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Abstract

In this thesis, we mainly discuss the problem of parameter estimation and
portfolio optimization with partial information in discrete-time. In the port-
folio optimization problem, we specifically aim at maximizing the utility of
terminal wealth. We focus on the logarithmic and power utility functions.
We consider expert opinions as another observation in addition to stock re-
turns to improve estimation of drift and volatility parameters at different
times and for the purpose of asset optimization.
In the first part, we assume that the drift term has a fixed distribution, and
the volatility term is constant. We use the Kalman filter to combine the two
types of observations. Moreover, we discuss how to transform this problem
into a non-linear problem of Gaussian noise when the expert opinion is uni-
formly distributed. The generalized Kalman filter is used to estimate the
parameters in this problem.
In the second part, we assume that drift and volatility of asset returns are
both driven by a Markov chain. We mainly use the change-of-measure tech-
nique to estimate various values required by the EM algorithm. In addition,
we focus on different ways to combine the two observations, expert opinions
and asset returns. First, we use the linear combination method. At the same
time, we discuss how to use a logistic regression model to quantify expert
opinions. Second, we consider that expert opinions follow a mixed Dirichlet
distribution. Under this assumption, we use another probability measure to
estimate the unnormalized filters, needed for the EM algorithm.
In the third part, we assume that expert opinions follow a mixed Dirichlet
distribution and focus on how we can obtain approximate optimal portfo-
lio strategies in different observation settings. We claim the approximate
strategies from the dynamic programming equations in different settings and
analyze the dependence on the discretization step. Finally we compute dif-
ferent observation settings in a simulation study.
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Zusammenfassung

In dieser Dissertation diskutieren wir hauptsächlich in zeit-diskreten Finanz-
märkten das Problem der Parameterschätzung und der Optimierung eines
Portfolios bei partieller Informationen. Beim Problem der Optimierung des
Portfolios zielen wir speziell darauf ab, den erwarteten Nutzen zu max-
imieren. Unter anderem konzentrierten wir uns auf die logarithmische und
auf Power-Nutzenfunktionen. Wir betrachten Expertenmeinungen als eine
weitere Beobachtung neben den Aktienrenditen, um die Drift- und Volatilitäts-
parameter in unterschiedlichen Zeitpunkte als Grundlage der Optimierung zu
schätzen.
Im ersten Teil nehmen wir an, dass der Drift einer festen Verteilung folgt und
der Volatilitätsparameter konstant ist. Wir verwenden den Kalman-Filter,
um die beiden Arten von Beobachtungen zu kombinieren. Darüber hinaus
zeigen wir, wie dieses Problem in ein nichtlineares Problem des Gaußschen
Rauschens umgewandelt werden kann, wenn das Rauschen uniform verteilt
ist. Der verallgemeinerte Kalman-Filter wird verwendet, um die Parameter
in diesem Problem zu schätzen, die wir in EM-Algorithmus benötigen.
Im zweiten Teil gehen wir davon aus, dass sowohl die Drift als auch die
Volatilität der Anlagenrenditen von einer Markov-Kette abhängen. Wir ver-
wenden hauptsächlich die Change-of-Measure-Technologie, um verschiedene
Werte zu schätzen, die im EM-Algorithmus erforderlich sind. Wir betrachten
verschiedene Arten, die beiden Beobachtungen, Expertenmeinungen und Ak-
tienrenditen, zu kombinieren. Zunächst verwenden wir eine lineare Kombi-
nation. Dabei diskutierten wir, wie das logistische Regressionsmodell zur
Quantifizierung von Expertenmeinungen verwendet werden kann. Ferner un-
tersuchen wir den Fall, dass Expertenmeinungen einer gemischten Dirichlet-
Verteilung folgen. Unter dieser Annahme verwenden wir ein anderes Wahr-
scheinlichkeitsmaß, um die nicht normalisierten Filter zu schätzen.
Im dritten Teil gehen wir davon aus, dass Expertenmeinungen einer gemisch-
ten Dirichlet-Verteilung folgen und untersuchen approximative optimale Port-
foliostrategien in verschiedenen Beobachtungsszenarien. Wir erhalten die
approximativen Lösungen aus den entsprechenden Dynamic Programming
Equations. In Simulationsstudien untersuchen wir die Abhängigkeit vom
Diskretisierungsschritt und vergleichen die verschiedenen Szenarien.
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Chapter 1

Introduction

1.1 Background

Portfolio Optimization under Partial Information

Portfolio optimization problems with partial information, in particular with
unknown drift process, have be considered in many aspects over the last two
decades. Partial information means: agents have access only to the history
of interest rates and stocks (risky assets or securities) prices. These prices
are driven by an exogenous Brownian motion whose dimension can be larger
than the number of stocks. In other words, the market can be dynamically
incomplete. The unobservability is always modelled as the unobservable drift
rate of returns. [Lak95], [Lak98] treats the case in which the drift rate follows
a linear Gaussian model and solves the utility maximization problem by using
the martingale approach. [Bre06] focuses on the case when the utility function
is power utility by the Bellman equation. Moreover, this model is also called
Kim-Omberg model which leads to well-known Kalman filter. [KX91], [KZ01]
model the drift as a time-independent random variable, which leads to the
Bayesian case. Another popular assumption for the drift term is modelling it
as a continuous-time Markov chain, which leads to Wonham filter in Hidden
Markov models (HMMs). [SH04] derive an explicit solution of the portfolio
optimization problem using a martingale approach. [RB05] solves the same
problem with the help of stochastic control methods. It turns out that the
value function is a classical solution of the corresponding HJB equation.
Apart from the drift models, [PQ01] introduces a stochastic volatility model
under partial information.
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Previous Work: Drift Model with Expert Opinions

Trading decisions in financial markets are always made based on very lim-
ited information on stock developments available to the investors. Such in-
formation may comprise historical observed security prices in terms of par-
tial information. It is notoriously difficult to estimate drift parameter only
from historical asset prices. Hence, it is natural to include expert opinions
or investors’ views as additional source of information. In the context of
well-known one-period Markowitz model, [BL92] incorporate investors’ in-
formation to forecast the updated expected return of stocks. This model can
be viewed as the Bayesian updating of a prior distribution of risk premia
(without views) into a posterior distribution limited by views. The Black-
Litterman model is a typically static (one-period) model, and it has been
extended to a continuous-time setting. [GKSW14] investigate discrete-time
expert opinions for linear Gaussian drift. They make the assumption that
investors want to maximize expected logarithmic utility of terminal wealth
obtained by trading in a financial market consisting of one risk-less asset
and one stock. The authors prove that the conditional variance, which is for
combined observation of return and expert opinions, is smaller than the one
from observed return or expert opinions. Besides, the paper shows that the
optimal logarithmic values of terminal wealth have the following quantitative
relationship: the one with full information is larger than the one with com-
bined information. And they are both larger than the one with information
only coming from returns or coming from expert opinions. These findings
are extended in [SWW17] to the multivariate case. Consequently, investor
views will certainly improve the accuracy of estimators of drift. However,
it is not realistic to expect that investor’s information can always improve
the performance of portfolio, as the information may be not correct, in other
words the views may be biased. In this thesis, general settings of expert
opinions are related to the partial information, rather than absolute and rel-
ative view. Furthermore, different distributions of expert opinions are con-
sidered. [FGW12], [FGW14] model drift as a function of a Markov chain with
finitely many states and expert opinions are modeled in the form of signals at
random discrete time points. The optimal strategy under partial information
is derived by replacing the unknown drift by the filter estimated. [Mac12] also
extend the Black-Litterman approach to continuous time settings, while in
his model the expert opinions are also continuous.
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Discrete-Time: Markov Switching Model with Expert Opinions

Markov Switching Models (MSMs), sometimes also called regime-switching
models, are widely applied in the field of mathematical finance to describe
return processes with time-varying drift or volatility. The drift or volatil-
ity terms are driven by an unobservable Markov chain in MSMs instead of
constant ones in Black-Scholes model. In continuous time one should dis-
tinguish MSMs and HMMs, in the former the volatility jumps with Markov
chain, while the latter has a constant volatility. Empirical evidence illus-
trates that the volatility is not constant, e.g. [Fam65]. Once the volatility
is not constant, the well-known martingale method is not applicable easily.
That is the reason why we use dynamic programming when we try to solve
the optimization problem. In addition, It would be of special interest to
the portfolio optimization problem with expert opinions in MSMs. For this
study it is also of importance to investigate the model of expert opinions
and the impact of them. We will mainly focus on the discrete-time Markov
Switching model, since in continuous setting the volatility is observable via
the quadratic variation as shown in [KLS18]. [TZ07] has the same setting
as we. They also consider the multi-dimensional cases, but not with expert
opinions.

1.2 Outline and Methodology

The structure of this thesis is as follows: In the first chapter, we start with
the linear Gaussian model. And we use the simple assumption that the drift
is an unobservable random variable. We use Bayesian methods to estimate
its value to determine the optimal strategy that can be used at each time.
Through this model, we will have a simple understanding of the application
of expert opinions in continuous and discrete time. In that section, we also
consider that expert opinions follow a uniform distribution. By transform-
ing non-Gaussian noise into Gaussian noise, we talk about the relationship
between linear Gaussian model and nonlinear Gaussian model. At the same
time, this problem can be solved approximately with a generalised Kalman
filter.
The second chapter is about estimating parameters for MSMs and includes
different models for expert opinions. A technique used throughout this sec-
tion is a change-of-probability measure. This is a discrete time version of
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Girsanov’s Theorem. By this technique, we calculate filters from non-linear
relationships to linear one. To estimate parameters and the filter, the EM
algorithm is applied. Moreover, we utilize different assumptions for expert
opinions. For instance, expert opinions follow mixture Dirichlet distribution.
Additionally, a logistic regression model is used to formulated expert opin-
ions from exogenous factors.
The last chapter is on optimizing utility of terminal wealth in the discrete-
time MSM with expert opinions. The dynamic programming approach is
applied and approximated optimal strategies of order ∆t are given. We also
use Monte Carlo method and function approximation method in terms of
utility function. We use that to analyze the dependence on ∆t and we com-
pare different observation settings in a simulation study.

1.3 Market Settings

Most of the results in the following chapters aim at solving a class of filtering
problems and portfolio optimization problem. Thus, at the beginning we
classify the basic settings of the market that we want to work with and
discuss the assumptions we make throughout the following chapters.
An investor has a prevailing objective, which is to maximize her initial wealth
by investing risky asset or non-risky one.

• One dimensional stock market:
In order to investigate the effect of expert opinions, we typically focus
on the one-dimensional stock market, in which only one risky asset
and one non-risky asset can be invested. Naturally, the result can
be extended to a multiple stock market, e.g. Black-Litterman model.
The main reason for the one-dimensional stock market is to make the
influence of expert opinions on estimation of one stock visible. And the
computing cost of increasing dimension is not considered in our thesis.

• Discrete time:
Compared to the continuous setting, the discrete one is realistic when
investment is decided. There is always no analytical results in discrete
setting while portfolio optimization problems often allow for explicit
solutions in continuous time. That is also the reason we use numerical
examples to illustrate our results. In addition, existence can be shown.
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• Partial observable information:
We are typically interested in the assumption that knowledge of the
investor is restricted. It is fairly realistic for the investor to be able
to observe the market daily and see the stock returns. We will specify
the investor’s knowledge in detail below when introducing the market
in different chapters. In particular, for investors who can observe stock
returns, only the resulting portfolio strategy has to be adapted to some
observation filtrations, e.g. FR generated by the returns.

• Expert opinions:
Another important assumption in our thesis is to allow the use of exter-
nal input other than observations of stock returns. The expert opinion
support another estimation of parameters with some uncertainty. They
are often necessary since investors cannot base their future investment
just on historical observations from stock returns in practice. Expert
opinions are formulated in different ways in our thesis. For example,
expert opinions can be given as a Gaussian variable and expert opinions
can also follow a mixture Dirichlet distribution.

• The risk-aversion: α
The investors need to know their risk-aversion, described by a utility
function U . We will especially concentrate on the case of logarithmic
utility U(x) = log(x) and power utility U(x) = x1−α

1−α , α 6= 1, α > 0. The
case of logarithmic utility is almost always the limiting case of power
utility for α→ 1. Although there are good reasons for using logarithmic
utility like the easy solvability of most portfolio optimization problems,
there are limitations of it, for instance when looking at different risk
aversion values.
We compute both the cases that α < 1 and α > 1, in which the former
is less risk averse than logarithmic utility while the latter is more more
averse.

• Deterministic market parameters: r
Of course the market risk-free rates change over time. However it
changes slightly in a short period of time. Moreover, we assume the
risky-free rate can be observable. Hence a constant approximation is
often sufficient.
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• No transaction cost:
We assume that our investment will not influence the asset price and
also all other fees are not considered. By restricting the admissibility
set significantly, since in in discrete time no short selling position and
no borrowing is optimal in our model, and hence reducing the amount
of wealth that can be shifted with each trade, we reduce the impact of
transaction costs anyway.

The assumptions of drift term µ and volatility term σ are different in different
chapters. In Chapter 2, we assume that drift, µ, is normally distributed and
volatility, σ, is constant and observable, while in Chapter 3 and Chapter 4
both drift term and volatility term are driven by a homogeneous Markov
chain. For more details including how to discretize the continuous market
model we refer to the single chapters.



Chapter 2

Kalman Filter and Portfolio
Optimization

To start with, we have some simple assumptions. For a fixed date T > 0
representing the investment horizon, we work on a filtered probability space
(Ω,FT ,F ,P), with filtration F = (Ft)t∈[0,T ] satisfying the usual conditions.
All processes are assumed to be F -adapted. We consider to discretize the
continuous financial market with one stock with prices

dSt = St(µdt+ σdWt)

with S0 > 0, and one bond with prices

dBt = Btrdt.

with B0 = 1. The initial values of stocks are available to the investor, the
market parameters r and σ are time-independent, while µ is time-independent,
but stochastic and not observable. Wt is a standard F -Brownian motion
which is independent of µ.
The drift term µ is assumed to be normally distributed as

µ ∼ N (µ0, σ0)

where the value of µ is available when investors have full information, while
one needs to estimate it when the situation is under partial information.
Partial information here means that the investor or agent can observe stock
returns only or has other sources of information, we say, expert opinions.
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The information available to an investor is described by the investor fil-
tration FH = (Ft)t∈[0,T ], for which we consider three cases H ∈ {R,C, F}.

The investor’s aim is to maximize her expected utility of terminal wealth
according to the available information:

π∗ = arg max
π∈AH(x0)

E[U(Xπ
T )]

where AH(x0) is the set of FH−admissible strategies, U : R+ → R ∪ [−∞]
is a utility function, and Xπ

t is the wealth process when investing according
to portfolio strategies π ∈ AH(x0). Note that π is only FH-adapted for all
the cases H ∈ {R,C, F}.
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2.1 Portfolio Optimization in Discrete-time

In discrete time, investment over the time horizon [0, T ] is considered, where
T = N∆t, and the investor can only make investment decisions (or rebalance
the portfolio) at times tk = k∆t. The set T = {t0, t1, . . . , tN−1} describes the
time points, where investment decisions are made. At the terminal time T ,
there is no decision made. In the following, we will denote tk as k to simplify
the notation.
At any time k ∈ T , the investor can rebalance in two assets, non-risky asset
and risky asset respectively. For B0 = 1, the dynamics of the non-risky asset
Bk at time k is

Bk = eρ∆tBk−1 for k = 1, . . . , N. (2.1)

Sometimes Bk can be formulated as

Bk = (1 + r∆t)Bk−1, r∆t > −1,

where r is called nominal interest rate, while ρ represents continuous com-
pounding. r can be approximated by Taylor expansion from (2.1) of order ∆t.

The discrete return on risky assets over the interval from k to k + 1 is
defined as

RD
k+1 :=

Sk+1 − Sk
Sk

.

For the purpose of discretization of a continuous model, the log-return RL
k+1

over the time interval from k to k + 1, RL
k+1 , is defined as

RL
k+1 := log

(Sk+1

Sk

)
=

(
µ− σ2

2

)
∆t+ σ

√
∆tεk+1 (2.2)

where εk+1 :=
W(k+1)∆t−Wk∆t√

∆t
. Thus ε1, . . . , εN are independent and standard

normally distributed. Note that RD
k+1 = eR

L
k+1 − 1 and thus RD

k+1 can be
approximated of order ∆t around 0:

RD
k+1 ≈

(
µ− σ2

2

)
∆t+ σ

√
∆tεk+1 +

σ2

2
∆tε2

k+1. (2.3)

The drift term µ is assumed to be identically normally distributed as

µ ∼ N (µ0, σ0)
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where the value of µ is available when investors have full information, while
one needs to estimate them if the situation is under partial information.
The partial information here means the investor or agent can observe stock
returns only and may have other sources of information, we say, expert opin-
ions. [Von17] considered the case that the parameters µ, σ are not observable
under partial information, otherwise one could use the Merton plug-in strat-
egy.

A trading strategy is a stochastic process (ϕ0
k, ϕ

1
k)k∈T , where ϕ0

k and ϕ1
k

denote the number of units of non-risky asset and risky asset held in the
period from k to k + 1.

The wealth, Xϕ0,ϕ1

k is the value of the portfolio at time k, if we follow the
trading strategy (ϕ0, ϕ1). So for initial capital x0 > 0, the investor enters
date k ∈ T with a wealth of

Xϕ0,ϕ1

k := ϕ0
k−1Bk + ϕ1

k−1Sk.

Definition 2.1.1. The trading strategy is self-financing if for k ∈ T , we

have Xϕ0,ϕ1

k = ϕ0
kBk + ϕ1

kSk.

We assume self-financing trading.
We denote the fraction of total wealth we invest in the risky assets by the
portfolio vector πk for all k ∈ T

πk :=
ϕ1
kSk

Xϕ0,ϕ1

k

if Xϕ0,ϕ1

k > 0. Because of the self-financing assumption, the fraction of wealth
we invest in the non-risky asset is 1− πk. Due to the fact that (ϕ0, ϕ1) and
π for given x0 can be represented by each other, the wealth can be expressed

as Xπ
k for X

(ϕ0,ϕ1)
k .

Definition 2.1.2. A stochastic process π = (πk)k=0,...,N−1 is called F−admissible
if it is F-adapted, self-financing and P (Xπ

k > 0) = 1 for k = 0, . . . , N .

The increment of wealth over the interval from k to k + 1 can be repre-
sented

Xπ
k+1 −Xπ

k = (1− πk)Xπ
k r∆t+ πkX

π
k (eRk+1 − 1).

So we get a transition function for Xπ
k , f : R→ R,

Xπ
k+1 := f(Xπ

k ) =
(

1 + (1− πk)r∆t+ πk(e
Rk+1 − 1)

)
Xπ
k . (2.4)
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Lemma 2.1.3. (No Short Selling in Discrete-Time) For x0 > 0 the risky
fraction process (πk)k=0,...,N−1 is admissible if and only if

P (πk ∈ [0, 1]) = 1 and P (Xπ
k+1 > 0) = 1 for k = 0, . . . , N − 1.

Proof. Suppose for time u < k, Xπ
u > 0 and (πu)

k−1
u=0 is admissible. Showing

by induction,
P (Xπ

k > 0|Xπ
k−1 > 0) = 1,

we need
P (1 + (1− πk)r∆t+ πk(e

Rk − 1) > 0) = 1

since r∆t ∈ (−1,∞) and (eRk − 1) ∈ (−1,∞), we can get πk ∈ [0, 1] and as
a result Xπ

k > 0.
For the other direction, it is obvious.

The terminal wealth with respect to strategy π is

Xπ
N = x0

N∏
i=1

(
1 + r∆t+ πi−1(eRi − 1− r∆t)

)
where x0 ∈ R+ is the initial wealth, which is known.

The information available to an investor is described by the investor fil-
tration FH = (Ft)t∈[0,T ], for which we consider three cases H ∈ {R,C, F},
where

FR = (FRt )t∈[0,T ] with FRt generated by {Rs, s ≤ t},
FC = (FCt )t∈[0,T ] with FCt generated by {Rs, Es, s ≤ t},
FF = F ,

where we assume that σ−algebras FHt , H ∈ {R,C, F} are augmented by the
null sets N of P . FR correspond to an investor who observes only returns.
FC indicates the information deriving from the combination of returns and
expert opinions. Finally, FF expresses an investor who has full information
on the parameters of models.

The investor’s aim is to maximize her expected utility of terminal wealth
according to the available information:

π∗ = arg max
π∈AH

E[U(Xπ
T )] (2.5)
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where AH(x0) is the set of FH−admissible strategies, U : R+ → R ∪ [−∞]
is a utility function, and Xπ

t is the wealth process when investing according
to portfolio strategies π ∈ AH(x0). Note that π is only FH-adapted for all
the cases H ∈ {R,C, F}.
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2.1.1 Approximated Optimal Strategies in Discrete-
time

As a motivation, we will first approximate the optimal portfolio strategies
in case of H = F . This can be regarded as the benchmark to the restricted
strategies. We can then compute how much information is lost under partial
information. We consider the wealth process in (2.4) for a self-financing
admissible strategy πk:

Xπ
k+1 =

(
1 + (1− πk)r∆t+ πk(e

Rk+1 − 1)
)
Xπ
k , X0 = x0.

Logarithmic utility function

For logarithmic utility we maximize the following expected utility of terminal
wealth:

E[log(Xπ
T )] = log x0 +

N∑
k=1

E
[

log
(

1 + r∆t+ πk−1(eRk+1 − r∆t− 1)
)]

where Rk+1 ∈ R is discretized log-return in (2.2). Hence we want to maximize

the summation over E
[

log
(

1 + r∆t + πk−1(eRk+1 − r∆t− 1)
)]

. Point-wise

maximization of this term already leads to an admissible solution. We could
derive optimal strategy at time k

π∗k = arg sup
πk∈A

E
[

log
(

1 + r∆t+ πk(e
Rk+1 − r∆t− 1)

)]
.

There is no explicit solution for the optimal strategy in discrete-time even if
we know the parameter µ. One may only solve by numerical methods, e.g.
Monte Carlo method.

However one can get an approximate strategy instead. Applying second
order Taylor expansion for log(1 + x) and ex around 0, we get of order ∆t

E[log(Xπ
T )|Xπ

0 = x0] ≈ log x0 + rT +
N∑
k=1

E
[
πk−1(µ− r)∆t− 1

2
π2
k−1σ

2∆tε2
k

]
= log x0 + rT +

N−1∑
k=0

(
πk(µ− r)∆t−

1

2
π2
kσ

2∆t
)
.

(2.6)
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Hence, in order to maximize the sum in (2.6) pointwise, for any k ∈ T , the
optimal strategy is

πlog,Fk =
µ− r
σ2
∨ 0 ∧ 1.

Here, π∗k is a stochastic strategy since we assume investors can observe µ,
which is random, in the case of H = F . To solve the optimization prob-
lem using logarithmic utility function is consistent with using mean-variance
approach as shown in [BC10]. However, in our setting the distribution of
returns are not constant. The dynamic mean-variance optimization problem
is

π∗ = arg max
πk∈A

N∑
k=1

E[Wk|µ]− 1

2
Var[Wk|µ], (2.7)

where
Wk := 1 + r∆t+ πk−1(RD

k − r∆t)

and RD
k is discrete stock return. From (2.3), one could derive of order ∆t

E[Wk|µ] = 1 + r∆t+ πk−1(µ− r)∆t,
Var[Wk|µ] = π2

k−1σ
2∆t.

When maximizing the summation in (2.7) point-wise, we get the same for-
mula for the optimal strategy, π∗t .

In addition, we could get a deterministic optimal strategy if only µ0 and
σ0 are available to investors. In this scenario, µ is not observable. From
the Taylor expansion for expected utility of terminal wealth in (2.6). For
assuming deterministic π

E[ln(Xπ
T )] ≈ log x0 + rT +

N∑
k=1

E
[
πk−1(µ− r)∆t− 1

2
π2
k−1σ

2∆tε2
k

]
= log x0 + rT +

N∑
k=1

(
πk−1(µ0 − r)∆t−

1

2
π2
k−1σ

2∆t
)
.

To maximize the above expected utility, one could get a deterministic admis-
sible optimal strategy, known as Merton strategy in discrete-time:

π∗log,Merton =
µ0 − r
σ2

∨ 0 ∧ 1.
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Power utility function

For power utility U(x) = x1−α

1−α , α > 0, α 6= 1, we need to maximize the
following expected utility of terminal wealth:

E
[ 1

1− α
(Xπ

T )1−α
]

=
x1−α

0

1− α
E
[ N∏
k=1

(
1 + r∆t+ πk−1(eRk − 1− r∆t)

)1−α]
.

Since µ is time-independent and ε1, . . . , εN are independent of µ, one can
further derive conditional on µ

E
[ 1

1− α
(Xπ

T )1−α|µ
]

=
x1−α

0

1− α

N∏
k=1

E
[(

1 + r∆t+ πk−1(eRk − 1− r∆t)
)1−α
|µ
]
.

Hence, point-wise maximization can lead to an admissible solution. We could
derive optimal strategy at time k:

π∗k = arg max
πk∈AH(x0)

E
[(

1 + r∆t+ πk(e
Rk+1 − 1− r∆t)

)1−α∣∣∣µ]
which does not depend on time, since ε1, . . . , εN ∼ N (0, 1). Like the case
for logarithmic utility function, there is no explicit solution for the optimal
strategy in discrete-time even if we know the value of µ. However one can
also get an approximate strategy instead. Applying second order of Taylor
expansion for x1−α around 1 and ex around 0, we get of order ∆t:

E
[ 1

1− α
(Xπ

T )1−α|µ
]
≈ x1−α

0

1− α

N−1∏
k=0

(
1 +

1

1− α
(r∆t+ πk(µ− r)∆t)

+
π2
k

2(1− α)(−α)
σ2∆t

)
.

(2.8)

Hence, in order to maximize the product in (2.8) point-wise, for any k ∈ T ,
the optimal strategy is

πpower,Fk =
1

α

µ− r
σ2
∨ 0 ∧ 1.

The representations of approximated optimal strategies for both logarith-
mic and power utility in discrete-time settings are identical to the ones in
continuous settings.
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2.1.2 Partial Information with Expert Opinions

In this section, we are interested in the case under partial information. The
expert opinions are given by Es at time s. The partial information available
to an investor can be described by the investor filtration FH = (FHk )k∈T with
FHk generated by {Rs, s ≤ k} when H = R and {Rs, Es, s ≤ k} for expert
opinions Es when H = C, where we assume that the σ−algebras FHt are
augmented by the null sets N of P.

Logarithmic utility function

We could also get an approximate solution of the portfolio optimization prob-
lem in discrete-time setting as ∆t→ 0. From (2.6), using the tower property
of conditional expectation, linearity operator of conditional expectation and
that πt is FHt -measurable, we get

E[log(Xπ
T )] = E[E[ln(Xπ

T )|FHt ]]

= log x0 + rT +
N−1∑
k=0

E
[
πHk (E[µk|FHk ]− r)∆t− 1

2
(πHk )2σ2∆t

]
.

Hence, the approximated optimal strategy for problem 2.5 is given by

π̂log,Hk =
µ̂Hk − r
σ2

, k ∈ T , (2.9)

where µ̂k = E[µk|FHk ], k ∈ T . In practice, this equality represents the best
estimator for the mean rate of returns.

Power utility function

We typically focus on the problem:

πpower,H = arg max
πH∈A

E
[(XπH

0 )1−α

1− α

N−1∏
k=0

(
1 + r∆t+ πHk (eRk+1 − 1− r∆t)

)1−α]
= arg max

πH∈A

x1−α
0

1− α
E
[
E
[N−1∏
k=0

(
1 + r∆t+ πHk (eRk+1 − 1− r∆t)

)1−α∣∣∣FHk ]].
It is not achievable to get an approximated optimal strategy in this sce-
nario by maximizing point-wise since for two random variables A and B
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E[AB|FHk ] 6= E[A|FHk ] ∗ E[B|FHk ] even if A is independent of B. [FGW14]
proposed a dynamic programming method in continuous settings.

We put forward a method by applying multivariate version of the Taylor
Theorem in discrete setting. Let h : Rn → R be the second order Taylor
polynomial h(y) for y near a

h(y) ≈ h(a) +Dh(a)(y − a) +
1

2
(y − a)THh(y)(y − a), (2.10)

where Dh(y) is 1 × n matrix of partial derivatives, and Hh(y) is Hessian
matrix of h.

One can represent the maximal expected utility V0(x0) as a multivariate
function h : RN → R, y 7→ y1 · y2 . . . yN

V0(x0) := sup
π∈A

E
[(Xπ

0 )1−α

1− α

N−1∏
k=0

(
1 + r∆t+ πk(e

Rk+1 − 1− r∆t)
)1−α]

=
1

1− α
x1−α

0 sup
π∈A

E[h(Y )1−α].

Let a = (1, . . . , 1)T . Applying second order Taylor polynomial approximation
(2.10), one gets

V0(x0) =
1

1− α
x1−α

0 sup
π∈A

E[h(Y )1−α]

≈ 1

1− α
x1−α

0 sup
π∈A

E
[
1 + (1− α)

N∑
i=1

(
(Xi − 1) +

(−α)

2
(Xi − 1)2

)
+ (1− α)2

∑
j 6=k

(Xj − 1)(Xk − 1)
]
.

Here, maximizing terminal wealth Y can be approximated as maximizing the
above function with respect to X.
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Moreover, one can get an approximation for V0 of order ∆t

V0(x0) ≈ 1

1− α
x1−α

0 sup
π∈A

E
[
1 + (1− α)

N∑
i=1

(
(Xi − 1) +

(−α)

2
(Xi − 1)2

)
+ (1− α)2

∑
j 6=k

(Xj − 1)(Xk − 1)
]

=
1

1− α
x1−α

0 sup
πH∈A

E
[
1 + (1− α)

N∑
i=1

(
r∆t+ πHk (E[µ|FHk ]− r)∆t+ (πHk )2σ

2

2
∆t
)]
.

From above, we can get an approximate optimal strategy by maximizing
point-wise in terms of power utility function.

πpower,Hk =
1

α

µ̂k − r
σ2

(2.11)

where µ̂k = E[µk|FHk ]. It can be interpreted as a myopic strategy for power
utility function.

2.1.3 Discrete Kalman Filter for Drift Term

Our next task is to find the best estimator for µ. In the case H = R,
[CLMZ09] stated that the filter for µ can be interpreted as the well-known
Kalman-Bucy filter (Kalman filter). That the filter µ̂k = E[µk|FRk ] is the
best estimate of µk in L2 at time k, was illustrated in [BUV12]. We could
reformulate it in discrete-time as

µ̂k = E[µ|FRk ] =
σ̄2
k

σ2∆t+ σ̄2
k

(Rk +
σ2

2
∆t) +

σ2∆t

σ2∆t+ σ̄2
k

µ̂k−1,

Var[µ|FRk ] =
σ2∆t · σ̄2

k

σ2∆t+ σ̄2
k

.

Here, N (µ̄k−1, σ̄
2
k−1) for µ̄k−1 = µ̂k−1 and µ̄ = µ̂ is the prior normal distribu-

tion where σ̂2
k−1 = Var[µk−1|FRk−1]. We start with (µ̂0, σ̂

2
0) = (µ0, σ

2
0).

In the case H = C, we propose the following theorem to get the best
estimator in L2.

