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1 Introduction 

1.1 Motivation 

3D human motion analysis has become an essential component in sport and medicine. No 
matter if injury screening, performance analysis or the evaluation of a rehabilitation progress, 
motion analysis systems play an important role in most of the rehabilitation or sports medical 
institutions. However, all of those institutions face the same question: Which systems are the right 
ones? 

First, one has to decide which parameters he / she is interested in. There is a huge amount of 
features of the human motion that can be relevant depending on the question at hand. The most 
frequently analyzed features of the human motion are the kinematics, i.e. joint angles [1–4] and 
spatio-temporal parameters (STP) [2,3], the kinetics, i.e. ground reaction forces and based on those 
joint moments and loadings [2–4], and muscle activation [2,5,6]. 

Concerning the features of interest one has the choice between various systems that apparently 
all measure the same parameters, however, using different approaches. Beside the expense and 
usability two more factors should be overall decisive; the validity and reliability of the system. To 
the opinion of the author, it is essential to evaluate the validity and reliability of a system in 
comparison to an already validated reference prior to its widespread use. 

Considering the measurement of 3D joint kinematics a new technology has spread among the 
movement scientists and attracts the attention of physicians and their like; Magnetic Inertial 
Measurement Unit (MIMU) systems and Inertial Measurement Unit (IMU) systems [7]. 
MIMU / IMU systems try to address the methodical disadvantages of the passive marker based 
optical motion capture (OMC) systems, which are considered the gold standard in the measurement 
of joint kinematics [8]. The use of OMC systems relies on expensive material, is spatially restricted, 
time consuming in the preparation as well as the post processing and requires expert knowledge. On 
the contrary MIMU / IMU systems are easily applied and can be used mobile and in-field. 

However, MIMU / IMU systems bring along certain technical challenges and require an 
understanding of the methods used for the deduction of clinically interpretable parameters from the 
rather abstract sensor data, or at least a thorough validation of the new technology. 

Miezal et al. [9,10] developed a new motion analysis system based on IMUs only, completely 
omitting magnetometer information, for the measurement of the lower body’s joint kinematics and 
STP. This system aims at a widespread use in clinical settings as well as in a sports-related 
environment. A major interest of the developers is the application of the mentioned IMU system in 
orthopedic rehabilitation settings. In this context, it should be employed as the basis of a real-time 
feedback system that delivers information about the patient’s gait pattern and its potential 
abnormalities and therefore works as a gait-training application. 

It is desired to enable scientists as well as physicians, therapists, coaches and their like to use 
this system with the certainty of employing an accurate and well established system. Therefore, it is 
the aim of this thesis to thoroughly evaluate the validity and reliability of the 3D joint angles, the gait 
specific events, i.e. initial contact (IC) and terminal contact (TC), as well as the gait-specific STP, in 
the following just STP, measured by means of the above introduced IMU system. In this context it 
was further differentiated between three error sources, the tracking algorithm, the IMU to segment 
(I2S) calibration and the biomechanical model. 

Further, it was the claim of this thesis to design an initial application of the discussed system. 
For this purpose the thesis focuses on a typical problem frequently addressed with motion capture 
systems, the classification of a pathological gait using machine learning approaches. 

1.2 Research Question 

Based on the above raised matters the following research questions are addressed in this thesis: 
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 Are the joint angles, in detail the hip, knee and ankle joint angle as well as the global pelvis 
motion in the sagittal, frontal and transversal plane, of gait as well as static and moderately 
dynamic motions measured by means of the above mentioned IMU system, consisting of a 
seven sensor set-up, comparable to the results of an OMC based approach? 

 Are the STP and the gait-specific events IC and TC measured by means of the same IMU 
system comparable to the results of an OMC based approach? 

 Are the joint angles and STP measured with constant accuracy independent of the 
measurement time, i.e. the test-retest reliability, and independent of the duration of the 
measurement, i.e. long-term stability? 

 How is the difference between the OMC system and the IMU system distributed on 
different sources of error, i.e. the tracking algorithm, the I2S calibration and the 
biomechanical model? 

 Is it possible to identify a certain group of patients incorporating certain features of the gait 
data measured by means of the described IMU system and employing a supervised 
machine learning algorithm? 

1.3 Publications 

The four journal papers (JP) (see Table 1) enclosed in this thesis address the questions raised in 
chapter 1.2. 

JP 1 [11] is concerned with a technical evaluation of the IMU system within a homogeneous 
group of young and healthy subjects. Therefore, the 3D joint angles of the lower extremities during 6 
minute walking were simultaneously recorded by means of the mentioned IMU system and an 
OMC system. The IMU system employed in this study still incorporated an OMC based I2S 
calibration as well as the biomechanical model defined by the markers attached to anatomical 
landmarks (AL). 

JP 2 [12] extends the technical evaluation performed on the 3D joint angles of the gait in JP 1 to 
the 3D joint angles of physiotherapy and sport-specific movement tasks. 

JP 3 [13] tackles the evaluation of the gait event detection and the estimation of the STP by 
means of the IMU system. For this the same gait recordings from JP 1 were used. However, in this 
study the IMU system incorporated a biomechanical model based on a human body model 
incorporating AL that is scaled according to anthropometric tables and an IMU based I2S calibration. 

JP 4 [14] introduces the first application of the IMU system. The same version of the IMU system 
as described in JP 3 was employed to measure the 3D joint angles during gait within a group of 
patients after total hip arthroplasty (THA). Additionally, the gait data of the group of young and 
healthy subjects from JP 1, processed with the approach used in JP 3, was used in this study. Certain 
features from among the joint angles of the lower body were defined based on expert knowledge 
and recommendations from the literature. JP 4 evaluates the ability to classify a gait pattern based on 
these features as healthy or impaired, when they are employed to train a common machine learning 
classification algorithm. 

Table 1. References of the journal papers included in the thesis. 

Journal Paper 1 Teufl, W.; Miezal, M.; Taetz, B.; Fröhlich, M.; Bleser, G. Validity, Test-Retest Reliability 
and Long-Term Stability of Magnetometer Free Inertial Sensor Based 3D Joint 
Kinematics. Sensors 2018, 18, 1980, doi:10.3390/s18071980. 
 

Journal Paper 2 Teufl, W.; Miezal, M.; Taetz, B.; Fröhlich, M.; Bleser, G. Validity of inertial sensor based 
3D joint kinematics of static and dynamic sport and physiotherapy specific movements. 
PLOS ONE 2019, 14, e0213064, doi:10.1371/journal.pone.0213064. 
 

Journal Paper 3 Teufl, W.; Lorenz, M.; Miezal, M.; Taetz, B.; Fröhlich, M.; Bleser, G. Towards Inertial 
Sensor Based Mobile Gait Analysis: Event-Detection and Spatio-Temporal Parameters. 

https://doi.org/10.3390/s18071980
https://doi.org/10.1371/journal.pone.0213064
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Sensors 2018, 19, 38, doi:10.3390/s19010038. 
 

Journal Paper 4 Teufl, W.; Taetz, B.; Miezal, M.; Lorenz; Pietschmann, J.; Jöllenbeck, T.; Fröhlich, M.; 
Bleser, G. Towards an Inertial Sensor-Based Wearable Feedback System for Patients after 
Total Hip Arthroplasty: Validity and Applicability for Gait Classification with Gait 
Kinematics-Based Features. Sensors 2019, 19, 5006, doi:10.3390/s19225006. 
 

 

1.4 Contributions 

The present thesis forms the foundation of a successful usage of a newly developed, mobile 
IMU system, omitting magnetometer information. The thesis evaluates in detail the validity and 
reliability of the lower limb joint angles, gait events and STP measured by means of the mentioned 
system and reveals the contribution of different sources of errors to the overall difference between 
the IMU system and the reference. Furthermore, it critically discusses the drawbacks and difficulties 
of measuring human motion by means of MIMU / IMU systems. In addition also the reference 
system, the OMC system, is critically viewed and its advantages and disadvantages are discussed. 

In detail, the validity and reliability of the joint angles of the hip, knee and ankle as well as the 
3D global motion of the pelvis during gait and static and moderately dynamic motion tasks are 
reported. Further, this thesis reveals the accuracy of the gait-event detection, IC and TC, as well as 
the accuracy of the STP. The validity is shown for two different populations, first, a homogeneous 
group of young and healthy subjects and, second, a heterogeneous group of patients after THA. This 
was done to examine the influence of the body physique and different motion patterns, common for 
pathological gait, on the accuracy of the IMU based joint angle estimation. 

Further, the difference between the two systems is evaluated regarding its origin. Therefor 
three versions of the IMU processing procedure are considered, adding more OMC-independent 
information per processing stage. In Table 2 the different versions are described. 

Table 2. Different ways of processing the IMU raw data. 

Procedure 1 OMC based biomechanical model; OMC based I2S calibration; 
IMU based segment tracking 

Procedure 2 OMC based biomechanical model; IMU based I2S calibration; 
IMU based segment tracking 

Procedure 3 IMU based biomechanical model; IMU based I2S calibration; 
IMU based segment tracking 

 
Finally, the thesis describes a first step towards the intended use of the IMU system by defining 

features from among the 3D gait kinematics that proved discriminative in the classification of 
impaired and non-impaired gait and therefore present useful trigger-parameters in a gait-training 
application. 

1.5 Outline 

The thesis is structured into four parts. First, a short description of the background of human motion 
capturing is given, with a closer look at the special case of gait analysis. Consequently, the gold 
standard system and reference in this thesis, the OMC system, is introduced. Then MIMU / IMU 
systems in general, their drawbacks and advantages, are described. Finally, the IMU system 
evaluated in this thesis is shortly introduced. 
Second, the validation of the IMU system is treated in the JPs 1 − 3. The JPs are shortly introduced 
and then the original articles are displayed in full length including appendices but excluding 
supporting information online available, except for the JP 2. In this case, for the convenience of the 
reader, a protocol describing certain technical issues is attached. 

https://doi.org/10.3390/s19010038
https://doi.org/10.3390/s19225006
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Third, the JP 4 describes the application of the system in the problem of classifying impaired and 
non-impaired gait. The JP is again shortly introduced and then displayed in full length. 
Additionally, extended results from JP 4, not originally published, are included in this part 
presenting the validation results of the IMU based joint angles processed with Procedure 1 – 3 for 
the group of patients after THA and processed with Procedure 2 – 3 for the group of healthy 
subjects. 
Fourth, besides the individual discussions of each separate JP the results are summed up and 
discussed in general. Further, this part focuses on limitations in the study design and future work. 
Finally, a holistic conclusion is drawn from the findings of this thesis. 
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2 Background 

2.1 Human Motion Capture 

Human motion capture (HMC) describes the application of systems based on different kinds of 
technical approaches to record the kinematics and kinetics of the human musculoskeletal system 
during different tasks in the 3D space [8]. In detail, information is collected on the pressure and 
forces produced by the human body and the thus induced joint loadings; the relative movement of 
the bony segments in the 3D space and therefore also the relative rotations between these segments, 
mostly expressed as joint angles; task specific motion events like initial and terminal ground contact; 
spatial and temporal information on certain movement sections; as well as the muscular activation. 

The systems for measuring this information are plentiful. However, in every field of application 
there exists a so called gold standard reference. For example, ground reaction forces are typically 
measured using force plates. However, there are also alternative approaches based on MIMU / IMUs 
that try to reproduce the ground reaction forces using sensor data [15,16]. These alternative 
approaches, however, have to face up to the comparison with the gold standard systems to be 
scientifically accepted. 

In the case of 3D joint angles the OMC systems are considered the reference when it comes to 
biomechanical analysis [7,8]. They are also used for the estimation of STP and deliver results 
comparable to pressure plates and force plates [17–19]. 

OMC systems are able to measure the position of retroreflective markers in 3D space with 
sub-millimeter precision [20]. However, it is a long way from sheer marker positions to the relative 
angles between segments. To define a segment, e.g. human bones, and its corresponding coordinate 
frame (CF) a minimum of three markers has to be non-collinearly aligned on it. There are different 
ways of how the markers are aligned on the human body, depending on the body part and the 
movement task one is interested in. These ways can be referred to as biomechanical marker 
protocols [21–24]. Although these marker protocols differ from each other they all try to fulfill 
standards designed for the reconstruction of human body segments. The Rizzoli marker set defined 
by Leardini et al. [21] follows the recommendations of Cappozzo et al. [25] for the definition of the 
segments of the lower body. In that protocol markers are attached onto the skin approximately over 
underlying AL. These AL are used for the segment definition as well as the segment tracking during 
motion. In comparison to that approach other protocols use a calibration wand or markers attached 
to relevant AL for a static segment definition. However, they then use so called marker clusters, a set 
of at least three markers attached to a rigid surface, for segment tracking during the movement task 
[22]. 

Based on the markers attached to AL according to a certain marker protocol, finally, a 
biomechanical model can be defined. The biomechanical model includes information about the 
segment lengths, joint centers and joint axes [26]. The definition of a biomechanical model prior to 
the kinematics estimation allows for the interpretation of the calculated angles between segments as 
anatomically relevant joint angles. 

The segments are considered rigid. However, the HMC using OMC systems faces one big 
problem: markers cannot be placed directly on the AL. The muscles and skin, i.e. soft tissue, 
covering the bony structures prevent a direct approach. Therefore, the markers are prone to the 
relative movement of the soft tissue with respect to the underlying bone. This uncertainty in the 
estimation of the exact position of the AL introduces errors in the segment definition, the segment 
orientation estimation and finally in the calculation of the joint angles. This phenomenon is 
commonly referred to as soft tissue artefacts (STA) [27]. Depending on the differing physique of the 
subjects in question for motion analysis the impact of STA on the joint angles estimation can have 
differently grave effects. 

A possible solution to better control the effect of STA during the segment tracking is to use, as 
mentioned above, marker clusters [27]. This approach is deemed to minimize the effect of STA on 
the distances between the markers attached to one segment since they are rigidly connected on the 
cluster. However, Leardini et al. [27] mentioned that there are also errors concerning the 
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inter-marker distances on a cluster due to systematical errors in the OMC system, although, as 
mentioned afore, they were proven to be in the region of sub-millimeters. 

In summary, the quality of OMC based HMC depends on the marker set used, the marker 
placement, the approach for the segment CF definition, and finally the subject itself.  

The applications of HMC are manifold. There are basically two huge areas for HMC, animation 
[28,29] and biomechanics [2,30,31]. In animation and the movie industry mainly active marker based 
OMC systems are used, whereas the field of biomechanics resorts to passive marker based OMC 
systems. The HMC in biomechanics has a long history [32]. However, the modern biomechanical 
HMC has its origin in the gait analysis. 

2.1.1 Gait Analysis 

The gait analysis has grown from the evaluation of children with cerebral palsy [33,34]. Thanks 
to experts like Richard Baker [35], James R. Gage [33], Perry and Burnfield [36] and in the 
German-speaking region Kirsten Götz-Neumann [37] the gait analysis has nowadays spread far over 
its original field of application into all kinds of different clinical areas. Typical applications are the 
early identification of neurological diseases [38,39], supporting or selecting surgical approaches 
[40,41], the evaluation of a rehabilitation progress [42,43] and many more. 

Hereby, the gait analysis is mainly concerned with the evaluation of certain parameters during 
the so called gait cycle. The gait cycle is defined as the time from the IC of one lower limb to the 
consecutive IC of the ipsilateral limb. Further, the gait cycle is divided in relevant phases, which 
mainly differentiate between stance phase and swing phase [36] (see Figure 1). 

 

 

Figure 1. Presentation of the phases of one gait cycle. The stance phase equals approximately 60 % of 
the gait cycle. Accordingly, the swing phase equals 40 % of the gait cycle. Figure taken from Perry 
and Burnfield [36]. 

The commonly evaluated parameters in a gait analysis are kinetics like ground reaction forces 
and joint loadings [44,45] as well as kinematics, anatomical joint angles and STP [46–48]. As 
mentioned in chapter 1.1 OMC systems have established themselves as gold standard for the 
measurement of the latter two. 

Spatio-Temporal Parameters 

The STP are the typical parameters measured in a gait analysis and are commonly part of a 
standard clinical motion analysis [49]. The STP are comparably easy to measure using an OMC 
system. With, for example, only two markers, one on each calcaneus, it is possible to validly measure 
the IC of each leg [17]. This approach was used in the JP 1 to perform the segmentation of the joint 
angle waveforms to 100 % gait cycle based on the ICs estimated from the OMC data. In the JPs 3 and 
4 this approach was extended and combined with the approach described in [50]. However, here the 
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virtual calcaneus markers of the biomechanical model of the IMU system were incorporated in this 
approach rather than the markers from the OMC system (refer to the JP 3 for details). 

Based on the IC information it is possible to calculate STP like stride length, step length, step 
width, stride time, step time, cadence and speed (see Table 1 from JP 3). Adding two more markers 
on the head of the left and right Os metatarsale I and using the combined approach for gait event 
detection from the JP 3 enables the estimation of the TC as well and therefore the calculation of 
single limb support, double limb support, stance time and swing time. 

In comparison to the OMC system only pressure and force plates allow the calculation of the 
same amount of information. The mobile version of pressure plates, instrumented insoles, do not 
incorporate spatial assignment and therefore allow only the direct assessment of temporal 
parameters [51–54]. Consequently, alternative systems, like MIMU / IMU based sensor networks are 
needed for a mobile, complex evaluation of the gait specific STP. 

