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ABSTRACT

The moment realizability criteria have been used to test the domains of validity of
the Boltzmann and Euler equations. With the help of this criteria the coupling of
the Boltzmann and Euler equations have been performed in two dimensional spatial
space. The time evolution of domain decompositions for such equations have been
presented in different time steps. The numerical results obtained from the coupling
code have been compared with those from the pure Boltzmann one.

1 INTRODUCTION

In the simulation of the rarefied gas flows different mean free paths (average
distance travelled between collisions) characterize the different mathematical
problems. If the mean free path is much less than the characteristic length of
the flow so that the gas is sufficiently dense, fluid dynamic equations give the
description of the flows. In the rarefied case, the mean free path is not much
smaller than the characteristic length, hence the description of the flow can be
obtained from the Boltzmann equation.

The most widely used simulation methods for the Boltzmann equation are the
particle methods like Direct Simulation Monte Carlo Methods (DSMC) [3]
and Finite Pointset Method (FPM) [1], [2], [15], [17]. Since the grid size
which is used in the particle methods should be of the order of the mean free
path, the computational efforts for the Boltzmann equation become high as
the mean free path tends to zero. From the classical theory, as the mean free




path tends to zero, the Boltzmann equation can be approximated by the fluid
dynamic equations (Euler or Navier-Stokes) [7].

But these limiting equations may not be valid everywhere. Therefore, one may
solve the Boltzmann equation only where it is necessary and fluid dynamic
equations wherever possible. For this purpose, one needs a criterion which
detects the domains of validity for the Boltzmann and fluid dynamic equations.
Some criteria for the domains of validity for the Boltzmann and Euler equations
have been proposed in [18], [19].

In this paper we present the moment realizability criteria, proposed by Lever-
more et al [13]. The authors in [13] have basically used this criteria for the
validity of the Navier-Stokes approximation. In our case the same is used for
the domains of validity for the Euler equations. The criteria is based on the
deviation of an (m x m)- validity matrix from its equilibrium value.

For the past few years several attempts have been made to couple the Boltz-
mann and fluid dynamic equations. We refer to [4], [5], [12], [14], [L6], [18],
[19], [20] for the coupling of the Boltzmann and fluid dynamic equations.

We organize this paper as follows. In section 2 we present the equations to be
coupled and their numerical solvers. In section 3, the derivation of the moment
realizability criteria is given. Finally, some numerical results are presented in
section 4.

2 EQUATIONS TO BE COUPLED AND
THEIR SOLVERS

2.1 The Boltzmann Equation

We consider the perfect monoatomic gas. The Boltzmann equation is the time
evolution of the distribution function f(t,z,v) for the particles of velocity

v e R3, at point z € Q C Rd(d =1,2,3) at a time ¢ € R and is given by

of | o, 1o,

with

J(f, f) = /R3 /5‘2 k(v — 21)!,77)[‘)“(1)/)'/"(10') — f(v) f(w))dw(n)dw (2)
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v o= Town) =v=n<nv—uw>, W= Two(n) (3)

and e is proportional to the mean free path. On the right hand side of (2)
the function k(Jv — w|,n) is called the collision kernel, which depends on the
interaction potential. In this paper the hard sphere model has been considered.
For more details about the Boltzmann equation we refer to [7]. We solve (1)
with the initial condition

F0,z,0) = fo(z,v) (4)
and some boundary conditions, described in section 4.2.
We state the following important properties of the Boltzmann equation

(a) Mass, momentum and energy of particles are conserved by the collision
process

/ Vad (f, fdv =0, = 0,1,2,3,4, (5)
R
where ¥y = 1,; = v;,i = 1,2,3 and 94 = [v[?, called collision invariants.

(b) As € tends to 0 one can prove [6] that the Boltzmann distribution function
f tends to a local Maxwellian

v — ul?

: ) . p =TT )
.f]\f = <fi\[ [pv u, T](fj Jj) = W € 2RT K <6)

"y

where R is the gas constant and the parameters p(t,z), w(t,z), T(t z) ap-
proximate the compressible Euler equations.

