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Abstract

The mathematical modelling of problems in science and engineering leads often to
partial differential equations in time and space with boundary and initial conditions.
The boundary value problems can be written as extremal problems(principle of minimal
potential energy), as variational equations (principle of virtual power) or as classical
boundary value problems. There are connections concerning existence and uniqueness
results between these formulations, which will be investigated using the powerful tools
of functional analysis. The first part of the lecture is devoted to the analysis of linear
elliptic boundary value problems given in a variational form. The second part deals
with the numerical approximation of the solutions of the variational problems. Galerkin
methods as FEM and BEM are the main tools. The h-version will be discussed,
and an error analysis will be done. Examples, especially from the elasticity theory,
demonstrate the methods.
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0.1 Introduction

0.1 Introduction

Let us start with some historical remarks [23] . In 1782 Laplace remarked, in a study
on the space of planets that the potential
1 o(z)

W5 ™

satisfies the partial differential equation (Laplace equation)

1813 Poisson found that for a constant density g it holds —Au = p in Kr(0) = {z €
R? : |z| < R}. This equation is called Poissson equation. 1839 Gauss has proved
the validity of the Poisson equation for more general cases. 1846 until 1847 Riemann
studied under Gauss in Gottingen. Then (1847-1849) he was a student in Berlin
and attented lectures by Dirichlet on potential theory. Riemanns idea was to give a
foundation to the theory of complex analytical functions by means of partial differential
equations. To explain this let f(z) = u+4v be an analytic function. The real functions
u and v satisfy the so called Cauchy-Riemann differential equations u, = vy, uy = —v,
where z = z + iy. By differentiation we get Au = Av = 0. The Dirichlet-principle
reads: The solution u € M = {u € C%(Q) : u = g on 9N} of the extremal problem

I(u) = /Q 2; (S—Z)de — min! (1)

is harmonic in ©; or more general (Riemann 1857): For given sufficiently smooth
functions v and g, the minimum problem

I(u) = /('U';U - Uy)2 + (ug + vy)2dw =min!, wu =g on 09,
Q

always has a solution in the set of piecewise continuously differentiable functions. Note
that I(u) > 0 is bounded from below. Here, € is a bounded region in R?. Like Dirichlet,
Riemann made no attempt to prove this existence principle. In studying Riemann’s
work Weierstrass found the Dirichlet principle unsatisfactory. In 1870 he constructed a
counterexample, that means he found a functional, where the minimum is not realized
by a function from C[—1,+1]:

+1

I(u) = / [zu! (z)]2dz = min! (2)
-1

with u(—1) = 0,u(1) = 1. [22, p. 176] For the sequence of functions

1  arctan(nz)
= o =1,2,...
un(T) 2 + 2 arctan(n) nEhS
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satisfying the boundary conditions, it holds I(u,) — 0 for n — oo, i.e. (uy) is a
minimal sequence. Suppose u € C'[—1,1] is a solution of (0.2), then I(u) = 0 and
zu'(z) =0 for all z € [—1,+1]. It follows v'(z) = 0 in [—1,41] and u(z) = const. This
contradicts the boundary conditions. In 1900 D. Hilbert has formulated (Paris, 23
open problems) “ ... one sensibly generalizes the concept of solution in order to save
the Dirichlet principle.” In 1928 Courant, Friedrichs and Levy have used “generalized”
solutions of partial differential equations. The introduction of generalized derivatives
leads to the definition of Sobolev spaces. In these spaces (and not in C?(f2)) the
Dirichlet principle can be justified.

Therefore extremal problems like (1) or equivalent variational (or weak) formulations
of boundary value problems can be taken as basis for numerical computations. The
algorithms developed work mostly in appropriate Sobolev spaces and the error analysis
is done in corresponding norms. The lecture will not follow the historical paths.

In Section 1.1 we start with a short introduction into the theory of Sobolev spaces,
mostly refering to different books for proofs of the statements. In Section 1.2 we
discuss the equivalence of operator equations (classical boundary value problems) with
variational and extremal problems in Hilbert spaces (Sobolev spaces). In this context
we use some main principles and theorems from functional analysis. In Section 1.3 we
introduce elliptic boundary value problems and give corresponding examples especially
from mechanics of solid bodies. We show, how we can find reasonable variational
formulations, which allow to apply the results of section 1.2. These three sections are
the contents of Chapter 1. In Chapter 2 we start with Galerkin methods. Besides
general results about the convergence, we discuss error estimates for linear elements
as example and the influence of the regularity of solutions on the convergence rate.
Section 2.2 deals with finite element methods whereas in Section 2.3 boundary element
methods are studied.



Chapter 1

The Analysis

The first part of the lecture is devoted to the analysis of variational problems for elliptic
boundary value problems. The theory is governed by the concept of generalized weak
solutions which belong to Sobolev spaces.

1.1 Sobolev Spaces

Here we give a short introduction and refer to [1], [21], [8], [6] for further studies.

1.1.1 The space Ly(Q)
Let  be a nonempty open set in RV, N > 1.

Definition 1.  Lo(2) denotes the set of classes of in 2 measurable functions u :
Q—R(or C) with [, |u(z)|*dz < co. Two functions u and v belong to the same class
if [ |u—v|*dz = 0; that means u(z)=v(z) for almost all z € Q.

Ly(92) is endowed with the scalar product

(u,v)0 = (U, V) Ly(0) = / u(z)v(x)dz.

Q

Lemma 1. Ly(Q) is a Hilbert space with respect to the norm

:
ullo = l[ullzyay = ( / |u<a:)\2da:) -

Proof. [22, p.110] for Q@ = (a,b) and [22, p.114]: there  is given as a measurable
subset of RV. a

The elements of Ly(2) can be approximated by smoother functions, which we describe:

Definition 2.

1. Ck(Q) is the set of all real (or complex) valued functions u: Q — R (or C) which
have continuous partial derivatives of orders m =0,1,... k.
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2. Ck(Q) is the set of all u € C*(Q) for which all partial derivatives of order m =
0,1,... ,k can be extended continuously to the closure Q of €.

3. If u € CK(Q) or (C¥(Q)) for all k = 0,1,2,..., then we write u € C®(Q) (or

C(Q)).

4. C§°(Q2) is the set of all functions u € C*°(Q) which vanish outside a compact
subset of 2, i.e. suppu is compact, suppu C €.

Lemma 2. The sets C(Q) and C(Q) = C°(Q) are dense in Ly(9).
Proof. [22, p.117/186] There is used a smoothing technique. O

The space C§°(€2) plays an important role in the following. Here we formulate the
variational lemma (Lemma of Du Bois-Reymond):

Lemma 3. Letu € Ly(Q) be and
/ wvdzr =0 VYo € C§°(9), (1.1)
Q

then u(z) = 0 for almost all x € Q.
Proof. The relation (1.1) means that

(u,v)o =0 Vo € C5°(2).
Since C§° () is dense in Ly(Q2), we get

(u,)0 =0 Vv € Ly(9).

(For an arbitrary € > 0 and any © € Ly(€2) we choose a function v € C§°(€Q) with
|lv—9|| <e. Then (u,v)o = (u, =)o+ (u,v)o = (4, —v)o and |(u, ¥)o| < ||ullo||? -
v|[o < ellullo = €. Consequently (u,7)o = 0). For u = v we get |[u||* = [, |ul*dz =0
and hence u(z) = 0 for almost all z € Q. If u is continuous in €, than u(z) = 0 for all
z € . 0

REMARK. Lemmata 2 and 3 are equivalent.

1.1.2 Weak (generalized) derivatives

The integration by parts formula is the key for the definition of (global) generalized
derivatives:

b b
/ vw'vdr = —/ wo'dz +uvl?  for N =1,
a a

0 0
—uvdx = — u—vdw -I—/ uvn;do  for N > 1.
0 3.’L’Z 8.’E1 80

Here n; are the components of the exterior unit normal vector n. If v € C§°(2), then
dloly

the boundary term vanishes. For shortness we use the notation D%u = 35T o
1,013

a=(ag...0p), ol =21 i, 05 €{0,1,2,... }.
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Definition 3. Let be u € Ly(2). The function w = D% € Lo(2) is called the weak
derivative of u in the domain € if

(w,v)o = (=1)1®(u, D%)y Vv € CT(Q).

The following properties hold:

e The weak derivative is uniquely determined in Lo(f2). This follows from Lemma
3.

e If a classical derivative D%u € C(2) exists, then it coincides with the weak
derivative (a.e.).

o DBy = DB(D*) = D®(DPu).
o If u, € C®(Q),un — u in La(2) and D%, — w in Ly(f2) then w = D%u.

Exercise
19 Let be Q = (—1,+1),u(x) = |z|. Show that u'(z) = w(z) = sgn(z).
20 Step functions (piecewise constant) have no weak derivatives.

1.1.3 The spaces H*(2) and I}k(Q), ke NU {0}

Definition 4. Let be k € NU {0}. H*(Q) C Ly(R) is the set of all functions which
have weak derivatives D®u € Ly(Q) for all a with |a| < k:

H*(Q) := {u € Ly(Q) : D% € Ly(Q) for |a| < k},
endowed with the scalar product

(u, )k = (u,v) gro) == Z (D%u, D%v)g
|| <k

and the Sobolev-norm

N[ =

lally, = llell ey = | D 1D ullZ e | - (1.2)
la|<k

H%(Q) is a Hilbert space.

We remark that C*(Q) is dense in H*(Q), if Q is smooth enough. Lemma 4 justifies
another definition of H*(): see [11, p.17]

Lemma 4. C®(Q) N H*(Q) is dense in H*(Q).

Proof. [21, p.74] m|
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Definition 5. Let be k € NU{0}. H*(Q) is the completion of the set {u € C®(Q) :
|/ iy < oo} with respect to the norm (1.2).

We now define the space H*(9):
Definition 6. H¥(Q) is the completion of C§°(Q) with respect to the norm (1.2).

Lemma 5. H°(Q) = Ly().

Proof. Apply Lemma 2. i

Let us remark, that for a bounded domain 2 and k > 1 H*(Q) is a proper subspace
of H*(Q). This follows from Theorem 1 below. The space H*(Q) is a very important

[e]
space in the theory of boundary value problems. The norm in H*(f2) is equivalent to

a seminorm, which is given by the highest derivatives.

Theorem 1. For a bounded domain €, the norm || - ||, and the seminorm |- |,

N

[ulg = [l ey = | D ID%ull3
la|=k

are equivalent in H*(9).

Proof. a) It is evident that |u|x < ||u|k-
b) It holds the Poincaré-Friedrichs inequality:

l[ul|, < clulx for all ue H*(Q) (1.3)

for a positive constant c.

We proof b) firstly for elements u from C§°(f2). Let a be an multiindex with |a| = k—1.
Then w = D% € C§°(12). Since Q is bounded there is a ball K(0) with Q C Kg(0).
For every point z = (z1,...zn) € Q it holds, that 1 € [-R, R] and

1 Jw 2
2
= — ...xN)d
() [ 2 e o
Schwarz inequality 1| 9 2
S i r) [ 226 )| e
—R L1
TR | w 2
< 2 — (&, ... .
< RG]
Integrating on 2 we get
2 TR Bw 2
/ () Pdz = ]2 < 23// O (¢ o an)de| deds
Q al-r |0z1
2 || Ow ? 21,12
8:171 0
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It follows that
lulp = > 1D%l§ < 4R*M(K)ul; = Cr_1lul},
|a|=k—1

and more general
|u|§_1 < Cj_1|u|? for 1<j<k,

and
[ul < Cjlulj1 < CjCjnluffn < ... < Cjluff for 0<j<k.

Finally we have

k
lulli = D lul < fuli-

J=0

We now consider u € H¥(). For any € > 0 we find an element @ € C§°(Q2) with
|lu— 1l <e. Itis

ully < [lu—alle + [lallx
< e+ iy
< e+l —ulk + clulk
< e(1+¢)+ clulg,
and consequently ||ul|x < c|ulg. O

REMARK. Theorem 1 remains valid, if 2 is bounded in one direction, that means
Qc{zeR" :|z;] < R,i€{l,...,N}}. The Poincaré-Friedrichs inequality can be
generalized.

Theorem 2. [20, p.385,386] Let Q be a bounded domain in RN with Lipschitz-
continuous boundary, let T' € 02 be with mes T # 0.

1

] 2

Then
The case p # 2

For a finer analysis, especially of nonlinear problems, it is useful to enlarge the class
of Sobolev spaces H*(9).

Let p € [1,00). Analogously to the space Ly(f2) we introduce the space L,(Q) as the
set of classes of measurable functions u : Q@ — R (or C) with [, [u(z)Pdz < co. The

lull, < €

uda

/ lu|?do +

8:1;Z

IA
Q

and [[ul];

Omz

for all w € H(9).
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functions v and v belong to the same class if u(z) = v(z) a.e. in Q. L,(12) is equipped

with the norm
1
D
_ P
lull ey = ( [ dw)

and is a Banach space [8, p.74]. We remark that L. (Q2) is also defined [8, p.82], and
plays a role in connection with error estimates.

We define the space HJ(Q) analogously to H* and H}(Q) analogously to H*(2) =
HE%(9)) The norm in HI’f(Q) is defined as follows:

1
P
lull sy = Nl = |Z 1Dl o - (1.4
al<k

Besides the notation H} () one will find also the notation W}(Q) for a slightly dif-
ferent Sobolev space [8, p.255]. For a bounded domain W} () is the completion of
C>®(RN)|g with the respect to the norm (1.4). Wﬁ(Q) and H;,“(Q) coincide for a large
class of domains, e.g. for elements with piecewise Lipschitz-continuous boundary.

We cite now some embedding theorems, which describe the relations both between
different Sobolev spaces and spaces of continuously differentiable functions.

Theorem 3 (Embedding theorems). [8, p.300], [1] Let 2 be a bounded domain in
RN with cone property, i.e. every point z € ) is the vertez of a finite cone Cx which
is congruent to a cone C. The cone C is the intersection of an open ball in RY with
the set

Az A >0,z eRY |z —y| < r},

where y is a fized point in RN with |y| > r, r > 0.
It holds:

(i). If kp < N and p < g < %, then HF(Q) C Ly(9).

(ii). If kp = N and p < q < o0, then HI’,“(Q) C Ly(2), moreover, HY (Q) C C%(Q).
(iii). If (k —j)p > N for j =0,1,2,..., then H¥(Q) C C?(Q).
COROLLARY.