Joint Angles 

The calculation of the 3D joint angles requires a far more complex set-up compared to the four 
marker set-up needed for STP estimation. A typical marker set for the measurement of the joint 
angles of the lower body, mentioned afore in chapter 2.1, is the Rizzoli marker set, consisting of a 
minimum of 28 markers, including calibration markers [21]. Compared to another common marker 
set, the Plug-in gait [22], the Rizzoli marker protocol does not depend on anthropometric 
measurements. Further, the Plug-in gait depends on a knee-alignment device for optimal estimation 
of the axis of rotation in the knee joint. On the other hand the Rizzoli marker protocol needs more 
markers and depends on the knowledge of different AL as well as the experience in palpating them. 

As mentioned in chapter 2.1 the AL on one segment serve the definition of the segment’s CF 
and its origin with respect to a global frame. In the following this is explained on the example of the 
creation of the segment shank following [25]. 

According to the Rizzoli marker protocol markers shall be attached to the following AL on the 
tibia and fibula, respectively [21]: 

 Caput fibularis 

 Tuberositas tibiae 

 Malleolus lateralis 

 Malleolus medialis 

See Figure 2 for a schematic representation of the creation of the segment shank according to 
[25]. 
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Figure 2. The origin of the coordinate frame of the segment shank (0) is defined as the midpoint 
between the line connecting the malleolus lateralis and the malleolus medialis. The longitudinal axis 
(y) is defined by the intersection of a quasi-frontal plane, defined by the malleolus lateralis, the 
malleolus medials and the caput fibularis, and a quasi-sagittal plane, defined by the origin, the 
tuberositas tibiae and the orthogonality to the quasi-frontal plane. The medio-lateral axis (z) lies in 
the quasi-frontal plane. The posterior-anterior axis (x) is orthogonal to y and z. 

After the construction of the segments the markers on the AL or marker clusters are used to 
reconstruct the orientation of the corresponding segment in a global frame. Consequently, angles 
between two adjacent segments can be calculated based on these orientations. Let 𝑅𝐺𝑇  be the 
orientation matrix of the segment thigh in the global frame and 𝑅𝐺𝑆 the orientation matrix of the 
segment shank in the global frame (see Figure 3). 

 

 

Figure 3. The segments shank and thigh with their defined coordinate frames S and T, respectively. 
G represents the global reference coordinate frame. 

The relative rotation between the two segments can be calculated according to equation (1): 

 𝑅𝑇𝑆 = (𝑅𝐺𝑇)𝑇𝑅𝐺𝑆 (1) 
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The orientation matrix 𝑅𝑇𝑆 contains the information about the orientation of the shank relative 

to the thigh. However, to express that in clinically relevant terms it is necessary to extract from 𝑅𝑇𝑆 
anatomically meaningful angles. Therefor the Euler angle or Cardan angle decomposition is used 
[55]. These approaches describe the complex information in the rotation matrix with three rotations 
around the spatial axes (𝑥, 𝑦, 𝑧) according to a defined sequence. In this context, concerning Euler 
angle decomposition, the first and third rotation takes place around the same axis (see Figure 4). In 
the Cardan angle decomposition all three rotations are processed around the three different spatial 
axes. 

 

 

Figure 4. Shown is an example for the Euler angle sequence 𝑧 − 𝑥 − 𝑧. a: the coordinate system is 
rotated around the z axis. b: the new coordinate frame (‘) is rotated around the x axis. c: the new 
coordinate frame (‘’) is rotated again around the z axis and results in the final coordinate frame (‘’’). 𝛾 represents the rotation around the z axis, 𝛼 represents the rotation around the x axis. 

In the example from Figure 3 an adequate sequence for the decomposition, that fits the 
anatomical properties in that example, would be the Cardan sequence 𝑧 − 𝑥 − 𝑦. Let the angles 
around 𝑧, 𝑥, 𝑦 be 𝛾, 𝛼, 𝛽, respectively. Accordingly: 

 𝑅𝑇𝑆 = 𝑅𝑧𝑇𝑆(𝛾)𝑅𝑥𝑇𝑆(𝛼)𝑅𝑦𝑇𝑆(𝛽) (2) 

In this case, 𝛾 can be interpreted as flexion/extension, 𝛼 as abduction/adduction and 𝛽 as 
internal/external rotation (compare Figure 3). 

The above mentioned approach for the segment definition represents an anatomical CF 
definition and therefore results in anatomically meaningful joint angles. The definition of a technical 
CF represents a less complex approach for the calculation of an angle between two segments. Here, 
the CF is constructed based on rigid marker clusters fixed to the segment (see Figure 5). 
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Figure 5. The segments thigh (T) and shank (S) are defined based on the corresponding rigid clusters 
equipped with four markers. G represents the global CF. 

These marker clusters are considered bone, i.e. segment, embedded. As mentioned afore, a 
combination of both approaches can be used, i.e. the anatomical CF construction is based on AL and 
the segment tracking uses the rigid marker clusters. 

The difference between the joint angle calculation based on a combination of clusters and 
markers attached to AL as well as the joint angle calculation based solely on markers attached to AL 
is highlighted in the JP 1 and 2. 

2.1.2 Gait Classification 

The classification of gait patterns based on the various parameters, recorded during gait 
analysis, using machine learning approaches is nowadays a widely discussed issue [56]. Gait 
classification is mainly employed to support the diagnosis or the clinical decision making in diseases 
like cerebral palsy [57,58], Parkinson [59–61], stroke [62–64] and others [65–67]. 

The instrumented gait analysis has the potential to deliver a huge amount of data and therefore 
a huge amount of possible features that can be employed for the training of a classification model. 
Therefore, data reduction and mainly feature selection are an essential part of machine learning [68]. 
One possibility is to employ such feature selection methods to automatically reduce the amount of 
data to a minimum of relevant parameters. The principal component analysis is one of the most 
common methods used for data reduction [69]. The principal component analysis is used to 
structure a large set of features by finding linear combinations of these features with maximum 
variance. The significance of each combination, the principal component, declines with increasing 
dimensionality. However, often the interpretability of the newly defined components decreases after 
the first two components [70]. 

A completely different approach to feature selection is the manual selection of adequate 
parameters that can be employed in a classification algorithm. It allows the researcher to design 
features based on expert knowledge and literature recommendations. Further, this approach may 
yield features that are better to understand for physicians and patients alike. 

In the case of predefined features there are also ways to determine the importance, or the 
ranking, of the features involved. A common way to estimate the contribution of certain features to a 
classification model is the maximum relevance minimum redundancy algorithm [71]. 

Fact is that with the increasing number of wearables used in daily living the amount of data 
available for machine learning approaches increases in equal measure. Therefore, beside the quality 
of the data, the selection of the optimal features becomes ever more important. However, the data 
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amount increases not only in everyday living. Since the introduction of MIMU / IMU systems in 
HMC the recording of loads of clinical motion data has become far more simple. 

2.2 Inertial Measurement Units 

In the past 25 years the use of MIMU / IMUs in HMC has increased intensely [7]. Each year the 
sensor units get smaller, cheaper and more powerful. Therefore, of course the interest in 
MIMU / IMUs on behalf of researchers and potential users is still growing. 

However, to be able to work with a technology it is essential to understand its composition and 
functionality to better gauge the chances and advantages as well as the potential drawbacks of its 
use. 

2.2.1 Technical Background 

A common IMU is composed of a three axes accelerometer, measuring linear acceleration along 
the three spatial axes, and a three axes gyroscope, measuring angular velocity around the three 
spatial axes. In the case of a MIMU also a magnetometer is included, providing a magnetic field 
measurement. To determine the orientation, velocity or position of an IMU the signals have to be 
integrated. For example, to derive the velocity, the acceleration has to be integrated. However, 
consider that the initial measurement is represented in the sensor CF. Further, the accelerometer also 
measures acceleration due to gravity, the latter pointing away from the geocenter. Therefore, the 
measured acceleration has to be represented in a global frame, where the gravity component can be 
subtracted. Consequently, one requires the knowledge about the sensor’s orientation, which can be 
obtained by integrating the angular velocity. Therefore, the information of different sensors is fused. 
This approach of incorporating various sensors into an estimation problem is referred to as sensor 
fusion [72]. Kalman filters are typically employed for this purpose [73–75]. 

The resulting orientation of the MIMU / IMU is typically expressed in a quaternion [76]. An 
advantage of the quaternion-parametrization is, for example compared to the parametrization in 
Euler angles, that quaternions do not encounter singularities. However, the parametrization of 
rotations in quaternions are difficult to interpret geometrically. Therefore, to derive interpretable 
kinematics and to make the results comparable to other systems, in this case the kinematics of an 
OMC system, it is necessary to convert the quaternion rotations into Euler angles. This process 
incorporates again the Euler angle decomposition (compare chapter 2.1.1). 

Despite a long period of research MIMU / IMUs face some important technical drawbacks. In 
this work only the two most essential are to be mentioned in foresight to the contributions of the 
described articles. 

First, consider an IMU lying absolutely still on a surface. In this case, as mentioned before, the 
accelerometer measures the acceleration due to gravity. The gyroscope is considered to measure 
zero. However, due to technical restrictions the gyroscope as well as the remaining sensors can be 
afflicted with a bias. This bias can be for example influenced by changes in the temperature [77]. By 
integrating these biased sensor signal the measurement error accumulates. In the derived sensor 
orientation this bias is therefore interpreted as motion. In a graphical representation the sensor 
would therefore start to rotate around all three axes. That phenomenon is commonly referred to as 
drift. 

However, in combination with the accelerometer the drift can be reduced. Incorporating the 
knowledge of the axis defined by gravity, the gyroscope induced drift can be removed from the two 
axes orthogonal to the gravity. Nevertheless, the orientation estimate will still drift around the 
gravity axis itself, commonly referred to as heading direction drift. A common solution is to 
incorporate the measurements of a magnetometer. Such MIMUs are now able to correct the drift in 
the heading direction by incorporating the knowledge of the magnetic field vector. 

This introduces the second technical drawback of IMUs or rather MIMUs, magnetic 
disturbances. In an industrial environment the magnetic field can be disturbed by ferro-magnetic 
materials, steel, power lines, etc. Consequently, the assumption of a homogeneous magnetic field is 
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violated and therefore the magnetometer measurement cannot be used any longer for correction, 
causing again an offset in the measurement of the sensor orientation. 

There is considerable work on the compensation for the MIMU / IMU drift [77–80] and the 
handling of magnetic disturbances [81–83]. For the latter a possibility is to estimate the MIMU / IMU 
orientation omitting all magnetometer information. In the literature various approaches exist 
concerning a purely accelerometer and gyroscope based orientation estimation [79,84–86]. Of course, 
in this case, other methods have to be found to compensate for the missing corrective information 
concerning the heading direction. Consider that the methods for drift correction depend on the 
number of IMUs available. With respect to the IMU system described in this thesis, only approaches 
concerning sensor networks with at least two sensors were considered. 

Drift Correction Approaches 

Dejnabadi et al. [87,88] tried to estimate the drift-free sagittal angle of the knee joint using one 
IMU on the thigh and shank, respectively and further introducing virtual sensors located at the joint 
center of rotation of the knee. These virtual sensors were defined by shifting the two physical sensors 
on the thigh and shank into the center of rotation between the two segments. Using the estimated 
accelerations of the virtual markers at the center of rotation they were able to deduce the orientation 
of these two virtual markers and calculate the angle between the virtual sensors, i.e. the angle 
between the segments (see Figure 6). Therefore, Dejnabadi et al. [87] extended an approach from 
Morris et al. [89] and Willemsen et al. [90] and calculated the angle between two segments without 
the need of integration. However, they needed the exact position of the physical sensors. Therefore, 
their model had to be individualized by anthropometric data and the sensor position was derived 
from photography. 

 

 

Figure 6. Physical sensor placement on the thigh (S1) and shank (S2) plus the corresponding virtual 
sensors (V) shifted to the center of rotation between the two segments. Φ represents the angle 
between the two virtual sensors in the sagittal plane, i.e. the knee flexion. Modified figure taken from 
Dejnabadi et al. [87]. 

A further common approach to drift correction is the detection of static phases in the sensor 
measurement where no, or a low, acceleration can be assumed, common in the stance phases of gait 
[77]. With a known gravity vector 𝑔 the sensor acceleration 𝐼𝑎 at the time of the static phase can be 
compared to 𝐼𝑔, the gravity expressed in the sensor frame. Consequently, any difference between 𝐼𝑎 
and 𝐼𝑔  is interpreted as orientation drift [77,91]. However, this approach assumes phases of 
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minimum acceleration. That might be common in gait, whereas that might not be the case in highly 
dynamic movements. 

Fasel et al. [78] developed a drift reduction method especially for the case of highly dynamic 
motions, e.g. alpine skiing. Their approach was based on the estimated accelerations of virtual 
sensors, located at a virtual joint of two adjacent segments. The distances between the real sensors on 
the proximal and distal segment, respectively, were derived using a numerical optimization 
approach. In comparison to Dejnabadi et al. [87] the approach of Fasel et al. [78] did not rely on 
anthropometric measurements and was further designed to cover all three dimensions. 

Other approaches try to compensate for missing magnetometer information by combining the 
IMU measurements of all sensors included in the sensor network with a biomechanical model 
including biomechanical constraints [10,92]. In Miezal et al. [10] these biomechanical constraints are 
incorporated in an extended Kalman filter as measurement models and, e.g., prevent the connected 
segments from drifting apart in a physically impossible way. 

The proposed methods all work only for multi-sensor set-ups and require additional 
information, e.g. distances between sensors and virtual sensors or biomechanical constraints. A 
recent review on lower limb kinematics estimation using MIMU / IMUs also summed up a few of 
the most common approaches used for drift compensation [93] 

However, employing solutions like the ones mentioned above, MIMU / IMUs are nowadays 
widely applied in HMC and especially in gait analysis applications [7,94–98]. 

2.2.2 Inertial Measurement Units and Gait Analysis 

MIMU / IMUs are employed in various fields of gait analysis to mainly gain information about 
the STP and the joint angles [96,98]. Further, there is initial research trying to estimate the ground 
reaction forces during gait based on MIMU / IMU data [15]. 

Gait Event Detection and Spatio Temporal Parameters 

The estimation of gait events, IC and TC, and based on that the calculation of STP is the most 
common way of using MIMU / IMUs in gait analysis. Accordingly, Caldas et al. [96] and Petraglia et 
al. [98] included almost exclusively studies reporting the estimation of STP in their recent reviews on 
MIMU / IMUs in gait analysis. Consider, most of the studies concerned with MIMU / IMU based 
STP vary strongly in the number of parameters reported. That is because the complexity of the 
calculation of the parameters differs distinctively. 

However, starting with the essential, first of all one has to define certain events or phases of the 
gait to deduce the STP. In the following only a few approaches to the gait event detection are 
described in more detail to gain an understanding of the different possibilities available. 

Salarian et al. [99] estimated IC and TC based on a 1D gyroscope attached to the shank in a 
fashion to measure the rotational velocity around a medio-lateral axis. Here, a positive angular 
velocity was associated with the swing phase. Prior and after this phase a negative peak was 
evident. These peaks were associated with TC and IC, respectively (see. Figure 7). 
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Figure 7. Gyroscope signal of a subject during walking. The 1D gyroscope was fixed to the shank in a 
manner to measure the angular velocity around a medio-lateral axis. The positive area of the 
medio-lateral angular velocity was associated with the swing phase. The negative peaks before and 
after that phase indicated the TC and IC, respectively. Modified figure taken from Salarian et al. [99]. 

Köse et al. [100] used an IMU mounted on the pelvis for the deduction of IC and TC. In detail 
they used the accelerometer measurements along the vertical axis and the medio-lateral axis. They 
further conducted a visual inspection of a few samples of the data comparing it with the gait events 
deduced from an OMC system. Using the information from the visual examination the events IC and 
TC could be estimated within certain areas. 

Another approach for the detection of IC and TC is based on the initial identification of a period 
of highly probable swing and stance phase [101]. Here two MIMUs were mounted on the left and 
right shank just above the ankle joint. The phases of probable swing were identified based on the 
peaks of the medio-lateral angular velocity. The peaks were assumed to appear during the swing 
phase of the lower limb. The probable swing phase was defined as the period between the first and 
last crossing of a certain threshold, calculated from the maximum peak angular velocity [102]. 
Consequently, a period of probable swing meant a period of probable stance at the contralateral foot. 
The IC was then estimated as the minimum medio-lateral angular velocity in the phase between a 
swing period and a stance period, occurring just before an anterior-posterior acceleration peak. The 
TC was defined as the negative peak of the anterior-posterior acceleration appearing in the phase 
between a stance period and a swing period [102]. However, this approach might be susceptible to 
erroneous event detections in pathological gait patterns during which the foot is progressed forward 
without leaving the floor. 

There are many more event detection approaches available based on the physical and 
geometrical evaluation of the MIMU / IMU signals [103–107]. Other approaches use also machine 
learning algorithms to deduce the gait events from MIMU / IMU data [108]. 

However, all these approaches have one thing in common. They rely on the information of two 
sensors. Despite the advantage of easy and quick applicability, the usage of only two MIUM / IMUs 
comes along with a few restrictions concerning the calculation of certain spatial parameters. It is 
rather straight forward to calculate parameters relying on the spatial information of one foot or one 
sensor, respectively. The stride length for example can be easily calculated by double-integrating the 
gravity-adjusted acceleration [105]. However, in the case of the step length or step width the spatial 
relation between two feet / sensors is needed. Since MIMU / IMUs do not directly measure position 
within a common global frame additional information and assumptions are necessary [100,103,109]. 

