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1 Introduction

The Boltzmann equation is an appropriate model to simulate rarefied gas flows
as long as the mean free path of the gas is not too small. However, in the transi-
tion from rarefied to continuum flows, numerical simulations of the Boltzmann
equation reach the limits of the existing hardware platforms, even when using
massively—parallel systems.

Hence, it is worthwhile to investigate the transition from the Boltzmann equa-
tion to classical continaum mechanics, like Euler or Naviei~Stokes equations
and to combine both models in terms of a domain decomposition approach.
Besides others, one of the challenging problems applying a domain decompo-
sitton procedure, is to detect (automatically) those regions, where it is possible
to switch to the more simplified fluid dynamic models as well as to formulate
appropriate coupling conditions between the different flow models. Recently,
several authors investigated various domain decomposition methods based on
kinetic and continuum flow models, like the formulation of coupling conditions
as well as the derivation of criteria to automatically detect kinetic and contin-
uum regimes within the gas flow [1, 6,9, 10, 11, 12, 17, 19].

The aim of the present investigation is twofolded: the first aim is to general-
ize the existing domain decomposition methods to the case of a rarefied gas
with real gas effects, i.e. generalized Boltzmann equations, which include rota-
tional and vibrational degrees of freedom as well as chemical reactions in the
gas. Moreover, we like to present a new approach based on the fourteen mo-
ments expansion of Levermore [13], which combines a Galerkin approximation
for the Boltzmann equation with a particular expansion of the solution of the
Boltzmann equation, which is in contrast to the well-known Chapman-Enskog
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expansion strictly positive. In particular, we investigate how the resulting equa-
tions may degenerate to a more standard Navier—Stokes model.

The paper is organized as follows: in the next section we present briefly the gen-
eralized Boltzmann equation based on diatomic molecules, which include en-
ergy exchange between translational, rotational and vibrational degrees of free-
dom. At the end of the section we propose a simplified model problem, which is
used in Section 3 to perform an asymptotic analysis to derive the limiting fluid
dynamic equations for the Boltzmann equation with internal degrees of freedom.
In Section 4 we show, how the Navier—Stokes equations may be obtained from
the 14-moments expansion of Levermore using the well-known Hilbert expan-
sion technique. Moreover, the somewhat original derivation clearly emphasize a
kinetic interpretation of the moment expansion used by Levermore and we dis-
cuss the problem how to define a coupling process between the two models and
give numerical simulations to validate the proposed coupling strategy.

2 The Boltzmann Equation for Diatomic Molecules

2.1 The Description of Internal Degrees of Freedom

In the following we consider a rarefied gas cornsisting of identical diatomic
molecules, where each molecule carries besides the translational energy two
additional degrees of freedom, namely a rotational and vibrational energy.

Due to the small level distance for rotational energy states, it is appropriate to
simplify the resulting model considering the rotational energy as a continuous
variable e € Ry, whereas the vibrational energy is assumed to take only discrete
values v; € D, where D denotes the finite set of different vibrational levels.
Then,; the generalized Boltzmann equation for diatomic molecules describes the
time evolution of a kinetic density function f(z,v,e,v;) — the phase space den-
sity —in the form

1
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and f' = f(z' e vyp), f1 = f(:c,vg,e’l,y,;fl) etc. The collisions scattering ker-
nel W (the transition probability) is assumed to take the form
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where the function ¢ denotes the differential cross section, E the total collision
energy given by F = %]u ~vi|2+e+er +ryp by andn = (v —wvy)/|jv — vl
In (2.1) we already assumed a hydrodynamic scaling x> gx, t —> et to re-
late the time evolution of the rarefied gas with the so~called Knudsen number
Kn = A\/L, where A denotes the mean free path of the gas, L a characteristic
length of the problem; respectively.

An essential part in the generalized Boltzmann equation is to define appropriate,
but in the same way simple models to specify the differential cross section o.
In the following, we use a differential cross section based on the generalized
Borgnakke-Larsen model [18]; which can be written in the form

gt = (1 = a(E) = b(E))oe + a(E)ove + b(E)oin, (2.2)
where 0 < a(E),b(E) and a(E) + b(E) < 1 forall E € Ry and
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Moreover, we assume isotropic scattering tor the angular dependence in the
collisions, 1.e.

