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Abstract

Deligne—Lusztig theory allows the parametrization of generic character tables of finite groups
of Lie type in terms of families of conjugacy classes and families of irreducible characters
“independently” of g. Only in small cases the theory also gives all the values of the table.

For most of the groups the completion of the table must be carried out with ad-hoc methods.
The aim of the present work is to describe one possible computation which avoids Lusztig’s
theory of “character sheaves”. In particular, the theory of Gel’fand-Graev characters and
Clifford theory is used to complete the generic character table of G' = Sping (¢) for ¢ odd. As
an example of the computations, we also determine the character table of SL4(q), for ¢ odd.

In the process of finding character values, the following tools are developed. By explicit use
of the Bruhat decomposition of elements, the fusion of the unipotent classes of GG is determined.
Among others, this is used to compute the 2-parameter Green functions of every Levi subgroup
with disconnected centre of G. Furthermore, thanks to a certain action of the centre Z(G) on
the characters of G, it is shown how, in principle, the values of any character depend on its
values at the unipotent elements.

It is important to consider Sping (¢) as it is one of the “smallest” interesting examples for
which Deligne—Lusztig theory is not sufficient to construct the whole character table. The
reasons is related to the structure of G = Sping, from which G is constructed. Firstly, G has
disconnected centre. Secondly, G is the only simple algebraic group which has an outer group
automorphism of order 3. And finally, G can be realized as a subgroup of bigger groups, like
Es(q), E7(q) or Es(q). The computation on Sping (q) serves as preparation for those cases.

Zusammenfassung

Die Deligne-Lusztig Theorie ist ein wichtiges Konstrukt in der Darstellungstheorie, mit welcher
die Parametrisierung generischer Charaktertafeln endlicher Gruppen vom Lietyp durchgefiihrt
werden kann. Diese Parametrisierung erfolgt durch Familien von Konjugiertenklassen und
Familien irreduzibler Charaktere, welche “unabhéangig” von ¢ sind. Allerdings ergeben sich
aller Werte einer Charaktertafel nur in kleinen Gruppen durch diese Theorie.

Fiir die meisten Gruppen muss die Vervollstindigung der Charaktertafel mithilfe von Ad-
hoc-Methoden durchgefiihrt werden. Das Ziel dieser Arbeit ist es, eine mogliche Rechnung zu
beschreiben, welche Lusztigs Theorie von “character sheaves” vermeidet. Insbesondere wird
die generische Charaktertafel der Gruppe G = Sping (¢) fiir ungerade Werte von ¢ mithilfe
von Gel'fand-Greav Charakteren und der Clifford Theorie vervollstandigt. Wir bestimmen die
Charaktertafel von SL4(g), mit ungeradem ¢, um ein Beispiel fiir die Rechnungen zu geben.

Um die Charakterwerte zu berechnen, werden im Laufe der Arbeit verschiedene Werkzeuge
entwickelt werden. So wird zum Beispiel durch die explizite Nutzung der Bruhat-Zerlegung von
Gruppenelementen die Fusion unipotenter Klassen in G festgelegt. Dies wird unter anderem
verwendet, um die 2-Parameter Green-Funktionen jeder Leviuntergruppe von G mit unzusam-
menhéngendem Zentrum zu berechnen. Dank einer bestimmten Operation des Zentrums Z(G)
auf den Charakteren von G, kann weiterhin gezeigt werden, dass die Werte jedes Charakters
im Prinzip nur von seinen Werten auf den unipotenten Elementen abhéngen.

Die Gruppe Sping (¢) ist hier von besonderem Interesse, da diese Gruppe eines der “klein-
sten” interessanten Beispiele ist, fiir welches die Deligne—Lusztig Theorie nicht geniigt um die
ganze Charaktertafel zu berechnen. Dies lasst sich auf die Struktur der Gruppe G = Sping
zuriickfithren, von welcher G konstruiert wird. Zum einen hat G ein unzusammenhéngendes
Zentrum. Andererseits ist G die einzige einfache algebraische Gruppe, die einen Gruppenauto-
morphismus der Ordnung 3 besitzt. Schliefllich kann G als eine Untergruppe groflerer Gruppen
wie Fg(q), F7(q) oder Eg(q) aufgefasst werden. Die Berechnung fiir Sping (¢) in dieser Arbeit
wird als Vorbereitung fiir diese Félle dienen.
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Introduction

The representation theory of finite groups is a rich and still wide open field of mathematics. In
this work, we are interested in the character theory of a particular class of finite groups called
of “Lie Type”. These are defined (at least in the present work) as being the rational points of
connected reductive linear algebraic groups over a finite field. One interesting property of these
groups is that they can be gathered in families, and each family can be treated more or less
“uniformly” (for what concerns character theory). One example are the groups of nxn invertible
matrices with entries in a finite field F,, {GL,(q) | ¢ prime power}. A goal of character theory
is to study irreducible representations via their traces, called irreducible characters. For each
finite group G this information is recorded in a (square) array, called character table, where
rows are labelled by irreducible characters of G and columns by conjugacy classes of G. For
finite groups of Lie type it is possible to write one “generic” character table for a whole family
of groups (or a subset with some mild conditions on ¢). By “generic” we mean that the table
has a fixed size for all considered groups and the values are given with ¢ as parameter. Then,
the evaluation of ¢ at a certain prime power yields the character table for a particular group of
the family.
Here we are interested in computing the generic character tables for

{SL4(q) | ¢ prime power, ¢ = 1 (mod 4)},
as a first “easy” example, and
{Sping (¢) | ¢ prime power, ¢ = 1 (mod 4)}.

Of great relevance in the representation theory of finite groups of Lie type is the work of
Deligne and Lusztig, now known as Deligne-Lusztig theory. This gives not only a parametriza-
tion of the irreducible characters but also a theoretical way of explicitly computing values of
certain class functions. These class functions are integer linear combinations of some irreducible
characters, moreover each irreducible character appears as a constituent of at least one of them.
In some cases (for example GL,(q)) there are enough of these class functions to actually com-
pute the full character table. In general, the theory gives enough information if the considered
connected reductive group has connected centre and is “of type A”. Here we are interested in
cases where the theory does not yield the full character table, for instance both SL, and Sping
have disconnected centre.

There are two main goals in this thesis that are of interest for the character theory of finite
groups of Lie type.

On the one hand, we want to complete the generic character table for the spin groups
Sping (¢). We say “complete” since the partial table containing the information coming from
Deligne-Lusztig theory has been computed and furnished by Frank Liibeck, and serves therefore
as starting point for all the computations. These groups are of interest because they are
constructed from a connected reductive group G “of type D,” which is a simple algebraic
group of simply connected type. This makes them the “smallest” (in some sense) interesting
case where Deligne—Lusztig theory fails to give the full character table. Being of type Dy, the
group G has an accidental outer automorphism of order three, called “triality”, that does not
exist in other simple algebraic groups. Furthermore, it can be embedded as a subgroup inside
the much bigger exceptional simple groups of type Eg, E7 and Eg. As a result, this computation
can be seen as a preparation for the treatment of those cases. In the same way SL,(¢q) can be
embedded as a subgroup inside Sping (¢). We treat it first as a smaller example for which we
expose in details the computations. Then, we can use it as reference for the computations on
Sping (¢), which are analogous but would need much more text for basically the same procedure.
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On the other hand, we want to develop a method for completing character tables that is
as elementary as possible and at the same time applicable to other groups. We complete the
tables thanks to the construction of class functions orthogonal to the space of “uniform class
functions” (which arise from Deligne-Lusztig theory), or by direct computation of character
values at some problematic conjugacy classes. To do this, we will use the existence of regular
embeddings, which allow us to apply Clifford theory. We will also use Gel’fand—Graev characters
(and a modified version) and Harish-Chandra/Lusztig induction/restriction. These are all more
or less directly tied to the fusion of the unipotent conjugacy classes.

The Gel'fand-Graev characters are special class functions that by definition have distinct
values on some of those afore mentioned problematic conjugacy classes. We define modified
Gel’fand—-Graev characters in order to cover all problematic cases.

Finally, we remark that the determination of the generic character table for Sping (¢) was
already started by Geck and Pfeiffer in [GePf92]. In their work, they explicitly computed the
so-called unipotent characters for the group of rational points of a connected reductive group
of type D4 but with connected centre. This can be adapted to find the unipotent characters of

Sping (¢).

This thesis is divided in three parts. Part I contains a survey of the theory that we need
to define all objects we use and an outline of the applied methods. Then, in Part II and
Part III we explain the details of the computations made for the character tables of SL4(q)
and Sping (¢), respectively. We will give only a quick overview of the main results for Sping,
since the computations are mostly analogous to those made for SL;. We will however put
some emphasis on the passages where differences occur with the case of SL,. For example the
construction of the group Sping (¢) and the computation of the 2-parameter Green functions
need a special treatment, different from the one for SL4(q).

11









Part 1
Background theory

We introduce in this part of the theory all the tools needed for the computations in Parts II
and III.

In Section 1 we give the definition and properties of the finite groups of Lie type. In Sec-
tion 2 we recall some basics of representation theory of finite groups. In Section 3 we summarize
the results from representation theory of finite groups of Lie type which are interesting for us.
In Section 4 and Section 5 we introduce two essential objects for our computations. Respec-
tively, the 2-parameter Green functions and the modified Gel'fand—Graev characters. Finally, in
Section 6 we describe the method used to compute the character tables of SLy(¢q) and Sping (¢).

1 Finite groups of Lie type

The finite groups that we consider here are SL4(q) (Part II) and Sping (¢) (Part III), for odd
prime powers ¢q. Both belong to the family of finite groups of Lie type. In these cases they
are constructed as fixed points of some simply connected algebraic groups under an algebraic
group endomorphism. In this section we recall the relevant theory behind the construction of
finite groups of Lie type. References for this section are, for example, [Ca85, Chapter 1 and 2],
[GeMa20, Chapter 1], [Hu75] and [MaTell].

We start in Section 1.1 by giving the definition of connected reductive/semisimple algebraic
groups. In Section 1.2 we recall the definitions of root system and Weyl group of a connected
reductive group. In Section 1.3 we discuss isogenies of semisimple groups and define simply
connected groups. In Section 1.4 we give the definition of split BN-pair and its consequences
(Bruhat decomposition, Chevalley relations, ...). Finally in Section 1.5 we introduce Frobenius
endomorphisms and finite groups of Lie type.

Throughout this section we denote by K an algebraically closed field.

1.1 Connected reductive groups

As mentioned above, the objects considered in this work are (linear) algebraic groups, which
are affine algebraic varieties with a group structure. For details on the definition see [Ca85,
Chapter 1.1 an 1.2], [GeMa20, Chapter 1.1.1-1.1.3] or [MaTell, Chapter 1].

It is easy to characterize algebraic groups thanks to the following crucial result.

Theorem 1.1 ([MaTell, Theorem 1.7]). Let G be a linear algebraic group over K. Then G
can be embedded as a closed subgroup into GL,(K) for some n € N.

Two examples of linear algebraic groups are KT := (K, +), the additive group of K, and
K* = (K \ {0}, %), the multiplicative group of K.

Notation 1.2. From now on we say in short “algebraic group” for “linear algebraic group”.
For an algebraic group G, we denote by G° its connected component containing 1 € G. We
mention that G° is a closed normal subgroup of finite index in G ([MaTell, Proposition 1.13]).
See [MaTell, Chapter 1.3] for details about connectedness of algebraic groups.

It is important to distinguish two special types of elements in an algebraic group G. By Jor-
dan decomposition every element of GL(V') can be written as the product of two (commuting)
elements, one semisimple (i.e. diagonalizable) and the other unipotent (from linear algebra).
Thanks to Theorem 1.1, this property holds in any algebraic group.

14



Theorem 1.3 ([MaTell, Theorem 2.5], Jordan Decomposition). Let G be an algebraic group.

(a) For any embedding p of G into GL(V') (for some vector space V over K) and for any
g € G, there exist unique gs, g, € G such that g = gsg, = gugs, where p(gs) is semisimple
and p(gy) is unipotent.

(b) The decomposition g = gsgu = gugs 1S independent of the chosen embedding.

(c) Let ¢ : Gy — Gg be a morphism of algebraic groups. Then p(gs) = p(g9)s and ©(g,) =
2(9)u-

Definition 1.4. Let G be an algebraic group. The decomposition ¢ = gsg, = gugs of Theo-
rem 1.3 is called the Jordan decomposition of g € G. If g = g,, it is called semisimple, while if
g = g, it is said to be unipotent.

For any algebraic group G, we will denote by G,; its subset of unipotent elements.

Definition 1.5. Let G be an algebraic group. The radical of G, denoted by R(G), is the
maximal closed connected solvable normal subgroup of G. The unipotent radical of G, denoted
by R.(G) = R(G)uni, is the maximal closed connected normal unipotent subgroup of G.

Notation 1.6. Some important subgroups of a connected algebraic group G over K are the
following;:

e A Borel subgroup B is a maximal closed connected solvable subgroup.
e A torus T is a subgroup isomorphic to a product of copies of K*, T & K* x --- x K*.
e A parabolic subgroup P is a subgroup of G that contains a Borel subgroup.

e A Levi subgroup L of G is a Levi complement of a parabolic subgroup P of G, i.e. such
that P =L x R,(P).

We list some important properties of Borel subgroups and tori that we will use without
further mention. Let G be an algebraic group. Then:

e Any two Borel subgroups of G are conjugate ([MaTell, Theorem 6.4 (a)]).
e Any two maximal tori of G are conjugate ([MaTell, Corollary 6.5]).

e Any Borel subgroup B is the semidirect product T x B,,;, where T is any maximal torus
of B ([MaTell, Theorem 4.4 (b)]).

Assume moreover that G is connected. Then:

For any Borel subgroup B of G we have G = Uy,eeB? ([MaTell, Theorem 6.10]).
e Every semisimple element of G lies in a maximal torus ([MaTell, Corollary 6.11 (a)]).

e Every unipotent element of G lies in a closed connected unipotent subgroup ([MaTell,

Corollary 6.11 (b)]).

e The maximal closed connected unipotent subgroups of G are all conjugate and they are
of the form B, for some Borel subgroup B ([MaTell, Corollary 6.11 (c)]).

A crucial consequence of these properties is that we can choose a reference Borel subgroup
B of G and a maximal torus Ty < By of G. Then, every unipotent conjugacy class of G has a
representative in Uy = (Byg)un; and every semisimple conjugacy class of G has a representative
in Ty. Once this choice has been made, we will call Uy the unipotent subgroup of G.
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Definition 1.7. An algebraic group G is called reductive if R,(G) = 1. It is called semisimple
if it is connected and R(G) = 1. A semisimple algebraic group G # 1 is said to be simple if it
does not have non-trivial proper closed connected normal subgroups.

The groups that we consider in Part IT (SLy(K)) and III (Sping(K)) are both simple.

1.2 Root system, Weyl group and structure of connected reductive
groups

There is a rather precise description of connected reductive groups if we consider their associated
Lie algebras. The Lie algebra of a connected algebraic group is defined as being its tangent
space at the identity. The description of the adjoint action of a connected reductive group on
its Lie algebra says a lot on the structure of the group itself. It leads, among other results, to
the classification of semisimple groups. However, because here we are only interested in two
specific cases all this information would be overwhelming for the practical purpose of this work.
Instead, we decide to follow the more economical introduction from [DiMi20, Chapter 1].

Before continuing, we recall the definition of an (abstract) root system, an object that will
appear many times in what follows.

Definition 1.8. A subset ® of a finite-dimensional real vector space E is called a root system
in F if the following properties are satisfied:

e O is finite, 0 ¢ @, (P)r = F;

if ¢ € R is such that «, ca € @, then ¢ = £1;

for each a € ® there exists a reflection s, € GL(E) along « stabilizing ®;

for a, p € ®, s,(F) — B is an integral multiple of «.

The group W = W(®) := (s, | a € ) is called the Weyl group of . The dimension of E is
called the rank of ®.

A subset A C @ is called a base of ® if it is a vector space basis of E and any root € ®
is an integral linear combination g = Zae A Cav With either all ¢, > 0 or all ¢, < 0. The roots
a € A are called simple roots of . If A is a base of ®, then the subset

OREEES {ana|ca20}C®

a€cA

is called the system of positive roots of ® with respect to the base A, and its elements are called
positive roots.

By definition, a root system ® that generates a vector space F is finite and is stabilized by its
Weyl group W. Then, it follows that also W is finite. Moreover, W stabilizes a positive definite
W-invariant symmetric bilinear form of F, unique up to non-zero scalars on each irreducible
W-submodule of E. We assume that such bilinear form is chosen once and for all. Then, root
system ® with base A is called decomposable if there exists a partition A = Ay LI Ay, with
A1, Ay non-empty and orthogonal to each other. If such a decomposition does not exist, then,
if ® £ (), the root system is said to be indecomposable.

We recall that indecomposable root systems are classified by type and have an associated
Dynkin diagram.
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Theorem 1.9 ([MaTell, Theorem 9.6]). Let ® be an indecomposable root system in some real
vector space isomorphic to R™. Then, up to isomorphism, ® is one of the following types:

An (Tl > 1), Bn (Tl > 2), Cn (TL > 3), Dn (Tl > 4), Eﬁ, E7, Eg, F4, GQ.

In Parts IT and III we will encounter the types A;, A3 and Djy.
We introduce now the Weyl group of an algebraic group.

Definition 1.10. Let T be a torus.

Homomorphisms of algebraic groups x : T — K* are called characters of T. The abelian
group of characters of T is denoted by X (T).

Homomorphisms of algebraic groups v : K* — T are called cocharacters of T. The abelian
group of cocharacters of T is denoted by Y (T).

Notice that, given xy € X(T) and v € Y(T), the composition x o+ is a homomorphism from
K> to itself. The only homomorphisms of this type are given by x +— ™ for some integer n.
Then, the map (—, —) : X(T) x Y(T) — Z, (x,7) — n is a perfect pairing between X (T) and
Y (T) (which makes them dual to each other), see [MaTell, Proposition 3.6].

From now on, G denotes a connected reductive group and T a fixed maximal torus of G.
Moreover, we write X := X (Ty) and Y := Y (T)).

We recall next how, after choosing a reference maximal torus Ty of G, it is possible to
associate to G a root system ® and a finite Weyl group W relative to Ty. Note that these
definitions are independent of the choice of T.

Definition 1.11. The Weyl group W of a connected reductive group G is the (abstract) finite
group isomorphic to W(T) := Ng(T)/T for a maximal torus T of G.

Notice that the definition makes sense since all maximal tori are conjugate.

Notation 1.12. For w € W we denote by w a representative in Ng(Ty) with respect to the
reference torus Ty.

The Weyl group acts by definition as automorphisms of T. This action can be extended
to an action on both X and Y in the following way. Let w € W, x € X and v € Y, then for
t € Tgp and A € K* we have w(x)(t) := x(t¥) and w(y)(A) := v(A)¥. These two actions are
related by (x, w(v)) = (w(x), 7)-

On the other side, it is possible to identify a root system ® as a subset of X. Then, the
Weyl group W(®) of this root system is isomorphic to the Weyl group W(Ty). This comes
from the following theorem.

