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ABSTRACT ABSTRACT 

The mo~ner~t rcdizabilitv criteria have been used to test the domains of validity of izabilitv criteria have been used to test the domains of validity of 



path tends to zero, the Boltzmann equation can be approximated by the fluid 
dynamic equations (Euler or Navier-Stokes) [7]. 

But these limiting equations may not be valid everywhere. Therefore, one may 
solve the Boltzmann equation only where it is necessary and fluid dynamic 
equations wherever possible. For this purpose, one needs a criterion which 
detects the domains of validity for the Boltzmann and fluid dynamic equations. 
Some criteria for the domains of validity for the Boltzmann and Euler equations 
have been proposed in [18], [19]. 

In this paper we present the moment realizability criteria, proposed by Lever- 
more et al [13]. The authors in [13] have basically used this criteria for the 
validity of the Navier-Stokes approximation. In our case the same is used for 
the domains of validity for the Euler equations. The criteria is based on the 
deviation of an (m x nz)- validity matrix from its equilibrium value. 

For the past few years several attempts have been made to couple the Boltz- 
mann and fluid dynamic equations. We refer to [4], [5], [la], [14], [16], [IS], 
[19], [20] for the coupling of the Boltzmann and fluid dynamic equations. 

We organize this paper as follows. In section 2 we present the equations to be 
coupled and their numerical solvers. In section 3, the derivation of the moment 
realizability criteria is given. Finally, some numerical results are presented in 
section 4. 

2 EQUATIONSTO N 
THEIRSOLVE 

2.1 The Boltzmann Equation 

We consider the perfect monoatomic gas. The Boltzmann equation is the time 
evolution of the distribution function f(t, 2, U) for the particles of velocity 
aFB3, at point (c E 0 c I!@ (d = 1,2,3) at a time t E r$. and is given by 

?f 
-j$ + ~.YJ = $f, .f>, (1) 

with 

J(f, f> = /,I .i,i ,:(I x ‘?I - ?lil, 7j)[.f(U’)f(lU’) - f(~u)f(w)]dw(~~)dw (2) i 
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where p is the static pressure and S;, the Kronecker symbol and 

q,j = ; /& - Uj)~V - $y(t, 2, v)dv (heat flux). (11) 

Multiplying the Boltzmann equation (1) by the collision invariants 1, 71, lv1’/2 
and then integrating with respect to ZI over R3, one gets the following system 
of conservation equations 

This system has more unknowns than equations. Therefore, this is not a 
closed system. Suppose ,f = f&l, then ri’;j = 0 and qj = 0 by symmetry and the 
following relations hold: 

p = ~~~~~~ - Uij2fbfdu = pan, E = ART + !$. .I (15) 

Then the above system of equations reduces to the compressible Euler equa- 
tions. These equations have to be solved with suitable initial and boundary 

We solve the Boltzmann equation by the particle method or more specifically, 
finite pointset method. For details about this method we refer to [15], [17]. 
The particle method for the Boltzmann equation is based on the time splitting 
of the equation. Let T > 0 be a given time and m, E N. Then one takes 
t,he discrete time steps tk = k: . At, where At = T/m For each time interval 
[tk, tktI) WC consider the following two equations: 

1 The fro0 trnncnnrf 6wiiint.inn 

with initial condition 

4 





Since the a,pproximation of the function f is based on the weak convergence 
of measures, it is useful to consider (25) in a weak formulation 

s I@ c$+l)f(at, 7J)dw = 
WJ - WI, rl).fowwl)~w I two wv 

+$ //.I lR3 w3 SF qlu - 4,77)~(~).fOt~‘).fotW’)~~t~~)~~~w tw 
for all 4 E Cb, set of all bounded and continuous functions in I@. Assuming 
/ 1 f [ I 1 = 1 and the collision transformations (3) imply that &J’&w = dvclw , Izl’ - 
w’l = lw - WI one gets 

where 

(Jv>(~f, 4 = [l - $ /;, w - 4, Mv)] e> . t 
+;” i sI: fqlu - 4, rlMb’hwi+ 

To solve equation (27) we need an approximation of the product, measure 

dw(q)f(O, w)f(O, 7u)dwdw 

by some Cg, CX~~C~~,,!~,~,.), given only an approximation Cy!, o!jSVj of f(0, v)dzl. 
If this problem is solved and C,“=, CY~S~~~,~~,~,~) is determined, one can compute 
the time evolution of the measure due to (27). The factor I- 9 k: is interpreted 
as a probability for a dummy collision, keeping the old velocities. e k is the 
probability for a real collision, changing 'u,i + vi = TI,j,,,j (qj). For more details 
about the solution procedure for the space homogeneous Boltzmann equation 
we refer to [a], [15], [17]. 