1
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In the Borgnakke-Larsen~type models [8], one assumes a differential cross sec-
tion, which 1s a combination of elastic, vibrational elastic and completely inelas-
tic parts, i.e. in the first case we have no energy exchange between translation
and internal energies, in the second case the vibrational energy is preserved
and in the third case we have full energy exchange between ail degrees of free-
dom. Hence, even the collision operator can be written as a sum of three differ-
ent operators, () = Qe + Qe + Qin. The functions a(E), b(E) in (2.2) may
be determined using macroscopic models [18], e.g. the Parker model for rota-
tional relaxation determines the function a(E), b(E) may be fixed assuming
a Millikan-White model for vibrational relaxation, where both models-contain
some parameters; which are fitted to experimental data.
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2.2 Definition of a Model Problem

In particular at high temperatures, the relaxation times for translational, rota-
tional and vibrational energies may differ strongly and this may influence the
resulting fluid dynamic limits of the generalized Boltzmann equation. Here, one
may expect to obtain modified Navier-Stokes equations, which include addi-
tional temperature equations for the rotational as well as vibrational states of
molecules.

In the following section we will study the fluid dynamic limits of a simplified
model problem, where the relaxation times between translational and rotational
energies differ by some parameter 4, the vibrational states are kept frozen. More-
over, we restrict ourselve to a one—dimensional steady-state problem in a slab,
with diffusive boundary conditions based on the two wall temperatures 17, and
T'r on the left and right wall of the slab, respectively.

To validate the asymptotic expansions obtained from the generalized Boltzmann
equation, the model problem has been treated numerically applying a particle
method to simulate rarefied gas flows [16].

Macroscopic quantities like the density or the mean velocity are defined as mo-
ments of the density function f(t,z,v,e), like

mass density : p(t,z) = <f>
v,e
1
mean velocity :  u(t,z) = ~<vf>
v,e
. . 1 2
(kinetic) temperature : T(t,z) = ——<c f >
p
. 1
rotational temperature : Tpp(t,x) = ~ <e f >
v,e
stress tensor : o(t,z) = —<c ® cf>
1
heat flux vector : q(t,z) = <§cgcf>

v,e

where (- ), , denotes the integration over v and e and ¢ = v — u.
3

3 Asymptotic Expansions

In the following we consider the steady—state, one~dimensional Boltzmann equa-
tion in a slab written in the form

wlf = TQulhH)+2Qu(fH),  welbl G
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where we assume, that the vibrational states of molecules are kept frozen and
4 denotes a parameter to relate the translational and rotational relaxation times.
In particular, we study the asymptotic limits as £, — 0 to obtain macroscopic
equations for the density p and the temperatures 7' and Ty, the kinetic and
rotational temperature of the gas. This is achieved using an asymptotic expan-
sion for f(¢,z,v,e) and the most general Ansatz would be a double expansion in
terms of ¢ and ¢ in the form
X +
f= 5 kg,

k=0

A more simple analysis is to study the asymptotic limits only. along particular
traces (g,0) - 0, Le. to assume a functional dependence between ¢ and § in
the form & = &(¢). Then, the double expansion is reduced to a single expansion
with respect to the small parameter ¢ given by

o0

f(zwe) = Z el fO) (2 0e). (3.2)

j=0

For the single functions ), 5 > 1 we demand the normalization condition

<\I’(v,e)fm> =0, (3.3)

v.e

where (v.e) = (10,07 k(e))t, k(e) denotes an arbitrary (non-constant) func-
tion in e. Condition (3.3) implies, that the macroscopic: quantities  p,u,1" and
Trot are completely determined by f (0). Moreover, we use the (formal) decom-
position fU)(z,v,e) = hU)(zv,e)g(x,e) for j > 0.