Theorem 1.13 ([DiMi91, 0.31 Theorem (i) and (ii)]). Let G be connected reductive and Tg
the reference torus.

(a) Non-trivial minimal closed unipotent subgroups of G normalized by Ty are isomorphic to
K™ the conjugation action of t € T is mapped by this isomorphism to an action of T
on Kt of the form x — «(t)x, where o € X.

(b) The elements a € X obtained in (i) are all distinct, non-zero and finite in number.
They form a root system ® in the subspace of X ® R that they generate. The group
W(Ty) = Na(Ty)/ Ty is isomorphic to the Weyl group of .

Definition 1.14. The elements o € X from Theorem 1.13 (i) are called the roots of G relative
to Ty. The set ® is called the root system of G (relative to Ty).

For every root a € ® C X there exists a coroot o € Y such that (o, ") = 2 and such
that @ is stable under the reflection s, : X ® R - X @ R,z — 2 — (z, a”)a. These a" are
called the coroots of G (relative to Ty), and they form a root system in Y ® R denoted by ®V.
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Definition 1.15. The one-dimensional unipotent subgroup of G corresponding to the root
a € ® as in Theorem 1.13 is denoted by U, and is called the root subgroup of G associated to
a.

The isomorphism of Theorem 1.13 (a) is denoted by u, : K™ — U, and is called root map.

These root subgroups are essential for the description of the structure of connected reductive
groups.

Theorem 1.16 ([DiMi20, Theorem 2.3.1 (iv)]). Let G be connected reductive and Ty the
reference torus. Any closed connected subgroup H of G normalized by To is generated by
(To NH)? and the U, it contains; in particular, G is generated by T and the U,.

It follows that Uy = [],ce+ Ua for a suitable choice of a base of the root system & relative
to To.
The multiplication law of a maximal unipotent group like Uy can be described thanks to

the so-called commutation relations of its root subgroups and root maps. A proof of which can
be found in [Hu75, Lemma 32.5].

Proposition 1.17 ([MaTell, Theorem 11.8],Commutation relations). Let ® be the root system
relative to a mazximal torus of a connected reductive group such that ® has a fixed total order
compatible with addition. Then, for o, 3 € ®T there exist integers Cop and a choice of root
maps such that

[ua(t), ug(s)] = Huw(cgg” "s™) forallt,s € K

where the product is over the positive roots of the form v = na+mpB € ®* for integers n,m > 0
(in the chosen ordering). We use the convention [z,y] = x 'y~ tay.

Although Theorem 1.16 already gives the structure of connected reductive groups, we give
a more explicit result that describes the structure of connected reductive/semisimple groups.

Theorem 1.18 ([MaTell, Theorem 8.17(g),(h) and Theorem 8.21(a),(b)]). Let G be a con-
nected reductive group, T the reference mazimal torus and ® the root system (of G relative to
Ty). Then:

(a) G=(Ty,U, | a € D).

(b) Z(G) = ep kero
Furthermore, if G is semisimple, then:

(c) G=(U,|acd).

(d) G =[G, G].

Recall that the rank rk(G) of an algebraic group G is the dimension of any of its maximal
tori. If G is reductive, its semisimple rank is rky(G) = rk(G/R(G)).

Corollary 1.19 ([MaTell, Corollary 8.22]). Let G be connected reductive. Then
G =[G, GIR(G) =G, G| Z(G)
in particular, tke(G) := 1k([G, G]) and rk(G) = rky(G) + dim Z(Q).
An important object in the representation theory of finite groups of Lie type is the centralizer

of semisimple elements. We have again an explicit description of its structure.

18



Theorem 1.20 ([MaTell, Theorem 14.2]). Let G be connected reductive. Let s € G be
semisimple, T < G a mazximal torus containing s with corresponding root system ®, and fix
the set ¥ :={a € ® | a(s) = 1}. Then:

(a) Ca(s)° =(T,U, | a € ¥).
(b) Ca(s) = (T, Uy, | a €V, we W with s* = s).
Moreover, Cg(s)° is reductive with root system ¥ and Weyl group W (s)° := (s, | a € V).

Notation 1.21. We denote by W(s) := {w € W | s¥ = s} the “Weyl group”! of Cg(s). The
group W (s)° is normal in W (s) and W(s)/W(s)° = Cg(s)/Ca(s)° ([DiMi20, Remark 3.5.2]).
From now on, we use the notation A(g) := Ag(g) := Ca(g)/Ca(g)° for g € G.

Remark 1.22. Recall that the Weyl group is finite and there are only finitely many root
subsystems W C &. Then, it follows from the proposition that there are only finitely many
distinct centralizers of semisimple elements of a connected reductive group, up to conjugacy

1.3 Classification and isogenies of semisimple groups
Semisimple algebraic groups are classified thanks to a combinatorial tool called the root datum.
Definition 1.23. A quadruple (X, ®,Y, ®V) is called a root datum if

e X =7"=Y with a perfect pairing (—, —) : X x Y — Z, for some n;

e & C X, ®V C Y are abstract root systems in Z® ®z R and Z®" ®7 R, respectively;

e there exists a bijection ® — ®V such that («, a¥) = 2 for all & € ®; and

e the reflections s, of the root system ® and s,v of ®" are given, respectively, by
sa(X) = x — (x, @Ya for all x € X, and s,v(y) =7 — (o, 7)o for all y € Y.

If (X,®,Y,®V) is a root datum, we call (Y, ®", X, ®) its dual root datum. More generally,
we say that two root data are dual if one of the root data is isomorphic (see definition below)
to the dual of the other root datum.

This definition is justified by the fact that for a connected reductive group the quadruple
(X(Ty),®,Y(Ty),®Y) is a root datum (see [MaTell, Proposition 9.11]), where ® is the root
system relative to the reference maximal torus Ty and ®" is the set of coroots as in Defini-
tion 1.14.

Definition 1.24. Two root data (X, ®,Y,®") and (X', ', Y’ ®"V) are said to be isomorphic
if there exist isomorphisms of abelian groups 0 : X — X’ and € : Y — Y’ such that:

o (0(x),e(7)) = (x,7) forall y € X and y € Y.
e §(P) =P and (V) = DV,
e c(a¥) =d(a)Y for all a € P.

Theorem 1.25 (Chevalley Classification Theorem, [MaTell, Theorem 9.13]). Two semisimple
algebraic groups are isomorphic if and only if they have isomorphic root data. For each root
datum there exists a semisimple algebraic group which realizes it. This group is simple if and
only if its root system is indecomposable.

!There is also a notion of Weyl group for disconnected groups, that we do not need explicitly here.
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It is possible to give a more precise description of semisimple groups with the same root
system by means of the fundamental group. First of all, define Q := Hom(Z®",Z). Second,
notice that, thanks to the perfect pairing (—, —), we can identify X = Hom(Y,Z). And, by
restriction, we get an injection Hom(Y,Z) — Hom(Z®",7Z). Then we have the inclusions
7P C X C Q (each of finite index). These are the ingredients for the next definition.

Definition 1.26. Let G be a semisimple algebraic group with root datum (X, ®,Y,®") and
Q) as above. Then the finite group A(G) := Q/X is called the fundamental group of G.
If X =Q (A(G) =1), then G is said to be simply connected, and is denoted by Gg.. If X = Z®,
then G is said to be of adjoint type, and is denoted by G,q.

A surjective homomorphism of algebraic groups with finite kernel is called an isogeny. Two
groups with such a morphism between them are said to be isogenous.

Notice that for connected reductive groups the kernel of an isogeny lies in all maximal tori.

Proposition 1.27 ([MaTell, Proposition 9.15]). Let G be semisimple with root system ®.
Then there exist natural isogenies

T T
G, — G —= Gy

from a simply connected group Gg. and to an adjoint group G,q, each with root system ®, with
ker(m ) = A(G),, ker(me) = (A(Gaa)/A(G)),, where p = char(K).

The various semisimple groups with the same root system ® in between G and G.q,
according to Proposition 1.27, are called the isogeny types corresponding to P.

Example 1.28. In Parts II and III, we consider, respectively, SLy(K) and Sping(K’). They are
both simple algebraic groups of simply connected type. SL4(K) is of type Az and Sping(K) is
of type D,. See [MaTell, Table 9.2].

1.4 BN-pair, Bruhat decomposition and Chevalley relations

An important property of finite groups of Lie type and of the connected reductive groups from
which they are constructed is their (split) BN-pair. This pair encodes structural information
about these groups, which is useful in practical computations. In what follows below, we recall
the definition of split BN-pairs and we list the properties that are used in Parts II and III.

Definition 1.29. Let G be any group. Two subgroups B and N are said to form a BN -pair
if the following axioms are satisfied.

e G= (B, N).
e H:=BNN is normal in N.
o W := N/H is generated by a set of elements s;, i € I, with s? = 1.

e If n; € N maps to s; € W under the natural homomorphism, then n;Bn; # B.

For each n € N and each n; we have n;Bn C Bn;nB U BnB.

The group W is called the Weyl group of the BN-pair.
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The Weyl group of a BN-pair is a Coxeter group, see [Ca85, Proposition 2.1.7], but this
fact is not used explicitly in the rest of this work and will not be discussed any further.

Let G be a group with a BN-pair. Then G = BNB ([Ca85, Proposition 2.1.1]). This
decomposition can be described more precisely. The double cosets BnB, Bn'B € BNB are
equal if n and n’ represent the same element of W = N/H in N ([Ca85, Proposition 2.1.2]).
Then, this implies that the group has a decomposition

G = HBwB

wew

where w € N denotes a representative of w € W. It is called the Bruhat decomposition of G.
It is possible to define a notion of parabolic subgroups of a group with a BN-pair by
considering subgroups of the Weyl group .

Definition 1.30. Let J be a subset of the index set I. Let W, be the subgroup of W generated
by the elements s; with ¢ € J and let N; be the subgroup of N satisfying N;/H = W;. Then
the subgroup P; := BN, B is called a standard parabolic subgroup of G. A parabolic subgroup
of G is a subgroup conjugate to P; for some J C I (this is well-defined by [Ca85, Proposition
2.1.6]).

The definition of BN-pairs can be specialized to split BN-pairs for algebraic groups.
Definition 1.31. The algebraic group G has a split BN -pair if it satisfies the following axioms:
e G has closed subgroups B and N which form a BN-pair.

e B=HxX U, where H:= BN N is a closed commutative subgroup of semisimple elements
and U is a closed normal unipotent group.

° ﬂ nBn~! = H.

neN

Analogously, for finite groups we define split BN-pairs of characteristic p.

Definition 1.32. A finite group G is said to have a split BN-pair of characteristic p if the
following conditions hold:

e (G has subgroups B, N which form a BN-pair.

e B = H x U, where U is a normal p-subgroup of B and H is an abelian subgroup of order
prime to p.

e (| nBn'=H.
neN
Remark 1.33. Notice that any finite group can be seen as an algebraic group (see discussion
at the end of Chapter 1.2 of [MaTell]). It follows that a finite group with a split BN-pair of
characteristic p can be seen as an algebraic group over an algebraically closed field of charac-
teristic p with a split BN-pair (according to Definition 1.31). Then, Definition 1.31 includes
both the case of connected reductive groups and the finite groups of Lie type that we construct
in the next section.

We list now some properties of algebraic groups with BN-pairs that are useful for the
computations in Parts IT and III. But, first we fix some notations.
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Notation 1.34. For the remainder of this section, G denotes an algebraic group with a split
BN-pair formed by B and N. It has Weyl group W := N/H generated by elements s; indexed
by ¢ € I, where H := B N N. We denote by wy the element of maximal reduced length of
W (this exists and is unique by [Ca85, Proposition 2.2.11]) and for every w € W we denote a
representative in N by w.
We define the following subgroups of G:
U™ :=U"%, U;:==UnU™% U_; :=U;

7 )

and U, := UnN U,

fori e I and we W.
For a subset J C I, we denote by ®; the root subsystem of ® with base A; = {o; | i € J}
(and Weyl group W;). We denote by (wg), the element of W, of maximal reduced length.

Proposition 1.35 ([Ca85, Proposition 2.5.1]). U is a mazimal unipotent subgroup of G.

For split B N-pairs it is possible to refine the Bruhat decomposition by adding a “uniqueness
of expression” statement.

Theorem 1.36 ([Ca85, Theorem 2.5.14], Sharp form of the Bruhat decomposition). Fach
element of G is uniquely expressible in the form

whtuy,
wherew e U, he H, w € W and u,, € U,,.

Proposition 1.37 ([Ca85, Proposition 2.5.15]). The set of subgroups wUw ™" for w € W and
v € I 1s in bigective correspondence with the set ® of roots. The root corresponding to the
subgroup wU;w ™! is w(a;).

If w(c;) = «, we denote the root subgroup wU;w ™! by U,.

Proposition 1.38 ([Ca85, Corollary 2.5.17]). U = [] .4+ Ua with uniqueness, if the positive
roots are taken in any fized order in the product.

We turn now to properties of standard parabolic subgroups and standard Levi subgroups
of groups with split BN-pairs.
For each subset J C I define the subgroup L; of G by L, := (H,U, | a € ®,).

Proposition 1.39 ([Ca85, Proposition 2.6.3]). The group L has a split BN -pair corresponding
to subgroups By := Uy, H and N, where N; < N is such that N;/H = W.

Our aim is to apply the results on BN-pairs to connected reductive groups. For the re-
mainder of this Section we choose a total ordering of ®* such that the subgroups U,, for
a € T, follow the commutation relations of Proposition 1.17. This is needed to discuss the
Levi decomposition of standard parabolic subgroups.

Proposition 1.40 ([Ca85, Proposition 2.6.4]). Let G be an algebraic group with a split BN -
pair which satisfies the commutator relations. Let Uy := U N UM Then U, is a normal
subgroup of the standard parabolic subgroup P;, P; =U;L; and U;NL; = 1.

Definition 1.41. The decomposition U;L; of the standard parabolic subgroup P is called
its Levi decomposition and L is called a standard Levi subgroup of G. A Levi subgroup of P
is a P j-conjugate of L.
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The parabolic/Levi subgroup structure of G is well behaved with respect to inclusion. Since
any Levi subgroup of an algebraic group with a split BN-pair is itself an algebraic group with
a split BN-pair, it is possible to relate parabolic/Levi subgroups of a Levi subgroup to those
of G.

Proposition 1.42 ([Ca85, Proposition 2.6.6]). The standard parabolic subgroup of Ly corre-
sponding to the subset J' C J is Py N Ly.

Proposition 1.43 ([Ca85, Proposition 2.6.7]). The mazimal normal unipotent subgroup of
P, NL; s Uy NLy. The standard Levi subgroup of Py N Ly is L.

Notation 1.44. The Weyl group of G is generated by a subset of involutions S indexed by a
set I and corresponding to the simple roots A. We use interchangeably the notations for P,
L, and W; with J a subset of the index set I, a subset of S or a subset of A.

Every result in this section is valid for any connected reductive (and therefore also any
semisimple) group.

Proposition 1.45 ([MaTell, Theorem 11.16]). Let G be a connected reductive algebraic group
with Borel subgroup B and N := Ng(T) for some mazimal torus T < B. Then B and N form
a BN -pair in G whose Weyl group is equal to that of G.

It is important to notice that Levi subgroups of a connected reductive group are themselves
connected and reductive, see [MaTell, Proposition 12.6].

Corollary 1.46. Connected reductive groups have a split BN -pair (the same pair as in Propo-
sition 1.45).

Proof. For connected reductive groups, B = T x B,; holds. Thus we only need to prove that
N nBn ! =T.

neN
We fix a base of the root system ® of G relative to T and we denote the subsets of positive

roots and negative roots by ®* and ®~, respectively. Then we have two Borel subgroups
BT =T ][ co+ Ua and B~ = T - [] .o Uqa. It easy to see that B N B~ = T. Moreover,
BT and B~ are conjugate by wy € N, since wo(®1) = &~ (see [MaTell, Corollary A.23]) and
because for all & € & we have that WU w™! = Uy(a) for all w € W. This last statement can
be seen explicitly on the root maps:

Fixte K, we W and h € T. Then for all & € ® we have

Rty () th™t = b ua ()N 1™ = dug(a(h) )™t

where b/ = h¥ € T.

Now, by [Ca85, Proposition 3.1.2(ii)] the group Y (T) ® K* is isomorphic to the torus T.
This means that we can find a cocharacter v € Y(T) and ¢ € K* such that h = y(c¢). Then
we obtain a(h’) = a (y(c)?) = a(w(y)(c)) = >0 = @0 = w(a)(y(c) = w(a)h).
Plugging this back in, we see that “U, = Uy q). [

We are now interested in describing more precisely the elements of semisimple groups. One
important information used in the computations of Parts II and III is the fusion of unipotent
classes of a semisimple group. By fusion of unipotent classes we mean identifying for each
unipotent conjugacy class of a maximal unipotent subgroup U of the group G to which con-
jugacy class of G they belong, i.e. for any unipotent element v € G find those unipotent
conjugacy classes uP of U such that [JuY = v% NU.
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This implies that we need to be able to conjugate unipotent elements by arbitrary elements
g € G. Due to the sharp form of the Bruhat decomposition (Theorem 1.36), we can write

g = Uty

for uniquely determined v € Uy = R,(By), t € Ty, w € W = Ng(Ty)/Ty and u,, € U, =
Ug’ow (for our choice of a reference BN-pair, By, Ny and maximal torus Ty < By).

In other words, to effectively describe all the elements of G we need to explicitly express
the elements of Uy, of the torus Ty and representatives of the simple reflections of W. Also,
we need to know how they act (by conjugation) on each other.

Fortunately, semisimple groups are generated by their unipotent elements (Theorem 1.18
(c)). Thus, it is possible to write down elements that generate the BN-pair. These are called
Chevalley generators of G, and the relations between them are called the Chevalley relations.

These generators and relations are summarized in [GLS98, Theorem 1.12.1] and they are
treated in detail in [CaT72, chapter 12.1].

Notation 1.47 (Chevalley generators). Let G be a semisimple group with split BN-pair B,
N and root system ®. Denote by T the maximal torus B N N, by U the maximal unipotent
subgroup of B and by W = N/T the Weyl group.

For every root o € ® we define the root maps u, : K™ — U, as in Definition 1.15. Then,
we define maps n, : KX — N by ny(t) := ua(t)u_o(—t " )uy(t) and define maps h, : K% — T
by ha(t) := na(t)ne(—1) for all t € K* (which are cocharacters). Moreover, we define elements
Ne = Na(1).

Then, as shown in the proof of [Ca72, Theorem 12.1.1] we have T = (h,(t) | a € &, t € K*)
and N = (T, n, | @ € ®). Furthermore, for each root a € ® we have n,T = s, € W where s,
is the reflection relative to the root a.

Remark 1.48. A semisimple group G = (U, | a € ®), with root system ® and generated by
its root subgroups, is actually generated just by the subgroups corresponding to a particular
base A of ¢, ie. G = (U, | a € £A).

This follows from the facts listed below:

e for all roots @« € ® and w € W we have *U, = U(a) (seen above in the proof of
Corollary 1.46);

e for every root § € @ there exist & € A and w € W such that § = w(«a) (see [MaTell,
Proposition A.11]); and

e every element of W is a product of the simple reflections s,, a € A.