One observes that, to guarantee the positivity of the function ,f(nt, u), we 
riced the following restriction on the time step 

l-%00 ‘- * (28) E 

This means that for E + 0 the time step At has to be shrank with t, the 
equations are becoming stiff. The method becomes exceedingly expensive for 
small Knudsen numbers. 





e Particles may be re-emitted at a physical boundary (gas surface intersc- 
tion). On the boundary l’s in Figure 1 we use a diffuse reflection with 
a complete thermal accommodation [7]. In other words, each particle 
colliding with the wall is re-emitted wit,h the velocity distribution of the 
form ‘u’ = vi1 where v& is the velocity of the particle re-emitted with a 
Maxwellian distribution at! a wall temperature Tw. Let (t, n, Z) be a local 
orthonormal basis, with n normal to the wall, then, we have 

l& = ~Z?$-lG&os 21rQ (32) 

viz = J-sin 27ruiz (33) 

v:,,, = Jm, (34 

where al, 02, CQ are the uniformly distributed random numbers between 
0 and 1. 

2.6 The Coupling Algorithm 

1. Approximate the initial distribution function by the Dirac masses. 

2. For time step 1 to K: 

e Generate the particles having a Maxwellian distribution in the velocity 
space and a uniform distribution in the physical one at the boundary 
cells. 

* Advance the particles in a free flow 

q(t + At) = z+(t) + at . vi(t). 

o If the particle collide with the surface boundary, reflect it according to 
the above described boundary condit,ion and continue the free flow with 
a new velocity until At is over. 

.a Erase the particles that leave the domain. 

3. Check whether the cells are either Euler or Boltzrnann cells using the 
criteria, described in the next section. 

4a. Consider intermolecular collisions in the Boltzmann cells. 

4b. Project the distribution function into a local thermal equilibriurn in the 
Euler cells. 

to step 2. 5. Go 



3 MOMENT REALIZABILITY CRITERIA 

The moment; realizabilit~ critkl is l~roposed by Lcverrnore et al [IS]. We 
give it brief description of rnornent redizability criteria. If the distribution 
function .f is nonnegative, the same is true for the quantity J$“fdu for any 
function J$ = ,4’~( I;). Let qb be an arbitrary polqmnisl spanned by a general set 



If .f = fM, then, L = 1, A is a zero matri x and B a zero vector 
matrix n/r = I, the equilibrium matrix and has the eigenvalues 

so that the 
equal to I. 

When f has a deviation from an equilibrium or a Maxwellian, the correspond- 
ing matrix n/l also has the same from the identity matrix. Equivalently, the 
eigenvalues have deviation from their equilibrium values I. 4 large deviation 
of f from f,M indicates that of M from the identity matrix I’. 

Since the distribution function .f is nonnegative, the approximation to it need 
not be the same. The components of the matrix M arc the moments of the 
nonnegative distribution function f and the matrix is positive semi-definite, 
equivalently, its eigenvalues are nonnegative. If we compute the components 
of the matrix M as the moments of an approximated distribution function of 
,f, the matrix can be negative semi-definite. 

We realize this situation by the following considerations. The fluid dynamic 
description is valid if the distribution function is close enough to a local 
Maxwellian. We assume that the distribution function f has a small devi- 
ation from a local Maxwellian. Then, we approximate it by 

.f = fd + 5% (42) 
where 4.f~ denotes the perturbation of .f from f~,f. Since the first five moments 
(7)-(q) of f are those of fhl. Then, we have 

.1 RF 
4fhldz = 0 

J R” 
uq5fhfdu = 0 

./KG ’ ’ I u ‘.A 

Furthermore, from (10) and (II), we have 

; /R3(i; - u)lu - u/2$j”h;rdv = q (47) 

