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Abstract

Deligne–Lusztig theory allows the parametrization of generic character tables of finite groups
of Lie type in terms of families of conjugacy classes and families of irreducible characters
“independently” of q. Only in small cases the theory also gives all the values of the table.

For most of the groups the completion of the table must be carried out with ad-hoc methods.
The aim of the present work is to describe one possible computation which avoids Lusztig’s
theory of “character sheaves”. In particular, the theory of Gel’fand–Graev characters and
Clifford theory is used to complete the generic character table of G = Spin+

8 (q) for q odd. As
an example of the computations, we also determine the character table of SL4(q), for q odd.

In the process of finding character values, the following tools are developed. By explicit use
of the Bruhat decomposition of elements, the fusion of the unipotent classes of G is determined.
Among others, this is used to compute the 2-parameter Green functions of every Levi subgroup
with disconnected centre of G. Furthermore, thanks to a certain action of the centre Z(G) on
the characters of G, it is shown how, in principle, the values of any character depend on its
values at the unipotent elements.

It is important to consider Spin+
8 (q) as it is one of the “smallest” interesting examples for

which Deligne–Lusztig theory is not sufficient to construct the whole character table. The
reasons is related to the structure of G = Spin8, from which G is constructed. Firstly, G has
disconnected centre. Secondly, G is the only simple algebraic group which has an outer group
automorphism of order 3. And finally, G can be realized as a subgroup of bigger groups, like
E6(q), E7(q) or E8(q). The computation on Spin+

8 (q) serves as preparation for those cases.

Zusammenfassung

Die Deligne–Lusztig Theorie ist ein wichtiges Konstrukt in der Darstellungstheorie, mit welcher
die Parametrisierung generischer Charaktertafeln endlicher Gruppen vom Lietyp durchgeführt
werden kann. Diese Parametrisierung erfolgt durch Familien von Konjugiertenklassen und
Familien irreduzibler Charaktere, welche “unabhängig” von q sind. Allerdings ergeben sich
aller Werte einer Charaktertafel nur in kleinen Gruppen durch diese Theorie.

Für die meisten Gruppen muss die Vervollständigung der Charaktertafel mithilfe von Ad-
hoc-Methoden durchgeführt werden. Das Ziel dieser Arbeit ist es, eine mögliche Rechnung zu
beschreiben, welche Lusztigs Theorie von “character sheaves” vermeidet. Insbesondere wird
die generische Charaktertafel der Gruppe G = Spin+

8 (q) für ungerade Werte von q mithilfe
von Gel’fand–Greav Charakteren und der Clifford Theorie vervollständigt. Wir bestimmen die
Charaktertafel von SL4(q), mit ungeradem q, um ein Beispiel für die Rechnungen zu geben.

Um die Charakterwerte zu berechnen, werden im Laufe der Arbeit verschiedene Werkzeuge
entwickelt werden. So wird zum Beispiel durch die explizite Nutzung der Bruhat-Zerlegung von
Gruppenelementen die Fusion unipotenter Klassen in G festgelegt. Dies wird unter anderem
verwendet, um die 2-Parameter Green-Funktionen jeder Leviuntergruppe von G mit unzusam-
menhängendem Zentrum zu berechnen. Dank einer bestimmten Operation des Zentrums Z(G)
auf den Charakteren von G, kann weiterhin gezeigt werden, dass die Werte jedes Charakters
im Prinzip nur von seinen Werten auf den unipotenten Elementen abhängen.

Die Gruppe Spin+
8 (q) ist hier von besonderem Interesse, da diese Gruppe eines der “klein-

sten” interessanten Beispiele ist, für welches die Deligne–Lusztig Theorie nicht genügt um die
ganze Charaktertafel zu berechnen. Dies lässt sich auf die Struktur der Gruppe G = Spin8

zurückführen, von welcher G konstruiert wird. Zum einen hat G ein unzusammenhängendes
Zentrum. Andererseits ist G die einzige einfache algebraische Gruppe, die einen Gruppenauto-
morphismus der Ordnung 3 besitzt. Schließlich kann G als eine Untergruppe größerer Gruppen
wie E6(q), E7(q) oder E8(q) aufgefasst werden. Die Berechnung für Spin+

8 (q) in dieser Arbeit
wird als Vorbereitung für diese Fälle dienen.
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Introduction

The representation theory of finite groups is a rich and still wide open field of mathematics. In
this work, we are interested in the character theory of a particular class of finite groups called
of “Lie Type”. These are defined (at least in the present work) as being the rational points of
connected reductive linear algebraic groups over a finite field. One interesting property of these
groups is that they can be gathered in families, and each family can be treated more or less
“uniformly” (for what concerns character theory). One example are the groups of n×n invertible
matrices with entries in a finite field Fq, {GLn(q) | q prime power}. A goal of character theory
is to study irreducible representations via their traces, called irreducible characters. For each
finite group G this information is recorded in a (square) array, called character table, where
rows are labelled by irreducible characters of G and columns by conjugacy classes of G. For
finite groups of Lie type it is possible to write one “generic” character table for a whole family
of groups (or a subset with some mild conditions on q). By “generic” we mean that the table
has a fixed size for all considered groups and the values are given with q as parameter. Then,
the evaluation of q at a certain prime power yields the character table for a particular group of
the family.

Here we are interested in computing the generic character tables for

{SL4(q) | q prime power, q ≡ 1 (mod 4)},

as a first “easy” example, and

{Spin+
8 (q) | q prime power, q ≡ 1 (mod 4)}.

Of great relevance in the representation theory of finite groups of Lie type is the work of
Deligne and Lusztig, now known as Deligne–Lusztig theory. This gives not only a parametriza-
tion of the irreducible characters but also a theoretical way of explicitly computing values of
certain class functions. These class functions are integer linear combinations of some irreducible
characters, moreover each irreducible character appears as a constituent of at least one of them.
In some cases (for example GLn(q)) there are enough of these class functions to actually com-
pute the full character table. In general, the theory gives enough information if the considered
connected reductive group has connected centre and is “of type A”. Here we are interested in
cases where the theory does not yield the full character table, for instance both SL4 and Spin8

have disconnected centre.
There are two main goals in this thesis that are of interest for the character theory of finite

groups of Lie type.
On the one hand, we want to complete the generic character table for the spin groups

Spin+
8 (q). We say “complete” since the partial table containing the information coming from

Deligne–Lusztig theory has been computed and furnished by Frank Lübeck, and serves therefore
as starting point for all the computations. These groups are of interest because they are
constructed from a connected reductive group G “of type D4” which is a simple algebraic
group of simply connected type. This makes them the “smallest” (in some sense) interesting
case where Deligne–Lusztig theory fails to give the full character table. Being of type D4, the
group G has an accidental outer automorphism of order three, called “triality”, that does not
exist in other simple algebraic groups. Furthermore, it can be embedded as a subgroup inside
the much bigger exceptional simple groups of type E6, E7 and E8. As a result, this computation
can be seen as a preparation for the treatment of those cases. In the same way SL4(q) can be
embedded as a subgroup inside Spin+

8 (q). We treat it first as a smaller example for which we
expose in details the computations. Then, we can use it as reference for the computations on
Spin+

8 (q), which are analogous but would need much more text for basically the same procedure.

10



On the other hand, we want to develop a method for completing character tables that is
as elementary as possible and at the same time applicable to other groups. We complete the
tables thanks to the construction of class functions orthogonal to the space of “uniform class
functions” (which arise from Deligne–Lusztig theory), or by direct computation of character
values at some problematic conjugacy classes. To do this, we will use the existence of regular
embeddings, which allow us to apply Clifford theory. We will also use Gel’fand–Graev characters
(and a modified version) and Harish–Chandra/Lusztig induction/restriction. These are all more
or less directly tied to the fusion of the unipotent conjugacy classes.

The Gel’fand–Graev characters are special class functions that by definition have distinct
values on some of those afore mentioned problematic conjugacy classes. We define modified
Gel’fand–Graev characters in order to cover all problematic cases.

Finally, we remark that the determination of the generic character table for Spin+
8 (q) was

already started by Geck and Pfeiffer in [GePf92]. In their work, they explicitly computed the
so-called unipotent characters for the group of rational points of a connected reductive group
of type D4 but with connected centre. This can be adapted to find the unipotent characters of
Spin+

8 (q).

This thesis is divided in three parts. Part I contains a survey of the theory that we need
to define all objects we use and an outline of the applied methods. Then, in Part II and
Part III we explain the details of the computations made for the character tables of SL4(q)
and Spin+

8 (q), respectively. We will give only a quick overview of the main results for Spin8,
since the computations are mostly analogous to those made for SL4. We will however put
some emphasis on the passages where differences occur with the case of SL4. For example the
construction of the group Spin+

8 (q) and the computation of the 2-parameter Green functions
need a special treatment, different from the one for SL4(q).

11







Part I

Background theory
We introduce in this part of the theory all the tools needed for the computations in Parts II
and III.

In Section 1 we give the definition and properties of the finite groups of Lie type. In Sec-
tion 2 we recall some basics of representation theory of finite groups. In Section 3 we summarize
the results from representation theory of finite groups of Lie type which are interesting for us.
In Section 4 and Section 5 we introduce two essential objects for our computations. Respec-
tively, the 2-parameter Green functions and the modified Gel’fand–Graev characters. Finally, in
Section 6 we describe the method used to compute the character tables of SL4(q) and Spin+

8 (q).

1 Finite groups of Lie type

The finite groups that we consider here are SL4(q) (Part II) and Spin+
8 (q) (Part III), for odd

prime powers q. Both belong to the family of finite groups of Lie type. In these cases they
are constructed as fixed points of some simply connected algebraic groups under an algebraic
group endomorphism. In this section we recall the relevant theory behind the construction of
finite groups of Lie type. References for this section are, for example, [Ca85, Chapter 1 and 2],
[GeMa20, Chapter 1], [Hu75] and [MaTe11].

We start in Section 1.1 by giving the definition of connected reductive/semisimple algebraic
groups. In Section 1.2 we recall the definitions of root system and Weyl group of a connected
reductive group. In Section 1.3 we discuss isogenies of semisimple groups and define simply
connected groups. In Section 1.4 we give the definition of split BN -pair and its consequences
(Bruhat decomposition, Chevalley relations, ...). Finally in Section 1.5 we introduce Frobenius
endomorphisms and finite groups of Lie type.

Throughout this section we denote by K an algebraically closed field.

1.1 Connected reductive groups

As mentioned above, the objects considered in this work are (linear) algebraic groups, which
are affine algebraic varieties with a group structure. For details on the definition see [Ca85,
Chapter 1.1 an 1.2], [GeMa20, Chapter 1.1.1-1.1.3] or [MaTe11, Chapter 1].

It is easy to characterize algebraic groups thanks to the following crucial result.

Theorem 1.1 ([MaTe11, Theorem 1.7]). Let G be a linear algebraic group over K. Then G
can be embedded as a closed subgroup into GLn(K) for some n ∈ N.

Two examples of linear algebraic groups are K+ := (K,+), the additive group of K, and
K× = (K \ {0}, ∗), the multiplicative group of K.

Notation 1.2. From now on we say in short “algebraic group” for “linear algebraic group”.
For an algebraic group G, we denote by G◦ its connected component containing 1 ∈ G. We
mention that G◦ is a closed normal subgroup of finite index in G ([MaTe11, Proposition 1.13]).
See [MaTe11, Chapter 1.3] for details about connectedness of algebraic groups.

It is important to distinguish two special types of elements in an algebraic group G. By Jor-
dan decomposition every element of GL(V ) can be written as the product of two (commuting)
elements, one semisimple (i.e. diagonalizable) and the other unipotent (from linear algebra).
Thanks to Theorem 1.1, this property holds in any algebraic group.
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Theorem 1.3 ([MaTe11, Theorem 2.5], Jordan Decomposition). Let G be an algebraic group.

(a) For any embedding ρ of G into GL(V ) (for some vector space V over K) and for any
g ∈ G, there exist unique gs, gu ∈ G such that g = gsgu = gugs, where ρ(gs) is semisimple
and ρ(gu) is unipotent.

(b) The decomposition g = gsgu = gugs is independent of the chosen embedding.

(c) Let ϕ : G1 → G2 be a morphism of algebraic groups. Then ϕ(gs) = ϕ(g)s and ϕ(gu) =
ϕ(g)u.

Definition 1.4. Let G be an algebraic group. The decomposition g = gsgu = gugs of Theo-
rem 1.3 is called the Jordan decomposition of g ∈ G. If g = gs, it is called semisimple, while if
g = gu it is said to be unipotent.

For any algebraic group G, we will denote by Guni its subset of unipotent elements.

Definition 1.5. Let G be an algebraic group. The radical of G, denoted by R(G), is the
maximal closed connected solvable normal subgroup of G. The unipotent radical of G, denoted
by Ru(G) = R(G)uni, is the maximal closed connected normal unipotent subgroup of G.

Notation 1.6. Some important subgroups of a connected algebraic group G over K are the
following:

� A Borel subgroup B is a maximal closed connected solvable subgroup.

� A torus T is a subgroup isomorphic to a product of copies of K×, T ∼= K× × · · · ×K×.

� A parabolic subgroup P is a subgroup of G that contains a Borel subgroup.

� A Levi subgroup L of G is a Levi complement of a parabolic subgroup P of G, i.e. such
that P = L nRu(P).

We list some important properties of Borel subgroups and tori that we will use without
further mention. Let G be an algebraic group. Then:

� Any two Borel subgroups of G are conjugate ([MaTe11, Theorem 6.4 (a)]).

� Any two maximal tori of G are conjugate ([MaTe11, Corollary 6.5]).

� Any Borel subgroup B is the semidirect product TnBuni, where T is any maximal torus
of B ([MaTe11, Theorem 4.4 (b)]).

Assume moreover that G is connected. Then:

� For any Borel subgroup B of G we have G = ∪g∈GBg ([MaTe11, Theorem 6.10]).

� Every semisimple element of G lies in a maximal torus ([MaTe11, Corollary 6.11 (a)]).

� Every unipotent element of G lies in a closed connected unipotent subgroup ([MaTe11,
Corollary 6.11 (b)]).

� The maximal closed connected unipotent subgroups of G are all conjugate and they are
of the form Buni for some Borel subgroup B ([MaTe11, Corollary 6.11 (c)]).

A crucial consequence of these properties is that we can choose a reference Borel subgroup
B0 of G and a maximal torus T0 ≤ B0 of G. Then, every unipotent conjugacy class of G has a
representative in U0 = (B0)uni and every semisimple conjugacy class of G has a representative
in T0. Once this choice has been made, we will call U0 the unipotent subgroup of G.
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Definition 1.7. An algebraic group G is called reductive if Ru(G) = 1. It is called semisimple
if it is connected and R(G) = 1. A semisimple algebraic group G 6= 1 is said to be simple if it
does not have non-trivial proper closed connected normal subgroups.

The groups that we consider in Part II (SL4(K)) and III (Spin8(K)) are both simple.

1.2 Root system, Weyl group and structure of connected reductive
groups

There is a rather precise description of connected reductive groups if we consider their associated
Lie algebras. The Lie algebra of a connected algebraic group is defined as being its tangent
space at the identity. The description of the adjoint action of a connected reductive group on
its Lie algebra says a lot on the structure of the group itself. It leads, among other results, to
the classification of semisimple groups. However, because here we are only interested in two
specific cases all this information would be overwhelming for the practical purpose of this work.
Instead, we decide to follow the more economical introduction from [DiMi20, Chapter 1].

Before continuing, we recall the definition of an (abstract) root system, an object that will
appear many times in what follows.

Definition 1.8. A subset Φ of a finite-dimensional real vector space E is called a root system
in E if the following properties are satisfied:

� Φ is finite, 0 /∈ Φ, 〈Φ〉R = E;

� if c ∈ R is such that α, cα ∈ Φ, then c = ±1;

� for each α ∈ Φ there exists a reflection sα ∈ GL(E) along α stabilizing Φ;

� for α, β ∈ Φ, sα(β)− β is an integral multiple of α.

The group W = W (Φ) := 〈sα | α ∈ Φ〉 is called the Weyl group of Φ. The dimension of E is
called the rank of Φ.

A subset ∆ ⊂ Φ is called a base of Φ if it is a vector space basis of E and any root β ∈ Φ
is an integral linear combination β =

∑
α∈∆ cαα with either all cα ≥ 0 or all cα ≤ 0. The roots

α ∈ ∆ are called simple roots of Φ. If ∆ is a base of Φ, then the subset

Φ+ :=

{∑
α∈∆

cαα | cα ≥ 0

}
⊂ Φ

is called the system of positive roots of Φ with respect to the base ∆, and its elements are called
positive roots.

By definition, a root system Φ that generates a vector space E is finite and is stabilized by its
Weyl group W . Then, it follows that also W is finite. Moreover, W stabilizes a positive definite
W -invariant symmetric bilinear form of E, unique up to non-zero scalars on each irreducible
W -submodule of E. We assume that such bilinear form is chosen once and for all. Then, root
system Φ with base ∆ is called decomposable if there exists a partition ∆ = ∆1 t ∆2, with
∆1,∆2 non-empty and orthogonal to each other. If such a decomposition does not exist, then,
if Φ 6= ∅, the root system is said to be indecomposable.

We recall that indecomposable root systems are classified by type and have an associated
Dynkin diagram.
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Theorem 1.9 ([MaTe11, Theorem 9.6]). Let Φ be an indecomposable root system in some real
vector space isomorphic to Rn. Then, up to isomorphism, Φ is one of the following types:

An (n ≥ 1), Bn (n ≥ 2), Cn (n ≥ 3), Dn (n ≥ 4), E6, E7, E8, F4, G2.

In Parts II and III we will encounter the types A1, A3 and D4.
We introduce now the Weyl group of an algebraic group.

Definition 1.10. Let T be a torus.
Homomorphisms of algebraic groups χ : T → K× are called characters of T. The abelian

group of characters of T is denoted by X(T).
Homomorphisms of algebraic groups γ : K× → T are called cocharacters of T. The abelian

group of cocharacters of T is denoted by Y (T).

Notice that, given χ ∈ X(T) and γ ∈ Y (T), the composition χ◦γ is a homomorphism from
K× to itself. The only homomorphisms of this type are given by x 7→ xn for some integer n.
Then, the map 〈−,−〉 : X(T)× Y (T)→ Z, (χ, γ) 7→ n is a perfect pairing between X(T) and
Y (T) (which makes them dual to each other), see [MaTe11, Proposition 3.6].

From now on, G denotes a connected reductive group and T0 a fixed maximal torus of G.
Moreover, we write X := X(T0) and Y := Y (T0).

We recall next how, after choosing a reference maximal torus T0 of G, it is possible to
associate to G a root system Φ and a finite Weyl group W relative to T0. Note that these
definitions are independent of the choice of T0.

Definition 1.11. The Weyl group W of a connected reductive group G is the (abstract) finite
group isomorphic to W (T) := NG(T)/T for a maximal torus T of G.

Notice that the definition makes sense since all maximal tori are conjugate.

Notation 1.12. For w ∈ W we denote by ẇ a representative in NG(T0) with respect to the
reference torus T0.

The Weyl group acts by definition as automorphisms of T0. This action can be extended
to an action on both X and Y in the following way. Let w ∈ W , χ ∈ X and γ ∈ Y , then for
t ∈ T0 and λ ∈ K× we have w(χ)(t) := χ(tẇ) and w(γ)(λ) := γ(λ)ẇ. These two actions are
related by 〈χ, w(γ)〉 = 〈w(χ), γ〉.

On the other side, it is possible to identify a root system Φ as a subset of X. Then, the
Weyl group W (Φ) of this root system is isomorphic to the Weyl group W (T0). This comes
from the following theorem.

Theorem 1.13 ([DiMi91, 0.31 Theorem (i) and (ii)]). Let G be connected reductive and T0

the reference torus.

(a) Non-trivial minimal closed unipotent subgroups of G normalized by T0 are isomorphic to
K+; the conjugation action of t ∈ T0 is mapped by this isomorphism to an action of T0

on K+ of the form x 7→ α(t)x, where α ∈ X.

(b) The elements α ∈ X obtained in (i) are all distinct, non-zero and finite in number.
They form a root system Φ in the subspace of X ⊗ R that they generate. The group
W (T0) = NG(T0)/T0 is isomorphic to the Weyl group of Φ.

Definition 1.14. The elements α ∈ X from Theorem 1.13 (i) are called the roots of G relative
to T0. The set Φ is called the root system of G (relative to T0).

For every root α ∈ Φ ⊂ X there exists a coroot α∨ ∈ Y such that 〈α, α∨〉 = 2 and such
that Φ is stable under the reflection sα : X ⊗ R → X ⊗ R, x 7→ x − 〈x, α∨〉α. These α∨ are
called the coroots of G (relative to T0), and they form a root system in Y ⊗R denoted by Φ∨.
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Definition 1.15. The one-dimensional unipotent subgroup of G corresponding to the root
α ∈ Φ as in Theorem 1.13 is denoted by Uα and is called the root subgroup of G associated to
α.

The isomorphism of Theorem 1.13 (a) is denoted by uα : K+ → Uα and is called root map.

These root subgroups are essential for the description of the structure of connected reductive
groups.

Theorem 1.16 ([DiMi20, Theorem 2.3.1 (iv)]). Let G be connected reductive and T0 the
reference torus. Any closed connected subgroup H of G normalized by T0 is generated by
(T0 ∩H)0 and the Uα it contains; in particular, G is generated by T0 and the Uα.

It follows that U0 =
∏

α∈Φ+ Uα for a suitable choice of a base of the root system Φ relative
to T0.

The multiplication law of a maximal unipotent group like U0 can be described thanks to
the so-called commutation relations of its root subgroups and root maps. A proof of which can
be found in [Hu75, Lemma 32.5].

Proposition 1.17 ([MaTe11, Theorem 11.8],Commutation relations). Let Φ be the root system
relative to a maximal torus of a connected reductive group such that Φ+ has a fixed total order
compatible with addition. Then, for α, β ∈ Φ+ there exist integers cnmαβ and a choice of root
maps such that

[uα(t), uβ(s)] =
∏

uγ(c
nm
αβ t

nsm) for all t, s ∈ K

where the product is over the positive roots of the form γ = nα+mβ ∈ Φ+ for integers n,m > 0
(in the chosen ordering). We use the convention [x, y] = x−1y−1xy.

Although Theorem 1.16 already gives the structure of connected reductive groups, we give
a more explicit result that describes the structure of connected reductive/semisimple groups.

Theorem 1.18 ([MaTe11, Theorem 8.17(g),(h) and Theorem 8.21(a),(b)]). Let G be a con-
nected reductive group, T0 the reference maximal torus and Φ the root system (of G relative to
T0). Then:

(a) G = 〈T0,Uα | α ∈ Φ〉.

(b) Z(G) =
⋂
α∈Φ kerα.

Furthermore, if G is semisimple, then:

(c) G = 〈Uα | α ∈ Φ〉.

(d) G = [G, G].

Recall that the rank rk(G) of an algebraic group G is the dimension of any of its maximal
tori. If G is reductive, its semisimple rank is rkss(G) := rk(G/R(G)).

Corollary 1.19 ([MaTe11, Corollary 8.22]). Let G be connected reductive. Then

G = [G, G]R(G) = [G, G]Z(G)◦;

in particular, rkss(G) := rk([G, G]) and rk(G) = rkss(G) + dimZ(G).

An important object in the representation theory of finite groups of Lie type is the centralizer
of semisimple elements. We have again an explicit description of its structure.
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Theorem 1.20 ([MaTe11, Theorem 14.2]). Let G be connected reductive. Let s ∈ G be
semisimple, T ≤ G a maximal torus containing s with corresponding root system Φ, and fix
the set Ψ := {α ∈ Φ | α(s) = 1}. Then:

(a) CG(s)◦ = 〈T,Uα | α ∈ Ψ〉.

(b) CG(s) = 〈T,Uα, ẇ | α ∈ Ψ, w ∈ W with sẇ = s〉.

Moreover, CG(s)◦ is reductive with root system Ψ and Weyl group W (s)◦ := 〈sα | α ∈ Ψ〉.

Notation 1.21. We denote by W (s) := {w ∈ W | sẇ = s} the “Weyl group”1 of CG(s). The
group W (s)◦ is normal in W (s) and W (s)/W (s)◦ ∼= CG(s)/CG(s)◦ ([DiMi20, Remark 3.5.2]).

From now on, we use the notation A(g) := AG(g) := CG(g)/CG(g)◦ for g ∈ G.

Remark 1.22. Recall that the Weyl group is finite and there are only finitely many root
subsystems Ψ ⊆ Φ. Then, it follows from the proposition that there are only finitely many
distinct centralizers of semisimple elements of a connected reductive group, up to conjugacy

1.3 Classification and isogenies of semisimple groups

Semisimple algebraic groups are classified thanks to a combinatorial tool called the root datum.