However, these approaches are specialized methods for the calculation of a certain parameter 
[100,103] or incorporate additional materials [109]. In contrast to that stand methods based on more 
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complex systems integrating a network of more than two sensors and incorporating biomechanical 
information and anthropometric measurements [10,110]. That means a spatial relation between the 
sensor and the actual human segment, the skeletal structure, is established, referred to as I2S 
calibration. A sensor network of more than one sensor per lower extremity, an I2S calibration and 
anthropometric information enable now not only the calculation of more complex STP but also the 
estimation of anatomically interpretable joint angles. 

Joint Angles 

Like with the OMC system it must be differentiated between technical angles and anatomically 
interpretable angles. Technical angles are those derived from the relative orientations of two 
MIMU / IMUs. To calculate these angles the orientation of one sensor has to be converted to the CF 
of the corresponding sensor. Consider these sensors attached to two adjacent human segments, 
assumed a rough known alignment is given, then the angles between these sensors can provide 
rudimentary information about a movement, neglecting all further anatomical and biomechanical 
conditions. In Figure 8 this approach is schematically depicted. 

 

 

Figure 8. The sensor CF 𝐼𝑗 is aligned with the sensor CF 𝐼𝑖 . 𝑞𝑗  represents the rotation quaternion of  𝐼𝑗  to 𝐼𝑖 , i.e. the relative rotation between 𝐼𝑖  and 𝐼𝑗 . The angle between both sensors’ y-axes (α) 

is a technical angle and can be used, in this example, as an approximation to the anatomical 
flexion − extension angle between the segments 𝑆𝑖  and 𝑆𝑗. Consider, this example presumes a 
rough manual alignment of the sensors’ y axes with the longitudinal axes of the segments. 

In contrast to that, the I2S calibration creates an alignment between the MIMU / IMU CF and 
the human segment CF to which the sensor is attached. That means the I2S calibration further 
determines the orientation of the sensor with respect to the corresponding segment after attaching 
the sensor to the segment in a random way. The theoretical idea of the I2S alignment is schematically 
depicted in Figure 9. 
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Figure 9. The sensor CF 𝐼𝑗 is aligned with the segment CF 𝑆𝑗.  𝑞𝑗  represents the rotation quaternion 

of 𝐼𝑗  to 𝑆𝑗 . If the same procedure is applied to 𝐼𝑖  then the magnetic inertial measurement 

unit / inertial measurement unit (MIMU / IMU) orientations can be converted to segment 
orientations and anatomically meaningful joint angles can be derived from the relative orientations 
of connected segments. 

There are various ways for the alignment of the MIMU / IMU CF with the anatomical CF of its 
corresponding segment [79,84,111–114]. The most common approaches are based on one or more 
known static poses [111,114,115], functional movements [79,84] or a combination of both [112]. 
Picerno et al. [113] proposed a calibration device equipped with an MIMU that was used to point on 
certain AL. However, this approach contradicts the MIMU / IMU system’s independency from 
expert knowledge and quick applicability. 

One known static pose and a known alignment of one MIMU / IMU can be enough for the I2S 
calibration in the case of MIMUs. The knowledge of the gravity vector as well as the magnetic field 
vector are used to define the sensor’s CF [114]. In the absence of the magnetometer information more 
than one pose is needed. Here, the difference between the two gravity vectors from the different 
poses is used to build the CF [111]. 

In the case of functional movements the information of the angular velocity vector of two 
adjacent segments during a predefined motion is considered for anatomical CF construction [111]. 

To align a sensor CF to an anatomical, bone-embedded CF the knowledge of the latter is 
required. However, that imposes priorly measured or estimated biomechanical information, i.e. the 
position of certain AL. In [113], as mentioned above, a calibration wand incorporating a MIMU is 
used to point those AL out. 

Another approach is based on anthropometric statistics [116–118]. In this case the segment 
lengths of a model are scaled based on a simple input, e.g. body height, and the statistical 
information from the mentioned tables. Further, one has to attach AL to these segments, e.g. by 
incorporating the information of a human body model derived from the survey of a cadaver [119]. 

However, this method relies strongly on the diversity of the collected data based on which the 
mentioned anthropometric statistics and the body model, which is scaled, were built and might 
therefore not be adequate for certain ethnical groups, underrepresented in the test data set, and for 
humans distinctly differing from the average. In [119], for example, the test data set consists of only 
one cadaver of a 85 year old male. 

Considering these concerns alternative approaches are developed. A recent work of Taetz et al. 
[26] evaluates the creation of an individualized biomechanical model for the human lower body 
based on a single-view depth camera image. This method incorporates and extends approaches from 
Golyanik et al. [120] and Pishulin et al. [121]. The method is based on statistical human shape models 
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incorporating annotated AL derived from complete body scans [122], the S-SCAPE model. This 
model was refined by Pishulin et al. [121]. Using statistical shape fitting, these human body shape 
models are registered to the 3D point cloud derived from a depth camera image. The segment 
lengths and segment orientations as well as the joint centers are then calculated based on the 
annotated AL. The workflow of this approach is shown in Figure 10. 

 

 

Figure 10. Workflow of the statistical shape fitting using a statistical human body model (green dots) 
incorporating annotated AL (red dots) and a depth camera based 3D point cloud (black dots). Figure 
taken from Taetz et al. [26]. 

With the preferred method for the creation of the biomechanical model and the so derived 
segment CF, segment lengths and joint centers, it is then possible to perform an I2S calibration. 
Afterwards the relative segment orientations and relative rotations between adjacent segments as 
well as meaningful Euler angles can be calculated in the same manner as described in chapter 2.1.1. 

However, in the context of the I2S calibration, offsets are a further issue. As mentioned above 
the I2S calibration relies on known poses, e.g. the neutral-zero pose. This certain pose implies that 
the joint angles of hip, knee and ankle equal zero. However, in the case of human subjects, especially 
subjects suffering physical impairments, it is difficult if not impossible to take that position. In [123] 
this was examined within a group of healthy subjects and a group of patients after THA. It was 
shown that in certain joint angles the actual posture differs up to 15° from the assumed pose. 

That difference in the assumed pose and the actual pose becomes noticeable in the MIMU / IMU 
based joint angles as static calibration offsets. Such static offsets are described in the JP 2. Figure 11 
shows a static offset in the hip flexion during a squat motion task. 

 

 

Figure 11. Figure from the supporting information of JP 2 [12]. Shown is the hip flexion of an 
exemplary subject during one squat (SQ) motion task. The x axis shows the motion cycle (MC) 
normalized to 100 percent. A static offset between the optical motion capture (OMC) system (solid 
line) and the IMU system (dashed line) was evident. 
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Beside calculating anatomically meaningful joint angles, incorporating the information of a 
detailed biomechanical model with respect to the lower body, allows for the calculation of the more 
complex STP mentioned above, e.g. step length, step width [13]. 

There is a lot of work in the literature that is concerned with the estimation of joint angles 
during gait and other activities using MIMU / IMU systems [79,84,112,124–134]. These studies differ 
widely concerning the application of the sensors, the processing of the data and the complexity of 
the parameters analyzed. 

Despite an obvious amount of literature available, recent reviews about that topic considered 
mainly studies reporting the measurement of STP using MIMU / IMUs [96,98]. That underlines the 
suggestion that the measurement of simple STP in gait analysis using MIMU / IMUs is well 
established within the research community. However, it also shows that the evaluation of mobile 
sensor based systems estimating joint angles still lacks sufficient standardization and quality, 
therefore supporting the overall aim of this thesis to establish an IMU based system for complex 3D 
motion analysis of the lower body according to the highest research standards. Such a system would 
present promising opportunities for clinicians and researchers alike, e.g. in the real-time treatment of 
patients. 

2.2.3 Feedback Applications using MIMU / IMU 

The huge advantage that portable sensors have over camera based HMC systems is the 
possibility to use them in the subject’s natural environment and perform a constant monitoring of 
the kinematic parameters over a longer time period. Further, the MIMU / IMUs grow smaller and 
more efficient, with respect to the frame rate and power consumption, by the day, therefore 
providing a system that minimally influences the movement of the subject. Recent developments in 
that area culminated in so called smart textiles in which the sensors vanish almost completely. In 
Figure 12 the smart pants of the Xenoma® Company are depicted. 

 

 

Figure 12. The e-skin smart pants from Xenoma including a seven MIMU sensor network.1 

Various authors have developed feedback applications based on MIMU / IMU measurements 
using different feedback modalities [135–142]. In Hassan et al. [135] three MIMUs are used to 
measure the hip and knee joint kinematics of the unaffected limb of a hemiplegic patient as well as 
the motion of a cane used on the unaffected side. That information was employed to estimate the 
movement of the affected limb which is supported by a robot suit. 

                                                 
1
 http://www.xenoma.com/ 

http://www.xenoma.com/
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In Karatsidis et al. [136] seven MIMUs are employed in combination with augmented reality 
glasses for the treatment of knee osteoarthritis patients. Here, the lower limb kinematics is used to 
calculate the foot progression angle and deliver visual feedback regarding this parameter via the 
glasses. 

Seel et al. [137] and Valtin et al. [138] used IMUs in combination with functional electric 
stimulation to treat patients with drop foot. 

Wang et al. [139] developed an exoskeleton to support the gait of paraplegic patients. In this 
case IMUs are used as a part of a complex system to control the motion and orientation of the lower 
limbs. 

Pietschmann et al [142] employed IMUs to measure the sagittal hip joint angle in patients after 
THA and the knee joint angle in patients after total knee arthroplasty, respectively. The resulting 
joint angles were sonified and reported to the patient in real-time. The aim was to approximate the 
motion of the impaired and non-impaired side via sound and therefore increase the gait symmetry. 

In Bell et al. [140] MIMUs are employed in a home-based rehabilitation program after knee 
injury. Here, the knee angle is estimated and visually represented to the patient. 

A combination of 2 MIMUs and an exergame approach is introduced in [141,143]. Exergame 
describes a form of videogame that also provides the user with physical exercises. The idea here is to 
animate bedfast patients to perform the so called muscle-vein pump, i.e. alternating 
flexion / extension in the ankle joint, as a prevention of venous thrombosis. In this case the MIMUs 
are used to control if a certain range of motion (ROM) in the ankle is achieved. This achievement is 
then used to trigger the motion of a ball in an internetwork operating system based game. See Figure 
13 for a representation of that approach. 
 

 

Figure 13. Set-up for the exergame “JumpBall”. Two MIMUs mounted on both feet are connected to 
an iPad (Apple, Inc.). The motion of the MIMUs triggers a jumping ball in the browser based 
application. Figure taken from [143]. 

Despite this amount of promising approaches only two are at a stage of development that 
allows for real-world application [140,141]. According to the author’s opinion one reason for that is 
the fact that the MIMU / IMU systems on the market lack sufficient accuracy, or at least the 
consistent proof of the latter, and proof of their effectiveness in health applications. That means that 
most of the evidence regarding the reliability and validity of MIMU / IMU systems states high error 
ranges. Besides developing systems with higher accuracy it is also of interest to find parameters that 
are less affected by the common error sources, e.g. calibration offsets. The JP 4 is concerned with that 
very problem. 
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2.2.4 Composition of the present IMU system 

This chapter gives a brief introduction to the IMU system used in the present thesis. Detailed 
information can be found in the corresponding JPs. 

Hardware 

The sensors used in this study consisted of the wireless MTw Awinda MIMUs (Xsens 
Technologies BV, Enschede, The Netherlands). The detailed technical specification of the MIMUs 
can be viewed in Table 3. Figure 14 shows a single MTw Awinda MIMU. 

 

Table 3. Specifications of the MTw Awinda MIMU 

Sensor Range 

Accelerometer ± 160 m/s² 
Gyroscope ± 2000 deg/s 
Magnetometer ± 1.9 Gauss 
Characteristics  
Wireless update rate 60 – 120 Hz* 
Weight 16 g 
Dimension 47 x 30 x 13 mm 
* depends on the number of sensors 

 

 

Figure 14. MTw Awinda MIMU (Xsens Technologies BV, Enschede, The Netherlands) 

Sensor Placement 

In the studies of the present thesis the sensors were placed on the segments of the lower body 
as follows: 

 Pelvis: On the sacrum, between the left and right Spina iliaca posterior superior 

 Left / Right thigh: on the lateral aspect approximately at two-thirds of the distance 
between the Trochanter major and the Epicondylus lateralis femoris 

 Left / Right shank: on the lateral aspect approximately at 50 % of the distance between the 
Epicondylus lateralis femoris and the Malleolus lateralis. 

 Left / Right foot: on the dorsum of the foot approximately atop the third and fourth Os 
metatarsale 

In Figure 15 the sensor placement is schematically represented. 
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Figure 15. Placement of the MTw Awinda MIMUs on the segments of the lower body and the pelvis 
without the retroreflective markers of the OMC system. 

Sensor Fusion Method 

Despite the presence of a magnetometer in the sensors, in the present measurement approach 
only the accelerometer and gyroscope data was used. An iterated extended Kalman filter was 
employed to fuse the acceleration and gyroscope data and estimate the relative sensor orientation. 
The approach was enhanced with a global translation estimation incorporating ground contact 
estimation. The method was in detail described in [9,10]. In the appendix A of JP 1 the method was 
summarized for the convenience of the reader. 

As mentioned above the IMU raw data was recorded using MTw Awinda MIMUs. The data 
was recorded in the Xsens MVN Biomech software 4.3.7 and reprocessed using the described sensor 
fusion algorithm, which was implemented in C++. 

Parameters 

Based on the reprocessed relative sensor orientations a wide range of parameters were 
extracted. Using the Euler angle decomposition anatomically meaningful angles between adjacent 
segments were derived from the relative sensor orientations. In detail, the joint angles of the hip, 
knee and ankle in the sagittal, frontal and transversal plane were calculated. Further, the global 3D 
pelvis motion was derived from the orientations of the sensor attached to the sacrum. 

The human measurement model in the present system incorporates AL attached to the 
segments of the lower body. Consequently, the positions of these AL in the 3D space were derived 
from the IMU measurements. Consider, the validity of these positions was not evaluated in the 
present thesis. 

Based on the incorporation of the AL the gait events IC and TC could be estimated using an 
extension of the approach from Zeni et al. [50] Using IC and TC as well as the knowledge about the 
position of the AL it was possible to calculate 12 STP (see Table 1 from JP 3). 

2.3 Validation approach 
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The validation process of a HMC system demands a few essential components and steps, which 
are shortly described in this chapter. 

2.3.1 Reference System 

According to the information in chapter 2.1 the marker based OMC system was deemed the 
gold standard in HMC and therefore was chosen as reference system in the present approach. In 
detail the OptiTrack (NaturalPoint, Inc., Corvallis, OR, USA) system was employed. The system 
consisted of 12 Prime 13 cameras. The OMC data was recorded in the Motive software 1.10.0. 

To reconstruct the movement of the lower body the Rizzoli marker set [21] was chosen. The 
Rizzoli marker set was preferred over alternative marker protocols since the reconstruction of the 
segments is based on AL and does not need anthropometric measurements or calibration tools. 

The AL were palpated by a physical therapist / movement scientist with several years of 
experience in the area of HMC. 

2.3.2 System Synchronization 

An essential point for the validation is the synchronization between the compared systems. For 
this reason a hardware-synchronization was employed. using a standard 5 V 
transistor-transistor-logical signal. For the sake of comparison and to avoid additional interpolation, 
both systems shared the maximum frame rate of the Xsens set-up, 60 Hz. 

It was further the aim of this study to reduce as much error sources as possible. For this reason 
special rigid boxes (RB) were designed to perfectly fit the Xsens MIMUs. Additionally, these RBs 
incorporated four additional retroreflective markers in a random alignment. See Figure 16 for an 
example of a RB with an inserted MIMU. 

 

 

Figure 16. Rigid box (RB) with four randomly aligned retroreflective markers and an inserted MIMU 

This design allowed minimizing differences between the OMC and the IMU system due to 
different STA. Therefor it was necessary to estimate the OMC based segment orientations using the 
information of the RBs’ own markers instead of the markers attached to the AL. In fact, in the JP 1 
and 2 both approaches were used independently for comparison. 

Further, as mentioned above, in the JP 1 and 2 the I2S calibration incorporated OMC 
information. That means that the I2S alignment was deemed equal to the RB to segment alignment.  

In more detail, the I2S alignments were obtained from the RB and the skin marker based 
segment positions and orientations. However, this is only possible, if the sensors and associated RBs 
share the same local CF or can be aligned via a rigid transformation between MIMU and RB. The 
procedure to estimate these rigid transformations (one relative orientation for each MIMU / RB pair, 
while the CF origins were assumed to coincide) from synchronized data sequences during motion 
(angular velocities) is sometimes referred to as hand eye calibration. For that purpose all RBs with 
their corresponding MIMUs inserted were mounted on a stick (see Figure 17) for a synchronized 
record. In that record, the stick with the attached RBs was randomly moved around all 3 spatial axes 
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for approximately 30 seconds. The estimation method was based on [144]. A detailed description of 
the hand-eye calibration can be found in the supplementary file of the JP 2, enclosed in this thesis. 

 

 

Figure 17. The MIMUs inserted in the corresponding RBs necessary for the lower body motion 
analysis. The RBs are mounted on a rigid stick. The stick was moved around all three spatial axes 
during the record. 