Then, we have

G = (un(t) | € £A, t € K),
T = (ha(t) | € A, t € K¥),
(T, ng | @ € A).

N

Now, the Chevalley relations that we use are given by
e the commutation relations [uq(t), ug(s)] = [[ u,(chft"s™) as in Proposition 1.17;
o u, (1)) = uy(s80t) for a, f € P and t € K, s € K*;

® Uy (t)" = Ugy(a)(Capt) for a, B € ® and t € K, where c,p are signs independent of ¢;
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® 11o(8)" = hyya)(s) for a, B € @ and s € K*.

Notice moreover that for a simply connected group we have [ A ha(ta) =1 if and only if
to, = 1 for all « € A.

It is clear that knowing all the values of ¢{7' and c,p is equivalent to knowing the multi-
plication law of the whole group. These constants must be computed case by case by finding
a suitable (faithful) representation of the group. Once the Chevalley relations have been ex-
plicitly computed with the chosen representation, it is possible to carry out any computation
in G with the use of the Chevalley generators and relations in the form of u,, h, and n,
without having to use the underlying representation. The Chevalley generators together with
the Chevalley relations are called the Steinberg presentation of G (compare this with [DiMi20,
Theorem 2.4.11}).

Every computation made in Parts II and III is expressed in the Steinberg presentation. The
use of a Steinberg presentation makes it easier to write results of computations in a clearer
way. On one side it avoids having matrices laying around in the text, and on the other side it
underlines the “structure” of the elements (unipotent part, semisimple part, ...).
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1.5 Steinberg maps and finite groups of Lie type

We can now discuss the finite groups of Lie type. We construct these here as fixed points of
a connected reductive group under a certain map called Steinberg endomorphism. For this
section we use [GeMa20, Chapter 1.4] and [MaTell, Chapter 21| as references.

We first need to introduce some basic definitions (which are valid more generally for affine
varieties).

Definition 1.49. Let X be an affine variety over K = F,, for some prime power q. We say
that X has an F-rational structure (or that X is defined over F,) if there exists some n > 1
and an isomorphism of affine varieties ¢ : X — X’ where X' C K" is Zariski closed and stable
under the standard Frobenius map

Fq:Kn%Km (£1vagn)'_>(£;177§gl)

In this case, there is a unique morphism of affine varieties ' : X — X such that 1o F' = F, o;
it is called the Frobenius map corresponding to the F,-rational structure of X.

Notice that F is a bijective morphism with a finite number of fixed point (by elementary
Galois theory). It follows that F is a bijective morphism such that X := {x € X | F(z) = z}
is finite.

These definitions are easily adapted to algebraic groups. We take an algebraic group G such
that, as an affine variety, it is defined over [F, with corresponding Frobenius map F'. Then, we
say that G (as an algebraic group) is defined over F, if F' is a group homomorphism. In this
case, the set of fixed points G is a finite group (since group homomorphisms commute with
inversion and multiplication).

Thanks to Theorem 1.1 it is possible to give a more concrete description in terms of matrices,
for algebraic groups. The morphism

Fy: GL,(K) = GLy(K), (ai) = (af;)

is called the standard Frobenius map of GL,(K) for n € N. An algebraic group G is defined
over F, if and only if for some n there is a homomorphism of algebraic groups i : G — GL,(K)
which is an isomorphism onto its image and such that i(G) is F;-stable. Then, a corresponding
Frobenius map F : G — G is again defined by i o F' = F, 04, and G is a finite group.

This construction can be generalized to account for some finite groups (called the Ree
and Suzuki groups) that are excluded when considering only Frobenius maps. Although these
groups are not treated here, the majority of results that we state in these pages are true in the
more general case. Then, we discuss the general case for completeness.

Definition 1.50. Let F': G — G be an endomorphism of algebraic groups. Then F' is called
a Steinberg map if some power of F'is a Frobenius map of G. Note that, in this case, F' is a
bijective homomorphism of algebraic groups and G is a finite group. If G is connected and
reductive, then G is called a finite group of Lie type or a finite reductive group.

We will see that for a connected reductive group G with a split BN-pair and a Steinberg
endomorphism F' related to its F-structure, the finite group G¥ inherits some of the structural
properties of G. For instance, not only both G and G* have split BN-pairs but these are
tightly related by F'.

A crucial tool that we need to understand the relation between the structures of G and G¥
is given in the following theorem.
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Theorem 1.51 ([MaTell, Theorem 21.7], Lang-Steinberg). Let G be a connected algebraic
group over F, with a Steinberg endomorphism F. Then the morphism

Z:G =G, g~ g 'F(g)
18 surjective.

The morphism .Z of the theorem is called the Lang map.
Before discussing the BN-pairs in finite groups of Lie type we list some important conse-
quences of the Lang—Steinberg theorem.

Definition 1.52. Let GG be a group and ¢ a group automorphism of G. Two elements g1, g» € G
are said to be o-conjugate if there is an element z € G such that go = o(x)gz™'. The
equivalence classes for this relation are called o-conjugacy classes of G (or just o-classes of G).
The set of o-conjugacy classes of G is denoted by H' (o, G).

Proposition 1.53 ([GeMa20, Proposition 1.4.9] and [MaTell, Theorem 21.11]). Let G be a
connected algebraic group with Steinberg map F. Let X # @& be an abstract set on which G
acts transitively; let F' : X — X be a map such that F'(g.x) = F(g).F'(x) for all g € G and
reX.

(a) There exists some xg € X such that F'(xy) = xo.

(b) Ifxg is as in (a) and if Stabg(z9) C G is closed and connected, then {x € X | F'(x) = x}
is a single G -orbit.

More generally we have:

(c) If Stabg(x) C G is closed for some x € X, then for any x € X' there is a natural 1-1
correspondence:

{GT-orbits on X'} < {F-classes in Stabg(x)/Stabg(z)°}.

If we set X = G (with the action given by conjugation and F’ = F’) in this Proposition we
gain important information on the F-stable conjugacy classes of G. Let us see this explicitly.

Let G be a connected algebraic group with Steinberg map F and let C' be an F-stable
conjugacy class of G. Then G acts transitively on C' by conjugation and we can apply the
proposition above with X = C and F’ = F. In this case, the stabilizer of an element is its
centralizer. Notice that centralizers in algebraic groups are always closed subgroups (see [Hu75,
8.2 Proposition (b)]). It follows that there is a representative ¢ € C' such that F'(¢) = ¢ and if
Cg(c) is connected, then CF is a single G¥'-class. Otherwise, if the centralizer is not connected,
the number of G¥-classes contained in C'is |H' (F,Cg(c)/Cga(c)°)|.

In what follows we say that the class C' splits into |H' (F, Cq(c)/Ca(c)®) | classes of GT'.

Another important consequence of Proposition 1.53 for a connected reductive group G is
that all pairs (T, B) are G¥-conjugate, where T and B are respectively an F-stable torus and
an F-stable Borel subgroup of G containing T (see [GeMa20, Proposition 1.4.12]). An F-stable
torus contained in an F'-stable Borel is called mazimally split. Notice that maximally split tori
exist by Proposition 1.53 (a).

Usually at this point, in the literature, one restricts the action of the Steinberg map to a
maximal torus which in turn defines an action on the character and cocharacter groups of the
torus. This is used to classify the finite groups of Lie type. Since neither this classification nor
the methods to get it are explicitly used in the rest of this work, we just give a quick description
of how to obtain it, in order to fix the notation used later. Details can be found in [MaTell,
Chapter 22| and [Ca85, Chapters 1.18 and 1.19].
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Let G be a connected reductive group with a Steinberg map F' and T a maximally split torus
contained in an F-stable Borel subgroup B. The action of F' on the characters and cocharacters
of T is given by F(x)(t) :== x(F(t)) and F(y)(c) :== F(v(c)) for x € X(T), y € Y(T),t e T
and ¢ € K*. At the same time, F' induces a permutation p of the positive roots of G relative to
T due to its action on the root subgroups (these are subgroups of an F-stable Borel subgroup).
We have F'(U,) = U, for every positive root . Recall that roots are characters. Then, these
two actions are related by the fact that F(p(«)) is a positive multiple of & € ®*. Whenever
G is simple, and not of type By, Fy or Gy with char(K) = 2,2, 3, respectively?, the action of
F' is given more explicitly on root maps by F(us(c)) = upa)(aac?) with ¢,a, € K* and on
X(T) ®z R by F = q¢, where ¢ is a power of char(K), and ¢ € Aut(X(T) ®z R) induces p~*
on ¢,

It turns out that the Steinberg maps can be classified for simple algebraic groups in terms
of ¢ and p, see [MaTell, Theorem 22.5, Proposition 22.7 and Example 22.8].

We fix some definitions/notation used later, related to the discussion above.

Definition 1.54. A Steinberg endomorphism F' of a connected reductive group G that acts as
¢id on X (T) is said to be F,-split. Otherwise it is called twisted. In this case, we also say that
the finite group of Lie type GF is twisted.

Notation 1.55. Let G be a simple algebraic group with a Steinberg endomorphism F' inducing
a graph automorphism of order § on the Dynkin diagram (such that F° = ¢°id on X (T) ®zR).
If the root system of G is of type R, we denote G¥' also by °R(q) (if 6 = 1 we simply write
R(q).

More generally, we use a similar notation for connected reductive groups. If the root system
has connected components Ry, ..., R, on which F acts trivially, we denote the group G¥ by
Ri(q) - ... - Ry(q) - |Z°F|. If F doesn’t act trivially on the root system, the notation is easily
adapted, for example if I interchanges the roots in A; x A; we denote G by A;(¢?).

In what follows we encounter (and explicitly construct), for example, D4(q), As(q)(¢ — 1),
243(¢q)(¢ + 1) and A;(q)*(¢*> — 1) (as Levi subgroups of Dy4(q)). Of course, this notation can
be misleading since the isogeny type is not evident. However, here, we are only interested in
explicit computations with simple groups of simply connected type. Therefore, it will always
be clear what finite group we are talking about.

The various possibilities for finite groups of Lie type constructed from a simple algebraic
group are described in [MaTell, Chapter 22.2] and in [Ca85, Chapter 1.19].

Before continuing the discussion about BN-pairs in finite groups of Lie type, we introduce
some signs depending on the rational structure of G. These signs appear frequently in the
character theory of finite reductive groups.

Definition 1.56. Let T be an F-stable maximal torus of G. Let g¢ be the map of X (T)®zR
induced by F', with ¢ € Aut(X(T) ®z R). Then, the relative F-rank of T is defined as the
dimension of the g-eigenspace of ¢¢ on X (T) ®z R. We set

. relative F-rank of T
ET = (—1) .

If Ty is our reference maximally split torus of G we call the relative F-rank of G the relative

F-rank of Ty, and we set g := e1,. Analogously, we call semisimple F-rank of G the relative
F-rank of [G, G| and we set

L semisimple F-rank of G
ne == (—1) :

2We are not interested in these cases here.
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Finally, we describe the BN-pair in finite groups of Lie type and their consequences.

Proposition 1.57. Let G be a connected reductive group with a Steinberg map F and Weyl
group W . There exist F'-stable subgroups B, N of G that form a split BN -pair. Furthermore,
B, N¥ is a split BN -pair of the finite reductive group G¥ with Weyl group WF.

Proof. By Proposition 1.53 there exists a maximally split torus T contained in an F-stable
Borel subgroup B. The subgroup N = Ng(T) is also F-stable since for all n € N we have
F)T = P("T) = F(T) = T. It follows that B and N form an F-stable split BN-pair of G
by Proposition 1.45 and Corollary 1.46.

By [MaTell, Theorem 24.1], G inherits the Bruhat decomposition (sharp form) of the
split BN-pair of G.

Then, it is proved in [MaTell, Theorem 24.10] (with the help of the Bruhat decomposition)
that BY and N* form a BN-pair of G with Weyl group W'

Next we have, by [MaTell, Corollary 24.11], that Bf = T x U (where U = R, (B)).

To conclude, we need to show that (1), .nr nBfn~! = TF. First, notice that T is normal
in N¥, so we have the inclusion T C (N, e nBf 071

We set B~ := B"° and we denote by ® the root system of G relative to T. The Borel
subgroup B~ is F-stable since B =T - Hae¢+ U,and B =T - Haeq), U, and we have seen
that F' permutes the positive roots, then analogously F' permutes the negatives roots.

We saw (in the discussion after Proposition 1.53) that pairs (T, B’) of F-stable tori and
Borel subgroups are Gf-conjugate. In particular, (T, B) is G¥-conjugate to (T,B~). Clearly
they are actually N¥-conjugate. Finally, we get

(] »B"n ' <B"N(B")"=BnB)" =T
neN¥

]

This result shows that finite reductive groups have a natural structure of parabolic/Levi
subgroups. The precise way Levi subgroups are described makes them invaluable in the rep-
resentation theory of finite reductive groups. We will see in Section 3 how we can “induce”
irreducible representations of Levi subgroups and relate them to irreducible representations of
the whole group.

An important consequence of Proposition 1.57 is that the sharp form of the Bruhat decom-
position gives a practical way of counting elements of finite groups of Lie type. Therefore, it is
possible to compute the order of finite groups of Lie type (see discussion in [MaTell, Chapter
24.1]). A list of orders of finite groups of Lie type can be found in [MaTell, Table 24.1].

A question that arises naturally is how the Chevalley generators/relations change from the
connected reductive group G to the finite reductive group G¥'. By identifying F-stable subsets
I of the generating set S C W, it is possible to explicitly write the structure of the root
subgroups of G in terms of those of G. The theory behind these structures can be found in
[MaTell, Chapter 23] and is not used explicitly in what follows, so we do not expand on it
here.

A list of consequences/properties of the BN-pair of finite groups of Lie type (constructed
from simple algebraic groups) can be found in [GLS98, Chapter 2.4]. In particular Theorems
2.4.1,2.4.5, 2.4.7 and 2.4.8 give Chevalley generators for the finite group and their relations.
However, we are mainly interested in the case where F'is a Frobenius morphism that has trivial
action on the root system. Then G inherits the Chevalley generators /relations of G, by simply
restricting the field of definition to F,,.

We end this section with some remarks about F-stable subgroups (Levi subgroups and
tori) and the computation of fixed points of connected algebraic groups under the action of a
Steinberg endomorphism F'.
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Proposition 1.58 ([GeMa20, Lemma 1.4.14]). Assume that G is a connected algebraic group
and let F : G — G be a Steinberg map. Lety € G and define F' : G — G by F'(g) = yF(g)y™*
for all g € G. Then F' is a Steinberg map and we have GF = GF'. Furthermore, if F is a
Frobenius map corresponding to an F,-rational structure, then so is I (with the same q).

This result can be useful when doing explicit computations with elements of finite groups
of Lie type. It might be easier in some cases to find fixed points under a certain F” as in the
proposition than with F'. For example, the finite general unitary groups are classically defined
as being the fixed points of a general linear group under an endomorphism F which is the
composition of a standard Frobenius map, the transposition map and the inverse map. In this
case, the subgroup of upper triangular matrices is not F-stable. However, it is F’-stable if F’
is the composition of F' and the conjugation by a matrix which has ones on the anti-diagonal.
Then, Proposition 1.58 allows one to choose how to realize the finite general unitary group.
This fact will be used later in Part III since the special unitary group SU4(q) can be realized as
a subgroup of the finite spin group Sping (¢) (to be more precise it is isomorphic to the derived
subgroup of a Levi subgroup of Sping (¢) of type 243(q)).

Next, we consider a crucial remark on the construction of Levi subgroups and tori of finite
groups of Lie type.

Let G be a connected reductive group with Weyl group W, generated by the set S of simple
reflections, and let F' be a Steinberg endomorphism of G. We choose a reference maximally
split torus T contained in a reference F-stable Borel subgroup By of G.

We know that every maximal torus T of G is conjugate to T by a certain element g € G,
i.e. T =9Ty. It is easy to prove that this torus is also F-stable if and only if ¢g~'F(g) € Ng(Ty)
([Ca85, Proposition 3.3.1]). In this case, there is an element w € W such that ¢g7'F(g) = w
and we say that T is obtained from Ty by twisting with w or that T is of type w. To make this
explicit we will denote it by T,,.

A general description exists for Levi subgroups (tori are a special case of Levi subgroups).
We first make some basic remarks about parabolic and Levi subgroups.

By definition, for any parabolic subgroup P of G there exist an element ¢ € G and a
subset I C A such that P = 9P for the standard parabolic subgroup P; of G (containing By).
Conversely, for any I C A and g € G the subgroup 9P; is parabolic (it is closed and contains
the Borel subgroup 9By).

We have the Levi decomposition P; = L; x U; where L; is the standard Levi subgroup
of G associate with I and U; = R,(P;). Therefore, we also have the Levi decomposition
P =9P; =9L; x9U; and L := 9L; is a Levi subgroup of G containing the maximal torus 9T.

We can now classify the F-stable Levi subgroups of G in terms of combinatorial data. For
every F-stable Levi subgroup L there are ¢ € G and I C S such that L = 9L;. Moreover,
T = 9T is a maximal torus of L obtained by twisting with w (w = ¢g7'F(g)). In particular T
is F-stable. We have "9 F(L;) = F(L) = L = 9L;. Since L; is generated by the F-stable torus
T, and the root subgroups U, for a € I, it follows that F(L;) = Lp(;), and for any subset
J € S we have “Lj = Ly, (). Then, gathering these properties we see that a Levi subgroup L
is F-stable if and only if L,y = Ly (for I and w defined as above).

Every F-stable Levi subgroup determines a pair (/,w) with / C A and w € W such that
wF(I) = 1. We say that L is a Levi of type (I, w).

It follows from this discussion that there is a bijection between G¥-conjugacy classes of
F-stable Levi subgroups and equivalence classes of pairs (I, w). Two pairs (11, w;), (I, ws) are
equivalent if and only if there is x € W such that xI; = Iy and zw; = woF(x).

It follows that for an F-stable Levi of type (I, w) we have L = L where F/ = w o F and
the isomorphism is given by the conjugation with ¢ € G such that ¢g7'F(g) = w. In fact, we
know that L = 9L; which implies that for any I’ € L there exists an [ € L; with I’ = 91. So,
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9 =1 = F(l') = F(9) = PO F(I) which is equivalent to | = wF (I)w~". In particular, for any
F-stable maximal torus T of G we have that T = T}".

This is crucial when determining elements explicitly in a twisted Levi subgroup (or twisted
torus). Normally, it is much easier to describe L than L and the element w € W can easily be
computed thanks to the GAP part of CHEVIE [MiChv] (with the commands Twistings and
TwistingElement).

Definition 1.59. If an F-stable Levi subgroup is contained in an F-stable parabolic subgroup
of G we say that it is F-split, otherwise it is called a twisted Levi subgroup.

We end this section by stating an important result on the centre of finite groups of Lie type.

Proposition 1.60 ([Ca85, Proposition 3.6.8]). Let G be a connected reductive group and F a
Steinberg map. Then
Z(GF) = Z(G)*F.

1.6 Regular embeddings

We describe in Section 3 the character theory of finite groups of Lie type. It turns out that the
theory is much richer for connected reductive groups with connected centre.