Definition 1.23. A quadruple (X,Φ, Y,Φ∨) is called a root datum if

� X ∼= Zn ∼= Y , with a perfect pairing 〈−,−〉 : X × Y → Z, for some n;

� Φ ⊂ X, Φ∨ ⊂ Y are abstract root systems in ZΦ⊗Z R and ZΦ∨ ⊗Z R, respectively;

� there exists a bijection Φ→ Φ∨ such that 〈α, α∨〉 = 2 for all α ∈ Φ; and

� the reflections sα of the root system Φ and sα∨ of Φ∨ are given, respectively, by
sα(χ) = χ− 〈χ, α∨〉α for all χ ∈ X, and sα∨(γ) = γ − 〈α, γ〉α∨ for all γ ∈ Y .

If (X,Φ, Y,Φ∨) is a root datum, we call (Y,Φ∨, X,Φ) its dual root datum. More generally,
we say that two root data are dual if one of the root data is isomorphic (see definition below)
to the dual of the other root datum.

This definition is justified by the fact that for a connected reductive group the quadruple
(X(T0),Φ, Y (T0),Φ∨) is a root datum (see [MaTe11, Proposition 9.11]), where Φ is the root
system relative to the reference maximal torus T0 and Φ∨ is the set of coroots as in Defini-
tion 1.14.

Definition 1.24. Two root data (X,Φ, Y,Φ∨) and (X ′,Φ′, Y ′,Φ′∨) are said to be isomorphic
if there exist isomorphisms of abelian groups δ : X → X ′ and ε : Y → Y ′ such that:

� 〈δ(χ), ε(γ)〉 = 〈χ, γ〉 for all χ ∈ X and γ ∈ Y .

� δ(Φ) = Φ′ and ε(Φ∨) = Φ′∨.

� ε(α∨) = δ(α)∨ for all α ∈ Φ.

Theorem 1.25 (Chevalley Classification Theorem, [MaTe11, Theorem 9.13]). Two semisimple
algebraic groups are isomorphic if and only if they have isomorphic root data. For each root
datum there exists a semisimple algebraic group which realizes it. This group is simple if and
only if its root system is indecomposable.

1There is also a notion of Weyl group for disconnected groups, that we do not need explicitly here.
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It is possible to give a more precise description of semisimple groups with the same root
system by means of the fundamental group. First of all, define Ω := Hom(ZΦ∨,Z). Second,
notice that, thanks to the perfect pairing 〈−,−〉, we can identify X ∼= Hom(Y,Z). And, by
restriction, we get an injection Hom(Y,Z) → Hom(ZΦ∨,Z). Then we have the inclusions
ZΦ ⊆ X ⊆ Ω (each of finite index). These are the ingredients for the next definition.

Definition 1.26. Let G be a semisimple algebraic group with root datum (X,Φ, Y,Φ∨) and
Ω as above. Then the finite group Λ(G) := Ω/X is called the fundamental group of G.
If X = Ω (Λ(G) = 1), then G is said to be simply connected, and is denoted by Gsc. If X = ZΦ,
then G is said to be of adjoint type, and is denoted by Gad.

A surjective homomorphism of algebraic groups with finite kernel is called an isogeny. Two
groups with such a morphism between them are said to be isogenous.

Notice that for connected reductive groups the kernel of an isogeny lies in all maximal tori.

Proposition 1.27 ([MaTe11, Proposition 9.15]). Let G be semisimple with root system Φ.
Then there exist natural isogenies

Gsc
π1−→ G

π2−→ Gad

from a simply connected group Gsc and to an adjoint group Gad, each with root system Φ, with
ker(π1) ∼= Λ(G)p′, ker(π2) ∼= (Λ(Gad)/Λ(G))p′, where p = char(K).

The various semisimple groups with the same root system Φ in between Gsc and Gad,
according to Proposition 1.27, are called the isogeny types corresponding to Φ.

Example 1.28. In Parts II and III, we consider, respectively, SL4(K) and Spin8(K). They are
both simple algebraic groups of simply connected type. SL4(K) is of type A3 and Spin8(K) is
of type D4. See [MaTe11, Table 9.2].

1.4 BN-pair, Bruhat decomposition and Chevalley relations

An important property of finite groups of Lie type and of the connected reductive groups from
which they are constructed is their (split) BN -pair. This pair encodes structural information
about these groups, which is useful in practical computations. In what follows below, we recall
the definition of split BN -pairs and we list the properties that are used in Parts II and III.

Definition 1.29. Let G be any group. Two subgroups B and N are said to form a BN-pair
if the following axioms are satisfied.

� G = 〈B, N〉.

� H := B ∩N is normal in N .

� W := N/H is generated by a set of elements si, i ∈ I, with s2
i = 1.

� If ni ∈ N maps to si ∈ W under the natural homomorphism, then niBni 6= B.

� For each n ∈ N and each ni we have niBn ⊆ BninB ∪BnB.

The group W is called the Weyl group of the BN -pair.
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The Weyl group of a BN -pair is a Coxeter group, see [Ca85, Proposition 2.1.7], but this
fact is not used explicitly in the rest of this work and will not be discussed any further.

Let G be a group with a BN -pair. Then G = BNB ([Ca85, Proposition 2.1.1]). This
decomposition can be described more precisely. The double cosets BnB,Bn′B ∈ BNB are
equal if n and n′ represent the same element of W = N/H in N ([Ca85, Proposition 2.1.2]).
Then, this implies that the group has a decomposition

G =
∐
w∈W

BẇB

where ẇ ∈ N denotes a representative of w ∈ W . It is called the Bruhat decomposition of G.
It is possible to define a notion of parabolic subgroups of a group with a BN -pair by

considering subgroups of the Weyl group .

Definition 1.30. Let J be a subset of the index set I. Let WJ be the subgroup of W generated
by the elements si with i ∈ J and let NJ be the subgroup of N satisfying NJ/H = WJ . Then
the subgroup PJ := BNJB is called a standard parabolic subgroup of G. A parabolic subgroup
of G is a subgroup conjugate to PJ for some J ⊆ I (this is well-defined by [Ca85, Proposition
2.1.6]).

The definition of BN -pairs can be specialized to split BN -pairs for algebraic groups.

Definition 1.31. The algebraic group G has a split BN-pair if it satisfies the following axioms:

� G has closed subgroups B and N which form a BN -pair.

� B = HnU, where H := B∩N is a closed commutative subgroup of semisimple elements
and U is a closed normal unipotent group.

�

⋂
n∈N

nBn−1 = H.

Analogously, for finite groups we define split BN -pairs of characteristic p.

Definition 1.32. A finite group G is said to have a split BN-pair of characteristic p if the
following conditions hold:

� G has subgroups B, N which form a BN -pair.

� B = H nU , where U is a normal p-subgroup of B and H is an abelian subgroup of order
prime to p.

�

⋂
n∈N

nBn−1 = H.

Remark 1.33. Notice that any finite group can be seen as an algebraic group (see discussion
at the end of Chapter 1.2 of [MaTe11]). It follows that a finite group with a split BN -pair of
characteristic p can be seen as an algebraic group over an algebraically closed field of charac-
teristic p with a split BN -pair (according to Definition 1.31). Then, Definition 1.31 includes
both the case of connected reductive groups and the finite groups of Lie type that we construct
in the next section.

We list now some properties of algebraic groups with BN -pairs that are useful for the
computations in Parts II and III. But, first we fix some notations.
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Notation 1.34. For the remainder of this section, G denotes an algebraic group with a split
BN -pair formed by B and N. It has Weyl group W := N/H generated by elements si indexed
by i ∈ I, where H := B ∩ N. We denote by w0 the element of maximal reduced length of
W (this exists and is unique by [Ca85, Proposition 2.2.11]) and for every w ∈ W we denote a
representative in N by ẇ.

We define the following subgroups of G:

U− := Uẇ0 , Ui := U ∩Uẇ0ṡi , U−i := Uṡi
i , and Uw := U ∩Uẇ0ẇ,

for i ∈ I and w ∈ W .
For a subset J ⊂ I, we denote by ΦJ the root subsystem of Φ with base ∆J = {αi | i ∈ J}

(and Weyl group WJ). We denote by (w0)J the element of WJ of maximal reduced length.

Proposition 1.35 ([Ca85, Proposition 2.5.1]). U is a maximal unipotent subgroup of G.

For split BN -pairs it is possible to refine the Bruhat decomposition by adding a “uniqueness
of expression” statement.

Theorem 1.36 ([Ca85, Theorem 2.5.14], Sharp form of the Bruhat decomposition). Each
element of G is uniquely expressible in the form

uhẇuw

where u ∈ U, h ∈ H, w ∈ W and uw ∈ Uw.

Proposition 1.37 ([Ca85, Proposition 2.5.15]). The set of subgroups ẇUiẇ
−1 for w ∈ W and

i ∈ I is in bijective correspondence with the set Φ of roots. The root corresponding to the
subgroup ẇUiẇ

−1 is w(αi).

If w(αi) = α, we denote the root subgroup ẇUiẇ
−1 by Uα.

Proposition 1.38 ([Ca85, Corollary 2.5.17]). U =
∏

α∈Φ+ Uα with uniqueness, if the positive
roots are taken in any fixed order in the product.

We turn now to properties of standard parabolic subgroups and standard Levi subgroups
of groups with split BN -pairs.

For each subset J ⊆ I define the subgroup LJ of G by LJ := 〈H,Uα | α ∈ ΦJ〉.

Proposition 1.39 ([Ca85, Proposition 2.6.3]). The group LJ has a split BN-pair corresponding
to subgroups BJ := U(w0)JH and NJ , where NJ ≤ N is such that NJ/H = WJ .

Our aim is to apply the results on BN -pairs to connected reductive groups. For the re-
mainder of this Section we choose a total ordering of Φ+ such that the subgroups Uα, for
α ∈ Φ+, follow the commutation relations of Proposition 1.17. This is needed to discuss the
Levi decomposition of standard parabolic subgroups.

Proposition 1.40 ([Ca85, Proposition 2.6.4]). Let G be an algebraic group with a split BN-
pair which satisfies the commutator relations. Let UJ := U ∩ U(ẇ0)J . Then UJ is a normal
subgroup of the standard parabolic subgroup PJ , PJ = UJLJ and UJ ∩ LJ = 1.

Definition 1.41. The decomposition UJLJ of the standard parabolic subgroup PJ is called
its Levi decomposition and LJ is called a standard Levi subgroup of G. A Levi subgroup of PJ

is a PJ -conjugate of LJ .
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The parabolic/Levi subgroup structure of G is well behaved with respect to inclusion. Since
any Levi subgroup of an algebraic group with a split BN -pair is itself an algebraic group with
a split BN -pair, it is possible to relate parabolic/Levi subgroups of a Levi subgroup to those
of G.

Proposition 1.42 ([Ca85, Proposition 2.6.6]). The standard parabolic subgroup of LJ corre-
sponding to the subset J ′ ⊆ J is PJ ′ ∩ LJ .

Proposition 1.43 ([Ca85, Proposition 2.6.7]). The maximal normal unipotent subgroup of
PJ ′ ∩ LJ is UJ ′ ∩ LJ . The standard Levi subgroup of PJ ′ ∩ LJ is LJ ′.

Notation 1.44. The Weyl group of G is generated by a subset of involutions S indexed by a
set I and corresponding to the simple roots ∆. We use interchangeably the notations for PJ ,
LJ and WJ with J a subset of the index set I, a subset of S or a subset of ∆.

Every result in this section is valid for any connected reductive (and therefore also any
semisimple) group.

Proposition 1.45 ([MaTe11, Theorem 11.16]). Let G be a connected reductive algebraic group
with Borel subgroup B and N := NG(T) for some maximal torus T ≤ B. Then B and N form
a BN-pair in G whose Weyl group is equal to that of G.

It is important to notice that Levi subgroups of a connected reductive group are themselves
connected and reductive, see [MaTe11, Proposition 12.6].

Corollary 1.46. Connected reductive groups have a split BN-pair (the same pair as in Propo-
sition 1.45).

Proof. For connected reductive groups, B = T n Buni holds. Thus we only need to prove that⋂
n∈N

nBn−1 = T.

We fix a base of the root system Φ of G relative to T and we denote the subsets of positive
roots and negative roots by Φ+ and Φ−, respectively. Then we have two Borel subgroups
B+ = T ·

∏
α∈Φ+ Uα and B− = T ·

∏
α∈Φ− Uα. It easy to see that B+ ∩ B− = T. Moreover,

B+ and B− are conjugate by ẇ0 ∈ N, since w0(Φ+) = Φ− (see [MaTe11, Corollary A.23]) and
because for all α ∈ Φ we have that ẇUαẇ

−1 = Uw(α) for all w ∈ W . This last statement can
be seen explicitly on the root maps:

Fix t ∈ K, w ∈ W and h ∈ T. Then for all α ∈ Φ we have

hẇuα(t)ẇ−1h−1 = ẇh′uα(t)h′−1ẇ−1 = ẇuα(α(h′)t)ẇ−1

where h′ = hẇ ∈ T.
Now, by [Ca85, Proposition 3.1.2(ii)] the group Y (T) ⊗K× is isomorphic to the torus T.

This means that we can find a cocharacter γ ∈ Y (T) and c ∈ K× such that h = γ(c). Then
we obtain α(h′) = α

(
γ(c)ẇ

)
= α (w(γ)(c)) = c〈α,w(γ)〉 = c〈w(α), γ〉 = w(α)(γ(c)) = w(α)(h).

Plugging this back in, we see that ẇUα = Uw(α).

We are now interested in describing more precisely the elements of semisimple groups. One
important information used in the computations of Parts II and III is the fusion of unipotent
classes of a semisimple group. By fusion of unipotent classes we mean identifying for each
unipotent conjugacy class of a maximal unipotent subgroup U of the group G to which con-
jugacy class of G they belong, i.e. for any unipotent element u ∈ G find those unipotent
conjugacy classes uUi of U such that

⋃
uUi = uG ∩U.
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This implies that we need to be able to conjugate unipotent elements by arbitrary elements
g ∈ G. Due to the sharp form of the Bruhat decomposition (Theorem 1.36), we can write

g = utẇuw

for uniquely determined u ∈ U0 = Ru(B0), t ∈ T0, w ∈ W = NG(T0)/T0 and uw ∈ Uw =
Uẇ0ẇ

0 (for our choice of a reference BN -pair, B0,N0 and maximal torus T0 ≤ B0).
In other words, to effectively describe all the elements of G we need to explicitly express

the elements of U0, of the torus T0 and representatives of the simple reflections of W . Also,
we need to know how they act (by conjugation) on each other.

Fortunately, semisimple groups are generated by their unipotent elements (Theorem 1.18
(c)). Thus, it is possible to write down elements that generate the BN -pair. These are called
Chevalley generators of G, and the relations between them are called the Chevalley relations.

These generators and relations are summarized in [GLS98, Theorem 1.12.1] and they are
treated in detail in [Ca72, chapter 12.1].

Notation 1.47 (Chevalley generators). Let G be a semisimple group with split BN -pair B,
N and root system Φ. Denote by T the maximal torus B ∩N, by U the maximal unipotent
subgroup of B and by W = N/T the Weyl group.

For every root α ∈ Φ we define the root maps uα : K+ → Uα as in Definition 1.15. Then,
we define maps nα : K× → N by nα(t) := uα(t)u−α(−t−1)uα(t) and define maps hα : K× → T
by hα(t) := nα(t)nα(−1) for all t ∈ K× (which are cocharacters). Moreover, we define elements
nα := nα(1).

Then, as shown in the proof of [Ca72, Theorem 12.1.1] we have T = 〈hα(t) | α ∈ Φ, t ∈ K×〉
and N = 〈T, nα | α ∈ Φ〉. Furthermore, for each root α ∈ Φ we have nαT = sα ∈ W where sα
is the reflection relative to the root α.

Remark 1.48. A semisimple group G = 〈Uα | α ∈ Φ〉, with root system Φ and generated by
its root subgroups, is actually generated just by the subgroups corresponding to a particular
base ∆ of Φ, i.e. G = 〈Uα | α ∈ ±∆〉.

This follows from the facts listed below:

� for all roots α ∈ Φ and w ∈ W we have ẇUα = Uw(α) (seen above in the proof of
Corollary 1.46);

� for every root β ∈ Φ there exist α ∈ ∆ and w ∈ W such that β = w(α) (see [MaTe11,
Proposition A.11]); and

� every element of W is a product of the simple reflections sα, α ∈ ∆.

Then, we have

G = 〈uα(t) | α ∈ ±∆, t ∈ K〉,
T = 〈hα(t) | α ∈ ∆, t ∈ K×〉,

N = 〈T, nα | α ∈ ∆〉.

Now, the Chevalley relations that we use are given by

� the commutation relations [uα(t), uβ(s)] =
∏
uγ(c

nm
αβ t

nsm) as in Proposition 1.17;

� uα(t)hβ(s) = uα(s〈α,β
∨〉t) for α, β ∈ Φ and t ∈ K, s ∈ K×;

� uα(t)nβ = usβ(α)(cαβt) for α, β ∈ Φ and t ∈ K, where cαβ are signs independent of t;
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� hα(s)nβ = hsβ(α)(s) for α, β ∈ Φ and s ∈ K×.

Notice moreover that for a simply connected group we have
∏

α∈∆ hα(tα) = 1 if and only if
tα = 1 for all α ∈ ∆.

It is clear that knowing all the values of cnmαβ and cαβ is equivalent to knowing the multi-
plication law of the whole group. These constants must be computed case by case by finding
a suitable (faithful) representation of the group. Once the Chevalley relations have been ex-
plicitly computed with the chosen representation, it is possible to carry out any computation
in G with the use of the Chevalley generators and relations in the form of uα, hα and nα
without having to use the underlying representation. The Chevalley generators together with
the Chevalley relations are called the Steinberg presentation of G (compare this with [DiMi20,
Theorem 2.4.11]).

Every computation made in Parts II and III is expressed in the Steinberg presentation. The
use of a Steinberg presentation makes it easier to write results of computations in a clearer
way. On one side it avoids having matrices laying around in the text, and on the other side it
underlines the “structure” of the elements (unipotent part, semisimple part, ...).
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1.5 Steinberg maps and finite groups of Lie type

We can now discuss the finite groups of Lie type. We construct these here as fixed points of
a connected reductive group under a certain map called Steinberg endomorphism. For this
section we use [GeMa20, Chapter 1.4] and [MaTe11, Chapter 21] as references.

We first need to introduce some basic definitions (which are valid more generally for affine
varieties).

Definition 1.49. Let X be an affine variety over K = F̄q, for some prime power q. We say
that X has an Fq-rational structure (or that X is defined over Fq) if there exists some n > 1
and an isomorphism of affine varieties i : X → X′ where X′ ⊆ Kn is Zariski closed and stable
under the standard Frobenius map

Fq : Kn → Kn, (ξ1, . . . , ξn) 7→ (ξq1, . . . , ξ
q
n).

In this case, there is a unique morphism of affine varieties F : X→ X such that i ◦ F = Fq ◦ i;
it is called the Frobenius map corresponding to the Fq-rational structure of X.

Notice that Fq is a bijective morphism with a finite number of fixed point (by elementary
Galois theory). It follows that F is a bijective morphism such that XF := {x ∈ X | F (x) = x}
is finite.

These definitions are easily adapted to algebraic groups. We take an algebraic group G such
that, as an affine variety, it is defined over Fq with corresponding Frobenius map F . Then, we
say that G (as an algebraic group) is defined over Fq if F is a group homomorphism. In this
case, the set of fixed points GF is a finite group (since group homomorphisms commute with
inversion and multiplication).

Thanks to Theorem 1.1 it is possible to give a more concrete description in terms of matrices,
for algebraic groups. The morphism

Fq : GLn(K)→ GLn(K), (aij) 7→ (aqij)

is called the standard Frobenius map of GLn(K) for n ∈ N. An algebraic group G is defined
over Fq if and only if for some n there is a homomorphism of algebraic groups i : G→ GLn(K)
which is an isomorphism onto its image and such that i(G) is Fq-stable. Then, a corresponding
Frobenius map F : G→ G is again defined by i ◦ F = Fq ◦ i, and GF is a finite group.

This construction can be generalized to account for some finite groups (called the Ree
and Suzuki groups) that are excluded when considering only Frobenius maps. Although these
groups are not treated here, the majority of results that we state in these pages are true in the
more general case. Then, we discuss the general case for completeness.

Definition 1.50. Let F : G→ G be an endomorphism of algebraic groups. Then F is called
a Steinberg map if some power of F is a Frobenius map of G. Note that, in this case, F is a
bijective homomorphism of algebraic groups and GF is a finite group. If G is connected and
reductive, then GF is called a finite group of Lie type or a finite reductive group.

We will see that for a connected reductive group G with a split BN -pair and a Steinberg
endomorphism F related to its Fq-structure, the finite group GF inherits some of the structural
properties of G. For instance, not only both G and GF have split BN -pairs but these are
tightly related by F .

A crucial tool that we need to understand the relation between the structures of G and GF

is given in the following theorem.
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Theorem 1.51 ([MaTe11, Theorem 21.7], Lang–Steinberg). Let G be a connected algebraic
group over F̄q with a Steinberg endomorphism F . Then the morphism

L : G→ G, g 7→ g−1F (g)

is surjective.

The morphism L of the theorem is called the Lang map.
Before discussing the BN -pairs in finite groups of Lie type we list some important conse-

quences of the Lang–Steinberg theorem.

Definition 1.52. Let G be a group and σ a group automorphism of G. Two elements g1, g2 ∈ G
are said to be σ-conjugate if there is an element x ∈ G such that g2 = σ(x)g1x

−1. The
equivalence classes for this relation are called σ-conjugacy classes of G (or just σ-classes of G).
The set of σ-conjugacy classes of G is denoted by H1(σ,G).

Proposition 1.53 ([GeMa20, Proposition 1.4.9] and [MaTe11, Theorem 21.11]). Let G be a
connected algebraic group with Steinberg map F . Let X 6= ∅ be an abstract set on which G
acts transitively; let F ′ : X → X be a map such that F ′(g.x) = F (g).F ′(x) for all g ∈ G and
x ∈ X.

(a) There exists some x0 ∈ X such that F ′(x0) = x0.

(b) If x0 is as in (a) and if StabG(x0) ⊆ G is closed and connected, then {x ∈ X | F ′(x) = x}
is a single GF -orbit.

More generally we have:

(c) If StabG(x) ⊆ G is closed for some x ∈ X, then for any x ∈ XF ′ there is a natural 1-1
correspondence:

{GF -orbits on XF ′} ↔ {F -classes in StabG(x)/StabG(x)◦}.

If we set X = G (with the action given by conjugation and F ′ = F ) in this Proposition we
gain important information on the F -stable conjugacy classes of G. Let us see this explicitly.

Let G be a connected algebraic group with Steinberg map F and let C be an F -stable
conjugacy class of G. Then G acts transitively on C by conjugation and we can apply the
proposition above with X = C and F ′ = F . In this case, the stabilizer of an element is its
centralizer. Notice that centralizers in algebraic groups are always closed subgroups (see [Hu75,
8.2 Proposition (b)]). It follows that there is a representative c ∈ C such that F (c) = c and if
CG(c) is connected, then CF is a single GF -class. Otherwise, if the centralizer is not connected,
the number of GF -classes contained in C is |H1 (F,CG(c)/CG(c)◦) |.

In what follows we say that the class C splits into |H1 (F,CG(c)/CG(c)◦) | classes of GF .
Another important consequence of Proposition 1.53 for a connected reductive group G is

that all pairs (T,B) are GF -conjugate, where T and B are respectively an F -stable torus and
an F -stable Borel subgroup of G containing T (see [GeMa20, Proposition 1.4.12]). An F -stable
torus contained in an F -stable Borel is called maximally split. Notice that maximally split tori
exist by Proposition 1.53 (a).