2.3.3 Subjects and Sample Size 

The choice of the subjects and the sample size were in each case based on expert knowledge and 
experience of the recent literature. First, it was the aim to validate the IMU system on a homogenous 
group of subjects to exclude possible errors due to differences in age, height or weight. Therefore, 
the inclusion criteria for the first sample, referred to as “Healthy”, were an age between 18 and 30, 
and a BMI between 19 and 24. Further, subjects who suffered a recent orthopedic injury of the lower 
extremities were excluded. Also subjects with neurological or cardiovascular impairments were not 
considered. 

For the second sample of the extended validation a group of individuals who represent one 
group for which the IMU system is actually intended was chosen: a group of patients after 
orthopedic surgery. The choice of patients after THA was based on the cooperation with the 
biomechanics institute of the Klinik Lindenplatz, Bad Sassendorf, Germany. Patients were included 
if they were able to walk at least for four minutes without crutches, cane, etc. They were included 
independently of the surgical approach or age. Only the BMI was restricted to < 40. 

An adequate sample size was required in both cases. The sample size was chosen based on 
related literature. The sample sizes in the regarding literature range from one subject [86] to 236 
subjects [101]. However, the gross of the studies examined ten to 30 subjects [105,124,125,131]. 
Therefore, at least 20 subjects were deemed the appropriate number of participants for the validation 
of the present system. In both cases this number was accomplished. 

2.3.4 Motion Tasks 

Gait was deemed the main task of interest when considering a new HMC system since the gait 
analysis is, as mentioned in chapter 2.1.1, not only the best researched as well as the most important 
motion of the human kind, but also has gained a high relevancy in medical applications [2]. Further, 
it confronts IMU based systems with its most important technical issue: the drift in the heading 
direction during continues motions over a longer time period, without using magnetometer 
information. Of course, this problem has to be considered in every motion task. However, during 
indoor overground walking, violated magnetic field measurements might be more likely compared 
to static motions, e.g. squats, since in this case the MIMUs are exposed to the differing amount of 
ferromagnetic materials in the floor and the surrounding facilities. Consequently, to gain valid data 
a magnetic mapping of the measurement volume might be essential [145]. Therefore, it seems to be 
of high interest to prove the valid estimation of IMU based joint angles during indoor overground 
walking, omitting all magnetometer information. 

Hence, it was not merely important to include gait in the validation protocol but rather a gait 
exceeding the standard extent of about ten gait cycles. As summed up in JP 1 there are only few 
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studies that examine the functionality of MIMU / IMU systems over a longer measurement time 
[79,130,146]. 

To close that gap in the validation of MIMU / IMU systems and to still maintain a relation to the 
clinical use the 6 minute walking test [147] was chosen for the evaluation. 

However, despite the common gait analysis there are several more motion tasks that can 
contain important information about the musculoskeletal status of a human. Considering sports, 
injury prevention or rehabilitation, squats come to mind. The squat, particularly the single leg squat, 
provides information about the balance, core stability and the functionality of the leg axis [148–150]. 
The literature concerning complex 3D analysis of the lower extremities during a squat or single leg 
squat using MIMU / IMUs is at most rare. Al-Amri et al. [125] and Kianifar et al. [133] examine a 
squat task and single leg squat task, respectively, using more than two MIMU / IMUs. 

Last but not least it was the aim of this thesis to provide proof that the present IMU system also 
delivers valid and reliable joint angles of the lower extremities during motions including higher 
accelerations and impacts. Considering these requirements a jumping task fits. It contains high 
accelerations and decelerations in the jumping and landing phases, respectively. In the present work 
the countermovement jump was chosen over comparable jumps like the squat jump or the drop 
jump because it can be separated into six different motion sections, including an accelerated 
downward motion, a breaking phase and an accelerated upward motion [151]. 

Further, the squat tasks and the countermovement jump produce higher ROMs in the joint 
angles of the lower body compared to the gait, which was another reason for considering these 
motions. 

2.3.5 Statistics 

The next important step is to choose adequate statistical measures for the comparison of two 
HMC systems. The statistical measures should be well approved and comparable to the 
corresponding literature. The following measures were the main ones used to evaluate the difference 
between the IMU system and the OMC system: 

 Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) 

o In comparison to the mean error, employed in some validation studies, the RMSE 
and the MAE are not influenced by a mixture of negative and positive 
differences. In the case of the mean error negative as well as positive differences 
will lead to an average error around zero whereas the RMSE / MAE deliver a 
more trustworthy image of the error between two parameters. Concerning the 
RMSE and MAE, both are employed in related literature. However, Chai and 
Draxler [152] stated that the RMSE is to be preferred over the MAE when 
considering samples following a normal distribution, which was the case in the 
joint angle data of the JPs 1 to 4. Nevertheless in the case of scalar, time-specific, 
variables, i.e. ROM or STP, also the MAE was employed, mainly due to 
comparability to the related literature. 

 Range of Motion Error (ROME) 

o The ROME was deemed essential for the evaluation of the IMU system since the 
accurate measurement of the ROM is an important tool in the clinical motion 
analysis [46,134,153,154]. The ROME equals in its calculation the mean absolute 
error. The ROM is calculated as the difference between the maximum and 
minimum of a joint angle waveform during one gait cycle. The ROME is the 
absolute difference between the ROM of the same joint angle of each HMC 
system. 

 95 % Confidence Interval (CI) 

o Besides the standard deviation also the 95 % CI of the RMSE and ROME were 
calculated. This was deemed of high interest since it delivers a better 



Chapter 2. Background  25 

 

understanding of the range of errors one has to expect in the different joint 
angles. 

 Coefficient of Multiple Correlation (CMC) 

o The CMC was defined by Ferrari et al. [155]. They stated that the CMC takes into 
consideration offsets between the compared joint angle waveforms. Further, it 
takes into account the inter-gait cycle variability, typical for motion tasks. 
Therefore it was considered more adequate for the comparison of joint angle 
waveforms, compared to the Pearson correlation coefficient. Nevertheless, in the 
JP 4, the Pearson correlation coefficient was also employed for the comparison of 
scalar parameters, e.g. gait events or symmetry values. 

 Bland-Altman Limits of Agreement (BA) 

o The calculation of BA [156] is a widespread method in the comparison of two 
measurement methods. Especially the graphical representation of the results of 
the BA analysis provides an overview of the agreement between two systems 
and to which limits the results can be trusted. Further, the BA plots show how an 
error develops if the amplitude of a parameter changes. See for an example 
Figure 18. 

 

 

Figure 18. Shown are the BA analysis of the right knee flexion (a) and the right knee abduction (b) for 
28 subjects during a countermovement jump. In this case the IMU based joint angle calculation was 
compared with the OMC system joint angle estimation based on the markers attached to AL rather 
than the rigid boxes. In (a) the error distribution remains constant with respect to the parameter’s 
amplitude. In (b) the mean difference changes from negative values to positive values according to 
the parameters progression. Figure taken from JP 2 [12]. 

2.3.6 Reliability 

There are different kinds of reliability that can be evaluated regarding a HMC system. 
Intra-tester or test-retest reliability describes the consistency of the data recorded by a single tester 
from one collection to the next. In contrast, inter-tester reliability assesses the correlation between 
the data recorded by two or more different testers using an identical measurement set-up. 

It was not within the bounds of the present thesis to evaluate all kinds of reliability, therefore it 
was focused on the test-retest reliability [105,157,158]. The test-retest reliability was deemed 
important since in clinical settings recurrent measurements, performed by one tester, for example to 
evaluate a rehabilitation progress, are commonly used. 

For the evaluation of the test-retest reliability a two way random effect model of the intraclass 
correlation coefficient (ICC) was calculated [159]. The relevant measurements were repeated twice, 
approximately one week apart, for this evaluation.  
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3 Validation 

3.1 Technical Validation of the Joint Angles 

3.1.1 Journal Paper 1 

Summary 

JP 1 covers the technical validation of the sensor-fusion algorithm used to estimate the relative 
IMU orientations and based on those the joint angles of the lower body as well as the global pelvis 
orientation during 6 minute walking of young and healthy subjects. Therefor in this work the IMU 
system relies on an I2S calibration based on data from the reference system, the OMC system. Also 
the biomechanical model derived from the marker information of the OMC system was incorporated 
for the IMU tracking. However, the segment tracking during the gait after the initialization via the 
OMC system is based purely on IMU data. This was done to isolate errors caused by the 
sensor-fusion algorithm from errors originating from the IMU based I2S calibration and a different 
biomechanical model. 

Further, the results of the IMU based tracking are compared to two different variations of the 
OMC system. First, the OMC based segment orientations are estimated using markers attached to 
AL. Second, the OMC based segment orientations are estimated using the information of the RBs 
with the inserted IMUs. This was done to minimize the effect of STA on the difference between the 
orientations of the segments calculated for each system, respectively. The joint angles of the lower 
body were calculated incorporating the relative segment orientations based on the IMU system and 
the two versions of the OMC system, respectively. The results were compared according to chapter 
2.3.5. 

Further, the drift stability of the measured joint angles during the 6 minute walking was 
assessed. For this, the RMSE between the two systems was analyzed at three different sections of the 
total record via a linear regression. 

For the evaluation of the test-retest reliability of the results the same test procedure was 
reproduced approximately seven days later. 

It was the aim of this article to prove the validity, reliability and the long-term stability of the 
joint angles of the lower body, calculated based on the mentioned sensor-fusion algorithm, in 
comparison to a reference system during the most important activity of daily living and therefore 
the most discussed issue in the research of HMC, gait. 

Main Contributions 

 Magnetometer-free 3D IMU based joint angles of the lower body during gait 

 Long-term drift stability of the joint angles estimation > 5 minutes 

 Difference between two common ways of calculating OMC based segment orientations 
during gait 
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3.1.2 Journal Paper 2 

Summary 

JP 2 covers the technical validation of the sensor-fusion algorithm from JP 1 used to estimate the 
relative IMU orientations, and based on those the joint angles, of the lower body based on the IMU 
data during physiotherapeutic and sport specific motion tasks within a group of young and healthy 
subjects. The measurement set-up and the approach for the calculation of the segment orientations 
for each system were the same as in JP 1. It was the aim of this article to extend the validation and 
reliability evaluation of the IMU based joint angles during gait to motion tasks incorporating a 
higher ROM and higher accelerations. Therefore, a squat, a single-leg squat and a countermovement 
jump were chosen. 

Main Contributions 

 Magnetometer-free 3D IMU based joint angles of the lower body during squat, single-leg 
squat and countermovement jump 

 Accuracy of the IMU based joint angles estimation during movements with a high ROM 
and high acceleration 

 Difference between two common ways of calculating OMC based segment orientations 
during physiotherapeutic and sport specific motion tasks and critical discussion of OMC 
based HMC methods 
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Supplementary File of the Journal Paper 2 
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3.2 Validation of the Gait Event Detection and the Spatio-Temporal Parameters 

3.2.1 Journal Paper 3 

Summary 

The JP 3 is concerned with the IMU based estimation of gait-specific events, IC and TC, as well 
as the calculation of a wide range of STP within a group of young and healthy subjects. The 
approach, described in that article, implies a successful joint kinematics estimation, comparable to JP 
1 and 2, as well as the knowledge of a biomechanical model incorporating AL. This allows for the 
calculation of a huge set of parameters, including more complex spatial parameters like step width 
or swing width. However, that implies a set-up incorporating seven IMUs. 

In this JP the joint kinematics estimation incorporates purely IMU data (Procedure 3), 
introducing an IMU based I2S calibration and a biomechanical model based on anthropometric 
tables. Therefore, the IMU system for STP estimation presented in this article can be considered a 
stand-alone system. 

In this work the validity and reliability of the kinematics based gait event estimation and STP 
calculation is compared with the OMC system. 

Main Contributions 

 Kinematics of the lower body calculated using only inertial data, pose based I2S calibration 
and a biomechanical model based on anthropometric tables 

 IC and TC estimation using a kinematics based approach 

 Calculation of twelve STP including step length, step width and swing width 
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4 Application and Extended Validation 

4.1 Journal Paper 4 

4.1.1 Summary 

The JP 4 extends the validation results of the JPs 1, 2 and 3 to a new group of, heterogeneous, 
subjects. These subjects represent one target group of the IMU system, a group of patients after THA, 
introducing a wider range of different body physiques and consequently different motion patterns. 
Further, this article introduces the first kind of application of the described IMU system, the 
classification of healthy and impaired gait based on certain features from the IMU based joint angles 
of the lower body. The relevant joint angles were calculated in the same manner as in JP 3 (following 
Procedure 3), using the stand-alone IMU system. Further, in this JP only the relevant features, rather 
than all 3D joint angles and all STP, were validated and published. For the complete validation of all 
3D joint angles refer to chapter 4.2. 

4.1.2 Main Contributions 

 Validation of symmetry values and the ROM of the hip and pelvis joint angles as well as 
certain STP based on IMU data within a group of patients after THA 

 Gait classification using IMU based features and a support vector machine (SVM) 

 Feature selection based on expert knowledge and literature recommendations 

 Comparison of gait classification based on STP and joint angles, respectively 

 Comparison of the SVM model based on IMU data and OMC data, respectively 

 Feature importance calculation 
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4.2 Full Validation of the Joint Angles – Extended Results from JP 4 

In this chapter the complete validation results of all joint angles and STP for both groups during 
the gait are shown. This part contains data not yet published. All values in the following tables are to 
be considered the average over all gait cycles and all subjects for each group. 

The results are split into three parts according to the three different methods of the IMU data 
processing mentioned in Table 2. First, the joint angle estimation incorporates an OMC based I2S 
calibration and an OMC based biomechanical model (Procedure 1). This is shown only for the 
patient group. The corresponding results for the healthy group can be viewed in the JP 1. 

Second, the joint angle estimation adds an IMU based I2S calibration, substituting the OMC 
based I2S calibration. However, the biomechanical model, e.g. the segment lengths, is still based on 
OMC information (Procedure 2). 

Finally, the third part contains the joint angle estimation based completely on IMU information, 
adding a biomechanical model with incorporated AL according to [119]. The segment lengths of this 
model are scaled according to the gender and the body height and an anthropometric table 
(Procedure 3). This latter approach was also used in JP 3 and JP 4. 

4.2.1 Procedure 1 

In Table 4 the RMSE, ROME, CMC and BA of the patient group are shown for the joint angle 
estimation. The same results for the healthy group were published in JP 1. 

Using the Procedure 1 approach for processing the IMU data delivered similar errors between 
the OMC system and the IMU system in both groups. The healthy group revealed the highest RMSE 
in the left knee rotation (2.34°) the patient group showed its highest RMSE in the left ankle rotation 
(2.88°). Further, in both groups the highest ROME were found in the frontal plane of the knee and 
ankle. For both groups the ROME was below 2.00° 

Table 4. Validation results of the joint angles of the lower limbs for the patient group. Shown are the 
root mean squared error (RMSE) ± standard deviation (SD) (95 % confidence interval (CI)), the range 
of motion error (ROME) ± SD (95 % CI), the coefficient of multiple correlation (CMC) ± SD and the 
Bland-Altman limits of agreement (BA). 

 
RMSE ± SD  

(95 % CI) [deg] 
ROME ± SD  

(95 % CI) [deg] 
CMC ± SD BA [deg] 

LT Hip-Abduction 
1.06 ± 0.39 

(0.66 – 1.10) 

0.66 ± 0.36 

(0.36 – 0.76) 
0.95 ± 0.05 0.03 ± 2.75 

LT Hip-Rotation 
2.38 ± 1.33 

(1.55 – 3.03) 

0.77 ± 0.43 

(0.36 – 0.84) 
0.80 ± 0.19 0.90 ± 6.08 

LT Hip-Flexion 
1.07 ± 0.60 

(0.53 – 1.19) 

0.60 ± 0.42 

(0.26 – 0.72) 
0.99 ± 0.01 −0.07 ± 3.60 

LT Knee-Abduction 
1.7 ± 0.73 

(1.19 – 2.00) 

1.15 ± 0.56 

(0.65 – 1.27) 
0.89 ± 0.08 −0.32 ± 3.84 

LT Knee-Rotation 
1.85 ± 0.81 

(1.28 – 2.17) 

0.98 ± 0.58 

(0.51 – 1.16) 
0.93 ± 0.06 −0.44 ± 3.83 

LT Knee-Flexion 
1.39 ± 0.43 

(1.13 – 1.60) 

1.06 ± 0.41 

(0.78 – 1.24) 
1.00 ± 0.00 −0.28 ± 2.63 

LT Ankle-Inversion 
1.68 ± 0.58 

(1.28 – 1.92) 

1.66 ± 0.97 

(0.59 – 1.67) 
0.92 ± 0.04 −0.40 ± 3.09 

LT Ankle-Rotation 
2.88 ± 1.28 

(1.91 – 3.33) 

1.30 ± 0.57 

(1.04 – 1.67) 
0.86 ± 0.09 2.63 ± 3.42 

LT Ankle-Flexion 
2.21 ± 1.08 

(1.25 – 2.44) 

1.05 ± 0.51 

(0.79 – 1.36) 
0.98 ± 0.03 0.21 ± 4.36 
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RT Hip-Abduction 
1.46 ± 0.51 

(1.24 – 1.73) 

1.11 ± 0.78 

(0.58 – 1.32) 
0.94 ± 0.07 −0.29 ± 3.02 

RT Hip-Rotation 
4.01 ± 2.56 

(2.95 – 5.42) 

0.72 ± 0.41 

(0.47 – 0.86) 
0.71 ± 0.26 2.40 ± 7.52 

RT Hip-Flexion 
1.23 ± 0.72 

(0.65 – 1.34) 

0.91 ± 0.47 

(0.61 – 1.06) 
0.99 ± 0.01 −0.01 ± 3.14 

RT Knee-Abduction 
1.51 ± 0.66 

(0.98 – 1.61) 

1.59 ± 1.40 

(0.41 – 1.76) 
0.86 ± 0.08 0.75 ± 2.68 

RT Knee-Rotation 
2.09 ± 1.19 

(0.92 – 2.06) 

0.79 ± 0.43 

(0.44 – 0.86) 
0.93 ± 0.07 0.67 ± 4.44 

RT Knee-Flexion 
1.54 ± 0.63 

(1.08 – 1.69) 

0.86 ± 0.42 

(0.66 – 1.07) 
1.00 ± 0.00 0.40 ± 2.95 

RT Ankle-Inversion 
1.24 ± 0.43 

(1.15 – 1.56) 

1.09 ± 0.62 

(0.77 – 1.36) 
0.97 ± 0.02 0.24 ± 2.28 

RT Ankle-Rotation 
1.98 ± 0.80 

(1.62 – 2.40) 

0.85 ± 0.71 

(0.24 – 0.92) 
0.91 ± 0.16 −1.19 ± 3.35 

RT Ankle-Flexion 
1.40 ± 0.43 

(1.07 – 1.48) 

1.04 ± 0.41 

(0.71 – 1.10) 
0.99 ± 0.00 −0.20 ± 2.53 

Pelvis-Obliquity 
0.58 ± 0.16 

(0.46 – 0.61) 

0.48 ± 0.30 

(0.21 – 0.50) 
0.97 ± 0.02 0.10 ± 1.00 

Pelvis-Flexion 
0.99 ± 0.53 

(0.54 – 1.05) 

0.50 ± 0.17 

(0.44 – 0.61) 
0.91 ± 0.08 0.16 ± 2.69 

Pelvis-Rotation* x 
0.76 ± 0.25 

(0.61 – 0.85) 
0.81 ± 0.25 x 

* The RMSE and BA of the pelvis rotation are not reported since the absolute values of the pelvis rotation could 
not be evaluated due to the drift in the global pelvis rotation. 

