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Introduction

Any material body 2 deforms when it is subjected to external forces.

¥
//—\

volume forces
surface forces

undeformed body deformed body

The deformation is called elastic, if it is reversible and time independent, that means,
if the deformation vanishes instantaneously when the forces are removed. A reversible,
but time—dependent deformation is known as viscoelastic; in this case the deformation
increases with time after application of load, and it decreases slowly after the load is
removed. The deformation is called plastic, if it is irreversible or permanent.

The theories of elasticity an plasticity can be divided into two categories: One group is
known as mathematical theories, the other as physical theories. Mathematical theories
are formulated to represent experimental observations as well as physical principles in a
general form (phenomenological theories). Physical theories on the other hand attempt
to especially quantify plastic deformations at the microscopic level and explain why and
how the deformations occur. The movements of atoms and the deformation of the crystals
and grains are important considerations (micro-mechanics). Most applications, such as
structural design or metal forming, are on the macroscopic scale. Here a mathematical
theory is needed which allows to simulate the state of the body analytically and numeri-
cally and to compare the results with experimental data.

In this lecture we study the state of solid bodies under loading in the framework of con-
tinuum mechanics, that means, we assume that the states of the bodies can be described
through functions (fields) that are defined on a continuum and depend on space, time
and possibly on velocity variables.

In order to derive the mathematical models in form of partial differential equations or
variational principles we follow the following scheme:

deformation external loading
u [ 9
kinematical equations equilibrium equations
strain ~ constitutive - stress
€ equations o




Fig. 1

Let us explain the strain—stress relations for metals under loading as a one-dimensional
macroscopic model. From fundamental experimental observations one can gain insight
into the basic behaviour of deformed materials.

We consider a metal wire under an axial load P > 0. The initial length of the specimen
is ly, the undeformed area of the cross section is Ajg.

o = — is the nominal stress
0

. =1y ) )

€ = ; denotes the nominal strain.
0
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Fig. 2

The relation 6 = &(€) depends on the material properties and the strength of the tensile
force P. (For a compressive force P < 0, the stress ¢ is negative.)

If we slowly increase the loading, ¢ increases and the wire is expanded. Fig. 3 shows the
typical behaviour of the 6 — € curve.
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0-1I: Initially the relation between stress and strain is linear: ¢ = F¢ is called Hooke’s
law, which forms the foundation of the theory of elasticity.
The constant E is called the elasticity module.

[-1I: Beyond point I the increase in strain is not linear with the increase in stress, but the
deformation is still elastic, that means the removal of stress will restore the material
to its original shape. There exists a nonlinear relation

6 =o0(€)
which is called nonlinear Hooke’s law.

IT-TII: Point II is called the upper yield point. Here the wire begins to flow. The region
II-III is significant for an increased rate of strain without essential increase of stress.
There is a small local drop followed by several oscillations of the stress level. This
forms a plateau until point IIT (flow region). Region II-III shows perfectly plastic
behaviour. The lower bound of the stress oscillation determines the yield stress o,.

ITI-TV: If the stress keeps increasing at point III, the material hardens and the stress
increases until the ultimate stress is reached at point IV. Region ITI-IV is known as
material hardening.

After point IV the stress decreases with increase in strain representing the behaviour
of instability (breaking).

In the entire region II-IIT-IV the material is plastically deforming.

Some metals, such as aluminum, copper and stainless steel, do not exhibit sharp yield
points II and III. Instead, the yield of these materials is a gradual transition from a linear
elastic to a nonlinear plastic behaviour. In these cases one usually defines an offset yield
stress o, for which a definite plastic strain will be left after unloading.

Remarks:

1° Nominal stress 6 and nominal strain € are defined based on the original dimensions.
True stress o and true strain € are defined as

o = g, A is the deformed cross area,
l
Al dl l
A = — = —_— = ] —
€ ;i = € ;i n I
lo
e = In(1+é).

2° Real material behaviour in the plastic region is very complex. Idealization is neces-
sary, especially in the hardening portion.



o = oy+He" (Ludwick 1909)
o He" (Holloman 1944)
o oy + (05 —0y)(1 —€™) (Voce 1948)
o = H(e+e€)" (Swift 1947)
o = oytanh (f—;) (Prager 1938)
o = Z+H(%) (Ramberg and Osgood 1943)

E, 0,0, €5, H and n are material constants and must be determined experimentally.

Historical remarks:

1638 Galilei — resistance of solids to rupture

1660 Hooke — Hooke’s law

1705 J. Bernoulli — bonded elastic bar, strain, 1D

1744 Euler — differential equation of the elastica, 1D

1821 Navier — general equations of equilibrium and vi-
bration of elastic solids

1827 Cauchy — stress, stress—strain relation for isotropic
materials, 3D, linear case

1839 Green — principle of minimal elastic potential en-
ergy, anisotropic materials

1864 Saint Venant, Tresca — plastic deformations yield criterion

1872 Levy — plasticity

1913 von Mises — plasticity conditions

1924 Hencky, Prandtl, Taylor = — linear quasi—statical and quasi-dynamical
behaviour

1930 ~ 1950 Signorini, Rivlin, Truesdell — nonlinear elasticity
1958 Noll — axiomatic of classical mechanics



Chapter 1

3D—Elastostatics

1.1 Kinematics

In continuum mechanics the term kinematics refers to the mathematical description of
the deformation and motion of a body under loading. If the applied forces are time—
independent, a new equilibrium position appears. The description of this state with
the help of displacement fields, strain tensors and stress tensors is a central problem in
elastostatics.

Deformation in R?

An elastic body occupies a reference configuration Q in R?. Mathematically spoken, € is
the closure of a domain Q in R?, representing the volume of the body.

Definition 1: (domain)

Q C R? is a domain, if Q is an open, bounded and connected subset of R3. Q0 denotes its
closure, 0S) its boundary.

Definition 2: (reference configuration, deformation, current configuration)

The initial undeformed domain ) is called reference configuration. A mapping ¢: Q — R3
is a C'~deformation, if:

o © is differentiable in ), the deformation gradient

9p1 9p1 O
01 Oz2 O3

Dp=Vep=| 22 22 0n (1.1)

ox1 Oxo oxs

Ops  Ops  Ops
oz Oxo ox3

is a continouos mapping. Dy: Q — R33,

1

e © is injective (one—to—one) on ), i.e. @~ exists.
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e o is orientation—preserving: det(Dy(x)) >0 Vz € Q.

©(Q) = Q¥ is called the deformed configuration.

reference configuration deformed configuration

The properties of the deformed configuration are prescribed as follows:

Proposition:
Let Q C R? be a domain with Q = int(Q), 0Q = Q. ¢: Q — R® is a C,-deformation

and injective on Q. Then ¢(Q) is a domain, () = ¢(Q), () = intp(2), ¢(8Q) =
0p(2) = 9p(S2).

Proof: [5, Th.1.2-8]
The mapping ¢ can be splitted into

¢ =id + u, (1.2)

that means ¢(z) = x + u(z) Vz € Q, id denotes the identity map.

Definition 3: (displacement)
The mapping u: Q — R3, defined by the relation

p=id+u
1s the displacement.
The displacement gradient

81u1 82U1 (93’(1,1
Vu:= 61U2 82?1,2 63U2 y
O1uz Ohuz Oszus
0; 9 ;i =1,2,3 and the deformation gradient are related by the equation

— 9z’

Vo =1+ Vu. (1.3)



Strain tensors

Let us consider two points  and = + z from the reference configuration 2.

The distance (with respect to the Euclidian norm) is:
lz+2z—2z|* = (2,2) = 2" .
The image points ¢(z) and ¢(x + z) have the distance

lo(z +2) —e@)* = [[Vez+O(lzI)I
= [[Vez|” + O(llI)
2" (V) Viz + O(||2[).

The matrix VoV is a local measure (||z|| has to be small) for the strain with respect
to the deformation ¢.

Definition 4: (strain tensor)

Let Q C R? be a domain, ¢: Q — R® a C,-deformation. The symmetric tensor
C=(Vp)'Vp:Q— R (1.4)
is called the right Cauchy—Green strain tensor. The symmetric tensor
o %(0—1) .0 - RS (1.5)
15 called the Green—St. Venant strain tensor.

Lemma:

For the displacement field uw which corresponds to the deformation ¢, it holds that:

C = I+ (Vu)" +Vu+Vu'Vu (1.6)
1
E = 5(VUT + Vu + Vul V). (1.7)
Proof: Insert (1.3) into (1.4). W
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Remark:

The left Cauchy Green strain tensor
B =VeVp!

is also important. It plays an essential role explained later.

In view of showing that the tensor C' is indeed a good measure of “strain“ in an intuitive
sense of “change in form or size“, let us characterise a class of deformations which induce
no “strain‘.

Definition 5: (rigid deformation)

A deformation ¢ s called a rigid deformation, if
o()=Qr+a, acR, QeR>”?

and Q is an orthogonal matriz with det @ = 1.

In other words: The deformation is rigid, if the corresponding deformed configuration is
obtained by rotating the reference configuration around the origin by the rotation ) and
by translating it by the vector a.

For a rigid deformation it immediately follows that:

C=(Ve)'Ve=Q"Q=1I, E=0, Vu=—-I+Vo=-1+Q.

On the other hand: If C = I and detVy(z) > 0, then the corresponding deformation is
necessarily rigid.

Theorem: [5, p.45]

Let Q be an open and connected subset of R* and ¢ a C'-deformation. Then the following
statements are equivalent:

11



(i) Cz) = (Vo) (@)Vex) =1  VzeQ

(ii) for every x € Q there is a neighbourhood U(x) C Q, such that the Euclidian distances
are unchanged under the map .

le) =)l =lly ==zl  Vy,z€Ula).
Le. locally the mapping ¢ 1s an isometry.

(iii) There exists an orthogonal matriz () € R™" and a vector a € R* such that

px)=Qr+a Vz € Q.

Proof:
(iii) — (i): Evident
(i) — (ii): Since detVp(z) > 0 Vz € , it follows that ¢ is locally invertible in .

There exist open sets U C 2 and V' C ¢(Q2) containing the points z and ¢(z)
respectively, and which are mapped bijectively in both directions:

©
Uuzv,
o1

gp‘ and ¢ 1| are continuously differentiable.

%
Applying the mean value theorem we get:

le(y) =l < lly =2l sup [[Vo(E]]

£€(y,2)
= lly = 2l sup max(x(Vie (O V()
= ly—=ll,
where ); are the eigenvalues of the matrix VT (§)Vp(€) = I;
and
ly—=2ll = lle "oly) — ¢ o)l
< loly) =9Il sup (Vo™ (0)
ne(f().f(2))
= o) — ().

In the last estimate we have used that

¢ o) = =
N2
Vo [0 0(@)] = Voo () Vap(a) =1

and V,,(p L) = (Vap(z))™" = Ve(z)" is an orthogonal matrix, too.

We therefore conclude analogously to the first estimate.

12



(ii) — (iii): The relation —||y — z||> + [|¢(y) — ¢(2)||* = 0 reads

Z[% ] —Z( -2)2=0 for y,z € U(x).

=1

Differentiating with respect to y;, we get

22 iy (2)] 050i(y) —2(y; — 2j)) =0, j=1,..,n.

Now we differentiate with respect to z:

—226% 0j0i(2) + 2056 =0 j,k=1,..,n

or
Vol (y)Ve(z) = I fory,ze€U (1.8)
and Vo' (y)Vely) = I fory=2¢€U (1.9)
or Voy)Vel(y) = I  fory=z€U.
Multiplying (1.8) from the left by V(y), we get

Vp(z) = Ve(y),

which implies that V(y) = const = @  Vy € U, and moreover that Vy € Q, @Q is
an orthogonal matrix due to (1.9).
The map

p(r) — Qr = g(z)
has the property that Vg = 0 in Q.
Therefore g(z) = const =a. W

Polar factorization of a matrix: [5, p.94]

A complex number z can be written in polar coordinates
2z =rev, ePe ¥ =1, r > 0.
If a matrix A € R*" can be written as
A=QS8S, (1.10)

where (Q € R™" is an orthogonal matrix, S € R™" is a symmetric and positive definite,
then relation (1.10) is called polar factorization.

Lemma:

A real invertible matriz A € R™™ can be polar factorized in a unique fashion as
A=QS or A=258Q.

Furthermore
1 fordetA >0

det @ = { —1 for detA < 0. (1.11)

13



Proof:

Ais invertible, hence A" A is symmetric and positive definite (AT Az = Az = (AT Az, z) =
Mz, z) = (Az, Az) = M=z,2) >0 for z #0= A > 0).

We set S?2 = ATA, S = VAT A. S is uniquely defined and positive definite. Now we define
Q = AS™!. Since QTQ = STTATAS™! = §718SS~! = I, Q is an orthogonal matrix.
From det A = det @ det S and det S > 0, equation (1.11) follows.

Now we proof the uniqueness: Let A = Q1S; = Q2S5. Then ATA =52 =52 = 5, =
Sy = Q1 = Q. With S =QSQT, ST = QSTQT = S is symmetric and positive definite.

A=QS5=25Q.

Since AAT = 52, the uniqueness can be proved analogically. M

Linear deformations:

Be A € R332, det A > 0, p(z) = Ax.
Then A = QS = QVDVT, where V is an orthogonal and D a diagonal matrix. The
resulting strain tensors are

C = (Vo)'Vp=ATA=VDVTQTQVDVT =V D*V"
1
E = 5(VD2VT —-1).

Linearised strain tensor:

The modelling of strains can be simplified for small Vu.

Definition:

Let Q C R3 be a domain, ¢: Q — R a C'-deformation with displacement u.
The map

e=¢€= %(VUT+VU,)

e: Q0 — R is a linearised strain tensor with the components

e4i(x) = e5(x) = %(aiuj(x) +oui(e)), 1<i,j<3.

This linearisation leads to mathematical models for which the analysis and numerics is
considerably simplier. Note that even for linear deformations ¢(z) = Az = Iz + (A—I)z
the deformation gradient Vu = (A — I) can be large. For rigid deformations, we have

1
e=el)=3Q"+Q) L.
whereas F = 0.

14



Examples
We consider the domain Q = (—1,1)3.

(i) u(z) = (azx1,0,0), a € R describes stretching of the first coordinate.

a+ia? 0 0
E(z) = 0 00
0 00

e(z) =

o o Q
o O O
o O O

¥
|

v

|

|

Volume, curve and surface integrals in the deformed configuration:

The variables ¥ = (z) in the deformed configuration are called Euler variables, the
variables x are called Lagrange variables. In general, the Euler variables are unknown
and we have to transform the fields and quantities in the deformed configuration into cor-
responding fields and quantities in the reference configuration. Furthermore, equilibrium
relations are formulated by volume and surface intrgrals in the deformed configuration and
we have to express them in reference coordinates, too. We therefore express volume, curve
and surface integrals in the deformed configuration through the corresponding quantities
in the reference configuration.

Volume integral and volume element in the deformed configuration:

It is well known that the changes of variables in multiple integrals over a domain A¥ =
©(A) C () are given by

/ w(z?) dz¥ = / (w0 0)(x)|det Vip(z)] da,

AP=p(A) A

15



assuming that ¢: A — p(A) = A¥ is an injective and continuously differentiable mapping
with a continuous inverse p=1: A¥ — A.

If ¢ is a C'-deformation, then |detVp(z)| = detVp(x) > 0 and the volume element has
the form

‘da:‘p = detVydz. ‘

Curve integral and length element in the deformed configuration: [5, p.42]

Let v: [0,1) — Q be a C'—curve in the reference configuration €. Its length is

I(y) = / I/ (0)]| dt = / VO dt.

Let 4% = () be the deformed curve with a length of

1) = / I 07 (1) dt

~ [ VATV Vet @)@ d

- / VAOTCHO) 7 de

0

Symbolically the length elements are written as

dl = (da7-dz)?
di* = (dzTCdz)2

with © = y(¢t), I(y) = [dl, 1¢(y) = £dl‘p.

16



Surface integrals and area element in the deformed configuration:

Let A be a piece of a curved surface.

77
277 /

7

i

The surface integral of a function wu(z1, 9, x3) = u(x) is defined as

/u(a:) da = lim u(z;)AA4;, AA; = measure of the area A;.

If x5 = x3(x1, z2) is differentiable, then

dz3\° [ 0z3\°
/u(x)da: / u(xl,xQ,xg(xl,xz))\/l-l—(a—ﬁ) + (8—2) dzy dzs.

A A“vle

If z; = z;(u,v) are expressed in parameter form, then

/f(x)da: //f(m(u,v))\/mdudv,

. 3 (01\2 N3 0mdm v N3 (0m)\2
WlthE:Zi:l(agZ) ’F_Zizl az 6wv’G_Zi:1(6f;)'

The surface integral occurs in Gauss’ formula (also called fundamental Green’s formula).