31 TheCased =0
In this case the Boltzmann equation can be rewritten as
‘ 1 . 4
vpOpf = ?Qel(faf)- (3.4)

Inserting (3.2) into (3.4) yields

el Qa(fO f0) =0
@ w0 f = Qu(s ), O
S g f D) = Q) FOY £ Q1) Y

From the equation at the ¢ ~!~level we can write
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h(O) (.’L‘,’U) = Mp,u,T(U)a

where M, ,, 7(v) = —£57 exp(—(v —u)?/T) is a Maxwellian, f(9) = p(0)4

(nT)
and the function g(,e) remains unknown at this level — up to the normalization
condition

<g>e ~1. (3.5)

Moreover, the velocity u is zero, because integrating (3.4) with respect to v and
e yields

Ox(pu) =0 = pu=c

and due to the diffusive boundary conditions, one has (pu)(0) = (pu)(1) == 0,
i.e.c=0. Since p > 0, it follows u = 0.
From the £%-level we obtain

v290:h") + v, h 08,9 = Qu(hM g, ) g)
Now we split the function A" into two parts, namely A3 (z,v,¢) = h{" (z,0)+
hgl)(a:,v,e), to get a better representation of the first approximation and obtain
from the £"-level the two equations

vgg0s h(©) Qu(rVg, K g) (3.6)
v, 08,5 = Qu(hilg, B0 g). (3.7)

Il

We demand, that hgl)g and hgl) g fulfill the condition (3.3).
Egs. (3.6),(3.7) are conditions for the unknown functions hgl) and hgz). The

right side can be regarded as a linear operator for hgl), hi(zl) and the kernel for

L() = Qu(-h9 g, h®g) is given by ker L =< 1,v,v? k(e) >, where k(e) is
a non-constant function.
Then, (3.6) and (3.7) are solvable, if the conditions

<\Ingazh<°>>ve = 0, (3.8)
<\I/v$h(0)8mg>ve =0 3.9

with W(v,e) = (10,02 k(e))! are fulfilled.
From (3.8) one gets

3,(pT) = 0. (3.10)

All other equations are identically equal to zero.
Then, the first order approximation is given by
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1 ; ~ v 9 0 0
hg )(.’L‘,’U) = 0,0, In l“(x)(;j; -~ 5)@/,3(3:)11( Nz w)+ (byvy + b:v,)h O (2,0).
If we use a collision model, such that the viscosity v ~ TP, we obtain
p-1 . . Qs . .

Op 1 ~ Egm, In the case of Maxwellian molecules and rigid elastic spherical
molecules we have p = 1 and p = 0.5, respectively.
The £'-order equation determines the function f(2): the solvability equations
are

(0 (ve0e(hiV g+ 1) = Qun{Tg + g, n{V g+ 1)) =0 @)

W&

From (3.11) we obtain

Ox(Mp,T)0:;T) = 0 (3.12)
<k(e)v18mf(1)> =0 (3.13)
where
ol v 5
/\(p,T) = <UH?(7[T - S)GI)VT}I'ES)IW(‘I)>>U

is the heat conduction coefficient. Again, all other equations are vanishing triv-
ially.

Eqgs. (3.10) and (3.12) determine the parameters p and T'. For example for the
special model v ~ TP, the solution is given by

Po S
plz) = (T Tha s 100" wERy  xc[01] (314
R L/ L/
T(z) = (T ~THa+THYE  ze0,1], (3.15)

where ¢ = p + 1, .e. we have ¢ =2 for Maxwellian molecules and ¢ = 1.5 for
rigid spherical molecules:

Egs. (3.10) and (3.12) represent the standard Navier-Stokes equations for the
one-dimensional heat transfer, in particular we obtain a diffusion equation for
the temperature I', which defines the translational temperature of the gas. More-
over, the heat conduction coefficient A coincides with the expression obtained
for a monoatomic gas.

However, we derived some more equations: for each k(e) we obtain an addi-
tional equation (3.13); but, since we do not have an analytical expression for
FM it is not possible to write the equation in terms of macroscopic quantities
together with transport coefficients.

