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Abstract—This paper presents a method for simultaneous
classification and robust tracking of traffic participants based on
the labeled random finite set (RFS) tracking framework. Specif-
ically, a method to integrate the object class information into
the tracking loop of the multiple model labeled multi-Bernoulli
(MMLMB) filter, using Dempster-Shafer evidence theory is pre-
sented. The multi-object state is estimated using the detections
from the sensors and by propagation of multi-object density in
a Bayesian fashion. Parallelly, the object class information is
also predicted and updated recursively. The underlying object
class information required for this could typically be obtained
from different types of sensor such as radar, lidar and camera,
using classical perception or more recent deep learning methods.
On one hand, this enables an unified classification and tracking
of traffic participants. On the other hand, it also increases the
robustness of multi-object tracking, as the parameters of the
tracking algorithm could be adapted using the class information.
Moreover, using the Dempster-Shafer method for fusing class
information from different sensor sources improves the overall
performance, especially when the sensors have contradicting
classification.

Index Terms—multi-object tracking, random finite sets, object
classification, sensor fusion, autonomous systems

I. INTRODUCTION

Autonomous driving on a whole is a very complex task.
It requires interaction between many layers of modules with
different functionalities. One of the important functions is en-
vironment perception, which means sensing and understanding
the surrounding of the vehicle. Environment perception itself
involves further modules, in which multi-object tracking and
classification plays a challenging part. Classification is the task
of determining the type of the object. For example, in case
of traffic participants, a classifier could determine whether the
detected object is a pedestrian, bicycle or a passenger car. This
could typically be achieved by extracting distinct features from
sensor measurements, that could help to distinguish between
different object categories. The aim of multi-object tracking
on the other hand is to not only estimate the number of traffic
participants present in the vehicle surrounding but also their
individual states, i.e. their position, velocity etc. The multi-
object tracking part and the classification part are typically
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handled independently. However, handling them in an unified
way could have multiple advantages. For example, the classi-
fication could be further improved using the estimated object
state information or the parameters of the tracking algorithm
could be improved using the object class information.

The general idea of integrating classification or even other
evidences into object tracking has been presented and inves-
tigated in many previous works. A generic approach of inte-
grated evidence based existence estimation and object tracking
is presented in [1]. Joint integrated probability data association
(JIPDA) filter is combined with Dempster-Shafer theory (DST)
of evidence, in order to predict and update the existence of an
object, along with it’s state. The objects are rather categorised
as ’relevant’ or 'not-relevant’ on the application level. In the
random finite set based tracking paradigm, a classification
aided cardinalised probability hypothesis density (CPHD) is
presented in [2], where the object class information is used
for assisting data association in the update step of the filter.
The mode variable in the likelihood function is replaced with
a class variable and the confusion matrix from the classifier
is used for class probabilities. In [3], object classification is
integrated into multiple model probability hypothesis density
filter (MMPHD) using DST. The elements of the transition
matrix are adapted using the object class information, thereby
the aim is to choose a more suitable motion model that fits
that particular type of object. For example, it is beneficial
to model the motion of a bicycle with a constant velocity
(CV) model, whereas a passenger car with constant turn and
velocity (CTRV) model. Although this improves the overall
performance, as the PHD filters propagate only the first order
moment of the multi-object distribution in time, they in general
produce an unstable cardinality estimate i.e. the number of
objects present [4].

A more accurate formulation of the multi-object Bayes filter
in the forms of generalised labeled multi-Bernoulli (GLMB)
filter and 5-GLMB filter, based on the labeled RFS is presented
in [5]. Higher performance can be achieved with these filters
due to the closed form solutions. However, this results in a
higher computational complexity. The labeled multi-Bernoulli
(LMB) filter presented in [6] reduces the computational com-
plexity of §-GLMB filter, where the multi-object posterior and
prediction are approximated with LMB RFS, thereby reducing
the number of hypotheses. A multiple model version of the



LMB filter is presented in [7]. It follows the same principle as
the LMB filter, but the distribution of each track is given by
the joint distribution from all the considered motion models.
In this work, the object classification from different sources
are fused using DST and integrated into the MMLMB tracking
framework. Using a similar approach of adapting the motion
model transition probabilities as in [3], but addressing the
LMB RFS based filters is presented in this work.