Theorem 2.1.4. (One-dimensional version: Kalman Filter with two obser-
vations) The hidden state xk ∈ R at time k of a discrete-time controlled
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process that is governed by the linear stochastic difference equation (thinking
of uk as control)

xk = akxk−1 + bkuk + εk

with two measurements:
z1
k = c1

kxk + ζ1
k

z2
k = c2

kxk + ζ2
k

where ak ∈ R is the state transition model which is applied to the previous
state xk−1; bk ∈ R describes how the control uk changes the state from k − 1
to k; c1

k and c2
k describe how to map the state xk to observation z1

k and z2
k re-

spectively; εk represents the process noise, which is assumed independent and
εk ∼ N (0, w2

k); ζ1
k and ζ2

k are measurement noises, which are all independent
of εk, time-independent, and ζ1

k ∼ N (0,m2
k), ζ2

k ∼ N (0, n2
k).

Denote

x̂∗k := E[xk|z1
k, z

2
k, xk−1 = x̂k−1]

=
(

1−Kk(λkc
1
k + (1− λk)c2

k)
)
E[xk|xk−1 = x̂k−1] +Kk

(
λkz

1
k + (1− λk)z2

k

)
and Kk and λk are the solutions of equations set

∂ Var(xk − x̂∗k)
∂Kk

= 0,

∂ Var(xk − x̂∗k)
∂λk

= 0;

and Kk
!

= Kk ∨ 0 ∧ 1
λkc

1
k+(1−λk)c2k

, λk
!

= λk ∨ 0 ∧ 1;

Here x̂∗k is the best estimator in the L2, i.e.

x̂∗k = arg inf
x̂k

E[(xk − x̂k)2].

Proof. See Appendix A.1

Corollary 2.1.5. If c1
k = c2

k = ck, Theorem 2.1.4 has an explicit solution as
follows:

λk =
n2
k − ρmknk

m2
k + n2

k − 2ρmknk
∨ 0 ∧ 1

Kk =
ck(a

2
kV ar(x− x̂k−1) + w2

k)

c2
k(a

2
k Var(x− x̂k−1) + w2

k) + (λ2
km

2
k + (1− λk)2n2

k + 2λk(1− λk)ρmknk)

where Kk
!

= Kk ∨ 0 ∧ 1
λkc

1
k+(1−λk)c2k

.
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Proof. Substituting c1
k = c2

k = ck.

Remark 2.1.6. W.l.o.g, we assume mk > nk. If ρ ≤ nk
mk

, 0 ≤ λk ≤ 1, and
else if nk

mk
≤ ρ ≤ 1, λk = 0. As a conclusion, if ρk ≤ nk

mk
,nk representing

lower variance and mk higher one here, we choose weight
n2
k−ρmknk

m2
k+n2

k−2ρmknk
on

the observation with larger variance and
m2
k−ρmknk

m2
k+n2

k−2ρmknk
on the observation

with less variance. If nk
mk
≤ ρ ≤ 1 we weight 0 on the observation with larger

variance and 1 on the observation with less variance. In the former case,
we can use both observations, which will decrease the expected square error
of estimator for state. However, in the latter we utilize the observation with
less variance as the only observation.

Proposition 2.1.7. Consider the case

µk = µ̄k + εk,

Ek+1 = µk∆t+ ζk,

Rk+1 = (µk −
σ2

2
)∆t+ εk,

where noisy terms εk ∼ N (0, σ̄2
k), ζk ∼ N (0,m2∆t), εk ∼ N (0, σ2∆t). These

noisy terms are all independent with each other. The prior distribution for
µk is given by N (µ̄k, σ̄

2
k). Then the best estimator for µk is

µ̂k := E[µk|Ek+1, Rk+1, µ̄k, σ̄
2
k]

= (1−Kk∆t)µ̄k +Kk(λkEk+1 + (1− λk)(Rk+1 +
σ2

2
∆t))

=
σ2m2µ̄k + σ2σ̄2

kEk+1 + σ̄2
km

2(Rk+1 + σ2

2
∆t)

(m2 + σ2)∆tσ̄2
k + σ2m2

Proof. Applying Theorem 2.1.4, and letting

ρ = 0

mk = m
√

∆t, nk = σ
√

∆t

c1
k = c2

k = ∆t

z1
k = Ek+1

z2
k = Rk+1 +

σ2

2
∆t
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we can derive

λ =
σ2

m2 + σ2
∈ [0, 1]

Kk =
σ̄2
k

∆tσ̄2
k + σ2m2

m2+σ2

∈ [0,∆t]

Substituted in

E[µk|Ek+1, Rk+1, µ̄
2
k, σ̄

2
k]

= (1−Kk∆t)µ̄k +Kk(λkEk+1 + (1− λk)(Rk+1 +
σ2

2
∆t))

we get the final result.

Remark 2.1.8. In our case, we have µk = µ, µ̄k = µ̂k−1, σ̄k = σ̂k−1, so the
prior is the filter from the step before. The prior assumption µ̄, the obser-
vation and expert opinions can be understood as three observations. Two of
them could combined with using the discrete Kalman filter, and the result-
ing filter can be combined with remaining observation again. The resulting
filter coming from these two-step process is the same as what we defined in
Proposition 2.1.7.
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2.2 Generalized Kalman Filter and Uniform

Expert Opinions

In the remaining part of this chapter we shall discuss estimation of µ if we
have uniform expert opinions, i.e., if an expert provides a range for the real
parameter. We discuss only the estimation. Then the estimate (approxi-
mate filter) can be put in the approximate optimal strategy for logarithmic
or power utility as in (2.9) or in (2.11).
Investors sometimes will have the idea that the drift term is located in an
interval with no additional weight in the middle. This assumption will give
a uniform expert opinion. We start with the univariate setting.
Let Y ∈ R be defined on the probability space (Ω,A,P). The prior assump-
tion for is Y ∼ N (µ, σ2). Now we have additional observation (or expert
opinion) which gives Y ∈ (a, b),−∞ ≤ a ≤ b ≤ +∞. The Y conditional
on a ≤ Y ≤ b has a truncated normal distribution. Its probability density
function is given by

f(y;µ, σ, a, b) =
φ(y−µ

σ
)

σ(Φ( b−µ
σ

)− Φ(a−µ
σ

))
.

Here φ(.) is PDF of standard normal distribution and Φ(.) is CDF of stan-
dard normal distribution. Note that Φ′(x) = φ(x). The denominator of f
represents the probability that Y can lie in the interval of [a, b]. Thus f can
be interpreted that normal distribution density function uniformly scatters
in the targeted range [a, b].

Lemma 2.2.1. The conditional expectation and conditional variance for
Yt ∈ [a, b] is given by

E[Y |a ≤ Y ≤ b] = µ+ σ
φ(a−µ

σ
)− φ( b−µ

σ
)

Φ( b−µ
σ

)− Φ(a−µ
σ

)

V ar[Y |a ≤ Y ≤ b]

= σ2

{
1 +

φ
(
a−µ
σ

) (
a−µ
σ

)
− φ

(
b−µ
σ

) (
b−µ
σ

)
Φ( b−µ

σ
)− Φ(a−µ

σ
)

−

[
φ
(
a−µ
σ

)
− φ

(
b−µ
σ

)
Φ( b−µ

σ
)− Φ(a−µ

σ
)

]2}
.

Proof. See Appendix A.1.
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Remark 2.2.2. From the definition of φ and Φ, we know that lim
a→−∞

φ(a−µ
σ

) =

lim
b→+∞

φ( b−µ
σ

) = 0, lim
a→−∞

Φ(a−µ
σ

) = 0 and lim
b→+∞

φ( b−µ
σ

) = 1. Such that

lim
a→−∞,b→+∞

E[Y |a ≤ Y ≤ b] = µ, lim
a→−∞,b→+∞

V ar[Y |a ≤ Y ≤ b] = σ2.

Actually the distribution of Y conditional on [a, b] is approaching the normal
distribution whose expected value is µ when a→ −∞ and b→ +∞.

Remark 2.2.3. Suppose −∞ ≤ a ≤ b ≤ +∞ and a, b ∈ R, we have
lim
b→a

E[Y |a ≤ Y ≤ b] = a, and lim
b→a

V ar[Y |a ≤ Y ≤ b] = 0. This leads to

a Dirac delta distribution δa(y) with variance 0.

2.2.1 Multivariate Case and Black-Litterman Model

Let Y = (Y1, Y2, · · · , Yn)T denote n-dimensional random variables of stock
returns, all defined on the same probability space (Ω,A,P). Y has a non-
singular n-variate normal distribution with mean vector µ = (µ1, µ2, · · · , µn)T

and (n × n) positive definite correlation matrix Σ = (σi,j), such that Y has
density:

fY (y, µ,Σ) = (2π)−
n
2 (det Σ)−

1
2 exp

{
−1

2
(y − µ)′Σ−1(y − µ)

}
;Y ∈ Rn.

Suppose partial information at time t > 0 is given as

Y1 ∈ B1, Y2 ∈ B2, · · · , Yn ∈ Bn,

where Bi = [ai, bi]. The notation of information can be represented as y ∈
B = {y ∈ Rn|yi ∈ Bi, i ∈ [1, n]}. If the information is not given, the
range can be represented as (−∞,+∞). Letting a = {a1, a2, · · · , an} and
b = {b1, b2, · · · , bn}, the density function of conditional probability is given
by

ϕµΣB = fY |X(y, µ,Σ, B) =

{
exp{− 1

2
(y−µ)′Σ−1(y−µ)}

β
y ∈ B,

0 otherwise;
(2.12)

where, β =
∫
B

exp
{
− 1

2
(y − µ)′Σ−1(y − µ)

}
dy.

Equation ((2.12)) illustrates distribution of conditional probability is dou-
bly truncated multivariate normal distributed. [Wih12] proposed explicit ex-
pression for the truncated mean and variance for the multivariate normal
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distribution with arbitrary rectangular double truncation. Mean and covari-
ance matrix can be derived by computing moment generating function.

Lemma 2.2.4. The expected value and covariance matrix for Y , which is
normally distributed and truncated by B, are

E(Yi) =
n∑
k=1

σi,k(Fk(ak)− Fk(bk)) + µi.

Cov(Yi, Yj) = E(YiYj)− E(Yi)E(Yj)

with

E(YiYj) =σi,j +
n∑
k=1

σi,k
σj,k(akFk(ak)− bkFk(bk))

σk,k

+
n∑
k=1

σi,k
∑
q 6=k

(σj,q −
σk,qσj,k
σk,k

)[(Fk,q(ak, aq)− Fk,q(ak, bq)

− (Fk,q(bk, aq)− Fk,q(bk, bq))],

where Fk(x) represents the marginal density function of ϕ0ΣB∗, here
B∗ = {y ∈ Rn|ai − γi ≤ yi ≤ bi − γi}i∈[0,n] with γi =

∑n
k=1 σi,ktk.

Fk,q(x, y) is the bivariate marginal density, which is given by

Fk,q(x, y) =

∫ b1

a1

· · ·
∫ bk−1

ak−1

∫ bk+1

ak+1

· · ·
∫ bq−1

aq−1

∫ bq+1

aq+1

∫ bn

an

ϕµΣB(x, y,x−k,−q)dx−k,−q,

Proof. See Appendix A.1

[Tal61] stated another formula for Fk(x). It was represented by the prod-
uct of density of a− γ or b− γ and another multiple integral.

Next, we apply the assumption of uniform distribution to the Black-
Litterman model, which has one-period setting. [Wal14] illustrated how Black-
Litterman model derived by Bayesian network and derived explicit formula
with expert’s confidence for conditional expectation of stock return. Poste-
rior distribution is given by

P[Y |X] ∼ N
(
[Ω−1µ+ Σ−1Π]T [Ω−1 + Σ−1]−1, [Ω−1 + Σ−1]−1

)
,
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where X represents the expert opinion, which is Gaussian given by

P[X|Y ] ∼ N (µ,Ω) ,

and the prior distribution, whose information comes from observing stock
returns, is also normal distribution given by

P[Y ] ∼ N (Π,Σ) ,

i.e. Π̂ = E[Y |X] = [Ω−1µ + Σ−1Π]T [Ω−1 + Σ−1]−1 and Cov[Y |X] = [Ω−1 +
Σ−1]−1.
The inverse of the covariance, which is illustrated as investors’ confidence,
can be also interpreted as precision. [Wal14] described the posterior mean as
the weighted mean of the prior and conditional means, and weighting factors
are respective precision. Moreover, the posterior precision can be described
as the sum of the prior and conditional precision. Note that lim

Ω→+∞
Π̂ = Π.

Expert opinions will not be functional if the opinions are not sufficiently
believable.

Example 2.2.5. Suppose three risky assets (Stock A Stock B and Stock C)are
considered. The current means of stock returns are µ = {1, 1, 1} and the
covariance matrix is assumed to be9.1 3.0 6.0

3.0 1.1 2.0
6.0 2.0 4.1

 .
The expert opinion is that return of stock A is assumed to be 3 and the
variance Ω of expert opinion is to be 1. Using [Wal14]’s formula, we can
derive µ̂BL = {2.80, 1.60, 2.19} and updating covariance becomes0.90 0.30 0.59

0.30 0.21 0.22
0.59 0.22 0.54

 .
If Ω increases to 9, the result is significantly different as follows µ̂BL =
{2.01, 1.33, 1.66} and updating covariance becomes4.52 1.49 2.98

1.49 0.60 1.01
2.98 1.01 2.11

 .
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The posterior distribution approaches to prior distribution if Ω increases.
By contrast, we set lower limits as a = {2,−∞,−∞} and upper limits as
b = {4,+∞,+∞}. The bounds are done to the range of mean of condition

X between
[
µ−
√

Ω, µ+
√

Ω
]
. The updated mean is µ̂ = {2.93, 1.64, 2.27}

and the updated covariance is0.33 0.11 0.21
0.11 0.15 0.09
0.21 0.09 0.29

 .
Then the range of X can be extended. The lower boundary is a = {0,−∞,−∞}
and upper one is b = {6,+∞,+∞}.
The updated mean is now µ̂ = {2.44, 1.47, 1.95} and the updated covariance
is 2.46 0.81 1.62

0.81 0.38 0.56
1.62 0.56 1.21

 .
Figure 2.1 and Figure 2.2 show the comparison with Black-Litterman

Model with Gaussian expert opinions. The setting of ranges of condition X
is considered to compare with Black-Litterman model, in which the expert
opinion is not 100% reliable. Two factors are taken into account. Firstly, how
the conditional expectation of stock returns acts when the ranges of condition
X increases. Secondly, whether the actions of conditional expectation will
differ when the targeted µ locates in different intervals of prior distribution.
Figure 2.1 and Figure 2.2 illustrate that the conditional expectation of both

models will approach 1 if the ranges extended. Moreover, the mean value of
prior distribution is easier to touch in our model when the range of condition
extend.
However, when the condition of X is equivalent to [µ −

√
ΩA, µ +

√
ΩA],

the conditional expectations of all three stocks in our model will be larger
than that in Black-litterman model with Gaussian expert until Ω reaches a
value. When the condition of X is equivalent to [µ − 2

√
ΩA, µ + 2

√
ΩA],

the conditional expectations of all three stocks in our model are throughout
smaller than the ones in Black-Litterman model with Gaussian. What’s
more, no matter what intervals of the prior distribution the targeted µ locates
in , the above properties keep similar.
We can apply our model when experts can only identify the range of several
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(a) The lower limit and upper limit of X is equal to µ−
√

ΩA and
µ +
√

ΩA, when targeted µ = 3, which is between Π −
√

ΣA and
Π +
√

ΣA

(b) The lower limit and upper limit of X is equal to µ − 2
√

ΩA

and µ+ 2
√

ΩA, when targeted µ = 3, which is between Π−
√

ΣA

and Π +
√

ΣA

Figure 2.1
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(a) The lower limit and upper limit of X is equal to µ−
√

ΩA and
µ+
√

ΩA, when targeted µ = 6, which is between Π− 2
√

ΣA and
Π + 2

√
ΣA

(b) The lower limit and upper limit of X is equal to µ − 2
√

ΩA

and µ+ 2
√

ΩA, when targeted µ = 6, which is between Π− 2
√

ΣA

and Π + 2
√

ΣA

Figure 2.2
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stocks but don’t have sufficient confidence to identify these stocks’ targeted
returns.

2.2.2 Dynamic Model and Generalized Kalman Filter

In this section, we try to use generalized Kalman filter to calculate the filter
for µ. To start with, we will discuss the relationship between Bayesian Net-
work and Kalman filter.
To define the generalised Kalman Filter, we suppose that the state {xk, k ∈
N} evolve by

xk = fk(xk−1, wk) (2.13)

where fk : R×R→ R is a function (can be linear or non-linear) of the states
xk−1 and i.i.d. tracking error term wk.
The observations or measurements of states are also given recursively as

zk = hk(xk, vk) (2.14)

where hk : R×R→ R is a function (can be linear or non-linear) of the state
xk and i.i.d. measurement error term vk.
In particular, we estimate the filter of xk based on the set of all available
information from observations z1:k = {zi, i = 1 : k}. For linear Kalman Fil-
ter, fk and hk are assumed linear and the noise term wk and nk are assumed
Gaussian. In this assumption the estimation of xk is a optimal estimation by
minimizing the variance of the difference of true state and estimated state.
However, in the model of linear Kalman Filter, only mean and covariance of
the state is considered rather that the whole distribution.
From a Bayesian perspective, the state xk is estimated in the sense of prob-
ability at time k. So it is required to calculate the PDF p(xk|z1:k). Suppose
the initial PDF p(x0|z0) = p(x0) is known, the PDF p(xk|z1:k) can be ob-
tained recursively.
Now, we only focus on the step that we estimate the state xk at time k from
the state xk−1 at time k− 1. Suppose the PDF p(xk−1|z1:k−1) is know by the
recursive scheme. Firstly, the function (2.14) is applied to derive the prior
PDF of the state at time k via the law of total probability (or Chapman-
Kolmogorov equation)

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. (2.15)
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To derive the above equation, we use the Markov property of the state as
(2.13) describes, i.e. p(xk|xk−1, z1:k−1) = p(xk|xk−1). Moreover, the PDF
p(xk|xk−1) can be obtained from the system equation (2.13) and the known
probability of wk.
For the classical Kalman filter, at time t, t = 1, . . . , k − 1, the noise term
w1:k−1 is Gaussian and independent of x1:k−1. fk is a linear function. The
function fk is

fk(xk−1, wk) = Fkxk−1 + wk, Fk ∈ R+ and wk ∼ N (0,Γ2
1). (2.16)

The conditional state xk|xk−1 is also Gaussian and its distribution is given
by N (Fkxk−1,Γ

2
1). Note that we eliminate the control variable of classical

Kalman filter here.
Suppose that we have estimated the state xk−1 and it follows N (ϑ,Γ2

2). Then
we can obtain the density function of conditional state xk|z1:k−1 via function
(2.15)

p(xk|z1:k−1) =
1

2πΓ1Γ2

∫ ∞
−∞

e
−

(xk−Fkxk−1)2

2Γ2
1

−
(xk−1−ϑ)2

2Γ2
2 dxk−1

=
1√

2π(F 2
kΓ2

2 + Γ2
1)
e
− (xk−Fkϑ)

2(F2
k

Γ2
2+Γ2

1)

(
by Gaussian intergral

∫ ∞
−∞

e−ax
2+bx+cdx =

√
π

a
e
b2

4a
+c
)
.

Hence, for the conditional state we have xk|z1:k−1 ∼ N (Fkϑ,
√
F 2
kΓ2

2 + Γ2
1).

Moreover, another approach can be applied to the case of general prior dis-
tribution. It is called the arithmetic of random variables.

We define the continuous random variablesX, Y, Z having the relationship
Z = AX + BY A,B ∈ R+. And fZ(z), fX(x), fY (y) are the PDF of Z, X
and Y respectively. fXY (x, y) is the joint density function of X and Y . FZ(z)
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is the CDF of Z. Then, the PDF of Z can be obtained, as

fZ(z) =
dFZ(z)

dz

=
d

dz

∫ ∞
−∞

∫ z−Ax
B

−∞
fXY (x, y)dydx

=

∫ ∞
−∞

d

dz

∫ z−Ax
B

−∞
fXY (x, y)dydx

=
1

B

∫ ∞
−∞

fXY

(
x,
z − Ax
B

)
dx, (by Leibniz rule)

if X, Y are independent, the above function is

fZ(z) =
1

B

∫ ∞
−∞

fX(x)fY (
z − Ax
B

)dx. (2.17)

If we have the conditions that

fX(x) = p(xk−1|z1:k−1) =
1√

2πΓ2

e
− (x−ϑ)2

2Γ2
2 ,

fY (y) = p(wk) =
1√

2πΓ1

e
− y2

2Γ2
1 ,

A = Fk, and B = 1, the PDF of Z representing state xk|z1:k−1 can be
attained:

fZ(z) =

∫ ∞
−∞

fX(x)fY (z − Fkx)dx

=

∫ ∞
−∞

1√
2πΓ2

e
− (x−ϑ)2

2Γ2
2 · 1√

2πΓ1

e
− (z−Fkx)2

2Γ2
1 dx

=
1√

2π(F 2
kΓ2

2 + Γ2
1)
e
− (z−Fkϑ)

2(F2
k

Γ2
2+Γ2

1) .

( by Gassian intergral)

Note that the result is the same as the one derived via the Chapman-
Kolmogorov equation.
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At time k, observations zk is available and we can update the prior dis-
tribution p(xk|z1:k−1) by Bayes’ rule

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)∫
p(zk|xk)p(xk|z1:k−1)dxk

, (2.18)

where the PDF p(zk|xk) is defined by the function (2.14) and the statistics of
vk. [AMGC02] explain that in some situations the posterior density cannot be
determined analytically, however there is some other solutions, for instance
the Extended Kalman Filter and some particle filters, which are not optimal.

Observations with uniform distribution

We have the same assumptions at time t, t = 1, . . . , k− 1. Typically at time
t, t = 1, . . . , k − 1, the noise term wt is Gaussian and independent of xt. fk
is a linear function. The function fk is given in function (2.16). Such that
the state x1:k−1 is also Gaussian.
However, at time k observation is modelled as random variable with uniform
distribution, i.e. hk is a linear function and vk follows uniform distribution.
Under these assumptions, the state p(xk|z1:k) can be estimated by the func-
tion (2.18) and its distribution will be truncated normal.
However, the state xk+1 at time k + 1 is problematic. The reason is that
the distribution of state xk is truncated normally distributed rather than
Gaussian and this property transfers the problem to non-Gaussian state or
non-linear system function, which may lead to intractable analytical solu-
tions.

Firstly, we try to derive the optimal Bayesian solution via function (2.13)
and (2.14). The PDF of p(xk+1|z1:k) can be obtained from the arithmetic
sum of xk|z1:k and wk+1.
Suppose xk|z1:k follows truncated normal distribution TN(ϑ2, Γ

2
2 , a, b) and

wk+1 follows N (ϑ1, Γ
2
1 ). Then the PDF of xk+1|z1:k, represented by fZ(z),

can be obtained by function (2.17),

fZ(z) =

∫ b

a

e
− (x−ϑ2)2

2Γ2
2

√
2πΓ2K

· e
−

(z−Fk+1x−ϑ1)2

2Γ2
1

√
2πΓ1

dx+ 0(x < a) + 0(x > b)

=
1

2πKΓ1Γ2

∫ b

a

e
− (x−ϑ2)2

2Γ2
2
−

(z−Fk+1x−ϑ1)2

2Γ2
1 dx
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where K = Φ
(
b−ϑ2

Γ2

)
− Φ

(
a−ϑ2

Γ2

)
.

Further, xk+1|z1:k+1 can be derived via the Bayesian rule since the PDF of
zk+1|xk+1 and xk+1|z1:k are known. Here, we want to check whether Z follows
a well-known distribution (e.g. Gaussian or truncated Gaussian). fZ(z) can
be reformulated as

fZ(z) =
1

2πKΓ1Γ2

· exp

{
− (z − ϑ1 − Fk+1ϑ2)2

2(Γ 2
1 + Γ 2

2F
2
k+1)2

}
·

∫ b

a

exp

{
−

(Γ 2
1 + Γ 2

2F
2
k+1)

2Γ 2
1Γ

2
2

(
x− Γ 2

1 ϑ2 + Γ 2
2Fk+1(z − ϑ1)

Γ 2
1 + Γ 2

2F
2
k+1

)2}
dx,

where∫ b

a

exp{−c(x− h)2}dx =

√
π

2
√
c

[
erf
(√

c(b− h)
)
− erf

(√
c(a− h)

)]
.

Let c =
(Γ 2

1 +Γ 2
2 F

2
k+1)

2Γ 2
1 Γ

2
2

and h =
Γ 2

1 ϑ2+Γ 2
2 Fk+1(z−ϑ1)

Γ 2
1 +Γ 2

2 F
2
k+1

, fZ(z) can be rewrite as

fZ(z) =
1

√
2π
√
Γ 2

1 + Γ 2
2F

2
k+1

· e
−

(z−ϑ1−Fk+1ϑ2)2

2(Γ2
1 +Γ2

2 F
2
k+1

) · h(z)

2K

where

h(z) = erf
(√(Γ 2

1 + Γ 2
2F

2
k+1)

2Γ 2
1Γ

2
2

(b− Γ 2
1 ϑ2 + Γ 2

2Fk+1(z − ϑ1)

Γ 2
1 + Γ 2

2F
2
k+1

)
)

− erf
(√(Γ 2

1 + Γ 2
2F

2
k+1)

2Γ 2
1Γ

2
2

(a− Γ 2
1 ϑ2 + Γ 2

2Fk+1(z − ϑ1)

Γ 2
1 + Γ 2

2F
2
k+1

)
)
.

Note that h(z) → 2 and K → 1 when a → −∞ and b → +∞, such that
fZ(z) is the PDF of N (ϑ1 + Fk+1ϑ2, Γ

2
1 + Γ 2

2F
2
k+1). Otherwise, fZ(z) should

not be a PDF of a well-known distribution.

This formula can be written in terms of the cumulative distribution func-
tion of standard normal distribution Φ(·)

h(z) = 2

(
Φ
(z − Γ 2

1

Γ 2
2 F

2
k+1

(b− ϑ2)− (b− ϑ1)
√

(Γ 2
1 +Γ 2

2 F
2
k+1)Γ1Γ2

Γ 2
2 F

2
k+1

)
−Φ
(z − Γ 2

1

Γ 2
2 F

2
k+1

(a− ϑ2)− (a− ϑ1)
√

(Γ 2
1 +Γ 2

2 F
2
k+1)Γ1Γ2

Γ 2
2 F

2
k+1

))
.
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In the next step we aim at finding a sub-optimal solution to estimate the
state xk+1. The target is to find a method by which state xk+1 is estimated
and has a similar distribution as given by Bayesian solution above.
The problem can be transferred from non-Gaussian state to a non-linear sys-
tem and hence we can apply non-linear Kalman filter, for instance extended
Kalman filter, to solve it.
For a scalar measurement, if the CDF F of the distribution of state xk is
invertible, the state can be transferred from a new state x̂k with Gaussian
distribution by the probability integral transform

xk = F−1(G(x̂k))

where, G is the CDF of distribution of the new state x̂k. If x̂k ∼ N (ν, ζ2)
and xk follows a truncated normal distribution TN(ϑ2, Γ

2
2 , a, b). Then, xk

can be expressed via x̂k

xk = Φ−1

(
KΦ

(
x̂k − ν
ζ

)
+ Φ

(a− ϑ2

Γ2

))
· Γ2 + ϑ2.

Hence,

fk+1(x̂k, wk+1) = Fk+1

[
Φ−1

(
KΦ

(
x̂k − ν
ζ

)
+ Φ

(a− ϑ2

Γ2

))
· Γ2 + ϑ2

]
+ wk+1

= Fk+1

[
erf−1

(
2KΦ

(
x̂k − ν
ζ

)
+ 2Φ

(a− ϑ2

Γ2

)
− 1

)
·
√

2Γ2 + ϑ2

]
+ wk+1.

(2.19)
Note Fk+1 is only a constant coefficient, i.e. Fk+1 ∈ R+, wk+1 ∼ N (0, Γ 2

1 ).
And the error function erf is used since the property of inverse error function
and its derivative will be discussed later.

Extended Kalman Filter

The extended Kalman filter (EKF) is the non-linear version of the Kalman
filter which linearizes the estimate of the current mean and covariance. It
utilizes the first order Taylor expansion to approximate the function fk+1.
We only approximate the function fk+1 here, because we assume that hk+1

is already linear.
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The first order derivative Wk+1(x̂k) of fk+1(x̂k, wk+1) with respect to x̂k is

Wk+1(x̂k) =
∂fk+1(x̂k, wk+1)

∂x̂k

=
2KFk+1Γ2√

πζ
· e−

(x̂k−ν)2

2ζ2 · ∂ erf−1(z)

∂z

∣∣∣∣∣
w=2KΦ

(
x̂k−ν
ζ

)
+2Φ

(
a−ϑ2
Γ2

)
−1

.

The intuition is that the inverse error function can be approximated by the
Maclaurin series (usually the inverse error function is approximated by poly-
nomial function or rational function )

erf−1(w) =
∞∑
k=0

ck
2k + 1

(√π
2
w
)2k+1

where

ck =
k−1∑
m=0

cmck−1−m

(m+ 1)(2m+ 1)
.

If the first two terms are left

erf−1(w) =

√
π

2
(w +

π

12
w3 +O(w5)),

Wk+1(x̂k+1) can be approximated as

Wk+1(x̂k) =
KFk+1Γ2

ζ
·e−

(x̂k−ν)2

2ζ2

[
1+

π

4

(
2KΦ

(
x̂k − ν
ζ

)
+2Φ

(a− ϑ2

Γ2

)
−1

)2]
.

Note that w = K + 2Φ
(
a−ϑ2

Γ2

)
− 1 = Φ

(
b−ϑ2

Γ2

)
+ Φ

(
a−ϑ2

Γ2

)
− 1 such that

w ∈ (−1, 1) here. The approximation will be accurate around w = 0, i.e.
ϑ2 = a+b

2
.

Then if x̂k ∼ N (ν, ζ2), we can use extended Kalman filter to derive a
Gaussian state x̂k+1|z=1:k,

x̂k+1|z=1:k ∼ N
(
fk+1(ν, 0),Wk+1(x̂k = ν)2ζ2 + Γ 2

1

)
.
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Here,

fk+1(ν, 0) = Fk+1

[
√

2Γ2 · erf−1

(
Φ
(b− ϑ2

Γ2

)
+ Φ

(a− ϑ2

Γ2

)
− 1

)
+ ϑ2

]
,

Wk+1(x̂k = ν) =
2KFk+1Γ2√

πζ
· ∂ erf−1(w)

∂w

∣∣∣∣∣
w=Φ

(
b−ν
ζ

)
+Φ

(
a−ϑ2
Γ2

)
−1

.

Note that the mean of new state ν is irrelevant to the approximated
Gaussian distribution.

Unscented Kalman filter

Unscented Kalman filter (UKF) computes a set of so-called sigma points
and transforms each sigma point through the non-linear function fk+1, and
then computes a Gaussian distribution from the transformed and weighted
sigma points. The unscented Kalman filter avoids to linearize around the
mean as Taylor expansion and EKF does. Next we typically focus on the
one-dimensional case. The sigma points are choose as

χ0 = ν,

χ1 = ν +
√

1 + λζ,

χ2 = ν −
√

1 + λζ.

The weights are given by

w0
m =

λ

1 + λ
,

w0
c = w0

m + (1− α2 + β),

wim = wic =
1

2(1 + λ)
for i = 1, 2.

We have some free parameters here as there is no unique solution. The scaled
unscented transform suggests κ ≥ 0, α ∈ (0, 1] and λ = α2(1 + κ)− 1. β = 2
is optimal the choice for Gaussian (however our model is not Gaussian). A
typical recommendation is α = 0.001, κ = 0. However, a larger value of α
may be beneficial in order to better capture the spread of the distribution
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and possible non-linearities as discussed in [Bit16]. Next, we can predict the
Gaussian state x̂k+1|z1:k. Suppose

χ̂ik = fk+1(χik, wk+1 = 0),

then the expected value and variance of state x̂k+1|z1:k is

E(x̂k+1|z1:k) =
2∑
i=0

wimχ̂
i
k,

V ar(x̂k+1|z1:k) =
2∑
i=0

wic(χ̂
i
k − ν)2 + Γ 2

1 .