Given a domain Q in R® with normal vectors n = (n;) along 0Q and a smooth enough

scalar function u: Q — R, then

/@-udac:/unida, 1<¢<3
Q

N

(1.12)

Inserting the product uv for u, we get the multi—-dimensional formula for integration by

parts:

/u@ivda::—/@uvda:—i-/uvnida, 1<4<3.

Q Q N

17
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For a vector field u: Q — R® with components u;:  — R Gauss’ formula (1.17) yields

Z/@iuidxz/divudxz/u-nda (1.14)
EY)

Q o

with divu := Z?:l O;u; =: O;u;. At this point Einstein’s sum convention is used (sum up
over the same indices).

Besides relation (1.19) for a vector field, we have to consider this relation for a tensor 7.

Here, tensor means a second—order tensor

T Ty Tis
T = (Tij)ij=123=| Tor Too Tos
T3 T3 Ti3

For simplicity, we ignore the distinction between covariant and contravariant components
and identify the set of all such tensors with the set R*? of all square matrices with an
order of three.

For a smooth enough tensor field T: Q — R*3 the divergence is defined as the following
vector:
0T + 012 + 03713
divl = 31T21 + 82T22 + 83T23 (115)
O Ts1 + 02139 + 03133

Applying formula (1.14) to every row of T, we get

/didea;z /Tnda. (1.16)

Q N

In the deformed domain Q¢ formula (1.16) reads:

/div‘pT“’ dz?¥ = /T“’n“’ da? (1.17)

Qe Ny

for a tensor field 7%: QF — R33.

The connection between (1.16) and (1.17) is given by the Piola transform:

Definition:

Let Q C R® be a domain, ¢ a C'—deformation and T? : () — R*? a second order
tensor.

18



The mapping P: R>3 — R>3 with

PT? =T
and P'T = T¢
defined by
PT*(z%) = [det Vop(2)]T?(2%)[Vyp(a)]™" =T(x)
P 'T(z) = [det Vo(a)] 'T(2)[Vo(a)]" = T*(a*)

15 called the Piola transform.

Remark:

Cof A := det AA~T is called the cofactor matrix of A € R33.
With this notation PT%(z%) = T%(z¥) Cof(V(z)).

Theorem: (properties of the Piola transform)
Be PT¥¢ =T. Then

(i) divT(z) = det(Vo(z)) div? t?(z¥) Va¥ = o(z),7 € Q (1.18)

(i) /T(x)n da = / T?(x?)n? da?  for an arbitrary subdomain A C Q (1.19)
oA dp(A)

(iii)  det V()| Vo(z) ™" 'n|da = |CofVo(x)n|da = da?. (1.20)

Proof:
The key to this proof is the Piola identity:

div{det(Vp)Vy T} = div CofVy = 0. (1.21)

This identity can be proven by direct calculation, namely

Ay Ay Ay
CofVyp = det(Vy) ™" = det Vg A Age Ags |,
detVe \ Ay Ay Asy

where Ay = (—1)"t/ det Aj;, A}, being the 2 x 2 matrix obtained by deleting the i** row
and the j” column in the matrix Vo’ (keeping in mind that (V)™ = (V1) =
(Ve")™).

Oip1 Orpa O3
Since (V)T = [ Oap1 Oopa Oaps | we have

031 O3p2 Os3¢3
Ajj = 0j110i410j120i12 — 0j120i410j110i42 1 < 1,5 < 3,

19



where the indices are taken modulo 3.
The components of the vector div[CofV ] are given by:

3
D 0jA; = 0[0rpis105pi2 — Ospis1020it0]
=1 +  02[030i11010i12 — O10i1103i12]
+  053[010i+1020i12 — 020i1101Pito]
0 fori=1,2,3.

We now prove (i):

The elements of the matrix 7" = PT% are of the form
T;j(z) = (det Voo(2)) Tie (29) (Vep(x)) T )j-

Hence

> 0,T(x) Za 7 (29)] det Voo(2) (Ve ()]

+ T;,‘; (29) Y 0;[det VoVi(x) .

J

The second term vanishes as a consequence of the Piola identity. Writing 2% = ¢(x) and

applying the chain rule % =3 8%1%’ or shortly 9; = 3,0/ 0;¢ to the first term, it
J J

becomes

ZajTij(:c) -~ ZZG“"Ti )0;01(z) (det Voo (z) Vep(x), )
= Za;":/;‘,’; 281801 )1 detV<p()

l

= [div¥T?(z%)]; det Vo (z).

51k

This relation means that

divT(z) = div¥ T?(p(z)) det Vo(z).

We now pass on to assertion (ii).
Let A be an arbitrary subdomain of 2. Using the relation of the volume elements dx¥ =
det Vip(x) dz, we get assertion (ii) from (1.16).

/ T(x)nda = / divT(z) do = /A diveT?(p(2)) det Vip(z) do

0A A

= / div?T?(x)% dx¥ = / T (xz¥)n? da?.
o(A) Op(A)

We come to assertion (iii).

20



We take T'(z) = det Vo(z)(Vp(x))™" = Cof(Vp). Then the inverse Piola transform
yields

T4(0) = P7T(0) = qorgs det V(@) (Ve(w) T (Vo) = 1.

Then relation (ii) reads
/Cof(Vgp(x))n da = / n¥ da®.
9A dp(A)
Since A C 2 is an arbitrary domain it follows that
Cof(Vp(x))n da = n¥ da®.

and
|Cof(Vp(z))n| da = da®.

21



1.2 Stresses and the equations of equilibrium

We will study the following situation:

A body occupying a deformed configuration Q¥ and subjected to applied body forces
in its interior {2¥ and to applied surface forces on a portion of its boundary is in static
equilibrium when the fundamental stress principle of Euler and Cauchy is satisfied.

The forces are time—independent and can be:

e volume (body) forces.
They are given through their space density f¢: ¢(2) — R, that means the volume
force F', which works in a subdomain ¢(A) C ¢(2) is given by

Foay = /(A) f?(x?) dz?
%)

e surface forces.
They are given through their surface density ¢¥ : (1) — R3, with '} C 99,
©(I'1) C ¢(052). This means that the surface force G,), which works on a portion

o(7) C (') is given by
Goy) = /gcp da’®.

()

The applied forces describe the action of the outside world on the body. Body forces
for example can be gravitational, electrostatic or thermal forces. Surface forces generally
represent the action of another body along a portion I'Y.

The stress principle of Euler and Cauchy

Continuum mechanics for static problems is founded on the following stress principle,
named after the fundamental contributions of Euler [1757, 1771] and Cauchy [1823, 1827].

Axiom (stress principle of Euler and Cauchy)

Consider a body occupying a deformed configuration Q°, subjected to applied forces
represented by densities f¢: Q¥ — R?, g¥: I'{ — R3.

Then there exists a vector field
t9: Q¥ x S? - R, (1.22)

where S? is the unit sphere in R? such that

(i) Axiom of force balance
For any subdomain A¥ C Q7 and any point z¥ € I'Y N 0A¥, where the unit outer
normal vector n? to I'Y N OA? exists,

t<P(:r<P’ n‘P) — g‘P(x‘P)

22



and

/f‘p(:c‘p) dz¥ + / t?(z%,n%) da® = 0.
Av

0A¥

(ii) Axiom of moment balance
For any subdomain A¥ C Q¢

/aj“’ x f(z¥)dx¥ + / ¥ x t9(z%,n¥) da® = 0.

Ay 0A¥

The stress principle asserts the existence of a vector field that is defined on the boundaries
of all subdomains A¥ C Q. Furthermore, it asserts that any subdomain A? of the
deformed configuration Q7 including Q7 itself, is in static equilibrium. This means that
its resulting vector vanishes (axiom of force balance) and that its resulting moment with
respect to the origin vanishes (axiom of moment balance).

Iy n¥

Definition: Cauchy stress vector

The vector t?(x¥,n?) is called the Cauchy stress vector across an oriented surface element
with normal n?.

The Cauchy stress tensor:

We now derive important consequences from the stress principle. The first, which is
due to Cauchy [1823, 1827], asserts that the dependence of the Cauchy stress vector
t?: 07 x §2 — R3 is linear with respect to its second argument, i.e. at each point
2% € QF there exists a tensor T%(z¥) C M3 such that t#(z%,n) = T%(z*)n for all
n € S%. The second consequence, again due to Cauchy [1827, 1828], is that the tensor
field T¢: Q¥ — M? and the vector fields f¢: Q¥ — R3 ¢g¥: 'Y — R3 are related by a
partial differential equation in ¢ and by a boundary condition on I'{ respectively.

Theorem: (Cauchy’s theorem)

Assume:

e The stress principle is valid.
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Q C R? is a domain, ¢: Q — R® a C'-deformation.

f?: 9(Q) — R? is continuous.

2% — 1#(x%,n) is continuously differentiable in Q° for each n € S2.

n — t#(x,n) is continuous on S? for all z¥ € Q7.

Then there exists a continuously differentiable tensor field

TY: go(ﬁ) — R33

Proof:

(a) Let z¥ be a fixed point in 2¢. Since Q¥ is open, there is a tetrahedron H € Q¥ with
vertex ¥ and three faces F;,7 = 1,2, 3, parallel to the coordinate planes and with
a face Fjy, whose normal vector is ng = Z?:1 Niy€i, Mig > 0.
€3

Py

Fy |pe
2 r es

Py
€1

The normal vectors of F; coincide with the vectors —e;.

In the Lemma following this proof, we will show that

area I; = n;, area [Fy.

The axiom of force balance over the tetrahedronH reads

/ P dy? + / 19(y*, n?) da¥ = 0,
H

O0H
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or, written in components

7 (y*)
/ > (y9) | dy?
H 5 (y%)
3 t1 (v, —ei) t1 (y*, no)
= - Z/ t5(y?, —e;) da“’—i—/ t5(y%,no) | da¥
=1 g t5(y¥, —e;) Fo t5 (Y, no)

Because of the continuity of the integrants we can use the mean value theorem in
every row: There are values 77;’;- e F;,,1=0,1,2,3, j =1,2,3, such that

3

sup |fj(y?)|volH > |Zt;’~0(nij,—e,~)areaﬂ-+t;‘-’(770j,n0)areaFo\
yPeH i—1

3
= area Fo| » t7(nij, —ei)nio + 7 (1m0, m0)|-
j j
i=1

Keeping the vector ng fixed and the vertices v; coalesce into the vertex x¥, the
continuity of ¢¥ implies that for j = 1,2,3

T vol H
filz vz-h—{%" area Fy

3
=0= |Zt}p(x“’, —ei)ni, + 17 (2%, mg) |-
i=1

(Also see the Lemma following this proof.)

Hence 5

- Zt‘p(ac“", —e;)ni, = t9(z%,ny).

=1

Furthermore, the limit ng — e;, ni, — d;; yields
—1? (2%, —ej) =t¥(z%,e;) for j=1,2,3,

and therefore

3 3

- Zt“’(x“’, —€i)Nj, = Zt‘p(:ﬂ“’,ei)nio = t¥ (2%, ny). (1.23)

i=1 =1

Passing on to a tetraheder mirrored on the axis, we get (1.23) for n; ¢ < 0 as well,
and therefore (1.24) folds for all n € S2.

3
Zt‘p(x“’, ei)n; = t?(z%,n). (1.24)
i=1

We define T by its components (7°¢);;.

(T%)i(2%) = tf(x%,¢5) 1<i,5<3.
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It follows from (1.24) that
3
Yon) = Zt‘p(x"", e;)n; = T%(x?)n,
=1

or, in components
3

tf(z,n) =) T (2*)n;.

j=1

(b) We apply Gauss’ divergence theorem for tensor fields:
For an arbitrary subdomain A¥ C Q% the axiom of force balance yields

/divT“"(x‘p) dz¥ = /T‘p(x‘p)n‘pda“": /t‘p(x‘p,n“’) da?

Ay oAY oA®
= —/f‘p(a:‘p) dx?.
AP

The assertion (b) follows immediately.

(c) We apply Gauss’ formula to the surface integral in the axiom of moment balance:

ik
/ z? X t9(x¥,n%) da? = / zf x¥ x| da¥
x5ty — xity Ty Zj T?i?‘”j Z3 Z T]
= / x5ty — ‘pt‘p da? = / x5 > Tn; — ‘fz T“; i | da¥
oae \ TTt5 — x2t‘p oae \ ¥ D Thnj — %"Z Tfin,
)
/ Za@ (25T — 25T
- [| S b o] | o
b\ S (o015, - agry)
( 25052 — 653T55) + (28 50 T3, — 25 55-T5))
B / 30T, = 05 T) + (o 52T, - xfaz T55) | da?
do \ X, 00T5 - 0T5) + (32515 — 2 2. TY)
T, — 1% 2f3 - f2
ae \ T3 =T ae \ 2f3 —af ff
It has been used that div7T%(z¥) = —f¢(x¥) .
Since
/x‘p x f¢(z¥)dx¥ + / ¥ x t?(z¥,n?)da’ =0
Av Gy
Ty, — T3
= /x‘P X f?(x¥) dx? +/ TH = T8 | dz¥ — /x“’ X f?(z¥) dz?,
TS5 — T
A Ay 21 12 Ay
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it follows that:
TS =T,

(d) The boundary condition T%(z#)n? = g%(z¥) for all z¥ € T'{ is an immediate conse-
quence of the definition of the Cauchy stress vector and of its relation to the tensor
7. 1

Lemma: (geometry of axis—parallel tetrahedron)

Let H be an axis—parallel tetrahedron with the four corner points
Py=1z% P=z"+v, wv=ce, ¢>0,

and the faces F;, in front of the points P;, 1 <1 < 3.
€3

Py

Py
€1

Let ngy be the normal on Fy.

Then
no; area Fy = area F;
and "
V0
lim =0, wherecy =cy=c3=h.
h—0 area Fy
Proof:
The face Fj is spanned through the vectors
a = Pl_PQ = C2€9 — C1€1
b = Pl—Pg = C3€3 — C1€1
The normal is given by ny = % and its components by ng; = %ei. It follows that
1k
n01|a X b| = (a X b)€1 =|—c ¢ 0 |e = CoC3,
—C 0 C3
n02|a X b| = (i3,
n03|a X b| = (C1C9.
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. bl
Since area Fy = laxbl it results that ng; area Fy =

5 s
Furthermore, vol H = 21¢4fsh

cjc, = area Fj.

1
2
= %ﬁ This leads to

3
= hT and area Fj

im 2 o m
h—0 area Fy

Definition: (Cauchy stress tensor)

The symmetric tensor T®(x¥) is called the Cauchy stress tensor at ¥ € Q. Forn € S2,
we have t¢(x¥,n) = T?(z?)n.

Examples:
(i) Let
a 0 0
T?(x¥)=| 0 0 0 | =ce, ®e; = aeel.
0 00
For o > 0 this is a pure tension in direction of the z;—axis, for a < 0 it is a pure

compression.
The Cauchy stress vector is

a 0 0 ny nio
t?(z?,n)=10 0 O ny | = 0 =a(n-e)e;
000 ns 0

It vanishes on the faces, where n; = 0. (e.g. orthogonal to e;).

(i) Let
—-p 0 O
T?(x%) = —pl = 0 —-p O ,p > 0.
0 0 —p

== == = =
7/
/

The Cauchy stress tensor works uniformly from every direction. p is called the
pressure.

7z
7
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(iii) Let

a 0
T (z%) = 0 0 | =ae;®@ey+aes e;.
0 0

o QO

We then have T¢(z%)e; = ey, T (x%)ey = ey, T¢(x¥)es = 0.

The Cauchy stress tensor is pure shear, with shear stress « relative to the directions
e; and e,.

The Cauchy stress vector is given by

t?(z%,n) = a(e; - n)es + (e2 - n)eq).

Moreover, we introduce the scalar normal stress and the shear—stress vector.

Definition:

Be x¥ € o(Q), T?(x%) denotes the Cauchy stress tensor in the point %, n € S2.
The real number

TY = (T%n,n) = n"T%n (1.25)

18 the normal stress in the direction n, the vector

TS =T%n—Tin (1.26)

1s the shear stress or the tangential stress.

Remark:

The normal stress is the projection of the Cauchy stress tensor on n, whereas T¢ is the
projection on the plane which is orthogonal to n.

If z¥ € 0% and n = n? is the external normal vector, then 7% and T¢ are the normal
and tangential components of the applied surface force. It holds

ITnll; =Ty + I Tsll5.

The Cauchy stress tensor is symmetric. Therefore an orthonormal basis of eigenvectors
exists in every point z¥.

Definition: (principal stresses)

Let T?(x¥) be the Cauchy stress tensor at ¥ € ¢(2). The eigenvectors ny, ns, n3 of
T?(z?) are called principal stress directions, the corresponding eigenvalues 71, T, T3 are
called principal stresses.

The eigenvalues are the zeroes of det(7%(z¥) — 7I) = 0; that means they are the zeroes
of the characteristic polynomial

7'3 —IT¢T2+IIT¢T—IIIT¢ = 0,
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where

Ipe = tI'](pZT1+7'2+T3,
1
Ilre = 5((tr T(p)2 —tr Tj) =TTy + Tom3 + 1371 = tr Cof T,
IIIT«p = det T%Y = T1T2T3

are the principal invariants of the tensor 7%. (They are invariant with respect to the
choice of orthogonal coordinate systems.)