The rest of the paper is organised as follows: section II
begins with a brief background on the multi-object Bayes filter
and labeled RFS. Then the concepts of the LMB filter and
it’s multiple model version, MMLMB are reviewed. Section
IIT provides the details of the Gaussian mixture (GM) imple-
mentation of the MMLMB. A method to integrate the object
classification information leading to the classifying MMLMB
is introduced in section V, followed by results based on
evaluation with measured sensor data.

II. BACKGROUND

We begin the section with a brief background of the multi-
object Bayes filter. Followed by a summary of the labeled RFS
[5], based on which the LMB filter and it’s multiple model
version MMLMB are derived in [6] and [7] respectively.

A. Multi-Object Bayes Filter

A systematic unification of object detection, tracking and
management based on finite set statistic (FISST) is proposed
by Mahler [8]. A generalisation of the single-object Bayesian
methods to the multi-object tracking problem is facilitated
by modelling the object states and measurements as RFS,
rather than individual random vectors. As in case of a single-
object Bayes filter, the multi-object Bayes filter can also be
realised with a recursion of prediction and update steps. But
the difference is, in case of multi-object Bayes filter, the multi-
object likelihood function and multi-object Markov density
need to be formulated. An object state represented as a random
variable z in a single-object Bayes filter is a RFS X with set
of target states in multi-object Bayes filter. The multi-object
Bayes filter prediction and update according to [9] are:
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in which the multi-object Markov transition density f (X |X)
considering the disappearance and birth of objects is derived
as
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where Ap is the expected number of new born objects
distributed according to probability density b(-). w4 (0|X)
represents the probability none of the objects survive and
mp(X4) the probability that all the objects are newly born.
The multi-object likelihood function g(Z|X ) considering the
associations and missed detections is derived as
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where 6 represents all the possible measurement-to-track asso-
ciation hypotheses, 7(f)|X.) the probability that all detections
are missed and 7o (Z) the probability all measurements are
clutter.

B. Labeled Random Finite Sets

In multi-object tracking paradigm, it is generally essential to
have unique identities for each of the tracks. It is required for
estimating object trajectories as well as to associate the track
between time-steps tx11 and tx. In [5], the class of labeled
RFS is proposed, where each object state is augmented with
a distinct label ¢ € L. The labels are drawn from a discrete
label space L = {o; : i € N}, where N is a set of positive
integers and «;’s are distinct [5].

The multi-object labeled RFS can therefore be written as

= {(@M, M), (@@, £@),.. (z",eM)} X x L (9)

Moreover, each object should have an unique identity. There-
fore a set of track labels £(X) = {L(x,¢) : (z,£) € X} of the
labeled multi-object state X is introduced in [5]. £(z, £) = £ is
then the projection of labeled state (x, £) on the space Xx L to
the label space IL denoted as £ : X x L — L. Also, each object
label should be distinct, which means two different objects
cannot have the same label. A label can be assigned exactly
to one object only if the condition |£(X)| = X and the distinct
label indicator is given as

A(X) = % (L(1X]))

which takes the value one if the object labels are distinct, zero
otherwise. More detailed derivation and properties of labeled
RFS are presented in [5].

Further, augmenting each object of a multi-Bernoulli RFS
with a distinct label gives the labeled multi-Bernoulli (LMB)
RFS defined by the existence and spatial parameters of each
object represented by it’s corresponding label

m(X) = {(r,p®)}
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The multi-object probability density of LMB RFS on X x LL
is given by [5]
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A compact notation of the LMB RFS as given in [5] and [6]
using the multi-object exponential notation is

m(X) = AX)w(L(X))p* (13)
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p(z,0) = p(2).

The multiple model version of the LMB filter derived in [7]
and addressed in this work is based on the LMB RFS.

C. Labeled Multi-Bernoulli Filter

An exact closed form solution of the multi-object Bayes
filter is proposed in [10] on the basis of labeled RFS. Vo and
Vo introduced the generalised labeled multi-Bernoulli (GLMB)
filter and it is shown that the §-GLMB density is closed under
multi-object prediction and update. In case of §-GLMB, both
the prediction and update of tracks requires generating all the
possible hypothesis, which means with the increase in number
of objects and measurements, the computational complexity
increases exponentially in both prediction and update. The
LMB filter is presented in [6], where multi-object posterior
and prediction in §-GLMB are approximated by LMB RFS.
This approximation reduces the total required hypotheses in
the prediction step. It is shown in [6] that the LMB reduces
the computational complexity by approximation of posterior,
but still produces identical results of §-GLMB filter in many
scenarios.