We are only interested in the case of simply connected groups with disconnected centre.
Regular embeddings provide a way to associate any connected reductive group with discon-
nected centre to another connected reductive group but with connected centre, and to relate
the representation theory of the two groups.

The reference for this section is mainly [GeMa20, Chapter 1.7].

Definition 1.61. Let G, G be connected reductive algebraic groups over K = [F, and
F:G—>5G,F:G—Gbe Steinberg maps. Let i : G — G be a homomorphism of algebraic
groups such that io F = F oi. We say that i is a reqular embedding if G has connected centre,
i is an isomorphism of G with a closed subgroup of G and if the derived subgroups of G and
i(G) are the same.

Remark 1.62. By definition |G, G] C i(G) and therefore i(G) is normal in G and the quotient
G/i(G) is abelian.

It follows that the finite group i(G¥) = i(G)F also contains the derived subgroup of G
Again i(GF) is normal in G with abelian quotient GF /i(GF). This means that we can apply
Clifford theory to relate characters of G and GF.

There is an explicit description of how to build regular embeddings (which also proves their
existence), that is given in [GeMa20, Lemma 1.7.3].

Example 1.63. We are interested in two cases.

When G = SL4(K) we can choose G = GL4(K). Although it is easy to embed SL4(K)
as a subgroup of GL4(K), via their matrix representation, an explicit regular embedding is
given in [GeMa20, Example 1.7.2]. For F such that G = SL,(g) we have G¥ = GLy4(q)
and GL4(q)/SL4(q) = F (this is clear from the explicit form of the regular embedding from
[GeMa20, Example 1.7.2 (b)]).

For G = Sping(K), the group G is explicitly constructed in [GePf92]. In this case, if F is
a Frobenius map such that G = Sping (¢), then by [GeMa20, Proposition 1.7.5 (a)] we have a
surjective map GF/i(GF) — Z/27 x Z./27 if q is odd.

In both cases, we are not using explicitly the group G but just the fact that it exists for
the computations in Parts IT and III.

31



We will need to know how G acts (by conjugation) on G¥'.

Remark 1.64. Clearly, the centre Z" of G acts trivially on G¥. By [GeMa20, Remark 1.7.6]
we have i i

GI/GF.2" =~ HY(F, Z(G)).
Recall that H'(F, Z(G)) denotes the F-classes of Z(Q).

It is possible to define an action of H(F, Z(G)) on G¥'. We follow [Bo00, Section 1.8]. For
every z € H'(F, Z(G)) we choose an element g, € G such that g;'F(g,) € Z(Q), representing
z. It is easy to see that g, normalizes G¥'. Therefore we can define the action of z on G by
the conjugation with g,. This is well defined up to an inner automorphism of G¥'. To prove
this statement we compare two different elements g,, m, € G such that both m_!F(m,) and
9. F(g,) represent a € H'(F, Z(G)) in Z(G). Then, by definition there exists z € Z(G) such
that

mg F(ma) = F(2)g, " Flga)2™" & mg F(ma) = (9a2) " F(ga2).

Finally, it follows the existence of an element g € G for which m, = gg,z.

One of the most important results, for the present work, on regular embeddings concerns
the restriction of characters (here stated with modules), and it is due to Lusztig.

Theorem 1.65 (Lusztig, [GeMa20, Theorem 1.7.15], Multiplicity-Freeness Theorem). Let i :
G — G be a reqular embedding and K be any algebraically closed field. Then the restriction of
every simple KGT -module to GT' (via i) is multiplicity-free.

1.7 Dual group and geometric conjugacy

For this section, G is a connected reductive group and F' a Steinberg map.

An important property of Irr(G)3 is to be partitioned in a way that the irreducible char-
acters of GI" are classified in terms of semisimple conjugacy classes of another group, called the
dual group of G.

We define here the dual of G and its relations with G. The reference for this section is
[Ca85, Chapter 4].

Definition 1.66. Two connected reductive groups are said to be dual to one another if their
root data are dual.

Notice that, up to isomorphism, each connected reductive group G has a dual group (by
Theorem 1.25). It is denoted by G*.
We are interested in defining duality of groups in relation to a certain rational structure.

Definition 1.67. Let G and G* be connected reductive groups with respective Steinberg maps
F and F*. We say that the pairs (G, F') and (G*, F*) are in duality if there are maximally
split tori To € G and T{ C G* such that the root data (X(Ty),®,Y(Ty),®") of G and
(X(T§), @*,Y(Ty), V) of G* are dual and, additionally, if the isomorphism ¢ : X(Ty) —
Y (T§) given by the isomorphism of root data (see Definition 1.24) is such that §(F(x)) =
F*(6(x)) for all x € X(Ty).

The duality relation allows us to study many important properties of G and G by con-
sidering related structures in the dual group. In the present work, we are mainly interested in
using duality to study geometric conjugacy which is the object of the next definition.

For some n > 0, we denote the norm map of an F-stable maximal torus T of G by Ngn/p,
it is defined by

Npwjp: T = T, t = tF()F(t)... F*71(t).

3We recall the definition of Irr(G), for a finite group G, in the next section.
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Definition 1.68. Let T, T' be F-stable maximal tori of G and 6 € Irr(TY), ¢ € Irr(T'F). We
say that the pairs (T, 8), (T, 0") are geometrically conjugate if for some n > 0 there is an element
g € G such that T" = gTg ' and g conjugates o Npn,p € Irr(TF") to ' o Npn /€ Trr(TF")
(via the isomorphism T — TF" t s gtg™1).

Geometric conjugacy is an equivalence relation.

In the case of n = 1, the study of geometric conjugacy is made easier by considering the
dual group. This will give a powerful tool for the classification of irreducible characters of finite
groups of Lie type in Section 3.

Proposition 1.69 ([DiMi20, Proposition 11.1.16]). The G -conjugacy classes of pairs (T, 0)
where T is an F-stable maximal torus of G and 6 € Trr(TF) are in one-to-one correspondence
with the G*" -conjugacy classes of pairs (T*,s) where s is a semisimple element of G*f" and
T* is an F*-stable mazimal torus of G* containing s.

33



2 Basic ordinary representation theory of finite groups

We recall here some basic facts about ordinary representation theory of finite groups (for a
basic introduction see [Jali01]). The main reference for this section is [Is76].

Even though most of the definitions and results that we show here are true in a more general
setting we restrict ourselves to representations over C.

For this (and only this) section G denotes any finite group.

We call a (ordinary) representation of G a homomorphism of groups

p: G — GL,(C)

for some n, which is called the degree of the representation.

Although it is practical to work with matrices to describe elements of the group, it is
sometimes more convenient to use the analogous description of modules of G. A (complex)
vector space V is called a CG-module if there is an action of G on V' such that for any elements
g,h € G, v,u € Vand A € C we have gv € V, h(gv) = hg(v), lv = v, g(Av) = Agv and
g(v+u) = gv+ gu.

It is easy to see that a CG-module V' determines a representation of degree dim(V') (since G
acts as endomorphisms of V). Conversely, a representation of degree n determines a CG-module
of dimension n (G acts, through the representation, on the vector space C").

Two representations p; and py of degree n are said to be similar if there exists an invertible
matrix 7' € GL,(C) such that for all g € G we have T)p1(g)T~' = pa(g). On the other hand,
two modules of GG are said to be isomorphic if there is an isomorphism of vector spaces between
them compatible with the action of the group.

Up to similarity, the representations of GG are in bijection with the modules of G, up to
isomorphism. Thus, we will use these two notions interchangeably without further comments.

A CG-submodule W of a CG-module V is a subspace of V' which is also a CG-module. A
CG-module V' £ 0 is called simple or irreducible if it has no non-trivial proper submodules, else
it is called reducible. A CG-module which is the direct sum of irreducible CG-submodules is
called semisimple or completely reducible. The representation corresponding to an irreducible
CG-module is also called irreducible.

It is crucial that every CG-module is semisimple by Maschke’s Theorem (see [Jali01, Chap-
ter 8]). This means that, to understand all the modules of a finite group (which are infinitely
many ), we only need to study the irreducible ones. It turns out that for any finite group, up to
isomorphism, there are only a finite number of irreducible modules (see [JaLi01, Theorem 10.5
and Corollary 10.7]).

It follows that we want to study irreducible representations and in more generality we want
to study representations up to similarity. For a representation of degree n, we associate an
n X n matrix to each element of the group. Clearly, this is a redundancy of information. This
is why we study representations thanks to characters, which are the traces of representations.
We denote by tr(A) the trace of the square matrix A.

Definition 2.1. Let GG be a finite group and p a representation of GG of degree n. Then, the
character x of G afforded by p is the function

xX:G—C, g x(g):=tr(p(g))

We call n = x(1) the degree of x. We say that x is irreducible if p is irreducible. A character
of degree 1 is called a linear character. The character 15 : ¢ € G +— 1 afforded by the
representation g — 1 is called the trivial character.

It is clear from the definition that linear characters are irreducible.
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Recall that the trace has the property that if A and B are two square matrices of the same
size then tr(AB) = tr(BA). It follows immediately that characters are class functions (meaning
that they are constant on conjugacy classes) and, more importantly, that similar representations
afford the same character.

Notation 2.2. For a finite group G the set of irreducible characters is denoted by Irr(G) and
the set of conjugacy classes is denoted by CI(G). The vector space of complex valued class
functions over G is denoted by CF(G).

We list now some important properties of characters of finite groups.
Proposition 2.3. Let G be a finite group.

(a) The group G is abelian if and only if every irreducible character is linear. [IS76, (2.6)
Corollary]

(b) [Irr(G)] = [CUG)| and - 1) x(1)? = |G]. [Is76, (2.7) Corollary]

(c) The set Irr(G) is a basis of CF(G) and a class function ¢ # 0 is a character if and only
if it is a nonnegative integer linear combination of Irr(G). [Is76, (2.8) Theorem)]

(d) Two representations are similar if and only if the characters they afford are equal. [IsT6,
(2.9) Corollary]

Remark 2.4. By Proposition 2.3 (a) and (b) it is clear that any cyclic group C,, = (g) (where
g is an element of order n) has n irreducible (linear) characters. Because linear characters
are representations of degree 1 and representations are homomorphisms of finite groups, the n
linear characters Xl(gn) of (), are defined by

X (g7) = et

for all j =1,...,n.
It is known that finite abelian groups are isomorphic to direct products of cyclic groups.
Therefore, it is possible to give the complete character table for any finite abelian group.

Lemma 2.5. Let G be the finite abelian group
Chy X -+ x Cp,

with ny, ..., ng integers.
Then
Irr(G) = { Z(-:”) » -XEZ’“) |i;=1,...,n;, forj=1, ,k:} )

Definition 2.6. For every character x of G we write x = > pet(G) TP with n, non-negative

elhrr
integers (according to Proposition 2.3 (c)). Then we call ¢ € Irr(G) an irreducible constituent
of x when n, # 0.

In general, we call a (non-zero) class function in ZIrr(G) a virtual character of G.

Definition 2.7. The square table obtained with the values of the irreducible characters at
representatives of the conjugacy classes with rows labelled by Irr(G) and columns labelled by

Cl(G) is called the character table of G.

The rows and columns of the character table of G respect orthogonality relations.
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Proposition 2.8 ([Is76, (2.14) Corollary and (2.18) Theorem], Orthogonality relations). The
first orthogonality relation (between rows of the character table) is given for x,¢ € Irr(G) by

1 _

T > X(@)elg™) = by

geG

Analogously, we have the second orthogonality relation (between columns of the character
table). For two classes Cy,Cy € CI(G) choose representatives g, € Cy and go € Cy, then

> X(g)x(9:") = dcven|Calgr)-

x€lrr(G)

It follows from the first orthogonality relation that CF(G) is a Hilbert space endowed with
the inner product

x,¢) = Iél QGZG X(9)¢(g™")

with orthonormal basis Irr(G).

Remark 2.9. It is clear that an irreducible character y € Irr(G) is a constituent of a class
function ¢ if and only if (x, ) # 0 (> 0 if ¢ is a character).

Definition 2.10. Let x be a character of G. Then kery :={g € G | x(9) = x(1)}.

Definition 2.11. Let N < G. Then it is possible to inflate characters of G/N to G. Let x be
a character of G/N. We define its inflation x¢ € CF(G) by xa(g) := x(gN).
Analogously, if x is a character of G such that N C kery, then we can define x € CF(G/N)

by X(gN) == x(9).

By working with representations it is easy to see that these constructions always results in
characters.

Proposition 2.12 ([Is76, (2.22) Lemma]). Let N < G.

(a) If x is a character of G and N C kery, then y is constant on cosets of N in G and the
function x on G/N defined by X(gN) = x(g) is a character of G/N.

(b) If X is a character of G/N, then the function x defined by x(g) = xX(gN) is a character
of G

In both (a) and (b), x € Irr(G) if and only if x € Irr(G/N).

Remark 2.13. Notice that linear characters are homomorphisms of groups into the abelian
group C*. This means that, for any linear character A € Irr(G), we have [G,G] C ker\.
Therefore, the linear characters are precisely the inflations of the (linear) irreducible characters

of G/ G, G).

Proposition 2.14 ([Is76, (3.6) Corollary]). Let x be a character of G. Then x(g) is an algebraic
integer for all g € G.

Apart from some small groups, the information given until now is not enough to compute
the whole character table of finite groups. It is possible to gain further information on the
character table of a finite group GG by using restriction of characters to a subgroup H < G or
induction of characters from a subgroup H < G.
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Definition 2.15. Let H be a subgroup of G and x € CF(G). Then its restriction to H is the
class function x|y defined by

Xlu(h) == x(h)
for all h € H.
For ¢ € CF(H) we call its induction to G the class function Ind% () defined by

nd§(@)(0) = o 3 eloon™)

zeG
xgr~teH
for all g € G.

An important result that relates induction and restriction is the Frobenius reciprocity.

Proposition 2.16 ([Is76, (5.2) Lemmal, Frobenius reciprocity). Let H < G, x € CF(G) and
o € CF(H). Then

O6Id$e) e = (X, ©)u

In other words, the induction and restriction functors are (hermitian) adjoint to each other.

Remark 2.17. It is easy to see that the restriction of a character is a character. Due to the
Frobenius reciprocity the induction of characters are also characters (see [Is76, (5.3) Corollary]).

For our computations in Parts II and III it is more useful to rewrite the induction formula
in the following way.

Lemma 2.18. Let H < G and ¢ € CF(H) then

IndG Z || el g

ZE

for all g € G, where the sum is over representatives x of the conjugacy classes of H that are
G-conjugate to g.

Proof. Let us assume that the conjugacy class g% intersects m classes of H with representatives

zi, fori=1,...,m,ie ¢°NH = LJi~, zi'. Then we can rewrite the formula

Indg(¢) Z p(rga™) =|—;[|Z > welrga™)
i=1

zeG zeG
:cg$_1€H zgz~texl

1 m 1 m
= 1 2o ) {z € G laga™ € all}| = 7 3 eled)afCclg)
=1 i=1

and the claim follows. O

A priori not much can be said for a general subgroup H of G on the restriction/induction
of characters to/from H. However, if we consider normal subgroups, the theory provides us
with a variety of useful results. The study of restriction/induction to/from normal subgroups
is known as Clifford theory.

First we need to introduce the conjugates of a character.

Definition 2.19. Let N <G be a normal subgroup of G. For § € CF(N) and g € G we define
the class function 69 by 69(h) := 0(ghg™?) for all h € N (analogously 90(h) := 0(g'hg)). We
say that 09 is conjugate to 6 in G.
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Remark 2.20. With the same notation of the definition, if moreover # is a character so is 69.

It is straightforward that for 6,60, € CF(N) we have (0Y,05) = (0:,602). It follows that
conjugation with elements of G permutes Irr(N). Moreover, since N acts trivially on Irr(NV),
G/N also permutes Irr(N).

We state now the main theorem of Clifford theory.

Theorem 2.21 ([Is76, (6.2) Theorem|, Clifford). Let N <G and let x € Irr(G). Let 6 be an
irreducible constituent of x|n and suppose 0 = 01,0, ...,0,, are the distinct conjugates of 0 in

G. Then .
X|n = 6292'
i=1

where e = (x|n,0).

This theorem has many important consequences. However, we will not use explicitly more
than the theorem itself. We end our general discussion on ordinary characters with a last remark
on another method of obtaining characters from subgroups, taken from [DiMi20, Chapter 5.1].

Remark 2.22. Let H < G and let M be a CG-module-CH (i.e. M is a bimodule with a
left CG-action and a right CH-action). We define a functor R$ from the category of left
CH-modules to that of left CG-modules by

RS . E v+ M ®cy E.

Analogously, taking the tensor product with the dual module M* = Hom(M, C) defines the
adjoint functor *R%.

Composition of these functors is transitive [DiMi20, Proposition 5.1.4].

The analogous description for characters can be found by taking traces, see [DiMi20, Propo-
sition 5.1.5],

Trace(g | RGE) = |_;I| ZTrace ((g.h™") | M) Trace(h | E)
heH
for every g € GG, where E is a CH-module. We use the same notation for characters as for the
modules. For a CH-module (respectively CG-module) E affording the character x we write
R%(x) (respectively *R%(x)) for the character afforded by R%(E) (respectively *R%(E)). Notice
that these functors always take character to character.

In the next section we apply these functors to the special case where G is a finite group of
Lie type and H is a Levi subgroup. This gives a much more powerful method of constructing
characters of the group G than the induction functor Ind% (it is easier to identify the irreducible
constituents, also because usually their number is smaller).
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3 Character theory of finite groups of Lie type

We are interested in this section in the representation theory of finite groups of Lie type. Because
of their rich structure (in particular the existence of a BN-pair) and the precise description
of their elements/subgroups (see Section 1) much can be added to the ordinary representation
theory of finite groups.

We discuss in this section how to gain more information on the character table of finite
groups of Lie type first by introducing Harish-Chandra induction /restriction and then Deligne—
Lusztig induction/restriction. This makes it possible to classify irreducible characters into
families, called Lusztig series.

The theory behind the results listed in this section is known as Deligne-Lusztig theory. It
is a far reaching theory based on representations built from some so-called ¢-adic cohomology
groups with compact support, where £ is a prime different from the characteristic of the group.
We will not discuss this machinery here but only its consequences.

This section’s references are [DiMi20, Chapters 5, 9, 10 and 11] and [GeMa20, Chapters 2
and 3].

In Remark 2.22 we described a way of building characters of a group from characters of a
subgroup. In the case where G = G is a finite group of Lie type and the subgroup H = L is
a split Levi subgroup, this construction gives rise to what is known as Harish-Chandra theory.

For this section, G is a connected reductive group defined over F, and F’ a Steinberg map.
Furthermore, let (G*, F*) be the dual of the pair (G, F).

Definition 3.1. Let P be an F-stable parabolic subgroup of G with Levi decomposition
P = LU where L is an F-stable Levi subgroup of P and U is the unipotent radical of P.
Then C[GY/U*] is a GF-module-LY (G! acts by left translation and L by right transla-
tions). The functor RE obtained according to Remark 2.22 is called Harish—Chandra induction.
Analogously, C[U" \ GT] is an L¥-module-G* (G acts by right translation and L by left
translations). This gives rise to the adjoint functor *RE called Harish—Chandra restriction.

Notice that by construction (see Remark 2.22) Harish-Chandra induction/restriction map
characters to characters.