4.2.2 Procedure 2 

In Table 5 and Table 6 the RMSE, ROME, CMC and BA of the healthy group and patient group, 
respectively are shown for the joint angle estimation. 

Introducing an IMU based I2S calibration, in this case the 2-step calibration described in JP 3, 
led to an increase of the RMSE over all joint angles in both groups. The highest error increase was 
evident in the left and right ankle rotation of the healthy group with a mean RMSE up to 19.99°. The 
ROME increased only slightly, staying below 3° in all joint angles, in both groups. 

Table 5. Validation results of the joint angles of the lower limbs for the healthy group. Shown are the 
RMSE ± SD (95 % CI), the ROME ± SD (95 % CI), the CMC ± SD and the BA. 

 
RMSE ± SD  

(95 % CI) [deg] 
ROME ± SD  

(95 % CI) [deg] 
CMC ± SD  BA [deg] 

LT Hip-Abduction 
2.33 ± 1.09 

(1.55 – 2.41) 

0.73 ± 0.30 

(0.58 – 0.82) 
0.93 ± 0.08 −1.27 ± 4.13 

LT Hip-Rotation 
5.72 ± 2.64 

(3.52 – 5.61) 

0.93 ± 0.59 

(0.49 – 0.96) 
0.77 ± 0.21 −3.25 ± 9.97 

LT Hip-Flexion 
2.66 ± 1.90 

(1.33 – 2.83) 

1.02 ± 0.41 

(0.91 – 1.23) 
0.98 ± 0.03 −1.94 ± 5.06 

LT Knee-Abduction 
3.45 ± 1.76 

(2.66 – 4.05) 

2.46 ± 1.63 

(1.23 – 2.52) 
0.75 ± 0.14 1.96 ± 6.06 

LT Knee-Rotation 4.71 ± 3.79 1.69 ± 0.66 0.82 ± 0.19 −3.29 ± 9.37 
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(1.69 – 4.68) (1.30 – 1.83) 

LT Knee-Flexion 
1.78 ± 0.4 

(1.58 – 1.89) 

0.74 ± 0.27 

(0.59 – 0.81) 
1.00 ± 0.00 −0.74 ± 3.02 

LT Ankle-Inversion 
2.92 ± 1.29 

(1.96 – 2.98) 

1.71 ± 0.79 

(1.14 – 1.76) 
0.82 ± 0.21 −1.89 ± 4.17 

LT Ankle-Rotation 
19.99 ± 6.81 

(16.22 – 21.61) 

2.01 ± 0.65 

(1.66 – 2.17) 
0.72 ± 0.00 19.92 ± 13.27 

LT Ankle-Flexion 
2.18 ± 0.88 

(1.36 – 2.05) 

1.03 ± 0.39 

(0.78 – 1.09) 
0.99 ± 0.01 −0.05 ± 4.21 

RT Hip-Abduction 
1.94 ± 1.11 

(1.21 – 2.09) 

0.86 ± 0.45 

(0.60 – 0.96) 
0.95 ± 0.06 0.59 ± 3.87 

RT Hip-Rotation 
5.21 ± 3.01 

(3.37 – 5.75) 

0.89 ± 0.59 

(0.47 – 0.93) 
0.77 ± 0.27 1.72 ± 10.38 

RT Hip-Flexion 
2.77 ± 2.01 

(1.31 – 2.90) 

0.75 ± 0.44 

(0.14 – 1.12) 
0.98 ± 0.03 −2.17 ± 5.02 

RT Knee-Abduction 
2.58 ± 1.00 

(1.93 – 2.72) 

2.33 ± 1.05 

(1.88 – 2.71) 
0.76 ± 0.22 0.14 ± 4.63 

RT Knee-Rotation 
5.21 ± 2.93 

(3.20 – 5.51) 

1.62 ± 1.17 

(0.81 – 1.73) 
0.81 ± 0.20 3.87 ± 7.86 

RT Knee-Flexion 
1.74 ± 0.56 

(1.38 – 1.82) 

0.92 ± 0.56 

(0.44 – 0.88) 
1.00 ± 0.00 −0.21 ± 3.22 

RT Ankle-Inversion 
2.70 ± 1.25 

(1.79 – 2.78) 

1.28 ± 0.54 

(1.10 – 1.53) 
0.86 ± 0.14 1.44 ± 4.62 

RT Ankle-Rotation 
18.74 ± 6.72 

(16.47 – 21.78) 

1.64 ± 0.57 

(1.30 – 1.75) 
0.96 ± 0.03 −18.67 ± 13.11 

RT Ankle-Flexion 
1.84 ± 0.58 

(1.43 – 1.88) 

1.16 ± 0.47 

(0.87 – 1.24) 
0.99 ± 0.01 −0.23 ± 3.29 

Pelvis-Obliquity 
1.37 ± 1.15 

(0.42 – 1.34) 

0.38 ± 0.17 

(0.27 – 0.41) 
0.93 ± 0.09 −0.93 ± 2.90 

Pelvis-Flexion 
2.99 ± 2.03 

(2.07 – 3.68) 

0.42 ± 0.47 

(0.15 – 0.52) 
0.59 ± 0.29 −2.66 ± 4.71 

Pelvis-Rotation* x 
0.76 ± 0.29 

(0.61 – 0.84) 
0.86 ± 0.14 x 

* The RMSE and BA of the pelvis rotation are not reported since the absolute values of the pelvis rotation could 
not be evaluated due to the drift in the global pelvis rotation. 

Table 6. Validation results of the joint angles of the lower limbs for the patient group. Shown are the 
RMSE ± SD (95 % CI), the ROME ± SD (95 % CI), the CMC ± SD and the BA. 

 
RMSE ± SD  

(95 % CI) [deg] 
ROME ± SD  

(95 % CI) [deg] 
CMC ± SD  BA [deg] 

LT Hip-Abduction 
3.72 ± 0.86 

(3.17 – 4.09) 

0.84 ± 0.53 

(0.45 – 1.02) 
0.63 ± 0.18 −3.60 ± 2.11 

LT Hip-Rotation 
5.99 ± 3.04 

(4.24 – 7.48) 

0.75 ± 0.36 

(0.46 – 0.84) 
0.71 ± 0.20 4.27 ± 9.37 

LT Hip-Flexion 
4.07 ± 1.67 

(2.91 – 4.69) 

0.65 ± 0.31 

(0.38 – 0.71) 
0.94 ± 0.05 −3.83 ± 3.58 

LT Knee-Abduction 4.47 ± 1.82 2.54 ± 1.15 0.61 ± 0.16 3.84 ± 5.72 
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(3.09 – 5.04) (1.74 – 2.97) 

LT Knee-Rotation 
4.86 ± 2.93 

(2.15 – 5.27) 

1.97 ± 1.18 

(1.11 – 2.37) 
0.72 ± 0.24 −3.12 ± 9.37 

LT Knee-Flexion 
1.43 ± 0.55 

(0.99 – 1.58) 

1.04 ± 0.66 

(0.46 – 1.16) 
1.00 ± 0.00 0.29 ± 2.69 

LT Ankle-Inversion 
2.74 ± 2.24 

(0.74 – 3.12) 

1.45 ± 0.62 

(0.95 – 1.61) 
0.85 ± 0.15 −1.95 ± 5.25 

LT Ankle-Rotation 
11.44 ± 7.44 

(5.89 – 13.82) 

1.21 ± 0.98 

(0.36 – 1.41) 
0.78 ± 0.09 11.30 ± 13.87 

LT Ankle-Flexion 
2.08 ± 1.11 

(1.27 – 2.46) 

1.80 ± 0.83 

(1.25 – 2.13) 
0.99 ± 0.01 0.37 ± 4.22 

RT Hip-Abduction 
1.56 ± 0.56 

(1.19 – 1.71) 

1.24 ± 0.88 

(0.55 – 1.38) 
0.93 ± 0.06 0.60 ± 2.62 

RT Hip-Rotation 
4.88 ± 3.06 

(3.12 – 5.99) 

0.75 ± 0.32 

(0.55 – 0.85) 
0.67 ± 0.21 1.03 ± 9.45 

RT Hip-Flexion 
3.31 ± 1.67 

(2.49 – 4.05) 

0.88 ± 0.42 

(0.69 – 1.08) 
0.96 ± 0.04 −3.11 ± 3.77 

RT Knee-Abduction 
2.36 ± 1.40 

(1.32 – 2.63) 

2.60 ± 1.30 

(1.98 – 3.20) 
0.71 ± 0.18 −0.48 ± 4.72 

RT Knee-Rotation 
6.35 ± 4.51 

(1.92 – 6.15) 

1.47 ± 0.91 

(0.85 – 1.70) 
0.57 ± 0.31 5.51 ± 9.96 

RT Knee-Flexion 
1.74 ± 0.88 

(1.12 – 1.94) 

1.08 ± 0.57 

(0.77 – 1.30) 
1.00 ± 0.00 −0.82 ± 3.25 

RT Ankle-Inversion 
2.59 ± 1.59 

(1.28 – 2.76) 

2.07 ± 1.35 

(1.29 – 2.56) 
0.86 ± 0.17 1.23 ± 4.80 

RT Ankle-Rotation 
13.75 ± 7.14 

(11.70 – 18.38) 

1.10 ± 0.73 

(0.64 – 1.32) 
0.57 ± 0.32 −13.65 ± 13.73 

RT Ankle-Flexion 
1.86 ± 0.94 

(1.26 – 2.14) 

1.55 ± 0.71 

(1.11 – 1.78) 
0.99 ± 0.01 0.30 ± 3.72 

Pelvis-Obliquity 
0.72 ± 0.17 

(0.66 – 0.82) 

0.52 ± 0.26 

(0.41 – 0.65) 
0.95 ± 0.04 0.03 ± 1.29 

Pelvis-Flexion 
3.85 ± 1.22 

(3.04 – 4.18) 

0.55 ± 0.15 

(0.46 – 0.60) 
0.45 ± 0.27 −3.82 ± 2.43 

Pelvis-Rotation* x 
0.93 ± 0.44 

(0.73 – 1.14) 
0.76 ± 0.20 x 

* The RMSE and BA of the pelvis rotation are not reported since the absolute values of the pelvis rotation could 
not be evaluated due to the drift in the global pelvis rotation. 

4.2.3 Procedure 3 

In Table 7 and Table 8 the RMSE, ROME, CMC and BA of the healthy group and the patient 
group, respectively are shown for the joint angle estimation. 

When introducing a biomechanical model based on a scaled model incorporating AL, again, the 
RMSE increased in the joint angles. All joint angles were affected in the healthy group, except for the 
left and right ankle rotation (16.86° and 15.91°) which decreased slightly. 

In the patient group the RMSE in all joint angles increased except for the left hip rotation and 
the left knee abduction (4.35° and 3.74°). 

The ROME did also increase marginally. In the healthy group all joint angles were affected 
except for the right hip abduction (0.80°). However, the ROME stayed below 4.10° in all joints. In the 
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patient group the ROME did not increase systematically. In fact, in approximately a third of the joint 
angles the ROME decreased. However, again all changes in the ROME were only marginal. 

Table 7. Validation results of the joint angles of the lower limbs for the healthy group. Shown are the 
RMSE ± SD (95 % CI), the ROME ± SD (95 % CI), the CMC ± SD and the BA. 

 
RMSE ± SD  

(95 % CI) [deg] 
ROME ± SD  

(95 % CI) [deg] 
CMC ± SD  BA [deg] 

LT Hip-Abduction 
3.47 ± 2.08 

(2.59 – 4.35) 

0.83 ± 0.48 

(0.57 – 0.98) 
0.87 ± 0.16 −2.78 ± 5.23 

LT Hip-Rotation 
8.89 ± 5.01 

(5.61 – 9.85) 

1.05 ± 0.62 

(0.63 – 1.15) 
0.66 ± 0.24 −3.88 ± 17.50 

LT Hip-Flexion 
5.53 ± 4.65 

(2.95 – 6.88) 

2.70 ± 0.97 

(2.32 – 3.14) 
0.93 ± 0.12 −4.78 ± 10.12 

LT Knee-Abduction 
5.86 ± 2.42 

(4.37 – 6.41) 

3.08 ± 1.74 

(1.57 – 3.04) 
0.53 ± 0.29 2.89 ± 10.58 

LT Knee-Rotation 
10.75 ± 7.62 

(4.73 – 11.16) 

1.96 ± 1.00 

(1.31 – 2.16) 
0.65 ± 0.26 −9.48 ± 17.09 

LT Knee-Flexion 
4.18 ± 2.40 

(2.52 – 4.55) 

2.96 ± 0.78 

(2.43 – 3.09) 
0.98 ± 0.02 −1.51 ± 8.98 

LT Ankle-Inversion 
4.31 ± 1.53 

(3.75 – 5.05) 

2.90 ± 1.71 

(1.52 – 2.96) 
0.76 ± 0.19 −2.30 ± 7.19 

LT Ankle-Rotation 
16.86 ± 7.22 

(12.60 – 18.70) 

2.45 ± 1.15 

(1.58 – 2.55) 
0.56 ± 0.31 16.85 ± 13.90 

LT Ankle-Flexion 
3.49 ± 1.16 

(2.77 – 3.74) 

1.51 ± 0.51 

(1.19 – 1.62) 
0.96 ± 0.03 2.25 ± 5.17 

RT Hip-Abduction 
2.51 ± 1.23 

(1.63 – 2.67) 

0.80 ± 0.44 

(0.45 – 0.83) 
0.93 ± 0.06 0.00 ± 5.19 

RT Hip-Rotation 
7.02 ± 5.01 

(2.59 – 6.82) 

1.20 ± 0.60 

(0.79 – 1.30) 
0.71 ± 0.23 −1.07 ± 16.30 

RT Hip-Flexion 
5.87 ± 4.51 

(3.69 – 7.50) 

2.11 ± 1.01 

(1.44 – 2.30) 
0.93 ± 0.11 −5.35 ± 9.57 

RT Knee-Abduction 
4.50 ± 2.89 

(2.58 – 5.02) 

2.71 ± 2.20 

(0.94 – 2.79) 
0.66 ± 0.26 −1.46 ± 9.75 

RT Knee-Rotation 
16.28 ± 6.97 

(14.04 – 19.93) 

2.26 ± 2.16 

(0.43 – 2.26) 
0.49 ± 0.26 16.24 ± 13.60 

RT Knee-Flexion 
3.70 ± 2.02 

(2.30 – 4.00) 

3.58 ± 1.40 

(3.12 – 4.30) 
0.99 ± 0.02 −0.41 ± 8.10 

RT Ankle-Inversion 
3.85 ± 1.67 

(2.96 – 4.37) 

4.05 ± 1.77 

(3.60 – 5.09) 
0.81 ± 0.16 1.39 ± 7.39 

RT Ankle-Rotation 
15.91 ± 6.55 

(11.87 – 17.41) 

1.78 ± 0.80 

(1.31 – 1.98) 
0.74 ± 0.32 −16.02 ± 13.05 

RT Ankle-Flexion 
3.37 ± 1.07 

(3.05 – 3.95) 

1.20 ± 0.50 

(0.86 – 1.28) 
0.96 ± 0.02 2.16 ± 4.95 

Pelvis-Obliquity 
1.64 ± 0.96 

(1.02 – 1.83) 

0.73 ± 0.35 

(0.49 – 0.79) 
0.90 ± 0.11 0.20 ± 3.59 

Pelvis-Flexion 
10.17 ± 5.58 

(7.81 – 12.52) 

0.56 ± 0.59 

(0.15 – 0.65) 
0.52 ± 0.25 −10.08 ± 10.57 
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Pelvis – Rotation* x 
0.75 ± 0.27 

(0.66 – 0.88) 
0.65 ± 0.22 x 

* The RMSE and BA of the pelvis rotation are not reported since the absolute values of the pelvis rotation could 
not be evaluated due to the drift in the global pelvis rotation. 