1) Prediction: In the multi-object Bayesian recursion im-
plementation of LMB filter, the multi-object posterior density
of the previous time step is an approximated LMB RFS of the
form
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Also the multi-object birth intensity is considered to be an
LMB REFS of the form
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where "
wp(l) = [T -1 % (18)

icB ver 1—7p

pa(z,0) = ply) (z). (19)

with the labels [ € B of the new born objects distinct and
doesn’t have the same labels as the surviving objects i.e. L. N
B =.

The prediction density in a current time step is union of the
surviving tracks of the previous time step in a label space
L and the newly born tracks in current time step in label
space B. The tracks from previous time step are considered to
survive with a probability of pg(x, ) and evolve according to
a standard Markov transition density fi (z|z’,¢) or disappear
with a probability ¢s(z,¢) = 1—pg(z, £). The predicted LMB
distribution in label space L, = LUB is [6]
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2) Update: 1t is shown in [6] that the LMB is not closed
under update operation and the predicted LMB density needs
to be expressed in 6-GLMB form. Therefore before the update
step, the predicted LMB density needs to be represented in 6-
GLMB form [10], [6] and is given by

ST wl™er (LX) I
I eF(Ly)

T (Xy) = A(Xy)

(24)
where I denotes a hypothesis containing a set of track labels
and for representing the LMB RFS in §-GLMB form all the
possible hypotheses corresponding to the permutations of track
labels need to be generated. With the new set of measurements
Z and no history of association maps available, the -GLMB
posterior can then be given according to the J-GLMB update

[10], [6] as
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where 6 denotes the measurement to track association map for

the track labels in each of the hypothesis I, . The posterior

weight for each of the hypothesis being w+?) the mea-

surement set M, the measurement updated posterior spatial

distribution of each track p(®)(x,¢|Z) and the likelihoods
(0)

ng” (0).

The 6-GLMB measurement updated posterior (25) needs to
be again represented in LMB RFS, so that it can be predicted
again in the next time step. The posterior is approximated by
the existence and spatial parameters of all the tracks in X,
with a matching PHD and mean cardinality [6]

n(X[2) = {9}

w(uﬂ)(z)
(25)
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where the posterior existence probability 7(“) and posterior
spatial distribution p(*) of each track is given as
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3) Multiple Model Version: In a typical multi-object track-
ing application scenario, many classes of objects appear in the
sensor’s field of view (FoV). Especially in urban scenarios, the
object can be a pedestrian, bicyclist or even other vehicles.
For predicting the motion of the object, using a single motion
model for all the scenarios and all the object classes would
be a wrong assumption. Pedestrians can be assumed to move
with constant velocity, whereas bicyclists and other vehicles
can also make turn and accelerate rapidly. Therefore it is ben-
eficial to consider more than one motion model for different
scenarios and object classes. Multiple model versions for the
class of RFS filters based on Jump Markov System (JMS),
specifically for PHD filter is proposed as in [14]. The basic
idea in JMS is to append a discrete mode variable 0 =€ O
to the kinematic state xz, giving an augmented state of the
single-object x = (x,0), with x € X. The discrete mode
variable represents the different motion models considered for
modelling the object motion with O representing the discrete
space of all the possible motion models. In [7] the multiple
model labeled multi-Bernoulli (MMLMB) filter is introduced,
based again on JMS. It uses the same architecture as the
LMB filter, but the spatial distribution of each track is given
by joint distribution from all the considered motion modes.
The multiple model representation for the labeled RFS case is
then given by additionally including the object’s label ¢ in the
augmented state as [7]

X = {(2M, 0™ oMy (™ ™ o)} CXxLxO
(29)
The elements ¢,, of the Markov transition matrix X, .
models the transition probability from modes o' to o. In
comparison to a single model LMB filter, the difference in the
MMLMB filter is that the spatial distribution of each track is
given by the joint distribution, augmenting the kinematic state

with the motion model as
p9(z,0) = p¥(0)p (x]0) Yo c O (30)

Consequently, the multiple model representation of multi-
object probability density of the LMB RFS (11) is given in as