Usually at this point, in the literature, one restricts the action of the Steinberg map to a
maximal torus which in turn defines an action on the character and cocharacter groups of the
torus. This is used to classify the finite groups of Lie type. Since neither this classification nor
the methods to get it are explicitly used in the rest of this work, we just give a quick description
of how to obtain it, in order to fix the notation used later. Details can be found in [MaTe11,
Chapter 22] and [Ca85, Chapters 1.18 and 1.19].
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Let G be a connected reductive group with a Steinberg map F and T a maximally split torus
contained in an F -stable Borel subgroup B. The action of F on the characters and cocharacters
of T is given by F (χ)(t) := χ(F (t)) and F (γ)(c) := F (γ(c)) for χ ∈ X(T), γ ∈ Y (T), t ∈ T
and c ∈ K×. At the same time, F induces a permutation ρ of the positive roots of G relative to
T due to its action on the root subgroups (these are subgroups of an F -stable Borel subgroup).
We have F (Uα) = Uρ(α) for every positive root α. Recall that roots are characters. Then, these
two actions are related by the fact that F (ρ(α)) is a positive multiple of α ∈ Φ+. Whenever
G is simple, and not of type B2, F4 or G2 with char(K) = 2, 2, 3, respectively2, the action of
F is given more explicitly on root maps by F (uα(c)) = uρ(α)(aαc

q) with c, aα ∈ K× and on
X(T)⊗Z R by F = qφ, where q is a power of char(K), and φ ∈ Aut(X(T)⊗Z R) induces ρ−1

on Φ+.
It turns out that the Steinberg maps can be classified for simple algebraic groups in terms

of q and ρ, see [MaTe11, Theorem 22.5, Proposition 22.7 and Example 22.8].
We fix some definitions/notation used later, related to the discussion above.

Definition 1.54. A Steinberg endomorphism F of a connected reductive group G that acts as
q id on X(T) is said to be Fq-split. Otherwise it is called twisted. In this case, we also say that
the finite group of Lie type GF is twisted.

Notation 1.55. Let G be a simple algebraic group with a Steinberg endomorphism F inducing
a graph automorphism of order δ on the Dynkin diagram (such that F δ = qδid on X(T)⊗ZR).
If the root system of G is of type R, we denote GF also by δR(q) (if δ = 1 we simply write
R(q)).

More generally, we use a similar notation for connected reductive groups. If the root system
has connected components R1, . . . , Rn on which F acts trivially, we denote the group GF by
R1(q) · ... · Rn(q) · |Z◦F |. If F doesn’t act trivially on the root system, the notation is easily
adapted, for example if F interchanges the roots in A1 × A1 we denote GF by A1(q2).

In what follows we encounter (and explicitly construct), for example, D4(q), A3(q)(q − 1),
2A3(q)(q + 1) and A1(q)2(q2 − 1) (as Levi subgroups of D4(q)). Of course, this notation can
be misleading since the isogeny type is not evident. However, here, we are only interested in
explicit computations with simple groups of simply connected type. Therefore, it will always
be clear what finite group we are talking about.

The various possibilities for finite groups of Lie type constructed from a simple algebraic
group are described in [MaTe11, Chapter 22.2] and in [Ca85, Chapter 1.19].

Before continuing the discussion about BN -pairs in finite groups of Lie type, we introduce
some signs depending on the rational structure of G. These signs appear frequently in the
character theory of finite reductive groups.

Definition 1.56. Let T be an F -stable maximal torus of G. Let qφ be the map of X(T)⊗ZR
induced by F , with φ ∈ Aut(X(T) ⊗Z R). Then, the relative F -rank of T is defined as the
dimension of the q-eigenspace of qφ on X(T)⊗Z R. We set

εT := (−1)relative F -rank of T.

If T0 is our reference maximally split torus of G we call the relative F -rank of G the relative
F -rank of T0, and we set εG := εT0 . Analogously, we call semisimple F -rank of G the relative
F -rank of [G,G] and we set

ηG := (−1)semisimple F -rank of G.

2We are not interested in these cases here.
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Finally, we describe the BN -pair in finite groups of Lie type and their consequences.

Proposition 1.57. Let G be a connected reductive group with a Steinberg map F and Weyl
group W . There exist F -stable subgroups B, N of G that form a split BN-pair. Furthermore,
BF , NF is a split BN-pair of the finite reductive group GF with Weyl group W F .

Proof. By Proposition 1.53 there exists a maximally split torus T contained in an F -stable
Borel subgroup B. The subgroup N = NG(T) is also F -stable since for all n ∈ N we have
F (n)T = F (nT) = F (T) = T. It follows that B and N form an F -stable split BN -pair of G
by Proposition 1.45 and Corollary 1.46.

By [MaTe11, Theorem 24.1], GF inherits the Bruhat decomposition (sharp form) of the
split BN -pair of G.

Then, it is proved in [MaTe11, Theorem 24.10] (with the help of the Bruhat decomposition)
that BF and NF form a BN -pair of GF with Weyl group W F .

Next we have, by [MaTe11, Corollary 24.11], that BF = TF n UF (where U = Ru(B)).
To conclude, we need to show that

⋂
n∈NF nBFn−1 = TF . First, notice that TF is normal

in NF , so we have the inclusion TF ⊆
⋂
n∈NF nBFn−1.

We set B− := Bw0 and we denote by Φ the root system of G relative to T. The Borel
subgroup B− is F -stable since B = T ·

∏
α∈Φ+ Uα and B− = T ·

∏
α∈Φ− Uα and we have seen

that F permutes the positive roots, then analogously F permutes the negatives roots.
We saw (in the discussion after Proposition 1.53) that pairs (T′,B′) of F -stable tori and

Borel subgroups are GF -conjugate. In particular, (T,B) is GF -conjugate to (T,B−). Clearly
they are actually NF -conjugate. Finally, we get⋂

n∈NF

nBFn−1 ⊆ BF ∩ (B−)F = (B ∩B−)F = TF .

This result shows that finite reductive groups have a natural structure of parabolic/Levi
subgroups. The precise way Levi subgroups are described makes them invaluable in the rep-
resentation theory of finite reductive groups. We will see in Section 3 how we can “induce”
irreducible representations of Levi subgroups and relate them to irreducible representations of
the whole group.

An important consequence of Proposition 1.57 is that the sharp form of the Bruhat decom-
position gives a practical way of counting elements of finite groups of Lie type. Therefore, it is
possible to compute the order of finite groups of Lie type (see discussion in [MaTe11, Chapter
24.1]). A list of orders of finite groups of Lie type can be found in [MaTe11, Table 24.1].

A question that arises naturally is how the Chevalley generators/relations change from the
connected reductive group G to the finite reductive group GF . By identifying F -stable subsets
I of the generating set S ⊂ W , it is possible to explicitly write the structure of the root
subgroups of GF in terms of those of G. The theory behind these structures can be found in
[MaTe11, Chapter 23] and is not used explicitly in what follows, so we do not expand on it
here.

A list of consequences/properties of the BN -pair of finite groups of Lie type (constructed
from simple algebraic groups) can be found in [GLS98, Chapter 2.4]. In particular Theorems
2.4.1, 2.4.5, 2.4.7 and 2.4.8 give Chevalley generators for the finite group and their relations.
However, we are mainly interested in the case where F is a Frobenius morphism that has trivial
action on the root system. Then GF inherits the Chevalley generators/relations of G, by simply
restricting the field of definition to Fq.

We end this section with some remarks about F -stable subgroups (Levi subgroups and
tori) and the computation of fixed points of connected algebraic groups under the action of a
Steinberg endomorphism F .
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Proposition 1.58 ([GeMa20, Lemma 1.4.14]). Assume that G is a connected algebraic group
and let F : G→ G be a Steinberg map. Let y ∈ G and define F ′ : G→ G by F ′(g) = yF (g)y−1

for all g ∈ G. Then F ′ is a Steinberg map and we have GF ∼= GF ′. Furthermore, if F is a
Frobenius map corresponding to an Fq-rational structure, then so is F ′ (with the same q).

This result can be useful when doing explicit computations with elements of finite groups
of Lie type. It might be easier in some cases to find fixed points under a certain F ′ as in the
proposition than with F . For example, the finite general unitary groups are classically defined
as being the fixed points of a general linear group under an endomorphism F which is the
composition of a standard Frobenius map, the transposition map and the inverse map. In this
case, the subgroup of upper triangular matrices is not F -stable. However, it is F ′-stable if F ′

is the composition of F and the conjugation by a matrix which has ones on the anti-diagonal.
Then, Proposition 1.58 allows one to choose how to realize the finite general unitary group.
This fact will be used later in Part III since the special unitary group SU4(q) can be realized as
a subgroup of the finite spin group Spin+

8 (q) (to be more precise it is isomorphic to the derived
subgroup of a Levi subgroup of Spin+

8 (q) of type 2A3(q)).
Next, we consider a crucial remark on the construction of Levi subgroups and tori of finite

groups of Lie type.
Let G be a connected reductive group with Weyl group W , generated by the set S of simple

reflections, and let F be a Steinberg endomorphism of G. We choose a reference maximally
split torus T0 contained in a reference F -stable Borel subgroup B0 of G.

We know that every maximal torus T of G is conjugate to T0 by a certain element g ∈ G,
i.e. T = gT0. It is easy to prove that this torus is also F -stable if and only if g−1F (g) ∈ NG(T0)
([Ca85, Proposition 3.3.1]). In this case, there is an element w ∈ W such that g−1F (g) = ẇ
and we say that T is obtained from T0 by twisting with w or that T is of type w. To make this
explicit we will denote it by Tw.

A general description exists for Levi subgroups (tori are a special case of Levi subgroups).
We first make some basic remarks about parabolic and Levi subgroups.

By definition, for any parabolic subgroup P of G there exist an element g ∈ G and a
subset I ⊂ ∆ such that P = gPI for the standard parabolic subgroup PI of G (containing B0).
Conversely, for any I ⊂ ∆ and g ∈ G the subgroup gPI is parabolic (it is closed and contains
the Borel subgroup gB0).

We have the Levi decomposition PI = LI n UI where LI is the standard Levi subgroup
of G associate with I and UI = Ru(PI). Therefore, we also have the Levi decomposition
P = gPI = gLI n gUI and L := gLI is a Levi subgroup of G containing the maximal torus gT0.

We can now classify the F -stable Levi subgroups of G in terms of combinatorial data. For
every F -stable Levi subgroup L there are g ∈ G and I ⊂ S such that L = gLI . Moreover,
T = gT0 is a maximal torus of L obtained by twisting with w (ẇ = g−1F (g)). In particular T
is F -stable. We have F (g)F (LI) = F (L) = L = gLI . Since LI is generated by the F -stable torus
T0 and the root subgroups Uα for α ∈ I, it follows that F (LI) = LF (I), and for any subset
J ⊆ S we have ẇLJ = Lw(J). Then, gathering these properties we see that a Levi subgroup L
is F -stable if and only if LwF (I) = LI (for I and w defined as above).

Every F -stable Levi subgroup determines a pair (I, w) with I ⊆ ∆ and w ∈ W such that
wF (I) = I. We say that L is a Levi of type (I, w).

It follows from this discussion that there is a bijection between GF -conjugacy classes of
F -stable Levi subgroups and equivalence classes of pairs (I, w). Two pairs (I1, w1), (I2, w2) are
equivalent if and only if there is x ∈ W such that xI1 = I2 and xw1 = w2F (x).

It follows that for an F -stable Levi of type (I, w) we have LF ∼= LF ′
I where F ′ = w ◦ F and

the isomorphism is given by the conjugation with g ∈ G such that g−1F (g) = ẇ. In fact, we
know that L = gLI which implies that for any l′ ∈ LF there exists an l ∈ LI with l′ = gl. So,
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gl = l′ = F (l′) = F (gl) = F (g)F (l) which is equivalent to l = ẇF (l)ẇ−1. In particular, for any
F -stable maximal torus T of G we have that TF ∼= TF ′

0 .
This is crucial when determining elements explicitly in a twisted Levi subgroup (or twisted

torus). Normally, it is much easier to describe LI than L and the element w ∈ W can easily be
computed thanks to the GAP part of CHEVIE [MiChv] (with the commands Twistings and
TwistingElement).

Definition 1.59. If an F -stable Levi subgroup is contained in an F -stable parabolic subgroup
of G we say that it is F -split, otherwise it is called a twisted Levi subgroup.

We end this section by stating an important result on the centre of finite groups of Lie type.

Proposition 1.60 ([Ca85, Proposition 3.6.8]). Let G be a connected reductive group and F a
Steinberg map. Then

Z(GF ) = Z(G)F .

1.6 Regular embeddings

We describe in Section 3 the character theory of finite groups of Lie type. It turns out that the
theory is much richer for connected reductive groups with connected centre.

We are only interested in the case of simply connected groups with disconnected centre.
Regular embeddings provide a way to associate any connected reductive group with discon-
nected centre to another connected reductive group but with connected centre, and to relate
the representation theory of the two groups.

The reference for this section is mainly [GeMa20, Chapter 1.7].

Definition 1.61. Let G, G̃ be connected reductive algebraic groups over K = F̄p and
F : G→ G, F̃ : G̃→ G̃ be Steinberg maps. Let i : G→ G̃ be a homomorphism of algebraic
groups such that i ◦F = F̃ ◦ i. We say that i is a regular embedding if G̃ has connected centre,
i is an isomorphism of G with a closed subgroup of G̃ and if the derived subgroups of G̃ and
i(G) are the same.

Remark 1.62. By definition [G̃, G̃] ⊆ i(G) and therefore i(G) is normal in G̃ and the quotient
G̃/i(G) is abelian.

It follows that the finite group i(GF ) = i(G)F̃ also contains the derived subgroup of G̃F̃ .

Again i(GF ) is normal in G̃F̃ with abelian quotient G̃F̃/i(GF ). This means that we can apply

Clifford theory to relate characters of GF and G̃F̃ .

There is an explicit description of how to build regular embeddings (which also proves their
existence), that is given in [GeMa20, Lemma 1.7.3].

Example 1.63. We are interested in two cases.
When G = SL4(K) we can choose G̃ = GL4(K). Although it is easy to embed SL4(K)

as a subgroup of GL4(K), via their matrix representation, an explicit regular embedding is
given in [GeMa20, Example 1.7.2]. For F such that GF = SL4(q) we have G̃F = GL4(q)
and GL4(q)/ SL4(q) ∼= F×q (this is clear from the explicit form of the regular embedding from
[GeMa20, Example 1.7.2 (b)]).

For G = Spin8(K), the group G̃ is explicitly constructed in [GePf92]. In this case, if F is
a Frobenius map such that GF = Spin+

8 (q), then by [GeMa20, Proposition 1.7.5 (a)] we have a

surjective map G̃F̃/i(GF )→ Z/2Z× Z/2Z if q is odd.
In both cases, we are not using explicitly the group G̃ but just the fact that it exists for

the computations in Parts II and III.
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We will need to know how G̃F̃ acts (by conjugation) on GF .

Remark 1.64. Clearly, the centre Z̃F̃ of G̃F̃ acts trivially on GF . By [GeMa20, Remark 1.7.6]
we have

G̃F̃/GF .Z̃F̃ ∼= H1(F,Z(G)).

Recall that H1(F,Z(G)) denotes the F -classes of Z(G).
It is possible to define an action of H1(F,Z(G)) on GF . We follow [Bo00, Section 1.8]. For

every z ∈ H1(F,Z(G)) we choose an element gz ∈ G such that g−1
z F (gz) ∈ Z(G), representing

z. It is easy to see that gz normalizes GF . Therefore we can define the action of z on GF by
the conjugation with gz. This is well defined up to an inner automorphism of GF . To prove
this statement we compare two different elements ga,ma ∈ G such that both m−1

a F (ma) and
g−1
a F (ga) represent a ∈ H1(F,Z(G)) in Z(G). Then, by definition there exists z ∈ Z(G) such

that
m−1
a F (ma) = F (z)g−1

a F (ga)z
−1 ⇔ m−1

a F (ma) = (gaz)−1F (gaz).

Finally, it follows the existence of an element g ∈ GF for which ma = ggaz.

One of the most important results, for the present work, on regular embeddings concerns
the restriction of characters (here stated with modules), and it is due to Lusztig.

Theorem 1.65 (Lusztig, [GeMa20, Theorem 1.7.15], Multiplicity-Freeness Theorem). Let i :
G→ G̃ be a regular embedding and K be any algebraically closed field. Then the restriction of
every simple KG̃F̃ -module to GF (via i) is multiplicity-free.

1.7 Dual group and geometric conjugacy

For this section, G is a connected reductive group and F a Steinberg map.
An important property of Irr(GF )3 is to be partitioned in a way that the irreducible char-

acters of GF are classified in terms of semisimple conjugacy classes of another group, called the
dual group of G.

We define here the dual of G and its relations with G. The reference for this section is
[Ca85, Chapter 4].

Definition 1.66. Two connected reductive groups are said to be dual to one another if their
root data are dual.

Notice that, up to isomorphism, each connected reductive group G has a dual group (by
Theorem 1.25). It is denoted by G∗.

We are interested in defining duality of groups in relation to a certain rational structure.

Definition 1.67. Let G and G∗ be connected reductive groups with respective Steinberg maps
F and F ∗. We say that the pairs (G, F ) and (G∗, F ∗) are in duality if there are maximally
split tori T0 ⊆ G and T∗0 ⊆ G∗ such that the root data (X(T0),Φ, Y (T0),Φ∨) of G and
(X(T∗0),Φ∗, Y (T∗0),Φ∗∨) of G∗ are dual and, additionally, if the isomorphism δ : X(T0) →
Y (T∗0) given by the isomorphism of root data (see Definition 1.24) is such that δ(F (χ)) =
F ∗(δ(χ)) for all χ ∈ X(T0).

The duality relation allows us to study many important properties of G and GF by con-
sidering related structures in the dual group. In the present work, we are mainly interested in
using duality to study geometric conjugacy which is the object of the next definition.

For some n > 0, we denote the norm map of an F -stable maximal torus T of G by NFn/F ,
it is defined by

NFn/F : T→ T, t 7→ tF (t)F 2(t) . . . F n−1(t).
3We recall the definition of Irr(G), for a finite group G, in the next section.
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Definition 1.68. Let T, T′ be F -stable maximal tori of G and θ ∈ Irr(TF ), θ′ ∈ Irr(T′F ). We
say that the pairs (T, θ), (T′, θ′) are geometrically conjugate if for some n > 0 there is an element
g ∈ GFn such that T′ = gTg−1 and g conjugates θ◦NFn/F ∈ Irr(TFn) to θ′ ◦NFn/F ∈ Irr(T′F

n
)

(via the isomorphism TFn → T′F
n
, t 7→ gtg−1).

Geometric conjugacy is an equivalence relation.
In the case of n = 1, the study of geometric conjugacy is made easier by considering the

dual group. This will give a powerful tool for the classification of irreducible characters of finite
groups of Lie type in Section 3.

Proposition 1.69 ([DiMi20, Proposition 11.1.16]). The GF -conjugacy classes of pairs (T, θ)
where T is an F -stable maximal torus of G and θ ∈ Irr(TF ) are in one-to-one correspondence
with the G∗F

∗
-conjugacy classes of pairs (T∗, s) where s is a semisimple element of G∗F

∗
and

T∗ is an F ∗-stable maximal torus of G∗ containing s.
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2 Basic ordinary representation theory of finite groups

We recall here some basic facts about ordinary representation theory of finite groups (for a
basic introduction see [JaLi01]). The main reference for this section is [Is76].

Even though most of the definitions and results that we show here are true in a more general
setting we restrict ourselves to representations over C.

For this (and only this) section G denotes any finite group.
We call a (ordinary) representation of G a homomorphism of groups

ρ : G→ GLn(C)

for some n, which is called the degree of the representation.
Although it is practical to work with matrices to describe elements of the group, it is

sometimes more convenient to use the analogous description of modules of G. A (complex)
vector space V is called a CG-module if there is an action of G on V such that for any elements
g, h ∈ G, v, u ∈ V and λ ∈ C we have gv ∈ V , h(gv) = hg(v), 1v = v, g(λv) = λgv and
g(v + u) = gv + gu.

It is easy to see that a CG-module V determines a representation of degree dim(V ) (since G
acts as endomorphisms of V ). Conversely, a representation of degree n determines a CG-module
of dimension n (G acts, through the representation, on the vector space Cn).

Two representations ρ1 and ρ2 of degree n are said to be similar if there exists an invertible
matrix T ∈ GLn(C) such that for all g ∈ G we have Tρ1(g)T−1 = ρ2(g). On the other hand,
two modules of G are said to be isomorphic if there is an isomorphism of vector spaces between
them compatible with the action of the group.

Up to similarity, the representations of G are in bijection with the modules of G, up to
isomorphism. Thus, we will use these two notions interchangeably without further comments.

A CG-submodule W of a CG-module V is a subspace of V which is also a CG-module. A
CG-module V 6= 0 is called simple or irreducible if it has no non-trivial proper submodules, else
it is called reducible. A CG-module which is the direct sum of irreducible CG-submodules is
called semisimple or completely reducible. The representation corresponding to an irreducible
CG-module is also called irreducible.

It is crucial that every CG-module is semisimple by Maschke’s Theorem (see [JaLi01, Chap-
ter 8]). This means that, to understand all the modules of a finite group (which are infinitely
many), we only need to study the irreducible ones. It turns out that for any finite group, up to
isomorphism, there are only a finite number of irreducible modules (see [JaLi01, Theorem 10.5
and Corollary 10.7]).

It follows that we want to study irreducible representations and in more generality we want
to study representations up to similarity. For a representation of degree n, we associate an
n× n matrix to each element of the group. Clearly, this is a redundancy of information. This
is why we study representations thanks to characters, which are the traces of representations.
We denote by tr(A) the trace of the square matrix A.

Definition 2.1. Let G be a finite group and ρ a representation of G of degree n. Then, the
character χ of G afforded by ρ is the function

χ : G→ C, g 7→ χ(g) := tr(ρ(g)).

We call n = χ(1) the degree of χ. We say that χ is irreducible if ρ is irreducible. A character
of degree 1 is called a linear character. The character 1G : g ∈ G 7→ 1 afforded by the
representation g 7→ 1 is called the trivial character.

It is clear from the definition that linear characters are irreducible.
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Recall that the trace has the property that if A and B are two square matrices of the same
size then tr(AB) = tr(BA). It follows immediately that characters are class functions (meaning
that they are constant on conjugacy classes) and, more importantly, that similar representations
afford the same character.

Notation 2.2. For a finite group G the set of irreducible characters is denoted by Irr(G) and
the set of conjugacy classes is denoted by Cl(G). The vector space of complex valued class
functions over G is denoted by CF(G).

We list now some important properties of characters of finite groups.

Proposition 2.3. Let G be a finite group.

(a) The group G is abelian if and only if every irreducible character is linear. [Is76, (2.6)
Corollary]

(b) |Irr(G)| = |Cl(G)| and
∑

χ∈Irr(G) χ(1)2 = |G|. [Is76, (2.7) Corollary]

(c) The set Irr(G) is a basis of CF(G) and a class function ϕ 6= 0 is a character if and only
if it is a nonnegative integer linear combination of Irr(G). [Is76, (2.8) Theorem]

(d) Two representations are similar if and only if the characters they afford are equal. [Is76,
(2.9) Corollary]

Remark 2.4. By Proposition 2.3 (a) and (b) it is clear that any cyclic group Cn = 〈g〉 (where
g is an element of order n) has n irreducible (linear) characters. Because linear characters
are representations of degree 1 and representations are homomorphisms of finite groups, the n
linear characters χ

(n)
k of Cn are defined by

χ
(n)
k

(
gj
)

= e
2πi
n
jk

for all j = 1, ..., n.
It is known that finite abelian groups are isomorphic to direct products of cyclic groups.

Therefore, it is possible to give the complete character table for any finite abelian group.

Lemma 2.5. Let G be the finite abelian group

Cn1 × · · · × Cnk

with n1, ..., nk integers.
Then

Irr(G) =
{
χ

(n1)
i1
· · ·χ(nk)

ik
| ij = 1, ..., nj, for j = 1, ..., k

}
.

Definition 2.6. For every character χ of G we write χ =
∑

ϕ∈Irr(G) nϕϕ with nϕ non-negative

integers (according to Proposition 2.3 (c)). Then we call ϕ ∈ Irr(G) an irreducible constituent
of χ when nϕ 6= 0.

In general, we call a (non-zero) class function in ZIrr(G) a virtual character of G.

Definition 2.7. The square table obtained with the values of the irreducible characters at
representatives of the conjugacy classes with rows labelled by Irr(G) and columns labelled by
Cl(G) is called the character table of G.

The rows and columns of the character table of G respect orthogonality relations.
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Proposition 2.8 ([Is76, (2.14) Corollary and (2.18) Theorem], Orthogonality relations). The
first orthogonality relation (between rows of the character table) is given for χ, ϕ ∈ Irr(G) by

1

|G|
∑
g∈G

χ(g)ϕ(g−1) = δχϕ.

Analogously, we have the second orthogonality relation (between columns of the character
table). For two classes C1, C2 ∈ Cl(G) choose representatives g1 ∈ C1 and g2 ∈ C2, then∑

χ∈Irr(G)

χ(g1)χ(g−1
2 ) = δC1C2|CG(g1)|.