This construction was generalised by Deligne and Lusztig to include the case of twisted Levi
subgroups.

Definition 3.2. Let L be an F-stable Levi subgroup of a parabolic subgroup P = LU (not
necessarily F-stable) of G. The Lusztig induction RS is the generalized induction functor
associated with the G¥-module-L” afforded by H:(Z'(U)) = Y .(-1)'H(ZL*(U)) (for
some details on f-adic cohomology groups with compact support, see [DiMi20, Chapter 8]),
where .Z is the Lang map. The module structure is induced by the action on .Z~(U), namely
x+ gzl for g € G and [ € LY.

The adjoint functor *RE is called Lusztig restriction.

In character notation we have, for characters y of L and 1 of G,

(REX)(9) = |LF| > Trace ((g,07") | HX (271 (U))) x()

and

(REw)D) = |GF|ZTrace LD H(Z7H(U)) vlg)

geGF

for g € G and | € L (see [DiMi20, Proposition 9.1.6 and Lemma 9.1.5]).

Two preliminary remarks about the notation are in order here.
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Remark 3.3. We use the same notation for Harish-Chandra and Lusztig functors. This makes
sense since the Harish—Chandra induction/restriction is actually a particular case of Lusztig
induction /restriction, see discussion after [DiMi20, Proposition 9.1.4].

Remark 3.4. In the notation RE, *RE it is not explicit which parabolic subgroup P we use.
In fact these functors are independent of the choice of P. This is a consequence of the Mackey
formula (see [GeMa20, Theorem 3.3.8]) which we state in the next theorem (for the case that
interests us).

Theorem 3.5 ([GeMa20, Theorem 3.3.7 (4)], Mackey formula). Let G be of classical type (A,
B, C or D) and F a Frobenius map. Let P, Q be parabolic subgroups of G with F-stable Levi
complements L, M respectively. For any character ¢ € Irr(M) we have

*RECP © RIE;ACQ(¢) = Z R%mchmeQ o ad(w) o *RIMUmMcPme(w)a
wELF\S(L,M)F /MF

where w Tuns over a system of L¥'-MF double coset representatives in
S(L,M)" :={g € G" | LNIM contains a mazimal torus of G}.

Notice that Lusztig induction takes characters to virtual characters (H:(Z~1(U)) is a
virtual vector space). We consider Lusztig induction because there is a certain family of virtual
characters (obtained by Lusztig induction) that contains, in some sense, all the characters of
Irr(G*). We introduce these virtual characters now.

Definition 3.6. If L = T is an F-stable maximal torus of G and 6§ € Irr(T%), we call R$0 a
Deligne—Lusztig character.

We list now some important properties of Deligne-Lusztig characters that we will use with-
out further mention.

Let G be a connected reductive group with Steinberg map F. Let T, T' be F-stable
maximal tori of G and 6 € Trr(TF), ' € Irr(T'F). Then:

e We have the scalar product formula ([GeMa20, Theorem 2.2.8]):

_Hge Gl T =T, % = 0]
] T |

(RS0, RS0

e Two Deligne-Lusztig characters R$6 and RG6' are either equal or orthogonal to each
other. We have RS0 = RS0’ if and only if there exists some g € G such that 9T = T’
and 90 = 0" ([GeMa20, Corollary 2.2.10]).

e For any irreducible character p € Irr(G!'), there is a pair (T, #) such that (R$6,p) # 0
([GeMa20, Corollary 2.2.19]).

Definition 3.7. We call uniform functions the class functions on G* that are linear combina-
tions of Deligne-Lusztig characters.

Clearly, the Deligne-Lusztig characters R$6 form an orthogonal basis of the space of uniform
functions, up to G¥-conjugacy.

Notation 3.8. By Proposition 1.69, we may write R$.(s) instead of R$6 where the G-
conjugacy class of (T,6) corresponds to the G*/" -conjugacy class of (T*,s).
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This notation gives a convenient way to write a partition of the irreducible characters of a
finite group of Lie type.

Definition 3.9. Let s € G*f" be semisimple. A rational series of characters of G (or also
Lusztig series of characters) is a set &(GF|s) of all p € Irr(GF) such that (p, R$.(s)) # 0 for
some F*-stable maximal torus T* of G* containing s.

One of the rational series of characters is particularly important for the representation
theory of finite groups of Lie type.

Definition 3.10. The characters of &(G*, 1) are called the unipotent characters of G¥. The
set of unipotent characters is denoted by

Uch(GT) := &(GF,1).
The following is a crucial result on unipotent characters.

Proposition 3.11 ([DiMi20, Proposition 11.3.8]). Let (G, F') and (G, F1) be two connected
reductive groups with Steinberg maps and let f : G — Gy be a morphism of algebraic groups
with a central kernel such that f o F' = Fy o f and such that f(G) contains |Gy, Gy]; then the
unipotent characters of GI" are the x o f, where x Tuns over the unipotent characters of Gfl.

The reason why we introduced the Lusztig series of characters is clear from the next theorem,
also due to Lusztig.

Theorem 3.12 (Lusztig, [GeMa20, Theorem 2.6.2]). If si,s5 € G*" are semisimple and
conjugate in G* | then &(GF | s)) = &(GF, s9). We have a partition

Ir(G) = | |&(G",s)

. . .. . *
where s runs over representatives of the conjugacy classes of semisimple elements in G*I'

This partition is a great theoretical tool. However for practical computations (like in this
work) it is not enough to determine Irr(G*) since the Deligne-Lusztig characters are hardly
ever irreducible or in number equal to |[Irr(G”)|. We need more information regarding and
complementary to the Deligne—Lusztig characters.

The representation theory of finite groups of Lie type is richer if G has connected centre (for
example every character of Irr(GL,(¢)) is a uniform function, see [DiMi20, Theorem 11.7.3]).
For this reason, one usually gathers all the available informations for a regular embedding.
Hopefully, this is useful to gain information on the representation theory of G

We fix a regular embedding i : G — G (and identify G with i(G) C G) and we denote
by (G*, F*) the dual of (G, F). Let i* : G* — G* be the corresponding central isotypy (see
[GeMa20, Section 1.7.11]) such that i* o F* = F* o4*.

Proposition 3.13 ([GeMa20, Proposition 2.5.22]). Let T* C G* be an F*-stable mazimal torus
and s € T Let T* := i*~'(T*) C G*. Then there exists a semisimple element § € (T*)"
such that i*(3) = s. For any such § we have RE.(s) = RZ (5)|ar.

Proposition 3.14. Let s € G* be semisimple and 5 € G be any semisimple element such
that 1*(3) = s. Then

E(GF ) = {p € r(GF) | (p|ar, p) # 0 for some p € E(GF ).
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Remark 3.15. By Proposition 3.13 we can see the Deligne-Lusztig characters of G as the
restriction of those of G'. As a consequence, we can apply Clifford theory to these groups (see
Theorem 2.21 and Theorem 1.65).

Let § € G*" be semisimple and p € é"(éﬁ,é). By the multiplicity freeness theorem
(Theorem 1.65), we can write

Plar =pr+---+p

where py,...,p, € &(GF,s) (where i*(3) = s) are the distinct GF-conjugates of an irreducible
constituent of p|gr, by Clifford’s theorem (Theorem 2.21).

This will be one of the key ingredients in the explicit decomposition of the Deligne-Lusztig
characters performed in Parts II and III.

We define now an important functor for the character theory of finite groups of Lie type.

Definition 3.16. The Alvis—Curtis—-Kawanaka—Lusztig duality operator on the space of class
functions CF(G') is defined as

Dg = Z(—l)'”RSJ o *Rfl
Ics

where S is the set of simple reflections of W.
We list some important properties of this duality functor that we need in later sections.

Proposition 3.17 ([GeMa20, Theorem 3.4.4]). Let L be an F'-stable Levi subgroup of G such
that the Mackey formula holds for RE. Then

eaDg o RY = e RE o Dy,

and
5LDL o *RE = 5G*RS o Dc;.

Recall that the signs eg were defined in Definition 1.56.

Proposition 3.18 ([GeMa20, Proposition 3.4.2 and Corollary 3.4.5]). The functor Dq is self-
adjoint and Dg o Dg is the identity on CF(GT).

Even more importantly, the duality functor sends irreducible characters to irreducible char-
acters (up to sign). Explicitly, we have that it permutes (up to sign) the irreducible characters
of all the Lusztig series:

Corollary 3.19 (|GeMa20, Corollary 3.4.6]). If p € &(GF, s) then £Dg(p) € &(GF, s).

With the duality functor we can introduce an irreducible character of finite groups of Lie
type that we will encounter in Part III.

Definition 3.20. The irreducible character Stg := Dg(lgr) is the Steinberg character of GT'.
The values of the Steinberg characters are known, and given in the following proposition.

Proposition 3.21 ([GeMa20, Proposition 3.4.10]). Let G be a finite group of Lie type and
g € GY. Then

Ca(9)°F|, if g is semisimple,

8 5 o
Stalg) = { OGr cel else.
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We introduce now another partition of Irr(GF) in terms of Harish-Chandra induction.

The set {(L, \)} of pairs of F-stable split Levi subgroups L of G and characters A € Irr(L*")
can be endowed with a partial ordering <. The ordering is defined by (L', \') < (L, A\) if L' C LL
and (A, RE,\) # 0 (this is well defined by the transitivity of the induction functor).

Definition 3.22. A pair (L, \) is called a cuspidal pair of G if it is minimal with respect to
the ordering <, or equivalently, if for any proper split Levi subgroup L’ of L we have *RE,\ = 0.
When (L, \) is a cuspidal pair of GI" we say that ) is a cuspidal character of LE.

Let us state some properties of cuspidal pairs.

Proposition 3.23 ([GeMa20, Proposition 3.2.2], Uniform criterion for cuspidality). The char-
acter p € Trr(GF) is cuspidal if and only if ‘RS p = 0 for all F-stable maximal tori T contained
in some proper split Levi subgroup of G.

Proposition 3.24 ([DiMi20, Remark 5.3.10]). Let (L, \) and (L', \') be cuspidal pairs of GF.
Then
(REN, REN) = {z € G | "L =L/ and “\ = N'}/L"|.

In particular, if we set
Ngr(L,\) := {n € Ngr(L) | "A = A\} and Wgr (L, \) := Ngr(L, \) /LY,
it directly follows that:
Corollary 3.25. Let (L, \) be a cuspidal pair of G¥. Then
(REX, REA) = [War (L, \)|.

The group Wgr(L, A) is called the relative Weyl group of the cuspidal pair (L, \).
The importance of cuspidal pairs for the representation theory of finite groups of Lie type
comes from the next result.

Proposition 3.26 ([DiMi91, 6.4 Theorem|). Let x € Irr(GF); then, up to G -conjugacy, there
exists a unique minimal pair (L, ) such that (L, \) < (G, x).

In other words, we have the partition

Irr(GF) = |_| &(G", (L))

(L,\)/GF
where we define the Harish—Chandra series of the cuspidal pair (L, \) by
&(GF,(L,\)) = {p € Ir(G") | L is minimal such that *Rf'p # 0 and (p, REX) # 0} .

The cuspidal characters can be identified by their degrees. To give the next result we need
to set some notation first.

Definition 3.27. Let L be a Levi subgroup of G of type (I,w). Then, its relative rank is
defined to be r(L) := |I|.

If we denote by 7 the relative F-rank, we have that the relative rank is 7(L") = rx([L, L])
for an F-stable Levi subgroup L.
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Proposition 3.28 ([GeMa20, Corollary 3.2.21]). Let p € Irr(GY) lie in the Harish—-Chandra
series of the cuspidal pair (L, \). Then, the degree polynomial *, in R[q], of p has the form
D, = (q— 1)) f(q),

where f € Q[q] is not divisible by q — 1.
In particular, p is cuspidal if and only if (q — l)T(GF) 1s the precise power of q — 1 dividing
1ts degree polynomaial.

We will need to explicitly perform Lusztig/Harish-Chandra induction/restriction. For this
purpose, we introduce the character formula that we will use.

Definition 3.29. Let L be an F-stable Levi subgroup of a parabolic subgroup P of G with
Levi decomposition P = UL. Then

QF : Gl X Ligi = Q, (u,v) = LTrace((u,v) | H;(£7'(U))),

is called the associated 2-parameter Green function.

As in the case of RS, we hide P from the notation, since we will only work with cases for
which the Mackey formula holds.

Proposition 3.30 ([DiMi20, Proposition 10.1.2], Character formula). Let L be an F-stable
Levi subgroup of G and let ¢ € Irr(GF) and x € Trr(LY).

(a) If g = su is the Jordan decomposition of g € G (s semisimple and u unipotent) we have

<35X><9>:WL<SM S 0T Y Q) () (o).

{heGF|schL} vECH (5)2F,

uni

(b) Ifl = tv is the Jordan decomposition of | € L¥ (t semisimple and v unipotent) we have

<*RG77/J)(Z) . ’CL(t)OF‘ Z QCG(t)O( _1)77Z)(t )
RO P U

We call the functions Q¥(—, —) “2-parameter” Green functions to distinguish them from
the ordinary (1-parameter) Green functions, given in the next definition.

Definition 3.31. For T C G an F-stable maximal torus define its Green function by

Q% : GLi = Z, u— QF(u) = (RE1r) (u).

uni

Remark 3.32. The Green functions Q$(u) can be seen as a special case of the 2-parameter
Green functions Q€ (u,v) when the Levi L is a maximal torus and v is forced to be 1 (the only
unipotent element of any torus).

The ordinary Green functions obey the following orthogonality relations, when extended by
zero on non-unipotent elements of G

Proposition 3.33 ([DiMi20, Proposition 13.2.2], Orthogonality relations for Green functions).
For F-stable mazimal tori T, T' of G we have

(S, 0% er = { W[‘/,}E)F‘ if T and T’ are G* -conjugate,

0 otherwise.

4See [GeMa20, Definition 2.3.25] for a definition of the degree polynomial of an irreducible character.
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The idea behind the decomposition of the Deligne-Lusztig characters performed in this work
comes from the following remark.

Remark 3.34. The (ordinary) Green functions (and therefore the Deligne-Lusztig charac-
ters) do not distinguish between splitting classes, see the discussion in Section 4, in particular
Remark 4.14, in the special case where L is a maximal torus.

To decompose them, we need to consider class functions that have different values on split-
ting classes.

It is clear that the unipotent splitting conjugacy classes have a representative in the unipo-
tent group U¥. Some of them even have representatives in U¥'/[U¥, U¥], meaning that these
are distinguished by some linear characters of U”. The (usual) induction to G of these lin-
ear characters produces characters of G" that distinguish those particular unipotent splitting
classes. These characters have nice properties and are the main objects used in the decompo-
sition of Deligne-Lusztig characters in Parts II and III. These characters are called Gel’fand—
Graev characters and are studied in the disconnected centre case in [DLM92]. We give a
summary of their definition and relevant properties in Section 5.
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4 About 2-parameter Green functions

The 2-parameter Green functions are a central ingredient in the character formula for Lusztig
induction and restriction in finite groups of Lie type (Proposition 3.30). In this section, we
discuss the elementary method used in [MaRo020] for the explicit determination of their values.
We start by restating the general observations in [MaRo20, Sections 2 and 3.1] and continue
by giving details on the explicit computation for the split cases (this is just mentioned but not
explained in [MaRo020]). The explicit computations for SL,(g) and Sping (¢) will be detailed
later respectively in Section 10 and Section 16.

In this section, we denote by G a connected reductive group (over a field of characteristic
p) with Steinberg map F' and by L is F-stable Levi subgroup of a parabolic subgroup P of G
with Levi decomposition P = UL.

4.1 General observations and known facts
We begin with a remark on the arguments of the 2-parameter Green functions.

Remark 4.1. For any F-stable Levi subgroup L the functors RE and *RE send class func-
tions to class functions. Applying the character formulas (Proposition 3.30) to characters
Y € Irr(GF) and x € Irr(LF), we have for unipotent elements u € G and v € L¥

) IL"]
(R |GF|§QLUU1 ¥(u) and RLX GLZFQLuvl x(v).

Therefore, for any u € GZ . the function Q (u, —) is constant on unipotent classes of LY and,

analogously, for any v € L . the function Q¥ (—,v) is constant on unipotent classes of GF'.

Notice that, if L = T is a maximal torus, and P is a Borel subgroup of G, then LE . = {1}
and the defining formula shows that QT(u, 1) = (R§1)(u) (u € GL;), which is the usual
(1-parameter) Green function.

The values of QF (u,v) at u = 1 are known for any L, see [DiMi20, p. 157

egen|GF (LF|, ifv=1,
QF (1,0) = | » .
0 otherwise,

where | - |,/ indicates the part of | - | coprime with p.
From the definition of Harish-Chandra induction (Definition 3.1), it is easy to get the
following formula for the 2-parameter Green functions in the split case:

Proposition 4.2. If L is a split Levi subgroup of G, then

Qf (u,v) = =—=[{gU" | g € G, v € vU"}|.

ILFI

Thus, in the split case the 2-parameter Green functions can be computed in an elementary
way (we give details on this in Section 4.3).

Remark 4.3. It follows directly from the formula above that for L = G we have

F . .
G771 if v and u are Gf-conjugate,

lv

0 otherwise,

QS(U, U) = {
since, in this case, U = {1}.
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Proposition 4.2 is used to show:

Proposition 4.4. Assume that P is an F-stable parabolic subgroup of G with Levi decomposi-
tion P = UL. Then forv € LE ., uw € GE . we have:

(a) |’ULF| QE(U,U) € ZZO'
(b) If Q€ (u,v™") # 0 then v& C u€ C IndE (vl).

(¢) If u is regular unipotent (we give the definition of regular unipotent elements later in
Section 5.1), then there is a unique L -class C' of reqular unipotent elements of LT such

that
Q8 (u, v) = {'”L o ved

0 otherwise.

Here, C denotes the closure of a class C and IndFC is the induced class in the sense of
Lusztig-Spaltenstein [LuSp79].

Proof. Observe that if g € G is such that u? € vU?¥ then for any ¢ € CL(v)F, the element gc
has the same property, so [{gU?" | u9 € vU*'}| is divisible by |Cy(v)'|, whence Proposition 4.2
shows that [v™"|QE (u,v) is an integer.

If QF(u,v™1) # 0 there is g € G with u9 € vUT, thus we have v € vU* up to replacing
u by a conjugate. Now by definition the induced class C := IndS(UL) has the property that
C N U is dense in v“U. Hence, © € C. Moreover, we have v = vz for some z € U¥. Then
X = {vz¢ | c € Z(L)°} C u®. Now, Z(L)° acts non-trivially on all root subgroups of U as
L = Cg(Z°(L)). Thus the closure of X contains v and so v € uG.

For (c) note that the centraliser dimension of v in L and of v € IndF (v") in G agree (see
[LuSp79, Theorem 1.3(a)]). It follows that only the regular unipotent class of L induces to the
regular unipotent class of G, and thus Q¥ (u,v) = 0 unless v is regular. Now, assume that
u € vUT and so QF (u,v) # 0. Since u is regular, it lies in a unique Borel subgroup B < P
of G. Thus, if ¢ € G with g 'ug € P then g € P¥. In particular, g 'ug € v'U¥ for some
v' € LI, implies that v,v’ are L”-conjugate. It is clear that there are exactly |Cr(v)"| cosets

uni

gUT with g lug € vU". O

Notice that, alternatively, point (c¢) can be proven thanks to Conjecture 5.32 (from Section 5
later), which is valid in the split case.