[71
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and the birth distribution corresponding to the form in (17) as,
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where the spatial distribution of the tracks is a joint distribution
defined in the space X x O and the labels of surviving and
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birth tracks are distinct such that the property LNB = () holds.
The prediction step of MMLMB filter follows the prediction
of the single model LMB filter, but the spatial distribution
of the tracks is a joint distribution conditioned on all the
motion models present in the system, i.e. the objects’ state are
predicted with all the considered motion models. Consequently
the predicted spatial distribution, normalisation constant and
existence probability of a track can be given as [7]
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Similarly, the conversion of the LMB RFS into J-GLMB
representation and the update procedure is same as that of the
LMB filter, but with the spatial distribution being conditioned
on the motion model. The updated multi-object posterior can
then be described by the parameters [7]
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III. GAUSSIAN MIXTURE IMPLEMENTATION OF MMLMB
FILTER

In case of Gaussian mixture (GM) implementation, the dis-
tribution of each track is approximated by a sum of Gaussian
components. Given the mean of the Gaussian state & for a track
¢, the covariance P, transition matrix F, the noise matrix Q
and assuming the survival probability pg of the track to be
independent of it’s state, the normalisation constant and the
corresponding predicted spatial density of a track ¢ can be
given of the form
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which can then be factorised into the probability of motion
model and spatial distribution parts as
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Similarly for the update, given the mean of Gaussian mea-
surement zg(¢) for the track ¢ conditioned on mode o, the
innovation matrix S and assuming state independent detection
probability pp, the update likelihood of the measurement in
case the object being detected (6(¢) > 0) is of the form
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The updated posterior spatial density of the track ¢ conditioned
on mode o is then given for the case 6(¢) > 0 as,

p0(alo) = )
o) )

2l O (a5

Jm(o) .

Z w9 (o ( ;5030 B“’j)) (47)

with the term C and posterior weights of the Gaussian
components given as
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In case the object is not detected (6(¢) = 0), the likelihood is

of the form
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and the corresponding posterior spatial density is same as the
prediction, given as
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Consequently, the normalisation constant considering the mea-
surement likelihood for track ¢ averaged over all the motion
modes o € O if §(¢) > 0 is given as
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and (1 — pp), if (¢) = 0. The normalisation constant is
then used for calculating the updated weight w!+%(Z) of the
hypothesis component, and to represent the joint probability
density p(?)(x, £|Z) of the track ¢, considering all the motion
models.

(58)

IV. DEMPSTER-SHAFER THEORY

The Dempster-Shafer theory (DST) of evidence is a gener-
alised probability theory, which defines the occurrence of an
event as combination of evidences from many sources, rather
than individual probability constituents. The DST provides a
framework for reasoning uncertainty with the help of belief
functions. The set of all the states or hypotheses under
consideration is represented by a finite set of n elements,
called the Frame of Discernment (FOD)

sen}

The occurrence of an event is then calculated from the power
set P(Q2) of the order 2, consisting all the elements and
subsets of the elements in FOD, including the null-set. A belief
for each element in the power set, expressing the evidence
from different sources, is given as a basic belief mass (BBM)
m(E;) > 0. Every E € Q with m(E) > 0 is called the

92{61762,... (59)



focal hypotheses. The masses of all the subsets of power set
equals to 1 and is defined by the basic belief assignment (BBA)
function given as:

(60)
EeP(Q)

Unlike the probability theory based approaches where the
masses can be given only to the elements of €2, in DST the
masses can be given to any subsets of 2. Moreover, the BBA in
(60) can support a set I2, without supporting any of it’s subsets,
which represents the limited knowledge capacity of DST. The
mass function m(E) is called a categorical mass function in
case there is only one focal set, such that m(E) = 1 with
E C Q. If E = in the above case, then the condition m(2)
represents the state of total ignorance, which means none of
the individual subsets of {2 are supported with an evidence.

The degree of belief bel(E) is defined in the transferable
belief model (TBM) in [11] as the lower bound of the
probability interval, which is the sum of all masses that support
E.

bel : 2% [0, 1]
bel(E) = > m(X) (61)
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Moreover, a concept on reliability of an evidence is proposed,
in which the masses for evidences from less reliable sources
are multiplied with a discounting factor, to represent a lesser
weight for those unreliable sources. The degree of plausibility
pl(E) is given in [11] as the total amount of belief that
supports E.

pl: 22— [0,1]
plE)= > m(X) 62)
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The degree of plausibility represents the upper bound of the
uncertainty u(E) and therefore it is given as

bel(E) < u(E) < pl(E) (63)

Dempster’s rule of combination provides a basis for the
combining the masses of different pieces of evidence. The
combination for the case E = () is given as:

(m1 @ m2)(E) =0 (64)
and for the case E # () as
> m(X)m(Y)
(m1 @& ma)(E) = - )_‘”Y:ZE ) VE € 2% (65)
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The method of discounting in the TBM enables to model the
reliability of BBA from a particular source. If the belief masses
in BBA are considered to be coming from imprecise source,
they should be used only with a certain degree of confidence.