2.2 The Compressible Euler Equations

The quantities of interest are the macroscopic ones given by the following
moments:

p(t,x) = / flt, 2 u)do (density) (7)

w(t, r) = - / ; vf(t, x v)de (mean velocity) (8)
p R .
Loy \zr{‘z‘ y ; g
Lt x) = - / AR v)dv (specific energy) (9)
p w2 ' ’

Ty = /m(vi =) (v = uy) f(t, 2z, v)de — pd; (stress tensor), (10)



where p is the static pressure and ¢;; the Kronecker symbol and

1

% =735

5 (vj = uj) v = ul* f(t, 2, v)dv (heat flux). (11)
R3

Multiplying the Boltzmann equation (1) by the collision invariants 1, v, |v]?/2

and then integrating with respect to v over R*, one gets the following system
of conservation equations

Tyl 12

O )+ 3 D oy py) = S ) (13
= J,_
a 3 6 3 8 3
—(pE)+ > —(pFu; +pu;) = —(q; + > wiTi;). 14

This system has more unknowns than equations. Therefore, this is not a
closed system. Suppose f = fa, then 7,; = 0 and ¢; = 0 by symmetry and the
following relations hold:

[ul®
)

Then the above system of equations reduces to the compressible Euler equa-
tions. These equations have to be solved with suitable initial and boundary
conditions.

p= /H‘%S('Ui — ;) fydv = pRT, E = RT + — (15)

2.3 The Boltzmann Solver

We solve the Boltzmann equation by the particle method or more specifically,
finite pointset method. For details about this method we refer to [15], [17].
The particle method for the Boltzmann equation is based on the time splitting
of the equation. Let 7" > 0 be a given time and m & N. Then one takes
the discrete time steps t, = k - At, where At = T'/m. For each time interval
[tk, tky1) we consider the following two equations:

1. The free transport equation

dg
n +v-V,g=0 (16)
with initial condition
g(te) = f(tx) (17)

4



and some boundary conditions as described later.

2. The collision

of 1.+ -
LS (18)
ot €
with initial condition B |
fte) = g(tesr) (19)

and f(tgq) = Fltes1) being a solution of (1) at time #4.

The particle simulation of (16) is based on the approximation of the initial
density f(2,v) by a discrete measure (a sum of Dirac masses)

N

filz,v) =D aé(x — zj(te))0 (v — v;(t)). (20)

J=1

The positions z;(tx) of the particles change (during the free flow only) as per
the following relation

@ity 4+ At) = x;(tp) + At v (te), (21)

where the velocities change during the collision step. In our simulation we
have considered all the particles of equal weight 1/N.

For the simulation of equation (18) one has to introduce a spatial mollifier
since the collision integral J(f, f) is a local operator in space and time. We
divide the computational domain into many regular cells C' where the density
f(t, 2, v) is substituted by fo(t,v) for z € C and

. 1 _
folt:) = e [ £t v)dy. (22)

Now, it is suflicient to describe the particle simulation of the following space
homogeneous Boltzmann equation

of 1., N

=) (23)
with an initial condition

fOv) = fo(v). (24)

Discretizing the equation (23) with respect to time and using an Euler step,
one-gets

F(AE ) = ( =/ / B(fo — w],n) folw)dw(n)du )f(m
+~«~— / / v =wl,n) folv") folw")dw(n)dw. (25)



Since the approximation of the function f is based on the weak convergence
of measures, it is useful to consider (25) in a weak formulation

./IRS d(v) f(At,v)dv =
At

.4p{1“_54p/;kiw-whn)%@wdw@ndw]¢@oﬁmmdv

JA; /IR /IR /S+ k(v — w|, ) p(v) folv") fo(w')dw(n)dvdw (26)

for all ¢ € C?, set of all bounded and continuous functions in R*. Assuming
| fl1 = 1 and the collision transformations (3) imply that dv'dw’ = dvdw, |v'—
w'| = |v — w| one gets

/Rs d(v) f(At,v)dv = /11@.3 /RB(RQS)(U,w)fo(v)fo(w)dvdw (27)

where
o)) = [~ 2 [ Ko = wl. )] o0
B bl =l 0p(0)dtn).