Note that the mean of new state ν is irrelevant to the mean of approximated
Gaussian distribution, but it can influence the variance of the Gaussian dis-
tribution.

Accuracy of inverse error function

In some settings of values for the parameters, e.g. (a = 3, b = 6, Γ2 = 2),
the methods of EKF and UKF both have strong ability to approximate the
distribution of fZ(z) to be a Gaussian distribution (see Figure 2.3a). Also
from Table 1, the total variation distance of true distribution and approxi-
mated Gaussian is not significant. However, in other settings of parameters
(a = 17, b = 20, Γ2 = 2), these two methods will give distinguished result
(see Figure 2.3b).

Table 2.1: Total variation distance of true distribution and approximated
Gaussian (10−3)

Expert Opinion with Uniform Distribution EKF UKF

[3, 6] 0.1 0.07
[17, 20] 3.4 3.5

In Table 2.1, we compute the total variation distance between true dis-
tribution and the approximated Gaussian in these settings.
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Table 2.2: Total variation distance of true distribution and approximated
Gaussian (10−3)

Expert opinion with uniform distribution U(17, 20) EKF UKF

O(x5) 3.4 3.5
O(x9) 1.4 1.4

More accurate inverse error function 0.1 0.07

Because of the fact that as |w| =
∣∣∣Φ( b−ϑ2

Γ2

)
+ Φ

(
a−ϑ2

Γ2

)
− 1
∣∣∣ → 1, the

speed of convergence of Maclaurin series will decrease, one needs higher order
Maclaurin series to approximate when w is closed to −1 or 1.
The higher order of Maclaurin series is expressed as

erf−1(w) =

√
π

2
(w +

π

12
w3 +

7π2

480
w5 +

127π3

40320
w7 +O(w9)).

Then, the formula of Wk+1(w) can be rewritten as

Wk+1(w) =
KFk+1Γ2

ζ
· e−

(x̂k−ν)2

2ζ2

[
1 +

π

4
w2 +

7π2

96
w4 +

127π3

5760
w6

]

where, w(x̂k) = 2KΦ

(
x̂k−ν
ζ

)
+ 2Φ

(
a−ϑ2

Γ2

)
− 1.

For the function fk+1(w,wk+1), the higher order Maclaurin series are applied

fk+1(w,wk+1) = Fk+1

[√
2π

2
(w+

π

12
w3 +

7π2

480
w5 +

127π3

40320
w7)Γ2 +ϑ2

]
+wk+1.

From the Figure 2.4a, the mean of approximated Gaussian via higher or-
der Maclaurin series is closer to the true distribution compared to that via
lower order Maclaurin series. Due to the fact that the last term of Wk+1(w)
is O(x8), converging more slowly than that of fk+1(w) with last term O(x9),
the variance of approximated Gaussian via higher order Maclaurin series is
not estimated well in this case. From Figure 2.4b, the inverse error function
is approximated more accurately. Hence the distortion of both the mean and
variance is revised.



2.2 Generalized Kalman Filter and Uniform Expert Opinions 39

From Table 2.2, the accuracy of approximation of inverse error function can
affect the total variation distance between true distribution and approxi-
mated Gaussian. In conclusion, how to approximate the inverse error func-
tion is crucial especially when the point we want to approximate is far away
from zero.

New Gaussian State

To determine the new Gaussian state x̂k is important, because it influences
the non-linear function and the moment of new state will also affect the
result of prediction. Since our goal is to approximate a truncated Gaussian
state TN(ϑ2, Γ

2
2 , a, b) to a Gaussian one, we utilize the different methods as

mentioned in the above chapter. However, these methods can be only used
numerically.
The first approach is to construct an optimization problem, in which uniform
distribution U(a, b) with density function fU is approximated with a Gaussian
distribution with density function f θN by statistic distance d(·).

The parameters of density function f θ
∗
N of approximated Gaussian can

be obtained by minimizing the statistical distance of the class of normal
distribution and targeted uniform distribution, i.e.

θ∗ = arg inf
θ∈Θ

d(fU , f
θ
N)

where, Θ is the parameter space of normal distributions and f θN is the density
function of normal distribution parametrized by θ. Suppose

f θ
∗

N =
1√

2πσU
e
− (x−µU )2

2σ2
U .

Then these parameters can be represented by uniform distribution U(a, b)
numerically,

µU =
a+ b

2
,

σU =
b− a
m

,

where m can vary from different statistical distance (e.g. 3.9598 by Hellinger
distance and 2.9728 by total variance distance). Further the pdf of the new
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Gaussian state x̂k can be derived by Bayesian rule,

fT̂ (x) =
1√

2πσT̂
e
−

(x−µ
T̂

)2

2σ2
T̂

where,

µT̂ =
Γ 2

2

σ2
U + Γ 2

2

µU ,

σ2
T̂

=
σ2
UΓ

2
2

σ2
U + Γ 2

2

.

We use the notation T̂ here because the truncated normal distribution is not
approximated with Gaussian directly. Instead we approximate a uniform
distribution first.

Another approach is to approximate truncated Gaussian with normal
distribution directly. The optimization problem can be constructed in the
mathematical form as

θ∗ = arg min
θ∈Θ

d(fT , f
θ
N)

where, Θ is the parameter space of normal distributions and f θN is the density
function of normal distribution parametrized by θ. And importantly, fT is
the truncated normal distribution here.
From this optimization problem, a normal distribution with different param-
eters is given by

fT (x) =
1√

2πσT
e
− (x−µT )2

2σ2
T .

Table 2.3: Total variation distance of true distribution and Approximated
Gaussian (10−3)

Expert Opinion with Uniform Distribution with U(17, 20) EKF UKF

Uniform distribution is approximated by TV 0.12 0.074
Truncated Normal distribution is approximated by TV 0.079 0.090

Uniform distribution is approximated by Hellinger 0.078 0.077
Truncated Normal distribution is approximated by Hellinger 0.078 0.077
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Different approaches have different results, one needs to compare what is
close to the true distribution of xk+1|z1:k

. Moreover, whether the choice of the
new state affects the result needs to be checked. From Table 2.3, for extended
Kalman filter it is better to approximate truncated normal distribution di-
rectly if total variation distance is utilized, while for the unscented Kalman
filter, approximating uniform distribution is preferred. However, there is no
big difference when using Hellinger distance.



42 Kalman Filter and Portfolio Optimization

(a) wk+1 ∼ N (0, 9), xk ∼ TN(2, 100, 3, 6). α = 1, κ = 0, β = 2 for
UKF and Fk+1 = 1. Non-linear function (2.19) is approximated
by Extended Kalman filter and Unscented Kalman filter.

(b) wk+1 ∼ N (0, 9), xk ∼ TN(2, 100, 17, 20). α = 1, κ = 0, β = 2
for UKF and Fk+1 = 1. Non-linear function is approximated by
Extended Kalman filter and Unscented Kalman filter respectively.

Figure 2.3: EKF and UKF with different parameters
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(a) wk+1 ∼ N (0, 9), xk ∼ TN(2, 100, 17, 20). α = 1, κ = 0, β = 2
for UKF and Fk+1 = 1. Non-linear function is approximated by
Extended Kalman filter and Unscented Kalman filter, however the
non-linear function (2.19) is expressed by lower Maclaurin series
with O(x5) and higher Maclaurin series with O(x9).

(b) wk+1 ∼ N (0, 9), xk ∼ TN(2, 100, 17, 20). α = 1, κ = 0, β = 2
for UKF and Fk+1 = 1. Non-linear function is approximated by
Extended Kalman filter and Unscented Kalman filter, however
the non-linear function is expressed by high Maclaurin series with
O(x9) and more accurate inverse error function.

Figure 2.4: Higher order Maclaurin series for inverse error function





Chapter 3

Estimation for MSMs with
Expert Opinions

In this chapter, we consider a discrete-time market model, where both drift
and volatility are driven by a Markov chain:

Rk = bTYk−1 + aTYk−1εk.

Expert Opinions provide additional information on each state of Markov
chain. We combine information from returns and expert opinions by Kalman
filter and Bayesian filter. We also consider the case that, expert opinions are
assumed to be conditional Dirichlet distributed.

The term estimation is used to cover observations (log-returns) filters,
model parameter identification, state estimation, observation smoothing, and
observation prediction. A basic technique used in this chapter is a change-
of-measure. A new probability measure is defined such that under this prob-
ability measure, called reference measure, observations are independent and
identically distributed random variables.
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3.1 Markov Switching Model for Log-Returns

Let E 6= ∅ be finite and (Ω,A, P ) be a suitable probability space.
Let Y = (Yn)n∈N0 be a homogeneous Markov Chain, which means that for
all i, j ∈ E

pij := P (Yn+1 = j|Yn = i)

is independent of n. Then,

Π := (pij)i,j∈E

is called transition matrix.

Definition 3.1.1. By π = (πi)i∈E, πi = P (Y0 = i), we denote the initial
distribution. We denote further

Pi(A) := P (A|Y0 = i) for all A ∈ A

Definition 3.1.2. We call Πh := Π · · · Π, the h−th power of the transition
matrix.

The following proposition shows that this determines the long-run be-
haviour of the Markov chain in terms of the h-step ahead predictive distri-
bution.

Proposition 3.1.3. We have

P (Yk+h = i|Yk = j) = p
(h)
ji

where p
(h)
ji is the element (j, i) of Πh.

Proof. We can prove this by induction. It is trivial for h = 1 from the
definition of Π.
For h > 1

P (Yk+h = l|Yk = m) =
d∑
i=1

P (Yk+h = l|Yk+h−1 = i)P (Yk+h−1 = i|Pk = m)

=
d∑
i=1

pilp
(h−1)
mi = p

(h)
ml



3.1 Markov Switching Model for Log-Returns 47

This result is also referred as the Chapman-Kolmogorov equation.

Definition 3.1.4. Any probability vector η = (η1, . . . , ηd)
T that satisfies the

invariance property
ΠTη = η (3.1)

is called an invariant distribution (or stationary) distribution of Yt.

Remark 3.1.5. The invariant distribution η is left-hand eigenvector of Π,
associated with eigenvalue 1.
For invariant distribution η and initial distribution π = η, we have

P (Yn = j) = ηj j ∈ E.

Several numerical methods can be used for solving equation (3.1). [Ham94]
proposed a closed-form expression for the invariant probability distribution
η in terms of transition matrix Π. Define by

A =

[
Id − ΠT

1d

]
with Id being the identity matrix with d rows and 1d being a row vector of
ones. Then η is given as the (d+ 1)−th column of the matrix (ATA)−1AT :

η =
(

(ATA)−1AT
)
·,d+1

.

Definition 3.1.6. Irreducibility means that starting Yk from an arbitrary
state i ∈ E, any state j ∈ E must be reached in finite time, i.e., for all
i, j ∈ E

∃h(i, j) : p
(h(i,j))
ij > 0.

The irreducibility of transition matrix will make sure the uniqueness of
invariant distribution [FS06].

Definition 3.1.7. The absence of periodicity is called aperiodicity. A Markov
chain is aperiodic if the period of each state is equal to one, i.e.,

GCD{n ≥ 1 : p
(n)
ii > 0} = 1, for all i ∈ E.

Thus, a Markov chain is aperiodic if all diagonal elements of Π are posi-
tive.
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Definition 3.1.8. Ergodicity of a Markov chain implies the distribution
P (Yh|Y0 = i), which is equal to the i−th row of Πh converges to the invariant
distribution (or called ergodic distribution here), regardless of the state i of
Y0:

lim
h→∞

(Πh)i,· = ηT .

where (Πh)i,· is the i−th row of Πh.

Irreducibility and aperiodicity are sufficient conditions for the ergodicity
of a Markov chain [Sas18]. Let Y = (Yk)k∈N0 be a homogeneous Markov
chain with states space S = {e1, . . . , ed} where ei denotes the i−th unit
vector in Rd, and with transition matrix Π = (pij)i,j∈E which is irreducible
and aperiodic.

Definition 3.1.9. The Markov switching model in discrete time is given by

Rk = bTYk−1 + aTYk−1εk

where b ∈ Rd is state vector and a ∈ (0,∞)d volatility vector, and εk are iid.
standard normal random variables, which are also independent of Y .

Remark 3.1.10. We write Rk to represent log-return. For each state ei,

bi = (µi − σ2
i

2
)∆t and ai = σi

√
∆t.

Proposition 3.1.11. Rk is conditional Gaussian and the distribution of Rk

is a mixture of normal distributions.

Proof. For k ∈ N and i ∈ {1, . . . , d}, the conditional distribution of Rk given
Yk−1 = ei

PRk|Yk−1=ei : B → [0, 1], B 7→ PRk|Yk−1=ei(B) := P (Rk ∈ B|Yk−1 = ei)

of Rk given Yk−1 = ei is N (bi, a
2
i ). i.e. Rk is conditional Gaussian.

The joint distribution of (Rk, Yk−1) is

P (Rk ∈ B, Yk−1 = ei) = P (Yk−1 = ei)PRk|Yk−1=ei(B)

for B ∈ B, i = 1, . . . , d.
Thus,

P (Rk ∈ B) =
d∑
i=1

P (Yk−1 = ei)PRk|Yk−1=ei(B)

i.e. the distribution of Rk is a mixture of Gaussians.
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Remark 3.1.12. PRk|Yk−1=ei(B) is set to be 0 if P (Yk−1 = ei) = 0 due
to the concept of general conditional probabilities. Since P (Rk ∈ B|Yk−1)
can be understood as some function with respect to Yk−1, P (Rk ∈ ·|Yk−1) =
N (bYk−1

, a2
Yk−1

), where we identify bei with bi and aei with ai.
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3.2 Filter for State under Partial Information

Partial information means that investors can not observe Yk and εk+1 but
asset prices only, maybe some additional information is available which we
call expert opinions. We are interested in the expectation of E[Yk|FHk ], H ∈
{R,C}. In the scenario H = R, investors can observe asset prices or returns.
Investors have in addition expert opinions in H = C. To start with, we give
the definition of expert opinions.

Definition 3.2.1. The expert opinions at time t are given by Et with values
in E, where E is expert opinions space, satisfying

E =
{
E ∈ [0, 1]d|

d∑
i=1

Ei = 1
}
.

We say Eu is a certain expert opinion, if Ek = Yu, k < u.

Note that below E can not only represent the expert opinions, but also
the space of estimators of state Y .
Then, E(n) = (Eui)i=1,...,n, u1 < · · · < un, denotes the set of all n expert opin-
ions. We denote by FE = (FEk )k≥0 the filtration generated by E, augmented
by the null sets, i.e.

FEk = σ({Eui : ui ≤ k} ∪ NP ).

We denote by FC = (FCk )k≥0 the filtrations generated by R and expert opin-
ions up to time k, augmented by null sets, i.e. FCk = FRk ∨ FEk .
In addition, we denote by FC0 = (FC0

k )k≥0 the filtrations generated by R
and all expert opinions, augmented by null sets, i.e. FC0

k = FRk ∨ FEK .
Moreover, we denote by G = (Gk)k≥0, Gk = Fk ∨ FEK , and H = (Hk)k≥0,
Hk = Fk ∨FEk ,where F = (Fk)k≥0 denotes the filtration generated by Y and
ε. These two filtrations are typically used in parameter estimation in the
following chapter.

The best estimate for Yk given information FRk is in an L2-sense given
conditional expectation E[Yk|R1, . . . , Rk]. And the filter for Yk given FRk
is defined as Ŷk := E[Yk|R1, . . . , Rk]. Once the initial estimate for state,
transition matrix and observation up to k are know, the state at time k can
be estimated.
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Theorem 3.2.2. For k = 1, . . . , K,

Ŷ i
k =

∑d
j=1 pjiϕj(Rk)Ŷ

j
k−1∑d

j=1 ϕj(Rk)Ŷ
j
k−1

,

where ϕj = ϕbj ,a2
j

is the pdf of a normal distribution with mean bj and stan-

dard deviation aj. To vectorize, we get

Ŷk =
ΠTDiag(ϕ(Rk))Ŷk−1

ϕ(Rk)T Ŷk−1

,

where ϕ(r) = (ϕ1(r), . . . , ϕd(r))
T and Diag((ϕ(r)) is the diagonal matrix

with diagonal ϕ(r).

Proof. The proof is given on Page 59 of [EAM95].

Corollary 3.2.3. For k ∈ N

Ŷk =
(
∏k−1

l=0 ΠTDiag(ϕ(Rk−l)))Ŷ0

1Td
∏k−1

l=0 ΠTDiag(ϕ(Rk−l)))Ŷ0

=

(
Ŷ T

0

∏k
l=1

(
Diag(ϕ(Rl))Π

))T
Ŷ T

0

∏k
l=1

(
Diag(ϕ(Rl))Π

)
1d

where 1d = (1, 1, . . . , 1)T .

Proof. Note that we have 1Td ΠT = (Π1d)
T = 1Td and ϕ(Rk)

T = 1TdDiag(ϕ(Rk)).
Firstly, we substitute for Ŷk−1 by Ŷk−2

Ŷk =
ΠTDiag(ϕ(Rk))Ŷk−1

ϕ(Rk)T Ŷk−1

.

=
ΠTDiag(ϕ(Rk))

ΠTDiag(ϕ(Rk−1))Ŷk−2

ϕ(Rk−1)T Ŷk−2

ϕ(Rk)T
ΠTDiag(ϕ(Rk))Ŷk−2

ϕ(Rk−1)T Ŷk−2

=
ΠTDiag(ϕ(Rk))Π

TDiag(ϕ(Rk−1))Ŷk−2

ϕ(Rk)TΠTDiag(ϕ(Rk))Ŷk−2

=
ΠTDiag(ϕ(Rk))Π

TDiag(ϕ(Rk−1))Ŷk−2

1Td ΠTϕ(Rk)TΠTDiag(ϕ(Rk))Ŷk−2

.

By iteration we can finish this proof.
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Suppose, at time k, the expert opinion is given by Ek = Yu, u > k.
Then we try to estimate Ŷk, where we define Ŷk := E[Yk|R1:k, Ek], where
R1:k = {R1, . . . , Rk} and Ek = Yu. This scenario is that the expert opinions
have further information of the state Yk.

Lemma 3.2.4. (i)Ŷ i
k = P (Yk = ei|FHk ), i = 1, . . . , d

(ii)For any function f : E → R,

E[f(Yk)|FHk ] =
d∑
i=1

f(ei)Ŷ
i
k .

Proof. (i)

Ŷ i
k =E[Y i

k |FHk ]

= E[1{Yk=ei}|FHk ] = P (Yk = ei|FHk )

(ii)

E[f(Yk)|FHk ] = E
[ d∑
i=1

1{Yk=ei}f(ei)|FHk
]

since f(ei) is constant, we get

E[f(Yk)|FHk ] = E
[ d∑
i=1

1{Yk=ei}f(ei)|FHk
]

= E
[ d∑
i=1

E[1{Yk=ei}|FHk ]f(ei)|FHk
]

=
d∑
i=1

f(ei)Ŷ
i
k .

To find all conditional expectations of functions of Yk, it thus suffices to
find Ŷk = E[Yk|FHk ]. Without proof we remind of the formula for condi-
tional probabilities in settings with one discrete and one continuous random
variable:

Lemma 3.2.5. (Bayes for one discrete and one continuous r.v.) If Y has a
density fY , X is discrete, and g is given by

P (X = x, Y ≤ t) =

∫ t

−∞
g(x, z)dz for all t,
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then

P (X = x|Y = y) =
g(x, y)

fY (y)
.

The best estimator for Yk, if we can observe the stock returns R1, . . . , Rk

and a future state Yu u > k, is given by the following theorem.

Theorem 3.2.6. The filter Ŷk := E[Yk|R1:k, Yu] at time k conditional on
observations R1:k and expert opinion Ek = Yu, which gives the state at time
u, u > k, can be derived iteratively by

Ŷ i
k =

∑d
w=1

∑d
j=1

p
(u−k)
iw pji

p
(u−k+1)
jw

ϕj(Rk)Ŷ
j
k−1Y

w
u∑d

j=1 ϕj(Rk)Ŷ
j
k−1

where p
(u−k)
iw := P (Yu = ew|Yk = ei).

Chapman-Kolmogorov equation implies p
(u−k)
iw = Πu−k

i,w , where Πu−k
iw represents

the i−th row and w−th column element of matrix Πu−k.
To vectorize the filter Ŷk,

Ŷk =

∑d
w=1 Y

w
u ΠTDiag

(
ϕ(Rk)� (p

(u−k+1)
.w )

)
Ŷk−1 � (p

(u−k)
.w )

ϕ(Rk)T Ŷk−1

,

where p
(u−k)
.w = (p

(u−k)
1w , . . . , p

(u−k)
dw )T . �,� are Hadamard product and Hadamard

division respectively given by A�B = Diag(a1, . . . , an)B. And C = A�B
represents Ci = Ai

Bi
, where A and B are n× 1 matrix.

Proof.

P (Yk = ei, Rk ≤ t|R1:k−1, Yu)

=
d∑
j=1

P (Yk = ei, Yk−1 = ej, Rk ≤ t|R1:k−1, Yu)

=
d∑
j=1

P (Yk = ei, Rk ≤ t|Yk−1 = ej, R1:k−1, Yu)P (Yk−1 = ej|R1:k−1, Yu)

=
d∑
j=1

P (Yk = ei, Rk ≤ t|Yk−1 = ej, R1:k−1, Yu)Ŷ
j
k−1,
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where, we can derive by conditional independence

P (Yk = ei, Rk ≤ t|Yk−1 = ej, R1:k−1, Yu)

= P (Yk = ei|Yk−1 = ej, R1:k, Yu)P (Rk ≤ t|Yk−1 = ej)

=
d∑

w=1

P (Yu = ew|Yk = ei)P (Yk = ei|Yk−1 = ej)

P (Yu = ew|Yk−1 = ej, R1:k)
P (Rk ≤ t|Yk−1 = ej)Y

w
u

=
d∑

w=1

p
(u−k)
iw pji

p
(u−k+1)
jw

∫ t

−∞
ϕj(x)dxY w

u .

Putting this together we have

P (Yk = ei, Rk ≤ t|R1:k−1, Yu) =
d∑
j=1

d∑
w=1

p
(u−k)
iw pji

p
(u−k+1)
jw

∫ t

−∞
ϕj(x)dxY w

u Ŷ
j
k−1.

By Bayes rule in Lemma 3.2.5 we then have that

P (Yk = ei|R1:k−1, Yu, Rk = r) =
d∑
j=1

d∑
w=1

p
(u−k)
iw pji

p
(u−k+1)
jw

ϕj(x)Y w
u Ŷ

j
k−1.

Moreover, by Proposition 3.1.3

P (Rk ≤ t|R1:k−1, Yu)

=
d∑
i=1

P (Yk = ei, Rk ≤ t|R1:k−1, Yu)

=
d∑

w=1

Y w
u

d∑
i=1

d∑
j=1

p
(u−k)
iw pji

p
(u−k+1)
jw

∫ t

−∞
ϕj(x)dxŶ j

k−1

=
d∑
j=1

∫ t

−∞
ϕj(x)dxŶ j

k−1.

Therefore

fRk|R1:k−1,Yu(r) =
d∑
j=1

ϕj(r)Ŷ
j
k−1,
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where fRk|R1:k−1,Yu is the conditional pdf of Rk.
By Lemma 3.2.4, we then get the final result:

Ŷ i
k = P (Yk = ei|R1:k, Yu) = P (Yk = ei|R1:k−1, Yu, Rk)

=

∑d
w=1

∑d
j=1

p
(u−k)
iw pji

p
(u−k+1)
jw

ϕj(Rk)Ŷ
j
k−1Y

w
u∑d

j=1 ϕj(Rk)Ŷ
j
k−1

Corollary 3.2.7. For k ∈ N,

Ŷk =

d∑
w=1

Y w
u

∏k−1
l=0 ΠTDiag(ϕ(Rk−l)� (pu−k+l+1

.w ))(Ŷ0 � p(u−1)
.w � · · · � p(u−k)

.w )

1Td
∏k−1

l=0 ΠTDiag(ϕ(Rk−l)� (pu−k+l+1
.w ))(Ŷ0 � p(u−1)

.w � · · · � p(u−k)
.w )

=
d∑

w=1

Y w
u

(Ŷ T
0 � (p

(u−1)
.w )T � · · · � (p

(u−k)
.w )T )

∏k
l=1Diag(ϕ(Rl)� (pu−l+1

.w ))Π)T

(Ŷ T
0 � (p

(u−1)
.w )T � · · · � (p

(u−k)
.w )T )

∏k
l=1Diag(ϕ(Rl)� (pu−l+1

.w ))Π)T1d

Proof. Similar as in the proof in Corollary 3.2.3, we have

1Td ·

(
ΠT � (p(u−k)

.w , p(u−k)
.w , . . . , p(u−k)

.w )Diag
(
1d � (p(u−k+1)

.w )
))

= 1Td ,

and ϕ(Rk)
T = 1TdDiag(ϕ(Rk)). We substitute Ŷk−1 by Ŷk−2,

Ŷk =
d∑

w=1

Y w
u ·

ΠTDiag(ϕ(Rk)� (p
(u−k+1)
.w ))ΠTDiag(ϕ(Rk−1)� (p

(u−k+2)
.w ))Ŷk−2 � (p

(u−k+1)
.w )� (p

(u−k)
.w )

1Td ΠTDiag(ϕ(Rk)� (p
(u−k+1)
.w ))ΠTDiag(ϕ(Rk−1)� (p

(u−k+2)
.w ))Ŷk−2 � (p

(u−k+1)
.w )� (p

(u−k)
.w )

By iteration we can finish this proof.
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3.3 Reference Measure Approach and Expert

Opinions Models

As mentioned before, one of the fundamental techniques employed through-
out this section is the discrete-time version of Girsanov’s Theorem (see Ap-
pendix A.1.2 in [EAM95]). In this section, we also use Kalman filter to
combine information from returns and expert opinions. We look at expert
opnions again as certain expert opinions (Section 3.3.2), uncertian expert
opinions providing probabilities for the state (Section 3.3.3) and logistic re-
gression (Section 3.3.5). We also discuss estimation by the EM algorithm.

3.3.1 Reference Measure

A reference measure is introduced by the following definition.

Definition 3.3.1. Set Z0 = 1 and Zk = Zk−1Lk for k ≥ 1, where

Lk :=
ϕ0,1(Rk)

ϕbTYk−1,(aTYk−1)2(Rk)
.

The probability measure given by dP̃
dP
|Gk = Zk is the reference measure for

filtering,
where Gk = Fk∨FEK . The existence of P̃ follows from Kolmogorov’s Extension
Theorem. Zk is known as Radon Nikodym derivative of P̃ w.r.t. P .

Next, we show some good properties of measure P̃ .

Lemma 3.3.2. (i) Z = (Zk)k∈N0 is a G-martingale under measure P .
Z−1 = (Z−1

k )k∈N0 is a G-martingale under measure P̃ .
(ii) For all u ≤ k,

Ẽ[Z−1
k Yu|FC0

u ] = Ẽ[Z−1
u Yu|FC0

u ].

(iii) Under P̃ , R1, R2, . . . are iid. standard normal distributed and indepen-
dent of Y .

Proof. See proof in Appendix A.2.

The next lemma shows the same property of reference measure P̃ with
the one of original measure P .
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Lemma 3.3.3. (i) P̃ (Yk = ei|Yk) = P (Yk = ei|Yk) = Y i
k .

(ii) The Markov chain Y has the same transition matrix under reference
probability measure, i.e.

P̃ (Yk = ej|Yk−1 = ei) = P (Yk = ej|Yk−1 = ei)

(iii) Expert opinions can be given under either probability measures P or P̃ ,
i.e. for all w = 1, . . . , d

P̃ (Yk = ew|FEK) = P (Yk = ew|FEK).

if Ek ∈ E(n).

Proof. See proof in Appendix A.2.

As there are some good properties in reference measure, we could compute
filters under P̃ and use Bayes’ formula to get filters under P .
Since for A ∈ Gk,

Ẽ[1AZ
−1
k ] = E[1AZ

−1
k Zk] = E[1A] = P (A)

we have dP
dP̃
|Gk = Z−1

k .

Definition 3.3.4. For any G-adapted H = (Hk)k∈N0 such that the following
expectations exist,

ρk(H) := Ẽ[Z−1
k Hk|FC0

k ]

is the unnormalized filter of H under P̃ at time k.

Lemma 3.3.5. For any G-adapted real-valued H = (Hk)k∈N0 such that the
following expectations exist,

Ĥk := E[Hk|FC0
k ] =

ρk(H)

ρk(1)
=

1Td ρk(HY )

1Td ρk(Y )
.

Proof. By Bayes’ formula of conditional expectation

E[Hk|FC0
k ] =

Ẽ[HkZ
−1
k |F

C0
k ]

Ẽ[Z−1
k |F

C0
k ]

=
ρk(H)

ρk(1)

Further,

ρk(1) = Ẽ[Z−1
k 1Td Yk|FRk ] = 1Td Ẽ[Z−1

k Yk|FRk ] = 1Td ρk(Y ),

ρk(H) = Ẽ[HkZ
−1
k |F

C0
k ] = Ẽ[Hk1

T
d YkZ

−1
k |F

C0
k ] = 1Td Ẽ[HkYkZ

−1
k |F

C0
k ] = 1Td ρk(HY )

which concludes the proof.
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We compute the unnormalized filter of some suitable class under P̃ by
the following theorem:

Theorem 3.3.6. Let H = (Hk)k∈N0 be G-adapted, Hk : Ω→ R, with

Hk = Hk−1 + αk−1 + βTk−1Yk + γk−1f(Rk),

where α, β, γ are F-adapted and R, Rd, R-valued, respectively, and f : R→
R is measurable, s.t. H is integrable. For Γi(r) := ϕi(r)

ϕ0,1(r)
, where ϕi = ϕbi,a2

i
.

Define by Ÿ
(i)
k := Ẽ[Yk|Gk−1, Yk−1 = ei], Then we have

ρk(HY ) =
d∑
i=1

{
ρk−1(HY i)Γi(Rk)Ÿ

(i)
k

+ ρk−1(αY i)Γi(Rk)Ÿ
(i)
k

+ ρk−1(γY i)Γi(Rk)f(Rk)Ÿ
(i)
k

+ (Diag(Ÿ
(i)
k ))ρk−1(βY i)Γi(Rk)

}
where ρk(HY ) = (ρ(HY 1), ρ(HY 2), . . . , ρ(HY d))T , and Y i is the i−th ele-
ment of vector Y .

Proof. See proof in Appendix A.2.

Remark 3.3.7. If we have no expert opinions, then Ÿ
(i)
k = ΠT ei which leads

to the corresponding result without expert opinions.

3.3.2 Certain Expert Opinions

The definition of certain expert opinions is given in Definition 3.2.1. We
say some states are observable from expert opinions rather than hidden, i.e.
Eui = Yui for all i = 1, . . . , n, where 0 ≤ u1 < · · · < un ≤ K.
The homogeneous Markov chain has the characteristics as shown in [AHE89],
for s ≤ t ≤ u

E[Yt|FYs ∨ FEu ] = E[Yt|Ys, Yu].