Notation 4.5. From now on we write QF for the matrix (]vLF]QE(u, v™1)), . with rows and

columns indexed by the unipotent conjugacy classes of L¥, G respectively. We call it modified
2-parameter Green functions.

Lemma 4.6. Let M < G be an F'-stable Levi subgroup containing L. Then
Qf = Q' - O

Proof. By transitivity of Lusztig induction [DiMi20, Proposition 9.1.8] we have RE = RS0 RM.
Therefore, by applying twice the formula in Remark 4.1 we get

(REV)w) = D Qu(uwo™) > Q' (v, )i(x)

veME . zeLf .

uni uni

for all u € GF .

I and all class functions ¢ on L. The claim follows. ]
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Thus, for an inductive determination of the 2-parameter Green functions it is sufficient to
consider the case when L < G is maximal among F-stable Levi subgroups. Now let T < L
be an F-stable maximal torus, then Lemma 4.6 gives R§ = RY% - QS where we have set
RS = ((qu 1)(u))u The L¥-conjugacy classes of F-stable maximal tori of L are parametrised
by F-conjugacy classes in the Weyl group W, of LL (see discussion before Definition 1.59). Thus
the above formula yields a linear system of equations

(RE,D(w) = > (R, Dw)QF(u,v™")  (weWy) ()

veLF

uni

for Q€ with coefficient matrix ((R% 1)(v))

w,v’

Proposition 4.7. Assume that the matriz ((erliwl)(v))wv is square. Then the 2-parameter

Green functions Q€ are uniquely determined by the ordinary Green functions of G and of L.

Proof. This follows from the above considerations and the fact that the (by assumption) square
matrix of values of Green functions on unipotent classes of L is invertible due to the orthog-
onality relations for the ordinary Green functions, see Proposition 3.33. n

This result can be used to give restrictions on the values of the 2-parameter Green functions.
The assumption of Proposition 4.7 is satisfied, for example, for G and a proper F-stable Levi
L < G where i : G < G is a regular embedding and G is either SLy or Sping (in these cases
the assumption will be easily checked).

In practice, we use the computer program CHEVIE to determine the linear system (x). On
one hand, we use the GAP part ([MiChv]) to identify the corresponding tori of the group and
of the Levi subgroups (using the commands CoxeterGroup, Twistings and Torus). On the
other hand, we use the MAPLE part ([GHLMP]) to actually get the ordinary Green functions
(with the command GreenFunTab) and to solve the system (x) (with the command solve).

We give two examples on the application of Proposition 4.7 that we will use later for
the computation of the 2-parameter Green functions of SL4(g) and Sping (¢q). For readability
reasons we replace “0” by “.” and the polynomials in ¢ are factored and written in terms of the
cyclotomic polynomials ®; = q—1, &y = q+1, P35 = > +q+1, D4 = ¢>+1 and &g = ¢* — ¢+ 1.

We give now some examples (that we use later) of 2-parameter Green functions, computed
following the discussion above. These are all cases in which Proposition 4.7 can be applied.

Example 4.8. Let G = GL4, with the unipotent classes parametrized by partitions of 4
(labelling the Jordan blocks) ordered as 1%,21%,2%2 31,4. First, let L; be a standard Levi
subgroup of type A,. Its unipotent classes are labelled by the partitions 13,21,3 of 3, and we
obtain the matrix of (modified) 2-parameter Green functions

] oy 1 ..
C?Si:: . qu ¢b 1
. q 1

Next, let Ly be the standard Levi subgroup of type A2. The resulting matrix is

d;P, P, 1 )
2
~G . q . 1
@r; = . ¢ : 1 .
qdy @ 1

where the rows are labelled by the unipotent conjugacy classes of Ly parametrised by the pairs
(12,12), (2, 12), (12,2), (2, 2) of partitions of 2. Note that the second and third row agree, as the
second and third unipotent class of L are conjugate in Ng (L)%
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For the twisted Levi subgroup Ls of type A1(¢?).(¢*> — 1) we find

O¢ — P2P; —@; 1 . :
Ls — . . q(I)l —(I)l 1/
Finally, the split Levi subgroup of type A; is not maximal and we may apply Lemma 4.6,
while for its twisted version Ly of type A;(q).(¢*> — 1)(¢ — 1) we obtain

0% — —D, D3Py 1 —d; 1 .
Lo —*®; q®, 1)
The assumptions of Proposition 4.7 are also satisfied for groups with connected centre of
type Dy.

Example 4.9. Let G be of type D, with connected centre, F' a split Frobenius map and L
a split Levi subgroup of type As. We order the 13 unipotent classes of G by their Jordan
normal forms (when projecting the elements in SOg, they are given by partitions of 8)

18, 2214 244 21— 315, 3271, 3?17 (two classes), 4%+, 4*—, 51% 53, 71

where the signs 4+, — distinguish between classes with the same Jordan form that are swapped
by the graph automorphism of order two of D, (n > 4). In L' we also order the unipotent
classes by their Jordan form (partitions of 4) 14,212 2% 31,4. We find

2P, D5 Dy . . 1 S
PP Db, DDy . 12 ..
qCI)QCI)4 qq)g (I)l (:[)2 1 . . .
2q2 . . @2 CI)Q 1
q®s . .oq 1

for one of the three possible embeddings of the Levi, and a suitable permutation of the columns
(3,4,5)(9,10,11) for the other two. The Green functions for a twisted Levi subgroup of type
2A3(q).(¢ + 1) are related to those of A3z(g).(¢ — 1) as follows. The ordinary Green functions
of 2A3(q) are obtained from those of A3(q) by replacing ¢ with —g by Ennola duality [Ka85].
This also entails a permutation of maximal tori in the linear system (x). Therefore, the Green
functions of 2A3(q).(q + 1) are obtained from those of A3(q).(q¢ — 1) by replacing ¢ with —q and
swapping the classes with Jordan normal form 3212 (they have centraliser orders ¢®(q 4 1)2,
which are sent to one another by the transformation g — —q).

Next consider a split Levi subgroup L of type A3. Here, QF equals

q)gq)gq)iq)ﬁ * @2@4 (1)2@4 (I)Q‘I>4 (I)Q 1 1

¢*®s . . Dy . 2q . ) ) 1
¢ Py . P, . . 2q . . 1
q4<I>2 q2<I>4 . . . 2q . 1 . . .
PPy @ 2¢P . o, . . 1
q2(I)2 @4 q2 2(]@1 . . CI)Q . 1
P04 ¢® 29D . . . P, 1.
qS(I)Q q‘I’% q@% @1‘1)2 ‘I)lq)g @1@2 q—2 1

where * = ¢* + 3¢® + 3¢> + ¢ + 1, and the order of the unipotent classes of L is given in terms
of triples of partitions of 2

(12,1%,12),(2,1%,1%), (12,2, 1%), (17,12, 2), (2, 2, 1), (2,1%,2), (12,2, 2), (2, 2, 2).
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The symmetry from triality (one of the permutations of order 3 of the external nodes of D,),
cyclically permuting the classes 3,4,5 and 9,10,11 of G¥', as well as the classes 2,3,4 and 5,6,7

of LY, is clearly visible. Again, the Green functions for a twisted Levi subgroup of type
A1(q).(q + 1) are obtained by replacing ¢ with —¢ and interchanging the two classes with

Jordan normal form 3212, For a twisted Levi subgroup of type A;(¢?).(¢*> + 1) we find (the first
row corresponds to the identity of L")

—P3D3D; D PIDIE P22 PIDZ D Dy DDy — Dy Dy . . 1 . .
. . . —q2<I>%<I>§ >0, Py q@% —q@% -9y —O1P, . 1 1

It will be extremely useful to compare the 2-parameter Green functions of groups of the
same type (for example to use Proposition 4.7). In this regard, we list some results from [Bo00].

Remark 4.10. It is important to notice that our definition of the 2-parameter Green functions
and the one of Bonnafé [Bo00] differ by a factor |L¥|. The results taken from [Bo00], that we
list below, have been rewritten with this extra factor included.

Let G be another connected reductive group defined over F,, with Frobenius endomorphism
also denoted by F' : G — G. We assume that there is a morphism of algebraic groups i : G — G
defined over F, and satisfying the following conditions:

(a) ker(7) is central in G,
(b) i(G) contains the derived group of G.

In this setting, let L := iil(ﬂ) for an F-stable Levi subgroup L of G. Then, L is an F-stable
Levi subgroup of G.

Proposition 4.11 ([Bo00, Proposition 2.2.1 (b)]). Let u € G and v € LY be unipotent
elements. If i is injective, then

) F
Qg(u,v):% Z QS (9u,v) = | Z QS (u,"v)

geGF /GF ZGLF/LF

F F . . . .
where GE . and GE.. are identified via i.

By the hypothesis on i, the inclusion ker(i) C Z(G) translates into a morphism of groups
H(F, ker(i)) — H'(F, Z(G)). Recall that by Remark 1.64, we have an action of H'(F, Z(G))
on the conjugacy classes of GI". Thus, for all z € H*(F, ker(i)) we denote by 2 the action of
the image of z in H'(F, Z(Q)).

Proposition 4.12 ([Bo00, Proposition 2.2.2]). Assume that i is surjective. Let u € G and
v € LY be unipotent elements. Then

QS (i) i) = —2 L S gy = LS g8 ),

(er ) IEF] it (er ) IEF| it

Something more precise can be said for the surjective case.

Proposition 4.13 ([Bo00, Corollary 2.2.3]). If the morphism i is surjective and satisfies
ker(i) C {z7'F(2) | z € Z(L)}, then

G0 L]

G
= Trer(iyr By - )

for all unipotent elements u and v in G¥ and LY respectively. In particular, this equality holds
whenever ker(i) C Z(L)°.
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4.2 Groups with non-connected centre

For groups G with non-connected centre, the number of unipotent classes is bigger than the
number of irreducible characters of the Weyl group, so that Proposition 4.7 cannot be applied.
However, additional considerations can lead to a solution.

To this end, let G < G be an F- equivariant regular embedding, such that G=GZ (é)
has connected centre and derived subgroup [G G] G. Then, for any Levi subgroup L < G,
L := LZ(G) is a Levi subgroup of G, F-stable if L is. Here, we are interested in cases where G
is of type A or D,. This implies that all proper Levi subgroups of G, and hence of G, are of type
A. Therefore, all 2-parameter Green functions for G can be computed with Proposition 4.7
(see Example 4.8 and Example 4.9). Then, we just need to descend to the simply connected
group G.

Let us write Zg for the Lang map on G. While £ ' (U) is not necessarily invariant under
the action of G x L, it is so under the action of the dlagonally embedded subgroup A(LF ) = L7
of GF x L¥ (with A(l) (1,171) for I € LF). So A(LF) acts on the f-adic cohomology groups
H{(Z:'(U)). In particular, the 2-parameter Green functions Qf are invariant under the

diagonal action of L": )
QS (u,v) = QE (u!, V") for all | € L*.
Furthermore, the 2-parameter Green functions QS are “induced” from those of L inside G by

Proposition 4.11. This implies relations between the 2-parameter Green functions of G and G.

Remark 4.14. Suppose that the unipotent class of u € GF splits into n classes of GF and
that the unipotent class of v € L¥ splits into m classes of L', then by Proposition 4.11

i,é Z (u,v;) = ZQL Ui,y U (%)
=1

where u; € G are the representatives of the G*-classes in (u)G", and v; € L¥ are the
representatives of the L¥-classes in (v)%"

For example, in Sections 10 and 16 we need the following cases:

e If n =1 then (sx) and the L¥-invariance directly give

QE(U, UZ') - Q

HIQ;

1
— fore=1,... .
— (u,v) or 7 N 07}

e If m =1 then (%) and the L -invariance directly give

QS (u;,v) = QS( v) fori=1,...,n.
e If n = m = 2 then the value Q := Qf(u,v) is replaced in the matrix of Q¥ by the
submatrix
‘ Uy U2
1 a Q—a
v | Q —a a

where a := QE (uy,vy).

e If n =4, m = 2 then the value Q := Qf(u, v) is replaced in the matrix of QF by the

submatrix
‘ Uq U2 Uus Uy

aq (05} as QQ—CLI—CLQ—CLg
Q-—a Q—a Q—a3 a+a+az—«C

where a; := QF (u;,vy) for i = 1,2, 3.

U1
V2
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e If n =2, m = 4 then the value Q := Qf(u, v) is replaced in the matrix of QF by the

submatrix
Uy Uz
U1 ay Q/2 — I
Vg a2 Q/Q — Az
U3 as Q/2 —as
vy | Q—a1 —az—as a;+ax+az—Q/2

where a; := @f(ul,vi) fori=1,2,3.

In other words, every splitting class introduces some unknown entries in QE These un-
knowns can be related to each other by studying the diagonal action of L¥ on each unipotent
class of G and L.

We get the explicit action of L¥ thanks to Remark 1.64. There, we associate an element
. € L to each 2 € HY(F,Z(L)) such that I;'F(I,) € Z(L) represents z. Then, the action
of L¥ is given by conjugating with those elements ., up to LF-conjugacy. Since there is a
canonical surjection H'(F, Z(G)) - H(F, Z(L)), we choose, instead, for all z € H'(F, Z(G))
an element g € G such that g~'F(g) represents z. This gives us the desired action for all
split Levi subgroups. For the non-split ones we replace F' by the associated twisted Frobenius
map F’ (see discussion before Definition 1.59). Therefore, for all 2 € H'(F, Z(G)) we have
g,9" € G such that both ¢'F(g) and ¢’ 'F’(g') represent z. Then, the action of L is given
by (u,v) + (u9,v9) for u € G¥ and v € L*".

One of the key tools for reducing the number of unknowns further is given by the next
remark. We say that a class function (not only a character!) f of G is absolutely cuspidal if
for every F-stable proper Levi subgroup L of G we have *RE f = 0.

Remark 4.15. For any F-stable minimal Levi subgroup L of G with disconnected centre
(minimal with respect to having disconnected centre) a class function f of LY that takes values
1, -1 on a pair of splitting unipotent classes (say with representatives u; and uy) and zero
elsewhere is absolutely cuspidal. This follows by the discussion above and minimality, since for
any proper Levi subgroup L/ of L we have that QF, (uy,v) = Q¥ (uy,v) for all v € 'L .. Then,
("R, f) = 0.
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4.3 The split case

In this section, we show that the 2-parameter Green functions for split Levi subgroups can be
computed by knowing the fusion of unipotent classes from the unipotent subgroup U} to GT'.

Proposition 4.16. Let P be an F'-stable parabolic subgroup containing the F'-stable Levi sub-
group L. We denote by U the unipotent radical of P, such that P = L x U. Assume that for

v € LE, there exist subgroups H; < GT such that vUF = Uu for class representatives u; of

G* such that uS" NvUF £ 0. Then

NG |OGF
= [H; : Cy,(u;)

where I, is the set of indices of the elements u; that are G -conjugate to w.

Proof. By Proposition 4.2 and by the fact that L¥ normalizes U we have

)8 (u,v) = o
Qu ) = [E )

By assumption

HgUT | g GF w9 € vU}| = Hg € GF | u? € vUT}.

1
[UH|Crr (v)]

F T Fl _ F T H;
{reG"|u EUU}—UiE[u{IEG | u® €}
The size of the sets on the right hand side are given in the next lemma.

Lemma 4.17. Let G be a finite group, H < G a subgroup, and g,l € G such that g% =1 for
some go € G. Then

{zreqG|g"el"} =g Ce(l)H
with cardinality |Ce(1)| [H : Cr(1)].
Proof. Let x € G be such that ¢° = I" for some h € H. Then ¢g*@" ™" = g meaning that

z € Ca(g9)g90H = goCq(l)H. The other inclusion is trivial.
The cardinality is now easily computed,

|Ca()]|H]

Coe()H|=|Ce(VH| = ——= = |Ca()||H : Cyx(l)].

wCa H| = (Coll)H| = (£ = Cal0)| [H : Ca()]
O

It follows that
{z € GF |u” € vU"}| =) " [Car(u)| [H; : Cu,(w)]
’LEI'LL

and since for all ¢ € I, the elements u; are conjugate to u we get the result. O]

Thanks to [DLM92, (5.12) Lemmal, we can slightly improve this result. That lemma states
that if a unipotent element u € L is G-conjugate to v € wU*, then u is UF-conjugate to v.
This gives the following Lemma.

Lemma 4.18. If a unipotent element u € L is G-conjugate to v € uU¥ then

F F
uG NuUF =Y
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Proof. The inclusion uY” C uCS" N uUF follows from the fact that L¥ normalizes UF ,
u’ =w tuw = u(w Y w € uUF

for all w € UF.
The other inclusion comes from [DLM92, (5.12) Lemmal. O
In general, there is not much to say for the classes contained in wU¥ other than uS"
However, for split Levi subgroups that have an abelian maximal unipotent subgroup, we can

add the following results.

Lemma 4.19. Assume that L is a split Levi subgroup with abelian mazimal unipotent subgroup
U,. We choose Uy, such that the mazimal unipotent subgroup of G is Uy = U U. Then,

wY8 = 8" Ny Ur
for w e UL and v € uUF,

Proof. Since uUF C Ug it is clear that v&" NuUF - vUo
For the other inclusion, we write v = uw for w € U and set x = upuy € UOF with u; € Uf
and uy € U, Then, because U} normalizes UT and U¥ is abelian, it follows that

0" = uw” = u"w” = u(uy') “upw® € uUF,

Then, we directly have:

Corollary 4.20. For a split Levi subgroup L of G which has an abelian maximal unipotent
subgroup, the 2-parameter Green function is given by

o, |Cer() R
QL <U7U> - |UFHCLF<U>| ZGZIU [UO : CUD( l)]

F
for u; € vU" such that vU" =, u?o and u; are GF-conjugate to u

It follows that for split Levi subgroups of type A; x - - - x A; the 2-parameter Green functions
can easily be computed once the fusion of the unipotent classes of U} are known.
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4.4 A note on the method of [Lue20]

The method discussed above does not assure to completely solve the problem of finding the
unknowns introduced following the discussion after Remark 4.14. For example, for Sping (q)
the system of equations has too many variables to have a unique solution. An ulterior equation
is provided by the Gel'fand-Graev characters (see Section 5.2), when Conjecture 5.29 is valid.
By Proposition 5.33 (c¢) we gain this information, in the twisted case, when “gq is large enough”.

Since the publication of the first version of [MaRo020] Liibeck, [Lue20] used a theoretically
more involved method to also compute 2-parameter Green functions. In short, he uses the
Springer correspondence to compute some generalised Green functions. Then he uses the fact
that Lusztig induction of a generalised Green function is a generalised Green function (under
some conditions). This provides him with the equations that are missing when considering only
the ordinary Green functions, like here.

Unlike our elementary method, Liibeck’s is sure to always give enough equations to solve
the system. This is a trivial consequence of the fact that there are as many generalized Green
functions as there are unipotent classes (the generalized Green functions are a basis of the space
of class functions with unipotent support, by [Lu85, Corollary 9.11] and [Lu86b, Lemma 25.4]).