Table 8. Validation results of the joint angles of the lower limbs for the patient group. Shown are the 
RMSE ± SD (95 % CI), the ROME ± SD (95 % CI), the CMC ± SD and the BA. 

 
RMSE ± SD  

(95 % CI) [deg] 
ROME ± SD  

(95 % CI) [deg] 
CMC ± SD  BA [deg] 

LT Hip-Abduction 
3.72 ± 2.51 

(2.37 – 5.15) 

0.89 ± 0.60 

(0.46 – 1.13) 
0.76 ± 0.24 −2.05 ± 7.45 

LT Hip-Rotation 
4.35 ± 3.18 

(1.74 – 5.26) 

0.84 ± 0.36 

(0.63 – 1.03) 
0.69 ± 0.24 0.18 ± 14.33 

LT Hip-Flexion 
11.06 ± 6.79 

(6.08 – 13.60) 

0.85 ± 0.46 

(0.49 – 1.00) 
0.73 ± 0.20 −9.48 ± 15.80 

LT Knee-Abduction 
3.74 ± 2.93 

(1.28 – 4.53) 

3.18 ± 2.27 

(1.05 – 3.57) 
0.75 ± 0.15 0.74 ± 8.94 

LT Knee-Rotation 
15.24 ± 7.04 

(13.07 – 20.87) 

1.55 ± 1.49 

(0.07 – 1.72) 
0.45 ± 0.29 −15.30 ± 16.00 

LT Knee-Flexion 
7.55 ± 5.68 

(2.34 – 8.63) 

3.27 ± 1.30 

(2.29 – 3.73) 
0.94 ± 0.09 2.80 ± 16.96 

LT Ankle-Inversion 
4.21 ± 1.86 

(2.85 – 4.91) 

3.33 ± 2.18 

(1.01 – 3.43) 
0.70 ± 0.17 −1.45 ± 8.07 

LT Ankle-Rotation 
12.62 ± 7.80 

(6.25 – 14.89) 

1.54 ± 1.03 

(0.69 – 1.84) 
0.76 ± 0.16 12.55 ± 14.21 

LT Ankle-Flexion 
3.46 ± 1.36 

(2.56 – 4.06) 

1.65 ± 1.03 

(0.61 – 1.75) 
0.95 ± 0.04 2.56 ± 6.15 

RT Hip-Abduction 
2.61 ± 1.56 

(1.56 – 3.07) 

1.10 ± 0.55 

(0.85 – 1.38) 
0.83 ± 0.19 0.19 ± 7.58 

RT Hip-Rotation 
7.95 ± 3.70 

(6.31 – 9.88) 

0.98 ± 0.60 

(0.45 – 1.03) 
0.60 ± 0.30 2.97 ± 15.59 

RT Hip-Flexion 
9.86 ± 7.10 

(4.66 – 11.50) 

1.20 ± 0.60 

(0.92 – 1.50) 
0.82 ± 0.21 −8.65 ± 16.08 

RT Knee-Abduction 
4.85 ± 2.54 

(2.51 – 4.96) 

3.27 ± 1.61 

(2.11 – 3.67) 
0.62 ± 0.25 1.49 ± 10.55 

RT Knee-Rotation 
18.55 ± 8.02 

(14.03 – 21.76) 

1.36 ± 0.85 

(0.70 – 1.52) 
0.44 ± 0.22 18.41 ± 15.21 

RT Knee-Flexion 
6.88 ± 3.50 

(5.02 – 8.39) 

3.12 ± 0.60 

(0.46 – 1.13) 
0.95 ± 0.05 1.55 ± 14.37 

RT Ankle-Inversion 
4.03 ± 2.00 

(2.95 – 4.87) 

4.40 ± 2.46 

(2.76 – 5.13) 
0.79 ± 0.16 1.12 ± 7.75 

RT Ankle-Rotation 
13.95 ± 7.66 

(11.67 – 19.05) 

1.24 ± 0.63 

(0.73 – 1.33) 
0.65 ± 0.27 −13.66 ± 14.72 

RT Ankle-Flexion 
3.39 ± 1.50 

(2.36 – 3.80) 

2.18 ± 1.61 

(0.80 – 2.35) 
0.96 ± 0.03 1.37 ± 6.33 

Pelvis-Obliquity 
1.51 ± 1.14 

(0.49 – 1.58) 

0.36 ± 0.24 

(0.18 – 0.41) 
0.88 ± 0.11 −0.07 ± 3.94 
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Pelvis-Flexion 
12.52 ± 5.57 

(10.05 – 15.42) 

0.51 ± 0.17 

(0.43 – 0.60) 
0.44 ± 0.18 −12.79 ± 10.64 

Pelvis-Rotation* x 
0.98 ± 0.46 

(0.66 – 1.10) 
0.58 ± 0.30 x 

* The RMSE and BA of the pelvis rotation are not reported since the absolute values of the pelvis rotation could 
not be evaluated due to the drift in the global pelvis rotation. 

In Table 9 the complete validation of all STP, including the ones already validated in JP 4, for 
the patient group is shown. The equivalent validation with respect to the healthy group was 
published in JP 3. 

Table 9. Full validation of the spatio-temporal parameters STP for the patient group. Shown are the 
mean absolute error (MAE) ± SD (95 % CI), the RMSE ± SD (95 % CI), the relative RMSE, the BA and 
the Pearson correlation coefficient (R) 

 

MAE ± SD 

(95 % CI) 

RMSE ± SD 

(95 % CI) 

Relative 

RMSE [%] 
BA R 

Step Length [m] 
0.04 ± 0.03 

(0.01 – 0.04) 

0.04 ± 0.03 

(0.02 – 0.05) 
8.41 0.001 ± 0.08 0.49 

Stride Length [m] 
0.05 ± 0.03 

(0.03 – 0.05) 

0.06 ± 0.04 

(0.03 – 0.06) 
5.44 0.009 ± 0.11 0.78 

Step Width [m] 
0.03 ± 0.01 

(0.02 – 0.03) 

0.03 ± 0.02 

(0.02 – 0.04) 
24.36 −0.004 ± 0.04 0.64 

Swing Width [m] 
0.03 ± 0.02 

(0.02 – 0.03) 

0.03 ± 0.02 

(0.02 – 0.04) 
22.87 −0.014 ± 0.03 0.61 

Step Time [s] 
0.03 ± 0.02 

(0.01 – 0.03) 

0.04 ± 0.02 

(0.02 – 0.04) 
5.22 −0.004 ± 0.07 0.50 

Stride Time [s] 
0.04 ± 0.02 

(0.02 – 0.04) 

0.05 ± 0.02 

(0.02 – 0.05) 
3.51 0.002 ± 0.09 0.91 

Cadence [steps/min] 
3.85 ± 2.50 

(1.77 – 4.43) 

4.86 ± 2.90 

(2.27 – 5.36) 
5.31 0.361 ± 9.61 0.54 

Single Limb Support [s] 
0.04 ± 0.02 

(0.02 – 0.04) 

0.04 ± 0.02 

(0.03 – 0.05) 
10.38 −0.027 ± 0.06 0.67 

Double Limb Support [s] 
0.04 ± 0.01 

(0.03 – 0.05) 

0.05 ± 0.02 

(0.03 – 0.05) 
4.88 0.026 ± 0.07 0.63 

Stance Time [s] 
0.04 ± 0.02 

(0.03 – 0.04) 

0.05 ± 0.02 

(0.03 – 0.06) 
5.52 0.024 ± 0.08 0.57 

Swing Time [s] 
0.03 ± 0.01 

(0.02 – 0.04) 

0.04 ± 0.02 

(0.03 – 0.04) 
8.87 −0.022 ± 0.05 0.48 

Speed [m/s] 
0.04 ± 0.02 

(0.02 – 0.04) 

0.05 ± 0.03 

(0.03 – 0.06) 
5.79 0.006 ± 0.09 0.84 

 

4.2.4 Comparison of the three Procedures 

In Figure 19 and Figure 20 the average RMSE and average ROME, respectively, over all joint 
angles and all subjects per approach are shown for both groups. This illustrates the different error 
growth of the RMSE and the ROME, respectively. 
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Figure 19. The RMSE averaged over all joint angles of all gait cycles and all subjects is shown for both 
groups and for each processing approach (Procedure 1 – 3) 

 

 

Figure 20. The ROME averaged over all joint angles of all gait cycles and all subjects is shown for 
both groups and for each processing approach (Procedure 1 – 3) 
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5 Discussion 

In the present thesis a newly developed IMU system for the estimation of the 3D joint angles of 
the lower body was introduced. It was the aim of the four different JPs, which build the backbone of 
this work, to provide the research community with an extensive and careful evaluation of the 
performance of the mentioned system. This procedure should increase the visibility and the 
acceptance of the IMU system in question not only within the scientific community but rather among 
clinicians and physicians. Since, if the functionality and accuracy of a new system was proven it can 
hope for applications outside the scientific laboratory. 

The evaluation of the present IMU system was thoroughly conducted throughout this thesis. 
Each JP contributes to that task adding step by step essential information and therefore leading to a 
complete overview of the possibilities and limitations of the system under consideration. 

JP 1 introduced the IMU system and its fundamental technical basics. Further, it delivered a 
primary technical validation of the sensor-fusion algorithm used for the estimation of the relative 
IMU orientations and based on those the calculation of the joint angles during the essential task gait 
within a group of young and healthy subjects. 

The JP 2 extended the technical validation of the IMU based joint angles to more specific motion 
tasks including movements with an increased ROM and higher accelerations. 

In JP 3 the important validation of the estimation of the gait events IC and TC and the 
consecutively calculated STP is conducted. Further, in this article the first entity of a stand-alone 
version of the present IMU system was published, introducing an IMU based I2S calibration as well 
as a biomechanical model, independent from the OMC system. 

The JP 4 transfers the approaches from JP 1 and 3 into an inhomogeneous group of subjects, 
patients after THA. In this article parts of the joint angles are calculated for both groups using the 
mentioned stand-alone version and are then employed to train a classification model to separate 
impaired from non-impaired gait patterns. 

Finally, in this thesis additional results, not yet published, were presented, delivering a 
complete overview of the validation of all joint angles and STP calculated based on the purely IMU 
driven approach as well as on two partly IMU driven approaches. 

In the following chapters, the most interesting results from chapter 4.2 are discussed. 
Furthermore, thoughts on the possibilities but also the restrictions of the IMU system under 
consideration are discussed. Moreover, limitations not yet mentioned in the single JP are addressed 
and, finally, an outlook and future work, yet to be accomplished, are considered. 

5.1 Discussion of the Additional Results 

Considering the results from chapter 4.2 it is evident that the RMSE between the OMC system 
and the IMU system increased when adding more IMU based information, i.e. the I2S calibration 
and the biomechanical model based on anthropometric tables. However, that was not unexpected. 
More interesting was the question of which parameters would suffer the highest decline in accuracy 
and what information contributed most to that decline. The latter can be analyzed considering 
Figure 21. Here the percentage distribution of the RMSE on the three different procedures can be 
viewed. Therefor the average RMSE over all subjects and all joint angles for each group was 
considered. 
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Figure 21. RMSE distribution across the three different stages of IMU data processing for the healthy 
group (a) and the patient group (b), respectively. 

Considering Figure 21 it is evident that Procedure 1 contributed equally to the overall RMSE 
with respect to the two groups. However, despite the fact that Procedure 2 and 3 contributed about 
80 % of the RMSE in both groups, it was shown that the distribution between the two procedures 
was inverted between the groups. Consequently, in the healthy group the introduction of an IMU 
based I2S calibration led to a higher increase of the RMSE compared to the patient group, whereas 
the introduction of a biomechanical model based on anthropometric tables led to a higher increase of 
the RMSE in the patient group compared to the healthy group. Keep in mind that in the subjects of 
the patient group a higher amount of soft tissue was evident. This leads to the suggestion that the 
markers of the OMC system were not in all cases perfectly matched with the underlying AL, despite 
being positioned by an experienced movement scientist. This was mainly the case considering the 
markers attached to the pelvis and thigh. As a consequence, when considering the higher RMSE in 
the patient group after introducing Procedure 3, one has to have in mind that in the presence of 
increased soft tissue the results of the OMC system have to be viewed very critical. However, the 
overall RMSE showed similar extents in both groups (healthy: 6.90°; patient: 7.66°). 

In this calculation only the RMSE averaged over all joint angles was considered. Considering 
the individual RMSE of each joint angle separately it becomes evident that two joint angles stand out 
in both groups concerning the error growth, the knee rotation and the ankle rotation. In the healthy 
group the RMSE in the ankle joint increased distinctively higher when introducing Procedure 2 
compared to the patient group. However, when introducing Procedure 3, the RMSE in the ankle 
joint stayed almost the same in the patient group, whereas it even decreased in the healthy group. In 
contrast to these findings, the RMSE in the knee rotation increased higher in the patient group 
compared to the healthy group, when entering the final stage of the processing, whereas it did 
increase in a comparable amount to the remaining joint angles when applying Procedure 2. 

An explanation for the enormous error growth in the ankle rotation concerning the healthy 
group when applying the IMU based I2S calibration might be found in the calibration posture. The 
I2S calibration procedure was described in JP 3 and consists of an upright standing neutral-zero 
position and a slightly forward inclined neutral-zero position (see Figure 22). 
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Figure 22. 2-step calibration. The first upright neutral-zero position is shown on the left. The second, 
slightly forward inclined neutral-zero position is shown on the right. Figure taken from JP 3 [13]. 

In this calibration procedure to gain satisfying results it is essential to not alter the orientation of 
the concerning segments in the transversal plane (around the y axis in the Figure 22). However, since 
one has to stand on the toes it is especially difficult to maintain the orientation of the foot in the 
mentioned plane. It has to be stated that in the first study, including the healthy subjects, the posture 
of the second pose was not sufficiently controlled. That might have led to a deviation from the zero 
position in the ankle joint in the transversal plane and therefore might have ended in a static offset 
from the OMC system (see Figure 23). Hence, in the second study involving the subjects after THA 
the correct execution of the second pose of the 2-step calibration was more strictly heeded. Further, 
the patients used a walking frame instead of the chair in Figure 22 which might have lent them more 
stability in maintaining the second pose despite their impaired status. 

 

 

Figure 23. Shown is the right ankle rotation of an exemplary subject of the healthy group during the 6 
minute walking test. The IMU based joint angle (green line with dots) was processed according to 
Procedure 2. The joint angle waveforms were normalized to 100 % gait cycle as it was done for all 
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joint angles in all cases of the evaluation. A static offset throughout the whole measurement can be 
observed and explains the high RMSE found in the ankle rotation. 

The reason why the RMSE in the ankle joint decreased slightly when substituting the OMC 
based biomechanical model with the one based on anthropometric tables is not yet fully clear and 
needs further investigation. However, the explanation for this phenomenon might be the same that 
explains the high increase in the RMSE of the knee rotation in both groups in Procedure 3, the 
positioning of the virtual AL on the biomechanical model. 

As pointed out in chapter 2.2.2 the biomechanical model used for processing in Procedure 3 was 
based on the so called TLEM project [119]. In this project the cadaveric pelvis and lower limb of a 
male individual was measured and virtual markers were attached to AL on the bones. Naturally, 
these virtual marker points did not exactly match the anatomical location according to Leardini et al. 
[21], the marker set used in the OMC approach. To overcome this discrepancy, certain marker points 
in the TLEM model were digitally edited in preparation of the data analysis. Especially, the position 
of the marker point on the Malleolus lateralis was adapted. That marker is employed to define the 
segment shank and the center of rotation of the ankle joint and therefore affects the knee joint as well 
as the ankle joint. It seems that in the case of the knee rotation the discrepancy of the marker 
positions, in comparison to the OMC system, worsened the results, whereas in the case of the ankle 
joint it accomplished an improvement. However, as mentioned above, these explanations need 
further investigation. 

Nevertheless, consider the fact that in future applications of the present IMU system the TLEM 
model will not be used any more due to the restricted representativeness, only one 80-year old male 
cadaver, and in the presence of more accurate alternatives, e.g a biomechanical model based on a 
depth camera image [26]. 

5.2 General Discussion 

In the following chapters issues concerning the application of the present IMU system and 
MIMU / IMU systems in general are discussed. Further, methodical limitations are considered and 
elaborated. Finally, some critical thoughts on the studies conducted and the systems employed as 
well as a prospective view on HMC in general are given. 

5.2.1 Magnetometer-free Tracking and Drift 

A massive advantage of the described IMU system is the omission of magnetometer 
information. The reason therefor is the susceptibility of the magnetic field to magnetic distortions 
caused by power lines, steel or electromagnetic disturbances [160], typical for the facility of a motion 
laboratory or clinics. 

