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AbstractAbstract

Laser-induced interstitial thermotherapy (LITT) is aminimally invasive procedure to destroy liver
tumors through thermal ablation. Mathematical models are the basis for computer simulations
of LITT, which support the practitioner in planning and monitoring the therapy.
In this thesis, we propose three potential extensions of an established mathematical model of
LITT, which is based on two nonlinearly coupled partial differential equations (PDEs) modeling
the distribution of the temperature and the laser radiation in the liver.
First, we introduce the Cattaneo–LITT model for delayed heat transfer in this context, prove its
well-posedness and study the effect of an inherent delay parameter numerically.
Second, we model the influence of large blood vessels in the heat-transfer model by means
of a spatially varying blood-perfusion rate. This parameter is unknown at the beginning of
each therapy because it depends on the individual patient and the placement of the LITT
applicator relative to the liver. We propose a PDE-constrained optimal-control problem for the
identification of the blood-perfusion rate, prove the existence of an optimal control and prove
necessary first-order optimality conditions. Furthermore, we introduce a numerical example
based on which we demonstrate the algorithmic solution of this problem.
Third, we propose a reformulation of the well-known PN model hierarchy with Marshak
boundary conditions as a coupled system of second-order PDEs to approximate the radiative-
transfer equation. The new model hierarchy is derived in a general context and is applicable
to a wide range of applications other than LITT. It can be generated in an automated way by
means of algebraic transformations and allows the solution with standard finite-element tools.
We validate our formulation in a general context by means of various numerical experiments.
Finally, we investigate the coupling of this newmodel hierarchywith the LITTmodel numerically.





ZusammenfassungZusammenfassung

Laserinduzierte interstitielle Thermotherapie (LITT) ist ein minimalinvasives Verfahren zur
Bekämpfung von Lebertumoren durch thermische Ablation. Mathematische Modelle dienen als
Grundlage für rechnergestützte Simulationen, die den behandelnden Arzt bei der Planung und
Durchführung der Therapie unterstützen.
In dieser Arbeit stellen wir drei mögliche Erweiterungen eines etablierten mathematischen
Modells der LITT vor. Dieses besteht aus zwei nichtlinear gekoppelten partiellen Differentialglei-
chungen (PDE), welche die Verteilung der Temperatur und der Laserstrahlung im Lebergewebe
beschreiben.
Zuerst stellen wir das neu entwickelte Cattaneo–LITT-Modell zur Beschreibung von verzögertem
Wärmetransport in diesem Zusammenhang vor. Wir beweisen, dass dieses wohlgestellt ist, und
untersuchen numerisch den Effekt eines zugehörigen Verzögerungsparameters.
Anschließend modellieren wir den Einfluss großer Blutgefäße im Wärmetransportmodell mit
Hilfe einer ortsabhängigen Blutperfusionsrate. Dieser Parameter ist zu Beginn einer Therapie
unbekannt, da er von dem jeweiligen Patienten und der Platzierung des Applikators relativ
zur Leber abhängt. Wir entwickeln ein PDE-restringiertes Optimalsteuerungsproblem zur
Identifikation der Blutperfusionsrate, beweisen die Existenz einer optimalen Steuerung und
leiten notwendige Optimalitätsbedingungen erster Ordnung her. Wir stellen ein numerisches
Modellbeispiel vor, anhand dessen wir die algorithmische Lösung dieses Problems demonstrie-
ren.
Außerdem entwickeln wir eine alternative Formulierung der etablierten PN Modellhierarchie
mit Marshak-Randbedingungen zur Approximation der Strahlungstransportgleichung als
gekoppeltes System von PDEs zweiter Ordnung. Die neue Modellhierarchie wird in einem
allgemeinen Kontext hergeleitet und findet neben LITT ein breites Anwendungsgebiet. Sie kann
auf Basis algebraischer Transformationen automatisch generiert werden und ermöglicht die
Lösung mit Hilfe etablierter Finite-Elemente-Bibliotheken. Wir validieren unsere Formulierung
in einem allgemeinen Kontext anhand verschiedener numerischer Experimente.
Abschließend untersuchen wir numerisch die Kopplung der neuen Modellhierarchie mit dem
LITT Modell.
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1 IntroductionIntroduction

How can nonlinear functional analysis and neutron-transport theory help to fight liver cancer?

One-line summary of this thesis

We study a mathematical model of the laser-induced interstitial thermotherapy (LITT), which is
a minimally invasive procedure to destroy liver tumors through thermal ablation.
This thesis was compiled as part of the prognostic-MR-thermometry project (proMT), which was
funded by the German Federal Ministry of Education and Research (BMBF)1 and which was
dedicated to taking the next step from magnetic-resonance (MR) thermometry to prognostic MR
thermometry (see Figure 1.1).

start therapy tk t
therapy guided by
online simulation

feed MR image to
parameter-identification
algorithm

solve inverse problem

feed improved
parameters back
to simulation

Figure 1.1: Prognostic MR thermometry.

Nowadays, LITT is guided by magnetic-resonance imaging (MRI). In the future, it shall be
guided by an online simulation of the temperature distribution and tissue damage. In [65, Sec. 1,
p. 3831], the authors stated the need for such an online simulation: “Unfortunately, MRI is known

to have either a good spatial or a good temporal resolution, making it difficult to predict the final size of the

coagulated zone. Hence, there is a strong demand for computer simulations of LITT to support therapy

planning and finding an optimal dosage.”

For the real application, temperature measurements2 are provided by MR thermometry about
every two minutes and can be used in combination with the simulation to estimate unknown
model parameters. The corrected parameters are fed back to the simulation, which increases the
prediction accuracy of the temperature distribution and the tissue damage.

1 See the webpage of the German Federal Ministry of Education and Research: https://www.bmbf.de/ .
2 We refer to [164] for an overview on different methods for the temperature measurement in irradiated biologic media.

https://www.bmbf.de/


2 Chapter 1. Introduction

The procedure is based on accurate mathematical models for the underlying multiphysics
problem, automated algorithms to identify unknown parameters and fast numerical solvers
based on model-order-reduction techniques.

Simulations and therapies which include patient-dependent parameters belong to the field of
individualized medicine and form the next generation of medical therapies. We note that particular
parameters can be measured generally in advance [109, 222], whereas others need to be estimated
for each therapy and each patient individually. For instance, the blood-perfusion rate correlates
with the location of blood vessels and, thus, has a different spatial distribution for each therapy.
Several references given in the next section demonstrate the effect of (large) blood vessels on the
temperature distribution and, thus, on the ablation zone. This emphasizes that the knowledge
of the vascular structure, i.e., the location of blood vessels, is crucial for an accurate simulation.

In the era of big data [172], it is tempting to forward the task of parameter identification or even
the prediction of the ablation zone to one of many establishedmachine learning algorithms, which
are designed to bring some sense into the large amount of unstructured MRI data. So why do
we need mathematical models at all, when all information seems to be hidden in the data and is
just waiting to be mined?
Two main disadvantages of a purely statistical analysis of data, which is inherent in many
black-box models from the field of machine learning, are often missing error bounds and the
difficulty to draw valid conclusions in individual cases. Rather than using a purely data-driven
approach for LITT, we use the new quality and amount of data to enhance validated physical
models and tailor those to the individual patient. This paves the way to reliable simulations
with physical laws as basis. Reliability becomes even more important in our application of LITT,
where false positives and false negatives decide over the success or failure of individual cancer
treatments.

Before we continue with a detailed introduction, we summarize this thesis in a nutshell and
answer the question raised at the very beginning of this section.
We advance an existing mathematical model of LITT as a basis for realistic online simulations
in the field. For a thorough understanding of the model, we employ techniques of nonlinear
functional analysis and PDE-constrained optimization. Furthermore, based on the established
theory of radiative transfer, which goes back to the neutron-transport theory developed in the
middle of the last century, we revise a model hierarchy to describe the distribution of laser
radiation in the liver.

1.1 Tumor ablation
Tumorous lesions in certain unfavorable positions are impossible to remove by surgical interven-
tions [68, 156]. Furthermore, a surgical intervention is rather invasive and often requires the
patient to stay in the hospital.
An extensive overview on alternative, minimally invasive tumor ablation techniques such



1.1 Tumor ablation 3

laser

optical fiber

catheter with water cooling irreversible
damage

reversible
damage

coagulationtumor

healthy tissue

Figure 1.2: Sketch of LITT (cf. [65, Fig. 1, p. 3832]).

as radiofrequency ablation (RFA), cryoablation, microwave ablation, chemical ablation, high-
intensity focused ultrasound (HIFU) and laser-induced interstitial thermotherapy (LITT) is given
in [187].
One class of techniques (including LITT) uses thermal ablation, which directly alters the local
temperature of the tissue. There are several effects relevant to thermal ablation [51, Sec. 1, p. 448]:

“The thermal action, precisely, can be either of the following types, namely, hyperthermia,

coagulation and volatilisation. Hyperthermia means a moderate rise in temperature of several

◦
C, corresponding to temperatures of 41

◦
C–44

◦
C for some tens of minutes and resulting in

cell death due to changes in enzymatic processes. Coagulation refers to an irreversible necrosis

without immediate tissue destruction. The temperature reached (50
◦
C–100

◦
C) for around

a second, produces desiccation, blanching, and a shrinking of the tissues by denaturation

of proteins and collagen. Volatilisation essentially means a loss of material. The various

constituents of tissue disappear in smoke at above 100
◦
C, in a relatively short time of around

one tenth of a second.”

We note that “after water evaporates, cellular membranes begin their carbonization” [51, Sec. 1, p. 450].
This limits the maximal zone of ablation because the carbonized tissue is less transparent for
laser radiation, which prevents radiative heat transfer into regions more distant to the applicator.
Beside carbonization and charring, also a high local blood flowwithin large blood vessels and an
increased distance from the heat source negatively affect heat production in the tissue [179, 187].
We refer to [212] for an extensive overview on thermal damage and rate processes in biologic
tissue and, especially, to Table 13.1 therein.

1.1.1 Laser-induced interstitial thermotherapy (LITT)

LITT falls into the category of thermal ablation. Figure 1.2 illustrates the setup of LITT. Guided
by computed tomography (CT), a probe is inserted into the tumor. The probe is replaced by a
catheter, which is heat resistant and transparent for laser radiation. After placing the catheter,
an optical fiber is inserted into it. At its distal end, the fiber has a diffusing tip applicator with
a length of about three centimeters, which distributes the laser radiation emitted by the fiber
homogeneously in radial direction. The application system (in the following abbreviated by
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Figure 1.3: LITT applicator.3

the applicator), see Figure 1.3, includes an internal circulation system to cool its surface and the
surrounding tissue, which shall prevent overheating and consequently tissue carbonization [95,
187, 207, 208].
Like other ablation techniques, LITT is not limited to liver tumors [139], but we restrict ourselves
to this particular application.

1.1.2 State of the art: LITT

LITT is a well established method and has been performed in clinical therapies for decades, e.g.,
[25, 134, 225], and gained attention in the mathematical literature since the 1990s, e.g., [19, 65, 95,
182, 223].
There are studies which investigate the feasibility of online simulations and parameter iden-
tification like [72], where the authors align their simulations with in-vivo experiments. They
model the blood-perfusion rate as a function which depends on the temperature, but they use a
spherically symmetric isotropic solution for the radiative-transfer equation (RTE).
For the choice of a suitable approximation of the RTE, one needs to consider the trade-off
between accuracy and computation time. Previous works approximate the solution of the RTE
by very simplified models like the Beer–Lambert law [64], the Rosseland approximation [50] or
Monte Carlo simulations [120, 182]. In [154], a hierarchy of higher-order PN approximations
of the RTE was investigated, which allows a transition from less accurate but computationally
less expensive to more accurate but computationally more expensive models. For a detailed
discussion on tissue optics, we refer to [228].
Beside different approximations of the RTE, various details of the LITT model were refined. In
[65], the temperature distribution inside the applicator, accounting for the effect of the coolant
flow, was investigated. This model was further refined by a simulation of the coolant flow in
terms of the Navier–Stokes equations in [154].
In this thesis, we focus on the identification of a heterogeneous parameter modeling the blood-
perfusion rate. Extensive studies investigated the influence of blood vessels in the context of
LITT and other tumor ablation procedures [32, 33, 66, 82, 113, 199, 200, 218]. In [223], the blood
flow in large vessels in the context of LITT was modeled. Our task now is the estimation of this
parameter based on temperature measurements.
The starting point for us will be the established and validated LITT model based on the P1

approximation of the RTE which is discussed in [65, 149, 223].

3 The Image was kindly provided by the Fraunhofer Institute for Industrial Mathematics ITWM, Fraunhofer-Platz 1, 67663,
Kaiserslautern, Germany. All rights reserved.
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1.2 Starting point of this thesis
The starting point of this thesis is the classical LITTmodel presented in [95], whichwe summarize
in the following. It has been used in several other works before [65, 170] and is validated with
data from real ex-vivo experiments.

We deal with a multiphysics problem which combines the three modes of heat transfer4, conduc-
tion, convection and thermal radiation, with the coagulation5 of tissue. Coagulation affects the
tissue properties like the optical coefficients and, in case that blood vessels are damaged, also
the blood perfusion.

The heat transfer is modeled based on Pennes’ bioheat equation [165] by

ρcp∂tϑ− div (κ∇ϑ) = σaφ+ νbρρbcp,b(ϑb − ϑ) in (0, T )× Ω,

κ∇ϑ · n = ah,cool(ϑcool − ϑ) on (0, T )× Γcool ∪ Γrad,

κ∇ϑ · n = ah,amb(ϑamb − ϑ) on (0, T )× Γamb,

ϑ(0, ·) = ϑ(0) in Ω


(1.1)

where ϑ = ϑ(t, x) is the temperature (in kelvin) and T > 0 is the end time of the simulation
(in second). The first equation in (1.1) describes the heat flow inside the liver tissue in terms
of the temperature, whereas the boundary conditions describe the exchange of heat with the
surrounding tissue along Γamb and with the applicator along Γcool ∪ Γrad. The term φ describes
the irradiance (in watt per square meter), i.e., the contribution of the laser radiation to the heat
flow, and is detailed in the following. We give details on the occurring parameters in Table 1.1 at
the end of this section. The spatial domain Ω ⊂ R3 is illustrated in Figure 4.1.

The distribution of the laser radiation is modeled by the radiative transfer (see Part II), which
describes the radiance ψ(x,v) of the laser radiation depending on the spatial variable x in
the domain Ω and the directional variable v on the unit sphere S2. Only the irradiance6
φ =

∫
S2 ψ(x,v) dv appears in the energy-balance equation (1.1) and, thus, is of interest for LITT.

This motivates the moment approximation by means of the P1 method, which yields a much
simpler diffusion equation7 for the irradiance

−div (D∇φ) + σaφ = 0 in (0, T )× Ω,

D∇φ · n = |Γrad|−1
qrad on (0, T )× Γrad,

D∇φ · n = 0 on (0, T )× Γcool,

1

2
φ+D∇φ · n = 0 on (0, T )× Γamb


(1.2)

4 See [47, Sec. 10.2, p. 279 ff.] for different modes of heat transfer.
5 Coagulation is defined as “Optically visible irreversible cell destruction (necrosis) caused by the denaturation of proteins” [65].
6 Also known as radiative energy [95], although this quantity does not have the units of a physical energy. It must not to
be confused with the radiance ψ.

7 We point out that in [95] the Robin boundary conditions are different than in [65]. This is based on the argument that
“radiation leaving through the applicator boundary can [re-]enter the computational domain through the opposite boundary” [95,
p. 1402]. We refer to Section 6.3 for a discussion on the suitable choice of boundary conditions.
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with the external energy source introduced by the laser

qrad =

(1− βq)q̂rad, ton ≤ t ≤ toff,
0, else.

Here, ton and toff denote the timeswhen the laser is switched on and off, respectively. Throughout
this thesis, we set ton := 0 and toff := T . The first equation in (1.2) describes the irradiance inside
the liver tissue. The laser radiation emitted from the applicator enters the model through the
energy flow along Γrad. For a detailed discussion on the boundary conditions for Γcool and Γamb,
we refer to Section 6.3.1.
The rise in temperature causes the protein in the tissue to denaturate. The coagulation is modeled
by an Arrhenius law [231], [212, Sec. 13.3, p. 510 ff.]

γ(t, x) = exp

(
−
∫ t

0

dArr(ϑ)(s, x) ds

)
(1.3)

with

dArr(ϑ)(t, x) =

A exp
(
− E
Rϑ(t,x)

)
, ϑ ≥ 317.15 K,

0, ϑ < 317.15 K
(1.4)

where the temperature is given in kelvin. The function γ(t, ·) : Ω→ [0, 1] describes the fraction
of coagulated and native tissue at time t, where a point x ∈ Ω with γ(t, x) ≈ 0 corresponds
to coagulated tissue and a point with γ(t, x) ≈ 1 corresponds to native tissue. The optical
coefficients depend on the coagulation [65, Sec. 2, Eq. 2, p. 3832]:

σa = σa,c + (σa,n − σa,c)γ, σs = σs + (σs,n − σs,c)γ, D = (3(σa + (1− g)σs))
−1. (1.5)

The meaning of the absorption coefficient σa and the scattering coefficient σs is explained in
detail in Part II.
The dependence of the coagulation on the temperature introduces a nonlinear coupling between
the equations (1.1) and (1.2).

Remark 1.1 — Destruction of cells.
As described in [187], the true cell damage is rather complex. It can be divided into two cases.
In the first case, the tissue architecture is maintained. Cells are damaged by direct cell death,
e.g., by destruction of cellular membranes, or by indirect cell death, e.g., by cellular dehydration
or vessel thrombosis. In the second case, the tissue itself is destroyed by carbonization and
charring.
We restrict ourselves to the prediction of the coagulation, which falls into the category of
direct cell death. More detailed models could be employed, considering different phases of
cell destruction like in [51, 158].

Remark 1.2 — Physical units (cf. [116, Sec. 1.1.5, p. 5]).
The equations in this section describe physical quantities. For the analysis and implemen-
tation, we prefer to work with dimensionless expressions (numbers) instead of physical
quantities. The variables ϑ̄ := ϑ

ϑref
, x̄ := x

xref
, etc. describe the numerical values of the corre-
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sponding physical quantities w.r.t. the reference units. For better readability, we omit the
distinction between the physical quantity (including units) and its numerical value w.r.t. the
reference unit. For a detailed discussion on physical units in mathematical models and the
scaling of differential equations, we refer to [116].

The reference units are given as follows:

xref = 1 m, tref = 1 s, ϑref = 1 K, φref = 1 W m−2, σref = 1 m−1.

The presented classical LITT model is already discussed in a rigorous mathematical way in
[219]. Therein, the authors prove the well-posedness of the state system, i.e., they show existence
and uniqueness of a state vector (ϑ, φ) and the continuous dependence on the given data like
boundary and initial conditions. Furthermore, they discuss the identification of the Arrhenius
parameters A and E in terms of an optimal-control problem. We take their work as a blueprint
for the analytical investigation of our Cattaneo–LITT model in Chapters 2 and 3.

1.3 Contributions of this thesis
There are two ways to increase the accuracy of the already existing LITT model from a
mathematical point of view. First, we can investigate more accurate mathematical models for the
various physical subproblems. Second, we can improve the accuracy of the existing models by
finding suitable values for the occurring parameters based on measurement data. Based on our
numerical results, we see the biggest potential for the improvement of LITT in the estimation
of the blood-perfusion rate. The blood-perfusion rate depends on the location of large8 blood
vessels and can not be estimated as a general parameter in advance because the relative locations
of the vessels to the applicator change in each treatment. The significant influence of this
parameter on the accuracy of the predicted coagulation zone is discussed in the literature (see
above) and quantified by one of our numerical experiments, see Figure 4.8.
It is essential to estimate the blood-perfusion rate as a heterogeneous coefficient in an automated
way during each treatment to pave the way from ex-vivo to in-vivo experiments and for the final
application in a clinical context.9

We summarize the main contributions of this thesis.

1. Motivated by a detailed literature review in Section 2.1, we introduce the Cattaneo–LITT
model. This suggests an alternative heat-transfer model in the LITT context by replacing
the bioheat equation with the Cattaneo model for delayed heat transfer. We prove the
well-posedness of the Cattaneo–LITT model in Theorem 2.5 and validate the concept of
delayed heat transfer by means of Experiment 4.4. The field of delayed heat transfer is
well-studied, but, to the best of our knowledge, it has not been studied in the context of
LITT. The analytical investigation of a related optimal-control problem in the context of
the Cattaneo equation, including the study of the asymptotic behavior for τ → 0 where τ

8 A blood vessel is considered to be “large” if its diameter is larger than two millimeters [120, p. 801].
9 The transition from ex-vivo to in-vivo experiments might also affect other parameters like, e.g., the optical coefficients
[109, 188], but in this thesis we focus only on the estimation of the blood-perfusion rate.
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is a delay parameter inherent in the Cattaneo model, were published in our manuscript
[18], which is based on [17]. The numerical investigation of the Cattaneo equation in the
context of LITT was discussed in our manuscripts [11, 12].

2. We propose a PDE-constrained optimal-control problem for the formulation of the iden-
tification of the heterogeneous blood-perfusion rate in the context of LITT. We prove
the existence of a corresponding optimal control in Theorem 3.3 and prove necessary
first-order optimality conditions in Corollary 3.14. Based on the choice of an L1(Ω)-penalty
term in the cost functional, we prove in Subsection 3.2.5 that the optimal control has a
sparse structure. We introduce a numerical toy example based on which we demonstrate
the automated identification of the blood-perfusion rate (Experiments 4.8–4.11). This
identification task was already performed in the bioheat context in [96], but, to the best
of our knowledge, it has neither been done in the context of the classical LITT model
described in Subsection 1.2 nor in the context of the Cattaneo–LITT model. The presented
identification of the blood-perfusion rate for the classical LITT model was demonstrated
numerically, without a rigorous analytical investigation, in our manuscripts [9, 10], and in
the context of the Cattaneo–LITT model in our manuscripts [11, 12].

3. We propose a reformulation10 of the well-known PN moment approximation of the
radiative-transfer equation with Marshak boundary conditions in terms of second-order
derivatives, which we call P2nd

N (Theorem 5.1). The procedure itself is well-known [148],
whereas the focus of our derivation is an intuitive incorporation of the Marshak boundary
conditions in the new formulation on the one hand and, on the other hand, the automated
generation of a hierarchy of higher-order models and the possibility of a solution by
standard finite-element tools, in view of a later coupling with the LITT simulation and
an implementation in the field. This is a great advantage because we can exploit the
established expertise in the field of numerical solutions of PDEs at no additional costs
on our side of the implementation. Furthermore, our method is applicable not only in
the context of LITT but to a very general set of scenarios, including anisotropic scattering,
heterogeneous coefficients and general domains. The derivation and the numerical
experiments in Chapters 5 and 6 were published in our manuscript [13].

4. We replace the P1 approximation in the classical LITT model by higher-order P2nd
N models

and investigate the effect numerically (Experiment 6.6 and Experiment 6.8). On the one
hand, different moment models, including the classical PN approximation, were studied
in the context of the classical LITT model in [154], where the authors used customized
solvers. On the other hand, the newly derived P2nd

N formulation has not been investigated
in the context of LITT yet.

As outlined above, we already published several contents presented in this thesis. Here, we build
upon those previous results and add a rigorous analytical investigation of the Cattaneo–LITT
model. We discuss the proposed numerical example for the identification of the blood-perfusion
rate in more detail. Here, different from the procedure in our published manuscripts, we

10 The classical PN model contains only first-order derivatives, whereas our formulation contains also second-order
derivatives.
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compute the descent directions by means of algorithmic differentiation (AD). Furthermore, we
investigate the coupling of our P2nd

N formulation with the Cattaneo–LITT model numerically.
Our codes, written in Matlab and Python, are open source and publicly available online
[8]. The tools for the simulation of the (Cattaneo-) LITT model and the identification of the
blood-perfusion rate allow a fast prototyping in the context of LITT. Furthermore, the automated
generation and solution of higher-order P2nd

N models is not limited to LITT and can be transferred
to various other applications like high-temperature industrial processes [49, 133, 167]. Last, we
collect many well-known results regarding the functional analytical treatment of parabolic PDEs
and PDE-constrained optimization in our “Hitchhiker’s guide” in Appendix B, which might
help future scholars to get started in this field.

1.4 Outline
This thesis is organized as follows.

Part I covers the Chapters 2–4 and is dedicated to the Cattaneo–LITT model and the related
identification of the blood-perfusion rate. In Chapter 2, we discuss the well-posedness of the
Cattaneo–LITT model, starting with a literature review in Section 2.1 to motivate delayed-
heat-transfer models. In Chapter 3, we formulate the identification of the blood-perfusion
rate in the Cattaneo–LITT model as a PDE-constrained optimal-control problem. We discuss
the well-posedness of the related optimization problem and derive a necessary first-order
optimality condition. We validate our theoretical results regarding the delayed heat transfer
of the Cattaneo–LITT model and the identification of the blood-perfusion rate in Chapter 4 by
means of numerical experiments.
Part II covers the Chapters 5 and 6 and focuses on the radiative-transfer equation. In Chapter
5, we formally derive in a general context a second-order formulation of the well-known PN
approximation of the RTE. We demonstrate our approach and its applicability to a broad set
of scenarios in several numerical examples in Chapter 6. Furthermore, we replace the P1

approximation in the classical LITT model by higher-order P2nd
N models and investigate the effect

on the predicted temperature and coagulation zone numerically.
In Part III, we draw conclusions and give an outlook for future research.
In the appendices, we provide details on some of the proofs in this thesis and prepare a
small “Hitchhiker’s guide” collecting selected fundamental results from functional analysis,
which were essential to prove the well-posedness of the Cattaneo–LITT model and the related
optimal-control problem in Chapters 2 and 3.

A reader who is interested in a rigorous functional analytical treatment of the Cattaneo–LITT
model and the related optimal-control problem for the identification of the blood-perfusion rate
may read Chapters 2 and 3 and the related appendices A and B. If the reader’s interests are
mainly numerical methods to solve the RTE, we recommend reading Chapter 5. Someone who
is interested in the implications of the studied models for LITT from a quantitative point of view
may jump directly to the numerical experiments in Chapters 4 and 6.
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Throughout this thesis, we make extensive use of footnotes to provide additional details and
references. We recommend, especially to the advanced reader, to skip the footnotes while
reading a paragraph for the first time and to come back for reviewing the details in the footnotes
later if necessary. Furthermore, some phrases are highlighted in a blue font color, which means
that the corresponding definition is given in the glossary.
The symbols in Figure 1.4 may help the reader to keep track of the main ideas. Where possible,
we summarize for the advanced reader a proof or a key idea in a special “idea-in-a-nutshell”
environment, indicated by the symbol 1.4a. Furthermore, we mark the highlights of this work
by the symbol 1.4b.

(a) (b)

Figure 1.4: Guides through this thesis. (1.4a): “Idea in a nutshell”11. Summarizes a proof
or an idea in a few words. (1.4b): “A highlight of this thesis”. This symbol marks the main
contributions listed in Section 1.3.

11 The “nutshell” icon is based on the image in [94], which has been released under the public domain license [40].
12 In [65], also the anisotropy factor g in equation (1.5) changes along with the coagulation. We omit this dependence
here to simplify the comparison of higher-order models in Part II.

13 For simplicity, we assume the blood temperature and the ambient temperature to coincide with the body temperature.
14 In [95], an ex-vivo situation was considered, i.e., νb = 0. In [170], one homogenized value νbn > 0 for native (n)
tissue was used, where coagulated (c) zones where treated with νbc = 0. In [120], the authors explicitly distinguished
between capillary vessels and large vessels with a diameter larger than twomillimeters. The shrinkage of the capillaries
stops the blood flow in those and, like in [65, 170], we set νbout, c = 0. The four different values for the blood-perfusion
rate are combined via

νb = νbout + (νbin − νbout) · u(x),

with νbin(t, x) = νbin,c + (νbin,n − νbin,c)γ(t, x) and νbout(t, x) = νbout,c + (νbout,n − νbout,c)γ(t, x). The function
u : Ω→ [0, 1] indicates the location of large blood vessels. The identification of the parameter u is one of the main
tasks of this thesis and is discussed in Chapter 3.

15 We refer to [109] for an overview on methods used to measure ex-vivo and in-vivo tissue optical properties, and to
[222] for methods to measure tissue thermal properties and perfusion.
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parameter value unit description source

ρ 1080 kg m−3 tissue density

[80, 95]
cp 3690 J kg−1 K−1 specific heat capacity at constant

pressure (liver tissue)
κ 0.48 W m−1 K−1 thermal conductivity

σa,n 50 m−1
absorption coefficient of laser ra-
diation in native tissue

[95, 181]

σa,c 60 m−1
absorption coefficient of laser ra-
diation in coagulated tissue

σs,n 8000 m−1
scattering coefficient of laser radi-
ation in native tissue

σs,c 3× 104 m−1
scattering coefficient of laser radi-
ation in coagulated tissue

g 0.96 1 anisotropy factor 12

ah,cool 250 W m−2 K−1 heat-transfer coefficient onΓcool∪
Γrad

[9]ah,amb 0 W m−2 K−1 heat-transfer coefficient on Γamb

βq 0.14 1 coolant absorption factor
q̂rad 22 W laser power

A 3.1× 1098 s−1 frequency factor
[95, 196, 231]

E 6.28× 105 J mol−1 activation energy

cp,b 3640 J kg−1 K−1 specific heat capacity at constant
pressure (blood)

[65]

ρb 1050 kg m−3 blood density [98]
R 8.314 J mol−1 K−1 universal gas constant [47]
ϑ

(0) 310 K initial tissue temperature [180]
ϑb 310 K blood temperature

13
ϑamb 310 K ambient temperature
ϑcool 293 K coolant temperature [95]

νbin,n 1.67× 10−4 m3 kg−1 s−1 blood-perfusion rate inside large
vessels, native

14

νbin,c 1.67× 10−4 m3 kg−1 s−1 blood-perfusion rate inside large
vessels, coagulated

νbout,n 1× 10−6 m3 kg−1 s−1 capillary blood-perfusion rate
outside large vessels, native

νbout,c 0 m3 kg−1 s−1 capillary blood-perfusion rate
outside large vessels, coagulated

Table 1.1: Physical parameters.15
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We investigate an alternative heat-transfer model, which goes back to Cattaneo in 1948 [27], in
the context of laser-induced interstitial thermotherapy (LITT). We start with a motivation and
literature review on delayed heat-transfer models. In Chapter 2, we introduce the Cattaneo–LITT
model by replacing the classical heat-transfer model for LITT by the Cattaneo model and prove
its well-posedness. In Chapter 3, we propose a PDE-constrained optimal-control problem for
the identification of the heterogeneous blood-perfusion rate and the localization of large blood
vessels based on measured temperature data in the context of the Cattaneo–LITT model. We
prove the existence of an optimal-control and derive necessary first-order optimality conditions.
In Section 3.2.5, we further discuss the sparsity of the optimal control induced by an L1(Ω)-
penalty term in the cost functional. In Chapter 4, we investigate the Cattaneo–LITT model and
the related optimal-control problem numerically.

The classical LITT model and a related optimal-control problem to estimate the Arrhenius
coefficients A and E have been investigated analytically in [219]. We use this work as a blueprint
for the analytical investigations in this part. For showing the well-posedness, it is our main
task to replace existence results for the solution of the classical heat equation by corresponding
results for the Cattaneo equation in the LITT model. As a prerequisite, we need to investigate
the Cattaneo equation analytically, for which we follow the procedure in [114].

To the best of our knowledge, neither the Cattaneo model in the context of LITT nor the corre-
sponding identification of a heterogeneous blood-perfusion rate by means of PDE-constrained
optimization have been studied yet. We published first numerical results regarding the identifi-
cation of the blood-perfusion rate for the classical LITT model in [9].

The proposed strategy for the automated estimation of the heterogeneous blood-perfusion rate
and, with this, the detection of large blood vessels can be transferred directly to the classical
LITT model presented in Chapter 1.

Before we start, I would like to acknowledge the joint work [10–12, 18] with my advisor Prof.
Dr. René Pinnau, which is the basis for this part. I would like to thank him for motivating me
to study the Cattaneo–LITT model, and his support and helpful discussions on its analytical
and numerical investigation presented here. I would like to thank Prof. Dr. Claudia Totzeck for
her support and helpful discussions on the analytical considerations in this part and, especially,
for her support in proving Lemmas A.4 and A.8. Furthermore, I would like to thank Prof. Dr.
Oliver Tse for his support in proving Theorem 3.3. Finally, I would like to acknowledge the joint
work [9] with my colleagues Sebastian Blauth, Dr. Christian Leithäuser and Dr. Norbert Siedow
from the Fraunhofer Institute for Industrial Mathematics ITWM, which inspired the numerical
treatment of the Cattaneo–LITT model in Chapter 4.
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1. Without loss of generality = I have done an easy special case.

2. By a straightforward computation = I lost my notes.

3. The details are left to the reader = I can’t do it.

4. The following alternative proof of X’s result may be of interest = I can not understand X.

5. Correct to within an order of magnitude = wrong.

Glossary of Mathematical Writing [92, Sec. 3.9, p. 33]

In this chapter, we investigate the Cattaneo model as an alternative to the classical model for
heat transfer in the context of LITT. We introduce the Cattaneo–LITT model and investigate it
analytically.

In Section 2.1, we motivate the Cattaneo–LITT model by a detailed literature review on the
Cattaneo model for delayed heat transfer. In Section 2.2, we prove the well-posedness of
the Cattaneo–LITT model. We move several proofs and technical details to Appendix A.1.
Furthermore, in Appendix B, we provide a collection of fundamental theoretical results, which
contains the basic tools needed to follow this Chapter.

2.1 Delayed heat transfer: overview
The literature review in this section will be published as part of our manuscript [11].

The hyperbolic heat equation (see below) has been studied extensively in the past decades. A very
detailed summary of more than 120 related works between 1867 [136] until 1989 is given in [100].
The subsequent literature until 1999 is covered in [30], and a most recent review is given in
[130]. An entire book dedicated to heat waves is [205]. The following summary is, among others,
inspired by their presentations.
As described in [100, Sec. 1, p. 42], heat transfer is a macroscopic phenomenon:

“The temperature of a body is the macroscopic consequence of certain kinds of vibratory

motions, the motions of molecules of a gas or the vibrations of a lattice in a solid on microscopic

scales.”
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A widely used basis for the derivation of the classical heat equation is based on Fourier’s law,
which relates the heat flux q at time t and position x linearly to the temperature gradient:

q(t, x) = −κ∇ϑ(t, x), (2.1)

where κ is the thermal conductivity. If we plug this into the energy-balance equation of a rigid
conductor, we obtain

∂ϑ

∂t
= κ̂∆ϑ, (2.2)

where κ̂ = κρ−1c−1
p is the thermal diffusivity, ρ the material density and cp the specific heat

capacity. One undesired property of equation (2.2) on a macroscopic level is the infinite speed of
propagation of ϑ, i.e., a sudden change of ϑ(t0, ·) at some point in space affects instantly, though,
probably with small amplitude, the values of ϑ(t, ·) at all other points in space for all t > t0.
The following example is taken from [205] and illustrates this phenomenon by reference to the
solution of the classical heat equation in one spatial dimension on the whole line R:

∂ϑ

∂t
= κ̂

∂2ϑ

∂x2
in R>0 × R,

ϑ(0, x) = f(x) in R,

where f is a nonnegative, integrable function with compact support. The solution is given by

ϑ(t, x) =
1√

4πκ̂t

∫ ∞
−∞

f(s) exp

(
− (x− s)2

4κ̂t

)
ds .

We see that, for every t > 0, it holds ϑ(t, x) 6= 0 for all x ∈ R. “Thus, we can think of ϑ as having an

infinite speed of propagation.” [205, Sec. 1.1, p. 3].
On a microscopic level, there are two modes of heat transfer [100, Sec. 1, p. 41]:

“[...] thermal energy is transported by two different mechanisms: by quantized electronic

excitations, which are called free electrons, and by the quanta of lattice vibrations, which

are called phonons. These quanta undergo collisions of a dissipative nature, giving rise to

thermal resistance in the medium.”

As described in [102, Sec. 2.1, p. 1040], already in 1931 the authors in [161] point out that

“[...] Fourier’s model is in contradiction with the principle of microscopic reversibility. [...] In

other words, Fourier’s law has the unphysical property that it lacks inertial effects: if a sudden

temperature perturbation is applied at one point in the solid, it will be felt instantaneously

and everywhere at distant points.”

Therehavebeen several attempts to includemicrostructural effects in themacroscopic formulation,
e.g., [220]. In [205], the authors describe eleven different approaches to modify the macroscopic
formulation in order to obtain a finite speed of propagation.
A very popular approach goes back to Cattaneo [27]. Even though in the original paper the
derivation was slightly different, as pointed out in [205], one can motivate Cattaneo’s approach
by replacing Fourier’s law by a delay equation:

q(t+ τ, x) = −κ∇ϑ(t, x). (2.3)

In the setting of homogeneous, solid materials, the parameter τ is commonly referred to as
thermal relaxation time, which, as described in [100, Sec. 1, p. 41], can be
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“[...] associated with the average communication time between the[se] collisions for the

commencement of resistive flow.”

If we expand the left-hand side of equation (2.3) and omit terms of order O(τ2), we obtain

τ
∂2ϑ

∂t2
+
∂ϑ

∂t
= κ̂∆ϑ. (2.4)

Equation (2.4) is of telegraph type [102] and often referred to as Cattaneo equation or hyperbolic
heat equation.
We reproduce the example from [205, Sec. 1.1.1, p. 6] to illustrate the well-known result that the
Cattaneo equation removes the infinite speed of propagation. To this, we look at equation (2.4)
in one spatial dimension on the whole line Rwith transformed variables t̂ = t

2τ and x̂ = x√
4τκ̂

,
and initial conditions

ϑ(0, x̂) = f(x̂) and ∂ϑ

∂t̂
(0, x̂) = g(x̂).

Its solution is

ϑ(t̂, x̂) =
e−t̂

2

(
f(x̂+ t̂) + f(x̂− t̂) +

∫ x̂+t̂

x̂−t̂
J(s, x̂, t̂) ds

)
, (2.5)

where the function J is given by

J(s, x̂, t̂) = (g(s) + f(s))h
(
(s− x̂)2 − t̂2

)
− 2t̂f(s)h′

(
(s− x̂)2 − t̂2

)
,

with h defined by h(x) = J0(
√
x), and J0 being the Bessel function of zeroth order1. The solution

in equation (2.5) is compactly supported for every t > 0, if the initial conditions f and g are
compactly supported, which implies a finite speed of propagation.

Other modifications would be, e.g., based on the assumption that the conductivity depends
on the temperature, i.e., κ = κ(ϑ), or that the heat flux depends on the history of temperature
gradients:

q(t, x) = −
∫ t

−∞
Q(t− s)∇ϑ(s, x) ds ,

with Q being a positive, decreasing relaxation function. For Q(t− s) = κδ(t− s), where δ is the
Dirac-delta distribution, we recover Fourier’s law. Those modifications might end up in slightly
different models, e.g., including mixed derivatives. For our investigation, we choose as the
canonical and simplest starting point the Cattaneo equation (2.4). For details, we refer to [205].
A more general approach would be to add phase lags on both sides of equation (2.1), which then
leads to a dual-phase-lag equation, like discussed in [173, 174, 176]:

q(t+ τ, x) = −κ∇ϑ(t+ τϑ, x).

As mentioned in [173], the delay τϑ is caused by microstructural interactions such as phonon
scattering or phonon-electron interactions, where τ is interpreted again as relaxation time due
to fast-transient effects of thermal inertia.
The presented modifications have the desired property of a finite speed of propagation. This
comes for a price on the analytical end. There are examples, e.g., in the context of thermoelastic

1 See [237, Sec. 0.5, p. 113] for the definition of the Bessel function.
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plates, where the solution of the resulting delay equation is instable [173, 176]. Furthermore, as
discussed, e.g., in [210], the solution does not respect a physical maximum principle2 anymore,
i.e., the transient temperature distribution might exceed the boundary temperature as well as
the initial temperature.
One of the reasons for the success of Fourier’s law is the typical scale of τ between 10−8 s and
10−12 s in homogeneous substances, as reported in [104]. This fact is described also in [100, Sec.
1, p. 42]:

“This does not mean that there are big movements afoot to discard Fourier’s law. The relaxation

time [τ ] is thought to be very small in nearly all practical and even exotic applications, so

that as a practical matter it is believed that we get Fourier’s law even on the shortest time

scales of our daily lives.”

The interpretation of τ for homogeneous, solid material as discussed above needs to be altered
for nonhomogeneous media, like described in [104, Sec. 3, p. 556]:

“[In nonhomogeneous material, the] constant τ characterizes [...] the time needed for

accumulating the thermal energy required for propagative transfer to the nearest element of

the inner structure.[...] the author suggests that τ represents the interaction of structural

elements in inner heat transfer. For homogeneous materials this interaction is at the molecular

or crystal lattice level.[...] For nonhomogeneous inner structure materials, the structural heat

transfer interaction is at a different level and τ may take a much greater value.”

The authors in [125, Sec. 1, p. 2] go one step further and discuss implications for the heat transfer
in living tissue, which is not only a highly heterogeneous medium, but includes also interactions
on a cellular level:

“However, in non-homogeneous biological materials, τ can have a meaning, which is totally

different from the commonly referred thermal relaxation time. Here it is defined as the

characteristic time needed for accumulating the thermal energy required for propagative

transfer to the nearest element within the non-homogeneous inner structures [...]. This

characteristic time can be caused by the non-equilibrium between fluids and solids, as well as

the effect of cell membrane as the energy storage and conversion element in biological systems.

The mechanisms of τ in non-homogeneous inner structures may reflect energy interaction at

the structural level rather than that at the molecular or crystal lattice level in homogeneous

materials, and, thus, it may take a much greater value.[...] Obviously, the possible answer lies

in the real energy process in the living system. As it may not appear clearly, heating or cooling

the living tissues always induces a series of chemical [...], electrical [...] and mechanical

[...] activities in addition to the temperature change alone. [...] Nearly every kind of energy

conversion occurs at the cell membrane. Therefore biological system is a site with multi-mode

energy conversion. And the occurrences of these cellar activities need time.”

In the same work, different references were given which report τ to be in a range of 16 s to 30 s

for processed meat. Furthermore, there have been attempts to estimate the range of τ by means
of an inverse problem, e.g., in [79].

2 Cf. [63, Sec. 2.3.3, Thm. 4, p. 54] for the maximum principle for the classical heat equation.
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Besides the analytical investigation of the hyperbolic nature of heat transfer, several real
experiments were conducted to give evidence for wave-like behavior of the temperature
evolution, e.g., in liquid helium at low temperatures [221], for sand [104], for processed meat
[141], or to investigate the effect of skin burn [99]. Recently, some results of those experimental
attempts were revised very critically in [130].
The Cattaneo model was already employed in modeling other thermal ablation methods like the
radio-frequency ablation [128, 150, 238].
The effect of blood perfusion, which is of special interest in this thesis, was already discussed in
the context of the hyperbolic bioheat equation in [99, 238].

This brief overview suggests that the Cattaneo-like bioheat equationmight add value inmodeling
the laser-induced thermotherapy, especially in in-vivo experiments with the presence of blood
vessels. In this thesis, we would like to study the estimation of the blood-perfusion rate in the
Cattaneo–LITT model by means of an optimal-control problem. Questions on optimal control in
the context of the hyperbolic heat equation were already studied, e.g., in [17, 79, 114].

To conclude this literature review, we note that we look at the Cattaneo equation as a disturbed
heat equation, caused by modifying Fourier’s law. In [100], it is described in great detail that a
different stream in research studying second sound ended up at this equation as a damped wave

equation, like summarized in [100, Sec. 1, p. 43]:

“[...] we note that whereas Cattaneo proposed to correct diffusion for effects associated with

thermal inertia [...] Band and Meyer (1948), the same year as Cattaneo, and Osborne (1950)

[...] proposed exactly the same telegraph equation [(2.4)], but with the first time derivative

added to the wave equation to account for dissipative effects in liquid helium II.”

2.2 Well-posedness of the Cattaneo–LITT model
2.2.1 Prerequisites

In this section, we give an overview on the notation and general assumptions in this thesis.

Assumption 2.1 — Domain.
Throughout this thesis, let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded spatial domain, i.e., a nonempty,
open, connected and bounded set, with C1,1 boundarya Γ = ∂Ω. Let I := (0, T ) ⊂ R denote the
time domain with the final time T ∈ R>0.
a See, e.g., [63, App. C.1, p. 626], [85, Sec. 1.2.1, Def. 1.2.1.1, p. 5]. This type of regularity is required for using Lemma
A.1 and Theorem B.62 as part of the proof that the temperature component of the solution of the Cattaneo–LITT
model is continuous.

We write the sets of natural numbers as N = {1, 2, . . .} and N0 = N ∪ {0}. Vector spaces are
always considered over the real numbers. We use a bold font to indicate vectors p ∈ Rd, d ∈ N,
except for points x ∈ Ω ⊂ Rd in Part I. The outer unit normal vector of the boundary Γ at x ∈ Γ

is denoted by n = n(x) ∈ Rd. The space-time cylinder is defined as Q := I × Ω.
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Constants which appear in calculations and estimates are positive and can change their values
from line to line. With C(α) we emphasize the dependence of a constant C on a particular
quantity α, without listing all possible dependencies on other quantities.

For two real Banach spaces X,Y , the set of bounded linear operators is denoted by L(X,Y ).
The dual space of a Banach space X is denoted by X∗ := L(X,R), and the corresponding dual
pairing is denoted by 〈·, ·〉X := 〈·, ·〉X∗,X . We write (·, ·)H for the inner product of a real Hilbert
space H .

For two real Banach spaces X,Y with X ⊂ Y , we write X ↪→ Y for a continuous embedding
and X ↪→↪→ Y for a compact embedding.

For a real Banach space X , we write C0(I;X) := {f : I → X | f is continuous} for the space of
continuous functions. In case of X = R, we write C0(I). This space equipped with the uniform
norm

‖f‖C0(I;X) := max
t∈I
‖f(t)‖X

is a Banach space [56, Sec. 7.1, Lem. 7.1.1, p. 151]. The space of Hölder-continuous functions with
exponent α ∈ (0, 1] is denoted by C0,α(Ω) := {f : Ω → R | ‖f‖C0,α(Ω) < ∞}, and is equipped
with the norm

‖f‖C0,α(Ω) := sup

{ |f(x)− f(y)|
‖x− y‖α

∣∣∣x, y ∈ Ω, x 6= y

}
.

We recall the Gelfand triple3

H1(Ω)
dense
↪→ L2(Ω) ↪→ H1(Ω)∗, (2.6)

where H1(Ω)∗ =
(
H1(Ω)

)∗ is the dual space4 of the Sobolev space H1(Ω) = W 1,2(Ω). We note
that H1(Ω) is a separable and reflexive Banach space (in fact, it is even a Hilbert space)5 and
dense6 in L2(Ω). The last embedding in (2.6) is given by

L2(Ω) 3 ϑ 7→ (ϑ, ·)L2(Ω) ∈ L2(Ω)∗ ⊂ H1(Ω)∗.

It is common to investigate evolution problems like the heat transfer equation analytically in the
context of Bochner spaces, which is a generalization of Lebesgue spaces (Lp spaces) to functions
with values in Banach spaces. We refer to [43, XVIII, p. 467 ff.], [235, Ch. 23, p. 402 ff.], [93,
Sec. 1.3.2, p. 36 ff.], [186, Ch. 2, p. 33 ff.], [56, Ch. 7–8, p. 150 ff.] for an introduction to Bochner
spaces and the notion of weak time derivatives. For real Banach spaces X,Y with X ↪→ Y

and ϑ ∈ L1(I;X), the nth weak time derivative7 ϑ(n) ∈ L1(I;Y ) is defined, in analogy to weak
spatial derivatives, as the function which fulfills∫ T

0

ϕ(n)(t)ϑ(t) dt = (−1)n
∫ T

0

ϕ(t)ϑ(n)(t) dt for all ϕ ∈ C∞c (I),

3 See [235, §23.4, Def. 23.11, p. 416] for the definition of Gelfand triples. Often we findH1
0 (Ω) ↪→ L2(Ω) ↪→ H−1(Ω) =

H1
0 (Ω)∗ (cf. [235, 23.4, Ex. 23.12, p. 416]).

4 This should not be confused withH−1(Ω), which is the dual space ofH1
0 (Ω).

5 See Lemma B.24 on properties of Sobolev spaces.
6 See Lemma B.51 on density results: follows from C∞(Ω) ⊂ H1(Ω) ⊂ L2(Ω) and the density of C∞(Ω) in L2(Ω).
7 See [235, §23.5, Def. 23.15, p. 417], [43, XVIII §1 1, Def. 3, p. 471].
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where C∞c (I) is the space of infinitely-often differentiable functions from I to Rwith compact
support in I . We use the short notation (·)′ := (·)(1) and (·)′′ := (·)(2). For a real Banach spaceX ,
we define the Banach-space-valued Sobolev space8

W k,p(I;X) := {ϑ ∈ Lp(I;X) |ϑ has weak time derivatives ϑ(n) ∈ Lp(I;X) for all 0 ≤ n ≤ k}.

Throughout this thesis, we use without further notice the embeddings in (2.6), the isometric
isomorphism9

Lp(I;Lp(Ω))
∼
= Lp(Q) for 1 ≤ p <∞,

and the following embeddings10

Lp(Ω) ↪→ Lq(Ω),

Lp(I;X) ↪→ Lq(I;Y )

}
for 1 ≤ q ≤ p ≤ ∞

whereX,Y are real Banach spaceswithX ↪→ Y . Note that this especially implies the embeddings
L2(I;H1(Ω)) ↪→ L2(I;L2(Ω)) ↪→ L2(I;H1(Ω)∗).
We define the spaces

Wϑ := L2(I;H1(Ω)) ∩H1(I;L2(Ω)) ∩H2(I;H1(Ω)∗)

:= {ϑ ∈ L2(I;H1(Ω)) |ϑ′ ∈ L2(I;L2(Ω)), ϑ′′ ∈ L2(I;H1(Ω)∗)},
Yp := Lp(I;W 1,p(Ω))×

[
Wϑ ∩ C0(Q)

]
, p ≥ 2,

(2.7)

equipped with the norms

‖ϑ‖Wϑ
:= ‖ϑ‖L2(I;H1(Ω)) + ‖ϑ′‖L2(I;L2(Ω)) + ‖ϑ′′‖L2(I;H1(Ω)∗) ,

‖(φ, ϑ)‖Yp := ‖φ‖Lp(I;W 1,p(Ω)) + ‖ϑ‖Wϑ∩C0(Q)

:= ‖φ‖Lp(I;W 1,p(Ω)) + ‖ϑ‖Wϑ
+ ‖ϑ‖C0(Q) .

Note thatWϑ equipped with the inner product

(ϑ, ϕ)Wϑ
:=

∫ T

0

(ϑ(t), ϕ(t))H1(Ω) dt +

∫ T

0

(ϑ′(t), ϕ′(t))L2(Ω) dt +

∫ T

0

(ϑ′′(t), ϕ′′(t))H1(Ω)∗ dt ,

where the inner product in H1(Ω)∗ is defined11 by means of the Riesz-representation theorem12,
is a Hilbert space.13 Furthermore, the space Yp is a Banach space.14

8 Cf. [114], [235, 23.6, Prop. 23.23, p. 422]).
9 See Lemma B.49 on the relation between Lebesgue and Bochner spaces.
10 See Lemma B.54, Lemma B.55 on embeddings in Bochner and Lebesgue spaces.
11 Cf. the definition of the Hilbert spaceW (0, T ) = {ϑ ∈ L2(I;H) |ϑ′ ∈ L2(I;H∗)}, for some Hilbert spaceH , and its
scalar product in [217, Sec. 3.4.3, p. 118].

12 See [4, Sec. 4.1, p. 171] for the Riesz-representation theorem.
13 This can be shown analogously to [43, XVIII §1 2 , Prop. 6, p. 473], which states that L2(I;H1(Ω))∩L2(I;H1(Ω)∗) is
a Hilbert space; see also [17, Sec. 3.1, Rem. 3.2, p. 19]; cf. [43, XVIII §5 1.3 , Rem. 1, p. 555].

14 See Lemma B.4 on Cartesian products of Banach spaces. See [4, Sec. 1.7, p. 46] for a reference that C0(Q) is a Banach
space. To show thatWϑ∩C0(Q) is a Banach space, consider a Cauchy sequence (ϑn)n∈N ⊂Wϑ∩C0(Q) with ϑn → ϑ

in Wϑ ↪→ L1(Q) and ϑn → ϑ̂ in C0(Q) ↪→ L1(Q). From
∥∥∥ϑ− ϑ̂∥∥∥

L1(Q)
≤ ‖ϑ− ϑn‖L1(Q) +

∥∥∥ϑ̂− ϑn∥∥∥
L1(Q)

, it

follows that ϑ and ϑ̂ coincide a.e. inQ, thus, we can identify the limits and get a converging sequence inWϑ ∩ C0(Q).
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Problem statement

We recall the strong formulation of the classical LITT model in equations (1.1)–(1.5), and define
the coefficients

σa(ϑ) = σa,c + (σa,n − σa,c)γ(ϑ),

σs(ϑ) = σs,c + (σs,n − σs,c)γ(ϑ),

D(ϑ) =
ε2
kn

3σ̂t(ϑ)
:=

ε2
kn

3 (σa(ϑ) + (1− g)σs(ϑ))
,

(2.8)

with the coagulation

γ(ϑ)(t, x) = exp

(
−
∫ t

0

dArr (ϑ(s, x)) ds

)
and

dArr : R→ R, dArr(ϑ) =

A exp
(
−Eϑ

)
, ϑ > 0,

0, ϑ ≤ 0.
(2.9)

We call a vector (φ, ϑ) ∈ Yp, for some p ≥ 2, a weak solution or a state vector of the Cattaneo–LITT
model if it satisfies the weak formulation of the Cattaneo–LITT model

∫ T

0

Fr(φ(t), ϕ1(t);ϑ, t) dt =

∫ T

0

(gr, ϕ1(t))L2(Γ) dt ,∫ T

0

τ 〈ϑ′′(t), ϕ2(t)〉H1(Ω) + (ϑ′(t), ϕ2(t))L2(Ω) + Fh(ϑ(t), ϕ2(t)) dt

=

∫ T

0

〈fh(ϑ, t, φ(t)), ϕ2(t)〉H1(Ω) dt ,

ϑ(0) = ϑ(0),

ϑ′(0) = ϑ(1)



(2.10)

for all ϕ = (ϕ1, ϕ2) ∈ L2(I;H1(Ω))× L2(I;H1(Ω)), with

Fr(φ(t), ϕ1(t);ϑ, t) := (D(ϑ)(t)∇φ(t),∇ϕ1(t))L2(Ω)

+ (σa(ϑ)(t)φ(t), ϕ1(t))L2(Ω) + (arφ(t), ϕ1(t))L2(Γ) ,

Fh(ϑ(t), ϕ2(t)) := κ (∇ϑ(t),∇ϕ2(t))L2(Ω)

+ (ξϑ(t), ϕ2(t))L2(Ω) + (ahϑ(t), ϕ2(t))L2(Γ) ,

〈fh(ϑ, t, φ(t)), ϕ2(t)〉H1(Ω) := (σ̂σa(ϑ)(t)φ(t), ϕ2(t))L2(Ω)

+ ϑb (ξ, ϕ2(t))L2(Ω) + (gh, ϕ2(t))L2(Γ) ,

(2.11)

and data as given in Assumption 2.2. Note that we do not prescribe initial conditions for the
irradiance φ because the model (2.10) does not contain time derivatives of the irradiance.

For the remainder of the analytical investigation in Chapters 2 and 3, we make the following
assumptions.

Assumption 2.2 — Regularity of the data.

(A1) We assume for the boundary coefficientsa ah, ar ∈ L∞(Γ), gr ∈ L∞(Γ) ∩W−1/4,4(Γ),
gh ∈ L∞(Γ) ∩ H1/2(Γ), and that ah can be written as ah = âh|Γ for some Lipschitz-
continuous functionb âh ∈ C0,1(Ω). Furthermore, we assume that, for f ∈ {ah, ar, gh, gr},
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there are lower and upper bounds f, f ∈ R>0 such that

0 < f ≤ f ≤ f <∞ a.e. on Γ.

(A2) For simplicity, we omit the dependence of the blood-perfusion rate ξ on the coagulation
γ for the analytical investigation.

Furthermore, we assume that the blood-perfusion rate fulfills ξ ∈ L∞(Ω), and that
there exist lower and upper bounds ξ, ξ ∈ R>0 such that 0 < ξ ≤ ξ ≤ ξ <∞ a.e. in Ω.

(A3) For the initial conditions, we assume ϑ(0) ∈ H2(Ω) such that ahϑ(0)
+ κ∇ϑ(0) · n = gh

a.e. on Γ, and ϑ(1) ∈ H1(Ω).

(A4) For the sake of completeness, we assume the following parameters to be strictly positive:

τ, κ, ϑb, σa,n, σa,c, σs,n, σs,c, σ̂, A,E, εkn ∈ R>0.

a This rather technical assumption on the boundary coefficient gr enables us to use [6, Sec. 2, Thm. 2.1, p. 4] in
Remark 2.18.

b The regularity assumptions for ah and gh are needed to apply Lemma A.1 in the proof of Lemma 2.13.

Remark 2.3 — Initial conditions.

1. With the embeddings in (2.6) and (B.54), we get for ϑ ∈Wϑ the embeddings

ϑ ∈ L2(I;H1(Ω)) ↪→ L2(I;L2(Ω)), ϑ′ ∈ L2(I;L2(Ω)) ↪→ L2(I;H1(Ω)∗),

and ϑ′′ ∈ L2(I;H1(Ω)∗). Theorem B.33 yields ϑ ∈ C0(I;L2(Ω)) and ϑ′ ∈ C0(I;H1(Ω)∗).
Together with the embeddings ϑ(0) ∈ H2(Ω) ↪→ L2(Ω) and ϑ(1) ∈ H1(Ω) ↪→ H1(Ω)∗,
this gives sense to the initial conditions in (2.10), cf. [17, Sec. 3.1, Rem. 3.4, p. 20], [93,
Sec. 1.3.2.3, Rem. 1.15, p. 42].

2. The initial conditions ϑ(0) and ϑ(1) given in Assumption 2.2 can be approximated by
the sequences (ϑ

(0)
m )m∈N, (ϑ

(1)
m )m∈N ⊂ H1(Ω) of the form

ϑ(0)
m =

m∑
k=1

(
ϑ(0), ωk

)
L2(Ω)

ωk and ϑ(1)
m =

m∑
k=1

(
ϑ(1), ωk

)
L2(Ω)

ωk

where (ωk)k∈N ⊂ H2(Ω) ↪→ L2(Ω) is the set of L2(Ω)-orthonormal eigenfunctions of the
Laplacian defined in Lemma A.1. It holds both ϑ(0)

m → ϑ
(0) inH1(Ω) and ϑ(1)

m → ϑ
(1) in

H1(Ω). Furthermore, for gh = 0, it holdsa∥∥∥ϑ(0)
m

∥∥∥
H1(Ω)

≤ C
∥∥∥ϑ(0)

∥∥∥
H1(Ω)

,∥∥∥∆ϑ(0)
m

∥∥∥
L2(Ω)

≤ C
∥∥∥∆ϑ(0)

∥∥∥
L2(Ω)

,∥∥∥ϑ(1)
m

∥∥∥
H1(Ω)

≤ C
∥∥∥ϑ(1)

∥∥∥
H1(Ω)

,


for allm ∈ N

for some constant C ∈ R>0.
a See Appendix A.1.2 for a detailed proof.
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Remark 2.4 — Relation to the LITT model including physical units.

1. The classical LITT model in (1.1)–(1.5) is stated including physical units. For the
analysis, we would like to get rid of the physical units. Furthermore, we would like
to remove the constant in front of the time derivative in equation (1.1), so we rescale
the equations. The superscript “(o)” denotes the parameter occurring in the original
equations including physical units, see Table 1.1. The rescaled parameters used in
(2.8)–(2.11) are given as follows:a

σ̂ :=
σrefφreftref
ρcpϑref

, εkn :=
1

xrefσref
, κ :=

κ(o)tref
ρcpx2

ref
,

ξ :=
νbρbcp,btref

cp
, A := A(o)tref, E :=

E(o)

Rϑref
,

ϑb :=
ϑ(o)b
ϑref

, ϑ(0) :=
ϑ

(0)(o)

ϑref
, ah :=

a(o)h tref
ρcpxref

,

gh :=
g(o)h tref

ρcpxrefϑref
, ar := a(o)r εkn, gr :=

g(o)r εkn
φref

,

fσ :=
f (o)σ
σref

with fσ ∈ {σa,n, σa,c, σs,n, σs,c} and boundary coefficients (constant over time)

a(o)h =

a
(o)
h,amb, on Γamb,

a(o)h,cool, on Γcool ∪ Γrad,
g(o)h =

a
(o)
h,ambϑ

(o)
amb, on Γamb,

a(o)h,coolϑ
(o)
cool, on Γcool ∪ Γrad,

a(o)r =


0, on Γrad,

0, on Γcool,

1
2 , on Γamb,

g(o)r =


∣∣∣Γ(o)

rad

∣∣∣−1

q(o)rad, on Γrad,

0, on Γcool,

0, on Γamb.

Throughout this thesis, we refer to ξ as the blood-perfusion rate.

The Cattaneo–LITT model stated with physical units has two additional parameters τ (o)

and ϑ(1)(o). We obtain the rescaled quantities by τ := τ (o)t−1
ref and ϑ

(1) := ϑ
(1)(o)

ϑ−1
ref tref.

2. We omit the case distinction in the original damage function (1.4) for ϑ < 317.15 K and
obtain (2.9). For the given parameters, we get the value dArr(317.15) ≈ 1.1375× 10−5.
On the time scale of our simulations (T ∼ 20 min), this modification does not have a
relevant effect on the computed coagulation.

a See Remark 1.2 for the understanding of the physical reference values denoted by the subscript “ref”.

We state the main result of this Chapter about the well-posedness of the Cattaneo–LITT model
before going into the details of its proof. This is similar to [219, Sec. 2, Thm. 2.1, p. 6], which
states the well-posedness of the classical LITT model.
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Theorem 2.5 — Well-posedness of the Cattaneo–LITT model.
Let Assumptions 2.1 and 2.2 hold. Then, for a certain p ∈ (2, 6), there exists a unique state
vector of the Cattaneo–LITT model (φ, ϑ) ∈ Yp with

‖φ‖Lp(I;W 1,p(Ω)) ≤ C,

‖ϑ‖Wϑ
+ ‖ϑ‖C0(Q) ≤ C1(τ−1, ξ, ξ)

for some constants C,C1 ∈ R>0.
It holds φ ∈ Lr(I;W 1,p(Ω)) for all r ∈ [1,∞), anda

ϑ ∈ L∞(I;H1(Ω)) ∩W 1,∞(I;L2(Ω)) ∩W 1,p1(I;H1(Ω)) ∩ Lp2(I;H2(Ω)) =: Bp1,p2

withb

‖ϑ‖Bp1,p2
≤ C(τ−1, p1, p2, ξ, ξ)

for all p1, p2 ∈ [1,∞). Furthermore, it holds ϑ ∈ C0,α(Q) with

‖ϑ‖C0,α(Q) ≤ C(τ−1, α, ξ, ξ)

for all α ∈ [0, 1
4 ).

The state vector depends continuously on the blood-perfusion rate ξ, in the sense that the map

Ξad → L2(I;H1(Ω))× L2(I;H1(Ω)), ξ → (φ, ϑ)

is Lipschitz continuous, where Ξad := {ξ ∈ L2(Ω) | ξ ≤ ξ ≤ ξ a.e. in Ω} ⊂ L2(Ω) is the set of
admissible perfusion rates.
a This means that ϑ is an element of L∞(I;H1(Ω)), which coincides with an element ofW 1,∞(I;L2(Ω)) a.e. inQ,

etc.
b The norm of Bp1,p2 is given as the sum of the particular norms of the intersecting spaces.

For the sake of readability, we avoid stating explicitly the dependence of the constants C,C1 in
Theorem 2.5 on the given data, i.e., all physical parameters and the domain. Nevertheless, we
explicitly state the dependence of C1 on the parameter τ−1, which is motivated by the following
remark.

Remark 2.6 — Limit τ → 0.
After proving the well-posedness of the Cattaneo–LITT model, the question about the
behavior of the state vector (φ, ϑ) in the limit case τ → 0 arises. Does it converge to the
solution of the classical LITT model? This question was answered for the Cattaneo-heat-
transfer model (without any coupling) in [17]. Note that the transition to the limit is not
straight forward because the given state bounds in Theorem 2.5 depend on τ−1. We do not
attempt to answer this question in this thesis and leave this task for future research.
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2.2.2 Existence of a solution
Auxiliary problem

We observe that the state system (2.10) of the Cattaneo–LITT model is nonlinear because the
coefficients σa and D depend on the coagulation and, thus, nonlinearly on the temperature. A
standard procedure is to define an auxiliary state system which is coupled only in one way, and
handle the subproblems consecutively. Finally, we obtain the overall solution by means of the
Leray–Schauder fixed-point theorem15. This was already done for the classical LITT model in
[219] and we follow the procedure therein.

For the auxiliary problem, we multiply the right-hand sides in (2.10) by a factor ρ, motivated
by the Leray–Schauder fixed-point theorem, and replace the temperature ϑ occurring in the
coefficients by an auxiliary variable ω. The auxiliary problem then reads as follows: For a given
ω ∈ L2(Q) and ρ ∈ [0, 1], find (φ, ϑ) ∈ Yp such that

∫ T

0

Fr(φ(t), ϕ1(t);
[
ω
]
M
, t) dt = ρ

∫ T

0

(gr, ϕ1(t))L2(Γ) dt ,∫ T

0

τ 〈ϑ′′(t), ϕ2(t)〉H1(Ω) + (ϑ′(t), ϕ2(t))L2(Ω) + Fh(ϑ(t), ϕ2(t)) dt

= ρ

∫ T

0

〈
fh
([
ω
]
M
, t, φ(t)

)
, ϕ2(t)

〉
H1(Ω)

dt ,

ϑ(0) = ρϑ(0),

ϑ′(0) = ρϑ(1)



(2.12)

for all ϕ ∈ L2(I;H1(Ω))× L2(I;H1(Ω)), where[
·
]
M

: L2(Q)→ L∞(Q), ϕ 7→ min (max (ϕ,−M) ,M)

is the cutoff function16, for someM ∈ R>0. Note that the first equation in (2.12) (in the following,
we refer to this as (auxiliary) radiation equation) depends no longer on ϑ and can be solved for
φ = φ(ω) independently of ϑ. The resulting φ can be plugged into the second equation in (2.12)
(in the following, we refer to this as (auxiliary) heat-transfer equation), which can be solved for
ϑ = ϑ(ω). With this procedure, we eliminated the two-way coupling and are left to solve consec-
utively two one-way-coupled subproblems, one for the irradianceφ and one for the temperatureϑ.

We define the operator
S : L2(Q)× [0, 1]→ L2(Q), (ω, ρ) 7→ ϑ (2.13)

such that (φ, ϑ) fulfills the auxiliary system (2.12) for all ϕ ∈ L2(I;H1(Ω))× L2(I;H1(Ω)). One
prerequisite for the Leray–Schauder fixed-point theorem is that the operator S is well defined,
continuous and compact. Second, we need to prove the existence of a uniform bound for all
fixed points. Note that this bound needs to allow us to get rid of the cutoff function at the end of
the proof. The application of the Leray–Schauder fixed-point theorem then provides us with a
fixed point ϑ∗ = S(ϑ∗, 1), which yields a solution of the original problem (2.10). We move the
proofs of some auxiliary results to the appendix, so that we do not get lost in details here.

15 See the Leray–Schauder fixed-point theorem B.64.
16 The max and min of a measurable function is again measurable ([55, §4.2, Cor. 4.4, p. 119]), thus, the cutoff function is
well defined.
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Nonlinearity

We show that the coefficients (2.8) are well-defined and continuous maps from L∞(Q) to L∞(Q)

by reformulating them as concatenation of known operators.

Remark B.67 implies17 that the Nemytskii operators

φ1 : L∞(Q)→ L∞(Q), ω 7→ d(ω(·)),
φ3 : L∞(Q)→ L∞(Q), ω 7→ exp(−ω(·)),

φfn,fc4 : L∞(Q)→ L∞(Q), ω 7→ fc + (fn − fc)ω, (fn, fc ∈ R),

(2.14)

are well defined. Furthermore, for M ∈ R>0, there exists a constant L(M) such that for all
ω, ω̂ ∈ L∞(Q) with ‖ω‖L∞(Q) ≤M , ‖ω̂‖L∞(Q) ≤M it holds

‖φi(ω)− φi(ω̂)‖Lp(Q) ≤ L(M) ‖ω − ω̂‖Lp(Q) (2.15)

for all p ∈ [1,∞], for i ∈ {1, 3, 4}.
Next, we look at the map

φ2 : L∞(Q)→ L∞(Q), φ2(ω)(t, x) =

∫ t

0

w(s, x) ds . (2.16)

Lemma 2.7 — Properties of the map φ2.

1. The map φ2 in (2.16) is well defined.

2. For p ∈ [1,∞), there is a C ∈ R>0 such that for all ω, ω̂ ∈ L∞(Q) it holdsa

‖φ2(ω)− φ2(ω̂)‖Lp(Q) ≤ C ‖ω − ω̂‖Lp(Q) . (2.17)

3. For ω ∈ L∞(Q) ∩ L2(I;H1(Ω)), it holds φ2(ω) ∈ C0(I;H1(Ω)) with

∇φ2(ω)(t) =

∫ t

0

∇ω(s) ds for all t ∈ I. (2.18)

a This especially implies that φ2 : L∞(Q)→ Lp(Q) is continuous by means of the embedding L∞(Q) ↪→ Lp(Q).

The main ingredients of the proof of Lemma 2.7 are Fubini’s theorem and some rules of calculus
in Bochner spaces. We provide it in detail in Appendix A.1.3.

Remark 2.8 — Integral operator.
The integral operator φ2 in (2.16) is not continuous as map from L∞(Q) to L∞(Q), like
already observed in [219, Sec. 2.1, Rem. 2.2, p. 7]. The reason is that the spaces L∞(Q) and
L∞(I;L∞(Ω)) are not isometric isomorph, see Lemma B.49.

17 The function dArr (2.9) is an element of C2(R) with the first and second derivatives

d′Arr(ω) =

EA exp(−E
ω

) 1
ω2 , ω > 0,

0, ω ≤ 0
and d′′Arr(ω) =

EA exp(−E
ω

)E−2ω
ω4 , ω > 0,

0, ω ≤ 0.

The continuity in ω = 0 can be checked using L’Hôpital’s rule [69, §16, Thm. 10, p. 190].
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We obtain the following result for the nonlinear coefficients, which was given analogously
for ω ∈ C0(Q) in [219, Sec. 2.1, Lem. 2.1, p. 7] in the context of the classical LITT model.

Lemma 2.9 — Coagulation depending coefficients.

1. For fixed ω ∈ L∞(Q), the coefficients σa(ω), D(ω) in equation (2.8) are elements in
L∞(Q) with positive lower and upper bounds, i.e.,

0 < f ≤ f(ω) ≤ f a.e. in Q (2.19)

for f ∈ {σa, D} and f, f ∈ R>0. The bounds f, f are independent of ω. Furthermore,
for a.a. t ∈ I , it holdsa that f(ω)(t) ∈ L∞(Ω) and

0 < f ≤ f(ω)(t) ≤ f a.e. in Ω (2.20)

with the same bounds as in estimate (2.19).

2. For each M ∈ R>0, there is a C(M) ∈ R>0 such that for all ω, ω̂ ∈ L∞(Q) with
‖ω‖L∞(Q) ≤M , ‖ω̂‖L∞(Q) ≤M it holds

‖f(ω)− f(ω̂)‖Lp(Q) ≤ C(M) ‖ω − ω̂‖Lp(Q) (2.21)

for f ∈ {σa, D} and all p ∈ [1,∞).
a We note that this does not imply f ∈ L∞(I;L∞(Ω)) because f is not necessarily Bochner measurable.

For the proof of Lemma 2.9, we write the coefficients σa, D as concatenation of the maps φi,
i ∈ {1, . . . , 4} and the function (·)−1, and use the properties of those auxiliary maps. A detailed
proof is given in Appendix A.1.4.

Remark 2.10
Analogously to [219, Sec. 2.1, Rem. 2.2, p. 7], we would like to stress that the estimate (2.21)
holds only for p <∞.

The chain rule yields that higher regularity assumptions on ω translate to the absorption
coefficient σa(ω). We need this result later in Lemma 2.14 to show a certain regularity of the
fixed point.

Lemma 2.11 — H1(Ω) regularity of the absorption coefficient.
For ω ∈ L∞(Q) ∩ L2(I;H1(Ω)), we get σa(ω) ∈ L2(I;H1(Ω)) with

|∇σa(ω)(t)| ≤ C
∫ t

0

|∇ω(s, ·)|ds for a.a. t ∈ I,

where C depends neither on ω nor on t.

The proof of Lemma 2.11 is rather short and is given in Appendix A.1.5.
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Radiation equation

We look at the radiation equation in the auxiliary problem (2.12), which can be solved indepen-
dently of ϑ: For ω ∈ L2(Q), find φ ∈ Lp(I;W 1,p(Ω)), for a suitable p > 2, such that∫ T

0

Fr(φ(t), ϕ(t);
[
ω
]
M
, t) dt =

∫ T

0

(gr, ϕ(t))L2(Γ) dt (2.22)

for all ϕ ∈ L2(I;H1(Ω)).
The existence and uniqueness of such a solution was answered similarly to our next Lemma in
[219, Sec. 2.2, Lem. 2.3, p. 8] in the context of the classical LITT model.

Lemma 2.12 — Solution of the radiation equation.
Let Assumptions 2.1 and 2.2 hold, and let ω ∈ L2(Q). Then, for a certain p ∈ (2, 6), which
is independent of ω, there exists a unique solution φ ∈ Lr(I;W 1,p(Ω)) which fulfills equation
(2.22) for all ϕ ∈ L2(I;H1(Ω)), for all r ∈ [1,∞), with the following properties.

1. There is a constant C(T, r) ∈ R>0 such that

‖φ‖Lr(I;W 1,p(Ω)) ≤ C(T, r) ‖gr‖L∞(Γ) .

The constant C(T, r) depends on the final time T , the parameter r, the domain Ω and the
upper and lower bounds of the coefficients σa, D. Especially, it does not depend on ω.

2. There is a constant C ∈ R>0, which is independent of ω, such that, for a.a. t ∈ I , it holdsa
φ(t) ∈W 1,p(Ω) ∩ C0(Ω) with

‖φ(t)‖W 1,p(Ω) + ‖φ(t)‖C0(Ω) ≤ C ‖gr‖L∞(Γ) . (2.23)

The constant C depends on the domain Ω and the upper and lower bounds of the
coefficients σa, D. Especially, it does not depend on ω.

3. The map L2(Q) → L2(I;H1(Ω)), ω 7→ φ(ω), where φ(ω) is the solution of (2.22), is
continuous.

a We point out that this does not imply φ ∈ L∞(I;W 1,p(Ω) ∩ C0(Ω)).

The results are stated in parts in [219, Sec. 2.2, Lem. 2.3, p. 8] and we refer to Appendix A.1.6 for
details.
Note that the laser power entering the physical system via the boundary Γrad is included in the
model through the parameter gr.



32 Chapter 2. Cattaneo–LITT model: analysis

Heat-transfer equation

Next, we look at the heat-transfer equation in the auxiliary problem (2.12), which depends on the
already computed solution φ = φ(ω) of equation (2.22): For ω ∈ L2(Q), find ϑ ∈ Wϑ ∩ C0(Q)

such that 

∫ T

0

τ 〈ϑ′′(t), ϕ(t)〉H1(Ω) + (ϑ′(t), ϕ(t))L2(Ω) + Fh(ϑ(t), ϕ(t)) dt

=

∫ T

0

〈
fh
([
ω
]
M
, t, φ(t)

)
, ϕ(t)

〉
H1(Ω)

dt ,

ϑ(0) = ϑ(0),

ϑ′(0) = ϑ(1)


(2.24)

for all ϕ ∈ L2(I;H1(Ω)).

Lemma 2.13 — Solution of the auxiliary heat-transfer equation.
Let Assumptions 2.1 and 2.2 hold, and let ω ∈ L2(Q), φ ∈ L2(I;L2(Ω)). Then there exists a
unique solution

ϑ ∈ L∞(I;H1(Ω)) ∩W 1,∞(I;L2(Ω)) ∩H1(I;H1(Ω)) ∩H2(I;H1(Ω)∗) ↪→Wϑ

which fulfills equation (2.24) for all ϕ ∈ L2(I;H1(Ω)), with the following properties.

1. There is a constant C(τ−1, ξ, ξ) ∈ R>0, which is independent of ω, such that

‖ϑ‖Wϑ

≤C
(
‖ϑ‖L∞(I;H1(Ω)) + ‖ϑ′‖L∞(I;L2(Ω)) + ‖ϑ′‖L2(I;H1(Ω)) + ‖ϑ′′‖L2(I;H1(Ω)∗)

)
≤C(τ−1, ξ, ξ).

(2.25)

2. The map L2(Q)→Wϑ, ω 7→ ϑ(φ(ω), ω) is continuous, where φ(ω) ∈ Lp(I;W 1,p(Ω)) is
the solution of equation (2.22) according to Lemma 2.12.

Proof. 1. The heat-transfer equation in the auxiliary problem (2.24) (with fixed right-hand
side for given ω) corresponds to a standard second-order evolution problem in t. In the
appendix, we provide Lemma A.4 for a general discussion on this type of equation. We
need to show here only that we can write the right-hand side as∫ T

0

〈
fh
([
ω
]
M
, t, φ(t)

)
, ϕ(t)

〉
H1(Ω)

dt =

∫ T

0

(r(t), ϕ(t))L2(Ω) + (g(t), ϕ(t))L2(Γ) dt

for all ϕ ∈ L2(I;H1(Ω)), for some r ∈ L2(I;L2(Ω)) and g ∈ L2(I;L2(Γ)).