To solve equation (27) we need an approximation of the product measure
deo (1) £(0,0) £ 0, w)duwido

by some Z;V:l CY;(S(nj,u_,,w_,-), given only an approximation Zévzl a6y, of f(0,v)dv.
If this problem is solved and Z;V:l CY;'(S(n,-,vj,wj) is determined, one can compute
the time evolution of the measure due to (27). The factor 1— % k is interpreted
as a probability for a dummy collision, keeping the old velocities. % k is the
probability for a real collision, changing v; — ’U;« = Ty, w; (n;). For more details
about the solution procedure for the space homogeneous Boltzmann equation
we refer to [2], [15], [17].

One observes that, to guarantee the positivity of the function f(At, v), we
need the following restriction on the time step

At

1— = k>0. (28)

€
This means that for ¢ — 0 the time step At has to be shrank with e, the
equations are becoming stiff. The method becomes exceedingly expensive for
small Knudsen numbers.



2.4 The Euler Solver

We solve the Euler equations also by the particle method based on the kinetic
scheme. Earlier workers [8], [9], [10], [11], have reported this scheme in
detail. It is the direct consequence of the solution scheme for the Boltzmann
equation. It also consists of two steps as in the case of the Boltzmann equation:

1. The free transport equation:

af o ,
- . 3 frnd ()‘ 29
£y +uv-V,f (29)

2. The relaxation:

J(f,f) = 0. (30)

The equation (30) is a relaxation to a thermodynamic equilibrium, whose
solution is a local Maxwellian. As in the Boltzmann case we repeat above
procedure until we reach the required time.

In the relaxation step, we reproduce the particles according to a simple function
fx, introduced by Kaniel [11], since it is computationally faster than that
of fa and also because the results obtained are found to be good. For a
monoatomic gas it is given by

3 P S
e e B Y o— < [ T

fo={ iRm0 s VOR (31)
0 Do =l > VBRT

2.5 The Boundary Conditions

During the free flow we take the boundary conditions into account. In this
step the particles may hit the spatial boundary, leave the domain or enter it.
One has to take care of the corresponding boundary conditions.

e Particle may leave the computational domain (absorption), for example,
on the boundaries as denoted by I'y in Figure 1.

e Particles may enter the spatial domain at parts of the boundary. On
the left boundary as indicated by I'y in Figure 1 we consider a layer of
boundary cells. At each time step and in each boundary cell we gener-
ate N particles randomly with a uniform distribution and a Maxwellian
distribution in the physical and the velocity spaces, respectively.



e Particles may be re-emitted at a physical boundary (gas surface interac-
tion). On the boundary I's in Figure 1 we use a diffuse reflection with
a complete thermal accommodation [7]. In other words, each particle
colliding with the wall is re-emitted with the velocity distribution of the
form v" = v}, where v} is the velocity of the particle re-emitted with a
Maxwellian distribution at a wall temperature Tyy. Let (¢, 7, z) be a local
orthonormal basis, with n normal to the wall, then, we have

vy, =/ —RTw In oy cos 2mary (32)
U:i; =/ *RTW In (04] sin 27(012 (33)
vy =1/ —RTwInas, (34)

where ov;, o, a3 are the uniformly distributed random numbers between
0 and 1.

2.6 The Coupling Algorithm

1. Approximate the initial distribution function by the Dirac masses.
2. For time step 1 to K:
o Generate the particles having a Maxwellian distribution in the velocity

space and a uniform distribution in the physical one at the boundary
cells.

e Advance the particles in a free flow
z;(t+ At) = z;(t) + At - v;(t).
e If the particle collide with the surface boundary, reflect it according to

the above described boundary condition and continue the free flow with
a new velocity until At is over.

e Erase the particles that leave the domain.
3. Check whether the cells are either Euler or Boltzmann cells using the
criteria, described in the next section.
4a. Consider intermolecular collisions in the Boltzmann cells.