To verify our result, we performed numerical simulations using a particle method
like discussed in Ref. [16]. Here, we used Maxwellian molecules at-a Knudsén
number Kn = 0.01 and wall temperatures 77, = L and Tg = 2.
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Figure 1 Density and Temperature Profile alotig the Slab

Fig. 1 shows the density and temperature profiles along the slab. The numerical
results coincide nearly with the theoretical ones, which confirms the correctness
of our derivation.

3.2 Representation of the Density g

It remains to find a representation for the internal energy density g. Since the
internal energies do not influence the transport and collisions of the particles,
the distribution should be a superposition of the internal boundary distributions.
Therefore, we make the Ansatz

g(z,e) = B(x)gr(e) + alz)grle), (3.16)

where g, and gg are the boundary conditions for the internal energy at ¢ = 0
and z = 1, respectively. Condition (3.5) implies that 3(z) = 1 — «(z) and
the next step is to determine the function a(z): we separate the gas into two
species, where the first one carries the information of the internal energy of the
left boundary and the second one of the right boundary. The density of these
two species are denoted by f% and f%, respectively. Then, the function « gives
the mixing ratio, i.e. & = pf/p and 1 — o = pl'/p, where p¥, pf* are the mass
densities and p = p* + p%.

For the functions f¥, /& we have the system

w0l = QU + QU
0edef® = LQUEIT) + QUL FT).

&

where ) now denotes the standard monoatomic collision operator. For each
density £, f# we use an asymptotic expansion in the form



o0 00

o Zgjf(J')’ o= }:ajfg).

7==0 J=0

Following [3, 4], we can write an approximation for f%, ff in the form

o= ) = 0 )

y
veoh

( Vg s T
by, = (Zﬁx.‘l(? - é) 7?—()]» InT
+d al” g +d (‘1’2 5) U g
oy dy (e =) ey
0 1 0 .
o= R =+ e
W h (L ;
(I)R = (*f — 5) "ﬁ(}r InT (317)
2 4
RV v O,
Io ol = doy + dy (= — 2) 2.
+dp ay JT 21 1(T 2)\/7(21

where féo) = (1=a)M,or(v), fg)) = aM, g r(v) and all coefficients ay, di.

k= ~1,0,1, d12, d31 depend on p and T (for the exact form see [3]):
For the mass fluxes we have the conditions
gpr = <‘vf[“> = const. (3.18)
qr = <UfR> = const. (3.19)
(2

With the approximation (3.17), we obtain for the mass flux g;r
qpr -~ C(T) Oz, (3.20)

where C'(T") depends on the collision model. For the hard sphere model we have
C(T) ~ TY? and in the case of Maxwellian molecules it holds C(T') ~ T
Condition (3.19) together with (3.20) yields cv = ;T + ¢ and applying the
boundary conditions we obtain

: T(x)~T
alz) = ~——£——>—»——--~~
T — 1Ty
It Ty, = Tg, we can perform the limit 7, — T to get alz) = x. If « is
determined, the resulting density g has the form
Tp~T T

g = gy + -
U s

9



To validate the expression for the density ¢ as given in Eq. (3.21), we performed
some numerical experiments assuming diffusive boundary condition for the in-
ternal energy, i.c.

e 1 e

—=—),  gr(e) = = exp(~
TL,i) (¢) Th i Tr;

22)

98]

gu(e) exp( )«

Tr;
The first set of simulations have been realized with Maxwellian molecules at a
Knudsen number Kn = 0.002 using about 1.2 - 10% particles and boundary tem-
peratures Ty, = 1, Tp = 2 and T,; = 3, Tr,; = 4. The computational results
obtained for the first 4 moments of the density function showed a quite good
agreement between the numerical and analytical result: A further simulation
was done, which should verify the correctness of the computation of o under
the assumption (3.16) for the density g. In this case we use boundary conditions
of the type

gr(e) = 8(e —er), grle)=6b(e—er), where ep #ep.

and the kinetic temperatures at the walls are Ty, = 1, Tp = 2. The computations
were done with Maxwellian molecules at Knudsen number Kn = 0.01 using
25.600 particles. Fig. 2 shows the fraction of particles, which have the internal
energy er, where this number is equal to the function ¢

aumenical alpha(x) —
analical aipha(x) 5

0.2 F /
/

Figuré 2 Comgparison”of Anai;/tical aond Numerical Results for alz)

All the simulations indicate, that the representation of a seems to be correct.
The errors between the curves is explained by the numerical inaccuracy. The
curves do not differ much, such that we can regard them as a confirmation of
our assumption for the function g.