Despite there being several approaches in the literature to calculate joint angles based only on 
accelerometer and gyroscope data, López-Nava and Muñoz-Melendez [161] found in their review 
on HMC using MIMU / IMUs that 73 % of the systems included in their analysis incorporated 
magnetometers. Therefore, the calculation of IMU based joint angles omitting magnetometer 
information still seems to be a difficult and thus rare matter. 

The I2S calibration of a MIMU system can be achieved by a single pose [130] and a known 
rough manual alignment of at least one sensor. In the case of IMU systems additional information is 
required to substitute the magnetometer information, used to derive the orientation in the horizontal 
plane, i.e. the heading direction. In the present approach a combination of two static poses, as 
described in JP 3 and chapter 5.1, was employed. Here the I2S orientation is estimated using 
accelerometers only. 

However, as mentioned in chapter 2.2.1, the omission of magnetometer information leads to a 
drift in the heading direction estimate. Consider, the gyroscope biases, causing drift in the 
orientation estimates, is a fundamental concern that not only affects the present IMU system. During 
motion, the incorporation of biomechanical constraints in terms of connected segments, i.e. the 
segments stick together at the joints, into the kinematics estimation algorithm via so-called pseudo 
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measurement updates corrects the heading drift at the joint level even without magnetometer 
information [10]. Consider, global heading drift cannot be corrected in that way. However, during 
static phases or pure rotation around the global vertical axis, there is no corrective information, so 
that heading drift can appear, mostly depending on the magnitude of the gyroscope and 
accelerometer biases. 

Therefore, another essential tool regarding this topic is the accelerometer bias estimation and its 
subtraction, shortly mentioned in the JP 4. However, it is not within the bounds of this thesis to 
elaborate that issue. Nevertheless, mentioning this phenomenon within this chapter should sensitize 
the user that the accelerometer and the gyroscope suffer from biases, already traced in chapter 2.2.1, 
and that these biases need consideration if measuring with MIMU / IMUs, in particular when 
omitting magnetometer information. 

The present IMU system is able to perform translation estimation, e.g. estimate the distance 
covered by a tracked subject. However, due to the omitted magnetometer information it is not able 
to reliably determine the heading direction of a moving subject over a longer period of time. Actual 
research includes external sensors to fill this gap of information using cameras or of course GPS 
[162,163]. However, the latter shows restrictions in indoor applications. 

Despite the advantage of being unaffected by magnetic distortions, the therefore missing global 
heading direction information might present a drawback in some areas of application. However, if 
one is considering to conduct outdoor measurements, likely in sports applications [164], sources 
causing magnetic disturbances might be far-off. In this case the use of magnetometers could prove 
beneficial. At this point it has to be stated that despite using only accelerometer and gyroscope data, 
the sensors used in the corresponding studies nevertheless incorporate a magnetometer. Hence, it is 
a legitimate suggestion to consider the temporary use of magnetometer information, if one can be 
sure to be out of reach of potential sources for magnetic distortions. This might improve the motion 
tracking in outdoor applications. Mainly, it would enable the determination of the global heading 
direction. However, measuring indoors the global heading drift remains an issue in applications 
where the global positioning over a longer time period is relevant. 

It has to be stated that the missing magnetometer information, i.e. the missing global heading 
reference, leads to a drift in the global heading estimate on the level of each single IMU. However, in 
the present approach, as mentioned afore, the network of all seven sensors as well as biomechanical 
constraints and assumptions are used to correct for this drift and so prevent a miscalculation of the 
joint angles of the lower body. However, that inevitably leads to some kind of tradeoff. 
Consequently, it is not ad hoc possible to measure tasks that not meet the criteria described above, 
e.g. tasks involving a standstill over a longer time or rotating exclusively around the vertical axis, 
without adapting the sensor fusion algorithm. 

This leads to the one parameter measured with the present system that cannot be calculated 
without limitations, the pelvis rotation. As described in JP 1 the pelvis is the only joint, or rather 
segment, that is measured globally using the information of the IMU attached to the sacrum. 
However, as shown in JP 1 the pelvis motion in the transversal plane, i.e. the orientation of the 
sacrum sensor in the transversal plane, is affected by drift. Since the segment pelvis is the root 
segment of the whole biomechanical model it determines the absolute heading direction of the 
complete model. In Figure 24 the effect of that global drift is shown on the example of the virtual 
marker attached to the calcaneus of the biomechanical model incorporated in the IMU system 
during the 6 minute waking test. 
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Figure 24. The red line shows the path of the left calcaneus marker, captured using the OMC system, 
during the 6 minute walking test. The green line with dots shows the path of the virtual left calcaneus 
marker of the biomechanical model used for the estimation of the IMU based gait kinematics. The 
blue cross indicates the origin (0/0) of the global CF, i.e. the world CF of the OMC system. 

This distinctively restricts the interpretability of the pelvis rotation over a longer period of time 
in the actual system. That is also the reason for not reporting the RMSE of the pelvis rotation 
throughout the four JPs and the additional results. However, it was shown that the ROM of the 
pelvis rotation during each gait cycle remains valid and therefore interpretable. Consequently, 
despite the present drift, the pelvis rotation ROM still counted as one of the four most important 
features in the classification model of JP 4. 

5.2.2 Biomechanical Model 

The impact of the biomechanical model on the outcome of a HMC system was clearly 
demonstrated in the present thesis (see chapter 4.2.3). Hence, these results support the findings of 
Kainz et al. [165] who reported that the anatomical CFs of a segment, which are of course depending 
on the biomechanical model, contribute up to 57.5 % to the overall error between two HMC systems. 
However, they compared the Plug in gait with the OpenSim model [166]. 

Concerning the present comparison of biomechanical models, the model of the OMC system is 
assumed a reliable gold standard since the calculation of the segment’s CFs, defined by Cappozzo et 
al. [25], are based on AL which were determined by an experienced movement scientist in the 
present studies. However, remember the concerns raised in chapter 5.1. The increase of the RMSE in 
both groups, introducing the OMC independent biomechanical model, leads to the conclusion that 
the segment lengths estimated based on the body height and anthropometric tables as well as a 
biomechanical model based on the study of one male cadaver are not fitting for the widespread use 
of the present IMU system. Especially the biomechanical model based on one cadaver of an 80 year 
old male seems not representative for the bigger part of the human population. 

However, work is in progress to develop a more individualized creation of a biomechanical 
model based on a depth camera image [26], mentioned in chapter 2.2.2. This approach was validated 
against an OMC system in the referenced work. Further, it was also compared to a commercial 
approach which is based on segment lengths scaling according to anthropometric tables [167]. In 
both works, the new approach performed well concerning the estimation of the segment lengths and 
the position of attached AL. However, the validation of the full IMU based 3D joint angles of the 
lower body incorporating the depth camera based biomechanical model has not yet been conducted. 
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5.2.3 Sensor to Segment Calibration 

As mentioned in chapter 5.1 the I2S calibration method used in the corresponding studies might 
have led to static offsets, e.g. in the ankle joint as well as the knee joint in the transversal plane. The 
calibration method, the 2-step calibration, is afflicted with a few restrictions. Like every pose based 
calibration method it depends strictly on the adequate execution of the required pose. In the case of 
the neutral-zero position, where every joint is considered to equal zero, some joints are simply 
anatomically restricted to fulfill this requirement. For example, the physiological alignment of the 
femur and the tibia in the frontal plane, i.e. the knee abduction / adduction, does not equal zero 
during normal standing. However, the physiological knee abduction / adduction angle in healthy 
subjects varies across the literature from 2° – 4° abduction [168] to about 12° abduction for males and 
15° abduction for females [169]. Further, it has to be considered that the knee cannot be voluntarily 
moved in the frontal plane and therefore an offset from the neutral-zero position cannot be 
voluntarily corrected. 

Other subjects might display a hyperextension in the knee joint or might suffer from a flexion 
contracture. Further, the parallel placement of the feet in the sagittal plane, prescribed within the 
present calibration procedure, is perceived as unnatural and therefore is often neglected by the 
subjects. A really careful active placement of the subjects by the examiner would have been 
necessary and might have led to improved results. However, that is only true for the subjects who 
are able to theoretically perform the zero positon in their joints. That gets especially difficult 
considering older and impaired subjects, like in the patient group. 

However, as mentioned in chapter 5.1 the calibration pose was given more consideration in the 
study including patients compared to the first study. Further, the group of patients, despite being 
only days after THA, included almost only subjects who displayed the full ability to sufficiently 
perform the neutral-zero position. It has to be stated that it was definitely a requirement to perform 
the neutral zero positon for participating in the study. It has to be assumed that if the deviations 
from zero in the joints of the lower limb would have been too big, a valid evaluation of the joint 
angles would not have been reliable with the present calibration approach. 

In contrast to the difficulty of adopting and maintaining the neutral-zero positon during an 
upright position stands the ability to strike the same pose during a forwardly inclined position. An 
alternative would have been to perform the inclined calibration pose on a chair according to [111]. 
However, due to the additional markers and the RB of the OMC system attached to the backside of 
the pelvis that possibility was not realizable in the present set-up. 

It can be concluded that it is definitely necessary to develop new and pose-independent I2S 
calibration methods considering for example subject groups like humans with cerebral palsy or 
patients after stroke suffering from hemiplegia. However, as mentioned throughout the JPs, work is 
in progress concerning the present IMU system to develop an I2S calibration independent from 
predefined poses or movements. A first proof of concept was already delivered 2016 [170]. The 
realization of that approach in combination with an individualized biomechanical model based on a 
depth camera image would certainly be a technological breakthrough of the human motion analysis 
using IMU. 

5.2.4 Soft Tissue Artefacts 

The varying effect of STA, common for all HMC systems that employ markers or sensors 
attached to the skin, was one of the reasons for conducting a second validation of the system 
including a heterogeneous group of subjects. However, it has to be stated that the study set-up, used 
in the corresponding JPs, does not allow for an interpretation of the effect of STA on the 
measurement results of the present IMU system. To the opinion of the author, the OMC system 
cannot be considered a reference system considering the evaluation of the effect of STA on the joint 
angles. 

However, Barré et al. evaluated in their study the distribution of STA on the lower limbs [171] 
using an OMC system and skin markers. They attached a total of 80 markers to the thighs and 
shanks of the subjects. In this way they identified areas of the two segments, which were more 
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exposed to STA. However, the effect of the STA on the knee angle was evaluated using a bi-plane 
fluoroscopy in their study. Therefore, a true reference system to approximate the real movement of 
the underlying bones of a segment and consequently the joint angles requires technologies like MRI 
[172] or fluoroscopy [173]. 

In the JP 1 and 2 it was only shown that STA have different effects on the IMU system and the 
OMC system based on markers attached to AL. However, based on the data in this thesis it is not 
possible to state which of the two systems is more accurate in estimating the underlying bone 
movement. As mentioned in the JP 2 there are hints that in some cases even the IMU system’s 
measures of the segment orientations are more trustworthy than an OMC system based on skin 
markers attached to AL. Nevertheless, only a validation study of the present IMU system against 
one of the above mentioned technologies could provide a final proof. 

5.2.5 Classification Approach 

In the JP 4 an SVM was used to train a classification model based on IMU data to separate gait 
patterns of healthy subjects and patients after THA. The choice of the machine learning algorithm 
was based on recommendations and experience of the literature [56]. In preparation of the JP 4 other 
algorithms, like decision trees, nearest neighbors or ensembles, were also tested. However, the SVM 
performed best and as it was neither the aim of the JP 4 nor of this thesis to compare different 
classification models in general, it was considered to go beyond the scope to report the outcome of 
alternative machine learning approaches. 

A point for criticism might be the seemingly high difference between the number of samples in 
the patient group and the healthy group, respectively. The ratio between the two groups was 
approximately 1:3. If one group distinctively outnumbers the other in an SVM classifier one is at risk 
that the model classifies every case according to the direction of the imbalance since it is the most 
probable hypothesis. In more extreme cases the underrepresented group might even be treated as 
noise and completely ignored [174]. However, Akbani et al. [174] reported that, concerning an SVM, 
samples are highly imbalanced at a ratio of 1:50. Therefore, it can be assumed that the ratio between 
the two groups in JP 4 was well in bounds. 

Another point concerning a classification problem is the selection of the features. As mentioned 
at various occasions it was the aim to introduce features based on expert knowledge and the 
literature that are comprehensible as well as interpretable rather than abstract. However, there 
might be other and more discriminative features among the multitude of output data from the 
incorporated IMUs. Therefore, it is of interest for the future to also employ automatic feature 
engineering, e.g. deep feature synthesis, and automatic feature selection methods [68] as well as 
combined feature extraction and classification methods, e.g. Auto-Kreas [175], that exploit all the 
parameters that are available regarding their precision in classifying gait patterns. 

5.2.6 Methodical Limitations and Critical Thoughts 

The studies conducted to evaluate the performance of an IMU system for the calculation of the 
joint angles of the lower body in comparison to an OMC system suffered from a few limitations. 
Some of them were already mentioned in the preceding chapters, like the neglected controlling of 
the neutral-zero position in the first study, and of course in the JPs themselves. 

First, the author wants to draw attention to a differing joint angle designation throughout the 
JPs. In the JP 1 the ankle joint angle in the frontal plane was named ankle abduction. However, in the 
following JPs and in the chapter 4.2 this joint angle was named ankle inversion, following a more 
physiotherapeutic nomenclature. 

An issue that might have had an influence on the joint angle calculation was the placement of 
the sensors assigned to the shanks. In both study groups, healthy and patient, the MIMUs were 
attached to the lateral side of the shank (see Figure 1 of JP 4), therefore sitting directly atop of the 
fibularis muscle group. This was done due to better visibility of the markers on the RBs into which 
the MIMUs had been inserted. However, the actual recommendation for the placement of the shank 
MIMUs is to place them on the anteromedial part of the shank where they would have been directly 



Chapter 5. Discussion  131 

 

on the bony part of the tibia (see Figure 25). It could have been that the underlying muscles had a 
negative effect on the accuracy of the segment orientation estimation, i.e. STA. Preceding 
examinations could have shown if there is indeed such an effect or if the RBs would have been 
visible enough for the cameras of the OMC system sitting on the anteromedial part of the tibia. 

 

 

Figure 25. Sensor placement of the sensors assigned to the segment shank (green circle) according to 
official recommendations. Consider the difference in the positioning of the shank sensors in 
comparison to Figure 15. 

A definite restriction of the present study, mainly concerning the measurement of the more 
dynamic motion in JP 2, was the reduced recording frequency. The frame rate of the MIMUs and 
consequently, to simplify the synchronization process, also the frame rate of the OMC system was 
restricted to 60 Hz. The possible effect of the limited frame rate on the quality of the kinematic 
results of the countermovement jump was already discussed in the JP 2. 

The evaluation of the reliability of the present IMU system could still have been carried on. 
Only the test-retest reliability was evaluated and that was done only for the healthy group. In 
addition the evaluation of the inter-tester reliability would have been necessary to complete this 
process. Therefore, right now the IMU system can only be classified reliable if applied by an 
experienced tester. The evaluation of the system’s reliability if used by non-experts is a step which 
should be concluded before its widespread use. However, therefor the IMU system would need its 
own user interface. Since the usage of an IMU system requires both, the application of the sensors as 
well as the handling of its software, which was not ready for laymen at the time of the recordings. 

Another limitation concerns the estimation of the gait events and consequently the calculation 
of the STP. At this point it has to be stressed that the validation of the algorithm for the gait event 
detection was only conducted indoors during level walking. However, the present system is 
intended for outdoor use as well and it has to be expected that the actual algorithm for the event 
detection needs further refinement if it is to be considered valid during walking on uneven ground, 
pivoting and uphill as well as downhill walking. 

Concerning the outcome of the classification approach from JP 4 it has to be stated that these 
results apply only to the present case. This was already mentioned in the discussion of the JP 4. 
However, that is an important point because it limits the significance of these findings. 

Further, the present SVM model is mainly trained on symmetry values, e.g. ROM differences 
between left and right hip joint. Therefore, even patients with a bilateral THA might not be correctly 
classified, considering a similarly restricted mobility in both hip joints. Also, to achieve a more 
generalized classification model, able to classify different patient groups independent of their 
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impairment, the feature set employed in JP 4 has to be extended, consequently including features 
related to the remaining joints knee and ankle. 

Besides, a sample of patients displaying a bigger variety of gait deviations and an age-matched 
control group should be examined in consecutive studies. Further, future classification approaches 
should employ data that was recorded in the natural environment of the subjects, rather than in the 
laboratory. Despite the sample size being considered high enough and well balanced for the present 
case, future classification models have to be trained involving more subjects and even better 
balanced groups. 

Another, more generalized approach towards the classification of impaired gait would be the 
development of a one-class SVM [176], a model trained only on features from healthy subjects and 
therefore representing a kind of norm-group. Such a model should prove discriminative 
independently of the impairment of the patient group in question. Work is in progress to track this 
approach using the current IMU data. 

There are some further thoughts on the specific subject group chosen for the evaluation in the JP 
4. It has been stated several times throughout this thesis that the present findings, concerning the 
classification as well as the validation, cannot be generally applied to all kinds of subjects. The 
second evaluation of the accuracy of the IMU system within the group of patients after THA 
intended to extend the validation to a more heterogeneous group of subjects with respect to the gait 
patterns. 