Actually, the filter in Markov Switching Model can be estimated by the
following lemma if future state is observable.
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Lemma 3.3.8. For k ≤ u, and u = min{ui|ui ≥ k, i = 1, . . . , n},

Ẽ[Yk|Gk−1] =
d∑

w=1

Y w
u ΠT � (p(u−k)

.w , p(u−k)
.w , . . . , p(u−k)

.w )Diag
(
1d � (p

(u−k+1)
jw )

)
Yk−1

=
d∑

w=1

Y w
u ΠTDiag

(
1d � (p

(u−k+1)
jw )

)
Yk−1 � (p(u−k)

.w ).

Proof. We have

Ẽ[Y i
k |Gk−1]

=
d∑

w=1

d∑
j=1

P̃ (Yk = ei|Yu = ew, Yk−1 = ej)P̃ (Yk−1 = ej|Yk−1)P̃ (Yu = ew|Yu)

=
d∑

w=1

d∑
j=1

P̃ (Yk = ei|Yu = ew, Yk−1 = ej)Y
j
k−1Y

w
u

=
d∑

w=1

d∑
j=1

P̃ (Yu = ew|Yk = ei)P̃ (Yk = ei|Yk−1 = ej)

P̃ (Yu = ew|Yk−1 = ej)
Y j
k−1Y

w
u

=
d∑

w=1

d∑
j=1

p
(u−k)
iw pji

p
(u−k+1)
jw

Y j
k−1Y

w
u .

The second equation is due to Lemma 3.3.3. By vectorization, we finish this
proof.

Remark 3.3.9. When u = k, since Π0 = Id, we compute from Lemma 3.3.8,

Ẽ[Y i
k |Gk−1] =

d∑
w=1

d∑
j=1

p0
iwpji
pjw

Y j
k−1Y

w
u

=
d∑

w=1

p0
iw

d∑
j=1

pji
pjw

Y j
k−1Y

w
u

= Y i
u ,

where the last equation is due to the fact that only when i = w, p0
iw = 1. This

result is consistent with Ẽ[Yk|Yk] = Yk. Thus Lemma 3.3.8 can be applied
when k ≤ un.



60 Estimation for MSMs with Expert Opinions

Corollary 3.3.10. Let H = (Hk)k∈N0 be G-adapted, Hk : Ω→ R, with

Hk = Hk−1 + αk−1 + βTk−1Yk + γk−1f(Rk),

where α, β, γ are F-adapted and R, Rd, R-valued respectively. And let
f : R → R be measurable, s.t. H is integrable. For Γi(r) := ϕi(r)

ϕ0,1(r)
, where

ϕi = ϕbi,a2
i
. If Eui = Yui for all i = 1, . . . , n, and k ≤ u, where u =

min{ui|ui ≥ k, i = 1, . . . , n}, we have

ρk(HY )

=
d∑
i=1

{
ρk−1(HY i)Γi(Rk)

d∑
w=1

Y w
u ΠTDiag

(
1d � (p

(u−k+1)
jw )

)
ei � (p(u−k)

.w )

+ ρk−1(αY i)Γi(Rk)
d∑

w=1

Y w
u ΠTDiag

(
1d � (p

(u−k+1)
jw )

)
ei � (p(u−k)

.w )

+ ρk−1(γY i)Γi(Rk)f(Rk)
d∑

w=1

Y w
u ΠTDiag

(
1d � (p

(u−k+1)
jw )

)
ei � (p(u−k)

.w )

+ (Diag(
d∑

w=1

Y w
u ΠTDiag

(
1d � (p

(u−k+1)
jw )

)
ei � (p(u−k)

.w )))ρk−1(βY i)Γi(Rk)
}

else if k > un

ρk(HY ) =
d∑
i=1

{
ρk−1(HY i)Γi(Rk)Π

T ei + ρk−1(αY i)Γi(Rk)Π
T ei

+ ρk−1(γY i)Γi(Rk)f(Rk)Π
T ei + (Diag(ΠT ei))ρk−1(βY i)Γi(Rk)

}
where ρk(HY ) = (ρ(HY 1), ρ(HY 2), . . . , ρ(HY d))T , and Y i is the i−th ele-
ment of vector Y .

Proof. Substituted by Ÿ
(i)
k = Ẽ[Yk|Gk−1, Yk−1 = ei] in Theorem 3.3.6, we can

get the corollary.

Remark 3.3.11. In particular, for H = 1, HkYk = Yk, choose H = 1,
α = 0, β = 0d, γ = 0, for k ≤ u, where u = min{ui|ui ≥ k, i = 1, . . . , n}, this
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yields

ρk(Y ) =
d∑

w=1

Y w
u

d∑
i=1

ρEk−1(HY i)Γi(Rk)Π
TDiag

(
1d � (p(u−k+1)

.w )
)
ei � (p(u−k)

.w )

=
d∑

w=1

Y w
u ΠTDiag

(
Γ(Rk)� (p(u−k+1)

.w )
)
ρEk−1(Y )� (p(u−k)

.w )

Ŷk = E[Yk|FC0
k ] =

ρk(Y )

1Td ρk(Y )

=
ΠTDiag

(
Γ(Rk)� (p

(u−k+1)
.w )

)
ρk−1(Y )� (p

(u−k)
.w )

Γ(Rk)Tρk−1(Y )

=
ΠTDiag

(
ϕ(Rk)� (p

(u−k+1)
.w )

)
Ŷk−1 � (p

(u−k)
.w )

ϕ(RT
k )Ŷk−1

The second equation is because that

d∑
i=1

d∑
j=1

p
(u−k)
iw pji∑d

z=1 p
(u−k)
zw pjz

= 1

and this equation can be vectorized as

1Td ·

(
ΠT � (p(u−k)

.w , p(u−k)
.w , . . . , p(u−k)

.w )Diag
(
1d � (Π · p(u−k)

.w )
))

= 1Td

This formula is as the same as Lemma 3.2.6.

3.3.3 Linear Combination of Both Information

Again we are interested in Ẽ[Yk|Gk−1]. However the state Yu at t = u is not
observable, that is Ei

u provides only the probability for Yu = ei. We will have
the following lemma to estimate the state.

Lemma 3.3.12. For Ẽ[Y i
u |Eu] = Ei

u ∈ [0, 1], where u = min{ui|ui ≥ k, i =
1, . . . , n}.

Ẽ[Y i
k |Gk−1] =

d∑
w=1

d∑
j=1

p
(u−k)
iw pji

p
(u−k+1)
jw

Y j
k−1P̃ (Yu = ew|Yk−1,Eu).
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Proof. Proof see Appendix A.2.

Afterwards, in order to compute P̃ (Yu = ew|Yk−1,Eu), the linear combi-
nation approach motived by discrete Kalman filter is proposed. Then both
information from previous state and expert opinions are exploited.

Theorem 3.3.13. (Kalman filter for MSMs) Ỹ and E are two estimators
of Markov chain Y .The updated filter of Y , Ỹ new, is constructed by

Ỹ new = λỸ + (1− λ)E

with

λ =
( ∑d

i=1 E[(Ei − Y i)2]− Corr∑d
i=1 E[(Ỹ i − Y i)2] +

∑d
i=1 E[(Ei − Y i)2]− 2Corr

∨ 0
)
∧ 1

where Corr =
∑d

i=1 E[(Ei − Y i)(Ỹ i − Y i)]. Then we have

d∑
i=1

E[(Y i − Ỹ new,i)2] ≤
d∑
i=1

E[(Y i − Ỹ i)2].

Proof. The new filter can be constructed linearly by

Ỹ new = λỸ + (1− λ)E λ ∈ [0, 1].

d∑
i=1

E[(Y i − Ỹ new,i)2] =
d∑
i=1

E[(λỸ i + (1− λ)Ei − Y i)2]

=
d∑
i=1

λ2E[(Ỹ i − Y i)2]

+ (1− λ)2E[(Ei − Y i)2] + 2λ(1− λ)E[(Ỹ i − Y i)(Ei − Y i)]
(3.2)

taking the first derivative with respect to λ equal to zero, we get the corre-
sponding λ:

λ =

∑d
i=1 E[(Ei − Y i)2]−

∑d
i=1 E[(Ei − Y i)(Ỹ i − Y i)]∑d

i=1 E[(Ỹ i − Y i)2] +
∑d

i=1 E[(Ei − Y i)2]− 2
∑d

i=1 E[(Ei − Y i)(Ỹ i − Y i)]

Putting this λ into equation (3.2), we get

d∑
i=1

E[(Y i − Ỹ new,i)2] ≤
d∑
i=1

E[(Y i − Ỹ i)2].
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Proposition 3.3.14. For k ≤ u, u = min{ui|ui ≥ k, i = 1, . . . , n}, the
G-measurable Kalman filter is

Ẽ[Yu|Gk−1] = λuk−1Ẽ[Yu|Yk−1] + (1− λuk−1)Ẽ[Yu|Eu],

where λuk−1 := λ(k − 1, u), λ : R+ × R→[0, 1], and λ : R+ × R+ → [0, 1] then
we have

Ẽ[Yk|Gk−1] = λuk−1ΠTYk−1

+ (1− λuk−1)
d∑

w=1

Ew
u ΠTDiag

(
1d � (p(u−k+1)

.w )
)
Yk−1 � (p(u−k)

.w ).

Proof. See proof in Appendix A.2.

Corollary 3.3.15. Let H = (Hk)k∈N0 be G-adapted, Hk : Ω→ R, with

Hk = Hk−1 + αk−1 + βTk−1Yk + γk−1f(Rk),

where α, β, γ are F-adapted and R, Rd, R-valued respectively. And f : R→
R is measurable, s.t. H is integrable. Γi(r) := ϕi(r)

ϕ0,1(r)
, where ϕi = ϕbi,a2

i
. If

the G-measurable filter is estimated based on the method from Lemma 3.3.13,
and k ≤ u ≤ un, where u = min{t ∈ N+|Et ∈ E(n)}, we have

ρk(HY ) = λuk−1

d∑
i=1

{
ρk−1(HY i)Γi(Rk)Π

T ei + ρk−1(αY i)Γi(Rk)Π
T ei

+ ρk−1(γY i)Γi(Rk)f(Rk)Π
T ei + (Diag(ΠT ei))ρk−1(βY i)Γi(Rk)

}
+ (1− λuk−1)

d∑
i=1

{
ρk−1(HY i)Γi(Rk)

d∑
w=1

Y w
u ΠTDiag

(
1d � (p

(u−k+1)
jw )

)
ei � (p(u−k)

.w )

+ ρk−1(αY i)Γi(Rk)
d∑

w=1

Y w
u ΠTDiag

(
1d � (p

(u−k+1)
jw )

)
ei � (p(u−k)

.w )

+ ρk−1(γY i)Γi(Rk)f(Rk)
d∑

w=1

Y w
u ΠTDiag

(
1d � (p

(u−k+1)
jw )

)
ei � (p(u−k)

.w )

+ (Diag(
d∑

w=1

Y w
u ΠTDiag

(
1d � (p

(u−k+1)
jw )

)
ei � (p(u−k)

.w )))ρk−1(βY i)Γi(Rk)
}
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else if k > un

ρk(HY ) =
d∑
i=1

{
ρk−1(HY i)Γi(Rk)Π

T ei + ρk−1(αY i)Γi(Rk)Π
T ei

+ ρk−1(γY i)Γi(Rk)f(Rk)Π
T ei + (Diag(ΠT ei))ρk−1(βY i)Γi(Rk)

}
where ρk(HY ) = (ρ(HY 1), ρ(HY 2), . . . , ρ(HY d))T , and Y i is the i−th ele-
ment of vector Y .

Proof. From Theorem 3.3.6 and Proposition 3.3.14, we can carry out the
proof.

3.3.4 Expectation Maximization Algorithm

We want to determine a set of parameters θ̂ = {b, a,Π} given the arrival of
new information. We proceed by using the Expectation Maximization(EM)
algorithm.
Let (Pθ)θ∈Θ a family of probability measures, all absolute continuous w.r.t.
a fixed probability measure P0. The likelihood function for computing an
estimate of θ based on observations R1, . . . , RK is

L(θ) = E0

[
log

dPθ
dP0

|FC0
K

]
The maximum likelihood estimator (MLE) of θ is

θ̂ ∈ argθ∈Θ maxL(θ).

This is difficult to compute and that’s the reason EM algorithm is applied
to approximate alternatively.

EM algorithm
Step 1:Set p=0 and choose θ̂0.
Step 2:(E-Step) Set θ∗ = θ̂p and compute

Q(θ, θ∗) = Eθ∗
[

log
dPθ
dPθ∗
|FC0

K

]
.
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Step 3:(M-Step) Find

θ̂p+1 ∈ argθ∈Θ maxQ(θ, θ∗).

Step 4: Replace p by p+ 1 and repeat from Step 2 until a stopping criterion
is satisfied.

Suppose there are N ≤ K expert opinions at different time u ∈ U , where
U = {(un)n=1,...,N |Yun = ewn}.
For known Y1, . . . , YK , R1, . . . , RK , we had

ΛK =
dPθ
dPθ′

=
K∏
k=1

d∏
i,j=1

(pij
p′ij

)Y ik−1Y
j
k

d∑
i=1

Y i
k−1

ϕbi,a2
i
(Rk)

ϕb′i,a′2i (Rk)

This leads to log-likelihood function to be

log ΛK =
d∑

i,j=1

N ij
K log(pij) +

d∑
i=1

(
−Oi

K log ai −
1

2

( bi
ai

)2

Oi
K

)

+
d∑
i=1

(
bi
a2
i

T iK(f1)− 1

2a2
i

T iK(f2)

)
+ h(Π′, a′, b′),

where h is some functions of the parameters Π′, a′, b′ and

N ij
K =

K∑
k=1

Y i
k−1Y

j
k ,

Oi
K =

K∑
k=1

Y i
k−1,

T iK(f) =
K∑
k=1

fi(Rk)Y
i
k−1

where f1(x) = x, f2(x) = x2.

Remark 3.3.16. These items (N ij
K , O

i
K , T

i
K(f)) can be understood as num-

bers of jumps, occupation time and observation transitions respectively.

Taking conditional expectation w.r.t. FC0
K and maximizing in Π, a, b, we

yield



66 Estimation for MSMs with Expert Opinions

Theorem 3.3.17. The updates in the EM algorithm with expert opinions for
the MSM are

b̂l =
T̂ lK(f1)

Ôl
K

(âl)
2 =

T̂ lK(f2)− 2b̂lT̂
l
K(f1) + b̂2

lO
l
K

Ol
K

p̂lm =
N lm
K

Ol
K

where, the filters N lm
K , Ol

K , T
l
K(f) can be computed based on parameters Π′, b′, a′

which can be computed by the following proposition.

Proof. See proof in Appendix A.2.

Proposition 3.3.18. The filters for H ∈ N lm
K , Ol

K , T
l
K(f) can be computed

by

ĤK =
1Td ρK(HY )

1Td ρK(Y )
.

with

ρk(O
lY ) =

d∑
i=1

ρk−1(OlY i)Γi(Rk)Ÿk + ρk−1(Y l)Γl(Rk)Π
T el

ρk(T
l(f)Y ) =

d∑
i=1

ρk−1(T l(f)Y i)Γi(Rk)Ÿk + ρk−1(Y l)Γl(Rk)f(Rk)Π
T el

ρk(N
lmY ) =

d∑
i=1

ρk−1(N lmY i)Γi(Rk)Ÿk + ρk−1(Y l)Γl(Rk)plmem

for k = 1, . . . , K with initial values 0 and

ρk(Y ) =
d∑
i=1

ρk−1(Y i)Γi(Rk)Ÿk

for k = 1, . . . , K with initial value Y0.

Proof. This proof is just the application of Theorem 3.3.6

- For Ol
k, choose H0 = 0, αk−1 = Y l

k−1, β = 0d, γ = 0;
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- For T l(f), choose H0 = 0, γk−1 = Y l
k−1, αk−1 = 0, β = 0d;

- For N lm, choose H0 = 0, βk−1 = Y l
k−1em, αk−1 = 0, γ = 0.

Remark 3.3.19. We can derive this forward algorithm rather than forward
and backward one since Ẽ[Yk|FC0

k ] = Ẽ[Yk|FC0
k−1]. As the poof of Theorem

3.3.6 illustrates that R and Y are conditional independent under P̃ and the
information of expert opinions are pre-established. These two conditions en-
sure Ẽ[Yk|FC0

k ] = Ẽ[Yk|FC0
k−1].

The following theorem illustrates the expected square error of a filter with
more information is less than one with less information. And it is also our
motivation to combine more information to estimate the state.

Theorem 3.3.20. For k = 1, . . . , K, ∀i ∈ {1, . . . , d},

E
[
(Y i

k − E[Y i
k |F

C0
k ])2

]
≤ E

[
(Y i

k − E[Y i
k |FRk ])2

]
Proof.

E
[
(Y i

k − E[Y i
k |F

C0
k ])2

]
= E[V ar(Y i

k |F
C0
k )]

= E
[
E[(Y i

k )2|FC0
k ]− (E[Y i

k |F
C0
k ])2

]
= E

[
E[(Y i

k )2|FRk ]
]
− E

[
(E[Y i

k |F
C0
k ])2

]
The last equality is due to the tower property, and by Jensen’s inequality we
have,

E
[
(E[Y i

k |F
C0
k ])2|FRk

]
≥
(
E
[
E[Y i

k |F
C0
k ]|FRk

])2

=
(
E[Y i

k |FRk ]
)2

Taking expectation on both sides and by tower property, we get

E
[
(Y i

k − E[Y i
k |F

C0
k ])2

]
= E

[
E[(Y i

k )2|FRk ]
]
− E

[
(E[Y i

k |F
C0
k ])2

]
≤ E

[
E[(Y i

k )2|FRk ]
]
− E

[
(E[Y i

k |FRk ])2
]

= E[V ar(Y i
k |FRk )]

= E
[
(Y i

k − E[Y i
k |FRk ])2

]
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3.3.5 Logistic Regression Model for Expert Opinions

Let us look at a different way to model expert opinions. The intuitive idea
is that expert opinions model is constructed as

Yk−1 = C(Xk) + ζk

where ζk is r,v. and Eζik = 0 for i = 1, . . . , d, they are independent of εk and∑d
i=1 ζ

i = 1. Here C(Xk) is proposed as expert opinions Ek.
C is one family of classifier e.g. naive Bayes, SVM, Decision tree or artificial
neural network. Each setting of family can be understood as the prior infor-
mation.
Thus, the elements of Yk−1 will remain in [0, 1] and the sum of them will
be 1. Xk is an exogenous observations while Yk−1 is not observable in hid-
den Markov chain. Hence this issue is different from supervised learning or
function approximation, in which both Y and X are observable. Xk varies
homogeneously with some fixed probability, which is not specified now.

The logistic regression model is applicable since it arises from the idea to
model the posterior probabilities of d states via linear functions in x. x is
an (M + 1)-dimensional vector where M is the number of external factors,
and we set x0 = 1.
At the same time, logistic regression model ensures its sum to be one and
remains in [0, 1]. The model has the form

Pi(Xk;β) = LG(X;β) =
exp(βTi X)∑d
l=1 exp(βTl X)

where β ∈ R(M+1)×d is parameter matrix describing the behaviour of this
model. And βi is the i−th column of β. We denote the estimated probabilities
P (Xk ∈ ·|Yk−1 = ei) parameterized by β, Pβ(Xk ∈ ·|Yk−1 = ei). Then,

Pβ(Xk ∈ ·|Yk = ei) =
Pi(Xk;β)P (Xk ∈ ·)

P (Yk = ei)
.

In hidden Markov chain, the state Y is not observable. Hence we need to
find one scheme to estimate the parameter β the logistic regression model.
We want to maximize below the likelihood with respect to θ = {b, a,Π, β}.
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For observed Y1, . . . , YK , R1, . . . , RK , X1, . . . ,XK

ΛK =
dPθ
dPθ′

=
K∏
k=1

d∏
i,j=1

(pij
p′ij

)Y ik−1Y
j
k

d∑
i=1

Y i
k−1

ϕbi,a2
i
(Rk)

ϕb′i,a′2i (Rk)

d∑
j=1

Y j
k

Pβ(Xk ∈ ·|Yk−1 = ei)

Pβ′(Xk ∈ ·|Yk−1 = ei)

=
K∏
k=1

d∏
i,j=1

(pij
p′ij

)Y ik−1Y
j
k

d∑
i=1

Y i
k−1

ϕbi,a2
i
(Rk)

ϕb′i,a′2i (Rk)

d∑
j=1

Y j
k

Pi(Xk;β)

Pi(Xk;β′)

since P (Xk∈·)
P (Yk−1=ei)

cancelled out. which leads to E[log ΛK |FC0
K ]

=
d∑

i,j=1

N̂ ij
K log(pij) +

d∑
i=1

(
− Ôi

K log ai −
1

2

( bi
ai

)2

Ôi
K

)

+
d∑
i=1

(
bi
a2
i

T̂ iK(f1)− 1

2a2
i

T̂ iK(f2)

)
+

K∑
k=1

d∑
i=1

Ŷ i
k logPi(Xk;β)

+ ĥ(Π′, a′, b′) + ĝ(β′).

(3.3)

From equation (3.3), we see that parameters Π, b, a can be estimated by The-
orem 3.3.6 as usual. Similarly, once we have the estimated for Yk, β can be
estimated by some numerical methods, e.g. Newton-Raphson.

It is convenient to illustrate the method when there are only two states
of Y . More states method is referred in [Cze02].
Denote l(β) :=

∑K
k=1

∑d
i=1 Y

i
k logPi(Xk;β), referring to log-likelihood func-

tion for the logistic regression model. Note that maximizing l(β) is equivalent
to maximize log ΛK with respect to β.
For a two state Markov chain,

l(β) =
K∑
k=1

(
Y 1
k β

T
1 Xk − log(1 + exp(βT1 Xk))

)
.

To maximize the log-likelihood function , we set its derivatives to zero. These
score equations are

∂l(β1)

∂β1

=
K∑
k=1

Xk

(
Y 1
k − P1(Xk; β1)

)
= 0. (3.4)
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To solve the above equation (3.4), the Newton-Raphson algorithm can be
applied. The second derivative is

∂2l(β1)

∂β1∂βT1
= −

K∑
k=1

XkX
T
k P1(Xk; β1)(1− P1(Xk; β1)).

Starting with βp1 , a single Newton update is

βp+1
1 = βp1 −

( ∂2l(β1)

∂β1∂βT1

)−1∂l(β1)

∂β1

,

where the derivatives are evaluated at βp1 .
It is convenient to write the first and second derivatives and Hessian in matrix
notation. Let Y denote the vector of Y 1

k , X the K × (M + 1) matrix of
Xk, p the vector of probabilities with k−th element P1(Xk; β

p
1) and W a

K×K diagonal matrix of weights with k−th diagonal element P1(Xk; β
p
1)(1−

P1(Xk; β
p
1)). Then we have

∂l(β1)

∂β1

= XT (Y − p)

∂2l(β1)

∂β1∂βT1
= −XTWX.

Thus the Newton step is

βp+1
1 = βp1 + (XTWX)−1XT (y − p)

= (XTWX)−1XTW (Xβp1 +W−1(y − p))

= (XTWX)−1XTWz,

where, z := Xβp1 + W−1(y − p). In the last line the Newton step is re-
expressed as a weighted least squares step, since

βp+1
1 = arg min

β
(z −Xβ1)TW (z −Xβ1). (3.5)

Remark 3.3.21. From equation (3.5), β0 can be set to be zero for the it-
erative procedure. And the algorithm does convergence once log-likelihood is
concave.
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The EM algorithm for the Markov switching model with expert opinions
driven by logistic regression (LG) model is as follows:

EM Algorithm:
Inputs: R1, . . . , RK , X1, . . . ,XK

Initialization: Y0, b0, a0,Π0, Θ0 (Parameters of LG)

Step 1: Calculate uncertain expert opinion by E
(p)
k = LGΘp(Xk).

Step2: Use E
(p)
0 , . . . , E

(p)
K−1 and R1, . . . , RK and then construct filtrations FCp

as inputs in EM algorithm with expert opinions and estimate the parameters
bp, ap,Πp.

Step3: Estimate Y p := E[Y |FCpK ] using parameters bp, ap,Πp.
Step4: Update C by

Θp+1 = arg max
Θ

E[log ΛK |FCpK ]

return to Step 1 and repeat until some stopping criteria is satisfied.

3.3.6 Numerical Results

The data is simulated by the following settings.

• d = 2;

• b = (0.08,−005)T , a = (0.03.0.1)T , Π =

[
0.7 0.3
0.2 0.8

]
;

• Y0 = e1.

Figure 3.1 shows for different λ (see Section 3.3.3), which can be under-
stood as the trust of observations, how the estimated parameters vary. The
expert opinion is given by EU = {E81 = Y81 = e2}. Note that λ = 1 is
corresponding to EM with only observations and λ = 0 corresponds to the
EM with certain expert opinion in our setting.

For another example, λ is fixed to be 0.01, then the effect of different un-
certain experts can be significant. Figure 3.2 shows with different uncertain
expert opinions, {E81 = (0, 1)T}, {E81 = (0.1, 0.9)T}, {E81 = (0.2, 0.8)T}, {E81 =
(1, 0)T} respectively, how the estimated parameters vary. The figures show
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(a) Mean value of distributions for two states

(b) Standard deviation of distributions for two states

(c) p11 and p12 of transition matrix

Figure 3.1: Estimated Parameters by EM algorithm with different λ



3.3 Reference Measure Approach and Expert Opinions Models 73

(a) Mean value of distributions for two states

(b) Standard deviation of distributions for two states

(c) p11 and p12 of transition matrix

Figure 3.2: Estimated parameters by EM algorithm with different uncertain
expert opinions
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that with more accurate expert opinions the EM algorithm has a better per-
formance.

For the case of logistic regression model, one needs to simulate the exoge-
nous factors X first.
Suppose Yk−1 = LG(Xk) + εk, implying

P (Y = e1|X = x) =
exp(βTx)

1 + exp(βTx)

where β ∈ Rd, x ∈ RK×(M+1). The expression for x is

x = arg min
x

(logitY − xβ)T (logitY − xβ),

and the solution is
x = (βTβ)−1logitY βT .

where
logitY = log(|Y 1 − ε|)− log(1− |Y 1 − ε|)

Y 1 = (Y 1
0 , . . . , Y

1
K−1)T , ε = (ε0, . . . , εk−1) and εi ∼ U(0, 1

10
).

Figure 3.3 illustrates that the log-likelihood function conditional onR1, . . . , RK

and X increases significantly as iteration goes from 0 to 5 and converges fast,
when λ is fixed to be 0.1.

Figure 3.3: Pseudo conditional log-likelihood based on R1, . . . , RK and X

Figure 3.4 shows the intuition that as iterations go up, the expert model
can be calibrated and gives a more accurate expert opinion which as re-
sponse gives a more accurate estimation of parameters of Markov Switching
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Model. These figures also show a good convergence except for the case of
λ = 0. However one can choose the parameters which contribute larger log-
likelihood.
As before λ is a pre-defined variable, which affects the estimation of param-
eters. The closer λ approaches to 1, the more weights we give on returns R.
The estimation of parameters have different performance when λ varies. For
estimation of mean of returns, b, λ = 0 works best, next λ = 0.1, λ = 1 and
λ = 0.5. For estimation of a, also λ = 0 and λ = 0.1 have better performance
than the other two. For estimation of transition matrix, λ = 0 and λ = 0.1
have contributions of good estimation of p21, while worse estimation of p11.
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(a) Mean of Returns

(b) Standard Deviation of Returns

(c) Transition Matrix

Figure 3.4: Estimated Parameters by EM algorithm
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Moreover, the EM algorithm also works well to estimate the parameters
of logistic regression model, β (See Figure 3.5). It is not fair to rank the
performance of different λ just by inspection. Hence we define a better
estimation by minimizing the cross-entropy loss function. The Cross-Entropy
loss function with respect to λ is given by

loss(λ) = −
K∑
k=1

d∑
i=1

Y i
k log Ŷ i

k (λ)

We have loss(0) = 0.67, loss(0.1) = 10.41, loss(0.5) = 72.21, loss(1) =
87.74. Because the X have better ability to estimate Y , the cross-entropy
loss function decrease significantly as λ approaches to 0.

Figure 3.5: Pseudo conditional log-likelihood based on R1, . . . , RK and X
with different lambda
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3.4 Dirichlet Distribution for Expert Opin-

ions

In this section, expert opinions are assumed to follow a specific continuous
distributions. The first proposal is that all expert opinions are independent
and identically distributed in Dirichlet distribution, which is known as dis-
tribution of distributions.

Definition 3.4.1. The d-dimensional radom vector Z = (Z1, . . . , Zd) is
Dirichlet-distributed with parameter ζ = (ζ1, . . . , ζd), ζ1, . . . , ζd > 0, if Z
has pdf

f(z1, . . . , zd) =
1

B(ζ)

d∏
i=1

zζi−1
i

where B(ζ) =
∏d
i=1 Γ(ζi)

Γ(ζ0)
for ζ0 =

∑d
i=1 ζi. We write Z ∼ D(ζ).

Further

E[Zi] =
ζi
ζ0

,

Var(Zi) =
ζi(ζ0 − ζi)
ζ2

0 (ζ0 + 1)
,

Cov(Zi, Zi) =
−ζiζj

ζ2
0 (ζ0 + 1)

.

We have the following assumptions:

Assumption 3.4.2. Expert opinions Eu give the information on state Yu by
E[Yu|Eu] = Eu, where Eu1 , Eu2 , . . . , Eun are i.i.d. from Dirichlet distribution,
i.e. P (Eu1) ∼ D(ζ) where ζ is a d-dimensional vector. Here we have
u ∈ {u1 . . . , un}, u1 < . . . , < un.

Under Assumption 3.4.2, we can have the recursive scheme.

Lemma 3.4.3. For each time k, and all i = 1, . . . , d

E[Y i
k |FYk−1 ∨ Ek] =

Ei
k

ζi

d∑
j=1

1∑d
z=1

Ezk
ζz
pjz

pjiY
j
k−1
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Proof. The proof starts with the i−th element of Yk

E[Yk|Yk−1, Ek] =
d∑
j=1

P (Yk = ei|Yk−1 = ej, Ek)Y
j
k−1

Then we can show

P (Yk = ei|Yk−1 = ej, Ek) =
P (Ek|Yk = ei, Yk−1 = ej)P (Yk = ei|Yk−1 = ej)

P (Ek|Yk−1 = ej)

=
P (Ek|Yk = ei)pji
P (Ek|Yk−1 = ej)

=
P (Ek|Yk = ei)pji∑d

z=1 P (Ek|Yk = ez, Yk−1 = ej)pjz

=
P (Ek|Yk = ei)pji∑d
z=1 P (Ek|Yk = ez)pjz

=

P (Yk=ei|Ek)P (Ek)
P (Yk=ei)

pji∑d
z=1

P (Yk=ez |Ek)P (Ek)
P (Yk=ez)

pjz

=

Eik
P (Yk=ei)

pji∑d
z=1

Ezk
P (Yk=ez)

pjz
.

In fact we have for i = 1, . . . , d

P (Yk = ei) = E[E[Y i
k |Ek]]

= E[Ei
k]

=
ζ i

ζ0

.

In conclusion, we get

E[Y i
k |FYk−1 ∨ Ek] =

Ei
k

ζi

d∑
j=1

1∑d
z=1

Ezk
ζz
pjz

pjiY
j
k−1.

From the above proof, we can have the intuition that Assumption 3.4.2
gives additional information of prior distribution of P (Yk = ei). However
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this assumption does not help to improve the estimation of state since the
parameters of Dirichlet distribution are not driven by Y . Hence we propose
another idea to combine both information, which is know as Bayesian filter.

Assumption 3.4.4. As expert opinions lag time ∆t, we assume from now
on that Ek represents the information of Yk−1, i.e.