This way he finds the same result as in our Tables 52 and 53. However, as he states, with
his method the “large ¢” requirement can be dropped for the Levi subgroups of type A;® of
Sping (¢), so thanks to Lemma 4.6 all of our tables, computed in Part III, are valid for arbitrary
(odd) g.
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5 (Modified) Gel’fand—Graev characters

In this section, we denote by G a connected reductive group in characteristic p defined over [,
via the Frobenius map F' (¢ is an integer power of p). We choose a maximally split torus of G
denoted by Ty, contained in an F'-stable Borel subgroup By. We denote by ® the root system
of G relative to Ty and we denote by Uy := R,(By) the maximal unipotent subgroup of G
with decomposition [],.s+ Ua. We denote by 7 the permutation induced by F' on the base A
of ®.

We present in this section an important family of characters of the finite group of Lie type
G! called the Gel’fand-Graev characters. Basically these characters are simply the induction
of certain (regular) linear characters of the unipotent subgroup U

Although their definition doesn’t require any deep theoretical construction, the Gel’fand—
Graev characters have an interesting variety of properties that makes them an invaluable tool
in the decomposition of the Deligne-Lusztig characters (see for example their use in [Boll,
Chapter 5.2]). Moreover, it is possible to parametrize them in a precise way revealing a tight
relation to a certain type of unipotent elements (the regular ones), which are parametrized in
the same way.

We describe in Section 5.1 the regular unipotent elements, their conjugacy classes and their
parametrization. In Section 5.2 we define and parametrize the Gel’fand—Graev characters and
list their properties. Finally, in Section 5.3 we slightly modify the definition of the latter in a
way more useful for the computations of Parts II and III and deduce some helpful results.

The main references for this section are [DLM92] (and its follow-up [DLM97]), which gives
a detailed description of the Gel'fand-Graev characters and their relation with the character
table of finite groups of Lie type, and [DiMi20, Chapter 12], which gives a somehow more concise
description of the same material but gives a good description of regular unipotent elements.

5.1 Regular unipotent elements

Definition 5.1. An element x of an algebraic group G is said to be regular if the dimension
of its centraliser is minimal.

In the present case (G is reductive), this minimal dimension is rk(G) (see for example
[MaTell, Proposition 14.9]).

We are mainly interested in the case of regular unipotent elements. But, for future reference,
we cite the following result on regular semisimple elements.

Proposition 5.2 ([MaTell, Corollary 14.10]). Let G be connected reductive with mazimal
torus T and root system ®. For s € T the following are equivalent:

e 5 is reqular;

e a(s) #1 for all « € ¥y

o Cg(s)°=T.

Now, we discuss the regular unipotent classes. Here is a list of their properties.

Proposition 5.3. There exist reqular unipotent elements (in connected reductive groups) and
they form a single conjugacy class of G, [DiMi20, Corollary 12.2.4]. Let u € Uq be a regular
unipotent element of G. Then:

o The element decomposes as u = [],co+ Ua(Ta) with o # 0 when o is a simple root.
[DiMi20, Proposition 12.2.2 (iv)]
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o Cg(u) =Z(G)Cy,(u). [DiMi20, Lemma 12.2.3]

e If the characteristic is good ® for G then Cy,(u) is connected. [DiMi20, Proposition
12.2.7]

For example in the general/special linear groups (GL,, SL,) the matrices with ones on
the diagonal and on the second diagonal (and zeros below the diagonal) are regular unipotent
elements.

It follows directly from Proposition 1.53 and Proposition 5.3 that (in good characteristic)
when G has connected centre there is a single regular unipotent class of G¥', in general there
are |H'(F, Z(G)/Z(G)°)| many:

Proposition 5.4 ([DiMi20, Proposition 12.2.15]). If the characteristic is good for G, then the
G -conjugacy classes of reqular unipotent elements are parametrised by the F-conjugacy classes
HY(F, Z(G)/Z(G)°).

Remark 5.5. Notice that due to [DiMi20, Lemma 4.2.13 (ii)] there is a bijection between
HY(F,Z(G)/Z(G)°) and HY(F,Z(G)). From now on, we use the second set for readability

reasons.

Notation 5.6. We denote by Reg,,;(G!") the set of regular unipotent classes of G'. Also, we
denote by U, the set of regular unipotent elements of GZ . parametrized by z € H'(F, Z(G)).

uni

The discussion that follows depends on the choice of this parametrization. We fix as repre-
sentative of U the element u; := [] ca ua(1).

From now on we consider only the case of G in good characteristic. Therefore, by [DLM92,
(3.2) Proposition (iii)] the sets U, are precisely the regular unipotent classes of G¥'.
The next lemma is useful for actually computing the F-classes of the centre.

Lemma 5.7. We have (recall that £ is the Lang map)
HY(F,Z(G)) = Z(G)/£(2(G)).

Proof. By definition, two elements z1, 20 € Z(G) are in the same F-class of Z(QG) if there is a
central element z € Z(G) such that

2 =F@)nr ! o n=0"F(r)s = Z(x).
The claim follows directly. 0

The same constructions can be done in any F-stable Levi subgroup L of G. It is natural
to search for a relation between the analogous objects of G and L. It turns out that there is a
canonical surjection between the F-classes of Z(G) and Z(L):

Lemma 5.8 ([DiMi20, Lemma 12.3.5]). The inclusion Z(G) C Z (L) induces a surjective map

br : HY(F, Z(G)) — HY(F, Z(L)).

5See [DiMi20, 12.2.6] for the definition of good characteristic. In this work the characteristic is always good.
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5.2 Gel’fand—Graev characters
We start by defining the linear characters of Ul that we want to induce.
Lemma 5.9 ([DLM92, (2.2) Lemmal). We have
vtk U= I U
weA/T

where A/T is the set of orbits of T on A and U, =[] .., Us. Moreover Ul >t

w qlel”

Definition 5.10. A linear character ¢ of U} is called regular if it is non-trivial on each group
UL of Lemma 5.9.

Like the regular unipotent classes, the regular characters of Ul" are parametrized by the
F-classes of the centre.

Proposition 5.11 ([DiMi20, Proposition 12.3.2]). The T -orbits of regular characters of UY
are in one-to-one correspondence with H'(F, Z(G)).

It is possible to build this correspondence by explicitly choosing a regular character of Uk
(see discussion after [DiMi20, 12.3.2] and/or after [DLM92, (2.4) Theorem]).

Notation 5.12. For any N € N we denote by xn : F v — C the linear character of F,~ defined

by
2miTr(x)
Xn(z) =e
for any x € F,~, where Tr : F,y — T, is the usual field trace.
In the particular case N = 1 we denote ¢ := x;, and for any element j € F, we set

¢;(z) == ¢(jz). Clearly, ¢; runs through all the characters of F, when j runs through the

elements of F,. Analogously, we denote ¢, X ¢;, X -+ X ¢;. by @, j» .

We choose as regular character of Ul parametrized by 1 € H'(F,Z(G)) the following
product of characters (thanks to Lemma 5.9)

Py = H Xw| H IF;M%“ H Ul - C.

wEA/T wEA/T weA/T

Then, by [DLM92, (2.4.10) and the following discussion] the group 2! (Z) acts transitively,
by conjugation, on the set of regular characters of U} and, more precisely, .,?T_Ol(Z )/ZTE acts
regularly on the same set. Therefore, for any z € H'(F, Z(G)) we can choose a representative
t. € %y (z) and define the regular character

1/}7; = tzwl
which is a representative of the TE-orbit W, of regular characters of UL parametrized by z.
Definition 5.13. For z € H'(F, Z(G)) we define the Gel’fand-Graev character of GI" by
F
ré .= Indg'g (1,).

It is clear that the T'S are well defined for z € H'(F, Z(G)) since they are defined up to
T} -conjugacy of ..
Definition 5.14. We define o, := Z%\Pz Y(uy), where W, is the TE-orbit of 1, and u; the

chosen representative of the regular unipotent elements parametrized by 1 € H*(F, Z(G)).
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Remark 5.15. The main reason for introducing the Gel’fand-Graev characters is that, unlike
the Deligne-Lusztig characters, they have different values on (almost all) unipotent splitting
classes since regular characters of U} already distinguish them. This means that they must
have at least one irreducible constituent that also distinguishes between those splitting classes.

By definition, the Gel’fand-Graev characters always distinguish the regular unipotent classes
of G¥. The hope is, therefore, to use them to distinguish the values of the irreducible con-
stituents of the Deligne—Lusztig characters on unipotent classes.

First of all, we have the following important result on Gel’fand—Graev characters.

Proposition 5.16 ([DLM92, (3.5) Theorem]). Let x € Irr(GF) and let = € H'(F, Z(G)).
Then (recall that ng was given in Definition 1.56),

Z =1G Z Uzz’—1<DGX, FZ/>.

Uil uel, Y eHY(F,Z(G))

Notice that in good characteristic U, is a conjugacy class. Then, the left-hand side of the
equation reduces to y(u) for u a regular unipotent element parametrized by z € H'(F, Z(G)).

We list now further properties that justify the use of these characters for the decomposition
of Deligne—Lusztig characters.

Theorem 5.17 (|[DiMi20, 12.3.4]). The Gel’fand-Graev characters are multiplicity free.

Proposition 5.18 ([DLM92, (3.6) Scholium (i)]). The class functions {T'S | z € HY(F, Z(G))}
are linearly independent and distinct.

Definition 5.19. We say that x € Irr(GF) is regular if (x,T'S) # 0 for some z € H*(F, Z(G)).

Definition 5.20. For any semisimple class (s) of G*!", let T* be a maximally split torus of
Ca-(s)° and define the following class function of G¥

X(s) = [W(s) Z £GET, RT* s)

weW (s)°

where T? is the F*-stable maximal torus of Cg+(s)° obtained by twisting T* with w € W (s)°
(this was introduced in Theorem 1.20).

Notice that by definition these class functions x s are orthogonal to each other for different
conjugacy classes (s). Moreover we have the following crucial results.

Proposition 5.21 ([DLM92, (3.10) Proposition]). The class functions x(sy have the following
properties:

(a) X(s) is a proper character of G*'.
(b) For z € H'(F, Z(G)), we have (x(),['T) = 1.

Notation 5.22. Let (s) be a semisimple class of G* and z € H(F, Z(G)), then we denote
by X(s),» the unique common irreducible constituent of x5 and re.

Proposition 5.23 ([DLM92, (3.12) Proposition (i)]). The set
{X(s).2 | (8) semisimple class of G, 2 € H'(F, Z(G))}

contains all the reqular characters of GF.
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Thus, it is immediate from Proposition 5.21 and Proposition 5.23 that:

Corollary 5.24 ([DLM92, (3.14) Corollary]). For each z € H'(F, Z(G)), we have

IS = X@.
(s)

. . . *
where the sum is over the semisimple classes of G*I'".

The explicit computation of the Gel’fand—Graev characters is tightly related with the com-
putation of some (partial) Gauss sums. We give some theoretical information in this regard
that will be used later. The explicit computations will be carried out in Lemma 5.58.

Lemma 5.25 ([DiMi20, Lemma 12.3.11]). We have
IS (w)
0, = ———=.
1Z2(G)"]
The next result can be used to verify the computations.

Lemma 5.26 ([DLM92, (3.7) Scholium|). Let o be the matriz whose (z,2') entry is 0,1 for
2,2/ € HY(F,Z(G)). Then,

G|

U4 |

<FS, FS> = ((UTU)_I)z,z’

where T denotes the matriz transpose.

In good characteristic U; is a conjugacy class, then the formula becomes
(LF.T3) = |Car(w)|((@ o)) 0.

Remark 5.27. Although the decomposition of Gel'fand—Graev characters is even more chal-
lenging than the decomposition of Deligne-Lusztig characters (without having the character
table a priori), the precise knowledge of how their decomposition looks like gives the possibility
of writing a system of equations for the values of regular characters at unipotent elements.

The question is if this gives enough equations to solve the system. It is hardly ever the
case when Z(G) is disconnected, since there are usually more (splitting) unipotent classes than
there are Gel’fand—Graev characters. An example where the system is solvable is SLy(q) when
q is odd. There is one unipotent class of SLy (the regular one) that splits into two classes of
SLy(q) and two Gel'fand-Graev characters, for ¢ odd.

More equations can be found by inspecting the relation between the regular characters of
two groups related by a regular embedding.

Remark 5.28. It is possible to relate the regular/Gel'fand-Graev characters of G and G*":

(a) We fix a regular embedding i : G — G (and identify G with i(G) C G) and we denote by
(G, F¥) the dual of (G, F). Also, we denote by i* : G* — G* the corresponding central
isotypy (see [GeMa20, Section 1.7.11]) such that i* o F* = F™* o ¢*.

Let (s) be a semisimple class of G**" and we choose a class (3) of G*/* which lies over
(s), i.e. ©*(5) = s. Then, by Proposition 3.13

~F
ResGrX(s) = X(s)-
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(b) The regular characters of UL are all GF -conjugate. Then by transitivity of the ordinary
induction we have for any z € H(F, Z(Q))

mdSi IS =16

It follows from (a) and by Clifford theory that the regular characters of G’ in the same
Lusztig series are GF-conjugates. This greatly reduces the number of unknown values of regular
characters in the system discussed in Remark 5.27. Moreover, it follows that all the constituents
of the restriction of regular characters of GF are regular characters of GF.

For non-unipotent elements we use two “extensions” of the same principle. On one side we
consider a modified version of the Gel'fand—Graev characters (discussed in Section 5.3) which
are non-zero on elements of the form zu with u unipotent and z central. On the other side we
use Lusztig induction/restriction from/to a Levi subgroup and the “modified” Gel'fand—Graev
characters of those Levis to obtain similar systems of equations for elements of the form zu
where this time z is central in the Levi.

This way we manage to write uniquely solvable systems of equations for almost all splitting
classes of G (for SL4(g) this method actually covers all the problematic cases, see Part II).

The main result that we need is about the relation between the regular characters of the
group G and of a Levi subgroup L via Harish-Chandra/Lusztig restriction (Theorem 5.35
below). This follows by an analogous relation between the Gel'fand-Graev characters of the
group G and of a Levi subgroup L via Harish-Chandra/Lusztig restriction. At the moment
of the writing this is only a conjecture.

Conjecture 5.29 ([DLM92, (5.2)’ Conjecture]). Let L be an F-stable Levi subgroup of G. For
z € H'(F, Z(G)), we have
RETE = egerTh

for some 2’ € H'(F, Z(L)).

There is a tight relation between Gel'fand—-Graev characters and characteristic functions of
regular unipotent classes.

Notation 5.30. We denote by 7? the class function of a finite group G that takes value
|Ca(g)| on the conjugacy class of g € G and zero on the other classes. More precisely, in good
characteristic, for z € HY(F, Z(G)) we set v&" := 'yfiF for a regular unipotent element u, € G¥
parametrized by z.

Lemma 5.31 ([DLM92, (3.5)" Scholium]). If the characteristic is good for G, then for any
z € HYF, Z(G)) we have

F
Dg’ys =G Z 0'22/71113.
2’eHY(F,Z(G))

The conjecture above is equivalent to the following one (the equivalence is proven later in
Proposition 5.36).

Conjecture 5.32 ([DLM92, (5.2) Conjecture|). Let L be an F-stable Levi subgroup of G. For
z € H'(F, Z(G)), we have

"REAS =L
for some 2’ € H'(F, Z(L)).

We list now the cases for which these conjectures have been proved.
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Proposition 5.33. Conjectures 5.29 and 5.32 are valid when either of the following conditions
18 satisfied.

(a) The centre of G is connected.
(b) The Levi L is split (contained in an F-stable parabolic subgroup).

(c) The characteristic p is good for G and q is “large enough™.

Proof. (a) See [DiMi83, Théoreme 4.4] and [DLM92, (5.4) Proposition].

(b) See [DLM92, (2.9) Theorem| and [DLM92, (5.3) Theorem].

(c) See [DLM97, 3.7 Theorem| and [Bo05, Theorem 15.2] for the determination of 2/, ap-
pearing in Conjecture 5.29. n

Remark 5.34. The precise determination of 2’ € H'(F, Z(L)), given z € H'(F, Z(QG)), in the
conjectures above is not an easy task. It depends on the arbitrary choice of the parametrization
of the regular unipotent classes in both the group G and the Levi subgroup L considered.
Clearly, the problem does not arise in the connected centre case (where there is only one regular
unipotent class in G and L¥). In general, the solution has been worked out by Bonnafé in
[Bo05]. In summary, he introduces and explicitly constructs two main tools:

e a restriction map for regular unipotent classes ([Bo00, Section 15.A])
resf : R‘eguni<GF) - Reguni(LF)'

e a certain morphism ([Bo05, Section 12.C and Table 1]) which, in practice, associates an
element of Z(L)/Z(L)° (and thus of H'(F, Z(L))) to each F-stable Levi subgroup L, we
will denote it by zr..

Recall that for any z € H'(F,Z(G)) we choose a representative t, € Zp'(z). Then
U, = U, and (because conjugation with ¢, and res& commute)

resg U, = (resg Uy )y (2)-

Moreover, resy is transitive:

G _ L G
resy = resy O resp,

for an F-stable Levi subgroup L' of G containing L, see [Bo04, Proposition 7.2 (¢)].
Finally, if Conjecture 5.32 holds, by [Bo05, Theorem 15.2] (when the characteristic is good

for G) then

«pG _GF _ LF
RL Yz - thL(z)zL

when choosing res$U; € Reg,,;(L¥) as being the regular unipotent class parametrized by
1€ HY(F, Z(L)).

The elements zy, are the identity for split Levi subgroups while otherwise they were deter-
mined by Bonnafé, and are given in [Bo05, Table 1].

For split Levi subgroups it is easy to check explicitly that res®(u1)®" = (uq)¥" where u,
is as in Notation 5.6. In the case of twisted Levi subgroups it is not clear how to explicitly
compute the restriction of regular unipotent classes. In Parts II and III, for an F-stable Levi
subgroup L of type (I, w) (see discussion before Definition 1.59), we find representatives of the
regular unipotent classes of L' in LY w™'In this case, we need to explicitly find an element
g € G such that g7'F(g) = w in order to compute res®. The generic determination of such
g is (at the moment of the writing) still an open problem. This means that it will not be
possible to fix unequivocally representatives of some splitting classes (that intersect twisted
Levi subgroups) in the generic character tables computed in Parts II and III. We are able to
explicitly find such g in all but one case of Sping (q).

5The proof uses results of Lusztig valid only for ¢ bigger than a constant which depends on the type of G.
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Unfortunately, we will need to use the conjectures above also for non-split Levi subgroups
and for any ¢. It will be possible to use them anyway thanks to the explicit determination of
the 2-parameter Green functions (see Section 4). It is easy to verify that Conjecture 5.32 is
true in the cases we are interested in, allowing us to use Conjecture 5.29 and its consequences.

When these conjectures are verified we are allowed to use the next very useful result.

Theorem 5.35 ([DLM92, (6.2) Theorem]). Suppose L is an F-stable Levi subgroup of G for
which Conjecture 5.29 holds. Then we have

REXG) - =caeL ) X
©

where the sum is over the semisimple classes (t) € L*f" such that t € (s)g.r= and 2’ is as in
Congecture 5.29.