Hy(Q) ¢ C(Q), but H3(Q) C C(Q) for N = 2,3,

— N
HY(Q) C CQ)ifk> -

1 0 _
H,(Q) C C(Q)for N=2, p>2.
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1.1.4 The space H*(Q2) with real s > 0 (Sobolev-Slobodeckij space)

Letbe QeRY s >0,s=k+ A withk e NU{0}and 0 < X < 1.
We define:

H(Q) = {u € H*(Q) : ||ull? =
D%y 2
= |lull? + Z // [ |$_ |N+2)\( vl d:z:dy<oo}.
la|<k
H?(Q) is a Hilbert space with the scalar product
(u,v)s [/ D%u(z)D%v(z)dz
la|<k
[D%u(z) — D*u(y)][D(x) — D*v(y)]
" /QxQ |z —y| N2 dody]

Analogously we define:

H(Q) = {ueﬂﬁﬂrnw;fﬂmmm
Dou(z) — Dou(y)P }
+ / dzdy < oo ¢.

g;k axQ |z — y|N+PA

ExAMPLE. The function

() = {1 for z € [-1,1],

0 else

does not belong to H'(—2,2), since u' = §(—1) — §(+1) in the distributional sense, & is
the Dirac distribution. But: u € H*(—2,2) for 0 < s < 1. Since |u(z) — u(y)| vanishes
in the hatched rectangles in Fig. 1 we have namely:

Figure 1

//2|“ N gody = 2 /I/I;dwd
2|x—|H% N A A
2 1 1
—_dxd = (7 I1).
*[/m—ww$@ {)+ )
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It is

-/, (/ mgrm) = [ ([ gmgm) @
1 +1 —1
/ [ yw]_ dy:/_2 ‘% [(1—1@/)” - (<1+1y)2x>]dy

_ A=y ()
- 2,\ 1-2X 1-2x |, 7

for 2)\ < 1, that means A < %
Similar we get

2 +1 1 1

1.1.5 Trace spaces

It is natural to study the boundary values or so called “traces” of elements from Sobolev
spaces in connection with boundary value problems.

A main tool is to use a diffeomorphism which maps locally a neighborhood of the
boundary intersected with 2 into the half space Rﬁ and to study the restrictions of
the functions onto RV 1. For this we need a certain smoothness of the boundary.

Definition 7.
Q is from the class C** (k € Ny, A € (0,1]) if

1. There exist open subsets Uy, ... , Uy € RN with
m
U009, A =U, no0£0.
r=1

2. For any subset there is a local coordinate system,
that Ay = {Zr,, .. , Try_,,ar(zh)} with a, € C*A,) and
A, =A{z] |z, | <a,i=1,... ,N —1}. Here is

Do — Do
Ck”\(Q) ={ué€E Ck(Q) :  sup |D%u() X u)| <00y,
T,YEQ,z£Y |z —y|

CFA(Q) is called the space of k-times Lipschitz continuous differentiable functions
for A =1 or of k-times Holder continuous differentiable functions for A < 1.

Theorem 4 (Trace Theorem). [8, p.307], [14], [21, p.130]

o Letp>1,keNQ € C’c 1 1. There exists a unique continuous linear mapping
Ty, : HE(Q) — H (BQ) such that

ou ak—l o
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n denotes the external unit normal vector, Ty is the trace operator. For k =1,
Qe C%, we have Tyu = ulaq “in the trace sense”.

o Forp=2,

1 1
—§+kz<s<k—1+>\,0<)\<i,keN,QeC’“’A,

Ty maps H*(Q) — Hf;ol Hs*l*%(aﬁ) continuously.

COROLLARY. The estimates hold:

k—1

olu
1 Txullpo0 =D |5 < Ollull oy
= 1on |l g, k=5 a0
k—1
O
|| Tyul|laq = — < Ollul| gs()-
,Z:% L PR IO @

The proof needs a lot of techniques such as partition of unity, local mappings onto Rﬂ\_’ ,

estimates in ]Rf , inverse mappings [8], [21], [6].
The trace operator is invertible, that means there is an extension from the boundary

values onto the whole domain.
Theorem 5 (Extension Theorem). [14], [8, p.338]
o Letp>1,keN,Q C C¥!. There exists a continuous linear mapping

k—1
k—1—1
Fe:[[H, *(09) — HE(Q),
=0

such that for each (ug,u1,... ,ux—1) € Hf;ol Hpkflfr%(aﬂ) with

Fy(uo,u1,... ,ug_1) = v it follows that % =uondQ,1=0,1,... ,k—1.

e For k=1, p> 1 we need only that Q € C®'.

o Forp =2, —%+k<s<k+>\—1,0<)\<%,kEN,QECk’)‘ there ezists a

continuous linear mapping
k—1 )
Fp: [[H " 2(09) — H5(Q) (see [21, p.133)).
1=0

Lemma 6.

o Let be Q € CO1) then H'(Q) = {u € HY(Q) : u|sn = 0} in the trace sense.
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o Let be Qe CH1, ke N,p > 1 then

ou o1y
%L‘m T T gnk-1 0}

= {ue HI’f(Q) : D%l =0 for 0 < |a] <k —1}.

HEQ) = {ue HYQ) - ulon =

Proof. We have to prove that ker T, = HEF(2). The step H}(€2) C kerT} is trivial;
in order the equality to prove one needs some technical considerations [21, p.135], [6,
p.120]. O

1.1.6 The space H*(Q2) with s <0

We remind of the definition of a dual space X’ of a Banach space X on the field of
real (complex) numbers R or C. The dual space X' is the space of all bounded linear
mappings F' from X into R (or C), equipped with the operator norm

F(u
||F||X,:sup| ( )|
u#0 ||u||X

Definition 8. Let be 1 < p < oo, s > 0 a real number.
H,*(Q) = [HY

(u,0)o]

where 1/p+1/q=1 and ||u||HP_S(Q) = SUPLL0 Tyl o

The restriction of F' € H, k(Q) on C§°(Q) defines a distribution (a bounded linear
functional on C§°(€2), where C§°(2) is equipped with a “convergence definition”). The
following theorem characterizes the elements of H, *(Q), k € N.

Theorem 6. [8, p.294]
Let p € (1,00),k € N. Then F € H™*P(Q) if and only if there exists a family

F=Y (-1)*D%a, (1.5)
ol <k

where D®f, denotes the distributional derivative. Moreover,

||F||H—lm(9) = inf Z ||fa||Lp(Q)a

o<k

where the infimum is taken over all families { fo}|a/<k such that F can be expressed by
formula (1.5).

For p = 2 the trace spaces are defined
H™°(09) = [H*(0Q)]',

where the duality can be understood by the Riesz-representation theorem as a scalar
product in Lo (09).
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1.2 Operator equations and their variational formulations

The basic idea of functional analysis is to formulate differential and integral equations
in terms of operator equations

Au = f, A: X —Y, (1.6)

where X and Y are appropriate function spaces, u € X is the unknown. For example,
A is the Laplacian, X = {u € C?*() : ulpn = 0}, Y = C(Q). Then (1.6) describes the
Dirichlet problem

Ay = fin
u = 0 on 0€.
If X is a Banach Space, Y = X', then the equation (1.6) means
(Au,v) = (f,v) YveX
or
a(u,v) := (Au,v) = (f,v) Vv e X. (1.7)

The relations (1.7) are called variational (or weak) formulation of the problem (1.6)
and read: Find an element u € X such that

a(u,v) = (f,v) Vv € X.

Furthermore, we can introduce a functional

Flu) = sa(u,u) — (f,u)

The extremal problem reads: Find an element ug € X such that

umél)l(lF(u) = F(up). (1.8)

Under certain assumptions ug is a solution of (1.7) and (1.6).

In the following we describe the connections between the problems (1.6) , (1.7) and
(1.8) with regard to the solvability and uniqueness.

1.2.1 Example — The Dirichlet problem for the Laplacian

Proposition 1. Let be 2 C RN a bounded domain with a piecewise smooth
boundary 9Q, f € C(Q),g € C(99). If u € C%(Q) solves one of the following three
problems, then it solves the other ones too.

(1) —Au=finQ, wu=gon o
(2) for allv € M = {v € C1() : v|gn = 0} and ulsn = g

alu,v) /Zauaudx_ (f,v) /f
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(3) min,co1(q) F(u fQ i 1 (Ou)? — uf)de = %a(uau) —(f,u)

ulga=9

Proof. (3) — (2): Let be ug € C?(f2) a solution of the problem (3). We show that
ug solves problem (2). Besides ug the following functions are admissible functions for
finding the minimum of F(u):

ug + tv, veM,teR

Let be

o(t) = F(ug + tv) = /Q [% Z[Di(uo +t)]? — (uo + tv) f]dz
= %a(u0+tv,u0+tv) — (f,uo + tv)

1
symmetry — [a(uo, uo) + 2ta(uo,v) + t2a(v, v)]

—(f,uo) —t(f,v) VteR

Since minser ¢(t) = ¢(0), the necessary condition for an extremal value reads:

@' (t)]i=0 = a(ug,v) +ta(v,v) — (f,v |t 0~

Hence
a(ug,v) = (f,v) Yve M.

(2) — (1): Applying integration by parts to (2) we get
/(—Auo — flvdz =0 Yve M
Q

and especially for v € C§°(2). Due to the variational Lemma 3 and ug € C?() we
have —Awug = f; furthermore, it holds ug|go = ¢ in (2).

(1) — (2): Multiplying (1) by elements v € M and integrating by parts we get (2).
(2) — (3): Let be a(ug,v) = (f,v) Vv € M. Then is ¢©'(0) = a(ug,v) — (f,v) =
Vv € M and zero is a critical value for the real function

1
o(t) = Ea(uo + tv,ug + tv) — (f,uo + tv).
Since " (t) |t:0 = a(v,v) > 0 for v # 0, it follows that ¢ = 0 yields the minimum Hence
©(0) = F(ug) < o(t) = F(ug + tv). The admissible set {u € C*(Q u‘(m =g}=m
for searching the minimum coincides with the set {ug + tv}icrvemr = M. Indeed, it is
evident that m C m. For v € m we have u = u — ug +ug = v+ ug € m, hence m C m.
O

REMARK. In order to show the equivalence of problems (2) and (3) we only need that
ug € C*(Q). There are situations, where no solutions in C2({2) exist.

EXAMPLE: Let 1 be a cut-off function with support in a neighborhood of P (See Fig.
2).
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Figure 2

The function
2
U = M3 sin —

is not contained in C'(£2), but it solves the Poisson equation with a smooth right hand
side:

2 2 2

2 2. 3
Aug =1 lg <§ — 1) + 3~ <§) ] r§_2 sin §<p + smooth remainder,

where
02 L1 9?1
COr2  ror 0p?r?

is the Laplace operator.

1.2.2 Bilinear forms

In the proof of Proposition 1 we have used, that a(-,-) is symmetric and a(v,v) > 0
for v € M,v # 0, that means a(-,-) is positive.
These properties are important for more general considerations.

Definition 9. Let V be a Hilbert space. The mapping a(-,-) : V xV — R is called a
real bilinear form if

a(u, a1vy + aovy) = aza(u,v1) + asa(u,v7)

a(aiuy + agug,v) = aral(ul,v) + asa(usg, v)
for all u,v,u;,v;, € V,ay,a0 € R (in the complezx case we have sesquilinear forms and
a(u, a1v1 + agy) = @ra(u,v1) + @za(u,v2)) The bilinear form is called continuous (or

bounded) if there is a C > 0 with

la(u,v)| < Cllully|lvlly  Vu,veV.

Lemma 7.  For every bounded bilinear form there exists an uniquely determined
operator A € L(V, V') such that

a(u,v) = (Au,v) Yu,v €V (1.9)
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and

1Al Loy, < C.

Conversly, every operator A € L(V,V’) creates a bilinear form (1.9).

Proof.
a) a(-,-) is given. We fix an element u € V' and define the functional

F,v :=a(u,v) YveV.

F, is linear and
|Fyo] = |a(u,v)| < Cllullv|vlly = C'|lv]lv.

Consequently F,, € V' and ||F,|| < C' = C||lu|]|ly. We define Au := F, Vu € V. The
operator A is linear and bounded:

[Aully: = [[Fully < Cllullv

and || 4|l < C.
b) A € L(V,V') is given. We define a(u,v) := (Au,v), a(-,-) is linear. Since
|a(u, v)| < [ Aullv-|[ollv < 1Al llullvllvllv,

a(-,-) is bounded. Let us remark that
||A||L(V,V') = sup [Aully
llullv =1

= sup { sup [(Au,v)|}

lollv=1[lullv=1

= sup a(u,0)].
loll=1,uf}=1

The adjoint bilinear form is defined
a*(u,v) = a(v,u) = (A'u,v).

A" denotes the adjoint (dual) operator ||A]| = ||A’||. The bilinear form a(-,-) is sym-
metric, if a(u,v) = a(v,u) Yu,v € V. The operator equation Au = f is satisfied iff
(Au,v) = (f,v) Vo € V. 0

Lemma 8. (Lax-Milgram) [14, 6] Let be A € L(V, V') and a(-,-) the corresponding
bilinear form. Then the following statements are equivalent:

(1) A~ € L(V',V) emists.
(2) There exist real numbers e,&' > 0 with

inf{sup{|a(u,v),v € V,||v|]ly =1} :u e V,||ul]ly =1} = >0 (1.10)
inf{sup{|a(u,v)|,u € V,||ully =1} :v e V,|jv|ly =1} =€ >0 (1.11)
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(3) The inequality (1.10) and the inequality
sup{|a(u,v)| :u € V, |lully =1} >0 (1.12)
are valid for v € Vv # 0.
REMARK. The condition
inf{sup{|a(u,v)|,v € V,||v|ly = 1}u € V,||lu]ly =1} > >0 (1.13)

together with (1.12) are called Ladyshenskaja-Babushka-Brezzi (or LBB-condition).
Furthermore, A~! € L(V', V) means: ||[A"Lf|| = |A"  Aul| = ||ju|| < [|A7L] [|£]]-

Proof. (1) — (2): For A~'%/ = u it holds

A AA- L
inf SUPM = inf supw = inf Sup|<_11#v>|
B S Tl ol — N Tl e SR AT Tl
v7#0
- |(w', v)]|
= inf sup————"-—
weV' ey AT v [|v]lv
1
— inf — !
U}IEIV, [A=Tu! |y [[u[lv
1 1
—1 = — = €.
SUpPy/ ey W A 1”L(V’,V)

(1.12) can be realized analogically and we get even ¢ = ¢’ since A’ = (A~!)" and
V" = V. For the other statements compare [6, p.128]. O

Definition 10. A bilinear form is V-elliptic, if it is bounded on V x V and if there
is a positive constant C with

a(u,u) > Cllul*> VYueV. (1.14)

Lemma 9. The V-ellipticity implies (1.10) and (1.11) with ¢ = €'

Proof.
inf [sup |a(u,v)|] > inf |a(u,u)| > inf Clul?=C
Il =17 v )=1 lJull=1 llull=1
and
inf[sup a(u, v)] > inf|a(v,v)| > C.
vy v

Hence A~! € L(V, V') exists and ¢ = ¢'. O
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1.2.3 Extremal problems

Theorem 7 (Main theorem on quadratic variational problems). Suppose that
Vo is a closed linear subspace of the real Hilbert space V, ug € V fized.

1. a:V XV = R is a symmetric, bounded, Vy-elliptic bilinear form

2. f:V — Ris a linear continuous functional on V. Then the following statements
hold true:

o The extremal problem

%a(u,u) — f(u) = min! € {ug + Vp} (1.15)

has a unique solution for a fized element ug € V.

e The problem (1.15) is equivalent to the variational equation: Find a solution
u € {ug + Vo} with

a(u,v) = f(v) Yve,. (1.16)

Proof.