With σ̂σa
([
ω
]
M

)
∈ L∞(Q) and φ ∈ L2(Q), we get with Hölder’s inequality18

σ̂σa
([
ω
]
M

)
φ ∈ L2(Q)

∼
= L2(I;L2(Ω)), (2.26)

where we refer to Lemma B.49 for the relation between Bochner and Lebesgue spaces.

18 See Hölder’s inequality B.27.
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Assumption 2.2 yields ϑbξ ∈ L∞(Ω), so, overall, we get

r := σ̂σa
([
ω
]
M

)
φ+ ϑbξ ∈ L2(I;L2(Ω)).

Furthermore, Assumption 2.2 yields gh ∈ L∞(Γ) and, with this, g := gh ∈ L2(I;L2(Γ)).

The statement now follows directly from Lemma A.4.

2. The next statement follows from a standard procedure.

Repeat the argument above for the difference of two solutions.

Let ω, ω̂ ∈ L2(Q) and let ϑ = ϑ(φ(ω), ω), ϑ̂ = ϑ(φ(ω̂), ω̂) be the corresponding solutions.

Then the difference δϑ := ϑ− ϑ̂ fulfills

∫ T

0

τ 〈δϑ′′(t), ϕ(t)〉H1(Ω) + (δϑ′(t), ϕ(t))L2(Ω) + Fh(δϑ(t), ϕ(t)) dt

=

∫ T

0

(r(t), ϕ(t))L2(Ω) + (g(t), ϕ(t))L2(Γ) dt ,

δϑ(0) = 0,

δϑ′(0) = 0


for all ϕ ∈ L2(I;H1(Ω)), with19

r = σ̂(σa − σ̂a)(t)φ(t) + σ̂σ̂a(t)(φ− φ̂)(t),

g = 0
(2.27)

and the short-hand notation σa := σa(
[
ω
]
M

), σ̂a := σa(
[
ω̂
]
M

), φ := φ(ω), φ̂ := φ(ω̂). Anal-
ogously to (2.26), we get r ∈ L2(I;L2(Ω)). Furthermore, with the pointwise bounds for
σa(t) and φ(t) in Lemmas 2.9 and 2.12, we get

‖r(t)‖L2(Ω) ≤ ‖σ̂(σa − σ̂a)(t)φ(t)‖L2(Ω) +
∥∥∥σ̂σ̂a(t)(φ− φ̂)(t)

∥∥∥
L2(Ω)

≤ C
(
‖(σa − σ̂a)(t)‖L2(Ω) +

∥∥∥(φ− φ̂)(t)
∥∥∥
L2(Ω)

)
for a.a. t ∈ I and, thus, with Young’s inequality20 that

‖r‖2L2(I;L2(Ω)) ≤ C
(
‖σa − σ̂a‖2L2(Q) +

∥∥∥φ− φ̂∥∥∥2

L2(Q)

)
. (2.28)

Like in the first part of the proof, Lemma A.4 implies

δϑ ∈ L∞(I;H1(Ω)) ∩W 1,∞(I;L2(Ω)) ∩H1(I;H1(Ω))

with

‖δϑ‖L∞(I;H1(Ω)) + ‖δϑ′‖L∞(I;L2(Ω)) + ‖δϑ′‖L2(I;H1(Ω)) ≤ C ‖r‖L2(I;L2(Ω)) (2.29)

19 Note that φ, φ̂ ∈ Lp(I;W 1,p(Ω)) for some p > 2 and σa, σ̂a ∈ Lq(I;Lq(Ω)) for all q ∈ [1,∞). Hölder’s inequality
yields that the integrals in equation (2.27) are well defined.

20 See Young’s inequality B.25.
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and, thus, with Hölder’s inequality that∣∣∣〈δϑ′′, ϕ〉L2(I;H1(Ω))

∣∣∣
=

1

τ

∣∣∣∣∣
∫ T

0

− (δϑ′(t), ϕ(t))L2(Ω) − Fh(δϑ(t), ϕ(t)) + (r(t), ϕ(t))L2(Ω) dt

∣∣∣∣∣
≤C

(
‖δϑ′‖L2(I;L2(Ω)) + ‖δϑ‖L2(I;H1(Ω)) + ‖r‖L2(I;L2(Ω))

)
‖ϕ‖L2(I;H1(Ω))

≤C ‖r‖L2(I;L2(Ω)) ‖ϕ‖L2(I;H1(Ω)) .

(2.30)

We combine the estimates (2.28)–(2.30) and get

‖δϑ‖2Wϑ
≤ C

(
‖σa − σ̂a‖2L2(Q) +

∥∥∥φ− φ̂∥∥∥2

L2(Q)

)
. (2.31)

Together with the continuity of the cutoff operator
[
·
]
M

: L2(Q)→ L2(Q), the Lipschitz
continuity of the optical coefficients in (2.21) and the continuity of the map ω 7→ φ(ω) in
Lemma 2.12, estimate (2.31) yield that ϑ is continuous w.r.t. ω, i.e., ω̂ → ω in L2(Q) implies
ϑ̂→ ϑ inWϑ.

�

As a prerequisite for twomain results of this thesis, Theorems 2.15 and 3.3, we need the following
regularity result for fixed points of the operator S defined in (2.13).

Lemma 2.14 — Regularity of fixed points.
Let Assumptions 2.1 and 2.2 hold. Then every fixed point ϑ ∈ L2(Q) of the operator S defined
in (2.13) fulfills

ϑ ∈ L∞(I;H1(Ω)) ∩W 1,∞(I;L2(Ω)) ∩H2(I;H1(Ω)∗) ∩ C0,α(Q) =: Bα

for all α ∈ [0, 1
4 ), and there is a constant C(τ−1, α, ξ, ξ) ∈ R>0 such thata

‖ϑ‖Wϑ
+ ‖ϑ‖C0,α(Q) ≤ C ‖ϑ‖Bα ≤ C(τ−1, α, ξ, ξ).

Furthermore, the fixed point ϑ is an element ofW 1,p1(I;H1(Ω)) ∩ Lp2(I;H2(Ω)) with

‖ϑ‖W 1,p1 (I;H1(Ω)) + ‖ϑ‖Lp2 (I;H2(Ω)) ≤ C(τ−1, p1, p2, ξ, ξ)

for all p1, p2 ∈ (1,∞).

Especially, the constants C(τ−1, α, ξ, ξ), C(τ−1, p1, p2, ξ, ξ) do not depend on the particular
fixed point ϑ and, thus, bound all fixed points of S.
a The norm of Bα is given as the sum of the particular norms of the intersecting spaces.

Proof. Let ϑ ∈ L2(Q) be a fixed point. Then it fulfills the auxiliary heat-transfer equation (2.24)
for ω = ϑ, and we can apply a bootstrap argument to show that ϑ has in fact a higher regularity.
This means, if we consider the right-hand side in (2.24) for the given ϑ as fixed, then ϑ still fulfills
the heat-transfer equation (2.24) and we can apply regularity results for this type of equation, as
discussed in Lemma A.4.
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To this, weneed tofind r2 ∈ H1(I;L2(Ω)), g ∈ H1/2(Γ), and r1 ∈ L2(I;L2(Ω))with r1(t) ∈ H1(Ω)

and ‖r1(t)‖H1(Ω) ≤ r̃(t) for a.a. t ∈ I , for some r̃ ∈ L2(I), such that for all ϕ ∈ L2(I;H1(Ω)) it
holds ∫ T

0

〈
fh
([
ω
]
M
, t, φ(t)

)
, ϕ(t)

〉
H1(Ω)

dt

=

∫ T

0

(r1(t), ϕ(t))L2(Ω) + (r2(t), ϕ(t))L2(Ω) + (g, ϕ(t))L2(Γ) dt .

We define
r1 := σ̂σa

([
ϑ
]
M

)
φ
([
ϑ
]
M

)
, r2 := ϑbξ, g := gh.

First, we note that Lemma 2.13 implies ϑ ∈ L2(I;H1(Ω)) for the fixed point. Furthermore,
Equation (2.26) implies r1 ∈ L2(I;L2(Ω)).
The cutoff function

[
·
]
M

: R → R, x 7→ min(max(x,−M),M), for a given M ∈ R>0, is
Lipschitz continuous21, which yields together with the chain rule given in Lemma B.41 that[
ϑ
]
M
∈ L∞(Q) ∩ L2(I;H1(Ω)).

From Lemmas 2.9 and 2.11 we get that σ̂σa
([
ϑ
]
M

)
(t) ∈ L∞(Ω) ∩ H1(Ω) for a.a. t ∈ I , and

from Lemma 2.12 that φ(t) ∈ L∞(Ω) ∩H1(Ω) for a.a. t ∈ I . The product rule22 now implies
r1(t) ∈ H1(Ω). Furthermore, it holds with σa := σa

([
ϑ
]
M

)
and the bounds in Lemmas 2.9, 2.11

and 2.12 that

|∇ (σa(t)φ(t))| ≤ |φ(t)∇σa(t)|+ |σa(t)∇φ(t)| ≤ C
(
‖ϑ‖L2(I;H1(Ω)) + ‖gr‖L∞(Γ)

)
=: r̃(t).

With Bochner’s theorem23, we get that r̃ ∈ L2(I) and that ‖r1(t)‖H1(Ω) ≤ r̃(t) holds for a.a. t ∈ I
as desired.
Assumption 2.2 implies g ∈ H1/2(Γ) and r2 ∈ L∞(Ω), which yields r2 ∈ H1(I;L2(Ω)).
This allows us to apply Lemma A.4 to the auxiliary heat-transfer equation (2.24) for ω = ϑ, which
yields the desired regularity and estimates. �

21 The functions
f : R→ R, x 7→ min(x,M) and f̂ : R→ R, x 7→ max(x,−M)

are Lipschitz continuous, for allM ∈ R>0. In fact, for x, y ∈ R, it holds

|f(x)− f(y)| = |min(x,M)−min(y,M)| =



|x− y| , x ≤M,y ≤M,

|x−M | , x ≤M,y > M,

|M − y| , x > M, y ≤M,

0, else


≤ |x− y| .

The estimate for f̂ can be shown analogously. Thus, the cutoff function is Lipschitz continuous as concatenation of
Lipschitz continuous functions.

22 See the product rule for weak derivatives in Theorem B.43.
23 See Bochner’s theorem B.47.
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Coupled system

We are now ready to prove the main result of this section on the existence of a state vector, cf.
[219, Sec. 2.4, Thm. 2.2, p. 10].

Theorem 2.15 — Existence of state vectors.
Let Assumptions 2.1 and 2.2 hold. Then, for a certain p ∈ (2, 6), there exists a state vector of
the Cattaneo–LITT model (φ, ϑ) ∈ Yp with

‖φ‖Lp(I;W 1,p(Ω)) ≤ C,

‖ϑ‖Wϑ
+ ‖ϑ‖C0(Q) ≤ C1(τ−1, ξ, ξ)

for some constants C,C1.
It holds φ ∈ Lr(I;W 1,p(Ω)), for all r ∈ [1,∞), anda

ϑ ∈ L∞(I;H1(Ω)) ∩W 1,∞(I;L2(Ω)) ∩W 1,p1(I;H1(Ω)) ∩ Lp2(I;H2(Ω)) =: Bp1,p2

withb

‖ϑ‖Bp1,p2
≤ C(τ−1, p1, p2, ξ, ξ)

for all p1, p2 ∈ (1,∞). Furthermore, it holds ϑ ∈ C0,α(Q) with

‖ϑ‖C0,α(Q) ≤ C(τ−1, α, ξ, ξ)

for all α ∈ [0, 1
4 ).

a This means that ϑ is an element of L∞(I;H1(Ω)), which coincides with an element ofW 1,∞(I;L2(Ω)) a.e. inQ,
etc.

b The norm of Bp1,p2 is given as the sum of the particular norms of the intersecting spaces.

Remark 2.16 — State bounds in Theorem 2.15 are independent of the blood-perfusion rate.
We point out that the constants which appear in the state bounds in Theorem 2.15 depend
on the upper and lower bounds of the blood-perfusion rate ξ but not on ξ itself. This
will be important in Chapter 3, where we formulate the identification of the unknown
blood-perfusion rate in terms of an optimal-control problem.

Proof of Theorem 2.15.

Apply the Leray–Schauder fixed-point theorem to the operator S defined in (2.13).

The proof is basically identical to the proof of [219, Sec. 2.4, Thm. 2.2, p. 10] and we follow it step
by step. We need only to exchange the classical heat-transfer model therein by our Cattaneo heat
equation and adapt the corresponding spaces.

With the help of the Leray–Schauder fixed-point theorem24 we show the existence of a fixed
point of the operator S, which is defined as

S : L2(Q)× [0, 1]→ L2(Q), (ω, ρ) 7→ ϑ (2.13)
24 See the Leray–Schauder fixed-point theorem B.64.



2.2 Well-posedness of the Cattaneo–LITT model 37

such that ϑ fulfills the heat-transfer equation in (2.12) for all ϕ ∈ L2(I;H1(Ω)).
Let ω ∈ L2(Q). For the sake of completeness, we mention that L2(Ω) is Banach space.25
Lemmas 2.12 and 2.13 yield unique solutions φ(ω) ∈ Lp(I;W 1,p(Ω)), for a certain p > 2, and
ϑ(φ(ω), ω) ∈ Wϑ ↪→ L2(Q) of the subproblems (2.22) and (2.24), thus, the operator S is well
defined.

Furthermore, with the same lemmas, the map L2(Q) → Wϑ, ω 7→ ϑ(φ(ω), ω) is continuous.
The continuity of S w.r.t. ρ follows directly from estimate (A.20) combined with estimate (2.23).
Overall, this yields the continuity of S.

With the theorem of Aubin–Lions26, we get the compact embedding

Wϑ ↪→ L2(I;H1(Ω)) ∩H1(I;L2(Ω)) ↪→↪→ L2(I;L2(Ω))
∼
= L2(Q),

where the last isometric isomorphism follows from Lemma B.49. The operator S is compact as a
chain of compact and continuous operators.27

Note that for ρ = 0, we get the unique solution ϑ = 0, thus,

S(ω, 0) = 0 for all ω ∈ L2(Q).

For a fixed point ϑ∗ = S(ϑ∗, 1), it follows from Lemma 2.14 that ϑ∗ ∈ Wϑ ∩ C0,α(Q) for
α ∈ [0, 1

4 ) with
‖ϑ∗‖C0,α(Q) + ‖ϑ∗‖Wϑ

≤ C(τ−1).

Especially, this implies ϑ∗ ∈ C0(Q) and

‖ϑ∗‖L2(Q) ≤ C ‖ϑ∗‖C0(Q) ≤ C(τ−1). (2.32)

We point out that the constant C(τ−1) in estimate (2.32) does not depend on the boundM of
the cutoff function, and it depends neither on ω nor on the fixed point itself. This allows us to
increaseM for each fixed point ϑ∗ until

[
ϑ∗
]
M

= ϑ∗, without affecting estimate (2.32).

By means of the Leray–Schauder fixed-point theorem B.64, we get the existence of a fixed point
ϑ∗ ∈ L2(Q) of S(·, 1), which is in fact an element ofWϑ ∩ C0,α(Q) as seen before. Lemma 2.12
now yields the corresponding solution of the radiation equation φ = φ(ϑ∗) ∈ Lp(I;W 1,p(Ω)),
for a certain p ∈ (2, 6). With the consideration above, it holds

[
ϑ∗
]
M

= ϑ∗, thus, we can omit the
cutoff function in the auxiliary problem for the fixed point ϑ∗. Together with the embedding in
Theorem B.59, this implies that (φ, ϑ∗) ∈ Yp is in fact a state vector of the Cattaneo–LITT model
(2.10). The state bounds now follow from Lemmas 2.12 and 2.14. �

25 See Lemma B.12 on reflexive Banach spaces.
26 See the Aubin–Lions theorem B.61 regarding X0 = H1(Ω), X = L2(Ω), X1 = H1(Ω)∗(Ω). Note that H1(Ω) is
reflexive (Lemma B.24) and, thus,H1(Ω)∗(Ω) is reflexive as its dual (Lemma B.12).

27 See Lemma B.19 on the concatenation of continuous and compact operators.
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2.2.3 Uniqueness

The proof of Theorem 2.15 is based on the Leray–Schauder fixed-point theorem, which does not
give us any information on the uniqueness of the state vector of the Cattaneo–LITT model. We
prove its uniqueness in the following Theorem (cf. [219, Sec. 2.5, Thm. 2.3, p. 11]).

Theorem 2.17 — Uniqueness of the state vector.
Let Assumptions 2.1 and 2.2 hold. The state vector of the Cattaneo–LITT model (φ, ϑ) ∈ Yp,
p ≥ 2, is unique.

Proof.

Take the difference of the state equations (2.10) for two state vectors and apply Gronwall’s
inequality.

Let (φ1, ϑ1), (φ2, ϑ2) ∈ Yp, p > 2, be two state vectors of the Cattaneo–LITT model (2.10). We
write σai := σa(ϑi), Di := D(ϑi), i ∈ {1, 2}.

Furthermore, for this proof, we assume that there is a p̂ > 3 and a C ∈ R>0 such that

φi(t) ∈W 1,p̂(Ω) and ‖φi(t)‖W 1,p̂(Ω) ≤ C for a.a. t ∈ I, i ∈ {1, 2}. (2.33)

In Remark 2.18, we justify this assumption.
The difference (δφ, δϑ) := (φ1 − φ2, ϑ1 − ϑ2) fulfills

∫ T

0

Fr(δφ(t), ϕ1(t);ϑ1, t) + ((D1(t)−D2(t))∇φ2(t),∇ϕ1(t))L2(Ω)

+ ((σa1(t)− σa2(t))φ2(t), ϕ1(t))L2(Ω) dt = 0,∫ T

0

τ 〈δϑ′′(t), ϕ2(t)〉H1(Ω) + (δϑ′(t), ϕ2(t))L2(Ω) + Fh(δϑ(t), ϕ2(t)) dt

= σ̂

∫ T

0

(σa1δφ(t), ϕ2(t))L2(Ω) + ((σa1(t)− σa2(t))φ2(t), ϕ2(t))L2(Ω) dt ,

δϑ(0) = 0,

δϑ′(0) = 0



(2.34)

for all ϕ = (ϕ1, ϕ2) ∈ L2(I;H1(Ω)) × L2(I;H1(Ω)). Similarly to [93, Sec. 1.3.2.3, Thm. 1.33, p.
42], we can look at the first equation of (2.34) for single points in time, and it holds for a.a. t ∈ I
that

Fr(δφ(t), ϕ1;ϑ1, t) = − ((D1(t)−D2(t))∇φ2(t),∇ϕ1)L2(Ω)

− ((σa1(t)− σa2(t))φ2(t), ϕ1)L2(Ω)

(2.35)

for all ϕ1 ∈ H1(Ω). We test equation (2.35) with ϕ1 = δφ(t) ∈ H1(Ω), and obtain with the
coercivity of the bilinear form Fr(·, ·;ϑ1, t) : H1(Ω)×H1(Ω)→ R, the bounds on φ2(t) in (2.23),
and Hölder’s and Young’s inequalities28 that

‖δφ(t)‖2H1(Ω) ≤ C ‖φ2(t)‖2W 1,p̂(Ω)

(
‖D1(t)−D2(t)‖2Lq(Ω) + ‖σa1(t)− σa2(t)‖2Lq(Ω)

)
≤ C

(
‖D1(t)−D2(t)‖2Lq(Ω) + ‖σa1(t)− σa2(t)‖2Lq(Ω)

) (2.36)

28 See Hölder’s B.27 and Young’s B.25 inequalities.
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for a.a. t ∈ I , and q = 2p̂(p̂− 2)−1.
Next, we look at the second equation in (2.34) for a single point in time t ∈ I , and test with
ϕ2 = δϑ′(t) ∈ H1(Ω).
We get with the derivative of the norm in Lemma B.38, Hölder’s and Young’s inequalities, the
coercivity of the bilinear form Fh : H1(Ω)×H1(Ω)→ R, the bounds for φ2(t) in (2.23) and the
bounds for σa1(t) in (2.20) that(

‖δϑ′(t)‖2L2(Ω)

)′
+
(
‖δϑ(t)‖2H1(Ω)

)′
+ ‖δϑ′(t)‖2L2(Ω)

≤C(ε−1)
(
‖(σa1(t)− σa2(t))φ2(t)‖2L2(Ω) + ‖σa1(t)δφ(t)‖2L2(Ω)

)
+ ε ‖δϑ′(t)‖2L2(Ω)

≤C(ε−1)
(
‖(σa1(t)− σa2(t))‖2L2(Ω) + ‖δφ(t)‖2L2(Ω)

)
+ ε ‖δϑ′(t)‖2L2(Ω)

for all ε > 0.
We integrate both sides from 0 to t and get with the fundamental theorem of calculus29, vanishing
initial conditions and estimate (2.36) that

‖δϑ(t)‖2H1(Ω) ≤ C
(∫ t

0

‖(σa1(s)− σa2(s))‖2L2(Ω) ds +

∫ t

0

‖(σa1(s)− σa2(s))‖2Lq(Ω) ds

+

∫ t

0

‖(D1(s)−D2(s))‖2Lq(Ω) ds
)
.

(2.37)

With p̂ > 3, we get q = 2p̂(p̂− 2)−1 < 6 and, thus30, L6(Ω) ↪→ Lq(Ω). We use this together with
the Lipschitz continuity of the coefficients31 in (2.21) and Hölder’s inequality to get∫ t

0

‖f1(s)− f2(s)‖2Lq(Ω) ds ≤ C
∫ t

0

‖f1(s)− f2(s)‖2L6(Ω) ds

≤ C
(∫ t

0

‖f1(s)− f2(s)‖6L6(Ω) ds

)1/3

≤ C
(∫ t

0

‖ϑ1(s)− ϑ2(s)‖6L6(Ω) ds

)1/3

(2.38)

for fi ∈ {σai, Di}, i ∈ {1, 2}.
Similarly, we get with the embedding L6(Ω) ↪→ L2(Ω) that

∫ t

0

‖(σa1(s)− σa2(s))‖2L2(Ω) ds ≤ C
(∫ t

0

‖ϑ1(s)− ϑ2(s)‖6L6(Ω) ds

)1/3

.

29 See the fundamental theorem of calculus in Bochner spaces B.33.
30 See the standard embedding result B.55.
31 Estimate (2.21) and the constant C(M) therein are stated for the space-time cylinder Q, i.e., at first, we have only
the estimate

∫ T
0 ‖f1(s)− f2(s)‖6L6(Ω) ds ≤ C

∫ T
0 ‖ϑ1(s)− ϑ2(s)‖6L6(Ω) ds , where C potentially depends on T , for

fi ∈ {σai, Di}, i ∈ {1, 2}. Still, we can use (2.21) to derive estimate (2.38) by the following consideration. Let
ϑ̃i := 1(0,t)ϑi, where 1(0,t) : I → {0, 1} is the indicator function of the interval (0, t), and let f̃i ∈ {σ̃ai, D̃i} be the
corresponding coefficient for i ∈ {1, 2}. Then it holds∫ t

0
‖f1(s)− f2(s)‖6L6(Ω) ds =

∫ t

0

∥∥∥f̃1(s)− f̃2(s)
∥∥∥6

L6(Ω)
ds ≤

∫ T

0

∥∥∥f̃1(s)− f̃2(s)
∥∥∥6

L6(Ω)
ds

≤ C
∫ T

0

∥∥∥ϑ̃1(s)− ϑ̃2(s)
∥∥∥6

L6(Ω)
ds = C

∫ t

0
‖ϑ1(s)− ϑ2(s)‖6L6(Ω) ds .
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We combine the last two estimates with (2.37) and get32 with the embedding33 H1(Ω) ↪→ L6(Ω)

that
‖δϑ(t)‖6L6(Ω) ≤ C ‖δϑ(t)‖6H1(Ω) ≤ C

∫ t

0

‖δϑ(s)‖6L6(Ω) ds .

Gronwall’s inequality34 now yields ‖δϑ(t)‖L6(Ω) = 0 for a.a. t ∈ I , which implies δϑ = 0 in
L1(I;L1(Ω))

∼
= L1(Q) and, thus, ϑ1 = ϑ2 a.e. in Q. The uniqueness of the solution of the

radiation equation (2.22), see Lemma 2.12, now implies φ1 = φ2. �

Remark 2.18 — Regularity of the irradiance.
In the proof of Theorem 2.17, we made the assumption (2.33) that there is a p̂ > 3 and a
C ∈ R>0 such that

φi(t) ∈W 1,p̂(Ω) and ‖φi(t)‖W 1,p̂(Ω) ≤ C for a.a. t ∈ I, i ∈ {1, 2}. (2.33)

Here, we would like to justify this assumption.

We already know from Theorem 2.15 that, for a certain p ∈ (2, 6), it holds φ(t) ∈ W 1,p(Ω)

for a.a. t ∈ I . We could proceed like in [219, Sec. 2.5, Rem. 2.5, p. 13], where the authors
proposed that p > 3 could be obtained by providing sufficiently smooth data and a sufficiently
smooth boundary Γ. This would imply further assumptions beyond the ones described in
Assumptions 2.1 and 2.2.

Similarly to the proof of Lemma 2.14, we employ the fact that the solution of the radiation
equation is more regular if ϑ is more regular. Let (φ, ϑ) ∈ Yp, p > 2, be a state vector of the
Cattaneo–LITT model. Similarly to equation (A.39), it holds for a.a. t ∈ I that

(D(ϑ)(t)∇φ(t),∇ϕ(t))L2(Ω) + (σa(ϑ)(t)φ(t), ϕ(t))L2(Ω) = (gr, ϕ(t))L2(Ω) (2.39)

for all ϕ ∈ H1(Ω). Note that for finding a fixed-point in the proof of Theorem 2.15, we used
only ϑ ∈ L∞(Q) to prove the regularity for φ, whereas now we can employ Hölder continuity
of the temperature ϑ ∈ C0, 18 (Q).
Now we can apply a bootstrap argument to obtain higher regularity of φ(t). We follow the
notation in [6] and define F := −σa(ϑ)(t)φ(t). With the regularity σa(ϑ)(t) ∈ L∞(Ω) from
Lemma 2.9 anda φ(t) ∈ H1(Ω) ↪→↪→ L6(Ω), it holds F ∈ L4(Ω).
Furthermore, with ϑ(t) ∈ C0(Ω), we get that D(ϑ)(t) is uniformly continuous on Ω and, thus,
D(ϑ)(t) is a function of vanishing mean oscillation (VMO)b. We now obtain φ(t) ∈W 1,4(Ω) for
a.a. t ∈ I directly from [6, Sec. 2, Thm. 2.1, p. 4].

Thus, our assumption (2.33) was justified, which ultimately completes the proof of Theorem
2.17.

32 Use that for a, b ≥ 0, it holds (a+ b)3 ≤ 7(a3 + b3).
33 See standard Sobolev embeddings B.56.
34 See Gronwall’s inequality B.39.
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Note that above we employed only the fact that the temperature ϑ(t) and, thus, the coefficient
D(ϑ)(t) are uniformly continuous on Ω. But the coefficientD(ϑ)(t) is even Hölder continuous.
In fact, the coefficient D can be written as the concatenation of a Lipschitz-continuous, thus,
Hölder-continuous function (see Lemma 2.9) and ϑ, where ϑ is Hölder continuous as well. A
concatenation of Hölder-continuous functions is again Hölder continuousc.
We do not further investigate the properties of the solution of the radiation equation here, but
one might be able to prove even higher regularity for φ(t). E.g., in [81, Sec. 8.11, Thm. 8.34,
p. 211] and [89, Sec. 3.4, Thm. 3.13, p. 60], it is shown that the solution for a similar elliptic
problem, also with Hölder-continuous coefficients but instead with Dirichlet boundary
conditions, is an element of C1,α(Ω). Also note that we can not directly apply standard results
from [85, Ch. 2, p. 81 ff.] because we have only Hölder-continuous coefficients, which are not
necessarily Lipschitz continuous.
a See standard Sobolev embeddings B.56.
b See [189] for the definition of functions of mean vanishing oscillation. Especially, see [189, Sec. 1, Thm. 1, p. 392] for

the implication that uniformly continuous functions are also functions of mean vanishing oscillation.
c See [101, Sec. 13.1, Lem. 13.1.1, p. 330] for the fact that the concatenation of Hölder-continuous functions is again
Hölder continuous.

2.2.4 Continuous dependence on the data

With Theorems 2.15 and 2.17, we obtain a unique state vector of the Cattaneo–LITT model. For
the well-posedness35, we need to show that this state vector depends continuously on the data.
In a real application, basically every physical parameter can be considered as part of the
data. In this thesis, the blood-perfusion rate is of special interest. In Chapter 3, we freeze
all parameters except for the blood-perfusion rate and demonstrate a strategy to identify this
unknown parameter by means of an optimal-control problem. In the next lemma, we restrict
ourselves to showing the continuous dependence of the state vector on the blood-perfusion rate.

Lemma 2.19 — Continuous dependence on the blood-perfusion rate.
Let Assumptions 2.1 and 2.2 hold. The state vector of the Cattaneo–LITT model (φ, ϑ) ∈ Yp,
p > 2, depends continuously on the blood-perfusion rate ξ, in the sense that the map

Ξad → L2(I;H1(Ω))× L2(I;H1(Ω)), ξ → (φ, ϑ)

is Lipschitz continuous, where Ξad := {ξ ∈ L2(Ω) | ξ ≤ ξ ≤ ξ a.e. in Ω} ⊂ L2(Ω) is the set of
admissible perfusion rates.

Proof.

Take the difference of the state equations (2.10) for two state vectors and apply Gronwall’s
inequality.

We can repeat the proof of Theorem 2.17 with the only difference that the blood-perfusion rates
differ this time.

35 See, e.g., [63, Sec. 1.3.1, p. 7].
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Let ξ1, ξ2 ∈ Ξad and (φ1, ϑ1), (φ2, ϑ2) ∈ Yp, p > 2 be the corresponding solutions of the Cattaneo–
LITT model (2.10). Like in the proof of Theorem 2.17, we assume that there is a p̂ > 3 and a
C ∈ R>0 such that

φi(t) ∈W 1,p̂(Ω) and ‖φi(t)‖W 1,p̂(Ω) ≤ C for a.a. t ∈ I, i ∈ {1, 2}.

Again, we refer to Remark 2.18 for its justification.
Like in the proof of Theorem 2.17, we infer for δφ := (φ1 − φ2) that

‖δφ(t)‖2H1(Ω) ≤ C ‖φ2(t)‖2W 1,p̂(Ω)

(
‖D1(t)−D2(t)‖2Lq(Ω) + ‖σa1(t)− σa2(t)‖2Lq(Ω)

)
≤ C

(
‖D1(t)−D2(t)‖2Lq(Ω) + ‖σa1(t)− σa2(t)‖2Lq(Ω)

) (2.40)

for a.a. t ∈ I , with q = 2p̂(p̂− 2)−1 < 6 and σai := σa(ϑi), Di := D(ϑi), i ∈ {1, 2}. Furthermore,
it holds with the C0(Q) bound for ϑ2 and with estimates (2.19), (2.23) that(

‖δϑ′(t)‖2L2(Ω)

)′
+
(
‖δϑ(t)‖2H1(Ω)

)′
+ ‖δϑ′(t)‖2L2(Ω)

≤C(ε−1)
(
‖(σa1(t)− σa2(t))‖2L2(Ω) + ‖δφ(t)‖2L2(Ω) + ‖δϑ(t)‖2L2(Ω)

+ ‖ξ1 − ξ2‖2L2(Ω)

)
+ ε ‖δϑ′(t)‖2L2(Ω)

for all ε > 0. Integration from 0 to t, the embedding H1(Ω) ↪→ L2(Ω) and estimate (2.40) yield

‖δϑ(t)‖2H1(Ω) ≤ C
(∫ t

0

‖δϑ(s)‖2H1(Ω) ds +

∫ t

0

‖(σa1(s)− σa2(s))‖2L2(Ω) ds

+

∫ t

0

‖(σa1(s)− σa2(s))‖2Lq(Ω) ds +

∫ t

0

‖(D1(s)−D2(s))‖2Lq(Ω) ds

+ ‖ξ1 − ξ2‖2L2(Ω)

)
.

Like in the proof of Theorem 2.17, we get36

‖δϑ(t)‖6H1(Ω) ≤ C
(∫ t

0

‖δϑ(s)‖6H1(Ω) ds + ‖ξ1 − ξ2‖6L2(Ω)

)
.

Gronwall’s inequality yields ‖δϑ(t)‖6H1(Ω) ≤ C ‖ξ1 − ξ2‖
6
L2(Ω) for a.a. t ∈ I . Integration from 0 to

T and the standard embedding in Bochner spaces37 yield

‖δϑ‖6L2(I;H1(Ω)) ≤ C ‖δϑ‖
6
L6(I;H1(Ω)) ≤ C ‖ξ1 − ξ2‖

6
L2(Ω) . (2.41)

For ξ1 → ξ2 in L2(Ω), we get with (2.41) that ϑ1 → ϑ2 in L2(I;H1(Ω)). Estimate (2.40) together
with the Lipschitz continuity of the optical coefficients in Lemma 2.9 implies φ1 → φ2 in
L2(I;H1(Ω)).
Overall, estimate (2.41) implies that ϑ depends Lipschitz continuously on ξ. Analogously to
(2.38), estimates (2.40) and (2.41) imply

‖δφ‖2L2(I;H1(Ω)) ≤ C
(∫ T

0

‖D1(t)−D2(t)‖2Lq(Ω) + ‖σa1(t)− σa2(t)‖2Lq(Ω) dt

)
≤ C ‖δϑ‖2L6(I;H1(Ω)) ≤ C ‖ξ1 − ξ2‖

2
L2(Ω) .

Thus, also φ depends Lipschitz continuously on ξ. �

36 Hölder’s inequality implies
(∫ t

0 ‖δϑ(s)‖2H1(Ω) ds
)3
≤ C

∫ t
0 ‖δϑ(s)‖6H1(Ω) ds .

37 See Lemma B.54 for standard embeddings in Bochner spaces.
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Identification of the blood-
perfusion rate

True optimization is the revolutionary contribution of modern research to decision processes.

George Bernhard Dantzig [234, Sec. 1, p. 1]

The blood perfusion in the liver acts as a heat sink in the heat-transfer model and influences
the temperature and, with this, the coagulation zone induced by LITT. It depends on the
underlying vascular structure, which motivates modeling the blood-perfusion rate by a spatially
varying parameter. The location of large vessels relative to the LITT applicator changes with
each patient and therapy and is unknown at the beginning of a simulation. The estimation
of the blood-perfusion rate in the Cattaneo–LITT model based on temperature measurements
defines an inverse problem, which we formulate in terms of a PDE-constrained optimal-control
problem. We prove the existence of a corresponding optimal control, derive necessary first-order
optimality conditions and discuss an optimization strategy to solve the optimal-control problem,
i.e., find points which fulfill those first-order optimality conditions. In Chapter 4, we introduce a
numerical example to validate this approach. Furthermore, we prove that the optimal control has
a sparse structure in case we include an L1(Ω)-penalty term for the control in the cost functional.

3.1 Optimal-control problem
3.1.1 Motivation

Extensive studies investigated the influence of vessels in the context of LITT as well as in the
context of other tumor ablation procedures [32, 33, 66, 113, 199, 200, 218]. The occurrence of
large vessels (>2 mm [120, p. 801]) motivates a spatially varying blood-perfusion rate.
We model the blood-perfusion rate as1

ξ = ξout + (ξin − ξout)u (3.1)

with the control u : Ω → [0, 1], and ξout, ξin ∈ R>0, ξout < ξin. This formulation suggests the
interpretation of the control u as an indicator function for large blood vessels.
It is essential to estimate the blood-perfusion rate in an automated way during each treatment
to pave the way from ex-vivo to in-vivo experiments and to the final application in a clinical
context. The significant effect of this parameter on the accuracy of the predicted coagulation
zone is quantified later by Experiment 4.5 and illustrated in Figure 4.8.

1 Other models with spatially varying blood-perfusion rate can be found, e.g., in [113].
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We note that it might be more realistic to model the blood-perfusion rate as a function depending
on time because the vascular structure can change during the treatment due to thrombosis and
occlusions [32, 34], and the shrinkage of the capillaries [170].
In our numerical experiments, we include the effect of shrinkage of capillary vessels, like in
[170], but let the blood-perfusion in large vessels be unaffected. In [9], we presented numerical
experiments, where on the one hand the blood-perfusion rate depends on the coagulation, and
on the other hand also the location of blood vessels, in our case the control u, might change over
time. This additional degree of freedom might be used at a later stage to include the occlusion
of large vessels or a secondary stop of blood flow due to thrombosis over time.
Note that there are alternative ways to formulate the identification of the blood-perfusion
rate. For instance, it is a common approach to homogenize the effect of capillary blood flow,
while treating the large vessels separately [31]. In this approach, large vessels are excluded
from the computational domain and the cooling effect is described via suitable boundary
conditions. The control, i.e., the location of large vessels, enters the formulation in this approach
as geometrical property, which would require remeshing and techniques from the field of shape
optimization. We do not follow this approach here because it would complicate the solution of
the optimal-control problem.

We formulate the estimation of the heterogeneous blood-perfusion rate ξ, and, with this, the
localization of large vessels, by means of the identification of the unknown control u.

3.1.2 Analysis

We reformulate the weak formulation of the Cattaneo–LITT model (2.10) using the operator

e : Yp × U → Z∗,〈
e((φ, ϑ)︸ ︷︷ ︸

y:=

, u), ϕ

〉
Z∗,Z

:=

∫ T

0

Fr(φ(t), ϕ1(t);ϑ, t) dt −
∫ T

0

(ar, ϕ1(t))L2(Γ) dt

+

∫ T

0

τ 〈ϑ′′(t), ϕ2(t)〉H1(Ω) + (ϑ′(t), ϕ2(t))L2(Ω) dt

+

∫ T

0

Fh(ϑ(t), ϕ2(t);u)− 〈fh(ϑ, t, φ(t);u), ϕ2(t)〉H1(Ω) dt

+
(
ϑ(0)− ϑ(0), ϕ3

)
L2(Ω)

+
(
ϑ′(0)− ϑ(1), ϕ4

)
L2(Ω)



(3.2)

with the spaces
Z := L2(I;H1(Ω))× L2(I;H1(Ω))× L2(Ω)× L2(Ω),

U := L2(Ω).
(3.3)

The spaceYp was defined earlier in (2.7), andwe summarize the state vector of the Cattaneo–LITT
model by y := (φ, ϑ) ∈ Yp. The control u enters the formulation (3.2) via the blood-perfusion rate
ξ = ξ(u) in Fh and fh, according to equation (3.1). A control u and the corresponding unique
state vector y = y(u) of the Cattaneo–LITT model (2.10) fulfill

〈e(y, u), ϕ〉Z∗,Z = 0 for all ϕ ∈ Z,
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which is equivalent2 to e(y, u) = 0 in Z∗.3

Like described above, we interpret the control u as indicator function of large vessels, so we
introduce the set of admissible controls

Uad := {u ∈ U | 0 ≤ u ≤ 1 a.e. in Ω}. (3.4)

In the real application, we obtain temperature measurements by means of magnetic-resonance
(MR) thermometry in certain time intervals about every two minutes. One way to incorporate
the data would be to include several snap shots of the temperature over a large time horizon in
a cost functional at once. Another way would be to perform the simulation and optimization
only between two snap shots on a smaller time horizon and treat previous simulation results as
initial data for the simulation on the next time interval.
Here, we do not have to decide between the two ways for incorporating several temperature
measurements because we consider the optimization only on the first time interval I = (0, t∗),
where t∗ > 0 is the time of the first temperature measurement during the therapy.

We define the spaces

W (0) := L2(I;H1(Ω)) ∩H1(I;L2(Ω)) = {ϑ ∈ L2(I;H1(Ω)) |ϑ′ ∈ L2(I;L2(Ω))},
Y (0) := L2(I;H1(Ω))×W (0)

with
‖ϑ‖W (0) = ‖ϑ‖L2(I;H1(Ω)) + ‖ϑ′‖L2(I;L2(Ω)) ,

‖(φ, ϑ)‖Y (0) = ‖φ‖L2(I;H1(Ω)) + ‖ϑ‖W (0) ,

and consider the cost functional

J (0) : Y (0) × U → R, (y, u) 7→ 1

2
‖ϑ(t∗;u)− ϑd‖2L2(Ω) + λ1 ‖u‖L1(Ω) +

λ2

2
‖u‖2L2(Ω) , (3.5)

where ϑd ∈ L2(Ω) corresponds to the measured temperature at time t∗ and λ1, λ2 ∈ R≥0 weight
the control penalty terms. The irradiance φ as part of the state vector y = (φ, ϑ) does not appear
in the cost functional because in the real application we do not have any measurements available
for this quantity.

Remark 3.1 — Evaluation at time t∗.
With y ∈ Y (0), we especially have ϑ ∈W (0). Thus, the evaluation of ϑ at time t∗ in the cost
functional is well defined by means of the embeddinga W (0) ↪→ C0(I;L2(Ω)) and yields an
element in L2(Ω).
a See a classical embedding theorem B.36.

For the remainder of this section, we consider t∗ as the final time of our simulation and, thus, set
T = t∗.
2 Cf. [219, Sec. 2.4, Eq. 2.6, p. 10].
3 The state system e(y, u) = 0 in Z∗ is formulated in an operator sense. For a detailed explanation, we refer to [43,
XVIII, p. 467 ff.], especially [43, XVIII §5 2.1, Rem. 2, p. 559].
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Note that the L1(Ω) term in the cost functional (3.5) is a tool to promote a sparse control, see
Section 3.2.5. The L1(Ω) term, in general, causes the cost functional to be nondifferentiable and
we would need to consider subgradients (generalized derivatives [37, Ch. 2, p. 24 ff.]) for the
investigation of necessary optimality conditions. However, we are interested only in admissible
controls in the set Uad. For u ∈ Uad, it holds u ≥ 0 a.e. in Ω and, thus, the cost functional J (0) in
(3.5) coincides on Uad with the cost functional

J : Y (0) × U → R, (y, u) 7→ 1

2
‖ϑ(t∗;u)− ϑd‖2L2(Ω) + λ1

∫
Ω

udx +
λ2

2
‖u‖2L2(Ω) . (3.6)

Here, we replaced the nondifferentiable L1(Ω) norm by the linear and, thus, differentiable
operator L1(Ω) → R, u 7→

∫
Ω
udx , which will turn out to be useful in the remainder of this

discussion. This is a classical trick to avoid subgradients in this special case and was already
suggested in [26, Sec. 2, Rem. 2.1, p. 797].

We formulate the identification of u as the following optimal-control problem:

min
(y,u)∈Y (0)×U

J(y, u) s.t. (y, u) ∈ Yp × Uad and e(y, u) = 0 in Z∗, (3.7)

where we define (ȳ, ū) ∈ Y (0) × U to be optimal if it fulfills the constraints, i.e., (ȳ, ū) ∈ Yp × Uad

and e(ȳ, ū) = 0 in Z∗, and

J(ȳ, ū) ≤ J(y, u) for all (y, u) ∈ Yp × Uad with e(y, u) = 0 in Z∗.

Note that the parameter p ∈ (2, 6) is determined by means of the well-posedness of the Cattaneo–
LITT model and depends on the domain and the upper and lower bounds of the optical
coefficients, see Theorem 2.5.
In the following lemma, we list some useful properties of the cost functional J , which allow us to
treat the minimization problem (3.7) in the framework of well-studied optimal-control problems.

Lemma 3.2 — Properties of the cost functional.

1. The cost functional J defined in (3.6) is sequentially weakly lower semicontinuous, i.e.,
for (yk, uk)k∈N ⊂ Y (0)×U and (y, u) ∈ Y (0)×U , the weak convergence (yk, uk) ⇀ (y, u)

in Y (0) × U implies J(y, u) ≤ lim inf
k→∞

J(yk, uk).

2. The cost functional J defined in (3.6) is continuously Fréchet differentiable at every
(y, u) ∈ Y (0) × U with

DyJ(y, u) : Y (0) → R, hy 7→ (ϑ(t∗;u)− ϑd, hy)L2(Ω) ,

DuJ(y, u) : U → R, hu 7→ λ1

∫
Ω

hu dx + λ2 (u, hu)L2(Ω)

(3.8)

for all (hy, hu) ∈ Y (0) × U .

This is a classical result and we refer to Appendix A.2.1 for details.

The properties of the cost functional help us to investigate whether there exist solutions of the
stated minimization problem (3.7). The answer is given in the next theorem, which is proven
analogously in [219, Sec. 3, Thm. 3.1, p. 13] for the classical LITT model.
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Theorem 3.3 — Existence of a minimizer.
Let Assumptions 2.1 and 2.2 hold, and let ϑd ∈ L2(Ω). Then, for a certaina p ∈ (2, 6), there
exists at least one minimizer (ȳ, ū) ∈ Yp × Uad which solves the constrained minimization
problem (3.7).
a Note that the parameter p is determined by means of the well-posedness of the Cattaneo–LITT model, see Theorem

2.5.

Remark 3.4 — A minimizer might not be unique.
Wedonot obtain necessarily a uniqueminimizer of problem (3.7) because the set ofminimizers
might not be convex due to the nonlinear state constraints given by e(y, u) = 0 in Z∗, cf. [219,
Sec. 3, p. 13].

Proof of Theorem 3.3.

Construct a minimizing sequence with a weak limit fulfilling the constraints.

The proof follows a standard procedure (cf. [93, Sec. 1.5.1, Thm. 1.43, p. 53], [93, Sec. 1.5.2, Thm.
1.45, p. 55]), like demonstrated in the proof of [219, Sec. 3, Thm. 3.1, p. 13].

(I) First, we construct a minimizing sequence.

The feasible set Fad = {(y, u) ∈ Yp × Uad | e(y, u) = 0 in Z∗} is nonempty (e.g., for u ≡ 0,
there is a solution given by Theorem 2.5). By definition of Uad, the cost functional J ≥ 0 is
bounded from below on Fad. Thus, we can define the infimum J∗ := inf

(y,u)∈Fad
J(y, u) ≥ 0,

and there is a minimizing sequence ((yk, uk))k∈N ⊂ Fad such that

lim
k→∞

J(yk, uk) = J∗.

By definition of Uad, it holds 0 ≤ uk ≤ 1 a.e. in Ω for all k ∈ N, thus, the sequence (uk)k∈N is
bounded in L2(Ω). Furthermore, we can bound the blood-perfusion rate in (3.1) uniformly
for all occurring controls u ∈ Uad, i.e.,

0 ≤ ξ ≤ ‖ξ(u)‖L∞(Ω) ≤ ξ a.e. in Ω,

and, thus, we can bound all state vectors y = y(u) uniformly in the Yp norm for a certain
p > 2 according to Theorem 2.5.

Since Wϑ, L2(Ω) and Lp(I;W 1,p(Ω)), for p ∈ (2, 6), are reflexive4, we can consecutively
extract weakly convergent subsequences such that ukl ⇀ ū in L2(Ω), φkl ⇀ φ̄ in
Lp(I;W 1,p(Ω)) and ϑkl ⇀ ϑ̄ in Wϑ, where we reuse the same index kl for a better
readability. With Lemma B.4 on the Cartesian product of normed spaces, we get ykl ⇀ ȳ

4 In fact,Wϑ is a Hilbert space, see Section 2.2.1. See further Lemma B.12 on reflexive Banach spaces and Lemma B.24
on Sobolev spaces.



48 Chapter 3. Identification of the blood-perfusion rate

in Lp(I;W 1,p(Ω))×Wϑ, which implies5 also weak convergence in Y (0).

Lemma 3.2 implies that the cost functional J is weakly lower semicontinuous, so we have

J(ȳ, ū) ≤ lim inf
l→∞

J(ykl , ukl) = J∗,

which directly implies J(ȳ, ū) = J∗.

(II) Next, we need to show (ȳ, ū) ∈ Yp × Uad.

Note that the set Uad is a nonempty, convex and closed subset6 of the Banach space U . A
classical result on convex and closed subsets of Banach spaces now implies7 that Uad is
weakly sequentially closed and, thus, ū ∈ Uad.

By means of Theorem 2.5, we have that the sequence (ϑk)k∈N ⊂ C0, 18 (Q) is uniformly
bounded, i.e., ‖ϑk‖C0, 1

8 (Q)
≤ C for all k ∈ N, where C does not depend on k.

The compact and, thus, continuous embedding8 C0, 18 (Q) ↪→↪→ C0(Q) implies that the
sequence (ϑk)k∈N is bounded in C0(Q). Furthermore, we get that the sequence is uni-
formly equicontinuous.9 The theorem of Arzelà–Ascoli10 now implies that the set
{ϑk | k ∈ N} ⊂ C0(Q) is relatively compact, which yields an element ϑ̂ ∈ C0(Q)

and yet another subsequence (reusing the same index as above) such that ϑkl → ϑ̂ in C0(Q).
The strong convergence in C0(Q) ↪→ L1(Q) implies the weak convergence11 in L1(Q)∗.
Furthermore, withWϑ ⊂ L1(Q), we get L1(Q)∗ ⊂ W ∗ϑ . Overall, we get

ϑkl ⇀ ϑ̄ in L1(Q) and ϑkl ⇀ ϑ̂ in L1(Q).

The uniqueness of the weak limit12 implies ϑ̄ = ϑ̂ in L1(Q), i.e., ϑ̄ = ϑ̂ a.e. in Q. As shown
above, we already have ȳ ∈ Lp(I;W 1,p(Ω))×Wϑ, so, ultimately, we get ȳ ∈ Yp.

(III) Last, we need to show that (ȳ, ū) fulfills the constraint e(ȳ, ū) = 0 in Z∗.

Note that, for ϕ ∈ L2(I;H1(Ω)), the maps

gl : L
2(Ω)→ R, u 7→

∫ T

0

∫
Ω

(ξin − ξout)u(x)ϑkl(t, x)ϕ(t, x) dx dt ,

g : L2(Ω)→ R, u 7→
∫ T

0

∫
Ω

(ξin − ξout)u(x)ϑ̄(t, x)ϕ(t, x) dx dt

5 See Lemma B.17 on dual spaces of subsets. Note that Lp(I;W 1,p(Ω)) ↪→ L2(I;H1(Ω)) andWϑ ↪→W (0).
6 Cf. [217, Sec. 2.5.1, p. 39]. Let uk → u in L2(Ω) with (uk)k∈N ⊂ Uad. Then there is a subsequence (ukl )l∈N ⊂ Uad
which converges to u a.e. in Ω [236, App. (36a), p. 1023]. Thus, for all ε > 0 and a.a. x ∈ Ω, we can find an L ∈ N such
that for all l ≥ L it holds

∣∣ukl (x)− u(x)
∣∣ < ε. This implies u(x) ∈ [0, 1] for a.a. x ∈ Ω and, thus, u ∈ Uad, i.e., Uad is

closed in U .
7 Classical result on convex and closed subsets of Banach spaces, see Lemma B.15.
8 See Theorem B.59 on embeddings in Hölder spaces.
9 In fact, for ε > 0, choose δ :=

(
ε

2C

)1/α with α = 1
8
. Then, for k ∈ N and x, y ∈ Q with ‖x− y‖ < δ, it holds

|ϑk(x)− ϑk(y)| ≤ C ‖x− y‖α < ε. See further Theorem B.68 for the definition of equicontinuous functions.
10 See the theorem of Arzelà–Ascoli B.68.
11 See [4, Sec. 6, Bem. 6.3, p. 238].
12 See Remark B.8 on the uniqueness of weak limits.
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define elements in L2(Ω)∗. It holds13 gl → g in L2(Ω)∗ and14

〈gl, ukl〉L2(Ω) → 〈g, ū〉L2(Ω) for l→∞. (3.9)

Furthermore, the map

ĝ : Wϑ → R, ϑ 7→
∫ T

0

τ 〈ϑ′′(t), ϕ(t)〉H1(Ω)

+ (ϑ′(t), ϕ(t))L2(Ω) + κ (∇ϑ(t),∇ϕ(t))L2(Ω)

+ ξout (ϑ(t), ϕ(t))L2(Ω) + (ahϑ(t), ϕ(t))L2(Γ) dt

defines an element inW ∗ϑ , and the weak convergence ϑkl ⇀ ϑ̄ implies

〈ĝ, ϑkl〉Wϑ
→
〈
ĝ, ϑ̄
〉
Wϑ

for l→∞. (3.10)

The strong convergence ϑkl → ϑ̄ in C0(Q) together with ‖ϑkl‖C0(Q) ≤M for all l ∈ N, for a
certainM ∈ R>0, implies that also the limit ϑ̄ ∈ C0(Q) ↪→ L∞(Q) is bounded byM .

Lemma 2.9 yields that there is a constant C(M) such that∥∥f(ϑkl)− f(ϑ̄)
∥∥
Lq(Q)

≤ C(M)
∥∥ϑkl − ϑ̄∥∥Lq(Q)

for f ∈ {σa, D} and all q ∈ (1,∞), thus, the optical coefficients σa(ϑkl), D(ϑkl) converge
strongly in Lq(Q).

Like in the proof of Lemma 2.12, the strong convergence of the coefficients σa(ϑkl), D(ϑkl)

combined with the weak convergence φkl ⇀ φ̄ in Lp(I;W 1,p(Ω)), together with the limits
in (3.9) and (3.10), allows passing to the limit in the weak formulation, and we get

0 = 〈e(ykl , ukl), ϕ〉Z∗,Z → 〈e(ȳ, ū), ϕ〉Z∗,Z for all ϕ ∈ Z.

This implies 〈e(ȳ, ū), ϕ〉Z∗,Z for all ϕ ∈ Z. Thus, ȳ = (φ̄, ϑ̄) is indeed a solution of the
Cattaneo–LITT model.

�

13 In fact, gl is linear by construction, and, with Hölder’s inequality B.27, it holds

|gl(u)| ≤
∥∥ϑkl∥∥C0(Q)

∫ T

0

∫
Ω
|(ξin − ξout)u(x)ϕ(t, x)|dx dt ≤ C |ξin − ξout|

∥∥ϑkl∥∥C0(Q)
‖ϕ‖L2(Q) ‖u‖L2(Ω) .

This holds analogously for g. The convergence gl → g follows form the strong convergence ϑkl → ϑ̄ in C0(Q).
14 See Lemma B.9 on limits of sequences in dual pairings.
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3.2 First-order optimality conditions
We derive necessary first-order optimality conditions for the optimal-control problem (3.7).
These consist of three ingredients: the state system, the adjoint state system and a variational

inequality.
The unique solvability of the Cattaneo–LITT model for u ∈ Uad (see Theorem 2.5) allows us to
define the control-to-state map

S : Uad → Yp, u 7→ y (3.11)

where y is the unique state vector of the Cattaneo–LITT model for a given control u according to
Theorem 2.5, and the reduced cost functional

Ĵ : Uad → R, u 7→ J(S(u), u). (3.12)

The standard approach, e.g., [93, Sec. 1.7, p. 65 ff.], [217, Sec. 2.8, p. 49 ff.], would be to show
that the reduced cost functional is Gâteaux differentiable and to proceed from there. In our
situation, we face the following problem with this standard procedure. On the one hand, we
choose the control space U = L2(Ω) because it allows us to describe descent directions by means
of the Riesz-representation theorem. This is especially useful for the numerical treatment of this
optimization problem with gradient-descent algorithms. On the other hand, the control-to-state
map is defined only for controls in the admissible set Uad. Unfortunately, the set Uad does not
contain any inner points w.r.t. the standard topology induced by the L2(Ω) norm. Furthermore,
there is no open15 set V with Uad ⊂ V ⊂ U such that the control-to-state map would be well
defined for controls in u ∈ V .16
Thus, the reduced cost functional can not be Gâteaux differentiable according to the standard
definition.17 The authors in [38] faced a similar problem. We follow their lead and adapt the
structure of [38, Sec. 3, p. 443 ff.] to our situation.

Definition 3.5 — Admissible direction [38, Sec. 3.1, p. 446].
We call h ∈ U an admissible direction w.r.t. ū ∈ Uad if there exists a λ̄ ∈ R>0 such that
uλ := ū+ λh ∈ Uad for all λ ∈ R>0 with 0 < λ ≤ λ̄.

Remark 3.6 — Admissible direction.
Definition 3.5 together with the definition of Uad in (3.4) implies that admissible directions
are elements of L∞(Ω).

15 Open w.r.t. the standard topology induced by the L2(Ω) norm.
16 In fact, this can be shown by the following example. For readability, we consider the special case Ω = (0, 1) ⊂ R.
Let u ∈ Uad and define vδ := 1√

δ
1[0,δ], for δ ∈ (0, 1), where 1[0,δ] : Ω → {0, 1} is the indicator function of the

interval [0, δ]. It holds vδ ∈ L2(Ω) and ‖vδ‖L2(Ω) = 1. For the control-to-state map to be well defined (see
equation (3.1) and Assumption 2.2) for an input ū in the neighborhood of u, we need −ε0 ≤ ū ≤ C a.e. in Ω for
ε0 =

ξout−ξ
ξin−ξout and C = ξ−ξout

ξin−ξout . For ε > 0, we define δ := ε2

4(ε0+1)2+1
and the function ū := u − ε

2
vδ . It holds

‖ū− u‖L2(Ω) = ε
2
‖vδ‖L2(Ω) < ε, but for a.a. x ∈ (0, δ) it holds ū(x) ≤ 1− ε

2
√
δ
< −ε0. This proves the existence

of an element in the ε-neighborhood of u for which the control-to-state map is a-priori not well defined (based only on
Theorem 2.5).

17 See [93, Sec. 1.4.1, Def. 1.29, p. 50], [217, Sec. 2.6, p. 44], [236, §25.5, p. 509].
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Definition 3.7 — Directionally differentiablea.
Let X,Y be real Banach spaces, V ⊂ X be a convex subset and f : V → Y a function. We
call f directionally differentiable at x̄ ∈ V in direction h ∈ X , if there is a λ̄ ∈ R>0 such that the
function

f̄ : [0, λ̄)→ Y, λ 7→ f(x̄+ λh)

is well defined and differentiable in zero, i.e., there exists an element Df̄ ∈ Y such that∥∥f̄(λ)− f̄(0)− λDf̄
∥∥
Y
∈ o(λ),

i.e.,
f̄(λ)− f̄(0)− λDf̄

λ
→ 0 in Y for λ→ 0, λ ≥ 0.

We call Dxf(x̄)[h] := Df̄ the directional derivative at x̄ in direction h.
a This definition differs from the standard formulation, e.g., [93, Sec. 1.4.1, Def. 1.29, p. 50], because the subset V is
not assumed to be open.

Let ū ∈ Uad and let h be an admissible direction w.r.t. ū. Like in [38], our goal is to determine the
directional derivative of the reduced cost functional (3.12) at ū ∈ Uad in direction h, which is
denoted by DuĴ(ū)[h]. This requires the directional derivative DuS(ū)[h] of the control-to-state
map at ū in direction h. We investigate this directional derivative in two steps. First, we derive
the linearized state system. Second, we show by means of the definition that the solution of the
linearized state system is in fact the directional derivative of the control-to-state map.

3.2.1 Linearized state system

First, we need to discuss the differentiability of the optical coefficients, which introduce
nonlinearities in the Cattaneo–LITT model.

Lemma 3.8 — Differentiability of the optical coefficients (cf. [219, Sec. 2.1, Lem. 2.1, p. 7], [219, Sec.
2.1, Lem. 2.2, p. 7]).
The coefficients σa, D in (2.8) viewed as maps from C0(Q) to C0(Q) are well defined and
continuously Fréchet differentiable. The derivatives at ϑ ∈ C0(Q) in an arbitrary direction
h ∈ C0(Q) are given by

Dϑσa(ϑ)[h] = (σa,n − σa,c)Dϑγ(ϑ)[h],

DϑD(ϑ)[h] = − ε2
kn

3 (σ̂t(ϑ))
2 (σ̂t, n − σ̂t, c)Dϑγ(ϑ)[h],

witha

Dϑγ(ϑ)[h](t, x) = −γ(ϑ)(t, x)

∫ t

0

d′Arr(ϑ(s, x))h(s, x) ds for (t, x) ∈ Q.

a The function dArr is defined in equation (2.9).

Lemma 3.8 is proven in a more general case in [219, Sec. 2.1, Lem. 2.2, p. 7]. We especially refer
to [219, Sec. 2.2, Rem. 2.1, p. 7]. The proof uses a formulation of the coefficients as a chain of
Nemytskii operators.
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Note that, for a fixed ϑ ∈ C0(Q), it holds

‖Dϑγ(ϑ)[h]‖C0(Q) ≤ C(ϑ)

∫ t

0

‖h(s)‖C0(Ω) ds for all h ∈ C0(Q), (3.13)

which will be a useful estimate to prove Lemma 3.9 below.

The differentiability of the optical coefficients allows us to define the followingweak formulation of
the linearized state system at (y, u) = ((φ, ϑ), u) := (S(u), u) ∈ Yp×Uad in the admissible direction
h ∈ L∞(Ω) w.r.t. u: find (ρ, η) ∈ L2(I;H1(Ω))× (Wϑ ∩ C0(Q)) such that

∫ T

0

Fr(ρ(t), ϕ1(t);ϑ, t) dt

= −
∫ T

0

(DϑD(ϑ)[η](t)∇φ(t),∇ϕ1(t))L2(Ω) dt

−
∫ T

0

(Dϑσa(ϑ)[η](t)φ(t), ϕ1(t))L2(Ω) dt ,∫ T

0

τ 〈η′′(t), ϕ2(t)〉H1(Ω) + (η′(t), ϕ2(t))L2(Ω) + Fh(η(t), ϕ2(t);u) dt

=

∫ T

0

(σ̂σa(ϑ)(t)ρ(t), ϕ2(t))L2(Ω) + (σ̂Dϑσa(ϑ)[η](t)φ(t), ϕ2(t))L2(Ω) dt

+

∫ T

0

((ξin − ξout)(ϑb − ϑ(t))h, ϕ2(t))L2(Ω) dt ,

η(0) = 0,

η′(0) = 0



(3.14)

for all ϕ = (ϕ1, ϕ2) = L2(I;H1(Ω))× L2(I;H1(Ω)). We call the vector (ρ, η) the linearized state
vector corresponding to the control u. Note that the control u enters the linearized state system
(3.14) implicitly via the state vector (φ, ϑ) = S(u), and explicitly via the blood-perfusion rate in
the bilinear form Fh.

Lemma 3.9 — Existence of a unique linearized state.
Let Assumptions 2.1 and 2.2 hold, and let (φ, ϑ) = S(u) ∈ Yp with p > 3 be the state vector of
the Cattaneo–LITT model for a given control u ∈ Uad.a

For every admissible direction h ∈ L∞(Ω) w.r.t. u, the linearized state system (3.14) has a
unique solution in L2(I;H1(Ω)) × (Wϑ ∩ C0(Q)), i.e., there exists a unique linearized state
vector (ρ, η) ∈ L2(I;H1(Ω)) × (Wϑ ∩ C0(Q)) which fulfills the weak formulation (3.14) for
all ϕ ∈ L2(I;H1(Ω))× L2(I;H1(Ω)).
a The assumption p > 3 is justified by Lemma 2.12 and Remark 2.18.

The proof of Lemma 3.9 follows a standard procedure, but it is rather technical. The idea is
to freeze the linear state in the memory term

∫ t
0
η(s) ds on the right-hand side, solve the two

equations for the two components of the linearized state vector consecutively using standard
results and, finally, apply Banach’s fixed point theorem in a specially weighted space. We
provide the details in Appendix A.2.2.
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3.2.2 Directional derivatives

Let ū ∈ Uad, h ∈ L∞(Ω) be an admissible direction w.r.t. ū, and let λ ∈ R>0 such that
u := ū+ λh ∈ Uad. With the state vectors of the Cattaneo–LITT model y = (φ, ϑ) := S(u) and
ȳ = (φ̄, ϑ̄) := S(ū) and the linearized state vector (ρ̄, η̄) corresponding to the control ū, we define

dϑλ := ϑ− ϑ̄− λη̄ and dφλ := φ− φ̄− λρ̄. (3.15)

For a better readability, we omit the superscript λ of dϑλ and dφλ.
Analogously to (3.15), we subtract the equations of the state system (2.10) for ȳ and λ-times the
equations of the linearized system (3.14) for (ρ̄, η̄) from the equations of the state system (2.10)
for y, and get that the differences (dφ, dϑ) fulfill

∫ T

0

Fr(dφ(t), ϕ1(t); ϑ̄, t) dt

= −
∫ T

0

(
(D(ϑ)(t)−D(ϑ̄)(t)− λDϑD(ϑ̄)[η̄](t))∇φ(t),∇ϕ1(t)

)
L2(Ω)

dt

−
∫ T

0

λ
(
DϑD(ϑ̄)[η̄](t)(∇φ(t)−∇φ̄(t)),∇ϕ1(t)

)
L2(Ω)

dt

−
∫ T

0

(
(σa(ϑ)(t)− σa(ϑ̄)(t)− λDϑσa(ϑ̄)[η̄](t))φ(t), ϕ1(t)

)
L2(Ω)

dt

−
∫ T

0

λ
(
Dϑσa(ϑ̄)[η̄](t)(φ(t)− φ̄(t)), ϕ1(t)

)
L2(Ω)

dt ,∫ T

0

τ 〈(dϑ)′′(t), ϕ2(t)〉H1(Ω) + ((dϑ)′(t), ϕ2(t))L2(Ω) + Fh(dϑ(t), ϕ2(t); ū) dt

=

∫ T

0

(
σ̂(σa(ϑ)(t)− σa(ϑ̄)(t)− λDϑσa(ϑ̄)[η̄](t))φ(t), ϕ2(t)

)
L2(Ω)

dt

+

∫ T

0

(
σ̂σa(ϑ̄)(t)(φ(t)− φ̄(t)− λρ̄(t)), ϕ2(t)

)
L2(Ω)

dt

+

∫ T

0

λ
(
σ̂Dϑσa(ϑ̄)[η̄](t)(φ(t)− φ̄(t)), ϕ2(t)

)
L2(Ω)

dt

+

∫ T

0

λ
(
(ξin − ξout)(ϑ̄(t)− ϑ(t))h, ϕ2(t)

)
L2(Ω)

dt ,

dϑ(0) = 0,

(dϑ)′(0) = 0



(3.16)

for all ϕ = (ϕ1, ϕ2) ∈ L2(I;H1(Ω))× L2(I;H1(Ω)).

Lemma 3.10 — Directional derivatives of the control-to-state map.
Let Assumptions 2.1 and 2.2 hold. We consider the control-to-state map in (3.11) as functiona

S : Uad → Y (0), u 7→ (φ, ϑ),

which is well defined because of the embedding Yp ↪→ Y (0). Let ū ∈ Uad be an admissible
control and let h ∈ L∞(Ω) be an admissible direction w.r.t. ū. Then the corresponding
linearized state vector (ρ̄, η̄) ∈ L2(I;H1(Ω)) × (Wϑ ∩ C0(Q)) is the directional derivative of
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the control-to-state map at ū in direction h, i.e.,

λ−1
(∥∥dφλ

∥∥
L2(I;H1(Ω))

+
∥∥dϑλ

∥∥
L2(I;H1(Ω))

+
∥∥(dϑλ)′

∥∥
L2L2(Ω)

)
→ 0 for λ→ 0.

a Note that the evaluation of ϑ(T ) in the reduced cost functional is well defined by means of the embedding
W (0) = L2(I;H1(Ω)) ∩H1(I;L2(Ω)) ↪→ C0(I;L2(Ω)), see Remark 2.3.

Proof. We look at the first equation in (3.16). We choose ϕ1 = dφ and get with the coercivity of
the bilinear form Fr(·, ·; ϑ̄, t) and Hölder’s inequality18

λ−1 ‖dφ‖L2(I;H1(Ω)) ≤ C
[
λ−1

∥∥D(ϑ)−D(ϑ̄)− λDϑD(ϑ̄)[η̄]
∥∥
C0(Q)︸ ︷︷ ︸

→0

‖φ‖L2(I;H1(Ω))

+ λ−1
∥∥σa(ϑ)− σa(ϑ̄)− λDϑσa(ϑ̄)[η̄]

∥∥
C0(Q)︸ ︷︷ ︸

→0

‖φ‖L2(I;H1(Ω))

+
(∥∥DϑD(ϑ̄)[η̄]

∥∥
C0(Q)

+
∥∥Dϑσa(ϑ̄)[η̄]

∥∥
C0(Q)

)∥∥φ− φ̄∥∥
L2(I;H1(Ω))︸ ︷︷ ︸
→0

]
.

The right-hand side tends to zero for λ → 0 because of the differentiability of the optical
coefficients19 and the continuity of the state vector w.r.t. the control20. This implies that ρ̄ is in
fact the directional derivative of φ(u) at u = ū in direction h.
Next, we look at the equation for dϑ. We choose ϕ2 = (dϑ)′ and get with the coercivity of the
bilinear form Fh, Hölder’s inequality and the derivative of the norm21 (analogously to the proof
of Theorem 2.17)

λ−1
(
‖dϑ‖L2(I;H1(Ω)) + ‖(dϑ)′‖L2(I;L2(Ω))

)
≤ C

[
λ−1

∥∥σa(ϑ)− σa(ϑ̄)− λDϑσa(ϑ̄)[η̄]
∥∥
C0(Q)︸ ︷︷ ︸

→0

‖φ‖L2(Q)

+ λ−1 ‖dφ‖L2(Q)︸ ︷︷ ︸
→0

∥∥σa(ϑ̄)
∥∥
C0(Q)

+ ‖h‖L∞(Ω)

∥∥ϑ̄− ϑ∥∥
L2(Q)︸ ︷︷ ︸

→0

+
∥∥Dϑσa(ϑ̄)[η̄]

∥∥
C0(Q)

∥∥φ− φ̄∥∥
L2(Q)︸ ︷︷ ︸

→0

]
.

This implies that η̄ is in fact the directional derivative of ϑ(u) at u = ū in direction h.
�

3.2.3 Variational inequality

In this section, we derive a variational inequality in terms of the linearized state vector, which
yields a necessary first-order condition for an optimal control. In the subsequent section,
we reformulate the variational inequality in terms of adjoint state vectors, which has several
advantages from a practical point of view as described therein.

18 See Hölder’s inequality B.27.
19 See Lemma 3.8.
20 See Lemma 2.19. In fact, with λ→ 0, we also have u→ ū in L2(Ω) and, thus, φ→ φ̄ in L2(I;H1(Ω)).
21 See Lemma B.38 on the derivative of the norm.
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The next lemma is analog to [38, Sec. 3.2, Cor. 3.4, p. 454].

Lemma 3.11 — Variational inequality.
Let ū ∈ Uad be a (not necessarily optimal) control of the problem (3.7) with associated
state vector of the Cattaneo–LITT model ȳ = (φ̄, ϑ̄) = S(ū) ∈ Yp and let h ∈ L∞(Ω) be an
admissible direction w.r.t. ū. Then the reduced cost functional is directionally differentiable at
ū in direction h and it holds

DuĴ(ū)[h] =

∫
Ω

(ϑ(T ; ū)− ϑd) η̄(T ) + λ1h+ λ2ūhdx (3.17)

where (ρ̄, η̄) is the linearized state vector corresponding to ū.
If ū is an optimal control for the problem (3.7), it further holds

DuĴ(ū)[u− ū] ≥ 0 for all u ∈ Uad.

Proof. We follow the proof of [38, Sec. 3.2, Cor. 3.4, p. 454]. Let h ∈ L∞(Ω) be an admissible
direction w.r.t. ū.
It holds

J(S(ū+ λh), ū+ λh)− J(S(ū), ū)

λ
=
J(S(ū+ λh), ū+ λh)− J(S(ū+ λh), ū)

λ

+
J(S(ū+ λh), ū)− J(S(ū), ū)

λ
.

(3.18)

The left-hand side of (3.18) converges for λ → 0 to the directional derivative DuĴ(ū)[h]. The
derivative of the cost functional (3.8) implies that the first term on the right-hand side converges
for λ→ 0 to λ1

∫
Ω
hdx + λ2

∫
Ω
ūhdx .

The chain rule22 implies that the second term on the right-hand side converges for λ → 0 to∫
Ω

(ϑ(T ; ū) − ϑd)η̄(T ) dx (with t∗ = T ), where we used that we can identify the directional
derivative of the control-to-state map η̄ = DuS(ū)[h] by means of Lemma 3.10.

Next, we assume ū to be an optimal control and define h = u− ū, for an arbitrary u ∈ Uad. Note
that the direction h is admissible w.r.t. ū because the admissible set Uad is convex. From the
optimality of ū it follows

J(S(ū), ū) ≤ J(S(ū+ λh), ū+ λh)

and, thus,

0 ≤ J(S(ū+ λh), ū+ λh)− J(S(ū), ū)

λ
→ DuĴ(ū)[u− ū] for λ→ 0,

which yields the variational inequality.
�

Lemma 3.11 yields an abstract necessary condition for an optimal control, which is of limited use
from a practical point of view for two reasons though. First, for each admissible direction h, we
would need to solve the linearized state system (3.14) to obtain the corresponding linearized state
vector (ρ, η) before we could evaluate the variational inequality (3.17). Second, if we aim to solve

22 Analog to the chain rule B.42 for Fréchet-differentiable functions.
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this optimization problem numerically by means of a gradient-descent strategy, this formulation
of the variational inequality does not give us any hint for a potential descent direction.
To this, in the next step, we eliminate the linearized state η from the variational inequality (3.17)
by means of the adjoint states.

3.2.4 Adjoint state system

The adjoint state system of the Cattaneo–LITT model corresponding to the cost functional (3.5) at
((φ, ϑ), u) = (S(u), u) ∈ Yp × Uad is, for a better readability, stated in the strong formulation
given as follows:

−div(D(ϑ)∇z1) + σa(ϑ)(z1 − σ̂z2) = 0 in (0, T )× Ω,

τz′′2 − z′2 − div(κ∇z2) + ξ(u)z2 + fD + fσa = 0 in (0, T )× Ω,

ahz2 + κ∇z2 · n = 0 on (0, T )× Γ,

arz1 +D(ϑ)∇z1 · n = 0 on (0, T )× Γ,

z2(T )− τz′2(T ) = ϑ(T )− ϑd in Ω,

τz2(T ) = 0 in Ω,


with23

fσa = −(σa,n − σa,c)d′(ϑ)

∫ T

t

γ(ϑ)(s)φ(s)(z1(s)− σ̂z2(s)) ds ,

fD = (σ̂t, n − σ̂t, c)d′(ϑ)

∫ T

t

1

3 (σ̂t(ϑ)(s))
2 γ(ϑ)(s)

(
(∇φ(s))T · ∇z1(s)

)
ds

and
d′(ϑ)(t, x) = A exp

(
− E

ϑ(t, x)

)
E

ϑ(t, x)2
.

The weak formulation of the adjoint state system at ((φ, ϑ), u) is given as follows: find
(z1, z2) ∈ L2(I;H1(Ω)) × Wϑ such that

∫ T

0

Fr(z1(t), ϕ1(t);ϑ, t) dt

=

∫ T

0

σ̂ (σa(ϑ)(t)z2(t), ϕ1(t))L2(Ω) dt ,∫ T

0

τ 〈z′′2 (t), ϕ2(t)〉H1(Ω) − (z′2(t), ϕ2(t))L2(Ω) + Fh(z2(t), ϕ2(t);u) dt

= −
∫ T

0

(fD(z1)(t) + fσa(z1, z2)(t), ϕ2(t))L2(Ω) dt ,

z2(T )− τz′2(T ) = ϑ(T )− ϑd,
τz2(T ) = 0



(3.19)

for all ϕ ∈ L2(I;H1(Ω)) × L2(I;H1(Ω)). We call the vector (z1, z2) the adjoint state vector
corresponding to the control u.

23 RememberD = (3σ̂t)−1.
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Lemma 3.12 — Existence of a unique adjoint state.
Let (φ, ϑ) = S(u) ∈ Yp be a sufficiently regular state vector of the Cattaneo–LITT model for a
given control u ∈ Uad, e.g., witha φ ∈ L∞(I;W 1,∞(Ω)). Then, for every admissible direction
h ∈ L∞(Ω) w.r.t. u, the adjoint state system (3.19) has a unique weak solution, i.e., there
exists a unique adjoint state vector (z1, z2) ∈ L2(I;H1(Ω)) ×Wϑ which fulfills (3.19) for all
ϕ ∈ L2(I;H1(Ω))× L2(I;H1(Ω)).
a Note that this in fact an assumption because, in general, we can prove only φ ∈ Lp(I;W 1,p(Ω)) for a certain
p ∈ (2, 6), see Theorem 2.5. See also Remark 2.18.

The adjoint system (3.19) has a similar structure as the linearized state system (3.14), and Lemma
3.12 can be shown similarly to the proof of Lemma 3.9. We provide details in Appendix A.2.3.

Lemma 3.13 — Adjoint representation of the directional derivative.
Let Assumptions 2.1 and 2.2 hold. Let u ∈ Uad be a (not necessarily optimal) control of the
problem (3.7) with associated state vector of the Cattaneo–LITT model y = (φ, ϑ) = S(u) ∈ Yp
and let (z1, z2) ∈ L2(I;H1(Ω))×Wϑ be the corresponding adjoint state vector. Furthermore,
let h ∈ L∞(Ω) be an admissible direction w.r.t. u. Then the reduced cost functional is
directionally differentiable at u in direction h and it holds

DuĴ(u)[h] =

(
λ1 + λ2u+

∫ T

0

(ξin − ξout)(ϑb − ϑ(t))z2(t) dt , h

)
L2(Ω)

.

The exchange of the linearized state vector by the adjoint state vector in the variational inequality
is a standard technique in optimal-control theory. The proof is based on a repeated integration
by parts and is given in the Appendix A.2.4. The advantage of this procedure is that we separate
the direction u− ū from all other terms in the variational inequality. We can interpret the term
λ1 + λ2u+

∫ T
0

(ξin − ξout)(ϑb − ϑ(t))z2(t) dt as Riesz representative of the directional-derivatives
operatorDuĴ(u)w.r.t. the spaceL2(Ω). In Section 3.3, we employ this representation to formulate
a descent algorithm for the numerical solution of the optimization problem.