E[Yk−1|Ek] = Ek,

where Ek ∼ D(γTYk−1), and γ is a d × d parameter matrix for Dirichlet
distribution.

Then, we will have the following characteristics of Ek.

Lemma 3.4.5. Under Assumption 3.4.4, Ek is conditional Dirichlet dis-
tributed, and the distribution of Ek is a mixture of Dirichlet distributions. In
addition, Ek is conditionally independent of Rk.

Proof. At time k, for i ∈ {1, . . . , d}, the conditional distribution of Ek given
Yk−1 = ei is

PEk|Yk−1=ei : B → E , B 7→ PEk|Yk−1=ei(B) := P (Ek ∈ B|Yk−1 = ei)

is D(γ(i)), where γ(i) is the i−th row of γ. Thus, Ek is conditional Dirichlet.
The joint distribution of (Ek, Yk−1) is

P (Ek ∈ B, Yk−1 = ei) = P (Yk−1 = ei)PEk|Yk−1=ei(B)

for B ∈ B, i = 1, . . . , d. Thus,

P (Ek ∈ B) =
d∑
i=1

P (Yk−1 = ei)PEk|Yk−1=ei(B)

i.e. distribution of Ek is a mixture of Dirichlet distributions.
For B1, B2 ∈ B,

P (Ek ∈ B1, Rk ∈ B2|Yk−1) = P (Ek ∈ B1|Yk−1)P (Rk ∈ B2|Yk−1),

i.e. Ek is conditional independent of Rk.

Next step is using the technique of change-of-measure again, but we will
need another reference measure.
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3.4.1 Reference Measure including Expert Opinions

A new reference measure is introduced by the following definition.

Definition 3.4.6. Set Z0 = 1 and Zk = Zk−1Lk for k ≥ 1, where

Lk :=
ϕ0,1(Rk)

ϕbTYk−1,(aTYk−1)2(Rk)

fD
1d

(Ek)

fD
γTYk−1

(Ek)

where fD represents the density function of Dirichlet distribution whose pa-
rameters are given by subscript. The probability measure given by

dP̃

dP
|HK = ZK

is the reference measure for filtering, where HK = FK ∨ FEK .

Next, we show some good properties of measure P̃ .

Lemma 3.4.7. (i) Z = (Zk)k=0,...,K is a H-martingale under measure P .
Z−1 = (Z−1

k )k=0,...,K is a H-martingale under measure P̃ .
(ii) For all u ≤ k,

Ẽ[Z−1
k Yu|FCu ] = Ẽ[Z−1

u Yu|FCu ].

(iii) Under P̃ , R1, R2, . . . are i.id. standard normally distributed and inde-
pendent of Y , and E1, E2, . . . are i.i.d., D1d-distributed, and independent of
Y .

Proof. See proof in Appendix A.2.

The next lemma shows some properties which are the same under the
reference measure P̃ and under the original measure P . Obviously we have:

Lemma 3.4.8. (i) P̃ (Yk = ei|Yk) = P (Yk = ei|Yk) = Y i
k .

(ii) The Markov chain Y has the same transition matrix under reference
probability measure, i.e.

P̃ (Yk = ej|Yk−1 = ei) = P (Yk = ej|Yk−1 = ei).

Proof. Proof are the same as in Lemma 3.3.3.
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As there are some good properties in reference measure, we could compute
filters under P̃ and use Bayes’ formula to get filters under P .
Since for A ∈ HK ,

Ẽ[1AZ
−1
K ] = E[1AZ

−1
K ZK ] = E[1A] = P (A)

we have dP
dP̃
|HK = Z−1

K .

Definition 3.4.9. For any H-adapted H = (Hk)k∈N0 such that the following
expectations exist,

ρk(H) := Ẽ[Z−1
k Hk|FCk ]

is unnormalized filter of H under P̃ at time k.

Lemma 3.4.10. For any H-adapted H = (Hk)k∈N0 such that the following
expectations exist,

Ĥk := E[Hk|FCk ] =
ρk(H)

ρk(1)
=

1Td ρk(HY )

1Td ρk(Y )
.

Proof. By Bayes’ formula of conditional expectation

E[Hk|FCk ] =
Ẽ[HkZ

−1
K |FCk ]

Ẽ[Z−1
K |FCk ]

=
Ẽ[Ẽ[HkZ

−1
K |Hk]|FCk ]

Ẽ[Ẽ[Z−1
K |Hk]|FCk ]

=
Ẽ[Ẽ[HkZ

−1
k |Hk]|FCk ]

Ẽ[Ẽ[Z−1
k |Hk]|FCk ]

=
ρK(H)

ρK(1)

Further,

ρk(1) = Ẽ[Z−1
k 1Td Yk|FCk ] = 1Td Ẽ[Z−1

k Yk|FCk ] = 1Td ρk(Y ),

ρk(H) = Ẽ[HkZ
−1
k |F

C
k ] = Ẽ[Hk1

T
d YkZ

−1
k |F

C
k ] = 1Td Ẽ[HkYkZ

−1
k |F

C
k ] = 1Td ρk(HY )

which concludes the proof.

Then we computer unnormalized filter of some suitable class under P̃ by
the following theorem:
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Theorem 3.4.11. Let H = (Hk)k∈N0 be H-adapted, Hk : Ω→ R, with

Hk = Hk−1 + αk−1 + βTk−1Yk + κk−1f(Rk) + δk−1g(Ek),

where α, β, κ, δ are F-adapted and R, Rd, R, R-valued respectively. And
f : R → R, g : E → R are both measurable, s.t. H is integrable. For

Γi(r, e) := ϕi(r)
ϕ0,1(r)

fDi (e)

fD
1d

(e)
, where ϕi = ϕbi,a2

i
and fDi = fD

γ(i). Then we have

ρk(HY ) =
d∑
i=1

{
ρk−1(HY i)Γi(Rk, Ek)Π

T ei

+ ρk−1(αY i)Γi(Rk, Ek)Π
T ei

+ ρk−1(κY i)Γi(Rk, Ek)f(Rk)Π
T ei

+ ρk−1(δY i)Γi(Rk, Ek)g(Ek)Π
T ei

+ (Diag(ΠT ei))ρk−1(βY i)Γi(Rk, Ek)
}

where ρk(HY ) = (ρ(HY 1), ρ(HY 2), . . . , ρ(HY d))T , and Y i is the i−th ele-
ment of vector Y .

Proof. See proof in Appendix A.2.

Theorem 3.4.12. The recursive scheme for Ŷ i
k is

Ŷ i
k =

∑d
j=1 pjiϕj(Rk)f

E
j (Ek)Ŷ

j
k−1∑d

z=1 ϕz(Rk)fEz (Ek)Ŷ z
k−1

,

where Ŷk = E[Yk|FCk ], fEj = fD
α(j) is a density function of Dirichlet distribu-

tion parameterized by γ(j). Vectorizing, we get

Ŷk =
ΠT
(
Diag(ϕ(Rk)� fE(Ek))

)
Ŷk−1

(Diag(ϕ(R̃))fE(Ek))T Ŷk−1

,

where fE(e) = (fE1 (e), . . . , fEd (e))T and Diag(ϕ(r)� (fE(e)) is the diagonal
matrix with diagonal ϕ(r)� fE(e).
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Proof.

P (Yk = ei, Rk ≤ r, Ek ≤ e|R1:1−k, E1:1−k)

=
i∑

j=1

P (Yk = ei, Rk ≤ r, Ek ≤ e|Yk−1 = ej)P (Yk−1 = ej|R1:1−k, E1:1−k)

=
d∑
j=1

pjiP (Rk ≤ r|Yk−1 = ej)P (Ek ≤ e|Yk−1 = ej)Ŷ
j
k−1

=
d∑
j=1

pji

∫
R
ϕj(r)dr

∫
E
fEj (e)deŶ j

k−1

In addition
P (Rk ≤ r, Ek ≤ e|R1:1−k, E1:1−k)

=
d∑
i=1

d∑
j=1

pji

∫
R
ϕj(r)dr

∫
E
fEj (e)deŶ j

k−1

=
d∑
j=1

∫
R
ϕj(r)dr

∫
E
fEj (e)deŶ j

k−1

Then we can use Bayes rules and get

E[Y i
k |FRk ∨ FEk ] = P (Yk = ei|R1:k, E1:k)

=

∑d
j=1 pjiϕj(Rk)f

E
j (Ek)Ŷ

j
k−1∑d

z=1 ϕz(Rk)fEz (Ek)Ŷ z
k−1

After vectorizing, we get the final result.

Remark 3.4.13. Using change-of-measure, we can get the same filter as the
recursive one in Theorem 3.4.12. From Theorem 3.4.11, we set H = 1, α =
β = γ = δ = 0 and get

ρk(Y
i) =

d∑
j=1

pjiρk−1(Y j)Γj(Rk, Ek).

Then we derive

1dρk(Y ) =
d∑
j=1

ρk−1(Y j)Γj(Rk, Ek).
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From above, we can compute for E[Y i
k |FCk ], which is given by

E[Y i
k |FCk ] =

ρk(Y
i)

1dρk(Y )
=

∑d
j=1 pjiϕj(Rk)f

E
j (Ek)Ŷ

j
k−1∑d

z=1 ϕz(Rk)fEz (Ek)Ŷ z
k−1

.

3.4.2 Posterior Probability Maximization

In EM algorithm, the following posterior likelihood is maximized. For ob-
served Y1, . . . , YK , R1, . . . , RK , E1, . . . , EK

ΛK =
dPθ
dPθ′

=
K∏
k=1

d∏
i,j=1

(pij
p′ij

)Y ik−1Y
j
k

d∑
i=1

Y i
k−1

ϕbi,a2
i
(Rk)

ϕb′i,a′2i (Rk)

fD
γ(j)(Eu)

fD
γ(j)′ (Eu)

which leads to

log ΛK =
d∑

i,j=1

N ij
K log(pij) +

d∑
i=1

(
−Oi

K log ai −
1

2

( bi
ai

)2

Oi
K

)

+
d∑
i=1

(
bi
a2
i

T iK(f1)− 1

2a2
i

T iK(f2)

)
+

K∑
k=1

d∑
j=1

Y j
k−1 log fDγ(j)(Ek)

+ h(Π′, a′, b′) + g(γ′).

Define

F (γ) :=
K∑
k=1

d∑
j=1

Y j
k−1 log fDγ(j)(Ek)

where γ = (γ(1), . . . , γ(d))T ∈ Rd×d. Thus,

F (γ) =
K∑
k=1

d∑
j=1

Y j
k−1

(
log Γ(

d∑
i=1

γ
(j)
i )−

d∑
i=1

log Γ(γ
(j)
i ) +

d∑
i=1

(γ
(j)
i − 1) logEi

k

)
.

The goal is to derive γ, which can maximize F .
The first approach to try is Gradient Ascent, which iteratively steps along
positive gradient directions of F until convergence. The gradient of the
objective is given by differentiating F :

(∇F )ij =
∂F

∂γ
(j)
i

=
K∑
k=1

Y j
k−1

(
Ψ(

d∑
i=1

γ
(j)
i )−Ψ(γ

(j)
i ) + logEi

k

)
(3.6)
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where Ψ(x) = d log Γ(x)
dx

is known as digamma function. There is no closed-
form solution to estimate Dirichlet distribution from above. One can always
continue to step along a constant fraction of the gradient. Moreover one
should always care about the constraints of this problem that γi is positive.

The second approach is the Newton-Raphson method, which provides a
quadratically converging approach for parameter estimation. The general
rule to update parameters iteratively is

γnew = γold −H−1(F )∇F

where H is Hessian matrix.
Here we need to express γ as an d× d-dimensional vector, and hence we can
have a d2 × d2 Hessian matrix for F . In particular,

∂2F

∂γ
(j)
i ∂γ

(j)
i

=
K∑
k=1

Y j
k−1

(
Ψ′(

d∑
i=1

γ
(j)
i )−Ψ′(γ

(j)
i )
)

∂2F

∂γ
(j)
i ∂γ

(j)
l

=
n∑
k=1

Y j
k−1

(
Ψ′(

d∑
i=1

γ
(j)
i )
)
l 6= i

∂2F

∂γ
(j)
i ∂γ

(h)
m

= 0 for h 6= j and all i,m = 1, . . . , d.

(3.7)

The estimator in equation (3.6) and equation (3.7) can be specified using
Theorem 3.4.11.

3.4.3 Numerical Results

The data is simulated in the following setting:

• d = 2;

• b = (0.08,−005)T , a = (0.03.0.1)T , Π =

[
0.7 0.3
0.2 0.8

]
;

• Y0 = e1.

• γ =

[
3 1
1 3

]
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From γ, we know γ(1) = (3, 1) and γ(2) = (1, 3). The first value represents the
value of γ conditional on Y = e1, and second one is accordingly conditional
on Y = e2.
Figure 3.6 illustrates the conditional log-likelihood once we know the real
gamma. The convergence speed is faster than the scenario in which one can
only observe asset returns.

Figure 3.6: Conditional Log-likelihood

Once we know the exact value of gamma, we may combine the information
of expert opinions and asset returns by Bayes rules. Figure 3.7a illustrates
that with expert opinions the estimators of both b and a converge faster as
EM algorithm iterates. In addition the estimators are closer to the real value
of these parameters. To estimate the transition matrix, we can have a faster
convergence speed than before. The estimator of p11 is closer to the real
value, while the estimator of p11 is not.
We can combine the information of expert opinions and assets returns and

have a better estimators of parameters once we know γ. Next, we will not
assume that γ is known before. Instead, we have an initial guess of

γ0 =

[
2 2
2 2

]
.

Then, we use numerical methods of gradient ascent with constraint γij > 0
to estimate the value of γ at the same time. The numerical method is not
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(a) Mean and Standard deviation of dis-
tributions for two states (b) p11 and p12 of transition matrix

Figure 3.7: Estimated Parameters by EM algorithm with Known γ

stable. As shown in Figure 3.8, the estimation for γ irregularly fluctuate at
first, but converge closer to the real values in the end.

Figure 3.8: Estimators of γ

In the EM algorithm, we estimate both the parameters of MSMs and
Dirichlet distributions at the same time. As shown in Figure 3.9 the param-
eters b, a,Π converge in the end with improvement of estimators of γ. The
results are very similar to the scenario in which we know the value of γ, while
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the convergence speed is slower than before. The estimators of b and a are
closer to real ones than when the only observation are the asset returns. The
estimator of p21 is closer to the real value, while the estimator of p11 is not.

(a) Mean and Standard deviation of distributions for two
states

(b) p11 and p12 of transition matrix

Figure 3.9: Estimated Parameters by EM algorithm with Unknown γ
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To see the impact of γ, we have a different setting with

γ =

[
3 1
1 6

]
.

Then we get similar results as shown in Figure 3.10.

Remark 3.4.14. An examples with 3 states are illustrated in A.3.
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(a) Mean and Standard deviation of distributions
for two states

(b) p11 and p12 of transition matrix

(c) Estimators of γ

Figure 3.10: Estimated Parameters by EM algorithm with Unknown γ



Chapter 4

Portfolio Optimization with
Expert Opinions in MSMs

In this chapter, our aim will be to maximize her expected utility of terminal
wealth according to the available information:

π∗ = arg max
π∈AH

E[U(Xπ
T )]

where

AH(x) =
{
π = (πk)k=0,...,k :πk is FHk −measurable, Xπ

k > 0 for k = 0, . . . , N

and E[U(Xπ
N)− <∞], Xπ

0 = x
}

is the set of admissible strategies for all the cases H ∈ {R,E,C, F}. We first
show existence of the solution by a dynamic programming approach.
We derive an order-∆t-approximation of the strategy in each case, and the
results are the same as the ones when we use second order multivariate Taylor
expansion.
We investigate the impact of the time step by using Monte Carlo simulation
and interpolation methods.
At last we show the benefit of strategies using combined information by a
numerical study.
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4.1 Financial Market Model

For a fixed date T > 0 representing the investment horizon, we work on a
filtered probability space (Ω,FT ,F ,P), with filtration F = (Ft)t∈[0,T ] satis-
fying the usual conditions. All processes are assumed to be F -adapted. As
before, we consider to discretize the continuous financial market with one
stock with prices

dSt = St(µtdt+ σdWt)

and one bond with prices

dBt = Btrdt.

We model the daily log-returns of risky assets prices, Rk = log Sk
Sk−1

, by MSMs

Rk = bTYk−1 + aTYk−1εk for k=1,. . . ,N,

where Yk ∈ Y , Y is state space {e1, . . . , ed}, the units vector in Rd. The pa-
rameters are discretized from continuous model given by bi = (µi−σ2

i /2)∆t,

ai = σi
√

∆t, εk =
Wtk
−Wtk−1√

∆t
∼ N (0, 1), T = N∆t, tk = k∆t, k = 0, . . . , N .

We model the dynamics of the bond prices Bk at time k as

Bk = (1 + r∆t)Bk−1, r∆t > −1.

The wealth process using strategies π at time k is given by

Xπ
k+1 =

(
1 + (1− πk)r∆t+ πk(e

Rk+1−1
)
Xπ
k

and x0 denotes the initial wealth.

As in Lemma 2.1.3, the stock returns in MSM have full support too.
Hence we can get the same condition for admissible strategy that π ∈ (0, 1).

The information available to an investor is described by the investor fil-
tration FH = (FHt )t∈[0,T ], for which we consider four cases H ∈ {R,E,C, F}.
The investor’s aim will be to maximize her expected utility of terminal wealth
according to the available information:

π∗ = arg max
πH∈A

E[U(Xπ
T )] (4.1)
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where

AH(x) =
{
π = (πk)k=0,...,k :πk is FHk −measurable, Xπ

k > 0 for k = 0, . . . , N

and E[U(Xπ
N)− <∞], Xπ

0 = x
}

is the set of admissible strategies for all the cases H ∈ {R,E,C, F},
U : R+ → R∪ [−∞] is a utility function, and Xπ

t is the wealth process when
investing according to portfolio strategies π ∈ AH .

The portfolio optimization problem 4.1 can be solved by the following
Markov decision model.

Definition 4.1.1. The Markov decision model is given by (X ,A, {A(x) : x ∈
X}, Q,G).
(1) a Borel set X , the states,
(2) a Borel set A, the actions or controls,
(3) A(x), the admissible controls in state x, where D = {(x, a)|x ∈ X , a ∈
A(x)} is measurable.
(4) a stochastic kernel Q on X given D, i.e. Q(·|(x, a)) is a probability
measure for each (x, a) ∈ D.
(5) a terminal reward function G : D → R which is measurable.

Remark 4.1.2. (1) If x ∈ X is FH-adapted and observable, then as a result
a ∈ A(x), D and the terminal reward function G are all FH-measurable.

Definition 4.1.3. To solve the problem of Markov decision model, we con-
sider the FH-performance criterion

J
π(H)
k (x) := E[G(XN)|FHk , Xk = x]

and the FH-value function

V H
k (x) = sup

π∈AH
J
π(H)
k (x), k = 0, . . . , N, x ∈ X .

Our aim is to find the value V H
0 (x) in each case H and optimal strategy,

denoted by π∗(H) with V H
0 = J

π∗(H)
0 .

Definition 4.1.4. If there exist i.i.d. (Zk)k=1,...,N with values in Z and
measurable.

f : (X ,A,Z)→ X ,
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s.t. Xk+1 = f(Xk, ak, Zk), then the Markov decision model is called Markov
decision model with transition law f .

E.g., in Markov decision model with full information we have two variables
for state Xk, wealth process Xπ

k and state Yk respectively. Then we have

f(x, ei, π, ε) = x(1 + r∆t+ π(ebi+aiε − 1− r∆t)).

Later we have unobserved Yk in partial information, then the state Xk have
two variables, wealth process Xπ

k and filter Ŷk instead.

Remark 4.1.5. In our setting of portfolio optimization, the utility function
is regarded as reward function,

V H
k (x) = sup

π∈A(x)H
E[U(Xπ

N)|FHk , Xπ
k = x]

where AH(x) is the set of admissible strategies, U : R+ 7→ R is a utility
function. [0, N∆t] is the investment horizon and Xπ

k is the wealth process
when investing according to portfolio strategy π ∈ AH(x).

Theorem 4.1.6. (Dynamic Programming) Define WH
N , . . . ,W

H
0 backwards

by
WH
N (x) = U(x)

and for n = N − 1, . . . , 0 by the dynamic programming equation(DPE)

WH
k (x) = sup

a∈AH(x)

E[WH
k+1(f(x, a, Z))|FHk ].

If WH
0 , . . . ,W

H
N−1 are FH-measurable and if there exist a FH-measurable

ϕHk : X → A with ϕHk (x) ∈ AH(x) and

WH
k (x) = E[WH

k+1(f(x, ϕHk (x), Z))|FHk ],

then π∗(H) := ϕHk defines an optimal Markov decision and V H
k = WH

k , k =
0, . . . , N .

Proof. We show the statement by backward induction. For n = N we have

V H
N (x) = U(x) = WH

N (x)
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Now suppose that for n ∈ {0, . . . , N − 1} we have WH
k = V H

k for k ≥ n + 1
and that ψ∗n+1, . . . , ψ

∗
N−1 is an optimal policy from n+ 1. Then on one hand,

since an admissible maximizer exists,

V H
n (x) ≥ sup

a
E[V H

n+1(Xψ
n+1)|FHn , ψn = a,Xψ

n = x]

= sup
a

E[WH
n+1(f(x, a, Z))|FHk ] = WH

n (x).

On the other hand, for optimal ψ∗n and maximizer ϕHn in the DPE,

WH
n (x) = E[WH

n+1(f(x, ϕHn (x), Z))|FHn ]

≥ E[WH
n+1(f(x, ψ∗n(x), Z))|FHn ]

= E[WH
n+1(Xψ∗

n+1)|FHn , Xϕ∗

n = x]

= E[V H
n+1(Xψ∗

n+1)|FHn , Xϕ∗

n = x]

= E[E[U(Xψ∗

N )|FHn+1, X
ψ∗

n+1]|FHn , Xϕ∗

n = x]

= V H
n (x).
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4.2 Markov Decision Processes with Full In-

formation

First, the scenario H = F is discussed. We take (Xπ
k , Yk) as controlled

process. Then we get a Markov control problem with transition kernel Q
given by

Q(B × {ej}|(x, ei, η)) = P (Xπ
k+1 ∈ B, Yk+1 = ej|Xπ

k = x, Yk = ei, πk = η)

= P (f(x, ei, η, εk+1) ∈ B)pij

Theorem 4.2.1. For logarithmic utility U(x) = log x, the value function
satisfy V F

N (x, ei) = U(x), and for k = N − 1, . . . , 0, the DPEs

V F
k (x, ei) = sup

η∈[0,1]

E
[ d∑
j=1

V F
k+1(f(x, ei, η, εk+1), ej)pij

∣∣∣FFk ]

where εk+1 ∼ N (0, 1). An optimal strategy is given by π∗k = η∗(Yk), where
η∗(ei) is the optimizer in

v(ei) = sup
η∈[0,1]

E[log(f(1, η, ei, ε))]

where ε ∼ N (0, 1). Further,

V F
k (x, ei) = log x+ dk(ei)

where, dN(ei) := 0 and

dk(ei) :=
d∑
j=1

pij(v(ei) + dk+1(ej)).

Proof. We prove the form of V F
k by backward induction. First we have

V F
N (x, ei) = U(x) = log x.
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Suppose V F
k (x, ei) = log x+ dk(ei) is satisfied for k + 1, (k < N), then

V F
k (x, ei) = sup

η∈[0,1]

E
[ d∑
j=1

V F
k+1(f(x, ei, η, εk+1), ej)pij

∣∣∣FFk ]
= sup

η∈[0,1]

E
[ d∑
j=1

(
log x+ log(f(1, η, ei, εt+1)) + dk+1(ej)

)
pij

]
= log x+

d∑
j=1

pij(v(ei) + dk+1(ej))

= log x+ dk(ei).

If using Taylor expansions for ex, and log(1 + x) around 0, we have first

ebi+aiε ≈ 1 + (µi − σ2
i /2)∆t+ σ

√
∆tε+ 1/2σ2

i ∆tε
2

and thus

vk(ei) = sup
η∈[0,1]

E[log(f(1, η, ei, εk+1))]

= sup
η∈[0,1]

E[log(1 + r∆t+ η((µi − σ2
i /2)∆t+ σ

√
∆tε+ 1/2σ2

i ∆tε
2 − r∆t))]

≈ sup
η∈[0,1]

E[r∆t+ η((µi − σ2
i /2)∆t+ σ

√
∆tε+ 1/2σ2

i ∆tε
2 − r∆t)

− (r∆t+ η((µi − σ2
i /2)∆t+ σ

√
∆tε+ 1/2σ2

i ∆tε
2 − r∆t))2/2]

= sup
η∈[0,1]

E
[
r∆t+ η(µi∆t− r∆t)− η2σi∆t/2

]
.

Then we get η∗(ei) ≈ µi−r
σ2
i

.

Proposition 4.2.2. The log-optimal strategy at time k, π∗k has values in
(0, 1) if and only if

Y T
k µ− ρ

(Y T
k σ)2

∈ (0, 1)

where ρ is compound interest rate, whose discretized one of order ∆t is r, i.e.
eρ∆t = 1 + r∆t.
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Proof. From Theorem 4.2.1, the optimal strategy at time k, is only dependent
on Yk via

π∗k = η∗(Yk)

where η∗(ei) is the maximizer of

E[log(f(1, η, ei, εk+1))] = E[log(1 + r∆t+ η(ebi+aiεk+1 − 1− r∆t))] =: δ(η)

Then we have

dδ(η)

dη
= E

[ ebi+aiεk+1 − 1− r∆t
1 + r∆t+ πk(ebi+aiεk+1 − 1− r∆t)

]
d2δ(η)

dη2
= −E

[ (ebi+aiεk+1 − 1− r∆t)2

(1 + r∆t+ πk(ebi+aiεk+1 − 1− r∆t))2

]
< 0

Therefore 0 < π∗k < 1, if and only if

E
[ebi+aiεk+1 − 1− r∆

1 + r∆t

]
> 0;

E
[ ebi+aiεk+1 − 1− r∆t

1 + r∆t+ (ebi+aiεk+1 − 1− r∆t)

]
< 0

The condition is given by

(E[e−(bi+aiεk+1)])−1 < 1 + r∆t < E[ebi+aiεk+1 ]

In addition,
E[e−bi−aiεk+1 ] = e(−µi+σ2

i )∆t

E[ebi+aiεk+1 ] = eµi∆t

Finally we have

0 < η∗(ei) < 1⇔ e(−µi+σ2
i )∆t < eρ∆t < eµi∆t

⇔ (−µi + σ2
i )∆t < ρ∆t < µi∆t

⇔ µi − ρ
σ2
i

∈ (0, 1).

In total, π∗k ∈ (0, 1) iff
Y Tk µ−ρ
(Y Tk σ)2 ∈ (0, 1).

Remark 4.2.3. By Proposition 4.2.2 and the expansion before we see that

π∗k = 0 if
Y Tk µ−ρ
(Y Tk σ)2 ≤ 0, π∗k = 1 if

Y Tk µ−ρ
(Y Tk σ)2 ≥ 1 and that π∗k ≈

µi−ρ
σ2
i

if µi−ρ
σ2
i
∈ (0, 1).
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Theorem 4.2.4. For power utility U(x) = x1−α

1−α , α > 0, α 6= 1, the value

function satisfy V F
N (x, ei) = U(x), and for k = N − 1, . . . , 0, the DPEs

V F
k (x, ei) = sup

η∈[0,1]

E
[ d∑
j=1

V F
k+1(f(x, ei, η, εk+1), ej)pij

∣∣∣FFk ]
where εk+1 ∼ N (0, 1). An optimal strategy is given by π∗k = η∗(Yk), where
η∗(ei) is the optimizer in

v(ei) =

{
supη∈[0,1] E[f(1, ei, η, ε)

1−α], α ∈ (0, 1).

infη∈[0,1] E[f(1, ei, η, ε)
1−α], α > 1.

where ε ∼ N (0, 1). Further,

V F
k (x, ei) =

1

1− α
x1−αdk(ei)

where, dN(ei) := 1 and

dk(ei) := vk(ei)
d∑
j=1

pijdk+1(ej).

Proof. We have V F
k , and V F

N (x, ei) = U(x) = x1−α

1−α .

Suppose V F
k (x, ei) = V F

k (x, ei) = 1
1−αx

1−αdk(ei) is satisfied for k+1, (k < N),
then

V F
k (x, ei) = sup

η∈[0,1]

E
[ d∑
j=1

V F
k+1(f(x, ei, η, εk+1), ej)pij

∣∣∣FFk ]
= sup

η∈[0,1]

E
[ d∑
j=1

( 1

1− α
x1−αf(1, π, ei, εt+1)1−α · dk+1(ej)

)
pij

]
=

1

1− α
x1−αv(ei)

d∑
j=1

pijdk+1(ej)

=
1

1− α
x1−αdk(ei).
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4.3 Filtered Markov Decision Processes

We say we have partial information in the Markov switching model if we can-
not observe the state Y . Instead, the underlying state is estimated by other
related observations, e.g. asset returns and expert opinions. Or we can as-
sume that the Markov chain is unobservable H ∈ {R,E,C}, i.e. the investor
has partial information that indicated by stock returns or expert opinions or
both information. The idea is to enlarge the state space of the problem by
adding the filtered probability distribution of state Yk given the history of
observations up to time k. The filtered probability can be computed recur-
sively in different cases. It will be shown that the filtered probability contains
exactly the relevant information in order to derive optimal strategies.

Definition 4.3.1. The Filtered Markov decision model is given by

((X ,Y),A, {A(x, ŷ) : x ∈ X , ŷ ∈ Y}, Q,G) :

• a Borel set (X ,Y), the dual states,

• a Borel set A, the actions or controls,

• A(x, ŷ), the admissible controls in dual state (x, ŷ), where we need that
D = {((x, ŷ), a)|(x, ŷ) ∈ (X ,Y), a ∈ A(x, ŷ)} is measurable.

• a stochastic kernel Q on (X ,Y) given D, i.e. Q(|((x, Ŷ ), a)) is a prob-
ability measure for each ((x, ŷ), a) ∈ D.

• a terminal reward function G : D → R which is measurable.

Theorem 4.1.6 can be applied to this setting using value functions

V H
k (x, ŷ) = sup

π
E[U(Xπ

N)|FHk , Xπ
k = x, Ŷk = ŷ]

= sup
π

E[U(Xπ
N)|Xπ

k = x, Ŷk = ŷ]

where π is FH-admissible. Next, we have two useful lemmas.
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Lemma 4.3.2. For all random variables Z, which are independent of FHk ∨
FYk , and measurable functions f : S × R→ R, we have

E[f(Yk, Z)|FHk ] =
d∑
i=1

E[1{Yk=ei} · f(ei, Z)|FHk ]

=
d∑
i=1

Ŷ i
kE[f(ei, Z)]

where Ŷ i
k = E[Y i

k |FHk ], if the expectation exists.

Proof.

E[f(Yk, Z)|FHk ] =
d∑
i=1

E[1{Yk=ei} · f(ei, Z)|FHk ]

=
d∑
i=1

E[E[1{Yk=ei} · f(ei, Z)|FHk ∨ FYk ]|FHk ]

=
d∑
i=1

E[1{Yk=ei}E[f(ei, Z)|FHk ∨ FYk ]|FHk ]

=
d∑
i=1

E[1{Yk=ei}E[f(ei, Z)]|FHk ]

=
d∑
i=1

E[1{Yk=ei}|FHk ]E[f(ei, Z)]

=
d∑
i=1

Ŷ i
kE[f(ei, Z)].