Step 1 — Equivalence of (1.15) and (1.16). As in the proof of Proposition 1 we denote
F(u) = 3a(u,u) — f(u) and we introduce ¢(t) := F(u + tv) for fixed u € V,v € V; and
the variable ¢ € R. Due to the symmetry and linearity we obtain

olt) = 5 alu,v) + tla(u,0) — FW)] + S0 u) — f(u).

Since a(v,v) > 0 for all v € Vj, v # 0, the problem (1.15) has a solution u € {ug + Vp}
if and only if the real quadratic function ¢ = ¢(¢) has a minimum at the point t=0 for
each fixed v € Vp, i.e. ¢'(0) =0 < a(u,v) = (f,v) for all v € V.

Step 2 — Uniqueness. Let u; and ug be solutions of (1.15) or (1.16). Then

Clluy — 'U/2||2 < a(uy —ug,uy —ug) = aluy,v) — a(ug,v)

= f(v)— f(v) =0for v=u1 —uz € V.

Step 3 — Ewistence. Instead of (1.15) we consider the problem: Find a solution w € Vg
with a(w,v) = (f,v) — a(ug,v) = (f,v) Vv € V. f € V§ and the Lemma of Lax-
Milgram yields that w € Vj exists. Now we set u = w + ug. |

Let us summarize the results: Let V be a Hilbert space,
o Vo = V. The operator equation

Au=f, A:V V' Ae L(V,V) (1.17)

e generates a bilinear form

a(u,v) = (Au,v) = (f,v) Yw eV (1.18)
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e and a functional
Flu) = ga(u,v) — (f,u). (119)

(1.17) has a uniquely determined solution u € V < (1.18) has a uniquely determined
solution u € V & the conditions of the Lax-Milgram Lemma are valid. (1.19) has
a uniquely determined minimizer in V, if the bilinear form a(-,-) is symmetric and
V-elliptic.

1.2.4 The energetic space

The properties “symmetry” and “Vj-ellipticity” can be defined directly for the operator
A:DA) CV >V.

Definition 11. .

o A is symmetric, if (Au,v)y = (u, Av)y Yu,v € D(A). (-,-)v denotes the scalar
product in V.

o A is positive, if
(Au,u) >0 VYu e D(A)
(Au,u) =0 u=0.
o A is positive definite, if

(Au,u) > C|lul|* Yu € D(A).

(Au,u) is the energy of the element u with respect to A.

EXAMPLE. A= —-A, V =1L1y(Q), D(A)=C§Q).

(Au,v) = /—Auvdxz/gradugradfudxz(u,A’U).
Q Q

(Au,u) = / | grad u|>dz > 0.
Q
(Au,u) = 0< u=0in D(A)
(Au,u) > C|ul|}, (Friedrichs-Poincaré-inequality.)

Lemma 10. Let A: D(A) CV = V be a linear symmetric, positive operator. The
mapping [-,-] : D(A) x D(A) — R, [u,v] := (Au,v) is a scalar product in D(A), the so
called energetic scalar product.

We introduce the energetic norm in D(A)

l|ul|? = [w, u). (1.20)
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Definition 12. The energetic space Vy is the completion of D(A) with respect to the
norm (1.20)

[u,u]'/?

Va= D(A)

Lemma 11. V4 CV provided A is linear, symmetric and positive definite.

Proof.
1 1
2 < (A == )
lulff < —(Au,u) = - [u,]
Od

Lemma 12. Let A: D(A) C V — V be a linear, symmetric and positive definite
operator and f € V. Then inf,cp(a) F(u) = inf, $(Au,u) — (f,u) = F(ug), uo € Va.

Proof. For u € V4 and f € V it holds

[(Fru)v] <[ fllvllully < ||f||v%IIUIlvA-

Therefore f generates a linear continuous functional f4 on Vy:

fA(U) = <fA,U) = (fau)V Vu € Va.

The Riesz’s representation theorem yields that there is an element ug € V4 with

fa(u) = [u,uolv, = (f,u)v-

This element realizes the minimum of F'(u).

F) = 5wy = fv = sl - (e
= Sl — o uolv, = Sluuly, — [ v,

1
- 5{[“,” — ug| — [u,uo] + [uo, uo] — [uo,uo]}

= %{[u — ug,u — ug| — [ug, uo]}

. _ 1 .
uelg{A) F(u) = —E[U,O,’u,o] =: F(UO)

O
EXAMPLE Let be A = —A, V = Ly(Q), D(A) = C°(Q) and [u,u] = [, | grad u*dz.
Then V4 = HY(Q).
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1.3 Elliptic boundary value problems

As an example we have considered the boundary value problem

—Au = finQ,
u = 0on 01, (1.21)

f € HYQ) = [H(Q)]). The variational formulation reads: Find an element u €

HY(Q) =V with
a(u,v) = /Qgradugradvdx = (f,v) Vv e V. (1.22)
The extremal formulation is: Find an element u € V' which realizes the minimum
LIéI‘I/IF(’U,) = m&n [% /Q | grad u|?dz — (f, u)] . (1.23)

——dx

Let us show, that a(u,v) is bounded:
<
- Z Q Ox; Ox;

N
ou v
a(u,v)| = ——dzx
H)\‘%AMM i

1 1

ou o 2 ov o 2
< — — < .
< %:( [ ompas) ([ 122Pas)” < clulvloly

From the Lax-Milgram-Lemma 8 and the main Theorem 7 about quadratic variational

problems it follows: There is an uniquely determined solution from v € H(Q) = V of
(1.21), (1.22) and (1.23). The inhomogeneous boundary value problem
—Au = finQ
u = g on 0f, (1.24)
feHY),gc€ H%(Q), can be written as problem with a homogeneous boundary

datum. To this end we consider an extension § € H'(Q) of g and we set w = u — §.
Then we have

a(w,v) = /gradwgradvd:c:(f,v)—/gradggradvdx
Q0 0
= (f,v) VveHYN) (1.25)

and f € V'. From the Lax-Milgram Lemma 8 it follows that there is a solution
w € H'(Q). Setting u = w + § we have an uniquely determined solution u € H'(Q)

[e)

(or w € H(Q)) of (1.21), (1.25) and (1.26), where (1.26) reads: Find

min F'(u). 1.26
u€{g+Vo} () ( )

(1.21) and (1.24) are examples for elliptic boundary value problems. We shall study
more general boundary value problems in what follows.
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1.3.1 Boundary value problems and Green’s formulae

Let be

Az, D) = Y (1) D*aqs()D’() (1.27)
la|<m
[B]<m

a linear partial differential operator of the order 2m with variable coefficients in a
divergence form.
EXAMPLE
A(z, D) = —=A = —div(grad(-)) = = Y D*(8asD"(-)),
511
where d,3 denotes the Kronecker symbol. Furthermore, we consider a normal system
of boundary operators {b;(z, D)}j=1.....m

bj(z,D) = > by (x)D% (1.28)
|81 <m;
and m; <2m — 1.
Definition 13. The system {bj(z,D)}j=1,... m is normal on 0K, if
1. ordbj = mj # m; = ordb; for j # 1.

2. b;0(2,€) = 3|5, 1=m, bg; (2)E% # 0 for 0 # € € RN, where £ = (&1,... ,€n) is a
normal vector in z € 99, P = 51’3”'152’3”'2 ]ﬁvjN-

3. If additionally m; = j — 1,5 = 1,... ,m, then {bj(z,D)}; is called a Dirichlet-
system of the order m.

The operators A(z, D) and r|sabj(z, D) define a boundary value problem in a bounded
domain Q € RY with a sufficiently smooth boundary 99

A(z,D)u = finQ
bj(ac,D)u‘aQ = gjondQ, j=1,...,m. (1.29)

Let be Vo ¢ H™(€2). Under which conditions for A((z, D), {b;j(z,D)}j=1,... m can we
guarantee that a “weak” solution u € H™(S2) exists?

e 1st step: We create an appropriate bilinear form on Vy x V) with the help of a
Green’s formula.

e 2nd step: We try to check the conditions of the Lax-Milgram Lemma 8.

Green’s Formulae. We remind of the Green’s formulae for the Laplacian:
First Green’s formula:

/gradugradvda::—/Auvdz—i—/ v@do.
Q Q aq On
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Second Green’s formula:

/Auvdw—/uAfuda:—/ x)do — u@da
a0 0 on

We introduce the bilinear form for the operator (1.27)

a(u,v) / Z aop( DﬂuDo‘vdm
Q

|| <m
|B]<m

and demand the validity of the first Green’s formula: There is a system of boundary
operators ¢j(z, D) with ordc; = 2m — 1 — m; and

m
a(u,v) = /QAu'u dz — Z /BQ cjubjudo  Vu,v € H*™(Q), (1.30)
=1

where the boundary operators b;(z, D) are given in (1.29).

Lemma 13. If A(z,D) is elliptic in Q, {b;}; is a Dirichlet system, then ezists a
normal system of boundary operators, such that (1.30) is valid.

The definition of the ellipticity of A(z, D) will be given later. Here we consider some
examples:

(i.) The Neumann problem for the Laplacian:

—Au = fin Q)

ou

bju = |8Q gon 09,5 =1.

We have

/Auvdw—i—/ U—da—/fvdzz:—/ cjvbjudo = a(u,v)
oo On o9

. p) .
with c;jv = —v|aq, bju = Gr|on and j = 1.

(ii.) The Dirichlet problem for the Lamé operator (linear elasticity in homogeneous
isotropic materials). The problem is: find a sufficient smooth solution @ of

—[pD@+ (A + p)graddivd] = —L(@) = finQ
ilpo = g on 0. (1.31)
@ = (u1,ug,u3)’ is the displacement field, f denotes the density of volume
forces, g the density of surface forces. Introducing the stress and strain tensors
o = (0ij)ij, € = (€i5)ij With
€5 = %(31’11] + 6ju,-),
oij = AMe1r + €22 + €33) 05 + 2puei;
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then we can write (1.31) in divergence form

01011 + Oa012 + 03013 .
—div(o) = — 01091 + 02099 + 03093 = f. (1.32)
01031 + 02032 + 03033

Multiplying (1.32) with a function ¥ € [C?(Q)]® and integrating by parts we get:
— /Q div(o)vdz = —/Q {[81011 + Oho12 + O3013]v1 + [O1o21 +
02092 + O3023]ve + [01031 + O2032 + 33033]113}d33
= /Q {(011,012,013)V01 + (021, 022, 023) Vg

+(031,U32,033)V03}d:13—/ on-Udo
LY

- /Qa(a):de—/ma(a)n-ﬁda:/ﬂf-ﬁdx
- /Qa(ﬁ):e(a)dx—/ o(@)n - 7 do.

N

Here we have used the notation A: B =tr A" B,

O1v1 Ov1 O3
V’l_)' == 81 V2 82’02 83’()2
81 v3 82 v3 83 v3

It follows that a Green’s formula holds

o, ) :/Qa(ﬁ):e(ﬁ)dw: <f”,17>+/ o(@)n - §do

o

or

= ({f,9).
We remark, that we can write o(@) = Atre(@)] + 2ue(@) and

o, ) = /Q (M tre(@) tre(@) + 2ue(u) : e(v)} do — /6 ol 7do

= (f,0). (1.33)
(iii.) Boundary value problems for the biharmonic equation. The biharmonic operator

o o ot

A2 = AN =" _—+ —
0z Bm%{)m% + B:c%
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is an operator used in the Kirchhoff plate theory and the problem
A%y = fin Q C R?, uannd%:OonaQ (1.34)

determines the bending u of a thin plate (membran) under forces which are
orthogonal to the plate and and which is clamped on the boundary. There are
different possibilities to derive bilinear forms a(u,v). The first idea is to multiply
the equation (3.14) with a smooth function v and to integrate by parts twice.
This leads to (compare [15, p. 265-269])

) 2 2 )
a(u) = /(8u811+2 0%u 0%u +8uav)d$
Q

B—x%a—x% 8.%18.’1)2 33718.’E2 a—xga—.rg

0 0 %u
— 2 _ - -
= (A%u,v) /BQ [U{an (Au) + 9 [ 52 12

1

+ Ou (n2—n2)+8—2nn +@@ ds
dx10zy -t Y T 0ad 7 non?|"

Another possibility is to use the second Green’s formula for the Laplacian

ou ov
/Q(Auu —ulv)dz = /a(2 [%v — %u] ds.

Insert for u the expression Au. It follows that

A
as(u,v) = / AuAvdz = / A2uvdm—/ [aanuv— S—ZAU] ds.
Q Q o)

A third possibility, which realizes the influence of a material parameter o =
ﬁ (o is the Poisson ratio) is to use the identity:

0% (0%u 0%u 0? 0%u
Ay = — | = -— 2( — (1=
" ox? (856% + aaxg) + (8x18w2 [( o) 8x18x2] )
L0 (P O
oz3 \ 9z 012"
Multiplying with v and integrating by parts we get:

2 2 2 2 2
az(u,v) = /8u(8v+08_2)+2(1—0) O O
Q

B—w% 3—13% 0z5 0x10x2 0110%2

0%u (821) 8211)
+ +o5— |dr

927 \ 322 o2

9 ov
= (A%u,v) + vNu + — Mu|ds,

a0 on

where
0 0 [6%u
Nu = —2(A 11— 2|
“ an( W+ -0 0s [6:1:% rmn

62'UI 2 2 82?1/
_6.7,‘16.’1)2 (nl B nz) B a$%n1n2:| ’
0%u
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For 0 = 0 we get aj(u,v) = a3(u,v). For the Dirichlet data bjv = v|sq, bov =
%\39 we have

a1 (u,v) = (AQ’U,,’U)—/ blvcluds+/ boveouds
oN oN

as(u,v) = (A2u,v) — bivéiuds + bovéouds
N N

az(u,v) = (AQ’U,,’U)—/ blv(—Nu)ds—I—/ bov(Mu)ds,
N oN

where ordc; =ordé; =2m —1—m; = 3, ordcy = 2 = ord é.
(iv.) The Stokes system. The steady state Stokes problem reads: Find a velocity field
i = (u1,uz,u3)

and a pressure field p such that

— NG+ Vp f 0
divi = 0 ’

=0 on 0N (Dirichlet Datum). (1.35)

The pressure field is not uniquely defined (add a constant function), p = p+const.
We get bilinear forms, multiplying (1.35) with ¥ and integrating on

a(i,v) + b(p,7) = /gradﬁgradﬁdw—/pdivﬁdx—i—
Q Q
+/ a—uﬁds—i-/ ponds.
aq On o9

1.3.2 V-Ellipticity and V-Coerciveness

We remind of our examples

A oa(u,v) = /gradugradvdw— (f,v) / 2y ds (1.36)
aq On

Lamé : a(d,7) = / o(@) : e(@)dz = (. ) + / o (@) niids (1.37)

Q o0
2t = [ (20 B0) T Y |
B — Jo 1022 \ 022 ox3 Ox3 \ O3 ox?
?u 0%

+2(1_U)a$183¢2 83;18352} v

(f,v) — /69 [vNu + %MU] ds. (1.38)
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In general we have:

a(u,v) = /Z aagDPuD*vdz
Q

la|<m
[B]<m

m
fodz + / —cjubjvdo. 1.39
/| > [, et (139)

Now, we introduce a space V. C H™, which depends on the system of boundary
conditions {b; }:

V:{veHm:ijbQ:O,mj <m—1}.