Corollary 3.14 — Variational inequality (adjoint formulation) (cf. [38, Sec. 3.3, Lem. 3.5, p. 455]).
Let Assumptions 2.1 and 2.2 hold. Let ū ∈ Uad be an optimal control for the problem (3.7)
with associated state vector of the Cattaneo–LITT model ȳ = (φ̄, ϑ̄) = S(ū) ∈ Yp. Then it
holds(

λ1 + λ2ū+

∫ T

0

(ξin − ξout)(ϑb − ϑ̄(t))z̃2(t) dt , u− ū
)
L2(Ω)

≥ 0 for all u ∈ Uad

where (z̃1, z̃2) is the adjoint state vector corresponding to ū.

Corollary 3.14 followsdirectly from the variational inequality (3.17) and the adjoint representation
of the directional derivative in Lemma 3.13.
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3.2.5 Sparse control

We are now able to motivate the L1(Ω) term in the cost functional in the view of sparsity.
Note that the L1(Ω) term in the cost functional (3.5) is a tool to promote a sparse control. A
sparse spatial structure of the control might be desirable for the interpretation of the function u
as indicator function for large vessels.
In Remark 3.4, we discussed that the optimal control does not necessarily need to be unique. In
fact, if we compare the computed optimal controls of Experiments 4.8 and 4.11, we observe that
different initial guesses for the descent algorithm might lead to different optimal controls, or
more precisely, to different stationary points. Heuristically speaking, we have several candidates
for an optimal control, and the L1(Ω) regularization helps us to “pick” one with a sparse
structure.
This becomes even more important later in the real application in the presence of measurement
noise (cf. Experiment 4.10), where we want to avoid overfitting to the disturbed data.
For details, we refer to [26, 203], where the effect of such an L1(Ω) regularization was studied in
the context of elliptic optimal-control problems.

Let ū ∈ Uad be an optimal control for the problem (3.7), and (φ̄, ϑ̄) = S(ū) the associated state
vector of the Cattaneo–LITT model, (z̃1, z̃2) the associated adjoint state vector and λ1, λ2 ∈ R>0.
Lemma 3.13 implies that the directional-derivative operator DuĴ(ū) is a linear functional on the
set of admissible directions with L2(Ω) Riesz representative

g(u) := λ1 + λ2u+

∫ T

0

(ξin − ξout)(ϑb − ϑ̄(t))z̃2(u)(t) dt . (3.20)

A classical result of control theory24 now implies25

ū = P (ū− αg) for all α > 0,

where
P : L2(Ω)→ Uad, P (u)(x) = min(max(u(x), 0), 1) (3.21)

is the projection operator onto Uad. This implies for α = λ−1
2 that

ū = P

(
− 1

λ2

(
λ1 +

∫ T

0

(ξin − ξout)(ϑb − ϑ̄(t))z̃2(t) dt

))
. (3.22)

Analogously to the proof of [26, Sec. 3, Cor. 3.2, p. 800], it follows from (3.22) that

ū(x) = 0 if and only if
∫ T

0

(ξin − ξout)(ϑb − ϑ̄(t))z̃2(t) dt ≥ −λ1,

which implies sparsity of the optimal control ū according to [26, Sec. 3, Rem. 3.3, p. 801].

3.3 Optimization algorithm
For a general overview on optimizationmethods in Banach spaceswith focus on PDE-constrained
optimization, we refer to [93, Ch. 2, p. 97 ff.] and [217].

24 See Lemma B.69 on the projection operator. Note that Uad is a convex and closed subset of the Hilbert space U (see the
proof of Theorem 3.3), which is a prerequisite for the given lemma.

25 Cf. [38, Sec. 3.3, Rem. 5, p. 458], [26, Sec. 3, Cor. 3.2, p. 800].
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It is nontrivial to find a solution to the optimization problem (3.7): “Usually, we are already satisfied

if the method can be proved to converge to stationary points. These are points that satisfy the first-order

necessary optimality conditions.” [93, Sec. 2.1, p. 97]

The analytical representation of directional derivatives allows us to follow the first-optimize-then-

discretize approach. One advantage of this is that we can develop an optimization strategy inde-
pendent of the underlying discretization. For details on mesh dependence in PDE-constrained
optimization, we refer to [197].

There are several ways to deal with the control constraint u ∈ Uad. For simplicity, we follow the
suggestion in [217, Sec. 2.12.2, p. 76 ff.] and use a projected gradient method, which is described in
the following.
Let u ∈ Uad be an admissible control, (φ, ϑ) = S(u) the corresponding state vector of the
Cattaneo–LITT model and (z1, z2) the corresponding adjoint state vector.
First, we need to find a search direction. Usually, one would define the negative gradient as
search direction. Unfortunately, our reduced cost functional is not Gâteaux differentiable, so
formally we can not speak of gradients. Nevertheless, the adjoint formulation of the variational
inequality in Corollary 3.14 gives us a hint for potential descent directions. In case that the
adjoint representation g(u) of the directional derivative DuĴ(u)[h] in (3.20) is an admissible
direction, we obtain a descent direction by d := −g(u). In fact, there is an s > 0 such that
u(s) := u+ sd ∈ Uad and

Ĵ(u(s)) = Ĵ(u) + sDuĴ(u)[d] + o(s) = Ĵ(u)− s(g(u), g(u))L2(Ω)︸ ︷︷ ︸
>0

+ o(s) < Ĵ(u).

Second, we need to solve the line search problem

s∗ := argmin
s>0

Ĵ(P (u+ sd)), (3.23)

with the projection operator (3.21). Note that the projection operator ensures that the updated
controls P (u+ sd) ∈ Uad are admissible.
The solution of the line search problem (3.23) is nontrivial due to the projection, and one often
needs to settle for an “acceptable” step size determined by means of an inexact line search problem.
For simplicity, we choose the projected Armĳo rule (see [93, Sec. 2.2.2.1, p. 107]): for a given initial
step size s0 ∈ R>0, choose the maximum s ∈ {s0β

j | j ∈ N0} for which

Ĵ(P (u+ sd))− Ĵ(u) ≤ −γarm
s
‖P (u+ sd)− u‖2L2(Ω) , (3.24)

with constants γarm, β ∈ (0, 1). This technique is also called backtracking.26
Similar to [93, Sec. 2.2.2.1, p. 107], we define with g(u) in (3.20) the stationary measure as

Σ: Uad → R, u 7→ ‖u− P (u− g(u))‖L2(Ω) , (3.25)

which is used to terminate the descent method.
We summarize the solution strategy in the following algorithm.

26 See [106, Sec. 3.1, p. 39].
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� Algorithm 3.15 — (Gradient) descent strategy with Armijo line search.
Input:

• Admissible initial control u0 ∈ Uad,

• initial step size s0 ∈ R>0,

• Armĳo parameters γarm, β ∈ (0, 1),

• tolerances for the stationary measure tol_abs ∈ R>0, tol_rel ∈ (0, 1),

• iteration limits max_iter_descent, max_iter_armijo ∈ N.

Output: Improved control u ∈ Uad with Ĵ(u)� Ĵ(u0).

1: Compute r0 := Σ(u0).
2: for k = 0, . . . ,max_iter_descent− 1 do
3: Set search direction d := −g(u0) (see (3.20)).
4: Normalize directiona d := ‖d‖−1

L∞(Ω) d.
5: Set flag := “dec”; β̂ := β (decrease)
6: if Armĳo condition (3.24) (with u = uk, s = s0) is true then
7: Set flag := “inc”; β̂ := 1/β (increase)

8: for j = 1, . . . ,max_iter_armijo− 1 dob

9: Set step size s := s0β̂
j .

10: if Armĳo condition (3.24) (with u = uk) is true and flag = “dec” then
11: Set starting point for next iteration: uk+1 := P (uk + sd).
12: Exit inner loop (over j).
13: else if Armĳo condition (3.24) (with u = uk) is false and flag = “inc” then
14: Revert step size s := s0β̂

j−1.
15: Set starting point for next iteration: uk+1 := P (uk + sd).
16: Exit inner loop (over j).
17: else if j = max_iter_armijo− 1 and flag = “dec” then
18: Stop with warning: Line search failed: max. number of iterations reached.
19: else if j = max_iter_armijo− 1 and flag = “inc” then
20: Set starting point for next iteration: uk+1 := P (uk + sd).
21: Continue with warning: Line search stopped: max. number of iterations reached.

22: if Σ(uk+1) ≤ tol_abs + tol_rel× r0 then
23: Stop with ū := uk+1 (method converged successfully).

24: Stop with warning: Descent method failed: max. number of iterations reached.
a We did not assume g ∈ L∞(Ω) so far. Later in the implementation, this is well-defined because we approximate

the related functions in terms of finite elements.
b This loop starts from j = 1 because we checked the case for j = 0 in line 6. Nevertheless, in the implementation

this would require a check for the (uncommon) case of max_iter_armijo = 1 (otherwise uk+1 would be undefined
in line 22), which we omit here for readability.
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Unlike suggested in the classical Armĳo rule (3.24), we allow in Algorithm 3.15 the step sizes
also to increase if the first step size of each descent iteration is already admissible. We use a
constant initial step size, but we normalize the direction by means of its L∞(Ω) norm. Note that
so far we did not assume that the descent directions are elements of L∞(Ω), but this will be
the case in the implementation due to the finite-element approximation of the corresponding
functions. We consider the descent strategy to be converged once the stationary measure meets
the absolute or relative tolerance, as suggested in [106, Sec. 5.4.1, Eq. 5.18, p. 93].
We do not discuss the convergence of Algorithm 3.15, but we validate it by means of numerical
experiments in Section 4.3.
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Cattaneo–LITT model: numerical
experiments

Code is like humor: If you have to explain it, it’s bad.

Common opinion on source code and its documentation [14]

In this chapter, we perform several numerical experiments to gain a better understanding of the
Cattaneo–LITT model. We look at the effect of the delay parameter τ (see Section 2.1) on the
evolution of the solution over time. Furthermore, we quantify the effect of the blood-perfusion
rate on the estimated region of coagulation. Last, we introduce a numerical example to demon-
strate the automated identification of the parameter u in equation (3.1) based on measured
temperature data using derivative information and a descent algorithm.

The presented experiments should be understood as toy examples and the implementation as a
proof of concept rather than a highly-optimized code ready for deployment. The implementation
is aligned with the presentation within this thesis and is designed in a modularized way, which
makes it easy to couple different models for the subproblems and to exchange the used schemes
for discretization or optimization. Similarly to [121, 198], we follow the FAIR guiding principles
for scientific research [229] and make all codes, including files to reproduce the numerical results
of this thesis, publicly available online [8].

4.1 Discretization and details on the implementation
In Table 4.1 we list the versions of the software we used for the numerical experiments in this
thesis.

Discretization

We refer to [86], for a general discussion of the numerical treatment of partial differential
equations.
For the implementation, we divide the heat-transfer equation (1.1) by ρcp, which removes the
factor in front of the time derivative1. Next, we add the Cattaneo delay term τ∂ttϑ.
We follow Rothe’s method [86, Sec. 5.1.5, p. 343 ff.] for the discretization and first discretize the
time derivatives in the heat-transfer equation with a standard backward-finite-difference scheme

∂t ϑ(t) ≈ ϑ(t)− ϑ(t−∆t)

∆t
, ∂tt ϑ(t) ≈ ϑ(t)− 2ϑ(t−∆t) + ϑ(t− 2∆t)

∆t2
(4.1)

1 See also Remark 2.4.
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Software Version

Operating System: Ubuntu 18.04.5 LTS
Matlab [135] 9.4.0.813654 (R2018a)
Matlab’s Symbolic Math Toolbox Version 8.1 (R2018a)
Python [171] 3.8.1
NumPy [157] 1.18.1
SciPy [224] 1.4.1
FEniCS [3] 2019.1.0
dolfin-adjoint [144] 2019.1.0
Pint [83] 0.10.1
Gmsh [78] 3.0.6
ParaView [162] 5.6.0

Table 4.1: Software used in the numerical experiments.

on an equidistant time grid Ih = (0,∆t, 2∆t, . . . , T ) with time step ∆t. Note that for τ = 0 the
discretization (4.1) of the Cattaneo–LITT model reproduces a backward-finite-difference scheme
for the classical LITT model. For each point tk in the discrete time grid Ih, we get a weak
formulation of a PDE for ϑ(tk), which depends only on the spatial variable.
Different from Chapter 2, we allow the blood-perfusion rate ξ = ξc + (ξn − ξc)γ to depend on the
coagulation γ [32, 65, 199]. Thus, the bilinear forms Fh and Fr as well as the right hand side fh in
equation (2.11) depend on the coagulation γ here.

In each time step, we face a system of nonlinearly coupled PDEs because the coagulation γ
depends nonlinearly on the temperature ϑ. There are several ways for the numerical solution
of such systems, like fixed-point iterations (Gauss–Seidel multiphysics coupling), Newton’s
method or multiphysics operator splittings [108, Sec. 1.2, Alg. 1–3, p. 7–8].
For instance, in [154], the classical LITT model as discussed in Section 1.2 is solved, after spatial
discretization, in each time step with Newton’s method.

For simplicity, we use the numerical scheme presented in Algorithm 4.1, which corresponds to a
standard multiphysics operator splitting. We choose a semi-implicit discretization in time which
allows us to solve for each discrete point in time consecutively two separate elliptic boundary-value
problems instead of a system of two nonlinearly coupled elliptic boundary-value problems. The
error which is introduced by the operator splitting is negligible in our simulations for ∆t→ 0.
This is validated in Experiment 4.4, where several solutions computed with a time step of 1 s

show no significant deviation compared to the corresponding solutions computed with a time
step of 0.1 s.
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� Algorithm 4.1 — Numerical scheme for the Cattaneo–LITT model.
Required:

• A finite-dimensional subspace Vn ⊂ H1(Ω) according to a finite-element method,

• an equidistant time grid Ih = (0,∆t, 2∆t, . . . , T ) with time step ∆t.

1: Initializea : γ(t0) ≡ 1, φ(t0) ≡ 0, ϑ(t0) = ϑ
(0), ϑ(t−1) = ϑ

(0) in Vn.
2: for k ≥ 1 do
3: Solve for φ(tk) ∈ Vn:

Fr(φ(tk), ϕ; γ(tk−1)) = (gr, ϕ)L2(Γ) for all ϕ ∈ Vn. (4.2)

4: Solve for ϑ(tk) ∈ Vn:(
τ

∆t2
+

1

∆t

)
(ϑ(tk), ϕ)L2(Ω) + Fh(ϑ(tk), ϕ; γ(tk−1))

= 〈fh (φ(tk), γ(tk−1)) , ϕ〉H1(Ω) +

((
2τ

∆t2
+

1

∆t

)
ϑ(tk−1)− τ

∆t2
ϑ(tk−2), ϕ

)
L2(Ω)

for all ϕ ∈ Vn.

(4.3)

5: Computeb

γ(tk) =
1

1 + ∆t · d(ϑ(tk))
γ(tk−1).

a The choice of ϑ(t−1) = ϑ
(0) corresponds to the choice of ϑ′(0) = ϑ

(1)
= 0. The numerical value of the initial

temperature ϑ(0) is given w.r.t. kelvin because the computation of the coagulation in step 5 expects numerical
values w.r.t. kelvin.

b We write the Arrhenius law (1.3) as ODE: ∂tγ = −dArr(ϑ) · γ, with γ(0, x) = 1 for all x ∈ Ω, and apply one step
of the implicit Euler method [87, Sec. 6.5, p. 89].

The problems (4.2) and (4.3) are elliptic boundary-value problems which can be solved numeri-
cally, e.g., by means of the finite-element method.2 We use triangular linear Lagrange finite elements

and employ FEniCS to assemble and solve the corresponding linear systems. The resulting
linear systems are solved with the default solver of FEniCS, which uses a sparse LU decomposition

(Gaussian elimination) [115, Ch. 5.2, p. 115]. For the later application in three-dimensional
spatial domains, one might switch to iterative solvers to speed up the computation and reduce
the memory requirement. The occurring integrals are computed via quadrature rules. The
quadrature degree is automatically determined by FEniCS such that the quadrature rule is exact
for the highest order polynomial in the form being assembled. We project all occurring functions
(nonlinear coefficients, initial data, etc.) onto our finite-element space, i.e., we work with globally
continuous functions which are piecewise linear on each triangle of the mesh.

2 Two reasons why we decided for the finite-element method. “The finite element method combines geometric flexibility,

the availability of a wide range of discrete function spaces, [..], and a particular elegant mathematical representation which

facilitates rigorous analysis.” [197, Ch. 1, p. 2] Furthermore, it allows us to use well-established tools like FEniCS and
dolfin-adjoint. For further reading on the numerical treatment of PDEs including the finite-element method, we refer
to [86].



66 Chapter 4. Cattaneo–LITT model: numerical experiments

Reduction of the spatial dimension

For our proof of concept, we would like to reduce the spatial dimension from 3D to 2D in order
to reduce the computational costs. We note that our code provided in [8] allows computations in
3D, like demonstrated in Experiment 4.2.
We assume that the domain Ω as well as all coefficients and boundary conditions are rotationally
symmetric w.r.t. rotations around the y-axis, where the y-axis is aligned with the applicator, like
illustrated in Figure 4.1.
We note that the boundary

Γsym = {(0, y, 0)T | y ∈ [0 cm, 0.75 cm]} (4.4)

does not represent a boundary of the original 3D model. This boundary is aligned with the
symmetry axis. Consequently, we impose homogeneous Neumann boundary conditions

κ∇ϑ · n = 0

D∇φ · n = 0

}
on I × Γsym (4.5)

with the outward pointing normal vector n = [−1, 0]T. The area of the radiating surface is

|Γrad| = 2π × 0.25 cm× 2 cm = π × 10−4 m2. (4.6)

For the transformation of the integrals of the weak formulation, we need to include the functional
determinant of the transformation from cylindrical to Cartesian coordinates. We provide details
in Appendix A.3.
We validate our reduction of the three-dimensional, rotationally symmetric problem to the
corresponding two-dimensional problem with the following experiment.

� Experiment 4.2 — Validation of reduction 3D → 2D.
We compute the temperature of the Cattaneo–LITT model for three different meshes. The
mesh Ω

(0)
2D,h is locally refined around the applicator, which is illustrated in the cross section in

Figure 4.1. We refine Ω
(0,0)
2D,h by splitting (see Figure 4.2) and obtain Ω

(0,1)
2D,h as a reference mesh

in 2D. Furthermore, we extrude Ω
(0,0)
2D,h rotationally around the y-axis and obtain the 3D mesh

Ω
(0,0)
3D,h . We summarize the mesh details in the following table:

mesh number of nodes number of elements

Ω
(0,0)
2D,h ⊂ R2 1557 3007 (triangles)

Ω
(0,1)
2D,h ⊂ R2 6120 12028 (triangles)

Ω
(0,0)
3D,h ⊂ R3 62883 379328 (tetrahedra)

We evaluate the numerical solution for the temperatures for each mesh at the final time T on
the reference line Ω1D, ref and on the “artificial” 2D boundary Γsym (see Figure 4.1 and equation
(4.4)). Furthermore, we evaluate the 3D solution on the circle C with radius 0.34 cm in the
x–z-plane at y = 2.5 cm around the y-axis, i.e.,

C = {0.34 cm× (cos θ, 0, sin θ)T + (0, 2.5 cm, 0)T | θ ∈ [0, 2π)}.

We use the physical parameters given in Table 1.1 and the following simulation details:
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τ = 0 s (parameter in the Cattaneo model)
∆t = 1 s (discrete time step)
T = 120 s (final time of the simulation)
ϑ

(1)
(x) = 0 K s−1 (second initial condition for the temperature)

u(x) = 0.15 (constant control)a

a See Remark 4.6.

(a) (b)

Ω1D, ref
Γamb

Γcool

Γrad

Γsym
(0,0) (3,0)

(3,5)(0.25,5)

(0.25,3.5)

(0.25,1.5)
(0,0.75)

ey

exez

ey

ex

Figure 4.1: Rotational symmetric spatial domain Ω. (4.1a): Segment of the rotational symmetric
domain in R3. (4.1b): Corresponding slice in the x–y-plane3. The green line defines the reference
line Ω1D, ref = {(x, 2.5 cm, 0)T |x ∈ [0.25 cm, 3 cm]}. It holds |Γrad| = π × 10−4 m2.

Figure 4.2: Refinement by splitting (implemented in Gmsh [78]).

3 The unit of length in 4.1b is centimeter.
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Figures 4.3 and 4.4 illustrate and compare three numerical solutions for the temperature in
Experiment 4.2 (one for each mesh Ω

(0,0)
2D,h , Ω

(0,1)
2D,h , Ω

(0,0)
3D,h ). We note that the colors in the 3D

visualization may deviate from the colors of the 2D visualization due to artificial lighting.

Figure 4.3c shows that the approximation of the 2D solution is converged w.r.t. the spatial
discretization, in the order of the scale of this visualization, and accounting for interpolation
errors.
The deviation between the 2D and 3D solutions is in the range of the deviation of the 3D solution
on the circle C. Ideally, the 3D solution would be rotational symmetric and, thus, constant on
the circle C. Its deviation is due to discretization errors of our numerical method for solving
the LITT system on the one hand, on the other hand due to interpolation errors induced by the
evaluation of the numerical solution (piecewise constant) on the circle C.
Figure 4.4 shows that the 2D and 3D solutions coincide along the artificial 2D boundary Γsym

up to discretization and interpolation errors, which validates the choice of the homogeneous
Neumann boundary conditions (4.5) for the 2D model.

Experiment 4.2 validates the two-dimensional implementation of the solver for the Cattaneo–
LITT model and the reduction of the corresponding three-dimensional, rotationally symmetric
problem to a two-dimensional problem.

In the following experiments of this chapter, we restrict ourselves to the two-dimensional domain.
This reduces the computational costs and allows us to use a further refined mesh, shown in
Figure 4.5. The increased spatial resolution of the mesh is especially useful in Section 4.3, where
we want to reconstruct the heterogeneous blood-perfusion rate. We point out that, for the
assembly of the corresponding linear systems, we need to incorporate the functional determinant
of the transformation from cylindrical to Cartesian coordinates, as stated above.

Remark 4.3 — Colormap.
The colormap in Figure 4.3 is based on the bent-cool-warm colormap in [152, 153]. We fitted
it in such a way that there is a sharp bend at 60 ◦C, which indicates roughly the region of
coagulation. This is based on rather simplistic coagulation models, e.g., [166, 170], where the
coagulation is defined as

γ(t, x) =

1, there is an s ∈ [0, t] with ϑ(s, x) > 60 ◦C,

0, else,

which means, that the tissue at a position x is assumed to be coagulated once the temperature
reached the threshold of 60 ◦C. In [187, p. 248] and the references therein, it is reported that
at temperatures between 60 ◦C and 100 ◦C necrosis occurs immediately.
In cases where the temperature is monotonically increasing in every point over the duration
of the simulation, e.g., later in the real application, this technique yields a simple and fast way
to estimate the coagulation zone purely based on current temperature data. Nevertheless, in
this thesis we compute the coagulation always by means of the Arrhenius law.
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Figure 4.3: Results of Experiment 4.2. Numerical solutions for the temperature of the rotational
symmetric model in 3D (ϑ3D(T )) and the corresponding 2D model (ϑ2D(T ), on coarse and fine
mesh) at time T = 120 s. (4.3a): Slice through the x–y-plane of ϑ3D(T ) visualized with ParaView.
(4.3b): 2D solution ϑ2D(T ). (4.3c): Solutions evaluated on the reference line Ω1D, ref. (4.3d):
Deviation of ϑ3D(T ) on the circle C. The dashed line indicates the mean value on this circle.
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Figure 4.4: Results of Experiment 4.2. Numerical solutions for the temperature of the rotational
symmetric model in 3D (ϑ3D(T )) and the corresponding 2D model (on coarse mesh Ω

(0,0)
2D,h ) at

time T = 120 s. (4.4a): Evaluation of ϑ3D(T ) and ϑ2D(T ) on the “artificial” 2D boundary Γsym.
(4.4b): Difference ϑ3D(T )− ϑ2D(T ) on the “artificial” 2D boundary Γsym.
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Figure 4.5: Hierarchy of discretizations of the spatial domain Ω for Experiments 4.4–4.11, 6.6
and 6.8, refined by splitting. The mesh is locally refined along the applicator boundary Γrad

to improve the accuracy of the solution for the irradiance φ. Furthermore, the mesh is locally
refined in a certain subdomain where we place artificial blood vessels in Section 4.3. (4.5a):
Ω

(1,0)
2D,h with 3607 nodes and 7074 triangles. (4.5b): Ω

(1,1)
2D,h with 14287 nodes and 28296 triangles.

(4.5c): Ω
(1,2)
2D,h with 56869 nodes and 113184 triangles.
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4.2 Delayed heat transfer
The following numerical experiment demonstrates the effect of the delay parameter τ in the
Cattaneo–LITT model.

� Experiment 4.4 — Delayed heat transfer.
We compute the temperature and coagulation of the Cattaneo–LITT model for different values
of τ , each with the two time steps ∆t and ∆tfine in the finite-difference scheme (4.1). We
evaluate the solutions for different points in time on the reference line Ω1D, ref.
We use the physical parameters given in Table 1.1 and the following simulation details:

τ ∈ {0 s, 15 s, 30 s, 60 s} (delay parameter in the Cattaneo model)
∆t = 1 s (discrete time step)
∆tfine = 0.1 s (refined discrete time step)
T = 300 s (final time of the simulation)
ϑ

(1)
(x) = 0 K s−1 (second initial condition for the temperature)

u(x) = 0.15 (constant control)a

For the spatial discretization, we use the mesh Ω
(1,0)
2D,h shown in Figure 4.5 with 3607 nodes and

7074 elements (triangles).
a See Remark 4.6.

In Figure 4.6, we visualize the results of Experiment 4.4. We observe the delaying effect of the
parameter τ at the beginning of the simulation, here at the times t ∈ {30 s, 60 s}. At some point,
the temperatures for τ > 0 overshoot the temperature for τ = 0, as can be seen at t = 150 s. This
behavior is expected from a mathematical point of view4, and a further investigation would
need to discuss the implications of those overshoots from a physical point of view. Towards the
end of the simulation, the solutions for τ > 0 converge to the one for τ = 0. We do not show
the solutions for times larger than t = 300 s because the deviations between the solutions for
different values of τ decrease even further.

In view of the optimal-control problem discussed in Chapter 3 and Section 4.3, the first 1–2
minutes of the simulation are crucial. There, we attempt to identify the blood-perfusion rate
based on the difference between the measured temperature and the simulation output at the
time of the first measurement, which is available in the real application around two minutes
after the start of the therapy. In the targeted application of prognostic LITT, the blood-perfusion
rate is estimated during the first part of the therapy and is fed back to the simulation for the
remaining part of the therapy in real time. Deviations of the models in the first part of the
simulation might have a relevant effect on the estimation of the blood-perfusion rate and, thus,
on the remaining simulation based on the updated parameter. This feed-back effect can not be
observed in our experiment because we run the simulation with a fixed control u, but should be
discussed and quantified in future work by further numerical experiments.

4 Cf. [100, VIII, paragraph on “1972, Y. Taitel, Int. J. Heat Mass Transfer 15, 369”, p. 62].
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In Section 2.1, we discussed a possible range for values of τ based on a literature review, but
it is unclear to this point which value for τ is suitable for our application. The answer to
this question requires the validation with real experimental data. Nevertheless, a value of
τ = 60 s seems rather large in this context, whereas for smaller values the differences between
the solutions of the classical (τ = 0) and the Cattaneo–LITT model (τ > 0) becomes relatively
small, considering that the time scale of a real therapy is around 1200 s. It depends on the quality
of the measured temperature data whether the correction given by the Cattaneo heat-transfer
model (with appropriate values for τ , probably much smaller than 30 s) increases the accuracy of
the final prediction compared to the classical LITT model, respecting the fact that the measured
temperature data as well as the used physical parameters are disturbed, e.g., by measurement
errors.
In summary, the numerical experiment validates the suggested delaying effect of the parameter
τ in the Cattaneo–LITT model.5

5 The Cattaneo model is also known as “delayed heat-transfer model”.
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Figure 4.6: Results of Experiment 4.4. Temperature ϑ and coagulation γ (1: native, 0: coagulated)
for different delay parameters τ , evaluated on the reference line Ω1D, ref at different points in
time. The solid and dashed lines correspond to the solutions computed with a time step ∆t and
∆tfine, respectively. The legend of Figure 4.6a holds for all subfigures.
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4.3 Identification of the blood-perfusion rate
We give a proof of concept for the automated identification of the unknown control u that models
the spatial distribution of the blood-perfusion rate in equation (3.1). The spatial distribution is
influenced by the location of large vessels, which suggests the interpretation of the control u as
an indicator function for large blood vessels.
In Figure (4.7), we define the ground-truth data utrue for the identification. We use utrue to
produce synthetic measurement data by running the Cattaneo–LITT simulation with u = utrue

and defining the corresponding simulated temperature at a given point in time T as the desired
temperature ϑd := ϑ(T ;utrue) (see equation (3.5)). We proposed a similar numerical example to
demonstrate the identification of the blood-perfusion rate in our manuscripts [9–12].
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Figure 4.7: Synthetic control utrue. The red square patches mark the interior of large blood
vessels. The side length of each red square patch is 0.25 cm. The ticks on the x-axis and y-axis
mark the centers of each patch. The blue area contains only capillary vessels.

4.3.1 Influence of the blood-perfusion rate

With the following experiment, we want to quantify the influence of the control u and, with
this, of the location of large vessels on the predicted coagulation zone, for our specific set of
parameters.

� Experiment 4.5 — Influence of the blood-perfusion rate.
We compute the coagulation γ for the three different choices of the control u = ui, i ∈ {1, 2, 3}.
We use the physical parameters given in Table 1.1 and the following simulation details:
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τ = 0 s (parameter in the Cattaneo model)
∆t = 1 s (discrete time step)
T = 1200 s (final time of the simulation)
ϑ

(1)
(x) = 0 K s−1 (second initial condition for the temperature)

u1(x) = 0.0 (constant control)
u2(x) = 0.15 (constant control, see Remark 4.6)
u3 = utrue (true control, see Figure 4.7)

For the spatial discretization, we use the mesh Ω
(1,0)
2D,h given in Figure 4.5 with 3607 nodes and

7074 elements (triangles). We refine the mesh by splitting and obtain the mesh Ω
(1,1)
2D,h with

14287 nodes and 28296 elements, which we use to compute reference solutions.
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Figure 4.8: Results of Experiment 4.5. Influence of the blood-perfusion rate on the estimated
tissue damage. (4.8a): Coagulation γ(T ) at the final time T for u = utrue. The black lines indicate
the contours of the underlying vessel structure, i.e., the contours of utrue. (4.8b): Contour lines of
the coagulation at the final time T at level γ(T ) = 0.5 for the different choices of the control u.
The green lines (almost not visible) indicate the corresponding solutions on the refined mesh.

In Figure 4.8, we observe that the shape of the boundary of the coagulated zone is influenced by
the presence of large blood vessels, i.e., regions where the control u is close to one. As expected,
the coagulation zone spreads slower near the blood vessels due to the cooling effect of the blood
flow.
Figure 4.8b compares the contour lines at level γ(T ) = 0.5 of the coagulated zone for different
choices of the control u. The predicted coagulation zone in the case where we neglect all large
vessels (u ≡ 0) deviates more than 1 cm in x-direction from the other two scenarios. Furthermore,
we observe a difference between the coagulated zones for u ≡ 0.15 and u = utrue. According
to Remark 4.6, the choice u ≡ 0.15 represents an averaged version of utrue. We see from the
difference between the contour lines that averaging does not capture the local influence of large
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Figure 4.9: Results of Experiment 4.5. Influence of the blood-perfusion rate on the simulated
temperature. (4.9a): Temperature for u = u2 at the final time T . (4.9b): Temperature for u = u3

at the final time T . This coincides with the synthetic temperature measurement data ϑd. (4.9c):
Difference between simulated temperatures for u = u2 and for u = u3 at the final time T .

blood vessels, especially at the boundary of the coagulated zone.
A deviation of the predicted coagulation zone of this range would lead to a wrong therapy
planning in the real application and might have fatal consequences for the success of the cancer
treatment.

The choice of the control u also influences the temperature distribution. Figure 4.9 shows that
the simulated temperature correlates with the given control. In Figure 4.9c, even the spatial
distribution of the true control becomes visible.
This motivates us to use the measured temperature data ϑd to identify the parameter u and,
with this, the spatial distribution of the blood-perfusion rate. In fact, the temperature difference
in Figure 4.9c (for another final time T ) enters the cost functional described in Chapter 3. The
numerical investigation of the parameter identification problem follows in the next section.

Remark 4.6 — Homogeneous blood-perfusion rate.
We choose u2 ≡ ū2 = 0.15 in several experiments. This numerical value is motivated by the
homogenized value of utrue over the rectangular subregion

Ωrad := [0.0025, 0.0275]× [0.015, 0.035]
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(left boundary coincides with Γrad, see Figure 4.1b). More precisely, we want the following
equation to be satisfied:

ū2 |Ωrad| =
∫

Ωrad

u2(x) dx
!≈
∫

Ωrad

utrue(x) dx = 12A

with A = l2 the area of the 2D vessel-boxes in Figure 4.7 with side length l = 0.0025 m and
|Ωrad| = 5.0× 10−4 m2. This yields ū2 = 12A |Ωrad|−1

= 0.15.

4.3.2 Algorithmic details

In Chapter 3, we formulated the identification of the control u in the context of PDE-constrained
optimization. For a general overview on optimization with PDE constraints and corresponding
numerical methods, we refer to [93] and [217].
We implement the descent algorithm 3.15 presented in Section 3.3, where we compute the
search direction in line 3 by means of algorithmic differentiation (AD), as described in the next
subsection.

Computation of descent directions

In Section 3.3, we presented a descent strategy based on the directional derivatives of the reduced
cost functional. Note that the reduced cost functional Ĵ : Uad → R is not Gâteaux differentiable,
so, formally, we can not speak of gradients. On the other hand, Lemma 3.13 yields that the
directional-derivative operator h 7→ DuĴ(u)[h] can be expressed via a linear functional on the set
of admissible directions. The corresponding Riesz representative w.r.t. the L2(Ω) scalar product
(in the following: L2 Riesz representative) g is our candidate for a descent direction:

g(u) = λ1 + λ2u+

∫ T

0

(ξin − ξout)(ϑb − ϑ(u)(t))z2(u)(t) dt (3.20)

where ϑ is part of the state vector of the Cattaneo–LITT model and z2 part of the corresponding
adjoint state vector for a given control u.

There are two ways to compute this suggested search direction d := −g(u) in Algorithm 3.15.
First, we could solve the Cattaneo–LITT system and the corresponding adjoint system (see
Section 3.2) for a given control u, e.g., by means of a finite-element discretization, and compute
the right-hand side in (3.20).
This would correspond to the classical first-optimize-then-discretize principle. We validated this
approach in numerical experiments presented in [9–12].

The second approach follows the first-discretize-then-optimize principle, where we first dis-
cretize the problem and then develop algorithms for the optimization. In the latter case, one
approximates the control u : Ω→ R In terms of a finite-element discretization as follows:

u ≈ ud =

n∑
i=1

uiϕi, ui ∈ R, u :=
[
u1, . . . , un

]T
,

where (ϕi)
n
i=1 is a globally continuous, piecewise linear nodal basis according to a given mesh,

where n denotes the number of nodes. This allows us to consider the discretized reduced cost
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functional
Ĵd : Rn → R, u 7→ Ĵ(ud). (4.7)

One disadvantage of this approach is that this formulation explicitly includes information of the
underlying spatial discretization, i.e., the subsequent optimization might be mesh dependent6. We
refer to [197] for details on mesh dependence in PDE-constrained optimization.
Nevertheless, this approach allows us to use algorithmic differentiation to compute the gradient
of the discretized reduced cost functional Ĵd, which comes with three great advantages.
First, we need to implement only a solver for the Cattaneo–LITT model. It helps to produce
an elegant implementation by means of operator overloading, which enhances readability of our
code7 and, thus, reusability for future research.
Second, we implement the simulation of the Cattaneo–LITT model in FEniCS, which allows us
to incorporate the tested and established algorithmic differentiation (AD) framework realized in
the dolfin-adjoint package. This means that we obtain gradient information without any major
effort from an implementation point of view on our side.
Last, the AD framework provides the gradient of the discretized reduced cost functional with an
accuracy in the order of machine precision. This allows us to verify the computed derivative by
means of a Taylor-remainder convergence test . We quote the dolfin-adjoint documentation [143]:

“This test is based on the observation that

r(1st)(λ) :=
∣∣∣Ĵd(u+ λh)− Ĵ

d
(u)
∣∣∣→ 0 at O(λ),

but that

r(2nd)(λ) :=
∣∣∣Ĵd(u+ λh)− Ĵ

d
(u)− λ∇ADĴ

d
(u)T · h

∣∣∣→ 0 at O(λ2),

by Taylor’s theorem. We can verify the correctness of∇ADĴ
d
by computing the second-order

Taylor remainder r(2nd)(λ) for some choice of λ and h, then repeatedly halving λ and checking

that the result decreases by a factor 4.”

This procedure is already implemented in the dolfin-adjoint package.
For readers who are not familiar with algorithmic differentiation, we refer to [155] for a great
introduction. For a detailed discussion on AD, we refer to [84].

For the following experiments, we follow [197] and combine the advantages of both principles.
First, we compute the gradient of the discretized reduced cost functional by means of AD.8 Next,
we use this gradient information for our original descent strategy presented in Algorithm 3.15.
We note that the variation of the reduced cost functional in the direction of the ith nodal basis
corresponds to variation of the discretized reduced cost functional in the ith component (see
Remark 4.7 below):

DuĴ(u)[ϕi] = (g(u), ϕi)L2(Ω)

!≈
(
∇ADĴd(u)

)
i
. (4.8)

6 “In this context, mesh-independent convergence of the optimisation algorithmmeans that, for a discretisation given on a sufficiently

fine mesh, the number of iterations required to solve the optimisation problem to a given tolerance is bounded.” [197, Ch. 2, p. 53]
7 Available under [8].
8 If one wants to proceed from here in the classical first-discretize-then-optimize sense and employ standard techniques
of finite-dimensional optimization, we refer to the Python package Moola [73]. It is recommended by the official
dolfin-adjoint documentation, e.g., [142].
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Figure 4.10: Riesz representatives of the discretized reduced cost functional (4.7) (cf. [197, Sec.
2.3.2.1, Fig. 2.5, p. 73]) w.r.t. different scalar products. The simulation details are the same as in
Experiment 4.8. (4.10a): ∇ADĴd(u0): Gradient of the discretized reduced cost functional, i.e.,
l2 Riesz representative of the derivative. (4.10b): gd: L2 Riesz representative of the derivative
DuĴd(u) of the discretized reduced cost functional.

We approximate the function g(u) by means of an expansion w.r.t. the given nodal basis

g(u) ≈ gd(u) =

N∑
i=1

giϕi (4.9)

and plug this into equation (4.8), which yields the following linear system9:

M · g = ∇ADĴd(u) (4.10)

with the mass matrix M =
(

(ϕi, ϕj)L2(Ω)

)n,n
i=1,j=1

∈ Rn×n and the vector g containing the
components gi of the expansion (4.9). Note that the mass matrix “reflects the structure of the

underlying mesh, that is, the spatial distribution of elements and their sizes” [197, Sec. 2.2.4, p. 60]. The
solution g of the linear system (4.10) defines the function gd(u) by means of the expansion (4.9)
and, thus, the search direction d = −g(u) in our descent algorithm.

Note that, in Section 3.2, we interpret the function g(u) as L2 Riesz representative of the
directional-derivative operator DuĴ(u). Analogously, we can interpret gd(u) as the L2 Riesz
representative of the derivative DuĴd(u) of the discretized reduced cost functional, whereas the
gradient∇ADĴd(u) ∈ Rn is the corresponding l2 Riesz representative, i.e., w.r.t. the Euclidean

9 Cf. [197, Sec. 2.2.3, Eq. 2.19, p. 59].
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Figure 4.11: Taylor-remainder convergence test. Visualization of Table 4.2.

scalar product. In fact, it holds

(gd(u), h)L2(Ω) = DuĴd(u)[h] =

n∑
i=1

hi

(
∇ADĴd(u)

)
i

for all h =
∑n
i=1 hiϕi, h =

[
h1, . . . , hn

]T
.

This approach can be seen as a preconditioning10 to eliminate the dependence of the mesh. We
demonstrate the effect of the preconditioning by visualizing the gradient of the discretized
reduced cost functional ∇ADĴd(u0) next to the corresponding L2(Ω) representative gd(u0) in
Figure 4.10, based on the simulation details given in the next Experiment 4.8. The underlying
mesh structure becomes visible in the visualization of∇ADĴd(u), in contrary to the visualization
of gd(u).

Before we look into the numerical experiments regarding the identification of the control
u, we use the Taylor-remainder convergence test (see above) to validate the derivative of the
discretized reduced cost functional∇ADĴd in the next Experiment 4.8. We compute the derivative
DuĴd(u0)[h] at u0 ≡ 0 in direction h ≡ 0.2 by means of algorithmic differentiation and present
the results of the convergence test with initial step size λ0 = 0.01 (default value in dolfin-adjoint)
in Table 4.2. Each value in the second column is approximately half of its preceding value in the
same column, and each value in the fourth column is approximately a quarter of its preceding
value in the same column. We compute the convergence rate of the first Taylor remainder
(analogously for the second Taylor remainder) for a given λ0 as

convergence rate = log

(
r(1st)(λ02−(k−1))

r(1st)(λ02−k)

)
/ log(2).

The values in the third columns should be close to one and the values in the fifth column should
be close to two. We visualize the convergence of the Taylor remainders r(1st), r(2nd) in Figure 4.11.
The Taylor-remainder convergence test here validates the correctness of the computed gradient
of the discrete reduced cost functional.
10 This interpretation is suggested in [197].
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k r(1st)(λ02−k) convergence rate r(2nd)(λ02−k) convergence rate

0 1.012× 10−5 2.199× 10−7

1 5.115× 10−6 0.9845 5.530× 10−8 1.9912
2 2.571× 10−6 0.9922 1.387× 10−8 1.9956
3 1.289× 10−6 0.9961 3.472× 10−9 1.9978

Table 4.2: Taylor-remainder convergence test for∇ADĴd(u0)T at u0 ≡ 0 in direction h ≡ 0.2 with
initial step size λ0 = 0.01. Ideally, the values of the first column “convergence rate” should be
close to 1.0, the values of the second column “convergence rate” should be close to 2.0.

Note that, in our previously published manuscripts [9–11], we did not use the AD framework to
compute the descent directions as discussed here, but we implemented a solver for the adjoint
state system (3.19) and we computed the descent direction by means of the adjoint gradient
representation according to Lemma 3.13.

Remark 4.7 — Technical detail on admissible directions.
The first equality in (4.8) follows from Lemma 3.13, provided that ϕi is an admissible direction
at u, where (ϕi)

n
i=1 again is a globally continuous and piecewise linear nodal basis according

to a given mesh, where n denotes the number of nodes.
We consider a control u =

∑n
i=1 uiϕi with ui = 1 for some i ∈ {1, . . . , n}.

Technically, we did not show the existence of directional derivatives of the original reduced
cost functional at u in the direction ϕi because uλ := u+ λϕi is not an element of Uad for all
sufficiently small λ ∈ R>0, see Section 3.2 for details.
In this situation, we could define the admissible direction

hi =

ϕi, if u(xi) < 1,

−ϕi, if u(xi) = 1

for i ∈ {1, . . . , n}, where (xi)
n
i=1 are the nodes of the mesh.

If we choose the directions hi instead of ϕi in equation (4.8), the potential negative signs on
both sides cancel, and we again obtain the linear system (4.10).
Note that we could define a control-to-state map and, thus, the reduced cost functional on a
set {u ∈ L2(Ω) | − ε ≤ u ≤ 1 + ε a.e. in Ω} for some ε > 0 because for the existence of a state
vector we just require the blood-perfusion rate to be strictly positivea. This translates to the
discretized reduced cost functional, which is even differentiableb at the corresponding vector
u. Thus, the ith component of∇ADĴd(u) in fact describes the (classical) partial derivative of
Ĵd w.r.t. the ith component of u.
a E.g., choose ε = 1

2
ξout(ξin − ξout)−1.

b The evaluation of the discretized reduced cost functional employs only differentiable operations, like assembling
and solving the linear system. Especially the nonlinear optical coefficients are composed of differentiable functions.
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4.3.3 Experiments

In the following experiments, we demonstrate the automated identification of the control u. We
try different initial guesses and parameters for the cost functional.

� Experiment 4.8 — Identification of blood vessels: no control penalty.
We reconstruct the control u = utrue based on the synthetic temperature measurement ϑd. We
use the physical parameters given in Table 1.1 and the following simulation details:

τ = 15 s (parameter in the Cattaneo model)
∆t = 4 s (discrete time step)
T = 120 s (final time of the simulation)
ϑ

(1)
(x) = 0 K s−1 (second initial condition for the temperature)

utrue see Figure 4.7 (true control)
ϑd = ϑ(T ;utrue) (desired temp. from synthetic measurementa.)
max_iter_descent = 150 (maximum number of descent iterations)
max_iter_armijo = 15 (maximum number of line-search iterations)
γarm = 10−4 (relaxation parameter in the Armĳo ruleb)
β = 1

2 (reduction parameter in the Armĳo rule)
s0 = 1.0 (initial step size in the Armĳo rule)
tol_abs = 0 (absolute tolerance in the descent algorithm)
tol_rel = 10−2 (absolute tolerance in the descent algorithm)

λ1 = 0 (L1 control-penalty factor, see (3.5))
λ2 = 0 (L2 control-penalty factor, see (3.5))
u0(x) = 0.15 (constant initial guess for the control)

For the spatial discretization, we use the hierarchy of successively refined meshes given in
Figure 4.5, with the following details:

mesh number of nodes number of triangles

Ω
(1,0)
2D,h 3607 7074

Ω
(1,1)
2D,h 14287 28296

Ω
(1,2)
2D,h 56869 113184

The synthetic measurement ϑd := ϑ(utrue) is given by running the Cattaneo–LITT simulation
with the control u = utrue.
We run the descent algorithm 3.15 with the details for the following combinations of discrete
time steps and meshes:

(∆t,Ωh) ∈
{(

1 s,Ω
(1,0)
2D,h

)
,
(

2 s,Ω
(1,0)
2D,h

)
,
(

4 s,Ω
(1,0)
2D,h

)
,
(

4 s,Ω
(1,1)
2D,h

)
,
(

4 s,Ω
(1,2)
2D,h

)}
.

We compare the values of the cost functional, the stationarymeasure and the number of Armĳo
steps during the descent iteration (k-loop in Algorithm 3.15) for the different combinations of
space and time discretizations listed here.
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Furthermore, for the discretization (∆t,Ωh) =
(

4 s,Ω
(1,2)
2D,h

)
, we evaluate the temperature along

the reference line Ω1D, ref (see Figure 4.1) and compute the contour lines of the coagulation at
the final time γ(T ) at level γ(T ) = 0.5, for the controls at different iterations of the descent
algorithm.
a Run the Cattaneo–LITT simulation with u = utrue.
b Classical choice for the finite-dimensional case in [106, Sec. 5.4, Eq. 5.13, p. 91].

In Figures 4.12 and 4.13, we present the results of Experiment 4.8.

In Figure 4.12, we show the cost functional, the stationary measure and the number of Armĳo
steps over the descent iteration k in Algorithm 3.15 (outer loop) for different discretizations.
We observe that, independent of the temporal or spatial discretization, the cost functional is
monotonically decreasing, which validates our considerations on the choice of the descent
direction. Even though the cost functional becomes almost stationary for iterations k ≥ 100, the
stationary measure does not show a significant decrease. In fact, we can observe the effect of the
projection operator in the stationary measure (3.25), which causes the frequent jumps. We note
that the descent algorithm stopped after reaching the maximum number of max_iter_descent
iterations and not because the stopping criterion regarding the stationary measure was fulfilled.
Nevertheless, if we have a look at the results, we observe that we are still able to improve the
accuracy of the predicted temperature and coagulation.
The three subfigures 4.13a–4.13c show the intermediate controls at iterations k ∈ {0, 10, 50, 150}.
From the temperatures in 4.13d we see that the temperature based on the chosen initial guess for
the control underestimates the true temperature.
We see that intermediate controls 4.13a–4.13c are similar to the true control and the spatial
resolution of the heterogeneities becomes more accurate for an increasing number of iter-
ations. In regions distant from the applicator, the descent strategy does not significantly
change the control. The blood-perfusion rate in those regions does not have a relevant influ-
ence on the temperature. The deviation from the true control has only a minor influence on
the corresponding gradient of the cost functional and, thus, has no effect in the descent algorithm.

In Figure 4.13e, we see the contours γ(T, uk) of the coagulations at the final time T for the
intermediate controls at different iterations. Already after ten iterations, the contour lines of the
approximate coagulation match the contour lines of the approximation after 150 iterations and
of the true coagulation well.
Even though the descent algorithm did not converge in terms of the stationary measure, we
could decrease the cost functional and observe an improvement of the prediction, even after
fewer steps than the maximum number of iterations. This raises the question for future work
whether we should seek for a different stopping criterion for the real application.

Last, we mention the large amount of positive numbers of the Armĳo rule, shown in Subfigure
4.12c, in which cases the step size in the corresponding descent iteration k was increased.
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Figure 4.12: Results of Experiment 4.8. (4.12a): Reduced cost functional evaluated for controls
uk over the descent iterations k (outer loop of Alg. 3.15), for different discrete time steps and
spatial meshes. (4.12b): Relative stationary measure evaluated for controls uk over the descent
iterations k (outer loop of Alg. 3.15), for different discrete time steps and spatial meshes. (4.12c):
Number of Armĳo steps j (inner loop of Alg. 3.15) over the descent iterations k (outer loop of
Alg. 3.15). Positive: increase step size; negative: decrease stepsize.
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Figure 4.13: Results of Experiment 4.8, for the discretization (∆t,Ωh) =
(

4 s,Ω
(1,2)
2D,h

)
. (4.13a–

4.13c): Intermediate controls of the descent method at iterations k ∈ {10, 50, 150}. The black
lines indicate the contours of the true control in Figure 4.7. (4.13d): Temperatures at the final time
T for the intermediate controls at iterations k ∈ {0, 10, 50, 200}, evaluated on the reference line
Ω1D, ref, where uk=0 corresponds to the initial guess. (4.13e): Contour lines of the coagulation at
the final time T for the intermediate controls at iterations k ∈ {0, 10, 50, 200} at level γ(T ) = 0.5,
where uk=0 corresponds to the initial guess. The coagulation for the true control is visualized by
the transparent background color and the corresponding contour line at level γ(T ;utrue) = 0.5

in red. We modified the axis scale for a better readability.
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The only disadvantage is that the suggested optimal control keeps the value of the initial guess
in regions more distant to the applicator. We counter this in the next experiment by activating
the control-penalty terms in the cost functional.

� Experiment 4.9 — Identification of blood vessels: control penalty.
We reconstruct the control u = utrue based on the synthetic temperature measurement ϑd with
Algorithm 3.15. We use the same setup as in Experiment 4.8, except for the following details
(where we restrict ourselves to one discretization):

∆t = 4 s (discrete time step)
Ωh = Ω

(1,1)
2D,h (spatial mesh)

λ1 = 10 (L1 control-penalty factor, see (3.5))
λ2 = 1 (L2 control-penalty factor, see (3.5))

In Figure 4.14, we present the results of Experiment 4.9 analogously to Figure 4.13.

Again, the algorithm stopped after reaching the maximum number of k = 150 descent iterations.
We observe that the true control in 4.14c is reconstructed well in regions close to the applicator.
Also, the contour line of the coagulation at the final time and the temperature along the reference
line are approximated well. Nevertheless, compared to Figure 4.13, we see that the quality of the
approximation of the temperature and the coagulation for intermediate controls at iterations
k ∈ {10, 50} decreased.
This shows that the use of penalty termsmight improve the reconstruction of the blood-perfusion
rate, but at the same time might decrease the quality of the approximation of the quantities
which are relevant to the real application, namely the coagulation.

From this example it might not be apparent why one should consider penalty terms at all. Note
that those will play an important role in the real application later to account for measurement
noise, where we want to avoid overfitting to disturbed data. The influence of measurement noise
requires its own discussion, and we forward a detailed investigation to future work. Though,
a first attempt to quantify the influence of measurement noise in context of the classical LITT
model is presented in [9].
In the following experiment, we want to get a first impression on the influence of noisy
temperature measurements for this specific experimental setup.
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Figure 4.14: Results of Experiment 4.9. (4.14a–4.14c): Intermediate controls of the descent
method at iterations k ∈ {10, 50, 150}. The black lines indicate the contours of the true control in
Figure 4.7. (4.14d): Temperatures at the final time T for the intermediate controls at iterations
k ∈ {0, 10, 50, 150}, evaluated on the reference line Ω1D, ref, where uk=0 corresponds to the initial
guess. (4.14e): Contour lines of the coagulation at the final time T for the intermediate controls
at iterations k ∈ {0, 10, 50, 150} at level γ(T ) = 0.5, where uk=0 corresponds to the initial guess.
The coagulation for the true control is visualized by the transparent background color and the
corresponding contour line at level γ(T ;utrue) = 0.5 in red. We modified the axis scale for a
better readability.
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� Experiment 4.10 — Identification of blood vessels: noisy temperature measurements.
We reconstruct the control u = utrue based on the synthetic temperature measurement ϑd
with Algorithm 3.15. We use the same setup as in Experiment 4.9, but we disturb the
artificial measurements by 1%, 2% and 5%. More precisely, we compute the finite-element
approximation of ϑd := ϑ(T ;utrue), and disturb each nodal value (indexed with i) as follows:

(ϑd)
p
i := (ϑd)i + εi

where εi ∼ N (µi, σ
2
i ) is a random number generated from the normal distribution with mean

value µi = ϑ(T ;utrue)i and standard deviation σi = (ϑd)i · p, where the standard deviation is
computed in the Celsius scale, for p ∈ {0.01, 0.02, 0.05}.
We run the identification algorithm three times, once with each ϑpd as artificial temperature
measurement at time t = T , and obtain corresponding optimal controls upopt. We compare the
optimal controls upopt as well as the predicted coagulations γ(T ;upopt) to the undisturbed case,
i.e., to u0

opt and γ(T ;u0
opt).

In Figure 4.15, we visualize the disturbed artificial temperatures and the corresponding optimal
controls. Also in this experiment, the algorithm did not converge, but stopped after reaching
the maximum number of iterations, i.e., upopt = upk=150. In Figures 4.15a–4.15c, we increased the
resolution of the color space to make also the small disturbances visible.
At this point, we would like to highlight the importance of an underlying physical model to make
use of the measured temperature data for the prediction of the coagulation zone. The color space
in Figures 4.15a–4.15c is chosen in such a way that the white transition marks the temperature
of 60 ◦C, which can be used in a simplistic model for the estimation of the coagulation zone,
see Remark 4.3. If we take only this information to estimate the coagulation zone, we see the
potential prediction error induced bymeasurement noise in Figure 4.15c. Also regions far distant
from the applicator show temperatures around 60 ◦C here, although we know that the true
coagulation zone is located near the applicator, like shown in Figure 4.14e. The prediction based
on the physical model can be seen as a filter to enhance the measured data.
We recognize a small influence of the disturbed measurements, but, overall, we observe a good
agreement with the optimal control for the undisturbed case, visualized in Figure 4.16 (which
visualizes the same control as Figure 4.14c). Again, the ultimate measure relevant to the therapy
is the coagulation zone, which is visualized by its contour line at level γ(T ;upopt) = 0.5 in Figure
4.16b. Also here, on a visual scale, the influence is very small. We quantify the errors in Table
4.3.
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Figure 4.15: Results of Experiment 4.10. (4.15a–4.15c): Disturbed artificial temperature mea-
surements ϑpd for different values of p ∈ {1%, 2%, 5%}. The white transition in the color space
marks 60 ◦C and yields a (rough) approximation of the boundary of the coagulation zone. (4.15d–
4.15f): Computed optimal controls upopt for the corresponding disturbed artificial temperature
measurements.
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p
∥∥ϑpd − ϑ0

d
∥∥
L∞(Ω)

/ ◦C
‖ϑpd−ϑ0

d‖L2(Ω)

‖ϑ0
d‖L2(Ω)

‖upopt−u0
opt‖L2(Ω)

‖u0
opt‖L2(Ω)

‖γ(T ;upopt)−γ(T ;u0
opt)‖L2(Ω)

‖γ(T ;u0
opt)‖L2(Ω)

1% 3.189 6.973× 10−3 7.506× 10−2 8.253× 10−4

2% 5.514 1.434× 10−2 1.122× 10−1 1.252× 10−3

5% 15.101 3.469× 10−2 2.269× 10−1 3.616× 10−3

Table 4.3: Results of Experiment 4.10. (Col. 1): Relative disturbance p, see experiment description.
(Col. 2): AbsoluteL∞(Ω) difference between the disturbed and undisturbed artificial temperature
measurements ϑpd and ϑ0

d in Celsius. (Col. 3): Relative L2(Ω) difference between the disturbed
and undisturbed artificial temperature measurements ϑpd and ϑ0

d, where the temperatures are
given in Celsius. (Col. 4): Relative L2(Ω) differences between the corresponding optimal controls
for the undisturbed and disturbed case upopt and u0

opt. (Col. 5): Relative L2(Ω) differences between
the corresponding coagulations at the final time for the undisturbed and disturbed case γ(T ;upopt)

and γ(T ;u0
opt).
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Figure 4.16: Results of Experiment 4.10. (4.16a): Computed optimal control u0
opt (for p = 0).

(4.16b): Contour lines of the coagulation at the final time T for the different optimal controls upopt
for the values of p ∈ {0%, 1%, 2%, 5%} at level γ(T ;upopt) = 0.5. Furthermore, the coagulation
for p = 0% is visualized by the transparent background color. We modified the axis scale for a
better readability.

We conclude this chapter with a final experiment. Here, we choose a naive initial guess for
the optimization, and observe that the reconstruction of the blood-perfusion rate is sensitive
to the choice of the initial guess and especially that the optimal-control problem has several
stationary points. Like mentioned before, we are restricted to solve the optimal-control problem
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by searching for stationary points. In these terms, the solution to our optimal-control problem,
i.e., a stationary point, is not unique.

� Experiment 4.11 — Identification of blood vessels: naive initial guess.
We reconstruct the control u = utrue based on the synthetic temperature measurement ϑd with
Algorithm 3.15. We use the same setup as in Experiment 4.8, except for the following details
(where we restrict ourselves to one discretization):

∆t = 4 s (discrete time step)
Ωh = Ω

(1,1)
2D,h (spatial mesh)

λ1 = 0 (L1 control-penalty factor, see (3.5))
λ2 = 0 (L2 control-penalty factor, see (3.5))
u0(x) = 0.0 (constant initial guess for the control)

In Figure 4.17, we present the results of Experiment 4.11 analogously to Figure 4.13.

As outlined in Remark 4.6, the initial guess u0 ≡ 0.0 implies a wrong energy balance in the
heat equation because of the absence of any heat sink in the domain. The first intermediate
control uk=1, without any initial tuned step-size restriction on s(0), overshoots in correcting for
this balance and suggests a large area as heat sink. In the following steps, the intermediate
controls approximate step by step the fine structure of the blood vessels near the applicator, but
the gradient in regions far from the applicator are too small to correct for this first overshoot,
which can be seen by the large connected red area in the center of the domains in 4.17a–4.17c.

This first overshoot can also be observed from the temperatures in subfigure 4.17d. Whereas the
temperature for the initial guess (k = 0) is much larger than the true temperature, the following
iterates are approaching the real temperature.

In Figure 4.17e, we see the contours of the coagulations at the final time T for the intermediate
controls at different iterations. Again, we see that the initial guess (k = 0) predicts a coagulation
zone which deviates from the true coagulation about 1 cm. This is in fact the most dangerous
prediction error because in the real application this would suggest stopping the therapy although
the coagulation zone does not fully cover the tumorous regions. The subsequent iterations
approximate the contour lines from inside, again caused by the first overshoot in the optimization.

On the one hand, the controls in 4.17a–4.17c do not look much alike the true control in 4.7. On
the other hand, we see that we could improve the prediction of the temperature as well as the
coagulated zone.

Overall, we see that different initial guessesmight yield to different optimal controls computed by
our algorithm. This suggests that there are more than one stationary point of the optimal-control
problem. This motivates the further investigation of additional regularization terms in the cost
functional, e.g., an L1(Ω) regularization to promote stationary points with a sparse structure.
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Figure 4.17: Results of Experiment 4.11. (4.17a–4.17c): Intermediate controls of the descent
method at iterations k ∈ {10, 50, 150}. The black lines indicate the contours of the true control in
Figure 4.7. (4.17d): Temperatures at the final time T for the intermediate controls at iterations
k ∈ {0, 10, 50, 150}, evaluated on the reference line Ω1D, ref, where uk=0 corresponds to the initial
guess. (4.17e): Contour lines of the coagulation at the final time T for the intermediate controls
at iterations k ∈ {0, 10, 50, 150} at level γ(T ) = 0.5, where uk=0 corresponds to the initial guess.
The coagulation for the true control is visualized by the transparent background color and the
corresponding contour line at level γ(T ;utrue) = 0.5 in red. We modified the axis scale for a
better readability.
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4.3.4 Conclusion: Identification of the blood-perfusion rate

In general, the quality of the reconstruction decreases in regions far from the applicator. This is
due to the fact that the difference between the tissue temperature and the blood temperature in
those regions is smaller, which directly affects the descent direction (cf. (3.20)). In those regions,
large vessels have less influence on the temperature. This is a curse and blessing at the same
time. On the one hand, this prevents the reconstruction of the desired control. On the other
hand, errors in the reconstruction far away from the applicator might, for the same reason, not
have a relevant influence on the predicted temperature and coagulation.
The ultimate measure of performance relevant to the later application is the boundary of the
coagulation zone. The numerical experiments have shown that the presented estimation of the
blood-perfusion rate can improve the accuracy of the Cattaneo–LITT simulation significantly, at
least for our chosen parameter setup.

We have seen both from the decrease in the cost functional and from the approximation of the
true control, temperature and coagulation, that our identification strategy improves the accuracy
of the LITT simulation, even if it does not converge in terms of the stationary measure before
reaching the maximum number of iterations. For the later application, we suggest investigating
alternative stopping criteria, which guarantee an acceptable accuracy of the reconstruction but
maybe do not rely on the stationary measure. The cost functionals in all experiments decrease
fast at the beginning and rather slowly for later iterations, so the choice of a stopping criterion
which stops the iteration earlier seems reasonable. Alternatively, one might investigate variants
of the stationary measure tailored to this optimal-control problem.
Furthermore, the steepest descent strategy was chosen only as a starting point and for a proof
of concept. Newton-based methods might speed up the convergence of our method, which
would be promising for future investigations. Especially in view of real-time capability of the
identification, it will be necessary to choose a trade-off between accuracy in the reconstruction
of the blood-perfusion rate, or better, of the coagulation zone, and the computational burden
which comes with numerous descent iterations.

Wehave seen that the choice of different initial guesses influences the quality of the approximation
of the true control, temperature and coagulation. A suitable choice of an initial guess for the
control might help to decrease the number of iterations needed to reach a certain accuracy. The
fact that there are several stationary points motivates the further investigation of additional
regularization terms in the cost functional, e.g., an L1(Ω) regularization to promote stationary
points with a sparse structure.
The presented experiments are understood as a proof of concept for the identification of the
blood-perfusion rate. The fine-tuning of the optimization strategy needs to be performed and
validated on data from the real therapy.
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In Part I, we discussed an alternative model for the heat transfer in the LITT model. Next, we
look at an alternative model to compute the irradiance. We let Willem Star introduce this for us
[204, Sec. 6.3.2, p. 153]:

“Light is principally described as particles with energy hν and velocity c1. These particles

are scattered or absorbed by structures in turbid media such as biological tissues and are

reflected at boundaries between media with different refractive index, according to the laws of

Fresnel. [...] The radiative-transfer equation (RTE)2 is an integro-differential equation for the

radiance3 ψ. [...] Its general stationary form, neglecting polarization, is

v · ∇xψ(x,v) + σt(x)ψ(x,v) = σs(x)

∫
S2

K (v,v′)ψ(x,v′) dv ′ +Q(x,v).” (5.1)

The occurring variables are explained in detail in the next section.
This equation appears as a model for radiative transfer also in the context of LITT [65, 95, 170]
and other physical applications, e.g., in high-temperature processes in industry [167]. Note that
we consider the mono-energetic case in this thesis.

The dependence of the radiance on five independent variables (three spatial coordinates and
two directional coordinates) makes it hard to solve the RTE in the real applications, so we look
for suitable approximations. The established models in the LITT context use a P1 approximation,
which we review in a more general context in the following. In Chapter 5.2 we propose a
second-order formulation of the PN equations, which we call P2nd

N . Our formulation allows a
straight-forward incorporation of the Marshak boundary conditions. It is derived in a general
context and is applicable to various scenarios, including heterogeneous coefficients, anisotropic
scattering and irregular meshes.
The PN moment approximation (with spherical harmonics) and also derivations of second-order
formulations are well-studied subjects in literature. Nevertheless, our formulation is designed
in such a way that the necessary algebraic transformations can be handed to a computer algebra
system and the resulting weak formulation can be solved using standard finite-element tools.
This allows a direct integration in our existing LITT simulations. We make our code available
online and the presented method can easily be transferred to other applications.
We validate our approach in several numerical examples in a general context in Chapter 6.
Finally, we investigate the effect of higher-order moment approximations in the LITT context.
For an overview on the RTE, we refer to [145] and, especially for tissue optics, to [228].

To the best of our knowledge, our derivation and final form of the P2nd
N formulation has not

been presented yet. Furthermore, such a second-order formulation has not been studied in
combination with the classical LITT model or the Cattaneo–LITT model yet.

Before we start, I would like to acknowledge the joint work with Dr. Florian Schneider, which is
the basis for this Part II. We published the derivation of the P2nd

N formulation in Chapter 5 and
1 Planck’s constant h ≈ 6.6261× 1034 J s, photon’s energy ν, speed of light c = 299 792 458 m s−1, [48, App., p. 448]
2 Corresponds to the mono-energetic stationary linear transport equation.
3 This quantity has physical units W m−2 sr−1. Sometimes authors refer to this as radiative intensity [21, 145]. This is
confusing because the SI-standard [97] defines the radiant intensity as a quantity with physical units W sr−1. We
align our nomenclature with the one suggested in [227, Sec. 1.2, Tab. 1.1, p. 7 ff. ].
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the general numerical experiments in Section 6.2, with slight modifications, in our manuscript
[13]. Furthermore, I would like to thank my colleagues Dr. Christian Leithäuser and Dr. Norbert
Siedow from the Fraunhofer Institute for Industrial Mathematics ITWM for helpful discussions
on the coupling of the P2nd

N formulation with the LITT model in Section 6.3.
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Second-order formulation of the
PN equations: derivation

Clean code does one thing well.

Robert C. Martin [132]

5.1 Overview
We provide a straight-forward derivation of a hierarchy of approximate models for the RTE (5.1)
based on the PN equations with Marshak boundary conditions. This is done in a general context
and later applied to the LITT model. The method is designed to be applicable in a general set of
situations, e.g., irregular meshes with up to three spatial coordinates, heterogeneous coefficients,
anisotropic scattering or anisotropic boundary sources. We provide a demo implementation in
Matlab and Python which allows a fast prototyping.

The dependence on up to three spatial coordinates and two directional coordinates makes it
hard to solve the RTE directly. One common way to discretize the solution is the PN moment
approximation (with spherical harmonics), e.g., [21, 46, 145], a type of spectral approximation in
the directional variables, which results in a system of first-order PDEs in the spatial variable. We
refer to [198] for a good start into the numerical treatment of the resulting system of equations,
therein described for the time-dependent case on a staggered grid.
Another way of approximation are Simplified PN (SPN ) methods, which can be derived from the
PN equations in various ways. All of them have the common goal to derive a smaller system of
second-order (elliptic) PDEs in the spatial variable, which then can be solved with the help of
standard finite-element tools, e.g., [77]. Like mentioned in [211], the second-order formulation
has less unknowns and does not require additional stabilization for the price of the generated
matrix being less sparse. A review on different ways to derive SPN equations is given in [137].
The described SPN models are under restrictive assumptions (e.g., slab geometry) equivalent
to the corresponding PN models and numerical results suggested that the SPN models give
higher-order corrections to the diffusion approximation of the RTE [137].
We follow the approach of “successive elimination” [46] similar to [76, 146, 148] and call it
P2nd
N method. We take a subset of the PN equations to express the odd moments in terms

of even moments by algebraic transformations. We plug the resulting expressions into the
remaining equations and, with this, transform the system of first-order PDEs into a system of
second-order PDEs. The choice of a suitable formulation of the PN system allows us to delegate
the transformation to a computer algebra system (e.g., Matlab’s Symbolic Toolbox [135]) and,
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thus, automatize the tedious algebraic calculations. The result can be forwarded to a standard
finite-element tool, e.g., the Python Toolbox FEniCS [3, 127].
We perform all algebraic transformations on the full 3D system, which makes this approach
different from the classical ad-hoc SPN derivation in 1D slab geometry, e.g., [88, 111, 126, 147,
239]. Even though our approach looks similar to the above mentioned ad-hoc derivation, it
does not yield a “simplified” version of the PN equations, but an equivalent “second-order”
formulation, provided that the PN solution is smooth enough to allow all steps during the
transformations. This advantage comes with a price: Instead of obtaining a system of N
equations like in the SPN method, we obtain a system with ∼ 1

2N
2 equations. Nevertheless, this

is still an advantage over the classical PN formulation, which consists of ∼ N2 equations, prob-
ably at the cost that the coupled system of the P2nd

N formulation is less sparse than the PN system1.

We note that there is an ambiguity in the choice of the set of Marshak boundary conditions for
the PN method, discussed in detail later in this chapter. Our formulation suggests a certain
selection of boundary half-moments which enables us to derive the weak formulation of the
second-order system.

Note that other second-order formulations of the PN equations have been presented yet [146,
148]. The proposed formulation in this work allows an intuitive selection and incorporation of
Marshak boundary conditions and allows us to forward the necessary algebraic transformations
to established computer-algebra systems. This is demonstrated in Chapter 6 and our open-source
codes in [8].

For a general overview on the radiative-transfer equation, we refer to [21, 145].
In Section 5.2, we review the standard PN approach, which is then reformulated as a system
of second-order PDEs in space in Section 5.3. In Section 6.2, we look at different examples to
demonstrate the wide applicability of our approach. In Section 6.3, we couple the P2nd

N models
to the Cattaneo–LITT model and investigate the effect on the approximated irradiance.
Before we start, let us have a look at the main result of this chapter.

1 Cf. [211, Ch. 3, p. 12], where the authors point out that, in general, second-order formulations in this context are less
sparse.
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Theorem 5.1 — Weak formulation at a glance.
Based on the assumptions made in this chapter, we propose an approximate model of the RTE
of the form

3∑
i,j=1

∫
Ω

∂xiϕ
T ·Kxixj · ∂xjue dx +

∫
Ω

ϕT · Cee · ue dx +

∫
Γ

ϕT ·Bl(n) · ue ds

=

∫
Γ

ϕT ·Br(n) · uΓ ds −
∫

Ω

ϕTqe dx +

3∑
i=1

∫
Ω

(∂xiϕ)
T
fi dx

with the unknown ue : Ω→ Rne , the known matricesKxixj , Cee, Bl(n) ∈ Rne×ne and
Br(n) ∈ Rne×no , known right-hand sides qe,fi : Ω → Rne depending on the external
source inside the domain, known odd moments of the external source at the boundary
uΓ : Γ → Rno , the outward-pointing unit normal vector at the boundary n : Γ → R3, and
suitable test functions ϕ : Ω → Rne , with ne = 1

2 (N2 +N), no = 1
2N

2 + 3
2N + 1 (for the full

three-dimensional setting).
The coefficients stored in the vector ue correspond to an expansion of the radiance ψ in terms
of real spherical harmonics. Especially the first entry of ue is a multiple of the irradiance φ.
Like demonstrated in Chapter 6 and our demo codes in [8], a system of this structure can be
handed to standard finite-element tools like FEniCS [3, 127].

Even though the derivation is straightforward, we would like to point out that our approach
addresses the needs of other researchers in this field. We cite a part of the conclusion of [169]:

“In fact, the study of the SPN equations is far from over because the strongest theoretical

results exist for homogeneous, infinite media. The boundary and interface conditions [which]

give SPN -PN equivalence in heterogeneous problems are a major, open problem. A less

ambitious, but useful result, would be the development [of] an algorithm that efficiently

generates SPN moments for anisotropic external source[s].”

5.2 Classical PN equations
The RTE is considered as the mono-energetic stationary linear transport equation2

v · ∇xψ + σaψ = σsC (ψ) +Q, (5.1)

which describes the time-stationary density of particles at position x = (x, y, z)T in a domain
Ω ⊆ R3 with speed v ∈ S2 on the unit sphere S2 = {v ∈ R3 | ‖v‖2 = 1}. The scattering
coefficient and absorption coefficient are denoted by σs(x) and σa(x). The quantity σt := σa + σs

is called the attenuation coefficient and Q = Q(x,v) models a radiative source term in the
interior of the domain3.

2 See, e.g., [28].
3 In our LITT model, the laser applicator itself is not a part of the domain (other than, e.g., [154]). It is modeled as an
external source of radiation which enters our LITT model via a boundary condition. Another source of radiation is
given by the total thermal radiation according to Boltzmann’s law S = σaσπ−1ϑ4 (in units W m−3 sr−1) [47, Ch.
10.2.5.4, p. 291], with the Stefan-Boltzmann constant σ ≈ 5.670 51× 10−8 W m−2 K−4 and the temperature ϑ [167,
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Collisions of the particles are modeled using the BGK-type collision operator [122, 163]

C (ψ) =

∫
S2

K(v,v′)ψ(x,v′) dv′ −
∫
S2

K(v′,v)ψ(x,v) dv′

with scattering kernel K : S2 × S2 → R.

Assumption 5.2 — Kernel.
We assume the scattering kernel K to be:

(A1) strictly positive: there exists a K0 ∈ R>0 such that K(v,v′) ≥ K0 for all v,v′ ∈ S2;

(A2) symmetric: it holds K(v,v′) = K(v′,v) for all v,v′ ∈ S2;

(A3) normalized: it holds
∫
S2 K(v′,v) dv′ = 1 for all v ∈ S2.

Note that with Assumption (A3) we retrieve the RTE in its formulation (5.1) given in the
introduction of Part II.

� Example 5.3 — Isotropic scattering.
A constant scattering kernel, i.e., K(v,v′) ≡ 1

|S2| = 1
4π for all v,v′ ∈ S2, models isotropic

scattering.

� Example 5.4 — Henyey–Greenstein.
A typical example for anisotropic scattering is the Henyey–Greenstein kernel [91]:

K (v,v′) =
1

4π

1− g2

(1 + g2 − 2g cos (vTv′))
3/2
.

The parameter g ∈ [−1, 1] can be used to blend from backscattering (g = −1) over isotropic
scattering (g = 0) to forward scattering (g = 1).

The RTE (5.1) is equipped with semi-transparent boundary conditions4 of the form

ψ(x,v) = ρ(x,v)ψ(x, r (v)) + (1− ρ(x,v))ψΓ(x,v), for x ∈ Γ, n(x) · v < 0, (5.2)

where Γ := ∂Ω again denotes the boundary of the domain with outward-pointing unit normal
vector n(x) ∈ R3, ψΓ(x,v) is a given boundary distribution, ρ(x,v) ∈ [0, 1) is the reflectivity
coefficient of the boundary and r (v) = v − 2(n · v)n is the direction reflected at the plane
{v ∈ S2 |n · v = 0}. Note that it is possible to prescribe boundary data only for ingoing particles
(n(x) · v < 0) since particles moving in the opposite direction do not enter but leave the domain.

Sec. 1, p. 1262], [21, Sec. 1.1, p. 9 ff.]. We can neglect the source term S because of the range of the temperature in our
LITT application (ϑ . 100 ◦C).

4 See [119].
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Remark 5.5 — Reflectivity at the boundary.
The reflectivity coefficient ρ(x,v) describes the ratio between reflected and transmitted
radiation at a point x ∈ Γ at the boundary. It can be calculated according to Fresnel’s equation

and Snell’s law
a and depends on the refractive indices of the adjacent materials inside and

outside the domain. Furthermore, the reflectivity coefficient depends on the inner product
n(x) · v, i.e., on the angle of the direction relative to the normal vector. In order to simplify
the derivation of the second-order formulation and reduce complex boundary effects in the
numerical test cases, we drop the directional dependency, i.e., we set ρ(x,v) = ρ(x). The
derivation and implementation can be extended to the direction-depending case.
a See [119].

For a rigorous analytical treatment of the RTE, we refer to [44, XXI, p. 209 ff.]. Especially [44, XXI
App. of §2 2, Thm. 5, p. 260] gives the existence of the unique solution of the RTE with reflection
boundary conditions under certain assumptions on the domain and the data. Here, we are
interested only in formal derivations to obtain a scheme for a further numerical treatment, so we
settle with the following assumption.

Assumption 5.6 — Well-posedness of the RTE.
For the remainder of this chapter, we assume that the parameters are chosen in such a way
that there is a unique solution of the RTE (5.1).

In our situation of LITT as well as in many other applications, e.g., [52, 159, 167], we are not
interested in the directional dependence but only in the irradiance

φ(x) :=

∫
S2

ψ(x,v) dv (5.3)

where the distribution function (radiance) ψ solves the RTE (5.1). Throughout this paper we
parameterize the direction v in spherical coordinates by

v =
(√

1− µ2 cos(ϕ),
√

1− µ2 sin(ϕ), µ
)T

=: (vx, vy, vz)
T (5.4)

where ϕ ∈ [0, 2π) is the azimuthal angle and µ ∈ [−1, 1] the cosine of the polar angle. This
allows us to evaluate the integral over the full unit sphere S2 as follows:

〈·〉 :=

∫
S2

·dv =

∫ 1

−1

∫ 2π

0

·dϕ dµ .

This notation must not to be confused with the dual pairing 〈·, ·〉B for some Banach space B in
Part I.

5.2.1 Moment approximations

The following brief overview on moment approximations is based on and adopted in part from
[192].

In general, it is computationally expensive to solve equation (5.1) numerically since with three
spatial coordinates the domain Ω× S2 of ψ is a subset of R5.
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For this reason, it is convenient to use some type of spectral or Galerkin method to transform
the high-dimensional equation into a system of lower-dimensional equations. Typically, one
chooses to reduce the dimensionality by representing the directional dependency of ψ in terms
of some angular basis, where in this thesis we choose the so-called real spherical harmonics
with maximum degree N .