Remarks:

1° The Cauchy stress tensor 7% can be splitted into the ball-tensor Tj and the deriva-
toric tensor Tp:

TY = TI“(’ + Tg,
where
1 %(7’1 +’7'2 +7'3) 0 0
T, = Str T¢I = 0 5(11 4+ 72 + 73) 0
0 0 5(M+ 7+ 7)
and

TS = T?—T¢.

2° The state of plane stress is typical for a membrane or a disc, and is characterised if

one of the principal stress (say 73) equals zero. This means there is no stress in the
direction n = e3. Then

TH T 0
T?=| T4 T 0 |, T =T%5.
0 0 0

The principal invariants are
Tﬁ + T2<,02 =T+ T
T3 — (1) = nim

ety TR
2 4

and Ti,2 =

+ (1)

3° Let 7y > 15 > 73 be the principal stresses of 7¢. Then

71 = maxn’ T?, 73 = minn’ T?.
nes? nes?

This means that the greatest and the smallest normal stresses are in the directions
of the principal stresses.
(Twi =Tini = nlTn; = 7,0 =1,2,3)
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The equations of equilibrium and the principle of virtual work in the deformed
configuration:

Let us first define the inner product of two matrices.

Definition:
Let A, B € R*". The inner product of A and B is defined as

Zam i = tr(ATB) = tr(BT A).

,j=1

Lemma:

Let Q@ C R" be a domain, A: Q@ — R™", b: Q — R" continuously differentiable maps.
Then
div[A(z)"b(x)] = (divA(x),b(z)) + A(z) : Vb(z) for all z € Q.

Proof:

div[A(z)"b(z))

Za a” Z{a azy + azga ib; ( )}

= (dlvA( ), b(z)) + A( ): Vb(z). (1.27)

The Cauchy theorem says that the axiom of force leads to a boundary value problem in
the deformed configuration:

—divT?(z?) = f%(z¥) in Q¥ (1.28)
T(z%)n? = ¢%@x¥) onTY. (1.29)

The partial differential equation (1.26) is given in “divergence form”, which leads to a
variational or weak formulation called principle of virtual work in mechanics.

Theorem:
The boundary value problem (1.28), (1.29)

—div* T?(z%) = f?(x%) in Q¥

T?(z%)n? = g¢%(z%) on I'Y.

15 formally equivalent to the variational equations

/T“’ : V¥ dz? = /f‘p 0¥ dz? + /g“’ ¥ dz¥ (1.30)

Qv Qe ry
for allv?: Q¥ - R® from V¢ = {v € C°(Q°) : v =10 on dQ*\I'|"}.
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Proof:

(i) Assume T to be a continuously differentiable solution of (1.28), (1.29). We multiply
the partial differential equation (1.28) with an arbitrary element from V¥ (in the
sense of the inner product in Lo(2¢) and apply formula (1.18) for the integration
by parts. It results that

/—div‘pT“’-U“’ dz¥ = —/Z@fo’-’v‘-p dz¥
o BJ

17 Y1
Qe Q
= [ Smgoporase — [ St i
Qe b o B4
= /T“’ : VPu¥ dx¥ — /(T“’ -n?)v¥ da®
Qe rf
= /f“’v‘p dx.
Qv

The boundary condition (1.29) yields the variational equations (1.30):

/T‘p : V¥ dz? = /f‘pv“’ dz? + /g“’v“’ da¥.

Qe Qe re

(ii) Let T¥ be a solution of (1.30).
Then the above calculations imply that

—/(div‘pT‘p + fOvdz? = 0 V¥ eV?®
Qe
and /(T“’u“’ —g¢¥)w¥da? = 0.
ry
It follows from the variational lemma [12, p.90][13, p.72] that
—div? T%(z%) = f*(z%) in Q¥

T?(x%)n? = g¢%(z¥%) on I'{.

The equations of equilibrium and the principle of virtual work in the reference
configuration:

Our goal is to formulate the Cauchy theorem in the reference configuration, that means
to express the boundary value problem and its variational formulations in terms of the
Lagrange variable z. In connection with that we remind of the Piola transform P: R33 —
R33 defined by

PT?(x%) = T(z)=T%x%)Cof(Vy)
T%(2%) det(Ve)[Veo(z)] ™"

with the properties (1.18), (1.19), (1.20).
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Definition:

T(z) = PT?(2*) = T*(2*) Cof(Vp)

1s called the first Piola—Kirchhoff stress tensor.

Theorem:

Assume that the stress principle is valid.
The first Piola—Kirchhoff stress tensor is a solution of the boundary value problem

—divT(z) = f(z) = (det Vip(z))f? o p(z) in §2 (1.31)
T(z)n(z) = g(z) = (det Vo(z)) [Vo(z)"nlg?op(z) onTy  (1.32)
and
Vo(x)T(x)" = T(x)Ve(z)". (1.33)

The boundary value problem (1.81), (1.32) is equivalent to the variational problem “Find
a tensor T € M? such that

T(xz):Vu(z)de = [ f-vde+ [ g-vda Yv eV, (1.34)
[ [7e]

V={ueC®Q):u=0o0nd0\I'1}.”

Proof:

Since
—divT(z) = —det Vo div?T¥(2¥) = det Voo f¢(2¥) = det Vi f? o p(x)

(compare (1.18)), equation (1.31) is valid.
Furthermore, the relations (1.19) and (1.20) imply:

T(x)n(z) da (1.19) T?(z?)CotVn(zx) da

(1.19) T (z?)n?(z¥) da®

U2 7o(29)n? (29)| Cof Vo (z)n(x)| da.
Consequently

T(z)n(z) = T*(a¥)n?(z?)|CofVi(z)n(z)|
= ¢%(2?)|CofV(z)n(z)|
= det Vo|Vo(z) " n(z)lg*(¢(2))-

The equivalence with the variational equations (1.34) is established as in the theorem for
the deformed configuration (p.31).
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Relation (1.33) says that the first Piola-Kirchhoff stress tensor
T(2)" = (Vo()) "' T(2)Ve(z)"
is non—symmetric in general. Indeed,

T(z)(Ve(2))" = T*(2*)det Vo(z)
Vo(@)TT(z) = (T¢(x%)) det Vo(z) = T?(x¥) det Vo(z). R

In order to avoid the non-symmetry of the first Piola-Kirchhoff stress tensor, one defines
the second Piola—Kirchhoff stress tensor:

Definition:

The second Piola—Kirchhoff stress tensor is defined as

Y(z) = det VoVo(z) ' T?(29)Ve(z)™" = Vo(z) ' T ().

The following theorem is evident:

Theorem:

Assume that the stress principle is valid. The second Piola—Kirchhoff stress tensor is
symmetric and it is solution of the boundary value problem

—divwVp(2)2(z) = f(x) in (1.35)
Vo(z)X(z)n(z) = g(z) on I'y, (1.36)

where the right hand sides f and g are defined by (1.31) and (1.32).

Remark:

In the equations (1.35) and (1.36), the unknowns ¥ and ¢ appear. (Note that f and g
also depend on ¢.)

For simplification the notation dead loads is used. The density f: Q — R3, or the density
g: 'y — R3 is associated with a dead load, if it is considered independent of the particular
deformation ¢.

This is meaningful, if ¢(z) is close to the identity (small displacements).
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1.3 Elastic materials and their constitutive equations

The three equations of equilibrium (1.35) together with the symmetry condition ©7 = %
form an undetermined system for the nine unknowns (¢1, @2, ©3, X11, L12, 213, 222, 203,
Y33) in the reference configuration.

Because the equations of equilibrium are valid for each macroscopic continuum (gas,
liquid, solid), the missing six equations should give informations about the constituting
materials.

Elastic materials are characterised as follows:

At each point z¥ = ¢(z) of the deformed configuration the Cauchy stress tensor T%(z¥)
is solely a function of z € € and the deformation gradient V(z).

This relation is expressed with the help of the response function for the Cauchy stress.

Notation:

R = {A:AcR% det A>0}

G33 {A: A e R, Ais symmetric}

5353 {A: A€ 5% Ais positive definite}

0% = {A:AecR* Aisorthogonal,det A > 0}.

Definition: (response function, constitutive equations)

A material occupying a domain 2 C R® is elastic, if there exists a mapping
R: O xR} — 5%,

such that in any deformed configuration (that means for every C'—deformation p: Q —
R3) the Cauchy stress tensor can be expressed on the reference configuration:

T?(p(z)) = R(z, V() vz € Q. (1.37)

The mapping R is called response function for the Cauchy stress tensor, the equation
(1.37) is called the constitutive equation of the material.

Remarks:

(i) Relation (1.37) means that elastic materials can only undergo a restricted class of
deformations. Indeed, for any matrix A € R‘i"g exists a deformation ¢ such that

Vo(z) = A, (set p(z) = Az).

(ii) If the material is elastic, then it holds for the first and second Piola-Kirchhoff stress
tensor

A

T(z) = T(z,Vp(z))
and

N(z) = (Vo)) 'T(2) = (Vo) ' T(z, Ve())
= X(z,Vp(z)). (1.38)
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Indeed, it is
1

T#(z%) = R(x,V(x)):detho

T(2)[Veo(a)]"

and therefore
T(z) = R(z,Ve(z))CofVp(z)=T(z, Vo(z)). (1.39)

The relations
1(0) = T Vo)
Y(z) = Y(x,Ve(z)) Vel

are also called constitutive equations (6 equations) for elastic materials; 7,3:0—
R>* are the response functions for the first and second Piola-Kirchhoff stress tensor.

Definition:

A material in a reference configuration 2 is called homogeneous, if
T°(p(x)) = R(Vp(z)) Vo e
otherwise the material is said to be nonhomogeneous.

It follows that for homogeneous materials

T(@) = T(Ve(w))
@) = £(Vela)

The response function is essentially determined experimentally, realising some deforma-
tions Vo = A.

Notice that the response function is a priori dependent on the particular orthogonal basis
chosen and on the particular reference configuration considered.

These dependences must be studied carefully, using the axiom of material frame-indiffer-
ence (also named axiom of objectivity) and the property of isotropy.

Material frame—indifference

Any observable quantity must be independent from the particular orthogonal basis in
which it is computed. Our observable quantity here is the Cauchy stress vector. We keep
the basis fixed and rotate the deformed configuration around the origin. ¢ = Q¢ rotates
the configuration $2* into the configuration 2". Translations of the origin may be ignored
since thay have no effect on the deformation gradient.

The axiom of objectivity says that the Cauchy stress vector is rotated by the same matrix
Q as the configuration.

Axiom of objectivity for the stress vectors

Let  C R? be a domain, ¢,¢: Q — R® C'-deformations with ¢ = Qip, @ € O>*. Then
it holds for the Cauchy stress vectors that:

tY(¢(z), Qn) = Qt*(¢(x),n) for x € Q,n € S* (1.40)
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Corollary:

If the aziom of objectivity (frame—indifference) holds for the stress vectors, then the re-
sponse function R = R(x, A) for the stress tensor has the property

R(z,QA) = QR(z,4)Q" (1.41)
and
f(x,Vw(x)) = TA(m,va(ﬁ))ZQT(%V@(@) (1.42)
XNz, Vi(2) = %(z,QVe(z)) = X(r, Vo(z)). (1.43)

TY(4(2))Q = QT*(p(z))
T (¥(z)) = QT*(p(2))Q"
R(z, Vi(z)) = R(z, QV(z)) = QR(z, Vy(2))Q". (1.44)

Since for every A € R’ a C'-deformation ¢ with Vo = A exists (set p(z) = Az), it

follows from (1.44) that

Furthermore,

T(z, V() =

and

S(z, V() =

QR(z, V)

QT (z, V)

R(z, QA) = QR(z, A)Q".

T(z,QVp(z)) = R(z, QVp(z))Cof(QVp(x))

1

QR(z,Ve)Q" ——=—(QVep)™"

det(QV )

1 T T -T
v, d Qv

(QVp(2) T (x, Vi(2)) = (Vo) T (2, Ve(x)) = E(z, V().

The above considerations imply: if (1.41) holds, then the frame-indifference axiom for
the stress vectors is satisfied.

This leads to the following definition:

Definition: (objectivity fo the response function)

The response function R of an elastic material is objective, if

R(z,QA) = QR(z, A)QT  VreQ,vQ € 0}’ VA € R} .

We summarise the results:
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Theorem: (objectivity of an elastic material)

For an elastic material with the response functions R, T and ¥ the following statements
are equivalent:

(i) R is objective.
i) T(z,QA) = QT (z, A VQ e 03?, Ac R 2 Q.
¥ ¥
i) Sz, QA) = S(z, A VQe O AcR? z€Q
+ ¥
w) There ezists a mapping X: O x S2% — 33 with
(iv) S

S(x,A) =X(z,ATA)  VAeR?® ze. (1.45)

Proof: [5, Th.3.3—-1, p.101]

We here consider (iii) — (iv). A X

Be F,G € RY® with FTF = GTG. Then Q = GF~' € 0%® and (x, F) = X(z,QF) =
5 (x,G) implies X(z, A) = B(z, ATA).

Furthermore, (iv) — i:

R(z,QA) = T(z,QA)(CofQA)™ = QAS(x, QA)(Cof Q4)™
QAX(z, (QA)" QA)Cof (QA)™

Since Cof(QA) = QCof A (note that Cof @ = @, Cof(A - B) = Cof ACof B), we get

R(z,QA) = QAX(z, ATA)(Cof A)~'Q!
QAS(z, A)Cof A71Q ™1
QAA™'T(z, A)Cof A71Q ™
= QR(z,4)Q™"

= QR(z,A)Q".

Assertion (iv) says, that the second Piola-Kirchhoff stress tensor
S(z) = 3z, Vo(z) = 3z, Vo' (2) V()

depends on the right Cauchy—Green strain tensor C' = V' V¢ (strain-stress relation).

Isotropic elastic materials

We have studied how the axiom of the material frame—indifference restricts the form of
the response function. Another property, the isotropy, yields further restrictions. The
intuitive idea is, that at a given point, the behaviour of the material “is the same in
all directions”. In contrast to this property, anisotropy means, that the response of the
material depends on the direction.

We now introduce the mathematical definition of isotropy:
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Definition: (isotropic elastic material)

An elastic material is isotropic at a point x € 2, if its response function for the stress
satisfies

R(z,FQ) = R(z,F) VQe€ O’ F e R>. (1.46)

The definition says: “The response function is independent of the rotation of the reference
domain around point z.”

Corollary:

The response functions of the first and the second Piola—Kirchhoff stress tensor for isotropic
elastic materials have the properties

A

T(x,FQ) = T(z,F)Q (1.47)
Yz, FQ) = QTS(z,F)Q VQ e 0¥ FcR’. (1.48)

Indeed,

T(2,VeQ) "= Rz, VeQ)ColVeQ
=’ R(z,Vp)CofVeQR
= T(x, V)Q.

Setting Vi = F, we get (1.47).

5w, VeQ) = (V@) T (2, VeQ) = Q'S(z, Vo)Q = Q"S(z, V) Q.
For Vo = F, (1.48) follows.

Theorem: (Rivlin—Ericksen representation theorem, 1955)

A response function of an elastic material is objective and isotropic if and only if

2
R(z,F)=R(z, FF") =Y fi(x,1s,115,11I5)S’ (1.49)

i=0
3,3
for all F € RY".

Here, S=FFT, I¢=1trS, IIg = tr CofS, I11g = det S.
In particular, S = VoV ! is the left Cauchy—-Green strain tensor.

Proof: [5, p.109ff]

From the Rivlin-Ericksen representation theorem we get a stress—strain relation for an
elastic isotropic material:
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Theorem: (stress-strain relation)

Let Q C R® be a domain occupied by an isotropic elastic material. Assume that the aziom
of objectivity is valid. Then there is a relation between the second Piola—Kirchhoff stress
tensor X and the right Cauchy-Green strain tensor C = (Vi)' V.

S(x) =Y iz, e, He, 1) [C ()] (1.50)

=0

Here, I, 11, I11; are the invariants of the matriz C(z), 7;: Q x R® — R.

Proof:

Y(x) = 3(x, Vo) = B(z, Ve Vo) = S(z, C) = 3(z, V)
since C' € Si’s, V/C is symmetric and positive definite (compare Lemma p.13).