However, what was missing in the present examination was the evaluation of the inter-subject 
variability, the proof that the group of patients was indeed more heterogeneous, e.g. in the joint 
angles. The present statistics, e.g. standard deviation and confidence interval of the error measures, 
give only a hint of the inter-subject variability regarding the agreement between the two systems but 
do not allow for an interpretation of the inter-subject gait variability. Viewing this statistics further 
reveals a similar variation in the error measures compared to the healthy group. However, the fact 
that the group of patients included subjects operated on the left side as well as on the right side 
suggests that there might have been sufficient inter-subject gait variability. 

In this context, another point comes to mind on which a critical view is inevitable, namely the 
averaging of the error measures over all subjects for the interpretation. This procedure, despite being 
commonly employed in the validation of HMC systems, bears a few weaknesses. For one, it does not 
allow to interpret possible differences between the subjects with respect to the gait patterns or 
anthropometrics and their influence on the error between the two HMC systems. 

In retrospect, a different approach to the evaluation would have been more adequate if one 
wants to investigate the effect of different motion patterns or different body physiques on the error 
between to measurement systems. In fact, each subject should have been treated as a single case. 
Then the errors of each subject should have been compared regarding significant differences. 
Subjects with distinctively higher or smaller errors should then have been examined further, 
eventually allowing in-depth interpretation of the different sources that might influence a HMC 
system, e.g. motion pattern, STA but also sex differences, age or comorbidities. 

Another approach regarding the isolated examination of different error sources uses simulated 
data. Concerning the present system this approach was used in [10] to investigate errors in the 
measurement model based on the I2S orientation, I2S translation and the segment lengths. However, 
the examination of the influence of different, pathological gait patterns or soft tissue artefacts 
requires a far more complex simulation. Nevertheless, work is in progress to simulate complex 
pathological gait patterns from only a few samples of real motion capture data. This approach is 
based on a work of Merel et al. [177]. 

It has to be stated that the data of the patient group was checked on individual level for extreme 
outliers. Consequently, one subject was excluded due to an exceeding soft tissue component caused 
by edema. In retrospect, exactly the measurement results of subjects like the excluded one would 
have been interesting. However, in this individual case it has to be stated that the OMC system 
would not have proved a reliable reference system since it was not possible to adequately palpate 
the relevant AL. Maybe that would even be a reason for preferring a MIMU / IMU system, where the 
AL are estimated within a biomechanical model, over a marker based OMC system. 
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Nevertheless, the evaluation of each subject of the patient group on an individual level might 
have yielded a more detailed insight regarding the difference between the systems. 

Generally, HMC can be considered an individual affair, depending on many human-related 
factors, speaking of examiner as well as subject. And to the opinion of the author, HMC systems 
totally independent from non-system related factors are indeed desirable, but to date not realizable. 
These considerations get interesting when considering the evaluation of rehabilitation processes 
using HMC. It is the common approach, as it was also done in the JP 4, to compare the data of 
subjects undergoing rehabilitation with the data of a so called norm-group. 

However, the question must be raised of what is the norm? In the present case the norm is a 
group of 28 subjects aged around 24 years and mainly students. It was already mentioned that at 
least an age-matched subject group would be desirable for comparison. However, even then, there 
remain a lot of factors that might be overrepresented or underrepresented in a norm-group, e.g. 
fitness level, profession, ethnic background. 

These matters raised, there is one theoretical solution that would prove satisfying when 
analyzing the motion of a subject during rehabilitation, the comparison of its data with data from the 
same subject before the intervention, meaning injuries or the beginning of an osteoarthritis. 
However, from a practical point of view this is a nearly impossible endeavor. The only exception 
might be professional athletes. Here, the financial power and the preconditions are given to perform 
screening tests on a large scale. This is already standard concerning performance diagnostics, 
however, it is not so regarding motion analysis. For the latter, optimal HMC systems that unite a 
quick and easy applicability with high accuracy are still missing. To date, only simple combinations 
of different motion sensors, for example one MIMU / IMU and a GPS, are employed on a large scale 
for kinematic analysis in sports [178]. The present IMU system might be able to fill this gap if certain 
features of it are still improved in the future. 

5.3 Future Work 

Throughout the work on the four articles included in this thesis some issues emerged, which 
should be treated by future work or are already intensely treated. For example, the work on an 
alternative approach for the creation of an individualized biomechanical model has recently been 
rewarded with first publications [26,167]. However, an evaluation of the IMU based joint kinematics 
of the lower body relying on the information of this model is still pending. 

5.3.1 Full Body Kinematics 

The next logical step is the extension of the IMU based approach for the joint kinematics 
estimation of the lower body to the upper body, concluding a full body system. As López-Nava and 
Muñoz-Meléndez [161] showed in their review on MIMU / IMU based HMC systems, only 8 % of 
the 37 articles included in their work were concerned with both, the lower body and the upper body. 
Writing these lines, the data collection for the evaluation of the IMU based joint angle estimation of a 
full body approach is in progress. 

The measurement of the joint angles of the upper body comes up with two challenges, the spine 
and the scapula. Both are already complicated to measure using OMC systems [179–182], due to the 
complexity of their anatomy and the increased influence of STA. The detailed measurement of the 
motion of the scapula and spine using MIMU / IMUs is therefore poorly researched, highly limited 
or is still dependent on additional sensors [183–186]. 

The modelling of the spine needs further improvement to better represent its different sections. 
Further, the optimal positioning of the sensors on the spine needs to be reconsidered [187]. 
However, simple MIMU / IMU set-ups are already a useful tool to simply measure the motion of the 
trunk considered as a rigid unit [188–190]. 

5.3.2 Automated I2S Calibration 
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Another important issue is the intended self-calibration [170]. This calibration method aims to 
be independent of certain poses or pre-defined movements. Recently, a reliable automated sensor to 
segment assignment was achieved [191]. This presents a major step towards a simplification of the 
IMU system set-up since it renders the prescribed placement of the sensor to its dedicated segment, 
which is common in most commercial MIMU / IMU systems, redundant. 

However, both mentioned approaches towards an automated I2S calibration still require 
further research to provide more accurate and generalizable results. 

Once the automated I2S calibration approach is ready to use it can of course be evaluated based 
on the data collected throughout this thesis. However, it has to be further evaluated among a group 
of subjects with proven limitations concerning the ROM, distinctive deviations from the neutral-zero 
position and a lacking mental fitness to correctly perform predefined movement tasks, like it is the 
case in patients with CP or patients with neurological impairments. 

5.3.3 Hardware 

In this thesis, as mentioned in chapter 2.2.4, the Mtw Awinda MIMUs were employed for the 
recording of the raw accelerometer and gyroscope data. However, as mentioned in chapter 5.2.5 and 
throughout the JPs, the recording frequency was restricted to 60 Hz due to technical conditions. 
However, the algorithm used for processing the raw accelerometer and gyroscope data is 
independent of a special hardware. Considering one of the intended implementations of the system, 
a feedback application for patients after THA, the simplicity of the sensor application as well as the 
performance of the hardware are key. 

For example, the smart textiles shown in Figure 12 present the opportunity for a quick and easy 
application, which is important when working with patients. However, it has to be considered that 
the pants might introduce additional motion artefacts. Further, this method for sensor application 
might not be extendable to other patient groups like wheelchair drivers or patients who have to 
wear braces. 

In the latter cases the methods using straps, employed in the present studies, might be 
preferred. In this context, new sensor-networks are developed right now at the German Research 
Center for Artificial Intelligence, which consist of small and light-weighted MIMUs connected with 
textile cables (see Figure 26.). It might be that different sets of hardware, considering the individual 
group of subjects, might present the optimal solution. However, future hardware set-ups should 
employ an increased recording frequency, especially when considering highly dynamic motions. 

 

 

Figure 26. Example of a sensor network consisting of seven MIMUs, connected with textile cables, 
developed at the German Research Center for Artificial Intelligence. Smaller sub-networks of two or 
more sensors that can be connected among each other using Bluetooth are also in development. 

5.3.4 Machine Learning 
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The use of MIMU / IMU systems and wearable sensors in general is rapidly increasing, as is, 
consequently, the amount of available data. Therefore, the importance of machine learning has 
increased within the society and will increase even more in the future. Hence, to the opinion of the 
author, the responsibility of data scientists to provide the user with high quality data is likewise 
growing. 

Further, it is essential that professions, i.e. in the medical sector, that were not overly concerned 
in the past with data science and artificial intelligence, receive a fundamental knowledge concerning 
these issues. Researchers can play a part in this process but in the end this issue has to be heavily 
attended to on the level of politics. The promotion of interdisciplinary research teams and the 
creation of interdisciplinary courses might help to prepare society for the upcoming flood of data. 

Concerning the particular gait classification example from the JP 4, this has to be considered like 
a sort of proof of concept. It demonstrated the theoretical possibility that the chosen features from 
the IMU based joint angles are able to separate impaired from non-impaired gait and can therefore 
be useful trigger parameters in a possible feedback application for patients after THA. However, to 
really employ that model or a similar model for the general classification of pathological gait further 
evaluations and refinements are necessary, like the mentioned development of a one-class SVM. 

5.3.5 Further Validation Steps 

The present IMU system is, to the opinion of the author and according to the results described 
in this thesis, at this point able to be applied for gait analysis within clinical settings and certain 
patient groups. However, the validation of the system has to be carried on. 

The event detection has to be evaluated in real-life conditions, i.e. uneven terrain, obstacles or 
cognitive distractions, prior to the use of the IMU system in, for example, a home-based gait-training 
application. 

Further, the performance of the IMU system should be evaluated when applied to patient 
groups displaying more sincere gait abnormalities compared to the patients after THA. Mainly the 
gait analysis in neurological patients demands highly flexible systems. 

Considering ergonomics, another huge field of applications for HMC systems, other 
requirements are coming up to the present IMU system. These include mainly stationary tasks, or 
the integration of the sensors into loosely fitting work garment and thus the identification of cloth 
related motion artefacts as well as long-term measurements over several hours instead of minutes. 

In the JP 2 the first static and moderately dynamic motion tasks were evaluated. However, in 
this case the joint angles were calculated according to Procedure 1, including OMC information. 
Therefore, the complete validation of these tasks using the stand-alone version of the IMU system is 
still pending. However, this thesis was focused on gait, hence the additional full validation of the 
static and dynamic motion tasks was considered beyond the scope of this work. This step can be 
conducted without recording new data and should therefore follow soon. 

Nevertheless, if this system should be considered for sport specific applications, it has to be 
validated during the particular task, regarding the application of interest. Mainly highly dynamic 
motions like sprinting, cutting, etc. demand a separate evaluation. 

5.4 Outlook – the Future of Human Motion Capture 

In this chapter the author wants to take a prospective view at where the presently discussed 
IMU system might end up in a few years and what he thinks will be the next big steps in HMC. 

Consider the development steps, mentioned in chapter 5.3, successfully conducted within the 
next years, i.e. an automated I2S calibration is established, quickly applicable sensor networks are 
incorporated, the joint angle estimation is extended to the upper body and, further, the sensor-fusion 
algorithm is able to perform real-time on small devices like smartphones or tablets, providing 
complete mobility. Then, the fields of application with respect to the current IMU system are almost 
endless. 

In combination with adequate machine learning algorithms the IMU system will indeed be fit to 
be employed as a home-based gait-training application for patients after THA. However, for a 
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successful implementation, beside the easy attachment of the sensors, i.e. in the form of smart 
textiles mentioned in chapter 2.2.3, an intelligible user interface is key. 

Also in professional sports this system will be of high interest with respect to injury screening 
tests, mentioned in 5.2.6. If the set-up of the IMU system lasts only a few minutes and the 
measurements can be conducted using wearable devices the execution of widespread standardized 
pre-season injury screenings becomes an imaginable scenario, consequently providing the desired 
norm data in the case of post-injury assessments. 

Another big area of application will be the ergonomics sector. Here it is even more important 
that the subjects are not obstructed by the sensors. Therefore, it is of interest to integrate the 
MIMU / IMUs into the working garments. However, as mentioned in the preceding chapter the 
identification and filtering of motion artefacts due to loosely fitted clothes would be a precondition. 
This obstacle passed, a feedback application warning workers of disadvantageous body postures can 
be employed. Of course, systems using wearable sensors for the evaluation of work-related 
musculoskeletal disorders are already developed [192]. Here, mainly surface electromyography is 
used to date. However, again, present MIMU / IMU systems are not sufficiently easy to handle to be 
already in widespread use. 

These are only a few possible fields of application for the present IMU system. However, it 
remains the question if there will be other alternatives to MIMU / IMU systems for the quick 
assessment of human motion. Another, intensely researched approach towards quickly and easily 
executable HMC systems, overcoming the restrictions of marker based OMC systems, are 
markerless OMC systems [193]. The definite advantage of markerless OMC systems is the fact that, 
ideally, there is absolutely no preparation of the subject necessary. Mainly in sports applications this 
approach is of high interest, since in this case the athlete is not disturbed by markers, sensors, etc. 
[194]. 

However, the markerless systems come along with some disadvantages, still preventing their 
standardized application. Markerless OMC systems require a multi-camera set up that is commonly 
dependent on a calibration. Therefore, their measurement volume is still spatially restricted. Further, 
their accuracy regarding the joint angle estimation, mainly in the frontal and transversal plane, is 
still lacking in comparison to marker based OMC systems [195]. 

On one hand markerless systems might prove useful with respect to individual sports, whereas 
on the other hand they face a common problem when considering team sports, occlusion [196]. 
There is of course research trying to tackle this problem, however, mostly including only a 
maximum of two subjects [196,197]. An interesting solution to the problem of occlusion in camera 
based systems, markerless as well as marker based systems, is the fusion of the standard camera 
system with alternative sensors not depending on permanent visibility, i.e. MIMU / IMUs. So called 
hybrid systems are already in the focus of researchers [198–200]. In such a set-up MIMU / IMUs 
would enable the continuous tracking of a subject’s segments in the case that it leaves the 
measurement volume or it is partly occluded by, e.g., other persons. 

Using the information of an OMC system, especially a marker based one, might solve the 
MIMU / IMU systems’ problem of an accurate I2S calibration and biomechanical model. In this 
context, the results from the JP 1 and 2 as well as the additional results from the chapters 4.2.1 and 
4.2.2 can be considered a kind of hybrid system since they incorporate OMC based information as 
well as IMU based information. 

However, to date these hybrid approaches are mainly considered in the fields of computer 
vision and robotics, not yet sufficiently developed for applications in the areas of medicine or sports. 
Nevertheless, this seems a very promising approach for future HMC applications, which might even 
have the potential to form the new standard in motion analysis. 
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6 Conclusion 

It was not only the aim of this thesis to present a thorough validation of the present IMU system 
but rather to give a compact overview about this still young technology, the possibilities it provides, 
the diversity of approaches for the calculation of manifold parameters and further to highlight the 
still unsolved technical problems and challenges it involves. 

First and foremost, it has to be clarified that with the present thesis on the validation of an IMU 
system, that very system is not qualified for the use in all fields of application. It cannot be used 
without second thoughts for the gait analysis in other patient groups showing distinctively different 
motion patterns compared to THA patients or subjects displaying exceeding soft tissue. Further, 
there is no guarantee for valid results of the joint angles of the lower body if the present IMU system 
is applied in highly dynamic sports like running, sprinting, cutting, etc. Consider that the validation 
was conducted only in laboratory situations and only on level ground. Therefore, it is not yet clear if 
the IMU system’s accuracy, mainly the gait event detection but also the joint angles, remains stable 
during gait in uneven terrain, including uphill and downhill walking. Consequently, as mentioned 
in chapter 5.3.5, further validation steps must follow. Additionally, to date the examined 
magnetometer-free IMU system cannot be employed in applications where the subject’s global 
heading direction is of relevance. 

However, the IMU system can be considered valid for complex gait analysis, estimation of joint 
angles and STP, as well as the measurement of static motion tasks incorporating moderate dynamics 
in young and healthy adults on level ground. Further, the gait analysis can be extended to patients 
after THA. The results presented in this thesis and its accompanying JPs revealed a convincing 
accuracy, throughout the three evaluation stages (Procedure 1 − 3), of the 3D joint angles of the lower 
limbs with excellent results in the sagittal plane, good results in the frontal plane and a slight decline 
of the accuracy in the transversal plane of the knee and ankle joint. 

It turned out that the IMU based I2S calibration and the OMC-independent biomechanical 
model led to a static offset in the joint angles. However, as it was shown that the RMSE remains 
stable over the time parameters like the ROM can be considered trustworthy. The latter showed an 
excellent validity independent of the group of subjects or the evaluation stage. Therefore, the clinical 
application of the present IMU system can be highly recommended, at least in the field of 
orthopedics. 

The evaluation of the gait event detection and the STP revealed also a highly accurate outcome 
in both groups, with two exceptions. The spatial parameters step width and swing width need 
further refinement to be of clinical relevance. 

Some general thoughts were given throughout this thesis on the advantages and disadvantages 
of IMU systems and OMC systems, respectively, and the potential benefits of a combined 
application. The present work tried to sensitize potential users to the careful application of HMC 
systems in general and the well-considered interpretation of their results, by highlighting the 
technical issues, the diversity of approaches and the still remaining uncertainties in MIMU / IMU 
systems, despite it being a technology highly considered by researchers for the past decades. 

For no matter how thoroughly a HMC system is validated the accuracy of its results can never 
be guaranteed throughout all possible scenarios of application. Therefore, the careful user always 
has to reconsider the problem one is about to solve using HMC, the application of the HMC system 
and, finally, in consideration of the former two, its results. 
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