Definition 5.7 — Real spherical harmonics.
The real spherical harmonics [16, 23, 198] are given by a

Sml (µ, ϕ) =


Θlm(µ)

√
2 cos(mϕ), m > 0,

Θl0(µ), m = 0,

Θl|m|(µ)
√

2 sin(|m|ϕ), m < 0

(5.5)

for 0 ≤ l ≤ N , −l ≤ m ≤ l, and

Θlm(µ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (µ), m ≥ 0.

Analogously to [16], the associated Legendre polynomials Pml are chosen in such a way that
they satisfy the Rodrigues’ formulab

Pml (µ) =
1

2ll!
(1− µ2)

m
2

d l+m

dµl+m
(
µ2 − 1

)l
, 0 ≤ m ≤ l. (5.6)

Here, l denotes the degree of the corresponding function.
a This formulation coincides with the one in [16], according to the parameterization of the unit sphere (5.4).
b Note that sometimes the definition of the associated Legendre polynomials includes a prefactor of (−1)m.
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P 2
2 (µ)

Figure 5.1: First associated Legendre polynomials up to degree l = 3 (see equation (5.6)).



5.2 Classical PN equations 105

� Example 5.8 — Associated Legendre polynomials.
The first associated Legendre polynomials defined in (5.6) read as follows:

P 0
0 (µ) = 1, P 0

1 (µ) = µ,

P 1
1 (µ) = (1− µ2)

1/2, P 0
2 (µ) =

1

2
(3µ2 − 1),

P 1
2 (µ) = 3µ(1− µ2)

1/2, P 2
2 (µ) = 3(1− µ2)

P 0
3 (µ) =

1

2
(5µ3 − 3µ), P 1

3 (µ) =
3

2
(5µ2 − 1)(1− µ2)

1/2,

P 2
3 (µ) = 15µ(1− µ2), P 3

3 (µ) = 15(1− µ2)
3/2.

We visualize the first associated Legendre polynomials on the interval [−1, 1] in Figure 5.1.

Definition 5.9 — Angular basis and moments.
We call the set of real spherical harmonics with maximum degree N an (angular) basis of
order N and write it as a vector-valued function b := bN : S2 → Rn.
In some situations, depending on certain symmetry assumptions as discussed in Subsection
5.2.2, we restrict ourselves to a subset of the angular basis.
The so-called moments u of a given distribution function ψ are then defined by

u : Ω→ Rn, u(x) := ub(x) := (u0(x), . . . , un−1(x))
T := 〈b(v)ψ(x,v)〉 ,

where the integration is performed componentwise.

The set of all real spherical harmonics forms an orthonormal basis5 of L2(S2,R), what especially
implies

〈
bibj

〉
= δi,j . This allows us to express the distribution ψ in terms of a Fourier series

ψ(x,v) =

∞∑
i=0

〈bi(v)ψ(x,v)〉 bi(v) =

∞∑
i=0

ui(x)bi(v). (5.7)

Note that by the choice of our basis the first moment

u0 ≈
〈

1√
4π
ψ

〉
=

1√
4π
φ (5.8)

is an approximation of a multiple of the irradiance defined in equation (5.3).

In order to obtain a set of equations for u, we perform a Galerkin approximation of equation
(5.1) by projecting it onto the space spanned by b. Thus, omitting to write the dependencies on
x and v in the integrals, we obtain

〈b(∇x · v)ψ〉+ 〈bσaψ〉 = 〈bσsC (ψ)〉+ 〈bQ〉 . (5.9)

Since it is impractical to work with an infinite-dimensional system, the Fourier series has to be
truncated, such that a finite number of n <∞ basis functions bN of order N remains. Because
the real spherical harmonics are orthonormal w.r.t. 〈·〉, we can choose the ansatz

ψ(x,v) ≈ ψ̂(x,v) :=

n−1∑
i=0

ui(x)bi(v) = b(v)Tu(x). (5.10)

5 See [67, II.11, p. 99 ff.].
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Figure 5.2: Real spherical harmonics up to degree l = 3 (see equation (5.5)).
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We plug our ansatz (5.10) into equation (5.9), collect known terms and interchange integrals and
differentiation where possible, and obtain the moment system〈

vxbb
T
〉

︸ ︷︷ ︸
Tx:=

· ∂xu +
〈
vybb

T
〉

︸ ︷︷ ︸
Ty :=

· ∂yu +
〈
vzbb

T
〉

︸ ︷︷ ︸
Tz :=

· ∂zu + σau = σs

〈
bC
(
ψ̂
)〉

+ 〈bQ〉 . (5.11)

Our choice of the scattering operator and the Assumption 5.2 on the scattering kernel allow us
to write 〈

bC
(
ψ̂
)〉

= (Σ− En)u where Σ =

∫
S2

∫
S2

b(v)b(v′)TK (v,v′) dv ′ dv

and En denotes the n× n identity matrix. Furthermore, we define

q := q(x) := 〈b(v)Q(x,v)〉 .

Odd-order or even-order approximations

“It is known from neutron transport theory that approximations of odd order are more accurate then even

ones of next highest order [...]” [145, Sec. 15.2, p. 467] (see also [46, Sec. 10.3.2, p. 127]).

We would like to point out that not all authors agree with this convention. As discussed in the
next section, the choice of boundary conditions is ambiguous. Davis tackles this ambiguity by a
variational approach and draws the following conclusion [45, V, p. 197]:

“Conventionally, odd Marshak conditions have been used for even-order PN calculations and

have given poor results relative to the odd PN calculations. In fact, it has been generally

assumed, for this reason and others [46], that the odd-order PN approximations hold an

advantage over the even-order approximations. Our theoretical results suggest, however, that

with the use of even Marshak conditions for even PN calculations such an advantage may be

illusory.”

We need to pick sides and decide for the classical convention:
Assumption 5.10 — Only odd orders.
In the following, we consider only odd values for the order N in the PN approximation.

Closure problem

Unfortunately, there always exists an index i ∈ {0, . . . , n − 1} in equation (5.9) such that the
components of biv are not in the linear span of {bi | i ∈ {0, . . . , n − 1}} ∼= bN . Therefore,
considering the expansion (5.10), the flux term v · ∇xψ̂ cannot be expressed in terms of ubN

without additional information. Furthermore, the same might be true for the projection of the
scattering operator onto the moment space given by

〈
bNC

(
ψ̂
)〉

. This is the so-called closure

problem. There exist many different closure strategies related to different types of bases and
ansatz functions. Our ansatz (5.10) deals with this closure problem by defining higher-order
moments to be zero, i.e., ui := 0, i > n, where these moments correspond to basis functions bi
with degree larger than N . This corresponds to the well-known spherical harmonics PN model
[54, 124], which can be understood as a Galerkin semi-approximation in v for equation (5.1).
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Disadvantage of the model and possible alternatives

A big disadvantage of the PN model with the classical closure is the missing positivity of the
ansatz function ψ̂ for some moments u, whereas the kinetic distribution to be approximated
fulfills this property. Another undesired issue, which is a general problem of unlimited high-
order approximations, are nonphysical oscillations where the kinetic solution is nonsmooth (the
so-called Gibbs phenomenon [201, 209]). Additionally, since the resulting system is linear, it might
be necessary to use a high number of moments to ensure a reasonable approximation of the
desired kinetic solution. A problem coming along with the linearity of the ansatz is the fact
that the resulting wave-speeds of this system are fixed and discrete in contrast to those of the
kinetic solution. However, the structure of this system is well-understood and allows efficient
numerical implementations [75, 198].
In recent years manymodifications to this closure have been suggested, including the positive PN
(PPN ), filtered PN (FPN ) and diffusive-corrected PN (DN ) [75], curing some of the disadvantages
of the original PN moment approximation (with spherical harmonics) while increasing the
complexity of the system at the price of higher computational costs. We also would like to note
that the choices of other closures and angular bases are possible, e.g., minimum entropy [2,
21–23, 29, 35, 90, 103, 123, 138, 140, 160], partial and mixed moments [53, 71, 178, 193–195] or
Kershaw closures [107, 151, 190, 191].

5.2.2 Reduction of dimensionality

The computational complexity of equation (5.1) motivates the common approach to investigate
lower-dimensional models. We achieve this by assuming certain symmetries of the solution
which imply that it is sufficient to perform the calculations on lower-dimensional spatial slices
and a reduced set of basis functions.

1. We follow [198, Sec. 2, p. 3 ff.] and obtain “the slab geometry radiative transfer equation

by considering a slab between two infinite parallel plates. Assume for instance that the z-axis

is perpendicular to the plates. If the setting is invariant under translations perpendicular to,

and rotations around, the z-axis, then the unknown ψ depends only on the z-component of the

spatial variable, and one angular variable µ (cosine of the angle between direction and z-axis)”,
i.e., ∂xψ = ∂yψ = 0 and ψ(x,v) = ψ(z, µ). The functions Sml withm 6= 0 depend on the
azimuthal variable ϕ and, thus, do not appear in the series expansion of a distribution ψ
with the assumed symmetry. This allows us to consider the one-dimensional approximation
of the spatial variable, i.e.6, Ω ⊂ R, and define the reduced angular basis

bN =
(
S0

0 , S
0
1 , . . . , S

0
N

)
.

We note that the real spherical harmonics Sml withm = 0 correspond to the normalized
Legendre polynomials7. The PN equations then read

Tz∂zu = (σsΣ− σtEn)u + q. (5.12)

6 Note that the same symbol Ω is used for the full space and for the one-dimensional projection.
7 We use the normalized Legendre polynomials, whereas in the literature typically the unnormalized Legendre
polynomials are used in slab geometry.
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Due to the recursive structure of the Legendre polynomials [198], the flux matrix has the
tridiagonal form

(Tz)l,l+1 =

√
1

4l2 + 8 l + 3
(l + 1) = (Tz)l+1,l ,

(Tz)l,l = 0

 for l = 0, . . . , N.

2. If the domain is instead assumed to be infinitely elongated in the z-direction and all data
are z-independent, the solution ψ of the RTE (5.1) is also z-independent and even w.r.t. µ
[198], i.e., ∂zψ = 0 and ψ(x, µ, ϕ) = ψ(x,−µ, ϕ). The functions Sml for which (l + |m|) is
odd are odd in µ and, thus, do not appear in the series expansion of the solution. This
allows us to consider the two-dimensional approximation of the spatial variable, i.e.,
Ω ⊂ R2, and define the reduced angular basis

bN =
(
S0

0 , S
−1
1 , S1

1 , . . . , S
−N
N , S−N+2

N , . . . , SN−2
N , SNN

)T
,

i.e., we use only the subset of the real spherical harmonics where (l + |m|) is even. The
corresponding system then has the form

Tx∂xu + Ty∂yu = (σsΣ− σtEn)u + q.

The matrices Tx, Ty, Tz can be found in [198] and are given for N = 1 in Example 5.12
below.

3. If we do not assume any symmetry properties of the data and the solution, we include all
real spherical harmonics up to degree N in our angular basis:

bN =
(
S0

0 , S
−1
1 , S0

1 , S
1
1 , . . . , S

−N
N , S−N+1

N , . . . , SN−1
N , SNN

)T
.

Remark 5.11 — Reduced angular basis.
Based on the symmetry assumption described above, some of the basis functions which are
necessary in the full three-dimensional setting can be neglected because the corresponding
moments would be zero. The spatial dimension of the reduced model and the size of the
angular basis, depending on the odd moment order N , can be found in the table below.
We also give the number of even basis elements, which equals the number of coupled
second-order PDEs in the final formulation, i.e., the number of components of the solution
vector.

symmetry assumption spatial
dimension

number of basis
elements

number of even
basis elements

rot. symmetry around z-axis 1 N + 1 1
2 (N + 1)

symmetry along z-axis 2 1
2N

2 + 3
2N + 1 1

4N
2 + 1

2N + 1
4

no symmetry: full problem 3 N2 + 2N + 1 1
2N

2 + 1
2N
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� Example 5.12 — Flux and scattering matrices.
For isotropic scattering and moment order N = 1, we get for the full three-dimensional setup,
i.e., b1 =

(
S0

0 , S
−1
1 , S0

1 , S
1
1

)
, the following matrices defining the PN equations:

Tx =


0 0 0 1√

3

0 0 0 0

0 0 0 0
1√
3

0 0 0

 , Ty =


0 1√

3
0 0

1√
3

0 0 0

0 0 0 0

0 0 0 0

 ,

Tz =


0 0 1√

3
0

0 0 0 0
1√
3

0 0 0

0 0 0 0

 , Σ =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 .

5.3 Second-order formulation of the PN equations
In this section we propose a reformulation of the classical PN equations, described above, as
system of second-order PDEs in the spatial variable. The idea to reformulate the PN equations
in terms of second-order derivatives is not new [146, 148], but, to the best of our knowledge, our
derivation and resulting formulation has not been presented yet. Our formulation has a simple
structure, can be generated automatically with the help of computer-algebra systems, and can
easily be handed to a standard finite-element tool for its numerical solution, like demonstrated
in our implementation [8].

Express the oddmoments in terms of the evenmoments bymeans of algebraic transformations
and symmetry properties of the real spherical harmonics.

Remark 5.13 — Smoothness.
We would like to point out that the formal derivation requires additional smoothness of
the solution, i.e., equivalence of the two formulations is given only for PN solutions with
a sufficient regularity. Furthermore, we do not discuss the well-posedness of the resulting
second-order system here.

5.3.1 Algebraic transformations

The reformulation of the PN equations in second-order form is based on the parity property
w.r.t. the directional variable v of the real spherical harmonics:

Sml (−v) = (−1)lSml (v) for all v ∈ S2.

The real spherical harmonics are called even or odd if the corresponding degree l ∈ N0 is even
or odd, respectively.
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We organize the basis functions for the full problem8 into even and odd functions

be :=
(
S0

0 , S
−2
2 , S−1

2 , . . . , S2
2 , S

−4
4 , . . . , S4

4 , . . . , S
−N+1
N−1 , . . . , SN−1

N−1

)
, (even)

bo :=
(
S−1

1 , S0
1 , S

1
1 , S

−3
3 , S−2

3 , . . . , S3
3 , . . . , S

−N
N , . . . , SNN

)
(odd)

and rearrange the moments ue =
〈
beψ̂

〉
and uo =

〈
boψ̂

〉
, respectively. We write for the number

of even and odd basis functions ne = 1
2N

2 + 1
2N and no = 1

2N
2 + 3

2N + 1, respectively.
Now we can rewrite the PN ansatz (5.10) as

ψ̂(x,v) = bT
e (v)ue(x) + bT

o (v)uo(x). (5.13)

In particular, with vx, vy, vz being odd and the entries of beb
T
e ,bob

T
o being even functions

w.r.t. v, we can find that the flux matrices in equation (5.11) decouple, based on the following
observation:〈(∇x · v)beψ̂

〉〈
(∇x · v)boψ̂

〉 (5.13)
=

(〈
(∇x · v)beb

T
e
〉
ue +

〈
(∇x · v)beb

T
o
〉
uo〈

(∇x · v)bob
T
e
〉
ue +

〈
(∇x · v)bob

T
o
〉
uo

)
parity
=

(〈
(∇x · v)beb

T
o
〉
uo〈

(∇x · v)bob
T
e
〉
ue

)
.

The PN equations can now be rewritten as

Te(uo):=︷ ︸︸ ︷
T xeo∂xuo + T yeo∂yuo + T zeo∂zuo =

Cee:=︷ ︸︸ ︷
(σsΣee − σtEne)ue +

Ceo:=︷ ︸︸ ︷
σsΣeouo + qe, (5.14a)

T xoe∂xue + T yoe∂yue + T zoe∂zue︸ ︷︷ ︸
To(ue):=

= σsΣoe︸ ︷︷ ︸
Coe:=

ue + (σsΣoo − σtEno)︸ ︷︷ ︸
Coo:=

uo + qo (5.14b)

where T ieo :=
〈
vibeb

T
o
〉
and T ioe :=

〈
vibob

T
e
〉
, for i ∈ {x, y, z}, and Σee,Σeo,Σoe,Σoo, qe, qo are

the rows and columns of Σ and q according to the reordering of u = (ue,uo)
T. Here, Te and

To define formal linear differential operators. In Lemma 5.15, we show that Coo ∈ Rno×no is
invertible.9 We can then formally solve equation (5.14b) for uo, i.e.,

uo = C−1
oo (To (ue)− Coeue − qo) , (5.15)

and plug it into equation (5.14a) to obtain a second-order system of linear, stationary drift-
diffusion equations:

Te (uo) = Te
(
C−1

oo (To (ue)− Coeue − qo)
)

= Ceeue + CeoC
−1
oo (To (ue)− Coeue − qo) + qe.

(5.16)

Assumption 5.14 — No-drift property.
We assume that the kernel K is chosen such that Coe = 0 ∈ Rno×ne and Ceo = 0 ∈ Rne×no .
See Remark 5.17 and Lemma 5.15 for a detailed discussion on this assumption.

Based on Assumption 5.14, the second-order formulation (5.16) reduces to

Te (uo) = Ceeue + qe (5.17)

or, equivalently,
Te
(
C−1

oo To (ue)
)

= Ceeue + qe + Te
(
C−1

oo qo
)
.

8 For the slab geometry or a two-dimensional geometry, the reduction has to be performed accordingly.
9 We show this under the assumption of σt > 0.
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Note thatCoo depends on the quantities σs and σa. Thus, it can not be pulled out of the differential
operator if the physical coefficients are not space-homogeneous.

The reduction operator (5.15) is well defined. In fact, the next Lemma tells us that we can solve
for uo in equation (5.14b).

Lemma 5.15 — Reduction operator in equation (5.15) is well defined.
Let the kernel K satisfy Assumption 5.2. The matrix Coo = (σsΣoo − σtEno) is invertible
whenever σa + σs = σt > 0.

The proof of Lemma 5.15 is given in Appendix C.1.2, where we show that the matrix Coo is
negative definite.

Remark 5.16 — Decoupled structure.
The fact that the PN equations decouple is a well-known result. E.g., in [198], this was
used to derive an efficient implementation for the time-dependent PN equations, where the
decoupled structure was employed on a staggered grid.

We conclude this subsection with a discussion on the no-drift property in Assumption 5.14.

Remark 5.17 — There are kernels causing drift terms.
We would like to point out that the previous Assumption 5.14 is necessary to get rid of the
drift terms in equation (5.16). An example for a kernel which satisfies Assumption 5.2 but
does not satisfy Assumption 5.14 is given by

K(v,v′) =
3
(
25µ2 + 25(µ′)2 − 75µ2(µ′)2 + 45µ2µ′ + 45µ(µ′)2 − 27µµ′ − 15µ− 15µ′ + 150

)
1900π

.

For N = 3, it yields the matrix

Σeo =



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 6
√

15
475 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0


and, with this, especially Ceo 6= 0 ∈ Rne×no . We visualize this kernel, projected onto the
z-component of v, in Figure 5.3.

In the next Lemma we show that for a certain class of kernels the desired no-drift property is
fulfilled.
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Figure 5.3: Surface plot of the kernel in Remark 5.17, which violates the no-drift assumption
(Assumption 5.14). The value of K(v,v′) = K(µ, µ′) is encoded in the color scale.

Lemma 5.18 — No drift.
Let the kernel K satisfy Assumption 5.2 and fulfill K (v,v′) = K̂

(
vTv′

)
for all v, v′ ∈ S2, for

some continuousa function K̂ : [−1, 1]→ R>0. Then the kernel satisfies Assumption 5.14, i.e.,
no drift terms occur in the resulting P2nd

N formulation. In particular, this holds true for the
kernels in Examples 5.3 and 5.4 (for g ∈ (−1, 1)).
a The continuity of K̂ guarantees that the occurring integrals in the proof are well defined.

The proof of Lemma 5.18 is given in Appendix C.1.1 and is based on symmetry properties of the
spherical harmonics and the scattering kernel.

5.3.2 Weak formulation and boundary conditions

Onemajor problem of the PN equations is that the semi-transparent boundary conditions (5.2) of
the transfer equation have to be prescribed only for inward-pointing angles (n · v < 0), whereas
the hyperbolic PN system requires information for the characteristic variables related to ingoing
characteristics [216]. Although these quantities are somehow related, a consistent approximation
of boundary conditions for moment models is nontrivial [118, 168, 185, 206].
Without thinking too much about these implications for the PN equations, we want to use the
Marshak ([145, Sec. 15.3, p. 470]) approach to derive consistent boundary conditions for equation
(5.16).10 The basic idea is to replace ψ in the boundary conditions (5.2) with the PN ansatz ψ̂ and
take half moments over {v ∈ S2 |n · v < 0} of the equation w.r.t. to a suitable subset of basis
functions, that is∫
n·v<0

ψ̂(v)Sml (v) dv =

∫
n·v<0

ρψ̂(r (v))Sml (v) dv +

∫
n·v<0

(1−ρ)ψΓ(v)Sml (v) dv , l odd. (5.18)

10 Another famous set of boundary conditions would be Mark’s boundary conditions [145, Sec. 15.3, p. 469].
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Remark 5.19 — A suitable subset of boundary conditions.
If we test equation (5.2) with all basis functions, we usually obtain more boundary conditions
than needed. This ambiguity is well known and there are different conventions. The authors
of [146] suggest to choose “all relevant” basis functions. Modest phrases this as follows:
“Thus, on intuitive grounds it is accepted practice to satisfy equation (5.18) for all relevant [i.e., nonzero]
m for l = 1, 2, ..., 1

2 (N − 1), and for as many relevantm as possible for l = 1
2 (N + 1).” [145, Sec.

15.3, p. 471]
Marshak recommends the choice of odd basis functions in equation (5.2) (in a one-dimensional
setup), based on the following remark: “Dr. Mark has pointed out that the apparent ambiguity

in the choice of the boundary conditions is removed if one recalls that in the Milne problem for

the-half-plane the exact even “half-moments” have an infinite derivative at the boundary, whereas the

exact odd “half-moments” have a finite derivative, just as they do in any odd P approximation.” [131,
Sec. 2, footnote 2, p. 444]
In a classical SPN context, it is also common to choose all odd half moments [88].

We choose all odd basis functions in bo for the half moments at the boundary because those
are the ones which appear naturally in the weak formulation as discussed below. This choice
also leads to more equations than unknowns but guarantees that the second-order formulation
is well defined, as shown in Lemma 5.20.

We start to derive the weak form for ue. Let ϕ : Ω→ R denote a suitable spatial test function and
let i ∈ {1, . . . , ne}. The weak formulation of (5.17) then reads∫

Ω

(Ceeue)iϕdx +

∫
Ω

qe,iϕdx
(5.17)
=

∫
Ω

(Te (uo))i ϕdx

=

∫
Ω

[〈
vx (be)i b

T
o
〉
∂xuo +

〈
vy (be)i b

T
o
〉
∂yuo +

〈
vz (be)i b

T
o
〉
∂zuo

]
ϕdx

=

∫
Ω

[
∂x
〈
vx (be)i

(
bT
o uo

)〉
+ ∂y

〈
vy (be)i

(
bT
o uo

)〉
+ ∂z

〈
vz (be)i

(
bT
o uo

)〉]
ϕdx

=

∫
Ω

div
(〈
v (be)i

(
bT
o uo

)〉)
ϕdx

Gauss
= −

∫
Ω

〈
v (be)i (bT

o uo)
〉
· ∇ϕdx +

∫
Γ

〈
(n · v) (be)i

(
bT
o uo

)〉
ϕds

(5.19)

where we used Gauss’s theorem11 in the last step. We now want to eliminate uo in equation
(5.19) using the boundary conditions. Therefore, we plug the ansatz ψ̂ = be · ue + bo · uo into
equation (5.18) and test with all odd basis elements in bo, which yields ∫
n·v<0

bo(v)
(
bT
o (v)− ρbT

o (r (v))
)

dv

uo +

 ∫
n·v<0

bo(v)
(
bT
e (v)− ρbT

e (r (v))
)

dv

ue = uΓ

(5.20)
with

uΓ := uΓ(x,n) :=

∫
n·v<0

(1− ρ)bo(v)ψΓ(x,v) dv .

11 See [63, App. C.2, Thm. 2, p. 628] for Gauss’s theorem.
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We define the matrices

Ho(n) :=

∫
n·v<0

bo(v)
(
bT
o (v)− ρbT

o (r (v))
)

dv ,

He(n) :=

∫
n·v<0

bo(v)
(
bT
e (v)− ρbT

e (r (v))
)

dv

(5.21)

and rewrite equation (5.20) as

uo = Ho(n)
−1

(uΓ −He(n)ue) . (5.22)

The following Lemma ensures that the last step (5.22) in the reduction is well defined.

Lemma 5.20 — Reduction step (5.22) is well defined.
The matrix Ho(n) in (5.21) is invertible for all ρ ∈ (−1, 1).

The proof of Lemma 5.20 is based on symmetry properties of the real spherical harmonics and is
given in Appendix C.1.3.

Remark 5.21 — Boundary conditions are well defined.
Lemma 5.20 proves the invertibility of the matrix Ho(n) for ρ ∈ (−1, 1), which especially
includes our case ρ ∈ [0, 1).

Remark 5.22 — Properties of auxiliary matrices.
Because of the parity of the real spherical harmonics and the fact that r (−v) = −r (v), for all
v ∈ S2, we get that Ho(n) = Ho(−n) and He(n) = −He(−n).

With equations (5.15), (5.19) and (5.22), we are now able to precisely define thematrices occurring
in the final weak formulation12 of the P2nd

N model as announced in Theorem 5.1:

3∑
i,j=1

∫
Ω

∂xiϕ
T ·Kxixj · ∂xjue dx +

∫
Ω

ϕT · Cee · ue dx +

∫
Γ

ϕT ·Bl(n) · ue ds

=

∫
Γ

ϕT ·Br(n) · uΓ ds −
∫

Ω

ϕT · qe dx +

3∑
i=1

∫
Ω

(∂xiϕ)
T · fi dx

(5.23)

with
Kxixj = T xieo C

−1
oo T

xj
oe for i, j ∈ {1, 2, 3},

Bl(n) =
〈
(n · v)beb

T
o
〉
Ho(n)

−1
He(n),

Br(n) =
〈
(n · v)beb

T
o
〉
Ho(n)

−1
,

fi = T xieo C
−1
oo qo for i ∈ {1, 2, 3}

(5.24)

and a suitable vector of test functions ϕ : Ω→ Rne .
In the next chapter, we demonstrate that a system with the structure like (5.23) can be handed to
standard finite-element tools like FEniCS [3, 127].

12 For readability, we use the notation x =
[
x y z

]T
=
[
x1 x2 x3

]T
∈ R3.
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Second-order formulation of the
PN equations: numerical experi-
ments

Any fool can write code that a computer can understand. Good programmers write code that

humans can understand.

Yet another opinion on source code and its documentation [14]

In this chapter, we apply our P2nd
N formulation derived in Chapter 5 to several test cases and solve

the resulting equations numerically. We do this in a general context first and, finally, couple
the P2nd

N formulation with the Cattaneo–LITT model and investigate the effect of higher-order
models in this context.

The different test cases demonstrate the broad applicability to different scenarios, including
heterogeneous coefficients, anisotropic scattering, anisotropic boundary sources and different
spatial dimensions. We reduced the computational complexity by focusing on problems with
reduced spatial dimension like described in Section 5.2.2. Nevertheless, the code to compute the
P2nd
N system matrices also covers the 3D case. Like in Chapter 4, we make all codes, including

files to reproduce the numerical results of this thesis, publicly available online [8].

6.1 Implementation details
Table 4.1 shows a list of the used software. Our Matlab code for the evaluation of the real
spherical harmonics is based on [16]. We would like to note here that our implementation of
the associated Legendre polynomials (5.6) does not include the Condon–Shortley phase ((−1)m

prefactor), in contrary to, e.g., Matlab’s legendre function1. The (permuted version of the) PN
flux matrices are given explicitly in [198].
In cases for which we do not know the kinetic reference solution of the RTE or the solution of the
original PN equations, we compare our result to the approximate solution of thediscrete-ordinates
method (DOM), described in Section 6.1.2.
For the DOM as well as for the derivation of the P2nd

N equations, we need to approximate integrals
over (subdomains of) the unit sphere S2 by means of spherical quadrature rules.
For the P2nd

N equations, we use the quadrature rule described in Section 6.1.1 which is exact for
polynomials up to degree degK + 2N , where degK denotes the degree of the kernel function

1 See https://de.mathworks.com/help/matlab/ref/legendre.html, accessed: Apr, 10th 2020.

https://de.mathworks.com/help/matlab/ref/legendre.html
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written as trigonometric polynomial.
The nodes of the chosen spherical quadrature rule are further used as set of discrete ordinates
for the DOM.

We consider the rescaled RTE, where we eliminated all physical units from the equation (see
Remark 1.2). For the discretization of the weak formulation of the P2nd

N systems, we use triangular
linear Lagrange finite elements (FEM) with the help of FEniCS, like described in Chapter 4. The
resulting linear systems are solved with the default solver of FEniCS, which uses a sparse LU

decomposition (Gaussian elimination) [115, Sec. 5.2, p. 115].
We interpolate all occurring coefficients linearly in space w.r.t. our finite-element space, i.e., as
piecewise linear functions on each triangle of the mesh. In the following, we write n for the
number of nodes in the mesh. The integrals occurring in the weak formulation are computed via
quadrature rules. The quadrature degree is automatically determined by FEniCS such that the
quadrature is exact for the highest-order polynomial in the form being assembled. Furthermore,
in the following experiments the evaluation of the L∞(Ω) norm needs to be understood on the
discrete level and returns the maximum nodal value due to linear interpolation.

In all experiments, we neglect the external source and set Q ≡ 0. Furthermore, we focus on the
approximation of the irradiance because this is the only quantity of interest in our LITT context.

6.1.1 Spherical quadrature rule

We approximate integrals over the unit sphere by

∫
S2

ψ(x,v) dv ≈
S∑
k=1

wkψ(x,vk)

where {wk}Sk=1 ⊂ R>0 are the weights and {vk}Sk=1 ⊂ S2 the ordinates of a spherical quadrature
rule.
One way to construct a spherical quadrature rule is based on a one-dimensional trigonometric

Gaussian quadrature rule [42]withweights {w(1)
k }δk=0 ⊂ R>0 andnodes {ϕk}δk=0 ⊂ (a, b) ⊂ (0, 2π),

which is exact for every trigonometric polynomial2 p up to degree δ on in the interval (a, b).
Trigonometric polynomials are functions of the following form:

p : R→ R, ϕ 7→ a0

2
+

δ∑
k=1

ak cos(kϕ) + bk sin(kϕ)

with real coefficients a0, ak, bk ∈ R, k ∈ {1, . . . , δ}.
We obtain a quadrature rule for polynomials on the sphere3 which is exact up to degree δ by com-
bining two trigonometric Gaussian quadrature rules with weights {w(1)

k }δk=0, {ŵ
(1)
k }δ+1

k=0 ⊂ R>0

2 The nomenclature of trigonometric polynomials is motivated as follows. We can write p in a complex formulation
p(ϕ) =

∑δ
k=−δ cke

ikϕ with c0 = a0
2
, ck = ak−ibk

2
, c−k = ak+ibk

2
, k ∈ {1, . . . , δ}, which corresponds to the

Laurent polynomial (“complex polynomial with positive and negative powers”) restricted to the unit circle.
3 The real spherical harmonics of degree δ = l: S−1

l=1 ∼ y, S−2
l=2 ∼ xy, S2

l=2 ∼ x2 − y2, etc., are given in Cartesian
coordinates. The connection to trigonometric polynomials after parameterization becomes clear with x = cos(ϕ),
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and corresponding nodes4 {ϕk}δk=0 ⊂ (0, 2π), {ϕ̂k}δ+1
k=0 ⊂ (0, π) as

∫
S2

ψ(x,v) dv =

∫ 2π

0

∫ π

0

ψ(x, ϕ, ϕ̂) sin(ϕ̂) dϕ̂ dϕ ≈
δ∑

k=0

δ+1∑
j=0

ψ(x, ϕk, ϕ̂j) sin(ϕ̂j)ŵ
(1)
j w

(1)
k .

The final quadrature rule on the sphere exact up to degree δ, before relabeling, is given by the
S = δ2 + 3δ + 2 nodes and weights

vk,j =
[
cos(ϕk) sin(ϕk) cos(ϕ̂j)

]T
∈ S2,

wk,j = sin(ϕ̂j)ŵ
(1)
j w

(1)
k ∈ R>0,

 k = 0, . . . δ, j = 0, . . . , δ + 1,

illustrated in Figure 6.1.
We employ the implementation of this quadrature rule in Matlab provided in [41]. For a detailed
investigation in the reduced two-dimensional case, see [192].
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Figure 6.1: Quadrature nodes for the spherical quadrature rule exact up to degree δ = 23, with
S = 600 nodes. (6.1a): 3D view. (6.1b): Top view in direction −ez on the x–y-plane.

y = sin(ϕ), z = cos(ϕ̂) and the following formulae [237, Sec. 0.2.8, Eq. 0.37, p. 57]:

sin(ϕ) cos(ϕ) =
1

2
sin(2ϕ),

cos2m(ϕ) =
1

22m

(2m

m

)
+

1

22m−1

m−1∑
k=0

(2m

k

)
cos(2(m− k)ϕ),

cos2m+1(ϕ) =
1

4m

m∑
k=0

(2m+ 1

k

)
cos((2m+ 1− 2k)ϕ).

The last two formulae follow by induction and [237, Sec. 0.2.8, Eq. 0.42, p. 60], see [112, p. 576], [226].
4 If ψ(ϕ, ϕ̂) is a polynomial on the sphere with degree δ, then ψ(ϕ, ϕ̂) sin(ϕ̂) has degree δ + 1.
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6.1.2 Discrete-ordinates method (DOM)

The discrete-ordinates method (DOM) is a brute-force ansatz to approximate the solution of the
RTE. For an introduction on the application to radiative heat transfer, we refer to [145, Ch. 16, p.
498 ff.].
We discretize the unit sphere by a finite set of discrete ordinates {vk}Sk=1 ⊂ S2, which are
defined by a spherical quadrature rule. Here, the number of quadrature nodes S coincides with
the number of discrete ordinates. For each discrete ordinate vk, we approximate the radiance
ψ(·,vk) : Ω→ R by piecewise constant functions w.r.t. the given mesh, which yields

ψ(x,v) ≈
S∑
k=1

1vk(v)ψk(x) ≈
S∑
k=1

1vk(v)

ne∑
i=1

1Ti(x)ψki (6.1)

where Ti denotes an element (e.g. triangle in 2D) of the mesh, ne the number of elements,
1Ti : Ω → {0, 1} the indicator function of the ith element, and 1vk : S2 → {0, 1} the indicator
function for kth ordinate, i.e., the set {v ∈ S2 |v = vk}.
We use the approximation (6.1) in equation (5.1) (for external sourceQ ≡ 0) and take the average
over each element Ti : Ω→ {0, 1}, which gives us

1

|Ti|

∫
Ti
vk · ∇ψki dx = − 1

|Ti|

∫
Ti
σtψ

k
i dx +

1

|Ti|

∫
Ti
σs

∫
S2

K (vk,v)ψi(v) dv

≈ −σitψki + σis

S∑
j=1

wjK (vk,vj)ψ
j
i dx

(6.2)

for k ∈ {1, . . . , S}, i ∈ {1, . . . , ne}, where {wj}Sj=1 are the weights of the spherical quadrature
rule corresponding to the nodes {vj}Sj=1.
We reformulate the left-hand side of equation (6.2) by means of Gauss’s theorem5 and an upwind
scheme6, which yields

1

|Ti|

∫
Ti
vk · ∇ψki dx =

1

|Ti|

∫
Ti

div(vkψ
k
i ) dx =

1

|Ti|

∫
∂Ti

ψki vk · nds

=
1

|Ti|
∑
e∈Ei

∫
e

ψki vk · ne ds

≈ 1

|Ti|
∑
e∈Ei
|e|

max(vk · ne, 0)ψki︸ ︷︷ ︸
outflow

+ min(vk · ne, 0)ψkadj(i,e)︸ ︷︷ ︸
inflow


where Ei denotes the set of boundary elements of the element Ti. Here,ne denotes the unit normal
vector at boundary element e pointing outward w.r.t. Ti. The expression adj(i, e) ∈ {1, . . . , ne}
denotes the index of the element which is adjacent to Ti and shares the boundary e. At the
boundary of the domain, the term ψkadj(i,e) is replaced according to the boundary condition.
We approximate the boundary conditions (5.2) in the same way:

ψki = ρψi(v
′
k) + (1− ρ)

1

|e|

∫
e

ψΓ(s,vk) ds

with v′k = vk − 2 (vk · ne)ne. In nonrectangular spatial domains, the ordinates v′k are not
necessarily contained in the set of discrete ordinates. We approximate the radiance in the

5 See [63, App. C.2, Thm. 2, p. 628] for Gauss’s theorem.
6 See [86, Sec. 6.3, p. 406 ff.] for details on the upwind scheme.
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direction of those ordinates by means of a distance-based interpolation on the sphere7 as described
in [24, Sec. 3.2, p. 101 ff.]:

ψi(v
′
k) ≈

S∑
k=1

λkψ
k
i

for certain weights λk ∈ R≥0 with
∑S
k=1 λk = 1, k ∈ {1, . . . , S}.

Finally, we obtain an approximation of the irradiance (5.3) by

φDOM(x) :=

S∑
k=1

wk ·
[
ne∑
i=1

ψki · 1Ti(x)

]
. (6.3)

We obtain a (huge) linear system for the variables (ψki )i=1,...,ne,k=1...,S with ne · S unknowns,
with ne the number of elements of the spatial mesh and S the number of discrete ordinates. The
resulting linear system has a sparse structure. In our one-dimensional test cases, we solve the
resulting linear systems with Matlab’s function mldivide, which uses a variant of the Gaussian
elimination. In our two-dimensional test case, we use Matlab’s implementation of the iterative
solver bicgstab.
The advantage of the DOM is its straight-forward derivation and implementation. The disadvan-
tage is the size of the resulting linear system. The computational effort forbids its application in
our real-time context of LITT.Here, we use it to generate only reference solutions for our test cases.

For a recent survey of the discrete ordinates method and relevant references, we refer to [117].

7 Consider a triangulation of the unit sphere with geodesic triangular elements and let v ∈ S2 be inside such an element
with nodes {vi1 ,vi2 ,vi3} ⊂ {vk}Sk=1. The weights are computed via the geodesic distances hk between the query
ordinate v and the corresponding reference ordinate vk , and are given by

wk =

hk (hi1 + hi2 + hi3 )−1 , k ∈ {i1, i2, i3},
0, else.
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6.2 Proof-of-concept experiments

We published the numerical experiments presented in this section, regarding the approximation
of the RTE in a general context, earlier in our manuscript [13].

6.2.1 Test case “Simple 1D”

The first test case is rather simple and we are able to compute analytic reference solutions for the
radiative-transfer equation (RTE) and the original PN equations, which allow us to validate our
code for the P2nd

N model and the discrete-ordinates method (DOM) in this setup.

� Experiment 6.1 — Test case “Simple 1D”.
We consider the RTE (5.1) with the following details:

Ω = [0, 1] (spatial domain)
σa(z) = 1 (absorption coefficient)
σs(z) = 0 (scattering coefficient)
K(v,v′) = 1

4π (scattering kernel)
ψΓ(z = 0, µ ≥ 0) = 1

4π (radiance at the left boundary)
ψΓ(z = 1, µ < 0) = 0 (radiance at the right boundary)
ρ(z = 0) = 0 (reflectivity at the left boundary)
ρ(z = 1) = 0 (reflectivity at the right boundary)
Q(z) = 0 (external source)

We compute:

1. the analytical solution of the RTE (6.4), where we approximate the first integral in (6.5)
by the spherical quadrature in Section 6.1.1 which is exact up to degree δ = 50 (with
S = 2652 nodes),

2. the analytical solution of the original PN equations (6.9) for moment orders
N ∈ {1, 3, . . . , 21},

3. the FEM solutions of the P2nd
N equations for all combinations of numbers of equidistant

grid points n ∈ {11, 21, 41, 81, 161, 321, 641} and moment orders N ∈ {1, 3, . . . , 21},

4. the DOM solution, on a spatial grid with n = 641 equidistant nodes. We consider
the spherical quadrature rule in Section 6.1.1 which is exact up to degree δ = 50. The
resulting S = 2652 nodes define the set of discrete ordinates. The solution does not
depend on the ϕ component of the ordinates, which allows us to reduce the number of
discrete ordinates in the implementation to 52. We compute the irradiance of the DOM
solution according to equation (6.3).

The irradiances for the PN and P2nd
N solutions are given as a multiple of the corresponding

first moments according to (5.8).
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Analytical solution of the RTE

It is easy to check that the analytical solution of the RTE (5.1) for this test case is given by

ψ(x,v) = ψ(z, µ) =

 1
4π e
−σaµ z, µ > 0,

0, µ ≤ 0,
(6.4)

with irradiance
φref(z) =

∫
S2

ψ(x,v) dv = 2π

∫ 1

−1

ψ(z, µ) dµ . (6.5)

Analytical solution of the original PN equations

In this simple case, we can reformulate the corresponding original PN equations as an initial-
value problem, which can be solved analytically. The analytical solution serves as reference for
the finite-element approximation of the P2nd

N solution and allows us to investigate the convergence
for the grid size 1

n−1 tending to zero.
We consider the original PN equations (5.12) after reducing the spatial dimension to 1D for this
test case

Tzuz = Cu

with boundary conditions (5.20)
BuL = uΓL,

BuR = uΓR
(6.6)

where the subscripts L,R denote the quantities at the left (z = 0) and right (z = 1) boundary,
respectively. Wediagonalize the symmetric, positive definitemomentmatrixTz viaTz = V DV −1,
where D is a diagonal matrix, and obtain by multiplication of (6.6) from left with V −1

wz = Hw (6.7)

with w := V −1u and H := D−1V −1CV . For isotropic scattering and homogeneous coeffi-
cients, the matrix C and, thus, the matrix H do not depend on z, so we obtain a solution
w(z) = exp(Hz)wL by means of the matrix exponential. With wR = w(z = 1) = exp(H)wL,
we reformulate the boundary conditions (6.6) as[

BV

BV exp(H)

]
wL =

[
uΓL

uΓR

]
. (6.8)

Note that for a one-dimensional spatial domain and for odd moment order N , we have
B ∈ Rno×2no and, by the choice of boundary moments, uΓL ∈ Rno (with no = N+1

2 ). We solve
the linear system (6.8) for wL using an LU decomposition and obtain the solution of the PN
equations

u(z) = V exp(Hz)wL. (6.9)

Results

We visualize the results in Figure 6.2. The analytical solution of the RTE (6.4) yields a reference
solution for the irradiance. The analytical solutions of the original PN equations yield reference so-
lutions for the P2nd

N formulation. We note that the irradiance of the DOM solution in Figure 6.2a is
in fact piecewise constant, which can not be observed due to the fine resolution of the spatial grid.
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Figure 6.2: Results of Experiment 6.1. (6.2a): Irradiances φ of the DOM solution, of the analytical
solutions of the original P1 and P21 equations and of the analytical solution of the RTE. The latter
one defines the reference solution. The solutions are given on a grid with n = 641 equidistant
nodes. (6.2b): Relative maximum difference between the irradiances of the analytical solutions
of the original PN equations and the RTE, for different moment ordersN , on a grid with n = 641

equidistant nodes. (6.2c): Maximum differences between the irradiances of the analytical
solutions of the original PN equations and the FEM solutions of the P2nd

N equations, for different
numbers of equidistant grid points n.

The irradiances of the PN solutions converge to the reference solution for increasing model order
N . From the analytical solution of the RTE we see that we would need infinitely many real
spherical harmonics in the basis expansion (5.7) to describe the reference solution, which might
be the reason for the slow convergence in the L∞(Ω) norm.
The irradiances of the FEM solutions of the P2nd

N equations converge to the irradiances of the
analytical solutions of the original PN equations for the grid size tending to zero.

In Figure 6.2c, we see that for a given mesh size the absolute error between the original PN
solution and its finite-element approximation via the P2nd

N formulation for N = 21 is larger than
forN = 1. This implies that the choice of higher moment ordersN does not necessarily decrease
the overall approximation error∥∥∥φtrue − φP2nd

N

∥∥∥
∞
≤ ‖φtrue − φPN ‖∞ +

∥∥∥φPN − φP2nd
N

∥∥∥
∞

if we use the same spatial discretization or if we can not bound the finite-element discretization
error, e.g., using adaptive grid refinement and a-posteriori error estimates8.

This test case validates the solution of the PN equations as approximation of the desired RTE
solution, in terms of the irradiance. Furthermore, the irradiances of the original PN equations
and the P2nd

N formulation coincide up to numerical errors, which validates our second-order
formulation as equivalent reformulation of the original PN equations, in cases where the
derivation is justified. Last, it validates our implementation of the DOM.
We emphasize the great advantage of our P2nd

N formulation that it can be solved with standard
finite-element tools. This allows us to exploit the established expertise in the field of numerical
solutions of PDEs at no extra costs on our side of the implementation.
8 See [86, Sec. 4.7, p. 287] for error estimators and adaptive FEM.
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6.2.2 Test case “Heterogeneous coefficients 1D”

The second test case demonstrates that the P2nd
N model allows for heterogeneous coefficients,

nonvanishing reflectivity at the boundary and anisotropic boundary sources.

� Experiment 6.2 — Test case “Heterogeneous coefficients 1D”.
We consider the RTE (5.1) with the following details:

Ω = [0, 1] (spatial domain)
σa(z) = 2+sin(2πz)

10 (absorption coefficient)
σs(z) = 3−z2

10 (scattering coefficient)
K(v,v′) = 1

4π (scattering kernel)
ψΓ(z = 0, µ ≥ 0) = µ2 (radiance at the left boundary)
ψΓ(z = 1, µ < 0) = 0 (radiance at the right boundary)
ρ(z = 0) = 1

2 (reflectivity at the left boundary)
ρ(z = 1) = 1

2 (reflectivity at the right boundary)
Q(z) = 0 (external source)

We compute

1. the FEM solutions of the P2nd
N equations analog to Experiment 6.1,

2. the DOM solution analog to Experiment 6.1,

3. an approximate solution for the original PN equations for all combinations of moment or-
dersN ∈ {1, 3} and numbers of equidistant grid points n ∈ {11, 21, 41, 81, 161, 321, 641}.
Note that we can not solve the ODE (6.7) analytically like in Experiment 6.1 because of
the heterogeneous coefficients. We solve the ODE numerically with Matlab’s ode45
solver (explicitRunge-Kutta (4,5) solver) with relative tolerance relTol=1e-10 and absolute
tolerance absTol=1e-10.

Results

We visualize the results in Figure 6.3. The DOM solution yields a reference solution for the
irradiance. It is piecewise constant, which can not be observed in Figure 6.3 due to the fine
resolution of the spatial grid. The numerical solutions of the original PN equations yield
reference solutions for the P2nd

N formulation.

The FEM solutions of the P2nd
N equations converge to the corresponding reference solutions of

the original PN equations for the grid size tending to zero. Furthermore, the P2nd
N solutions

converge to the DOM solution for increasing moment order. We observe the largest gain in the
accuracy in the lower moment orders N ≤ 7.

This test case validates the P2nd
N formulation and implementation for heterogeneous coefficients,

nonvanishing reflectivity at the boundary and anisotropic boundary sources.
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Figure 6.3: Results of Experiment 6.2. (6.3a): Irradiances φ of the DOM solution and of the
finite-element solutions of the P2nd

1 , P2nd
3 and P2nd

21 models. The solutions are given on a grid with
n = 641 equidistant nodes. (6.3b): Relative maximum difference between the irradiances of the
finite-element solution of the P2nd

N equations and the DOM, for different moment orders N , on a
grid with n = 641 equidistant nodes. (6.3c): Maximum differences between the irradiances of
the numerical solutions of the original PN equations and the finite-element solutions of the P2nd

N

equations, for different numbers of equidistant grid points n.

6.2.3 Test case “Anisotropic scattering 1D”

The third test case demonstrates that our method is not limited to isotropic scattering.

� Experiment 6.3 — Test case “Anisotropic scattering 1D”.
We consider the RTE (5.1) with the following details:

Ω = [0, 1] (spatial domain)
σa(z) = 0 (absorption coefficient)
σs(z) = 1 + z (scattering coefficient)
K(v,v′) = 1

8π

[
(µ− 1) (µ′ − 1)

+ (µ+ 1) (µ′ + 1)
]

(scattering kernel)
ψΓ(z = 0, µ ≥ 0) = µ+ 2 (radiance at the left boundary)
ψΓ(z = 1, µ < 0) = µ+ 1 (radiance at the right boundary)
ρ(z = 0) = 0 (reflectivity at the left boundary)
ρ(z = 1) = 0 (reflectivity at the right boundary)
Q(z) = 0 (external source)

We compute

1. the analytical solution of the RTE (6.10) and the corresponding irradiance (6.11),

2. the FEM solutions of the P2nd
N equations for all combinations of numbers of equidistant

grid points n ∈ {11, 21, 41, 81, 161, 321, 641} and moment orders N ∈ {1, 3, 5}, and the
corresponding irradiances according to equation (5.8),

3. the DOM solution, on a spatial grid with n = 641 equidistant nodes. We consider
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the spherical quadrature rule in Section 6.1.1 which is exact up to degree δ = 25. The
resulting S = 702 nodes define the set of discrete ordinates.a We compute the irradiance
of the DOM solution according to equation (6.3).

a Other than in Experiment 6.1, we can not reduce the number of ordinates here because of the anisotropic scattering
kernel.

Analytical reference solution

There is an analytical reference solution of the RTE (5.1) for this test case:

ψ(x,v) = µ− z(z + 2)

3
+ 2, (6.10)

with irradiance

φref(z) =

∫
S2

ψ(x,v) dv = 2π

∫ 1

−1

ψ(z, µ) dµ = 2π

(
4− 2

3
z(z + 2)

)
. (6.11)

We see that the analytical solution (6.10) is a first-order polynomial in v. Thus, we expect that
the solution of the P1 equations yields the exact solution of the RTE.

Results

We visualize the results in Figure 6.4. As expected, we recover the analytical solution for N = 1,
and the solutions of the higher-order models yield the same result.

This test case validates the P2nd
N formulation and implementation for anisotropic scattering.
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Figure 6.4: Results of Experiment 6.3. (6.4a): Irradiances φ of the DOM solution, of the analytical
solution of the RTE and of the FEM solutions of the P2nd

1 , P2nd
3 and P2nd

5 equations. (6.4b):
Maximum difference between the irradiances φ for successive grid-refinement levels. Here, φn

denotes the FEM solution of the P2nd
N equations on a grid with n nodes, and φn̂ the solution

according to the next finer grid with n̂ = 2(n− 1) + 1 nodes. Each difference is evaluated on the
corresponding finer grid.
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6.2.4 Test case “Nonstandard domain”

This test case demonstrates that our method is not limited to rectangular domains and especially
can be used with irregular grids.

� Experiment 6.4 — Test case “Nonstandard domain”.
We consider the RTE (5.1) with the following details:

Ω see Figure 6.5 (spatial domain)
σa(x) = 0 (absorption coefficient)
σs(x) = 1

10 (scattering coefficient)
K(v,v′) = 1

4π (scattering kernel)
ψΓ(x ∈ ΓI) = 0 (radiance at the boundary ΓI )
ψΓ(x ∈ ΓII) = 0 (radiance at the boundary ΓII )
ψΓ(x ∈ ΓIII) = 0 (radiance at the boundary ΓIII )
ψΓ(x ∈ ΓIV ) = 1 (radiance at the boundary ΓIV )
ρ(x ∈ ΓI) = 0.5 (reflectivity at the boundary ΓI )
ρ(x ∈ ΓII) = 0 (reflectivity at the boundary ΓII )
ρ(x ∈ ΓIII) = 0.5 (reflectivity at the boundary ΓIII )
ρ(x ∈ ΓIV ) = 0 (reflectivity at the boundary ΓIV )
Q(x) = 0 (external source)

For the spatial discretization, we use a triangular mesh with n = 2530 nodes and 4847
elements (triangles). The mesh and the partition of the boundary Γ = ΓI ∪ ΓII ∪ ΓIII ∪ ΓIV

are illustrated in Figure 6.5. We refine the mesh by splitting (see Figure 4.2) and obtain a mesh
with 9906 nodes and 19388 elements for numerical reference solutions.

We compute

1. the FEM solutions of the P2nd
N equations for moment orders N ∈ {1, 3, 5, 7}, each on

the coarse and the fine spatial mesh, and the corresponding irradiances according to
equation (5.8),

2. two DOM solutions on the coarse spatial mesh (with n = 2530 nodes), one for a coarse
and one for a fine set of discrete ordinates. We consider the spherical quadrature rules
in Section 6.1.1 which are exact up to degree δ = 19 and δ = 27. Symmetry allows us
in the implementation to restrict the ordinates to the upper half sphere (µ ≥ 0).a The
resulting S = 420 and S = 812 nodes define the two sets of discrete ordinates, and
the corresponding DOM solutions are denoted by φDOM, c and φDOM,f. We solve the
resulting linear systems with Matlab’s iterative solver bicgstab, with relative residual
tolerance tol = 1e-5 and a maximum number of iterations maxit=1000. We compute the
irradiances of the DOM solutions according to equation (6.3).

a To this, choose the second trigonometric Gaussian quadrature rule with nodes {ϕ̂k}δ+1
k=0,⊂ (0, π

2
). Note that the

number of nodes is the same as for the full sphere.
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Figure 6.5: Mesh (2530 nodes and 4847 elements) and boundaries for Experiment 6.4.

Results

We visualize the results in Figure 6.6. The bicgstab method used to solve the linear system of the
DOM stopped after the maximum number of iterations with relative residuals 0.0016 for δ = 19

and 0.0022 for δ = 27.

The relative error between the irradiances of the coarse and the fine DOM solution is about
‖φDOM, c − φDOM, f‖L∞(Ω)

‖φDOM, f‖L∞(Ω)

≈ 2.984× 10−2,

‖φDOM, c − φDOM, f‖L1(Ω)

‖φDOM, f‖L1(Ω)

≈ 1.965× 10−2

w.r.t. the L∞(Ω) norm and L1(Ω) norm, respectively. This difference between the irradiances is
illustrated in Figure 6.6f.
In Table 6.1, we show the relative L∞(Ω) and L1(Ω) between the irradiances of the P2nd

N and fine
DOM solutions (both on the coarse spatial mesh).9 The L∞(Ω) does not indicate any form of
convergence, which does not reflect our observation from Figure 6.6, whereas the relative L1(Ω)

is (slowly) decreasing for increasing moment order. We point out that the relative errors in the
L1(Ω) norm are in the same range as the relative error of the coarse and fine DOM solution. This
shows that the usability of the DOM solution as reference solution is limited in this case.
The resulting linear system for the fine discretization of the DOM in this experiment has with
ne = 4847 elements and S = 812 overall n×S = 3935764 degrees of freedom. The corresponding
matrix has a sparse structure with more than 3.201× 109 nonzero entries, which consumes more
than 25.5 Gigabyte of memory (in double precision, i.e., 8 bytes per entry), not including any
overhead to store the sparse structure. For this reason, we do not attempt to further increase the
number of ordinates.
Nevertheless, we see that for increasing moment orderN the FEM solution of the P2nd

N equations
tends towards the DOM solution, on a visual scale.
9 Integral over each triangle approximated by a quadrature rule exact for polynomials up to degree one. Note that, in
general, the integrated function is nonlinear after taking the absolute value.
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N
||φP2nd

N
−φ

P2nd,f
N

||L∞(Ω)

||φ
P2nd,f
N

||L∞(Ω)

||φP2nd
N
−φ

P2nd,f
N

||L1(Ω)

||φ
P2nd,f
N

||L1(Ω)

||φP2nd
N
−φDOM,f||L∞(Ω)

||φDOM,f||L∞(Ω)

||φP2nd
N
−φDOM,f||L1(Ω)

||φDOM,f||L1(Ω)

1 9.258× 10−5 1.424× 10−5 4.382× 10−1 3.124× 10−1

3 2.567× 10−3 3.822× 10−4 5.108× 10−1 1.293× 10−1

5 3.693× 10−3 1.081× 10−3 6.167× 10−1 8.381× 10−2

7 6.739× 10−3 4.014× 10−3 6.406× 10−1 7.001× 10−2

Table 6.1: Results of Experiment 6.4. (Col. 1): Moment order. (Col. 2 - 3): Relative L∞(Ω) and
L1(Ω) difference between the irradiances of the P2nd

N solutions on the coarse and refined (f)
spatial mesh. (Col. 4 - 5): Relative L∞(Ω) and L1(Ω) difference between the irradiances of the
P2nd
N solution and the fine DOM solution (both on the coarse spatial mesh).

In Table 6.1, we further show the relative L∞(Ω) and L1(Ω) difference between the irradiances
of the P2nd

N solutions on the coarse and refined mesh. To this, we evaluate the coarse solution on
the fine mesh and evaluate the L∞(Ω) norm and L1(Ω) norm on the fine mesh.10 We see that
the irradiances of the P2nd

N solutions differ less than one percent in the L∞(Ω) norm.

This test case validates the P2nd
N formulation and implementation for irregular, two-dimensional

spatial grids. At the same time, it demonstrates the increasing complexity for test cases with
more than one spatial dimension and emphasizes the need for alternative models to compute
the irradiance.

6.3 P2nd
N coupled with LITT

Finally, we would like to combine the two parts of this thesis and investigate the P2nd
N formulation

in the context of LITT. We compute different P2nd
N approximations for the irradiance in the

LITT model, as a proof of concept in a two-dimensional spatial domain. The reduction of the
P2nd
N model to a two-dimensional problem in space is based on the assumption that the data

and, thus, the solution do not depend on the z-coordinate (outward pointing direction w.r.t.
two-dimensional domain, see Figure 4.1), see Section 5.2.2. Hence, different than in Chapter 4,
we do not assume rotational symmetry of the LITT model but independence of the z-coordinate.
This simplifies the coupling with the P2nd

N models from Chapter 5.
For a better comparison with the numerical results in Chapter 4, we choose for the remainder of
this section the term |Γ| to have the same value as in the rotational symmetric, full 3D case given
in equation (4.6).

Before starting with the experiments, we would like to note that the original model like given in
[65] uses the Henyey–Greenstein kernel function for scattering and allows the anisotropy factor
to take different values for native and coagulated tissue, whereas our LITT model uses a fixed
anisotropy factor of g = 0.96. We simplified the situation by assuming the anisotropy factor to
be constant because we can generate the P2nd

N formulation only for a fixed scattering kernel. We
leave the question on how to handle varying anisotropy factors in this context for future work.

10 See footnote 9.
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Figure 6.6: Results of Experiment 6.4. (6.6a–6.6d): Irradiances of the FEM solutions of the P2nd
N

equations on the coarse mesh, for different moment ordersN . (6.6e): Irradiance of the fine DOM
solution for the set of ordinates according to the quadrature rule exact up to degree δ = 27. (6.6f):
Difference between the irradiances of the two DOM solutions φDOM,c and φDOM,f, for the set of
ordinates according to the quadrature rules exact up to degree δ = 19 and δ = 27, respectively.
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6.3.1 The established P1 model vs. the P2nd
1 formulation

We recall the established P1 approximation in the LITT context (for t ≥ ton) described in
Subsection 1.2, reduced to two spatial coordinates based on the assumption ∂z = 0:

(Pref
1 )



−div (D∇φ) + σaφ = 0 on I × Ω,

D∇φ · n =
1

|Γrad|
(1− βq)q̂rad on I × Γrad,

D∇φ · n = 0 on I × Γcool,

1

2
φ+D∇φ · n = 0 on I × (Γamb ∪ Γsym)


(1.2)

with D = (3(σa + (1− g)σs))
−1. We refer to this model throughout this section as Pref

1 reference

model. The reduction to a two-dimensional problem is not based on rotational symmetry along
the z-axis, so we do not assume a homogeneous Neumann boundary condition on Γsym as before
in Section 1.2, but treat this boundary like the ambient boundary.

The P2nd
1 model has the strong formulation

(P2nd
1 )



−div (D∇φ) + σaφ = 0 on I × Ω,

1− ρ
2(1 + ρ)

φ+D∇φ · n = 2π
(1− ρ)

1 + ρ

1

|Γrad|
(1− βq)q̂rad on I × Γrad,

1− ρ
2(1 + ρ)

φ+D∇φ · n = 0 on I × Γcool,

1− ρ
2(1 + ρ)

φ+D∇φ · n = 0 on I × (Γamb ∪ Γsym)


(6.12)

where ρmodels the reflectivity at the corresponding boundary by a single number11. Note that
the prefactor 1−ρ

2(1+ρ) in (6.12) collapses for ρ = 0 to 1
2 , like on Γamb in the reference model (1.2)

and as suggested in [65].

The P2nd
1 formulation is given in its weak form in (5.23). With the number of even moments

ne = 1 the system of PDEs indeed consists of only one equation on the domain for the only
even moment u0. Note that for better comparison we state the strong formulation (6.12) not in
terms of the zeroth moment u0 as suggested by the P2nd

1 formulation, but directly in terms of
the irradiance φ. This is achieved by multiplying the original P2nd

1 equation (5.23) in terms of u0

with the factor 2
√
π. This allows us to substitute the first moment according to equation (5.8)

φ = 2
√
πu0. (5.8)

We can formally derive the strong formulation by looking at the system matrices for the domain
in (5.24)

Kxx = Kyy =
1

σa + (1− g)σs
= D, Kxy = Kyx = 0, Cee = −σa

11 See Remark 5.5 on the reflectivity at the boundary.
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and the boundaries

Bl(n1) = Bl(n2) = Bl(n3) = Bl(n4) =
ρ− 1

2(1 + ρ)
,

Br(n1) = −Br(n3) =
[
0 2√

3(1+ρ)

]
,

Br(n2) = −Br(n4) =
[

2√
3(1+ρ)

0
]
,

uΓ =

∫
n·v<0

(1− ρ)boψΓ(x,v) dv =


[
0

√
3π
2 (1− ρ)|Γrad|−1(1− βq)q̂rad

]T
, on Γrad,[

0 0
]T
, else,

qe = 0,

qo = 0

with normal vectors n1 := (1, 0, 0)T, n2 := (0, 1, 0)T, n3 := (−1, 0, 0)T and n4 := (0,−1, 0)T. For
validation, we also specify the corresponding auxiliary matrices:

He(n1) = −He(n3) =
[
0

√
3

4 (ρ− 1)
]T
,

He(n2) = −He(n4) =
[√

3
4 (ρ− 1) 0

]T
,

Ho(n1) = Ho(n3) =

[
1
2 (1− ρ) 0

0 1
2 (1 + ρ)

]
,

Ho(n2) = Ho(n4) =

[
1
2 (1 + ρ) 0

0 1
2 (1− ρ)

]
,

〈
(n1 · v)beb

T
o
〉

= −
〈
(n3 · v)beb

T
o
〉

=
[
0 1√

3

]
,〈

(n2 · v)beb
T
o
〉

= −
〈
(n4 · v)beb

T
o
〉

=
[

1√
3

0
]
.

Before we investigate the effect of different P2nd
N models in the context of LITT, we would like to

compare the irradiances of the Pref
1 reference model and our P2nd

1 formulation here. We note that
there are structural differences in the boundary conditions of the two models in (1.2) and (6.12).
The Pref

1 reference model suggests Neumann boundary conditions on the radiating and cooling
boundaries Γrad and Γcool, whereas the P2nd

1 formulation (for zero reflectivity ρ = 0) prescribes
the classical Robin boundary condition with prefactor 1

2 , like suggested in [65].
On the other hand, the P2nd

1 formulation has an additional factor 2π in its right-hand side of the
radiation boundary Γrad (again in case of zero reflectivity ρ = 0). Because of this, we do not
expect the solutions of (1.2) and (6.12) to coincide.
The Neumann boundary conditions in the context of LITT are motivated as follows [95, p. 1402]:

“The idea is that radiation flows in and out of the domain at the same time. The radiation

flowing out of the half space goes away to infinity and needs not to be considered anymore

for the calculation. However, due to the radial symmetry of the applicator boundary, this

is not valid anymore. Radiation leaving through the applicator boundary can enter the

computational domain through the opposite boundary. Taking this effect into consideration

leads to the following boundary condition for the energy flux [in (1.2)]”.
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In fact, the RTE with partially reflecting boundary conditions

v · ∇xψ + σaψ = σsC (ψ) +Q, (5.1)

ψ(x,v) = ρ(x,v)ψ(x, r (v)) + (1− ρ(x,v))ψΓ(x,v), for x ∈ Γ, n(x) · v < 0, (5.2)

where the applicator is excluded from the computational domain, appears not to be the correct
model in the context of LITT because radiation that leaves the computational domain at the
applicator boundary can not reenter the domain here. So, from a modeling perspective, the Pref

1

reference model is a valid modification of the standard P1 model in the context of LITT, but
it comes with one disadvantage: It is not straight forward how to extend this modification to
higher-order PN models, i.e., for N > 1.

Our P2nd
N formulation approximates the RTE, so if we want to use the P2nd

N formulation in the
context of LITT, we need to modify our model of the applicator. We outline several suggestions,
how this could be accomplished.
First, we could modify the model for the reflectivity at the applicator boundary. Following
the motivation above, it would be reasonable to prescribe ρ = 1 because this would prevent
the radiation from leaving the computational domain, which has the same effect as allowing
the radiation to reenter. In fact, a value ρ = 1 at the applicator boundary Γrad ∪ Γcool yields
Neumann boundary conditions in the P2nd

1 model as well. The reason why we do not follow
this approach here is that, in the standard understanding of the RTE, the boundary source is
separated from the computational domain by the reflecting boundary, i.e., ρ = 1 would prevent
any radiation to enter the domain. This can also be seen in (6.12), where the right-hand side on
the radiation boundary Γrad becomes zero for ρ = 1. Thus, further modeling of the behavior of
the boundary source, especially of the interaction of applicator and tissue, is required to align
the Pref

1 reference model and the P2nd
1 model, which we forward to future work.

Second, we could model the boundary radiation q̂rad = q̂rad(φ) depending on the irradiance
because the irradiance entering at a point on the radiation boundary is the sum of the irradiances
produced by the laser fiber and the share of the irradiance, which entered the applicator
somewhere and reenters the domain at this specific point again. In cases where we can not
assume rotational symmetry this would introduce a nonlocal term in the model. We leave the
investigation of such a model for future work.
Third, we could include the applicator as part of the domain and model the radiation also
inside the applicator. This way, we would not “lose” any radiation through the boundary.
Unfortunately, modeling the radiation in the applicator requires knowledge on the interface
conditions at the laser-fiber-cooling and cooling-tissue interfaces. This approachwas investigated
in [154] for the classical PN equations.

Before looking into the experiment, we would like to share a technical detail. For the derivation
of the P2nd

N formulation, we need to compute spherical integrals. In Remark 6.5 we demonstrate
that an accurate approximation of spherical integrals incorporating the Henyey–Greenstein
kernel with anisotropy factors close to one (forward scattering) is numerically challenging.
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Remark 6.5 — Evaluation of the Henyey–Greenstein scattering kernel.
We derive the P2nd

N formulation by means of the quadrature rule described in Subsection 6.1.1.
The exact evaluation of the occurring integrals requires a quadrature rule which is exact
for polynomials up to degree δ = degK + 2N , where degK denotes the degree of the kernel
function written as trigonometric polynomial. Unfortunately, the trigonometric expansion of
the Henyey–Greenstein kernel requires infinitely many terms [105].
The evaluation and integration of the Henyey–Greenstein kernel becomes challenging for
anisotropy factors g close to one [62]. We illustrate this in the following example.
We use different values for δ in the spherical quadrature rulea to derive the P2nd

1 formulation.
The matrixKxx in equation (5.24) is of the form

Kxx =
1

3(σa + (1− ĝ)σs)
.

Exact integration would yield ĝ = g = 0.96.
The following table illustrates the (slow) convergence of the value ĝ to g in the termKxx for
increasing order of the quadrature rule.

δ (exact degree) S (number of ordinates) ĝ

22 552 4.4069
42 1892 1.6669
62 4032 1.169
82 6972 1.0314
102 10712 0.98631
122 15252 0.97018
142 20592 0.96406
162 26732 0.96166
182 33672 0.96069
202 41412 0.96029

a This means that polynomials up to degree δ are integrated exactly.

In summary, the RTE with partially reflecting boundary conditions does not model the
radiation transport in the context of LITT correctly. Our P2nd

1 formulation is the “correct” first-
order PN approximation of the RTE with partially reflecting boundary conditions, whereas
the Pref

1 reference model is a corrected version to account for the model deficiency of the RTE
with partially reflecting boundary conditions in the context of LITT.

6.3.2 Influence of different moment orders and disturbed optical coefficients on the irradiance in
LITT

Now we are ready to quantify the influence of different moment orders in the P2nd
N formulation

on the irradiance in the LITT context. We compare the results to the P2nd
1 model with disturbed

optical coefficients and to the Pref
1 reference model.
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At this point, we would like to emphasize that the coolant absorption factor βq is estimated based
on data from the real LITT application and customized to the Pref

1 reference model [95]. We
expect this parameter to take a different value when it is fitted to the P2nd

1 model, which would
be interesting to check in future work. It is necessary to estimate this parameter again for the
P2nd
N models before those can be applied to the real application. In order to allow a comparison

with the Pref
1 reference model and previous experiments, we use the following values for the

coolant absorption factor for the P2nd
N model in the following Experiments 6.6 and 6.8:

β2nd,1
q := 1− (1− β(0)

q )

∥∥∥φPref
1

(γ ≡ 1)
∥∥∥
L∞(Ω)∥∥∥φP2nd

1
(γ ≡ 1)

∥∥∥
L∞(Ω)

= 0.5579 (0.5578),

β2nd,2
q := 1− (1− β(0)

q )

∥∥∥φPref
1

(γ ≡ 0.5)
∥∥∥
L∞(Ω)∥∥∥φP2nd

1
(γ ≡ 0.5)

∥∥∥
L∞(Ω)

= 0.4166 (0.4164)

(6.13)

where we have β(0)
q = 0.14 (see Table 1.1) and∥∥∥φPref

1
(γ ≡ 1)

∥∥∥
L∞(Ω)

= 2.7204× 105 (2.7210× 105),∥∥∥φP2nd
1

(γ ≡ 1)
∥∥∥
L∞(Ω)

= 5.2920× 105 (5.2919× 105),∥∥∥φPref
1

(γ ≡ 0.5)
∥∥∥
L∞(Ω)

= 3.9764× 105 (3.9773× 105),∥∥∥φP2nd
1

(γ ≡ 0.5)
∥∥∥
L∞(Ω)

= 5.8618× 105 (5.8614× 105).

(6.14)

The values are based on the simulation details in Experiment 6.6, corresponding to the coarse
(fine) mesh therein.
Note that the coagulation has a different effect on the Pref

1 and P2nd
1 solutions due to different

boundary conditions. Because of this, the choice of β2nd,1
q in Experiment 6.8 aligns the models

only at the beginning of the simulation as long as γ ≡ 1 holds. This different behavior can
already be observed from the values in (6.14), where the irradiances differ for the two different
examples of the coagulation γ.

� Experiment 6.6 — Comparison of the radiation models for LITT: irradiance.
We compute the irradiances of the Pref

1 reference model (1.2) and our P2nd
N formulation (6.12)

in the context of LITT.
We use the physical parameters given in Table 1.1 and the following simulation details:

Ω see Figure 4.5 (spatial domain)
γ1(x) = 1 (homogeneous coagulation)
γ2(x) = 0.5 (homogeneous coagulation)
β

(0)
q = 0.14 (original coolant absorption factor)
β2nd,1
q see (6.13) (coolant absorption factor for γ1)
β2nd,2
q see (6.13) (coolant absorption factor for γ2)
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The absorption and scattering coefficients are defined according to (1.5). We compute the
irradiances of the Pref

1 reference model and the P2nd
N formulation for fixed homogeneous

coagulations γ ∈ {γ1, γ2}.
For the Pref

1 reference model, we use the original coolant absorption factor βq = β
(0)
q . For the

P2nd
N formulation, we use the modified coolant absorption factors βq = β

(1)
q and βq = β

(2)
q in

cases γ = γ1 and γ = γ2, respectively. This is done for a better comparison of the different
models as motivated above in (6.13).

Furthermore, again for each of the two parameter sets (β
(1)
q , γ1) and (β

(2)
q , γ2), we disturb the

optical coefficients σa,n, σa,c, σs,n, σs,c by ±5% and compute the irradiance of the P2nd
1 model

(6.12) for each of the 81 combinations of disturbed parameters in

C = {(σa,n · p1, σa,c · p2, σs,n · p3, σs,c · p4) | pi ∈ {0.95, 1.0, 1.05}}.

We evaluate the irradiances along the reference line Ω1D, ref (see Figure 4.1).
For x ∈ Ω1D, ref and each combination of disturbed parameters in C, we compute the relative
difference between the disturbed P2nd

1 solution and the undisturbed P2nd
1 solution. We compute

the pointwise maxima and minima over all differences

upb(x) := max
c∈C

φP2nd
1

(x; c)− φP2nd
1

(x; c0)

m
,

lob(x) := min
c∈C

φP2nd
1

(x; c)− φP2nd
1

(x; c0)

m

(6.15)

with m = max
x∈Ω1D, ref

|φP2nd
1

(x; c0)| and c0 = (σa,n, σa,c, σs,n, σs,c) the combination of undisturbed
parameters.

We derive the corresponding P2nd
N formulation for the Henyey–Greenstein scattering kernela

with anisotropy factor g = 0.96 and zero reflectivity ρ = 0 at the boundary. The required
integrals over the unit sphere are computed by means of a spherical quadrature rule which is
exact for polynomials up to degree δ = 200 + 2N , which has, e.g., forN = 7, S = 46440 nodes
on the sphere.

For the spatial discretization, we use the mesh Ω
(1)
2D, h given in Figure 4.5 with 3607 nodes and

7074 elements. We refine the mesh by splitting and obtain the mesh Ω
(1)
2D, h, fine with 14287

nodes and 28296 elements. We compute each solution on the coarse and the fine mesh.
a See Example 5.4.

Remark 6.7 — Reflectivity.
In the real application, the refractive indices of the applicator and the tissue differ, which
implies a reflectivity ρ larger than zero according to Snell’s and Fresnel’s law, see [48, Sec.
8.4.2, Eq. 8.58, p. 222] and [48, Sec. 8.4.3, Eq. 8.61a, p. 223]. Here, we do not focus on modeling
the tissue properties of the applicator and choose ρ = 0 for simplicity.
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Figure 6.7: Results of Experiment 6.6. (6.7a): Irradiance of Pref
1 and P2nd

N solutions on coarse mesh
along the reference line Ω1D, ref, for γ ≡ 1. (6.7b): Relative differences between the irradiances
of the P2nd

N / Pref
1 solutions and P2nd

1 solution with undisturbed parameters along the reference
line Ω1D, ref, for γ ≡ 1. For each combination of disturbed coefficients, we compute the relative
difference between the disturbed P2nd

1 solution and the undisturbed (denoted by c0) P2nd
1 solution.

The pointwise maxima upb and minima lob over all differences bound the blue-shaded area, see
equation (6.15). The solid and dashed lines correspond to the solutions on the coarse and fine
mesh, respectively. (6.7c): Like 6.7a for γ ≡ 0.5. (6.7d): Like 6.7b for γ ≡ 0.5.
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Results

We visualize the results in Figure 6.7. In Figures 6.7a, 6.7c we visualize the irradiances along the
reference line Ω1D, ref for the Pref

1 reference model and different P2nd
N models, each for the different

fixed coagulation values γ ≡ 1 and γ ≡ 0.5, respectively. In Figures 6.7b, 6.7d we visualize the
relative differences between the irradiances of the different P2nd

N models and the P2nd
1 model, and

between the irradiance of the Pref
1 reference model and the P2nd

1 model along the reference line
Ω1D, ref. The upper and lower bounds for the relative differences between the disturbed P2nd

1 solu-
tions and the undisturbed P2nd

1 solution in equation (6.15) bound the blue-shaded area in Figures
6.7b and 6.7d, which quantifies the influence of disturbed coefficients on the computed irradiance.

The dashed lines indicate the corresponding solutions computed on the refined mesh and match
(on the visual scale) with the solutions on the coarse mesh, which validates that the observed
deviations are not caused by spatial discretization errors.
Note that without modifying the coolant absorption factor βq for the P2nd

N models there would
be a significant deviation of the irradiances predicted by the P2nd

N formulation compared to the
Pref

1 reference model.

We observe that near the radiation boundary Γrad, i.e., for x close to zero, the differences between
the P2nd

N solutions and the undisturbed P2nd
1 solution are larger than the maximum difference

between the disturbed and undisturbed P2nd
1 solutions. If we assume for the moment, that the

physical parameters are known up to a relative error of ±5%, this experiment suggests that the
use of P2nd

N models might add value to the simulation of LITT. Ultimately, this can be quantified
only by running the LITT simulation over time and comparing the predicted temperatures and
especially the predicted coagulation zones, which is our goal in the next experiment.

6.3.3 Influence of different moment orders and disturbed optical coefficients on the temperature and
coagulation in LITT

In this final experiment, we quantify the influence of different moment orders in the P2nd
N

formulation on the temperature and coagulation in the LITT context. We compare the results
to the P2nd

1 model with disturbed optical coefficients and the Pref
1 reference model. For a better

comparison with previous results and the Pref
1 reference model, we again change the absorption

cooling factor βq for the P2nd
N models like in the previous experiment.