$(,VC) = (V) 'R(z,VC)Cofv/C
= det VC(V/C) ' R(z,C)(VC)™

2
= 1/ Iflc(\/a)_l Z 5,(.’1), Ic, Ilc, IIIC)C" (\/5)_1
i=0
It is (VO)'{(VC)™ = O
(VO OWE) = 1
ey lerve)tt = (Vo)y'Wevevevowe)tt=c.
2
Hence $(z) = /IIIcC™" | iz, I, e, I11c)C!
i=0
= \/HTC(ﬁoc_l + Bl + 3:C) (1.51)
Furthermore, the Hamilton—Cayley theorem yields
c! L(HCI — IoC + C?). (1.52)

T Il
Inserting (1.52) into (1.51), we get the representation (1.50) with

I1¢
111

Ic
(_/BOE + ﬂ2)7

Y = (IIg)? (Bo——s + B1),

N

v = (IIlg)

1 1
= (IIl;)28,——. 1
Yo (I11c)z 3 o
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The constitutive equations near the reference configuration

If ¢ =id and V¢ = I, then we describe the stresses in the reference configuration

Y(x) = T%2%)=T%x)=T(x)
= ) (3,3, 1)1

This means that the residual stress XX(z) = Tg(z) is a pressure. A reference configuration
Q) is called a natural state, if the residual stress tensor vanishes at all points x €
(unstressed state).

We now study the situation that we are close to the reference configuration. It is
Y(z) = X(x,C) = L(x, I +2E),

where E = 1(C — I) is the Green strain tensor, C' = Vo' V.
We consider the mapping

f(E) =%(z,1+2E) =Y iz, Ic, Ig, I11g)(I + 2E)’ (1.53)

1=0

and take the Taylor expansion (Frechet derivative) for small E and fixed z.

Theorem:

Let an elastic material with a objective and isotropic response function at a point x € Q
be given. Assume that the coeﬂicients_ vi of the representation (1.53) are continuously
differentiable. Then functions p, A, u: @ — R exist, such that

Y(z) = X(x,C) = —p(x)I + Xz)(tr E(x))] + 2u(z) E(x) + o(E, z). (1.54)

Proof:
It is
f(E) = ’YO(IE,IHQE(z), III+2E(z), IIII+2E($))I
+ M@, Irv2m@), Hivop@), I 1om@) [ + 2E(x))
+ %22, Iriom) Hiope), I 10mm) (I + 2E(x))”.
Since the coefficients ; are continuously differentiable, we expand them at the element

E=0to
,}/i(x,II—|—2E(.:C)aIII—|—2E(SE):IIII+2E($)) = %(x:IIaIII,IIII)

0%
+ a—}/(II’III’IIII)(IIHE —1Ir)
07
+ L, 1 ) (Hrop — 1T7)
07
+ aIf;I(II’IIIaIIII)(IIII+2E _III])
+ o(E)
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It is
II—|—2E = tI‘(I + 2E) =3+2tr E

1
ITiiop = 3 {[tr(I + 2E)]* — tr(I + 2E)*} =3+ 4tr E + o(E)

1
s = ¢ {[tr(I + 2E))® — 3tr(I + 2E)tr(I + 2E)* + 2tr(I + 2E)*}
= 1+42trE+o(E).

Hence
’Yz‘(m, I1op, 1198, IIII+2E) = %‘(% 3,3, 1) + ﬂi(m)trE + O(E)a (1-55)
where (;(z) = (2%"}" + 43}7} + 23‘91%) (z,3,3,1).

Inserting (1.55) into (1.53), we get

Y(z) =S(x, I +2E) = oI + fotr ET
+ vl + pitr EI 4+ v 2FE + pitr E2E
+ ol + fBotr EI 4+ 94 FE + Botr EAE + o(E)
= (vo+m+ %) (23,3, 1)+ (8 + 51+ ) (x,3,3,1)tr ET
+ (=71 4 27%)2E + o(E).

With

(Yo +m+7)(,3,3,1) = —p(z)
(ﬂ0+ﬁl +ﬂ2)($7373:1) = )‘(x)
(71 + 272)("17’ 3,3, 1) = /J'(x)

assertion (1.54) follows. W

Corollary:

If the reference configuration is in natural state, then —p(z) = 0 and X(z) = X(z,0) =
ANz)tr E(z)] + 2u(z)E(z) + o(E(x)).

If the material in addition is homogeneous, then X\(x) = X and pu(x) = p are constants.
In this case they are called Lamé constants.

Experimental information about the Lamé constants

The strain-stress relation
Y(z) = MrE(z)] + 2uE(z) + o( E(z)) (1.56)

for a homogeneous isotropic elastic material is based on the knowledge of the Lamé
constants A and p.

They have to be determined experimentally. Here, we simply impose restrictions on
the admissible value of the Lamé constants of any “real” elastic homogeneous isotropic
material, considering “ideal” experiments.

We will proceed as follows:
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e The reference configuration Q has a simple geometric form (a ball, a rectangular
block, a circular cylinder) and it is a natural state.

e The family of deformations has a particularly simple form, related to pressure,
simple shear, pure axial tension.

Let us describe the admissible family of C'~deformations and the resulting strain—stress
relations in the undeformed and the deformed configurations.

Lemma:

Let Q) be a reference configuration in a natural state, occupied by a homogeneous, isotropic
elastic material, ¢ a family of C'—deformations

€ 3,3
0 (z) =z + Gz + (€, ), G e Ry,

with r(e, z) = o(e, z), V,r(e,x) = o(e,x), Vir(e,z) = o(e, ).

Then Y(x) = €MtrG)I+ p(G+G")] +o(e, z)
and T (o(z)) = eAtrG)I + u(G+G")] +o(e, ).

Proof:
It is

Vei(z) = I+4€eG+ o(e )
and C(z) = V'Vt
= [I+¢eGT +o(e,2)|[I + €G + o(e, x)]
I+ e(G" +G) + o(e, 1),

E(z) = %(06—1):§(GT+G)+0(6,:¢)

and finally ¥°(z) = MetrGI + QME(GT + G) + o(e, z).
Since T%(p(z)) = T(x)(CofV)™ = Vi (x)X(x)(CofVy) !, we get:

1% (pe) = Via) (o) g (Ve

= [[+4¢G +o(e, 7)][e(Mtr GI + u(GT + G)) + o(e, 7)] -
1
det(I + €G + o(¢, x))
1 T
= m[e()\tr GI+ pu(G* + Q)) + o(e, )]

= MrGI+u(GT + Q)] +o(e,r). B

[+ eG" + o(e, z)]
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1. experiment:

Let © = B;(0) be the unit ball. A uniform compression is described by
0 (z) =x — ex + o(e) €e>0.
Note the ¢ = (1 — €) R + o(e).

Here, G = —I and T%<(pc(z)) = €[-3X—2u]l +o0(e) = —emI +o(e), with m = 3A+21 > 0
and

pressure

€ m2

N
:3)\+2u,[ }

Q

% = 5(3)\ + 2p) is called the bulk module (or the modulus of compression).

2. experiment:

0
Let Q = (0,—1) x (0,1)® be a cube. Then ¢ (z) = z+¢€| z3 | + o(e,z) describes a
0
simple shear.
€
To + 0
000 000
ItisG=1 0 0 1 | and T%(pc(z))=€eu| 0 0 1 | + o(e z).
000 010

It follows, that

Pe
€ € 23
Tox = Tsy = e, w>0 orpu= o

The number p is called shear module

shear stress €
h=——:, tana = — =e.
tan o 1
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3. experiment:

Let Q2 be a circular cylinder with the z3—axis.

“uniform traction” of the cylinder

—rvr;
ve(r) =x+e€| —vzy | +0(e,x), v ER,
xs3
where v > 0 has to be determined. We get

—-v 0 0
G = 0 —v 0
0 0 1
and
—2v 0 0
T?(¢(x)) = e |M-2v+1)+p 0 —2v 0 + o(e, x)
0 0 2
= €T + o, x),
—2v 0 0
with T = A1 —-2v)] +p 0 —2v 0
0 0 2
Assume Ty = Tpy = 0, then A(1 —2v) — 2uv = 0 and v = 52—

2(Mp)
Since > 0 and (3\+2pu) > 0, and therefore (A+p) > 0, the definition of v is meaningful.

The natural assumption v > 0 leads to A > 0.
The dimensionless number v is called the Poisson ration and

where d and d° are the diameters, and h and h are the length of 2 and ¢, respectively.

For A > 0, p > 0 it results that 0 < v < %

PYe

The};:o;nponent Ts3 = A1 —2v)+2u = “(%Jf“) = F is the Young modulus, E = T%,

GZT.
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The Lamé constants, the Poisson ration and the Young modulus are related to each other
by the following equations:

_ A _ pBA+2p)
V=30 ) E="57u
— Ev __F
AT T -2 FT 4w
Lamé constants of a homogeneous isotropic material
E v A W s(3A+2p)
(10 N/m?) (10 N/m?) (10'° N/m?) (10'° N/m?)
Steel 21 0.28 10 8.2 16
Iron 20 0.28 9.9 7.8 15
Copper 11 0.34 8.7 4.1 11
Bronze 10 0.31 6.2 3.8 8.8
Aluminium 7.0 0.34 5.6 2.6 7.3
Glass 5.5 0.25 2.2 2.2 3.7
Nickel 2.2 0.30 1.3 0.85 1.8
Lead 1.8 0.44 4.6 0.63 5.0
Rubber 0.037 0.485 0.40 0.012 0.41

1GPa = 10°N/m’

Remarks:

e From the first experiment it follows, that the radius of the ball is not changing
(€ ~ 0) under any given pressure, if 3\ + 2 is very large (A — o0). In this case the
material is incompressible.

The incompressibility can also be expressed with the help of the Poisson ratio:

. . 1
sy T aim v =5

Materials with A > p (e.g. rubber, see table above) are nearly incompressible.

e The third experiment leads to a uniaxial stress—strain curve
he—h
P

T = €E + o(e, ), where € =

Ve
T5;

_ force
= area

E is the ascent of the curve in the origin and it is also called elasticity modulus.
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St. Venant—Kirchhoff materials and the linearised problem

If we neglect the higher—order terms in the expansion (1.56) of the second Piola—Kirchhoff
stress tensor, we obtain a response function, suggested by St. Venant (1844) and Kirchhoff
(1852).

Definition: ( St. Venant-Kirchhoff materials)

An elastic material is a St. Venant—Kirchhoff material, if its response function is of the
form

S(x) = B(z, Vo) = 2(z,0) = %(z,2E + I) = MrE(NT + 2uE(z), (1.57)
where A and p are constants.

Clearly, such a material is homogeneous and the reference configuration is a natural state.
E can be expressed in terms of the displacement fields w:

1
E=E(@)= 5(Vu + Vul + Vul'Vu) (1.58)

We now formulate boundary value problems for the unknowns ¥ and ¢, and for the
unknown displacement field u, respectively, using the equilibrium equations (1.35), (1.36)
and the stress—strain relation (1.57).

(Nonlinear) boundary value problems

(i) Let Q C R® be a domain with the boundary 0Q. 9 is divided into two relatively
open portions I'y and I'y, with Ty UT; = 09, [y N T, = 0.
The C'-deformation ¢: Q — R3 and the symmetric stress tensor ¥ : Q — R3?
have to be determined, such that

—div(Ve(2))S(z) = f(z) (= f(z,0(x) inQ
o(x) = @o(x) forz €Ty
Vo(z)S(z)n(z) = g(x) (=4(z,¢(z) forzely
for given f, ¢, g.
(ii) Let ©, 'y, I'; be defined as above, and let 2 be occupied by an St. Venant-Kirchhoff

material.
A displacement field has to be found, such that
—div {(I + Vu(z))[Mr E(u)(z) + 2uE(u)(2)]} = f(x) (1.59)
u(z) =0 for x € Ty (1.60)

(I + Vu(x))[Mr E(u)(z) + 2pE (u)(z)|n(z) = g(x) forz e Ty (1.61)
for given f and ¢, and ¢y = id.
We linearise the boundary value problem (1.59), (1.60) and (1.61), introducing
1
e(u) = i(VuT + Vu) (1.62)
ole) = Mrel 4+ 2ue =o(e(u)) (1.63)

The tensors e and o are not physical quantities, but approximations of the strain
and the stress tensors.
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Definition: (Hooke’s law)

The relation
o(e) = A(tre)I + 2ue

15 called Hooke’s law for isotropic, elastic, homogeneous materials.

The linearised boundary value problem (1.59), (1.60), (1.61) reads:

—div(Mtre(u)l + 2pe(u)) = f in Q2 (1.64)
u = 0 on I'y (1.65)
oleyn = g on I'y (1.66)

or, written for the displacement field u:

— [pAu + (A + p)grad(divu)] = f(z) in Q (1.67)
ul = 0 1.68)
oluln 0 =g (1.69)

Indeed,

Adivu + 2#81“1 ,u(81u2 + 82?1,1) [1,(81U3 + 63U1)
—div O'(U,) = —div u(61u2 + 82’&1) Adiv u + 2/1,82’&2 u(82u3 + 63UQ)
w(Oyus + Osuy)  p(Oeug + Osuz)  Adivu + 2udsus

pAuy + (A + p)oidivuy
= — | pAus+ (A + p)oedivu
pAuz + (A + p)osdivu

The differential equation (1.67) can be written with the help of the Lamé operator:

—Lu = —[pAu + (A + p)grad(divu)] = f (1.70)
or in matrix form:
pA + A+ p)of (A + p)0i0s (A + 11)010 (0 S
(A + 1) 030, (A+1)0205  pA+ (A + p)03 u3 f3

The differential equation system (1.70) is called Lamé or Lamé-Navier system for the
displacement fields.

The matrix—vector form of Hooke’s law

It is convenient to write the strain and stress tensors in vector form:

€11 011

€22 022
- €33 - 033
€= , o=

2612 012

2e93 093

2e13 013
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Hooke’s law then reads:

M is called elasticity matrix.

Writing

™y
Il
)

sl

we get L = DTG = D" Mée = D" M Di and the “stress vector” (traction)

0
0
0y
0
s

with D =

A
A
A+2u
0
0
0
0 0
d 0
0 0
o 0
03 0o

on=N'é¢=N"MDu

with

Remark:

1 0 0
0 N9 0
0 0 ns

ng ny 0
0 ng nNog

ng 0 n

oo Tw oo o

oOxw oo oo

T oo oo

(1.71)

(1.72)

(1.73)

The elasticity matrix M can be more general when taking into account anisotropic ma-

terials.
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1.4 Weak formulation of the linearised boundary value
problem — The principle of virtual work

We have already formulated the principle of virtual work for the stress tensors ¥(z)
and 7% (z¥) in the undeformed and the deformed domain. We now use the same ideas,
starting from the boundary value problem (1.64), (1.65), (1.66) or from the equivalent
displacement formulation

~Li=-D"MDi = f inQ (1.74)
i =0 1.75)
To
N"MDi| = § (1.76)
Iy IVt

Lemma:

If the solution u € [C?(Q)]? of the problems (1.64), (1.65), (1.66) or (1.74), (1.75), (1.76)
exists for continuous right hand sides f and g, then

a(u,v) = /a(u) ce(v) dx

Q

= /{)\tre(u) tre(v) + 2ue(u) : e(v)} dzx

= )\/divu divvdw—l—?u/e(u):e(u)dm

Q
= /MDﬁDﬁdac
Q
= /gv da + /fv dz (1.77)
I'1 Q
forallveV. B
V' is the closure of the linear function space {u € [C®(Q)]*, u| = 0} with respect to the
norm to
3 3
i=1 |
Proof:
We multiply (1.64) with an element v € V' and integrate on €.
Since

—/diva(u)-vdw = /J(u):Vvdx—/a(u)n-vda

Q N
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= /fv dx (see page 32)
0
o(u

and o(u) : Vv = ) :e(v),

it becomes

a(u,v)z/a(u):e(u)dxz/a(u)u-vda+/fvdx=/gvda+/fvdx.

Q o It

Due to the relation o(u) = Atre(u) + 2ue(u), the first part of the assertion follows.
The last part of the assertion is evident, because & (u) = M D, €(v) = Dt and &'(u)-€(v) =
o(u):e(v). W

Definition: (weak formulation)

The weak formulation of the boundary value problem (1.64), (1.65), (1.66) or (1.74),
(1.75), (1.76) reads:

Find an element u € V for given densities f € V', g € H? (092), such that

a(u,v) :/gvda—i-/fvd:v Yv e V. (1.79)
Q

Iy

The element u 18 called the weak solution.

Remark:

Whether the weak solution u is a solution of the corresponding classical boundary value
problem too is not easy to answer in general. It depends on the solutions regularity, which
is influenced by the geometry of the domain and the regularity of the right hand sides.

We now discuss the solvability of the weak-formulated boundary value problem (1.79).
The fundamental Lemma of Lax—Milgram gives the answer.

Lemma of Lax—Milgram: [14, Satz 17.9, p.264]

Let V' be a Hilbertspace, a(-,-): VXV — R a bilinear form, F € V'. If there are constants
c1,co > 0 such that

a(u,v) cillu|lv vl Yu,v eV (1.80)

<
> o} VYuevV, (1.81)

a(u, u)
then there exists a uniquely defined solution u € V' of
a(u,v) = (F,v) YoeV
and .
el < Zl1E v (1.82)

The property (1.81) is called V —ellipticity or positive definiteness of the bilinear form.
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Theorem:

The weak—formulated boundary value problem (1.79) has a uniquely defined solution u €
V, if measTy > 0, and if the matriz M is positive definite. Here, (F,v) = [ fvdzx +
Q

[ gvda.