The second equation is due to the tower property of conditional expectation,
the third equation is because 1{Yk=ei} is measurable in FYk , the forth one is
because of the independence of Z, and the fifth one is because of the fact
that E[f(ei, Z)] is a constant.

The lemma is extended to the following form, which we will use in our
dynamic programming equations, in case of H = R.
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Lemma 4.3.3. For all random variables Z, which are independent of FHk ∨
FRk ∨FYk , and measurable functions h : S ×E ×R×R→ R, Ŷk and Xk both
FRk -measurable, we have

E[h(Yk, Ŷk, Z,Xk)|Ŷk = ŷ, Xk = x] =
d∑
i=1

ŷiE[h(ei, ŷ, Z, x)].

Proof. by the property of Markov switching model, and tower property of
expectation

E[h(Yk, Ŷk, Z,Xk)|Ŷk, Xk] = E[
d∑
i=1

1{Yk=ei}h(ei, Ŷk, Z,Xk)|Ŷk, Xk]

= E
[
E[E[

d∑
i=1

1{Yk=ei}h(ei, Ŷk, Z,Xk)|FHk ∨ FRk ∨ FYk ]|FHk ∨ FRk ]
∣∣∣Ŷk, Xk

]
since σ{Xπ

k , Ŷk} ⊆ FHk ∨ FRk , moreover
∑d

i=1 1{Yk=ei} is FYk -measurable, Ŷk
and Xk are both FRk -measurable, by Lemma 4.3.2

E
[
E[E[

d∑
i=1

1{Yk=ei}h(ei, Ŷk, Z,Xk)|FHk ∨ FRk ∨ FYk ]|FHk ∨ FRk ]
∣∣∣Ŷk, Xk

]
= E

[ d∑
i=1

Ŷ i
kh(ei, Ŷk, Z,Xk)

∣∣∣Ŷk, Xk

]
=

d∑
i=1

Ŷ i
kh(ei, Ŷk, Z,Xk)

As a result,

E[h(Yk, Ŷk, Z,Xk)|Ŷk = ŷ, Xk = x] =
d∑
i=1

ŷiE[h(ei, ŷ, Z, x)]

4.3.1 The Case H = R

In this section we focus on the case that

FH = FR = σ(R1, . . . , Rk).
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In our setting, the transition law is given by f(x, Y, π, Z) for x, and g(ŷ, Y, Z)
for ŷ, where the explicit formula for f is given by

f(x, Yk, π, εk+1) = x
d∑
i=1

1{Yk=ei}(1 + r∆t+ π(ebi+aiεk+1 − 1− r∆t)).

Note that g has different formulas when H ∈ {R,E,C}, for the case H = R,

g(ŷ, Yk, εk+1) =
d∑
i=1

1{Yk=ei}
ΠTDiag(ϕ(bi + aiεk+1))ŷ

ϕ(bi + aiεk+1)T ŷ
.

Recall that at t = k, Rk+1 =
∑d

i=1 1{Yk=ei}(bi + aiεk+1), so that the transi-
tion law add up all the possibilities of Rk+1 by indicator functions. Further
remember also that ϕ = (ϕ1, . . . , ϕd)

T , where ϕj is the pdf of N (bj, a
2
j).

The stochastic kernel Q on (X ,Y) given D, is

Q(B1 ×B2, (x, ŷ, η)) = P ((Xπ
k+1 ∈ B1, Ŷk+1 ∈ B2)|Xπ

k = x, Ŷk = ŷ, πk = η)

=
d∑
i=1

P ((Xπ
k+1 ∈ B1, Ŷk+1 ∈ B2)|Xπ

k = x, Ŷk = ŷ, πk = η, Yk = ei)P (Yk = ei)

Theorem 4.3.4. If H = R, we have for logarithmic utility U(x) = log x, the
value function satisfy VN(x, ŷ) = U(x), and for k = N − 1, . . . , 0, the DPEs

V R
k (x, ŷ) = sup

η∈[0,1]

E
[ d∑
i=1

1{Yk=ei}V
R
k+1

(
f(Xπ

k , ei, η, εk+1), g(Ŷk, ei, εk+1)
)∣∣∣Xπ

k = x, Ŷk = ŷ
]

= sup
η∈[0,1]

d∑
i=1

ŷiE
[
V R
k+1

(
f(x, ei, η, εk+1), g(ŷ, ei, εk+1)

)]
where ŷ = E[Yk|FRk ], εk+1 ∈ N (0, 1). An optimal strategy is given by π∗k =
η∗(ŷ), were η∗(ŷ) is the optimizer in

v(ŷ) = sup
η∈[0,1]

d∑
i=1

ŷiE[log(1 + r∆t+ η(ebi+aiεk+1 − 1− r∆t))].

Further,
V R
k (x, ŷ) = log x+ dk(ŷ) (∗)
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where dN(ŷ) = 0 and

dk(ŷ) = v(ŷ) +
d∑
i=1

ŷiE
[
dk+1(g(ŷ, ei, εk+1))

]
.

Proof. We have VN(x) = U(x) = log x.
Suppose (∗) is satisfied for k + 1, (k < N − 1), then by Lemma 4.3.3

V R
k (x, ŷ)

= sup
η∈[0,1]

E
[ d∑
i=1

1{Yk=ei}V
R
k+1

(
f(x, ei, η, εk+1), g(ŷ, ei, εk+1)

)∣∣∣Xπ
k = x, Ŷk = ŷ

]
= sup

η∈[0,1]

d∑
i=1

ŷiE
[
V R
k+1

(
f(x, ei, η, εk+1), g(ŷ, ei, εk+1)

)]
= sup

η∈[0,1]

d∑
i=1

ŷiE
[

log(f(x, ei, η, εk+1)) + dk+1(g(ŷ, ei, εk+1))
]

= log x+ sup
η∈[0,1]

d∑
i=1

ŷiE
[(

log(f(1, ei, η, εk+1))
)]

+
d∑
i=1

ŷiE
[
dk+1(g(ŷ, ei, εk+1))

]

Moreover, η∗(ŷ) in Theorem 4.3.4 can be derived by

η∗(ŷ) = arg sup
η∈[0,1]

d∑
i=1

ŷiE[log((1 + r∆t+ η(ebi+aiεk+1 − 1− r∆t)))].

Remark 4.3.5. When the utility function is logarithmic, one can derive a
optimal strategy directly from the estimator of state ŷ at current time k by
(4.3.1) regardless of dk+1. We can get an approximate strategy. Applying
second order of Taylor expansion for log(1 + x) and ex around 0, we get of
order ∆t

πlogk (ŷ) =

∑d
i=1 ŷ

iµi − r∑d
i=1 ŷ

iσ2
i

.

Theorem 4.3.6. If H = R, we have for power utility U(x) = x1−α

1−α , α 6= 1
and α > 0 that the value function satisfy VN(x, ŷ) = U(x), and for k =
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N − 1, . . . , 0, the DPEs

V R
k (x, ŷ) = sup

η∈[0,1]

E
[ d∑
i=1

1{Yk=ei}V
R
k+1

(
f(x, ei, η, εk+1), g(ŷ, ei, εk+1)

)∣∣∣FRk ]
= sup

η∈[0,1]

d∑
i=1

ŷiE
[
V R
k+1

(
f(x, ei, η, εk+1), g(ŷ, ei, εk+1)

)]
where ŷ = E[Yk|FRk ], εk+1 ∈ N (0, 1). An optimal strategy is given by π∗k =
η∗(ŷ), were η∗(ŷ) is the optimizer in

dk(ŷ) =

supη∈[0,1]

∑d
i=1 ŷ

iE
[
(f(1, ei, η, εk+1))1−αdk+1(g(ŷ, ei, εk+1))

]
α ∈ (0, 1)

infη∈[0,1]

∑d
i=1 ŷ

iE
[
(f(1, ei, η, εk+1))1−αdk+1(g(ŷ, ei, εk+1))

]
α > 1

where dN(ŷ) = 1. Further,

V R
k (x, ŷ) =

x1−α

1− α
dk(ŷ) (∗)

Proof. For the case H = R, the value function satisfies VN(x, ŷ) = U(x), and
for k = N − 1, . . . , 0, the DPEs

V R
k (x, ŷ) = sup

η∈[0,1]

E
[ d∑
i=1

1{Yk=ei}V
R
k+1

(
f(x, ei, η, εk+1), g(ŷ, ei, εk+1)

)∣∣∣FRk ]
= sup

η∈[0,1]

d∑
i=1

ŷiE
[
V R
k+1

(
f(x, ei, η, εk+1), g(ŷ, ei, εk+1)

)∣∣∣FRk ]
One may have the ansatz that (∗) satisfy for k + 1, k < N − 1

V R
k (x, ŷ) =

x1−α

1− α
dk(ŷ) (∗)

where dN(ŷ) = 1 and w.l.o.g. assume α ∈ (0, 1) (for α > 1 take the infimum)

dk(ŷ) = sup
η∈[0,1]

d∑
i=1

ŷiE
[
(f(1, ei, η, εk+1))1−αdk+1(g(ŷ, ei, εk+1))

]
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Thus, by Lemma 4.3.3

V R
k (x, ŷ) = sup

η∈[0,1]

E
[ d∑
i=1

1{Yk=ei}V
R
k+1

(
f(x, ei, η, εk+1), g(ŷ, ei, εk+1)

)∣∣∣FRk ]
= sup

η∈[0,1]

d∑
i=1

ŷiE
[
V R
k+1

(
f(x, ei, η, εk+1), g(ŷ, ei, εk+1)

)]
= sup

η∈[0,1]

d∑
i=1

ŷiE
[ 1

1− α
(f(x, ei, η, εk+1))1−αdk+1(g(ŷ, ei, εk+1))

]
=

x1−α

1− α
sup
η∈[0,1]

d∑
i=1

ŷiE
[
(f(1, ei, η, εk+1))1−αdk+1(g(ŷ, ei, εk+1))

]
=

x1−α

1− α
dk(ŷ)

The optimal strategy η∗(ŷ) can be derived by

η∗k(ŷ) = arg sup
η∈[0,1]

d∑
i=1

ŷiE
[
(f(1, ei, η, εk+1))1−αdk+1(g(ŷ, ei, εk+1))

]
.

When α > 1

η∗k(ŷ) = arg inf
η∈[0,1]

d∑
i=1

ŷiE
[
(f(1, ei, η, εk+1))1−αdk+1(g(ŷ, ei, εk+1))

]
.

Note that when the utility function is power function, we need to know
the real-valued function dk+1 in order to derive the optimal strategy at time k.
One can use Monte Carlo methods. [TZ07] mainly discussed the accuracy of
value function if we approximate the power function by second order Taylor
expansion. And showed some numerical results when dk keeps constant.

Proposition 4.3.7. At each time k = 1, . . . , N − 1, w.l.o.g. assuming α ∈
(0, 1) we have

sup
ŷ
dk(g(ŷ, ei, εk)) = 1 +O(∆t) for all i = 1 . . . , d.
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and the optimal strategy η∗k(ŷ) can be of order ∆t approximated by

η∗k(ŷ) ≈ 1

α

∑d
i=1 ŷ

iµi − r∑d
i=1 ŷ

iσ2
i

∨ 0 ∧ 1.

Proof. We prove this by induction. At time k = N − 1

dN−1(ŷ) = sup
η∈[0,1]

d∑
i=1

ŷiE
[
(f(1, ei, η, εk+1))1−α

]
= sup

η∈[0,1]

d∑
i=1

ŷiE
[
1 + (1− α)

(
r∆t+ η((µi − r +

ε2
k+1 − 1

2
σ2
i )∆t+ σi

√
∆tεk+1)

)
+

(1− α)(−α)

2
η2σ2

i ∆tε
2
k+1 +O(∆t2)

]
The maximization yields the approximation of η∗N−1(ŷ), and we get

dN−1(ŷ) = 1 +O(∆t).

Then we compute iteratively. Suppose at time k + 1, . . . , N − 1, we have
supŷ dk+1(g(ŷ, ei, εk+1)) = 1 +O(∆t), we have

dk(ŷ) = sup
η∈[0,1]

d∑
i=1

ŷiE
[
(f(1, ei, η, εk+1))1−αdk+1(g(ŷ, ei, εk+1))

]
= sup

η∈[0,1]

d∑
i=1

ŷiE
[(

1 + (1− α)
(
r∆t+ η((µi − r +

ε2
k+1 − 1

2
σ2
i )∆t+ σi

√
∆tεk+1)

)
+

(1− α)(−α)

2
η2σ2

i ∆tε
2
k+1 +O(∆t2)

)
(1 +O(∆t))

]
We can have an optimal strategy of order ∆t by

η∗k(ŷ) =
1

α

∑d
i=1 ŷ

iµi − r∑d
i=1 ŷ

iσ2
i

∨ 0 ∧ 1.

Substituting this optimal strategy, we get the expression for dk, and

dk = 1 +O(∆t)
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4.3.2 The Case H = E

In this section, the scenario, H = E, is discussed. In this case, one estimates
the state by expert opinions only. Expert opinions are assumed that they
follow the Dirichlet distribution as

Ek ∼ D(γTYk−1) (4.2)

where γ ∈ Rd×d is a parameter matrix. The i−th row of γ is denoted by the
γ(i).

Here, we discussed the model when E lags Y , i.e. Experts Opinions are
related to the state at the previous time point. Hence we still need to use
transition matrix to estimate the state now.

Remark 4.3.8. (4.2) illustrates Ek can be also conditional on Yk, while in
Theorem 4.3.13 fEi represents the density function conditional on Yk−1. This
is no conflict, since there is the relationship that

P (Ek ∈ ·|Yk−1 = ei) =
d∑
i=1

P (Ek ∈ ·|Yk = ej)pij.

Compared to the case H = R, the stochastic kernel and transition law
is different in Definition 4.3.1. In this case, the transition law f(x, Y, π, Z)
does not vary. While g has different formulas when H = E.

Lemma 4.3.9. The recursive scheme for Ŷ i
k is

Ŷ i
k =

∑d
j=1 pjif

E
j (Ek)Ŷ

j
k−1∑d

z=1 f
E
z (Ek)Ŷ z

k−1

,

where Ŷk = E[Yk|FEk ], fEj = fD
γ(j) is a density function of Dirichlet distribu-

tion parameterized by γ(j). To vectorize, we get

Ŷk =
ΠTDiag(fE(Ek))Ŷk−1

fE(Ek)T Ŷk−1

,

where fE(e) = (fE1 (e), . . . , fEd (e))T and Diag((fE(e)) is the diagonal matrix
with diagonal fE(e).
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Proof.

E[Y i
k |FEk ] = P (Yk = ei|FEk )

=
d∑
j=1

P (Yk = ei|Yk−1 = ej,FEk )P (Yk−1 = ej|FEk )

=
d∑
j=1

pji
P (Ek|Yk−1 = ej)P (Yk−1 = ej|FEk−1)∑d
z=1 P (Ek|Yk−1 = ez)P (Yk−1 = ez|FEk−1)

=

∑d
j=1 pjif

E
j (Ek)Ŷ

j
k−1∑d

z=1 f
E
z (Ek)Ŷ z

k−1

This lemma gives us the formula for g(Ŷ , E). We use it to derive our
transition function for g. Denote Ei

k+1 is the lag expert opinion conditional
on Yk = ei. Then we have

Ŷk+1 = g(Ŷk, Yk, Ẽk+1) =
d∑
i=1

1{Yk=ei}
ΠTDiag(fE(Ẽi

k+1))Ŷk

fE(Ẽi
k+1)T Ŷk

.

Therefore, the stochastic kernel Q on (X ,Y) is given D:

Q(B1 ×B2, (x, ŷ, η)) = P ((Xπ
k+1 ∈ B1, Ŷk+1 ∈ B2)|Xπ

k = x, Ŷk = ŷ, πk = η)

=
d∑
i=1

P ((Xπ
k+1 ∈ B1, Ŷk+1 ∈ B2)|Xπ

k = x, Ŷk = ŷ, πk = η, Yk = ei)P (Yk = ei)

=
d∑
i=1

P (Xπ
k+1 ∈ B1|Xπ

k = x, πk = η, Yk = ei)P (Ŷk+1 ∈ B2|Ŷk = ŷ, Yk = ei)P (Yk = ei)

=
d∑
i=1

∫
E
P (f(x, ei, η, εk+1) ∈ B1)P (g(ŷ, ei, ẽ) ∈ B2)dP (Ek+1 = ẽ|Yk = ei)P (Yk = ei).

Theorem 4.3.10. If H = E, we have for logarithmic utility U(x) = log x,
the value function V E

N (x, ŷ) = U(x), and for k = N − 1, . . . , 0, the DPEs

V E
k (x, ŷ) = sup

η∈[0,1]

d∑
i=1

∫
E
ŷiE
[
V E
k+1

(
f(x, ei, η, εk+1), g(ŷ, ei, ẽ)

)]
fEi (ẽ)dẽ
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where ŷ = E[Yk|FEk ], ẽ ∈ E. fEi is density function conditional on Yk = ei,
εk+1 ∈ N (0, 1). An optimal strategy is given by π∗k = η∗(ŷ), were η∗(ŷ) is the
optimizer in

v(ŷ) = sup
η∈[0,1]

d∑
i=1

ŷiE[log(1 + r∆t+ η(ebi+aiεk+1 − 1− r∆t))]

Further,

V E
k (x, ŷ) = log x+ dk(ŷ) (∗)

where dN(ŷ) = 0 and

dk(ŷ) = v(ŷ) +
d∑
i=1

ŷiE
[
dk+1(g(ŷ, ei, Ẽk+1))

]
.

Proof. We have V E
N (x) = U(x) = log x.

Suppose (∗) is satisfied for k + 1, (k < N − 1), then by Lemma 4.3.3 and
independence of εk+1 and Ẽ

V E
k (x, ŷ) = sup

η∈[0,1]

d∑
i=1

ŷi
∫
E
E
[
V E
k+1

(
f(x, ei, η, εk+1), g(ŷ, ei, ẽ)

)]
fEi (ẽ)dẽ

= sup
η∈[0,1]

d∑
i=1

ŷi
∫
E
E
[

log(f(x, ei, η, εk+1)) + dk+1(g(ŷ, ei, ẽ))
]
fEi (ẽ)dẽ

= log x+ sup
η∈[0,1]

d∑
i=1

ŷiE
[(

log(f(1, ei, η, εk+1))
)]

+
d∑
i=1

ŷiE
[
dk+1(g(ŷ, ei, Ẽ))

]
.

Moreover, η∗(ŷ) can be derived by

η∗(ŷ) = arg sup
η∈[0,1]

d∑
i=1

ŷiE[log((1 + r∆t+ η(ebi+aiεk+1 − 1− r∆t)))]. (4.3)

Note that when the utility function is logarithmic, one can derive an optimal
strategy directly from the estimator of state ŷ at current time k by (4.3)
regardless of dk+1.
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Theorem 4.3.11. If H = E, we have for power utility U(x) = x1−α

1−α , α 6= 1
and α > 0 that the value function satisfy VN(x, ŷ) = U(x), and for k =
N − 1, . . . , 0, the DPEs

V E
k (x, ŷ) = sup

η∈[0,1]

d∑
i=1

ŷi
∫
E
E
[
V E
k+1

(
f(x, ei, η, εk+1), g(ŷ, ei, ẽ)

)]
fEi (ẽ)dẽ

where ŷ = E[Yk|FEk ], ẽ ∈ E. fEi is density function conditional on Yk = ei,
εk+1 ∈ N (0, 1). An optimal strategy is given by π∗k = η∗(ŷ), were η∗(ŷ) is the
optimizer in

dk(ŷ) =

supη∈[0,1]

∑d
i=1 ŷ

iE
[
f(1, ei, η, εk+1)1−α

]
E
[
dk+1(g(ŷ, ei, Ẽ))

]
α ∈ (0, 1)

infη∈[0,1]

∑d
i=1 ŷ

iE
[
f(1, ei, η, εk+1)1−α

]
E
[
dk+1(g(ŷ, ei, Ẽ))

]
α > 1

where dN(ŷ) = 1. Further we have

V R
k (x, ŷ) =

x1−α

1− α
dk(ŷ). (∗)

Proof. For the case H = E, the value function satisfy V E
N (x, ŷ) = U(x).

W.o.l.g. we assume α ∈ (0, 1), suppose (∗) is satisfied for k+ 1, (k < N − 1),
then by Lemma 4.3.3 and the independence of εk+1 and Ẽ, the DPEs

V E
k (x, ŷ) = sup

η∈[0,1]

d∑
i=1

ŷi
∫
E
E
[
V E
k+1

(
f(x, ei, η, εk+1), g(ŷ, ei, ẽ)

)]
fEi (ẽ)dẽ

=
x1−α

1− α
sup
η∈[0,1]

d∑
i=1

ŷi
∫
E
E
[
f(1, ei, η, εk+1)1−αdk+1(g(ŷ, ei, ẽ))

]
fEi (ẽ)dẽ

=
x1−α

1− α
sup
η∈[0,1]

d∑
i=1

ŷiE
[
f(1, ei, η, εk+1)1−α

]
E
[
dk+1(g(ŷ, ei, Ẽ))

]
=

x1−α

1− α
dk(ŷ).

The optimal strategy η∗(ŷ) can be derived by

η∗k(ŷ) = arg sup
η∈[0,1]

d∑
i=1

ŷiE
[
f(1, ei, η, εk+1)1−α

]
E
[
dk+1(g(ŷ, ei, Ẽ))

]
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when α > 1

η∗k(ŷ) = arg inf
η∈[0,1]

d∑
i=1

ŷiE
[
f(1, ei, η, εk+1)1−α

]
E
[
dk+1(g(ŷ, ei, Ẽ))

]
.

Proposition 4.3.12. At each time k = 1, . . . , N − 1, we have

sup
ŷ
dk(g(ŷ, ei, εk)) = 1 +O(∆t) for all i = 1 . . . , d

and the optimal strategy η∗(ŷ) can be of order ∆t approximated by

η∗k(ŷ) ≈ 1

α

∑d
i=1 ŷ

iµi − r∑d
i=1 ŷ

iσ2
i

∨ 0 ∧ 1.

Proof. We prove this by induction. W.o.l.g. we assume α ∈ (0, 1).At time
k = N − 1

dN−1(ŷ) = sup
η∈[0,1]

d∑
i=1

ŷiE
[
(f(1, ei, η, εk+1))1−α

]
= sup

η∈[0,1]

d∑
i=1

ŷiE
[
1 + (1− α)

(
r∆t+ η((µi − r +

ε2
k+1 − 1

2
σ2
i )∆t+ σi

√
∆tεk+1)

)
+

(1− α)(−α)

2
η2σ2

i ∆tε
2
k+1 +O(∆t2)

]
Substituting the approximate strategy for η∗N−1(ŷ), could maintain the first
part, we get

dN−1(ŷ) = 1 +O(∆t).

Then we compute iteratively. Suppose at time k + 1, . . . , N − 1, we have
supŷ dk+1(g(ŷ, ei, εk+1)) = 1 +O(∆t), we have

dk(ŷ) = sup
η∈[0,1]

d∑
i=1

ŷiE
[
(f(1, ei, η, εk+1))1−αdk+1(g(ŷ, ei, εk+1))

]
= sup

η∈[0,1]

d∑
i=1

ŷiE
[(

1 + (1− α)
(
r∆t+ η((µi − r +

ε2
k+1 − 1

2
σ2
i )∆t+ σi

√
∆tεk+1)

)
+

(1− α)(−α)

2
η2σ2

i ∆tε
2
k+1 +O(∆t2)

)]
E[1 +O(∆t)]
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We can have an optimal strategy of order ∆t by

η∗k(ŷ) =
1

α

∑d
i=1 ŷ

iµi − r∑d
i=1 ŷ

iσ2
i

∨ 0 ∧ 1.

Substituting this, we get the expression for dk and

dk = 1 +O(∆t).

4.3.3 The Case H = C

In this section, the scenario, H = C, is discussed. In this case, we estimate
the state by both stock returns and expert opinions.
Expert opinions are modeled same as in the case H = E in Section 4.3.2.
Compared to the case H = R or H = E, the transition law f(x, Y, π, Z) does
not vary while g has different form. From Theorem 3.4.12 we know

Ŷk+1 = g(Ŷk, Yk, εk+1, Ẽk+1) =
d∑
i=1

1{Yk=ei}

ΠT
(
Diag(ϕ(bi + aiεk+1)� fE(Ẽi

k+1))
)
Ŷk

(Diag(ϕ(bi + aiεk+1))fE(Ẽi
k+1))T Ŷk

,

where Ŷk = E[Yk|FCk ], fEj = fD
α(j) is a density function of Dirichlet distribution

parameterized by α(j). fE(e) = (fE1 (e), . . . , fEd (e))T and Diag((fE(e)) is the
diagonal matrix with diagonal fE(e).

Therefore, the stochastic kernel Q on (X ,Y) is given D:

Q(B1 ×B2, (x, ŷ, η)) = P ((Xπ
k+1 ∈ B1, Ŷk+1 ∈ B2)|Xπ

k = x, Ŷk = ŷ, πk = η)

=
d∑
i=1

P ((Xπ
k+1 ∈ B1, Ŷk+1 ∈ B2)|Xπ

k = x, Ŷk = ŷ, πk = η, Yk = ei)P (Yk = ei).

Theorem 4.3.13. If H = C, we have for logarithmic utility U(x) = log x,
the value function satisfy V C

N (x, ŷ) = U(x), and for k = N − 1, . . . , 0, the
DPEs

V C
k (x, ŷ) = sup

η∈[0,1]

d∑
i=1

ŷi
∫
E
E
[
V C
k+1

(
f(x, ei, η, εk+1), g(ŷ, ei, εk+1, ẽ)

)]
fEi (ẽ)dẽ
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where ŷ = E[Yk|FCk ], ẽ ∈ E. fEi is density function conditional on Yk = ei,
εk+1 ∈ N (0, 1). An optimal strategy is given by π∗k = η∗(ŷ), were η∗(ŷ) is the
optimizer in

v(ŷ) = sup
η∈[0,1]

d∑
i=1

ŷiE[log(1 + r∆t+ η(ebi+aiεk+1 − 1− r∆t))]

Further,
V C
k (x, ŷ) = log x+ dk(ŷ), (∗)

where dN(ŷ) = 0 and

dk(ŷ) = v(ŷ) +
d∑
i=1

ŷiE
[
dk+1(g(ŷ, ei, εk+1, Ẽk+1))

]
.

Proof. We form of V C
k , and V C

N (x) = U(x) = log x.
Suppose (∗) satisfy for k + 1, (k < N − 1), then by Lemma 4.3.3 and inde-
pendence

V C
k (x, ŷ) = sup

η∈[0,1]

d∑
i=1

ŷi
∫
E
E
[
V E
k+1

(
f(x, ei, η, εk+1), g(ŷ, ei, εk+1, ẽ)

)]
fEi (ẽ)dẽ

= sup
η∈[0,1]

d∑
i=1

ŷi
∫
E
E
[

log(f(x, ei, η, εk+1)) + dk+1(g(ŷ, ei, εk+1, ẽ))
]
fEi (ẽ)dẽ

= log x+ sup
η∈[0,1]

d∑
i=1

ŷiE
[(

log(f(1, ei, η, εk+1))
)]

+
d∑
i=1

ŷiE
[
dk+1(g(ŷ, ei, εk+1, Ẽk+1))

]

Moreover, η∗(ŷ) can be derived by

η∗(ŷ) = arg sup
η∈[0,1]

d∑
i=1

ŷiE[log((1 + r∆t+ η(ebi+aiεk+1 − 1− r∆t)))].

Theorem 4.3.14. If H = C, we have for power utility U(x) = x1−α

1−α , α 6= 1

and α > 0 the value function satisfies V C
N (x, ŷ) = U(x), and for k = N −

1, . . . , 0, the DPEs

V C
k (x, ŷ) = sup

η∈[0,1]

d∑
i=1

ŷi
∫
E
E
[
V C
k+1

(
f(x, ei, η, εk+1), g(ŷ, ei, εk+1, ẽ)

)]
fEi (ẽ)dẽ
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where ŷ = E[Yk|FCk ], ẽ ∈ E. fEi is density function conditional on Yk = ei,
εk+1 ∈ N (0, 1). An optimal strategy is given by π∗k = η∗(ŷ), were η∗(ŷ) is the
optimizer in

dk(ŷ) =

supη∈[0,1]

∑d
i=1 ŷ

iE
[
f(1, ei, η, εk+1)1−αdk+1(g(ŷ, ei, εk+1, Ẽk+1))

]
α ∈ (0, 1),

infη∈[0,1]

∑d
i=1 ŷ

iE
[
f(1, ei, η, εk+1)1−αdk+1(g(ŷ, ei, εk+1, Ẽk+1))

]
α > 1,

where dN(ŷ) = 1. Further,

V R
k (x, ŷ) =

x1−α

1− α
dk(ŷ). (∗)

Proof. For the case H = C, the value function satisfies V C
N (x, ŷ) = U(x).

W.o.l.g. we assume α ∈ (0, 1). Suppose (∗) is satisfied for k+1, (k < N −1),
then by Lemma 4.3.3, the DPEs

V C
k (x, ŷ) = sup

η∈[0,1]

d∑
i=1

ŷi
∫
E
E
[
V C
k+1

(
f(x, ei, η, εk+1), g(ŷ, ei, εk+1, ẽ)

)]
fEi (ẽ)dẽ

=
x1−α

1− α
sup
η∈[0,1]

d∑
i=1

ŷi
∫
E
E
[
f(1, ei, η, εk+1)1−αdk+1(g(ŷ, ei, εk+1, ẽ))

]
fEi (ẽ)dẽ

=
x1−α

1− α
sup
η∈[0,1]

d∑
i=1

ŷiE
[
f(1, ei, η, εk+1)1−αdk+1(g(ŷ, ei, εk+1, Ẽk+1))

]
=

x1−α

1− α
dk(ŷ).

The optimal strategy η∗(ŷ) can be derived by

η∗k(ŷ) = arg sup
η∈[0,1]

d∑
i=1

ŷiE
[
f(1, ei, η, εk+1)1−αdk+1(g(ŷ, ei, εk+1, Ẽk+1))

]
.

When α > 1

η∗k(ŷ) = arg inf
η∈[0,1]

d∑
i=1

ŷiE
[
f(1, ei, η, εk+1)1−αdk+1(g(ŷ, ei, εk+1, Ẽk+1))

]
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Proposition 4.3.15. At each time k = 1, . . . , N − 1, we have

sup
ŷ
dk(g(ŷ, ei, εk)) = 1 +O(∆t) for all i = 1 . . . , d,

and the optimal strategy η∗(ŷ) can be of order ∆t approximated by

η∗k(ŷ) ≈ 1

α

∑d
i=1 ŷ

iµi − r∑d
i=1 ŷ

iσ2
i

∨ 0 ∧ 1.

Proof. We prove this by induction. W.o.l.g, we assume α ∈ (0, 1). At time
k = N − 1

dN−1(ŷ) = sup
η∈[0,1]

d∑
i=1

ŷiE
[
(f(1, ei, η, εk+1))1−α

]
= sup

η∈[0,1]

d∑
i=1

ŷiE
[
1 + (1− α)

(
r∆t+ η((µi − r +

ε2
k+1 − 1

2
σ2
i )∆t+ σi

√
∆tεk+1)

)
+

(1− α)(−α)

2
η2σ2

i ∆tε
2
k+1 +O(∆t2)

]
Maximizing the first part, we get

dN−1(ŷ) = 1 +O(∆t)

and approximate η∗N−1(ŷ). Then we compute iteratively. Suppose at time
k + 1, . . . , N − 1, we have supŷ dk+1(g(ŷ, ei, εk+1)) = 1 +O(∆t), we have

dk(ŷ) = sup
η∈[0,1]

d∑
i=1

ŷiE
[
(f(1, ei, η, εk+1))1−αdk+1(g(ŷ, ei, εk+1, Ẽk+1))

]
= sup

η∈[0,1]

d∑
i=1

ŷiE
[(

1 + (1− α)
(
r∆t+ η((µi − r +

ε2
k+1 − 1

2
σ2
i )∆t+ σi

√
∆tεk+1)

)
+

(1− α)(−α)

2
η2σ2

i ∆tε
2
k+1 +O(∆t2)

)
(1 +O(∆t))

]
We can have an optimal strategy of order ∆t by

η∗k(ŷ) =
1

α

∑d
i=1 ŷ

iµi − r∑d
i=1 ŷ

iσ2
i

∨ 0 ∧ 1.