� Experiment 6.8 — Comparison of the radiation models for LITT: temperature and coagulation.
We run the LITT simulation (see Section 1.2 and Chapter 4), where we compute the irradiance
in each time step by means of the P2nd

N models and the Pref
1 reference model. We use the

physical parameters given in Table 1.1 and the following simulation details:
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τ = 0 s (parameter in the Cattaneo model)
∆t = 1 s (discrete time step)
T = 300 s (final time of the simulation)
ϑ

(1)
(x) = 0 K s−1 (second initial condition for the temperature)

u(x) = 0.15 (constant control)a

β
(0)
q = 0.14 (original coolant absorption factor)
β2nd,1
q see (6.13) (coolant absorption factor for P2nd

N models)

For the Pref
1 reference model, we use the established coolant absorption factor βq = β

(0)
q . For

the P2nd
N models, we use the modified coolant absorption factor βq = β2nd,1

q , motivated in
equation (6.13).
This experiment follows Experiment 6.6, with the only difference that, for a given point in
time t ∈ [0, T ], we compute the following upper and lower bounds:

upbϑ(t,x) := max
c∈C

(ϑP2nd
1

(t,x; c)),

lobϑ(t,x) := min
c∈C

(ϑP2nd
1

(t,x; c)),

upbdϑ(t,x) := max
c∈C

ϑP2nd
1

(t,x; c)− ϑP2nd
1

(t,x; c0)

mϑ
,

lobdϑ(t,x) := min
c∈C

ϑP2nd
1

(t,x; c)− ϑP2nd
1

(t,x; c0)

mϑ
,

upbγ(t,x) := max
c∈C

(γP2nd
1

(t,x; c)),

lobγ(t,x) := min
c∈C

(γP2nd
1

(t,x; c))

(6.16)

withmϑ = max
x∈Ω1D, ref

|ϑP2nd
1

(x; c0)| and c0 = (σa,n, σa,c, σs,n, σs,c) the combination of undisturbed
parameters.
a See Remark 4.6.

Results

We visualize the results in Figure 6.8 exemplary for two time steps t ∈ {30 s, 150 s}. The
main dynamics of this experiment take place within the first 150 s of the simulation and the
temperature becomes almost stationary after that time.
Note that the computed temperatures differ from the results in Chapter 4, e.g., Figure 4.6, because
we do not simulate the rotational symmetric case but the classical 2D case with ∂z = 0, which
changes the integrals in the 2D weak formulation (see Appendix A.3 for details).
In all subfigures, we visualize the effect of the disturbed optical coefficients for the P2nd

1 model. We
compute the P2nd

1 solution for each combination of disturbed coefficients. The pointwise maxima
andminima defined in equation (6.16) define the bounds of the corresponding blue-shaded areas.

Furthermore, in all subfigures, the dashed lines indicate the corresponding solutions computed
on the refined mesh and match (on the visual scale) with the solutions on the coarse mesh,
which validates the accuracy of the spatial discretization.
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Figure 6.8: Results of Experiment 6.8. All functions are visualized along the reference line
Ω1D, ref. For the definition of the pointwise maxima and minima bounding the blue-shaded areas,
see equation (6.16). In all subfigures, the solid and dashed lines correspond to the solutions
on the coarse and fine mesh, respectively. (6.8a, 6.8b): Temperature for different P2nd

N models
and the Pref

1 reference model at time steps t ∈ {30 s, 150 s}. The pointwise maxima upbϑ and
minima lobϑ over all disturbed P2nd

1 solutions bound the blue-shaded area. (6.8c, 6.8d): Relative
differences between temperatures of P2nd

N / Pref
1 solutions and P2nd

1 solution along the reference
line. For each combination of disturbed coefficients, we compute the relative difference between
the disturbed P2nd

1 solution and the undisturbed (denoted by c0) P2nd
1 solution. The pointwise

maxima upbdϑ and minima lobdϑ bound the blue-shaded area. (6.8e, 6.8f): Coagulation for
different P2nd

N models and Pref
1 reference model at time steps t ∈ {30 s, 150 s}. The pointwise

maxima upbγ and minima lobγ over all disturbed P2nd
1 solutions bound the blue-shaded area,

which is barely visible here.
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In all subfigures, the deviation between the P2nd
1 model and the Pref

1 reference model is apparent
and is discussed at the end of this section.

In Figures 6.8a–6.8d, we observe a relatively small deviation (∼ 2%) between the irradiances of
the P2nd

N solutions and the irradiance of the P2nd
1 solution. The differences are in the same range

as the deviation induced by disturbed optical coefficients for the P2nd
1 model, as can be seen from

the blue-shaded area. So, at this point, using higher-order P2nd
N solutions does not seem to add

value to the accuracy of the simulation if we can not bound the uncertainty of the given optical
coefficients by (far) less than 5%.

With view on the later application, the ultimate measure for the relevance of different radiation
models is the coagulation because this determines if the therapy is successful or not. In Figures
6.8e–6.8f, we visualize the coagulation for the different P2nd

N models. On a visual scale, we can
not detect a significant difference between the coagulation boundary along the reference line.
This holds in fact also for later points in time.

This experiment tells us three things.
First, for this specific parameter set, disturbed optical coefficients (∼ 5%) have a limited influence
on the prediction of the temperature (∼ 2%) or the coagulation.
Second, at this point, we can not deduce a significant benefit from the use of P2nd

N in the LITT
context. Thus, the use of the first-order P2nd

1 (or P1) model is justified in the context of LITT.
We need to weigh the gain in accuracy for the temperature of about 2% against the increased
computational effort. In each time step, the P2nd

1 model requires the solution of one elliptic PDE,
whereas the P2nd

7 requires the solution of 28 coupled second-order PDEs in the three-dimensional
case (16 PDEs for the two-dimensional case). This motivates to use the P1 approximation of the
RTE in the LITT context, as long as the uncertainty regarding the optical coefficients can not be
quantified to be significantly less than 5% (in this specific example).
Last, the P2nd

1 model can not be aligned with the Pref
1 reference model by simply adjusting the

coolant absorption factor. The coagulation has a different influence on the particular boundary
conditions. Our modification of the coolant absorption factor βq = β2nd,1

q is valid only at the
beginning for γ ≡ 1. Once coagulation takes place, the predicted temperature based on the Pref

1

reference model deviates significantly from the temperature predicted by the P2nd
1 model.

Like mentioned earlier in this section, the P2nd
1 approximates the irradiance of the RTE with

partially reflecting boundary conditions in its current form (5.1)–(5.2) more accurately than the
Pref

1 reference model. Nevertheless, the reference model is validated by real experimental data,
and the modifications are motivated in terms of the energy balance looking at the entire LITT
model, which does not stop at the boundary of the domain. This mismatch could be solved in
future by reconsidering the model of the RTE in the LITT context, like discussed earlier in this
section. Such a new model is a prerequisite if one wants to use higher-order P2nd

N models in the
LITT context.
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I am not able to learn mathematics unless I can see some problem I am going to solve with

mathematics, and I don’t understand anyone who can teach mathematics without having a

battery of problems that the student is going to be inspired to want to solve and then see that he

or she can use the tools for solving them.

Steve Weinberg [235, §21, p. 229]

We discussed different aspects of modeling and parameter identification in the context of
laser-induced interstitial thermotherapy. We investigated three possible extensions of an already
established and validatedmodel, regarding the heat-transfer model, the automated identification
of unknown parameters and the approximation of radiative transfer.

Summary and Outlook
We summarize the highlights of this thesis and present possible directions for future work.

Delayed heat-transfer model

In Part I, we discussed the Cattaneo model as an alternative heat-transfer model in the LITT
context. In Chapter 2, we introduced the Cattaneo–LITT model and proved its well-posedness,
i.e., the existence of a unique state vector, which depends continuously on the blood-perfusion
rate. We validated the effect of delayed heat transfer in the Cattaneo–LITT model in a numerical
experiment in Chapter 4. We observed that the delay parameter τ has a significant influence on
the solution only for values much larger than reported in the literature. We gave the theoretical
foundation for this model but remain skeptical if this new model improves the approximation in
the real application. Nevertheless, we have seen that the models for different values of τ differ
especially at the beginning of the simulation, which is the part of the therapy where unknown
parameters like the blood-perfusion rate have to be identified. This could affect the estimation of
those unknown parameters. In the later application, the estimated parameters are fed back to
the simulation and, thus, have an influence on future predictions of the desired quantities like
the temperature. The answer to the question whether the effect of the delayed heat transfer is
relevant to the simulation of LITT, especially in view of uncertainty of the tissue parameters and
the measurement data, depends on the actual value of τ and can ultimately only be given by the
validation with real experimental data.
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We proved the well-posedness of the Cattaneo–LITT model analytically. As discussed, e.g., in
[210], the solution does not respect a physical maximum principle. It would be interesting to
investigate the maximum principle in this Cattaneo–LITT context. Furthermore, the transition
τ → 0, like discussed in [17] for the standard heat-transfer model, would be interesting from an
analytical point of view.

Identification of the blood-perfusion rate

In Part I, we discussed the identification of the blood-perfusion rate based on MRI data in the
LITT context. In Chapter 2, we proposed an optimal-control problem for the identification
of a parameter u, which models the location of large blood vessels. We proved analytically
the existence of an optimal control and derived necessary first-order optimality conditions.
Furthermore, we were able to prove that the optimal control has a sparse structure, in case we
include an L1(Ω)-penalty term for the control in the cost functional.
In Chapter 4, we introduced a numerical example to demonstrate the automated identification of
this parameter. We observed that in our synthetic environment the presented algorithm is able to
reconstruct the parameter u, even for noisy measurement data. The quality of the reconstruction
in a certain region is correlated negatively with the distance to the applicator. The question is
whether the quality of the reconstruction is sufficiently high to estimate the coagulation zone
accurately in the real application. We saw in Experiment 4.5 that the location of large vessels has
a significant influence on the diameter and the shape of the coagulation zone. The results in our
Experiments 4.8–4.11 were very promising and motivate the implementation in the field.

In the numerical experiments, we saw that the naive stopping criterion for the descent strategy
might be too restrictive. For the real application, one might tune the presented descent strategy
and investigate alternative optimization methods, e.g., Newton-based algorithms.
Another step is to investigate the effect of noisy measurement data on the reconstruction of the
control parameter. This has been started in [9], but requires further investigation. The most
important stepmight be the validationwith real experimental data, especially for the in-vivo case.

A prerequisite for a realistic application in the field is the development of efficient solution
strategies both for the forward simulation and the parameter identification. Approaches based on
model-order-reduction techniques were discussed in [213–215] and require further investigation.

Second-order formulation of the PN equations

In Part II, we proposed a second-order formulation of the PN equations with Marshak boundary
conditions. Even though the idea to reformulate the classical PN equations as system of second-
order PDEs is well known, our formulation allows an elegant inclusion of the Marshak boundary
conditions in the weak formulation. Furthermore, all steps can be handed to a computer-algebra
system, which allows us to generate a hierarchy of models in an automated way. The resulting
system can be solved by standard finite-element tools. Our formulation allows for heterogeneous
coefficients, irregular meshes for up to three-dimensional spatial domains, anisotropic boundary
conditions and anisotropic scattering.

This method is derived independently of the LITT context and can be applied in other scenarios.
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Wemakeour code available onlinewhich allowsa fast prototyping. InChapter 6,wedemonstrated
the flexibility of our P2nd

N method in several numerical experiments.

P2nd
N models in LITT

In Chapter 6, we investigated numerically the effect of different P2nd
N models for the radiation

in the LITT model. We discussed the difference between the Pref
1 reference model, which is

already validated in the context of LITT, and our P2nd
1 model. The models deviate because the

Pref
1 reference model is a modified version of the classical P1 model. This modification corrects

a mismatch in the energy balance of the model for radiative transfer in the LITT context, but
can not be applied in a straight-forward way to higher-order models. Thus, we suggested
different modifications of the model for radiative transfer in the LITT context, which are based
on different ways to model the interface between the tissue and the applicator. This requires
further modeling effort but is a prerequisite to derive a consistent hierarchy of PN or P2nd

N models
for the approximation of the radiative-transfer equation in the LITT context which respects the
energy balance from a physical point of view.

We quantified the influence of higher-order P2nd
N models on the LITT simulation by means of a

numerical example and compared it to the influence of disturbed optical coefficients in the P2nd
1

model. The deviations between the P2nd
1 and the P2nd

N models for different moment ordersN were
in the same range as the deviations within the P2nd

1 model caused by the disturbed parameters.
This observation motivates the use of the P1 or the P2nd

1 approximation for the radiation in the
LITT context in the future, as long as the uncertainty of the given optical coefficients can not be
quantified to be significantly less than 5%.

For the experiments, we assumed the anisotropy factor to be independent of the coagulation.
Classically, this parameter also varies with the coagulation [65, 95]. We had to make this
simplification because a varying anisotropy factor forbids the offline computation of the P2nd

N

equations. The fact that the algebraic transformations can be performed in beforehand is one of
the advantages of the P2nd

N formulation. It would be interesting to investigate how to include a
heterogeneous anisotropy factor in the P2nd

N model.

Conclusion
We showed how advanced mathematical models can help to improve thermal ablation of liver
tumors. We investigated alternative mathematical models both for the heat-transfer equation
and for the radiative-transfer equation. Furthermore, we discussed the task of parameter
identification in this context.

The investigation of the Cattaneo–LITT model was challenging from an analytical point of view
because it required techniques from nonlinear functional analysis to prove its well-posedness.
Future students might benefit from our “Hitchhiker’s guide” in Appendix B, which collects
many classical results needed for the functional analytical treatment of parabolic PDEs and
PDE-constrained optimal-control problems.
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The developed P2nd
N models and, especially, the provided code can be applied also in other

scenarios than LITT andmight be of use for everyone dealingwith the radiative-transfer equation.
It allows a smooth transition from less accurate but computationally less expensive to more
accurate but computationally more expensive models.

In the current parameter setup, the advantages of the presented “more accurate” models are
canceled by the uncertainty inherent in the physical parameters, at least based on the results of
our simulations.
Our recommendation in view of the improvement of LITT is to further develop the identification
of unknown parameters like the blood-perfusion rate for the already established classical LITT
model and to develop fast solution strategies for the forward and inverse problems. Further
efforts might take our proof of concept for the automated identification of blood vessels as
starting point for the next step from ex-vivo to in-vivo simulations of LITT and their application
in the field.
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A Cattaneo–LITT modelCattaneo–LITT model

Use several function spaces for the same problem.

The modern strategy for nonlinear partial differential equations
(Eberhard Zeidler) [236, §30, p. 767]

A.1 Details for Chapter 2
A.1.1 Preliminaries

Lemma A.1 — Eigenfunctions of the Laplacian.
Let Ω ⊂ Rd, d ≤ 3, be a nonempty, open and bounded set with a boundary Γ of classa C1,1,
let a = â|Γ for some â ∈ C0,1(Ω) with â(x) ≥ 0 for all x ∈ Ω, and let κ ∈ R>0. Then there is
a countable set (wk)k∈N ⊂ H2(Ω) consisting of eigenfunctions of the Laplacian with Robin

boundary conditions, i.e., there exist real numbers (λk)k∈N ⊂ R such that{
−κ∆wk = λkwk a.e. in Ω,

awk + κ∇wk · n = 0 a.e. on Γ

}
for all k ∈ N.

These eigenfunctions form an orthonormal basis of L2(Ω), i.e., for all ϑ ∈ L2(Ω) it holds

ϑ =

∞∑
k=1

(ϑ,wk)L2(Ω) wk in L2(Ω) (A.1)

and

(wk, wj)L2(Ω) = δkj =

1, k = j,

0, else.

Furthermore, if ϑ ∈ H1(Ω), the expansion (A.1) convergesb to ϑ also w.r.t. the H1(Ω) norm.
a See, e.g., [63, App. C.1, p. 626], [85, Sec. 1.2.1, Def. 1.2.1.1, p. 5] for a discussion on spatial boundaries.
b In our situation, this is a prerequisite for a Faedo–Galerkin approximation of the solution of the Cattaneo equation,

see Lemma A.4 and [43, XVIII §2 1, p. 504].
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Proof. This is a standard result. Nevertheless, many references prove this result only for a basis
in L2(Ω) for Dirichlet boundary conditions [235, §22.13, Prop. 22.35, p. 362], [20, Sec. 9.8, Thm.
9.31, p. 311] or under restrictive assumptions like a C∞ boundary [101, Sec. 11.5, Thm. 11.5.2, p.
300], so we decided to give the proof here.

Apply standard spectral theory to the solution operator of this elliptic PDE.

Without loss of generality, we assume κ = 1 for this proof. We consider the problem{
−∆ω + ω = f a.e. in Ω,

aω +∇ω · n = 0 a.e. on Γ,

}
(A.2)

which has a unique solution ω ∈ H2(Ω) for f ∈ L2(Ω), see [85, Sec. 2.4.2, Thm. 2.4.2.7, p. 126].
This allows us, together with the compact embedding1 H2(Ω) ↪→↪→ L2(Ω), to define the compact
solution operator

S : L2(Ω)→ L2(Ω), f 7→ w

such that ω fulfills equation (A.2) in the weak sense for the given f ∈ L2(Ω), i.e., it holds

B(ω, ϕ) =

∫
Ω

fϕdx for all ϕ ∈ H1(Ω), (A.3)

with the symmetric bilinear form

B : H1(Ω)×H1(Ω), B(ω, ϕ) :=

∫
Ω

∇ω · ∇ϕdx +

∫
Ω

ωϕdx +

∫
Γ

aωϕds .

The operator S is linear and symmetric w.r.t. the L2(Ω) scalar product. In fact, for f, g ∈ L2(Ω),
it holds

B(S(f), ϕ) = (f, ϕ)L2(Ω) ,

B(S(g), ϕ) = (g, ϕ)L2(Ω)

 for all ϕ ∈ H1(Ω),

and we can choose ϕ = S(g) in the first and ϕ = S(f) in the second equation to obtain

(f, S(g))L2(Ω) = B(S(f), S(g)) = B(S(g), S(f)) = (g, S(f))L2(Ω) = (S(f), g)L2(Ω) .

Furthermore, S is strictly monotone. In fact, for f 6= 0 ∈ L2(Ω), we get by choosing ϕ = S(f) in
the weak form (A.3) that

(S(f), f)L2(Ω) = (f, S(f))L2(Ω) = (∇S(f),∇S(f))L2(Ω) + (S(f), S(f))L2(Ω) + (aS(f), S(f))L2(Γ)

≥ ‖S(f)‖2H1(Ω) > 0.

Note that f 6= 0 implies S(f) 6= 0, which justifies the last inequality.
Spectral theory for linear, symmetric, compact and strictly monotone operators2 now yields
a countable, complete orthonormal system of eigenvectors (wk)k∈N of S in L2(Ω), with corre-
sponding positive eigenvalues (λ̂k)k∈N ⊂ R>0.

1 See classical Sobolev embeddings B.56.
2 See a classical result on spectral theory B.65.
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The eigenfunctions of the operator S are eigenfunctions of the Laplacian. In fact, if we plug an
eigenfunction of S into the weak formulation A.3, we get by means of integration by parts3 and
the variational lemma4

∆wk = (1− λ̂−1
k )wk a.e. in Ω and aωk +∇ωk · n = 0 a.e. on Γ.

It is left to show that, for ϑ ∈ H1(Ω), the expansion (A.1) converges to ϑ in H1(Ω).
To this, note that the bilinear form B defines a scalar product on H1(Ω). The induced norm
‖ω‖H1(Ω),B := B(ω, ω)1/2 is equivalent to the standard H1(Ω) norm. In fact, it holds

‖ω‖2H1(Ω) =

∫
Ω

ω2 dx +

∫
Ω

(∇ω)
2

dx ≤
∫

Ω

ω2 dx +

∫
Ω

(∇ω)
2

dx +

∫
Γ

aω2 ds = ‖ω‖2H1(Ω),B

and, with Lemma B.23,

‖ω‖2H1(Ω),B =

∫
Ω

ω2 dx+

∫
Ω

(∇ω)
2

dx+

∫
Γ

aω2 ds ≤
∫

Ω

ω2 dx+C ‖ω‖2H1(Ω) ≤ (1+C) ‖ω‖2H1(Ω) .

Thus, H1(Ω) equipped with the scalar product induced by B is a Hilbert space.

The set
(√

λ̂kωk

)
k∈N

forms a complete B-orthonormal system and, thus5, a B-orthonormal
basis of H1(Ω). In fact, for two eigenfunctions ωk, ωj of S, it holds

B(ωk, ωj) = λ̂−1
k (ωk, ωj)L2(Ω) =

λ̂
−1
k , k = j,

0, else,

where the first equality follows from theweak formulation (A.3) and the second equality from the
fact that (ωk)k∈N is an orthonormal basis of the space L2(Ω). Furthermore, the set

(√
λ̂kωk

)
k∈N

is complete in H1(Ω) because, for ϑ ∈ H1(Ω) with B(ϑ, ωk) = 0 for all k ∈ N, it follows from
(A.3) that (ϑ, ωk)L2(Ω) = 0 for all k ∈ N, which implies ϑ = 0 due to the completeness of (ωk)k∈N
in L2(Ω).

Finally, for ϑ ∈ H1(Ω), the weak formulation (A.3) yields

(ϑ, ωk)L2(Ω) ωk = (ωk, ϑ)L2(Ω) ωk = λ̂kB(ωk, ϑ)ωk = B

(
ϑ,

√
λ̂kωk

)√
λ̂kωk. (A.4)

Because
(√

λ̂kωk

)
k∈N

is a B-orthonormal basis of H1(Ω), it holds

n∑
k=1

B

(
ϑ,

√
λ̂kωk

)√
λ̂kωk → ϑ in H1(Ω) w.r.t. the B norm, for n→∞. (A.5)

Equations (A.4) and (A.5) together imply that the expansion (A.1) converges to ϑ in H1(Ω) w.r.t.
the B norm and, thus, w.r.t. to the standard H1(Ω) norm as seen above. �

3 See integration by parts in Sobolev spaces B.35.
4 See the variational lemma B.6.
5 See [235, §19.5, Def. 19.10, p. 117] and [235, §19.5, Thm. 19.A, p. 118] for the completeness criterion.
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Lemma A.2 — Strong convergence of the auxiliary temperature (cf. [56, Sec. 8.1, Bem. 8.1.13, p. 213]).
Let Q ⊂ Rd, d ≥ 1, be a nonempty, open and bounded set, and let (ωk)k∈N ⊂ L2(Q) with
ωk → ω in L2(Q). Then, for all p ∈ [1,∞), it holds[

ωk
]
M
→
[
ω
]
M

in Lp(Q), (A.6)

where
[
ω
]
M

:= min(max(ω,−M),M) is the cutoff function for someM ∈ R>0.

Proof. The cutoff function is continuous as map from L2(Q) to L2(Q), which implies∥∥[ωk]M − [ω]M∥∥L2(Q)
→ 0 for k →∞.

For p ∈ [1, 2], the result follows immediately from the embedding L2(Q) ↪→ Lp(Q):∥∥[ωk]M − [ω]M∥∥Lp(Q)
≤ C

∥∥[ωk]M − [ω]M∥∥L2(Q)
.

For p ∈ (2,∞), the result follows immediately from
∥∥[ωk]M − [ω]M∥∥L∞(Q)

≤ 2M together with
the following estimate6:∥∥[ωk]M − [ω]M∥∥Lp(Q)

≤
∥∥[ωk]M − [ω]M∥∥1− 2

p

L∞(Q)

∥∥[ωk]M − [ω]M∥∥ 2
p

L2(Q)
.

�

Lemma A.3 — A result on regularity.
Let Ω ⊂ Rd, d ∈ {2, 3}, be a nonempty, open and bounded set with Lipschitz boundary, let
I = (0, T ) ⊂ R be an open interval and define Q := I × Ω.
Furthermore, let (ϑk)k∈N ⊂W 1,∞(I;H1(Ω)) ∩ L∞(I;H2(Ω)) be a bounded sequencea, i.e.,

‖ϑk‖W 1,∞(I;H1(Ω)) + ‖ϑk‖L∞(I;H2(Ω)) ≤M for all k ∈ N.

1. Let p1, p2 ∈ (1,∞). There is an element ϑ ∈W 1,p1(I;H1(Ω)) ∩ Lp2(I;H2(Ω)), indepen-
dent of the particular choices of p1, p2, and a subsequence (ϑkl)l∈N such that

ϑkl ⇀ ϑ inW 1,p1(I;H1(Ω)),

ϑkl ⇀ ϑ in Lp2(I;H2(Ω)),

with
‖ϑ‖W 1,p1 (I;H1(Ω)) + ‖ϑ‖Lp2 (I;H2(Ω)) ≤

(
(2T )

1
p1 + T

1
p2

)
M.

6 For f ∈ L∞(Q), g ∈ L2(Q), p ∈ (2,∞), it holds

(∫
Q
|f(x)g(x)|p dx

) 1
p

=

(∫
Q
|f(x)g(x)|p−2|f(x)g(x)|2 dx

) 1
p

≤ ‖fg‖
p−2
p

L∞(Q)

((∫
Q
|f(x)g(x)|2 dx

) 1
2

) 2
p

.
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2. It holds ϑ ∈ C0,α(Q) with
‖ϑ‖C0,α(Q) ≤ C(T, α)M (A.7)

for α ∈ [0, 1
4 ).

The bound (A.7) still holds if the sequence is defined only on a smaller time interval
(0, T̃ ) ⊂ I , i.e., (ϑk)k∈N ⊂ W 1,∞((0, T̃ );H1(Ω)) ∩ L∞((0, T̃ );H2(Ω)). In this case, get
‖ϑ‖C0,α([0,T̃ ]×Ω) ≤ C(T, α)M .b

a We understand the function spaces as subspaces of L1(Q), which gives sense to the intersection. Two functions
in such an intersection are equal if they coincide a.e. in Q. For example, ϑ ∈W 1,∞(I;H1(Ω)) ∩ L∞(I;H2(Ω))

means that the equivalence class of ϑ ∈ L1(Q) contains a representative ϑ1 ∈ W 1,∞(I;H1(Ω)) as well as a
representative ϑ2 ∈ L∞(I;H2(Ω)) such that ϑ1 = ϑ2 a.e. inQ.

b This technical detail is required for the proof of Lemma A.4, which is used to prove Lemma 3.9.

Proof.

Extract weakly convergent subsequences and identify the limits in L1(Q).

1. For p1, p2 ∈ (1,∞), we have the continuous embedding7

W 1,∞(I;H1(Ω)) ∩ L∞(I;H2(Ω)) ↪→W 1,p1(I;H1(Ω)) ∩ Lp2(I;H2(Ω)).

Note that H1(Ω) and H2(Ω) are reflexive Banach spaces and, thus, alsoW 1,p1(I;H1(Ω))

and Lp2(I;H2(Ω)) are reflexive Banach spaces.8 Because the sequence is bounded, we can9
consecutively extract weakly convergent subsequences, where we reuse the same index as
in the original sequence for a better readability, with

ϑkl ⇀ ϑ in Lp1(I;H1(Ω)),

ϑ′kl ⇀ v in Lp1(I;H1(Ω)),

ϑkl ⇀ ϑ̂ in Lp2(I;H2(Ω)).

We can identify v = ϑ′ by means of Lemma B.14.

FromLp1(I;H1(Ω)) ⊂ L1(Q) andLp2(I;H2(Ω)) ⊂ L1(Q), we infer10L1(Q)∗ ⊂ Lp1(I;H1(Ω))∗

and L1(Q)∗ ⊂ Lp2(I;H2(Ω))∗. This yields

ϑkl ⇀ ϑ in L1(Q) and ϑkl ⇀ ϑ̂ in L1(Q).

The uniqueness of the weak limit11 implies ϑ = ϑ̂ in L1(Q) and, thus, ϑ = ϑ̂ a.e. in Q.

Furthermore, the uniqueness of the weak limit ensures that the limit ϑ is independent12 of
the particular choices of p1, p2.

7 See embeddings in Bochner spaces B.54.
8 See Lemma B.24 on Sobolev spaces and Lemma B.12 on reflexive Banach spaces.
9 See the criterion on weak lower semicontinuity B.15.
10 See Lemma B.17 on dual spaces of subspaces.
11 See Remark B.8 on the uniqueness of weak/weak∗ limits.
12 In fact, let p, p̂ ∈ (1,∞), and let ϑ ∈ Lp(I;H1(Ω)), ϑ̂ ∈ Lp̂(I;H1(Ω)) be the corresponding weak lim-
its. From Lp(I;H1(Ω)) ⊂ L1(Q) and Lp̂(I;H1(Ω)) ⊂ L1(Q), we infer L1(Q)∗ ⊂ Lp(I;H1(Ω))∗ and
L1(Q)∗ ⊂ Lp̂(I;H1(Ω))∗ and, thus,

ϑkl ⇀ ϑ in L1(Q) and ϑkl ⇀ ϑ̂ in L1(Q).

The uniqueness of the weak limit implies ϑ = ϑ̂ in L1(Q), which especially yields ϑ = ϑ̂ a.e. inQ.
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The norm is sequentially weakly lower semicontinuous13, which implies14

‖ϑ‖W 1,p1 (I;H1(Ω)) + ‖ϑ‖Lp2 (I;H2(Ω))

≤lim inf
l∈N

(
‖ϑkl‖W 1,p1 (I;H1(Ω)) + ‖ϑkl‖Lp2 (I;H2(Ω))

)
≤((2T )

1
p1 + T

1
p2 )lim inf

l∈N

(
‖ϑkl‖W 1,∞(I;H1(Ω)) + ‖ϑkl‖L∞(I;H2(Ω))

)
≤((2T )

1
p1 + T

1
p2 )M.

2. We choose p := p1 := p2 := 2 + ε for some ε > 0, and get with the embeddings in Hölder
spaces B.60 and the embeddings H1(Ω) ↪→ L6(Ω) and H2(Ω) ↪→W 1,6(Ω) (for the spatial
dimension d ≤ 3) that

ϑ ∈W 1,p(I;L6(Ω)) ∩ Lp(I;W 1,6(Ω)) ↪→↪→ C0,α(Q)

with α ∈ [0, 1+ε
2+ε − 1

2 ), i.e.,

‖ϑ‖C0,α(Q) ≤ C1(α, T ) ‖ϑ‖W 1,p(I;L6(Ω))∩Lp(I;W 1,6(Ω)) (A.8)

for a constant C1(α, T ). The arbitrary choice of ε implies that we can choose α ∈ [0, 1
4 ),

where the constant of the embedding might depend on α.

For T̃ ∈ I , we can extend the functions (ϑ̃k)k∈N ⊂W 1,∞((0, T̃ );H1(Ω))∩L∞((0, T̃ );H2(Ω))

to (ϑk)k∈N ⊂W 1,∞(I;H1(Ω)) ∩ L∞(I;H2(Ω)) by defining

ϑk(t) :=

ϑ̃k(t), t ≤ T̃ ,
ϑ̃k(T̃ ), t > T̃

for all k ∈ N.

Note that the evaluation at times t ∈ [0, T̃ ] is well defined because of the embeddings15

W 1,∞((0, T̃ );H1(Ω)) ∩ L∞((0, T̃ );H2(Ω)) ↪→ C0,α([0, T̃ ]× Ω) ↪→ C0([0, T̃ ]; Ω).

Like above, we get for the weak limit ϑ ∈ C0,α(Q) ↪→ C0,α([0, T̃ ] × Ω), where the last
embedding follows from restricting ϑ to [0, T̃ ]× Ω, and it holds

‖ϑ‖C0,α([0,T̃ ]×Ω) ≤ ‖ϑ‖C0,α(Q) ≤ C1(α, T ) ‖ϑ‖W 1,p1 (I;H1(Ω))∩Lp2 (I;H2(Ω))

≤ C1(α, T )
(

(2T )
1
p1 + T

1
p2

)
M

with the same constant as in (A.8).

�

13 See the criterion on weak lower semicontinuity B.16.
14 Use the estimate∥∥ϑkl∥∥W1,p1 (I;H1(Ω))

=

(∫ T

0

∥∥ϑkl (t)∥∥p1

H1(Ω)
dt +

∫ T

0

∥∥∥ϑ′kl (t)∥∥∥p1

H1(Ω)
dt

) 1
p1

≤
((∥∥ϑkl∥∥p1

L∞(I;H1(Ω))
+
∥∥∥ϑ′kl∥∥∥p1

L∞(I;H1(Ω))

)∫ T

0
1 dt

) 1
p1

≤
(

2

(∥∥ϑkl∥∥L∞(I;H1(Ω))
+
∥∥∥ϑ′kl∥∥∥L∞(I;H1(Ω))

)p1

T

) 1
p1

= (2T )
1
p1
∥∥ϑkl∥∥W1,∞(I;H1(Ω))

.

15 See Lemma B.50 and Theorems B.59 and B.60 for standard embedding results.
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Lemma A.4 — Well-posedness of the Cattaneo equation in the context of LITT.
Let Assumptions 2.1 and 2.2 hold and let

(r, g) ∈ L2(I;L2(Ω))× L2(I;L2(Γ)).

1. Then there exists a unique solution

ϑ ∈ L∞(I;H1(Ω)) ∩W 1,∞(I;L2(Ω)) ∩H1(I;H1(Ω)) ∩H2(I;H1(Ω)∗)

such that

∫ T

0

τ 〈ϑ′′(t), ϕ(t)〉H1(Ω) + (ϑ′(t), ϕ(t))L2(Ω) + Fh(ϑ(t), ϕ(t)) dt

=

∫ T

0

(r(t), ϕ(t))L2(Ω) + (g(t), ϕ(t))L2(Γ) dt ,

ϑ(0) = ϑ(0),

ϑ′(0) = ϑ(1)


(A.9)

for all ϕ ∈ L2(I;H1(Ω)) with

‖ϑ‖L∞(I;H1(Ω)) + ‖ϑ′‖L∞(I;L2(Ω)) + ‖ϑ′‖L2(I;H1(Ω)) + ‖ϑ′′‖L2(I;H1(Ω)∗)

≤ C(τ−1, T )

(∥∥∥ϑ(0)
∥∥∥
H1(Ω)

+
∥∥∥ϑ(1)

∥∥∥
L2(Ω)

+ ‖g‖L2(I;L2(Γ)) + ‖r‖L2(I;L2(Ω))

)
.

(A.10)

2. Let g ∈ L2(Γ), i.e., it is constant in time. Then the solution above fulfills

‖ϑ′‖L∞(I;L2(Ω)) + ‖ϑ‖L∞(I;H1(Ω))

≤ C exp(TC1)

(∥∥∥ϑ(0)
∥∥∥
H1(Ω)

+
∥∥∥ϑ(1)

∥∥∥
L2(Ω)

+ ‖g‖L2(Γ) + ‖r‖L2(I;L2(Ω))

)
,

(A.11)

where C,C1 depend on τ but not on T .a

3. Let g ∈ H1/2(Γ) and r = r1 + r2 with r1 ∈ L2(I;H1(Ω)), r2 ∈ H1(I;L2(Ω)). Then, for
all p1, p2 ∈ (1,∞), the solution ϑ in the previous statement fulfills

ϑ ∈W 1,p1(I;H1(Ω)) ∩ Lp2(I;H2(Ω))

with
‖ϑ‖W 1,p1 (I;H1(Ω)) + ‖ϑ‖Lp2 (I;H2(Ω))

≤ C(τ−1, p1, p2, T )
(∥∥∥ϑ(0)

∥∥∥
H2(Ω)

+
∥∥∥ϑ(1)

∥∥∥
H1(Ω)

+ ‖g‖H1/2(Γ)

+ ‖r1‖L2(I;H1(Ω)) + ‖r2‖H1(I;L2(Ω))

)
.

(A.12)
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Especially, we have that the solution is Hölder continuous, i.e., ϑ ∈ C0,α(Q) for α ∈ [0, 1
4 ),

with

‖ϑ‖C0,α(Q) ≤ C(τ−1, α, T )
(∥∥∥ϑ(0)

∥∥∥
H2(Ω)

+
∥∥∥ϑ(1)

∥∥∥
H1(Ω)

+ ‖g‖H1/2(Γ)

+ ‖r1‖L2(I;H1(Ω)) + ‖r2‖H1(I;L2(Ω))

)
.

(A.13)

Analogously to Lemma A.3, the bounds (A.12) and (A.13) still hold if we consider a
smaller time interval (0, T̃ ) ⊂ I for the problem.a

Furthermore, all statements still hold if we exchange the assumptions for r1 by the
following less restrictive but more technical requirements:b

(a) r1 ∈ L2(I;L2(Ω)),

(b) r1(t) ∈ H1(Ω) for a.a. t ∈ I ,
(c) ‖r1(t)‖H1(Ω) ≤ r̃(t) for some r̃ ∈ L2(I).c

In this case, we need to replace the norm ‖r1‖L2(I;H1(Ω)) by ‖r̃‖L2(I) in the estimates
above.

a This technical detail is required for the proof of Lemma 3.9.
b This does not imply r1 ∈ L2(I;H1(Ω)) because we do not require r1 : I → H1(Ω) to be Bochner measurable.
This technical detail is required for the proof of Theorem 2.15.

c Note that we do not need to show that t 7→ ‖∇r1(t)‖L2(Ω) is Lebesgue measurable.

Remark A.5 — Dependence on the final time T .
The reason for us to explicitly state the dependence of the state bounds in estimates (A.10)–
(A.13) on the final time T is the proof of Lemma 3.9. There, we need to consider the same
evolution problem for smaller time intervals (0, T̃ ) ⊂ I = (0, T ), and we need that the
corresponding solutions are bounded independently of T̃ , for a fixed final time T ∈ R>0.

Remark A.6 — Approximation of the solution of the Cattaneo equation.
The proof of the first part of Lemma A.4 is based on [43, XVIII §5 1.3, Thm. 1, p. 558], which
follows the Faedo–Galerkin procedurea. Like described in [43, XVIII §5, p. 552 ff.], we consider
a certain sequence of finite-dimensional subspaces, which defines a sequence of auxiliary
solutions (see below). One can show that this sequence of auxiliary solutions converges to the
solution of equation (A.9) (for homogeneous boundary conditions) for all ϕ ∈ L2(I;H1(Ω)).
For the finite-dimensional subspaces, we choose the spaces Vm = span{ωk | k = 1, . . . ,m}
which are spanned by the eigenfunctions of the Laplacian (ωk)k∈N ⊂ H2(Ω) given in Lemma
A.1.
This yields a sequenceb

(ϑm)m∈N ⊂ {ω ∈ C0(I;Vm) |ω′ ∈ C0(I;Vm), ω′′ ∈ L2(I;Vm)} (A.14)
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of the form

ϑm(t) =

m∑
k=1

gkm(t)wk, gkm ∈ H2(I)

such that each ϑm fulfills

∫ T

0

τ (ϑ′′m(t), ϕ(t))L2(Ω) + (ϑ′m(t), ϕ(t))L2(Ω) + Fh(ϑm(t), ϕ(t)) dt

=

∫ T

0

(r(t), ϕ(t))L2(Ω) + (g(t), ϕ(t))L2(Γ) dt ,

ϑm(0) = ϑ(0)
m ,

ϑ′m(0) = ϑ(1)
m


(A.15)

for all ϕ ∈ L2(I;Vm), with initial conditions ϑ(0)
m , ϑ

(1)
m according to Remark 2.3.

The sequence converges to the solution ϑ of (A.9) as follows:c

ϑm(t)→ ϑ(t) strongly in H1(Ω) for a.a. t ∈ I,
ϑ′m(t)→ ϑ′(t) strongly in L2(Ω) for a.a. t ∈ I,
ϑ′m → ϑ′ strongly in L2(I;H1(Ω)),

ϑm ⇀ ϑ weakly in L2(I;H1(Ω)).

(A.16)

Furthermore, the following bound for the approximate solutions holds:

‖ϑm‖L∞(H1(Ω)) + ‖ϑ′m‖L∞(L2(Ω))

≤C exp(CT )

(∥∥∥ϑ(0)
∥∥∥2

H1(Ω)
+
∥∥∥ϑ(1)

∥∥∥2

L2(Ω)
+ ‖r‖2L2(I;L2(Ω)) + ‖g‖2L2(I;L2(Γ))

)
,

(A.17)

where the constant C depends on τ−1, but does not depend onm and or T .
a See [43, XVIII §5 3, p. 561 ff.].
b See [43, XVIII §5 3.1, Lem. 2, p. 562].
c See [43, XVIII §5 3.3, Lem. 4, p. 564], [43, XVIII §5 4.2, Rem. 5, p. 569] and the subsequence argument in [43, XVIII
§5 3.5, p. 566].

Proof of Remark A.6. The existence of the sequence (ϑm)m∈N follows from [43, XVIII §5 3.1, Lem.
2, p. 562]. The convergence results (A.16) follow from [43, XVIII §5 3.3, Lem. 4, p. 564], [43, XVIII
§5 4.2, Rem. 5, p. 569] and the subsequence argument in [43, XVIII §5 3.5, p. 566].
We need to prove only the bound in (A.17).

Test equation (A.15) with ϕ = ϑ′m and apply Gronwall’s inequality.

We test equation (A.15) with ϕ = ϑ′m and apply Gronwall’s inequality16 to obtain the desired
estimates for ϑm, which is a standard procedure (cf. [17, Sec. 3.2, Thm. 3.7, p. 22]).
Let ϑm be defined like in the statement such that it fulfills equation (A.15) for all ϕ ∈ L2(I;Vm),
with initial conditions ϑ(0)

m , ϑ
(1)
m according to Assumption 2.2 and Remark 2.3.

We test equation (A.15) with ϕ = ϑ′m, which is an element of the test space L2(I;Vm) by

16 See Gronwall’s inequality B.39.
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construction. This yields analogously to the proof of Lemma A.4∫ t

0

τ

2

(
‖ϑ′m(s)‖2L2(Ω)

)′
+ ‖ϑ′m(s)‖2L2(Ω) +

κ

2

(
‖∇ϑm(s)‖2L2(Ω)

)′
+

(∥∥∥√ξϑm(s)
∥∥∥
L2(Ω)

)′
ds

+

∫ t

0

(
‖√ahϑm(s)‖2L2(Γ)

)′
ds =

∫ t

0

∫
Ω

r(s)ϑ′m(s) dx +

∫
Γ

g(s)ϑ′m(s) dŝ ds .

Thus, with the bounds on the coefficients in Assumption 2.2, Lemma B.23, and Hölder’s and
Young’s inequalities17, we get

‖ϑ′m(t)‖2L2(Ω) + ‖ϑm(t)‖2H1(Ω) ≤ C(τ−1)

(
C1 +

∫ t

0

‖ϑ′m(s)‖2H1(Ω) ds

)
for a.a. t ∈ I with

C1 :=
∥∥∥ϑ(0)

∥∥∥2

H1(Ω)
+
∥∥∥ϑ(1)

∥∥∥2

L2(Ω)
+ ‖r‖2L2(I;L2(Ω)) + ‖g‖2L2(I;L2(Γ)) .

We note that the constant C(τ−1) does not depend on m or T . Now we apply Gronwall’s
inequality and get the desired estimate

‖ϑ′m(t)‖2L2(Ω) + ‖ϑm(t)‖2H1(Ω) ≤ C1C(τ−1) exp(TC(τ−1)).

�

Proof of Lemma A.4. First, we apply a standard result for evolution problems of second order in
t in [43, XVIII §5, p. 552 ff.] to show ϑ ∈ Wϑ. Second, we use a bootstrap argument to show
ϑ ∈ C0(Q), following the idea of [114, Sec. 2.3.2, Lem. 2.3.18, p. 22].

1.

Apply a standard result for evolution problems of second order in t, based on a
Faedo–Galerkin procedure, see [43, XVIII §5, p. 552 ff.].

The existence and uniqueness of a solution ϑ ∈Wϑ is given by [43, XVIII §5 1.3, Thm. 1, p.
558]18 19. We need to show only that the Cattaneo equation (A.9) fulfills the prerequisites.
The cited theorem covers a very general scenario.

We need to show that Fh : H1(Ω) × H1(Ω) → R is a symmetric, continuous and coercive
bilinear form. Furthermore, we need to show that

fQ : L2(I;H1(Ω))→ R, ϕ 7→
∫ T

0

(r(t), ϕ(t))L2(Ω) + (g(t), ϕ(t))L2(Γ) dt

is an element of L2(I;H1(Ω)∗), see [43, XVIII §5 4.2, Rem. 4, p. 568].

17 See Hölder’s B.27 and Young’s B.25 inequalities.
18 The cited theorem is stated in terms of distributional time derivatives. [43, XVIII §5 2.1, Rem. 2, p. 559] explains the
connection to an operator formulation in L2(I;H1(Ω)∗) like considered here, which is based on Lemma B.37.

19 We note that τ > 0 is explicitly required in order to apply the cited theorem, see [43, XVIII §5 1.2.3, Eq. 5.11, p. 553].
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Let ϕ, ϕ̂ ∈ H1(Ω). The form Fh is a bilinear form as sum of inner products. With the
bounds on the coefficients (2.20), Hölder’s inequality20 and the trace theorem21, we get the
continuity of Fh from

|Fh(ϕ, ϕ̂)| ≤
∣∣∣∣∫

Ω

κ∇ϕ · ∇ϕ̂dx

∣∣∣∣+

∣∣∣∣∫
Ω

ξϕϕ̂dx

∣∣∣∣+

∣∣∣∣∫
Γ

ahϕϕ̂ds

∣∣∣∣
≤ κ

∫
Ω

|∇ϕ · ∇ϕ̂|dx + ξ

∫
Ω

|ϕϕ̂|dx + ah

∫
Γ

|ϕϕ̂|ds

≤ C
(
‖∇ϕ‖L2(Ω) ‖∇ϕ̂‖L2(Ω) + ‖ϕ‖L2(Ω) ‖ϕ̂‖L2(Ω) + ‖ϕ‖L2(Γ) ‖ϕ̂‖L2(Γ)

)
≤ C ‖ϕ‖H1(Ω) ‖ϕ̂‖H1(Ω) ,

(A.18)

and the coercivity from

Fh(ϕ,ϕ) ≥ κ
∫

Ω

∇ϕ · ∇ϕdx + ξ

∫
Ω

ϕ2 dx + ah

∫
Γ

ϕ2 ds ≥ c ‖ϕ‖2H1(Ω) .

We look at the right-hand side and get with Hölder’s inequality and the trace theorem that∣∣∣〈fQ, ϕ〉L2(I;H1(Ω))

∣∣∣
=

∣∣∣∣∣
∫ T

0

(r(t), ϕ(t))L2(Ω) + (g(t), ϕ(t))L2(Γ) dt

∣∣∣∣∣
≤
∫ T

0

‖r(t)‖L2(Ω) ‖ϕ(t)‖L2(Ω) + ‖g(t)‖L2(Γ) ‖ϕ(t)‖L2(Γ) dt

≤
(
‖r‖L2(I;L2(Ω)) + ‖g‖L2(I;L2(Γ))

)
‖ϕ‖L2(I;H1(Ω))

for all ϕ ∈ L2(I;H1(Ω)). This implies

‖fQ‖L2(I;H1(Ω))∗ ≤ ‖r‖L2(I;L2(Ω)) + ‖g‖L2(I;L2(Γ)) , (A.19)

and with Theorem B.48 we identify fQ ∈ L2(I;H1(Ω))∗ = L2(I;H1(Ω)∗).

This allows us to apply [43, XVIII §5 1.3, Thm. 1, p. 558] and obtain the existence of a
unique solution, with the properties discussed in the following.

Let ϑ, ϑ̂ be the solutions to given data ϑ(0)
, ϑ

(1)
, fQ and ϑ̂(0), ϑ̂(1), f̂Q. Then [43, XVIII §5

4.2, Thm. 2, p. 567] yields the estimate∥∥∥ϑ− ϑ̂∥∥∥
L∞(I;H1(Ω))

+
∥∥∥ϑ′ − ϑ̂′∥∥∥

L∞(I;L2(Ω))
+
∥∥∥ϑ′ − ϑ̂′∥∥∥

L2(I;H1(Ω))

≤C(T )

(∥∥∥ϑ(0) − ϑ̂(0)
∥∥∥
H1(Ω)

+
∥∥∥ϑ(1) − ϑ̂(1)

∥∥∥
L2(Ω)

+
∥∥∥fQ − f̂Q∥∥∥

L2(I;H1(Ω)∗)

) (A.20)

for some constant C(T ) ∈ R>0. Especially, we get that the solution ϑ ∈Wϑ fulfills22

ϑ ∈ L∞(I;H1(Ω)) ∩W 1,∞(I;L2(Ω)) ∩H1(I;H1(Ω)).

20 See Hölder’s inequality B.27.
21 See the trace theorem B.53.
22 See also [43, XVIII §5 3.5, Eq. 5.80, p. 566].
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If we choose the initial conditions ϑ̂(0), ϑ̂(1) and the right-hand side in the Cattaneo equation
(A.9) to be zero, i.e., r = 0 and g = 0, we obtain the unique23 solution ϑ̂ = 0. We use this in
estimate (A.20) and obtain similar bounds for the state:

‖ϑ‖L∞(I;H1(Ω)) + ‖ϑ′‖L∞(I;L2(Ω)) + ‖ϑ′‖L2(I;H1(Ω))

≤C(T )

(∥∥∥ϑ(0)
∥∥∥
H1(Ω)

+
∥∥∥ϑ(1)

∥∥∥
L2(Ω)

+ ‖fQ‖L2(I;H1(Ω)∗)

)
.

(A.21)

We use the Cattaneo equation (A.9), Hölder’s inequality and the estimates (A.18) and
(A.21) to obtain an estimate for ϑ′′:∣∣∣〈ϑ′′, ϕ〉L2(I;H1(Ω))

∣∣∣
≤1

τ

(∫ T

0

∣∣∣(ϑ′(t), ϕ(t))L2(Ω)

∣∣∣+ |Fh(ϑ(t), ϕ(t))|dt +
∣∣∣〈fQ, ϕ〉L2(I;H1(Ω))

∣∣∣)

≤1

τ

(
‖ϑ′‖L2(I;L2(Ω)) + ‖ϑ‖L2(I;H1(Ω)) + ‖fQ‖L2(I;H1(Ω)∗)

)
‖ϕ‖L2(I;H1(Ω))

≤C(τ−1, T )

(∥∥∥ϑ(0)
∥∥∥
H1(Ω)

+
∥∥∥ϑ(1)

∥∥∥
L2(Ω)

+ ‖fQ‖L2(I;H1(Ω)∗)

)
‖ϕ‖L2(I;H1(Ω))

(A.22)

for all ϕ ∈ L2(I;H1(Ω)).

The estimate in (A.10) now follows directly from the estimates (A.19), (A.21) and (A.22).

2. Note that we can specify the dependence of the constantC(T ) on the final time T in the case
where g is constant in time. We test the Cattaneo equation (A.9)withϕ := ϑ′ ∈ L2(I;H1(Ω))

and get with integration by parts24, Lemma B.23 on equivalent norms in H1(Ω), the trace
theorem and Hölder’s and Young’s25 inequalities that26

τ
1

2
‖ϑ′(t)‖2L2(Ω) +

1

2
‖ϑ(t)‖2H1(Ω)

≤ C
(∫ t

0

(r(s), ϑ′(s))L2(Ω) ds +

∫ t

0

(g, ϑ′(s))L2(Γ) ds +
∥∥∥ϑ(0)

∥∥∥2

H1(Ω)
+
∥∥∥ϑ(1)

∥∥∥2

L2(Ω)

)
= C

(∫ t

0

(r(s), ϑ′(s))L2(Ω) ds + (g, ϑ(t))L2(Γ) −
(
g, ϑ(0)

)
L2(Γ)

+
∥∥∥ϑ(0)

∥∥∥2

H1(Ω)
+
∥∥∥ϑ(1)

∥∥∥2

L2(Ω)

)
≤ C

(1

2
‖r‖2L2(I;L2(Ω)) +

1

2

∫ t

0

‖ϑ′(s)‖2L2(Ω) ds + (
1

4ε
+

1

2
) ‖g‖2L2(Γ) +

1

2

∥∥∥ϑ(0)
∥∥∥2

L2(Γ)

+
∥∥∥ϑ(0)

∥∥∥2

H1(Ω)
+
∥∥∥ϑ(1)

∥∥∥2

L2(Ω)
+ ε ‖ϑ(t)‖2H1(Ω)

)
=: C1 + C2

∫ t

0

‖ϑ′(s)‖2L2(Ω) ds + ε̃ ‖ϑ(t)‖2H1(Ω)

23 See [43, XVIII §5 1.3, Thm. 1, p. 558].
24 See Theorem B.36 on the integration by parts in Bochner spaces, which especially implies

∫ t
0 〈ϑ′′(s), ϑ′(s)〉H1(Ω) ds =

‖ϑ′(t)‖2L2(Ω) − ‖ϑ′(0)‖2L2(Ω).
25 See Young’s inequality B.25.
26 Since the function ϑ fulfills equation (A.9) for all ϕ ∈ L2(I;H1(Ω)), it especially fulfills the equation for all test
functions which are zero on (t, T ] ⊂ I , thus, we can consider the integral from 0 to t for all t ∈ [0, T ], cf. [93, Sec.
1.3.2.3, Thm. 1.33, p. 42].
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for a.a. t ∈ I and arbitrary ε > 0, where the constants C1, C2 above depend on the domain
Ω and on the bounds for the coefficients in Fh but not on the final time T . Gronwall’s
inequality27 now implies

‖ϑ′‖L∞(I;L2(Ω)) + ‖ϑ‖L∞(I;H1(Ω)) ≤ C̃1 exp(TC̃2),

where C̃1, C̃2 depend on τ−1 but not on T .

3.

The higher regularity of ϑ follows from a bootstrap argument: Test the Cattaneo equation
(A.9) with −∆ϑ′ and use integration by parts to shift inconvenient partial derivatives of
ϑ to the “data”. Finally, apply standard embedding results for Sobolev spaces.

We follow the idea in [114, Ch. 2.3, p. 19 ff.] to prove certain regularity results in the
context of Bochner spaces, which then yield the desired regularity results for ϑ by means
of suitable embedding theorems. If we apply this lemma to the auxiliary heat-transfer
equation (2.24), note that the situation will be slightly different than in the cited reference
and needs to be handled with care because the data ri might depend on the auxiliary
temperature ω. In the proof of Theorem 2.15, the regularity of the data ri depends on the
regularity assumptions on ω and is determined by the overall fixed point argument used
therein.

(a) First, we show the desired result for homogeneous boundary conditions, i.e., we
assume g = 0 for the moment.

We consider the spaces Vm := span{ωk | k = 1, . . . ,m} form ∈ N, where (ωk)k∈N are
the eigenfunctions of the Laplacian according to Lemma A.1. The solution ϑ can be
approximated by a sequence (ϑm)m∈N ⊂ L2(I;Vm) such that ϑm =

∑m
k=1 gkm(t)wk

for certain gkm ∈ H2(I), according to RemarkA.6. In the following, we prove auxiliary
regularity results for the elements ϑm and then pass to the limitm→∞.

Because ah is constant in time,wegetwith the boundary conditions ahωk+κ∇ωk ·n = 0

for all k ∈ N in Lemma A.1 and with the expansion of ϑm that

∇ϑm(t) · n = − 1

κ
ahϑm(t),

∇ϑ′m(t) · n = − 1

κ
ahϑ
′
m(t)

 a.e. on Γ for a.a. t ∈ I (A.23)

for allm ∈ N. Note that the evaluation of∇ϑm(t) ·n and∇ϑ′m(t) ·n on the boundary
Γ is well defined because, with ϑm(t), ϑ′m(t) ∈ Vm ⊂ H2(Ω), we have∇ϑm(t) · n and
∇ϑ′m(t) · n ∈ H1(Ω) ↪→W

1
2 ,2(Γ), where the last embedding follows from the trace

theorem.

27 See Gronwall’s inequality B.39.
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As a prerequisite, we reformulate the boundary conditions in the weak formulation.
Note that the spatial regularity ωk ∈ H2(Ω) allows us to apply integration by parts28
and to rewrite

(∇ϑm(t),∇ϕ)L2(Ω) = − (∆ϑm(t), ϕ)L2(Ω) + (∇ϑm(t) · n, ϕ)L2(Γ) (A.24)

for all ϕ ∈ H1(Ω) and for a.a. t ∈ I .
(b) The key idea now is to test equation (A.15) with ϕ = −∆ϑ′m like in [114, Sec. 2.3.2,

Lem. 2.3.18, p. 22]. Note that the choice of Vm ensures that ∆ϑ′m =
∑m
k=1 g

′
km∆ωk is

indeed an element of the test space L2(I;Vm).
We reformulate the evolution equation for ϑm (A.15), integrated only29 from 0 to t ∈ I
and tested with ϕ = −∆ϑ′m, by means of the integration-by-parts formula (A.24) and
obtain∫ t

0

τ (ϑ′′m(s),−∆ϑ′m(s))L2(Ω)︸ ︷︷ ︸
I

+ (ϑ′m(s),−∆ϑ′m(s))L2(Ω)︸ ︷︷ ︸
II

− κ (∆ϑm(s),−∆ϑ′m(s))L2(Ω)︸ ︷︷ ︸
III

ds

=

∫ t

0

(r1(s),−∆ϑ′m(s))L2(Ω)︸ ︷︷ ︸
IV

+ (r2(s),−∆ϑ′m(s))L2(Ω)︸ ︷︷ ︸
V

− (ξϑm(s),−∆ϑ′m(s))L2(Ω)︸ ︷︷ ︸
V I

ds

+

∫ t

0

(g(s)− κ∇ϑm(s) · n− ahϑm(s),−∆ϑ′m(s))L2(Γ)︸ ︷︷ ︸
V II

ds .

In the following, we consider the resulting terms individually.
For the following calculations, we use Hölder’s and Young’s inequalities along
with a few rules of calculus in the context of Bochner spaces, see Appendix B.1.2:

•
(
‖ϑm(t)‖2L2(Ω)

)′
= 2 (ϑ′m(t), ϑm(t))L2(Ω),

• f(t) = f(0) +
∫ t

0
f ′(s) ds .

• Dxi(ϑ
′
m(t)) = (Dxiϑm(t))′ (short notation, see Lemma B.40 for details).

(I) By definition it holds ϑ′′m(t) ∈ Vm. With ϑ′m(0) = ϑ
(1)
m in (A.15), we get∫ t

0

τ (ϑ′′m(s),−∆ϑ′m(s))L2(Ω) ds

= τ

∫ t

0

(∇ϑ′′m(s),∇ϑ′m(s))L2(Ω) ds − τ
∫ t

0

(ϑ′′m(s),∇ϑ′m(s) · n)L2(Γ) ds

= τ

∫ t

0

1

2

(
‖∇ϑ′m(s)‖2L2(Ω)

)′
ds − τ

∫ t

0

(ϑ′′m(s),∇ϑ′m(s) · n)L2(Γ) ds

= τ
1

2

(
‖∇ϑ′m(t)‖2L2(Ω) −

∥∥∥∇ϑ(1)
m

∥∥∥2

L2(Ω)

)
− τ

∫ t

0

(ϑ′′m(s),∇ϑ′m(s) · n)L2(Γ) ds .

28 See Theorem B.35 on the integration by parts in Sobolev spaces.
29 Since the functions ϑm fulfill equation (A.15) for all ϕ ∈ L2(I;Vm), they especially fulfill the equation for all test
functions which are zero on (t, T ], thus, we can consider the integral from 0 to t for all t ∈ [0, T ], cf. [93, Sec. 1.3.2.3,
Thm. 1.33, p. 42].
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With the boundary conditions in (A.23), Hölder’s and Young’s inequalities and
integration by parts30, we obtain for the boundary term

−τ
∫ t

0

(ϑ′′m(s),∇ϑ′m(s) · n)L2(Γ) ds =
τ

κ

∫ t

0

(ϑ′′m(s), ahϑ
′
m(s))L2(Γ) ds

=
τ

κ

∫ t

0

1

2

(
‖√ahϑ′m(s)‖2L2(Γ)

)′
ds

=
τ

2κ

(
‖√ahϑ′m(t)‖2L2(Γ) −

∥∥∥√ahϑ(1)
m

∥∥∥2

L2(Γ)

)
≥ τ

2κ

(
ah ‖ϑ′m(t)‖2L2(Γ) − ah

∥∥∥ϑ(1)
m

∥∥∥2

L2(Γ)

)
.

(II) With the boundary conditions in (A.23), we get∫ t

0

(ϑ′m(s),−∆ϑ′m(s))L2(Ω) ds

=

∫ t

0

(∇ϑ′m(s),∇ϑ′m(s))
2
L2(Ω) ds −

∫ t

0

(ϑ′m(s),∇ϑ′m(s) · n)L2(Γ) ds

=

∫ t

0

‖∇ϑ′m(s)‖2L2(Ω) ds +
1

κ

∫ t

0

(ϑ′m(s), ahϑ
′
m(s))L2(Γ) ds

≥
∫ t

0

‖∇ϑ′m(s)‖2L2(Ω) ds +
ah

κ

∫ t

0

‖ϑ′m(s)‖2L2(Γ) ds

≥ 0.

(III) It holds

−
∫ t

0

κ (∆ϑm(s),−∆ϑ′m(s))L2(Ω) ds = κ

∫ t

0

1

2

(
‖∆ϑm(s)‖2L2(Ω)

)′
ds

=
κ

2

(
‖∆ϑm(t)‖2L2(Ω) −

∥∥∥∆ϑ(0)
m

∥∥∥2

L2(Ω)

)
.

(IV) The boundary conditions in (A.23) and the integration by parts in (A.24) imply

(r1(t),−∆ϑ′m(t))L2(Ω)

= (∇r1(t),∇ϑ′m(t))L2(Ω) − (r1(t),∇ϑ′m · n)L2(Γ)

= (∇r1(t),∇ϑ′m(t))L2(Ω) +
1

κ
(r1(t), ahϑ

′
m(t))L2(Γ)

(A.25)

for a.a. t ∈ I .
With r1 and ∆ϑm being elements of L2(I;L2(Ω)) we get with Hölder’s inequality
that31 r1∆ϑm ∈ L1(I;L1(Ω))

∼
= L1(Q) and, especially, that t 7→ (r1(t),∆ϑm(t))L2(Ω)

is Lebesgue measurable according to Fubini’s theorem32.
With this, also the map

t 7→ (∇r1(t),∇ϑ′m(t))L2(Ω) +
1

κ
(r1(t), ahϑ

′
m(t))L2(Γ)

30 See Theorem B.36 on the integration by parts in Bochner spaces.
31 See Lemma B.49 on the relation between Bochner and Lebesgue spaces.
32 See Fubini’s theorem B.2.
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is Lebesgue measurable. The assumptions on r1 given in the statement, Hölder’s
and Young’s inequalities, the trace theorem and equation (A.25) imply that∣∣∣(r1(t),−∆ϑ′m(t))L2(Ω)

∣∣∣ ≤ C (‖r1(t)‖2H1(Ω) + ‖ϑ′m(t)‖2H1(Ω)

)
≤ C

(
r̃(t)2 + ‖ϑ′m(t)‖2H1(Ω)

) (A.26)

for a.a t ∈ I . With r̃ ∈ L2(I), we can integrate both sides in (A.26) and obtain the
estimate∫ t

0

∣∣∣(r1(s),−∆ϑ′m(s))L2(Ω)

∣∣∣ds ≤ C (‖r̃‖2L2(I) +

∫ t

0

‖ϑ′m(s)‖2H1(Ω) ds

)
.

(V) With integration by parts33, the initial condition ϑm(0) = ϑ
(0)
m and Hölder’s and

Young’s inequalities, we get∣∣∣∣∫ t

0

(r2(s),−∆ϑ′m(s))L2(Ω) ds

∣∣∣∣
=

∣∣∣∣∫ t

0

(r′2(s),∆ϑm(s))L2(Ω) ds − (r2(t),∆ϑm(t))L2(Ω) +
(
r2(0),∆ϑ(0)

m

)
L2(Ω)

∣∣∣∣
≤
( 1

4ε
+

1

2

)
‖r2‖2L∞(I;L2(Ω)) +

1

2

∥∥∥∆ϑ(0)
m

∥∥∥2

L2(Ω)
+

1

2
‖r′2‖

2
L2(I;L2(Ω))

+ ε ‖∆ϑm(t)‖2L2(Ω) +
1

2

∫ t

0

‖∆ϑm(s)‖2L2(Ω) ds

for all ε > 0. The evaluation of r2(t) and r2(0) in the computation above is well
defined because of the continuous embedding34 H1(I;L2(Ω)) ↪→ C0(I;L2(Ω)),
and it holds35

‖r2‖L∞(I;L2(Ω)) ≤ C ‖r2‖C0(I;L2(Ω)) ≤ C ‖r2‖H1(I;L2(Ω)) <∞.

(VI) With ξ being constant in time, ϑm(0) = ϑ
(0)
m , integration by parts and Hölder’s

and Young’s inequalities, we get∣∣∣∣∫ t

0

(ξϑm(s),∆ϑ′m(s))L2(Ω) ds

∣∣∣∣
=
∣∣∣− ∫ t

0

((ξϑm(s))′,∆ϑm(s))L2(Ω) ds + (ξϑm(t),∆ϑm(t))L2(Ω)

−
(
ξϑ(0)

m ,∆ϑ(0)
m

)
L2(Ω)

∣∣∣
≤ 1

2
ξ

2 ‖ϑ′m‖
2
L2(I;L2(Ω)) +

1

2

∫ t

0

‖∆ϑm(s)‖2L2(Ω) ds +
1

4ε
ξ

2 ‖ϑm(t)‖2L2(Ω)

+ ε ‖∆ϑm(t)‖2L2(Ω) +
1

2
ξ

2
∥∥∥ϑ(0)

m

∥∥∥2

L2(Ω)
+

1

2

∥∥∥∆ϑ(0)
m

∥∥∥2

L2(Ω)
.

Note that we can bound ‖ϑm(t)‖L2(Ω) and ‖ϑ′m‖L2(I;L2(Ω)) by means of the
classical state bounds (A.17).

33 See the integration by parts in Bochner spaces B.36.
34 See the classical embedding theorem B.33.
35 See classical embedding in Lemma B.52.
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(VII) With the boundary conditions in (A.23) and the assumption g = 0 it holds

∫ t

0

g(s)︸︷︷︸
=0

−κ∇ϑm(s) · n− ahϑm(s)︸ ︷︷ ︸
=0

,−∆ϑ′m(s)


L2(Γ)

ds = 0.

We combine the auxiliary results above and get with the trace theorem, Lemma B.23
on equivalent norms in H1(Ω), the following bounds∥∥∥ϑ(0)

m

∥∥∥
H1(Ω)

≤
∥∥∥ϑ(0)

∥∥∥
H1(Ω)

,∥∥∥∆ϑ(0)
m

∥∥∥
L2(Ω)

≤ C
∥∥∥∆ϑ(0)

∥∥∥
L2(Ω)

,∥∥∥ϑ(1)
m

∥∥∥
H1(Ω)

≤
∥∥∥ϑ(1)

∥∥∥
H1(Ω)

from Remark 2.3, and ‖r1‖L2(I;L2(Ω)) ≤ C ‖r̃‖L2(I) that

‖ϑ′m(t)‖2H1(Ω) + ‖∆ϑm(t)‖2L2(Ω)

≤C̃1 exp(C̃2T )
(∥∥∥ϑ(0)

∥∥∥2

H2(Ω)
+
∥∥∥ϑ(1)

∥∥∥2

H1(Ω)

+ ‖r2‖2H1(I;L2(Ω)) + ‖r̃‖2L2(I)

+

∫ t

0

‖ϑ′m(s)‖2H1(Ω) ds +

∫ t

0

‖∆ϑm(s)‖2L2(Ω) ds
)

=: C1(T ) + C2(T )

∫ t

0

‖ϑ′m(s)‖2H1(Ω) + ‖∆ϑm(s)‖2L2(Ω) ds

for a.a. t ∈ I , where C̃1, C̃2 do not depend onm or the final time T .

We apply Gronwall’s inequality36 to t 7→ ‖ϑ′m(t)‖2H1(Ω) + ‖∆ϑm(t)‖2L2(Ω) and get

‖ϑ′m(t)‖2H1(Ω) + ‖∆ϑm(t)‖2L2(Ω) ≤ C1(T ) exp (TC2(T )) (A.27)

with C1(T ), C2(T ) as given above. Note that the set {C1(T̃ ) exp
(
C2(T̃ )T̃

)
| T̃ ∈ I} is

bounded by C1(T ) exp (C2(T )T ).

The boundary conditions in (A.23) yield together with the Sobolev embeddings B.56,
the embedding37 H1(Ω) ↪→W

1
2 ,2(Γ) and ah ∈ C0(Γ) (Assumption 2.2) that

‖∇ϑm(t) · n‖
W

1
2
,2(Γ)

= κ−1 ‖ahϑm(t)‖
W

1
2
,2(Γ)

≤ κ−1ah ‖ϑm(t)‖H1(Ω) .

The regularity result in Theorem B.62 now implies

‖ϑm(t)‖H2(Ω) ≤ C
(
‖∆ϑm(t)‖L2(Ω) + (1 + κ−1ah) ‖ϑm(t)‖H1(Ω)

)
(A.28)

for a.a. t ∈ I and allm ∈ N, where the constant C is independent ofm and T . We can
now bound the right-hand side of (A.28) by means of the estimates (A.17) and (A.27).

36 See Gronwall’s inequality B.39.
37 See the trace theorem B.53.
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(c) Next, we need to pass to the limit m → ∞ and identify the limit element with the
solution.
By construction, ϑm and ϑ′m are simple functions38, which implies, together with the
bounds in (A.27) and (A.28), that

ϑm ∈ L∞(I;H2(Ω)) ∩W 1,∞(I;H1(Ω))

for allm ∈ N.
Lemma A.3 implies that, for p1, p2 ∈ (1,∞), there is an element

ϑ̂ ∈ Lp2(I;H2(Ω)) ∩W 1,p1(I;H1(Ω))

independent of the particular choices of p1, p2, and a subsequence (ϑml)l∈N such that
ϑml ⇀ ϑ̂with∥∥∥ϑ̂∥∥∥

W 1,p1 (I;H1(Ω))
+
∥∥∥ϑ̂∥∥∥

Lp2 (I;H2(Ω))

≤ C(τ−1, T )
(

(2T )
1
p1 + T

1
p2

)(∥∥∥ϑ(0)
∥∥∥
H2(Ω)

+
∥∥∥ϑ(1)

∥∥∥
H1(Ω)

+ ‖r2‖H1(I;L2(Ω)) + ‖r̃‖L2(I)

)
.

Note that this holds analogously for other final times T̃ ∈ I , and the set of correspond-
ing constants {C(τ−1, T̃ ) ∈ R>0 | T̃ ∈ I} is bounded. This follows from the estimates
(A.27), (A.28) and Lemma A.3.
Furthermore, because of the same Lemma, it holds ϑ̂ ∈ C0,α(Q) for α ∈ [0, 1

4 ) with∥∥∥ϑ̂∥∥∥
C0,α(Q)

≤ C(τ−1, α, T )

(∥∥∥ϑ(0)
∥∥∥
H2(Ω)

+
∥∥∥ϑ(1)

∥∥∥
H1(Ω)

+ ‖r2‖H1(I;L2(Ω)) + ‖r̃‖L2(I)

)
.

Like above, this holds analogously for other final times T̃ ∈ I , and the set of
corresponding constants {C(τ−1, α, T̃ ) ∈ R>0 | T̃ ∈ I} is bounded.
WithLp2(I;H2(Ω)) ↪→ L1(Q),L2(I;H1(Ω)) ↪→ L1(Q) andwith theweak convergence
in (A.16), we get39

ϑml ⇀ ϑ in L1(Q) and ϑml ⇀ ϑ̂ in L1(Q).

The uniqueness of the weak limit40 implies ϑ = ϑ̂ in L1(Q) and, thus, ϑ = ϑ̂ a.e. in Q.
This means that we can identify the solution ϑ ∈Wϑ with the limit ϑ̂ and, thus, as an
element in C0,α(Q) as well as an element inW 1,p1(I;H1(Ω)) ∩ Lp2(I;H2(Ω)).

(d) Last, we consider an arbitrary g like given in Assumption 2.2. A standard result from
elliptic theory41 yields a unique solution ĝ ∈ H2(Ω) such that

Fh(ĝ, ϕ) = (g, ϕ)L2(Γ) (A.29)

for all ϕ ∈ H1(Ω) and42
‖ĝ‖H2(Ω) ≤ C ‖g‖H1/2(Γ) .

38 See [93, Sec. 1.3.2.1, Def. 1.22, p. 37] for the definition of simple functions.
39 See Lemma B.17 on dual spaces of subspaces.
40 See Remark B.8 on the uniqueness of weak/weak∗ limits.
41 See [85, Sec. 2.4.2, Thm. 2.4.2.7, p. 126].
42 In fact, looking at (A.29), the coercivity of Fh yields ‖ĝ‖H1(Ω) ≤ C ‖g‖L2(Γ). Integration by parts (A.24) and the
variational lemma B.6 yield κ∆ĝ = ξĝ a.e. in Ω and ∇ĝ · n = κ−1(g − ahĝ) a.e. on Γ. The estimate in the H2(Ω)

norm now follows from Theorem B.62: ‖ĝ‖H2(Ω) ≤ C
(
‖∆ĝ‖L2(Ω) + ‖g‖H1/2(Γ) + (1 + κ−1ah) ‖ĝ‖H1(Ω)

)
.
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Let ϑ ∈W 1,p1(I;H1(Ω)) ∩ Lp2(I;H2(Ω)) ↪→ C0,α(Q) be the solution of the Cattaneo
equation (A.9) for g = 0 from above. The function ϑ̂ := ϑ + ĝ fulfills the Cattaneo
equation (A.9) for the chosen g. Finally, we obtain the desired estimate in the
corresponding norms by means of the triangle inequality and the estimates for the
homogeneous solution ϑ from above.

�

A.1.2 Proof of Remark 2.3

Proof. We need to show only the second statement of Remark 2.3.
According to Lemma A.1, it holds −∆ωk = λkωk a.e. in Ω and κ∇ωk · n = −ahωk a.e. on Γ for
certain λk ∈ R for all k ∈ N.
The approximation inH1(Ω) follows fromLemmaA.1 and the embeddingϑ(0) ∈ H2(Ω) ↪→ H1(Ω).
The convergence in H1(Ω) implies (w.l.o.g., for

∥∥∥ϑ(0)
∥∥∥
L2(Ω)

,
∥∥∥ϑ(1)

∥∥∥
L2(Ω)

6= 0) that

∥∥∥ϑ(0)
m

∥∥∥
H1(Ω)

≤ C
∥∥∥ϑ(0)

∥∥∥
H1(Ω)

,∥∥∥ϑ(1)
m

∥∥∥
H1(Ω)

≤ C
∥∥∥ϑ(1)

∥∥∥
H1(Ω)

 for allm ∈ N.

Here, with our assumption gh = 0, we get with Assumption 2.2 on the initial condition that
ahϑ

(0)
+ κ∇ϑ(0) · n = 0. Together with the definition of ϑ(0)

m , we get

∆ϑ(0)
m =

m∑
k=1

(
ϑ(0), ωk

)
L2(Ω)

∆ωk =

m∑
k=1

(
ϑ(0), ωk

)
L2(Ω)

(−λk)ωk

=

m∑
k=1

(
ϑ(0), (−λk)ωk

)
L2(Ω)

ωk =

m∑
k=1

(
ϑ(0),∆ωk

)
L2(Ω)

ωk

=

m∑
k=1

((
∆ϑ(0), ωk

)
L2(Ω)

+
(
ϑ(0),∇ωk · n

)
L2(Γ)

−
(
∇ϑ(0) · n, ωk

)
L2(Γ)

)
ωk

=

m∑
k=1

((
∆ϑ(0), ωk

)
L2(Ω)

+
(
ϑ(0),−κ−1ahωk

)
L2(Γ)

−
(
−κ−1ahϑ

(0), ωk

)
L2(Γ)

)
ωk

=

m∑
k=1

(
∆ϑ(0), ωk

)
L2(Ω)

ωk.

The functions ωk are orthonormal w.r.t. the L2(Ω) scalar product, which yields

∥∥∥∆ϑ(0)
m

∥∥∥2

L2(Ω)
=
(

∆ϑ(0)
m ,∆ϑ(0)

m

)
L2(Ω)

=

(
m∑
k=1

(
∆ϑ(0), ωk

)
L2(Ω)

ωk,

m∑
l=1

(
∆ϑ(0), ωl

)
L2(Ω)

ωl

)
L2(Ω)

=

m∑
k=1

∣∣∣∣(∆ϑ(0), ωk

)
L2(Ω)

∣∣∣∣2 ≤ ∞∑
k=1

∣∣∣∣(∆ϑ(0), ωk

)
L2(Ω)

∣∣∣∣2
=
∥∥∥∆ϑ(0)

∥∥∥2

L2(Ω)
,

where the last equality is a standard result for orthonormal bases, see [4, Sec. 7.7, p. 305].
�
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A.1.3 Proof of Lemma 2.7

Proof.

Use Fubini’s theorem and some calculus in Bochner spaces.

1. Let ω ∈ L∞(Q) and t ∈ I . This implies ω ∈ Lp(Q) for all p ∈ [1,∞), and with Fubini’s
theorem43 we get44 for a.a. x ∈ Ω that ω(·, x) ∈ Lp(I). Thus,

∫ t
0
ω(s, x) ds ∈ R is well

defined for a.a. x ∈ Ω.
Again Fubini’s theorem yields, for fixed t ∈ I , that x 7→

∫ t
0
ω(s, x) ds ∈ L1(Ω), thus, we

can define the function f : I → L1(Ω), t 7→
∫ t

0
w(s, ·) ds .

The function f is continuous. In fact, for t1, t2 ∈ I , t1 < t2, the continuity follows with
Hölder’s inequality45 from

‖f(t2)− f(t1)‖L1(Ω) =

∫
Ω

∣∣∣∣∫ t2

t1

ω(s, x) ds

∣∣∣∣dx ≤ (|t2 − t1| · |Ω|)1/2 · ‖ω‖L2(Q) .

The embeddings in Lemmas B.55, B.52 and B.49 yield

f ∈ C0(I;L1(Ω)) ↪→ L∞(I; Ω) ↪→ L1(I; Ω)
∼
= L1(Q).

From this, we get φ2(ω) ∈ L1(Q) and, especially, that φ2(ω) is Lebesgue measurable.

Now

|φ2(ω)(t, x)| =
∣∣∣∣∫ t

0

ω(s, x) ds

∣∣∣∣ ≤ ∫ T

0

|ω(s, x)|ds ≤ T ‖ω‖L∞(Q) a.e. in Q

implies φ2(ω) ∈ L∞(Q).

2. Let ω, ω̂ ∈ L∞(Q) and t ∈ I . For fixed x ∈ Ω, we saw earlier in this proof that
(ω(·, x) − ω̂(·, x)) ∈ Lp(I), so we can apply Hölder’s inequality to obtain(∫ t

0

|1 · (ω(s, x)− ω̂(s, x))|ds
)p
≤ C

∫ t

0

|ω(s, x)− ω̂(s, x)|p ds

≤ C
∫ T

0

|ω(s, x)− ω̂(s, x)|p ds .