IS}

Proof:

First, we show the bilinear form a(-,-) to be bounded (continuous) (1.77):

a(u,v) = /0() e(v) dw—/MDu Dida

6
< S IODD: o |l

VAN

max N [||31U1|| l|Ovv1|| + [|Oaus|| [|Ozve]| + [|Osus]| ||Osvs]|

+||82’LL1 + 81U2” ||62U1 + 81?)2” + ...+ ||83U1 + 81U3|| ||33U1 + 81’03“

< c [Z 15u5|oey D ||3ivj||L2(Q)]
i i
< clllullv - llvllv]-

Second, we verify estimate (1.81).
Due to M being positive definite, it holds

a(u,u) = /MD?I- Didx = /é’(u)TMé'(u) dx > c/é'(u)Té'(u) dx.
Q Q Q
Korn’s inequality says:

If measT'y > 0, then a constant K > 0 exists with

/5(U)Ta(u) do> K> VueV

Q

This leads to (1.81). W

Remarks:

(i) In the particular case when I'; = (), Korn’s inequality can be proved as follows:

/é’(u)Té'(u)dx = /Z €3 dx—/ Z@u,%—@w

(9] 7.71

— 2
hi w9
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_ %Z/(ajui)Q dx+%/ (;8,%) (;Bg’ug) dx

W7
J o0 \ D
~-

>0

1 2
(VN

Here, we have used that [, 0;u; Qju; dz = [, 0;0; uu;dx = [, O;u; Oju; dz for

u eH! (Q).
The Friedrichs—Poincaré equation then yields Korn’s inequality.

(ii) The kernel of the linearised strain tensor e is:
kere ={u: u=a+bx x},pcrs, dimkere=6.

The elements of ker e are called rigid motions.
If mesI'y > 0, then the rigid motions cannot be solutions and this property leads to
the V—ellipticity.

(ili) M is positive definite, if all eigenvalues of M are positive:
det(M —ol) = (1 — a)*(2p — @)*(3A + 2 — a) = 0.
It follows that p > 0, 3A + 2u > 0 leads to positive eigenvalues.
(iv) The proof of the theorem is unchanged, if we replace the matrix M by a more

general symmetric, positive definite matrix.

Furthermore, the estimate (1.82) describes the stability of the solution: For different force
densities f;, fo and g1, g2, the estimate is valid for the corresponding solutions uq, us:

1 1
|lur —uglly < —[|F1 = Fy|lv» = — sup [(F1,v) — (F3,v)]
Ca €2 Jof|yy=1

_ 1 sup /(fl—fg)vd:c—f-/(gl—gg)vda

C2 |||y =1
Q T

1
S - Sllp { — v + _ 1 v o }
o S (= Fellaollvliaw + o =gl lolly-3

1
< 1 = Pl + 9 = 0ol 3]

provided that f; € Ly(2), g; € H%(Fl), 1=1,2.

The principle of the minimisation of the energy

Besides the weak formulated boundary value problem (1.76), one studies an equivalent
minimisation problem of an energy functional.
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Definition: (The quadratic functional E: V> R)

E(u) = —a u,u) = 3 f u) dx is called elastic energy functional (for the linearised

problem),
whereas

J(u)=E(u)—(/fudx—i—/guda):E(u)—(F,u) (1.83)

is called the total energy (for the linearised problem).

Definition: (convex functional)

A functional J: K C R, defined on a conver subset K of a vector space V is convex on
K, if foru,v € K, a € [0,1],

Jou+ (1 —a)v) <aJ(u)+ (1 —a)J(v).
J is strictly conver on K, if foru,v € K, u# v, a € (0,1)

Jov+ (1 —a)w) < aJ(u) + (1 —a)J(v).

Theorem: (convexity and derivatives) [15, p.247, 249ff]

Let J: K — R be a functional defined and differentiable over a conver subset K of a
normed vector space.

(a) J is conver on K, if and only if

J) > Jw)+ J(u)(v—u)  for all u,v € K.

(b) J is strictly convex on K, if and only if

J() > J(u) + J'(u)(v — u) for all u,v € K, u # v.

Furthermore, a point u is a minimum of J on K, if and only if
J(w)(v—u)>0  foralveK.

If the set K is open, a point u is a minimum of J on K, if and only if J'(u) = 0.

Lemma:

Assume the bilinear form a(-,-) defined by (1.79) to be V —elliptic (positive definite). The
energy functional (1.83) is strictly convez, and for an uniquely defined element u € V', it
holds:

J(u) = min J(v) < a(u,v) = (F,v) Yv e V. (1.84)

vEV
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Proof:

We use the above theorem and show (b):
First, we calculate J(u)(v — u):

J(u+h) = J(u) + J'(u)h + ||| e(h),
where €(h) — 0 as h — 0.
1
J(u+h) = Ea(u-l-h,u-i-h) — (F,u+h)

= 1(JL(u,u) +a(u,h) + %a(h, h) — (Fyu) — (F, h)

2
_ %a(u,u) —(F,u) + a(u, h) — (F, h) + %a(h, B (1.85)
= J(u) + J'(u)h + ||h]|e(h)
where J'(u)h = a(u,h) — (F,h). (1.86)

Now, we verify condition (b):
Due to (1.86),

J(u)+ J'(u)(v—u) = %a(u, u) — (F,u) + a(u,v —u) — (F,v — u)

= —%a(u,u) +a(u,v) — (F,v)

and J(u) = %a(v,v) — (F,v) > —%a(u,u) + a(u,v) — (F,v)
= J(u) + J'(u)(v—u),

1 1 1
ia(v, v) + ia(u, u) —a(u,v) = ia(u —v,u—wv)>0  forall u#w.

Relation (1.84) can be proved as follows:
Assume a(u,v) = (F,v) YveV.

Then
Ju+tv) = J(u)+tla(u,v) — (F,v)]+ %tQa(v, v)
= J(u)+ %tZa(v, v) > J(u) VteR
and J(u) = {}Iél‘;l J(v).
Assume J(u) = minJ(v). The minimum of a strictly convex functional is uniquely
determined.

If g(t) = J(u + v) is minimal for t = 0, then ¢'(0) = a(u,v) — (F,v) = 0, and a(u,v) =
(F,v) YveV follows. W

If we consider a convex subset K C V instead of the whole space V', we get an equivalent
variational inequality:
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Lemma: [2, p.53]

Assume that the bilinear form a(-,-) defined by (1.79) is V —elliptic (positive definite). Let
K CV be a conver subset.
Then for u € K

J(u) = min J(v) & a(u,v —u) > (F,v — u) Vv e K.

veK
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1.5 Computational Mechanics — The Finite Element
Method

In 1909, W. Ritz [10] published a method for the numerical solving of extremal problems
of type (1.84), while B. Galerkin [6] developed a numerical method for solving variational
problems of type (1.79). The basic idea of both methods is:

Do not solve the problems in spaces of infinite dimension, but in finite-dimensional sub-
spaces. This leads to linear equation systems.

The Ritz method

Let Vi C V be a finite-dimensional subspace of dimension N. We introduce a basis
{b1,...,bx }. Every element w € Vi has a uniquely determined representation

N
=1

Let @ = (wy, ...,wn)” be the coefficient vector and Pw = w. P is an isomorphism between
RY and Vy.

The extremal problem (1.84):
1 .
J(u)zia(u,u)—(F,u)zmln! forueV
reads in Vy: Find a coefficient vector 1, such that

= min! forw € Vy (or @ €RY). (1.87)

Lemma:

Assume that the bilinear form a(-,-), defined by (1.79) is V —elliptic (positive definite).
Then problem (1.87) has a uniquely defined solution w € RN, which can be computed as
the solution of the linear equation system

a(bl,bl) a(bl,bz) e a(bl,b]v) w1 <F, b1>
a(bgz, bl) a(bgz, b2) . a(b2:, bN) ’u:JQ _ <F,:b2> : (188)
a(bg, b)) - L a(bN., by) w.N <F,'bN>

in short: Aw = F.
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Proof:

The necessary condition for an extremal value is:

OH
8wi N

0 fori=1,..,N. (1.89)

Since

N
1
H(wl,wg,...,wN) = iwlzwja(bl,bj)—wl(F,bﬁ
Jj=1

N
1
+ 5 w9 Zl ’w]’ a,(bz, b]) — U)Q(F, b2>
J:

N
1
+ 5 wN ij CL(bN, b]) — wN(F, bN>

=1

the relations (1.89) read:

g_i _ wla(bl’bl)+%w2a(bl’b2)+...+%wNa(bl,bN)—(F,ln)
—f—%wQa(bQ,bl)+--'+%wNa(bN’b1):0
(1.90)
;u—HN = wNa(bN,bN)+%wla(bNabl)+"'+%wN—1a(bN’bN_1)_<F’bN>

1 1
+§ w1 a(bl, bN) “+ -4 5 WN-_1 a(bN, bel) = 0.

Due to the symmetry of the bilinear form a(-,-), the equation system (1.88) results im-
mediately.

The matrix
a'(bI: bl) e a(bla bN)
A— . . : (1.91)

a(by,b1) -+ a(bn,bn)
is symmetric and positive definite.

Indeed,

(A’(l_j,’ll_f) = Z’U)Z Za(bz,b])wjl :sza(bz,w)

= a(PwW, PW) > || PW||> >0  for @ # 0.
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Therefore, the equation system (1.88) has a uniquely defined solution. Furthermore, this
solution realises a minimum of (1.87) since the Hesse matrix

9’H 9’H L. 9’H
Bw% Ows0wq ow N Qw1
: : . : =A
62H LR . e 82H
w1 0wn BwJZ\,

is positive definite. W

The Galerkin method

We now consider the variational problem (1.79) in Viy x Vy: Find an element uy € Vy,
such that
a(uy,v) = (F,v) Vv € V. (1.92)

Definition: (Galerkin solution)

The solution uy € Vy of (1.92) is called Galerkin solution of the variational problem
(1.79) a(u,v) = (F,v).

Taking the same basis {b,...,bx} in Viy as before, it is easy to verify that:

uy € Vi is Galerkin solution < a(uy,b;) = (F,b;) fori=1,...,N. (1.93)

Lemma:

Be F = ((F,by), (F,b), ..., (F,by)T. The element uy = SN cibi is Galerkin solution,
if and only if the coefficient vector ¢ = (ci, Ca, -..,cn)? is solution to the equation system
(1.88):

AZ=F.

Proof:

(a) Assume uy € Vy is Galerkin solution. Inserting uy = Z;Vﬂ c;jb; into (1.93) and
using the bilinearity of a(-,-), we get

a (Z Cjbj,bi> = Za(bj,bi)cj = (F, bz>, 1= 1, ceey N,
J

J

which immediately yields (1.88).

(b) Let & be solution of (1.88). The scalar multiplication of the system with an arbitrary
vector 7 € RY leads to

A7 = F-i=)_ [Z a(b;, b;)e;

J i

v; = a(P¢, Pv)

= a(uy,v) = Z(F, biyv; = (F,v) Yv € Vy.

2
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Error estimate

We now estimate the error between the weak solution v € V and the Galerkin solution
uy € V.

Lemma: (Céa '64) [3]

Let a(-,-) be a bilinear form on V x V', which satisfies the conditions of the Lemma of
Laz—Milgram (1.80) and (1.81):

e ||ullv||v|lv Yu,v € V

collul? Vu e V.

a(u,v) <
a(u,u) >

Then the error between the weak solution u € V' of
a(u,v) = (F,v) YweV,feV

and the corresponding Galerkin solution uy € Vy can be estimated:

C
lu—unlly < C—1||u—vN||V Yoy € Vy, (1.94)
2
or
C1 . C1 .
— < —dist(u,Vy)=— f — . 1.95
lu—unlv < e ist (u, V) s v;IEIVNHU on|lv ( )

Proof:

Since

a(u,v) = (F,v) Yv e Vi
aluy,v) = (F,v) Vv € Viy

it follows that
alu—un,v) = 0  VYveVy. (1.96)

This means that v — ux is orthogonal on the space Vy with respect to the so—called
energetic scalar product [u,v] := a(u,v).

Hence,
| 1.96) 1
o —unllZ < Ja(u - vy, u—uy)] "2 = Ja(u— uy,u—vy)|
(&) Co
(180) ¢,
S C_ ||U— ’U,N”V”U—’UN”V for any vy € VN.
2

Dividing this inequality by ||[u — un|| # 0 (for ||u — uy|| = 0 the estimates (1.94) and
(1.95) are trivial) the estimates (1.94) and (1.95) follow. W
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In order to guarantee, that the error ||u — uy||y is small if the dimension N is sufficiently
large, we have to introduce an appropriate sequence of finite-dimensional subspaces, which
converge to V.
We denote V; := Vy, for 7 € N and assume the approximation property
lim dist (u,V;) =0  VueV. (1.97)
1—00

Let us remark that (1.97) is satisfied, if

icWoCc---CcV,C---CV, U‘/;isdenseinV, [7,p.154].

i=1

Corollary:

Assume, that the conditions of the Lax—Milgram Lemma (1.80) and (1.81) are satisfied
for a given bilinear form and the property (1.97) holds. Then for the sequence of weak
solutions u; € V; 1s holds that

Hm [Ju = |y = 0.

Finite element methods

The computation of a Galerkin solution uy € Vy (or of a minimiser of J(u) in Vy) is
reduced to solving the linear equation system (1.88)

AZ=F.
In general, the matrix A is large and dense. We have to carry out N? integrations
for getting the elements of A, N integrations for calculating the elements of F and N3
operations for solving the resulting linear equation system. It therefore is very reasonable
to choose a sequence of finite—dimensional subspaces {Vx C V'} with an appropriate basis
{b1, ..., bx'}, such that

e the integrations are elementar, and
e the matrix A = (a(b;, b;)) is sparse.

The best variant is that A is a diagonal matrix, or even a(b;, b;) = d;;, which means to
choose a basis that is orthonormal with respect to the energetic scalar product. Unfor-
tunately, the orthonormality procedure is not efficient enough. The fundamental idea is
to take elementary vector functions as basis in Vy, with small support, such that, in our
case

albib) — / &(b)T Mé(b;) dz = / o(by) : e(by) dz — / o(by) : e(by) da

vanishes, if supp b; N supp b; is a set of measure zero.

To construct such a basis, the domain 2 will be splitted into subdomains (triangles,
bricks, polyhedrals, ...), which form the support for the basis functions, and then to
take Vy—spaces of piecewise linear or piecewise polynomial vector fields on these small
subdomains.
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Piecewise linear elements
n = 1:
1° The boundary value problem.

We take u; = uy = 0, u3 = u = u(z), x € (a,b) = Q and consider the boundary
value problem

—pAu = —pu'(z) = f(z) in (a,b)
u(a) = u(b) =0.

The weak formulationo reads:
Find an element u €H' (a,b) such that

a(u,v) = /,uu'(x)v'(x) dr = /f(x) v(z)de Vo Eh;l (a,b).

2° Partition of Q. Vol
— +1_
We choose the nodes {z; : a =xy < 21 < ... < zyy41 = b}. Then Q = [a,0] = U 1,
i=1

where I; = (x; 1, z;) are subintervalls.

a = To T T2 T3 Tnty1 =0

3° Construction of Vy C V .

Vv ={u € Cla,b] :u| =aw+b,1<i<N+1u(a)=u(d) =0}

I;

Figure 4 shows graphs of some elements from V. Basisin Vi : {bi(z) : bi(z;) = 04,
(o) = bi(xny1) =0,4,5 =

IRVANIZS

Every basis element is uniquely defined by its values in the node points:

AN

Ti+1

bi(z)
The Galerkin solution uy () = 31V, ¢;bi(2) has the property that uy(z;) = c;.
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4° Setting up the equation system.

We have
e a(b,b;) =0,if |i — j| > 2, i.e. Ais a three-diagonal matrix.
® a(bi7bi—1) = _wi—;¢_1u
L4 a(bubl) = (-737;—}54.’—1 + $i+11—$i> H
® a(bi7 bi-l-l) = _xH_ll—zCi'u
Therefore
i + i _ i 0 PR PR O
T1—To T2—T1 T2—T1
To—T1 To—T1 r3—T2 T3 —T2
A g ILL O ’
. 1 1
0 IN—TN—1 IN+1—ZN
Z2
([ fbida
To
3
f f bg dx
1
— T4
TN+41
\ f fbondx )
TN-—1
and Aé=F.
If 2; = a+ih, h = =%, then
2 -1 0 0
-1 2 -1 0 0
7
A=Hl 0 -1 2 -1 0 0
h :
0 -1 2

n=2:

1° The boundary value problem.
Let Q be a polygonal domain, us = 0, = (21,23) € Q, @ = (uV,u®)T. We
consider the boundary value problem

—

—[uAG+ (A + p)graddivi] = f  inQ
i =0
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The weak formulation (plane strain) reads:

Find an element @ € [H' (Q)]> = V with

Q
Here
2+ A A 0 e
M = A 2,u + A0 s €= €29
0 0 ] 2e19

2° Partition of Q.
We choose an admissible triangulation of €, @ = ,_, ,Ti. (See Fig. hereafter.)
N is the number of interior nodes, M denotes the number of all nodes (nodes are
corner points of the triangles).