It follows from the first orthogonality relation that CF(G) is a Hilbert space endowed with
the inner product

〈χ, ϕ〉 =
1

|G|
∑
g∈G

χ(g)ϕ(g−1)

with orthonormal basis Irr(G).

Remark 2.9. It is clear that an irreducible character χ ∈ Irr(G) is a constituent of a class
function ϕ if and only if 〈χ, ϕ〉 6= 0 (> 0 if ϕ is a character).

Definition 2.10. Let χ be a character of G. Then kerχ := {g ∈ G | χ(g) = χ(1)}.

Definition 2.11. Let N / G. Then it is possible to inflate characters of G/N to G. Let χ be
a character of G/N . We define its inflation χG ∈ CF(G) by χG(g) := χ(gN).

Analogously, if χ is a character of G such that N ⊆ kerχ, then we can define χ̃ ∈ CF(G/N)
by χ̃(gN) := χ(g).

By working with representations it is easy to see that these constructions always results in
characters.

Proposition 2.12 ([Is76, (2.22) Lemma]). Let N / G.

(a) If χ is a character of G and N ⊆ kerχ, then χ is constant on cosets of N in G and the
function χ̃ on G/N defined by χ̃(gN) = χ(g) is a character of G/N .

(b) If χ̃ is a character of G/N , then the function χ defined by χ(g) = χ̃(gN) is a character
of G

In both (a) and (b), χ ∈ Irr(G) if and only if χ̃ ∈ Irr(G/N).

Remark 2.13. Notice that linear characters are homomorphisms of groups into the abelian
group C×. This means that, for any linear character λ ∈ Irr(G), we have [G,G] ⊆ kerλ.
Therefore, the linear characters are precisely the inflations of the (linear) irreducible characters
of G/ [G,G].

Proposition 2.14 ([Is76, (3.6) Corollary]). Let χ be a character of G. Then χ(g) is an algebraic
integer for all g ∈ G.

Apart from some small groups, the information given until now is not enough to compute
the whole character table of finite groups. It is possible to gain further information on the
character table of a finite group G by using restriction of characters to a subgroup H ≤ G or
induction of characters from a subgroup H ≤ G.
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Definition 2.15. Let H be a subgroup of G and χ ∈ CF(G). Then its restriction to H is the
class function χ|H defined by

χ|H(h) := χ(h)

for all h ∈ H.
For ϕ ∈ CF(H) we call its induction to G the class function IndGH(ϕ) defined by

IndGH(ϕ)(g) :=
1

|H|
∑
x∈G

xgx−1∈H

ϕ(xgx−1)

for all g ∈ G.

An important result that relates induction and restriction is the Frobenius reciprocity.

Proposition 2.16 ([Is76, (5.2) Lemma], Frobenius reciprocity). Let H ≤ G, χ ∈ CF(G) and
ϕ ∈ CF(H). Then

〈χ, IndGHϕ〉G = 〈χ|H , ϕ〉H .

In other words, the induction and restriction functors are (hermitian) adjoint to each other.

Remark 2.17. It is easy to see that the restriction of a character is a character. Due to the
Frobenius reciprocity the induction of characters are also characters (see [Is76, (5.3) Corollary]).

For our computations in Parts II and III it is more useful to rewrite the induction formula
in the following way.

Lemma 2.18. Let H ≤ G and ϕ ∈ CF(H) then

IndGH(ϕ)(g) =
∑
x

|CG(g)|
|CH(x)|

ϕ(x)

for all g ∈ G, where the sum is over representatives x of the conjugacy classes of H that are
G-conjugate to g.

Proof. Let us assume that the conjugacy class gG intersects m classes of H with representatives
xi, for i = 1, . . . ,m, i.e. gG ∩H =

⊔m
i=1 x

H
i . Then we can rewrite the formula

IndGH(ϕ)(g) =
1

|H|
∑
x∈G

xgx−1∈H

ϕ(xgx−1) =
1

|H|

m∑
i=1

∑
x∈G

xgx−1∈xHi

ϕ(xgx−1)

=
1

|H|

m∑
i=1

ϕ(xi)
∣∣{x ∈ G | xgx−1 ∈ xHi

}∣∣ =
1

|H|

m∑
i=1

ϕ(xi)|xHi ||CG(g)|

and the claim follows.

A priori not much can be said for a general subgroup H of G on the restriction/induction
of characters to/from H. However, if we consider normal subgroups, the theory provides us
with a variety of useful results. The study of restriction/induction to/from normal subgroups
is known as Clifford theory.

First we need to introduce the conjugates of a character.

Definition 2.19. Let N /G be a normal subgroup of G. For θ ∈ CF(N) and g ∈ G we define
the class function θg by θg(h) := θ(ghg−1) for all h ∈ N (analogously gθ(h) := θ(g−1hg)). We
say that θg is conjugate to θ in G.
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Remark 2.20. With the same notation of the definition, if moreover θ is a character so is θg.
It is straightforward that for θ1, θ2 ∈ CF(N) we have 〈θg1, θ

g
2〉 = 〈θ1, θ2〉. It follows that

conjugation with elements of G permutes Irr(N). Moreover, since N acts trivially on Irr(N),
G/N also permutes Irr(N).

We state now the main theorem of Clifford theory.

Theorem 2.21 ([Is76, (6.2) Theorem], Clifford). Let N / G and let χ ∈ Irr(G). Let θ be an
irreducible constituent of χ|N and suppose θ = θ1, θ2, . . . , θn are the distinct conjugates of θ in
G. Then

χ|N = e
n∑
i=1

θi

where e = 〈χ|N , θ〉.

This theorem has many important consequences. However, we will not use explicitly more
than the theorem itself. We end our general discussion on ordinary characters with a last remark
on another method of obtaining characters from subgroups, taken from [DiMi20, Chapter 5.1].

Remark 2.22. Let H ≤ G and let M be a CG-module-CH (i.e. M is a bimodule with a
left CG-action and a right CH-action). We define a functor RG

H from the category of left
CH-modules to that of left CG-modules by

RG
H : E 7→M ⊗CH E.

Analogously, taking the tensor product with the dual module M∗ = Hom(M,C) defines the
adjoint functor ∗RG

H .
Composition of these functors is transitive [DiMi20, Proposition 5.1.4].
The analogous description for characters can be found by taking traces, see [DiMi20, Propo-

sition 5.1.5],

Trace(g | RG
HE) =

1

|H|
∑
h∈H

Trace
(
(g, h−1) |M

)
Trace(h | E)

for every g ∈ G, where E is a CH-module. We use the same notation for characters as for the
modules. For a CH-module (respectively CG-module) E affording the character χ we write
RG
H(χ) (respectively ∗RG

H(χ)) for the character afforded by RG
H(E) (respectively ∗RG

H(E)). Notice
that these functors always take character to character.

In the next section we apply these functors to the special case where G is a finite group of
Lie type and H is a Levi subgroup. This gives a much more powerful method of constructing
characters of the group G than the induction functor IndGH (it is easier to identify the irreducible
constituents, also because usually their number is smaller).
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3 Character theory of finite groups of Lie type

We are interested in this section in the representation theory of finite groups of Lie type. Because
of their rich structure (in particular the existence of a BN -pair) and the precise description
of their elements/subgroups (see Section 1) much can be added to the ordinary representation
theory of finite groups.

We discuss in this section how to gain more information on the character table of finite
groups of Lie type first by introducing Harish–Chandra induction/restriction and then Deligne–
Lusztig induction/restriction. This makes it possible to classify irreducible characters into
families, called Lusztig series.

The theory behind the results listed in this section is known as Deligne–Lusztig theory. It
is a far reaching theory based on representations built from some so-called `-adic cohomology
groups with compact support, where ` is a prime different from the characteristic of the group.
We will not discuss this machinery here but only its consequences.

This section’s references are [DiMi20, Chapters 5, 9, 10 and 11] and [GeMa20, Chapters 2
and 3].

In Remark 2.22 we described a way of building characters of a group from characters of a
subgroup. In the case where G = GF is a finite group of Lie type and the subgroup H = LF is
a split Levi subgroup, this construction gives rise to what is known as Harish–Chandra theory.

For this section, G is a connected reductive group defined over Fq and F a Steinberg map.
Furthermore, let (G∗, F ∗) be the dual of the pair (G, F ).

Definition 3.1. Let P be an F -stable parabolic subgroup of G with Levi decomposition
P = LU where L is an F -stable Levi subgroup of P and U is the unipotent radical of P.

Then C[GF/UF ] is a GF -module-LF (GF acts by left translation and LF by right transla-
tions). The functor RG

L obtained according to Remark 2.22 is called Harish–Chandra induction.
Analogously, C[UF \GF ] is an LF -module-GF (GF acts by right translation and LF by left

translations). This gives rise to the adjoint functor ∗RG
L called Harish–Chandra restriction.

Notice that by construction (see Remark 2.22) Harish–Chandra induction/restriction map
characters to characters.

This construction was generalised by Deligne and Lusztig to include the case of twisted Levi
subgroups.

Definition 3.2. Let L be an F -stable Levi subgroup of a parabolic subgroup P = LU (not
necessarily F -stable) of G. The Lusztig induction RG

L is the generalized induction functor
associated with the GF -module-LF afforded by H∗c (L −1(U)) :=

∑
i(−1)iH i

c(L
−1(U)) (for

some details on `-adic cohomology groups with compact support, see [DiMi20, Chapter 8]),
where L is the Lang map. The module structure is induced by the action on L −1(U), namely
x 7→ gxl for g ∈ GF and l ∈ LF .

The adjoint functor ∗RG
L is called Lusztig restriction.

In character notation we have, for characters χ of LF and ψ of GF ,(
RG

L χ
)
(g) =

1

|LF |
∑
l∈LF

Trace
(
(g, l−1) | H∗c (L −1(U))

)
χ(l)

and (∗RG
L ψ
)
(l) =

1

|GF |
∑
g∈GF

Trace
(
(g−1, l) | H∗c (L −1(U))

)
ψ(g)

for g ∈ GF and l ∈ LF (see [DiMi20, Proposition 9.1.6 and Lemma 9.1.5]).

Two preliminary remarks about the notation are in order here.
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Remark 3.3. We use the same notation for Harish–Chandra and Lusztig functors. This makes
sense since the Harish–Chandra induction/restriction is actually a particular case of Lusztig
induction/restriction, see discussion after [DiMi20, Proposition 9.1.4].

Remark 3.4. In the notation RG
L , ∗RG

L it is not explicit which parabolic subgroup P we use.
In fact these functors are independent of the choice of P. This is a consequence of the Mackey
formula (see [GeMa20, Theorem 3.3.8]) which we state in the next theorem (for the case that
interests us).

Theorem 3.5 ([GeMa20, Theorem 3.3.7 (4)], Mackey formula). Let G be of classical type (A,
B, C or D) and F a Frobenius map. Let P, Q be parabolic subgroups of G with F -stable Levi
complements L, M respectively. For any character ψ ∈ Irr(MF ) we have

∗RG
L⊂P ◦RG

M⊂Q(ψ) =
∑

w∈LF \S(L,M)F /MF

RL
L∩wM⊂L∩wQ ◦ ad(w) ◦ ∗RM

Lw∩M⊂Pw∩M(ψ),

where w runs over a system of LF -MF double coset representatives in

S(L,M)F := {g ∈ GF | L ∩ gM contains a maximal torus of G}.

Notice that Lusztig induction takes characters to virtual characters (H∗c (L −1(U)) is a
virtual vector space). We consider Lusztig induction because there is a certain family of virtual
characters (obtained by Lusztig induction) that contains, in some sense, all the characters of
Irr(GF ). We introduce these virtual characters now.

Definition 3.6. If L = T is an F -stable maximal torus of G and θ ∈ Irr(TF ), we call RG
Tθ a

Deligne–Lusztig character.

We list now some important properties of Deligne–Lusztig characters that we will use with-
out further mention.

Let G be a connected reductive group with Steinberg map F . Let T, T′ be F -stable
maximal tori of G and θ ∈ Irr(TF ), θ′ ∈ Irr(T′F ). Then:

� We have the scalar product formula ([GeMa20, Theorem 2.2.8]):

〈RG
Tθ, R

G
T′θ
′〉 =

|{g ∈ GF | gT = T′, gθ = θ′}|
|TF |

.

� Two Deligne–Lusztig characters RG
Tθ and RG

T′θ
′ are either equal or orthogonal to each

other. We have RG
Tθ = RG

T′θ
′ if and only if there exists some g ∈ GF such that gT = T′

and gθ = θ′ ([GeMa20, Corollary 2.2.10]).

� For any irreducible character ρ ∈ Irr(GF ), there is a pair (T, θ) such that 〈RG
Tθ, ρ〉 6= 0

([GeMa20, Corollary 2.2.19]).

Definition 3.7. We call uniform functions the class functions on GF that are linear combina-
tions of Deligne–Lusztig characters.

Clearly, the Deligne–Lusztig charactersRG
Tθ form an orthogonal basis of the space of uniform

functions, up to GF -conjugacy.

Notation 3.8. By Proposition 1.69, we may write RG
T∗(s) instead of RG

Tθ where the GF -
conjugacy class of (T, θ) corresponds to the G∗F

∗
-conjugacy class of (T∗, s).
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This notation gives a convenient way to write a partition of the irreducible characters of a
finite group of Lie type.

Definition 3.9. Let s ∈ G∗F
∗

be semisimple. A rational series of characters of GF (or also
Lusztig series of characters) is a set E (GF , s) of all ρ ∈ Irr(GF ) such that 〈ρ,RG

T∗(s)〉 6= 0 for
some F ∗-stable maximal torus T∗ of G∗ containing s.

One of the rational series of characters is particularly important for the representation
theory of finite groups of Lie type.

Definition 3.10. The characters of E (GF , 1) are called the unipotent characters of GF . The
set of unipotent characters is denoted by

Uch(GF ) := E (GF , 1).

The following is a crucial result on unipotent characters.

Proposition 3.11 ([DiMi20, Proposition 11.3.8]). Let (G, F ) and (G1, F1) be two connected
reductive groups with Steinberg maps and let f : G → G1 be a morphism of algebraic groups
with a central kernel such that f ◦ F = F1 ◦ f and such that f(G) contains [G1,G1]; then the
unipotent characters of GF are the χ ◦ f , where χ runs over the unipotent characters of GF1

1 .

The reason why we introduced the Lusztig series of characters is clear from the next theorem,
also due to Lusztig.

Theorem 3.12 (Lusztig, [GeMa20, Theorem 2.6.2]). If s1, s2 ∈ G∗F
∗

are semisimple and
conjugate in G∗F

∗
, then E (GF , s1) = E (GF , s2). We have a partition

Irr(GF ) =
⊔
s

E (GF , s)

where s runs over representatives of the conjugacy classes of semisimple elements in G∗F
∗

This partition is a great theoretical tool. However for practical computations (like in this
work) it is not enough to determine Irr(GF ) since the Deligne–Lusztig characters are hardly
ever irreducible or in number equal to |Irr(GF )|. We need more information regarding and
complementary to the Deligne–Lusztig characters.

The representation theory of finite groups of Lie type is richer if G has connected centre (for
example every character of Irr(GLn(q)) is a uniform function, see [DiMi20, Theorem 11.7.3]).
For this reason, one usually gathers all the available informations for a regular embedding.
Hopefully, this is useful to gain information on the representation theory of GF .

We fix a regular embedding i : G → G̃ (and identify G with i(G) ⊂ G̃) and we denote
by (G̃∗, F̃ ∗) the dual of (G̃, F̃ ). Let i∗ : G̃∗ → G∗ be the corresponding central isotypy (see
[GeMa20, Section 1.7.11]) such that i∗ ◦ F̃ ∗ = F ∗ ◦ i∗.

Proposition 3.13 ([GeMa20, Proposition 2.5.22]). Let T∗ ⊆ G∗ be an F ∗-stable maximal torus

and s ∈ T∗F
∗
. Let T̃∗ := i∗−1(T∗) ⊆ G̃∗. Then there exists a semisimple element s̃ ∈ (T̃∗)F̃

∗

such that i∗(s̃) = s. For any such s̃ we have RG
T∗(s) = RG̃

T̃∗
(s̃)|GF .

Proposition 3.14. Let s ∈ G∗F
∗

be semisimple and s̃ ∈ G̃∗F̃
∗

be any semisimple element such
that i∗(s̃) = s. Then

E (GF , s) = {ρ ∈ Irr(GF ) | 〈ρ̃|GF , ρ〉 6= 0 for some ρ̃ ∈ E (G̃F̃ , s̃)}.
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Remark 3.15. By Proposition 3.13 we can see the Deligne–Lusztig characters of GF as the
restriction of those of G̃F̃ . As a consequence, we can apply Clifford theory to these groups (see
Theorem 2.21 and Theorem 1.65).

Let s̃ ∈ G̃∗F̃
∗

be semisimple and ρ̃ ∈ E (G̃F̃ , s̃). By the multiplicity freeness theorem
(Theorem 1.65), we can write

ρ̃|GF = ρ1 + · · ·+ ρr

where ρ1, . . . , ρr ∈ E (GF , s) (where i∗(s̃) = s) are the distinct G̃F̃ -conjugates of an irreducible
constituent of ρ̃|GF , by Clifford’s theorem (Theorem 2.21).

This will be one of the key ingredients in the explicit decomposition of the Deligne–Lusztig
characters performed in Parts II and III.

We define now an important functor for the character theory of finite groups of Lie type.

Definition 3.16. The Alvis–Curtis–Kawanaka–Lusztig duality operator on the space of class
functions CF(GF ) is defined as

DG :=
∑
I⊆S

(−1)|I|RG
LI
◦ ∗RG

LI

where S is the set of simple reflections of W .

We list some important properties of this duality functor that we need in later sections.

Proposition 3.17 ([GeMa20, Theorem 3.4.4]). Let L be an F -stable Levi subgroup of G such
that the Mackey formula holds for RG

L . Then

εGDG ◦RG
L = εLR

G
L ◦DL

and
εLDL ◦ ∗RG

L = εG
∗RG

L ◦DG.

Recall that the signs εG were defined in Definition 1.56.

Proposition 3.18 ([GeMa20, Proposition 3.4.2 and Corollary 3.4.5]). The functor DG is self-
adjoint and DG ◦DG is the identity on CF(GF ).

Even more importantly, the duality functor sends irreducible characters to irreducible char-
acters (up to sign). Explicitly, we have that it permutes (up to sign) the irreducible characters
of all the Lusztig series:

Corollary 3.19 ([GeMa20, Corollary 3.4.6]). If ρ ∈ E (GF , s) then ±DG(ρ) ∈ E (GF , s).

With the duality functor we can introduce an irreducible character of finite groups of Lie
type that we will encounter in Part III.

Definition 3.20. The irreducible character StG := DG(1GF ) is the Steinberg character of GF .

The values of the Steinberg characters are known, and given in the following proposition.

Proposition 3.21 ([GeMa20, Proposition 3.4.10]). Let GF be a finite group of Lie type and
g ∈ GF . Then

StG(g) =

{
εGεCG(g)◦ |CG(g)◦F |p if g is semisimple,
0 else.
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We introduce now another partition of Irr(GF ) in terms of Harish–Chandra induction.
The set {(L, λ)} of pairs of F -stable split Levi subgroups L of G and characters λ ∈ Irr(LF )

can be endowed with a partial ordering 6. The ordering is defined by (L′, λ′) 6 (L, λ) if L′ ⊆ L
and 〈λ,RL

L′λ
′〉 6= 0 (this is well defined by the transitivity of the induction functor).

Definition 3.22. A pair (L, λ) is called a cuspidal pair of GF if it is minimal with respect to
the ordering 6, or equivalently, if for any proper split Levi subgroup L′ of L we have ∗RL

L′λ = 0.
When (L, λ) is a cuspidal pair of GF we say that λ is a cuspidal character of LF .

Let us state some properties of cuspidal pairs.

Proposition 3.23 ([GeMa20, Proposition 3.2.2], Uniform criterion for cuspidality). The char-
acter ρ ∈ Irr(GF ) is cuspidal if and only if ∗RG

Tρ = 0 for all F -stable maximal tori T contained
in some proper split Levi subgroup of G.

Proposition 3.24 ([DiMi20, Remark 5.3.10]). Let (L, λ) and (L′, λ′) be cuspidal pairs of GF .
Then

〈RG
L λ,R

G
L′λ
′〉 = |{x ∈ GF | xL = L′ and xλ = λ′}/LF |.

In particular, if we set

NGF (L, λ) := {n ∈ NGF (L) | nλ = λ} and WGF (L, λ) := NGF (L, λ)/LF ,

it directly follows that:

Corollary 3.25. Let (L, λ) be a cuspidal pair of GF . Then

〈RG
L λ,R

G
L λ〉 = |WGF (L, λ)|.

The group WGF (L, λ) is called the relative Weyl group of the cuspidal pair (L, λ).
The importance of cuspidal pairs for the representation theory of finite groups of Lie type

comes from the next result.

Proposition 3.26 ([DiMi91, 6.4 Theorem]). Let χ ∈ Irr(GF ); then, up to GF -conjugacy, there
exists a unique minimal pair (L, λ) such that (L, λ) 6 (G, χ).

In other words, we have the partition

Irr(GF ) =
⊔

(L,λ)/GF

E (GF , (L, λ))

where we define the Harish–Chandra series of the cuspidal pair (L, λ) by

E (GF , (L, λ)) :=
{
ρ ∈ Irr(GF ) | L is minimal such that ∗RG

L ρ 6= 0 and 〈ρ,RG
L λ〉 6= 0

}
.

The cuspidal characters can be identified by their degrees. To give the next result we need
to set some notation first.

Definition 3.27. Let L be a Levi subgroup of G of type (I, w). Then, its relative rank is
defined to be r(L) := |I|.

If we denote by rF the relative F -rank, we have that the relative rank is r(LF ) = rF ([L,L])
for an F -stable Levi subgroup L.
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Proposition 3.28 ([GeMa20, Corollary 3.2.21]). Let ρ ∈ Irr(GF ) lie in the Harish–Chandra
series of the cuspidal pair (L, λ). Then, the degree polynomial 4, in R[q], of ρ has the form

Dρ = (q− 1)r(L
F )f(q),

where f ∈ Q[q] is not divisible by q− 1.
In particular, ρ is cuspidal if and only if (q− 1)r(G

F ) is the precise power of q− 1 dividing
its degree polynomial.

We will need to explicitly perform Lusztig/Harish–Chandra induction/restriction. For this
purpose, we introduce the character formula that we will use.

Definition 3.29. Let L be an F -stable Levi subgroup of a parabolic subgroup P of G with
Levi decomposition P = UL. Then

QG
L : GF

uni × LF
uni → Q, (u, v) 7→ 1

|LF |
Trace

(
(u, v) | H∗c (L −1(U))

)
,

is called the associated 2-parameter Green function.

As in the case of RG
L , we hide P from the notation, since we will only work with cases for

which the Mackey formula holds.

Proposition 3.30 ([DiMi20, Proposition 10.1.2], Character formula). Let L be an F -stable
Levi subgroup of G and let ψ ∈ Irr(GF ) and χ ∈ Irr(LF ).

(a) If g = su is the Jordan decomposition of g ∈ GF (s semisimple and u unipotent) we have

(RG
L χ)(g) =

1

|LF ||CG(s)◦F |
∑

{h∈GF |s∈hL}

|ChL(s)◦F |
∑

v∈ChL(s)◦Funi

Q
CG(s)◦

ChL(s)◦(u, v
−1) hχ(sv).

(b) If l = tv is the Jordan decomposition of l ∈ LF (t semisimple and v unipotent) we have

(∗RG
L ψ)(l) =

|CL(t)◦F |
|CG(t)◦F |

∑
u∈CG(t)◦Funi

Q
CG(t)◦

CL(t)◦ (u, v−1)ψ(tu).

We call the functions QG
L (−,−) “2-parameter” Green functions to distinguish them from

the ordinary (1-parameter) Green functions, given in the next definition.

Definition 3.31. For T ⊆ G an F -stable maximal torus define its Green function by

QG
T : GF

uni → Z, u 7→ QG
T (u) :=

(
RG

T1T

)
(u).

Remark 3.32. The Green functions QG
T (u) can be seen as a special case of the 2-parameter

Green functions QG
L (u, v) when the Levi L is a maximal torus and v is forced to be 1 (the only

unipotent element of any torus).

The ordinary Green functions obey the following orthogonality relations, when extended by
zero on non-unipotent elements of GF .

Proposition 3.33 ([DiMi20, Proposition 13.2.2], Orthogonality relations for Green functions).
For F -stable maximal tori T,T′ of G we have

〈QG
T , Q

G
T′〉GF =

{
|W (T)F |
|TF | if T and T′ are GF -conjugate,

0 otherwise.
4See [GeMa20, Definition 2.3.25] for a definition of the degree polynomial of an irreducible character.