Together with the linearity of φ2, this implies

‖φ2(ω)− φ2(ω̂)‖pLp(Q) =

∫ T

0

∫
Ω

(∣∣∣∣∫ t

0

ω(s, x)− ω̂(s, x) ds

∣∣∣∣)p dx dt

≤ C(T ) ‖ω − ω̂‖pLp(Q) ,

which directly yields estimate (2.17).

43 See Fubini’s theorem B.2, with ωp ∈ L1(Q).
44 Cf. proof of [186, Sec. 2.1.1, p. 40], where this is done similarly for a fixed t ∈ I .
45 See Hölder’s inequality B.27.
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3. Let ω ∈ L∞(Q) ∩ L2(I;H1(Ω)), ϕ ∈ C∞0 (Ω) and t ∈ I .
Like earlier in this proof, we get that themaps x 7→

∫ t
0
ω(s, x) ds and x 7→

∫ t
0

Dxiω(s, x) ds

are elements in L2(Ω), which follows again from Fubini’s theoremwith ω2, (∇ω)2 ∈ L1(Q).
Note that the maps L1(Ω) 3 v 7→

∫
Ω
v(x)ϕ(x) dx and L1(Ω) 3 v 7→

∫
Ω
v(x)Dxiϕ(x) dx

define elements in L1(Ω)∗.

We use this together with Bochner’s theorem46, especially equation (B.3), and the definition
of a weak derivative of ω(s) ∈ H1(Ω) to get∫

Ω

(∫ t

0

ω(s) ds

)
(x)Dxiϕ(x) dx =

∫ t

0

∫
Ω

ω(s)(x)Dxiϕ(x) dx ds

= −
∫ t

0

∫
Ω

Dxiω(s)(x)ϕ(x) dx ds

= −
∫

Ω

(∫ t

0

Dxiω(s) ds

)
(x)ϕ(x) dx .

The test function ϕ was chosen arbitrarily, so by definition we can identify the weak
derivative

Dxi

∫ t

0

ω(s) ds =

∫ t

0

Dxiω(s) ds in L2(Ω),

which implies equation (2.18).

We summarize the results and get φ2(t) ∈ H1(Ω). The continuity w.r.t. t now follows from
Hölder’s inequality:

‖φ(t2)− φ(t1)‖2H1(Ω) =

∫
Ω

(∫ t2

t1

ω(s, x) ds

)2

dx +

∫
Ω

(
∇
∫ t2

t1

ω(s, x) ds

)2

dx

=

∫
Ω

(∫ t2

t1

ω(s, x) ds

)2

dx +

∫
Ω

(∫ t2

t1

∇ω(s, x) ds

)2

dx

≤ |t2 − t1|
∫

Ω

∫ T

0

ω(s, x)2 ds dx + |t2 − t1|
∫

Ω

∫ T

0

(∇ω(s, x))
2

ds dx

= |t2 − t1| ‖ω‖2L2(I;H1(Ω)) .

�

A.1.4 Proof of Lemma 2.9

Proof.

Write the coefficients as a concatenation of Nemytskii operators and the integral operator∫ t
0
·ds .

1. Let ω ∈ L∞(Q).

Like discussed in Subsection 2.2.2, the operators φi, i ∈ {1, . . . , 4}, are well defined and we
get γ(ω) = φ3 ◦ φ2 ◦ φ1(ω) ∈ L∞(Q). We consider only positive points in time t > 0 and,
with dArr(·) ≥ 0 in equation (2.9), we infer

0 ≤ γ(ω) ≤ 1 a.e. in Q. (A.30)

46 See Bochner’s theorem B.47.
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ϕ(ω) = 1
ω

σ̂t

0

(σ̂t)
−1

ω

ϕ
(ω

)
Figure A.1: Extension of (·)−1 as C2(R) function.

We can write the coefficients as the following concatenation of the auxiliary maps:

σa = φ
σa,n,σa,c
4 ◦ φ3 ◦ φ2 ◦ φ1 and σs = φ

σs,n,σs,c
4 ◦ φ3 ◦ φ2 ◦ φ1.

The definition of φ4 together with estimate (A.30) implies the bounds

0 < f ≤ f(ω) ≤ f <∞ a.e. in Q

for f ∈ {σa, σs} and certain σa, σa, σs, σs ∈ R>0.

For simplicity, we write σ̂t(ω) = σa(ω) + (1− g)σs(ω), and the upper and lower bounds of
σa, σs together with estimate (A.30) imply that

0 < σ̂t ≤ σ̂t(ω) ≤ σ̂t <∞ a.e. in Q (A.31)

for certain σ̂t, σ̂t ∈ R>0.

We would like to write D as the concatenation of (·)−1 and φσ̂t, n,σ̂t,c
4 ◦ φ3 ◦ φ2 ◦ φ1, with

σ̂t,n/c = σa,n/c + (1− g)σs,n/c, but the function (·)−1 is not an element of C2(R) and we can
not directly apply Remark B.67. However, we can define the map

ϕ(ω) : R→ R, ω 7→


(ω)−1, ω ≥ σ̂t,
10σ̂t

−6ω5 − 24σ̂t
−5ω4 + 15σ̂t

−4ω3, 0 ≤ ω < σ̂t,

0, ω < 0,

(A.32)

which is an element of C2(R) and coincides with (·)−1 on the interval [σ̂t,∞), see Figure
A.1. We write

φ5 : L∞(Q)→ L∞(Q), ω 7→ ϕ(·, ω(·))

for the associated Nemytskii operator to ϕ in (A.32) and rewrite the coefficient

D = φ5 ◦ φσ̂t, n,σ̂t, c
4 ◦ φ3 ◦ φ2 ◦ φ1,

which yields the coefficient D as desired because of estimate (A.31). The bounds in (A.31)
translate to the bounds in (2.19) for D:

(3σ̂t)
−1 ≤ D ≤ (3σ̂t)

−1 a.e. in Q.
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For the pointwise estimates, we recall the proof of Lemma 2.7, where we saw that the
map47 f : Ω→ R≥0, x 7→

∫ t
0
dArr(ω)(s, x) ds , for fixed t ∈ I , is well defined and Lebesgue

measurable. This implies f ∈ L∞(Ω). In fact, if we assume

|AM | := {x ∈ Ω | |f(x)| > M} > 0 for allM > 0,

we get forM = 2T ‖dArr(ω)‖L∞(Q) the following contradiction:

M |AM | ≤
∫
AM

|f(x)|dx ≤
∫
AM

∫ t

0

|dArr(ω)(s, x)|ds dx

≤ T ‖dArr(ω)‖L∞(Q) |AM | < M |AM | .

With Theorem B.66 and Remark B.67 on Nemytskii operators, we now get, for a.a. t ∈ I ,
that γ(ω)(t) = exp (−f) ∈ L∞(Ω) with

0 ≤ γ(ω)(t) ≤ 1 a.e. on Ω,

which implies estimate (2.20) again by means of Theorem B.66.

2. Estimate (2.21) follows from a consecutive application of the estimates (2.15) and (2.17) for
the operators φi, i ∈ {1, . . . , 5}.

�

A.1.5 Proof of Lemma 2.11

Proof. The definitions of φ1 and φ2 and Lemma 2.7 imply 0 ≤ φ2 ◦φ1(ω)(t) a.e. in Ω for a.a. t ∈ I .
Thus, we can replace the exponential in the definition (2.14) of φ3 by

φ3(ω) :=

exp(−ω), ω ≥ 0,

1, ω < 0,

which does not change σa. The redefined map φ3 and the map φσa,n,σa,c
4 are Lipschitz continuous,

and the statement now follows from the chain rule48 and equation (2.18). �

A.1.6 Proof of Lemma 2.12

Proof. 1. Even though there are no time derivatives in equation (2.22), we are still confronted
with a time evolution problem because the coefficients depend on time through their
dependence on ω.

The existence of a unique solution φ ∈ Lr(I;W 1,p(Ω)) of the radiation equation (2.22) for a
certain p ∈ (2, 6) and an arbitrary r ∈ [2,∞), with

‖φ‖Lr(I;W 1,p(Ω)) ≤ C ‖gr‖L∞(Γ) ,

where C does not depend on ω, is stated (but not proven) in [219, Sec. 2.2, Lem. 2.3, p. 8]
and is based on [74, Sec. 4.1, Thm. 3, p. 482].

47 We used dArr(ω) ∈ L∞(Q) by means of Theorem B.66.
48 See the chain rule for weak derivatives B.41.
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(a) Approximate the coefficients by simple functions and apply standard elliptic theory.

(b) Strong convergence of the coefficients together with the weak convergence of the
corresponding solutions allows passing to the limit in the weak formulation.

Let ω ∈ L∞(Q). For arbitrary r ∈ (2,∞), we can approximate the nonlinear coefficients
σa(ω), D(ω) ∈ L∞(Q) ⊂ Lr(I;Lr(Ω)) by simple functions49

σa,k(t) =

dk∑
j=1

1Ek,j (t)σa,k,j , σa,k,j ∈ Lr(Ω),

Dk(t) =

dk∑
j=1

1Ek,j (t)Dk,j , Dk,j ∈ Lr(Ω),

with pairwise disjoint (for fixed k) and Lebesgue-measurable sets50 Ek,j ⊂ I , such that

σa,k → σa(ω) and Dk → D(ω) in Lr(I;Lr(Ω).

We recall the bounds on the coefficients

0 < σa ≤ σa(ω) ≤ σa and 0 < D ≤ D(ω) ≤ D a.e. in Q (2.19)

and define the sequences

σ̂a,k(t) :=

dk∑
j=1

1Ek,j (t)σ̂a,k,j :=

dk∑
j=1

1Ej (t) [σa,k,j ]
σa
σa
,

D̂k(t) :=

dk∑
j=1

1Ek,j (t)D̂k,j :=

dk∑
j=1

1Ej (t) [Dk,j ]
D
D ,

with the cutoff function [·]Mm = min(max(·,m),M). Note that σ̂a,D̂ ∈ Lr(I;L∞(Ω)).

With (2.19), we infer

|σ̂a,k − σa(ω)| ≤ |σak − σa(ω)| and
∣∣∣D̂k −D(ω)

∣∣∣ ≤ |Dk −D(ω)| a.e. in Q,

which implies

σ̂a,k → σa(ω) and D̂k → D(ω) in Lr(Q) for all r ∈ [1,∞). (A.33)

From [74, Sec. 4.1, Thm. 3, p. 482]51, we get the existence of a certain p ∈ (2, 6) and unique
solutions φk,j ∈W 1,p(Ω) such that(

D̂k,j∇φk,j ,∇ϕ
)
L2(Ω)

+ (σ̂a,k,jφk,j , ϕ)L2(Ω) + (arφk,j , ϕ)L2(Γ) = (gr, ϕ)L2(Ω) (A.34)

49 See the classical density results B.51.
50 Like in [56, Sec. 7.1, Def. 7.1.8, p. 153], we assume the sets {Ek,j | 1 ≤ j ≤ dk} to be pairwise disjoint for fixed k. This
is not a restriction because we have dk <∞ and, thus, σa,k, Dk only attain finitely many values in Lr(Ω). We can
redefine σa,k, Dk as simple functions w.r.t. the inverse images of those finitely many values. Those inverse images are
disjoint by definition. They can be written as particular combinations of intersections and unions of the sets Ek,j and,
thus, are Lebesgue measurable.

51 Here, we need that the mapW 1,1(Ω) → R, ϕ 7→ (f, ϕ)L2(Γ) defines an element inW 1,1(Ω)∗ ⊂ W 1,q(Ω)∗, with
q = p(p− 1)−1 (see also Lemma B.17 on dual spaces of subspaces).
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for all ϕ ∈ H1(Ω), and it holds

‖φk,j‖W 1,p(Ω) ≤ C1 ‖gr‖L∞(Γ) for all k, j ∈ N.

The cited theorem guarantees that the numbers C1 and p depend only on the domain Ω

and on the upper and lower bounds of σa and D, due to the cutoff function. Especially,
this implies that C1 and p can be chosen uniformly for all indices k, j and depend neither
on ω nor on r.

We define φk(t) :=
∑dk
j=1 1Ek,j (t)φk,j ∈ Lr(I;W 1,p(Ω)), which is uniformly bounded with

‖φk‖rLr(I;W 1,p(Ω)) =

∫ T

0

‖φk(t)‖rW 1,p(Ω) dt =

∫ T

0

dk∑
j=1

1Ek,j (t) ‖φk,j‖rW 1,p(Ω) dt

≤
dk∑
j=1

|Ek,j |C ‖gr‖rL∞(Γ) ≤ TC ‖gr‖
r
L∞(Γ)

(A.35)

for all k ∈ N, where we used that the sets Ek,j are disjoint for a fixed k. Together with the
reflexivity52 of Lr(I;W 1,p(Ω)), this allows us to extract a weakly convergent subsequence
φk ⇀ φ∗ ∈ Lr(I;W 1,p(Ω))), where we reuse the same index as in the original sequence.

The weak lower semicontinuity of the norm53 implies

‖φ∗‖Lr(I;W 1,p(Ω)) ≤ T
1
rC ‖gr‖L∞(Ω) . (A.36)

Next, we need to show that φ∗ is in fact a solution of the radiation equation (2.22).

Note that, for fixed ϕ ∈ L2(I;H1(Ω)), the forms

〈Fϕr (ω), φ〉Lr(I;W 1,p(Ω)) :=

∫ T

0

(D(ω)(t)∇φ(t),∇ϕ(t))L2(Ω)

+ (σa(ω)(t)φ(t), ϕ(t))L2(Ω) + (arφ(t), ϕ(t))L2(Γ) dt ,〈
Fϕ,kr , φ

〉
Lr(I;W 1,p(Ω))

:=

∫ T

0

(
D̂k(t)∇φ(t),∇ϕ(t)

)
L2(Ω)

+ (σ̂a,k(t)φ(t), ϕ(t))L2(Ω) + (arφ(t), ϕ(t))L2(Γ) dt

define elements54 Fϕr (ω), Fϕ,kr ∈ Lr(I;W 1,p(Ω))∗.

The convergence of the coefficients in (A.33) implies Fϕ,kr → Fϕr (ω) in Lr(I;W 1,p(Ω))∗ for
k → ∞. In fact, for φ ∈ Lr(I;W 1,p(Ω)) with ‖φ‖Lp(I;W 1,p(Ω)) = 1, Hölder’s inequality55
yields ∣∣∣〈Fϕ,kr − Fϕr (ω), φ

〉
Lp(I;W 1,p(Ω))

∣∣∣
≤C

(
‖Dk −D(ω)‖Lq(Q) + ‖σ̂a,k − σa(ω)‖Lq(Q)

)
‖ϕ‖L2(I;H1(Ω)) ,

with q = max
(

2p
p−2 ,

2r
r−2

)
.

52 See Lemma B.24 on Sobolev spaces and Lemma B.12 on reflexive Banach spaces.
53 See [4, Sec. 6.3, p. 239].
54 Cf. the proof of [235, §23.9, Thm. 23.A, p. 434, part (III-1)].
55 See Hölder’s inequality B.27.
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This allows passing to the limit56〈
Fϕ,kr , φk

〉
Lr(I;W 1,p(Ω))

→ 〈Fϕr (ω), φ∗〉Lr(I;W 1,p(Ω)) for k →∞.

By construction, the solutions φk fulfill〈
Fϕ,kr , φk

〉
Lr(I;W 1,p(Ω))

=

∫ T

0

(gr, ϕ(t))L2(Γ) dt for all ϕ ∈ L2(I;H1(Ω)), (A.37)

thus, φ∗ is a solution of (2.22) because it fulfills

〈Fϕr (ω), φ∗〉Lr(I;W 1,p(Ω)) =

∫ T

0

(gr, ϕ(t))L2(Γ) dt for all ϕ ∈ L2(I;H1(Ω)). (A.38)

The uniqueness of the solution φ ∈ Lr(I;W 1,p(Ω)) follows from the uniqueness of the
solution of (A.39) for a.a. t ∈ I , shown in the next step.

The continuous embedding given in Lemma B.54 now yields φ ∈ Lr(I;W 1,p(Ω)) also for
r ∈ (1, 2].

2. Analogously to the proof of [93, Sec. 1.3.2.3, Thm. 1.33, p. 42], we can look at the radiation
equation pointwise in t. For a.a. t ∈ I , the solution φ ∈ Lr(I;W 1,p(Ω)) fulfills

(D(ω)(t)∇φ(t),∇ϕ)L2(Ω) + (σa(ω)φ(t), ϕ)L2(Ω) + (arφ(t), ϕ)L2(Γ) = (gr, ϕ)L2(Γ) (A.39)

for all ϕ ∈ H1(Ω). We get with [74, Sec. 4.1, Thm. 3, p. 482] and [217, Ch. 4.2.3, Satz 4.7, p.
153] that the solution φ(t) of equation (A.39) is unique and an element ofW 1,p(Ω) ∩ C0(Ω),
which fulfills

‖φ(t)‖W 1,p(Ω) + ‖φ(t)‖C0(Ω) ≤ C ‖gr‖L∞(Ω) for a.a. t ∈ I,

whereC neither depends on ω nor on t because of the uniform bounds for σa(ω)(t),D(ω)(t)

in (2.20). Note that this does not imply φ ∈ L∞(I;W 1,p(Ω) ∩ C0(Q)) because we do not
have any information on φ being Bochner measurable w.r.t. the corresponding spaces.

3. Let (ωk)k∈N ⊂ L2(Q), ω ∈ L2(Q) with ωk → ω in L2(Q).

With Lemma A.2, we get forM > 0 and q ∈ (1,∞) the strong convergence
[
ωk
]
M
→
[
ω
]
M

in Lq(Q) and, thus, with Lemma 2.9, the strong convergence of the coefficients

σa
([
ωk
]
M

)
→ σa

([
ω
]
M

)
in Lq(Q),

D
([
ωk
]
M

)
→ D

([
ω
]
M

)
in Lq(Q).

(A.40)

We subtract equation (2.22) evaluated once for ω and once for ωk and choose the test
function ϕ = φ(ω) − φ(ωk). With Hölder’s inequality and the coercivity of the bilinear
form Fr, we get

‖φ(ω)− φ(ωk)‖L2(I;H1(Ω)) ≤ C
[ ∥∥D ([ωk]M)−D ([ω]M)∥∥Lq(Q)

+
∥∥σa ([ωk]M)− σa ([ω]M)∥∥Lq(Q)

]
‖φ(ωk)‖Lr(I;W 1,p(Ω))

with q = max
(

2p
p−2 ,

2r
r−2

)
, and p, r > 2 as discussed above. Now, continuity follows from

the convergence of the coefficients in (A.40) and the uniform bound on φ(ωk) in (A.36).
�

56 See Lemma B.9 on the limit of dual pairings.
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A.2 Details for Chapter 3
A.2.1 Proof of Lemma 3.2

Proof. The function J in (3.6) is a standard cost functional, see, e.g., [217, Ch. 3, p. 95 ff.] and [26].

Write the cost functional as concatenation of continuous, convex and Fréchet-differentiable
functions.

First, we consider the functions

f1 : L1(Ω)→ R, u 7→
∫

Ω

u(x) dx ,

f2 : L2(Ω)→ R, g 7→ 1

2
‖g‖2L2(Ω) ,

E : Y (0) → L2(Ω), y 7→ ϑ(t∗).

The functions f1 and f2 are convex and continuous. Especially, f1 is linear and, thus, Fréchet
differentiable.
The “observation operator” E is continuous and linear because of the continuous and linear57
embedding58

W (0) ↪→
(
L2(I;H1(Ω)) ∩H1(I;H1(Ω)∗)

)
↪→ C0(I;L2(Ω)). (A.41)

With the continuous and linear embeddings in (A.41), U = L2(Ω) and E1 : U ↪→ L1(Ω), we can
write the cost functional as

J : Y (0) × U, (y, u) 7→ f2(E(y)− ϑd) + f1(E1(u)) + f2(u), (A.42)

for the given desired temperature ϑd ∈ L2(Ω).

1. The cost functional J : Y (0) × U is continuous as concatenation of continuous functions in
(A.42). Furthermore, each function

Y (0) → R, y 7→ f2(E(y)− ϑd),

U → R, u 7→ f1(E1(u)),

U → R, u 7→ f2(u)

is convex59 as concatenation of an affine linear function and a convex function, thus, the
cost functional J is convex as the sum of convex functions.

Lemma B.16 now implies that the cost functional J is sequentially weakly lower semicon-
tinuous.

57 Embeddings in the context of normed vector spaces are assumed to be linear by definition.
58 See Theorem B.36 on the integration by parts in Bochner spaces and Lemma B.54 on embeddings of Bochner spaces.
59 LetX,Y be two Banach spaces, and let f : Y → R be a convex function, and g : X → Y be an affine linear function,
i.e., g(x) = Ax+ b for a linear map A : X → Y and some b ∈ Y . Then the concatenation f ◦ g : X → R is convex. In
fact, for λ ∈ [0, 1] and x, x̂ ∈ X , it holds

f(g(λx+ (1− λ)x̂)) = f(λ(Ax+ b) + (1− λ)(Ax̂+ b)) ≤ λf(g(x)) + (1− λ)f(g(x̂)).
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2. The function f2 is continuously Fréchet differentiable60 with derivative

Df2(g) : L2(Ω)→ R, h 7→
∫

Ω

g(x)h(x) dx for g ∈ L2(Ω).

Furthermore, the functions f1, E1, E are linear and, thus, Fréchet differentiable with the
following derivatives:

Df1(u) : L1(Ω)→ R, h 7→
∫

Ω

h(x) dx , for u ∈ U,

DE1(u) : U → L1(Ω), h 7→ h, for u ∈ U,
DE(y) : Y (0) → L2(Ω), h 7→ h, for y ∈ Y (0).

They are in fact continuously Fréchet differentiable.

By means of the chain rule61, we get that the cost functional J is continuously Fréchet
differentiable as concatenation of continuously Fréchet-differentiable functions in (A.42),
with its derivative as stated in (3.8).

�

A.2.2 Proof of Lemma 3.9

Lemma A.7 — Linearized radiation equation.
Let Assumptions 2.1 and 2.2 hold, and let (φ, ϑ) = S(u) ∈ Yp, p ≥ 2, be the state vector of the
Cattaneo–LITT model for a given control u ∈ Uad. Furthermore, let η̃ ∈ L∞(I;H1(Ω))∩C0(Q).

1. Then there exists a unique solution ρ ∈ Lp(I;W 1,p(Ω)) which fulfills the linearized
radiation equation∫ T

0

Fr(ρ(t), ϕ(t);ϑ, t) dt = −
∫ T

0

(DϑD(ϑ)[η̃](t)∇φ(t),∇ϕ(t))L2(Ω) dt

−
∫ T

0

(Dϑσa(ϑ)[η̃](t)φ(t), ϕ(t))L2(Ω) dt

(A.43)

for all ϕ ∈ L2(I;H1(Ω)), and it holds

‖ρ‖Lp(I;W 1,p(Ω)) ≤ C(φ, ϑ, T ) ‖η̃‖C0(Q) .

2. If we assumea φ ∈ Lp(I;W 1,p(Ω)) with p > 3, we get for the solution ρ of the statement
above that, for a.a. t ∈ I , it holds ρ(t) ∈ L∞(Ω) ∩H1(Ω) with

‖ρ(t)‖L∞(Ω) + ‖ρ(t)‖H1(Ω) ≤ C(φ, ϑ, T )

∫ t

0

‖η̃(s)‖C0(Ω) ds .

60 See [217, Sec. 2.6, Rem. (iii), p. 46].
61 See the chain rule for Fréchet derivatives B.42.
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The statement holds analogously for smaller final times T̃ ∈ I . The function which maps the
final time T̃ ∈ I to the corresponding constants C(φ, ϑ, T̃ ) ∈ R>0 is essentially bounded, i.e.,
there is a constant C̃ ∈ R>0 such that C(φ, ϑ, T̃ ) < C̃ for a.a. T̃ ∈ I .
a The assumption p > 3 is justified by Lemma 2.12 and Remark 2.18.

Proof of Lemma A.7. 1. Note that the radiation equation (2.22) and the linearized equa-
tion (A.43) have the same left-hand side and differ only in their right-hand sides.

Apply the same procedure as for the radiation equation but with a different right-hand
side.

In fact, the proof of the first part of the statement is analog to the proof of Lemma 2.12.
Here, we highlight only the necessary modifications regarding the modified right-hand
side.

We write for the right-hand side in the linearized equation (A.43) and a fixed t ∈ I

f(t) : W 1,q(Ω)→ R, 〈f(t), ϕ〉W 1,q(Ω) := (α(t),∇ϕ)L2(Ω) + (β(t), ϕ)L2(Ω) (A.44)

with q = p
p−1 and

α(t) := DϑD(ϑ)[η̃](t)∇φ(t) and β(t) := Dϑσa(ϑ)[η̃](t)φ(t).

Note that f(t) ∈W 1,q(Ω)∗ is well defined by means of Hölder’s inequality62.

(a) It holds f ∈ Lp(I;W 1,q(Ω)∗). In fact, because of DϑD(ϑ)[η̃],Dϑσa(ϑ)[η̃] ∈ C0(Q) and
φ ∈ Lp(I;W 1,p(Ω)), it holds63 α, β ∈ Lp(Q)

∼
= Lp(I;Lp(Ω)), thus, we can approximate

α, β by simple functions64, i.e., there are sequences (αk)k∈N, (βk)k∈N ⊂ Lp(I;Lp(Ω))

of the form

αk(t) =

dk∑
j=1

1Ek,j (t)αk,j , αk,j ∈ Lp(Ω),

βk(t) =

dk∑
j=1

1Ek,j (t)βk,j , βk,j ∈ Lp(Ω),

(A.45)

with Lebesgue measurable sets Ek,j ⊂ I , such that

αk → α and βk → β in Lp(I;Lp(Ω))

and

αk(t)→ α(t) and βk(t)→ β(t) in Lp(Ω) for a.a. t ∈ I. (A.46)

We define the simple functions fk ∈ Lp(I;W 1,q(Ω)∗) as

〈fk(t), ϕ〉W 1,q(Ω) := (αk(t),∇ϕ)L2(Ω) + (βk(t), ϕ(t))L2(Ω)

=

dk∑
j=1

1Ek,j (t)
(

(αk,j ,∇ϕ)L2(Ω) + (βk,j , ϕ)L2(Ω)

)
.

62 See Hölder’s inequality B.27.
63 Technically, to be precise, α is vector valued and each of its components is an element of Lp(Q).
64 See Lemma B.51 on the approximation by simple functions.
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For fixed t ∈ I and ϕ ∈W 1,q(Ω), it holds with Hölder’s inequality that∣∣∣〈fk(t)− f(t), ϕ〉W 1,q(Ω)

∣∣∣
=
∣∣∣(αk(t)− α(t),∇ϕ)L2(Ω) + (βk(t)− β(t), ϕ)L2(Ω)

∣∣∣
≤
(
‖αk(t)− α(t)‖Lp(Ω) + ‖βk(t)− β(t)‖Lp(Ω)

)
‖ϕ‖W 1,q(Ω) ,

and, with the pointwise convergence in (A.46), we get

fk(t)→ f(t) inW 1,q(Ω)∗.

Furthermore, Hölder’s inequality and estimate (3.13) imply∫ T

0

‖f(t)‖pW 1,q(Ω)∗ dt

≤
(
‖DϑD(ϑ)[η̃]‖pC0(Q)

+ ‖Dϑσa(ϑ)[η̃]‖pC0(Q)

)
‖φ‖pLp(I;W 1,p(Ω))

≤ C(φ, ϑ) ‖η̃‖pC0(Q)
<∞,

(A.47)

thus, we get f ∈ Lp(I;W 1,q(Ω)∗).

(b) Because of f ∈ Lp(I;W 1,q(Ω)∗), we can approximate f by a sequence of simple
functions (fk)k∈N ⊂ Lp(I;W 1,q(Ω)∗) of the form

fk(t) =

dk∑
j=1

1Ek,j (t)fk,j , fk,j ∈W 1,q(Ω)∗

such that
fk → f in Lp(I;W 1,q(Ω)∗). (A.48)

Note that it holds Lp(I;W 1,q(Ω)∗) ⊂ Lp(I;H1(Ω)∗) because of q < 2.
Analogously to equation (A.34), we get unique solutions ρk,j ∈ W 1,p(Ω) (note that
the number p depends65 only on the domain and upper and lower bounds of the
coefficients σa andD and , thus, can be choosen the same as in Lemma 2.12) such that(

D̂k,j∇ρk,j ,∇ϕ
)
L2(Ω)

+ (σ̂a,k,jρk,j , ϕ)L2(Ω) + (arρk,j , ϕ)L2(Γ) = 〈fk,j , ϕ〉H1(Ω)∗

for all ϕ ∈ H1(Ω), and it holds

‖ρk,j‖W 1,p(Ω) ≤ C ‖fk,j‖W 1,q(Ω)∗ ,

where the constant C depends only on the domain and the upper and lower bounds
of the coefficients σa and D.
We define ρk(t) :=

∑dk
j=1 1Ek,j (t)ρk,j ∈ Lp(I;W 1,p(Ω)), which is, similarly to estimate

(A.35), uniformly bounded by66

‖ρk‖pLp(I;W 1,p(Ω)) =

dk∑
j=1

|Ek,j | ‖ρk,j‖pW 1,p(Ω) ≤ C
dk∑
j=1

|Ek,j | ‖fk,j‖pW 1,q(Ω)∗

= C ‖fk‖pLp(I;W 1,q(Ω)∗) ≤ C ‖f‖
p
Lp(I;W 1,q(Ω)∗)

(A.49)

for all k ∈ N, where we used Hölder’s inequality and the convergence in (A.48).

65 See [74, Sec. 4.1, Thm. 3, p. 482].
66 Like in estimate (A.35), assume w.l.o.g. that the sets {Ek,j | 1 ≤ j ≤ dk} are pairwise disjoint for a fixed k.
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(c) Analogously to equation (A.37), it holds ρ(t) ∈ H1(Ω) and

〈
Fϕ,kr , ρk

〉
Lp(I;W 1,p(Ω))

=

∫ T

0

〈fk(t), ϕ(t)〉H1(Ω) dt (A.50)

for all ϕ ∈ L2(I;H1(Ω)).

The convergence in (A.48) implies∫ T

0

〈fk(t), ϕ〉H1(Ω) dt →
∫ T

0

〈f(t), ϕ〉H1(Ω) dt

for all ϕ ∈ L2(I;H1(Ω)). This allows passing to the limit on both sides of the equation
(A.50), which yields, analogously to equation (A.38), that the weak limit ρ∗ is a
solution of the linearized radiation equation, i.e.,

〈Fϕr (ω), ρ∗〉Lp(I;W 1,p(Ω)) =

∫ T

0

〈f(t), ϕ(t)〉H1(Ω) dt for all ϕ ∈ L2(I;H1(Ω)).

(d) Analogously to estimate (A.36), we get with estimates (A.47) and (A.49) that

‖ρ‖Lp(I;W 1,p(Ω)) ≤ C ‖f‖Lp(I;W 1,q(Ω)∗) ≤ C(φ, ϑ) ‖η̃‖C0(Q) .

Note that the analog result holds for other final times T̃ ∈ I . We can extend the
functions φ̃, ϑ̃, ρ̃ : (0, T̃ ) → R to the whole time domain I by setting φ̃(t) := ϑ̃(t) :=

ρ̃(t) := 0 for t > T̃ . With this, ρ̃ still fulfills the resulting linearized radiation equation
(A.43) for the extended functions φ̃, ϑ̃ on I , and it holds

‖ρ̃‖Lp((0,T̃ );W 1,p(Ω)) ≤ ‖ρ̃‖Lp((0,T );W 1,p(Ω)) ≤ C(φ̃, ϑ̃) ‖η̃‖C0([0,T̃ ];Ω)

≤ C(φ, ϑ) ‖η̃‖C0([0,T̃ ];Ω) .

2. Analogously to the proof of [93, Sec. 1.3.2.3, Thm. 1.33, p. 42], we can look at the linearized
radiation equation pointwise in t, i.e., for a.a. t ∈ I and f(t) given in (A.44), the solution
ρ ∈ Lp(I;W 1,p(Ω)) fulfills

Fr(ρ(t), ϕ;ϑ, t) = 〈f(t), ϕ〉H1(Ω) for all ϕ ∈ H1(Ω). (A.51)

The assertion ρ(t) ∈ L∞(Ω) can be shown analogously to the proof of [217, Sec. 4.2.3, Thm.
4.5, p. 151]. In the following, we summarize the proof therein but do not reproduce every
single step. We highlight the differences to our situation and derive the required estimates,
which need to be replaced in the original proof in order to apply it here.

Use Stampacchia’s method to prove L∞(Ω) bounds.

In [217, Sec. 4.2.3, Thm. 4.5, p. 151], the authors discuss an elliptic equation similar to
(A.51), but with a right-hand side given by f ∈ Lr(Ω) with r > d

2 . In fact, for their proof,
only the variational form, i.e., the term (f, ϕ)L2(Ω) for ϕ ∈ H1(Ω), is required. This allows
us to exchange the right-hand side here and reproduce the rest of their proof.
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The outline of the proof is as follows. For an arbitrary k > 0, we define the function

v : Ω→ R, v(x) :=


ρ(t)(x)− k, ρ(t)(x) ≥ k,
0, |ρ(t)(x)| < k,

ρ(t)(x) + k, ρ(t)(x) ≤ −k

and the set
Ω(k) := {x ∈ Ω | |ρ(t)(x)| ≥ k}.

The idea is to show that, for sufficiently large k, the set Ω(k) has measure zero, i.e., the
function v vanishes a.e. in Ω. This implies that the function ρ(t) is essentially bounded by
k.

(a) For p0 := 6, it holds67 H1(Ω) ↪→ Lp0(Ω) and, thus,68(∫
Ω(k)

|v(x)|p0 dx

) 2
p0

≤ ‖v‖2Lp0 (Ω) ≤ C ‖v‖
2
H1(Ω) . (A.52)

(b) Based on the coercivity of the bilinear form Fr, the variational form (A.51) and the
properties of v, one can show69 that

c ‖v‖2H1(Ω) ≤ Fr(v, v;ϑ, t) ≤ Fr(ρ(t), v;ϑ, t) ≤ 〈f(t), v〉H1(Ω) . (A.53)

Note that the term 〈f(t), v〉H1(Ω) in (A.53) replaces the term (f, v)L2(Ω) in the original
proof.

(c) Next, we need to estimate the term 〈f(t), v〉H1(Ω).
It holds with Hölder’s inequality and the definition of v that∣∣∣(Dϑσa(ϑ)[η̃](t)φ, v)L2(Ω)

∣∣∣ ≤ C(ϑ)

∫ t

0

‖η̃(s)‖C0(Ω) ds ‖φ(t)‖Lp(Ω) ‖v‖Lq(Ω(k)) ,∣∣∣(DϑD(ϑ)[η̃](t)∇φ(t),∇v)L2(Ω)

∣∣∣ ≤ C(ϑ)

∫ t

0

‖η̃(s)‖C0(Ω) ds ‖∇φ(t)‖Lp(Ω) ‖∇v‖Lq(Ω(k))

with p > 3 as given in the assumption and q = p
p−1 <

3
2 .

With Hölder’s inequality and p̂ := 2
q and q̂ = p̂

p̂−1 we get

‖v‖Lq(Ω(k)) =

(∫
Ω(k)

|v|q · 1 dx

) 1
q

≤
(∫

Ω(k)

|v|qp̂ dx

) 1
qp̂
(∫

Ω(k)

1 dx

) 1
qq̂

≤ ‖v‖L2(Ω) |Ω(k)| 1
qq̂ ≤ C ‖v‖H1(Ω) |Ω(k)| 1

qq̂

for all ε > 0. The analog results holds for ‖∇v‖Lq(Ω(k)).
Furthermore, for λ := 3− 6

p > 1 and p0 = 6 as defined above, it holds

2

qq̂
=
p̂

q̂
= p̂− 1 =

2

q
− 1 =

2(p− 1)

p
− 1 = 1− 2

p
= λ

2

p0
.

67 See Sobolev embedding theorem B.56.
68 See [110, II 5 , Prop. 5.3, p. 36] and [110, II B , Thm. B.2, p. 63] for a reasoning that v ∈ H1(Ω).
69 Cf. [217, Sec. 7.2.2, Eq. 7.7, p. 281].
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Overall, we get with Young’s inequality70∣∣∣〈f(t), v〉H1(Ω)

∣∣∣
≤C

(∫ t

0

‖η̃(s)‖C0(Ω) ds ‖φ(t)‖W 1,p(Ω)

)2

|Ω(k)|λ 2
p0 + ε ‖v‖2H1(Ω)

(A.54)

for all ε > 0. Note that, in the original proof, this is estimate replaced by

(f, v)L2(Ω) ≤ c ‖f‖
2
Lr(Ω) |Ω(k)|λ 2

p0 + ε ‖v‖2H1(Ω) .

(d) Let h > k. Then it holds Ω(h) ⊂ Ω(k) and, with this,(∫
Ω(k)

(|ρ(t)(x)| − k)
p0 dx

) 2
p0

≥
(∫

Ω(h)

(|ρ(t)(x)| − k)
p0 dx

) 2
p0

≥
(∫

Ω(h)

(h− k)
p0 dx

) 2
p0

= (h− k)2 |Ω(h)| 2
p0 .

Estimates (A.52), (A.53) and (A.54) now yield

(h− k)2
(
|Ω(h)| 2

p0

)
≤ C

(∫ t

0

‖η̃(s)‖C0(Ω) ds

)2 (
|Ω(k)| 2

p0

)λ
.

(e) Like in the original proof, we are now able to apply the key argument of Stampacchia’s
method71 [217, Sec. 7.2.2, Lem. 7.5, p. 297] and obtain a certain h such that |Ω(h)| = 0,
which implies the L∞(Ω) bound for ρ(t).

(f) The estimate for ‖ρ(t)‖H1(Ω) follows from testing equation (A.51) with ϕ = ρ(t) and
the estimate ∣∣∣〈f(t), ρ(t)〉H1(Ω)

∣∣∣ ≤ C ∫ t

0

‖η̃(s)‖C0(Ω) ds ‖ρ(t)‖H1(Ω) .

�

Proof of Lemma 3.9. Even though the system is linear w.r.t. the state vector (ρ, η), it is not trivial
to solve because of the memory term

∫ t
0
η(s) ds included in the derivatives of the coefficients. In

[129], the authors considered a similar problem for wave equations with memory terms. We
apply their idea for handling the memory term by means of Banach’s fixed point theorem72 to
our linearized state system.

Freeze the linear state in the memory term
∫ t

0
η(s) ds on the right-hand side, solve the two

equations for two components of the linearized state vector consecutively and apply Banach’s
fixed-point theorem in a specially weighted space.

The idea is to freeze the linear state η in the memory term, which allows us to solve the linearized
radiation equation separately, and consecutively solve the linearized heat-transfer equation.

70 See Young’s inequality B.25.
71 See also [110].
72 See [233, Sec. 1.6, Thm. 1.A, p. 19] for Banach’s fixed-point theorem.
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We consider the space
Bα := L∞(I;H1(Ω)) ∩ C0(Q)

equipped with the norm

‖η‖Bα :=
∥∥e−αtη∥∥

L∞(I;H1(Ω))
+
∥∥e−αtη∥∥C0(Q)

(A.55)

for a certain α > 0.
The goal is to apply Banach’s fixed-point theorem to the map

S : Bα → Bα, η̃ 7→ η

where η ∈ (L∞(I;H1(Ω)) ∩H1(I;H1(Ω)) ∩H2(I;H1(Ω)∗) ∩ C0(Q)) ↪→ Bα fulfills

∫ T

0

τ 〈η′′(t), ϕ(t)〉H1(Ω) + (η′(t), ϕ(t))L2(Ω) + Fh(η(t), ϕ(t);u) dt

=

∫ T

0

(σ̂σa(ϑ)(t)ρ(t), ϕ(t))L2(Ω) + (σ̂Dϑσa(ϑ)[η̃](t)φ(t), ϕ(t))L2(Ω) dt

+

∫ T

0

((ξin − ξout)(ϑb − ϑ(t))h, ϕ(t))L2(Ω) dt ,

η(0) = 0,

η′(0) = 0



(A.56)

for all ϕ ∈ L2(I;H1(Ω)), and ρ := ρ(η̃) ∈ L2(I;H1(Ω)) fulfills the linearized radiation equation
(A.43) for all ϕ ∈ L2(I;H1(Ω)).
A fixed point η of the map S and the corresponding state ρ = ρ(η) solve the original linearized
state system (3.14) for all ϕ ∈ L2(I;H1(Ω))×L2(I;H1(Ω)). On the other hand, a linearized state
vector fulfilling (3.14) for all ϕ ∈ L2(I;H1(Ω))× L2(I;H1(Ω)) is also a fixed point of S. In the
remainder of this proof, we show that the prerequisites of Banach’s fixed point theorem are
fulfilled, which implies the existence of a unique linearized state vector in Bα.
Before we start, we note that the standard norm (α = 0) would induce an upper bound on the
final time T when showing that S is a contraction later in this proof, whereas the weighted norm
(A.55) with suitable α allows arbitrary final times T .

1. Note that the space Bα equipped with the norm (A.55) is a Banach space, which follows
from the fact that L∞(I;H1(Ω)) ∩ C0(Q) equipped with the norm in (A.55) for α = 0 is a
Banach space73 and the equivalence of the norms74

e−αT ‖η‖L∞(I;H1(Ω))∩C0(Q) ≤ ‖η‖Bα ≤ ‖η‖L∞(I;H1(Ω))∩C0(Q) . (A.57)

2. Next, we need to show that the map S is well defined.

Let η̃ ∈ Bα. Lemma A.7 implies the existence of a unique solution ρ = ρ(η̃) ∈ L2(I;H1(Ω))

which fulfills (A.43) for all ϕ ∈ L2(I;H1(Ω)). It holds

‖ρ‖L2(I;H1(Ω)) ≤ C ‖η̃‖C0(Q)

73 See Theorem B.48.
74 Cf. [129, Sec. 7.1, p. 20].
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and, for a.a. t ∈ I , it holds ρ(t) ∈ L∞(Ω) ∩H1(Ω) with

‖ρ(t)‖H1(Ω) + ‖ρ(t)‖L∞(Ω) ≤ C
∫ t

0

‖η̃(s)‖C0(Ω) ds . (A.58)

Lemma A.4 implies the existence and uniqueness of a solution η ∈ Wϑ ∩ C0(Q) which
fulfills (A.56) for all ϕ ∈ L2(I;H1(Ω)). To this, we need to check the prerequisites and
define

r1(t) := σ̂σa(ϑ)(t)ρ(t) + σ̂Dϑσa(ϑ)[η̃](t)φ(t),

r2(t) := (ξin − ξout)(ϑb − ϑ(t))h,

g(t) := 0.

With estimate (A.58) and Lemmas 2.9, 2.11 2.12, 3.8, we have75

σa(ϑ)(t), Dϑσa(ϑ)[η̃](t), φ(t), ρ(t) ∈ H1(Ω) ∩ L∞(Ω) for a.a. t ∈ I,

thus, we can apply the product rule76 and obtain r1(t) ∈ H1(Ω). Note that it holds

‖Dϑσa(ϑ)[η̃](t)‖H1(Ω) ≤ C(ϑ)

∫ t

0

‖η̃(s)‖H1(Ω) ds .

Furthermore, with the same estimates and lemmas as cited above, we get r1 ∈ L2(I;L2(Ω))

and

‖r1(t)‖H1(Ω) ≤ C
∫ t

0

‖η̃(s)‖H1(Ω) + ‖η̃(s)‖C0(Ω) ds =: r̃(t) for a.a. t ∈ I,

and it holds r̃ ∈ L2(I) according to Bochner’s theorem77.

With h ∈ L∞(Ω) and ϑ ∈Wϑ, we get r2 ∈ H1(I;L2(Ω)) with

‖r2‖H1(I;L2(Ω)) ≤ C(ϑ) ‖h‖L∞(Ω) .

In summary, we are able to apply Lemma A.4, which yields a solution

η ∈ L∞(I;H1(Ω)) ∩H1(I;H1(Ω)) ∩H2(I;H1(Ω)∗) ∩ C0(Q).

Furthermore, with Hölder’s and Young’s inequalities78, we get

‖η‖2L∞(I;H1(Ω)) + ‖η‖2C0(Q)

≤ C
(∫ T

0

r̃(t)2 dt + ‖h‖2L∞(Ω)

)

≤ C
(∫ T

0

∫ t

0

‖η̃(s)‖2H1(Ω) + ‖η̃(s)‖2C0(Ω) ds dt + ‖h‖2L∞(Ω)

)
.

75 In fact, Dϑγ(ϑ)[η̃](t, x) = −γ(ϑ)(t, x)
∫ t
0 d
′
Arr(ϑ(s, x))η̃(s, x) ds ∈ H1(Ω) follows from the product rule B.43 because

the individual terms are in L∞(Ω)∩H1(Ω). Note that the weak differentiability (w.r.t. the spatial variable x) of γ(t) is
shown in the proof of Lemma 2.11, and the L∞(Ω) bound is shown in Lemma 2.9. The differentiability of d′Arr(ϑ(t, x))

follows from the chain rule B.41. See also the proof of Lemma 2.9 for a more detailed discussion on the function dArr.
76 See product rule for weak derivatives B.43.
77 See Bochner’s theorem B.47.
78 See Hölder’s B.27 and Young’s B.25 inequalities. Young’s inequality implies that for a, b > 0 it holds (a + b)2 ≤
C(a2 + b2), see Remark B.26.
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With the continuous embeddings

L∞(I;H1(Ω))∩H1(I;H1(Ω))∩H2(I;H1(Ω)∗)∩ C0(Q) ↪→ L∞(I;H1(Ω))∩ C0(Q) ↪→ Bα,

where the last embedding is continuous because of the equivalence of the norms in (A.57),
we get that S is well defined as map from Bα to Bα.

3. Last, we need to show that S is a contraction. To this, let η̃1, η̃2 ∈ Bα and define ρ1 := ρ(η̃1),
ρ2 := ρ(η̃2) and η1 := η(η̃1, ρ1), η2 := η(η̃2, ρ2) to be the corresponding solutions of (A.43)
and (A.56).

The difference δρ := ρ1 − ρ2 fulfills∫ T

0

Fr(δρ(t), ϕ(t);ϑ, t) dt = −
∫ T

0

(DϑD(ϑ)[δη̃](t)∇φ(t),∇ϕ(t))L2(Ω) dt

−
∫ T

0

(Dϑσa(ϑ)[δη̃](t)φ(t), ϕ(t))L2(Ω) dt

(A.59)

for all ϕ ∈ L2(I;H1(Ω)), with δη̃ := η̃1 − η̃2.

Because (A.59) has the same structure as the linearized radiation equation (A.43), we get
with the same argument that

‖δρ‖L2(I;H1(Ω)) ≤ C(T ) ‖δη̃‖C0(Q)

and, similar to estimate (A.58), that

‖δρ(t)‖L∞(Ω) + ‖δρ(t)‖H1(Ω) ≤ C(T )

∫ t

0

‖δη̃(s)‖C0(Ω) ds .

The difference δη := η1 − η2 fulfills

∫ T

0

τ 〈δη′′(t), ϕ(t)〉H1(Ω) + (δη′(t), ϕ(t))L2(Ω) + Fh(δη(t), ϕ(t);u) dt

=

∫ T

0

(σ̂σa(ϑ)(t)δρ(t), ϕ(t))L2(Ω) dt

+

∫ T

0

(σ̂Dϑσa(ϑ)[δη̃](t)φ(t), ϕ(t))L2(Ω) dt ,

δη(0) = 0,

δη′(0) = 0



(A.60)

for all ϕ ∈ L2(I;H1(Ω)).

We define
r1(t) := σ̂σa(ϑ)(t)δρ(t) + σ̂Dϑσa(ϑ)[δη̃](t)φ(t),

r2(t) := 0,

g(t) := 0.

Analogously as above, it holds r1 ∈ L2(I;L2(Ω)) with

‖r1(t)‖H1(Ω) ≤ C
∫ t

0

‖δη̃(s)‖H1(Ω) + ‖δη̃(s)‖C0(Ω) ds =: r̃(t) for a.a. t ∈ I,
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and it holds r̃ ∈ L2(I). With LemmaA.4we get δη ∈ L∞(I;H1(Ω))∩C0(Q)∩H1(I;H1(Ω)).

This allows us to test equation (A.60), only integrated79 from 0 to t, with the test function
ϕ = δη′ ∈ L2(I;H1(Ω)), and get similarly80 to the proof of Remark A.6 that

‖δη′(t)‖2L2(Ω) + ‖δη(t)‖2H1(Ω) ≤ C
∫ t

0

r̃(s)2 ds

≤ C
∫ t

0

∫ s

0

‖δη̃(s′)‖2H1(Ω) + ‖δη̃(s′)‖2C0(Ω) ds′ ds

(A.61)

for a.a. t ∈ I .
Furthermore, from Lemma A.4, it follows that for arbitrary final times T̃ < T it holds
δη ∈ C0([0, T̃ ]× Ω) with the state bound

sup
t∈[0,T̃ ]

‖δη(t)‖2C0(Ω) ≤ C(T̃ )

∫ T̃

0

r̃(t)2 dt

≤ C(T̃ )

∫ T̃

0

∫ t

0

‖δη̃(s)‖2H1(Ω) + ‖δη̃(s)‖2C0(Ω) ds dt ,

where the second estimate follows with Hölder’s and Young’s inequalities. As discussed
in Lemma A.4, the function which maps the final time T̃ ∈ I to the corresponding constant
C(T̃ ) ∈ R>0 is essentially bounded, thus, we get together with estimate (A.61) that

‖δη(t)‖2H1(Ω) + ‖δη(t)‖2C0(Ω) ≤ C
∫ t

0

∫ s

0

‖δη̃(s′)‖2H1(Ω) + ‖δη̃(s′)‖2C0(Ω) ds′ ds (A.62)

for a.a. t ∈ I .
This allows us to proceed like in [129, Sec. 7.1, p. 20]. We multiply both sides of equation
(A.62) with e−2αt for α > 0 and get, for a.a. t ∈ I , that

e−2αt
(
‖δη(t)‖2H1(Ω) + ‖δη(t)‖2C0(Ω)

)
≤Ce−2αt

∫ t

0

∫ s

0

‖δη̃(s′)‖2H1(Ω) + ‖δη̃(s′)‖2C0(Ω) ds′ ds

≤C
∫ t

0

∫ s

0

e−2αt
(
‖δη̃(s′)‖2H1(Ω) + ‖δη̃(s′)‖2C0(Ω)

)
ds′ ds

≤C
∫ t

0

∫ t

0

e−2α(t−s′)e−2αs′
(
‖δη̃(s′)‖2H1(Ω) + ‖δη̃(s′)‖2C0(Ω)

)
ds′ ds

≤CT sup
s∈I

(
e−2αs

(
‖δη̃(s)‖2H1(Ω) + ‖δη̃(s)‖2C0(Ω)

))∫ t

0

e−2α(t−s′) ds′

≤CT ‖δη̃‖2Bα
1− e−2αT

2α
.

After taking the supremum over t ∈ I , we get

‖δη‖2Bα ≤ CT ‖δη̃‖
2
Bα

1− e−2αT

2α
≤ CT

2α
‖δη̃‖2Bα

79 It is feasible to consider the integral in the weak formulation only from 0 to t because it holds for all test functions
ϕ ∈ L2(I;H1(Ω)) and , thus, especially for those with ϕ(s) = 0 for s > t.

80 Here, we can write∫ t

0

〈
δη′′(s), δη′(s)

〉
H1(Ω)

ds =

∫ t

0

(
δη′′(s), δη′(s)

)
L2(Ω)

ds =
1

2

(∥∥δη′(t)∥∥2

L2(Ω)
−
∥∥δη′(0)

∥∥2

L2(Ω)

)
by means of integration by parts in Bochner spaces B.36.
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and, thus, for α = CT , the desired result

‖δη‖2Bα ≤
1

2
‖δη̃‖2Bα .

The result now follows from Banach’s fixed-point theorem as discussed at the beginning.
�

A.2.3 Proof of Lemma 3.12

Proof.

Repeat the same procedure as for the linearized state equation in Lemma 3.9.

If we rescaled the time variable by t̂ := T − t, the adjoint state system (3.19) would have a similar
structure as the linearized state system (3.14). The proof follows the same structure, and we
highlight only the differences.
We consider the space

Bα := L∞(I;H1(Ω))

equipped with the norm
‖z2‖Bα :=

∥∥eαtz2

∥∥
L∞(I;H1(Ω))

for a certain α > 0.
The goal is to apply Banach’s fixed-point theorem to the map

S : Bα → Bα, z̃2 7→ z2

where z2 ∈ (L∞(I;H1(Ω)) ∩H1(I;H1(Ω)) ∩H2(I;H1(Ω)∗) ↪→ Bα fulfills

∫ T

0

τ 〈z′′2 (t), ϕ(t)〉H1(Ω) − (z′2(t), ϕ(t))L2(Ω) + Fh(z2(t), ϕ(t);u) dt

= −
∫ T

0

(fD(z1)(t)− fσa(z1, z̃2)(t), ϕ(t))L2(Ω) dt ,

z2(T )− τz′2(T ) = ϑ(T )− ϑd,
τz2(T ) = 0


(A.63)

for all ϕ ∈ L2(I;H1(Ω)), and z1 := z1(z̃2) ∈ L2(I;H1(Ω)) fulfills∫ T

0

Fr(z1(t), ϕ(t);ϑ, t) dt =

∫ T

0

σ̂ (σa(ϑ)(t)z̃2(t), ϕ(t))L2(Ω) dt (A.64)

for all ϕ ∈ L2(I;H1(Ω)).

Like in Lemma 3.9, we need to check the prerequisites for Banach’s fixed-point theorem.

1. Analogously to estimate (A.57), it follows that Bα is a Banach space.

2. The map S is well defined.

To see this, we note that it holds f(t) = σ̂σa(ϑ)(t)z̃2(t) ∈ L2(I;L2(Ω)) for the right-hand
side of equation (A.64). Analogously to Lemma A.7, especially equation (A.51), one can
show that (A.64) has a unique solution z1 ∈ L2(I;H1(Ω)) with

‖z1(t)‖2H1(Ω) ≤ C ‖z̃2(t)‖2L2(Ω) for a.a. t ∈ I.
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The rather generous assumption φ ∈ L∞(I;W 1,∞(Ω)) together with γ(ϑ), d′Arr(ϑ), σ̂t(ϑ),
ϑ ∈ C0(Q) now implies that

r := −fD(z1)− fσa(z1, z̃2) ∈ L2(I;L2(Ω)),

thus, with Lemma A.4, we get

z2 ∈ (L∞(I;H1(Ω)) ∩H1(I;H1(Ω)) ∩H2(I;H1(Ω)∗) ↪→ Bα.

3. Analogously to the proof of Lemma 3.9, we take the difference of the equation (A.63) for
two different inputs of S, then we test the resulting equation with ϕ := δz′2 ∈ L2(I;H1(Ω))

and integrate from t to T , where δz̃2 and δz2 denote the difference of the two inputs and the
difference of the two corresponding outputs of S, respectively, and we get with Hölder’s
and Young’s inequalities81

‖δz2(t)‖2H1(Ω) ≤ C(φ, ϑ)

∫ T

t

∫ T

s

‖δz̃2(s′)‖2H1(Ω) ds′ ds

for a.a. t ∈ I . Now we multiply both sides with e2αt and proceed like in the proof of
Lemma 3.9.

�

A.2.4 Proof of Lemma 3.13

Lemma A.8
Let T ∈ R>0 and f, g : [0, T ]→ R be Lebesgue-integrable functions. Then it holds∫ T

0

f(t)

(∫ t

0

g(s) ds

)
dt =

∫ T

0

g(t)

(∫ T

t

f(s) ds

)
dt .

Proof. We define F (t) =
∫ t

0
f(s) ds ,G(t) =

∫ t
0
g(s) ds . The fundamental theorem of calculus for

Lebesgue integrals82 yields that F and G are absolutely continuous and differentiable a.e. with
F ′(t) = f(t) and G′(t) = g(t) for a.a. t ∈ [0, T ]. Furthermore, it holds F (0) = G(0) = 0.

Integration by parts83 yields

F (T )G(T )− F (0)G(0) =

∫ T

0

f(t)G(t) dt +

∫ T

0

F (t)g(t) dt .

81 See Hölder’s B.27 and Young’s B.25 inequalities.
82 See the fundamental theorem of calculus for the Lebesgue integral B.31.
83 See Theorem B.34 on the integration by parts for absolutely continuous functions.
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This implies∫ T

0

f(t)

(∫ t

0

g(s) ds

)
dt =

∫ T

0

f(t)G(t) dt = F (T )G(T )− F (0)G(0)−
∫ T

0

F (t)g(t) dt

=

∫ T

0

f(t) dt

∫ T

0

g(t) dt −
∫ T

0

g(t)

(∫ t

0

f(s) ds

)
dt

=

∫ T

0

g(t)

(∫ T

0

f(s) ds −
∫ t

0

f(s) ds

)
dt

=

∫ T

0

g(t)

(∫ T

t

f(s) ds

)
dt .

�

Proof of Lemma 3.13.

Apply integration by parts and Lemma A.8.

Let u ∈ Uad be an admissible control and (φ, ϑ) = S(u) be the corresponding state vector of
the Cattaneo–LITT model. For h ∈ L∞(Ω) an admissible direction w.r.t. u, we consider the
corresponding unique solution of the linearized state system (3.14) (ρ, η) ∈ L2(I;H1(Ω)) ×
(Wϑ ∩ C0(Q)) and the corresponding adjoint state vector (z1, z2) ∈ L2(I;H1(Ω))× L2(I;H1(Ω)).
The regularity of the adjoint state vector allows us to use it as test function for the linearized
state system (3.14).
We collect two auxiliary results.

1. The integration by parts formula84 yields together with the initial conditions for the
linearized state (ρ, η) and the adjoint state (z1, z2) that∫ T

0

τ 〈η′′(t), z2(t)〉H1(Ω) dt

= −
∫ T

0

τ (η′(t), z′2(t))L2(Ω) dt + τ

η′(T ), z2(T )︸ ︷︷ ︸
=0


L2(Ω)

− τ

η′(0)︸ ︷︷ ︸
=0

, z2(0)


L2(Ω)

=

∫ T

0

τ 〈z′′2 (t), η(t)〉H1(Ω) dt − τ (z′2(T ), η(T ))L2(Ω) + τ

z′2(0), η(0)︸︷︷︸
=0


L2(Ω)

=

∫ T

0

τ 〈z′′2 (t), η(t)〉H1(Ω) dt + (ϑ(T )− ϑd, η(T ))L2(Ω) ,∫ T

0

(η′(t), z2(t))L2(Ω) dt

= −
∫ T

0

(z′2(t), η(t))L2(Ω) dt .

2. We consider the term regarding the derivative of the optical coefficient σa in the first
equation of the linearized state system (the argument goes analogously for the term in

84 See Theorem B.35 on the integration by parts in Sobolev spaces.
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the second equation and for the term regarding D) and get with Fubini’s theorem85 and
Lemma A.8 that∫ T

0

(Dϑσa(ϑ)[η](t)φ(t), z1(t))L2(Ω) dt =

∫
Ω

[∫ T

0

fx(t)

∫ t

0

gx(s) ds dt

]
dx

=

∫
Ω

[∫ T

0

gx(t)

∫ T

t

fx(s) ds dt

]
dx

=

∫ T

0

(
f̂σa(t), η(t)

)
L2(Ω)

dt

with86
fx(t) = −(σa,n − σa,c)γ(ϑ)(t, x)φ(t, x)z1(t, x),

gx(t) = d′(ϑ(t, x))η(t, x),

f̂σa(t)(x) = −(σa,n − σa,c)d′(ϑ(t, x))

∫ T

t

γ(ϑ)(s, x)φ(s, x)z1(s, x) ds .

We add the first two equations of the linearized state system tested with the adjoint state and
obtain by means of the auxiliary results above:

0 =

∫ T

0

Fr(ρ(t), z1(t);ϑ, t) dt

+

∫ T

0

(DϑD(ϑ)[η](t)∇φ(t),∇z1(t))L2(Ω) + (Dϑσa(ϑ)[η](t)φ(t), z1(t))L2(Ω) dt

+

∫ T

0

τ 〈η′′(t), z2(t)〉H1(Ω) + (η′(t), z2(t))L2(Ω) + Fh(η(t), z2(t);u) dt

−
∫ T

0

σ̂ (σa(ϑ)(t)ρ(t), z2(t))L2(Ω) dt −
∫ T

0

σ̂ (Dϑσa(ϑ)[η](t)φ(t), z2(t))L2(Ω) dt

−
∫ T

0

((ξin − ξout)(ϑb − ϑ(t))h, z2(t))L2(Ω) dt

=

∫ T

0

Fr(z1(t), ρ(t);ϑ, t) dt −
∫ T

0

σ̂ (σa(ϑ)(t)ρ(t), z2(t))L2(Ω) dt

+

∫ T

0

τ 〈z′′2 (t), η(t)〉H1(Ω) − (z′2(t), η(t))L2(Ω) + Fh(z2(t), η(t);u) dt

+

∫ T

0

(fD(t) + fσa(t), η(t))L2(Ω) dt

+ (ϑ(T )− ϑd, η(T ))L2(Ω) −
∫ T

0

((ξin − ξout)(ϑb − ϑ(t))h, z2(t))L2(Ω) dt

= (ϑ(T )− ϑd, η(T ))L2(Ω) −
∫ T

0

((ξin − ξout)(ϑb − ϑ(t))h, z2(t))L2(Ω) dt .

Note that the terms vanish in the last equality because they correspond to the adjoint
state system (3.19) tested with ϕ = (ρ, η), and (z1, z2) is just chosen to fulfill (3.19) for all
ϕ ∈ L2(I;H1(Ω)) × L2(I;H1(Ω)).

85 See Fubini’s theorem B.2.
86 Note that, for every x ∈ Ω, the functions fx, gx are Lebesgue measurable by means of Fubini’s theorem.
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With Lemma 3.11 and Fubini’s theorem, we conclude

DuĴ(u)[h] =

∫
Ω

(ϑ(T ;u)− ϑd) η(T ) + λ1h+ λ2uhdx

=

(
λ1 + λ2u+

∫ T

0

(ξin − ξout)(ϑb − ϑ(t))z2(t) dt , h

)
L2(Ω)

.

�

A.3 Details for Chapter 4
Reduction of the spatial dimension

We consider the parameterization in cylindrical coordinates87

ϕcyl : R≥0 × [0, 2π)× R→ R3, η :=

rθ
y

 7→ x :=

xy
z

 =

r cos(θ)

y

r sin(θ)


with

Dϕcyl(η) =

cos(θ) −r sin(θ) 0

0 0 1

sin(θ) r cos(θ) 0

 and
∣∣∣det Dϕcyl(η)

∣∣∣ = r.

The integrals of the weak formulation are transformed accordingly:∫
Ω

u(x)v(x) dx =

∫
(ϕcyl)−1(Ω)

û(η)v̂(η) r dη ,∫
Γ

u(sx)v(sx) dsx =

∫
(ϕcyl)−1(Γ)

û(sη)v̂(sη) r dsη ,∫
Ω

(∇u(x))
T · ∇v(x) dx =

∫
(ϕcyl)−1(Ω)

(
∂û

∂r

∂v̂

∂r
+

1

r2

∂û

∂θ

∂v̂

∂θ
+
∂û

∂y

∂v̂

∂y

)
r dη ,

with û = u ◦ ϕcyl, v̂ = v ◦ ϕcyl, where we used the chain rule

∇x = (Dϕcyl)−T · ∇η and (Dϕcyl)−1 · (Dϕcyl)−T =

1 0 0

0 1/r2 0

0 0 1

 .
Let ϕΓ2(t) =

[
ϕΓ2

1 (t) ϕΓ2
2 (t)

]T(
=
[
r(t) y(t)

]T)
∈ R2 be a unit speed parameterization88 of

the two dimensional boundary Γ2 =

{[
r y

]T
|
[
r 0 y

]T
∈ ∂(ϕcyl)−1(Ω)

}
⊂ R2. Then we

obtain a parameterization of the boundary in Γ3 = ∂Ω ⊂ R3 with

ϕΓ3(θ, t) =

ϕ
Γ2
1 (t) cos(θ)

ϕΓ2
2 (t)

ϕΓ2
1 (t) sin(θ)

 and
∥∥∥∥∂ϕΓ3

∂θ
× ∂ϕΓ3

∂t

∥∥∥∥
2

=
∣∣∣ϕΓ2

1 (t)
∣∣∣ ∥∥(ϕΓ2)′(t)

∥∥
2

= r(t).

With the assumption of rotational symmetry, we can neglect the terms ∂
∂θ = 0 and obtain a

problem that depends only on two spatial coordinates x̂ := r, ŷ := y.
87 See, e.g., [5, VII.9, Bsp. 9.11.c, p. 260] for more details on cylindrical coordinates.
88 See [5, VIII.2, Thm. 2.2, p. 303] for the unit speed parameterization of a curve.



B Hitchhiker’s guideHitchhiker’s guide

The beginner ... should not be discouraged if ... he finds that he does not have the prerequisites

for reading the prerequisites.

Paul Halmos [177, I, p. 1]

B.1 Facts
We give a summary of results from functional analysis tailored to our field of application,
especially in the context of Bochner spaces.1

B.1.1 Basics

Definition B.1 — Domain [186, Sec. A.12.1, p. 191].
A subset Ω ⊂ Rd, d ∈ N, is called domain, if Ω is nonempty, open and connected.

Theorem B.2 — Fubini [186, Sec. A.11, Satz 11.16, p. 190].
Let (X,S, ν) and (Y, T, λ) be complete measure spaces and let f ∈ L1(X × Y, S × T, ν × λ).
Then, for ν-almost all x ∈ X , it holds

f(x, ·) ∈ L1(Y, T, λ),

and the function
x 7→

∫
Y

f(x, y) dλ(y) ,

which is defined for ν-almost all x ∈ X , is an element of L1(X,S, ν).
Similarly, for λ-almost all y ∈ Y , it holds

f(·, y) ∈ L1(X,S, ν),

and the function
y 7→

∫
X

f(x, y) dν(x) ,

1 Of course, this is not the first “hitchhiker’s guide” in functional analysis: [1].



194 Appendix B. Hitchhiker’s guide

which is defined for λ-almost all y ∈ Y , is an element of L1(Y, T, λ). Furthermore, it holds∫
X×Y

f(x, y) d(ν × λ) =

∫
Y

(∫
X

f(x, y) dν(x)

)
dλ(y)

=

∫
X

(∫
Y

f(x, y) dλ(y)

)
dν(x) .

Lemma B.3 — Characterization of measurable functions in Banach spaces [236, App. (8), p. 1012]a.
LetM ⊆ Rd, d ∈ N, be a Lebesgue-measurable set and let X be a separable real Banach space.
If the function f : M → X is continuous almost everywhere, i.e., there exists a set Z ⊆ Rd

with Lebesgue measure zero such that f : M\Z → X is continuous, then f is measurable
b.

a This Lemma is a consequence of Pettis’ theorem B.45.
b Also referred to as strongly measurable [93, Sec. 1.3.2.2, p. 37] or Bochner measurable [186, Sec. 2.1, Def. 1.3, p. 34].

Lemma B.4 — Cartesian product of normed spacesa.
Let Z = X × Y be the Cartesian product of two normed spaces equipped with the norm

‖(x, y)‖Z = ‖x‖X + ‖y‖Y .

Then z∗ ∈ Z∗ if and only if there exist x∗ ∈ X∗ and y∗ ∈ Y ∗ such that

〈z∗, (x, y)〉Z∗,Z = 〈x∗, x〉X∗,X + 〈y∗, y〉Y ∗,Y for all x ∈ X, y ∈ Y.

This allows us to identify
(X × Y )∗ = X∗ × Y ∗.

If X and Y are Banach spaces, then also Z is a Banach space.
a The proof is given in Appendix B.2.1.

Lemma B.5 — Uniform continuity [70, §3, Satz 10, p. 47].
Let X,Y be metric spaces and let X be compact. Then every continuous map f : X → Y is
uniformly continuous.

Lemma B.6 — Variational lemma.

1. Let Ω ⊂ Rd, d ∈ N, be a nonempty open set anda let f ∈ L1
loc(Ω) with∫

Ω

f(x)ϕ(x) dx = 0 for all ϕ ∈ C∞c (Ω),

where C∞c (Ω) is the set of infinitely-often differentiable functions on Ω with compact
support. Then f = 0 a.e. in Ω. [93, Sec. 1.2.2.4, Lem. 1.5, p. 18]
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2. Let X be a real Banach space and let T ∈ R>0. Let f ∈ L1((0, T );X) with∫ T

0

f(t)ϕ(t) dt = 0 for all ϕ ∈ C∞c ((0, T )),

where C∞c ((0, T )) is the set of infinitely-often differentiable functions on the interval
(0, T ) with compact support. Then f = 0 in L1((0, T );X), i.e., f(t) = 0 for a.a. t ∈ (0, T ).
[235, §23.3, Prop. 23.10, p. 415]

a Especially, it holds Lp(Ω) ⊂ L1
loc(Ω) for all p ∈ [1,∞], see [93, Sec. 1.2.2.3, Rem. 1.2, p. 16].

Definition B.7 — Weak convergence [4, Ch. 6, Def. 6.1, p. 237].
Let X be a real Banach space.

1. A sequence (xk)k∈N ⊂ X is called weakly convergent if there exists an x ∈ X such that

〈x∗, xk〉 → 〈x∗, x〉 for k →∞, for all x∗ ∈ X∗.

In this case, we write xk ⇀ x.

2. A sequence (x∗k)k∈N ⊂ X∗ is called weakly∗ convergent if there exists an x∗ ∈ X∗ such
that

〈x∗k, x〉 → 〈x∗, x〉 for k →∞, for all x ∈ X.

In this case, we write x∗k ⇀∗ x∗.

Remark B.8 — Weak/weak∗ limits are unique [4, Ch. 6, Bem. 6.3 (1), p. 238].
The weak and weak∗ limits, defined in Definition B.7, are unique.

Lemma B.9 — Limit of dual pairings [4, Sec. 6.3 (6), p. 239].
Let X be a real Banach space. Let (xk)k∈N ⊂ X , (x∗k)k∈N ⊂ X∗ be sequences and let x ∈ X ,
x∗ ∈ X∗ with x∗k → x∗ (strongly) in X∗ and xk ⇀ x (weakly) in X . Then it holds

〈x∗k, xk〉X → 〈x∗, x〉X .

Lemma B.10 — Evaluation map [4, Sec. 6.2, p. 238].
For a real Banach space X , the map

JX : X → X∗∗, 〈JXx, x∗〉X∗∗,X∗ := 〈x∗, x〉X∗,X for x ∈ X,x∗ ∈ X∗ (B.1)

is linear, continuous and isometric.

Definition B.11 — Reflexive Banach space [4, Sec. 6.8, p. 245].
We call a Banach space X reflexive, if JX in equation (B.1) is surjective.

IfX is reflexive, then weak∗ convergence and weak convergence inX∗ coincide [4, Sec. 6.8 (1), p. 245].
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Lemma B.12 — Reflexive Banach spaces.

1. Each bounded sequence in a reflexive real Banach space has a weakly convergent subse-
quence. [235, §21.7, Thm. 21.D, p. 255]

2. Every Hilbert space is reflexive. [4, Ch. 6, Bsp. 6.11 (1), p. 247]

3. Let Ω ⊂ Rd, d ∈ N, be a nonempty open set. For p ∈ (1,∞), the space Lp(Ω) is a reflexive
Banach space and it holds Lp(Ω)∗ = Lq(Ω) for q ∈ (1,∞) with 1

p + 1
q = 1. The dual

space of L1(Ω) is L∞(Ω), but L1(Ω) is not reflexive, i.e., L1(Ω) is not the dual space of
L∞(Ω). Similarly, L∞(Ω) is not reflexive. [43, XVIII §1 6.2, Ex. 4, p. 500], [4, Ch. 4, Satz
4.12, p. 183]

4. Let X be a reflexive and separable real Banach space, p ∈ (1,∞), T ∈ R>0. Then
Lp((0, T );X) is reflexivea and it holds Lp((0, T );X)∗ = Lq(0, T ;X∗) for q ∈ (1,∞) with
1
p + 1

q = 1. Furthermore, L1((0, T );X) has L∞((0, T );X∗) as its dual space, but it is not
reflexive. Similarly, L∞((0, T );X) is not reflexive. [43, XVIII §1 6.2, Ex. 4, p. 500]

5. A real Banach spaceX is reflexive if and only if its dual spaceX∗ is reflexive. [4, Sec. 6.8
(4), p. 245]

a In fact, Lp((0, T );X) is also separable, see Lemma B.22

Lemma B.13 — Subsequence argument [43, XVIII §1 6.3, Prop. 12, p. 502].
Let X be a reflexive real Banach space and let (xk)k∈N ⊂ X be a sequence. We assume that:

1. there is a C > 0 such that ‖xk‖X ≤ C <∞ for all k ∈ N;

2. the set of cluster points of (xk)k∈N w.r.t. weak convergencea is reduced to {x}.

Then the sequence (xk)k∈N converges to xweakly in X .
a An element x ∈ X is called a cluster point of (xk)k∈N w.r.t. weak convergence if there is a weakly convergent

subsequence with xkl ⇀ x.

Lemma B.14 — Generalized derivatives and weak convergence [235, §23.5, Prop. 23.19, p. 419].
Let X,Y be real Banach spaces with the continuous embedding X ↪→ Y , T ∈ R>0, n ∈ N,
p , q ∈ [1,∞), and f ∈ Lp((0, T );X), g ∈ Lq((0, T );X). Let (fk)k∈N ⊂ Lp((0, T );X) and
(gk)k∈N ⊂ Lq((0, T );X) be two sequences such that

f
(n)
k = gk on (0, T ) for all k ∈ N

(nth weak time derivative) and

fk ⇀ f in Lp((0, T );X),

gk ⇀ g in Lq((0, T );Y ).



B.1 Facts 197

Then it holds
f (n) = g on (0, T ).

Lemma B.15 — Weakly sequentially closed / Relatively weakly sequentially compact.

1. Every convex and closed subset of a real Banach space is weakly sequentially closed. [217,
Sec. 2.4.2, Satz 2.11, p. 37]

2. LetX be a real Banach space. IfX is reflexive, then each bounded sequence (xk)k∈N ⊂ X
contains a weakly convergent subsequence.ab In other words, every bounded set of a
reflexive Banach space is relatively weakly sequentially compact. [20, Sec. 3.5, Thm. 3.18, p.
69]

a The converse is also true, which means, that this feature characterizes reflexive Banach spaces, see [20, Sec. 3.5,
Thm. 3.19, p. 70]. This is a consequence of the Theorem of Eberlein–Šmulian [39, V §13, Thm. 13.1, p. 163].

b The weak limit is an element ofX becauseX is weakly sequentially closed.

Lemma B.16 — Criterion for weak lower semicontinuity [217, Sec. 2.4.2, Satz 2.12, p. 37].
Let X be a real Banach space and let f : X → (−∞,∞]. If f is continuous and convex, then f
is sequentially weakly lower semicontinuous, i.e.,

xk ⇀ x in X implies f(x) ≤ lim inf
k→∞

f(xk).

Especially, this result is applicablea to the corresponding norm f = ‖·‖X .
a See [4, Sec. 6.3, p. 239].

Lemma B.17 — Dual spaces of subspacesa.
Let X,Y be real Banach spaces with the continuous embedding j : Y ↪→ X . Then it holds
X∗ ↪→ Y ∗. Especially, for a sequence (yk)k∈N ⊂ Y ⊂ X , the weak convergence yk ⇀ y in Y
implies the weak convergence j(yk) ⇀ j(y) in X .
a The proof is given in Appendix B.2.2.

Definition B.18 — Compact operators [4, Sec. 8.1, p. 331].
LetX,Y be real Banach spaces. A linear map S : X → Y is called compact if it maps bounded
setsM ⊂ X to relatively compact sets, i.e., S(M) ⊂ Y is compact.

Lemma B.19 — Concatenation of continuous and compact operators [4, Ch. 8, Lem. 8.3, p. 334].
LetX,Y, Z be real Banach spaces and let S1 : X → Y and S2 : Y → Z be linear and continuous
maps. If S1 or S2 is compacta, then S2 ◦ S1 : X → Z is compact.
a See Definition B.18.
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Lemma B.20 — Compact operators and weak convergence [93, Sec. 1.2.3, Lem. 1.6, p. 26].
Let X,Y be real Banach spaces and let S : X → Y a compact operator. Then for all weakly
convergent sequences (xk)k∈N ⊂ X with xk ⇀ x for some x ∈ X , it holds

Sxk → Sx in Y.

Definition B.21 — Separable spaces [4, Ch. 0, Def. 0.13, p. 21].
Let (X, T ) be a topological space.a A subset A ⊆ X is called dense, if the closure A fulfills
A = X . We call X separable, if it contains a dense and countable subset.
a Especially, this includes metric spaces, which are of interest here.

Lemma B.22 — Separable spaces.
Let Ω ⊂ Rd, d ∈ N, be a nonempty open set and let k ∈ N0.

1. For p ∈ [1,∞), the spaceW k,p(Ω) is separable.a [4, Ch. 2, Bsp. 2.18, p. 120]

2. If Ω is bounded, then the space Ck(Ω) is separable. [4, Ch. 2, Bsp. 2.18, p. 120]

3. For p ∈ [1,∞), T ∈ R>0, andX a separable real Banach space, the space Lp((0, T );X) is
separable. [235, §23.2, Prop. 23.2, p. 407]

4. If X is a separable metric space, then every subsetM ⊂ X is separable. [20, Sec. 3.6,
Prop. 3.25, p. 73]

5. IfX is an infinite-dimensional real Hilbert space, the following statements are equivalent
[4, Ch. 7, Satz 7.8, p. 306]:

(a) X is separable;

(b) X has an orthonormal basis, i.e., an orthonormal system (ek)k∈N ⊂ X such that
the linear spanb of the set {ek | k ∈ N} is dense in X .

6. Let X be a real Banach space. If its dual X∗ is separable, then also X is separable. [4,
Ch. 6, Lem. 6.9, p. 246]

a Especially, this includes Lp(Ω).
b The linear span of a set contains all finite linear combinations of elements of this set.