Consequently, discounting of a BBA with a parameter d
depending on it’s source can be given as

_)d-m(E),
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In the TBM in [11], two levels are defined as the credal level
and the pignistic level. The formulation of belief functions and
combination of evidences from many sources are all said to be
in the so called credal level. Then the actual decisions based
on the belief functions in the credal level are made in the so
called pignistic level. Further, the pignistic transformation is
given as:
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V. CLASSIFYING MMLMB FILTER

Considering the Gaussian mixture implementation of the
MMLMB filter (GM-MMLMB) described in III, every track
is basically augmented with the motion mode o along with it’s
label ¢ and state z. With the aim of integrating object class
information into the GM-MMLMB filter, we augment each
track component additionally with the classification informa-
tion. Thereby, a track ¢ which has state x, motion mode o and

m(B) 67)

class-BBA m(z), can be represented as (;v, 4, o, m(z)) and the

i" Gaussian mixture component (GMC) of it as

(w9 (0), N 2D, PD), mi?) (68)
where it holds the class-BBA of it’s parent track. The class-
BBA m((f) of a track represents the certainty values of different
object classes that are in question. The focal elements of the
FOD €2 used in the DST are then the considered object classes.
Therefore, the surviving tracks and the birth tracks contain
their class-BBA along with their joint probability density. The
scheme for integrating the classification information alongside
the multi-object filter recursion with the GM-MMLMB filter
is presented in Figure 1. Following [1] and [3], the prediction
and update steps are divided into state and class levels,
with interactions in between both the levels. The class-BBA
information from time k is used by the state level for adapting
parameters of multiple model object state prediction into time
k+1 and the measurement updated object state information is
used for the posterior class-BBA at time &k + 1. Consequently,
the interactions denote that the class-BBA is used for two
purposes as in [3]: to adapt the mode transition probabilities
and to classify the object based on both measurement and track
features.

1) Prediction: In the track prediction step of the GM-
MMLMB filter, mean and covariance of each of the track’s
GMC is predicted, for each of the considered motion mode
o € O, thereby new GMCs are generated. The weight of
the predicted GMC is obtained by multiplying the weight of
it’s parent GMC with the transition and model probabilities
of the parent track. The state prediction step follows the
prediction equations of the GM-MMLMB filter, as in (40).
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Fig. 1: Integrating class information into tracking framework. The state of the track is predicted and updated with GM-MMLMB
filter equations on the upper state level, where the class-BBA influences the motion model transition. In the lower path, the
class-BBA is predicted and updated. Object class is then derived by fusing BBAs from both the levels.

The difference here is, instead of a fixed value, the model
transition probabilities ¢, used for the track prediction in
GM-MMLMB filter are adapted in every time step, according
to the posterior class-BBA of the track. Therefore, the class-
BBA m((f) of the track should represent the likelihood of a
motion model o; € O, that is more suitable for the class of
the object. In order to obtain the probability for each of the
classes in the FOD (), the class-BBA needs to be transformed
from it’s credal level to the pignistic level as in (67). As in
case of the general Markov transition matrix, with each row
covering all the motion models, the transformed probabilities
in each row must sum to one. The Markov transition matrix
Xo,o' Used for track £ is therefore recalculated with each update
and is given as

BetP (E((;?) BetP (E(SQ)
C C
w-l LT @
BetP, o (ES)) BetP, o (ESY)
C C

As illustrated in [12], the class hypotheses Ey) in the above
transition probability matrix should cover at least one of the
object classes which follow the same motion model o;(i €
{1,..., N,}) and all the considered classes need to be covered
by the hypotheses {E((,f), el Egﬁ)} with E{9 N E(()f) = () for
15 7.