4b. Project the distribution function into a local thermal equilibrium in the
Euler cells.

b. Go to step 2.



3 MOMENT REALIZABILITY CRITERIA

The moment realizability criteria is proposed by Levermore et al [13]. We
give a brief description of moment realizability criteria. If the distribution
function f is nonnegative, the same is true for the quantity [?*fdv for any
function ¢ = 1y (v). Let ¢ be an arbitrary polynomial spanned by a general set
of polynomials in the components of v. More, precisely, let ¢ = ¢(v) denotes
a column vector of m given polynomials then for @ = a'e for an arbitrary
a € R™, where a! denotes the transpose of the vector a, we have

5)

a'( / i cet fdv)a = / 3((1‘(7)2 fdv >0, forevery a€R". (3

If f is nonnegative and not identically zero a. e., then, for every ¢ the (m xm)-
matrix T
M = -/(:ct‘]"dv (36)
R3

is positive semi-definite.

We choose the vector ¢ which includes all the necessary densities and fluxes of
the local conservation laws (12)- (14)

i . : t
. Ny e ul> 5 i
- (1, At Gt ) (37

(RT)1/2 2RT

The components of ¢ are orthonormal to %f)\ . This choice of ¢ corresponds to
the (5 x b)-symmetric matrix

1 0 0
M o= 0 [+A4 \/EB . (38)
0 \/iB' L
where
4= ! (v —=u) (v=w)fdv—T (39
) pRIT Jro' (RRERE )
N ] ' ](7 —- Z[E2 3 U= . »
B == / [l R R
p Jus ( ORT 2) N (40)
12 (ol 5\ 1 ey
po / < 2RT >> fdv = 5oy e 0 e v =5 (4D

9



If f = far, then, L = 1, A is a zero matrix and B a zero vector so that the
matrix M = I, the equilibrium matrix and has the eigenvalues equal to 1.
When f has a deviation from an equilibrium or a Maxwellian, the correspond-
ing matrix M also has the same from the identity matrix. Equivalently, the
eigenvalues have deviation from their equilibrium values 1. A large deviation
of f from f), indicates that of M from the identity matrix /.

Since the distribution function f is nonnegative, the approximation to it need
not be the same. The components of the matrix M are the moments of the
nonnegative distribution function f and the matrix is positive semi-definite,
equivalently, its eigenvalues are nonnegative. If we compute the components
of the matrix M as the moments of an approximated distribution function of
f, the matrix can be negative semi-definite.

We realize this situation by the following considerations. The fluid dynamic
description is valid if the distribution function is close enough to a local
Maxwellian. We assume that the distribution function f has a small devi-
ation from a local Maxwellian. Then, we approximate it by

f - fM(1 + (]5), (42)

where ¢ fy; denotes the perturbation of f from fys. Since the first five moments
(7)-(9) of f are those of fur. Then, we have

[, 6fudv =0 (43)
JR3
/R3 UQZSfA{dU =0 (44)
/R 1026 fardv = 0. (45)
Furthermore, from (10) and (11), we have
Ags(v —u)(v —u)lefadv =T (46)
1 3
S L= )l = uPefidv = g (47)

With the help of the above thirteen equations (43)- (47) we express ¢ as a
polynomial

p=a+ (bv—u)+ (v—u)Sw—u)+{dv—u)lv-—ul (48)

where ¢ is a scalar, b, d are vectors in R* and S is a (3 x 3)-symmetric matrix.

10



One can determine all the coefficients of the polynomial (48) by substituting
¢ in equations (43)- (47) and gets

=) [lo—ul? 1 (v
h = , 1| 4 e (v — u) (v = w). 49
? = TWRT)? | BRT + 20( RT)Z(Z w) ' (v — ) (49)

Our main interest is to find the region where the above approximation f =
far(1+¢) cannot be realized. That is, find the region where the above approx-
imation (42) of f is not valid. It can be even negative, which gives the failure
of the fluid dynamic description. In such regions f may have large deviation
from fyr. This deviation can be monitored during the simulation by checking
the deviation of the matrix M from the identity matrix /.