The boundary conditions with order m; < m — 1 are called essential boundary condi-
tions while the boundary condition with order m; > m —1 are called natural boundary
conditions. If

v )
ij_%, j:O,...,m—l,
then
vV = H™(Q).

The variational formulation reads: Findu € V', such that a(u,v) = (f,v) for allv € V.

Lemma 14. The bilinear forms (1.36),(1.37),(1.38) are I(;Tm(Q)—elliptic. That means

cifullv vl

callully

a(u,v) <
>

a(u,u)

for allu,v € V = Io{m(Q)

Proof. For (1.36) both conditions have been already shown. We consider problem
(1.37). Since

ol 5) = / o (@) : (@) ds = / S o (@)es; (7)de
f i
< Y o (@ oy llei® oy < Cllilv 15y,
1,j

the bilinear form is bounded. We now show the second inequality for A > 0,u > 0.
We have

olit, @) = /Q Atre(@)]2 + 2u[e(@) : e(@)da

_ /Q e (@) + eo2 () + exsfid]) > + 21> ey (@)]? p deo
(2]
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> QM/QZ[Eij(’J)] dz
> o[ 2 (5) e
> C1||u||V7

due to Friedrichs’ inequality. The last inequality says that the norm in V is equivalent

to the seminorm
= Yl

and is called Korn’s inequality.

Finally we pass to the problem (1.38), assuming o = € [0,1). It is easy to see

2(u+X) +>\)
that g

las(u,v)| < cllull g2(q)llvll #2(0)

Furthermore,

0%\ 2 0%u 0%u 02\ 2 0%y \?
= YY) 4202272 L (20 o0 — .
a3(u, ) /Q [(8:1:%) + aax% 8x§ + (8:1;%) +2( U)(8x18z2> ]dw

Since for any numbers a, b, o

a® 4+ 20ab+b* — (1 — 0)(a® + %) = o(a + b)?

and for c >0
a? +20ab+b? > (1 — o) (a® +b?)

0%u
2 <8:L‘18:E2 ):| dx

for all u € H%(Q). O

we get from the Friedrichs’ inequality

fo-o () +(5)

Ollulye(o)

Y

as(u,u)

Y

It cannot be expected that the general bilinear form (1.39) is iy ™_elliptic. We need
the “ellipiticity” of the operator

Z Z 1)/81DPa, 5(x)D*,

la/<m |B]<m

which is defined for the principal part Ay of A

Ao(z,Dy) Z DPanp(x)
la,|B1=m
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Definition 14. A is uniformly elliptic in S, if there is a positive constant C with

Y aap@)E P > ClEPm VzeQ, EeRM
a|=|Bl=m

Lemma 15. Let Q be a bounded domain in R". Assume an,g are constant for
la| = [B] = m, agg =0 for 0 < |a] +|8] < 2m — 1, ago(z) > 0. If A is uniformly
elliptic, then a(-,-) is ]gIm(Q)—elliptic.

Proof.
We use the Fourier transform
. 1 .
P = 6) = (s [t (1.40)

The properties hold:
F(D) = i®¢%a(¢)
/]Rn a(€)o(€)dé = /n u(z)v(x)dz (Parseval identity [21, p.40])
The boundedness of a(-,-) is obvious. Let us show the positive definiteness.
Z /a sD%u(z) DPu(z )dx+/a00( Yu? (z)dz
laf,|B]=m

Extending the elements u € i ™(Q) by zero onto R" and using the Fouriertransform
we get:

awn) = 3 aa [ [ + [ (e (@)da

lal,|B]=m
= / > aapt®Pla(e )|2d§+/ ao(z)u’dx
lal,|8]l=m
e / el (€) [2de
> O Y KPP =0 Y dleailolead
/ |a|=m / la|=m
>

/ S DouDuds > &lull}.

laf[=m

O

Besides the Dirichlet problem we can study so called “Neumann” problems (natural
boundary conditions)

Ou
A — =
on Y
Lamé : o(d)n=4g

A? : Nu] = g1, M[u] = go.
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In general ¢j(u) = g;, V = H™(2). This leads to the following variational formulation:

e A: Find an element u € H'() with
a(u,v) = / grad u grad v dz = (F,v) := (f,v) —I—/ gvdo
Q o
for all v € H'(Q).
e Lamé: Find an element @ € [H(Q2)]® with
a(i, ) = / o (@) : e(@)dx = (F, ) = (f,7) +/ gido.
Q a9
for all 7 € [H'(Q)]3.
e A?: Find an element u € H2() with
ov
ag(u,'u) = R (F,’U) = <fav>_ [Ug1+a—92]d0
Q 0 n
for all v € H?(Q2) and
e in general: Find an element u € H™(2) with

a(u,v) = Z aagDPuD®vdz = (F,v)

Qjai<m
181Zm

= /fvd:v + Z/an —cjubjudo Vv € H™(R).
7j=1

These bilinear forms cannot be positive definite. The solutions are not uniquely defined
and they are not solvable for every right hand sides f and g; e.g. choosing v = 1 or
U= ((1)), we get the solvability conditions

VANE 0=/fd:1:+/ gdo
Q 9

Lamé : O:/fldz+/ g1 do
Q o9

AZ . O:/fda:+/ g1 do.
Q B1)

Nevertheless, the variational formulations are meaningful under taking into account
solvability and uniqueness conditions. The corresponding bilinear forms are V-coercive.

Definition 15. Let be V. C H™(Q2). The bilinear form a(-,-) : VXV — V' is
V-coercive if there exist positive constants ¢ and co that a Garding inequality holds

a(u,u) > c1||u||$n - 02||u||§ Yu e V. (1.41)
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EXAMPLE. Au = f in ), % = g on 0.
a(u,v) = / grad u grad vdz = (f,v)

a(u,u) = /Z

The importance of the V-coerciveness is based on the fact that a Fredholm alterna-

ou |?

= [l 0y — llull?,0)-

tive is valid:
There is a uniquely determined solution u € V for every f € V' such that

a(u,v) = (f,v) YveV

or
dimker A = dimker A* > 0, where A is defined by (Au,v) = a(u,v).

There exists a solution (not uniquely defined) of a(u,v) = (f,v), iff fLker A*, that
means (f,e*) =0 Ve* € ker A*.

Proof. [21, p.266]. O

S. Agmon [2] has formulated, under which conditions the boundary value problem
(A1,b1,...,by) is V-coercive, where V is generated by the homogeneous essential
boundary conditions [21, p. 286].

The more general class of elliptic boundary value problems is characterized by the
condition: The operator

A= (A,bl,... ,bm):

H>™(Q) = Ly(Q) x [ H¥™ ™ 3(6Q)
7j=1

belonging to a boundary value problem is a Fredholm operator. That means:
ker A < oo, coker A < 00, A is linear and continuous.

1.3.3 Ellipticity
Scalar differential operators

Let  be a domain in R*, A(z,D) = ¥, <p @a(2)D* a linear differential operator

of order M with smooth (in general complex valued) coefficients; o = (a,...ay) is a
ox1+...tan

multiindex, D% = Far—7a, Jof = 3L, @i, s € NU {0}

A(z, D) : H¥M(Q) - H*(Q), keNuU{0}
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Definition 16. Ay(z,D) = ZM:M aq(x)D® is the principal part of A(x, D),

Ao(z,6) = ) aa(2)€, ¥ =€ 60

a|=M
denotes the polynomial expression (symbol) belonging to Ag(x, D).
Definition 17. A(z,D) is elliptic in a point x € Q, if
Ao(z,€) £0  VE£0€E R,
A(z, D) is elliptic in Q, if A(zx, D) is elliptic in all points = of ).

The ellipticity is determined by the principal part.
EXAMPLES.

(i.) We consider the ordinary linear differential operator

A(z,D)u = Z aj(x)u(j) (z).
=0

The principal part is
Ao(z, D) = an(z)ul™(z)
with the polynomial expression
Ao(,€) = apr(x)EM.
A(z, D) is elliptic in [a,b] if Ap(z) #0 Vz € [a,b].

(ii.) Let A(z, D) be a linear differential operator of second order:

- 0%u - ou
A(z,D)u = ak(z) + > aj(r)=— + ao(x)u.
j,%—:l I aib‘ja’lik Jz_; J a’Ej

The polynomial

n

Ag(z,8) = > aj(x)&é

jk=1
is a quadratic form. If the coefficients a;y(-) are real valued and Ag(z, ) positive
(or negative) definite, then A(z, D) is elliptic in 2.
Systems of differential operators

Let be given a matrix with operator elements:
A(an) = (Aij(CC,D))i,j:l’___,n,
Aij(z,D) = Z i (x)D.

o <ki;
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The differential equation system reads:
A(z, D)@ = f.

The orders of the elements can be equal (Lamé system) or unequal (Stokes sys-
tem). In order to create the principal parts in a uniform way we introduce numbers
M1, M2, ... My, m},... ,ml such that

kij <mi+mj;, 1<i,j<n,
and
A(z,D) : HF=™ x HF—m2 5 5 Hb=mn —y gE=m0 5 gh—mag | x HF M

Note, that my,mg,... ,m, and m},... ,m! are not uniquely defined (choose m; —
L,m} +1).

Definition 18. The principal part of A(z,D) is

Ao(z, D) = (A(=, D)), = Y di(z)D®

ij
If kij < m; +mj, put cd = 0.

EXAMPLES.

o

i =0, orm; =1,m, =1

e Lamé system: k;; = 2 for 1 <14,5 <n. Set m; =2,m J

for 1 <i,j < mn, then Ay(z, D) = A(z, D).

e Stokes system for (u1,us2,p)

A(z,D) = A(D) = 0 -A 2
_9 _a
ox1 Oxo

Here is kj; = 2 for 4 < 2, kj; = kj; = 1for i < 2,5 = 3, k;j = 0 else. Set
m; =m), =1 for i = 1,2; mg = m§ = 0. Then

Ao(z,D) = A(z, D).

DOUGLIS-SCHEME.

mi mo ms
my | ml +my | m) +mo | mi +mgs
my

!
g

Definition 19. (Douglis-Nirenberg-ellipticity) The matriz-operator A(z, D) is elliptic
in a point x € Q, if
det(A9;(x,€)) #0 VE#0€ R
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A(z, D) is uniformly elliptic in Q, if there is a constant ¢ > 0 with
| det A7) (z,€)| > ¢ Yz e Q€ R,
where 2m =Y | (m; +m}).

EXAMPLE. Stokes system

-2 0 &
st 0 —ep & =‘—£f|€|2—£§ 2| = |gpt
-& & 0

Boundary differential operators

We consider on 052 the boundary operators

Z bg Dﬂju

|Bj|<m;

bl

o

bs; are smooth coeflicients.

To ensure the Fredholm property for the whole boundary value problem we need a
connection between the differential operator in the domain and the boundary differen-
tial operators. This connection is expressed through a Lopatinskij-Shapiro condition
(or covering condition) formulated locally at the boundary points.

We explain this condition in short. Let be 92 sufficiently smooth and zy € Q2. We
choose zg as origin and introduce the coordinates =z = (¢, z,); =’ = (z1,...,Tp—1) is
from the tangential plane, x,, lies in the direction of the interior normal vector.

X X
X
Q
Figure 3
We consider the principal parts of A(z,D) and b;(z, D) with coefficients frozen in
o, Ao(wo, D), bj(z9, D), j = 1,...,m. Writing the derivatives % as %%, i? = —1,

j=1,...,n, and applying the Fourier transform

Farlfl = @) = [ e @0 (@)im,

we get the Fourier transformed operators,

1 0 1d
Fn-14 (z0, D) = A (113075 )= ) = A (xﬂafla —.—)
Tn, 1 dt

1 0x
1 0 1d
Frn-1bjo (zo,D) = bjo (Io,f T (Io,ﬁ , Tdt) .
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Let be
P(Z) = Ao (‘TOa (fl,z)) (142)

the characteristic polynomial in z belonging to the ordinary differential equation

Ao <x0,g', %%) o(t) = 0. (1.43)

With M we denote the set of solutions of (1.43) generated by the roots of (1.42) with
positive imaginary part.

Definition 20. (Lopatinskij-Shapiro condition) The initial problem

1 dt
1d
bj,O (IOagla ;%) ’U(t)

is for every h = (h1,...,hy) € R™ (or C™) and 0 # &' € R*~! uniquely solvable in
M.

Ay (ZBQ,fI, 11) ’U(t) = 0 for t>0

= hjy, j=1,...,m, (1.44)
t=0

Definition 21. The boundary value problem:

A(z,D)u = f in Q
bj(z,D)u = g; on 09, j=1,...,m,

is called elliptic, if the operator A(x,D)of the order 2m = M is elliptic in Q and
(A, by, ...,by,) = A satisfies the Lopatinskij-Shapiro conditions for all x € 09.

Theorem 8 (Main theorem). [21, p.189]
Let the coefficients aq(-) and bg;(-) as well the boundary 0 be sufficiently smooth.
The following statements are equivalent:

(1) The boundary value problem is elliptic.
(2) The operator
m o
A= (A,by, ., bp) - HHH(Q) —» HY(Q) x [ B2 (00)
7j=1
1s a Fredholm operator for 1 =10,1,2,...

(8) The apriori estimate holds for all u € H*™(Q)): There is a positive constant c
that

m
lullmss < AUl 43 Wyl sty + i -
j=1
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ExAMPLES We consider the Laplace operator
n n
0? 10
A(z,D)=A =
(@ Z Z (Z 355]) (Z 3371)
J j=1

ord A = 2, m = 1. One boundary condition on 9 is allowed with order b; < 1. by
has the general form

n—1
b o
bi(z, D) = bo(z) + ij(x)a—% +ba(2) 5~
i=1 n

assuming z = (2, z,) are already the local coordinates. We have:

dt dt2’
P(z) = Ag(z,&,2)=—|¢] -2

2
oo’ ) = _|§,|2_(1d) =Rt oy, € e,

The zeros of P(z) are z19 = +i|¢'|, 21 = i|¢| is situated in the upper half plane.
Therefore:
MT = {c et = e €t ¢ € C}.

First case: Let be ordb; = 0. Then
1d g
b1 (35,5', ga) v(0) = bo(zo)cre™ € = by(zo)c1 = ha.

If by(xg) # 0 then an uniquely determined solution c; exists for every h;.
Second case: Let be ordby = 1,

Then

n—1
o605 )00 = [ biteolis + balen) o0

o =0
n—1

- | @m@m+bwweamﬂ
=1
jnfl

= [tk - tatanye s = .
7j=1

This equation is uniquely solvable if the factor does not vanish for [£'| # 0. For the
Neuman problem we have by = b; = ... =b,_1 =0, b, = 1. The condition is satisfied.
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Assume that under the m boundary operators there are p essential boundary operators

0 < p < m. Setting G,3 = @ we consider analogously to (1.44) the boundary
value problem
p 1d
AO (.’L’O,§,, _ﬁ) ’U(t) = Qfort>0 (145)
i

1d
bjo | zo, &'y == ) v(t) = Oforj=1,...,p. (1.46)
’ 1 dt
Introducing M+ analogously as before and writing D; = %% we get the

Condition of Agmon. Let be v(t) # 0 € M™ an arbitrary solution of the initial
problem (1.45), (1.46). It holds

t=0

Re / 3 et €7 Div(t)Dlv(t)dt > 0 for 0 # € € R™™ (147)
0 lo! | +k=m
|B8!|+1=m

If p = 0 then all solutions of (1.45) should satisfy (1.47). If p = m and the Lopatinskij-
Shapiro condition holds, then v(¢) = 0 and (1.47) is meaningless (trivially satisfied).
EXAMPLE.