The class-BBA of the track on the other side is predicted
from time k to k + 1 independent of the state of the track, by

discounting with a parameter d as

d
m (B) = (m(2)) (70)

2) Update: The update step of the GM-MMLMB filter
considers the various measurement to track association hy-
potheses, where an hypothesis is given by the mapping 6 :
I, —{0,1,...,|Z|}, with I representing a predicted set of
track labels and Z the measurement set. The update of a track
¢ therefore involves innovations with all the measurements
available at time k 4 1. The likelihoods of assignment of a
measurement zg(gy to a track £ (given by the case 6(¢) > 0)
and also association of the track to a missed detection (given
by the case 6(¢) = 0) are considered. For track innovation,
each measurement along with it’s Gaussian distribution also
contains the measurement based class-BBA m?w of the
object, delivered by the classifier which can be given as

L) (N(z;z$)7ﬂ(i))7mé(i)) cie{l... |1z} ay

On the state level, the measurement zg(y) updates the spatial
distribution of a track ¢ for an association 6(¢) by innovation of
each of the predicted GMCs of that track. The equations used
for state and weight update of GMCs are same as (45) and
(49). Additionally, on the class level, the predicted class-BBA

m((f) (E) is updated by the measurement based class-BBA for
+



an association #(¢) according to the DST rule of combination
in (65) as

mi" (B) = m) @mg

> mE (S mg O (S.)

_ S+ﬂSZ:E VE c 29
1_ () S 29(0), S
> mc+( +)me (S2)
S4NS.=0
(72)

The measurement based class-BBA is discounted with a
factor o before being fused with the predicted class-BBA
of the track. This discounting facilitates the consideration
of confidence in classification output by the classifier. Each
update hypothesis therefore has a corresponding updated class-
BBA for the track. Further, the weights of the hypotheses
w+9(Z) are updated according to update step of GM-
MMLMB described in section III. On the state level, the
posterior existence probability, posterior spatial density and
model probabilities of a track are calculated according to the
equations (36) to (38), which means the posterior of a track
is from various hypotheses which include that track in them.
On the class level, the class-BBA of a track /¢ is obtained by
combining the updated class-BBA from the hypotheses that
contains that track. Before combining, the class-BBA from an
hypothesis is discounted with the normalised updated weight
of that hypothesis and the combination of BBAs is given as

_(1,,0) _(14.0)
w (2) W. (2)
m(ce) = (m(é’e)) ' S2) (m(cw)) ’

”.@(mgﬁvﬁx+®@)

(73)

)

where (I,,0) € F(Ly) x ©r,and £ € I,. The track
extraction step follows that of the standard LMB filter family,
based on MAP estimate of cardinality distribution or track
existence probabilities. The state estimates of a track can be
approximated by the mean of it’s GMC which has the highest
weight. Therefore, this estimated state of the track from the
state level can also be used to further update the class-BBA of
the track, apart from the update by measurement based class-
BBA. One of the track features which can be used to classify
the object is for example, it’s velocity. The class-BBA can
then be constructed based on the velocity of the track and be
fused in the same way as the measurement based class-BBA
in order to get a posterior class-BBA of the track on the class
level.

The updated class-BBA from the above steps is further used
for estimating the class of the track. For this the class-BBA
of the track needs to be transformed to the pignistic level
according to (67). The object class and the corresponding class
probability can then be derived as

O — max BetP (e) (74)
e= c
(0) ¢

VI. RESULTS

The presented classifying GM-MMLMB filter is evaluated
based on recordings from the test vehicle, equipped with
fish-eye lens camera, 77 GHz radar sensor and data logging
solutions. In the conducted test, the ego-vehicle moves at a
speed of 2.8 m/s, starting from a stationary position at the
beginning of the test. The objects that move in the sensor
FoV are a pedestrian and a bicyclist. The radar detections are
processed, clustered and classified according to the methods
presented in [13]. Figure 2 illustrates the radar detections of
the pedestrian and bicyclist projected on to the calibrated cam-
era image for the time instance k£ = 16 and the corresponding
cluster. The pedestrian starts from the rear end of the truck
and the bicyclist has a longitudinal and lateral separation of
more than 3 m from the pedestrian. The survival probability
of the tracks ps = 0.99 and the detection probability of
the sensor pp = 0.98 are assumed to be state independent.
The clutter measurements follow Poisson distribution with
intensity x(z) = 1.3 - 1073, with average rate of \. = 2
clutter measurements per scan. Two motion models, CV and
CTRV are defined with standard deviation of the process
noise in longitudinal and lateral direction as o, = 1 m/s%.
The standard deviation of the turn rate noise for CTRV is
0, = 7/180 rad/s. Further, the model probabilities for the
CV and CTRV models are initialised as [p(0)] = [0.5 0.5].
The class BBAs are discounted with a factor of 0.95, based
on the class confidence estimates of the classifier. Additionally
the track management parameters are defined such that all
the tracks with existence probabilities » < 0.1 are pruned.
For reducing the computational complexity all the Gaussian
components of the track which have weights w < 0.01 are
pruned and Gaussian components with a Mahalanobis distance
dyap < 0.2 are merged.