The calculation will be simpler if we use some transformation of the matrix
M. Assuming L > 0 and defining the matrix

1 0 0
Q) = 0 ! 0 ’ (50)
0 /22 1
it follows that
1 0 0
QMQ={0 [+A-2EE ¢ | (51)
0 0 L

Hence, when L > 0, the positive semi-definiteness of the matrix M is equivalent
to the positive semi-definiteness of the following (3 x 3)-matrix
2B B!
V=l4+A~ —e (52)
L

As a criterion for an equilibrium, the negativity as well as the deviation of the
eigenvalues of 1 from the equilibrinm values 1 give the region of breaking the
fluid dvnamic description.

Now, we compute the components A, B and L of the matrices for f = fy/(1+
¢). Firstly, consider

1 17 L7
A== Afde =~ / Afapdv + = / A fard
P R3 /)3;:&'3 / )<$
1
= ;;wlz/g(z‘ —u) (v = u)'ofyde = /;}% (53)
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Next,

L(lo—uf 5\v—u, Lflv—uf® 5\v-u
B = _/ _ 9 */ 5 ;
/)RS ( 2RT 2) \/RTJLM v+ pR?, < 2RT 9 \/R—T¢f]vf v

q
= S (54
Finally,
' 1
L = M——,—A/lv—ul‘*fdv—_
10p(RT)3/2R3 2
= ol e — 5 4 o [ o ult 0
3/2 / v
1(),0(RT)3/2RB 2 10p(RT)¥ A
1
Since ——————— / |v — ul fardv — = = 1, we have
10/)(1"{T)3/2R3 2

L=1+ — ul'¢ fardv. (55)

10p(RT)?7 | / v

Now we compute the right hand side of the integral (55) for given ¢ from (49).
Then

v — ul?

[to—uttgsute = ot [ o=ty ) (M7 1) o
R3 R3

+

1
W / IU — ’l.L’4(U - u)tT(’U - ’U,)fMdU
R3
Since first integral vanishes because of the symmetry of the Maxwellian far,
we have

{v~u

1 .
/ [v = u|'¢ frrdv = (RT)7 / v —ul*(v —u) (v~ ’u,)e"TﬁLdzj
R3

RB
> lo=u]®
:/|U — ! [Z (v —w)* 23 mi(v; Wy — u,_,-)} e~ TR du.
R3 =1 i3]

Transforming the vector v—u in spherical coordinates and by simple calculation
we get

’U ‘ILZ

/]'U — u| U1 — U1)2 /AIUZREIl e / !U - u‘ Uy = Ul) 2RT

J— u|

= /I’U - ’U,} ('01 - ?,L1>26‘ TZRT
RS
= 70n(RT)*(2RT)"2.



Similarly,

. ) Y , —ul? o ST
/ lv— ’ZLi4(’l,72 - ug)g(f“ L = / |y — 'lL]LL(’(,vg — ‘u,-g)‘)‘(‘?*“ TRT = 707(’(RT)4(2R1 )‘1/2.
R3 RS

And

f-i|? " . , Coeug
/ | — ul*(v) = up)(vg = u2)e” AT = / lo — ul*(vy — uz)(vy — us)e =T

R3 ®A
' lv=u|?
- / lo — u|*(vy = uy) (vy = uz)e” TRT

R

= 0.

This implies

/‘ }‘U - Uv{ll(j')f‘)\[d'l/‘ - 707(‘(RT)1(2HT> L,_/‘QZ(T“ + Toy + T;‘;g) = 0, (56)
R3

¥

since 7y + oo + 33 = 0.

Form (55) and (56) we have L =1 for f = fi (14 ¢). Hence, it is enough to
check the positive semi-definiteness of the (3 x 3)-matrix

2BB!
Ve=T4A-2 (57)

o)

We may also consider the matrix V in (57) as a perturbation of the identity
matrix I. All choices of the vector ¢(v) whose elements span the space of
polynomials in v correspond to the moment realizability criteria defined by
the positive semi-definiteness of the matrix M. In fact, any operation which
does not change the sign of the eigenvalues of the matrix M may be performed
without changing the criterion. This includes change of basis operations such
as (50).