Au=finQ m=1n=2 % =gon0Q, ans = bsp, (&', k) = (0,1) = (#,1) or
(o', k) = (1,0) = (£',1). Tt follows that

[ o + Dw@pat@a > o

Theorem 9 (Theorem of Agmon). For the boundary value problem

3 (~1)*DPags(z) Dulz) = f(x) in O
o8
bj(x,D)u(w)‘aQ = 0, j=1,...,m,

we consider the bilinear form
a(u,v) = Z/ () D%u(z) DPv(z)dz
a8 7%

on 'V XV, where
V ={ue H™"(Q), bj(ac,D)u|aQ =0 for m; <m —1}.

If the coefficients of A and b are sufficiently smooth, the domain is smooth enough and
the condition of Agmon (1.47) is satisfied, then a(-,-) is V -coercive.

REMARK. The Fredholm-property follows from the V-coerciveness, and therefore we
get the ellipticity of the boundary value problem.






Chapter 2

The Numerics

This Chapter is devoted to the numerical computation of the solution of variational
problems. We use Finite-Element-Methods (FEM) and Boundary-Element-Methods
(BEM). Both methods belong to the class of Galerkin-Methods.

2.1 Galerkin-Methods

In 1909 W. Ritz [16] has published a method, nowadays called Ritz-method, for nu-
merical solving of the extremal problem (1.8), while B. Galerkin [4] has developed a
numerical method for solving variational problems. The basic idea of both methods
is: Solve the problems not in Sobolev spaces of infinite dimension, but solve it in finite

dimensional subspaces. This leads to linear equation systems. Let us start with the
Ritz-Method.

2.1.1 Ritz Method

Let be V' a Hilbertspace and Vj a closed linear subspace of V. Assume the bilinear
form a(-,-) is symmetric, bounded and Vp-elliptic. Then Theorem 7 yields that the
extremal problem
1
F(u) = ia(u,u) — f(u) = min!

for u € {ug + Vo}, up is a fixed element of V, has a uniquely defined solution. For
simplicity we assume ug = 0, Vj = V. Instead of V' we consider a finite dimensional
subspace Vi of dimension N and with a basis {e1,... ,en}. Every element w € Vi
has a uniquely determined representation

N
w = E W;€;.
i=1

Let be @ = (wr,... ,wy)! and P = > w;e; = w. P is an isomorphism between RY
and V. The problem in Vy reads: Find coefficients w;, such that
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F(w) = H(wi,...,wn)
1 .
= §a(Zwi6i, Z wjej) — (f, Z wie;) = man! (2.1)
i j i
Lemma 16. Assume the bilinear form a(-,-) : VXV — R is V-elliptic and symmetric.
Then problem (2.1) has a uniquely defined solution.

Proof. The nessecary condition for an extremal value reads:

OH
ow;

=0fori=1,...,N. (2.2)

Since

N
1
H(wi,...,wy) = §w12wja(€1,ej)—’w1(f,61)
j=1
1 N
+ EU)Zija(eZaej)_wZ(fan)
j=1

N
1
+ E’LUN-Zl'UJja(eN,ej) _wN(faeN)a
]:

the equations (2.2) mean:

O0H 1 1
6—w1 = wia(er,er) + §’w2a(€1,62) +.oo+ EwNa'(ela en) — (f,e1)
1 1
-I—Ewga(ez,el) +...+ EwNa(eN, e1) =0
oH 1 1
—— = wpyalen,en) + zwralen,e1) + ...+ —wny_1alen,en—1) — (f,en)
own 2 2

1 1
+§w1a(el,eN) +...+ §wN_1a(eN_1, en) = 0.
These relations lead to the linear equation system

a(er,e1) aler,es) ... aler,en) wy (f,e1)

a(e]\;,el) ... alen,en) U)'N (f;;?N)

The resulting matrix M is symmetric and positive definite; indeed

(Mw,w) = Z w; Z ale;, ej)w; | = Z w;a(e;, w)
= (P, PW) > c||Pw||? > 0 for w # 0.
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Therefore there exists a uniquely defined solution of (2.3).

If the Hesse-matrix
2H 8%H 2H

6111% Owa0w; "7 Own Ow1
?H ?H
ow10wn e e ownOwN

is positive definite, then the solution of (2.1) is a minimum. The Hesse matrix coincides
with the matrix M and we have proved the Lemma 16. O

The Ritz method is a special case of the Galerkin method. We will study the problem
of convergence in a more general framework.

2.1.2 Galerkin solutions

We study now the variational formulation: Find an element u € V', such that
a(u,v) = (f,v) Vv e V. (2.4)

Assume that a(-,-) : V x V — V' is linear and bounded. Let Vy C V be a N-
dimensional subspace of V.

Definition 22. uy € Vi is a Galerkin solution of (2.4) if
a(un,v) = (f,v) Vv € V. (2.5)

An equivalent formulation of the Galerkin solution is: uy € Vx is Galerkin solution if

a(un,e;) = (f,e) fori=1,...,N. (2.6)
We now define a linear equation system, whose solution generates the Galerkin solution.

Lemma 17. Let be M = (a(e;,e;)). . the mairiz and f: f,€i)i=1... N the vector
.7 l,] bl bl

defined by the basis elements of V. The problems
Mw = f
and a(Pw,v) = (f,v) Vv € Vn (2.7)
are equivalent and there exist solutions of both problems for every f € V.

Proof.

1) Assume uy € Vy is Galerkin solution. Insert uy = Ai w;e; into the equation
=1
(2.6). Using the bilinearity of the form a(:,-) we get (2.7).

(2) Let @ be solution of (2.7). The scalar multiplication of (2.7) by an arbitrary
vector ¥’ leads to

M@ -7=ft= Z (Z a(ei,ej)wi)> vj = a(Pu, PV) = (f,v).

J i
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a

COROLLARY. There is a Galerkin solution for every f € V' iff the matrix M from
(2.7) is regular (det M # 0). If a(-,-) is symmetric and V-elliptic, then the matrix M
is symmetric and positive definite (see above).

Lemma 18. Assume the LBB condition
inf{sup{|a(u,v)| : v € Vn,||v|lv = 1}u € Vy, |ju||ly =1} =en > 0.

Then there is a Galerkin solution uy for every f € V' and

1 1
< — ) < — R 2.8
Junll < =11/l < Iy (28)

Proof. Since Vy C V it follows V' C V},. Therefore we can apply the Lax-Milgram
theorem to Vy instead to V. The conditions (1.10) and (1.11) coincide for finite
dimensional spaces. (Note that the unit sphere is a compact set and the inf and sup
will be realised on it.) Furthermore, A~! € L(V};, V) means

AT = AT Auy] = lun | < AT llvg, =
1 1
= —_— ! < i 7.
—Ifllvg < —Ifllv
a

REMARK. If the bilinear form is V-coercive and a solution exists for a right hand side
f, then the linear equation system (4.7) is not always solvable in general.

ExAMPLE: Let be

1 1
a(u,v) = /O(u'v'—l()uv)dw:/o fudz.

0
Vv = H!'(0,1).

The corresponding classical problem reads:

+u" +10u = gin (0,1)
u(0) = wu(l)=0.
It is
1 9 1
a(u, ) = / o dz — 10 / Wdz > Csllull? — 10]u]%, (V-coerciveness)
0 0
2

Vv=Vi=span{z(l—z)} CV,e; =z(1 —2) =z — z°.

1
aler,er) =a(z(l—z),z(1 —x2)) = /0 (1—22)% —102%(1 — 2)%dz =0
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and the matrix M vanishes. The inf-sup condition is violated since

inf Sup a(u’ 'U) =qa ( €1 ’ €1 ) e O
ferl” Tleal
llell=1 |y =1

REMARK. M is called stiffness matrix, especially in continuum mechanics.

We estimate the error between the weak solution v € V and the Galerkin solution
uny C Vn.

Lemma 19. (Céa, 64) Let a(-,-) be a bilinear form on V X V with

c1flullvfvllv (2.9)
colull¥, (2.10)

la(u,v)] <
a(u,u) >

and f € V'. For the solution uw € V to a(u,v)=(f,v) and for the Galerkin solution ux
it holds the error estimate

llu — un|| < Z—;nu—wn Yoy € V. (2.11)

Proof. We have

a(u,v) = (f,v) Yv€eVn
a(luy,v) = (f,v) YveWy.
Hence a(u—uny,v) = 0 Yve Vy, (2.12)

that means u — uy_Lv with respect to the energetic scalar product. Thanks to (2.10)
we have

(2.12) 1
lu—un|? < =la(w—uy,u—uy)| = —a(u—uy,u—uy)|
C2 C2
(210) ¢
< —lu—unllvlu —onl3-
C2
Dividing by ||u —un|| # 0 we get the assertion. O

Lemma 19 can be weakened.

Lemma 20. Let a(-,-) be a bilinear form on V x V with
e a(u,v) <cillulvllly  Yu,veV.
e Vv CV,dim Vy =N < .

o infucvy {Supvevy |a(u,v)|} =en > 0.
[Jul]=1 [lvll=1
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Let u € V be a solution to a(u,v) = (f,v) for f € V' and let be uy € Vi the Galerkin
solution. Then

C1 .
lu—unll < (1+—) inf o —onlly

EN /] UNEVN
- (1+i) dist(u, Viv). (2.13)
EN

Proof. As in the Lemma before we have
aluy —u,v) =0 Yo € Vy.
For any v and w € Vy with |[v]| = 1 we get
a(luy —w,v) = a(juy —u] + [u—w],v) = a(u —w,v)

and
la(uy —w,v)| < cllu —wlly.

From the third assumption it follows

1
llully < ENsup{|a(u,'u)|, veVn, |v| =1} VueVy,

hence
1
luy —w| < asupﬂa(uN —w,v|:v €V, ||v|| = 1}
C1
< —Jlu—wly.
EN

Applying the inequality
C1
= unlly < llu=wlly + lluy = wlly < (1 T —N) o — wlly

and having in mind that w is arbitrary we get the assertion. O

Let us underline that we have not assumed that an uniquely defined weak solution
exists.

The formulae (2.11) and (2.13) lead to error estimates. The error converges to zero if
dist(u, Vi) tends to zero for N — co. Therefore it is necessary to introduce a sequence
of finite-dimensional subspaces which converges to V. Let us denote V; = Vy, (i € N)
and assume

lim dist(w,V;) =0 VueV. (2.14)

1— 00

fVvicVaC...CV;...CV, UX,V, is dense in V, then the condition (2.14) holds [6].

Theorem 10. Let be a(-,-) : VXV — R a bounded bilinear form. Assume that (2.14)
1s satisfied and the third condition of Lemma 20 is “uniformly” valid with constants
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en; > €>0.
Then ezists a uniquely defined solution u € V of a(u,v) = (f,v) for every f € V', and
the Galerkin solution un, = u; converges to u:

||lu — ||y — 0 for i — oc. (2.15)

Proof.
(a) Assume that a solution u exists. It follows from (2.13) that
llu — ]| < (1 + ;—1) dist(u, V).
From (2.14) it follows that u is uniquely defined.
(b) The image W of the operator A : V — V', (Au,V) := a(u,v) is closed. W :=

{Av,v € V} C V'. For every f € W exists a solution u € V with Au = f and
there is a sequence u; € V; which converges to u (step (a)). Since

(28) 1 1
uilly < —IFllve < z[Ifllve
EN; £

we have 1
[ully = Lim [luglly < <[ f][v-

1—00 &

Let be (f,) a sequence of elements from W with
fo— f*in V' and Au, = fa.

It follows
1
lfn = fmllv: — 0 and [lug — upl| < gllfn — fmllvr = 0.

Therefore v* = lim, yoou, € V exists. Since A € L(V,V') is a continuous
operator we have

f*=1lm f, =lim Au, = Au™ and f* € W.

(c) A isasurjective mapping. Assume W # V'. Then exists an element f € W+ with
Il7|lv: = 1. Using the Riesz-isomorphism Jy : V — V' we define v := J‘;lf eV.
It holds
a(u,v) = (Au,v) = (Au, f)y» =0 Yu e,

in particular, for a Galerkin solution u; with a(u;,v) = (f,v) Vv € V we have
a(ui,v) = 0. Splitting v = v; + 74, v; € V; then
0=a(u;,v) = alu;,v)+alus,ri) = (f,vi) + alui,m)
(fy0) = (fyri) + alui, )
(fs O)ve = (fyri) + a(ui, )
1—(f,ri) +alui, i)
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It follows that

L= [{f,ri) = a(us,ra)| < c[IlFllve + luillv] [lrellv- (2.16)

Furthermore, it follows from the estimate (2.8) that the solution u; are uniformly
bounded,

1
A< 2 v
luill < ZNfllv

and ||r;|ly — 0 for ¢ — oo. This is a contradiction to the assumption that
W £V,

a

REMARK The uniform stability condition (LBB-condition) is for V-elliptic bilinear
forms satisfied. The verification is not easy in general.

2.2 Finite Element Methods (FEM)

The matrix M is dense in general. In particular for large N it is a disadvantage, since
we have N2 integrations in order to compute the elements of M, and N3 operations
for solving the resulting equation system. Therefore it is desirable to choose the spaces
Vn and the basis {e;} such that the resulting matrix

M = (a(ei, e5))

is sparse. The best variant is, that a(e;, e;) = 0;; (orthonormality with respect to the
energetic scalar product) but, the orthonormality procedure is not efficient enough.
The fundamental idea is now: Given is the bilinear form

a(u,v) :/ Z ao(2)D%u(z) DPv(z) dx.

2 |aj<m

Choose a basis (e, ... ,ey) in Vy of functions with small support. (Such basis func-
tions e; are called “finite elements”). If supp e; N supp e; = m;; is a set of the measure
zero, then a(e;, e;) = 0; especially, if

int(suppe;) N int(suppe;) = 0,
0.

then a(e;,e;) =

From the practical point of view the domain  is splitted into subdomains (triangles,
polyhedrals) also called “finite elements”, which yield the support of the basis func-
tions. Furthermore, the basis function should be easy analytically differentiable and
integrable, such as continuous, piecewise polynomials.
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2.2.1 Linear Elements (Splines)
We start with n =1, Q = (a,b).

(1) The boundary value problem
Classical formulation: Find an element v € C?(a,b) with

— u'(z)=f(z)fora<z<b
u(a) = u(b) = 0.

Weak formulation: Find an element u € H'(a,b) such that
b b o
a(u,v) = / o' (z)v' (z) dr = / f(z)v(z)dz Vv € H'(a,b).
a a

(2) Partition of Q
Let be choosen the nodes {z;} : a = 9 < z1 < ... < zny41 = b which yield the
intervalls I; = (z;—1,%;) C (a,b)

UL = Q = [a,b].

a=2zo z1 T2 T3 TN41 =D
|

(3) Construction of VN CV
VN ={u € Cla,b] : u|r, =aiz+b;, 1 <i<N+1, u(a) =u(b) =0}

Figure 4 describes graphs of elements of Vi .