44



The idea behind the decomposition of the Deligne–Lusztig characters performed in this work
comes from the following remark.

Remark 3.34. The (ordinary) Green functions (and therefore the Deligne–Lusztig charac-
ters) do not distinguish between splitting classes, see the discussion in Section 4, in particular
Remark 4.14, in the special case where L is a maximal torus.

To decompose them, we need to consider class functions that have different values on split-
ting classes.

It is clear that the unipotent splitting conjugacy classes have a representative in the unipo-
tent group UF . Some of them even have representatives in UF/[UF ,UF ], meaning that these
are distinguished by some linear characters of UF . The (usual) induction to GF of these lin-
ear characters produces characters of GF that distinguish those particular unipotent splitting
classes. These characters have nice properties and are the main objects used in the decompo-
sition of Deligne–Lusztig characters in Parts II and III. These characters are called Gel’fand–
Graev characters and are studied in the disconnected centre case in [DLM92]. We give a
summary of their definition and relevant properties in Section 5.

45



4 About 2-parameter Green functions

The 2-parameter Green functions are a central ingredient in the character formula for Lusztig
induction and restriction in finite groups of Lie type (Proposition 3.30). In this section, we
discuss the elementary method used in [MaRo20] for the explicit determination of their values.
We start by restating the general observations in [MaRo20, Sections 2 and 3.1] and continue
by giving details on the explicit computation for the split cases (this is just mentioned but not
explained in [MaRo20]). The explicit computations for SL4(q) and Spin+

8 (q) will be detailed
later respectively in Section 10 and Section 16.

In this section, we denote by G a connected reductive group (over a field of characteristic
p) with Steinberg map F and by L is F -stable Levi subgroup of a parabolic subgroup P of G
with Levi decomposition P = UL.

4.1 General observations and known facts

We begin with a remark on the arguments of the 2-parameter Green functions.

Remark 4.1. For any F -stable Levi subgroup L the functors RG
L and ∗RG

L send class func-
tions to class functions. Applying the character formulas (Proposition 3.30) to characters
ψ ∈ Irr(GF ) and χ ∈ Irr(LF ), we have for unipotent elements u ∈ GF and v ∈ LF

(∗RG
L ψ
)
(v) =

|LF |
|GF |

∑
u∈GF

uni

QG
L (u, v−1)ψ(u) and

(
RG

L χ
)
(u) =

∑
v∈LFuni

QG
L (u, v−1)χ(v).

Therefore, for any u ∈ GF
uni the function QG

L (u,−) is constant on unipotent classes of LF and,
analogously, for any v ∈ LF

uni the function QG
L (−, v) is constant on unipotent classes of GF .

Notice that, if L = T is a maximal torus, and P is a Borel subgroup of G, then LF
uni = {1}

and the defining formula shows that QG
T (u, 1) =

(
RG

T1
)
(u) (u ∈ GF

uni), which is the usual
(1-parameter) Green function.

The values of QG
L (u, v) at u = 1 are known for any L, see [DiMi20, p. 157]:

QG
L (1, v) =

{
εGεL|GF : LF |p′ if v = 1,

0 otherwise,

where | · |p′ indicates the part of | · | coprime with p.
From the definition of Harish–Chandra induction (Definition 3.1), it is easy to get the

following formula for the 2-parameter Green functions in the split case:

Proposition 4.2. If L is a split Levi subgroup of G, then

QG
L (u, v) =

1

|LF |
|{gUF | g ∈ GF , ug ∈ vUF}|.

Thus, in the split case the 2-parameter Green functions can be computed in an elementary
way (we give details on this in Section 4.3).

Remark 4.3. It follows directly from the formula above that for L = G we have

QG
G(u, v) =

{
|vGF |−1 if v and u are GF -conjugate,

0 otherwise,

since, in this case, U = {1}.
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Proposition 4.2 is used to show:

Proposition 4.4. Assume that P is an F -stable parabolic subgroup of G with Levi decomposi-
tion P = UL. Then for v ∈ LF

uni, u ∈ GF
uni we have:

(a) |vLF |QG
L (u, v) ∈ Z≥0.

(b) If QG
L (u, v−1) 6= 0 then vG ⊆ uG ⊆ IndG

L (vL).

(c) If u is regular unipotent (we give the definition of regular unipotent elements later in
Section 5.1), then there is a unique LF -class C of regular unipotent elements of LF such
that

QG
L (u, v) =

{
|vLF |−1 if v ∈ C,
0 otherwise.

Here, C denotes the closure of a class C and IndG
L C is the induced class in the sense of

Lusztig–Spaltenstein [LuSp79].

Proof. Observe that if g ∈ GF is such that ug ∈ vUF then for any c ∈ CL(v)F , the element gc
has the same property, so |{gUF | ug ∈ vUF}| is divisible by |CL(v)F |, whence Proposition 4.2
shows that |vLF |QG

L (u, v) is an integer.
If QG

L (u, v−1) 6= 0 there is g ∈ GF with ug ∈ vUF , thus we have u ∈ vUF up to replacing
u by a conjugate. Now by definition the induced class C := IndG

L (vL) has the property that
C ∩ vLU is dense in vLU. Hence, u ∈ C. Moreover, we have u = vx for some x ∈ UF . Then
X := {vxc | c ∈ Z(L)◦} ⊆ uG. Now, Z(L)◦ acts non-trivially on all root subgroups of U as
L = CG(Z◦(L)). Thus the closure of X contains v and so v ∈ uG.

For (c) note that the centraliser dimension of v in L and of v′ ∈ IndG
L (vL) in G agree (see

[LuSp79, Theorem 1.3(a)]). It follows that only the regular unipotent class of L induces to the
regular unipotent class of G, and thus QG

L (u, v) = 0 unless v is regular. Now, assume that
u ∈ vUF , and so QG

L (u, v) 6= 0. Since u is regular, it lies in a unique Borel subgroup B ≤ P
of G. Thus, if g ∈ GF with g−1ug ∈ P then g ∈ PF . In particular, g−1ug ∈ v′UF for some
v′ ∈ LF

uni implies that v, v′ are LF -conjugate. It is clear that there are exactly |CL(v)F | cosets
gUF with g−1ug ∈ vUF .

Notice that, alternatively, point (c) can be proven thanks to Conjecture 5.32 (from Section 5
later), which is valid in the split case.

Notation 4.5. From now on we write Q̃G
L for the matrix

(
|vLF |QG

L (u, v−1)
)
v,u

with rows and

columns indexed by the unipotent conjugacy classes of LF , GF respectively. We call it modified
2-parameter Green functions.

Lemma 4.6. Let M ≤ G be an F -stable Levi subgroup containing L. Then

Q̃G
L = Q̃M

L · Q̃G
M.

Proof. By transitivity of Lusztig induction [DiMi20, Proposition 9.1.8] we have RG
L = RG

M◦RM
L .

Therefore, by applying twice the formula in Remark 4.1 we get(
RG

L ψ
)
(u) =

∑
v∈MF

uni

QG
M(u, v−1)

∑
x∈LFuni

QM
L (v, x−1)ψ(x)

for all u ∈ GF
uni and all class functions ψ on LF . The claim follows.

47



Thus, for an inductive determination of the 2-parameter Green functions it is sufficient to
consider the case when L < G is maximal among F -stable Levi subgroups. Now let T ≤ L
be an F -stable maximal torus, then Lemma 4.6 gives R̃G

T = R̃L
T · Q̃G

L where we have set
R̃G

T :=
((
RG

T1
)
(u)
)
u
. The LF -conjugacy classes of F -stable maximal tori of L are parametrised

by F -conjugacy classes in the Weyl group WL of L (see discussion before Definition 1.59). Thus
the above formula yields a linear system of equations(

RG
Tw1

)
(u) =

∑
v∈LFuni

(
RL

Tw1
)
(v)QG

L (u, v−1) (w ∈ WL) (∗)

for Q̃G
L with coefficient matrix

((
RL

Tw
1
)
(v)
)
w,v

.

Proposition 4.7. Assume that the matrix
((
RL

Tw
1
)
(v)
)
w,v

is square. Then the 2-parameter

Green functions QG
L are uniquely determined by the ordinary Green functions of G and of L.

Proof. This follows from the above considerations and the fact that the (by assumption) square
matrix of values of Green functions on unipotent classes of LF is invertible due to the orthog-
onality relations for the ordinary Green functions, see Proposition 3.33.

This result can be used to give restrictions on the values of the 2-parameter Green functions.
The assumption of Proposition 4.7 is satisfied, for example, for G̃ and a proper F -stable Levi
L̃ ≤ G̃ where i : G ↪→ G̃ is a regular embedding and G is either SL4 or Spin8 (in these cases
the assumption will be easily checked).

In practice, we use the computer program CHEVIE to determine the linear system (∗). On
one hand, we use the GAP part ([MiChv]) to identify the corresponding tori of the group and
of the Levi subgroups (using the commands CoxeterGroup, Twistings and Torus). On the
other hand, we use the MAPLE part ([GHLMP]) to actually get the ordinary Green functions
(with the command GreenFunTab) and to solve the system (∗) (with the command solve).

We give two examples on the application of Proposition 4.7 that we will use later for
the computation of the 2-parameter Green functions of SL4(q) and Spin+

8 (q). For readability
reasons we replace “0” by “.” and the polynomials in q are factored and written in terms of the
cyclotomic polynomials Φ1 = q−1, Φ2 = q+1, Φ3 = q2 +q+1, Φ4 = q2 +1 and Φ6 = q2−q+1.

We give now some examples (that we use later) of 2-parameter Green functions, computed
following the discussion above. These are all cases in which Proposition 4.7 can be applied.

Example 4.8. Let G = GL4, with the unipotent classes parametrized by partitions of 4
(labelling the Jordan blocks) ordered as 14, 212, 22, 31, 4. First, let L1 be a standard Levi
subgroup of type A2. Its unipotent classes are labelled by the partitions 13, 21, 3 of 3, and we
obtain the matrix of (modified) 2-parameter Green functions

Q̃G
L1

=

Φ2Φ4 1 . . .
. qΦ2 Φ2 1 .
. . . q 1

 .

Next, let L2 be the standard Levi subgroup of type A2
1. The resulting matrix is

Q̃G
L2

=


Φ3Φ4 Φ2 1 . .
. q2 . 1 .
. q2 . 1 .
. . qΦ2 Φ1 1


where the rows are labelled by the unipotent conjugacy classes of L2 parametrised by the pairs
(12, 12), (2, 12), (12, 2), (2, 2) of partitions of 2. Note that the second and third row agree, as the
second and third unipotent class of LF

2 are conjugate in NG(L2)F .
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For the twisted Levi subgroup L3 of type A1(q2).(q2 − 1) we find

Q̃G
L3

=

(
Φ2

1Φ3 −Φ1 1 . .
. . qΦ1 −Φ1 1

)
.

Finally, the split Levi subgroup of type A1 is not maximal and we may apply Lemma 4.6,
while for its twisted version L4 of type A1(q).(q2 − 1)(q − 1) we obtain

Q̃G
L4

=

(
−Φ1Φ3Φ4 1 −Φ1 1 .

. −q2Φ1 qΦ2 . 1

)
.

The assumptions of Proposition 4.7 are also satisfied for groups with connected centre of
type D4.

Example 4.9. Let G be of type D4 with connected centre, F a split Frobenius map and L
a split Levi subgroup of type A3. We order the 13 unipotent classes of GF by their Jordan
normal forms (when projecting the elements in SO8, they are given by partitions of 8)

18, 2214, 24+, 24−, 315, 3221, 3212 (two classes), 42+, 42−, 513, 53, 71

where the signs +,− distinguish between classes with the same Jordan form that are swapped
by the graph automorphism of order two of Dn (n ≥ 4). In LF we also order the unipotent
classes by their Jordan form (partitions of 4) 14, 212, 22, 31, 4. We find

Φ2
2Φ4Φ6 Φ2 . . 1 . . . . . . . .
. q2Φ2

2 Φ2Φ4 Φ2Φ4 . 1 2 . . . . . .
. . . . qΦ2Φ4 qΦ2 Φ1 Φ2 1 . . . .
. . . . . . 2q2 . . Φ2 Φ2 1 .
. . . . . . . . qΦ2 . . q 1


for one of the three possible embeddings of the Levi, and a suitable permutation of the columns
(3, 4, 5)(9, 10, 11) for the other two. The Green functions for a twisted Levi subgroup of type
2A3(q).(q + 1) are related to those of A3(q).(q − 1) as follows. The ordinary Green functions
of 2A3(q) are obtained from those of A3(q) by replacing q with −q by Ennola duality [Ka85].
This also entails a permutation of maximal tori in the linear system (∗). Therefore, the Green
functions of 2A3(q).(q+ 1) are obtained from those of A3(q).(q− 1) by replacing q with −q and
swapping the classes with Jordan normal form 3212 (they have centraliser orders q8(q ± 1)2,
which are sent to one another by the transformation q 7→ −q).

Next consider a split Levi subgroup L of type A3
1. Here, Q̃G

L equals

Φ2Φ3Φ2
4Φ6 ∗ Φ2Φ4 Φ2Φ4 Φ2Φ4 Φ2 1 1 . . . . .

. q4Φ2 . . q2Φ4 . 2q . . . 1 . .

. q4Φ2 . q2Φ4 . . 2q . . 1 . . .

. q4Φ2 q2Φ4 . . . 2q . 1 . . . .

. . q2Φ2Φ4 . . q2 2qΦ1 . Φ2 . . 1 .

. . . q2Φ2Φ4 . q2 2qΦ1 . . Φ2 . 1 .

. . . . q2Φ2Φ4 q2 2qΦ1 . . . Φ2 1 .

. . . . . q3Φ2 qΦ2
1 qΦ2

2 Φ1Φ2 Φ1Φ2 Φ1Φ2 q−2 1


where ∗ = q4 + 3q3 + 3q2 + q+ 1, and the order of the unipotent classes of LF is given in terms
of triples of partitions of 2

(12, 12, 12), (2, 12, 12), (12, 2, 12), (12, 12, 2), (2, 2, 12), (2, 12, 2), (12, 2, 2), (2, 2, 2).
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The symmetry from triality (one of the permutations of order 3 of the external nodes of D4),
cyclically permuting the classes 3,4,5 and 9,10,11 of GF , as well as the classes 2,3,4 and 5,6,7
of LF , is clearly visible. Again, the Green functions for a twisted Levi subgroup of type
A1(q)3.(q + 1) are obtained by replacing q with −q and interchanging the two classes with
Jordan normal form 3212. For a twisted Levi subgroup of type A1(q2).(q2 + 1) we find (the first
row corresponds to the identity of LF )(

−Φ3
1Φ3

2Φ3Φ6 Φ2
1Φ2

2 Φ2
1Φ2

2 Φ2
1Φ2

2 −Φ1Φ2 −Φ1Φ2 −Φ1 Φ2 . . 1 . .
. . . . −q2Φ2

1Φ2
2 q2Φ1Φ2 qΦ2

1 −qΦ2
2 −Φ1Φ2 −Φ1Φ2 . 1 1

)
It will be extremely useful to compare the 2-parameter Green functions of groups of the

same type (for example to use Proposition 4.7). In this regard, we list some results from [Bo00].

Remark 4.10. It is important to notice that our definition of the 2-parameter Green functions
and the one of Bonnafé [Bo00] differ by a factor |LF |. The results taken from [Bo00], that we
list below, have been rewritten with this extra factor included.

Let G̃ be another connected reductive group defined over Fq, with Frobenius endomorphism
also denoted by F : G̃→ G̃. We assume that there is a morphism of algebraic groups i : G→ G̃
defined over Fq and satisfying the following conditions:

(a) ker(i) is central in G,

(b) i(G) contains the derived group of G̃.

In this setting, let L := i−1(L̃) for an F -stable Levi subgroup L̃ of G̃. Then, L is an F -stable
Levi subgroup of G.

Proposition 4.11 ([Bo00, Proposition 2.2.1 (b)]). Let u ∈ GF and v ∈ LF be unipotent
elements. If i is injective, then

QG̃
L̃

(u, v) =
|LF |
|L̃F |

∑
g∈G̃F /GF

QG
L (gu, v) =

|LF |
|L̃F |

∑
l∈L̃F /LF

QG
L (u, lv)

where GF
uni and G̃F

uni are identified via i.

By the hypothesis on i, the inclusion ker(i) ⊆ Z(G) translates into a morphism of groups
H1(F, ker(i))→ H1(F,Z(G)). Recall that by Remark 1.64, we have an action of H1(F,Z(G))
on the conjugacy classes of GF . Thus, for all z ∈ H1(F, ker(i)) we denote by ẑ the action of
the image of z in H1(F,Z(G)).

Proposition 4.12 ([Bo00, Proposition 2.2.2]). Assume that i is surjective. Let u ∈ GF and
v ∈ LF be unipotent elements. Then

QG̃
L̃

(i(u), i(v)) =
|LF |

|(ker(i)F )||L̃F |

∑
z∈H1(F,ker(i))

QG
L (ẑu, v) =

|LF |
|(ker(i)F )||L̃F |

∑
z∈H1(F,ker(i))

QG
L (u, ẑv).

Something more precise can be said for the surjective case.

Proposition 4.13 ([Bo00, Corollary 2.2.3]). If the morphism i is surjective and satisfies
ker(i) ⊂ {z−1F (z) | z ∈ Z(L)}, then

QG̃
L̃

(i(u), i(v)) =
|LF |

| ker(i)◦F ||L̃F |
QG

L (u, v)

for all unipotent elements u and v in GF and LF respectively. In particular, this equality holds
whenever ker(i) ⊂ Z(L)◦.
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4.2 Groups with non-connected centre

For groups G with non-connected centre, the number of unipotent classes is bigger than the
number of irreducible characters of the Weyl group, so that Proposition 4.7 cannot be applied.
However, additional considerations can lead to a solution.

To this end, let G ↪→ G̃ be an F -equivariant regular embedding, such that G̃ = GZ(G̃)
has connected centre and derived subgroup [G̃, G̃] = G. Then, for any Levi subgroup L ≤ G,
L̃ := LZ(G̃) is a Levi subgroup of G̃, F -stable if L is. Here, we are interested in cases where G
is of type A or D4. This implies that all proper Levi subgroups of G, and hence of G̃, are of type
A. Therefore, all 2-parameter Green functions for G̃ can be computed with Proposition 4.7
(see Example 4.8 and Example 4.9). Then, we just need to descend to the simply connected
group G.

Let us write LG for the Lang map on G. While L −1
G (U) is not necessarily invariant under

the action of G̃×L̃, it is so under the action of the diagonally embedded subgroup ∆(L̃F ) ∼= L̃F

of G̃F × L̃F (with ∆(l) = (l, l−1) for l ∈ L̃F ). So ∆(L̃F ) acts on the `-adic cohomology groups
H i
c(L

−1
G (U)). In particular, the 2-parameter Green functions QG

L are invariant under the
diagonal action of L̃F :

QG
L (u, v) = QG

L (ul, vl) for all l ∈ L̃F .

Furthermore, the 2-parameter Green functions QG̃
L̃

are “induced” from those of L inside G by

Proposition 4.11. This implies relations between the 2-parameter Green functions of G̃ and G.

Remark 4.14. Suppose that the unipotent class of u ∈ G̃F splits into n classes of GF and
that the unipotent class of v ∈ L̃F splits into m classes of LF , then by Proposition 4.11

Q̃G̃
L̃

(u, v) =
m∑
i=1

Q̃G
L (u, vi) =

m

n

n∑
i=1

Q̃G
L (ui, v) (∗∗)

where ui ∈ GF are the representatives of the GF -classes in (u)G̃
F

, and vi ∈ LF are the

representatives of the LF -classes in (v)L̃
F

.

For example, in Sections 10 and 16 we need the following cases:

� If n = 1 then (∗∗) and the L̃F -invariance directly give

Q̃G
L (u, vi) =

1

m
Q̃G̃

L̃
(u, v) for i = 1, . . . ,m.

� If m = 1 then (∗∗) and the L̃F -invariance directly give

Q̃G
L (ui, v) = Q̃G̃

L̃
(u, v) for i = 1, . . . , n.

� If n = m = 2 then the value Q := Q̃G̃
L̃

(u, v) is replaced in the matrix of Q̃G
L by the

submatrix
u1 u2

v1 a Q− a
v2 Q− a a

where a := Q̃G
L (u1, v1).

� If n = 4, m = 2 then the value Q := Q̃G̃
L̃

(u, v) is replaced in the matrix of Q̃G
L by the

submatrix
u1 u2 u3 u4

v1 a1 a2 a3 2Q− a1 − a2 − a3

v2 Q− a1 Q− a2 Q− a3 a1 + a2 + a3 −Q

where ai := Q̃G
L (ui, v1) for i = 1, 2, 3.

51



� If n = 2, m = 4 then the value Q := Q̃G̃
L̃

(u, v) is replaced in the matrix of Q̃G
L by the

submatrix
u1 u2

v1 a1 Q/2− a1

v2 a2 Q/2− a2

v3 a3 Q/2− a3

v4 Q− a1 − a2 − a3 a1 + a2 + a3 −Q/2

where ai := Q̃G
L (u1, vi) for i = 1, 2, 3.

In other words, every splitting class introduces some unknown entries in Q̃G
L . These un-

knowns can be related to each other by studying the diagonal action of L̃F on each unipotent
class of GF and LF .

We get the explicit action of L̃F thanks to Remark 1.64. There, we associate an element
lz ∈ L to each z ∈ H1(F,Z(L)) such that l−1

z F (lz) ∈ Z(L) represents z. Then, the action
of L̃F is given by conjugating with those elements lz, up to LF -conjugacy. Since there is a
canonical surjection H1(F,Z(G))� H1(F,Z(L)), we choose, instead, for all z ∈ H1(F,Z(G))
an element g ∈ G such that g−1F (g) represents z. This gives us the desired action for all
split Levi subgroups. For the non-split ones we replace F by the associated twisted Frobenius
map F ′ (see discussion before Definition 1.59). Therefore, for all z ∈ H1(F,Z(G)) we have
g, g′ ∈ G such that both g−1F (g) and g′−1F ′(g′) represent z. Then, the action of L̃F is given
by (u, v) 7→ (ug, vg

′
) for u ∈ GF and v ∈ LF ′ .

One of the key tools for reducing the number of unknowns further is given by the next
remark. We say that a class function (not only a character!) f of GF is absolutely cuspidal if
for every F -stable proper Levi subgroup L of G we have ∗RG

L f = 0.

Remark 4.15. For any F -stable minimal Levi subgroup L of G with disconnected centre
(minimal with respect to having disconnected centre) a class function f of LF that takes values
1, -1 on a pair of splitting unipotent classes (say with representatives u1 and u2) and zero
elsewhere is absolutely cuspidal. This follows by the discussion above and minimality, since for
any proper Levi subgroup L′ of L we have that Q̃L

L′(u1, v) = Q̃L
L′(u2, v) for all v ∈ L′Funi. Then,

(∗RL
L′f) = 0.
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4.3 The split case

In this section, we show that the 2-parameter Green functions for split Levi subgroups can be
computed by knowing the fusion of unipotent classes from the unipotent subgroup UF

0 to GF .

Proposition 4.16. Let P be an F -stable parabolic subgroup containing the F -stable Levi sub-
group L. We denote by U the unipotent radical of P, such that P = L n U. Assume that for

v ∈ LF
uni there exist subgroups Hi 6 GF such that vUF =

•⋃
uHii for class representatives ui of

GF such that uG
F

i ∩ vUF 6= ∅. Then

Q̃G
L (u, v) =

|CGF (u)|
|UF ||CLF (v)|

∑
i∈Iu

[Hi : CHi(ui)]

where Iu is the set of indices of the elements ui that are GF -conjugate to u.

Proof. By Proposition 4.2 and by the fact that LF normalizes UF we have

Q̃G
L (u, v) =

1

|CLF (v)|
|{gUF | g ∈ GF , ug ∈ vUF}| = 1

|UF ||CLF (v)|
|{g ∈ GF | ug ∈ vUF}|.

By assumption {
x ∈ GF | ux ∈ vUF

}
=

•⋃
i∈Iu

{
x ∈ GF | ux ∈ uHii

}
.

The size of the sets on the right hand side are given in the next lemma.

Lemma 4.17. Let G be a finite group, H 6 G a subgroup, and g, l ∈ G such that gg0 = l for
some g0 ∈ G. Then {

x ∈ G | gx ∈ lH
}

= g0CG(l)H

with cardinality |CG(l)| [H : CH(l)].