The pedestrian is initially detected by the radar for certain
time steps, but exists the FoV at around time step k£ = 37
as the vehicle moves forward faster than the pedestrian. The
pedestrian starts walking faster and catches up with the ego-
vehicle at £ = 83 and starts walking again with almost
constant velocity of 1.85 m/s. The bicyclist is within the
sensor FoV for the complete test sequence and is tracked
continuously. The OSPA distance and cardinality estimate are
shown in Figure 3. Reference positions for the bicycle are
available for the majority of the sequence. The reference
for the pedestrian is not available. However based on the
defined trajectory, at the time instances when the pedestrian
is detected, the longitudinal positions are approximated by
considering a nearly constant relative speed of 0.93 m/s with
respect to the ego-vehicle and the lateral position at 1.5 m.
The time instances when the reference values from the camera
were not available are illustrated by gray background in the
plot.

Peaks and higher deviations in OSPA distances are due
to the change in cardinality and approximated reference for
the pedestrian. The estimated positions of the objects as they
start moving are depicted in Figure 4. The strong deviation
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Fig. 2: Figure (a) depicts the detections of the pedestrian and
the bicyclist projected on to the camera image depicted by
magenta points corresponding to test scenario. Green cross
illustrates the marker position detected from the camera. The
right top corner of the image is the origin of the radar. All the
detections, including also the ones from background objects
are shown in Figure (b). The origin of the radar in Figure (b)
is (0,0). The cluster of bicyclist and pedestrian are illustrated
as blue bounding box and circle, respectively.

of the bicyclist track at & = 72 is due to the imprecise
clustering of detections. The reflections from a metal container
in the background at this time point is not separable from the
bicyclist detection resulting in a wandering reference point.
The RMSE values of the bicyclist using the camera detection
as reference is shown in Figure 5. The reference velocity is
derived from the camera reference positions by smoothing.
The ground truth point, when available, is transformed to
the object reference point for calculating the RMSE. Time
instances when the ground truth were not available are again
indicated by a grey background in the plot. Apart from the
higher values due to approximated ground truth and imprecise
clustering at k = 72, the RMSE are low with a mean position
error of 0.896 m and mean velocity error of 0.5644 m/s. As
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Fig. 3: OSPA distance and cardinality estimates from the test
scenario.
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Fig. 4: Position estimates corresponding to the test scenario.
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Fig. 5: RMS position and velocity errors of bicyclist corre-
sponding to test scenario.
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Fig. 6: Model probability of the bicyclist track corresponding
to test scenario 2.

the pedestrian most of the time remains towards the rear end
of the truck, generates only one or two detection points and
it’s class BBA is majorly from the velocity part. Consequently,
the pedestrian track is smoother than the bicyclist track as it
is most of the time tracked as a point target in this scenario.
The model probabilities of the bicyclist track are depicted in
Figure 6.

VII. CONCLUSION

This paper presented an approach to integrate the object
classification information, typically derived from classical
scene understanding or deep learning approaches, into the
MMLMB based multi-object tracking framework. Compared
to similar solutions proposed for the PHD filters, integrating
classification information into the MMLMB filter is expected
to increase the robustness and performance further. Equations
for the GM implementation of the MMLMB are detailed and a

method to predict and update the state and class of the track is
presented. The performance of the classifying MMLMB filter
based on clinical test scenario, but with real sensor data is
analysed.

Moreover the classifying GM-MMLMB filter was compared
to an existing implementation of a classical tracking algorithm
based on linear KF and greedy nearest neighbour data associ-
ation. The state estimates from the classifying GM-MMLMB
shows a significant performance improvement in terms of
RMSE and cardinality. This is majorly due to the switch
to the suitable motion model based on object class and the
ability to keep multiple hypotheses in the GM implementation.
However, detailed performance evaluations and comparison
to the MMLMB without classification information based on
multiple scenarios and classification based on bigger multi-
modal data sets are some future work to do.
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