<

t=6 t=24 t =30

3° Construction of Vo C V.
We choose

= agf,)l + agf,)le + aﬁ,’j}_,@,

Tm

N R N
Von =qt@=| @ |:u € C(Q) : (7

u®| =0, k=1,2, m= 1,...,t}
oN

with the basis

o honan = {5 Bua() = () Bat@) = ().

t,j=1,..,N, I =1,...,2N, Z; are interior nodes,

0
bi(Zy) = <0> at exterior nodes Z;, J =1,.., M—N } i
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The basis elements I;l (x) are uniquely defined through their 3 values (for each com-
ponent) in the corner points of a triangle.

Furthermore, for an element usy € Von the following relation is valid:

2N
iy (E) = > ab(i)
=1

CQj_l((l)) + ¢y ((1)) = (02632;1) for interior node points
0 for exterior node points.

Uan (Z5) = {

4° Setting up the equation system.
It is

o B) = [ e Me)da =Y [ ety e da,

Q ™ T,

-~

where we have to sum up over the following triangles

o 1 =2j—1,2j,1=2j—1,2j, & is a corner point of T},

—

Zj

o1 =2j—1,2j,1=2k—1,2k, j#k, Z; and Ty are corner points of T),.

— —

Zj Tk

This leads to a matrix A with a band structure.

n=3:
1° The boundary value problem.

Let €2 be a polyhedral domain. We consider the boundary value problem for the
displacement field @ = (u(™, u®, uG)T,

—

—[pAT + (A + p)graddiva] = f  inQ
i =0

and its weak formulation:
Find a vector field @ € [H' (Q)]* = V, such that

o, 7) = / &) Mé(d) dz = / Fovde  vielH Q)

where M is the matrix (1.71).

65



2° Partition of Q.
We divide  into tetrahydrals taking an admissible partition [4]. Q = U,_, , T
We distinguish between the N interior nodes and the number M of all nodes (nodes
are corner points of the tetrahydrals).

3° Construction of Va3y C V.

Let
u®
Vay = Si=| u® |, u € 0Q): u®(@)| = aﬁ,'i)l + agf,)le + aﬁ,'i,)m + 0%634333,
ul® T
u®| =0, k=1,2,3, m= 1,...,t} .
G)
We introduce the basis
. . dij . 0 . 0
{bz(x)}lzl,...,?,zv = bz(f) : b3i—2(fj) ={ 0 ,b3i—1(fj) = 5z'j ;bsz'(fj) = 0],
0 0 0;i
i,j=1,..,N, l=1,...,3N, &; are interior nodes,
. 0
bi(Z;)=| 0 | at exterior nodes &y, J=1,...,M—N } .
0

The basis elements are uniquely defined through their values at the 4 corner points
of the tetrahydrons.

4° Setting up the equation system.
It is

a(by, by) = / éb))" Mé(by) dz =Y / &(b)™ M &) de,

Q mT.

where we have to sum up over the following tetrahydrons:
o [ =25—2,25—1,27, [ = 25 —2,25 — 1,27, &; is a corner point of Ty,
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01 =2j—-22j—-1,2j,1=2k—2,2k—1,2k, j #k, Z; and T, are corner points
of T,,

8y

N

We get a matrix with a band structure.

Error estimates for piecewise linear elements

We cite a result for the two—dimensional case, which can also be applied to three—
dimensional boundary value problems. We have shown that

— <c inf — .
= ually < e inf flu—olly

The following theorem improves this estimate.

Theorem: [7]

Let Von be the space of continuous, piecewise linear vector fields with respect to an ad-
missible triangulation of polygon ). Be ag > 0 the smallest interior angle of the triangles
and h the largest length of the sides of the triangles.

Then

. —k
St lu = olls@y < clao)h® *H|lull o

for k=0,1 and alluw € [H*(Q)]*NV.
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Chapter 2

Plasticity

In the introduction we have discussed strain—stress relations, describing elastic and plastic
deformations due to the applied loading [Fig. 3]. Because the strain-stress relations for
elastic and plastic deformation are different, it is important to distinguish between elastic
and plastic regions and to identify whether the deformation is elastic or plastic. One can
use “yield surfaces” to identify different regions.

For the one-dimensional case (metal wire), we have introduced the yield stress o, as a
value, that separates the elastic and plastic region of deformation. In general, constitutive
models for plastic deformation are divided into two categories: one that assumes the
existence of a yield point (yield surface) and one that does not. We are going to deal with
the first category.

In the first part of this chapter, we discuss yield criteria, while in the second part, basic
considerations as stress—strain relations (constitutive law of Prandtl-Reuf}, Hencky) and
hardening laws are dealt with.

We recommend the book:
Khan, A.S., S. Huang. Continuum theory of Plasticity. John Wiley, 1995
for further studies.
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2.1 Yield criteria

In the three-dimensional case, the symmetric stress tensor is characterised by six inde-
pendent stress components. Therefore, a stress state can be defined as a point in the
six—dimensional space. All stress states that cause yielding can be thought to constitute
a continuous surface, called yield surface, that divides the stress space into an elastic and
a plastic domain. The yield surface is the boundary between these two domains.

The stress space and yield surfaces

In section 1.2, we have introduced the Cauchy stress vector t¥ and the Cauchy stress
tensor 7% in the deformed configuration. The Piola transform leads to the first and
second Piola—Kirchhoff stress-tensors in the undeformed configuration:

T(z) = T*(*)Cof (V)det (Vo)[Vip(z)| ™"
(@) = [Ve(@) 'T(z).

Assumption:
The differences between T%(z¥), T'(z) and 3(z) are negligible (Vi ~ I).

Due to the symmetry of the Cauchy stress tensor, we define:

Definition: (stress space)

The stress space is the space S>3 of all symmetric matrices, which is isomorph to the
6-dimensional vector space RS. A point in S>3 describes a stress state.

All possible stress states corresponding to yielding, constitute a closed hypersurface in the
stress space.

Definition: (yield surface)

Be Z C 8% (or R®) a closed and conver subset, 0 € intZ. The boundary 8Z is called
yield surface.

Definition: (yield function)

A continuous convex function F: S>3 — R is called yield function with respect to Z, if

Z = {o€8*:F(0) <0},
07 = {o€S*:F(o) =0},
F(0) < 0.
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Remark:

F(0) < 0 describes the elastic deformation domain,
F(0) = 0 describes the yield surface,
F(o) > 0 describes the plastic deformation domain.

Example:

The ball Z = Br(0) = {0 = (01, ...,06)7, |o| = /3.0_, 02 < R} is a closed convex subset.
F(o)=lo| - R

is the corresponding yield function.

We will now discuss more relevant examples. For this purpose, we remind of some quan-
tities that have been defined in section 1.2:

The eigenvalues 7, 79, 73 of an element of S>3 are called the principal stresses, while the

corresponding eigenvectors 7", 7i(?), 77 are called the principal directions.
Since
L) o2 =03\ T (1) S(2) =3
ng) ng) ”g) O11 012 013 ng) ng) ”g) n 0 0
ﬁgl) ﬁ§2) ﬁg?)) 091 0922 093 ﬁgl) ﬁ§2) ﬁ?) = 0 T2 0
_.:(;1) ﬁgz) ﬁgs) 013 O35 O33 ﬁg) ﬁgz) ﬁgs) 0 0 =

the invariants of ¢ (invariant with respect to the choice of the orthogonal coordinate
system) can be expressed with the help of the principal stresses:

Il = tr0'20'11+0'22+0'33=7'1+7'2+7'3
2 2 2 2 2
I, = ((tro)® —tro®) = 01109 + 022033 + 011033 — 01y — O13 — O3
=T1T2+7'27'3+7'37'1

I; = deto=mmT73.
In plasticity theory it is customary to decompose the stress tensor into two parts
Oij = Poij + Sij
where —p is the hydrostatic pressure:
1 1
p= 5(011 + 09 + 033) = g(ﬁ + 7o + 73).
—plI = —(pdi;)i; is called the spherical or hydrostatic stress tensor.

The second part (s;j);; = s = 0% is called the deviatoric stress tensor. The principal
deviatoric stresses s; are related to the principal stresses 7; by

1
Si:Ti_p:Ti_g(Tl +7’2+7'3)- (21)
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Remark:

The plastic deformations are very often independent of the hydrostatic pressure; that
means:
If 0,6: [0,T] — S** and 0 — 6 = pI, p € R, then the corresponding deformations are
equal.

Lemma: [2]

dev

1
Beo € S%3. Forot=o— gtral and S = {o%: 0 € S*3} it holds

533 =533 p where P = {pI,p € R}.

dev

Proof:
It is 0 — & € P and, due to (2.1), we have tro? = 0. Hence

1
(6N =g — gtr ol = o (2.2)

1
Assume o = pI € S>3 then 0% =0 — gtral =pl —pl =0.

dev?

Furthermore, o = 0¢ = 0, due to (2.2). Therefore, o € Sp> N P yields 0 = 0. W

Remark:

For anisotropic material the orientation of the principal stresses is as important as their
magnitude. When the material is isotropic, the material properties are the same in any
direction and only the principal stresses (three-dimensional space!) describe the yield or
failure behaviour.

von Mises and Tresca yield surfaces (isotropic case)

It was established that even at 25- 108% = 2500MPa there was no yielding in metals [8].
Therefore, the yielding in metals does not depend on the pressure; that means, it does
not depend on the first invariant I; = tr o of the stress tensor.

von Mises yield surface

The von Mises criterion (1913) assumes that the plastic yielding will only occur, when
the second invariant of the deviatoric stress tensor o reaches a critical value —k2, that
means

—I(0") —k* = 0 is the yielding surface

—I(0%) < K? describes the elastic deformation.
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Since

IQ(O'd) = 8189 + S983 + S351
(11 = p)(r2 — p) + (2 — p) (73 — P) + (73 — P) (11 — p)
T1T2 + ToT3 —+ T3T1 —p(2’7'2 + 27’2 —+ 27’3) -+ 3p2

1 2
= T1T2 +T2T3 +7'3T1 — g(Tl +T2 +T3)
_6[(T1 — 1)’ + (12 — 73)° + (13 — 11)?]

it follows, that the relation

1
6[(7'1 )P+ (n-—mn)l+(m—1) k=0 (2.3)
describes the yielding surface.
Furthermore,
1 1 1
L(o%) = i(tr o?)? — itr (0%)4 = —§[ad ol

which leads to the surface equation
oot —2k? = 0.

For ideal plastic materials the critical value is 2k?> = const. The constant 2k% > 0 has
to be determined in experiments. One possibility is to take a uniaxial tension and to

measure the value kg such, that for o1, = k¢ the plastic flow starts.
Then

ko 0 0 . 2ky 0 0
o= 0 00|, ad=a—§k01= 0 -k O
0 00 0 0 —iko

and

2\? 1\? 1\? 6
F(a‘):o‘da'd—2k2:(5)kg—{—<§)k§+<§>k3—2k‘2:§k8—2k2:0,

if k> = 1k2. The von Mises surface equation reads for ideal plastic materials:

2
oo — §k§ =0 . (2.4)

The form of the yield surface in the space of the principal stresses 71, 7o, 73 is described by
the equations (2.3). Consider the diagonal 77 = 75 = 73 in the three-dimensional space.
The plane through the origin (0,0, 0) and orthogonal to the diagonal is expressed by the
relation

7'1+7'2+7'3:O. (25)

The points which satisfy the relations (2.3) and (2.5) are situated in a circle at the plane
(2.5) with radius v/2k = r and the midpoint (0, 0,0). (See Fig. 5)
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73

T2

T1

Fig. 5 von Mises yield surface

Inserting 74 = —7y — 73 into (2.3) then
1
Ta+Ti + T3 = k> = 5(712 +724+13)

and 2k = r.

Starting with the plane 7, +79+ 73 = 3¢ and intersecting it with points of the yield surface
(2.3), we again get a circle with radius r = v/2k.

Summarising these results, we have:

Lemma:

The von Mises yield surface in the three—dimensional T —mo-T3 space is a circle cylinder
surface around the hydrostatic stress axis 71 = 7o = T3 and with radius r = V2k.

Corollary:

In the s1—sy—S3 space, we have s; = so = s3 = 0 along the whole hydrostatic axis.

In case of plane stress (73 = 0), the equation (2.3) is reduced to

- Tnn+TE =3k =k (2.6)

In the 7,-7 space, the equation (2.6) represents an ellipse. (Note that v/3k = ko = 0,,.)

T2

(0, ko) (ko, ko)

1

(k07 0)

von Mises yield surface for plane stress conditions
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Tresca yield surface

Tresca (1864) based on Coulomb’s results on soil mechanics and his own experiments on
metal extrusion, proposed a yield criterion for metallic solids, which is now well known
as Tresca yield criterion. This criterion assumes that the plastic yielding will occur when
the maximum shear stress reaches the critical value kg of the material.

Let us remind of the definition of the shear stress.

The stress vector o n is splitted into a vector parallel to n (normal direction) and a vector
situated in a plane orthogonal to n (tangential direction).

on=o0s+oy-n  with oy = (on,n) = n'on.

Definition:

o5 = on — onn 18 the shear stress.

Lemma:

Let 7 > 15 > 13 be the principal stresses of the stress tensor o = diag (1, Ty, 73). Then
losllz = 5(n — 7
max ||oglle = = (11 — T
max{losilz = 51 — 73

and the mazimum s realised in the direction

+1v/2 £ cos45°
+1./2 =+ cos45°
Here, || - || denotes the Euclidian norm, S? is the unit sphere in R3.

Proof:
For n € S? it holds

3 3 2
losll3 = llonll; — oy =Y _m2n? - (Znn?) : (2.7)
i=1 i=1

The maximum of ||og||> under the constraint >, n? = 1 can be calculated by the Lagrange
method:
Determine the factor o such that

0
0=g(loslE +a (3on -),  1<k<s (2.8)
Inserting the expression (2.7) and (2.8), we get

0 = ng(a+ 77 — 27p0N), 1<k<3. (2.9)

1.case: All components of n vanish, n; = ny = n3 = 0.
Then n ¢ 5%, that means this case is impossible.
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2.case: Two components are zero, say n; = n; = 0 and ny # 0.
Then n = (3 and 05 = Tk€Cr — Tp€p — 0.

3.case: Only one component is zero, ny # 0, ny # 0, ng = 0.
Then (2.9) implies:

O!+T12—27'10'N:0

O!+T22—27'20'N:0

0+7 —14 —2(nn —T)on=0
= T1+7T—20y=0

and oy = L(11 + 7o) = Tin? + mn3, ni +nd = 1.

Since L(1; + 72) = (19 — 71)n3, it follows that

n=n2=1 n =412  ny=+1/2 (2.10)

4.case: All components are non—zero.
Then, as in the third case,

OoN = %(7’1 +’7'2) = %(7’2 +T3) = %(7’1 +7'3),

which leads to 71 = 7 = 73 in contradiction to the assumption.

Since 11 > T > 73, the third case with n; # 0, no = 0, n3 # 0 leads to the maximum:
+/1
0
/4

1
||US||2=§|71—73|a n=

Definition:
The yield surface of Tresca is defined for every element o € S*? by the yield function

1
F(0) = max||os(0,n)|l2 — co = 5(Tmaz — Tmin) — co = 0, (2.11)
nes? 2

where Tpaz, Tmin are the largest and the smallest eigenvalue of o respectively.

We have to show that the Tresca yield function F', defined by (2.11) is continuous and
convex.
It is clear that F'(0) = —¢y < 0.
The shear stress og5(o,n) = on — (on,n)n is a linear mapping from S3 to R® for any
fixed n, and it is continuous in both arguments. The norm is a continuous mapping, too.
Therefore, )

F(o,n) = [los(o;n)]l2

is convex in o and continuous in (o, n).
The function F (o) = max,cs2 F'(0,n) — ¢ has the same properties. (Note that S? is a
compact set.)
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The Tresca yield function F' only depends on the deviatoric stress tensor, due to

F(o+ M) = F(o).

It can be shown ([8, p.86ff]) that in the principal stress space the Tresca yield surface is
a hexagonal cylinder with the hydrostatic stress axis:

1

In case of plane stress (73 = 0), the criterion (2.11) implies

T — Ty = :tQCO
1 = $£2¢
Ty = :tQCO.

This leads to the Tresca hexagon in the -7 plane.
T2

,To =T1 +2CO

/’7'2 =T — 200
260 Z e

—260 T1

—200

The constant ¢y can be determined by different tests:
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a) simple tension test
TL =0y, Top=13=0.

Then io, = ¢o and 2¢y = ko = 0, (von Mises).
b) pure shear test
n=-13=1, T2=0.
Then ¢y = 7,.

