two continuous barriers”. In: Journal of Computa-
tional and Applied Mathematics 236.6 (2011), pp. 1137-1154.

R. Dumitrescu and C. Labart. “Numerical approximation of doubly reflected
BSDEs with jumps and RCLL obstacles”. In: Journal of Mathematical Analysis and
Applications 442.1 (2016), pp. 206-243.

134



BIBLIOGRAPHY

[65]

[66]
[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

Y. Lin and H. Yang. “Discrete-Time BSDEs with Random Terminal Horizon”. In:
Stochastic Analysis and Applications 32.1 (2014), pp. 110-127.

K. Itd and M. Nisio. On stationary solutions of a stochastic differential equation. 1964.

S. A. Mohammed. Stochastic functional differential equations. Vol. 99. Pitman Ad-
vanced Publishing Program, 1984.

X. Mao. Stochastic differential equations and applications. Elsevier, 2007.

E. Buckwar. “Introduction to the numerical analysis of stochastic delay differen-
tial equations”. In: Journal of computational and applied mathematics 125.1-2 (2000),
pp. 297-307.

C. TH. Baker and E. Buckwar. “Numerical analysis of explicit one-step methods
for stochastic delay differential equations”. In: LMS Journal of Computation and
Mathematics 3 (2000), pp. 315-335.

S. Kusuoka. “A remark on default risk models”. In: Advances in mathematical
economics (1999), pp. 69-82.

R. J. Elliott, M. Jeanblanc, and M. Yor. “On models of default risk”. In: Mathe-
matical Finance 10.2 (2000), pp. 179-195.

C. Blanchet-Scalliet and M. Jeanblanc. “Hazard rate for credit risk and hedging
defaultable contingent claims”. In: Finance and Stochastics 8.1 (2004), pp. 145-159.

M. Jeanblanc and Y. Le Cam. “Immersion property and credit risk modelling”.
In: Optimality and Risk-Modern Trends in Mathematical Finance. 2009, pp. 99-132.

S. Peng and X. Xu. “BSDEs with random default time and their applications to
default risk”. In: arXiv preprint arXiv:0910.2091 (2009).

Y. Jiao and H. Pham. “Optimal investment with counterparty risk: a default-
density model approach”. In: Finance and Stochastics 15.4 (2011), pp. 725-753.

S. Song. “Optional splitting formula in a progressively enlarged filtration”. In:
ESAIM: Probability and Statistics 18 (2014), pp. 829-853.

Y. Jiao, I. Kharroubi, and H. Pham. “Optimal investment under multiple defaults
risk: a BSDE-decomposition approach”. In: The Annals of Applied Probability 23.2
(2013), pp. 455-491.

F. Cordoni and L. Di Persio. “A BSDE with delayed generator approach to pric-
ing under counterparty risk and collateralization”. In: International Journal of
Stochastic Analysis 2016 (2016).

M. T. Barlow. “Study of a filtration expanded to include an honest time”. In:
Zeitschrift fiir Wahrscheinlichkeitstheorie und verwandte Gebiete 44.4 (1978), pp. 307-
323.

A.N. Al-Hussaini and R. J. Elliott. “Enlarged filtrations for diffusions”. In: Stochas-
tic Processes and their Applications 24.1 (1987), pp. 99-107.

S. Song. “Local solution method for the problem of enlargement of filtration”.
In: arXiv preprint arXiv:1302.2862 (2013).

M. Jeanblanc and S. Song. “Martingale representation property in progressively
enlarged filtrations”. In: Stochastic Processes and their Applications 125.11 (2015),
pp. 4242-4271.

135



BIBLIOGRAPHY

[84] T. R. Bielecki, M. Jeanblanc, and M. Rutkowski. “Introduction to mathematics

of credit risk modeling”. In: Stochastic models in mathematical finance, CIMPA-
UNESCO-MOROCCO school (2007), pp- 1-78.

[85] P. Protter. Stochastic integration and differential equations. Springer, 2005.

[86] V.E. Benes. “Existence of optimal stochastic control laws”. In: SIAM Journal on
Control 9.3 (1971), pp. 446-472.

[87] D. Guo and X. Xu. “Reflected BSDEs with random default time and related
mixed optimal stopping-control problems”. In: Acta Mathematicae Applicatae Sinica,
English Series 29.1 (2013), pp. 165-178.

[88] P. A. Meyer. Probabilités et potentiel. Vol. 14. Blaisdell, 1966.

[89] N. El Karoui. “Les aspects probabilistes du contrdle stochastique”. In: (1981),
pp. 73-238.

[90] Y. Ren and N. Xia. “Generalized reflected BSDE and an obstacle problem for
PDEs with a nonlinear Neumann boundary condition”. In: Stochastic analysis
and applications 24.5 (2006), pp. 1013-1033.

[91] R.]J. Elliott and T. K. Siu. “Reflected backward stochastic differential equations,
convex risk measures and American options”. In: Stochastic Analysis and Appli-
cations 31.6 (2013), pp. 1077-1096.

[92] R. Dumitrescu, M. C. Quenez, and A. Sulem. “A Weak Dynamic Programming
Principle for Combined Optimal Stopping/Stochastic Control with £f-expectations”.
In: SIAM Journal on Control and Optimization 54.4 (2016), pp. 2090-2115.

[93] J. P. Lepeltier and ]J. S. Martin. “Backward SDEs with two barriers and con-
tinuous coefficient: an existence result”. In: Journal of applied probability (2004),
pp- 162-175.