3.3 TheCased =¢

Taking § = ¢, we have the additional collision term Q. (f,f) on the right hand
side of (3.4) and the first equations in € now read

10



et :Q(fme-O
0 Ve O f ( (1 ‘?‘ Qm (f 7f(0))
S w0 = Qu(F), °>> + Qe (fM, fI) + Que (f 1), £100)

The solvability conditions for 1) yield
0=(Que(f* f)  a(pT) =0
0= (0 QuelFO, 1)) 0= (k(e)Que £, )

If we define J(g)(e) = <Ql,€(h(0)g, h(o)g)> , we can write
U

0= /]R[f ( ktle) > J(g) de.

which means, that the functions 1, k(e) are orthogonal to J(g). If we choose a
basis b;, s.t. <b b > = 0y, then J(g) L b; for all 4. Moreover, if the basis b; is
complete, then J(g ) =0, i.e. g € ker J, but we obtain no more information on
gq.

One can easily show, that the Maxwellian is contained in ker J and numerical
experiments indeed indicate, that the function ¢ is a Maxwellian. The solvability
conditions for £ yield

ve

0

I
i

(Que(hMg,n®)))

0 = (v Que(hMg,nVg)))
%NPDIT) = (v* Que(hMg,h "))

(Keosnf®) = (k(e) Quel(hVg, 1))

v,e

(NG

1, €

As for § = 0, we obtain a constant pressure from the solvability conditions. The
heat equations are similar as before except that the first order approximation of
f appears in the source and loss term.

3.4 Numerical Results

Some additional simulations have been performed to test other scaling relations
between the two parameters ¢ and ¢ numerically. All simulations used a fixed
parameter (Knudsen number) ¢ == 0.01 and 25.600 particles. The boundary
conditions are given by (3.22) mth Ty = Tp = 1.0 and Tp,; = Ty = 3.0
and we used again the Ilvld -spherical molecule model: The different values for
Sare § = 0.0,0.001(= £2),0.01(= £), 0.1(= /=), 0.9(= 1 — /), 1.0,

11



In Fig. 3 the curves are nearly constant, since there is no energy exchange be-
tween the kinetic and internal degrees of freedom. Small deviations appear in
Fig. 4, which corresponds to the macroscopic equations. The case § = (.01
(Figure 5) seems to be very interesting, since the curves just touch each other.
Figs. 6-8 show that the kinetic and rotational temperature are equal in a domain
between the walls. If we increase the d-value, then this domain becomes larger.

as

T T Kinetic Iormperatura. ——— 35 N kinetic lemperaure
intomal temporature - intomal temparatire —~----
D s e L i s i S i e g R e - L
25 25
2 2
15 15
1 ] [ PN, —
o 01 0.2 0.2 04 s 0.6 07 0B 08 1 o 02 04 0.6 08 1
: x
Figure3 6 =10.0,¢=10.01 Figure4 & = 0.0001,¢ = 0.01
3% T T T Kinetic lomperature s T T N T ) T " inetic temperaturs ——
inlarnnl lemperalure «---- intomal lemperature ~---~-
il 24 ;
4 22 p
25 »“-‘ ‘
\
1811 v]; |
\\
" 1 i i L L 1 ]
0 02 04 06 o8 1 o (A 0z 03 04 05 06 o 0.8 0.8 1
. ;
Figure 5 ' 6 =0.01,¢ = 0.01 Figure6 6 =10.1,£ = 0.01
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; ;
Figure7 6 =10.9,¢=0.01 Figure 8 6 =1.0,¢ = 0.01
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4 Navier-Stokes Limit by Levermore Expansion