With the help of the above thirteen equations (43)- (47) we express 4 as a 
polynomial 

c$ = n + (!I, u - u) + (u - u)?5(v - u) -t- (d, 71 - u) Iu - u12, (48) 

where a is a scalar, &, d arc vectors in lR3 and S is a (3 x 3)-symmetric matrix. 
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ubstituting 



Next, 

B=: JC lW-,CLl2 5 v-ZL 
-- 

P 2RT 
W” 

?) mfhfdv + f / (w- - ;) zbj&/dv 
Ii3 

Q 
= p( RT)3/2 ’ 

(54 

Finally, 

L = 
1 ’ 

J 10p(RT):‘/2R3 
lw - u14fdw - ; 

1 

= lOp( RT)3/2 Iw~ J 
Iw - u14fMdv - 1 + 1 / Iv - ~1,1~q5f&,. 

2 10p(RT)3~2w3 

Since 
1 J 10p(RT)3i2R3 

Iv - u14f& - ; = 1, WC have 

1 
L = ’ + 10p(RT)3i2i3 i 

lw - ,~L14q!$Mdw. (55) 

Now we compute the right hand side of the integral (55) for given 4 from (49). 
Then 

i I’u - ul”dh& = 
i3 

(R;)3,2 J iv - qyv - u, 4) ( ]‘;;,I2 - I.) .fllIciv 
R3 

1 
+ 2p(RT)“12.* i 

Iv - ,u1”(v - U)t,r(w - lL)fMdW. 

Since first integral vanishes because of the symmetry of the Maxwellian fM, 

\&v = / 1,;,1,2 I’ 1w - ul”(w - U)%(II -l- u)e-‘.‘S’;Izdv 

= J [ III -I VI’* f-&(wi - ui)2 + 2 ‘j-3&, - ui)(vj - u,& e-Mdw. IR” i=l i#.j I 
Transforming the vector u-u in spherical coordinates and by simple calculation 
we get 

=/ Iv - qyw 
&~ 

= 70~(RT)~(2 





not share the same eigenvalues. Thus assessing breakdown with V requires a 
different tuning than M. Since V is smaller and simpler, the use of the matrix 
I/ could be enough as criteria of equilibrium. 

Boltzmann and Euler equations. 

4 NUMERICALR 

We consider a two dimensional flow of a perfect monoatomic gas flowing at, 
hypersonic speed around an ellipse with major and minor axes l.Om and O.&n 
respectively. The computational domain s2 is a rectangle with size 6m x 4m 
as shown in Figure 1. 

c 

ucc 





A choice of a particular eigenvalue may not give the general criterion for an 
equilibrium. Therefore, for general criteria we consider the invariants of the 
matrix, which contain all the eigenvalues. Let X1, X2, X3, X4 be eigenvalues of 
the matrix Ml. If the distribution function f is close enough to the Maxwellian 
.f&l, these all eigenvalues are equal to the equilibrium values 1. Therefore, if 
the particle distribution is close enough to a Maxwellian, the invariants of the 
matrix n/r must satisfv the followinn relations: 

In Figure 3 the four invariants (60)- (63 #) are plotted on the middle row of the 
computational domain. 

Figure 3: The four invariants of the matrix iV 

As a criterion for a local thermal equilibrium we consider the invariant (61). 
We assume that if this normalized invariant lies between 0.8 and 1.2, then, the 
cells are Euler ones, otherwise they are Boltzmann ones. In Figure 4 we have 
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t,o unity if the distribution function f is close to a local Maxwellian, then the 
inrr rPlAt,inns holrl: 

In Figure 6 we have drawn the three normalized invariants (64) - (66). 
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Figure 5: Three eigenvalues of the matrix V Figure 5: Three eigenvalues of the matrix V 

As a criterion for a local thermal equilibrium we consider the invariant (66). As a criterion for a local thermal equilibrium we consider the invariant (66). 
We assume that, if this invariant lies between 0.85 and 1.15, the cells are the We assume that, if this invariant lies between 0.85 and 1.15, the cells are the 
Euler ones, otherwise they are Boltzmann ones. The domain decomposition Euler ones, otherwise they are Boltzmann ones. The domain decomposition 
obtained from this assumption, is similar to the Figure 4. obtained from this assumption, is similar to the Figure 4. 

One can also use the other two invariants (64) and (65), with other tuning One can also use the other two invariants (64) and (65), with other tuning 

18 18 



parameters. They also give similar resdts. 
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