The equivalence of the conjectures is mentioned without proof in [DLM92]. A proof was
provided by Digne and Michel after requesting details on it. We present it here.

Proposition 5.36 (Digne-Michel). If the characteristic is good for G (and the Mackey formula
holds) then Conjectures 5.29 and 5.32 are equivalent.

Proof. For readability reason, for this proof, we fix Hg = H'(F, Z(G)), H = H'(F, Z(L)),
Hg =Trir(Hg) and Hy, = Irr(Hy,).
We start by introducing the Mellin transforms

W= 3 NS TE = 3 car andof = 3 ((a)of

2z€EHg z€EHg z€Hg

for ¢ € Hg (and also the analogous ones in L). Then we apply Lemma 5.31 to these transforms
F F —
Day€ =) =)D =ne Y (2)e-TS =ne Y C(Z) Y (22 oIS
z€Hg z,2'€Hg Z’€Hg z€EHg

and, finally, by evaluating the sums we get
F
DG”ycG = nGaCG'F?. (%)

Analogously, we get the same formula in L.
We apply now *RE to the equation above, finding *RE Dny?F = 1608 Y .en, C(2)"RETS,
By Conjecture 5.29 and Remark 5.34, the right-hand side is 77G€G€LU? Y ela ((Z)F;JL(Z)ZL.

There are two possibilities. Either ( factorizes through by, i.e. there is (1, € Hy, such that
¢ = (L, o by, or it does not, in which case it can be checked that the sum is 0

naeaerLog [ker(bo) Y .cp, Culzn) L2y ¢ = (uoby,

*pG GF _
R Dane _{ 0 else.

Thus, we assume that ( = (g, o b, for (g, € Hi,. Therefore, we get
*RSDGWCGF = nGaGaLUCGCL(zL)’l]ker(hL)]Fg‘L.

In this case, by applying twice [DLM97, Proposition 2.5] we get the relation ngcff' = nLag“L.
Hence, "RE DaE" = nrecerol, u(zn) ker(hy)|T% . Then, by commuting Dg and *RE with
Proposition 3.17, we get

* F —
REyE =muog ¢u(zu)ker(br) | DLTE, -

63



Now we use equation (x) in L to get

*RS%‘GF = CL(ZL)_1|ker(hL)|7%LF

for ¢ that factorizes through by,.
The result follows by taking the inverse Mellin transform 8" = ﬁ > cedia S (z‘l)fyf'F,

* G GF —1 % G GF ]ker L~y LT _ LF
¢efg (LeHy,
since |Hg| = |Hy||ker(by)|. O

Before ending this section we introduce another family of irreducible characters. They are
the so-called semisimple characters, and they are as important (to our computations) as the
regular characters.

Theorem 5.37 ([DLM92, (3.15) Theorem (i) and (ii)]). We have the following:
(a) Let x € Irr(GT). Then

for all z € HY(F, Z(G)) unless x = £DgX(s),»» for some semisimple class (s) C G*”
and some 2’ € HY(F, Z(G)).

(b) For each pair ((s),z) as in (a), 0(s),: = €aEcg-(s)PaX(s),> 5 an irreducible character of
GP. Moreover o(s). = 0(s),» if and only if X(s)» = X(s'),+ -

Notice that the notation g . is justified by the fact that Dg preserves the Lusztig series
(Corollary 3.19).

Definition 5.38. The characters
{0(5).- | (s) semisimple class of G**" |z € H'(F, Z(G))}
are called the semisimple characters of G¥'.

Remark 5.39. In view of Proposition 5.16, if the regular characters of a certain Lusztig series,
say X(s),z» are known then we know the value of the semisimple characters g, . on regular
unipotent elements. We have

|U1/\ ZuEUZ/ Q(S)yz(u) =Tac Z Oprzr—1 <DGQ(5),Z7 Fz”>
* 2"eH(F,Z(G))
= TNIGEGECE+(s) Z Oyt 1—1 <X(s),zu Fz”>
SEH(F,Z(G))

where the scalar products with the regular characters are known by hypothesis. Notice that,
by definition, ngea = er(q) is equal 1 if G is semisimple.

Remark 5.40. By the discussion after the proof of [DLM92, (3.15) Theorem)], a regular char-
acter x(s),. is also semisimple if and only if s is a regular semisimple element of G*. Hence the
regular semisimple characters are

{X(s).- | (s) regular semisimple class of G**" |z € H'(F, Z(G))}.

Thus, in good characteristic, x(s),. vanishes on regular unipotent classes unless it is regular
semisimple.
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Because of the tight relation between regular and semisimple characters, we can state an
analogue of Theorem 5.35 for semisimple characters.

Theorem 5.41 ([DLM92, (6.4) Corollary]). Suppose L is an F-stable Levi subgroup of G for
which Congecture 5.29 holds (and assume that the Mackey formula holds). Then we have

*pG G L
RL Q(s),z - ch* (8) Z ch* (t) Q(t)7zl
(®)

where the sum is over the semisimple classes (t) € L*f" such that t € (s)g.r= and 2’ is as in
Congecture 5.29.

Remark 5.42. Notice that once the regular characters are identified (by taking scalar products
with the Gel'fand—Graev characters) it is easy to identify the semisimple characters. In practice,
we just need to inspect character degrees. This is direct from [GeMa20, Proposition 3.4.21],
which states that the degree polynomials of p € Irr(G*) and Dg(p) are related by

+ _
Dpe(p(a) =d* 'D,(a™).

Remark 5.43. We already know one regular and one semisimple character. The Steinberg
character is a regular character. This follows directly by taking the scalar product (I'S, Stg)
for any 2 € H'(F,2(Q)). By definition the only non-zero value on semisimple elements of the

Gel’fand—Graev characters is [S(1) = 15—;‘ While by Proposition 3.21 the only non-zero value
0

on unipotent elements of the Steinberg character is Stg(1) = |[U}’|. Then the scalar product is

equal to 1.

It follows by the definition of the Steinberg character that the trivial character is semisimple.

5.3 Modified Gel’fand—Graev characters

The idea behind the use of Gel'fand—Graev characters comes from the need for characters
that distinguish between splitting unipotent classes. In this section, we make a step towards
dropping the unipotent requirement, by modifying their definition. We consider characters that
distinguish between splitting classes with elements whose semisimple part is central. Although
the definition is as simple as it can be, they are a key ingredient for the decomposition of
Deligne-Lusztig characters. For example, in SLy(q) these modified Gel’fand-Graev characters
encode all needed information to complete the character table.

Definition 5.44. Let ZU denote the subgroup of G¥" which is the direct product of the centre
Z = Z(G") and the unipotent subgroup U = U}". The modified Gel’fand—Graev characters of
GT are the characters of the form

IndZ;, (6 x )

where 6 is a linear character of Z and v is a regular character of U.
If ¢ is parametrized by z € H*(F, Z), we write ng for the corresponding modified Gel’fand—
Graev character.

By the definition of induction, it is easy to see how the modified Gel’fand-Graev characters
can be written in terms of the usual Gel’fand—Graev characters.

Lemma 5.45. Let 0 € rr(Z(GF)) and z € HY(F, Z(G)). For g € G with semisimple part s
and unipotent part u, we have

6-(9) = { Zamf($)IE () s € Z(G)
i 0 else.
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Proof. Clearly, if s ¢ Z = Z(GY) then Fg:: (9) = 0. So we assume that s € Z and let ¥ be
a regular character of U = U]’ parametrized by z. Then, by definition of the induction of
characters

F 1
IndS5 (0 % 0)(a) = 1 3 00 = T ol > 0 =TS W),
zeGF,
v9eZU ueU

[
It is easy to relate modified and non-modified Gel'fand-Graev characters more specifically.
Lemma 5.46. Let 0,0 € Irr(Z(GY)) and 2,2 € HY(F, Z(G)), then

1

IS 16 ) =6pp——
< 6,2 9,z> 0,0 |Z<GF)‘

(TS, TS).

Proof. By the discussion above, we can rewrite the scalar product as

O(x) 0'(z)
Z(GH)|2(GT)]

<ng7rg,z’> = <F,§7 FS> Z |

z€Z(GF)
and the result follows by the orthogonality relation for Irr(Z(Gt)). O

Corollary 5.47. Let z € H'(F, Z(G)). Then

> g =r¢

0€lr(Z(GF))

Proof. By [Is76, (2.11) Lemma] the sum of all the linear characters of the centre is the regular
character of the centre. So we have

0(s regr)(s) ISu) s=1
S I VI R (-1 el R

et (Z(GF)) 9elr(Z(GF))
for any ¢ € G with semisimple part s and unipotent part w. O

In other words, the modified Gel’fand-Graev characters partition the usual Gel’fand-Graev
characters.

Remark 5.48. At the cost of having a support |Z(G*")| times bigger, the modified Gel’fand—
Graev characters contain more precise information than the non-modified ones. If in the pre-

vious section, we could get a system of at most |H'(F, Z(G))| equations for any character of
GT' now we get up to |Z(G)||H'(F, Z(G))| of them.

Although we introduced them as characters that distinguish certain conjugacy classes, it
turns out that the modified Gel'fand-Graev characters can be explained/obtained with another
construction. We end this section with a discussion on this equivalent construction. Theoreti-
cally, the information obtained is redundant. However, in practice, we gain an alternative, and
in some cases more effective, way of performing some computations.

What follows is inspired by [Bo00, Chapter 1.7].

For every element of the centre of G we can define an action on CF(G”).

Definition 5.49. Let z € Z(GY) and y € CF(GY). Then we define tSy € CF(GY) by
tSx(g) = x(zg) for g € G
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It is easy to see that t& : CF(GY) — CF(G") is an isometry and t& o t§ = tS, for all
2,2 € Z(GF).

Notation 5.50. For any linear character ¢ € Irr(Z(G!)) we define the set
CF(G")? := {x € CF(G") | tZx = p(2)y, for all z € Z(G")}.
The interest of introducing this action of the centre comes from the next proposition.

Proposition 5.51. We have
CF(G") = @5 CF(G")*
el (Z(GF))
and the direct sum is orthogonal.
Proof. For any class function y € CF(G!) and any ¢ € Irr(Z(G*)) the transform
X+ X = W(I;F” > ez HtSx

2€Z(GF)

projects onto CF(GT)? (easy to verify by applying t& to x.,).
By explicit computation we find,

Z Xe =X and (Xy)e = 0y Xes
pelrr(Z(GTF))

for ¢, ¢ € Irr(Z(GY)), which proves that CF(GY) is the direct sum from the statement.
Lastly, take y; € CF(GT)?t and x, € CF(GH)?2 for ¢y, 9o € Irr(Z(GF)). Because t¢ is
an isometry for all z € Z(GT'), we get the orthogonality relation

_ 1 G, g \_ 1
<X17 X2> - |Z(GF)| ZE%}}J)“& X1, tz X2> - |Z(GF>| ZE%}}J)(@I(»Z)XD 902(Z>X2>
801 ) _
Z | <X1,X2> (@1, 4P2><X17X2> = 5¢1,</z2<X1,X2>-
2€Z(GT)

]

Notation 5.52. From now on, for all x € CF(GY) and ¢ € Irr(Z(G*)) we denote by x,, the
projection of x to CF(G)¥, as in the proof above.

Remark 5.53. It is clear by the definition that for = € Z(G!) and ¢ € Irr(Z(GY)) the
modified Gel'fand-Graev character I', . is the projection of the Gel'fand-Graev character I',
to CF(GY)?, ie. T, = (I,),.

The next result will be useful for applying the theory developed so far to the computations
in Part III.

Proposition 5.54 ([Bo00, Lemma 1.7.5)). If s is a semisimple element of G*", then there
exists a unique @ € Irr(Z(GY)), depending only on the G* -conjugacy class of s, such that

C&(GF,s) C CF(GH)».
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Remark 5.55. In particular, every irreducible character y € Irr(GF) takes values related by
x(zu) = @(2)x(u), for ¢ € Irr(Z(GF)) as in the previous statement, where z € Z(G') and
u € G is unipotent. This character ¢ can be determined on any known class function in the
span of the Lusztig series containing y.

In general, for an element with Jordan decomposition su (s semisimple and u unipotent)
we have analogous statements for the characters of Cq(s)f. When this centralizer is a Levi
subgroup, L, we can use these observations to gain further informations on the values of
*REy. Although, one must be careful that the constituents of *REy might not all lie in the
same subspace CF(L)? for one ¢ € Irr(Z(L")).

Remark 5.56. By the last remark, if it is possible to determine ¢ € Irr(Z(G*)) correspond-
ing to each semisimple conjugacy class of G*/”, then it is unnecessary to know the modified
Gel'fand—Graev characters of G'. This will be the case for Sping (¢). However, as already dis-
cussed in the previous section, we will Lusztig restrict regular/semisimple characters to F-stable
Levi subgroups. By Theorems 5.35 and 5.41 these restriction might not (and it is hardly ever the
case) be irreducible. Then the determination of their decomposition in €, ey (zw.r)) CF(GF)?,
for F-stable Levi subgroups L, is computationally easier via scalar products with modified
Gel'fand—Graev characters. This is true especially because we usually do not know Irr(L) nor
we know any class function in some Lusztig series of L.

We end this section with an easy result that will be useful when we consider the Lusztig re-
striction of non-regular non-semisimple characters. In a few words, thanks to the orthogonality
of Proposition 5.51 if a class function belongs to CF(G®)? for a certain ¢ € Irr(Z(GF)), then
all its irreducible constituents belong to CF(G)? too.

Lemma 5.57. Let x € CF(G)? for ¢ € Irr(Z(GY)) such that its decomposition into irre-
ducible constituents s
- Y

0elr(GF)
for scalars ag € C. Then, § € CF(GT)? if ag # 0.

Proof. By Proposition 5.54 for each 6 € Irr(GY) there exists a ¢y € Irr(Z(GF)) such that
0 € CF(GT)#. By hypothesis, for all z € Z(G!) we have

tox = o(2)x.
We apply the decomposition on both sides of the equation:
Z agpe(z) = Z agp(z)8
Oelrr(GF) O€lrr(GF)

which is equivalent to

S an(po(z) — (=)0 =0,

Oelrr(GF)

for all z € Z(GF). Because Irr(GF) is a basis of CF(G!"), then we have

vo(2) = p(2) =0

for all § such that ay # 0 and for all z € Z(GF). This implies that @y = ¢ for all # such that
ag 7é 0. 0
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5.4 Some partial Gauss sums

The next lemma gives all the identities of ¢ (defined in Notation 5.12) needed to compute
the Gel’fand—Graev characters in Parts II and III, and some other sums that appear in the
computation of Gel’fand—Graev characters.

Denote the Legendre symbol of x € F, by

0 x=0,
77($) = 1 YIS (F;)2>
—1 else,

and the corresponding Gauss sum

z€ly

Lemma 5.58. The character ¢ has the following properties (every symbol j., k = 1,2, ...
denotes a fixed element of IF'qX)

1.2 ¢(hr) = =1, ¢(0) =1 and ¢(x)¢(y) = ¢(x +y) for all z,y € F,.

7'1€]F;<

2. > [I #aix;) = (=1)" for all a; € FY and r > 0.

5% dlar?) =n(a) T 6(a?), Va € F;.

z€F, z€Fq

y . 4 . k 1

6% o+ dar) = MR
r1,m2€Fg
rir2€pt (Fq)?

7 > (i) = -5
Tl,TQEF;
rira€pf (Fy)?
8. > O(J1m1 + Jara + jars) = —q;—l-

X
r1,72,73,74€Fg
X

riror3ra€pk (Fg )2

9. > o(him) = -GS

X

r1,72,r3,74€F;
k(mX 2
riror3ra€p” (F7)

10. 3 ¢(jrr1) = —(q —1)® for a € FY.

X
r1,72,73,74,75E€F

7‘1:(17‘27‘37’47‘5_2

) ) . —g1gepnR ) +an(—j1izu® ) +an(—jogsut ) +1
11 S G + jors + jars) = _an(=ggaut ) +an( Jijsu) an( 2z’ '
7"1,7"2,""36]17;<
rirs€pt (Fg)?
rorgept (FF)?
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2.3 (i + jara) = S (qn (—jujapt ) +1).
7"1,7"2,7"36117(;<
T1T3€#k(F;)2
rorgept (Fy )2

2
3. % lhm) = -5
’i"1,’i"2,7"36]17;<
rirs€pt (Fg)?
T27‘3€,LLZ(F;<)2

3
14. > o(jir) = —% fora e Fyx.
r1,72,73,74,r5EFg
rara€pt (Fy )
rara€pt (Fy)?
T1=arar3r4ry

15. > d(jir1) = —(q — 1)3q73777(u’“2)717(*u’“)_
r1,72,73,r4,75EF
t::rlrgrglrglrgl;é—z—él
L+t (F))?
16. > G(ir1 + jora + jarz) = L (—q + 2+ qn(—jrjspt )+
nrererel an(=jujan") + an(iajsi')).

—1 X
172 —T1T3T4Ty E#k(Fq )?

—1r4rs Eul (]F;< )2

17. > A¢(jir1 + jora + jsrs) = (¢ — 1)+ q (L+n(jjsp®)) (£n(jea) /g — 1)

X
r1,m2,r3€F
X
rirdriente)"

for ¢ =1 (mod 4) and with o = \/—j; *jap*.

Other sums:

8. Y 1=l
rl,rgeF;
rlrge;tk(ﬂr;)z

19. 2 1=l
7"1,7"2,7"36]17;<
rirs€pk (Fg)?
r2r3€ul(F§)2

20 Z 1= q—3—n(u’“)—n(—u’“)
. 3 .
H(t+4)epk (F) )?

Remark 5.59. It is essential for the proof of this lemma that the number of pairs (x,z3) €
F, x F, which solve the equation

a3 + azxrs = b,
for ai,as,b € Fy, is

q — n(—aiaz),

while for

ale + agx% =0,
with ay,ap € F, it is

¢+ (g — n(—aaz).

This is Lemma 6.24 of [LiNi97].

70



Proof of 1. Clear. O

Proof of 2. This follows by induction and by noticing that

Z H (b a;T 2 - Z ¢(arxr) Z H (b a; T Z).

T1 e, p €S =15 zr€Fy T1 ey EFF =1,
[
Proof of 3
Gy= D, ole)— Y, d)=1+2 ) @) =1+) o) =) o’
zE(F))2 c€F;\(F))2 z€(F))2 zCFy zeFy
[

Proof of 4. By point 3, we have

G)* = > o’ +y°).

z,y€ly

We can compute the sum by performing the “change of variable” r = 22 + y?. Thanks to
Remark 5.59 above, r = 0 for ¢ + (¢ — 1)n(—1) pairs (z,y) while r is equal to each non zero
element of IF, for ¢ — n(—1) pairs (z,y). Then, we get

Gn)* =q+ (g = n(=1) + (g —n(=1)) D é(r) = qn(-1)
relfg

-1

]

Proof of 5. Notice that o makes the sum over all the squares change to the sum over all the
non squares if o € F\ (Fy)2. O

Proof of 6. To perform this sum over riry € u* (IF;)2 introduce the “