4.1 Approximation by Moment Expansions

The basic construction of an approximation in moments of the Boltzmann equa-
tion starts by choosing a linear space &, of test functions in (v,e) and integrating
the Boltzmann equation at each spatial point @ against basis functions m(v,e)
of &, which yields the system

(?f <mf>

+ div <'v ® m,f>1 <mQ(f,f)> . (4.1

ve I v,e

For physical reasons, the choice &, of test functions cannot be-arbitrary:
first, because the resulting system must satisfy fundamental conservation laws
in mass, momentum- and energy, this space must contain the functions m =

{1,v,0? + e}, whose integral moments <mf > define the mass, velocity and
v.e
total energy of the fluid: Second, the final system must be invariant under space

translation and rotation, which means that the test space £, itself must be stable
under the action of any arbitrary translation and rotation.
The problem is, that the system (4.1) is not closed: equations above characterize

the evolution of the averages <m f > by other averages <1> Qmf > and the
v, v,e

whole system can therefore only be solved, it one has additional information-on
the structure of the density function f. Different possibilities may be proposed
at this level. Grad [5] builds the distribution function f using thirteen indepen-
dent Hermite polynomials inv (for the monoatomic case). The resulting model
predicts locally reasonable velocity jumps at solid boundaries, but it leads to
a function f, which is not always positive. As a consequence, the notions of
entropy and hyperbolicity are fost and the resulting boundary value problem: is
not well posed. A better choice, introduced in [13], which will be used in the
following, is based on the Ansatz

F = F(a) = exp(a- m(v)),

with m(v) = {1,0,0 ® v,p%v,v} for the monoatomic case
and m(v) = {Lv,0 ® v, 1% (v* + 21%)v,(v? + 2I%)?} for the diatomic case.
By construction, F(¢r) = exp(a - m(v)) is strictly positive. Moreover, it has
nice entropy properties, since;-as observed in [13]; this distribution function- is
the formal solution of the entropy minimization problem

Fla) = argmingex,, <f In fr— f>

vL€



over the set Xy of distributions with given moments U, ie. the set
Xy={f: <mf>ue = U}.

Substituting this ansatz in the moment equation (4.1), we obtain, that the ki-
netic moments Uy (), the kinetic fluxes A, () and the collision integrals S(c)
with respect to the function F'(a) = exp(c - m) satisfy the system of partial
differential equations with unknown o (or Uy) in R

Uq(a) + div Ap(a) = S(a). (4.2)

The weak formulation of the above conservative system (4.2) is simply obtained
by multiplying the system by a test function ¢(z) and integrating by parts in x,
which yields

—/ ¢8tUadx+/ aqu-Aad:c—/ - {Ap-n)dy = _/ 6 Sodz, Y (z).
Q o) a0 0

(4.3)
The weak formulation (4.3) is certainly not well posed, because it lacks of
boundary conditions specifying the boundary flux

A |y = /vn v-nm(v)F(v)dvde.

To do this while respecting the underlying kinetic boundary conditions imposed
on the distribution f, a simple and consistent choice is to split this boundary
flux into ingoing and outgoing fluxes

Ay -n=AY + A, Al .= / v.nm(v)F(v)dvde (4.4)
vn>0

with outgoing fluxes computed from the local value of the solution F' and ingo-
ing fluxes from the imposed reflected values at any wall

AL = / v-nm(v) [(1 — k) Myr,u+k R(v,0" ) F(v')dv' | dvde
<0

o
v'n>0
(4.5)
or imposed incoming values at infinity

As = / (v - 1) (0) Fimp (0) dudle. (4.6)
n<0

The above notion of ingoing and outgoing fluxes is in fact related to the mi-
croscopic notion of ingoing or outgoing particles. The corresponding boundary
condition amounts in fact to average the microscopic kinetic boundary condition
against the basis test functions m(v).