More general criteria for assessing the validity of fluid dynamic equations are
suggested by the form of the matrix M in (38). Because the vector ¢ in (37)
was chosen to have orthonormal element with respect to integration against the
Maxwellian equilibrium distribution fy/p, it follows that at equilibrium the
matrix M must be the identity matrix. For the distribution, perturbed from a
Maxwellian, one can view M as a perturbation of the identity matrix. Large
deviation of M from [ indicate the same from a equilibrium. The moment
realizability criterion states that the luid dynamic description has broken down
when the perturbation is too large that M is no longer positive semi-definite.

13



Since the matrix @ in (50) is not orthonormal, the matrices V' and M will
not share the same eigenvalues. Thus assessing breakdown with V requires a
different tuning than M. Since V is smaller and simpler, the use of the matrix
V could be enough as criteria of equilibrium.

For f = fa (1 + @), the matrix (38) is given by

1 0 0
My=|0 I+A 2B || (58)
0 /BT 1

In the next section we compute the eigenvalues of both matrices V' and ;.
With the help of their eigenvalues, we justify the domains of validity for the
Boltzmann and Euler equations.

4 NUMERICAL RESULTS

We consider a two dimensional flow of a perfect monoatomic gas flowing at
hypersonic speed around an ellipse with major and minor axes 1.0m and 0.5m
respectively. The computational domain €2 is a rectangle with size 6m x 4m
as shown in Figure 1.

B

|
o

>

Figure 1: Computational domain



As the initial condition we use the following Maxwellian distribution

V= U |2
F0,2,0) = b2 o 2RTy (59)

(27 RT,.)3/?
and the boundary conditions as described above.

We divide the computational domain € into many rectangular cells of the
size of the global mean free path, that is, dz = A. We choose the time step
At = dx/us and compute until the steady state is reached. A total of 400 time
steps were taken. In the simulation the following parameters are considered:
A = 0.1m, Mach number = 15, Ty, = 200K, gas constant R = 208Jkg/K,
Tw = 1000k, angle of attack = 30%, the number of particles per cell at the
beginning = 50.

We first compute the eigenvalues of the matrix M;. In Figure 2 we have
plotted, in a steady state, the four eigenvalues of the matrix M; on the middle
row of the computational domain since one of them is identically equal to one.

PR S T
6 1 /} I
| |
5 {r\ 0.8
4 \ 3
3 JI\
04
2 "\.
RV | { D 0.2
! | :
0 ‘L ............. i o
0 1 2 3 4 5 & 0 1 2 3 4 5 [¢]
LT I— f\ e
.8 ¥ / \‘\ /..K./**"\—‘g A % / ............. /"/m
| N 1 0 g
A . r/J ] l ]
IR BE i
] | i;
0 . - I E i
[ %
) 1 2 3 4 5 £ 1 2 3 4 ) 6

Figure 2: The four eigenvalues of the matrix M

In Figure 2 we see that one eigenvalue is negative in the shock region. This
shows that the approximation of f as a small deviation from a local Maxwellian
iy extremely bad in a such region. The other eigenvalues are positive but have

significant deviation from the unity in non-equilibrium regions.
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A choice of a particular eigenvalue may not give the general criterion for an
equilibrium. Therefore, for general criteria we consider the invariants of the
matrix, which contain all the eigenvalues. Let Ay, Ay, A3, Ay be eigenvalues of
the matrix M;. If the distribution function f is close enough to the Maxwellian
far, these all eigenvalues are equal to the equilibrium values 1. Therefore, if
the particle distribution is close enough to a Maxwellian, the invariants of the
matrix M; must satisfy the following relations:

1
Zl_</\1 4+ A+ Ay+ /\4) =1 (60)
1
6(/\1)\2 F A1 A3+ A A+ Ao 4+ Ao + /\3)\4) =1 (61)
1
Z()\l)\g)\g “+ /\1/\2>\4 -+ /\1/\3)\4 + /\2/\3/\4) =1 (62)

In Figure 3 the four invariants (60)- (63) are plotted on the middle row of the
computational domain.