[94] N. Agram et al. “Reflected advanced backward stochastic differential equations
with default”. In: arXiv preprint arXiv:1803.07444 (2018).

[95] N. Harraj, Y. Ouknine, and I. Turpin. “Double-barriers-reflected BSDEs with
jumps and viscosity solutions of parabolic integrodifferential PDEs”. In: Inter-
national Journal of Stochastic Analysis 2005.1 (2005), pp. 37-53.

[96] H. M. Soner. “Optimal control of jump-Markov processes and viscosity solu-
tions”. In: Stochastic differential systems, stochastic control theory and applications.
1988, pp. 501-511.

[97] X.Xu. “BSDEs with random default time, anticipated BSDEs and related result”.
In: Doctoral dissertation, Shandong University (2010).

[98] A. Lejay, E. Mordecki, and S. Torres. “Numerical approximation of backward
stochastic differential equations with jumps”. In: (2014).

[99] P. Briand, B. Delyon, and J. Mémin. “On the robustness of backward stochastic
differential equations”. In: Stochastic Processes and their Applications 97.2 (2002),
pp. 229-253.

[100] S.Hamadene. “Mixed zero-sum stochastic differential game and American game
options”. In: SIAM Journal on Control and Optimization 45.2 (2006), pp. 496-518.

[101] Y. Kifer. “Game options”. In: Finance and Stochastics 4.4 (2000), pp. 443—463.

136



BIBLIOGRAPHY

[102] J. Ma and ]. Cvitani¢. “Reflected forward-backward SDEs and obstacle prob-

lems with boundary conditions”. In: International Journal of Stochastic Analysis
14.2 (2001), pp. 113-138.

[103] I. Karatzas and S. E. Shreve. Methods of mathematical finance. Vol. 39. Springer,
1998.

137



	Abstrakt
	Abstract
	Acknowledgements
	Introduction
	Basic Notations
	Backward Stochastic Differential Equations
	Backward Stochastic Differential Equations with Jumps
	Reflected Backward Stochastic Differential Equations with One Obstacle
	Reflected Backward Stochastic Differential Equations with Two Obstacles
	Anticipated Backward Stochastic Differential Equations
	Numerical Algorithms for Backward Stochastic Differential Equations
	Stochastic Differential Delay Equations

	Backward Stochastic Differential Equations with Default Risk
	Basis of the Defaultable Model
	Some Results for BSDEs with Default Risk

	Dissertation Structure

	Anticipated BSDEs with Default Risk
	Basic Assumptions
	Existence and Uniqueness Theorem for ABSDEs with Default Risk
	Comparison Theorem for 1-dimensional ABSDEs with Default Risk
	Duality Between Linear Anticipated BSDEs and the SDDEs
	Application in Stochastic Control Problem
	Relation with the Obstacle Problems for Non-linear Parabolic PDEs

	Reflected Anticipated BSDEs with One Obstacle and Default Risk
	Basic Assumptions
	Existence and Uniqueness Theorem for RABSDEs with One Obstacle and Default Risk
	Uniqueness Theorem for RABSDEs with One Obstacle and Default Risk
	Existence Theorem for RABSDEs with One Obstacle and Default Risk
	Existence Theorem – Penalization Method
	Existence Theorem – Snell Envelope Method
	Existence Theorem for the RABSDE (3.1) in the general frame


	Application in Optimal Stopping-Control Problem
	Linear Reflected Anticipated BSDEs with One Obstacle and Stochastic Differential Delay Equations

	Reflected Anticipated BSDEs with Two Obstacles and Default Risk
	Basic Assumptions
	Existence and Uniqueness Theorem for RABSDE with Two Obstacles and Default Risk
	Uniqueness Theorem for RABSDE with Two Obstacles and Default Risk
	Existence Theorem for RABSDE with Two Obstacles and Default Risk
	Existence Theorem for the Penalized RBSDE (4.2)
	Existence Theorem for the RABSDE (4.1) in the general frame


	Linear RABSDEs with Two Obstacles and Stochastic Differential Delay Equations
	Relation with the Obstacle Problems for Non-linear Parabolic PDEs
	Related Parabolic PDEs
	Main Result


	Numerical Algorithms for RABSDEs with Two Obstacles and Default Risk
	Discrete Time Framework
	Random Walk Approximation of the Brownian Motion
	Approximation of the Defaultable Model
	Approximations of the Anticipated Processes and the Generator
	Approximation of the Obstacles
	Computing the Conditional Expectations

	Discrete Penalization Scheme
	Implicit Discrete Penalization Scheme
	Explicit Discrete Penalization Scheme

	Discrete Reflected Scheme
	Implicit Discrete Reflected Scheme
	Explicit Discrete Reflected Scheme

	Convergence Results
	Convergence of the Penalized ABSDE to the RABSDE (1.10)
	Convergence of the Implicit Discrete Penalization Scheme
	Convergence of the Explicit Discrete Penalization Scheme
	Convergence of the Implicit Discrete Reflected Scheme
	Convergence of the Explicit Discrete Reflected Scheme
	Distance between implicit discrete reflected and explicit discrete reflected schemes

	One Numerical Simulation Example of RABSDE with Two Obstacles and Default Risk
	Application in American Game Options in a Defaultable Setting
	Model Description
	The value of the American Game Option
	Numerical Simulation


	Appendix
	Appendix for Chapter 3
	Appendix for Chapter 5

	Bibliography