N K
A A

Figure 4

u € Cla,b] means, that u(z; +0) = u(z; — 0) for i =1,... ,N.

Lemma 21. Every element from Vy is through the values u(x;) in the node
points x;, © = 1,... , N, uniquely defined, dim Vy = N and the basis elements
can be choosen as:

% for mi1 <z <4

ei(z) = % for m <z < Tt

0 else,
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where supp e; = [T;_1, Tit+1]-

Ti-1 T Zi+1

Figure 5. Graph of e;

Proof.
(a) Let be u(x;) given
u(z)| =ajz+b;
I;
_ u(mio1)—u(zi)
w(zi—1) = aizi—1 + b; N @i = wifllfwi
u(z;) = a;z; + b; b, — w@i)zi—1—u(@i—1)z;

Ti—1—%;

(b) {ei}i=1,..,n are linearly independent: if

N
Zaiei(av) =0 Vz € (a,b),
i=1

then
N N
E aiei(zj)zoz E Oéz'(sijZOéjZO fOI‘jZl,...,N.

=1 i=1

Furthermore,

N
un(z) = Z uie;(z) and un(z;) = u;.
=1

(4) Setting up the equation system.
Since a(u,v) = [u'v'dr we get a(e;,e;) = 0 if [i — j| > 2, i.e. M is a three-
diagonal matrix.

i 1 -1 1
a’(eiaei—l) = / ( ) dr = — )
zi_q L1 — Li—1 \Tj — L4-1 T; — Tij-1

; 1 2 Tig1 -1 2
ae;,e;) = / <7) dz —I—/ (7) dz
i1 \Ti — Zj—1 zi Tit1 — T4

1 1
b
Ti—Ti 1 Tipl — T
1

Ti+1 — T4

alej,eiy1) = —
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1 1 1
T1—X0 + To—T1 _-1‘2—1131 0 0 U1
_ 1 1 + 1 _ 1
r2—x1 T2—T1 T3—I2 I3—T2 :
0 .'. -'. -'. O : -

o @) sy ¢ [

Ti41—T4

For the calculation of the right hand sides use numerical integration formulae
e.g. (f,e) = f(zi)(zi41 — zi—1) (rectangular formula).
Special case: equidistant meshing(uniform mesh)

. b—a
z; = a-+1h, h_N—l
2
a(ei, ;) 7
1
alej,eix1) = 5
Then
2 -1 0
1l =1 2 -1 o0
M:_ . .
0 - ..
0O -1 2

(5) Solving of the equation system.
Direct solvers, iterative methods.
The case n =2
Let © C R? be a polygon.

(1) The boundary value problem.
Classical formulation: Find an element v € C?()) with

—Au = f(z)forz €
’u,lag = 0.

0
Weak formulation: Find an element v € H' () = V such that

a(u,v) = / grad u grad vdz = / f(z)v(z)dz YveV.
Q Q
(2) Partition of Q

We devide € into a number of subregions, e.g. of triangles T; or quadrilaterals.
We consider here a triangulation.
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We use the notation: ¢{—number of triangles, N—number of interior nodes, and
M-number of all nodes. Note that a node is a corner point of a triangle.

EXAMPLES.

t=6, N=0, M =8 t=24, N=5, M=21

t=30, N=10, M =22

Definition 23. (admissible triangulation)
T =A{T1,...,T;} is an admissible triangulation of Q) if

T; (i <1i <t) are open triangles.
The finite elements T; are disjunct i.e T; NT; =0 for i # j.
o Uim1, /13 =0

Jori#jisTiNT; = common side
common corner

REMARK. The last condition says that the follwing triangulation is not allowed:

b

T Ti NTs ¢ {0, common side, common corner}

T3

(3) Construction of Vi

Vy = {u € C(Q) : ’u,lag = 0, ’ullTl. = a;1 + a;0T + aigy}

Lemma 22. Vy C HY(Q). Ewvery function u € Vy is uniquely defined by the
values u(x;,y;) in the interior nodes (z;,vy;), 1 <i < N.
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Proof. The weak derivative of u exists in Ly(€2), furthermore, u|spo = 0 and

o
therefore Lemma 6 implies that Viy C H'(2). The three coefficients a;;, j =
1,2,3 are uniquely determined, inserting the node points in the equations

Uik = W(Tik, Yik) = Qi1 + @ik + a3y, k =1,2,3.

Then
1 z1 ya a;1 Uj1
1 o w0 aig | = | w2 |,
1 zi3 w3 a13 ;3
1 zi1 i
det | 1 zpp v = zi3(yin — Yi2) + @i2(vis — yi1) + zi1 (Yi2 — ¥i3)
1 zi3 w3

Zi3 — Tyl Yi3 — Vil
Ti2 — Tl Yi2 — Yil
— 23| £0, (2.17)

if the vectors in Fig. 6 are linearly independent.

(371'3, yz‘3)

(zi1,yin) (zi2, Yi2)
Figure 6 O
This lemma allows us to define basis functions through the relation

ei(Tr, Yk) = Oik-

oZLiyYi

Figure 7
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Let be T a triangle with the corner points (z;,v;), (z',v') and (z”,3"), then

(z -2y —v) — (v —y) (=" —2)
o — ')y —y') — (yi —y)(z" —z')

6i(~77,y)|T = (

and suppe; = U;, {Tjx C 7: (%;,Y;) is corner point}.
It holds that
intsuppe; Nintsuppe; = ()

iff the nodes (z;,y;) and (z;,y;) are not directly connected by an edge.
EXERCISE. Show that the functions e; are linearly independent.

(4) Generation of the Equation System
We have

ale;,ej) = /Qgradei grad e; dz
= Z/ grade; grade;dz,
k Tk

where we have to take the sum for following numbers k:

e If i = j, (w;,y;) is corner point of T} (see Fig. 8)

o If i # j, (z4,y;) and (z;,y;) are corner points of Tj.

The integration over different T}, will be simplified if we take a mapping onto a
unit triangle, which is called “master” (or “reference”) element.

Yy n
(", y") ¢t
——  (0,1)
ay) ¢
(z4,vi)

2 (0,0) 1,0) =~ ¢
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¢t (zy) — (0,0)
(=',y) — (1,0
(=",4y") — (0,1

o)== »2)(5)-(5)
n Yi Yy —Ti Y — Y n Y

~ S

m

Since det m # 0 we get

() () a0 5 (570)
1 Y — i detm \ yi—y o' — y—vi )’
with det m = 2|Ty|, |T)| = area Tj. Furthermore,

o 9z Oz
(z,) :det( g¢ % ) = detm

and
o _ 00 0op_ 1 [0 , . O
oz~ 9ox ooz 2Ty [ag(y vi) + 5, Wi = y)
o _ 009 9on_ 1 {9, ., 0 ,
oy ~ ocon " amay 2Ty [af(”“ )+ @ o)
15t case

i = j, (z4,v;) is corner point of Tj. The basis function e;(z,y)|r, is defined by
the equations

ei(xi,yi)
ei(r’,y') = 0
a@ ) = 0

Defining é;(&,7n) := e;(z,y) we have analogously

é:(0,0) = 1
é(1,0) = 0
&(0,1) = 0

what implies é;(£,n7) = 1 — £ — n (shape function). This leads to
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/Tk (grad e;)? dzdy = /Tk (%)2 + (g—Z)dedy
_ /E [2‘11%' {8(1 _62 ) (v" —wi) + 8(1_375]_7’)(% B yl)}] 2
+[ 1 {3(1—5—n)(xi_x,,)+m(x,_m}r,zmwgdn

2|Tk| o0& 677
- 2|Tlc| / —y" +9:) + (' —9)]” + (@ — ) + (2 — ")) dedy
= 2|T| (v —y")? + (" — 2')?] %

Special case: quadratic-mesh-triangulation

2
1 3
6
h 5
h supp €;
/(grad e;)? dzdy = / (grad e;)? dzdy
Q 6 triangles
(@, y)
Triangles 171, Ty:
' -1z =h h
Y —y"' =h
@y b
Triangles Ty, Ts, Ts, T¢: (", y") (=, y)

(y/ _ yll)2 + (:L.II _ .'I:')2 — h2

|T%| = %-. This leads to

=4.

1
/(grad ei)2dzdy = —(8h2) =
0 h? 2
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2nd case
(ziyyi)  (2",y")
i
#7J T,
Ty,
(',y)  (z5,95)
éil, =1—£€—n, éi|Tk2 =1-¢—1
é] Tkl = 7’] éj Tk2 6
since
6:(1,0) = 0 é:(1,0) =
€;(0, =0 €;(0,0) =0
€(0,1) = 1 €;(0,1) = 0.
Hence

/ grad e; grad e; dzdy
1 8 5 Y |
- W/E [8—5(1 — &l — v g, (L= E= )y _y)} [8_7]77(% _y)]

+| 1= €= — )+ o' = )| | ol ) e

23
- ﬁ{[w—yj+y’—yi](yi—y')+($j—$i+$i_xl)(_$i+xl)}
= 4|;k1| {(y' —y)(yi =) + (z5 — o) (—zi + ml)}

[ = mg{e e - @ —ape -}
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There are 3 cases for a quadratic-mesh-triangulation:

(@) . (@)
J h i h ()
h i h
i @,y) |
1 1/ -
h (xl’yl) (:E 5 Y ) ?
yj_y”:O .Tj—.THZO yll_yizo
' —xz; =0 zi—x' =0 yi—y' =0
' — oy, =0 1 2 1 2
vy kaluTk2 2h2 (=h%)2 kaluTk2 - W(_h )2
' — ;=0 =1 =1

kaIUTk2 =0
We have for i # j
. . Ty — Ty . 0 +h
aeie) =4 ' lf(yi—yj>_(“—“h)or( v

EXAMPLE

-1 0 0 -1 4 -1 0 0 -1 9-diagonal band matrix
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Problem: Minimize the width of the band by optimal numbering of the nodes.
There are heuristical algorithms [18].

] 2 band width = 15

Computation of the right hand sides:

(f.e;) = / f(@,y)e;(z,y) dedy
supp e;

6

= 2Tk | F(&m)(1—€—n)dEdy
>
6 1 pl=€¢ |

_ kz:lzw/ojo FlEem — € —n) dnde

EXAMPLE: f(€,7) =1, 2|Ty| = h2, then (1,e) = 6h2 - % — K2

(5) Solving of the equation system
Direct solvers as Gauss-elimination, LY D L-splitting and Cholesky-algorithm are
robust, but the memory and the number of arithmetical operations is increasing
if the mesh-parameter h tends to 0.
Iterative solvers need not so much place for memory, the number of arithmetical
operations is optimal, but if the condition-number is high, then the number of
iterations is increasing (preconditioning).

The case n =3

We remark that the twodimensional considerations can be transmitted to the 3-dimen-
sional case; (2 is a polyhedral domain which is divided into tetrahedral elements. Vi
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consists of continuous functions which are linear on the subregions T;.
u(x, Y, z)|Tl = a;1 + a0 + a;3Y + aja2

The basis elements are defined by the relation e;(z;) = d;5, where z; = (z;1, 3, z;3)
are the corner points of the tetrahedrons.

2.2.2 Error estimates for linear elements

In section 2.1.2 we have defined error estimates of the form

— <C inf - .
lu=unlly <C_inf flu— vl

Choosing Vv as piecewise linear elements with respect to a triangulation of Q C R?
with a mesh parameter h the error estimate can be improved, namely,

. 2—k —
it [lu= o) < C@h* Flull ey, k=0.1. (218)

Here is ap > 0 the minimal interior angle of the triangles. The estimate (2.18) holds
under certain assumptions and its proof demands some technical considerations.

Let Q C R? be a polygon, and 7 = {T;}; an admissible triangulation, Vy C H'(Q) the
space of gontinuous piecewise linear elements, N is the number of interior node points

if Vy ¢ H*() (Dirichletproblem) or the number of all nodes if V = H'(2) (Neumann
problem).

Furthermore, we assume, that the weak solution u is smooth enough, u € H%(Q). This
condition holds if the right hand side f belongs to Ly(€2) and the polygon {2 is convex.

For a polygon with reentrant corners we have only u € H e e (), where wy > 7 is
the largest interior angle. If Q has a smooth boundary, then u € H?().

Lemma 23. Let be E = {(&,n), &n >0, &+n <1} the unit triangle. For any
u € H%(E) the following estimate holds:

lulZe gy < C|lu(©,0) + |u(0, )P + [u(@,0)P + 3 ||Dau||%2(E)]
|a|=2
Proof.

(1) We show that the bilinear form

a(u,v) = u(0,0)v(0,0) + u(0,1)v(0,1) + u(1,0)v(1,0) + Z (D%u, D*v) (B
|a|=2

defined on H?(E) x H%(E), is bounded and H?(E)-coercive.
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e Boundedness.
la(u,v)] < [u(0,0)[|v(0,0)] + [u(0,1)[|v(0,1)]
+u(1,0)|[v(1,0)| + lull m2(s) vl 2 ()
Since H%(E) c C(E) and lulle(my = max,e g |[u(z) < Cillullg2q) we get

[u(zi, yi)| < max_|u(z,y)| < Cillull g2q)
(zy)eE

and finally

la(u,v)| 3C12||U||H2(E)||U||H2(E) + ||U||H2(E)||U||H2(E)

<
< BCF + Vlllullzzmylloll g2 (m)-

e Coerciveness. We apply the Lemma of Ehrling: f X C Y C Z, X Cofan
then Ve > 0 exists C(e) with
lzlly <ellzlx +Cle)| X[z Vz € X.

In our case is H*(E) C H'(E) C Ly(E), taking ¢ = 1 we get

2 1 1 2
() =[Gl + € (3) lulian)]
(a+b)2<2a2+262
< Gl + 202 (3) Il

for all u € H%(E),

a(u,u) = u*(0,0) +u*(1,0) Z | D* “||L2(E)
|a|=2
> > ID%E, ) = lullfe g — lullf g
|a|=2

v

1
slliece) 26 (3) Il s

(2) a(u,v) is H%(E)-elliptic.
The H?(E)-coerciveness yields a Fredholm property: For the operator A defined
by
(Au,v) = a(u,v) A: HX(Q) — H*(Q)'

holds: either A~! exists or A = 0 is an eigenvalue of A. Assume A = 0 is an
eigenvalue of A. Then exists a nontrivial element e € H?(E) with Ae = 0 and
(Ae,e) :=a(e,e) = 0. Hence

> ID%]|* =0

af=2
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and e(z,y) = a+ Bz +yy. Since €(0,0) = e(0,1) = e(1,0) = 0 we get e(z,y) =0
and A = 0 is not an eigenvalue of A. From the existence of A~ ! it follows the

H?(E)-ellipticity. [6, p. 168] 5

Lemma 24. ILet be By = hE ={(,7) : £,7 >0, {+4 <h}, u€ HX(Ey), |B] < 2.