9y
5 -

Thus, for Tresca materials we get 7, =
Yield criterion for anisotropic materials

For fully anisotropic materials the yield functions should be expressed in terms of six
independent components of the stress tensor o.

F(o11,092, 033, 012,013,093) = 0

In terms of the principal stresses 7; and the associated principal directions n(, the yield
surface equation can be written as

F(TlaTQ: 7—3777'(1)7”(2)777’(3)) =0.

Both equations can be geometrically interpreted as a limiting envelope of the elastic
domain in the six—dimensional stress space.

The search for yield criteria for anisotropic materials was started by Jackson, Smith and
Lankford, Dorn and Hill in 1948/49 [8]. Basically, they tried to modify the Tresca or
von Mises criterion.

Let us present Hill’s yield criterion (1948) for orthotropic materials. (More exactly: for
materials in which three mutually orthogonal planes of symmetry exist at each material
point. The intersections of these planes are the principal axes of anisotropy.)

1
F(oy) = 5[042233(022 - 033)2 + o133(033 — 011)2 + oq192(011 — 022)2

2 2 2
+ 20[23230'23 + 20113130'13 + 20[12120'12 — 1] = 0

o are material constants characterising the current state of anisotropic yield behaviour.

For (9323 = (¥1313 = (¥12192 = 30[2233 = 30!1133 = 30!1122 = ﬁ we get the von Mises criterion
for isotropic materials.

Indeed,
o0t = (on —p)*+ (022 — p)* + (033 — p)* + 207, + 2055 + 207,
2 2
= §(af1 + 03y + 033) — 5(0'110'22 + 011033 + 099033 + 2(0%, + 035 + 013)
1
= 3 [(011 — 092)” + (011 — 033)° + (011 — 022)%] + 2(0F, + 0355 + 015)
gF(aU) 920 0 —-1=0
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More general, one can introduce a material tensor M of fourth—order and write the yield
criterion for anisotropic material as

F(O’,M) = F(Uij;Mijkl)ZO

when hydrostatic pressure independence is given.

Remark:

The yielding of porous materials is pressure sensitive. The yield criterion for these mate-
rials should include the influence of the hydrostatic pressure. Two classic yield criteria,
the Coulomb-Mohr and the Drucker-Prager criteria describe the yielding of pressure
dependent materials.

Coulomb—Mohr criterion: Improve the Tresca criterion assuming that the critical shear
stress is not only related to the maximum shear stress, but also depends on the normal
stress.

Drucker—Prager criterion: Add the hydrostatic stress term oy J1(0) = ay(011+022+033) =
a1 (7 +79+73) to the von Mises criterion F'(J1(0), J2(0%)) = /—Jo(0%) — a1 J1(0) —k = 0.

Subsequent yield surface

So far, we only have discussed the initial yield surface at which the material yields for the
first time on initial loading.

During the plastic deformation the subsequent yield surface will expand, translate and
distort in the stress space. In order to describe this effect, we need more information about
the plastic strain—stress relation. We here mention two classic models: the isotropic and
the kinematic hardening models.

Isotropic hardening

Isotropic hardening assumes that the subsequent yield surface is a uniform expansion of
the initial yield surface, and that the material’s isotropic response to yielding remains
unchanged during plastic deformation.

If we ignore the effect of hydrostatic pressure on yield, we have

F(J3(0%), J3(0), k) = f(Ja(c?), J3(0)) — k = 0.

k is a material constant characterising the isotropic hardening effect.
For the von Mises yield surface, we have

2
d d 2
0t — k=0
g0 3 ,

which describes a ball in the deviatoric space, with the radius £ = ,/20,. Initially,
oy = 0,°.
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For perfectly plastic materials, k£ remains a constant during plastic deformation. In gen-
eral, k depends on the accumulated plastic strain,

Kinematic hardening

Prager (1956) suggested that the yield surface translates as a rigid body in the stress
space during the plastic deformation, that means the shape of the yield surface remains
unchanged.

subsequent yield surface
initial yield surface

This model can be written as
F(o%a) = f(c"—a) —ky =0,

where « is a second—order tensor, known as the back stress.

Generally, the yield surface, including the hardening effect, can be written as
F(o,00) =0, i=1,..,n,

where the «; are hardening parameters.
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2.2 Constitutive laws

It can be concluded from experiments that plastic deformation has the following features:

1. Plastic deformation is associated with the dissipation of energy and therefore irre-
versible. This can be seen in Fig. 6, which shows the 0 — € diagramm in an uniaxial
tension test.

0 > D & E
Fig. 6

When unloading occurs in point C, only a part of the strain ¢(DFE) can be recovered
(elastic strain), while another part €?(0D) remains after the load is removed (plastic
strain). This leads to an additive decomposition

=3 ((%j N 8xj> =Gt 212

This decomposition is correct for cases of infinitesimal strain only. The case of finite
strains needs another model.

2. Due to its dissipation feature, the plastic deformation process is history or path
dependent. Therefore, the constitutive equations for plastic deformation are for-
mulated as differential equations or as incremental form (no one-to—one correspon-
dence).

3. We assume, that the constitutive equations are invariant with respect to the time
scale. The viscous effect is neglected.
For the (elastic) stress it holds that

o:fte,t)] = I — 8>
o=C:¢€, e=C:o (2.13)
or o =C¢, & =C"1%, C 'corresponds to C.
o(t) € Z(1),

Z(t) will be determined by the evolution of the internal variables.
The plastic strain € is considered as an internal variable, which incorporates the
memory of the process.

We now pass on to the mathematical description.
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Moving convex sets

Let Z be a closed convex subset of a Hilbert space H, equipped with the scalar product
(-,-) and 0 € int Z. For example: H is S*3 equipped with the scalar product (A, B) =
A : B ,or: H=R®orR®) for anisotropic or isotropic materials equipped with the
Euclidean scalar product.
A translational motion of Z from the initial position Z(ty) = Z to the final position Z(t)
is descibed by the relation

Z({t)=w(t)+ Z, t € [to, 7], (2.14)
w: [to,tf] = H. We consider a single moving point v(t) € Z(t) for t € [to, t].
v(t) = w(t) + 2(t), 2(t) € Z ¥t € [to, ty]. (2.15)
We want to specify the motions w(t), satisfying (2.15), such that
w(t) € Nz (v(t)). (2.16)

Here,
Nz (v(t) ={ue H: (u,y(t) —v(t)) <0 forall y(t) € Z(t)} (2.17)

is the normal cone to Z(t) at v(t).

Definition (2.17) means for H = R¥®: u € Ny (v(?)), if
cos(Lu,y(t) —v(t)) = cosa <0 for all y(t) € Z(¢),

or

3
o€ [g 7”] for all y(t) € Z(1). (2.18)
If v(t) € int Z(t), (Fig. above), then Nz (v(t)) = {0}. Set y(t) = v(t) — du(t) for a
sufficiently small positive 9.

Hence, w(t) = 0 and w = const. For Z = Z(t;), we get w(t) = 0 and the convex set does
not move.

If v(t) € 0Z(t) has a normal, then condition (2.18) is illustrated by Fig (a), otherwise by
Fig (b).
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"//i/f/,//l// ,
T

(a) (b)

For H=R", n =3 or 6, Nz (v(t)) = {A(t)n(t)}, A(t) > 0, n is the outer normal vector
in point v(t). If v(t) € 0Z(t) does not have a normal (Fig.b), then Nz (v(t)) is a proper
cone.

In case (a), we have a movement in the direction of the outer normal.

In order to calculate the translation w(t) in case (a) for given v = v(t), we transform
(2.16) into a evolution variational inequality in Z = Z(t,).

(2.17) reads:
(w(t),y(t) —v(t)) <0  forall y(t) € Z(1).

Due to (2.14), we have y(t) = w(t) + z, * € Z, and due to (2.15) v(t) = w(t) + 2(t),
z(t) € Z, and (2.17) becomes

(w(t),z—2(t)) <0 for all z € Z.

Thus, we get a system of relations for the calculation of w and z for given v = v(t) and
z(tg) = 2°.

(w(t),z—=2(t) < 0 VeeZ
o(t) = w(t)+z2(t), 2(t)eZ (2.19)
z(to) 2°

Eliminating w(t) = v(t) — 2(t) and setting f = ©, we arrive at the variational inequality

z(t) e Z, (2(t),xz — 2(t))
z(to)

v

(f(t),z = 2(1))
2 veeZ | (2.20)

Theorem:
If v(t) is differentiable, then uniquely differentiable solutions of (2.19) and (2.20) ezist.

According to this theorem,
w = P(v,2°), z=S(v,2°) (2.21)

and it yields well-defined solution operators. P is called play operator, S is called stop
operator [1].
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Maximal dissipation principle (normality rule)

We start from decomposition (2.12).
€(t) = €(t) + €°(¢).

The consitutive law (2.13) for the elastic part is nothing else than Hooke’s law.

A large class of constitutive laws for the plastic part is governed by the normality rule:

€ (t) € Nzwy(o(2)) | (2.22)

where int Z(t) describes the elastic region in the stress space, 0Z(t) the yield surface.
o(t) is the elastic stress tensor, given by (2.13).

D01y — 0 if o(t) € int Z(t)
o) = { At)n(t) if o(t) € 0Z(t), provided, n(t) exists.

An equivalent formulation of (2.22) is the so—called maximual dissipation principle

Et): (t1—o(t) <0 V1 eZ(t). (2.23)

The Prandtl-Reuss model

This model is often used in elastoplasticity. Here, Z(t) = Z is time-independent, the
yield surface 07 does not move during the evolution, 0 € int Z.

Definition:

A pair (o,¢€) : [to, t;] = S>® x S>3 satisfies the constitutive law of Prandtl-Reuss with a
given Hooke’s law in an elastic region 7, if

e=¢€"+¢€, € =Co (oret=C"15),

o(t)e Z in [to,ts] a.e.
ét):(r—o(t) <0 VrelZ telt,ty] ae

Remark:

If (o, €) satisfies the constitutive law of Prandtl-Reuss and o(t) € int Z, then é?(¢) = 0.
Plastic behaviour occurs only, if o(t) € 0Z. In this case,

where n(t) is the outer normal in o(t) € 0Z, provided, n(t) exists.
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Definition: Hencky material (time-independent)

A pair (o,¢) € 833 x 833 satisfies the consitutive law of Hencky with a given Hooke’s law
in an elastic region 7, if
€=€+ €, e =Co,

o€ Z,
e:(r—0)<0 V1 € Z.

Let us formulate the evolution variational inequalities of form (2.19) or (2.20) for the
computation of €”.

We start with the decomposition
e=¢+¢

and apply the elastic tensor C' (fourth order in the tensor form, second order in the vector
form). Then the following relation holds in the stress space:

Ce=Ce +Ce =0+ Ce. (2.24)

We consider H = 533 endowed with the scalar product (o, 7) = (Co : 7). Note, that the
elastic matrix C is positive definite.

We rewrite the maximal dissipative principle

CCé : (t—0o(t) <0 TEZ

(w(t), 7 —o(t)) = (Cw(t): T —o(t))y <0 VreZ, (2.25)

with w(t) = CéP. The relation (2.24) reads
w(t) + z(t) = v(t), (2.26)
with v(t) = Ce and z(t) = o(t) € Z.
The initial value is
z(to) = a(to) = Cle(to) — € (to)) = Ce“(to), (2.27)

where €P(ty) is a given value which represents the initial memory.

The relations (2.25), (2.26) and (2.27) have the form of (2.19), and (2.20) reads:
Find o(t) € Z(t) with

(0(t),x —o(t)) = (C&t),z—o(t))
and o(tg) = Ce*(to).

There are solutions

o(t) = S(Ceoa(t)),
w(t) = P(Ceo(to))



Constitutive laws of hardening type
As before, we assume
€(t) = €“(t) + °(t) (2.12),
(1) € Ny(o(t)  (222).
Hence,

B(t) = 0 ifo(t) €int Z(¢)
é (t)—{ At)n(t) if o(t) € 0Z(t), provided, n(t) exists. (2.28)

Furthermore, we consider the case that the yield function which describes the yield surface

F(&,d) = 0 depends on a vector (or tensor) of hardening parameters @ € R¢.

Due to (2.28), we define an associate flow rule

=p20D 5o s,a=aw,5= 60 (2.29)
o

The factor 5(t) > 0 is unknown. We only know that 3(¢) > 0, when the plastic flow
starts.

The yield function can have the following forms (compare section 2.1)

e ideal—plastic case

e isotropic hardening
F(3,a) = f(7) + h(a) with a € R

e kinematic hardening
F(G,a) = f(,d)  with @ € R3®),
The hardening parameters a;, @ = (ay, ..., ;) have to be determined through experiments
or calculated from certain models (W. Prager, Th. Lehmann, F. Odquist).

The hardening law describes the evolution of the yield surface and has a similar form as
(2.29):

a=r(G a8, 6=70@1>0

2.30
a@(0) = dy r: RO xR — R (2:30)

B = B(t) is the same factor as in (2.29).

Examples for r(&, a):
e isotropic hardening, @ = o € R

r(F,a) = %6(5;?9—?, ap=0 (F. Odquist)
r(¢,a) = 379, ap =0 (G.I. Taylor)

e kinematic hardening, @ € R3(©)
(H. Ziegler)

r(d,d) =d — a, Yo =
Y ¢ > 0 constant (W. Prager)



Example
The von Mises yield surface is given by the equation in the principal stress space:
(T1—72)2+(72—T3)2+(T3—T1)2=20§, (2.31)

where 0, = h(a) is the uniaxial yield stress, depending on the scalar hardening parameter
a = «a(t) (isotropic hardening).

We consider the yield function in the stress space

F(3,0) = Flr,m7m) = —/(n—m) + (7 — 73 + (s = 71)" — h(a) = 0
/2

- ,/god:ad—h(a)

1
[0%1 + 02, + 0?%3 — 011099 — 011033 — 092033 + 3(0% + 0%3 + 033)] 2 — h(a)

= f(o) = h(a). (2.32)

o - T
Writing & = (011, 092, 033, 012, 023, 013) ", We get

oF 1
— = ——(2011 — 09y — 033,209 — 011 — 033,2033 — 011 — 029, 6019, 6023, 6013)"
06 2f (o)
1 3%
= — ) 2.33
3 7o) (233)

It follows that

OF 305 1 \/ 504 0%+ 3(0f, + 0fy + 03;) 3 (02, + 02 + 0%)
% = 370 "2 ey =V
g f(3) %Gd - gl oo
3
< \[5\/5 = V3
and

_ \/1+2(0%2+0§3+0%3) <\/§'

ol : gd -

. 2 |0F
1<r(d,a)= \/;‘%

Loading and unloading in the stress space

The yield surfaces identify elastic and plastic regions, the flow rule (2.29) describes the
direction of the plastic flow, whereas loading and unloading criteria identify the charac-
teristics of the deformation (which leads to the calculation of 3(t)).

Let F (&, ) be the yield function for a work hardening material. For a fixed point z € Q
and a fixed time t € [to, tf] we have the actual stress state & = &'(x,t) and the vector of
hardening parameters & = a/(z, t).

We distinguish between the following cases:

F(3,d) <0 elastic deformation
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%5’ < 0 unloading

F(d,d)=0{ 2£°3 =0 neutral loading

05
%3 >0 loading.
Fig. 7 demonstrates the different situations for n = 3—; and &

ng

TLFO_":()

np5'>0

Fig. 7 loading and unloading

Let us discuss different loadings starting from an actual stress state at the yield surface.

a) unloading case

dFF  OF0d OF da da
F G,q) = T = a5 5 —_— = ;P — .
CO=0 %@ Taaa " @ =0
Hence,
8_F§ <0
0 dt '
b) neutral loading case
dF da
F(G,d)=0, = =0, =—=0
@8)=0 =0 %
Hence,
OF -
T i=0
o7
¢) loading case
dF da
F(3,&) =0, — =0 —#0
(0-’ a) 7 dt ? dt # 7
) ) oF
é?#0 and €& = ﬂ(t)% = B(t)np, pB(t) > 0.
It follows, that
P oF d&



Calculation of 3(t)
Plastic deformation (€é?(t) # 0) occurs, if

(1) The actual stress state ¢ = &(z,t) is situated on the yield surface

F(,a) =0.
(2) There is loading
dF OFT . OFT . 0 aFT;>O
- = o o= g .
dt 06 oa © 0
(3) The associate flow rule reads
o gof
-0

(4) The hardening law reads
d=r(@d)p),

(5)
= &4&
= C¢

Q- QYR

(Hooke’s law).

In order to get a formula for the computation of 5 = [(t), we proceed as follows:

We multiply (5) with the elasticity matrix C' and insert relation (3):

F
§=0e— cg—g B(b),
(4) and (2) yield
oFT ., oFT |
Inserting (2.34) into (2.35), we get
oFT [ . oF orFt |
r [Ce — C% ﬂ(t)] + 6(t) °g r(d,a) =0
and T
&= C
B(t) = 55 O €(b).
65:}‘ C g_; o 8;;2 r(d,d)

(2.34)

(2.35)

(2.36)

B(t) is well defined, since the denominator does not vanish (due to the positive definiteness

of C' and assumption (2)).

equation
F OFT
08—5885 ¢ :
g = C ST (9_F B OFT o €
¢ =~ 9z oa |\
= Oy, @)
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where C¢, denotes the elasto-plastic material matrix.