With this choice, the problem to solve is the weak nonlinear variational problem
(4.3) with boundary conditions (4.4)—(4.5)-(4.6).
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4.2 Relation to Navier-Stokes

Easy algebraic manipulations transform the Levermore monoatomic systen into

five conservation laws (with p = —Tr(¢)/3)
dp Op  Ouy
+u +p =0,
df U S ox k 61*
Oui 2 L1dow

ot " or,  p o

p | Jurp é’_al Oy 20

dt Oxy, 3 “Ox & 3 dxy,
and eight plus one differential constitutive laws in stress, heat vector and an
additional moment R;;;x = <|v|4f>v.

Bo',jj BZLkCTij 8’1Li duj 8Qijk 1
g R s — = = —{(0;0;Q(F.F 4.7
ot * 011710 +Cr]k 8;73k te dtk (9.’73;J 6<1 UJQ( i )>u ( )
L 0q; dqluk duj O :
2= 2 L 2 — 4.8
ot +2 dry, Q”}” + ¥ Oxy, (4.8)

p dogy 50 dajk ORjsie 1/ 4
32 071 77 Rk 2 QR F
3/) dxy, p o Oxy + oxy, €<U v QUE, )>v

07%;’;‘ 4+ 8’72‘:iijj'l-tk im0 O Lol ?aik N _‘?ﬂ_
ot Ouy, oxy; p Oy . Oxy,

These constitutive laws are no longer explicit: they involve auxiliary moments
@ and R;;;); to be obtained by first computing the underlying distribution func-
tion F''*. But nevertheless, this nonconservative writing gives a direct way to
recover Navier-Stokes equations from the Levermore equations. Indeed, let us
perform a standard asymptotic expansion of the unknowns in terms of the mean
free path ¢, i.e. F = FY 4+ eF%!m + O(e?), where F* = exp(a® - m) and

- %<v4(Q(F,F)>U (4.9)

Oy = cr?J -+ ecr,b- + ()(62),

Qiji = Qijy + €Quj + O(");

’R”ﬂ» Ru;k ! 67“)’11]k+ O( )7

with the normalization condition




<\I/(v) expla® - m(v)]> = <\I/(v) expla - m(v)]>v (4.10)

v

and ¥(v) = (1,0,0%)%. At zero order, a® must cancel the collision term, and
therefore F0 correspond to a Maxwellian, yielding

At next order, because of (4.10), we have first <a1 : m(v)F°> and after elim-
u

ination of all time derivates by the conservation laws in a similar expansion of
the constitutive laws (4.7,4.9,4.9), on gets the following equations in o,

Jdu n Oug 27 Ouy

g GUky A 0L 0
pRT(am (937]' 3 U8.’L‘Ic) /velRa QUZUJQ(P a m)F )dv>
ORT 5 01 i
50RT o :/ue 200 Q(F o - m F7)dv,

o:/ 24 Q(FOat - m,F0)dv,
velR

By usual linearity and symmetry arguments ( even-odd symmetry of integrals in
v, invariance, linearity in o - m of the collision operator Q(F%a! - m,F°)), the
solution in a! - m is the standard Chapman-Enskog distribution

200K c? 5 arT

]‘. e e e i [T e

e mv) =~z (Rt 3%
L e Loy A2, T2
p(RT)2(C®C SCId)'(2(8m+8:c 3dw(ufd))

yielding at first order in ¢ the Navier-Stokes constitutive laws

Ou;  0u; 2 Ouy
0.1 k
o et ) =G4 2,5
, ar
Eqi1 = e<czc,~F0a1 : m>v = MK&L‘-’

and the additional law

R = e<c4F0a1 : m> =0.

iy »

This means that any solution p,u, T, o, ¢ of the Navier-Stokes equations is a
first order approximate solution
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p
pu
[/75;\’5 = puRu-—o0
putu —tr(o)u = 20 - u+ 2q
put = 2tr(o)u? — 4o - u)u+8q-u -+ L%):

of the fourteen moment Levermore’s equation, and conversely.