Proof. Let x ∈ G be such that gx = lh for some h ∈ H. Then gx(g0h)−1
= g, meaning that

x ∈ CG(g)g0H = g0CG(l)H. The other inclusion is trivial.
The cardinality is now easily computed,

|g0CG(l)H| = |CG(l)H| = |CG(l)||H|
|CG(l) ∩H|

= |CG(l)| [H : CH(l)] .

It follows that

|{x ∈ GF | ux ∈ vUF}| =
∑
i∈Iu

|CGF (ui)| [Hi : CHi(ui)]

and since for all i ∈ Iu the elements ui are conjugate to u we get the result.

Thanks to [DLM92, (5.12) Lemma], we can slightly improve this result. That lemma states
that if a unipotent element u ∈ LF is G-conjugate to v ∈ uUF , then u is UF -conjugate to v.

This gives the following Lemma.

Lemma 4.18. If a unipotent element u ∈ LF is G-conjugate to v ∈ uUF then

uG
F ∩ uUF = uU

F
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Proof. The inclusion uU
F ⊆ uG

F ∩ uUF follows from the fact that LF normalizes UF ,

uw = w−1uw = u(w−1)uw ∈ uUF

for all w ∈ UF .
The other inclusion comes from [DLM92, (5.12) Lemma].

In general, there is not much to say for the classes contained in uUF other than uG
F

.
However, for split Levi subgroups that have an abelian maximal unipotent subgroup, we can
add the following results.

Lemma 4.19. Assume that L is a split Levi subgroup with abelian maximal unipotent subgroup
UL. We choose UL such that the maximal unipotent subgroup of G is U0 = ULU. Then,

vU
F
0 = vG

F ∩ uUF

for u ∈ UF
L and v ∈ uUF .

Proof. Since uUF ⊆ UF
0 it is clear that vG

F ∩ uUF ⊆ vU
F
0 .

For the other inclusion, we write v = uw for w ∈ UF and set x = uLuU ∈ UF
0 with uL ∈ UF

L

and uU ∈ UF . Then, because UF
0 normalizes UF and UF

L is abelian, it follows that

vx = uxwx = uuUwx = u(u−1
U )uuUw

x ∈ uUF .

Then, we directly have:

Corollary 4.20. For a split Levi subgroup L of G which has an abelian maximal unipotent
subgroup, the 2-parameter Green function is given by

Q̃G
L (u, v) =

|CGF (u)|
|UF ||CLF (v)|

∑
i∈Iu

[
UF

0 : CUF
0

(ui)
]

for ui ∈ vUF such that vUF =
•⋃
i∈Iu u

UF
0

i and ui are GF -conjugate to u

It follows that for split Levi subgroups of type A1×· · ·×A1 the 2-parameter Green functions
can easily be computed once the fusion of the unipotent classes of UF

0 are known.
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4.4 A note on the method of [Lue20]

The method discussed above does not assure to completely solve the problem of finding the
unknowns introduced following the discussion after Remark 4.14. For example, for Spin+

8 (q)
the system of equations has too many variables to have a unique solution. An ulterior equation
is provided by the Gel’fand–Graev characters (see Section 5.2), when Conjecture 5.29 is valid.
By Proposition 5.33 (c) we gain this information, in the twisted case, when “q is large enough”.

Since the publication of the first version of [MaRo20] Lübeck, [Lue20] used a theoretically
more involved method to also compute 2-parameter Green functions. In short, he uses the
Springer correspondence to compute some generalised Green functions. Then he uses the fact
that Lusztig induction of a generalised Green function is a generalised Green function (under
some conditions). This provides him with the equations that are missing when considering only
the ordinary Green functions, like here.

Unlike our elementary method, Lübeck’s is sure to always give enough equations to solve
the system. This is a trivial consequence of the fact that there are as many generalized Green
functions as there are unipotent classes (the generalized Green functions are a basis of the space
of class functions with unipotent support, by [Lu85, Corollary 9.11] and [Lu86b, Lemma 25.4]).

This way he finds the same result as in our Tables 52 and 53. However, as he states, with
his method the “large q” requirement can be dropped for the Levi subgroups of type A1

3 of
Spin+

8 (q), so thanks to Lemma 4.6 all of our tables, computed in Part III, are valid for arbitrary
(odd) q.
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5 (Modified) Gel’fand–Graev characters

In this section, we denote by G a connected reductive group in characteristic p defined over Fq
via the Frobenius map F (q is an integer power of p). We choose a maximally split torus of G
denoted by T0, contained in an F -stable Borel subgroup B0. We denote by Φ the root system
of G relative to T0 and we denote by U0 := Ru(B0) the maximal unipotent subgroup of G
with decomposition

∏
α∈Φ+ Uα. We denote by τ the permutation induced by F on the base ∆

of Φ.
We present in this section an important family of characters of the finite group of Lie type

GF called the Gel’fand–Graev characters. Basically these characters are simply the induction
of certain (regular) linear characters of the unipotent subgroup UF

0 .
Although their definition doesn’t require any deep theoretical construction, the Gel’fand–

Graev characters have an interesting variety of properties that makes them an invaluable tool
in the decomposition of the Deligne–Lusztig characters (see for example their use in [Bo11,
Chapter 5.2]). Moreover, it is possible to parametrize them in a precise way revealing a tight
relation to a certain type of unipotent elements (the regular ones), which are parametrized in
the same way.

We describe in Section 5.1 the regular unipotent elements, their conjugacy classes and their
parametrization. In Section 5.2 we define and parametrize the Gel’fand–Graev characters and
list their properties. Finally, in Section 5.3 we slightly modify the definition of the latter in a
way more useful for the computations of Parts II and III and deduce some helpful results.

The main references for this section are [DLM92] (and its follow-up [DLM97]), which gives
a detailed description of the Gel’fand–Graev characters and their relation with the character
table of finite groups of Lie type, and [DiMi20, Chapter 12], which gives a somehow more concise
description of the same material but gives a good description of regular unipotent elements.

5.1 Regular unipotent elements

Definition 5.1. An element x of an algebraic group G is said to be regular if the dimension
of its centraliser is minimal.

In the present case (G is reductive), this minimal dimension is rk(G) (see for example
[MaTe11, Proposition 14.9]).

We are mainly interested in the case of regular unipotent elements. But, for future reference,
we cite the following result on regular semisimple elements.

Proposition 5.2 ([MaTe11, Corollary 14.10]). Let G be connected reductive with maximal
torus T and root system Φ. For s ∈ T the following are equivalent:

� s is regular;

� α(s) 6= 1 for all α ∈ Φ;

� CG(s)◦ = T.

Now, we discuss the regular unipotent classes. Here is a list of their properties.

Proposition 5.3. There exist regular unipotent elements (in connected reductive groups) and
they form a single conjugacy class of G, [DiMi20, Corollary 12.2.4]. Let u ∈ U0 be a regular
unipotent element of G. Then:

� The element decomposes as u =
∏

α∈Φ+ uα(xα) with xα 6= 0 when α is a simple root.
[DiMi20, Proposition 12.2.2 (iv)]
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� CG(u) = Z(G)CU0(u). [DiMi20, Lemma 12.2.3]

� If the characteristic is good 5 for G then CU0(u) is connected. [DiMi20, Proposition
12.2.7]

For example in the general/special linear groups (GLn, SLn) the matrices with ones on
the diagonal and on the second diagonal (and zeros below the diagonal) are regular unipotent
elements.

It follows directly from Proposition 1.53 and Proposition 5.3 that (in good characteristic)
when G has connected centre there is a single regular unipotent class of GF , in general there
are |H1(F,Z(G)/Z(G)◦)| many:

Proposition 5.4 ([DiMi20, Proposition 12.2.15]). If the characteristic is good for G, then the
GF -conjugacy classes of regular unipotent elements are parametrised by the F -conjugacy classes
H1(F,Z(G)/Z(G)◦).

Remark 5.5. Notice that due to [DiMi20, Lemma 4.2.13 (ii)] there is a bijection between
H1(F,Z(G)/Z(G)◦) and H1(F,Z(G)). From now on, we use the second set for readability
reasons.

Notation 5.6. We denote by Reguni(G
F ) the set of regular unipotent classes of GF . Also, we

denote by Uz the set of regular unipotent elements of GF
uni parametrized by z ∈ H1(F,Z(G)).

The discussion that follows depends on the choice of this parametrization. We fix as repre-
sentative of U1 the element u1 :=

∏
α∈∆ uα(1).

From now on we consider only the case of G in good characteristic. Therefore, by [DLM92,
(3.2) Proposition (iii)] the sets Uz are precisely the regular unipotent classes of GF .

The next lemma is useful for actually computing the F -classes of the centre.

Lemma 5.7. We have (recall that L is the Lang map)

H1(F,Z(G)) = Z(G)/L (Z(G)).

Proof. By definition, two elements z1, z2 ∈ Z(G) are in the same F -class of Z(G) if there is a
central element x ∈ Z(G) such that

z2 = F (x)z1x
−1 ⇔ z2 = x−1F (x)z1 = L (x)z1.

The claim follows directly.

The same constructions can be done in any F -stable Levi subgroup L of G. It is natural
to search for a relation between the analogous objects of G and L. It turns out that there is a
canonical surjection between the F -classes of Z(G) and Z(L):

Lemma 5.8 ([DiMi20, Lemma 12.3.5]). The inclusion Z(G) ⊆ Z(L) induces a surjective map

hL : H1(F,Z(G))→ H1(F,Z(L)).

5See [DiMi20, 12.2.6] for the definition of good characteristic. In this work the characteristic is always good.
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5.2 Gel’fand–Graev characters

We start by defining the linear characters of UF
0 that we want to induce.

Lemma 5.9 ([DLM92, (2.2) Lemma]). We have

UF
0 /[U

F
0 ,U

F
0 ] ∼=

∏
ω∈∆/τ

UF
ω

where ∆/τ is the set of orbits of τ on ∆ and Uω =
∏

α∈ω Uα. Moreover UF
ω
∼= F+

q|ω|
.

Definition 5.10. A linear character φ of UF
0 is called regular if it is non-trivial on each group

UF
ω of Lemma 5.9.

Like the regular unipotent classes, the regular characters of UF
0 are parametrized by the

F -classes of the centre.

Proposition 5.11 ([DiMi20, Proposition 12.3.2]). The TF
0 -orbits of regular characters of UF

0

are in one-to-one correspondence with H1(F,Z(G)).

It is possible to build this correspondence by explicitly choosing a regular character of UF
0

(see discussion after [DiMi20, 12.3.2] and/or after [DLM92, (2.4) Theorem]).

Notation 5.12. For any N ∈ N we denote by χN : FqN → C the linear character of FqN defined
by

χN(x) := e
2πiTr(x)

p

for any x ∈ FqN , where Tr : FqN → Fp is the usual field trace.
In the particular case N = 1 we denote φ := χ1, and for any element j ∈ Fq we set

φj(x) := φ(jx). Clearly, φj runs through all the characters of Fq when j runs through the
elements of Fq. Analogously, we denote φj1 × φj2 × · · · × φjk by φj1,j2,...,jk .

We choose as regular character of UF
0 parametrized by 1 ∈ H1(F,Z(G)) the following

product of characters (thanks to Lemma 5.9)

ψ1 :=
∏

ω∈∆/τ

χ|ω| :
∏

ω∈∆/τ

F+
q|ω|
∼=
∏

ω∈∆/τ

UF
ω → C.

Then, by [DLM92, (2.4.10) and the following discussion] the group L −1
T0

(Z) acts transitively,

by conjugation, on the set of regular characters of UF
0 and, more precisely, L −1

T0
(Z)/ZTF

0 acts
regularly on the same set. Therefore, for any z ∈ H1(F,Z(G)) we can choose a representative
tz ∈ L −1

T0
(z) and define the regular character

ψz := tzψ1

which is a representative of the TF
0 -orbit Ψz of regular characters of UF

0 parametrized by z.

Definition 5.13. For z ∈ H1(F,Z(G)) we define the Gel’fand-Graev character of GF by

ΓG
z := IndGF

UF
0

(ψz).

It is clear that the ΓG
z are well defined for z ∈ H1(F,Z(G)) since they are defined up to

TF
0 -conjugacy of ψz.

Definition 5.14. We define σz :=
∑

ψ∈Ψz
ψ(u1), where Ψz is the TF

0 -orbit of ψz and u1 the

chosen representative of the regular unipotent elements parametrized by 1 ∈ H1(F,Z(G)).
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Remark 5.15. The main reason for introducing the Gel’fand–Graev characters is that, unlike
the Deligne–Lusztig characters, they have different values on (almost all) unipotent splitting
classes since regular characters of UF

0 already distinguish them. This means that they must
have at least one irreducible constituent that also distinguishes between those splitting classes.

By definition, the Gel’fand–Graev characters always distinguish the regular unipotent classes
of GF . The hope is, therefore, to use them to distinguish the values of the irreducible con-
stituents of the Deligne–Lusztig characters on unipotent classes.

First of all, we have the following important result on Gel’fand–Graev characters.

Proposition 5.16 ([DLM92, (3.5) Theorem]). Let χ ∈ Irr(GF ) and let z ∈ H1(F,Z(G)).
Then (recall that ηG was given in Definition 1.56),

1

|Uz|
∑
u∈Uz

χ(u) = ηG
∑

z′∈H1(F,Z(G))

σzz′−1〈DGχ,Γz′〉.

Notice that in good characteristic Uz is a conjugacy class. Then, the left-hand side of the
equation reduces to χ(u) for u a regular unipotent element parametrized by z ∈ H1(F,Z(G)).

We list now further properties that justify the use of these characters for the decomposition
of Deligne–Lusztig characters.

Theorem 5.17 ([DiMi20, 12.3.4]). The Gel’fand–Graev characters are multiplicity free.

Proposition 5.18 ([DLM92, (3.6) Scholium (i)]). The class functions {ΓG
z | z ∈ H1(F,Z(G))}

are linearly independent and distinct.

Definition 5.19. We say that χ ∈ Irr(GF ) is regular if 〈χ,ΓG
z 〉 6= 0 for some z ∈ H1(F,Z(G)).

Definition 5.20. For any semisimple class (s) of G∗F
∗
, let T∗ be a maximally split torus of

CG∗(s)
◦ and define the following class function of GF

χ(s) = |W (s)◦|−1
∑

w∈W (s)◦

εGεT∗wR
G
T∗w

(s)

where T∗w is the F ∗-stable maximal torus of CG∗(s)
◦ obtained by twisting T∗ with w ∈ W (s)◦

(this was introduced in Theorem 1.20).

Notice that by definition these class functions χ(s) are orthogonal to each other for different
conjugacy classes (s). Moreover we have the following crucial results.

Proposition 5.21 ([DLM92, (3.10) Proposition]). The class functions χ(s) have the following
properties:

(a) χ(s) is a proper character of GF .

(b) For z ∈ H1(F,Z(G)), we have 〈χ(s),Γ
G
z 〉 = 1.

Notation 5.22. Let (s) be a semisimple class of G∗F
∗

and z ∈ H1(F,Z(G)), then we denote
by χ(s),z the unique common irreducible constituent of χ(s) and ΓG

z .

Proposition 5.23 ([DLM92, (3.12) Proposition (i)]). The set

{χ(s),z | (s) semisimple class of G∗F
∗
, z ∈ H1(F,Z(G))}

contains all the regular characters of GF .
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Thus, it is immediate from Proposition 5.21 and Proposition 5.23 that:

Corollary 5.24 ([DLM92, (3.14) Corollary]). For each z ∈ H1(F,Z(G)), we have

ΓG
z =

∑
(s)

χ(s),z

where the sum is over the semisimple classes of G∗F
∗
.

The explicit computation of the Gel’fand–Graev characters is tightly related with the com-
putation of some (partial) Gauss sums. We give some theoretical information in this regard
that will be used later. The explicit computations will be carried out in Lemma 5.58.

Lemma 5.25 ([DiMi20, Lemma 12.3.11]). We have

σz =
ΓG
z (u1)

|Z(G)F |
.

The next result can be used to verify the computations.

Lemma 5.26 ([DLM92, (3.7) Scholium]). Let σ be the matrix whose (z, z′) entry is σzz′−1 for
z, z′ ∈ H1(F,Z(G)). Then,

〈ΓG
z ,Γ

G
z′ 〉 =

|GF |
|U1|

((σTσ)−1)z,z′

where T denotes the matrix transpose.

In good characteristic U1 is a conjugacy class, then the formula becomes

〈ΓG
z ,Γ

G
z′ 〉 = |CGF (u1)|((σTσ)−1)z,z′ .

Remark 5.27. Although the decomposition of Gel’fand–Graev characters is even more chal-
lenging than the decomposition of Deligne–Lusztig characters (without having the character
table a priori), the precise knowledge of how their decomposition looks like gives the possibility
of writing a system of equations for the values of regular characters at unipotent elements.

The question is if this gives enough equations to solve the system. It is hardly ever the
case when Z(G) is disconnected, since there are usually more (splitting) unipotent classes than
there are Gel’fand–Graev characters. An example where the system is solvable is SL2(q) when
q is odd. There is one unipotent class of SL2 (the regular one) that splits into two classes of
SL2(q) and two Gel’fand–Graev characters, for q odd.

More equations can be found by inspecting the relation between the regular characters of
two groups related by a regular embedding.

Remark 5.28. It is possible to relate the regular/Gel’fand–Graev characters of GF and G̃F :

(a) We fix a regular embedding i : G→ G̃ (and identify G with i(G) ⊂ G̃) and we denote by
(G̃∗, F̃ ∗) the dual of (G̃, F̃ ). Also, we denote by i∗ : G̃∗ → G∗ the corresponding central
isotypy (see [GeMa20, Section 1.7.11]) such that i∗ ◦ F̃ ∗ = F ∗ ◦ i∗.

Let (s) be a semisimple class of G∗F
∗

and we choose a class (s̃) of G̃∗F̃
∗

which lies over
(s), i.e. i∗(s̃) = s. Then, by Proposition 3.13

ResG̃
F̃

GFχ(s̃) = χ(s).
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(b) The regular characters of UF
0 are all G̃F̃ -conjugate. Then by transitivity of the ordinary

induction we have for any z ∈ H1(F,Z(G))

IndG̃F̃

GFΓG
z = ΓG̃.

It follows from (a) and by Clifford theory that the regular characters of GF in the same
Lusztig series are G̃F -conjugates. This greatly reduces the number of unknown values of regular
characters in the system discussed in Remark 5.27. Moreover, it follows that all the constituents
of the restriction of regular characters of G̃F̃ are regular characters of GF .

For non-unipotent elements we use two “extensions” of the same principle. On one side we
consider a modified version of the Gel’fand–Graev characters (discussed in Section 5.3) which
are non-zero on elements of the form zu with u unipotent and z central. On the other side we
use Lusztig induction/restriction from/to a Levi subgroup and the “modified” Gel’fand–Graev
characters of those Levis to obtain similar systems of equations for elements of the form zu
where this time z is central in the Levi.

This way we manage to write uniquely solvable systems of equations for almost all splitting
classes of GF (for SL4(q) this method actually covers all the problematic cases, see Part II).

The main result that we need is about the relation between the regular characters of the
group GF and of a Levi subgroup LF via Harish–Chandra/Lusztig restriction (Theorem 5.35
below). This follows by an analogous relation between the Gel’fand–Graev characters of the
group GF and of a Levi subgroup LF via Harish–Chandra/Lusztig restriction. At the moment
of the writing this is only a conjecture.

Conjecture 5.29 ([DLM92, (5.2)’ Conjecture]). Let L be an F -stable Levi subgroup of G. For
z ∈ H1(F,Z(G)), we have

∗RG
L ΓG

z = εGεLΓL
z′

for some z′ ∈ H1(F,Z(L)).

There is a tight relation between Gel’fand–Graev characters and characteristic functions of
regular unipotent classes.

Notation 5.30. We denote by γGg the class function of a finite group G that takes value
|CG(g)| on the conjugacy class of g ∈ G and zero on the other classes. More precisely, in good
characteristic, for z ∈ H1(F,Z(G)) we set γG

F

z := γG
F

uz for a regular unipotent element uz ∈ GF

parametrized by z.

Lemma 5.31 ([DLM92, (3.5)’ Scholium]). If the characteristic is good for G, then for any
z ∈ H1(F,Z(G)) we have

DGγ
GF

z = ηG
∑

z′∈H1(F,Z(G))

σzz′−1ΓG
z′ .

The conjecture above is equivalent to the following one (the equivalence is proven later in
Proposition 5.36).

Conjecture 5.32 ([DLM92, (5.2) Conjecture]). Let L be an F -stable Levi subgroup of G. For
z ∈ H1(F,Z(G)), we have

∗RG
L γ

GF

z = γL
F

z′

for some z′ ∈ H1(F,Z(L)).

We list now the cases for which these conjectures have been proved.
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Proposition 5.33. Conjectures 5.29 and 5.32 are valid when either of the following conditions
is satisfied.

(a) The centre of G is connected.

(b) The Levi L is split (contained in an F -stable parabolic subgroup).

(c) The characteristic p is good for G and q is “large enough”6.

Proof. (a) See [DiMi83, Théorème 4.4] and [DLM92, (5.4) Proposition].
(b) See [DLM92, (2.9) Theorem] and [DLM92, (5.3) Theorem].
(c) See [DLM97, 3.7 Theorem] and [Bo05, Theorem 15.2] for the determination of z′, ap-

pearing in Conjecture 5.29.

Remark 5.34. The precise determination of z′ ∈ H1(F,Z(L)), given z ∈ H1(F,Z(G)), in the
conjectures above is not an easy task. It depends on the arbitrary choice of the parametrization
of the regular unipotent classes in both the group GF and the Levi subgroup LF considered.
Clearly, the problem does not arise in the connected centre case (where there is only one regular
unipotent class in GF and LF ). In general, the solution has been worked out by Bonnafé in
[Bo05]. In summary, he introduces and explicitly constructs two main tools:

� a restriction map for regular unipotent classes ([Bo00, Section 15.A])

resGL : Reguni(G
F )→ Reguni(L

F ).

� a certain morphism ([Bo05, Section 12.C and Table 1]) which, in practice, associates an
element of Z(L)/Z(L)◦ (and thus of H1(F,Z(L))) to each F -stable Levi subgroup L, we
will denote it by zL.

Recall that for any z ∈ H1(F,Z(G)) we choose a representative tz ∈ L −1
T0

(z). Then
Uz = tzU1 and (because conjugation with tz and resGL commute)

resGL Uz = (resGL U1)hL(z).

Moreover, resGL is transitive:
resGL = resL

′

L ◦ resGL′

for an F -stable Levi subgroup L′ of G containing L, see [Bo04, Proposition 7.2 (c)].
Finally, if Conjecture 5.32 holds, by [Bo05, Theorem 15.2] (when the characteristic is good

for G) then
∗RG

L γ
GF

z = γL
F

hL(z)zL

when choosing resGL U1 ∈ Reguni(L
F ) as being the regular unipotent class parametrized by

1 ∈ H1(F,Z(L)).
The elements zL are the identity for split Levi subgroups while otherwise they were deter-

mined by Bonnafé, and are given in [Bo05, Table 1].
For split Levi subgroups it is easy to check explicitly that resGL (u1)G

F
= (u1)L

F
where u1

is as in Notation 5.6. In the case of twisted Levi subgroups it is not clear how to explicitly
compute the restriction of regular unipotent classes. In Parts II and III, for an F -stable Levi
subgroup L of type (I, w) (see discussion before Definition 1.59), we find representatives of the
regular unipotent classes of LF in LFw−1

I . In this case, we need to explicitly find an element
g ∈ G such that g−1F (g) = ẇ in order to compute resGL . The generic determination of such
g is (at the moment of the writing) still an open problem. This means that it will not be
possible to fix unequivocally representatives of some splitting classes (that intersect twisted
Levi subgroups) in the generic character tables computed in Parts II and III. We are able to
explicitly find such g in all but one case of Spin+

8 (q).

6The proof uses results of Lusztig valid only for q bigger than a constant which depends on the type of G.
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Unfortunately, we will need to use the conjectures above also for non-split Levi subgroups
and for any q. It will be possible to use them anyway thanks to the explicit determination of
the 2-parameter Green functions (see Section 4). It is easy to verify that Conjecture 5.32 is
true in the cases we are interested in, allowing us to use Conjecture 5.29 and its consequences.

When these conjectures are verified we are allowed to use the next very useful result.

Theorem 5.35 ([DLM92, (6.2) Theorem]). Suppose L is an F -stable Levi subgroup of G for
which Conjecture 5.29 holds. Then we have

∗RG
L χ

G
(s),z = εGεL

∑
(t)

χL
(t),z′

where the sum is over the semisimple classes (t) ∈ L∗F
∗

such that t ∈ (s)G∗F∗ and z′ is as in
Conjecture 5.29.

The equivalence of the conjectures is mentioned without proof in [DLM92]. A proof was
provided by Digne and Michel after requesting details on it. We present it here.