(2.37) yields an explicit form of the constitutive law for elasto-plastic materials with
hardening effect:

. y 7 a OFT =
G = Ce(u) ' for F(cz, (24') <0V 7, (;7. <0 (2.38)
Cep(o,a)e(tr) for F(G,a) =0A %z 7 > 0.
, 0 for F(¢,d&) <0V 2 3 <0
v orT . 2.39
“ T(O-, O{) orT c agg ai’T (_, _‘) é(ﬂ:) fOI‘ F(a“, O_Z) == 0 /\ 8(5[; 6: > 0 ( )
a5 95~ oa T\0&

where &(@) = €

Example
We consider the von Mises yield surface model (2.32) for isotropic hardening again.

F@,a) = F(n,m,m0)= %\/(Tl —72)?+ (12 — 73)? + (13 — 11)? — h(a)

= /a0t 0t~ h(a)

The yield function (2.31), (2.32) has the derivative (2.33). Choosing an isotropic material,
where the elasticity matrix C' coincides with

A+ 2u A A 0 0O
A A+ 24 A 0 0 O
_ A A A+2u 0 0 O
M= 0 0 0 w 0 0 |’
0 0 0 0 u O
0 0 0 0 0 u
we have
2u(2011 — 092 — 033)
21(2099 — 011 — 033)
Ca_F — ; 2#(2033 — 011 — 022)
od 9 /%Ud . gd 6uois
6093
6uo13
and OFT oF
1 3
C—=——" . 2u6(=0%: 0% = 3pu. 2.40
05 ~ 95  4(30%: o) H6(50" : 0%) = 3p (2.40)
It results that
OF OFT

S N 83 85
Conl®,0) = M A T = 5 ) 7 (7.8)
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2.3 The initial boundary value problem for materials
of hardening type

First, we remind of the weak formulation of the boundary value problem for linear elastic,
homogeneous isotropic materials.

Let V = H'(Q,T) be the closure of {u € [C®(Q)]?, u| = 0} with respect to the norm

To

5 3
||u||v = Z / (|Uz|2 + |61Ui|2 + |62Ui|2 + |83Ui|2) dz

=1 Q

The weak formulation of the boundary value problem

—Lu = fin Q)
u 0
To
oluln|] = ¢
Iy

reads: Find an displacement field v € V', such that

a(u,v) = /o(u) :€(v) dx =/€(u)TC€'(v) dx :/gv da+/fv dx = (F,v) Yo e V.

Q Q I

The finite element method yields an approximated solution in a finite dimensional sub-
S — NG (W) B e & = ( (k)
pace up =y ;. ¢; e, where &, = (¢

: ) is solution to the algebraic equation
i=1,..,N(h
system (1.88)

AWg, = F,

We consider the same boundary conditions for the displacement and stress fields for
elasto-—plastic materials of hardening type

ul =0, o-n| =0.
To Iy

Fixing a time ¢, this condition leads to the space V = H'(2,T) as admissible space for
the displacement fields.

The admissible stress space is a subspace S of [Ly(2)], and the admissible space for the
hardening parameters is a subspace H of [Ly(Q)]' (for a fixed time t).

Remark:

There are sign rules in the relations (2.38), (2.39) which can be expressed by strains.

90



Proposition:
For points on the yield surface, it holds that

OFT .  9FT
o = sign
EY: 955

Ce.

Sign

Proof:

In the elastic case we have & = C¢. We therefore concentrate of the case %3 > 0.

We multiply the equation

F oFT
C 55 75 ©
=T G |
by 6(5: from the left.
oFT _ OF (OFT OFT  OF
T T =0 = = C — C — T
OF G oF" ,  0d 0 \ 00 &) | 0§ 95 | oF
o5~ | 08 Y(F, ) Y(F, &) od
The factor is positive, since
FT F
0 "¢ (‘3__‘
0 0d 05 <1

<
= OFT [OF _OFT @p
9 = 03  _oa @

—_———
<0
The scalar function hg
oF _ OF
o~ 03 2 o
o< ¥ dog —p <1
RTCT

will play a special role in the following.

Formulation of the initial boundary value problem:
FindueV,5 €S, ae H, such that Vt € [to,ts] and a given f € V,
a(t,v) = o(t) : e(v) dx

Fu)'ew)de = (f,0) Voev

A
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with

(i) C&u)  for F(3,d) < 0V 2L Ceu) <0
Copélt)  for F(3,d) = 0 A2 C&(a) > 0
. 0 for F(5,d) < 0V 2L Celu) <0
Q = - = ﬁ C =5 = aFT -,
r(, @) e e() for F(G,d) =0A Sz Cé&(u) >0
u(z,0) =0, o(z,0) =0, a(x,0) =0, Vo € Q

Here,
_QF" _9F OF"
V=8¢ Y 897 oa

We rewrite the variational equality (2.43), introducing the vector

. ( (i) 0 in the elastic case
S() g, a, e(l) = . QBFT .
o S0(d, a, €(w)) = %&;(u) else.

Then, (2.43) becomes:

a(i, o) = / G()"e(®) dx = / [g(u)—s*o(ﬁ, a, g(u))]Tcg(@) dz = (f,0).  (2.44)

Q

This is a nonlinear form for which we will discuss the solvability and uniqueness.

Monotone operators

In the linear elastic case, we have considered bilinear forms a(-,-) on V x V with the
properties (1.80) and (1.81).

alulllloll  Yu,veV
co|ul|? Yu e V.

a(u,v) <
a(u,u) >

The bilinear form can be written in operator form
(Au,v) := a(u,v), A: V=V,

V' is a Banach space, V' its dual space.

The properties (1.80) (1.81) guarantee that A~! exists and is continuous. A Galerkin
scheme works and the Lemma of Cea yields

a
[ —upllv < c—: inf |[u — vallv-

We now consider nonlinear operators A with similar properties. Be A: V — V'. We
generalise condition (1.81) [15, p.500, 1]
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Definition:

a) The operator A is monotone <= (Au— Av,u—wv) >0 VYu,v e V.
b) A is strictly monotone <= (Au— Av,u—v) >0 VYu,v €V, u#v.

¢) A is uniformly monotone <= (Au — Av,u —v) > b(||lu — v|)||u — v|| Yu,v € V,
where b: [0,00) — R is a strongly monotone increasing continuous function with
b(0) =0, b(t) = oo fort — oc.

d) A is strongly monotone <= Jcy > 0 with (Au— Av,u—1v) > co||u—vl||? Vu,v € V.

(Au,u)
Tully

e) A is coercive <

— oo for ||u|| = oc.
Theorem: [16]

d)=c)

o S
~— —

Theorem: [16]

Let V be a reflexive Banach space with countable basis, A: 'V — V' and
(i) A is monotone.
(i) A is coercive.

(11i) A is continuous.

Then for every f € V' an element u € V exists with
Au=f

(Au,v) = a(u,v) = (f,v) Vv e V.

Definition:

The operator A: V. — V' is Lipschitz continuous, if there exists a positive constant Cy,
such that

[{(Au — Av,w)| < Cilju = olflwl  Vu,v,weV.

or
||AU — A’U”VI < Cl||u — ’U”V VU,U eV
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Theorem:

Let A: 'V — V' be strongly monotone and Lipschitz continuous, f € V'. Assume V, CV,
dim V), < co. There then exists a uniquely determined element u, € Vj, with

(Aup, vp) = (f, vn) Yoy € Vy

and

Gy
— < — inf —uf|.
= < & it Jon v

Proof:

The coefficients of the Galerkin solution up(z) =, cgh)egh) (x) satisfies a nonlinear equa-
tion system. Since

(Auh — Au, Uh) =0 Yo, € V},
it follows, that
€
Co

1
up — ul]} < = (Aup, — Au,up — u) =

Cy

C
(Auy, — Au, vy — u) < énuh — | ||vn — ul|

and finally
C
llun — ully < 51||vh —ul|  Vou € Vp
2

We apply these results to the investigation of the nonlinear variational equation (2.44),
writing

(A(F,d)u, 0) = a(i,v). (2.45)
The following hardening assumptions (compare with (2.42)) guarantee that A is strongly
monotone and Lipschitz continuous:

Hardening assumptions:
For all # € RS, @ € R!, there is a constant v, € [0, 1) such that a uniform estimate holds
oFT ~oF

0< % = ho(&,d) < vy < 1. (2.46)

Theorem: |9, 11]

Assume that the hardening assumption (2.46) is satisfied. The operator A(G,d):V — V',
defined through (2.45), is strongly monotone and Lipschitz continuous.

Proof:
It is
T

(A(G, )i, ) = / [#(a) — $i@.a,a(@)] o) do.
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First step:

- T
We estimate the integral [ [50(5', a,e(u))| Ce)dz in the plastic region (sg # 0).
Q

The integrand reads
oF OFT 1
= \T o
) 55 25 C G

and can be written as

1 16F8FT 1 1
o0z — 30z¢
€O 5595 ¢ (7, d)

Denoting z = C %e", y=0C > g—g, the integrand can be estimated in the following way in R°
(with the usual Euclidean length of a vector).

Ty = (z,y)(z,y) < |zPly]* = 2" zy"y

or
OFT OFT _OF
— . —f . < — . T — -
€lu)C °E: Ce(u) < (e(w))” Ce(n) 96 086'
Hence,
/ 50l@, @, é(w)| T Celi) < / &) Celi) vy dz. (2.47)
Q Q

Second step:

We show that A is strongly monotone
(A(F,d)a — A(G, d)v,u — v)
- - T
= / & — )] Cli — ) — | So(F, @ &) — So(&, &, &0)| Cli — b) du (2.48)

Q

It is necessary to distinguish whether €(4) and €(v) are pure elastic strains or have a
plastic part.

1. case Y220y <0 A 2ZCEv)<0 Vv F(3,d) <0.

0 05
Since the elastic region in the stress space is a convex domain, we have for all
9 € [0, 1], that

€y = é(u) + J[e(u) — €0)]

leads to the relation

—

So(5,d,¢) = 0.

2. case &0 >0 V9 e[0,1] A F(3,d) =0.

Then

—

So(3,d,6) = 5(3,d,€6) V9 €01].
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3. case There is a ¥* € [0, 1] with

T
GFL € <0 VI <o*
oo

(elastic (1))
and OpT
%G (plastic €(1))
G
Then
So(3, @, & S,

Third step:
A is Lipschitz continuous

We have to show that

A(G, &) —

A(3, @)o, )|

—

T
SO (63, 0—27 E’(v)

/ 1.1/—’0 TCG )d.’L"" g;)(&a O—!', é‘(U’)) -

Cé(w) dx|
Q
< Chlli = vlly||w||y

(2.49)
Vi, b, € V.

We introduce the scalar product in [L,(£2)]®

and the corresponding norm

/]
The Schwarz inequality reads

(f,9)e < I fllelldlle-
The relation (2.49) can be written as

‘(E’(u - 1.))’ E'(w))E + (‘57;)(5’ &a E'(u) _;)(_” (3?, 6(11), g(w))E|
< ||&(i — 0) || (@) + [190(F, &, &) — So(&, @, &(0))||zl|e(eb) | -

We now estimate (2.48)

1. case

(A(G,G)i — A, &), i — 1) = / i

(4 — )" Celi — ) dz > Colla — 0|7,
Q
due to Korn’s inequality.

96



2. case

=
Qu
QL

Vi — A(G, @)b, 1 — ©)

= / €l —v)TCe(u — v) — 55(5, a, e — )T Ce(v — v) da
Q

21— w) / &l — o) Celi — ) da > (1 — v0)Callit — |13

Q

3. case

(A3, &) — A3, &), 0 — o)
T

Cela — ) dz

1

& — ) Ol — ) — L/ %gg(&, &, é)

*

&li — 0)TCelu — ) — (1 — 0%) [55(3, &, ela — 9)]” Cela — o)

SE

(2.47) o
z (1= (1 =9)w)Colld—ofly.

In order to estimate . .
1S0(&, @, €(tt) — So(F, &, €(0)||

we have to consider the three cases as before again.

1. case
(A7, d)u — A(F, @)0, w)| < [|é(i = v)|[elle(w)]|e < Culla = ollv[[w]lv
2. case
[(A(d, @) — A(G, @)v, w)| < ||€li — 0)||sl|€w)]|E + [|50(5, &, €(ts — ) || s||e(w) || &
(2.50)
It is
Iso(3, &, (i — D)3 = /sgcso dz
Q
OFT [OFT OF] OF" 1
o e NT vlr SN T
= /e(u v)"C %G [86’ 085} G Ce(u 1))1/}2 dx
Q

(2.46) F OFT 1
< / (i — @)7’06—a Ce(n — v)i dz

d¢ 06
Q
O
< l/o/e(u—v) Ce(u—v) dx
0

Therefore, (2.50) can be estimated
(A7, d)u — A(F, @0, w)| < (1 + wo)Cil[ie = 0|y [|id]lv-
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3. case

1

} B, d
So(3, &, &(w)) — Sy(5, d, é(v)) = / 550(3,,6) da = (1 - 9)85(6, &, & — 9)).
19*

Repeating the calculations of the second step, we get

(A7, d)u — A(F, d)o, w)| < (1+ (1 —9)w)Chlld = ollv[|lly. W
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2.4 Some remarks on materials of hardening type

We have used the von Mises yield function

F(3,0) = f(&) — h(a) = ,/gaa . 0% — h(a).

The derivative 2£ = 9 js needed for the computation of (&, ).

Usually, the function A(-) is given as
h(a) == 09 + ka + (0, — 0¢)(1 — e7"),

where oy is the (uniaxial) yield stress, o, the saturated (uniaxial) yield stress, k a material
dependent hardening factor, and 7 the hardening exponent.

Example: aluminium
ideal plastic hip(c) = 450 [ N_ _ 106%}

mm?

linear hardening Ay, (o) = 450 + 129.24a0  [-2;]

mm?2

hardening hi (@) = 450 4 129.24a + 265(1 — e~ 16:93) [ N2]

mm

h(e)
1200

1000

800 hn

600

400 ~ ip

200 +

0.05 0.1 0.15 0.2 025 03 035 04 045 0.5

The plastification depends on the strength of loading. As an example, an aluminium

rectangle with a circular hole, loaded in y—direction by 4.5 is considered in [11].

99



Bibliography

[1] Brokate, M. “Elastoplastic constitutive laws of nonlinear kinematic hardening type”.
Bericht 97-14, Math. Seminar II, Universitit Kiel.

[2] Brokate, M. Mathematische Elastizitits- und Plastizititstheorie. Vorlesungsmanu-
skript, Universitit Kiel, SS 1995.

[3] Céa, J. “Approximation variationelle des problemes aux limites”. Ann. Inst. Fourier
14 (1964), p.345-444.

[4] Ciarlet, P. G. The Finite Element Method for Elliptic Problems. Amsterdam: North
Holland, 1978.

[5] Ciarlet, P. G. Mathematical Elasticity. Vol. I: Three-dimensional Elasticity. Ams-
terdam: North Holland, 1993.

[6] Galerkin, B. “Rods and plates”. Vestnik Inzenerov 19, (1915).

[7] Hackbusch, W. Theorie und Numerik elliptischer Differentialgleichungen. Stuttgart:
Teubner, 1986.

[8] Khan, A.S. Huang, S. Continuum Theory of Plasticity. New York: Wiley, 1995.

[9] Korneev, V.G., Langer, U. Approzimate Solution of Plastic Flow, Theory, Problems.
Teubner Texte, Band 69. Leipzig: Teubner, 1984.

[10] Ritz, W. “Uber eine neue Methode zur Lésung gewisser Variationsprobleme der
mathematischen Physik”. J. Reine Angew. Mathematik 135, (1909), p.1-61.

[11] Schulz, M. A-Posteriori-Fehlerschitzer fir mittels Finiter Elemente modellierte
elasto—plastische Verformungsvorginge. Dissertationsschrift, Universitidt Stuttgart,
1997.

[12] Schwartz, L. Mathematische Methoden der Physik. Vol. L. Ziirich: Bibliographisches
Institut, 1974.

[13] Vladimirov, V. S. Equations of Mathematical Physics. New York: Marcel Dekker,
1971.

[14] Wloka, J. Partielle Differentialgleichungen. Stuttgart: Teubner, 1982.

[15] Zeidler, E. Nonlinear Functional Analysis and its Applications. Vol. III: Variational
Methods and Optimization. New York: Springer, 1984.

[16] Zeidler, E. Nonlinear Functional Analysis and its Applications. Vol. II/B: Nonlinear
Monotone Operators. New York: Springer, 1990.

100



Acknowledgement

I would very much like to thank Mr Hansjérg Prinzing for competently typesetting
this script and designing the graphics contained therein.

101