Substituting this optimal strategy, we get the expression for dk, and

dk = 1 +O(∆t).
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4.3.4 Utility Assignment for Power Utility Function

In terms of logarithmic utility function, one need to solve

π = arg sup
π∈A

E[log(Xπ
N)|Xπ

0 = x0]

= arg sup
π∈A

E
[

log
(
x0

N∏
i=1

(
1 + r∆t+ πi−1(eRi − 1− r∆t)

))]
= arg sup

π∈A

N∑
i=1

E
[

log
(

1 + r∆t+ πi−1(eRi − 1− r∆t)
)]

=
N∑
i=1

arg sup
πi−1

E
[

log
(

1 + r∆t+ πi−1(eRi − 1− r∆t)
)]
.

where πi is FHi -measurable. Hence, the task to maximize the expected utility
function is equivalent to maximize the utility of next state of x in terms of
logarithmic utility function.
That is the reason why the optimal strategies πk at time k in terms of loga-
rithmic utility function can be obtained regardless of dk+1 in different cases
of H. However it is not the case in terms of power utility function, since the
power utility of some multiplied variables can not be written as the form of
sum of utility of single variable. Moreover, the target maximizing conditional
expectation can not be broken down the task into maximizing the product
of conditional expectations.

Our idea is to approximate power utility function by cumulative functions
and then we can assign the task of maximize utility of terminal wealth into
the task in different time steps.

By multivariate version of Taylor’s Theorems, let h : Rn → R, the second
order Taylor polynomial approximates h(x) as well for x near a is

h(x) ≈ h(a) +Dh(a)(x− a) +
1

2
(x− a)THh(x)(x− a), (4.4)

where Dh(x) is 1 × n matrix of partial derivatives, and Hh(x) is Hessian
matrix of h.
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To apply this to the target of maximization of expected power utility
function, we first derive that

V0(x0) = sup
π∈A

E
[(Xπ

N)1−α

1− α
|Xπ

0 = x0

]
=

1

1− α
x1−α

0 sup
π∈A

E
[ N∏
i=1

(
1 + r∆t+ πi−1(eRi − 1− r∆t)

)1−α]
.

Denote by x = (x1, . . . , xN)T , where xi = 1 + r∆t+πi−1(eRi−1− r∆t). One
can represent V0(x0) as a scalar function h : x 7→ x1 · x2 . . . xN ,RN → R

V0(x0) =
1

1− α
x1−α

0 sup
π∈A

E[h(x)1−α].

Let a = (1, . . . , 1)T , Applying second order Taylor polynomial approxima-
tions (4.4), one gets

V0(x0) =
1

1− α
x1−α

0 sup
π∈A

E[h(x)1−α]

≈ 1

1− α
x1−α

0 sup
π∈A

E
[
1 + (1− α)

N∑
i=1

(
(xi − 1) +

(−α)

2
(xi − 1)2

)
+ (1− α)2

∑
j 6=k

(xj − 1)(xk − 1)
]
.

Moreover, one can get an approximation for V0 of order ∆t

V0(x0) =
1

1− α
x1−α

0 sup
π∈A

E
[
1 + (1− α)

N∑
i=1

(
(xi − 1) +

(−α)

2
(xi − 1)2

)
+ (1− α)2

∑
j 6=k

(xj − 1)(xk − 1)
]

=
x1−α

0

1− α
+ x1−α

0 sup
π∈A

E
[N−1∑
k=0

d∑
i=1

1{Yk=ei}

(
r∆t+ πk((µi − r +

ε2
k+1 − 1

2
σ2
i )∆t

+ σi
√

∆tεk+1) + π2
i σ

2
i ∆t

)]
=

x1−α
0

1− α
+ x1−α

0

N−1∑
k=0

sup
πi∈A

E
[ d∑
i=1

1{Yk=ei}

(
r∆t+ πk((µi − r +

ε2
k+1 − 1

2
σ2
i )∆t

+ σi
√

∆tεk+1) + π2
i σ

2
i ∆t

)]
.
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Using tower property of conditional expectation, we have

V0(x0) =
x1−α

0

1− α
+ x1−α

0

N−1∑
k=0

sup
πi∈A

E
[
E
[ d∑
i=1

1{Yk=ei}

(
r∆t+ πk((µi − r +

ε2
k+1 − 1

2
σ2
i )∆t

+ σi
√

∆tεk+1) + π2
i σ

2
i ∆t

)∣∣∣FHk ]]
=

x1−α
0

1− α
+ x1−α

0

N−1∑
k=0

sup
πi∈A

E
[
E
[ d∑
i=1

1{Yk=ei}

(
r∆t+ πk((µi − r +

ε2
k+1 − 1

2
σ2
i )∆t

+ σi
√

∆tεk+1) + π2
i σ

2
i ∆t

)∣∣∣FHk ]]
=

x1−α
0

1− α
+ x1−α

0

N−1∑
k=0

sup
πi∈A

d∑
i=1

Ŷ i
kE
[(
r∆t+ πk((µi − r +

ε2
k+1 − 1

2
σ2
i )∆t

+ σi
√

∆tεk+1) + π2
i σ

2
i ∆t

)]
.

From above, one can get an order-∆t-approximation of optimal strategies
for power utility function by

η∗(ŷ) =
1

α

∑d
i=1 µiŷ

i − r∑d
i=1 σ

2
i ŷ

i
∨ 0 ∧ 1.

This confirms the results in Propositions 4.3.7, 4.3.12, 4.3.15.

4.3.5 Impact of the Time Step

In the case of power utility, the approximated optimal strategy is given by

π∗k(ŷ) ≈ 1

α

∑d
i=1 µiŷ

i − r∑d
i=1 σ

2
i ŷ

i
∨ 0 ∧ 1 (4.5)

where, ŷ = E[Yk|FHk ] for all H ∈ {R,E,C}. This approximated optimal
strategies are of order ∆t. In other words,the optimal strategy in (4.5) works
well if ∆t→ 0.
The approximated optimal strategies are derived by approaching several
functions of order ∆t. Then first proposal is to approach second order
Taylor expansion of functions x1−α

1−α and ex. The second is to approximate
dk = 1 + O(∆t). One can use numerical method, e.g. gradient ascent, to
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get a maximizer for x1−α

1−α . But, it is not our main goal. Next, we keep using

second Taylor expansion to approximate x1−α

1−α and ex, and we are more inter-
ested in the effect of dk in terms of magnitude of ∆t. Monte Carlo method
and interpolation methods are used to approximate the value functions.
Next, we mainly focus on the case H = E, since Monte Carlo methods can
be applied separately. We can get an expression for optimal strategy from
Theorem 4.3.11 , if power utility is approached by second order Taylor series:

η∗k(ŷ) ≈ 1

α

∑d
i=1 ŷ

iE[dk+1(g(ŷ, ei, Ẽ))]µi − r∑d
i=1 ŷ

iE[dk+1(g(ŷ, ei, Ẽ))]σ2
i

∨ 0 ∧ 1.

The method uses the following property for sampling Dirichlet random vari-
ables: let Y be a random vector which has components that follow a standard
gamma distribution, then E = 1∑k

i=1 Zi
Z is Dirichlet-distributed, see [Mac12].

We approximate E[dk+1(g(Ŷk, ei, Ẽ))|Ŷk = ŷ] by the arithmetic mean

µ :=
1

M

M∑
i=1

dk+1(g(ŷ, ei, Ẽi(w))

for some M ∈ N. Here Ẽi(w) are the results of M independent experiments
that have the same Dirichlet density function fEi . From the Central Limit
Theorem we know that the asymptotic distribution of the Monte Carlo esti-
mator is approximately normal.
In our simulations, we set the other parameters as follows:

• Time horizon T = 1, N = 252;

• The parameters for Markov switching model are
µ = (8,−5)T , σ = (5, 4)T ,(such extreme for illustration)

Π =

[
0.7 0.3
0.2 0.8

]
;

• The parameters for expert opinions are γ =

[
3 1
1 3

]
.

• Risk aversion parameter is α = 6;

• Simulations of Monte Carlo are M = 1000.
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Interpolation and dichotomy method

In order to approximate the value function at each time step, the ideal
method is to simulate as much data, the corresponding value function with
respect to filter ŷ, as possible. However, as the growing amounts of data
set will result in exponentially increasing computational costs in the Monte
Carlo method, this conflict is a dilemma.
For d−dimensional states, the problem can be regarded as the partition of the
interval [0, 1] and the distance between adjacent dividing points are the prob-
ability of each states. In order to get d intervals, d− 1 points are needed.
The first proposal is to divide the space of ŷ into equal parts. At each
breakpoint, we use Monte Carlo method to estimate the real expectation
of dk+1,E[dk+1(g(Ŷk, ei, Ẽ))|Ŷk = ŷ]. And we interpolate between two adja-
cent dividing points. The interpolation methods we consider are the linear,
quadratic, cubic splines.
Figure 4.1a shows the farther away from the two endpoints of the interval

(a) [0,1] (b) [0,0.1]

Figure 4.1: The expectation of dN−1 with respect to the probability of first
state when d = 2

on the x-axis, the more gentle and linear the y-axis data are. Therefore, we
subdivide the data closer to the two end points of the interval finer to observe
which interpolation method is more in line with the data characteristics.
If we further look at the interval [0, 0.1] on the x-axis (shown in Figure 4.1b),
we can find that the interpolation method of cubic spline is better than other
methods, but there is still a certain bias.
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Figure 4.1b explains why we need more data near 0. In other words, we
need more data to approximate the original function (here is conditional ex-
pectation) near the start-point and endpoint of the interval [0, 1] because of
the behaviour of the original function. The function away from endpoints
is nearly linear. Therefore, we use a method called dichotomy to divide the
interval [0, 1].
If we have n subintervals, we divide the interval [0, 1] by the following points

2−n/2, 2−n/2+1, . . . , 2−1, . . . , 1− 2−n/2+1, 1− 2−n/2, if n is even

For example, we divide [0, 1] into 10 equal parts, nine points, 0.1, 0.2, . . . , 0.9
are derived. Now, rather than dividing [0, 1] uniformly, we also derived 9
points by

2−5, 2−4, 2−3, 2−2, 2−1, 1− 2−2, 1− 2−3, 1− 2−4, 1− 2−5

This method helps to possess dense points close to 0 and 1.

(a) [0,1] (b) [0,0.1]

Figure 4.2: The expectation of dN−1 with respect to the probability of first
state when d = 2

In Figure 4.2a, the marker ∗ represents the points we sampled from [0, 1]
by dichotomy method. More samples are closed 0 and 1 compared to the
uniformly sampling.
Four interpolation methods are applied to approximate function with the
new samples, and the blue points are the uniform samples, which are com-
parable. The approximated function with linear, quadratic and cubic spline
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interpolation methods can fit the previous samples well.
Figure 4.2b reveals value of functions with different interpolation methods in
[0, 1] if we use the samples from dichotomy methods. It is obvious that these
approximations have better performance than those in Figure 4.1b. What is
surprising is that linear spline interpolation works best in [0, 0.1].

Influence of cumulative time intervals

Because of the good result of fitting by dichotomy method, we combine both
the uniform and dichotomy method to divide the space of ŷ, and use cubic
spline to interpolate. Finally, we could get functions dk, for all k = 1, . . . , N .
Figure 4.3a shows three functions of d at different time, d1, d50, d150, d250

with respect to ŷ1 respectively. It reveals that dt is detectably different with
increasing t. And the further t is away from the terminal time, the more dt
differs from value 1.

(a) Approximation for function d at dif-
ferent time

(b) Ratio of conditional expectation re-
spect to time(N − k) with different ŷ

Figure 4.3: N=252

However, even if dt differs from 1, one can still use the approximated
strategy

η∗k(ŷ) =
1

α

∑d
i=1 ŷ

iµi − r∑d
i=1 ŷ

iσ2
i

∨ 0 ∧ 1.
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From Figure 4.3b, we find that the with the increasing of time, the ratios
E[dk+1(g(Ŷk,e1,Ẽ))]

E[dk+1(g(Ŷk,e2,Ẽ))]
are all closed to 1 no matter what the value of Ŷk is. As a

result, ŷi · E[dk+1(g(Ŷk, ei, Ẽ))] ≈ ŷi for all i = 1, . . . d.

However, it is only the case when ∆ → 0. In order to explore the effect
of magnitudes of parameters. We make the same computation of dynamic
programming, Monte Carlo method, and cubic spline interpolation for N =
12, (other parameters are remaining).
With large value of ∆t, one can observe that the difference of function d
changes over time as shown in Figure 4.4a. The lines are not as flat as the
ones in Figure 4.3a. Also the ratios in Figure 4.4b are significantly different
than 1.

(a) Approximation for function d at dif-
ferent time

(b) Ratio of conditional expectation re-
spect to time(N − k) with different ŷ

Figure 4.4: N=12

As a result, investors need to be careful with large ∆t or equivalently with
large parameters. If ∆t is large, Monte Carlo methods should be used to get
different strategies rather than by the time-independent expression (4.3.5).
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4.4 Numerical Simulation

In this section, we mainly focus on the value function V H
0 (x0) with the initial

wealth x0, when H = {R,E,C, F}. In different cases of H, optimal strategies
are determined based on available observations.
Moreover, the strategies from the Merton model and buy and hold strategies
are both compared with above strategies. Since the Markov chain has several
states, we use the Merton strategy, replacing the drift and volatility in it with
those obtained from taking the average of the drift and volatility respectively,
i.e. µ̃ = 1

d

∑d
i=1 µ

T ei, σ̃ = 1
d

∑d
i=1 σ

T ei. We also compared our optimal
strategies with the buy-and-hold (b/h) strategy, which means to buy the
stock using all cash available and hold the stock until the end, i.e. π = 1.
We generate the wealth process 1000 times and calculate the average of the
utilities from the terminal wealth.
In our simulations, the default value of x0 is 1. We set other parameters as
follows:

• Time horizon T = 1, N = 100 and thus ∆t = 10−2;

• The parameters for Markov switching model are
µ = (0.8,−0.5)T , σ = (0.4, 0.7)T ,

Π =

[
0.95 0.05
0.05 0.95

]
;

• The parameters for expert opinions are γ =

[
4 1
1 4

]
;

• Simulation times are M = 1000.

Typically, logarithmic and power utility function will be utilized.

Logarithmic Utility Function

When logarithmic utility function is applied, optimal strategies at time k can
be derived approximately by

πk(ŷ) =

∑d
i=1 ŷ

iµi − r∑d
i=1 ŷ

iσ2
i

∨ 0 ∧ 1,
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where ŷ = E[Yk|FHk ], H ∈ {R,E,C, F}.

The results in Table 4.1 illustrate that the optimal strategies of full infor-
mation have best performance without doubts, since the utility of terminal
wealth in terms of the strategies of full information has largest average and
medians. Moreover it has less standard deviation than that of strategies
R,E,C. Besides, the strategy with combined information has a better per-
formance than those which have only have expert opinions or only stock
return observations (also with larger average and median and less standard
deviation). This is intuitive.

Table 4.1

Logarithmic utility function log(x)
U(XT ) R E C F Merton b/h
avg 0.2770 0.3429 0.3463 0.4020 0.0233 0.0678
med 0.2752 0.3459 0.3477 0.3932 0.0274 0.1047
std 0.2271 0.2058 0.2053 0.1939 0.0516 0.4497

Figure 4.5 illustrates the average wealth process with respect to different
strategies H ∈ {F,R,E,C}. The shaded area represents the 95%- confidence
interval, reveals during investment horizon, the wealth with respect to strat-
egy F is always above the others. Besides, wealth with respect to strategies
C is always slightly larger than the one of strategy E. The impact of return
observations is only small compared to that of expert opinions since expert
opinions may carry out more information about Y than return observations.
And the wealth process of strategy R is always at the bottom. Thus one can
also rank different strategies and get the same result as shown in Table 4.1.

Power Utility Function

When power utility function is considered, the optimal strategy cannot be
computed directly by Ŷk. One needs to know the function dk+1, which can
be calculated backwards from dN .
However, as we mentioned before, the differences of E[dk+1|Yk = ei], i =
1, . . . , d, are very small. One can eliminate the influence and use approxi-
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Figure 4.5: Wealth Processes with respect to different strategies (logarithmic
utility function)

mated strategies

η∗(ŷ) =
1

α

∑d
i=1 µiŷ

i − r∑d
i=1 σ

2
i ŷ

i
,

where ŷ = E[Yk|FHk ], H ∈ {R,E,C, F}.
We specify two values for α, 0.1 and 6 respectively.

Table 4.2

Power utility function x1−α

1−α , α = 0.1

U(XT ) R E C F Merton b/h
avg 1.4657 1.5399 1.5450 1.6178 1.1359 1.2761
med 1.4327 1.5163 1.5189 1.5828 1.1389 0.1047
std 0.3168 0.2974 0.2969 0.2772 0.0518 1.2208

The results in Table 4.2 illustrate the power utility, when α = 0.1, of
terminal wealth with respect to different strategies. It also reveals that the
strategy for full information has best performance. Besides that, the strat-
egy with combined information has better performance than the remaining
strategies but is only slightly better than E, since it has lager average, larger
median and less standard deviation.
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The results in Table 4.3 show the power utility, when α = 6, of terminal
wealth with respect to different strategies. And although α > 1, the result
is quite similar as in Table 4.2. The strategy of full information works best,
and besides strategy of C have slightly better performance than that of E,
and these strategies are all better than the one only with R available.

Table 4.3

Power utility function x1−α

1−α , α = 6

U(XT ) R E C F Merton b/h
avg -0.1078 -0.0773 -0.0758 -0.0490 -0.1841 -3.8213
med -0.0929 -0.0633 -0.0620 -0.03101 -0.1744 -0.1185
std 0.0627 0.0518 0.0517 0.0361 0.0505 46.9416

The wealth process with respect to different strategies, when α is 0.1 and
6, are shown in Figure 4.6a and Figure 4.6b, respectively. In general, the
two figures display similar results. The curve of F is above the others, E
is at the bottom and C stays slightly above the one of E. An observable
phenomena is that the lines in Figure 4.6b are more dispersed than that in
in Figure 4.6a. This is because α = 6 corresponds to less extreme strategies.

(a) α = 0.1 (b) α = 6

Figure 4.6: Wealth Processes with respect to different strategies (power util-
ity function)



Chapter 5

Conclusion and Outlook on
Further Research

In the thesis, we focused on how to combine additional information (expert
opinions) to optimize parameter estimators under different assumptions and
used the parameters in portfolio optimization.
In Chapter 2, we used the Kalman filter of two observation sources to combine
two Gaussian observations. When one of the observations were non-Gaussian
(e.g. uniformly distributed), we transformed the problem into a non-linear
system with Gaussian observations. We used the generalized Kalman filter
to estimate the hidden state, which represents the drift term of the stock
return here.
In Chapter 3, we considered that both the drift term and the volatility term
of the stock return are driven by a hidden Markov chain. Experts can esti-
mate the state of the Markov chain based on their own information. First,
the linear combination method was used to combine expert opinions and
observations on stock returns. And using the logistic regression model, the
multi-dimensional linear information was compressed, and the dimension re-
duced to the dimension of the Markov chain. In addition, the Bayes rule was
used to incorporate expert opinions which are Dirichlet distributed. These
two combined methods can effectively increase the accuracy of parameter
estimation.
In Chapter 4, maximizing the utility of wealth at maturity was our goal.
We derived the results of using the strategy under four different observa-
tion conditions, and we could conclude that the strategy can be improved by
combining return observations with expert opinions. At the same time, we
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discussed problems of the approximated optimal strategies under the con-
ditions for discretization. If the adjusted frequency is too low, or the real
parameters are too large, using the Monte Carlo simulation method will be
closer to the real optimal strategy under various conditions.

One can think of several extensions of our results. Therefore in the fol-
lowing we present some further ideas and generalizations that can and should
be considered in future research.

Remark 5.0.1. (Multivariate cases)
The one-dimensional-asset assumption, that is, the assumption that only in
one risky and one non-risky assets can be invested is quite limiting. This
assumption can be used to model an index in actual capital markets. However,
an index is always very difficult for expert to estimate. Therefore, it makes
sense to generalize the model to multiple risk assets. In particular, expert
opinions can change from absolute to relative. For example, the estimation
of the difference between drift terms of different stocks. In addition, multi-
dimensional data will dramatically increase the amount of calculations in
existing models, and more effective numerical methods may become valuable.

Remark 5.0.2. (Statistical models for expert opinions)
In Chapter 3, the logistic regression model is used to quantify expert opinions.
By maximizing the posterior probability, we derive the parameters of this
model. The logistic regression model combines external factors through a
linear method. However, in reality, other non-linear combinations may be
used between factors, such as neural networks, random forests, etc. If we
use these methods, we can change the goal from maximizing the posterior
probability to minimizing a loss function. Among them, the loss function can
be the negative value of the posterior probability. The purpose of changing
the target is the non-linearilty in the model above. However, under what
circumstances these methods can optimize parameter estimates and whether
they are stable is also worth studying.

Remark 5.0.3. (No time-lag expert opinions)
In Chapter 3 and 4, we assume that

Ek ∼ D(γTYk−1).

From this assumption, we know that expert opinions at time k reflect the
state Yk−1. Even if the expert has very accurate estimator of Yk−1, she still
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needs to consider the effect of the transition matrix, which determines the
next state Yk. Once one has a deep insight of Yk, investors can have a better
strategy, since Rk+1 is determined by Yk. In practice, expert opinions showing
current state show stronger ability to help investors. Therefore, one also need
to consider the scenario that

Ek ∼ D(γTYk).

One needs to find a new probability measure to calculate different unnor-
malized terms in Chapter 3. One can not simply multiply both observations
together. Moreover, one needs to be careful about the transition function of
the filter of Y when computing value functions in Chapter 4.

Remark 5.0.4. (Transaction cost, market impact and infinite investment
horizon)
In order to make the assumptions of our model realistic, we may consider the
impact of transaction cost, market impact and infinite investment horizon.
In such settings, our model would be more complex and not solvable. Some
numerical methods rather than analytical results could be applicable in these
complex scenarios, for instance online learning. One needs to use simulation
method and function approximation methods to construct non-linear value
functions or Q-functions instead. By dynamic learning and minimizing Q-
functions at each time, one can obtain optimal strategies numerically.



Appendix A

Additional Proofs and Figures

A.1 Additional Proofs for Chapter 2

Theorem 2.1.4. (One-dimensional version: Kalman Filter with two obser-
vations) The hidden state xk ∈ R at time k of a discrete-time controlled
process that is governed by the linear stochastic difference equation

xk = akxk−1 + bkuk + εk

with two measurements:
z1
k = c1

kxk + ζ1
k

z2
k = c2

kxk + ζ2
k

where ak ∈ R is the state transition model which is applied to the previous
state xk−1; bk ∈ R describes how the control uk changes from k to k − 1;
c1
k and c2

k describe how to map the state xk to observation z1
k and z2

k respec-
tively; εk represents the process noise, which is assumed independent and
εk ∼ N (0, w2

k); ζ1
k and ζ2

k are measurement noises, which are all independent
of εk, time-independent, and ζ1

k ∼ N (0,m2
k), ζ2

k ∼ N (0, n2
k).

Denote

x̂∗k := E[xk|z1
k, z

2
k, xk−1 = x̂k−1]

=
(

1−Kk(λkc
1
k + (1− λk)c2

k)
)
E[xk|xk−1 = x̂k−1] +Kk

(
λkz

1
k + (1− λk)z2

k

)
and Kk and λk are the solutions of equations set

∂ Var(xk − x̂∗k)
∂Kk

= 0
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∂ Var(xk − x̂∗k)
∂λk

= 0;

and Kk
!

= Kk ∨ 0 ∧ 1
λkc

1
k+(1−λk)c2k

, λk
!

= λk ∨ 0 ∧ 1;

Here x̂∗k is the best estimator in the L2, i.e.

x̂∗k = arg inf
x̂k

E[(xk − x̂k)2] (A.1)

Proof. Denote by x̂k|k−1 := E[xk|xk−1 = x̂k−1] = akx̂k−1 + bkuk The variance
of x̂k|k−1 is given by

Var(xk − x̂k|k−1) = a2
kV ar(xk − x̂k−1) + w2

k

Now, we are trying to combine both observations. The posteriori estimator
is constructed linearly by

x̂k = x̂k|k−1 +Kk(λkŷ
1
k + (1− λk)ŷ2

k) (A.2)

where
ŷ1
k = z1

k − c1
kx̂k|k−1

ŷ2
k = z2

k − c2
kx̂k|k−1

(A.3)

and λ ∈ [0, 1]. Our aim is to find the solution of (A.1). By substituting (A.2)
and (A.3) and because of the independence between εk and ζ1

k , ζ
2
k we get

E[(xk − x̂k)2] = Var(xk − x̂k)

=
(

1−Kk(λkc
1
k + (1− λk)c2

k)
)2

V ar(xk − x̂k|k−1)

+K2
k(λ2

km
2
k + (1− λk)2n2

k + 2λk(1− λk)ρmknk).

(A.4)

ρk =
Cov(ζ1

k ,ζ
2
k)

mk
represents correlation coefficient, Var(xk−x̂k−1) is the variance

of previous state estimator.
Since (A.4) is a convex function with respective to Kk and λk, one can derive
the optimal by letting

∂ Var(xk − x̂k)
∂Kk

= 0

and
∂ Var(xk − x̂k)

∂λk
= 0.

Since 1 − Kk(λkc
1
k + (1 − λk)c

2
k) ∈ [0, 1] and λk ∈ [0, 1], the solutions Kk

should be in [0, 1
λkc

1
k+(1−λk)c2k

] and λk in [0, 1].
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Lemma 2.2.1. The conditional expectation and conditional variance for
Yt ∈ [a, b] is given by

E[Y |a ≤ Y ≤ b] = µ+ σ
φ(a−µ

σ
)− φ( b−µ

σ
)

Φ( b−µ
σ

)− Φ(a−µ
σ

)

Var[Y |a ≤ Y ≤ b]

= σ2

{
1 +

φ
(
a−µ
σ

) (
a−µ
σ

)
− φ

(
b−µ
σ

) (
b−µ
σ

)
Φ( b−µ

σ
)− Φ(a−µ

σ
)

−

[
φ
(
a−µ
σ

)
− φ

(
b−µ
σ

)
Φ( b−µ

σ
)− Φ(a−µ

σ
)

]2}

Proof. In order to derive the mean and variance of Y , we calculate moment
generating function of Y firstly. The moment generating function is given by

M(t) = E[etY |a ≤ Y ≤ b] =
1
σ

∫ b
a
etyφ(y−µ

σ
)dy

Φ( b−µ
σ

)− Φ(a−µ
σ

)
.

The terms of numerator can be simplified as

1

σ

∫ b

a

etyφ(
y − µ
σ

)dy =
1√
2πσ

∫ b

a

ety−
(y−µ)2

2σ2 dy

=
1√
2πσ

eµt+
σ2t2

2

∫ b

a

e−
1

2σ2 (y−µ−σ2t)dy

= eµt+
σ2t2

2

[
Φ

(
b− µ− σ2t

σ

)
− Φ

(
a− µ− σ2t

σ

)]
The first-order derivative of MGF is given by

∂M(t)

∂t

=
eµt+

σ2t2

2 (σ2t+ µ)
[
Φ
(
b−µ−σ2t

σ

)
− Φ

(
a−µ−σ2t

σ

)]
− eµt+σ2t2

2 σ
[
φ
(
b−µ−σ2t

σ

)
− φ

(
a−µ−σ2t

σ

)]
Φ( b−µ

σ
)− Φ(a−µ

σ
)

.

Thus, the expectation of Y can be given by

E[Y |a ≤ Y ≤ b] =
∂M(t)

∂t

∣∣∣∣∣
t=0

= µ+ σ
φ(a−µ

σ
)− φ( b−µ

σ
)

Φ( b−µ
σ

)− Φ(a−µ
σ

)
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The second-order derivative of MGF is given by

∂2M(t)

∂t2

=
1

Φ( b−µ
σ

)− Φ(a−µ
σ

)

{
eµt+

σ2t2

2 [(σ2t+ µ)2 + σ2]

[
Φ

(
b− µ− σ2t

σ

)
− Φ

(
a− µ− σ2t

σ

)]
+ 2eµt+

σ2t2

2 (σ2t+ µ)σ

[
φ

(
a− µ− σ2t

σ

)
− φ

(
b− µ− σ2t

σ

)]
+ eµt+

σ2t2

2 σ2

[
φ

(
a− µ− σ2t

σ

)(
a− µ− σ2t

σ

)
− φ

(
b− µ− σ2t

σ

)(
b− µ− σ2t

σ

)]}
.

Then the expectation of Y 2 is given by

E[Y 2|a ≤ Y ≤ b] =
∂2M(t)

∂t2

∣∣∣∣∣
t=0

= µ2 + σ2 +
2µσ

[
φ
(
a−µ
σ

)
− φ

(
b−µ
σ

)]
+ σ2

[
φ
(
a−µ
σ

) (
a−µ
σ

)
− φ

(
b−µ
σ

) (
b−µ
σ

)]
Φ( b−µ

σ
)− Φ(a−µ

σ
)

,

hence the variance of Y is given by

Var[Y |a ≤ Y ≤ b] = E[Y 2|a ≤ Y ≤ b]− E2[Y |a ≤ Y ≤ b]

= σ2

{
1 +

φ
(
a−µ
σ

) (
a−µ
σ

)
− φ

(
b−µ
σ

) (
b−µ
σ

)
Φ( b−µ

σ
)− Φ(a−µ

σ
)

−

[
φ
(
a−µ
σ

)
− φ

(
b−µ
σ

)
Φ( b−µ

σ
)− Φ(a−µ

σ
)

]2}
.
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Lemma 2.2.4. The expected value and covariance matrix for Y , which is
normally distributed and truncated by B, are

E(Yi) =
n∑
k=1

σi,k(Fk(ak)− Fk(bk)) + µi.