Lemma B.23 — Equivalent norm on H1(Ω) [235, §21.3, Thm. 21.A, p. 238].
Let Ω ⊂ Rd, d ∈ N, be a bounded domaina with Lipschitz boundary Γ. Then

‖f‖∗H1(Ω) :=

(∫
Ω

d∑
i=1

(Dxi f)2 dx +

∫
Γ

f2 ds

)1/2
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is an equivalent norm on H1(Ω), i.e., there are constants c, C ∈ R>0 such that

c ‖f‖H1(Ω) ≤ ‖f‖
∗
H1(Ω) ≤ C ‖f‖H1(Ω) for all f ∈ H1(Ω).

a For d = 1, the domain Ω is a bounded open interval.

Lemma B.24 — Properties of Sobolev spaces.
Let Ω ⊂ Rd, d ∈ N, be a nonempty open set, k ∈ N0, p ∈ [1,∞), and let α ∈ Nd0 denote a
multiindex with |α| := ∑d

k=1 αk.

1. The spaceW k,p(Ω) with the corresponding norm

‖ϑ‖Wk,p(Ω) =

 ∑
0≤|α|≤k

‖Dαϑ‖pLp(Ω)

1/p

is a real Banach space. For p = 2, the space Hk(Ω) = W k,2(Ω) is a real Hilbert spacewith
the scalar product (

ϑ, ϑ̂
)
Hk(Ω)

=
∑

0≤|α|≤m

(
Dαϑ,Dαϑ̂

)
L2(Ω)

.

[235, §21.2, Prop. 21.10, p. 236]

2. The spaceW k,p(Ω) (withW 0,p(Ω) = Lp(Ω)) is separable.a [4, Ch. 2, Bsp. 2.18 (6), p. 120]

3. For p ∈ (1,∞), the spaceW k,p(Ω) is reflexive.b [4, Ch. 6, Bsp. 6.11 (3), p. 247]
a Cf. [236, App. (41), p. 1025] (with stronger assumptions on Ω) or [20, Sec. 9.1, Prop. 9.1, p. 264] (for k = 1).
b Cf. [236, App. (42), p. 1025] (with stronger assumptions on Ω) or [20, Sec. 9.1, Prop. 9.1, p. 264] (for k = 1).

B.1.2 Calculus

Lemma B.25 — Young’s inequality (with ε) [63, App. B.2 (7), p. 622].
Let a, b, ε ∈ R>0 and let p, q ∈ (1,∞) with 1

p + 1
q = 1. Then it holds

ab ≤ εap +
1

(εp)q/p
1

q
bq.

Remark B.26 — Classical Young’s inequality.
For ε = 1

p , we obtain from Lemma B.25 Young’s inequality in its classical form

ab ≤ ap

p
+
bq

q
.

This particular case yields the useful estimate

(a+ b)2 ≤ 2(a2 + b2).
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Lemma B.27 — Hölder’s inequality.

1. Let Ω ⊂ Rd, d ∈ N, be a nonempty Lebesgue-measurable set (e.g., Ω is open or closed)
and let p, q ∈ [1,∞] with 1

p + 1
q = 1. Then, for f ∈ Lp(Ω), g ∈ Lq(Ω), it holds fg ∈ L1(Ω)

and
‖fg‖L1(Ω) ≤ ‖f‖Lp(Ω) ‖g‖Lq(Ω) .

[235, §18.6, Prop. 18.13, p. 35]

2. Let X be a real Banach space, T ∈ R>0 and p, q ∈ (1,∞) with 1
p + 1

q = 1. Then, for
f ∈ Lp((0, T );X), g ∈ Lq((0, T );X∗), it holds t 7→ 〈g(t), f(t)〉X ∈ L1((0, T );R) and∫ T

0

|〈g(t), f(t)〉X |dt ≤ ‖g‖Lq((0,T );X∗) ‖f‖Lp((0,T );X) .

[235, §23.3, Prop. 23.6, p. 411]

Lemma B.28 — Jensen’s inequality [36, Sec. 4.1, Cor. 4.8, p. 63].

1. Let φ : Rd → R, d ∈ N, be convex and let f : (0, 1)→ Rd be a function with components
fi ∈ L1((0, 1);R), i ∈ {1, . . . , d}. Then it holdsa

φ

(∫ 1

0

f(t) dt

)
≤
∫ 1

0

φ(f(t)) dt .

2. Let f ∈ L1((0, 1);R). For p ∈ (0, 1), we haveb f ∈ Lp((0, 1);R) with∫ 1

0

|f(t)|p dt ≤
(∫ 1

0

|f(t)|dt
)p

.

a The first integral is vector valued.
b Apply Jensen’s inequality to the function z 7→ |z|1/p, which is convex for p ∈ (0, 1) (cf. [4, Ch. 2, U2.10, p. 139]).

Definition B.29 — Absolutely continuous functions [55, VII §4 , Def. 4.11, p. 325].
Let T ∈ R>0. We call a function f : [0, T ]→ R absolutely continuous, if for every ε > 0 there is
a δ > 0 such that

n∑
k=1

|f(βk)− f(αk)| < ε

for all 0 ≤ α1 < β1 ≤ α2 < β2 ≤ . . . ≤ αn < βn ≤ bwith
∑n
k=1(βk − αk) < δ.

Remark B.30 — Absolutely continuous [55, VII §4, Cor. 4.12, p. 325].
Every absolutely continuous function is differentiable almost everywhere.
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Theorem B.31 — Fundamental theorem of calculus for the Lebesgue integral [55, VII §4, Satz 4.14, p.
326].
Let T ∈ R>0.

1. Let f : [0, T ]→ R be Lebesgue integrable. Then

F : [0, T ]→ R, t 7→
∫ t

0

f(s) ds

is absolutely continuous and it holds F ′(t) = f(t) for a.a. t ∈ [0, T ].

2. Let F : [0, T ]→ R be absolutely continuous, and set F ′(t) := 0 for all t ∈ [0, T ] where F
is not differentiable (see Remark B.30). Then F ′ is Lebesgue integrable on [0, T ] and it
holds

F (t)− F (0) =

∫ t

0

F ′(s) ds for all t ∈ [0, T ].

Theorem B.32 — Fundamental theorem of calculus in Bochner spaces.
Let X be a real Banach space, T ∈ R>0, p ∈ [1,∞].

1. Let f : [0, T ] → X be Bochner integrablea and F (t) :=
∫ t

0
f(s) ds . Then F is absolutely

continuous. Furthermore, F is differentiable a.e. and F ′(t) = f(t) for a.a. t ∈ [0, T ]. [15,
Sec. 1.2, Prop. 1.2.2, p. 16]

2. Let F : [0, T ] → X be absolutely continuous and suppose f(t) := F ′(t) exists almost
everywhere. Then f is Bochner integrable and

F (t) = F (0) +

∫ t

0

f(s) ds for all t ∈ [0, T ].

[15, Sec. 1.2, Def. 1.2.3, p. 18]
a We say that f : [0, T ]→ X is Bochner integrable if there exists a sequence (sk)k∈N of simple functions such that
sk(t)→ f(t) a.e. (i.e, f is Bochner measurable) and∫ T

0
‖sk(t)− f(t)‖X dt → 0 for k → 0,

see [93, Sec. 1.3.2.2, Def. 1.23, p. 37].

Theorem B.33 — Fundamental theorem of calculus in Bochner spaces (alternative direction) [63, Sec.
5.9.2, Thm. 2, p. 286].
Let X be a real Banach space, T ∈ R>0, p ∈ [1,∞], and let f ∈W 1,p((0, T );X).

1. We have the continuous embeddinga

W 1,p((0, T );X) ↪→ C0([0, T ];X).



202 Appendix B. Hitchhiker’s guide

2. It holds
f(t) = f(t0) +

∫ t

t0

f ′(s) ds for all t0, t ∈ [0, T ] with t0 ≤ t.

a Cf. the embedding in Theorem B.36 but with weaker assumptions.

Theorem B.34 — Integration by parts for absolutely continuous functions [55, VII §4, Cor. 4.16, p. 328].
Let T ∈ R>0 and let f, g : [0, T ]→ R be absolutely continuous. Then it holds

f(T )g(T )− f(0)g(0) =

∫ T

0

f ′(t)g(t) dt +

∫ T

0

f(t)g′(t) dt .

Theorem B.35 — Integration by parts in Sobolev spaces [186, Sec. A.12.3, Satz 12.21, p. 200].
Let Ω ⊂ Rd, d ∈ N, be a bounded domain with Lipschitz boundary Γ, and let p, q ∈ [1,∞)

with 1
p + 1

q = 1. For f ∈W 1,p(Ω) and g ∈W 1,q(Ω), it holdsa∫
Ω

fDxig dx = −
∫

Ω

gDxif dx +

∫
Γ

fgni ds for i ∈ {1, . . . , d}

with n = (n1, . . . , nd)
T ∈ Rd the outward pointing normal vector on Γ.

a The boundary integral is defined by means of the trace theorem B.53.

Theorem B.36 — Integration by parts in Bochner spaces [93, Sec. 1.3.2.2, Thm. 1.32, p. 40].
Let T ∈ R>0 and let V dense

↪→ H ↪→ V ∗ be a Gelfand triplea with H,V separable real Hilbert
spaces.
Then W (0, T ;H,V ) := L2((0, T );V ) ∩ H1((0, T );V ∗) is a Hilbert space and we have the
continuous embedding

W (0, T ;H,V ) ↪→ C0([0, T ];H).

Moreover, for f, g ∈W (0, T ;H,V ), the integration-by-parts formula holdsb:

(f(t), g(t))H − (f(t0), g(t0))H =

∫ t

t0

〈f ′(s), g(s)〉V ∗,V + 〈g′(s), f(s)〉V ∗,V ds

for all t0, t ∈ [0, T ] with t0 ≤ t.
a Continuous and dense embeddings, cf. [93, Sec. 1.3.2.2, Def. 1.26, p. 39], [235, §23.4, Def. 23.11, p. 416].
b See also [235, §23.6, Prop. 23.23, p. 422].

Lemma B.37 — Weak time derivative as distribution [43, XVIII §1 2, Prop. 7, p. 477].
Let T ∈ R>0 and let V dense

↪→ H ↪→ V ∗ be a Gelfand triplea with H,V separable real Hilbert
spaces. For f ∈ L2((0, T );V ) ∩H1((0, T );V ∗) and g ∈ V , we have

〈f ′(·), g〉V ∗,V = (f(·), g)
′
V in C∞c ((0, T ))∗,
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where C∞c ((0, T ))∗ is the dual space of the space of infinitely-often differentiable functions on
(0, T ) with compact support (distributions).
a Continuous and dense embeddings, cf. [93, Sec. 1.3.2.2, Def. 1.26, p. 39], [235, §23.4, Def. 23.11, p. 416].

Lemma B.38 — Derivative of the norm [56, Sec. 8.1, Cor. 8.1.10, p. 211]a.
Let Ω ⊂ Rd, d ∈ N, be a bounded domain with Lipschitz boundary and let T ∈ R>0. For
f ∈ L2((0, T );H1(Ω)) ∩H1((0, T );H1(Ω)∗), it holds(

‖f(t)‖2L2(Ω)

)′
= 2 〈f ′(t), f(t)〉H1(Ω)∗,H1(Ω) for a.a. t ∈ (0, T )

in the sense of a weak time derivativeb.
Furthermore, it holds∫ t

0

(
‖f(s)‖2L2(Ω)

)′
ds = ‖f(t)‖2L2(Ω) − ‖f(0)‖2L2(Ω) for a.a. t ∈ (0, T ).

a The proof is given in Appendix B.2.3.
b I.e.,

∫ T
0 ϕ′(t) ‖f(t)‖2L2(Ω) dt = −

∫ T
0 ϕ(t)

(
‖f(t)‖2L2(Ω)

)′
dt for all ϕ ∈ C∞c ((0, T )).

Theorem B.39 — Gronwall’s inequality (cf. [43, XVIII §5 2.2, Lem. 1, p. 559])a.
Let T ∈ R>0 and let f ∈ L1((0, T )) and µ ∈ L∞((0, T )) be nonnegative functions, i.e.,
f(t), µ(t) ≥ 0 for a.a. t ∈ [0, T ], which satisfy

f(t) ≤
∫ t

0

µ(s)f(s) ds + C for a.a. t ∈ [0, T ] (B.2)

for a constant C. Then

f(t) ≤ C exp

(∫ t

0

µ(s) ds

)
for a.a. t ∈ [0, T ]

with the same constant C as above.
For C = 0, we getb f(t) = 0 for a.a. t ∈ [0, T ].
a The proof is given in Appendix B.2.4.
b See [43, XVIII §5 2.2, Rem. 3, p. 560].

In our proofs we frequently use Theorem B.39 for a function f : (0, T ) → R, t 7→ ‖ϑ(t)‖X for
some ϑ ∈ L2((0, T );X). With Theorem B.47, we get that f is Lebesgue integrable and fulfills the
prerequisites of Theorem B.39.

Lemma B.40 — “Schwarz” - symmetry of second derivativesa.
Let Ω ⊂ Rd, d ∈ N, be a nonempty open set, T ∈ R>0, f ∈ H1((0, T );R) and g ∈ Hk(Ω).
Then the function h : (0, T ) → H1(Ω), t 7→ f(t)g is an element of H1((0, T );Hk(Ω)) and it
holdsb

Dα(h′)(t) = (Dαh)
′
(t) = f ′(t)Dαg for a.a. t ∈ (0, T )
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for an arbitrary multiindex α ∈ Nd0, 0 ≤ |α| ≤ k. This means that we can interchange spatial
and temporal weak derivatives.c

a The proof is given in Appendix B.2.5.
b Here, Dαh is understood to be the map (0, T )→ Hk−|α|(Ω), t 7→ Dα (h(t)), with h(t) ∈ Hk(Ω).
c Cf. Schwarz’s theorem (symmetry of second derivatives) [70, I §5, Thm. 1, p. 66].

Theorem B.41 — Chain rule (weak derivatives) [240, Sec. 2.1, Thm. 2.1.11, p. 48].
Let Ω ⊂ Rd, d ∈ N, be a nonempty open set, f : R→ R be a Lipschitz continuous function and
let g ∈ W 1,p(Ω) for p ∈ [1,∞). If f ◦ g ∈ Lp(Ω), then f ◦ g ∈W 1,p(Ω) and it holdsa

D (f ◦ g) (x) = f ′(g(x)) ·Dg(x) for a.a. x ∈ Ω.

a Note that the Lipschitz continuity of f implies that f is differentiable almost everywhere [63, Sec. 5.8.3, Thm. 6, p.
281].

Theorem B.42 — Chain rule (Fréchet) [234, Sec. 4.7, Thm. 4D, p. 247].
Let X,Y, Z be real Banach spaces, and let the two mappings

f : U(u) ⊂ X → Y and g : V (f(u)) ⊂ Y → Z

be given, where U(u) and V (f(u)) are open neighborhoods of the points u ∈ X and f(u) ∈ Y ,
respectively. Letm ∈ N be fixed. If the Fréchet derivatives f (m)(u) and g(m)(f(u)) exist, then
the Fréchet derivative (g ◦ f)(m)(u) exists and, form = 1, it holds:

(g ◦ f)′(u) = g′(f(u)) ◦ f ′(u).

Theorem B.43 — Product rule (weak derivatives) [20, Sec. 9.1, Prop. 9.4, p. 269].
Let Ω ⊂ Rd, d ∈ N, be a nonempty open set and let f, g ∈W 1,p(Ω) ∩ L∞(Ω) with p ∈ [1,∞].
Then fg ∈W 1,p(Ω) ∩ L∞(Ω) and

Dxi(fg) = gDxif + fDxig for i ∈ {1, . . . , d}.

Theorem B.44 — Product rule (Fréchet) [186, Sec. 2.2, Satz 2.7, p. 45].
Let X,Y, Z,W be real Banach spaces and let U ⊂ X be an open set. Let f : U → Y , g : U → Z

be Fréchet differentiable and B : Y × Z →W be a producta.
Then the function F : U → W : x 7→ B(f(x), g(x)) is Fréchet differentiable and, for the
derivative DxF ∈ L(X,W ), it holds

DxF (x)[h] = B(Dxf(x)[h], g(x)) +B(f(x),Dxg(x)[h]) for all h ∈ X.
a See [186, Sec. 2.2, Def. 2.6, p. 45].
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B.1.3 Bochner and Lebesgue spaces

We refer to [43, XVIII, p. 467 ff.], [235, Ch. 23, p. 402 ff.], [93, Sec. 1.3.2, p. 36 ff.], [186, Ch. 2, p. 33
ff.], [56, Ch. 7-8, p. 150 ff.] for an introduction to Bochner spaces and the notion of weak time
derivatives.

Theorem B.45 — Pettis [232, Sec. V.4, p. 131].
Let I ⊂ R be a real interval and let X be a real Banach space.
A function f : I → X is Bochner measurablea if and only if it is weakly measurableb and
λ-almost separably valuedc.
Especially, ifX is a separable Banach space, this implies that f : I → X is Bochner measurable
if and only if for all x∗ ∈ X∗ the function I → R, t 7→ 〈x∗, f(t)〉X∗ is Lebesgue measurable [56,
Sec. 7.1, Thm. 7.1.12, p. 154].
a A function f : I → X is called Bochner measurable if there is a sequence of simple functions sk : I → X , i.e.,
sk =

∑mk
i=1 1Ek,i (t)xi with Lebesgue-measurable sets Ek,i ⊂ I and xi ∈ X , such that sk(t)→ f(t) for a.a. t ∈ I .

b A function f : I → X is called weakly measurable if for all x∗ ∈ X∗ the function I → R, t 7→ 〈x∗, f(t)〉X∗ is
Lebesgue measurable.

c A function f : I → X is called λ-almost separably valued, if there exists a Lebesgue measurable subsetM ⊂ I with
Lebesgue measure zero such that the set {f(t) | t ∈ I\M} ⊂ X is separable.

Lemma B.46 — Bochner measurable → Lebesgue measurable [186, Sec. 2.1, Lem. 1.7, p. 34].
LetX be a reflexive real Banach space and let T ∈ R>0. If f : (0, T )→ X is Bochnermeasurable,
then ‖f(·)‖X : (0, T )→ R, t 7→ ‖f(t)‖X is Lebesgue measurable.

Theorem B.47 — Bochner [186, Sec. 2.1, Thm. 1.12, p. 36], [186, Sec. 2.1, Cor. 1.14, p. 37].
Let X be a reflexive real Banach space and let I ⊂ R be Lebesgue measurable. A Bochner-
measurable function f : I → X is Bochner integrable if and only if the function ‖f(·)‖X : I → R
is Lebesgue integrable. Furthermore, let f : I → X be Bochner integrable and let x∗ ∈ X∗.
Then ∥∥∥∥∥

∫ T

0

f(t) dt

∥∥∥∥∥
X

≤
∫ T

0

‖f(t)‖X dt

and 〈
x∗,
∫ T

0

f(t) dt

〉
X∗,X

=

∫ T

0

〈x∗, f(t)〉X∗,X dt . (B.3)

Theorem B.48 — Bochner spaces [93, Sec. 1.3.2.2, Thm. 1.31, p. 39].
Let X be a separable real Banach space. Then, for p ∈ [1,∞] and T ∈ R>0, the spaces
Lp((0, T );X) are Banach spaces. For p ∈ [1,∞), the dual space of Lp((0, T );X) can be
isometrically identified with Lq((0, T );X∗) for q ∈ [1,∞) with 1

p + 1
q = 1 by means of the
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pairing

〈v, y〉Lq((0,T );X∗),Lp((0,T );X) =

∫ T

0

〈v(t), y(t)〉X∗,X dt .

IfH is a separable real Hilbert space, then L2((0, T );H) is a Hilbert space with inner product

(v, y)L2((0,T );H) :=

∫ T

0

(v(t), y(t))H dt .

Lemma B.49 — Relation between Lebesgue and Bochner spacesa.
Let Ω ⊂ Rd, d ∈ N, be a nonempty Lebesgue-measurable set and let T ∈ R>0.

1. For p ∈ [1,∞), the spaces Lp((0, T )×Ω) and Lp((0, T );Lp(Ω)) are isometrically isomorph,
i.e., we can identify a function f ∈ Lp((0, T )× Ω) as an element f̂ ∈ Lp((0, T );Lp(Ω))

by means of the map
f̂(t) := f(t, ·) for a.a. t ∈ (0, T ) (B.4)

and it holds
∥∥∥f̂∥∥∥

Lp((0,T );Lp(Ω))
= ‖f‖Lp((0,T )×Ω).

2. The spaces L∞((0, T )×Ω) and L∞((0, T );L∞(Ω)) are not isomorph (by means of (B.4)).
a The proof is given in the Appendix B.2.6.

Lemma B.50 — Isometric isomorphism between spaces of continuous functions (cf. [56, Sec. 9.1, Ex.
9.2, p. 258])a.
Let Ω ⊂ Rd, d ∈ N, be a nonempty open set and let T ∈ R>0. We can identify

C0([0, T ]× Ω)
∼
= C0([0, T ]; C0(Ω)) (B.5)

by means of an isometric isomorphism.
a The proof is given in Appendix B.2.7.

B.1.4 Embeddings

Lemma B.51 — Density results.

1. Let Ω ⊂ Rd, d ∈ N, be a nonempty open set and let f ∈ Ck(Ω). Then all classical partial
derivatives of f up to order k are also generalized derivatives [235, §21.1, Prop. 21.3, p.
232]. Especially, if Ω is bounded, this implies Ck(Ω) ↪→ Hk(Ω).

2. Let Ω ⊂ Rd, d ∈ N, be a bounded domain with Lipschitz boundary. Then C∞(Ω) is
dense inW k,p(Ω) for all k ∈ N0, p ∈ [1,∞).a [235, §21.2, Cor. 21.15, p. 239]b

3. Let X be a separable real Banach space and let p ∈ [1,∞), T ∈ R>0. Then C∞c ((0, T );X)

as well as Ck([0, T ];X), k ∈ N0, are dense in Lp((0, T );X). [93, Sec. 1.3.2.2, Lem. 1.9, p.
39] Furthermore, the continuous kth derivative ϑk : [0, T ]→ X is, at the same time, also
the generalized kth derivative of ϑ on (0, T ). [235, §23.5, Ex. 23.16, p. 418]
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4. LetX be a separable real Banach space and let f ∈ Lp((0, T );X) for p ∈ [1,∞), T ∈ R>0.
Then there is a sequence (sk)k∈N of simple functionsc with sk → f a.e. in (0, T ) and
sk → f in Lp((0, T );X). [93, Sec. 1.3.2.2, Lem. 1.9, p. 39]

a With C∞(Ω) ⊂ Ck(Ω) ⊂ Hk(Ω), this implies that also Ck(Ω) is dense inHk(Ω).
b The given reference states that C∞(Ω) is dense only inHk(Ω), k ∈ N0. We lift this statement to the more general
case ofWk,p(Ω) by means of the Sobolev embeddings in Theorem B.56.

c We call s : (0, T )→ X a simple function if it has the form s(t) =
∑m
k=1 1Ek (t)sk with Lebesgue-measurable sets

Ek ⊂ (0, T ) and sk ∈ X [93, Sec. 1.3.2.2, Def. 1.22, p. 37].

Lemma B.52 — Continuous functions viewed as L∞ functionsa.

1. Let Ω ⊂ Rd, d ∈ N, be a Lebesgue-measurable set. We have the continuous embedding

C0(Ω) ↪→ L∞(Ω). (B.6)

2. Let X be a real Banach spaceb and let T ∈ R>0. We have the continuous embedding

C0([0, T ];X) ↪→ L∞((0, T );X).

a The proof is given in Appendix B.2.8.
b For p ∈ [1,∞), we get that C0([0, T ];X) ↪→ Lp((0, T );X) is dense, see [235, §23.2, Prop. 23.2 (c), p. 407].

Theorem B.53 — Trace theorem.
Let Ω ⊂ Rd, d ∈ N, be a bounded domain with Lipschitz boundary Γ.a

1. For p ∈ [1,∞], there exists a unique linear continuous mapping

tr : W 1,p(Ω)→ Lp(Γ) (trace operator)

such that
tr(f) = f |Γ for all f ∈W 1,p ∩ C0(Ω).

We call tr(f) the trace of f on Γ. [4, Sec. A6.6, p. 279]

2. For d ≥ 2, p ∈ (1,∞), there exists a unique surjective linear continuous mapping

tr : W 1,p(Ω)→W 1− 1
p ,p(Γ)

such thatb c

tr(f) = f |Γ for all y ∈ C1(Ω).

[236, App. (48) - (49), p. 1029–1030]
a For d = 1, we consider Ω to be a bounded open interval. In this case, from the Sobolev embeddings in Theorem

B.56, we getW 1,p(Ω) ↪→ C0(Ω), which allows us to evaluate functions inW 1,p(Ω) on the boundary of Ω, cf. [236,
App. (48)–(49), p. 1029–1030].

b For details on fractional Sobolev spaces in this context, see [85, Sec. 1.3, p. 14 ff.].
c Note that C1(Ω) ⊂W 1,p(Ω), see Lemma B.51.
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Lemma B.54 — Embedding of Bochner spaces [235, §23.2, Prop. 23.2 (h), p. 407].
Let X,Y be real Banach spaces with the continuous embedding X ↪→ Y , p, q ∈ [1,∞] with
q ≤ p, and T ∈ R>0. Then we have the continuous embedding

Lp((0, T );X) ↪→ Lq((0, T );Y ).

Lemma B.55 — Embedding of Lebesgue spaces [235, §18.6, Ex. 18.14, p. 37].
LetΩ ⊂ Rd, d ∈ N, be a nonempty, bounded and Lebesgue-measurable set and let p, q ∈ [1,∞]

with q ≤ p. Then we have the continuous embedding

Lp(Ω) ↪→ Lq(Ω). (B.7)

Theorem B.56 — Sobolev embedding (see [93, Sec. 1.2.2.9, Thm. 1.14, p. 22] and references therein).
Let Ω ⊂ Rd, d ∈ N, be a nonempty, open and bounded set with Lipschitz boundary. Letm ∈ N
and p ∈ [1,∞).

1. For all k ∈ N0 and β ∈ (0, 1) with

m− d

p
≥ k + β,

we have the continuous embedding

Wm,p(Ω) ↪→ Ck,β(Ω).

2. For all k ∈ N0 and β ∈ [0, 1] with

m− d

p
> k + β,

we have the compact embedding

Wm,p(Ω) ↪→↪→ Ck,β(Ω).

3. For q ∈ [1,∞) and l ∈ N0 with
m− d

p
≥ l − d

q
,

we have the continuous embeddinga

Wm,p(Ω) ↪→W l,q(Ω).

The embedding is compact, if

m > l and m− d

p
> l − d

q
.
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4. Form ∈ N0 and p, q ∈ [1,∞] with q ≤ p, we get the continuous embedding

Wm,p(Ω) ↪→Wm,q(Ω).

[236, App. (45c), p. 1027]
a For l = 0, we haveW 0,q(Ω) = Lq(Ω).

Theorem B.57 — Compact embedding in Bochner spaces [202, Sec. 8, Cor. 4, p. 85].
Let T ∈ R>0 and letX,B, Y be real Banach spaces with compact and continuous embeddings

X ↪→↪→ B ↪→ Y.

Let M ⊆ L∞((0, T );X) be bounded and let {Dt f | f ∈ M} ⊆ Lp((0, T );Y ), p ∈ (1,∞), be
bounded. ThenM is relatively compact

a in C0([0, T ];B), i.e., its closureM is compact.
a See [202, Sec. 2, p. 70] for the definition of relatively compact.

Corollary B.58
Let Ω ⊂ Rd, d ∈ {2, 3}, be a nonempty, open and bounded set with Lipschitz boundary,
p ∈ (1,∞) and T ∈ R>0. Then we have the compact embeddinga

L∞((0, T );H2(Ω)) ∩W 1,p((0, T );L2(Ω)) ↪→↪→ C0([0, T ]× Ω).

a The proof is given in Appendix B.2.9.

Theorem B.59 — Embedding in Hölder spaces I [4, Sec. 8.6, p. 338].
Let Ω ⊂ Rd, d ∈ N, be a nonempty, open and bounded set and let k1, k2 ∈ N0 and α1, α2 ∈ [0, 1]

with
k1 + α1 > k2 + α2.

In case k1 > 0, we additionally assume that the domain Ω has a Lipschitz boundary.
Then we have the compact embedding

Ck1,α1(Ω) ↪→↪→ Ck2,α2(Ω). (B.8)

Theorem B.60 — Embedding Hölder spaces II [175, Sec. 1, Thm. 1.1, p. 1].
Let Ω ⊂ Rd, d ∈ N, a nonempty, open and bounded set with Lipschitz boundary and let
T ∈ R>0. For p, q ∈ (1,∞) with 1

p + d
q < 1, we have the compact embedding

Lp((0, T );W 1,q(Ω)) ∩W 1,p((0, T );Lq(Ω)) ↪→↪→ C0,α((0, T )× Ω)

for every 0 ≤ α < p−1
p − d

q .
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Theorem B.61 — Aubin–Lions [186, Sec. 3.3.6, Lem. 3.74, p. 121].
Let X,X0, X1 be real Banach spaces, with X0, X1 being reflexive, and let the following
embeddings hold:

X0 ↪→↪→ X ↪→ X1.

Let p0, p1 ∈ (1,∞) and T ∈ R>0 and define the space

W0 := {f ∈ Lp0((0, T );X0) | f ′ ∈ Lp1((0, T );X1)}

equipped with the norm

‖y‖W0
:= ‖f‖Lp0 ((0,T );X0) + ‖f ′‖Lp1 ((0,T );X1) .

ThenW0 is a reflexive Banach space with the compact embedding

W0 ↪→↪→ Lp0((0, T );X).

Theorem B.62 — H2(Ω) regularity [85, Sec. 2.3.3, Thm. 2.3.3.2, p. 106].
Let Ω ⊂ Rd, d ∈ N, be a nonempty, open and bounded set and Γ its boundary of class C1,1 (see
[85, Sec. 1.2.1, Def. 1.2.1.1, p. 5]). Let the operator A be of divergence form

Ay := −
d∑

i,j=1

Di(aijDjy)

with aij = aji ∈ C0,1(Ω) such that there exists an α > 0 with

d∑
i,j=1

aij(x)ξiξj ≥ α |ξ|2 for all x ∈ Ω and ξ ∈ Rd.

The operator B is the co-normal derivative of y w.r.t. A, i.e.,

By := −
d∑
i=1

(

d∑
j=1

aijnj)Diy on Γ

with n the unit outer normal vector field on Γ.
Then, for p ∈ (1,∞), there exists a constant C such that

‖y‖W 2,p(Ω) ≤ C
(
‖Ay‖Lp(Ω) + ‖By‖

W
1− 1

p
,p

(Γ)
+ ‖y‖W 1,p(Ω)

)
for all y ∈W 2,p(Ω).
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B.1.5 Miscellaneous

Theorem B.63 — Lax–Milgram [63, Sec. 6.2.1, Thm. 1, p. 297].
Let H be a real Hilbert space and let B : H ×H → R be a bilinear mapping for which there
exist constants c, C > 0 such that

|B(y, ϕ)| ≤ C ‖y‖H ‖ϕ‖H for all y, ϕ,∈ H (continuity)

and
c ‖y‖2H ≤ B(y, y) for all y ∈ H. (coercivity)

Finally, let f : H → R be a bounded linear functional.
Then there exists a unique element y ∈ H such that

B(y, ϕ) = 〈f, ϕ〉H for all ϕ ∈ H. (B.9)

We note that Theorem B.63 and the coercivity of the bilinear form imply a bound on the solution
of the variational problem (B.9):

‖y‖H ≤
1

c
‖f‖H∗ .

Theorem B.64 — Leray–Schauder fixed-point theorem [81, Sec. 11.4, Thm. 11.6, p. 286].
LetX be a real Banach space and let S : X × [0, 1]→ X be a continuous and compact mapping
such that

S(x, 0) = 0 for all x ∈ X.

Suppose there exists a constantM > 0 such that

‖x‖X < M

for all (x, σ) ∈ X × [0, 1] satisfying x = S(x, σ).
Then the mapping T1 : X → X, x 7→ T (x, 1) has a fixed point.

Lemma B.65 — Some spectral theory [235, §22.11, Thm. 22.E, p. 353].
Let H 6= {0} be a separable real Hilbert space and S : H → H be a linear, symmetric, compact
and strictly monotone operator. Then the operator S has a (countable) complete orthonormal
system a of eigenvectors inH . The eigenvalues ofS are positive and they have finitemultiplicity.
The eigenvectors related to two different eigenvalues are orthogonal to each other.
a See [235, §19.5, Def. 19.10, p. 117] for details on complete orthonormal systems.

Theorem B.66 — Nemytskii [217, Sec. 4.3.1, Lem. 4.11, p. 157], [217, Sec. 4.3.2, Lem. 4.13, p. 161].
LetQ ⊆ Rd, d ∈ N, be a nonempty, open and bounded set and let ϕ = ϕ(q, ω) : Q×R→ R be a
function. For each fixed ω ∈ R, let ϕ(·, ω) : Q→ R be Lebesgue measurable, and, for a.a. q ∈ Q,
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let ϕ(q, ·) : R→ R be k-times differentiable fora k ∈ {0, 1}. We assume that there is a constant
K ∈ R>0 such that

∣∣Dl
ω ϕ(q, 0)

∣∣ ≤ K for a.a. q ∈ Q and all l ∈ {0, . . . , k}. Furthermore, we
assume that, for every constantM > 0, there is a constant L(M) ∈ R>0 such that the estimate∣∣Dk

ω ϕ(q, ω)−Dk
ω ϕ(q, ω̂)

∣∣ ≤ L(M) |ω − ω̂| is fulfilled for a.a. q ∈ Q and all ω, ω̂ ∈ [−M,M ].b

Then the following holds:

1. For k ∈ {0, 1}, the associated Nemytskii operator

φ : L∞(Q)→ L∞(Q), ω 7→ ϕ(·, ω(·)) (B.10)

is well defined and continuous. Furthermore, for p ∈ [1,∞] and ω, ω̂ ∈ L∞(Q) with
‖ω‖L∞(Q) ≤M , ‖ω̂‖L∞(Q) ≤M , the estimate

‖φ(ω)− φ(ω̂)‖Lp(Q) ≤ L(M) ‖ω − ω̂‖Lp(Q)

holds.

2. For k = 1, the associated Nemytskii operator (B.10) is continuously Fréchet differentiable
on L∞(Q) and, for h ∈ L∞(Q), it holds

(Dφ(ω)[h]) (q) = Dω ϕ(q, ω(q))h(q) for a.a. q ∈ Q.
a The zeroth derivative of a function corresponds to the function itself.
b For k = 0, this means that ϕ(q, ·) is locally Lipschitz continuous.

Remark B.67 — Sufficient condition for a Nemytskii operator [217, Sec. 4.3.2, p. 161].
All functions ϕ = ϕ(ω) in C2(R) fulfill the prerequisites of Theorem B.66 and generate
continuously Fréchet-differentiable Nemytskii operators in L∞(Q).

Theorem B.68 — Arzelà–Ascoli [186, Sec. A.12, Satz 12.4, p. 192].
Let Ω ⊂ Rd, d ∈ N, be a nonempty, open and bounded set. Then a subset M ⊂ C0(Ω) is
relatively compact

a b if and only ifM is bounded and uniformly equicontinuous
c.

a The space C0(Ω) is equipped with the uniform norm ‖f‖C0(Ω) = sup
x∈Ω

|f(x)|.
b The setM is relatively compact ifM is compact.
c The setM is uniformly equicontinuous if for all ε > 0 there is a δ > 0 such that for all f ∈ M and all x, y ∈ Ω

with ‖x− y‖ < δ it holds |f(x)− f(y)| < ε.

Lemma B.69 — Projection operator [93, Sec. 1.7.1, Lem. 1.11, p. 69].
LetH be a Hilbert space and letA ⊂ H be a nonempty, closed and convex subset. Furthermore,
let P : H → A denote the projection onto A. Then, for all x ∈ H and all α > 0, the following
conditions are equivalent:

(1) w ∈ A, (x, v − w)X ≥ 0 for all v ∈ A.
(2) w − P (w − αx) = 0.
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B.2 Proofs for the Hitchhiker’s guide
B.2.1 Proof of Lemma B.4

Proof. The first result regarding dual pairings is given in [36, Sec. 1.3, Prop. 1.29, p. 16]. It is
left to show that Z is complete. Let (zk)k∈N = ((xk, yk))k∈N ⊂ X × Y be a Cauchy sequence
w.r.t. the Z norm, which implies that (xk)k∈N and (yk)k∈N are Cauchy sequences in X and Y ,
respectively. Because X and Y are complete, there are elements x ∈ X, y ∈ Y such that

xk → x in X and yk → y in Y.

This implies immediately zk → z = (x, y) in Z in the given norm, thus, Z is complete. �

B.2.2 Proof of Lemma B.17

Proof. For x∗ ∈ X∗, the map 〈x∗, y〉Y : Y → R, y 7→ 〈x∗, j(y)〉X defines an element in Y ∗. In
fact, the map is linear by construction and the continuity follows from

|〈x∗, y〉Y | = |〈x∗, j(y)〉X | ≤ ‖x∗‖X∗ ‖j(y)‖X ≤ C ‖x∗‖X∗ ‖y‖Y .

Next, we consider a weakly convergent sequence (yk)k∈N ⊂ Y with yk ⇀ y, y ∈ Y , i.e., for all
y∗ ∈ Y ∗ it holds 〈y∗, yk〉Y → 〈y∗, y〉Y .
For x∗ ∈ X∗, we have seen above that 〈x∗, j(·)〉X defines an element in Y ∗, which implies
〈x∗, j(yk)〉X → 〈x∗, j(yk)〉X and, thus, weak convergence in X . �

B.2.3 Proof of Lemma B.38

Proof. The first result follows from [56, Sec. 8.1, Cor. 8.1.10, p. 211], where we need only that
H1(Ω)

dense
↪→ L2(Ω) ↪→ H1(Ω)∗ form a Gelfand triple (see Subsection 2.2.1). The required dense

embedding follows from C∞(Ω) ⊂ H1(Ω) ⊂ L2(Ω) and the density of C∞(Ω) in L2(Ω), see
Lemma B.51.
The second result is given by means of the fundamental theorem of calculus in Bochner
spaces2 because the map t 7→ ‖f(t)‖2L2(Ω) is an element of W 1,1((0, T );R). In fact, the map

t 7→
(
‖f(t)‖2L2(Ω)

)′
= 2 〈f ′(t), f(t)〉H1(Ω) is an element of L1((0, T );R), see Theorem B.36. With

the embedding f ∈ L2((0, T );H1(Ω)) ↪→ L2((0, T );L2(Ω)), it follows that also the map
t 7→ ‖f(t)‖2L2(Ω) is an element of L1((0, T );R). �

B.2.4 Proof of Theorem B.39

Proof. We reproduce the proof in [43, XVIII §5 2.2, Lem. 1, p. 559], which is given for the case of
f ∈ L∞((0, T )) and µ ∈ L1((0, T )).
Note that f ∈ L∞((0, T )), µ ∈ L1((0, T )) imply that fµ ∈ L1((0, T )), thus, the map given by
F (t) :=

∫ t
0
µ(s)f(s) ds + C is absolutely continuous and it holds F ′(t) = f(t)µ(t) for a.a

t ∈ [0, T ], see Theorem B.31.
From (B.2), we deduce

F ′(t)
F (t)

≤ µ(t) for a.a. t ∈ [0, T ],

2 See the fundamental theorem of calculus in Bochner spaces B.33.
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which implies

log

(
F (t)

C

)
≤
∫ t

0

µ(s) ds

with the same constant as before, and consequently

f(t) ≤ F (t) ≤ C exp

(∫ t

0

µ(s) ds

)
for a.a. t ∈ [0, T ].

�

B.2.5 Proof of Lemma B.40

Proof. The functions h = fg as well as f ′g are elements of L2(I;Hk(Ω)). In fact, because of
f ∈ L2(I;R), we can approximate f by simple functions sk : [0, T ]→ R such that sk(t)→ f(t)

for a.a. t ∈ [0, T ]. This yields a sequence of simple functions ŝk : [0, T ]→ H1(Ω), ŝk(t) := sk(t)g

with ŝk(t) → h(t) in Hk(Ω) for a.a. t ∈ [0, T ], thus, h is Bochner measurable. Furthermore, it
holds ∫ T

0

‖h(t)‖2Hk(Ω) dt =

∫ T

0

|f(t)|2 ‖g‖2Hk(Ω) dt =

∫ T

0

|f(t)|2 dt ‖g‖2Hk(Ω) <∞.

The proof for f ′g goes analogously.

1. First, we show Dα(h′)(t) = f ′(t)Dαg.

Note that h′ = f ′g holds. In fact, for ϕ ∈ C∞c ((0, T )), it holds by the definition of f ′ that∫ T

0

ϕ′(t)h(t) dt =

∫ T

0

ϕ′(t)f(t)g dt =

∫ T

0

ϕ′(t)f(t) dt g

= (−1)

∫ T

0

ϕ(t)f ′(t) dt g = (−1)

∫ T

0

ϕ(t)(f ′(t)g) dt .

For the last step, let ϕ ∈ C∞c (Ω). We get from the definition of Dαg that∫
Ω

(Dαϕ(x))h′(t)(x) dx =

∫
Ω

(Dαϕ(x)) f ′(t)g(x) dx =

∫
Ω

(Dαϕ(x)) g(x) dx f ′(t)

= (−1)|α|
∫

Ω

ϕ(x)Dαg(x) dx f ′(t)

= (−1)|α|
∫

Ω

ϕ(x) (f ′(t)Dαg(x)) dx ,

which yields the desired result.

2. Next, we show (Dαh)
′
(t) = f ′(t)Dαg, where Dαh refers to the map

Dαh : (0, T )→ Hk−|α|(Ω), t 7→ Dα (h(t)) ,

which is well defined because of h(t) ∈ Hk(Ω).

Similarly as above, we can show that Dα (h(t)) = f(t)Dαg for a.a. t ∈ (0, T ).

The maps (0, T ) → Hk−|α|(Ω), t 7→ f(t)Dαg and (0, T ) → Hk−|α|(Ω), t 7→ f ′(t)Dαg are
both elements of L2((0, T );Hk−|α|(Ω)) as seen earlier in this proof.



B.2 Proofs for the Hitchhiker’s guide 215

For ϕ ∈ C∞c ((0, T )), we now get the desired result from the following computation:∫ T

0

ϕ′(t)Dα (h(t)) dt =

∫ T

0

ϕ′(t)f(t)Dαg dt =

∫ T

0

ϕ′(t)f(t) dtDαg

= (−1)

∫ T

0

ϕ(t)f ′(t) dtDαg = (−1)

∫ T

0

ϕ(t) (f ′(t)Dαg) dt .

�

B.2.6 Proof of Lemma B.49

Proof. 1. This is a well known result, see [186, Sec. 2.1.1, p. 40]. The proof is based on Fubini’s
theorem3 and Pettis’ theorem4, and is given for the case of the spatial dimension equal to
one, i.e., d = 1, in [56, Sec. 7.1, Thm. 7.1.24, p. 165].

2. One can construct the following counter example5: The function

f : (0, 1)× (0, 1)→ R, f(t, x) =

1, x ≤ t,
0, else

is an element of L∞((0, 1)× (0, 1)), but the function

f̂ : (0, 1)→ L∞((0, 1)), f̃(t) := f(t, ·)

is not Bochner measurable, hence f̂ 6∈ L∞((0, 1);L∞((0, 1))). In fact, Pettis’ theorem6 states
that a function like f̂ is Bochner measurable if and only if it is weakly measurable and
separably valued. The function f̂ is not separably valued because the range f̂((0, 1)\M) =

{1(0,t] | t ∈ (0, 1)\M} ⊂ L∞((0, 1)), where 1(0,t] : (0, 1) → {0, 1} denotes the indicator
function of the interval (0, t] andM ⊂ (0, 1) denotes an arbitrary subset with Lebesgue
measure zero, contains no dense subset w.r.t. the L∞((0, 1)) norm and, thus, is not
separable.

A variant of this proof can be found in [56, Sec. 7.1, Ex. 7.1.27, p. 167].
�

B.2.7 Proof of Lemma B.50

Proof. 1. “C0([0, T ]× Ω) ⊆ C0([0, T ]; C0(Ω))”

Let f̂ ∈ C0([0, T ]×Ω) and let ε > 0. We define f : [0, T ]→ C0(Ω), t 7→ f̂(t, ·). The function
f̂ is uniformly continuous7, i.e., there is a δ > 0 such that, for all (t, x), (t̂, x̂) ∈ [0, T ]× Ω

with
∥∥(t, x)− (t̂, x̂)

∥∥
∞ < δ, we get

∣∣∣f̂(t, x)− f̂(t̂, x̂)
∣∣∣ < ε

2 . For t, t̂ ∈ [0, T ] with
∣∣t− t̂∣∣ < δ,

we get ∥∥f(t)− f(t̂)
∥∥
C0(Ω)

= sup
x∈Ω

∣∣∣f̂(t, x)− f̂(t̂, x)
∣∣∣ < ε,

which gives us f ∈ C0([0, T ]; C0(Ω)).

3 See Fubini’s theorem B.2.
4 See Pettis’ theorem B.45.
5 See also [15, Sec. 1.1, Ex. 1.1.5, p. 10], [184, Sec. 1.5, Ex. 1.42, p. 24].
6 See Pettis’ theorem B.45.
7 See Lemma B.5 on uniform continuity.
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2. “C0([0, T ]× Ω) ⊇ C0([0, T ]; C0(Ω))”

Let f ∈ C0([0, T ]; C0(Ω)), ε > 0 and (t, x) ∈ Q. Wedefine f̂ : [0, T ]×Ω→ R, (t, x) 7→ f(t)(x).
Because of f ∈ C0([0, T ]; C0(Ω)), there is a δ1 > 0 such that, for all t̂ ∈ [0, T ]with

∣∣t̂− t∣∣ < δ1,
it holds

∥∥f(t̂)− f(t)
∥∥
C0(Ω)

< ε
2 . With f(t) ∈ C0(Ω), there is another δ2 > 0 such that, for

all x̂ ∈ Ω with ‖x̂− x‖∞ < δ2, it holds |f(t)(x̂)− f(t)(x)| < ε
2 .

We choose δ := min{δ1, δ2} and get for (t̂, x̂) ∈ [0, T ]× Ω with
∥∥(t̂, x̂)− (t, x)

∥∥
∞ < δ that∣∣∣f̂(t̂, x̂)− f̂(t, x)

∣∣∣ ≤ ∣∣∣f̂(t̂, x̂)− f̂(t, x̂)
∣∣∣+
∣∣∣f̂(t, x̂)− f̂(t, x)

∣∣∣
≤
∥∥f(t̂)− f(t)

∥∥
C0(Ω)

+ |f(t)(x̂)− f(t)(x)| < ε,

which implies f̂ ∈ C0([0, T ]× Ω).
�

B.2.8 Proof of Lemma B.52

Proof. 1. Lemma B.3 tells us that an element in C0(Ω) is measurable. With this, we identify
an element in C0(Ω) as an element in L∞(Ω), and the finite value of its uniform norm is
translated to the value of its essential-supremum.

2. See [56, Sec. 7.1, Thm. 7.1.23, p. 164].
�

B.2.9 Proof of Corollary B.58

Proof. It holds
H2(Ω) ↪→↪→ C0, 14 (Ω)

(B.8)
↪→ C0(Ω),

where the first embedding corresponds to a classical Sobolev embedding8, and

C0(Ω)
(B.6)
↪→ L∞(Ω)

(B.7)
↪→ L2(Ω).

Together with Lemma B.19 and the fact, that a chain of continuous functions is again continuous,
we get the embeddings

H2(Ω) ↪→↪→ C0(Ω) ↪→ L2(Ω).

With Theorem B.57, we infer the compact embedding

L∞(I;H2(Ω)) ∩W 1,p((0, T );L2(Ω)) ↪→↪→ C0(I; C0(Ω))
(B.5)∼
= C0(Q).

�

8 See classical Sobolev embeddings in Theorem B.56, with 2− d
2
> β for d ∈ {2, 3}, β ∈ (0, 1

2
).
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Second-order formulation of the
PN equations

Documentation is more like “the first time”: everybody thinks it’s good, everybody thinks all

others have done it, but not much has happened so far.

Yet another opinion on source code and its documentation

C.1 Details for Chapter 5
C.1.1 Proof of Lemma 5.18

Proof.

Use symmetry properties of the real spherical harmonics and the scattering kernel.

We show the result only for even K̂ (ξ), i.e., K̂ (ξ) = K̂ (−ξ). The case where K̂ (ξ) is odd
works analogously. The final result then follows by considering the even-odd decomposi-
tion of the general kernel as K̂ (ξ) = K̂e (ξ) + K̂o (ξ), where K̂e (ξ) = 1

2

(
K̂ (ξ) + K̂ (−ξ)

)
and

K̂o (ξ) = 1
2

(
K̂ (ξ)− K̂ (−ξ)

)
denote the even and odd parts of K̂ (ξ), respectively.

Let R(v) ∈ R3×3 be any rotation matrix that rotates v to e3, i.e., R(v)v = e3 with det(R) = 1.
We define the new parameterization of v′ as

v̂ =
[√

1− µ̂2 cos(ϕ̂)
√

1− µ̂2 sin(ϕ̂) µ̂
]T

:= R(v)v′.

With the choice of our angular basis, it can be shown [16, 148] that there is a rotation matrix
R (v) ∈ Rno×no with

bo(R(v)Tv̂) = RT (v)bo(v̂),

which holds analogously for the vector of even basis functions. The substitution rule now implies

Σeo =

∫
S2

∫
S2

be(v)bT
o (v′)K̂

(
vTv′

)
dv ′ dv

=

∫
S2

∫ 1

−1

∫ 2π

0

be(v)bT
o (R(v)Tv̂)K̂ (µ̂) dϕ̂ dµ̂ dv

=

∫
S2

be(v)

∫ 1

−1

∫ 2π

0

bT
o (R(v)Tv̂)K̂ (µ̂) dϕ̂ dµ̂ dv

=

∫
S2

be(v)

∫ 1

−1

∫ 2π

0

bT
o (v̂)K̂ (µ̂) dϕ̂ dµ̂ R (v) dv .
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We now consider only the inner integral∫ 1

−1

∫ 2π

0

bT
o (v̂)K̂ (µ̂) dϕ̂ dµ̂

=

∫ 1

0

∫ 2π

0

bT
o (v̂)K̂ (µ̂) dϕ̂ dµ̂ +

∫ 0

−1

∫ 2π

0

bT
o (v̂)K̂ (µ̂) dϕ̂ dµ̂

=

∫ 1

0

∫ 2π

0

bT
o (v̂)K̂ (µ̂) dϕ̂ dµ̂ +

∫ 1

0

∫ 2π

0

bT
o



√

1− µ̂2 cos(ϕ̂)√
1− µ̂2 sin(ϕ̂)

−µ̂


 K̂ (−µ̂) dϕ̂ dµ̂

=

∫ 1

0

∫ 2π

0

bT
o (v̂)K̂ (µ̂) dϕ̂ dµ̂ +

∫ 1

0

∫ π

−π
bT
o



√

1− µ̂2 cos(ϕ̂+ π)√
1− µ̂2 sin(ϕ̂+ π)

−µ̂


 K̂ (−µ̂) dϕ̂ dµ̂

=

∫ 1

0

∫ 2π

0

bT
o (v̂)K̂ (µ̂) dϕ̂ dµ̂ +

∫ 1

0

∫ π

−π
bT
o (−v̂) K̂ (−µ̂) dϕ̂ dµ̂

1
=

∫ 1

0

∫ 2π

0

bT
o (v̂)K̂ (µ̂) dϕ̂ dµ̂ −

∫ 1

0

∫ π

−π
bT
o (v̂) K̂ (µ̂) dϕ̂ dµ̂

=

∫ 1

0

∫ 2π

0

bT
o (v̂)K̂ (µ̂) dϕ̂ dµ̂ −

∫ 1

0

∫ 2π

0

bT
o (v̂) K̂ (µ̂) dϕ̂ dµ̂

=0,

which implies Σeo = 0 as well. The proof works in the same way for odd kernels, where we
define the rotation matrix such thatR(v′)v′ = e3 and define v̂ = R(v′)v, and consider only the
integral with respect to v. �

C.1.2 Proof of Lemma 5.15

Proof.

Show that Coo is negative definite.

It holds by definition

Σoo =

∫
S2

∫
S2

bo(v)bo(v
′)TK (v,v′) dv ′ dv .

Especially, Σoo is symmetric due to the symmetry of K. Let c ∈ Rno and define a(v) := cTbo(v).
Then it holds:

cT (σsΣoo − σtEno) c = σs

∫
S2

∫
S2

K (v,v′) a(v)a(v′) dv ′ dv − σt ‖c‖22

=
σs
2

∫
S2

∫
S2

K (v,v′)
(
a2(v) + a2(v′)− (a(v)− a(v′))

2
)

dv ′ dv − σt ‖c‖22
(A2)
= σs

〈
a2
〉
− σs

2

∫
S2

∫
S2

K (v,v′) (a(v)− a(v′))
2

dv ′ dv − σt ‖c‖22
(A1)

≤ σs
〈
a2
〉
− σs

2

∫
S2

∫
S2

K0 (a(v)− a(v′))
2

dv ′ dv − σt ‖c‖22

= σs(1−K0)
〈
a2
〉

+ σsK0

∫
S2

∫
S2

a(v)a(v′) dv ′ dv − σt ‖c‖22
(C.1)
= σs(1−K0)

〈
a2
〉
− σt ‖c‖22

(C.2)
= (σs(1−K0)− σt) ‖c‖22 = − (σsK0 + σa) ‖c‖22 ,

1 Use that K̂ (ξ) is even.
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where we used that
〈a〉 =

∫
S2

a(v) dv = cT

∫
S2

bo(v) dv = 0, (C.1)

which holds because every entry in bo is orthogonal to b0 = 1√
4π

and, thus, orthogonal to all
constants w.r.t. 〈·〉, and that

〈
a2
〉

= cT

∫
S2

bob
T
o dv c

ONB
= cTc = ‖c‖22 . (C.2)

In particular, since σt = σa + σs > 0 and K0 > 0, we get that σsK0 + σa > 0, which implies that
Coo is negative definite and therefore invertible. �

C.1.3 Proof of Lemma 5.20

Proof.

Use symmetry properties of the real spherical harmonics.

The rotation matrix that rotates a vector around the axis n =
[
nx ny nz

]
by an angle of 180◦

is given by

R =

2n2
x − 1 2nxny 2nxnz

2nynx 2n2
y − 1 2nynz

2nznx 2nzny 2n2
z − 1

 .

The reflection of v at the plane {v ∈ S2 |n · v = 0} can be represented by a rotation around n by
an angle of 180◦ and a subsequent negation:

r (v) = v − 2(n · v)n =

vx − 2nx (vxnx + vyny + vznz)

vy − 2ny (vxnx + vyny + vznz)

vz − 2nz (vxnx + vyny + vznz)

 = −Rv.

Like in the proof of Lemma 5.18, there is a rotation matrix Rπ (n) ∈ Rno×no , depending only on
n, with

bo(Rv) = Rπ (n)bo(v).

We use the parity of the odd real spherical harmonics, i.e., bo(−Rv) = −bo(Rv), and our
assumption that the reflectivity ρ does not depend on v, and rewrite the matrix as

Ho(n) =

∫
n·v<0

bo(v)
(
bT
o (v) + ρbT

o (v)RT
π (n)

)
dv =

∫
n·v<0

bo(v)bT
o (v) dv

(
Eno + ρRT

π (n)
)
.

Thus, the matrix Ho(n) is invertible if
∫
n·v<0

bo(v)bT
o (v) dv and Eno + ρRT

π (n) are invertible.
For a vector c ∈ Rno \ {0}, it holds

cT

∫
n·v<0

bo(v)bT
o (v) dv c =

∫
n·v<0

(cTbo(v))2 dv > 0

because of c 6= 0 and the real spherical harmonics being linearly independent and continuous.
Thus, the matrix

∫
n·v<0

bo(v)bT
o (v) dv is symmetric, positive definite and, with this, invertible.

The Neumann series2 implies thatEno +ρRT
π (n) is invertible if

∥∥ρRT
π (n)

∥∥ < 1 for some operator

2 See [4, Sec. 3.7, p. 153] for details on the Neumann series.
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norm ‖·‖. In particular, since RT
π (n) is a rotation matrix, it holds

∥∥RT
π (n)

∥∥
2

= 1 (operator norm
induced by the Euclidean norm), and we get

∥∥ρRT
π (n)

∥∥ < 1 if |ρ| < 1.
Wewould like to note that we are note the first ones who use rotationmatrices to derive boundary
conditions. This has been done in a different way, e.g., in [146, 148]. �



BibliographyBibliography

[1] C. D. Aliprantis and K. C. Border. Infinite Dimensional Analysis: A Hitchhiker’s Guide.
English. 2nd ed. Springer, 1999. isbn: 978-3-662-03961-8 doi: 10.1007/978-3-662-03961-8
(see p. 193)

[2] G. W. Alldredge, C. D. Hauck, and A. L. Tits.High-Order Entropy-Based Closures for Linear

Transport in Slab Geometry II: A Computational Study of the Optimization Problem. SIAM
Journal on Scientific Computing, 34: B361–B391, 2012. doi: 10.1137/11084772X (see p. 108)

[3] M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson,
J. Ring, M. E. Rognes, and G. N. Wells. The FEniCS Project Version 1.5. Archive of

Numerical Software, 3: 9–23, 2015. doi: 10.11588/ans.2015.100.20553 url: https:
//fenicsproject.org/(see pp. 64, 100, 101, 115)

[4] H. W. Alt. Lineare Funktionalanalysis. German. 6th ed. Springer, 2012. isbn: 978-3-642-
22260-3 doi: 10.1007/978-3-642-22261-0 (see pp. 23, 48, 169, 175, 195–200, 207, 209,
219, 243, 244)

[5] H. Amann and J. Escher. Analysis II. German. 2nd ed. Birkhäuser Verlag, Basel, 2006.
xii+400 isbn: 3-7643-7105-6 doi: 10.1007/3-7643-7402-0 (see p. 192)

[6] C. Amrouche, C. Conca, A. Ghosh, and T. Ghosh. UniformW 1,p
estimates for an elliptic

operator with Robin boundary condition in a C1
domain. Calculus of Variations and Partial

Differential Equations, 59: Paper No. 71, 25, 2020. doi: 10.1007/s00526-020-1713-y (see
pp. 25, 40)

[7] M. Andres. Improving thermal ablation of liver tumors: Modeling and parameter identification of

laser-induced thermotherapy. Free online version of this thesis. doi: 10.26204/KLUEDO/6322
url: https://doi.org/10.26204/KLUEDO/6322(see p. vii)

[8] M. Andres. Improving thermal ablation of liver tumors: Modeling and parameter identification

of laser-induced thermotherapy. Codes and numerical results. Code repository of this thesis,
which contains all Matlab and Python codes used to perform the numerical experiments
of this thesis, including the data of the corresponding results ready to be displayed. doi:
10.26204/data/3 url: https://doi.org/10.26204/data/3(see pp. vii, 9, 63, 66, 78, 100,
101, 110, 117)

[9] M. Andres, S. Blauth, C. Leithäuser, and N. Siedow. Identification of the blood perfusion

rate for laser-induced thermotherapy in the liver. Journal of Mathematics in Industry, 10: 1–20,
2020. doi: 10.1186/s13362-020-00085-1 (see pp. vii, 8, 11, 15, 44, 74, 77, 81, 86, 146)

https://doi.org/10.1007/978-3-662-03961-8
https://doi.org/10.1137/11084772X
https://doi.org/10.11588/ans.2015.100.20553
https://fenicsproject.org/
https://fenicsproject.org/
https://doi.org/10.1007/978-3-642-22261-0
https://doi.org/10.1007/3-7643-7402-0
https://doi.org/10.1007/s00526-020-1713-y
https://doi.org/10.26204/KLUEDO/6322
https://doi.org/10.26204/KLUEDO/6322
https://doi.org/10.26204/data/3
https://doi.org/10.26204/data/3
https://doi.org/10.1186/s13362-020-00085-1


222 Bibliography

[10] M. Andres and R. Pinnau. Improving Thermal Ablation of Liver Tumors. in: Progress
in Industrial Mathematics at ECMI 2018. Springer, 2019. isbn: 978-3-030-27550-1 doi:
10.1007/978-3-030-27550-1 (see pp. vii, 8, 15, 74, 77, 81)

[11] M. Andres and R. Pinnau. The Cattaneo Model for Laser-Induced Thermotherapy: Identification

of the Blood Perfusion Rate. in: Modeling, Simulation and Optimization in the Health- and

Energy-Sector. Accepted Springer, 2021. (see pp. vii, 8, 15, 17, 74, 77, 81)

[12] M. Andres and R. Pinnau. The Cattaneo Model in the context of Thermoablation of Liver

Tumors. in: Proceedings in Applied Mathematics and Mechanics (PAMM). vol. 19 1 Wiley,
2019. e201900241 doi: 10.1002/pamm.201900241 (see pp. vii, 8, 15, 74, 77)

[13] M. Andres and F. Schneider. The second-order formulation of the PN equations with Marshak

boundary conditions. 2019. url: https://arxiv.org/abs/1911.00468(see pp. vii, 8, 98,
122)

[14] Apiumhub. Apiumhub Tech Blog. Accessed: 2020-06-27. url: https://apiumhub.com/tech-
blog-barcelona/programming-jokes-quotes/(see pp. 63, 117)

[15] W. Arendt, C. J. K. Batty, M. Hieber, and F. Neubrander. Vector-valued Laplace Transforms

and Cauchy Problems. English. 2nd ed. vol. 96 Monographs in Mathematics. Birkhäuser
/ Springer Basel AG, 2011. xii+539 isbn: 978-3-0348-0086-0 doi: 10.1007/978-3-0348-
0087-7 (see pp. 201, 215)

[16] M. A. Blanco, M. Flórez, and M. Bermejo. Evaluation of the rotation matrices in the basis of

real spherical harmonics. Journal of Molecular Structure: THEOCHEM, 419: 19–27, 1997 issn:
0166-1280. doi: 10.1016/S0166-1280(97)00185-1 (see pp. 104, 117, 217)

[17] S. Blauth. Optimal Control and Asymptotic Analysis of the Cattaneo Model. Master thesis,
Technische Universität Kaiserslautern, 90, 2018. url: http://nbn-resolving.de/urn:
nbn:de:hbz:386-kluedo-53727(see pp. 8, 21, 23, 25, 27, 146, 159)

[18] S. Blauth, M. Andres, R. Pinnau, and C. Totzeck. Optimal Control and Asymptotic Analysis

of the Cattaneo Equation. in: Proceedings in Applied Mathematics and Mechanics (PAMM).
vol. 19 1 Wiley, 2019. e201900184 doi: 10.1002/pamm.201900184 (see pp. vii, 8, 15)

[19] S. Blauth, F. Hübner, C. Leithäuser, N. Siedow, and T. J. Vogl. Mathematical modeling

of vaporization during laser-induced thermotherapy in liver tissue. Journal of Mathematics in

Industry, 10: 2020. doi: 10.1186/s13362-020-00082-4 (see p. 4)

[20] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. English.
Universitext. Springer, NewYork, 2011. xiv+599 isbn: 978-0-387-70913-0 doi: 10.1007/978-
0-387-70914-7 (see pp. 152, 197–199, 204)

[21] T. A. Brunner. Forms of Approximate Radiation Transport. Sandia report, 2002. doi: 10.2172/
800993 (see pp. 97, 99, 100, 102, 108, 247)

[22] T. A. Brunner and J. P. Holloway. One-dimensional Riemann solvers and the maximum

entropy closure. Journal of Quantitative Spectroscopy and Radiative Transfer, 69: 543–566, 2001
issn: 00224073. doi: 10.1016/S0022-4073(00)00099-6 (see p. 108)

[23] T. A. Brunner and J. P. Holloway. Two-dimensional time dependent Riemann solvers for

neutron transport. Journal of Computational Physics, 210: 386–399, 2005 issn: 0021-9991. doi:
10.1016/j.jcp.2005.04.011 (see pp. 104, 108)

https://doi.org/10.1007/978-3-030-27550-1
https://doi.org/10.1002/pamm.201900241
https://arxiv.org/abs/1911.00468
https://apiumhub.com/tech-blog-barcelona/programming-jokes-quotes/
https://apiumhub.com/tech-blog-barcelona/programming-jokes-quotes/
https://doi.org/10.1007/978-3-0348-0087-7
https://doi.org/10.1007/978-3-0348-0087-7
https://doi.org/10.1016/S0166-1280(97)00185-1
http://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-53727
http://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-53727
https://doi.org/10.1002/pamm.201900184
https://doi.org/10.1186/s13362-020-00082-4
https://doi.org/10.1007/978-0-387-70914-7
https://doi.org/10.1007/978-0-387-70914-7
https://doi.org/10.2172/800993
https://doi.org/10.2172/800993
https://doi.org/10.1016/S0022-4073(00)00099-6
https://doi.org/10.1016/j.jcp.2005.04.011


Bibliography 223

[24] M. F. Carfora. Interpolation on spherical geodesic grids: A comparative study. Journal of
Computational and Applied Mathematics, 210: Proceedings of the Numerical Analysis
Conference 2005, 99–105, 2007 issn: 0377-0427. doi: 10.1016/j.cam.2006.10.068 (see
p. 121)

[25] A. Carpentier, R. J. McNichols, R. J. Stafford, J. Itzcovitz, J.-P. Guichard, D. Reizine,
S. Delaloge, E. Vicaut, D. Payen, A. Gowda, and B. George. Real-time Magnetic Resonance-

guided Laser Thermal Therapy for Focal Metastatic Brain Tumors. Operative Neurosurgery, 63:
ONS21–ONS29, 2008 issn: 2332-4252. doi: 10.1227/01.NEU.0000311254.63848.72 (see
p. 4)

[26] E. Casas, R. Herzog, and G. Wachsmuth. Optimality Conditions and Error Analysis of

Semilinear Elliptic Control Problems with L1
Cost Functional. SIAM Journal on Optimization,

22: 795–820, 2012 issn: 1052-6234. doi: 10.1137/110834366 (see pp. 46, 58, 177)

[27] C. Cattaneo. Sulla Conduzione del Calore.Atti del SeminarioMatematico e Fisico dell’Università

di Modena, 3: 83–101, 1948. (see pp. 15, 18)

[28] C. Cercignani. The Boltzmann Equation and Its Applications. English. Applied mathematical
sciences ; 67. Springer, Berlin u.a., 1988. isbn: 3-540-96637-4 doi: 10.1007/978-1-4612-
1039-9 (see p. 101)

[29] J. Cernohorsky and S. Bludman.Maximum entropy distribution and closure for Bose-Einstein

and Fermi-Dirac radiation transport. The Astrophysical Journal, Part 1, 433: 250–255, 1994. url:
http://adsabs.harvard.edu/full/1994ApJ...433..250C(see p. 108)

[30] D. S. Chandrasekharaiah.Hyperbolic Thermoelasticity: A Review of Recent Literature.Applied
Mechanics Reviews, 51: 705–729, 1998 issn: 0003-6900. doi: 10.1115/1.3098984 (see p. 17)

[31] M. M. Chen and K. R. Holmes. Microvascular contributions in tissue heat transfer. Annals of
the New York Academy of Sciences, 335: 137–150, 1980. doi: 10.1111/j.1749-6632.1980.
tb50742.x (see p. 44)

[32] J. Chiang, M. Cristescu, M. H. Lee, A. Moreland, J. L. Hinshaw, F. T. Lee, and C. L.
Brace. Effects of Microwave Ablation on Arterial and Venous Vasculature after Treatment of

Hepatocellular Carcinoma. Radiology, 281: PMID: 27257951, 617–624, 2016. doi: 10.1148/
radiol.2016152508 (see pp. 4, 43, 44, 64)

[33] J. Chiang, K. Hynes, and C. L. Brace. Flow-dependent vascular heat transfer during microwave

thermal ablation. in: 2012 Annual International Conference of the IEEE Engineering in Medicine

and Biology Society. IEEE 2012. 5582–5585 doi: 10.1109/EMBC.2012.6347259 (see pp. 4,
43)

[34] J. Chiang, K. Nickel, R. J. Kimple, and C. L. Brace. Potential Mechanisms of Vascular

Thrombosis after Microwave Ablation in an in Vivo Liver. Journal of Vascular and Interventional

Radiology, 28: 1053–1058, 2017. doi: 10.1016/j.jvir.2017.03.034 (see p. 44)

[35] P. Chidyagwai, M. Frank, F. Schneider, and B. Seibold. A comparative study of limiting

strategies in discontinuous Galerkin schemes for theM1 model of radiation transport. Journal of
Computational and Applied Mathematics, 342: 399–418, 2018 issn: 0377-0427. doi: 10.1016/
j.cam.2018.04.017 (see p. 108)

https://doi.org/10.1016/j.cam.2006.10.068
https://doi.org/10.1227/01.NEU.0000311254.63848.72
https://doi.org/10.1137/110834366
https://doi.org/10.1007/978-1-4612-1039-9
https://doi.org/10.1007/978-1-4612-1039-9
http://adsabs.harvard.edu/full/1994ApJ...433..250C
https://doi.org/10.1115/1.3098984
https://doi.org/10.1111/j.1749-6632.1980.tb50742.x
https://doi.org/10.1111/j.1749-6632.1980.tb50742.x
https://doi.org/10.1148/radiol.2016152508
https://doi.org/10.1148/radiol.2016152508
https://doi.org/10.1109/EMBC.2012.6347259
https://doi.org/10.1016/j.jvir.2017.03.034
https://doi.org/10.1016/j.cam.2018.04.017
https://doi.org/10.1016/j.cam.2018.04.017


224 Bibliography

[36] F. Clarke. Functional Analysis, Calculus of Variations and Optimal Control. English. vol. 264
Graduate Texts in Mathematics. Springer Science & Business Media, 2013. isbn: 978-1-
4471-4819-7 doi: 10.1007/978-1-4471-4820-3 (see pp. 200, 213)

[37] F. H. Clarke. Optimization and Nonsmooth Analysis. English. 2nd ed. Classics in applied
mathematics; 5. Reprint, originally published:NewYork:Wiley, 1983. Society for Industrial
and Applied Mathematics, 1990. isbn: 0-89871-256-4 doi: 10.1137/1.9781611971309 (see
p. 46)

[38] P. Colli, G. Gilardi, P. Podio-Guidugli, and J. Sprekels. Distributed optimal control of a

nonstandard system of phase field equations. Continuum Mechanics and Thermodynamics, 24:
437–459, 2012. doi: 10.1007/s00161-011-0215-8 (see pp. 50, 51, 55, 57, 58)

[39] J. B. Conway. A Course in Functional Analysis. English. 2nd ed. vol. 96 Graduate Texts in
Mathematics. Springer-Verlag, New York, 1990. isbn: 0-387-97245-5 doi: 10.1007/978-1-
4757-4383-8 (see p. 197)

[40] Creative Commons. Creative Commons Licensing: Public Domain Dedication (CC0 1.0 Univer-

sal). Accessed: 2020-06-01. url: https://creativecommons.org/publicdomain/zero/1.
0/(see p. 10)

[41] G. Da Fies, A. Sommariva, and V. M. SUBP: Matlab package for subperiodic trigonometric

quadrature and multivariate applications. Repository which contains codes for product
Gaussian quadrature on circular and spherical sections (licensed under GPL 2). Accessed:
2020-01-04. url: https://www.math.unipd.it/~marcov/mysoft/subp/all.tar(see
p. 119)

[42] G. Da Fies and M. Vianello. Trigonometric Gaussian quadrature on subintervals of the period.
Electronic Transactions on Numerical Analysis, 39: 102–112, 2012. url: http://emis.impa.
br/EMIS/journals/ETNA/vol.39.2012/pp102-112.dir/pp102-112.pdf(see p. 118)

[43] R. Dautray and J.-L. Lions.Mathematical Analysis and Numerical Methods for Science and

Technology. Vol. 5. Evolution Problems I. English. With the collaboration of Michel Artola,
Michel Cessenat andHélène Lanchon, Translated from the French byAlanCraig. Springer-
Verlag, Berlin, 2000. xiv+709 isbn: 978-3-540-66101-6 doi: 10.1007/978-3-642-58090-1
(see pp. 22, 23, 45, 151, 158–162, 196, 202, 203, 205, 213)

[44] R. Dautray and J.-L. Lions.Mathematical Analysis and Numerical Methods for Science and

Technology. Vol. 6. Evolution problems II. English. With the collaboration of Claude Bardos,
Michel Cessenat, Alain Kavenoky, Patrick Lascaux, Bertrand Mercier, Olivier Pironneau,
Bruno Scheurer, Rémi Sentis. Translated from the French by Alan Craig. Springer-Verlag,
Berlin, 2000. isbn: 978-3-540-66102-3 doi: 10.1007/978-3-642-58004-8 (see p. 103)

[45] J. A. Davis. Variational Vacuum Boundary Conditions for a PN Approximation. Nuclear Science
and Engineering, 25: 189–197, 1966. doi: 10.13182/NSE66-A17736 (see p. 107)

[46] B. Davison and J. B. Sykes. Neutron transport theory. English. 2nd ed. Reprint, originally
published 1957. Oxford University Press, 1958. doi: 10.2307/3610992 (see pp. 99, 107)

[47] W. Demtröder. Experimentalphysik 1. German. 8th ed. Springer, Berlin, Heidelberg, 2018.
isbn: 9783662548462 doi: 10.1007/978-3-662-54847-9 (see pp. 5, 11, 101)

https://doi.org/10.1007/978-1-4471-4820-3
https://doi.org/10.1137/1.9781611971309
https://doi.org/10.1007/s00161-011-0215-8
https://doi.org/10.1007/978-1-4757-4383-8
https://doi.org/10.1007/978-1-4757-4383-8
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://www.math.unipd.it/~marcov/mysoft/subp/all.tar
http://emis.impa.br/EMIS/journals/ETNA/vol.39.2012/pp102-112.dir/pp102-112.pdf
http://emis.impa.br/EMIS/journals/ETNA/vol.39.2012/pp102-112.dir/pp102-112.pdf
https://doi.org/10.1007/978-3-642-58090-1
https://doi.org/10.1007/978-3-642-58004-8
https://doi.org/10.13182/NSE66-A17736
https://doi.org/10.2307/3610992
https://doi.org/10.1007/978-3-662-54847-9


Bibliography 225

[48] W. Demtröder. Experimentalphysik 2. German. 7th ed. Springer, Berlin, Heidelberg, 2018.
isbn: 978-3-662-55789-1 doi: 10.1007/978-3-662-55790-7 (see pp. 97, 137)

[49] N. Dietrich, T. Marx, and R. Pinnau. Shape Optimization in Phosphate Production. in:
Proceedings in Applied Mathematics and Mechanics (PAMM). vol. 19 1 2019. e201900207 doi:
10.1002/pamm.201900207 (see p. 9)

[50] L. A. Dombrovsky. Scattering of Radiation and Simple Approaches to Radiative Transfer in

Thermal Engineering and Biomedical Applications. in: Springer Series in Light Scattering.
Springer, 2019. 71–127 doi: 10.1007/978-3-030-20587-4_2 (see p. 4)

[51] R. Dua and S. Chakraborty. A novel modeling and simulation technique of photo–thermal

interactions between lasers and living biological tissues undergoing multiple changes in phase.
Computers in biology and medicine, 35: 447–462, 2005. doi: 10.1016/j.compbiomed.2004.
02.005 (see pp. 3, 6)

[52] B. Dubroca, J.-L. Feugeas, and M. Frank. Angular moment model for the Fokker-Planck

equation. The European Physical Journal D, 60: 301–307, 2010 issn: 1434-6060. doi: 10.1140/
epjd/e2010-00190-8 (see p. 103)

[53] B. Dubroca and A. Klar. Half-Moment Closure for Radiative Transfer Equations. Journal of
Computational Physics, 180: 584–596, 2002. doi: 10.1006/jcph.2002.7106 (see p. 108)

[54] A. S. Eddington. The Internal Constitution of the Stars. English. Dover, 1926. (see p. 107)

[55] J. Elstrodt. Maß- und Integrationstheorie. German. 8th ed. Springer, Berlin, Heidelberg,
2018. isbn: 978-3-662-57939-8 doi: 10.1007/978-3-662-57939-8 (see pp. 28, 200–202,
243)

[56] E. Emmrich. Gewöhnliche und Operator-Differentialgleichungen. German. 1st ed. Vieweg
Verlag, 2004. isbn: 13:978-3-528-03213-5 doi: 10.1007/978-3-322-80240-8 (see pp. 22,
154, 174, 203, 205, 206, 213, 215, 216)

[57] Encyclopaedia Britannica. Absorption. Accessed: 2020-09-14, 1998. url: https://www.
britannica.com/science/absorption-physics(see p. 243)

[58] Encyclopaedia Britannica. Convection. Accessed: 2020-09-14, 2019. url: https://www.
britannica.com/science/convection(see p. 244)

[59] Encyclopaedia Britannica. Scattering. Accessed: 2020-09-14, 2008. url: https://www.
britannica.com/science/scattering(see p. 247)

[60] Encyclopaedia Britannica. Thermal conduction. Accessed: 2020-09-14, 2018. url: https:
//www.britannica.com/science/thermal-conduction(see p. 244)

[61] Encyclopaedia Britannica. Thermal Radiation. Accessed: 2020-09-14, 2018. url: https:
//www.britannica.com/science/thermal-radiation(see p. 247)

[62] H. Engler. Computation of scattering kernels in radiative transfer. 2018. doi: 10.1016/j.
jqsrt.2015.06.019 url: arXiv:1501.02407(see p. 135)