1 1 e
0.8 0
0.6 -1
0.4 -2
-3
0.2
-4
0
0 I T2 5 4 5 s 0 1 2 3 4 5 6
1 1
—
| I~
0
-1
-0.5
-2
-1
-3
0 1 2 345 6 ¢ 1. 2 3 4 5 &

Figure 3: The four invariants of the matrix M

As a criterion for a local thermal equilibrium we consider the invariant (61).
We assume that if this normalized invariant lies between 0.8 and 1.2, then, the
cells are Euler ones, otherwise they are Boltzmann ones. In Figure 4 we have
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1

plotted the domain decompositions for the Boltzmann and Euler equations in
the time steps 10,2550, 100

Figure & The domain decomposition of Boltzmann and Euler equations. In
rho upper half the domain decomposition is shown at time steps 10 (left) and

25 (right) and in the lower half for time steps 50 (left) and 100(right). White
and gray domains represent the Boltzmann and Euler ones respectively

The white part indicates the Boltzmann domain and the grav one is that of
Ender. This domain decomposition is similar to those obtained i [18], [19],

Finallv, we compute the eigenvalues of the matrix Voin (577, This is obtained
from some transformation. Clearly, the watrices M from (38) and V' from (H7)
do not share the same elee n\;\hwm Bt the ovderof Vois smaller than-that of

AL

In Figure 5 we have plotted, in a steady state, the three elgenvalnes of the
matrix Voon the middle vow of the computational domain.. We see that one
elgenvalue of 17 is also negative in the shock region. The other two mg(‘n’vnl»
ues are positive but }m\'o 1:’11‘;{‘0 deviations from unity in the non-equilibrium
TOQIONS.

We o again compute the three normalized invariants of the matrix Voo Let
ArcAs Ay be three elgenvalues of the matvis Voo These eigenvalues are close



to unity if the distribution function f is close to a local Maxwellian, then the
following relations hold:

1
5()\] -+ )\2 + /\3) =1 (64)
1
5(/\1/\2 + Aoy + /\1/\3) = (65)
)\1')\2')\3:1. (66)

In Figure 6 we have drawn the three normalized invariants (64) - (66).

1.75
1.5 0.8
1.25
0.6
1
0.75 0.4
0.5
0.25 0.2
0 0
0 1 2 3 4 5 6 ) 1 2 3 4 5 5

=10

~-15

=20

-25

Figure 5: Three eigenvalues of the matrix V

As a criterion for a local thermal equilibrium we consider the invariant (66).
We assume that if this invariant lies between 0.85 and 1.15, the cells are the
Euler ones, otherwise they are Boltzmann ones. The domain decomposition
obtained from this assumption, is similar to the Figure 4.

One can also use the other two invariants (64) and (65), with other tuning
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parameters. They also give similar results.

. — penans
0 0 -
-2
-2
-4
a )
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L6 =g
5 ~10
0 1 2 3 i B 5 B} 1 2 3 4 5 3
0 F‘Amwf"’“ —
2
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-4 !
6
“8
0 1 2 3 4 5 6

Figure 6: Three invariants of the matrix V'

Our reference solutions are those obtained from the pure Boltzmann code.
Therefore, we compare the solutions obtained from the coupling code with
those from the pure Boltzmann one. We have plotted in Figure 7 the contour
plots of the density, temperature and the Mach number from both codes.
Clearly, the results performed both codes are very close to each other.

The the above test case the CPU times for the Coupling and pure Boltzmann
codes are same. The computational efforts for the coupling code is much
lower in comparison to the pure Boltzmann code, if one considers the adaptive
solution techniques [20]. For the small mean free path one has to consider the
cell size for the Boltzmann solver is of order of the mean free path. But for
the Euler solver, it is not necessary to have the grid size of order of that kind.
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