Cov(Yi, Yj) = E(YiYj)− E(Yi)E(Yj)

and

E(YiYj) =σi,j +
n∑
k=1

σi,k
σj,k(akFk(ak)− bkFk(bk))

σk,k

+
n∑
k=1

σi,k
∑
q 6=k

(σj,q −
σk,qσj,k
σk,k

)[(Fk,q(ak, aq)− Fk,q(ak, bq)

− (Fk,q(bk, aq)− Fk,q(bk, bq))],

where

Fk(x) =

∫ b1−γ1

a1−γ1

· · ·
∫ bk−1−γk−1

ak−1−γk−1

∫ bk+1−γk+1

ak+1−γk+1

· · ·
∫ bn−γn

an−γn
ϕ0ΣB∗(x1, · · · , xk−1, x, xk+1, · · · , xn)dxn · · · dxk+1dxk−1 · · · dx1.

and Fk,q(x, y) is the bivariate marginal density, which is given by

Fk,q(x, y) =

∫ b1

a1

· · ·
∫ bk−1

ak−1

∫ bk+1

ak+1

· · ·
∫ bq−1

aq−1

∫ bq+1

aq+1

∫ bn

an

ϕµΣB(x, y, x−k,−q)dx−k,−q,

Proof. we need to compute the moment generating function firstly.
The moment generating function(MGF) of a n-dimensional random variables
Y , truncated at a and b, having the density function ϕµΣB, is defined as the
n-fold integral of the form

m(t) = E(et
′Y ) =

∫ b

a

et
′yϕµΣB(y)dy

Hence, the moment generating function is given by

m(t) =
1

β

∫ b

a

exp
{1

2

[
(y − µ)′Σ−1(y − µ)− 2t′y

]}
dy
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For the convenience of calculation, in the following µ is set equal to zero
firstly. Subsequently, µ can be generalized by location transformation. Now,
the special case that µ = 0 is considered first. Then we find that the term

−1

2
[y′Σ−1y − 2t′y]

can be rewrite as

T − 1

2

[
(y − γ)′Σ−1(y − γ)

]
where, T = 1

2
t′Σt, and γ = Σt. Consequently, the MGF can be formulated

as

m(t) =
eT

β

∫ b

a

exp
{1

2

[
(y − µ)′Σ−1(y − µ)

]}
dy

=
eT

β

∫ b−γ

a−γ
exp

{1

2

[
y′Σ−1y

]}
dy

= eTΦ0ΣB∗ .

(A.5)

Here,

Φ0ΣB∗ =

∫
B∗
ϕ0ΣB∗

and B∗ = {x ∈ Rn|ai − γi ≤ xi ≤ bi − γi}i∈[0,n] with γi =
n∑
k=1

σi,ktk.

The mean can be calculated by taking the first derivative of MGF when
t = 0. By taking partial derivative of equation (A.5) respect to ti, we have

∂m(t)

∂ti
= eT

∂Φ0ΣB∗

∂ti
+ Φ0ΣB∗

∂eT

∂ti
. (A.6)

In above equation, the following essential term can be simplified as

∂eT

∂ti
= eT

n∑
k=1

σi,ktk
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and we may also get the derivative of Φ0ΣB∗ respect to ti

∂Φ0ΣB∗

∂ti
=

∂

∂ti

∫ b1−γ1

a1−γ1

· · ·
∫ bn−γn

an−γn
ϕ0ΣB∗dyn . . . dy1

=
n∑
k=1

(
∂ϕ0ΣB∗

∂yk

∂yk
∂γk

γk
∂ti

∣∣∣∣∣
bk−γk

yk=ak−γk

)

=
n∑
k=1

σi,k

[
(Fk(ak − γk)− Fk(bk − γk)

]
where,

Fk(x) =

∫ b1−γ1

a1−γ1

· · ·
∫ bk−1−γk−1

ak−1−γk−1

∫ bk+1−γk+1

ak+1−γk+1

· · ·
∫ bn−γn

an−γn
ϕ0ΣB∗(x1, · · · , xk−1, x, xk+1, · · · , xn)dxn · · · dxk+1dxk−1 · · · dx1.

(A.7)
Now, we set tk = 0 for all k = 1, 2, . . . , n, then we have γ = 0. Thus,
Fi(x) will be i−th marginal density of doubly truncated multivariate normal
distribution. From (A.6) to (A.7) for all k = 1, 2, . . . , n when tk = 0, the
expected value of Y is given by

E(Yi) =
∂m(t)

∂ti

∣∣∣∣∣
t=0

=
n∑
k=1

σi,k(Fk(ak)− Fk(bk)).

Subsequently, we will generalised the case of µ = 0 to all µ. If Y ∼ N (µ,Σ),
with a ≤ y ≤ b, then Z = Y − µ ∼ N (0,Σ), with a− µ ≤ z ≤ b− µ. And
E(Y ) = E(Z) + µ and Cov(Y ) = Cov(Z). Hence, for all µ, the expected
value of Y is given by

E(Yi) =
n∑
k=1

σi,k(Fk(ak)− Fk(bk)) + µi.

Next, we will calculate the covariance matrix by deriving the second second
moment. The covariance matrix can be calculated by

Cov(Yi, Yj) = E(YiYj)− E(Yi)E(Yj)
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and E(YiYj) can be calculated as the second moment when t = 0, which is
given by

E(YiYj) =σi,j +
n∑
k=1

σi,k
σj,k(akFk(ak)− bkFk(bk))

σk,k

+
n∑
k=1

σi,k
∑
q 6=k

(σj,q −
σk,qσj,k
σk,k

)[(Fk,q(ak, aq)− Fk,q(ak, bq)

− (Fk,q(bk, aq)− Fk,q(bk, bq))],

where Fk,q(x, y) is the bivariate marginal density, which is given by

Fk,q(x, y) =

∫ b1

a1

· · ·
∫ bk−1

ak−1

∫ bk+1

ak+1

· · ·
∫ bq−1

aq−1

∫ bq+1

aq+1

∫ bn

an

ϕµΣB(x, y, x−k,−q)dx−k,−q,

and the term x−k,−q denotes the (n− 2)−dimensional vector
(x1, · · · , xk−1, xk+1, · · · , xq−1, xq+1, · · · , xn) for k 6= q.
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A.2 Additional Proofs for Chapter 3

Lemma 3.3.2. (i) Z = (Zk)k∈N0 is a G-martingale under measure P .
Z−1 = (Z−1

k )k∈N0 is a G-martingale under measure P̃ .
(ii) For all u ≤ k,

Ẽ[Z−1
k Yu|FC0

u ] = Ẽ[Z−1
u Yu|FC0

u ].

(iii) Under P̃ , R1, R2, . . . are iid. standard normal distributed and indepen-
dent of Y .

Proof. (i)
E[Zk|Gk−1] = Zk−1E[Lk|Gk−1]

= Zk−1E[Lk|Yk−1].

The last equation is due to the fact that Rk is only conditional on Yk−1. And
we have

E[Lk|Yk−1 = ei] =

∫
R

ϕ0,1(x)

ϕbi,a2
i
(x)

ϕbi,a2
i
(x)dx

= 1

hence, Z = (Zk)k∈N0 is a G-martingale under measure P .
Similarly, Z−1 = (Z−1

k )k∈N0 is a G-martingale under measure P̃ .
(ii) For all u ≤ k, since FC0

u ⊂ Gu
Ẽ[Z−1

k Yu|FC0
u ] = Ẽ[Ẽ[Z−1

k Yu|Gu|]FC0
u ]

= Ẽ[Z−1
u Ẽ[Yu|Gu|]FC0

u ]

= Ẽ[Z−1
u Yu|FC0

u ].

This holds because of tower property of conditional expectation, part(i) and
the reason that Yu is Gu-measurable.
(iii) By calculating the cumulative density function conditional Rk, we get

P̃ (Rk ≤ t|Gk−1) = Ẽ[1{Rk≤t}|Gk−1]

=
E[1{Rk≤t}Zk|Gk−1]

E[Zk|Gk−1]

=
Zk−1E[1{Rk≤t}Lk|Gk−1]

Zk−1

= E[1{Rk≤t}Lk|Gk−1]

= E[1{Rk≤t}Lk|Yk−1].
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The second equation is due to the Bayes’ formula in Lemma 3.2.5 and the
third one is because Zk is a martingale. Then as above

E[1{Rk≤t}Lk|Yk−1 = ei] =

∫
R
1(−∞,t](x)

ϕ0,1(x)

ϕbi,a2
i
(x)

ϕbi,a2
i
(x)dx

= Φ(t)

where, Φ is cumulative density function of standard normally distribution.
Hence Rk is standard normal distributed and there is no dependence on Yk−1.
Actually,

P̃ (Rk ≤ t, Yk−1 = ei) = P̃ (Rk ≤ t|Yk−1 = ei)P̃ (Yk−1 = ei)

= P̃ (Rk ≤ t)P̃ (Yk−1 = ei).

Hence, R is independent of Y under P̃ .

Lemma 3.3.3. (i) P̃ (Yk = ei|Yk) = Y i
k .

(ii) The Markov chain Y has the same transition matrix under the reference
probability measure, i.e.

P̃ (Yk = ej|Yk−1 = ei) = P (Yk = ej|Yk−1 = ei).

(iii) Expert opinions can be given under either probability measures P or P̃ ,
i.e. for all w = 1, . . . , d

P̃ (Yk = ew|FEK) = P (Yk = ew|FEK).

if Ek ∈ E(n).

Proof. (i)

P̃ (Yk = ei|Yk) = Ẽ[1{Yk=ei}|Yk]

=
E[Zk1{Yk=ei}|Yk]

E[Zk|Yk]

=
Y i
kE[Zk|Yk]
E[Zk|Yk]

= Y i
k .
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(ii)

P̃ (Yk = ej|Yk−1 = ei) =Ẽ[1{Yk=ej}|Yk−1 = ei]

=
E[Zk1{Yk=ej}|Yk−1 = ei]

E[Zk|Yk−1 = ei]

=
E[E[Zk1{Yk=ej}|Fk−1]|Yk−1 = ei]

E[E[Zk|Fk−1]|Yk−1 = ei]

=
E[Zk−1E[Lk1{Yk=ej}|Fk−1]|Yk−1 = ei]

E[Zk−1|Yk−1 = ei]
.

Note that

P (Yk = ej, Lk ≤ lk|Fk−1) = P (Lk ≤ lk|Fk−1, Yk = ej)P (Yk = ej|Fk−1)

= P (Lk ≤ lk|Fk−1)P (Yk = ej|Fk−1),

where the second equation is due to the fact that Lk is only dependent on
Yk−1. Thus, Lk and Yk are Fk−1-independent.
With E[Lk|Fk−1] = 1, we have

P̃ (Yk = ej|Yk−1 = ei) =
E[Zk−1E[1{Yk=ej}|Yk−1]|Yk−1 = ei]

E[Zk−1|Yk−1 = ei]

=
E[Zk−1P (Yk = ej|Yk−1)|Yk−1 = ei]

E[Zk−1|Yk−1 = ei]

= P (Yk = ej|Yk−1 = ei).

(iii)
P̃ (Yk = ew|FEK) = P̃ (Yk = ew|Ek)

= Ẽ[1{Yk=ew}|Ek]

=
E[Zk1{Yk=ew}|Ek]

E[Zk|Ek]

=
E[E[Zk1{Yk=ew}|Gk−1]|Ek]

E[E[Zk|Gk−1]|Ek]

=
E[Zk−1E[Lk1{Yk=ew}|Gk−1]|Ek]

E[Zk−1|Ek]
.

The random variable Lk and 1{Yk=ew} are Gk−1-independent since

P (Lk ≤ lk,1{Yk=ew} = c|Gk−1) = P (1{Yk=ew} = c|Gk−1, Lk ≤ lk)P (Lk ≤ lk|Gk−1)

= P (1{Yk=ew} = c|Gk−1)P (Lk ≤ lk|Gk−1).
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Thus

P̃ (Yk = ew|FEK) =
E[Zk−1E[Lk|Gk−1]E[1{Yk=ew}|Gk−1]|Ek]

E[Zk−1|Ek]

=
E[Zk−1E[1{Yk=ew}|Gk−1]|Ek]

E[Zk−1|Ek]
.

Actually

P (P (Yk = ew|Gk−1) ≤ p, Zk−1 ≤ z|Ek)
= P (P (Yk = ew|Gk−1) ≤ p|Ek, Zk−1 ≤ z)P (Zk−1 = z|Ek)
= P (P (Yk = ew|Gk−1) ≤ p|Ek)P (Zk−1 ≤ z|Ek)

E[1{Yk=ew}|Gk−1] and Zk−1 are FEK -conditional independent. Hence

P̃ (Yk = ew|FEK) = E[E[1{Yk=ew}|Gk−1]|Ek]
= E[1{Yk=ew}|Ek]
= P (Yk = ew|Ek).

Theorem 3.3.6. Let H = (Hk)k∈N0 be G-adapted, Hk : Ω→ R, with

Hk = Hk−1 + αk−1 + βTk−1Yk + γk−1f(Rk),

where α, β, γ are F-adapted and R, Rd, R-valued respectively. And f : R→
R is measurable, s.t. H is integrable. For Γi(r) := ϕi(r)

ϕ0,1(r)
, where ϕi = ϕbi,a2

i
.

Define by Ÿ
(i)
k := Ẽ[Yk|Gk−1, Yk−1 = ei], Then we have

ρk(HY ) =
d∑
i=1

{
ρk−1(HY i)Γi(Rk)Ÿ

(i)
k

+ ρk−1(αY i)Γi(Rk)Ÿ
(i)
k

+ ρk−1(γY i)Γi(Rk)f(Rk)Ÿ
(i)
k

+ (Diag(Ÿ
(i)
k ))ρk−1(βY i)Γi(Rk)

}
where ρk(HY ) = (ρ(HY 1), ρ(HY 2), . . . , ρ(HY d))T , and Y i is the i−th ele-
ment of vector Y .
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Proof. For

HkYk = Hk−1Yk + αk−1Yk + βTk−1YkYk + γk−1f(Rk)Yk

we compute
ρk(HY ) = Ẽ[Z−1

k HkYk|FC0
k ].

Using

Z−1
k = Z−1

k−1

d∑
i=1

Y i
k−1Γi(Rk),

Thus based on Lemma 3.3.2 and defining Ÿk := Ẽ[Yk|Gk−1] we get

ρk(HY ) =
d∑
i=1

Γi(Rk)Ẽ
[
Z−1
k−1Y

i
k−1Hk−1Yk + Z−1

k−1Y
i
k−1αk−1Yk

+ Z−1
k−1Y

i
k−1β

T
k−1YkYk + Z−1

k−1Y
i
k−1γk−1f(Rk)Yk

∣∣∣FC0
k

]
=

d∑
i=1

Γi(Rk)
(
Ẽ
[
Z−1
k−1Y

i
k−1Hk−1Yk + Z−1

k−1Y
i
k−1αk−1Yk

+ Z−1
k−1Y

i
k−1β

T
k−1YkYk

∣∣∣FC0
k

]
+ f(Rk)Ẽ

[
Z−1
k−1Y

i
k−1γk−1Yk

∣∣∣FC0
k

])
.

=
d∑
i=1

Γi(Rk)
(
Ẽ
[
Z−1
k−1Y

i
k−1Hk−1Yk + Z−1

k−1Y
i
k−1αk−1Yk

+ Z−1
k−1Y

i
k−1β

T
k−1YkYk

∣∣∣FC0
k−1

]
+ f(Rk)Ẽ

[
Z−1
k−1Y

i
k−1γk−1Yk

∣∣∣FC0
k−1

])
.

Since FC0 ⊂ G, by tower property of conditional expectation we get

ρk(HY ) =
d∑
i=1

Γi(Rk)
(
Ẽ
[
Ẽ
[
Z−1
k−1Y

i
k−1Hk−1Yk + Z−1

k−1Y
i
k−1αk−1Yk

+ Z−1
k−1Y

i
k−1β

T
k−1YkYk

∣∣∣Gk−1

]∣∣∣FC0
k−1

]
+ f(Rk)Ẽ

[
Ẽ
[
Z−1
k−1Y

i
k−1γk−1Yk

∣∣∣Gk−1

]∣∣∣FC0
k−1

])
=

d∑
i=1

Γi(Rk)
(
Ẽ
[
Z−1
k−1Y

i
k−1Hk−1Ÿk + Z−1

k−1Y
i
k−1αk−1Ÿk

+ Z−1
k−1

d∑
i=1

Y i
k−1β

T
k−1ŸkŸk

∣∣∣FC0
k−1

]
+ f(Rk)Ẽ

[
Z−1
k−1

d∑
i=1

Y i
k−1γk−1Ÿk

∣∣∣FC0
k−1

])
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Since Y i
k−1 = 0 iff Yk−1 6= ei, we can replace Ÿk by Ÿ

(i)
k and thus Ÿ

(i)
k is FC0

k−1-
measurable, and we can pull it out of the conditional expectation. Using

βTk−1YkYk = Diag(Yk)βk−1,

we get

Ẽ
[
Z−1
k−1

d∑
i=1

Y i
k−1Γi(Rk)β

T
k−1Ÿ

(i)
k Ÿ

(i)
k |F

C0
k−1

]
=

d∑
i=1

(
Diag

(
Ÿ

(i)
k

))
ρEk−1(βY i)Γi(Rk),

which finishes the proof.

Lemma 3.3.8. For Ẽ[Y i
u |Eu] = Ei

u ∈ [0, 1], where u = min{ui|ui ≥ k, i =
1, . . . , n}.

Ẽ[Y i
k |Gk−1] =

d∑
w=1

d∑
j=1

p
(u−k)
iw pji

p
(u−k+1)
jw

Y j
k−1P̃ (Yu = ew|Yk−1,Eu).

Proof.

Ẽ[Y i
k |Gk−1] = P̃ (Yk = ei|Yk−1, Eu) =

d∑
w=1

d∑
j=1

P̃ (Yk = ei, Yk−1 = ej, Yu = ew|Yk−1, Eu)

=
d∑

w=1

d∑
j=1

P̃ (Yk = ei|Yk−1 = ej, Yu = ew, Yk−1, Eu)P̃ (Yk−1 = ej, Yu = ew|Yk−1, Eu)

=
d∑

w=1

d∑
j=1

P̃ (Yk = ei|Yu = ew, Yk−1 = ej)P̃ (Yk−1 = ej|Yk−1)P̃ (Yu = ew|Yk−1,Eu)

=
d∑

w=1

d∑
j=1

P̃ (Yk = ei|Yu = ew, Yk−1 = ej)Y
j
k−1P̃ (Yu = ew|Yk−1,Eu)

=
d∑

w=1

d∑
j=1

P̃ (Yu = ew|Yk = ei)P̃ (Yk = ei|Yk−1 = ej)

P̃ (Yu = ew|Yk−1 = ej)
Y j
k−1P̃ (Yu = ew|Yk−1,Eu)

=
d∑

w=1

d∑
j=1

p
(u−k)
iw pji

p
(u−k+1)
jw

Y j
k−1P̃ (Yu = ew|Yk−1,Eu)
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Proposition 3.3.14. For k ≤ u, u = min{ui|ui ≥ k, i = 1, . . . , n}, the
G-measurable Kalman filter is

Ẽ[Yu|Gk−1] = λuk−1Ẽ[Yu|Yk−1] + (1− λuk−1)Ẽ[Yu|Eu],

where λuk−1 := λ(k − 1, u), and λ : R+ × R+ → [0, 1] then we have

Ẽ[Yk|Gk−1] = λuk−1ΠTYk−1 + (1− λuk−1)
d∑

w=1

Ew
u ΠTDiag

(
1d � (p(u−k+1)

.w )
)
Yk−1 � (p(u−k)

.w )

Proof. From Lemma 3.3.12 and Theorem 3.3.13, we can compute

Ẽ[Y i
k |Gk−1] =

d∑
w=1

d∑
j=1

p
(u−k)
iw pji

p
(u−k+1)
jw

Y j
k−1P̃ (Yu = ew|Yk−1,Eu)

=
d∑

w=1

d∑
j=1

p
(u−k)
iw pji

p
(u−k+1)
jw

Y j
k−1

(
λuk−1Ẽ[Y w

u |Yk−1] + (1− λuk−1)Ẽ[Y w
u |Eu]

)
=

d∑
w=1

d∑
j=1

p
(u−k)
iw pji

p
(u−k+1)
jw

Y j
k−1

(
λuk−1

d∑
z=1

p(u−k+1)
zw Y z

k−1 + (1− λuk−1)Ew
u

)
= λuk−1

d∑
w=1

p
(u−k)
iw

d∑
j=1

pjiY
j
k−1 + (1− λuk−1)

d∑
w=1

Ew
u

d∑
j=1

p
(u−k)
iw pji

p
(u−k+1)
jw

Y j
k−1

= λuk−1

d∑
j=1

pjiY
j
k−1 + (1− λuk−1)

d∑
w=1

Ew
u

d∑
j=1

p
(u−k)
iw pji

p
(u−k+1)
jw

Y j
k−1

After vectorizing, we finish this proof.

Theorem 3.3.17. The updates in the EM algorithm with expert opinions for
the MSM are

b̂l =
T̂ lK(f1)

Ôl
K

(âl)
2 =

T̂ lK(f2)− 2b̂lT̂
l
K(f1) + b̂2

lO
l
K

Ol
K

p̂lm =
N lm
K

Ol
K

where, the filters N lm
K , Ol

K , T
l
K(f) can be computed based on parameters Π′, b′, a′

which can be computed by the following proposition.
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Proof.

E[log ΛK |FC0
K ] = ĥ(Π′, a′, b′) +

d∑
i,j=1

N̂ ij
K log(pij) +

d∑
i=1

(
− Ôi

K log ai −
1

2

( bi
ai

)2

Ôi
K

)

+
d∑
i=1

(
bi
a2
i

T̂ iK(f1)− 1

2a2
i

T̂ iK(f2)

)

where, N̂ ij
k = E[N ij

k |F
C0
k ], Ôi

k = E[Oi
k|F

C0
k ], T̂ ik(f) = E[T ik(f)|FC0

k ].
Define h(Π, a, b) := E[log ΛK |FC0

K ], such that

∂h(Π, a, b)

∂al
=
(
− 1

al
+
b2
l

a3
l

)
Ôl
K −

2bl
a3
l

T̂ lK(f1) +
1

a3
l

T̂ lK(f2)
!

= 0

(al)
2 =

b2
l Ô

l
K − 2blT̂

l
K(f1) + T̂ lK(f2)

Ôl
K

∂h(Π, a, b)

∂bl
= − bl

a2
l

Ôl
K +

1

a2
l

T̂ lK(f1)
!

= 0

bl =
T̂ lK(f1)

Ôl
K

For maximization in plm need
∑d

j=1 plj = 1. Lagrange multiplier approach
applied, define

Ll(pl1, pl2, . . . , pld, λ) :=
d∑
j=1

log(plj)N̂
lj
K + λ(

d∑
j=1

plj − 1),

∂Ll
∂plm

=
1

plm
N̂ lm
K + λ

!
= 0.

Thus,

plm = −1

λ
N̂ lm
K
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Since
∑d

j=1 plj = − 1
λ

∑d
j=1 N̂

lj
K = 1,

λ = −
d∑
j=1

N̂ lj
K

= −
d∑
j=1

E[
K∑
k=1

Y l
k−1Y

j
k |F

C0
k ]

= −Ôl
K

Hence, plm =
N̂ lm
K

ÔlK
finishes proof.

Lemma 3.4.7. (i) Z = (Zk)k∈N0 is a H-martingale under measure P .
Z−1 = (Z−1

k )k∈N0 is a H-martingale under measure P̃ .
(ii) For all u ≤ k,

Ẽ[Z−1
k Yu|FCu ] = Ẽ[Z−1

u Yu|FCu ].

(iii) Under P̃ , R1, R2, . . . are i.id. standard normal distributed and indepen-
dent of Y . E1, E2, . . . are i.i.d. from D1d and independent of Y .

Proof. (i)
E[Zk|Hk−1] = Zk−1E[Lk|Hk−1]

= Zk−1E[Lk|Yk−1]

The last equation is due to the fact that Rk and Ek are only conditional on
Yk−1. We have by conditional independence

E[Lk|Yk−1 = ei]

=

∫
E

∫
R

ϕ0,1(x)

ϕbTYk−1,(aTYk−1)2(x)

fD
1d

(y)

fD
γTYk−1

(y)
ϕbTYk−1,(aTYk−1)2(x)fDγTYk−1

(y)dxdy

= 1

hence, Z = (Zk)k∈N0 is a H-martingale under measure P .
Similarly, Z−1 = (Z−1

k )k∈N0 is a H-martingale under measure P̃ .
(ii) For all u ≤ k, since FCu ⊂ Hu

Ẽ[Z−1
k Yu|FCu ] = Ẽ[Ẽ[Z−1

k Yu|Hu|]FCu ]

= Ẽ[Z−1
u Ẽ[Yu|Hu|]FCu ]

= Ẽ[Z−1
u Yu|FCu ]
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The equation holds because of tower property of conditional expectation,
the fact that Z−1 = (Z−1

k )k∈N0 is a H-martingale under measure P̃ and the
reason that Yu is Hu-measurable.
(iii) By calculating the cumulative density function of Rk conditional Hk−1,
we get

P̃ (Rk ≤ t|Hk−1) = Ẽ[1{Rk≤t}|Hk−1]

=
E[1{Rk≤t}Zk|Hk−1]

E[Zk|Hk−1]

=
Zk−1E[1{Rk≤t}Lk|Hk−1]

Zk−1

= E[1{Rk≤t}Lk|Hk−1]

= E[1{Rk≤t}Lk|Yk−1]

The second equation is due to the Bayes’ formula of conditional expectation
and the third one is because Zk is a H-martingale under P . Then we have

E[1{Rk≤t}Lk|Yk−1 = ei]

=

∫
E

∫
R
1(−∞,t](x)

ϕ0,1(x)

ϕbTYk−1,(aTYk−1)2(x)

fD
1d

(y)

fD
γTYk−1

(y)
ϕbTYk−1,(aTYk−1)2(x)fDγTYk−1

(y)dxdy

= Φ(t)

where, Φ is cumulative density function of standard normal distribution.
Hence Rk is standard normal distributed and no matter what Yk−1 is. Actu-
ally,

P̃ (Rk ≤ t, Yk−1 = ei) = P̃ (Rk ≤ t|Yk−1 = ei)P̃ (Yk−1 = ei)

= P̃ (Rk ≤ t)P̃ (Yk−1 = ei).

Hence, R is independent of Y under P̃ .
Likewise by calculating the cumulative density function conditional Ek, we
get

P̃ (Ek ∈ B|Hk−1) = E[1{Ek∈B}Lk|Yk−1]

Then we have

E[1{Ek∈B}Lk|Yk−1 = ei]

=

∫
B

∫
R

ϕ0,1(x)

ϕbTYk−1,(aTYk−1)2(x)

fD
1d

(y)

fD
γTYk−1

(y)
ϕbTYk−1,(aTYk−1)2(x)fDγTYk−1

(y)dxdy

=

∫
B

fD1d(y)dy
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Note that it is the probability of Ek ∈ B under probability measure P̃ . And
this probability is also independent of Y . Hence, E is independent of Y
under P̃ .

Theorem 3.4.11. Let H = (Hk)k∈N0 be H-adapted, Hk : Ω→ R, with

Hk = Hk−1 + αk−1 + βTk−1Yk + κk−1f(Rk) + δk−1g(Ek),

where α, β, κ, δ are F-adapted and R, Rd, R, R-valued respectively. And
f : R → R, g : E → R are both measurable, s.t. H is integrable. For

Γi(r, e) := ϕi(r)
ϕ0,1(r)

fDi (e)

fD
1d

(e)
, where ϕi = ϕbi,a2

i
and fDi = fD

γ(i). Then we have

ρk(HY ) =
d∑
i=1

{
ρk−1(HY i)Γi(Rk, Ek)Π

T ei

+ ρk−1(αY i)Γi(Rk, Ek)Π
T ei

+ ρk−1(κY i)Γi(Rk, Ek)f(Rk)Π
T ei

+ ρk−1(δY i)Γi(Rk, Ek)g(Ek)Π
T ei

+ (Diag(ΠT ei))ρk−1(βY i)Γi(Rk, Ek)
}

where ρk(HY ) = (ρ(HY 1), ρ(HY 2), . . . , ρ(HY d))T , and Y i is the i−th ele-
ment of vector Y .

Proof.

HkYk = Hk−1Yk + αk−1Yk + βTk−1YkYk + κk−1f(Rk)Yk + δk−1g(Ek)

Then we compute

ρk(HY ) = Ẽ[Z−1
k HkYk|FCk ].

Set

Z−1
k = Z−1

k−1

d∑
i=1

Y i
k−1Γi(Rk, Ek),
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Thus based on Lemma(3.4.7) R,E are independent of Y under P̃

ρk(HY ) =
d∑
i=1

Γi(Rk, Ek)Ẽ
[
Z−1
k−1Y

i
k−1Hk−1Yk + Z−1

k−1Y
i
k−1αk−1Yk

+ Z−1
k−1Y

i
k−1β

T
k−1YkYk + Z−1

k−1Y
i
k−1κk−1f(Rk)Yk + Z−1

k−1Y
i
k−1δk−1g(Ek)Yk

∣∣∣FCk ]
=

d∑
i=1

Γi(Rk, Ek)
(
Ẽ
[
Z−1
k−1Y

i
k−1Hk−1Yk + Z−1

k−1Y
i
k−1αk−1Yk + Z−1

k−1Y
i
k−1β

T
k−1YkYk

∣∣∣FCk ]
+ f(Rk)Ẽ

[
Z−1
k−1Y

i
k−1κk−1Yk

∣∣∣FCk ]+ g(Ek)Ẽ
[
Z−1
k−1Y

i
k−1δk−1Yk

∣∣∣FCk ])
=

d∑
i=1

Γi(Rk, Ek)
(
Ẽ
[
Z−1
k−1Y

i
k−1Hk−1Yk + Z−1

k−1Y
i
k−1αk−1Yk + Z−1

k−1Y
i
k−1β

T
k−1YkYk

∣∣∣FCk−1

]
+ f(Rk)Ẽ

[
Z−1
k−1Y

i
k−1κk−1Yk

∣∣∣FCk−1

]
+ g(Ek)Ẽ

[
Z−1
k−1Y

i
k−1δk−1Yk

∣∣∣FCk−1

])
Since F ⊂ H, we get

ρk(HY ) =
d∑
i=1

Γi(Rk, Ek)Ẽ
[
Ẽ
[
Z−1
k−1Y

i
k−1Hk−1Yk + Z−1

k−1Y
i
k−1αk−1Yk

+ Z−1
k−1Y

i
k−1β

T
k−1YkYk + Z−1

k−1Y
i
k−1κk−1f(Rk)Yk + Z−1

k−1Y
i
k−1δk−1g(Ek)Yk

∣∣∣Hk−1

]∣∣∣FCk−1

]
=

d∑
i=1

Γi(Rk, Ek)Ẽ
[
Z−1
k−1Y

i
k−1Hk−1ΠT ei + Z−1

k−1Y
i
k−1αk−1ΠT ei

+ Z−1
k−1

d∑
i=1

Y i
k−1β

T
k−1(ΠTYk−1)(ΠTYk−1) + Z−1

k−1

d∑
i=1

Y i
k−1κk−1f(Rk)Π

T ei

∣∣∣FCk−1

]
Note the fact that

βTk−1YkYk = Diag(Yk)βk−1.

By this we get

Ẽ
[
Z−1
k−1

d∑
i=1

Y i
k−1Γi(Rk, Ek)β

T
k−1(ΠTYk−1)(ΠTYk−1)|FCk−1

]
=

d∑
i=1

(
Diag

(
ΠT ei

))
ρEk−1(βY i)Γi(Rk, Ek),

which finishes the proof.
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A.3 Numerical Simulations of Three States

The data is simulated by the following settings.

• d = 3;

• b = (0.08, 0.01,−005)T , a = (0.05, 0.03, 0.08)T , Π =

 0.9 0.05 0.05
0.05 0.9 0.05
0.05 0.05 0.9

;

• Y0 = e1;

• γ =

3 1 1
1 3 1
1 1 3

 .
If we have an initial guess of γ0 =

2 2 2
2 2 2
2 2 2

 . The results of EM algorithm

are shown below. Figure A.1 shows all ai, bi for i = 1, 2, 3, except a1, has a
better estimation if we combine Dirichlet distributed expert opinions.

Figure A.1: Mean and standard deviation of distributions for three states

From Figure A.2, we find the results of H = C and H = R are similar,
while Π3,· has a better estimation when H = C.
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Figure A.2: Transition matrix

FigureA.3 reveals that the γ can be estimated accurately and all elements
converge at end.

Figure A.3: γ
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