Then

ID%ullf2(m,y < G{hQ‘Q'ﬁ'[uQ(o,O) +u?(0,h) +u*(h,0)]
+h4—2\ﬁ| Z ||Dau||%2(Eh)}
|a|=2
Proof. We have £ = h¢, # = hn, where (& m) E E
0 — 10 pb Déi p)- Therefore for u(§,n) =v(&n)

O _ 90 001 _ 16 o _

o 0§ 9¢ ' Onon h 0E> a1 hon* “(ém) — h\ﬂl
/ D5, (. ) déd = / (b= 9\Df, (€, m)Phdedn
B2 DAY |2, 0 < B2 282

Lemma
<7 g2 [«ﬂ(o,m +2(1,0) +0%(0,1) + Z ||D%||%2<E)]

=2

1D ull?, 5,

laf=2

R2218] {uZ(o, 0) + u?(h, 0) + u?(0,h) + h* Y ||D"‘u||%2(Eh)]

since [, [D®v[?d¢dn = [, h*|D%u|zdédi for o] = 2. O
Lemma 25. Let T € 7 be any triangle with sides whose length is less then hyqy, and
interior angles > o > 0, |B| < 2. For every u € H?(T) it holds:

IDPul, 7, < Cla) [hfnai'ﬂ ST Julai ) + B2 S (D2, ]
(=397) |a|=2
corner of T
where |G| < 2.
e U where h is the minimal side-

Proof. We consider the mapping (zTy) = em) T (En)
length of the triangle T. Then
2|T 2
/ ...dmdy:2|T|/ ...dédn = |—2|/ ...dédy.
T E h* Jg,
we get after some calculations the assertion. O

: h? 1
Since W S Sinao
Theorem 11. Let Vi be the space of continuous piecewise linear functions with
respect to an admissible triangulation of the polygon Q. Let be ag > 0 the smallest
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interior angle of the triangles and h the largest length of the sides of the triangles.
Then

. 2—k
Uler%/fN |u — ’U|Hk(Q) < C(ag)h ||u||H2(Q)

for k=0,1 and allu € H>(Q)NV.
Proof. Let be u € H%(2) N V. We define

N
'UN(wa y) = Z’U/(JIZ, yz)eZ(‘Tay)

i=1
The function w(z,y) = u(z,y) — vn(z,y) vanishes in the nodes and
D%w|g, = D%l for |a| =2 for all T}, € 7.
From Lemma 25 it follows that for |5] < 2
IDPwl2, 0 = 3 ID Wl < Clao)h™2 S 5™ [Doull2, )
TyeT TLET |a]=2

= Clag)h* 2P " D], () < Clao)h* 27 |lull2 g
|a|=2

(1) k= 0: We have

: 2 2 _ 2 4 2
Vlél‘gv lw = vll7, @) < llu—onlT, @) = lwllz, ) < Clao)h®[|lullfzq)-

(2) k=1: Then

. 2 2 2
A u— vl o) < Jwlip ) < Clao)h|ull 2 o)-

For h <1
vief%/fN lu = vl|71 () < llwlf @y < Clao)h?[lull 2 ).

O

REMARK. The choice of the mesh parameter is crucial. Therefore we write V}, instead
of Vy = V() in what follows.

Definition 24. A sequence of triangulations 7 with h; — 0 is quasiuniform if

ap; > ap > 0.

Summarizing the results we get:

Theorem 12 (H'-convergence) . Assume that a sequence of quasiuniform trian-
gulations is given. Let be u € H2(Q) NV be a weak solution and uj, a sequence of
Galerkin solutions with ||u — up|| < Cinfy, ey, ||u — up|. Then

lu — unll g1 (@) < C hllul| g2y = O(h)

(asymptotical error estimate). O(h) is the optimal convergence rate.
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Remarks to error estimates in other spaces.

(1) La2(2)
(a) Assume that the adjoint problem
a*(u,v) := a(v,u) = (f,v)

has a solution v € H?(Q) NV for every f € Ly(Q) C V'
with [uly < COllf |z, )

(b) The bilinear form a(-,-) is bounded on V x V and
inf{sup{|a(u,v)| :v € Vy, |[v|lyv = 1}u € Vy, |lu|ly =1} =¢e, > > 0.

(C) inf’uEVh |u - ’U|1 S C0h|’u,|2 Yu € HQ(Q) nv.
(d) Let u € V be a weak solution and uy, € V}, C V' the Galerkin solution.

Then

Clh|u|1.
02h2|u|2.

l|lu — uh”Lz(Q)

IAIA

l|lu — uh||L2(Q)
The proof is based on the so called Nitsche trick [6, p.172],[9, p.102].

(2) Loo(), C(Q)
Assume (a)—(d) as above. Then

= unlloy = maxfu(z) —un(z)] < chfulgii(), k= 0,1.
T

Since H'(Q) ¢ C(Q) we cannot estimate the norm in C'(Q) through the norm in
H'(£). Therefore we have to use other tools such that as inverse inequalities

[on]l Lo () < CBHlvnll Ly(0) for v € Vi
and the Bramble-Hilbert Lemma:

Lemma 26. Let f be a bounded linear functional on H*t1(Q) and (f,u) =

0 Vu € Py(Q)={polynomials of degree at most k}. Then there ezists a constant
¢ such that

(fou) < clulkrr  Yu€ HFH(Q).
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2.2.3 Initial-Boundary value problems

We consider an initial boundary value problem for the heat equation:

S du = ey for (a,9,1) € Q0 x (0,00)
u(z,y,1t) = 0Ofort>0
onN
u(a:,y,O) = UO(‘T,y) for (‘T,y) € Q. (219)
tA
// u =20
pd
Q / >
Yy
T UQ(-T,:I/)

Assume f(x,y,t) € Lo(Q) for all t > 0 and wup(z,y) € L2(2). One possibility is to
derive a semidiscrete problem applying a finite element scheme with respect to the

space variables. We consider the space V = H'(f)). Multiplying the heat equation
with an element v € V' and integrating by parts on Q we get for every fixed t:

ot
= /Qf(x,y,t)v(ﬂc,y)dxdy

/Mv(m,y)dxdy—i—/gradu(w,y,t)gradv(m,y) dxdy
Q Q

shortly written as

ou(t,-) .
(P e), o+ = G e

Let be H' ((0,T);V, Lg) the space of all functions u : (0,7) — V with

T
Il o = | @t <o

and with the property that

2

dt < oo
VI

ou
ot

ou

ot

ou

(0,T) — V' and ‘ o

T
Ly (OyT) N /O
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where V' is the dual space of V. The norm in H! ((0,T);V, L) is defined as
Ou
ot

L»(0,T)

lellm (0,myv,22) = lull oo,y + ‘

The weak formulation of problem (2.19) reads:
Find an element u € H' ((0,T);V, Ly) with
u(0,:) = (") € Lz(Q)

or  (u(0,:),v)r,) = (uo,v) Vv € Ly(Q) (2.20)

such that p
%(u(t)aU)Lz(Q) +a(u(t),v) = (f(t),v)1,) YV EV,

where f € Ly((0,T),V"), that means fOT 1 £112.dt < oo.

Let be V;, C V an appropriate finite-element-space. For every ¢ € T we define the
Galerkin solution wuy(t) as follows: Find an element up(t) € V}, with

© (), 0n) 1oy + alun(®)on)e = (F(E), o) Von € Vi

dt
(2.21)

(unlt=0-Vn) o) = (U0,Vh)Ly(02)-

We choose a basis {egh) (z,9) }i=1,... . n(n) in Vi, (piecewise linear functions with respect
to a triangulation) and we represent
N(h)
h
un(z,9,8) = Y ai(®)el (@, y) = un

i=1

(2.22)

with a;(t) = up(zi, v, t) provided el(-h) (j,y5) = 0ij ; (xi,y;) are the relevant nodes.
Inserting (2.22) into (2.21) we get for vj, = eg-
d [X® N(h)
h h h h
2 | 2 a@e @) @y | + Y alait)e (@,9), " (z,9))
i=1 =1
= (f().")a

N(h)
(Zaz-(o)eﬁ’”(x,y),e§-’”<x’y)) = (09"

=1
and finally
ey o )\ [ Lan(t)
: : : +
@MWy ey 4 an(t)
(a<e§h>,e§h>) o ael, M) a1 (t) (f, eMy
a(egh),e%l)) a(eg\’;),e%})) an (t) (f,eg\’;))
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@) () a1(0) (ug, ™)
(egh), ()) (e%),e%)) an(0) (uo,e%l))
Shortly
d B
E—i(t) + Ma(t) = F(1) (2.23)
E&(0) = i,

where F;(t) = ( ,egh)), uoi = (uo, egh)). The problem (2.23) is an initial problem for
a first order system of ordinary differential equations.

The symmetric matrix F is regular, since the basis element egh)
dent. F is in general not a diagonal matrix.

EXAMPLE. We consider the interval (0,1) = Q and ¢ € (0,7") and a uniform partition

of (0,1). Then

are linearly indepen-

2 =1 0 0
1
M = | -1 2 -1 0 0 | = 2
hl1 o0 -1 2 -1 0 0
0 -1 2
and
4 1 0 0
h 1 41 00
EF = — . = hE'.
61 0
0 1 4

We calculate E:

w )y [T (z—3im)? /’” (01 — )2
(ei 7ei ) - / h—d + . 7h2 d.T

h 1 (B3 B3\ 2

2 2
= + oy ) =2h
( v dy dy) h2(3 3) 3

h2
B (h 1 Lot h
(e, eM) = ﬁ/ﬁlx—le —a:)d:vZﬁ/O y(h —y)dy = &
1 Tit1 1 h h
(egh),egi)l) = (Tiv1 — z) (2 — z;)dr = _2/ y(h —y)dy = .
h2 J,. b= Jo 6

Furthermore, if f(z,y,t) = 1 then

x; Ti+1
/ (x — z;1)dz + / (i1 — x)dx
Ti—1 Z;
h h
([ o)
0 0

(f,e™)

S = =
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Therefore the problem (2.23) reads:
d 1

hE'—at) + —M'at) = h
Salt) + 3 Ma(t)
hE'@(0) = i
and finally
d ]. —
E'Sat)+ = Mat) = 1
dta(t)+h2 at)
1
E'g(0) = Eﬁ" (2.24)

There are error estimates for the semidiscrete solution (Assuming that the solution of
problem (2.23) is exactly known), namely [5, p. 311]

Ju(t) —un(®) ) < e Hlug — upllry@)
t
ch’”{||u||Hr +/ e‘c2(t_s)||ﬂ(t)||Hrds},
0

where ¢y is the constant in the estimate
a(u,u)q > coljul> Vu e V.

Further,

t 3
ot — unlloo < ch?| In | [full s, +ch(in B} ( / ||u||%df)
0

provided the solution % is smooth enough.
Now, we consider the time-discretisation of problem (2.23). We remark, that the matrix
E can be replaced approximately through a diagonal matrix D by lumping: e.g.

djj = Z ejr (row-sum)
k

Multiplying the system (2.23) with D! we get the standard problem

%c‘i(t)+BEi(t) = g(t)
a0) = . (2.25)

Note that the above example shows, that B = D‘lh%M !. Indeed, the problem (2.25)
depends on the mesh parameter h in general. Therefore the classical stability for the
Euler or Runge-Kutta algorithms can be disturbed and a careful analysis is necessary.
[5, p. 315]

One possibility is to use a time-discretisation already for the problem (2.21), writing
the time derivative as difference quotient and solving the problem on some discrete
time levels.
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Let be the intervall [0, 7] divided in n subintervalls (¢;_1,¢;) with t; = z% =41, 0 =
0,... ,n. Let be .
u(ty) = U* = up(t;).

The problem (2.21) reads: start from U%(z,y) = wg(z,y). Find UFtl(z,y), k =
0,1,2,... such that

= (o + (1 - o) f*, vn) (2.26)
with
T = Tg+1 — g,
fk(iE,y) = f(xayatk) and 0 <o < 1.

o = 0 corresponds to an explicit, ¢ = 1 to an implicit Euler algorithm, o = % implies

a Crank-Nicolson-scheme. For every k the problem (2.26) is an elliptic problem and
leads to an equation system for the vektor @'*! = @(t;, ) with the matrix E + 70 M.
The controlling of the error with respect to ¢ yields an adaptive generated time grid.
We remark, that hyperbolic or parabolic problems can be handled similar, if the space-
term is V-elliptic.

2.2.4 Nonlinear boundary value problems
We have considered linear operators A : V — V', If

(Au,v)
(Au, u)

Cillullv]lollv Vu,0 €V (2.27)

<
> Collully VueV, (2.28)

then A~! exists and is continuous. A Galerkin scheme works and the Lemma of Ce4
yields

a

— < inf — .
[|u Uhllv_CQU;IEIVhHU vpllv

We consider now an nonlinear operator A : V. — V', where V is a Banach space, V'
its dual space. We generalize the condition (2.28), defining

(a) A is monotone & (Au— Av,u—v) >0 Vu,v €V,
(b) A is strictly monotone < (Au— Av,u—v) >0 VYu,veV,u#v

(¢) A is uniformly monotone < (Au— Av,u—v) > b(|lu—v|))[|[u—v|] Yu,veV
where b : [0,00) — R is a strongly monotone increasing continuous function with
b(0) =0, b(t) > oo fort — o0

(d) Ais strongly monotone < Jc > 0 with (Au—Av,u—v) > c|lu—v|? Vu,v € V,

(Au,u)
Tullv

(e) A is coercive < — oo for ||ul] = oc.
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It holds:

Theorem 13. Let be V a reflerive Banach space with countable basis, A:V — V'
and

(i) A is monotone,
(ii) A is coercive,
(iii) A is continuous.
Then ezists for every f € V' an element u € V with
Au = f,
that means (Au,v) = (f,v) Vv e V.

ExAMPLE We consider the boundary value problem in Q C R?:

div(D(z) grad u(z)) + F(z,u(z)) = 0in
ulagn = 0.

D(z) is a matrix of continuous functions with
Ki|2)* > 2" D(z)z > Ko|2]* Vz €Q, 2z € R
F:Q xR —Ris a function with

|F(z,s) — F(z,t)] < L|s—t| Vs,teR, z€N
(F(z,s) = F(z,8))(s —t) = 0

We take V = Ic—)Il(Q) and have
(Au,v) = /Q [div (D(z) grad u(z)) v(z) + F(z, u(a:))v(a:)] dz
= / [(VU)TDTVU + F(x,u(m))v(m)] dz.
Q
The operator A is strongly monotone
— Av,u—v) = uw—v)IDIV(u—wv
(u=dvu=v) = [ [(Vu=o)" D" V(-
+ [F(w, u) — F(x, fu)] (u— 'u)] dx

Friedr. ineq.

> KQ/ V(4 — v)|da K>Cllu— ol
Q
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The operator A is Lipschitz continuous:

(Au— Ay,v) = ‘ /Q {(Vu —Vy)' DTV + [F(z,u) — F(z, y)]v}dm

IN

L /Q i — ylloldz < Kju—yllv|ollv

Theorem 14. Let be A : V. — V' strongly monotone and Lipschitz continuous,
f e V' Assume that V;, CV and dim V}, < oo. Then exists a uniquely determined
up, € Vi, with

(Aup,vp) = (f,vn) for all vy, € V.

and [lu —up|ly < C inf |ju—vy|v.
VRLEVR

Proof. The Galerkin solution u, = Eciegh) (z,y) is solution of a nonlinear equation
system. Since

(Aup, — Au,vp) =0 Yop € Vy

it follows
2 1 1
un —ulliy < —(Aup — Au,up —u) = —(Aup — Au, v, — u)
02 CQ
C
< é”uh — ullv||vp — ul|
and finally

Cy
lup, — ully < —2||’Uh —u| Y, € V.