Proposition 5.36 (Digne–Michel). If the characteristic is good for G (and the Mackey formula
holds) then Conjectures 5.29 and 5.32 are equivalent.

Proof. For readability reason, for this proof, we fix HG = H1(F,Z(G)), HL = H1(F,Z(L)),
ĤG = Irr(HG) and ĤL = Irr(HL).

We start by introducing the Mellin transforms

γG
F

ζ =
∑
z∈HG

ζ(z)γG
F

z , ΓG
ζ =

∑
z∈HG

ζ(z)ΓG
z and σG

ζ =
∑
z∈HG

ζ(z)σG
z

for ζ ∈ ĤG (and also the analogous ones in L). Then we apply Lemma 5.31 to these transforms

DGγ
GF

ζ =
∑
z∈HG

ζ(z)DGγ
GF

z = ηG
∑

z,z′∈HG

ζ(z)σzz′−1ΓG
z′ = ηG

∑
z′∈HG

ζ(z′)
∑
z∈HG

ζ(zz′−1)σzz′−1ΓG
z′

and, finally, by evaluating the sums we get

DGγ
GF

ζ = ηGσ
G
ζ ΓG

ζ . (∗)

Analogously, we get the same formula in L.
We apply now ∗RG

L to the equation above, finding ∗RG
LDGγ

GF

ζ = ηGσ
G
ζ

∑
z∈HG

ζ(z)∗RG
L ΓG

z .

By Conjecture 5.29 and Remark 5.34, the right-hand side is ηGεGεLσ
G
ζ

∑
z∈HG

ζ(z)ΓL
hL(z)zL

.

There are two possibilities. Either ζ factorizes through hL, i.e. there is ζL ∈ ĤL such that
ζ = ζL ◦ hL, or it does not, in which case it can be checked that the sum is 0

∗RG
LDGγ

GF

ζ =

{
ηGεGεLσ

G
ζ |ker(hL)|

∑
z∈HL

ζL(zL)−1ζL(z)ΓL
z ζ = ζL ◦ hL,

0 else.

Thus, we assume that ζ = ζL ◦ hL, for ζL ∈ ĤL. Therefore, we get

∗RG
LDGγ

GF

ζ = ηGεGεLσ
G
ζ ζL(zL)−1|ker(hL)|ΓL

ζL
.

In this case, by applying twice [DLM97, Proposition 2.5] we get the relation ηGσ
G
ζ = ηLσ

L
ζL

.

Hence, ∗RG
LDGγ

GF

ζ = ηLεGεLσ
L
ζL
ζL(zL)−1|ker(hL)|ΓL

ζL
. Then, by commuting DG and ∗RG

L with
Proposition 3.17, we get

∗RG
L γ

GF

ζ = ηLσ
L
ζL
ζL(zL)−1|ker(hL)|DLΓL

ζL
.
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Now we use equation (∗) in L to get

∗RG
L γ

GF

ζ = ζL(zL)−1|ker(hL)|γLFζL

for ζ that factorizes through hL.
The result follows by taking the inverse Mellin transform γG

F

z = 1
|HG|

∑
ζ∈ĤG

ζ(z−1)γG
F

ζ ,

∗RG
L γ

GF

z =
1

|HG|
∑
ζ∈ĤG

ζ(z−1)∗RG
L γ

GF

ζ =
|ker(hL)|
|HG|

∑
ζL∈ĤL

ζL(h(z)−1z−1
L )γL

F

ζL
= γL

F

hL(z)zL

since |HG| = |HL||ker(hL)|.

Before ending this section we introduce another family of irreducible characters. They are
the so-called semisimple characters, and they are as important (to our computations) as the
regular characters.

Theorem 5.37 ([DLM92, (3.15) Theorem (i) and (ii)]). We have the following:

(a) Let χ ∈ Irr(GF ). Then
1

|Uz|
∑
u∈Uz

χ(u) = 0

for all z ∈ H1(F,Z(G)) unless χ = ±DGχ(s),z′ for some semisimple class (s) ⊂ G∗F
∗

and some z′ ∈ H1(F,Z(G)).

(b) For each pair ((s), z) as in (a), %(s),z = εGεCG∗ (s)DGχ(s),z is an irreducible character of
GF . Moreover %(s),z = %(s′),z′ if and only if χ(s),z = χ(s′),z′.

Notice that the notation %(s),z is justified by the fact that DG preserves the Lusztig series
(Corollary 3.19).

Definition 5.38. The characters

{%(s),z | (s) semisimple class of G∗F
∗
, z ∈ H1(F,Z(G))}

are called the semisimple characters of GF .

Remark 5.39. In view of Proposition 5.16, if the regular characters of a certain Lusztig series,
say χ(s),z, are known then we know the value of the semisimple characters %(s),z on regular
unipotent elements. We have

1
|Uz′ |

∑
u∈Uz′

%(s),z(u) = ηG
∑

z′′∈H1(F,Z(G))

σz′z′′−1〈DG%(s),z,Γz′′〉

= ηGεGεCG∗ (s)

∑
z′′∈H1(F,Z(G))

σz′z′′−1〈χ(s),z,Γz′′〉

where the scalar products with the regular characters are known by hypothesis. Notice that,
by definition, ηGεG = εR(G) is equal 1 if G is semisimple.

Remark 5.40. By the discussion after the proof of [DLM92, (3.15) Theorem], a regular char-
acter χ(s),z is also semisimple if and only if s is a regular semisimple element of G∗. Hence the
regular semisimple characters are

{χ(s),z | (s) regular semisimple class of G∗F
∗
, z ∈ H1(F,Z(G))}.

Thus, in good characteristic, χ(s),z vanishes on regular unipotent classes unless it is regular
semisimple.
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Because of the tight relation between regular and semisimple characters, we can state an
analogue of Theorem 5.35 for semisimple characters.

Theorem 5.41 ([DLM92, (6.4) Corollary]). Suppose L is an F -stable Levi subgroup of G for
which Conjecture 5.29 holds (and assume that the Mackey formula holds). Then we have

∗RG
L %

G
(s),z = εCG∗ (s)

∑
(t)

εCL∗ (t)%
L
(t),z′

where the sum is over the semisimple classes (t) ∈ L∗F
∗

such that t ∈ (s)G∗F∗ and z′ is as in
Conjecture 5.29.

Remark 5.42. Notice that once the regular characters are identified (by taking scalar products
with the Gel’fand–Graev characters) it is easy to identify the semisimple characters. In practice,
we just need to inspect character degrees. This is direct from [GeMa20, Proposition 3.4.21],
which states that the degree polynomials of ρ ∈ Irr(GF ) and DG(ρ) are related by

DDG(ρ)(q) = q|Φ
+|Dρ(q

−1).

Remark 5.43. We already know one regular and one semisimple character. The Steinberg
character is a regular character. This follows directly by taking the scalar product 〈ΓG

z , StG〉
for any z ∈ H1(F, z(G)). By definition the only non-zero value on semisimple elements of the

Gel’fand–Graev characters is ΓG
z (1) = |GF |

|UF
0 |

. While by Proposition 3.21 the only non-zero value

on unipotent elements of the Steinberg character is StG(1) = |UF
0 |. Then the scalar product is

equal to 1.
It follows by the definition of the Steinberg character that the trivial character is semisimple.

5.3 Modified Gel’fand–Graev characters

The idea behind the use of Gel’fand–Graev characters comes from the need for characters
that distinguish between splitting unipotent classes. In this section, we make a step towards
dropping the unipotent requirement, by modifying their definition. We consider characters that
distinguish between splitting classes with elements whose semisimple part is central. Although
the definition is as simple as it can be, they are a key ingredient for the decomposition of
Deligne–Lusztig characters. For example, in SL4(q) these modified Gel’fand–Graev characters
encode all needed information to complete the character table.

Definition 5.44. Let ZU denote the subgroup of GF which is the direct product of the centre
Z = Z(GF ) and the unipotent subgroup U = UF

0 . The modified Gel’fand–Graev characters of
GF are the characters of the form

IndGF

ZU (θ × ψ)

where θ is a linear character of Z and ψ is a regular character of U .
If ψ is parametrized by z ∈ H1(F,Z), we write ΓG

θ,z for the corresponding modified Gel’fand–
Graev character.

By the definition of induction, it is easy to see how the modified Gel’fand–Graev characters
can be written in terms of the usual Gel’fand–Graev characters.

Lemma 5.45. Let θ ∈ Irr(Z(GF )) and z ∈ H1(F,Z(G)). For g ∈ GF with semisimple part s
and unipotent part u, we have

ΓG
θ,z(g) =

{ 1
|Z(GF )|θ(s)Γ

G
z (u) s ∈ Z(GF )

0 else.
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Proof. Clearly, if s /∈ Z = Z(GF ) then ΓGF

θ,z (g) = 0. So we assume that s ∈ Z and let ψ be
a regular character of U = UF

0 parametrized by z. Then, by definition of the induction of
characters

IndGF

ZU (θ × ψ)(g) =
1

|ZU |
∑
x∈GF ,
xg∈ZU

θ(xs)ψ(xu) =
θ(s)

|Z|
1

|U |
∑
x∈GF ,
xu∈U

ψ(xu) =
θ(s)

|Z|
ΓG
z (u).

It is easy to relate modified and non-modified Gel’fand–Graev characters more specifically.

Lemma 5.46. Let θ, θ′ ∈ Irr(Z(GF )) and z, z′ ∈ H1(F,Z(G)), then

〈ΓG
θ,z,Γ

G
θ′,z′〉 = δθ,θ′

1

|Z(GF )|
〈ΓG

z ,Γ
G
z′ 〉.

Proof. By the discussion above, we can rewrite the scalar product as

〈ΓG
θ,z,Γ

G
θ′,z′〉 = 〈ΓG

z ,Γ
G
z′ 〉

∑
x∈Z(GF )

θ(x)

|Z(GF )|
θ′(x−1)

|Z(GF )|

and the result follows by the orthogonality relation for Irr(Z(GF )).

Corollary 5.47. Let z ∈ H1(F,Z(G)). Then∑
θ∈Irr(Z(GF ))

ΓG
θ,z = ΓG

z .

Proof. By [Is76, (2.11) Lemma] the sum of all the linear characters of the centre is the regular
character of the centre. So we have∑

θ∈Irr(Z(GF ))

ΓG
θ,z(g) = ΓG

z (u)
∑

θ∈Irr(Z(GF ))

θ(s)

|Z(GF )|
= ΓG

z (u)
regZ(GF )(s)

|Z(GF )|
=

{
ΓG
z (u) s = 1

0 else,

for any g ∈ GF with semisimple part s and unipotent part u.

In other words, the modified Gel’fand–Graev characters partition the usual Gel’fand–Graev
characters.

Remark 5.48. At the cost of having a support |Z(GF )| times bigger, the modified Gel’fand–
Graev characters contain more precise information than the non-modified ones. If in the pre-
vious section, we could get a system of at most |H1(F,Z(G))| equations for any character of
GF , now we get up to |Z(GF )||H1(F,Z(G))| of them.

Although we introduced them as characters that distinguish certain conjugacy classes, it
turns out that the modified Gel’fand–Graev characters can be explained/obtained with another
construction. We end this section with a discussion on this equivalent construction. Theoreti-
cally, the information obtained is redundant. However, in practice, we gain an alternative, and
in some cases more effective, way of performing some computations.

What follows is inspired by [Bo00, Chapter 1.7].
For every element of the centre of GF we can define an action on CF(GF ).

Definition 5.49. Let z ∈ Z(GF ) and χ ∈ CF(GF ). Then we define tGz χ ∈ CF(GF ) by
tGz χ(g) := χ(zg) for g ∈ GF .
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It is easy to see that tGz : CF(GF ) → CF(GF ) is an isometry and tGz ◦ tGz′ = tGzz′ for all
z, z′ ∈ Z(GF ).

Notation 5.50. For any linear character ϕ ∈ Irr(Z(GF )) we define the set

CF(GF )ϕ :=
{
χ ∈ CF(GF ) | tGz χ = ϕ(z)χ, for all z ∈ Z(GF )

}
.

The interest of introducing this action of the centre comes from the next proposition.

Proposition 5.51. We have

CF(GF ) =
⊕

ϕ∈Irr(Z(GF ))

CF(GF )ϕ

and the direct sum is orthogonal.

Proof. For any class function χ ∈ CF(GF ) and any ϕ ∈ Irr(Z(GF )) the transform

χ 7→ χϕ :=
1

|Z(GF )|
∑

z∈Z(GF )

ϕ(z−1)tGz χ

projects onto CF(GF )ϕ (easy to verify by applying tGz to χϕ).
By explicit computation we find,∑

ϕ∈Irr(Z(GF ))

χϕ = χ and (χϕ)ϕ′ = δϕ,ϕ′χϕ,

for ϕ, ϕ′ ∈ Irr(Z(GF )), which proves that CF(GF ) is the direct sum from the statement.
Lastly, take χ1 ∈ CF(GF )ϕ1 and χ2 ∈ CF(GF )ϕ2 for ϕ1, ϕ2 ∈ Irr(Z(GF )). Because tGz is

an isometry for all z ∈ Z(GF ), we get the orthogonality relation

〈χ1, χ2〉 =
1

|Z(GF )|
∑

z∈Z(GF )

〈tGz χ1, t
G
z χ2〉 =

1

|Z(GF )|
∑

z∈Z(GF )

〈ϕ1(z)χ1, ϕ2(z)χ2〉

=
∑

z∈Z(GF )

ϕ1(z−1)ϕ2(z)

|Z(GF )|
〈χ1, χ2〉 = 〈ϕ1, ϕ2〉〈χ1, χ2〉 = δϕ1,ϕ2〈χ1, χ2〉.

Notation 5.52. From now on, for all χ ∈ CF(GF ) and ϕ ∈ Irr(Z(GF )) we denote by χϕ the
projection of χ to CF(G)ϕ, as in the proof above.

Remark 5.53. It is clear by the definition that for z ∈ Z(GF ) and ϕ ∈ Irr(Z(GF )) the
modified Gel’fand–Graev character Γϕ,z is the projection of the Gel’fand–Graev character Γz
to CF(GF )ϕ, i.e. Γϕ,z = (Γz)ϕ.

The next result will be useful for applying the theory developed so far to the computations
in Part III.

Proposition 5.54 ([Bo00, Lemma 1.7.5]). If s is a semisimple element of G∗F
∗
, then there

exists a unique ϕ ∈ Irr(Z(GF )), depending only on the G∗F
∗
-conjugacy class of s, such that

CE (GF , s) ⊆ CF(GF )ϕ.
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Remark 5.55. In particular, every irreducible character χ ∈ Irr(GF ) takes values related by
χ(zu) = ϕ(z)χ(u), for ϕ ∈ Irr(Z(GF )) as in the previous statement, where z ∈ Z(GF ) and
u ∈ GF is unipotent. This character ϕ can be determined on any known class function in the
span of the Lusztig series containing χ.

In general, for an element with Jordan decomposition su (s semisimple and u unipotent)
we have analogous statements for the characters of CG(s)F . When this centralizer is a Levi
subgroup, LF , we can use these observations to gain further informations on the values of
∗RG

L χ. Although, one must be careful that the constituents of ∗RG
L χ might not all lie in the

same subspace CF(LF )ϕ for one ϕ ∈ Irr(Z(LF )).

Remark 5.56. By the last remark, if it is possible to determine ϕ ∈ Irr(Z(GF )) correspond-
ing to each semisimple conjugacy class of G∗F

∗
, then it is unnecessary to know the modified

Gel’fand–Graev characters of GF . This will be the case for Spin+
8 (q). However, as already dis-

cussed in the previous section, we will Lusztig restrict regular/semisimple characters to F -stable
Levi subgroups. By Theorems 5.35 and 5.41 these restriction might not (and it is hardly ever the
case) be irreducible. Then the determination of their decomposition in

⊕
ϕ∈Irr(Z(LF )) CF(GF )ϕ,

for F -stable Levi subgroups L, is computationally easier via scalar products with modified
Gel’fand–Graev characters. This is true especially because we usually do not know Irr(LF ) nor
we know any class function in some Lusztig series of LF .

We end this section with an easy result that will be useful when we consider the Lusztig re-
striction of non-regular non-semisimple characters. In a few words, thanks to the orthogonality
of Proposition 5.51 if a class function belongs to CF(GF )ϕ for a certain ϕ ∈ Irr(Z(GF )), then
all its irreducible constituents belong to CF(GF )ϕ too.

Lemma 5.57. Let χ ∈ CF(GF )ϕ for ϕ ∈ Irr(Z(GF )) such that its decomposition into irre-
ducible constituents is

χ =
∑

θ∈Irr(GF )

aθθ

for scalars aθ ∈ C. Then, θ ∈ CF(GF )ϕ if aθ 6= 0.

Proof. By Proposition 5.54 for each θ ∈ Irr(GF ) there exists a ϕθ ∈ Irr(Z(GF )) such that
θ ∈ CF(GF )ϕθ . By hypothesis, for all z ∈ Z(GF ) we have

tzχ = ϕ(z)χ.

We apply the decomposition on both sides of the equation:∑
θ∈Irr(GF )

aθϕθ(z)θ =
∑

θ∈Irr(GF )

aθϕ(z)θ

which is equivalent to ∑
θ∈Irr(GF )

aθ (ϕθ(z)− ϕ(z)) θ = 0,

for all z ∈ Z(GF ). Because Irr(GF ) is a basis of CF(GF ), then we have

ϕθ(z)− ϕ(z) = 0

for all θ such that aθ 6= 0 and for all z ∈ Z(GF ). This implies that ϕθ = ϕ for all θ such that
aθ 6= 0.
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5.4 Some partial Gauss sums

The next lemma gives all the identities of φ (defined in Notation 5.12) needed to compute
the Gel’fand–Graev characters in Parts II and III, and some other sums that appear in the
computation of Gel’fand–Graev characters.

Denote the Legendre symbol of x ∈ Fq by

η(x) =


0 x = 0,
1 x ∈ (F×q )2,
−1 else,

and the corresponding Gauss sum

G(η) =
∑
x∈Fq

η(x)φ(x).

Lemma 5.58. The character φ has the following properties (every symbol jk, k = 1, 2, ...
denotes a fixed element of F×q ):

1.
∑

r1∈F×q

φ(j1r1) = −1, φ(0) = 1 and φ(x)φ(y) = φ(x+ y) for all x, y ∈ Fq.

2.
∑

x1,...,xr∈F×q

∏
i=1,..,r

φ(aixi) = (−1)r for all ai ∈ F×q and r > 0.

3. G(η) =
∑
x∈Fq

φ(x2).

4. G(η)2 = η(−1)q.

5.
∑
x∈Fq

φ(αx2) = η(α)
∑
x∈Fq

φ(x2), ∀α ∈ F×q .

6.
∑

r1,r2∈F×q
r1r2∈µk(F×q )2

φ(j1r1 + j2r2) =
qη(−j1j2µk)+1

2
.

7.
∑

r1,r2∈F×q
r1r2∈µk(F×q )2

φ(j1r1) = − q−1
2

.

8.
∑

r1,r2,r3,r4∈F×q
r1r2r3r4∈µk(F×q )2

φ(j1r1 + j2r2 + j3r3) = − q−1
2

.

9.
∑

r1,r2,r3,r4∈F×q
r1r2r3r4∈µk(F×q )2

φ(j1r1) = − (q−1)3

2
.

10.
∑

r1,r2,r3,r4,r5∈F×q
r1=ar2r3r4r

−2
5

φ(j1r1) = −(q − 1)3 for a ∈ F×q .

11.
∑

r1,r2,r3∈F×q
r1r3∈µk(F×q )2

r2r3∈µl(F×q )2

φ(j1r1 + j2r2 + j3r3) = − qη(−j1j2µk+l)+qη(−j1j3µk)+qη(−j2j3µl)+1

4
.
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12.
∑

r1,r2,r3∈F×q
r1r3∈µk(F×q )2

r2r3∈µl(F×q )2

φ(j1r1 + j2r2) = q−1
4

(
qη
(
−j1j2µ

k+l
)

+ 1
)
.

13.
∑

r1,r2,r3∈F×q
r1r3∈µk(F×q )2

r2r3∈µl(F×q )2

φ(j1r1) = − (q−1)2

4
.

14.
∑

r1,r2,r3,r4,r5∈F×q
r2r4∈µk(F×q )2

r3r4∈µl(F×q )2

r1=ar2r3r4r
−2
5

φ(j1r1) = − (q−1)3

4
for a ∈ F×q .

15.
∑

r1,r2,r3,r4,r5∈F×q
t:=r1r2

5r
−1
2 r−1

3 r−1
4 6=−2,−4

t(t+4)∈µk(F×q )2

φ(j1r1) = −(q − 1)3 q−3−η(µk)−η(−µk)
2

.

16.
∑

r1,r2,r3,r4,r5∈F×q
r1r2−r1r3r4r−1

5 ∈µk(F×q )2

−r4r5∈µl(F×q )2

φ(j1r1 + j2r2 + j3r3) = q−1
4

(
−q + 2 + qη(−j1j3µ

k+l)+
qη(−j1j2µ

k) + qη(j2j3µ
l)
)
.

17.
∑

r1,r2,r3∈F×q
r1r2

2r
3
3∈µk(F×q )4

4φ(j1r1 + j2r2 + j3r3) = (q − 1) + q
(
1 + η(j1j3µ

k)
) (
±η(j2α)

√
q − 1

)
for q ≡ 1 (mod 4) and with α =

√
−j−1

1 j3µ−k.

Other sums:

18.
∑

r1,r2∈F×q
r1r2∈µk(F×q )2

1 = (q−1)2

2
.

19.
∑

r1,r2,r3∈F×q
r1r3∈µk(F×q )2

r2r3∈µl(F×q )2

1 = (q−1)3

4
.

20.
∑

t∈F×q \{−2,−4}
t(t+4)∈µk(F×q )2

1 = q−3−η(µk)−η(−µk)
2

.

Remark 5.59. It is essential for the proof of this lemma that the number of pairs (x1, x2) ∈
Fq × Fq which solve the equation

a1x
2
1 + a2x

2
2 = b,

for a1, a2, b ∈ F×q , is
q − η(−a1a2),

while for
a1x

2
1 + a2x

2
2 = 0,

with a1, a2 ∈ F×q , it is
q + (q − 1)η(−a1a2).

This is Lemma 6.24 of [LiNi97].
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Proof of 1. Clear.

Proof of 2. This follows by induction and by noticing that∑
x1,...,xr∈F×q

∏
i=1,..,r

φ(aixi) =
∑
xr∈F×q

φ(arxr)
∑

x1,...,xr−1∈F×q

∏
i=1,..,r−1

φ(aixi).

Proof of 3.

G(η) =
∑

x∈(F×q )2

φ(x)−
∑

x∈F×q \(F×q )2

φ(x) = 1 + 2
∑

x∈(F×q )2

φ(x) = 1 +
∑
x∈F×q

φ(x2) =
∑
x∈Fq

φ(x2).

Proof of 4. By point 3, we have

G(η)2 =
∑
x,y∈Fq

φ(x2 + y2).

We can compute the sum by performing the “change of variable” r = x2 + y2. Thanks to
Remark 5.59 above, r = 0 for q + (q − 1)η(−1) pairs (x, y) while r is equal to each non zero
element of Fq for q − η(−1) pairs (x, y). Then, we get

G(η)2 = q + (q − 1)η(−1) + (q − η(−1))
∑
r∈F×q

φ(r)

︸ ︷︷ ︸
−1

= qη(−1)

Proof of 5. Notice that α makes the sum over all the squares change to the sum over all the
non squares if α ∈ F×q \ (F×q )2.

Proof of 6. To perform this sum over r1r2 ∈ µk(F×q )2 introduce the “change of variable” r1 =
r2µ

kt2 with t ∈ F×q . The sum becomes:

∑
r1r2∈µk(F×q )2

φ(j1r1 +j2r2) =
1

2

∑
r2∈F×q
t∈F×q

φ(r2(j1µ
kt2 +j2)) =

1

2

∑
Ak

(q−1)− 1

2

∑
Ak

1 =
q − 1

2
|Ak|−

|Ak|
2

where Ak =
{
t ∈ F×q | j2 + j1µ

kt2 = 0
}

. The set Ak is non-empty, and of cardinality two, if

−j1j
−1
2 ∈ µk(F×q )2:

|Ak| = 1 + η(−j1j2µ
k),

and |Ak| = q − 1− |Ak|. The result follows.