In particular, we get by this technique a new kinetic interpretation of a Navier-
Stokes solution: its corresponding moments U/N® are an approximate solution
of a consistent entropic hyperbolic problem and are moments of a positive dis-
tribution function Fyg(v) = exp(c - m(v)) with coefficients « given by

<m exp(a - m('v))> = NS,
v
The difference with more standard models is, that now the definition of Fg is

strictly positive, but no longer explicit and can only be obtained by solving a
ocal entropy minimization problem.

4.3 Numerical Coupling Strategy

The additional advantage of the above kinetic interpretation is to lead to a simple
multi~domain coupling strategy, which

1. solves the hyperbolic Levermore’s model everywhere with semi-explicit

schemes in time (collision implicit; transport terms explicit or linearly. im-
plicit) and finite. volume in space,

At
n+1 noo -
Vay = Uas = =5 j

o,

Z(A" + ALS(UMY,

[N

. gegenerate locally the Levermore’s constitutive laws to: their ‘asymptotic
analytic Navier Stokes limit in all cells, except where analytic residuals of
Levermore differential constitutive equations are large.

In this strategy; the interface fluxes between different cells are then given by
using a standard flux splitting scheme for interfaces between two Navier-Stokes
cells and a kinetic reconstruction Fyg, which preserves positivity and entropy,
for all other interfaces

il "

/ PonFR (e~ (T = Mo ) dy
tn JOC; LI
n ” ANk = Nyt ) S n,,-~-»

with A%y = A" + A7 VAL = [ nyi0 U M m(v)Fg(ajv)de and A4;

Lomputul fr om outsldc Lewumort, s distribution. The practical imp mel\ldtlon
of the above coupled scheme still remains rather technical because
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1. first, it involves nonlinear integrals in the velocity space, which can only
be obtained by numerical quadrature [17], with a rule which must preserve
local equilibria and must be used consistently everywhere (including at
kinetic boundary conditions).

2. second, as observed in [7], for strong non-equilibrium states (inside strong
shocks), there might be no coefficients oy, generating a given moment dis-
tribution Uy, in step 1.

The simulation below considers a two dimensional flow of a monoatomic gas
over a flat plate at an angle of attack of 10°, Mach number 18.62, Reynolds
number 30687 (Kn = 1-e73), temperature 194°K at infinity and 1000°K at
wall. The viscosity is modeled by a hard sphere model, with R = 287. The gas
is modeled locally by a Navier-Stokes model away from the boundary and a
Levermore’s model next to the wall. We present iso-density lines (Fig. 9) and
temperature, Mach values at three cross—sections at z = .25,z = .55 and
z = .85 (Fig. 10), where the results are compared with those of a full Boltzmann
solution.

Figure 9 = Iso—Density Values

MACH TEMPERATURE

T ) i 3 Y
I w ﬂ w 2

Figure 10- - Mach and Temperature Values
Comparison with a Simulation for the Full Boltzmann Equation
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5 Conclusion

We presented some preliminary results on the derivation of fluid dynamic limits
for the generalized Boltzmann equation with real gas effects. In particular, we
studied the steady-state, one=dimensional Boltzmann equation with one addi-
tional internal energy modelled as‘a continuous variable. The different relax-
ation times are related using a small parameter ¢, which was later on related to
the mean free path of the gas, assuming a fixed functional dependence between
¢ and 4. The resulting Navier—Stokes equations turned out to be enlarged by an
additional temperature equation: for the rotational temperature, with transport
coefficients defined similar to the monoatomic case. Some numerical simula-
tions were given to validate the asymptotic method to derive the fluid dynamic
equations.

In the second part of the paper we present a new approach to define coupling
procedures for the Boltzmann and Navier-Stokes equations, which are based on
the 14-moments expansion of Levermore. In this expansion method, the density
function remains strictly positive, which yields clear advantages with respect to
the classical Grad’s moment expansion: Moreover, we derived a new kinetic
interpretation for the 14-moments method of Levermore and give numerical
simulation results on the resulting domain decomposition approach.
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