2.3 Boundary element methods

Besides the Finite Element Methods there are Boundary Element Methods developed
for numerical solving of elliptic boundary value problems. The original problem is
formulated as equivalent boundary integral equations and these equations are solved
by Galerkin schemes. Instead of finite elements, defined on the whole body, there will
be created finite boundary elements.

The advantages are: The reduction of the dimension, exterior boundary value problems
will be restricted on the boundary of a finite domain. Disadvantages: Derivation of an
appropriate boundary integral equation, computation of the Galerkin matrix (singular
integrals) and solving of the resulting dense equation systems.
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2.3.1 Derivation of the boundary integral equations

The knowledge of the “fundamental solutions” and the representation of solutions of
boundary value problems as potentials with respect to the fundamental solutions are
essential for deriving of integral equations. Therefore there are considered mostly
boundary value problems for the Laplacian, the Helmholtz equation, the biharmonic
equation, the Stokes system and the linear elasticity system, for which the fundamental
solutions are well known. For the sake of simplicity we demonstrate the derivation of
the boundary integral equations for few examples.

The exterior Neumann problem for the Laplacian

[17, p.223] Let us consider an exterior stationary divergence-free irrotational two-
dimensional flow in the domain ¢, exterior to a given obstacle 2 with boundary
o9.

Z2
[ 00
- 0
Z1

Let be 9(Z) the velocity field. It can be expressed by a potential u:

1 A 1 —X9 .
— = — ho: g QC
T(F) = voo (O) + Sl 7P ( . ) + Vu(Z) in QF,

where v, is the velocity at infinity, ) is a given circulation, V = (0z1,0z2)” denotes
the nabla-operator. The potential u is solution of the exterior Neumann problem

Au = 0in Q°

Opulon = 17i(T) - Vu(Z)|aa = 9(Z)lon,
where v
9(Z) = —voon1(F) — %W(.’Elﬂa(f) — z9mq (%))

(that means 7(z)|9q = 0) and u satisfies the decay condition at infinity
u(Z) = 0()Z] ') as || — oo.)

Assume that 02 is a sufficiently smooth Jordan curve.

Definition of the fundamental solution
Let 6;(Z) be the Dirac distribution concentrated at § € R?. The solution F = F(Z, §))
of the Laplacian is called fundamental solution if

—AgF(Z,Y) = 05(Z).
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F is not uniquely defined. We choose the translation-invariant solution

1
—5-In|# = .

3
&
I

We cite a classical result in the potential theory.

Greens representation theorem

Let u € C1(Q°U 00Q) N C%(Q°) be a solution of Au = 0 in Q¢ with u(Z) = O(|Z|~!) for

|Z] — oco. Then u admits the representation:

1
27 7ean
1

27 Jgeon

—

w(7) (05, In(Z — 7))dsy
+ In |7 — |(0r,u(y))dsgy VT € Q"

If n = —n, denotes the exterior normal at boundary points on 2, then

v[anu] = - 50 F(E,g)anu(:lj)ng

is the single layer potential and
U [u] = —/ —F(.’E y)u(y)dsy
a0 871 ’

denotes the double layer potential. Shortly (2.29) reads

w(@) = —Ulu] + V[0pul.

(2.29)

COROLLARY. The solution u is known if the Cauchy data (u,0,u)! are known on

on.

For our example Opu = g is known and u|sq is to determine. For its determination
we can obtain boundary integral equations from (2.29) sending & — £y € 0f2. The
boundary traces of the right hand sides are known in terms of the so called “jump

relations”.

Lemma 27. [3] The operators

VeV :  H 2(0Q) — Hz(69)
YU : H2(0Q) — H?(9Q)
ﬂmgy . H2(0Q) —» H™2(09)

7|39(%U . H2(0Q) - H™2(09)



The Numerics

are continuous and the boundary values are defined for sufficiently smooth functions in
the sense of the Cauchy principal value almost everywhere:

i W = - [ Flan )b, = Vidan),
w j”s?m Ulglz = %¢($0)+ /6 . %F(wo,y)qﬁ(y)dsy
=t S d(eo) — K[)(ao)
i %vmﬂc = —59(z0) — K*l](a0)
= ——¢ o) /aQ a—nyF z,y) w:wow(y)dsy,
m j%gm %U[qﬁ]m = 3nz . a—nyF z,y) w:%(ﬁ(y)dsy = D[¢](z0).

COROLLARY. The following relations between the Cauchy data hold on the boundary
oQ:

we) = ula) - KRl +V (5 ) @)

a"gff) = Dluj(z )+%§—Z( )+ K* (%) (z) for z € 99,

With the help of the so called Calderon projector C' the relations can be written:

1
u \_(sI-K 1% u ) "
(%U>_( D %I-l—K*)(%u)—C(g_g)- (2.30)

From the relation C? = C we get the relations:

VD = %I—KQ
DV = %I—(K*)Z
K*D = DK

KV = VK*.

The unknown Cauchy datum u|sq is solution of the boundary integral equations

5 +K|we) = Vide) (231)

or Du = (%I—K*) @), = e on. (2.32)
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Let us discuss the solvability and uniqueness of the equation(2.32). The linear hyper-
singular integral operator D maps V = H > (09Q) into V' = H -3 (0). We introduce a
bilinear form

(Du,v) = d(u,v) on H%(aﬁ) X H%(aﬂ)
Since D is a continuous operator (Lemma 27) the bilinear form d(-,-) is bounded.

Lemma 28. The operator D is positive semidefinite; that means there is a constant

C such that

(Du,u) > 0||u||2%(89) Vu € Hz(9Q) /ker D

The kernel of D consists of the constant functions.
Proof. [10] A. W. Maue has shown in 1949 that the hypersingular boundary operator
D and the single layer potential operator V' are connected on 0€2:
d__ d
D=——V—.
ds ds

Here denotes s the arclength.
For the single layer potential is known [7] (compare the Lemma 29 hereafter) that there
exists a constant ¢ with

1
(Vg.g) 2 cllgl 300 Vo€ H (0

prov1ded diameter 2 < 1. Therefore, we get by partial integration for any u €
H? (092) /{const }

d du du\ du
(Du,w)on = —(£V<%>,u)aQ=<V <£>,£)an

|| ||2 > ¢f|u ||2

3(00) —

Y

In the last estimate we have used that the differential operator . H? (09)/{const} —

(BQ) is a continuous bijective mapping. Let us remark that the condition, diam-
eter < 1, can be removed, considering an appropriate scaling. O

Lemma 29. [7, p.453] Let be 0Q smooth enough (e.g. C? [7] , Lipschitz continuous
[3]). The single layer operator

V. H 2(0Q) — Hz(09)

is continuous and, if additionally diameter(Q2) < 1, then there ezists a positive constant
c such that

_1
Vephon > cliel,y o Vo€ HH(69)
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Proof. We consider an element e € H*%(GQ), such that [, e(s)ds =1 and
Ve = E = const. Any ¢ € Hfé(ﬁﬂ) can be written

© = o + ek, k = const

where [, pods = 0, k = const. Since V is selfadjoint and (po, kE) = (ek, Vo) = 0,
we get
Ve, 0)aa = (0, Vaa = (v, Veo)aa + EE*.

The single layer potential
1
Vouly) = —5- [ nla(s) ~slpals)ds, y R
™ Joa

vanishes at infinity, hence one can apply the Green’s formula in  and R? \ :

/ grad Vg grad Vpgdx = / Vo Vo ds (2.33)

Q a0 on

/ grad Vg grad Vpodxr = — / Vg Vo ds (2.34)
R2\Q N on

Here denotes n the exterior normal vector on 0.
The jump relation yields (i is used from interior, e from exterior)

_ 6V<p0 . 8V<p0
@0—([ an ]Z [ an L) on 0€).

Adding (2.33) and (2.34) we get

/ |gradV<p0|2dx:/ Vopods
R2 a0

and

/ Vppds = / Vpopods + Ek?* > / | grad Vo |?dz + EE.
0N onN Q
It is
grad V¢ = grad Vg + k grad Ve = grad Vg
and (e, Vp)aq = Ek. Hence

1 2
(V,p)on :/ Vpds > / | grad Vo|?dz + — (/ veds)
80 Q E \Jsn
Th.2, estimates 9 Th4 _ 9
2 CHV‘P“HI(Q) 2 CHV(‘O“H%(aQ)
> élloll? .
=

It is not easy to show the last estimate:

2 2
Vo > c|lo

H3(99) -5 (00)

One can prove that V : H _%(89) — H: (09) is a continuous bijective mapping and
then Banach’s theorem implies the continuity of the inverse mapping. The condition
diameter(f2) < 1 is used, in order to excluse that V has eigensolutions. O
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Some problems of elastostatics

In section (1.3.2) Lemma 14, we have already discussed the Dirichlet problem for
the Lamé operator as an example for elastostatic problems. Elastostatic problems
have been treated rather early by means of boundary integral equations and boundary
element methods.

The displacement field @(Z) of an ideal elastic homogeneous and isotropic material is
governed by the Lamé equations

pAG+ (A + p) graddiva = 0 in Q (or Q°).

Usually, the displacement fields have to satisfy on one part I'y C 0€2 Dirichlet conditions
and on the remainding part 09 \ I'j = I'y Neumann conditions:

'J == g' on F]_
U[ﬁ]n = t_(; on FQ.
Here is o the stress tensor with the components
o3 = Ae1r + €22 + €33)055 + 2uei;

and g;; = %(a,-uj +0ju;) are the components of the strain tensor; n denotes the exterior
unit normal vector on J€2. As we have shown already, there are Green’s formulas (in
the linear elasticity called Betti’s formulas).

First Betti’s formula
a(i, e = Y / 041 (i)es; (v)da
- Q
ij

= > (/ o (@)njvidsy —/ Uz'j,j(ﬁ)vidlv) = (L(#, 7) y(q)
onN Q

ij
Analogously to the definition of the fundamental solution for the Laplacian we define:
the matrix E(z,y) is a fundamental solution of L iff

_LwE(may) = 5:6('!/)I’ or
(—LoE(z,y),u(x)) = (0a(y)L,u(x)) = uly).-

Let us remind that

pA+ A+ )0 (At p)oi (A + p)0105
L= A+pdkd pA+A+p)ds (A +p)osds
(A + p)0501 A+ 1)0203  pA+ (A4 p)d3

We choose as fundamental solution the “Kelvin solution”

A+ p) A+ 3u
4n —DrpX+2p) [ A+ p

(zi — i) (zj — yy)
|z —y["

7
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where

—Injz—y| for n=2
1

Fz,y) = { for n=3

lz—y!
is the fundamental solution of the Laplacian, except a factor.

The Green’s representation theorem (Somigliana identity) reads for the com-
ponents of a solution @ from L@ = 0:

uily) = /a () By (o9} /8 Ty, €, (2.35)

where tj(z) = ), ojx[t](x)ni(z) are the components of the traction vector (boundary
stress vector) and (T;;(x,y)):; is the tensor of the boundary stress of the fundamental
matrix,

Eli(xay)
Tij(z,y) = Y oji : ny(x),

where o, acts on the variable .
We write (2.33) shortly with the help of single layer and double layer potentials

@(y) = V[|(y) — Ud](y).

There holds a lemma about the properties of V and U and the jump relations analo-
gously to Lemma 27. Passing to the boundary in (2.33) we get the boundary integral
equations after some rearrangements.

V(i) = (%I + K) ily), yeon, (2.36)
where
Vi) = [ Bywyt@ds
K = [ Ty,
and

Dii(y) = (%I — K) t(y) for y € ON. (2.37)

The boundary integral equation can be used to determine the missing Cauchy data o
or t. If we know them, then the Somigliana identity yields the solution in the whole
domain.

The equation (2.34) yields the Neumann datum # for a given displacement field @
on 092 and equation (2.35) yields the Dirichlet datum 4, if Neumann conditions are
prescribed.
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EXAMPLE. We consider the Dirichlet problem

L 0in O

g on 0f).

S
|

We use the boundary equation system (2.35) for the calculation of £. The operator
V maps H -3 (092) into H %(BQ) continuously. The bilinear form (V)50 = c(£,1) is
defined on

H™3(0Q) x H?(9Q)

It turns out from Lemma 29 [7] that V is a positive definite operator, that means there
is a constant ¢ such that

£ > 2 )
(Vi toq > C||ﬂ|H_%(am

The Steklov Poincaré operator

We introduce a boundary operator (pseudodifferential operator) which maps the Di-
richlet datum on the Neumann datum. From (2.34) it follows

(%I + K> =V
If V=1 exists (for diam 2 < 1 it is valid), then
S—v- (%I + K) L HI(09) - H3(69)
denotes the Steklov-Poincaré operator,
Sii = t.

Using the second relation of (2.30) we have

1 - 1 1
Dii + (§I+K*)t = Di+ (§I+K*) V! <§I+K)ﬂ‘

= L
1 Do (1

is another symmetric representation of the Steklov Poincaré operator. The inverse
Steklov Poincaré operator is not defined in general, since ker S = {const} [19].
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2.3.2 Boundary element Galerkin methods

We take a partition of the boundary curve I' = 9Q (n = 2) with the help of a global
parametric representation. If I' = 0Q is a surface then we choose a triangulation
(curvilinear triangles).

With respect to the partition of the boundary we introduce piecewise constant functions
in order to approximate the traction, while picewise linear elements are used for the
approximation of the boundary displacement fields.

N
thz) = > tdY(z) € V.
k=1

M
up(z) = Zukq)}c(:c) e vP.
k=1

An essential problem is the computation of the elements (singular integrals) of the
resulting Galerkin matrix. Here one has to use partly analytical integrations and
integration by parts (especially for the hypersingular operator D). Now, we formulate
an error estimate. We denote 02 =I'. Let be

A: H¥T) —» H>(I).
e.g.
A=V s=—— a=-—
A = D, s== a:%, D: H3(T)— H ().
We consider the operator equation
Aii(z) = f(z), =€l

and assume

(AT, 9)| < elldlgs@)l|Vllasqy Vi, v € H(T) (2.38)
(Ad, @) > el sy (2.39)

Theorem 15. Let be the conditions (2.36) and (2.37) satisfied and up € H*(T') a
Galerkin solution, that means

(A, 5n) = (f, 1) Vi € Sy(T).

Fors<1/+%, ifn=2;s<v,ifn=3and2s—v—-1<7<s<B<v+1 there is
an optimal error estimate

1@~ il ey < CHO 7|l s -
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EXAMPLES.

(a) v =0, piecewise constant elements:

1
s = —=, 28—V—1:—2ST§—§S
1

T o= s=—

1
P =3

- o 1
S il ey S ORI

provided £ € Hz (T).

(b) v =1, piecewise linear elements:

1
s = Ea 28—2ST§SSIBS27
1
T = 3—2,
3
P =3
= la—dil,y g, < CHal,

(r)’
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