[63] L. C. Evans. Partial Differential Equations. English. 1st ed. vol. 19 Graduate Studies in
Mathematics. (Careful: the stated doi refers to the second edition). American Math. Soc.,
1998. isbn: 0-8218-0772-2 doi: 10.1090/gsm/019 (see pp. 20, 21, 41, 114, 120, 151, 199, 201,
204, 211)

https://doi.org/10.1007/978-3-662-55790-7
https://doi.org/10.1002/pamm.201900207
https://doi.org/10.1007/978-3-030-20587-4_2
https://doi.org/10.1016/j.compbiomed.2004.02.005
https://doi.org/10.1016/j.compbiomed.2004.02.005
https://doi.org/10.1140/epjd/e2010-00190-8
https://doi.org/10.1140/epjd/e2010-00190-8
https://doi.org/10.1006/jcph.2002.7106
https://doi.org/10.1007/978-3-662-57939-8
https://doi.org/10.1007/978-3-322-80240-8
https://www.britannica.com/science/absorption-physics
https://www.britannica.com/science/absorption-physics
https://www.britannica.com/science/convection
https://www.britannica.com/science/convection
https://www.britannica.com/science/scattering
https://www.britannica.com/science/scattering
https://www.britannica.com/science/thermal-conduction
https://www.britannica.com/science/thermal-conduction
https://www.britannica.com/science/thermal-radiation
https://www.britannica.com/science/thermal-radiation
https://doi.org/10.1016/j.jqsrt.2015.06.019
https://doi.org/10.1016/j.jqsrt.2015.06.019
arXiv:1501.02407
https://doi.org/10.1090/gsm/019


226 Bibliography

[64] F. Fanjul-Vélez, O. G. Romanov, and J. L. Arce-Diego. Efficient 3D numerical approach for

temperature prediction in laser irradiated biological tissues. Computers in Biology and Medicine,
39: 810–817, 2009. doi: 10.1016/j.compbiomed.2009.06.009 (see p. 4)

[65] A. Fasano, D. Hömberg, and D. Naumov. On a mathematical model for laser-induced

thermotherapy. Applied Mathematical Modelling. Simulation and Computation for Engineering

and Environmental Systems, 34: 3831–3840, 2010 issn: 0307-904X. doi: 10.1016/j.apm.
2010.03.023 (see pp. 1, 3–6, 10, 11, 64, 97, 130, 132, 133, 147, 244)

[66] Y. Feng, D. Fuentes, A. Hawkins, J. M. Bass, and M. N. Rylander.Optimization and real-time

control for laser treatment of heterogeneous soft tissues. Computer methods in applied mechanics

and engineering, 198: 1742–1750, 2009. doi: 10.1016/j.cma.2008.12.027 (see pp. 4, 43)

[67] T. Fließbach. Elektrodynamik: Lehrbuch zur Theoretischen Physik II. German. 6th ed. Springer
Spektrum, 2012. isbn: 978-3-8274-3035-9 doi: 10.1007/978-3-8274-3036-6 (see p. 105)

[68] Y. Fong, J. Fortner, R. L. Sun, M. F. Brennan, and L. H. Blumgart. Clinical Score for
Predicting Recurrence After Hepatic Resection for Metastatic Colorectal Cancer: Analysis of 1001

Consecutive Cases. Annals of surgery, 230: 309, 1999. doi: 10.1097/00000658-199909000-
00004 (see p. 2)

[69] O. Forster. Analysis 1. German. 12th ed. Springer Fachmedien Wiesbaden, 2016. isbn:
9783658115449 doi: 10.1007/978-3-658-11545-6 (see p. 29)

[70] O. Forster. Analysis 2. German. 11th ed. Springer Fachmedien Wiesbaden, 2017. isbn:
978-3-658-19410-9 doi: 10.1007/978-3-658-19411-6 (see pp. 194, 204)

[71] M. Frank, B. Dubroca, and A. Klar. Partial moment entropy approximation to radiative heat

transfer. Journal of Computational Physics, 218: 1–18, 2006.doi:10.1016/j.jcp.2006.01.038
(see p. 108)

[72] D. Fuentes, Y. Feng, A. Elliott, A. Shetty, R. J. McNichols, J. T. Oden, and R. J. Stafford.
Adaptive Real-Time Bioheat Transfer Models for Computer-Driven MR-Guided Laser Induced

Thermal Therapy. IEEE transactions on biomedical engineering, 57: 1024–1030, 2010. doi:
10.1109/TBME.2009.2037733 (see p. 4)

[73] S. Funke. The Moola optimisation package. url: https://github.com/funsim/moola(see
p. 78)

[74] T. Gallouet and A. Monier. On the regularity of solutions to elliptic equations. Rendiconti
di Matematica e delle sue Applicazioni. Serie VII, 19: 471–488, 1999 issn: 1120-7183. url:
https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/1999(4)/471-

488.pdf(see pp. 173, 174, 176, 180)

[75] C. K. Garrett andC. D. Hauck.AComparison ofMoment Closures for Linear Kinetic Transport

Equations: The Line Source Benchmark. Transport Theory and Statistical Physics, 42: 203–235,
2013. doi: 10.1080/00411450.2014.910226 (see p. 108)

[76] W. Ge. High-Order Spherical Harmonics Methods for Radiative Heat Transfer and Applications

in Combustion Simulations. PhD thesis, UC Merced, 2017. url: https://escholarship.
org/uc/item/2g85768d(see p. 99)

https://doi.org/10.1016/j.compbiomed.2009.06.009
https://doi.org/10.1016/j.apm.2010.03.023
https://doi.org/10.1016/j.apm.2010.03.023
https://doi.org/10.1016/j.cma.2008.12.027
https://doi.org/10.1007/978-3-8274-3036-6
https://doi.org/10.1097/00000658-199909000-00004
https://doi.org/10.1097/00000658-199909000-00004
https://doi.org/10.1007/978-3-658-11545-6
https://doi.org/10.1007/978-3-658-19411-6
https://doi.org/10.1016/j.jcp.2006.01.038
https://doi.org/10.1109/TBME.2009.2037733
https://github.com/funsim/moola
https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/1999(4)/471-488.pdf
https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/1999(4)/471-488.pdf
https://doi.org/10.1080/00411450.2014.910226
https://escholarship.org/uc/item/2g85768d
https://escholarship.org/uc/item/2g85768d


Bibliography 227

[77] W. Ge, R. Marquez, M. F. Modest, and S. P. Roy. Implementation of High-Order Spherical

Harmonics Methods for Radiative Heat Transfer on OpenFOAM. Journal of Heat Transfer, 137:
052701, 2015. doi: 10.1115/1.4029546 (see p. 99)

[78] C. Geuzaine and J.-F. Remacle. Gmsh: a three-dimensional finite element mesh generator

with built-in pre- and post-processing facilities. International Journal for Numerical Methods in

Engineering, 79: 1309–1331, 2009. url: http://www.gmsh.info/(see pp. 64, 67)

[79] H. R. Ghazizadeh, A. Azimi, and M. Maerefat. An inverse problem to estimate relaxation

parameter and order of fractionality in fractional single-phase-lag heat equation. International
Journal of Heat and Mass Transfer, 55: 2095–2101, 2012 issn: 0017-9310. doi: 10.1016/j.
ijheatmasstransfer.2011.12.012 (see pp. 20, 21)

[80] K. Giering, O. Minet, I. Lamprecht, and G. Müller. Review of thermal properties of biological

tissues. in: Laser Induced Interstitial Thermotherapy. SPIE Press Bellingham, WA, USA, 1995.
45–65 isbn: 0-8194-1859-5 (see p. 11)

[81] D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of Second Order.
English. 2nd ed. Reprint of the 1998 edition. Springer, Berlin, Heidelberg, 2001. isbn:
3-540-41160-7 doi: 10.1007/978-3-642-61798-0 (see pp. 41, 211)

[82] S. N. Goldberg, P. F. Hahn, K. K. Tanabe, P. R. Mueller, W. Schima, C. A. Athanasoulis,
C. C. Compton, L. Solbiati, and G. S. Gazelle. Percutaneous Radiofrequency Tissue Ablation:

Does Perfusion-mediated Tissue Cooling Limit Coagulation Necrosis? Journal of Vascular

and Interventional Radiology, 9: 101–111, 1998 issn: 1051-0443. doi: 10.1016/S1051-
0443(98)70491-9 (see p. 4)

[83] H. E. Grecco. Documentation of Python package Pint. Accessed: 2020-04-27. url: https:
//pint.readthedocs.io/en/0.10.1/(see p. 64)

[84] A. Griewank andA. Walther. EvaluatingDerivatives: Principles and Techniques of Algorithmic

Differentiation. English. 2nd ed. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2008. xxii+438 isbn: 978-0-898716-59-7 doi: 10.1137/1.9780898717761
(see p. 78)

[85] P. Grisvard. Elliptic Problems in Nonsmooth Domains. English. vol. 69 Classics in Applied
Mathematics. Reprint of the 1985 original [MR0775683]. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 2011. xx+410 isbn: 978-1-611972-02-3 doi:
10.1137/1.9781611972030 (see pp. 21, 41, 151, 152, 168, 207, 210)

[86] C. Grossmann and H.-G. Roos.Numerical Treatment of Partial Differential Equations. English.
3rd ed. Universitext. Translated and revised from the 3rd (2005) German edition byMartin
Stynes. Springer, Berlin, 2007. xii+591 isbn: 978-3-540-71582-5 doi: 10.1007/978-3-540-
71584-9 (see pp. 63, 65, 120, 124)

[87] L. Grüne and O. Junge. Gewöhnliche Differentialgleichungen. German. 2nd ed. Aktualisierte
Aufl. 2016. Springer Fachmedien Wiesbaden, 2016. isbn: 978-3-658-10241-8 doi: 10.1007/
978-3-658-10241-8 (see p. 65)

[88] S. P. Hamilton and T. M. Evans. Efficient solution of the simplified PN equations. Journal of
Computational Physics, 284: 155–170, 2015 issn: 0021-9991. doi: 10.1016/j.jcp.2014.12.
014 (see pp. 100, 114)

https://doi.org/10.1115/1.4029546
http://www.gmsh.info/
https://doi.org/10.1016/j.ijheatmasstransfer.2011.12.012
https://doi.org/10.1016/j.ijheatmasstransfer.2011.12.012
https://doi.org/10.1007/978-3-642-61798-0
https://doi.org/10.1016/S1051-0443(98)70491-9
https://doi.org/10.1016/S1051-0443(98)70491-9
https://pint.readthedocs.io/en/0.10.1/
https://pint.readthedocs.io/en/0.10.1/
https://doi.org/10.1137/1.9780898717761
https://doi.org/10.1137/1.9781611972030
https://doi.org/10.1007/978-3-540-71584-9
https://doi.org/10.1007/978-3-540-71584-9
https://doi.org/10.1007/978-3-658-10241-8
https://doi.org/10.1007/978-3-658-10241-8
https://doi.org/10.1016/j.jcp.2014.12.014
https://doi.org/10.1016/j.jcp.2014.12.014


228 Bibliography

[89] Q. Han and F. Lin. Elliptic Partial Differential Equations. English. 1st ed. vol. 1 Courant
Lecture Notes in Mathematics. Courant Institute of Mathematical Sciences, New York;
American Mathematical Society, Providence, RI, 2000. isbn: 0-8218-2691-3 doi: 10.1090/
cln/001 (see p. 41)

[90] C. D. Hauck. High-Order Entropy-Based Closures for Linear Transport in Slab Geometry.
Communications in Mathematical Sciences, 9: 2011. doi: 10.4310/CMS.2011.v9.n1.a9
url: https://www.intlpress.com/site/pub/files/_fulltext/journals/cms/2011/
0009/0001/CMS-2011-0009-0001-a009.pdf(see p. 108)

[91] L. G. Henyey and J. L. Greenstein. Diffuse radiation in the Galaxy. Astrophysical Journal, 93:
70–83, 1941. doi: 10.1086/144246 (see p. 102)

[92] N. J. Higham. Handbook of Writing for the Mathematical Sciences. English. 2nd ed. Society
for Industrial and Applied Mathematics, 1998. isbn: 978-0-898714-20-3 url: https:
//archive.siam.org/books/ot63/ (see p. 17)

[93] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with PDE Constraints.
English. vol. 23 Mathematical Modelling: Theory and Applications. Springer, New York,
2009. xii+270 isbn: 978-1-4020-8838-4 doi: 10.1007/978-1-4020-8839-1 (see pp. 22, 25,
38, 47, 50, 51, 58, 59, 77, 162, 164, 168, 176, 181, 194, 195, 198, 201–203, 205–208, 212, 242)

[94] G. Hodan.Original nutshell image on PublicDomainPictures.net; released under Public Domain

license (CC0 1.0). Accessed: 2020-06-01. url: https://www.publicdomainpictures.net/
en/view-image.php?image=165852&picture=walnuts(see p. 10)

[95] F. Hübner, C. Leithäuser, B. Bazrafshan, N. Siedow, and T. J. Vogl. Validation of a

mathematical model for laser-induced thermotherapy in liver tissue. Lasers in Medical Science, 32:
1399–1409, 2017 issn: 1435-604X. doi: 10.1007/s10103-017-2260-4 (see pp. 4, 5, 10, 11,
97, 133, 136, 147)

[96] J. Iljaž and L. Škerget. Blood perfusion estimation in heterogeneous tissue using BEM based

algorithm. Engineering Analysis with Boundary Elements, 39: 75–87, 2014 issn: 0955-7997. doi:
10.1016/j.enganabound.2013.11.002 (see p. 8)

[97] International Organization for Standardization. ISO 9288:1989, Thermal insulation —

Heat transfer by radiation — Physical quantities and definitions. Accessed: 2020-04-22, 1989.
url: https://www.iso.org/obp/ui/#iso:std:iso:9288:ed-1:v1:en(see pp. 97, 245,
246)

[98] IT’IS Foundation. Foundation for Research on Information Technologies in Society (IT’IS).
Database for tissue properties. Accessed: 2020-02-15. url: https://itis.swiss/virtual-
population/tissue-properties/database/density/(see p. 11)

[99] Jing Liu, Xu Chen, and L. X. Xu.New thermal wave aspects on burn evaluation of skin subjected

to instantaneous heating. IEEE Transactions on Biomedical Engineering, 46: 420–428, 1999. doi:
10.1109/10.752939 (see p. 21)

[100] D. D. Joseph and L. Preziosi. Heat waves. Review of Modern Physics, 61: 41–73, 1989. doi:
10.1103/RevModPhys.61.41 (see pp. 17, 18, 20, 21, 71)

https://doi.org/10.1090/cln/001
https://doi.org/10.1090/cln/001
https://doi.org/10.4310/CMS.2011.v9.n1.a9
https://www.intlpress.com/site/pub/files/_fulltext/journals/cms/2011/0009/0001/CMS-2011-0009-0001-a009.pdf
https://www.intlpress.com/site/pub/files/_fulltext/journals/cms/2011/0009/0001/CMS-2011-0009-0001-a009.pdf
https://doi.org/10.1086/144246
https://archive.siam.org/books/ot63/
https://archive.siam.org/books/ot63/
https://doi.org/10.1007/978-1-4020-8839-1
https://www.publicdomainpictures.net/en/view-image.php?image=165852&picture=walnuts
https://www.publicdomainpictures.net/en/view-image.php?image=165852&picture=walnuts
https://doi.org/10.1007/s10103-017-2260-4
https://doi.org/10.1016/j.enganabound.2013.11.002
https://www.iso.org/obp/ui/#iso:std:iso:9288:ed-1:v1:en
https://itis.swiss/virtual-population/tissue-properties/database/density/
https://itis.swiss/virtual-population/tissue-properties/database/density/
https://doi.org/10.1109/10.752939
https://doi.org/10.1103/RevModPhys.61.41


Bibliography 229

[101] J. Jost. Partial Differential Equations. English. 3rd ed. vol. 214 Graduate Texts inMathematics.
Springer, 2013. isbn: 978-1-4614-4808-2 doi: 10.1007/978-1-4614-4809-9 (see pp. 41,
152)

[102] D. Jou, J. Casas-Vázquez, and G. Lebon. Extended irreversible thermodynamics revisited (1988-

98).Reports on Progress in Physics, 62: 1035–1142, 1999. doi: 10.1088/0034-4885/62/7/201
(see pp. 18, 19)

[103] M. Junk. Maximum Entropy for Reduced Moment Problems. Mathematical models and methods

in applied sciences, 10: 1001–1025, 2000. doi: 10.1142/S0218202500000513 (see p. 108)

[104] W. Kaminski. Hyperbolic Heat Conduction Equation for Materials With a Nonhomogeneous

Inner Structure. Journal of Heat Transfer, 112: 555–560, 1990 issn: 0022-1481. doi: 10.1115/1.
2910422 (see pp. 20, 21)

[105] K. Kamiuto. Study of the Henyey-Greenstein approximation to scattering phase functions. Journal
of Quantitative Spectroscopy and Radiative Transfer, 37: 411–413, 1987 issn: 0022-4073. doi:
10.1016/0022-4073(87)90010-0 (see p. 135)

[106] C. T. Kelley. Iterative Methods for Optimization. English. vol. 18 Frontiers in Applied
Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
1999. xvi+180 isbn: 0-89871-433-8 doi: 10.1137/1.9781611970920 (see pp. 59, 61, 83)

[107] D. S. Kershaw Flux limiting nature’s own way: A new method for numerical solution of the

transport equation English tech. rep. LLNL Report UCRL-78378, July 1976 doi: 10.2172/
104974 (see p. 108)

[108] D. E. Keyes, L. C. McInnes, C. Woodward, W. Gropp, E. Myra, M. Pernice, J. Bell, J.
Brown, A. Clo, J. Connors, et al. Multiphysics simulations: Challenges and opportunities.
The International Journal of High Performance Computing Applications, 27: 4–83, 2013. doi:
10.1177/1094342012468181 (see p. 64)

[109] A. Kim and B. C. Wilson. Measurement of Ex Vivo and In Vivo Tissue Optical Properties:

Methods and Theories. in: Optical-Thermal Response of Laser-Irradiated Tissue ed. by A. J.
Welch and M. J. van Gemert. 2nd ed. Springer Netherlands, Dordrecht, 2011. chap. 8,
267–319 isbn: 978-90-481-8831-4 doi: 10.1007/978-90-481-8831-4_8 (see pp. 2, 7, 10)

[110] D. Kinderlehrer and G. Stampacchia. An Introduction to Variational Inequalities and Their

Applications. English. vol. 31 Classics in AppliedMathematics. Reprint of the 1980 original.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. xx+313
isbn: 0-89871-466-4 doi: 10.1137/1.9780898719451 (see pp. 182, 183)

[111] A. D. Klose and E. W. Larsen. Light transport in biological tissue based on the simplified

spherical harmonics equations. Journal of Computational Physics, 220: 441–470, 2006 issn:
0021-9991. doi: 10.1016/j.jcp.2006.07.007 (see p. 100)

[112] C. Knight and A. Newbery. Trigonometric and Gaussian quadrature.Mathematics of Computa-

tion, 24: 575–581, 1970. doi: 10.2307/2004833 (see p. 119)

https://doi.org/10.1007/978-1-4614-4809-9
https://doi.org/10.1088/0034-4885/62/7/201
https://doi.org/10.1142/S0218202500000513
https://doi.org/10.1115/1.2910422
https://doi.org/10.1115/1.2910422
https://doi.org/10.1016/0022-4073(87)90010-0
https://doi.org/10.1137/1.9781611970920
https://doi.org/10.2172/104974
https://doi.org/10.2172/104974
https://doi.org/10.1177/1094342012468181
https://doi.org/10.1007/978-90-481-8831-4_8
https://doi.org/10.1137/1.9780898719451
https://doi.org/10.1016/j.jcp.2006.07.007
https://doi.org/10.2307/2004833


230 Bibliography

[113] T. Kröger, I. Altrogge, T. Preusser, P. L. Pereira, D. Schmidt, A. Weihusen, and H.-O.
Peitgen. Numerical Simulation of Radio Frequency Ablation with State Dependent Material

Parameters in Three Space Dimensions. in:Medical Image Computing and Computer-Assisted

Intervention – MICCAI 2006. ed. by R. Larsen, M. Nielsen, and J. Sporring Springer, Berlin,
Heidelberg, 2006. 380–388 isbn: 978-3-540-44728-3 doi: 10.1007/11866763_47 (see pp. 4,
43)

[114] A. Kröner. Numerical Methods for Control of Second Order Hyperbolic Equations. PhD thesis,
Technische Universität München, 2011. url: https://mediatum.ub.tum.de/doc/
1084592/1084592.pdf(see pp. 15, 21, 23, 160, 163, 164, 243)

[115] H. P. Langtangen and A. Logg. Solving PDEs in Python: The FEniCS Tutorial I. English.
vol. 3 Simula Springer Briefs on Computing. SpringerOpen, 2016. isbn: 978-3-319-52461-0
doi: 10.1007/978-3-319-52462-7 (see pp. 65, 118)

[116] H. P. Langtangen and G. K. Pedersen. Scaling of Differential Equations. English. Springer
International Publishing Berlin, Germany, 2016. isbn: 978-3-319-32725-9 doi: 10.1007/978-
3-319-32726-6 (see pp. 6, 7)

[117] E. W. Larsen and J. E. Morel. Advances in Discrete-Ordinates Methodology. English in:
Nuclear Computational Science: A Century in Review ed. by Y. Azmy and E. Sartori. 1st ed.
Springer, 2010. chap. 1 isbn: 978-90-481-3410-6 doi: 10.1007/978-90-481-3411-3_1 (see
p. 121)

[118] E. W. Larsen and G. C. Pomraning. The PN Theory as an Asymptotic Limit of Transport

Theory in Planar Geometry —I: Analysis. Nuclear Science and Engineering, 109: 49–75, 1991.
doi: 10.13182/NSE91-A23844 (see p. 113)

[119] E. W. Larsen, G. Thömmes, A. Klar, M. Seaïd, and T. Götz. Simplified PN Approximations

to the Equations of Radiative Heat Transfer and Applications. Journal of Computational Physics,
183: 652–675, 2002 issn: 0021-9991. doi: 10.1006/jcph.2002.7210 (see pp. 102, 103)

[120] K. S. Lehmann, B. B. Frericks, C. Holmer, A. Schenk, A. Weihusen, V. Knappe, U.
Zurbuchen, H. O. Peitgen, H. J. Buhr, and J. P. Ritz. In vivo validation of a therapy planning

system for laser-induced thermotherapy (LITT) of liver malignancies. International journal of
colorectal disease, 26: 799, 2011. doi: 10.1007/s00384-011-1175-y (see pp. 4, 7, 10, 43)

[121] R. J. LeVeque. Python Tools for Reproducible Research on Hyperbolic Problems. Computing

in Science Engineering, 11: 19–27, 2009 issn: 1521-9615. doi: 10.1109/MCSE.2009.13 (see
p. 63)

[122] C. D. Levermore. Moment closure hierarchies for kinetic theories. Journal of Statistical Physics,
83: 1021–1065, 1996 issn: 1572-9613. doi: 10.1007/BF02179552 (see p. 102)

[123] C. D. Levermore.Relating Eddington factors to flux limiters. Journal ofQuantitative Spectroscopy

and Radiative Transfer, 31: 149–160, 1984. doi: 10.1016/0022-4073(84)90112-2 (see p. 108)

[124] E. E. Lewis and J. W. F. Miller. Computational Methods in Neutron Transport. English. John
Wiley and Sons, New York, 1984. url: https://inis.iaea.org/search/search.aspx?
orig_q=RN:17089238 (see p. 107)

https://doi.org/10.1007/11866763_47
https://mediatum.ub.tum.de/doc/1084592/1084592.pdf
https://mediatum.ub.tum.de/doc/1084592/1084592.pdf
https://doi.org/10.1007/978-3-319-52462-7
https://doi.org/10.1007/978-3-319-32726-6
https://doi.org/10.1007/978-3-319-32726-6
https://doi.org/10.1007/978-90-481-3411-3_1
https://doi.org/10.13182/NSE91-A23844
https://doi.org/10.1006/jcph.2002.7210
https://doi.org/10.1007/s00384-011-1175-y
https://doi.org/10.1109/MCSE.2009.13
https://doi.org/10.1007/BF02179552
https://doi.org/10.1016/0022-4073(84)90112-2
https://inis.iaea.org/search/search.aspx?orig_q=RN:17089238
https://inis.iaea.org/search/search.aspx?orig_q=RN:17089238


Bibliography 231

[125] J. Liu. Preliminary survey on the mechanisms of the wave-like behaviors of heat transfer in living

tissues. Forschung im Ingenieurwesen, 66: 1–10, 2000. doi: 10.1007/s100100000031 (see
p. 20)

[126] K. Liu, Y. Lu, J. Tian, C. Qin, X. Yang, S. Zhu, X. Yang, Q. Gao, and D. Han. Evaluation
of the simplified spherical harmonics approximation in bioluminescence tomography through

heterogeneous mouse models. Opt. Express, 18: 20988–21002, 2010. doi: 10.1364/OE.18.
020988 (see p. 100)

[127] A. Logg, K.-A. Mardal, and G. Wells. Automated Solution of Differential Equations by the

Finite Element Method: The FEniCS Book. English. vol. 84. Springer Science & Business
Media, 2012. doi: 10.1007/978-3-642-23099-8 (see pp. 100, 101, 115)

[128] J. A. López Molina, M. J. Rivera, M. Trujillo, and E. J. Berjano. Thermal modeling for

pulsed radiofrequency ablation: Analytical study based on hyperbolic heat conduction.Medical

physics, 36: 1112–1119, 2009. doi: 10.1118/1.3085824 (see p. 21)

[129] Q. Lü, X. Zhang, and E. Zuazua. Null controllability for wave equations with memory. Journal
de Mathématiques Pures et Appliquées. Neuvième Série, 108: 500–531, 2017 issn: 0021-7824.
doi: 10.1016/j.matpur.2017.05.001 (see pp. 183, 184, 187)

[130] D. Maillet. A review of the models using the Cattaneo and Vernotte hyperbolic heat equation

and their experimental validation. International Journal of Thermal Sciences, 139: 424–432, 2019
issn: 1290-0729. doi: 10.1016/j.ijthermalsci.2019.02.021 (see pp. 17, 21)

[131] R. Marshak. Note on the spherical harmonic method as applied to the Milne problem for a sphere.
Physical Review, 71: 443, 1947. (see p. 114)

[132] R. C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship. English. Prentice
Hall, Upper Saddle River, NJ u.a., 2009. isbn: 978-0-13-235088-4 (see p. 99)

[133] T. Marx, N. Dietrich, and R. Pinnau. Shape Optimization in High Temperature Processes. in:
Proceedings in Applied Mathematics and Mechanics (PAMM). vol. 19 1 2019. e201900208 doi:
10.1002/pamm.201900208 (see p. 9)

[134] A. Masters, A. Steger, W. Lees, K. Walmsley, and S. Bown. Interstitial laser hyperthermia:

a new approach for treating liver metastases. British journal of cancer, 66: 518–522, 1992. doi:
10.1038/bjc.1992.305 (see p. 4)

[135] MATLAB. Matlab and Symbolic Toolbox Release 2018b. 2018. url: https://de.mathworks.
com/(see pp. 64, 99)

[136] J. C. Maxwell. On the dynamical theory of gases. Philosophical transactions of the Royal

Society of London, (Careful: doi refers to a reprinted version), 49–88, 1867. doi: 10.1142/
9781848161337_0014 (see p. 17)

[137] R. G. McClarren. Theoretical Aspects of the Simplified Pn Equations. Transport Theory and
Statistical Physics, 39: 73–109, 2010. doi: 10.1080/00411450.2010.535088 (see p. 99)

[138] L. R. Mead and N. Papanicolaou.Maximum entropy in the problem of moments. Journal of
Mathematical Physics, 25: 2404, 1984 issn: 00222488. doi: 10.1063/1.526446 (see p. 108)

https://doi.org/10.1007/s100100000031
https://doi.org/10.1364/OE.18.020988
https://doi.org/10.1364/OE.18.020988
https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1118/1.3085824
https://doi.org/10.1016/j.matpur.2017.05.001
https://doi.org/10.1016/j.ijthermalsci.2019.02.021
https://doi.org/10.1002/pamm.201900208
https://doi.org/10.1038/bjc.1992.305
https://de.mathworks.com/
https://de.mathworks.com/
https://doi.org/10.1142/9781848161337_0014
https://doi.org/10.1142/9781848161337_0014
https://doi.org/10.1080/00411450.2010.535088
https://doi.org/10.1063/1.526446


232 Bibliography

[139] R. Medvid, A. Ruiz, R. J. Komotar, J. Jagid, M. Ivan, R. Quencer, and M. Desai. Current
Applications of MRI-Guided Laser Interstitial Thermal Therapy in the Treatment of Brain

Neoplasms and Epilepsy: A Radiologic and Neurosurgical Overview. American Journal of

Neuroradiology, 36: 1998–2006, 2015. doi: 10.3174/ajnr.A4362 (see p. 4)

[140] G. N. Minerbo. Maximum entropy Eddington factors. Journal of Quantitative Spectroscopy and

Radiative Transfer, 20: 541–545, 1978. doi: 10.1016/0022-4073(78)90024-9 (see p. 108)

[141] K. Mitra, S. Kumar, A. Vedevarz, and M. K. Moallemi. Experimental Evidence of Hyperbolic

Heat Conduction in ProcessedMeat. Journal of Heat Transfer, 117: 568–573, 1995 issn: 0022-1481.
doi: 10.1115/1.2822615 (see p. 21)

[142] S. Mitusch. Documentation on how to handle an example of optimal control of the Poisson

equation with the Python package dolfin-adjoint. Accessed: 2020-08-09. url: http://
www.dolfin-adjoint.org/en/latest/documentation/poisson-mother/poisson-

mother.html(see p. 78)

[143] S. Mitusch.Documentation on the Taylor-remainder convergence test implemented in the Python

package dolfin-adjoint. Accessed: 2020-08-09. url: http://www.dolfin-adjoint.org/
en/latest/documentation/verification.html(see p. 78)

[144] S. K. Mitusch, S. W. Funke, and J. S. Dokken. dolfin-adjoint 2018.1: automated Adjoints for

FEniCS and Firedrake. Journal of Open Source Software, 4: 2019. doi: 10.21105/joss.01292
(see p. 64)

[145] M. F. Modest. Radiative Heat Transfer. English. 2nd ed. Academic press, 2003. isbn:
9780125031639 doi: 10.1016/C2010- 0- 65874- 3 (see pp. 97, 99, 100, 107, 113, 114,
120)

[146] M. F. Modest. Further Development of the Elliptic PDE Formulation of the PN Approximation

and its Marshak Boundary Conditions. Numerical Heat Transfer, Part B: Fundamentals, 62:
181–202, 2012. doi: 10.1080/10407790.2012.702645 (see pp. 99, 100, 110, 114, 220)

[147] M. F. Modest, J. Cai, W. Ge, and E. Lee. Elliptic formulation of the Simplified Spherical

Harmonics Method in radiative heat transfer. International Journal of Heat and Mass Transfer,
76: 459–466, 2014 issn: 0017-9310. doi: 10.1016/j.ijheatmasstransfer.2014.04.038
(see p. 100)

[148] M. F. Modest and J. Yang. Elliptic PDE formulation and boundary conditions of the spher-

ical harmonics method of arbitrary order for general three-dimensional geometries. Journal of
Quantitative Spectroscopy and Radiative Transfer, 109: 1641–1666, 2008 issn: 0022-4073. doi:
10.1016/j.jqsrt.2007.12.018 (see pp. 8, 99, 100, 110, 217, 220)

[149] Y. Mohammed and J. F. Verhey. A finite element method model to simulate laser interstitial

thermo therapy in anatomical inhomogeneous regions. Biomedical engineering online, 4: 2, 2005.
doi: 10.1186/1475-925X-4-2 (see p. 4)

[150] J. A. L. Molina, M. J. Rivera, M. Trujillo, and E. J. Berjano. Effect of the thermal wave

in radiofrequency ablation modeling: an analytical study. Physics in Medicine and Biology, 53:
1447–1462, 2008. doi: 10.1088/0031-9155/53/5/018 (see p. 21)

https://doi.org/10.3174/ajnr.A4362
https://doi.org/10.1016/0022-4073(78)90024-9
https://doi.org/10.1115/1.2822615
http://www.dolfin-adjoint.org/en/latest/documentation/poisson-mother/poisson-mother.html
http://www.dolfin-adjoint.org/en/latest/documentation/poisson-mother/poisson-mother.html
http://www.dolfin-adjoint.org/en/latest/documentation/poisson-mother/poisson-mother.html
http://www.dolfin-adjoint.org/en/latest/documentation/verification.html
http://www.dolfin-adjoint.org/en/latest/documentation/verification.html
https://doi.org/10.21105/joss.01292
https://doi.org/10.1016/C2010-0-65874-3
https://doi.org/10.1080/10407790.2012.702645
https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.038
https://doi.org/10.1016/j.jqsrt.2007.12.018
https://doi.org/10.1186/1475-925X-4-2
https://doi.org/10.1088/0031-9155/53/5/018


Bibliography 233

[151] P. Monreal.Moment Realizability and Kershaw Closures in Radiative Transfer. PhD thesis,
RWTH Aachen, 2012. url: http://publications.rwth-aachen.de/record/210538/
files/4482.pdf(see p. 108)

[152] K. Moreland. Bent-Cool-Warm colormap. Accessed: 2020-03-08. url: https://github.
com/kennethmoreland-com/kennethmoreland-com.github.io/blob/master/color-

advice/bent-cool-warm/bent-cool-warm.ipynb(see p. 68)

[153] K. Moreland.WhyWeUse Bad ColorMaps andWhat You Can Do About It. Electronic Imaging,
2016: 1–6, 2016 issn: 2470-1173. doi: 10.2352/ISSN.2470-1173.2016.16.HVEI-133 (see
p. 68)

[154] L. Müller. Investigation of moment models for population balance equations and radiative transfer

equations. PhD thesis, Technische Universität Kaiserslautern, 2018 isbn: 978-3-8439-3889-1.
(see pp. 4, 8, 64, 101, 134)

[155] R. D. Neidinger. Introduction to Automatic Differentiation and MATLAB Object-Oriented

Programming. SIAM Review, 52: 545–563, 2010 issn: 0036-1445. doi: 10.1137/080743627
(see p. 78)

[156] B. Nordlinger, M. Guiguet, J.-C. Vaillant, P. Balladur, K. Boudjema, P. Bachellier, and
D. Jaeck. Surgical resection of colorectal carcinoma metastases to the liver: A prognostic scoring

system to improve case selection, based on 1568 patients. Cancer: Interdisciplinary International

Journal of the American Cancer Society, 77: 1254–1262, 1996. doi: 10.1002/(SICI)1097-
0142(19960401)77:7<1254::AID-CNCR5>3.0.CO;2-I (see p. 2)

[157] NumPy. NumPy is an open source project aiming to enable numerical computing with
Python. url: https://numpy.org/(see p. 64)

[158] D. P. O’Neill, T. Peng, P. Stiegler, U. Mayrhauser, S. Koestenbauer, K. Tscheliessnigg,
and S. J. Payne. A Three-State Mathematical Model of Hyperthermic Cell Death. Annals of
biomedical engineering, 39: 570–579, 2011. doi: 10.1007/s10439-010-0177-1 (see p. 6)

[159] E. Olbrant and M. Frank.Generalized Fokker-Planck Theory for Electron and Photon Transport

in Biological Tissues: Application to Radiotherapy. Computational and mathematical methods

in medicine, 11: 313–39, 2010 issn: 1748-6718. doi: 10.1080/1748670X.2010.491828 (see
p. 103)

[160] E. Olbrant, C. D. Hauck, and M. Frank. A realizability-preserving discontinuous Galerkin

method for the M1 model of radiative transfer. Journal of Computational Physics, 231: 5612–5639,
2012 issn: 00219991. doi: 10.1016/j.jcp.2012.03.002 (see p. 108)

[161] L. Onsager. Reciprocal Relations in Irreversible Processes. I. Physical Review, 37: 405–426,
1931. doi: 10.1103/PhysRev.37.405 (see p. 18)

[162] ParaView. ParaView is an open-source, multi-platform data analysis and visualization
application. url: https://www.paraview.org/(see p. 64)

[163] S. J. Park and S.-B. Yun. Entropy production estimates for the polyatomic ellipsoidal BGK model.
Applied Mathematics Letters, 58: 26–33, 2016 issn: 0893-9659. doi: 10.1016/j.aml.2016.01.
021 (see p. 102)

http://publications.rwth-aachen.de/record/210538/files/4482.pdf
http://publications.rwth-aachen.de/record/210538/files/4482.pdf
https://github.com/kennethmoreland-com/kennethmoreland-com.github.io/blob/master/color-advice/bent-cool-warm/bent-cool-warm.ipynb
https://github.com/kennethmoreland-com/kennethmoreland-com.github.io/blob/master/color-advice/bent-cool-warm/bent-cool-warm.ipynb
https://github.com/kennethmoreland-com/kennethmoreland-com.github.io/blob/master/color-advice/bent-cool-warm/bent-cool-warm.ipynb
https://doi.org/10.2352/ISSN.2470-1173.2016.16.HVEI-133
https://doi.org/10.1137/080743627
https://doi.org/10.1002/(SICI)1097-0142(19960401)77:7<1254::AID-CNCR5>3.0.CO;2-I
https://doi.org/10.1002/(SICI)1097-0142(19960401)77:7<1254::AID-CNCR5>3.0.CO;2-I
https://numpy.org/
https://doi.org/10.1007/s10439-010-0177-1
https://doi.org/10.1080/1748670X.2010.491828
https://doi.org/10.1016/j.jcp.2012.03.002
https://doi.org/10.1103/PhysRev.37.405
https://www.paraview.org/
https://doi.org/10.1016/j.aml.2016.01.021
https://doi.org/10.1016/j.aml.2016.01.021


234 Bibliography

[164] J. A. Pearce, J. W. Valvano, and S. Emelianov. Temperature Measurements. in: Optical-

Thermal Response of Laser-Irradiated Tissue ed. by A. J. Welch and M. J. van Gemert. 2nd ed.
Springer Netherlands, Dordrecht, 2011. chap. 11, 399–453 isbn: 978-90-481-8831-4 doi:
10.1007/978-90-481-8831-4_11 (see p. 1)

[165] H. H. Pennes.Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm.
Journal of Applied Physiology, 1: 93–122, 1948. (see p. 5)

[166] R. D. Peters, E. Chan, J. Trachtenberg, S. Jothy, L. Kapusta, W. Kucharczyk, and R. M.
Henkelman. Magnetic resonance thermometry for predicting thermal damage: An application of

interstitial laser coagulation in an in vivo canine prostate model.Magnetic Resonance in Medicine,
44: 873–883, 2000. doi: 10.1002/1522-2594(200012)44:6<873::AID-MRM8>3.0.CO;2-X
(see p. 68)

[167] R. Pinnau and G. Thömmes. Optimal boundary control of glass cooling processes.Mathematical

Methods in the Applied Sciences, 27: 1261–1281, 2004. doi: 10.1002/mma.500 (see pp. 9, 97,
101, 103)

[168] G. C. Pomraning. Variational boundary conditions for the spherical harmonics approximation

to the neutron transport equation. Annals of Physics, 27: 193–215, 1964 issn: 0003-4916. doi:
10.1016/0003-4916(64)90105-8 (see p. 113)

[169] C. Pu and R. G. McClarren. Mathematical and Numerical Validation of the Simplified

Spherical Harmonics Approach for Time-Dependent Anisotropic-Scattering Transport Problems

in Homogeneous Media. Journal of Computational and Theoretical Transport, 46: 366–378, 2017.
doi: 10.1080/23324309.2017.1352516 (see p. 101)

[170] S. Puccini, N.-K. Bär, M. Bublat, T. Kahn, and H. Busse. Simulations of thermal tissue coagu-

lation and their value for the planning and monitoring of laser-induced interstitial thermotherapy

(LITT).Magnetic Resonance in Medicine, 49: 351–362, 2003. doi: 10.1002/mrm.10357 (see
pp. 5, 10, 44, 68, 97)

[171] Python Software Foundation. Python. url: https://www.python.org/(see p. 64)

[172] S. J. Qin. Process data analytics in the era of big data. AIChE Journal, 60: 3092–3100, 2014. doi:
10.1002/aic.14523 (see p. 2)

[173] R. Quintanilla andR. Racke.Anote on stability in dual-phase-lag heat conduction. International
Journal of Heat and Mass Transfer, 49: 1209–1213, 2006 issn: 0017-9310. doi: 10.1016/j.
ijheatmasstransfer.2005.10.016 (see pp. 19, 20)

[174] R. Quintanilla andR. Racke.Qualitative aspects in dual-phase-lag heat conduction.Proceedings
of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463: 659–674, 2006.
doi: 10.1098/rspa.2006.1784 (see p. 19)

[175] P. J. Rabier. Vector-valued Morrey’s embedding theorem and Hölder continuity in parabolic

problems. Electronic Journal of Differential Equations, 2011: 1–10, 2011 issn: 1072-6691. url:
https://ejde.math.txstate.edu/Volumes/2011/10/rabier.pdf(see p. 209)

[176] R. Racke. Heat conduction in elastic systems: Fourier versus Cattaneo. in: International
Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 2015. url: http:
//www.math.uni-konstanz.de/~racke/dvidat/m62.pdf (see pp. 19, 20)

https://doi.org/10.1007/978-90-481-8831-4_11
https://doi.org/10.1002/1522-2594(200012)44:6<873::AID-MRM8>3.0.CO;2-X
https://doi.org/10.1002/mma.500
https://doi.org/10.1016/0003-4916(64)90105-8
https://doi.org/10.1080/23324309.2017.1352516
https://doi.org/10.1002/mrm.10357
https://www.python.org/
https://doi.org/10.1002/aic.14523
https://doi.org/10.1016/j.ijheatmasstransfer.2005.10.016
https://doi.org/10.1016/j.ijheatmasstransfer.2005.10.016
https://doi.org/10.1098/rspa.2006.1784
https://ejde.math.txstate.edu/Volumes/2011/10/rabier.pdf
http://www.math.uni-konstanz.de/~racke/dvidat/m62.pdf
http://www.math.uni-konstanz.de/~racke/dvidat/m62.pdf


Bibliography 235

[177] M. Reed andB. Simon.FunctionalAnalysis. English. vol. 1MethodsofModernMathematical
Physics. (Careful: doi refers to originally published version of 1972). Academic Press, Inc.,
1980. isbn: 0-12-585050-6 doi: 10.1016/B978-0-12-585001-8.X5001-6 (see p. 193)

[178] J. Ritter, A. Klar, and F. Schneider. Partial-moment minimum-entropy models for kinetic

chemotaxis equations in one and two dimensions. Journal of Computational and Applied Math-

ematics, 306: 300–315, 2016 issn: 03770427. doi: 10.1016/j.cam.2016.04.019 url:
http://arxiv.org/abs/1601.04482(see p. 108)

[179] J.-P. Ritz, K. Lehmann, C. Isbert, A. Roggan, C. T. Germer, and H. J. Buhr. Effectivity
of laser-induced thermotherapy: In vivo comparison of arterial microembolization and complete

hepatic inflow occlusion. Lasers in Surgery and Medicine: The Official Journal of the American

Society for Laser Medicine and Surgery, 36: 238–244, 2005. doi: 10.1002/lsm.20144 (see
p. 3)

[180] U. of Rochester: Medical Center. Health Encyclopedia: Vital Signs. Accessed: 2020-02-15.
url: https://www.urmc.rochester.edu/encyclopedia/content.aspx?ContentType
ID=85&ContentID=P00866(see p. 11)

[181] A. Roggan, K. Dorschel, O. Minet, D. Wolff, and G. Müller. The optical properties of
biological tissue in the near infrared wavelength range: review andmeasurements. in: Laser-induced
interstitial therapy. 1995. 10–44 isbn: 0-8194-1859-5 (see p. 11)

[182] A. Roggan and G. J. Mueller. Two-dimensional computer simulations for real-time irradiation

planning of laser-induced interstitial thermotherapy (LITT). in: Medical Applications of Lasers II.
vol. 2327 International Society for Optics and Photonics 1994. 242–252 doi: 10.1117/12.
197569 (see p. 4)

[183] D. Rouan. Radiative Transfer. in: Encyclopedia of Astrobiology ed. by M. Gargaud, R. Amils,
J. C. Quintanilla, H. J. Cleaves, W. M. Irvine, D. L. Pinti, and M. Viso. Springer, Berlin,
Heidelberg, 2011. 1410–1413 isbn: 978-3-642-11274-4 doi: 10.1007/978-3-642-11274-
4_1336 (see p. 246)

[184] T. Roubíček. Nonlinear Partial Differential Equations with Applications. English. 1st ed.
Birkhäuser Verlag, 2005. isbn: 3-7643-7293-1 doi: 10.1007/3-7643-7397-0 (see p. 215)

[185] R. P. Rulko, E. W. Larsen, and G. C. Pomraning. The PN Theory as an Asymptotic Limit of

Transport Theory in Planar Geometry —II: Numerical Results. Nuclear Science and Engineering,
109: 76–85, 1991. doi: 10.13182/NSE91-A23845 (see p. 113)

[186] M. Růžička. Nichtlineare Funktionalanalysis. German. 1st ed. Springer, 2004. isbn: 3-540-
20066-5 doi: 10.1007/3-540-35022-5 (see pp. 22, 170, 193, 194, 202, 204, 205, 210, 212,
215, 244)

[187] D. F. Saldanha, V. L. Khiatani, T. C. Carrillo, F. Y. Yap, J. T. Bui, M. G. Knuttinen,
C. A. Owens, and R. C. Gaba. Current Tumor Ablation Technologies: Basic Science and Device

Review. in: Seminars in interventional radiology. vol. 27 03 © Thieme Medical Publishers
2010. 247–254 doi: 10.1055/s-0030-1261782 (see pp. 3, 4, 6, 68, 244–247)

[188] E. Salomatina and A. Yaroslavsky. Evaluation of the in vivo and ex vivo optical properties

in a mouse ear model. Physics in Medicine & Biology, 53: 2797, 2008. doi: 10.1088/0031-
9155/53/11/003 (see p. 7)

https://doi.org/10.1016/B978-0-12-585001-8.X5001-6
https://doi.org/10.1016/j.cam.2016.04.019
http://arxiv.org/abs/1601.04482
https://doi.org/10.1002/lsm.20144
https://www.urmc.rochester.edu/encyclopedia/content.aspx?ContentTypeID=85&ContentID=P00866
https://www.urmc.rochester.edu/encyclopedia/content.aspx?ContentTypeID=85&ContentID=P00866
https://doi.org/10.1117/12.197569
https://doi.org/10.1117/12.197569
https://doi.org/10.1007/978-3-642-11274-4_1336
https://doi.org/10.1007/978-3-642-11274-4_1336
https://doi.org/10.1007/3-7643-7397-0
https://doi.org/10.13182/NSE91-A23845
https://doi.org/10.1007/3-540-35022-5
https://doi.org/10.1055/s-0030-1261782
https://doi.org/10.1088/0031-9155/53/11/003
https://doi.org/10.1088/0031-9155/53/11/003


236 Bibliography

[189] D. Sarason. Functions of vanishing mean oscillation. Transactions of the AmericanMathematical

Society, 207: 391–405, 1975. doi: 10.2307/1997184 (see p. 41)

[190] F. Schneider.Kershaw closures for linear transport equations in slab geometry I: Model derivation.
Journal of Computational Physics, 322: 905–919, 2016 issn: 10902716. doi: 10.1016/j.jcp.
2016.02.080 url: http://arxiv.org/abs/1511.02714(see p. 108)

[191] F. Schneider. Kershaw closures for linear transport equations in slab geometry II: High-order

realizability-preserving discontinuous-Galerkin schemes. Journal of Computational Physics, 322:
920–935, 2016. doi: 10.1016/j.jcp.2016.07.014 url: http://arxiv.org/abs/1602.
02590(see p. 108)

[192] F. Schneider. Moment models in radiation transport equations. PhD thesis, Technische
Universität Kaiserslautern, 2016 isbn: 978-3-8439-2437-5. url: https://kplus.ub.uni-
kl.de/Record/KLU01-001010407(see pp. 103, 119)

[193] F. Schneider, G. W. Alldredge, M. Frank, and A. Klar. Higher Order Mixed-Moment

Approximations for the Fokker–Planck Equation in One Space Dimension. SIAM Journal on

Applied Mathematics, 74: 1087–1114, 2014 issn: 0036-1399. doi: 10.1137/130934210 (see
p. 108)

[194] F. Schneider, J. Kall, and A. Roth. First-Order quarter- and mixed-moment realizability theory

and Kershaw closures for a Fokker-Planck equation in two space dimensions. Kinetic and Related

Models, 10: 2017 issn: 1937-5093. doi: 10.3934/krm.2017044 (see p. 108)

[195] F. Schneider and T. Leibner. First-order continuous- and discontinuous-Galerkin moment

models for a linear kinetic equation: realizability-preserving splitting scheme and numerical

analysis. 2019. url: https://arxiv.org/abs/1904.03098(see p. 108)

[196] H.-J. Schwarzmaier, I. V. Yaroslavsky, A. N. Yaroslavsky, V. Fiedler, F. Ulrich, and
T. Kahn. Treatment planning for MRI-guided laser-induced interstitial thermotherapy of brain

tumors—The role of blood perfusion. Journal of Magnetic Resonance Imaging, 8: 121–127, 1998.
doi: 10.1002/jmri.1880080124 (see p. 11)

[197] T. Schwedes, D. A. Ham, S. W. Funke, and M. D. Piggott. Mesh Dependence in PDE-

Constrained Optimisation: An Application in Tidal Turbine Array Layouts. English. Springer-
Briefs in Mathematics of Planet Earth. Springer, Cham, 2017. viii + 110 isbn: 978-3-319-
59483-5 doi: 10.1007/978-3-319-59483-5 (see pp. 59, 65, 78–80)

[198] B. Seibold and M. Frank. StaRMAP—A Second Order Staggered Grid Method for Spherical

Harmonics Moment Equations of Radiative Transfer. ACM Transactions on Mathematical

Software, 41: 4:1–4:28, 2014 issn: 0098-3500. doi: 10.1145/2590808 (see pp. 63, 99, 104, 108,
109, 112, 117)

[199] Y. Shao, B. Arjun, H. Leo, and K. Chua. A computational theoretical model for radiofrequency

ablation of tumor with complex vascularization. Computers in Biology andMedicine, 89: 282–292,
2017 issn: 0010-4825. doi: 10.1016/j.compbiomed.2017.08.025 (see pp. 4, 43, 64)

[200] K. S. Shibib, M. A. Munshid, and H. A. Lateef. The effect of laser power, blood perfusion,

thermal and optical properties of human liver tissue on thermal damage in LITT. Lasers in medical

science, 32: 2039–2046, 2017. doi: 10.1007/s10103-017-2321-8 (see pp. 4, 43)

https://doi.org/10.2307/1997184
https://doi.org/10.1016/j.jcp.2016.02.080
https://doi.org/10.1016/j.jcp.2016.02.080
http://arxiv.org/abs/1511.02714
https://doi.org/10.1016/j.jcp.2016.07.014
http://arxiv.org/abs/1602.02590
http://arxiv.org/abs/1602.02590
https://kplus.ub.uni-kl.de/Record/KLU01-001010407
https://kplus.ub.uni-kl.de/Record/KLU01-001010407
https://doi.org/10.1137/130934210
https://doi.org/10.3934/krm.2017044
https://arxiv.org/abs/1904.03098
https://doi.org/10.1002/jmri.1880080124
https://doi.org/10.1007/978-3-319-59483-5
https://doi.org/10.1145/2590808
https://doi.org/10.1016/j.compbiomed.2017.08.025
https://doi.org/10.1007/s10103-017-2321-8


Bibliography 237

[201] C.-W. Shu. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for

hyperbolic conservation laws. in: Advanced Numerical Approximation of Nonlinear Hyperbolic

Equations. Lecture Notes in Mathematics. vol. 1697 Springer, 1998. isbn: 978-3-540-64977-9
doi: 10.1007/BFb0096355 (see p. 108)

[202] J. Simon. Compact sets in the space Lp(0, T ;B). Annali di Matematica Pura ed Applicata. Serie

Quarta, 146: 65–96, 1987 issn: 0003-4622. doi: 10.1007/BF01762360 (see p. 209)

[203] G. Stadler. Elliptic optimal control problems with L1-control cost and applications for the

placement of control devices. Computational Optimization and Applications, 44: 159–181, 2007.
doi: 10.1007/s10589-007-9150-9 (see p. 58)

[204] W. M. Star.Diffusion Theory of Light Transport. in:Optical-Thermal Response of Laser-Irradiated

Tissue ed. by A. J. Welch and M. J. van Gemert. 2nd ed. Springer Netherlands, Dordrecht,
2011. chap. 6, 145–201 isbn: 978-90-481-8831-4 doi: 10.1007/978-90-481-8831-4_6 (see
pp. 97, 247)

[205] B. Straughan. Heat Waves. English. vol. 177. Springer Science & Business Media, 2011.
doi: 10.1007/978-1-4614-0493-4 (see pp. 17–19)

[206] H. Struchtrup. Kinetic schemes and boundary conditions for moment equations. Zeitschrift
für angewandte Mathematik und Physik ZAMP, 51: 346, 2000 issn: 00442275. doi: 10.1007/
s000330050002 (see p. 113)

[207] C. Sturesson and S. Andersson-Engels. Tissue temperature control using a water-cooled appli-

cator: Implications for transurethral laser-induced thermotherapy of benign prostatic hyperplasia.
Medical physics, 24: 461–470, 1997. doi: 10.1118/1.597912 (see p. 4)

[208] C. Sturesson. Interstitial laser-induced thermotherapy: Influence of carbonization on lesion size.
Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine

and Surgery, 22: 51–57, 1998. doi: 10.1002/(SICI)1096-9101(1998)22:1<51::AID-
LSM12>3.0.CO;2-B (see p. 4)

[209] E. Tadmor. Approximate solutions of nonlinear conservation laws. in: Advanced Numerical

Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics. vol. 1697
Springer, 1998. isbn: 978-3-540-64977-9 doi: 10.1007/BFb0096352 (see p. 108)

[210] Y. Taitel. On the parabolic, hyperbolic and discrete formulation of the heat conduction equation.
International Journal of Heat and Mass Transfer, 15: 369–371, 1972. doi: 10.1016/0017-
9310(72)90085-3 (see pp. 20, 146)

[211] J. T. Tencer. Error analysis for radiation transport. PhD thesis, The University of Texas at
Austin, 2013. url: https://repositories.lib.utexas.edu/handle/2152/23247(see
pp. 99, 100)

[212] S. Thomsen and J. A. Pearce. Thermal Damage and Rate Processes in Biologic Tissues. in:
Optical-Thermal Response of Laser-Irradiated Tissue ed. by A. J. Welch and M. J. van Gemert.
2nd ed. Springer Netherlands, Dordrecht, 2011. chap. 13, 487–549 isbn: 978-90-481-8831-4
doi: 10.1007/978-90-481-8831-4_13 (see pp. 3, 6)

[213] K. Tolle and N. Marheineke. Efficient Therapy-Planning via Model Reduction for Laser-

Induced Thermotherapy. in: Progress in Industrial Mathematics at ECMI 2018. Springer, 2019.
207–213 isbn: 978-3-030-27550-1 doi: 10.1007/978-3-030-27550-1_26 (see p. 146)

https://doi.org/10.1007/BFb0096355
https://doi.org/10.1007/BF01762360
https://doi.org/10.1007/s10589-007-9150-9
https://doi.org/10.1007/978-90-481-8831-4_6
https://doi.org/10.1007/978-1-4614-0493-4
https://doi.org/10.1007/s000330050002
https://doi.org/10.1007/s000330050002
https://doi.org/10.1118/1.597912
https://doi.org/10.1002/(SICI)1096-9101(1998)22:1<51::AID-LSM12>3.0.CO;2-B
https://doi.org/10.1002/(SICI)1096-9101(1998)22:1<51::AID-LSM12>3.0.CO;2-B
https://doi.org/10.1007/BFb0096352
https://doi.org/10.1016/0017-9310(72)90085-3
https://doi.org/10.1016/0017-9310(72)90085-3
https://repositories.lib.utexas.edu/handle/2152/23247
https://doi.org/10.1007/978-90-481-8831-4_13
https://doi.org/10.1007/978-3-030-27550-1_26


238 Bibliography

[214] K. Tolle and N. Marheineke. Multi-Fidelity Optimization using Reduced Order Models.
PAMM, 19: e201900168, 2019. doi: 10.1002/pamm.201900168 (see p. 146)

[215] K. Tolle and N. Marheineke.OnOnline Parameter Identification in Laser-Induced Thermother-

apy. in:Modeling, Simulation and Optimization in the Health- and Energy-Sector. Accepted
Springer, 2021. (see p. 146)

[216] E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics. English. 3rd ed.
Springer, Dordrecht u.a., 2009. isbn: 978-3-540-49834-6 doi: 10.1007/b79761 (see p. 113)

[217] F. Tröltzsch. Optimale Steuerung partieller Differentialgleichungen. German. 2nd ed. Vieweg
+ Teubner, Wiesbaden, 2009. isbn: 978-3-8348-0885-1 doi: 10.1007/978-3-8348-9357-4
(see pp. 23, 48, 50, 58, 59, 77, 176–178, 181–183, 197, 211, 212)

[218] N. Tsafnat, G. Tsafnat, T. D. Lambert, and S. Jones.Modelling heating of liver tumours with

heterogeneous magnetic microsphere deposition. Physics in Medicine and Biology, 50: 2937–2953,
2005. doi: 10.1088/0031-9155/50/12/014 (see pp. 4, 43)

[219] O. Tse, R. Pinnau, and N. Siedow. Identification of temperature-dependent parameters in

laser-interstitial thermo therapy. Mathematical Models and Methods in Applied Sciences, 22:
1250019, 2012. doi: 10.1142/S0218202512500194 (see pp. 7, 15, 26, 28–31, 36, 38, 40,
45–47, 51, 173)

[220] D. Y. Tzou. A Unified Field Approach for Heat Conduction FromMacro- to Micro-Scales. Journal
of Heat Transfer, 117: 8–16, 1995 issn: 0022-1481. doi: 10.1115/1.2822329 (see p. 18)

[221] D. Y. Tzou. Experimental support for the lagging behavior in heat propagation. Journal of
Thermophysics and Heat Transfer, 9: 686–693, 1995. doi: 10.2514/3.725 (see p. 21)

[222] J. W. Valvano. Tissue Thermal Properties and Perfusion. in: Optical-Thermal Response of Laser-

Irradiated Tissue ed. by A. J. Welch and M. J. van Gemert. 2nd ed. Springer Netherlands,
Dordrecht, 2011. chap. 12, 455–485 isbn: 978-90-481-8831-4 doi: 10.1007/978-90-481-
8831-4_12 (see pp. 2, 10)

[223] J. Verhey, Y. Mohammed, A. Ludwig, and K. Giese. Implementation of a practical model for

light and heat distribution using laser-induced thermotherapy near to a large vessel. Physics in
Medicine & Biology, 48: 3595, 2003. doi: 10.1088/0031-9155/48/21/010 (see p. 4)

[224] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E.
Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson,
K. Jarrod Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. Carey,
İ. Polat, Y. Feng, E. W. Moore, J. Vand erPlas, D. Laxalde, J. Perktold, R. Cimrman,
I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa,
P. van Mulbregt, and S. 1. 0. Contributors. SciPy 1.0: fundamental algorithms for scientific

computing in Python. Nature Methods, 2020. doi: 10.1038/s41592-019-0686-2 (see p. 64)

[225] T. J. Vogl, R. Straub, S. Zangos, M. Mack, and K. Eichler. MR-guided laser-induced

thermotherapy (LITT) of liver tumours: experimental and clinical data. International journal of
hyperthermia, 20: 713–724, 2004. doi: 10.1080/02656730400007212 (see p. 4)

[226] E. W. Weisstein.Trigonometric Power Formulas. FromMathWorld–AWolframWebResource.
Accessed: 2020-04-10. url: https://mathworld.wolfram.com/TrigonometricPowerFor
mulas.html(see p. 119)

https://doi.org/10.1002/pamm.201900168
https://doi.org/10.1007/b79761
https://doi.org/10.1007/978-3-8348-9357-4
https://doi.org/10.1088/0031-9155/50/12/014
https://doi.org/10.1142/S0218202512500194
https://doi.org/10.1115/1.2822329
https://doi.org/10.2514/3.725
https://doi.org/10.1007/978-90-481-8831-4_12
https://doi.org/10.1007/978-90-481-8831-4_12
https://doi.org/10.1088/0031-9155/48/21/010
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1080/02656730400007212
https://mathworld.wolfram.com/TrigonometricPowerFormulas.html
https://mathworld.wolfram.com/TrigonometricPowerFormulas.html


Bibliography 239

[227] A. J. Welch. Overview of Optical and Thermal Laser-Tissue Interaction and Nomenclature. in:
Optical-Thermal Response of Laser-Irradiated Tissue ed. by A. J. Welch and M. J. van Gemert.
2nd ed. Springer Netherlands, Dordrecht, 2011. chap. 1, 3–11 isbn: 978-90-481-8831-4 doi:
10.1007/978-90-481-8831-4_1 (see pp. 97, 243, 246)

[228] A. J. Welch, M. J. van Gemert, and W. M. Star.Definitions and Overview of Tissue Optics. in:
Optical-Thermal Response of Laser-Irradiated Tissue ed. by A. J. Welch and M. J. van Gemert.
2nd ed. Springer Netherlands, Dordrecht, 2011. chap. 3, 3–11 isbn: 978-90-481-8831-4 doi:
10.1007/978-90-481-8831-4_3 (see pp. 4, 97)

[229] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, A. Baak,
N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E. Bourne, et al. The FAIR Guiding

Principles for scientific data management and stewardship. Scientific data, 3: 2016. doi: 10.1038/
sdata.2016.18 (see p. 63)

[230] Wolfram Research. Definition of an inverse problem. Accessed: 2020-09-02. url: https:
//mathworld.wolfram.com/InverseProblem.html(see p. 245)

[231] N. T. Wright. On a Relationship Between the Arrhenius Parameters from Thermal Damage

Studies. Journal of Biomechanical Engineering, 125: 300–304, 2003 issn: 0148-0731. doi:
10.1115/1.1553974 (see pp. 6, 11)

[232] K. Yosida. Functional Analysis. English. 6th ed. Springer, 1980. isbn: 978-3-540-58654-8 doi:
10.1007/978-3-642-61859-8 (see p. 205)

[233] E. Zeidler. Applied Functional Analysis: Applications to Mathematical Physics. English. 1st ed.
vol. 108 Applied Mathematical Sciences. Springer Science+Business Media New York,
1995. isbn: 978-1-4612-6910-6 doi: 10.1007/978-1-4612-0815-0 (see p. 183)

[234] E. Zeidler. Applied Functional Analysis: Main Principles and Their Applications. English.
1st ed. vol. 109 Applied Mathematical Sciences. Springer Science+Business Media New
York, 1995. isbn: 978-1-4612-6913-7 doi: 10.1007/978-1-4612-0821-1 (see pp. 43, 204)

[235] E. Zeidler.Nonlinear Functional Analysis and its Applications. II/A: LinearMonotone Operators.
English. 1st ed. Springer Science+Business Media New York, 1990. isbn: 978-1-4612-6971-7
doi: 10.1007/978-1-4612-0985-0 (see pp. 22, 23, 145, 152, 153, 175, 195, 196, 198–200,
202, 203, 205–208, 211, 241–243)

[236] E. Zeidler. Nonlinear Functional Analysis and its Applications. II/B: Nonlinear Monotone

Operators. English. 1st ed. Springer Science+Business Media New York, 1990. isbn: 978-
1-4612-6969-4 doi: 10.1007/978-1-4612-0981-2 (see pp. 48, 50, 151, 194, 199, 207,
209)

[237] E. Zeidler. Springer-Handbuch der Mathematik: Begründet von I.N. Bronstein und K.A.

Semendjaew. Weitergeführt von G. Grosche, V. Ziegler und D. Ziegler. Herausgegeben von E.

Zeidler. German. 3rd ed. Springer-Verlag, 2012. isbn: 978-3-8351-0123-4 doi: 10.1007/978-
3-8348-2359-5 (see pp. 19, 119)

[238] M. Zhang, Z. Zhou, S. Wu, L. Lin, H. Gao, and Y. Feng. Simulation of temperature field

for temperature-controlled radio frequency ablation using a hyperbolic bioheat equation and

temperature-varied voltage calibration: a liver-mimicking phantom study. Physics in Medicine

and Biology, 60: 9455–9471, 2015. doi: 10.1088/0031-9155/60/24/9455 (see p. 21)

https://doi.org/10.1007/978-90-481-8831-4_1
https://doi.org/10.1007/978-90-481-8831-4_3
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
https://mathworld.wolfram.com/InverseProblem.html
https://mathworld.wolfram.com/InverseProblem.html
https://doi.org/10.1115/1.1553974
https://doi.org/10.1007/978-3-642-61859-8
https://doi.org/10.1007/978-1-4612-0815-0
https://doi.org/10.1007/978-1-4612-0821-1
https://doi.org/10.1007/978-1-4612-0985-0
https://doi.org/10.1007/978-1-4612-0981-2
https://doi.org/10.1007/978-3-8348-2359-5
https://doi.org/10.1007/978-3-8348-2359-5
https://doi.org/10.1088/0031-9155/60/24/9455


240 Bibliography

[239] Y. Zhang, J. C. Ragusa, and J. E. Morel. Iterative performance of various formulations of the

SPN equations. Journal of Computational Physics, 252: 558–572, 2013 issn: 0021-9991. doi:
10.1016/j.jcp.2013.06.009 (see p. 100)

[240] W. P. Ziemer. Weakly Differentiable Functions. English. 1st ed. vol. 120 Graduate Texts in
Mathematics. Sobolev spaces and functions of bounded variation. Springer-Verlag, New
York, 1989. xvi+308 isbn: 978-1-4612-6985-4 doi: 10.1007/978-1-4612-1015-3 (see
p. 204)

https://doi.org/10.1016/j.jcp.2013.06.009
https://doi.org/10.1007/978-1-4612-1015-3


Table of notationsTable of notations

Notation Description Page List
N,N0 N = {1, 2, . . .}, N0 = N ∪ {0}: set of natural

numbers (including zero).
21

Ω Ω ⊂ Rd, d ∈ {2, 3}: spatial domain. 21
Γ Γ = ∂Ω: boundary of the spatial domain. 21
T T ∈ (0,∞): final time of the model /

simulation.
21

I I = (0, T ) ⊂ R: time domain. 21
Q Q = I × Ω: space-time cylinder. 21
n n ∈ Rd: outer unit normal vector. 21
(·)′ Weak time derivative in the context of Bochner

spaces: for ϑ ∈ L1(I;X), where X is a real
Banach space, we call ϑ(n) ∈ L1(I;X) the nth
weak time derivative of ϑ if∫ T

0
ϕ(n)(t)ϑ(t) dt = (−1)n

∫ T
0
ϕ(t)ϑ(n)(t) dt for

all ϕ ∈ C∞c (I), cf. [235, Ch. 23.5, Def. 23.15, p.
417].

22

S2 S2 = {v ∈ R3 | ‖v‖2 = 1}: unit sphere. 101
v v ∈ S2: element on the unit sphere. 101
Sml Real spherical harmonics of degree l: particular

functions defined on the surface of the unit
sphere, see Definition 5.7.

104

b Angular basis vector: collection of real spherical
harmonics, see Definition 5.9.

105

(·, ·) (·, ·) := (·, ·)X : inner product of a Hilbert space
X .

22

〈·, ·〉 〈·, ·〉 = 〈·, ·〉X = 〈·, ·〉X∗,X : dual pairing between
a Banach space X and its dual space X∗. Must
not to be confused with the spherical integral
〈·〉 =

∫
S2 ·dv .

22
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Notation Description Page List
〈·〉 〈·〉 =

∫
S2 ·dv : integral over the full unit sphere.

Must not to be confused with the dual pairing
〈·, ·〉X for a Banach space X .

103

↪→ Continuous embedding of two Banach spaces
X ⊂ Y : the embedding operator
j : X → Y, j(u) = u is continuous, i.e.,
‖u‖Y ≤ C ‖u‖X for all u ∈ X . More generally,
we speak of an embedding if there are two
Banach spaces X,Y and an injective linear

operator j : X → Y . Since j is injective, we can
identify uwith j(u) and write X ⊂ Y , cf. [235,
Ch. 21.3, Def. 21.13, p. 237].

22

↪→↪→ Compact embedding of two Banach spaces
X ⊂ Y : the embedding operator
j : X → Y, j(u) = u is continuous and compact,
i.e., each bounded sequence (un)n∈N ⊂ X has a
subsequence (unk)k∈N which is convergent in Y ,
cf. [235, Ch. 21.3, Def. 21.13, p. 237].

22, see continuous
embedding &

⇀ Weakly convergent, see Definition B.7. 195
⇀∗ Weakly∗ convergent, see Definition B.7. 195
L(X,Y ) L(X,Y ) = {f : X → Y | f is linear, ‖f‖X,Y =

sup
‖x‖X≤1

‖f(x)‖Y <∞}: the set of bounded

linear operators between two Banach spaces
X,Y [93, Ch. 1.2.1.2, Def. 1.4, p. 11].

22

X∗ X∗ = L(X,R): dual space of the real Banach
space X .

22

W k,p(Ω) W k,p(Ω) =

{f ∈ Lp(Ω) | f has weak derivatives
Dα f ∈ Lp(Ω) for all |α| ≤ k}: Sobolev space
[93, Ch. 1.2.2.7, Def. 1.14, p. 20].

22

Lp(I;X) Lp(I;X) =

{f : I → X | f strongly measurable,
‖f‖Lp(I;X) <∞}: Bochner space
(generalization of Lp (Lebesgue) spaces to
functions with values in a (reflexive) Banach
space X) equipped with the norm

‖f‖Lp(I;X) =
(∫ T

0
‖f(t)‖pX dt

)1/p

for
1 ≤ p <∞ and ‖f‖L∞(I;X) = ess sup

t∈I
‖f(t)‖X .

22, see Bochner
measurable
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Notation Description Page List
W k,p(I;X) W k,p(I;X) =

{f ∈ Lp(I;X) | f has weak time derivatives
f (n) ∈ Lp(I;X) for all 0 ≤ n ≤ k}:
Banach-space-valued Sobolev space for a real
Banach space X , cf. [114], [235, Ch. 23.6, p. 422
ff.].

23, see Sobolev
space

C0,α(Ω) C0,α(Ω) = {f : Ω→ R | ‖f‖C0,α(Ω) <∞}: space
of Hölder-continuous functions equipped with
the norm
‖f‖C0,α(Ω) = sup

{
|f(x)−f(y)|
|x−y|α |x, y ∈ Ω, x 6= y

}
[4, Ch. 1, Def. 1.7, p. 46].

22

C0(I;X), C0(I) C0(I;X) = {f : I → X | f is continuous}: space
of continuous functions from I to a real Banach
space X , equipped with the uniform norm. In
case of X = R, we write C0(I).

22, see time domain

C∞c (I) Space of infinitely often differentiable functions
from I to R with compact support in I .

23

σa Absorption coefficient: the probability of
absorption per infinitesimal path length ∆x is
σa∆x [227, Sec. 1.2, Tab. 1.1, p. 7 ff.].

6, 101, see absorbed

σs Scattering coefficient: the probability of
scattering per infinitesimal path length ∆x is
σs∆x [227, Sec. 1.2, Tab. 1.1, p. 7 ff.].

6, 101, see scattered

σt Attenuation coefficient: the probability of an
interaction with the medium per infinitesimal
path length ∆x is σt∆x [227, Sec. 1.2, Tab. 1.1, p.
7 ff.].

101

a.a. Almost all: cf. almost everywhere (a.e.). 30, see a.e.
absorption “In (electromagnetic) wave motion: the transfer of the

energy of a wave to matter as the wave passes

through it” [57].

97

adjoint state vector Two-component vector
(z1, z2) ∈ L2(I;H1(Ω))×Wϑ (see equation
(2.7)) which fulfills the adjoint state system
(3.19) for all ϕ ∈ L2(I;H1(Ω))× L2(I;H1(Ω)).

56–59, 77

AD Algorithmic differentiation. 9, 77, 78
a.e. Almost everywhere (in X): all elements of a set

X except for those included in a subset of X
with (Lebesgue) measure zero, cf. [55, Ch. 4,
Def. 4.1, p. 155].

25
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Notation Description Page List
blood-perfusion rate The blood-perfusion rate describes the transport

of blood through the vascular structure.
2, 15, 26, 43, 63, 74

BMBF German Federal Ministry of Education and
Research (Bundesministerium für Bildung und
Forschung).

1

Bochner measurable Also strongly measurable: a function f : I → X ,
where X is a reflexive Banach space, is called
strongly measurable if there exist simple
functions sk : I → X with
lim
k→∞

‖sk(t)− f(t)‖X = 0 for a.a. t ∈ I [186,
Ch. 2, Def. 1.3, p. 34].

30

Cattaneo–LITT model LITT model with Cattaneo equation as
heat-transfer model.

15, 17, 24, 26, 43,
63, 97, 117

chemical ablation “A chemical agent is injected into a tumor bed [via a

needle]” [187, p. 251].
3

classical LITT model Classical LITT model with standard model for
heat-transfer, Arrhenius law for coagulation
and P1 approximation for the radiation.

5, 15, 97

coagulation Optically visible irreversible cell destruction
(necrosis) caused by the denaturation of
proteins [65].

5, 6, 24

compact map Let X,Y be real Banach spaces. A linear map
T : X → Y is called compact if it maps bounded
setsM ⊂ X to relatively compact sets, i.e.,
T (M) ⊂ Y is compact [4, Ch. 8, Def. 8.1, p. 331].

197

conduction “Transfer of energy (heat) arising from temperature

differences between adjacent parts of a body” [60].
5

convection “Process by which heat is transferred by movement of

a heated fluid such as air or water” [58].
5

cryoablation “Cold temperatures emitted from a probe cause both

intra- and extracellular ice crystal formation, which

causes both a direct and indirect cell death” [187, p.
249].

3

delayed heat-trans. mod. Heat-transfer model which corrects the infinite
speed of propagation in the classical heat
equation ∂tϑ = ∆ϑ.

15

DOM Discrete-ordinates method: technique to
transform the transport equation into a system
of partial differential equations based on a
discrete representation of the directional
variation of the radiance.

117, 120, 122, see
radiative-transfer
equation (RTE)
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Notation Description Page List
ex-vivo Opposite of in-vivo. 5, 43, see in-vivo
FEM Finite-element method: technique to discretize

a partial differential equation and compute an
approximate solution.

118

HIFU High-intensity focused ultrasound: “In HIFU,

an extracorporeal ultrasound probe with a

piezoelectric transducer is placed on the patient and

a focused beam of sound energy is sent to target

lesions. The mechanical vibration of the focus[ed]

sound waves is converted into heat within the lesion

as well as cavitation from microbubbles that are

created” [187, p. 252].

3

inverse problem “To predict the result of a measurement requires a

model of the system under investigation, and a

physical theory linking the parameters of the model

to the parameters being measured. This prediction of

observations, given the values of the parameters

defining the model constitutes the "normal problem",

or, in the jargon of inverse problem theory, the

forward problem. The “inverse problem" consists in

using the results of actual observations to infer the

values of the parameters characterizing the system

under investigation” [230].

43

in-vivo In-vivo experiments are performed on a living
organism.

4, 43

irradiance φ Also radiation energy density: radiant power
received by a surface per unit area, which is
defined as the integral of the radiance over the
unit sphere: φ(x) =

∫
S2 ψ(x,v) dv . The

physical unit is W m−2 [97].

5, 103

isotropic Uniform in all directions. 102
l2 Riesz repr. Riesz representative w.r.t. the Euclidean scalar

product.
79

L2 Riesz repr. Riesz representative w.r.t. the L2(Ω) scalar
product.

77, 79

lin. state vector Two-component vector
(ρ, η) ∈ L2(I;H1(Ω))× (Wϑ ∩ C0(Q)) (see
equation (2.7)) which fulfills the linearized state
system (3.14) for all
ϕ ∈ L2(I;H1(Ω))× L2(I;H1(Ω)).

52, 53, 55
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Notation Description Page List
LITT Laser-induced interstitial thermotherapy: a

minimally-invasive therapy for the thermal
ablation of tumors.

1, 3

Marshak b.c. Particular set of boundary conditions for the PN
equations.

113

microwave ablation “Continuous microwave agitation of surrounding

water molecules produces friction and heat, resulting

in cell death [, where microwaves are transmitted

through a specifically suited antenna inserted into a

tumor]” [187, p. 250].

3

MR thermometry Technique to extract temperature data from
magnetic-resonance imaging (MRI).

1, 45

online Interactive and real-time capable. 1
optical coefficient Refers to the absorption and scattering

coefficients (and as the case may be to the
diffusion coefficient D in the P1 model).

5–7, 46, 81, 135,
139, see absorption
coefficient &
scattering
coefficient

PN method Moment approximation of the radiative transfer
equation, based on the expansion of the
solution as linear combination of an angular
basis (in this thesis: spherical harmonics).

97, 99, 108

P2nd
N Second-order formulation of the PN equations. 97, see PN moment

approximation
(with spherical
harmonics)

radiance ψ Radiative energy flow per unit solid angle and
unit area normal to the rays. ψ is a directional
quantity. The physical unit is W m−2 sr−1 [97].
Must not to be confused with the radiant
intensity with units W sr−1. See also [227, Sec.
1.2, Tab. 1.1, p. 7 ff. ].

5, 97

radiative transfer “Radiative transfer is the theory describing how

electromagnetic radiation is transmitted through a

medium [...]. The medium can emit, absorb, and

scatter radiation with a behavior that may vary

strongly with wavelength according to the different

species composing the medium and their physical

state” [183].

5
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Notation Description Page List
reflexive A real Banach space X is called reflexive if we

can identify the dual space of its dual space X∗

with X by means of the map in Equation (B.1),
i.e., X∗∗ ∼= X (see Def. B.11).

195

RFA Radiofrequency ablation: “For the procedure, an
RF needle is directed under imaging guidance into a

tumor site. Retractable electrodes within the needle,

if present, are then deployed into the lesion. The

generator connected to the needle creates [medium

frequency alternating] current that is conducted to

the electrode tip to produce heat” [187, p. 248].

3

RTE Radiative transfer equation: Boltzmann
equation when used to treat the propagation of
light [204, Sec. 6.3.2, p. 153]. The Boltzmann
equation describes how a variety of different
types of particles travel through a material [21].

4, 97, 122

scattering “Change in the direction of motion of a particle

because of a collision with another particle” [59].
97

spherical quadrature rule Quadrature rule to approximate integrals of
functions f : S2 → R defined on the unit sphere.

118

SPN method Simplified PN method, usually derived by a
reformulation of the PN equations as system of
second-order differential equations by means of
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