Proof of 7. Perform the change of variable r1 = r2µ
kt2 with t ∈ F×q . The sum becomes:∑

r1,r2∈F×q
r1r2∈µk(F×q )2

φ(j1r1) =
1

2

∑
t,r2∈F×q

φ(j1r2µ
kt2) = −1

2

∑
t∈F×q

1 = −q − 1

2
.
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Proof of 8. Perform the change of variable r1 = r2r3r4t
2µk with t ∈ F×q . The sum becomes∑

r1,r2,r3,r4∈F×q
r1r2r3r4∈µk(F×q )2

φ(j1r1 + j2r2 + j3r3) =
1

2

∑
t,r2,r3,r4∈F×q

φ(j1r2r3r4t
2µk + j2r2 + j3r3) = −q − 1

2

by applying three times property 1 (to the variables r4, then r3 and r2).

Proof of 9. Perform the change of variable r1 = r2r3r4t
2µk with t ∈ F×q . The sum becomes

∑
r1,r2,r3,r4∈F×q

r1r2r3r4∈µk(F×q )2

φ(j1r1) =
1

2

∑
t,r2,r3,r4∈F×q

φ(j1r2r3r4t
2µk) = −(q − 1)3

2

by applying property 1.

Proof of 10. Follows directly from property 1.∑
r1,r2,r3,r4,r5∈F×q
r1=ar2r3r4r

−2
5

φ(j1r1) =
∑

r2,r3,r4,r5∈F×q

φ(aj1r2r3r4r
−2
5 ) = −(q − 1)3

Proof of 11. Perform the change of variables r1 = r3µ
kt21 and r2 = r3µ

lt22 with t1, t2 ∈ F×q . The
sum becomes:∑
r1r3∈µk(F×q )2

r2r3∈µl(F×q )2

φ(j1r1 + j2r2 + j3r3) =
1

4

∑
t1,t2,r3∈F×q

φ(r3(j1µ
kt21 + j2µ

lt22 + j3)) =
1

4
(q− 1)|Bkl|−

1

4
|Bkl|

for Bkl =
{

(t1, t2) ∈ F×q × F×q | j1µ
kt21 + j2µ

lt22 = −j3

}
.

The cardinality is

|Bkl| =
∣∣{(t1, t2) ∈ Fq × Fq | j1µ

kt21 + j2µ
lt22 = −j3

}∣∣− ∣∣{t1 ∈ F×q | j1µ
kt21 = −j3

}∣∣−∣∣{t2 ∈ F×q | j2µ
lt22 = −j3

}∣∣ = q − η(−j1j2µ
k+l)− |Ak| − |Al|

= q − 2− η(−j1j2µ
k+l)− η(−j1j3µ

k)− η(−j2j3µ
l)

where Ak is as in proof of 6, and |Bkl| = (q − 1)2 − |Bkl|. The result follows.

Proof of 12. Perform the change of variables r1 = r3µ
kt21 and r2 = r3µ

lt22 with t1, t2 ∈ F×q . The
sum becomes:∑

r1,r2,r3∈F×q
r1r3∈µk(F×q )2

r2r3∈µl(F×q )2

φ(j1r1 + j2r2) =
1

4

∑
t1,t2,r3∈F×q

φ(r3(j1µ
kt21 + j2µ

lt22)) =
1

4
(q − 1)|Ckl| −

1

4
|Ckl|

for Ckl =
{

(t1, t2) ∈ F×q × F×q | j1µ
kt21 + j2µ

lt22 = 0
}

.
The cardinality is

|Ckl| =
∣∣{(t1, t2) ∈ Fq × Fq | j1µ

kt21 + j2µ
lt22 = 0

}∣∣− |{(0, 0)}| =q − 1 + (q − 1)η(−j1j2µ
k+l)

and |Ckl| = (q − 1)2 − |Ckl|. The result follows.
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Proof of 13. Perform the change of variables r1 = r3µ
kt21 and r2 = r3µ

lt22 with t1, t2 ∈ F×q . The
sum becomes: ∑

r1,r2,r3∈F×q
r1r3∈µk(F×q )2

r2r3∈µl(F×q )2

φ(j1r1) =
1

4

∑
t1,t2,r3∈F×q

φ(r3j1µ
kt21) = −1

4

∑
t1,t2∈F×q

1 = −(q − 1)2

4
.

.

Proof of 14. Perform the change of variables r2 = r4µ
kt21 and r3 = r4µ

lt22 with t1, t2 ∈ F×q . The
sum becomes:∑

r1,r2,r3,r4,r5∈F×q
r2r4∈µk(F×q )2

r3r4∈µl(F×q )2

r1=ar2r3r4r
−2
5

φ(j1r1) =
∑

r2,r3,r4,r5∈F×q
r2r4∈µk(F×q )2

r3r4∈µl(F×q )2

φ(ar2r3r4r
−2
5 j1) =

1

4

∑
t1,t2,r4,r5∈F×q

φ(at21t
2
2r

3
4r
−2
5 j1).

By redefining t3 = r4t1 the sum is of the form of property 1. Then

1

4

∑
t1,t2,r4,r5∈F×q

φ(at21t
2
2r

3
4r
−2
5 j1) =

1

4

∑
t3,t2,r4,r5∈F×q

φ(at23t
2
2r4r

−2
5 j1) = −1

4

∑
t3,t2,r5∈F×q

1 = −(q − 1)3

4
.

Proof of 15. Perform the change of variable t = r1r
2
5r
−1
2 r−1

3 r−1
4 . Then∑

r1,r2,r3,r4,r5∈F×q
t:=r1r2

5r
−1
2 r−1

3 r−1
4 6=−2,−4

t(t+4)∈µk(F×q )2

φ(j1r1) =
∑

t,r2,r3,r4,r5∈F×q
t6=−2,−4

t(t+4)∈µk(F×q )2

φ(j1tr2r3r4r
−2
5 ) = −(q − 1)3

∑
t∈F×q

t6=−2,−4

t(t+4)∈µk(F×q )2

1.

The result follows from point 20.

Proof of 16. As usual perform a change of variable, r2 = r3r4r
−1
5 + r−1

1 t2µk, however here one
needs to be careful that r2 cannot be 0, then∑

r1,r2,r3,r4,r5∈F×q
r1r2−r1r3r4r−1

5 ∈µk(F×q )2

−r4r5∈µl(F×q )2

φ(j1r1 + j2r2 + j3r3) =
1

2
Σ1 −

1

2
Σ2

where
Σ1 =

∑
r1,t,r3,r4,r5∈F×q
−r4r5∈µl(F×q )2

φ
(
j1r1 + j2(r3r4r

−1
5 + r−1

1 t2µk) + j3r3

)

and
Σ2 =

∑
r1,t,r3,r4,r5∈F×q

r3=−r−1
1 r−1

4 r5t2µk

−r4r5∈µl(F×q )2

φ(j1r1 + j3r3).

73



To compute Σ1 perform the change of variable r4 = −r5s
2µl,

Σ1 =
q − 1

2

∑
r1,t,r3,s∈F×q

φ
(
j1r1 − j2r3s

2µl + j2r
−1
1 t2µk + j3r3

)
=

q − 1

2

∑
r1,t∈F×q

φ
(
r1(j1 + j2t

2µk)
) ∑
r3,s∈F×q

φ
(
r3(j3 − j2s

2µl)
)
.

Now exactly as in the proof of 6
∑

r,t∈F×q

φ (r(a± bt2))) = qη(∓ab) + 1, then

Σ1 =
q − 1

2

(
qη(−j1j2µ

k) + 1
) (
qη(j2j3µ

l) + 1
)
.

For Σ2 a similar computation must be done.

Σ2 =
∑

r1,t,r4,r5∈F×q
−r4r5∈µl(F×q )2

φ(j1r1 − r−1
1 r−1

4 r5t
2µkj3) =

q − 1

2

∑
r1,t,s∈F×q

φ(j1r1 + r−1
1 s2µlt2µkj3) =

(q − 1)2

2

∑
r1,t∈F×q

φ
(
r1(j1 + µlt2µkj3)

)
=

(q − 1)2

2

(
qη(−j1j3µ

k+l) + 1
)

Gathering the pieces give the result.

Proof of 17. Perform the change of variable r1 = r2
2r3µ

kt4, then∑
r1,r2,r3∈F×q

r1r2
2r

3
3∈µk(F×q )4

4φ(j1r1 + j2r2 + j3r3) =
∑

t,r2,r3∈F×q

φ(j1r
2
2r3µ

kt4 + j2r2 + j3r3) =

∑
t,r2∈F×q

φ(j2r2)
∑
r3∈F×q

φ
(
r3(j1r

2
2µ

kt4 + j3)
)

= (q−1)
∑
Dk

φ(j2r2)−
∑
Dk

φ(j2r2) = q−1+q
∑
Dk

φ(j2r2)

where Dk =
{

(r2, t) ∈ F×q × F×q | j1r
2
2µ

kt4 + j3 = 0
}

.
If j1j3µ

k is not a square then Dk = ∅, and the expression becomes

q − 1 + q

(
1 + η(j1j3µ

k)
)

2

∑
Dk

φ(j2r2).

On the other hand, if j1j3µ
k is a square then for each t ∈ F×q there are exactly two r2 ∈ F×q

that solve j1r
2
2µ

kt4 + j3 = 0, they are written formally as ±
√
−j−1

1 j3µ−kt
−2. Denote α :=√

−j−1
1 j3µ−k. The expression becomes

q− 1 + q

(
1 + η(j1j3µ

k)
)

2

∑
t∈F×q

(
φ(j2αt

2) + φ(−j2αt
2)
)

= q− 1 + q
(
1 + η(j1j3µ

k)
)∑
t∈F×q

φ(j2αt
2) =

q − 1 + q
(
1 + η(j1j3µ

k)
)

(±η(j2α)
√
q − 1)

by point 3, 4 and 5 of the lemma.
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Proof of 20. Notice that for t = −2, t(t+ 4) = −4 ∈ µk(F×q )2 if −µk ∈ (F×q )2 .
Then∑
t∈F×q \{−2,−4}
t(t+4)∈µk(F×q )2

1 =
∑

t∈F×q \{−4}
t(t+4)∈µk(F×q )2

1− 1 + η(−µk)
2

=
∑
t∈F×q

t(t+4)∈µk(F×q )2

1− 1 + η(−µk)
2

t′=t+2
=

∣∣{(t′, s) ∈ F×q × F×q | t′2 − µks2 = 4
}∣∣

2
− 1 + η(−µk)

2
=∣∣{(t, s) ∈ Fq × Fq | t2 − µks2 = 4

}∣∣− 2

2
− 1 + η(−µk)

2
=
q − η(µk)− 2

2
− 1 + η(−µk)

2
.

The result follows.

Remark 5.60. (a) To compute point 17 we used point 4, which is the reason for the ± sign
appearing in the result. Fixing this sign requires to know the degree s of the field extension Fq
over Fp (q = ps). By [LiNi97, Theorem 5.15] we have, for q ≡ 1 (mod 4)

G(η) = (−1)s−1√q.

Clearly, this sign could be a problem, since we would like to find “homogeneous” formulas in q in
a generic character table. However, we can absorb it in α by eventually redefining j3 7→ j3µ

±2,
for example.

(b) Moreover, in the special cases where the sums are over fields of the form Fq2 , the sign
of the Gauss sum can be fixed more homogeneously. By [LiNi97, Theorem 5.16], we have

G(η) =
∑
x∈Fq2

η(x)χ2(x) = −(−1)
q−1

2 q

where now η is the Legendre symbol of Fq2 and χ2 is as in Notation 5.12.

75



6 Outline of the computation

In this section, we denote by G a simply connected semisimple linear algebraic group defined
over Fq (q is a prime power), by F a Steinberg map of G with respect to its Fq-rational structure.
We are ultimately interested in the case where G is either SL4 or Spin8, q is odd and F is a
Frobenius map. Then, we write G = GF for either SL4(q) or Spin+

8 (q). We write G∗ for the
dual group and F ∗ for the corresponding Frobenius map, then we also simply write G∗ for
G∗F

∗
. Moreover, we fix a regular embedding i : G ↪→ G̃ with corresponding Steinberg map F̃

of G̃, where for SL4 we have G̃ = GL4 and for Spin8 we use the same G̃ that is constructed in
[GePf92].

Additionally, we denote by Φ the root system with base ∆ and by W the Weyl group of G
relative to a chosen maximally split torus T0 of G. We also choose a reference F -stable Borel
subgroup B0, containing T0, and we denote its unipotent radical by U0. Analogously, in the
finite group, we write T0 = TF

0 , B0 = BF
0 and U0 = UF

0 .

6.1 The starting point: conjugacy classes and almost characters of
finite groups of Lie type

In this work, we start the computations with partial generic character tables computed by
Frank Lübeck (with computer programs of his creation). These tables contain a finite number
of rows labelled by the “character types” of G and a finite number of columns labelled by the
“class types” of G. In both cases “finite number” is to be understood as “independent of q”.

The way Lübeck computes these partial tables is similar to what he did for his thesis [Lue93]
on the groups CSp6(q) (q odd) and Sp6(q) (q even). We give here a quick summary of his thesis
and we refer to it for the details.

As seen in Section 2, to write a character table we need a list of representatives of conjugacy
classes. By the Jordan decomposition of elements, we can write any element g ∈ G as g = su =
us, for s semisimple and u ∈ CG(s)◦ unipotent. Then, to write a list of conjugacy classes of G
one can start by computing the semisimple classes, choose a representative s ∈ G of each, then
look for all the possible unipotent classes of CG(s) and choose a representative u ∈ G for each.
Notice that for a connected reductive group there are only finitely many unipotent classes (see
[DiMi20, Theorem 12.1.11]).

It is clear that the number of conjugacy classes and of irreducible characters of a finite group
of Lie type depends on q. To be able to write a generic character table that does not change
size with q we unite the semisimple conjugacy classes in what are called types.

Definition 6.1. Two semisimple elements s1, s2 ∈ G are said to belong to the same semisimple
class type if their centralizers, in G, CG(s1) and CG(s2) are G-conjugate.

Clearly the semisimple class types are unions of semisimple classes. But, although the
number of semisimple classes does depend on q, the number of semisimple class types does not,
by Remark 1.22.

Lübeck [Lue93] computes the semisimple classes/class types in Chapter 4.1, the unipotent
classes in Chapter 4.2 and then discusses the mixed classes in Chapter 4.3.

In practice, to find representatives for the semisimple classes Lübeck takes the following
steps. First, notice that every semisimple class of G has a representative in T0, as discussed
in Section 1.1. Let us say that we look for a representative s ∈ G contained in an F -stable
torus T which is obtained from T0 by twisting with w ∈ W , where ẇ = g−1F (g) and gT0 = T.
Then, analogously to the case of Levi subgroups (see discussion at the end of Section 1.5) the
centralizer CG(s) is conjugate, by g, to (CG(sg))Fw

−1
. Assume that CG(sg) has root system
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Ψ, then we can find “representatives”7 for the semisimple classes of G in T0 by imposing that
t ∈ T0 satisfies wF (t) = t, α(t) = 1 for all α ∈ Ψ and α(t) 6= 1 for all α ∈ Φ \ Ψ. Finally,
one must be careful that several elements found this way might belong to the same G-class.
Therefore, to get all the semisimple classes of G one needs to determine all possible closed root
subsystem of Φ and all the possible twistings.

We discuss the unipotent conjugacy classes in detail in the next section, as they play a main
role in the computations of Parts II and III.

Next, we want to find the irreducible characters of G. For this purpose, Lusztig introduced
another basis of CF(G), for a group of Lie type G, consisting of so-called “almost characters”.
These almost characters are explicit linear combinations of irreducible characters. The change
of basis between Irr(G) and the almost characters is given in terms of so-called “non-abelian
Fourier matrices”. The precise determination of the values of the almost characters is not an
easy task. Conjecturally, the set of almost characters is equal, up to scalars, to yet another
basis consisting of “characteristic functions of F -stable character sheaves”, the definition of
which greatly exceeds the scope of the present work (that consists in computing the complete
character table with methods as elementary as possible). See [Ge18, Chapter 7] for a nice
survey of these facts. Some of the almost characters coincide with some linear combinations of
the Deligne–Lusztig characters, they are called uniform almost characters.

It turns out that for GLn(q) the uniform almost characters are, up to signs, all the irreducible
characters.

Theorem 6.2 ([DiMi20, Theorem 11.7.3]). The irreducible characters of GF = GLn(q) are
(up to sign) the class functions

Rχ(s) :=
1

|WI |
∑
w∈WI

χ̃(ww0)RG
Tww0

(s)

where (s) runs over the F -stable semisimple conjugacy classes of G; then CG(s) is a Levi
subgroup8 parametrized by a pair (I, w0) and with Weyl group WI . The character χ runs over
w0-stable irreducible characters of WI and χ̃ stands for a real extension of χ to WI · 〈w0〉.

Remark 6.3. For SLn(q) the uniform almost characters can be considered as being the restric-
tion from GLn(q) of the functions Rχ(s) from Theorem 6.2, thanks to Proposition 3.13.

The values of the partial character table of SL4(q), received from Lübeck, are computed this
way. Clearly, the almost characters of SL4(q) obtained this way are not irreducible, although
they are true characters (up to sign). It follows, by Theorem 6.2 and Theorem 3.12 that every
irreducible character of SL4(q) is a constituent of one of these uniform almost characters.

For the computation of the uniform almost characters for other groups, in the connected
centre case, we refer the reader to [GeMa20, Remark 2.4.17]9. In general, the definition depends
on the choice of the extension of the characters of a certain Weyl group. Lübeck uses the
“preferred extension” as defined in [Lu86a, Chapter 17.2] for the uniform almost characters of
Spin+

8 (q).

Remark 6.4. Thanks to [GeMa20, Example 2.4.18], also in type D4, the uniform almost char-

acters of G̃F̃ are irreducible, up to sign (apart from the unipotent ones, but these have already
been taken care of in [GePf92]). Then, thanks to Proposition 3.13 we can see the uniform almost
characters, of Spin+

8 (q), provided by Lübeck as the restriction of these irreducible characters of

7The representatives so found are in G but might not be in G.
8In GLn all centralizers are connected, moreover GLn is its own dual group.
9Notice that there the uniform almost characters are written not with respect to pairs (T∗, s), as in Theo-

rem 6.2, but to another formalism not introduced here.
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G̃F̃ . Like for SL4(q), (previous Remark) these characters are, up to sign, true characters, and
every non-unipotent irreducible character of Spin+

8 (q) is a constituent of one of them.

In any case, if we want the uniform almost characters we have to determine the Deligne–
Lusztig characters.

To compute the values of Deligne–Lusztig characters at an element with Jordan decomposi-
tion su, one needs two things. One the one hand, we want all the pairs (T, θ) up to geometric
conjugacy, where T is an F -stable maximal torus of G and θ ∈ Irr(TF ). On the other hand, we
need to know the (ordinary) Green functions of CG(s)◦ (by the character formula for Deligne–
Lusztig characters, see for example [GeMa20, Theorem 2.2.16]).

Lübeck [Lue93] computes the Green functions in Chapter 5 and then uses them to compute
the Deligne–Lusztig characters in Chapter 6.

By the discussion at the end of Section 1.5, we have that the F -stable maximal tori of G are
parametrized (up to G-conjugacy) by the F -classes of W . Lübeck [Lue93] explains how he gets
the list of F -stable maximal tori in Chapter 3. Then, he forms the pairs (T, s) in Chapter 4.1,
in particular see “paragraph” (3) and Proposition 4.3(f). Analogously for G∗, he computes the
pairs (T∗, s) and associates them to the pairs (T, θ) in Chapter 6.

Remark 6.5. We already mentioned before that the almost characters form a basis of the
space of class functions of finite groups of Lie type. Therefore, in theory, the problem of finding
the character table of a finite group of Lie type is solved by computing all the almost characters
and then applying the change of basis to Irr(G). However, the computation of the non-uniform
almost characters is (at the moment of the writing) still an open problem.

One possibility for completing the character table is to perform Harish–Chandra/Lusztig
induction to create class functions that are orthogonal to the space of uniform functions. Un-
fortunately, the character formulas (Proposition 3.30) on an arbitrary element are not easy to
use explicitly. In some cases it will be possible to do so for SL4(q).

It seems that the best way to proceed, instead of character by character, is to work class by
class. We will explain this in the next sections.

Notice that since Irr(G) is partitioned into Lusztig series, by Theorem 3.12, we can group
the irreducible characters of G into types, exactly as for the semisimple classes.

Definition 6.6. Two Lusztig series (G, s1) and (G, s2) are said to belong to the same type
when the elements s1 and s2 belong to the same semisimple class type of G∗.

In general we call class types and character types, respectively, the columns and rows of the
generic character table. Notice that generic character tables need not be square.

6.2 Construction of the groups, the special case of simply connected
groups

First of all, the next result shows how for simply connected groups an important property of
semisimple groups is inherited by the finite group of Lie type.

Proposition 6.7 ([MaTe11, Theorem 24.15]). Let G be a simply connected semisimple linear
algebraic group with Steinberg endomorphism F : G → G. Then GF = 〈GF

uni〉, that is, GF is
generated by its unipotent elements.

In particular, in our case the groups are F -split. This means that we get the Steinberg
presentation (see Notation 1.47 and Remark 1.48) for G just by restricting the root maps of G
to Fq.
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The first step in our computations will be to find a Steinberg presentation of G. By the above
we just need to choose a faithful representation of G in order to write explicitly the root maps
uα : Fq → Uα, for all α ∈ Φ. For SL4(q) we will use the natural matrix representation, while for
Spin+

8 (q) we will build one following [Ge17]. Actually, it was already known by Steinberg how
to write Steinberg presentations in general, up to choosing some signs. In [Ge17] these signs
are fixed naturally.

We will need to work with Levi subgroups and centralizers of semisimple elements of G.
For a semisimple group of simply connected type the centralizers of semisimple elements

are connected reductive groups:

Proposition 6.8 ([MaTe11, Theorem 14.16]). Let G be connected reductive such that the
derived group [G,G] is simply connected, and s ∈ G a semisimple element. Then:

(a) CG(s) is connected.

(b) If the order of s in G/Z(G) is finite, but not divisible by any torsion primes of G then
[CG(s), CG(s)] is again simply connected.

In particular any Levi subgroup L of G is the centralizer of a certain semisimple element in
the connected component of its centre, to be precise L = CG(s) if s ∈ Z(L)◦ is semisimple of
order prime to all torsion primes (for the definition of torsion primes see [MaTe11, Definition
14.14], there are none for type A3 and 2 is the only torsion prime for D4).

Proposition 6.9 ([MaTe11, Proposition 12.14]). Let G be semisimple of simply connected type.
Then, for any Levi subgroup L of G, the derived subgroup [L,L] is again of simply connected
type.

Together with Corollary 1.19, which states that L = [L,L]Z(L)◦ this gives great informa-
tions about the structure and conjugacy classes of L. In our case all proper Levi subgroups are
of type An1 × · · · ×Ank for some n1, ..., nk, then [L,L] ∼= SLn1 × · · · × SLnk and we just need to
worry about the centre part, which is easily computed by Theorem 1.18 (b).

In the cases that we will consider, it is possible to identify an F -stable torus T of L such
that

L ∼= (SLn1 × · · · × SLnk) o T.

This also makes it easier to compute the fixed points LF . It is clear that if L is F -stable
then its derived subgroup is too. It follows that

LF = [L,L]F o TF .

For example when L is a split Levi subgroup then

LF ∼= (SLn1(q)× · · · × SLnk(q)) o TF

otherwise some finite special unitary groups can appear in the formula. The point is that we
just need to compute the action of TF on the well known special linear/unitary groups to get
the structure and conjugacy classes of LF .

The above together with the discussion at the end of Section 1.5 (on the parametrization
of F -stable Levi subgroups of G) gives us the structure and the conjugacy classes of all the
Levi subgroups of GF that we need. Since the final goal is to find character values on splitting
classes, we will use the Levi subgroups/centralizers that contain representatives of these splitting
classes. These are the ones with disconnected centre.
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6.3 Fusion of unipotent classes

Although we receive the list of conjugacy classes of G (with centralizers) already computed by
Lübeck it is important for the scope of the present work to know the precise fusion of unipotent
classes.

We explain here in detail how this is done. The method is actually quite simple and
straightforward, and is easily applicable to any finite group of Lie type (for which the Chevalley
relations are fixed).

First, recall that all the unipotent classes have a representative in U0. Thus, the plan is to
conjugate the unipotent elements in U0 to one another until every element of U0 has been put
in some unipotent class of G. The number of unipotent classes of a finite group of Lie type is
in theory known a priori (see for example [LiSe12]).

By the Bruhat decomposition (Theorem 1.36), we can write any element g ∈ G uniquely as

g = utwuw

for u ∈ U0, t ∈ T0, w ∈ W and uw ∈ Uw. Therefore, we can proceed in three steps. First, we
compute the conjugacy classes of U0. Then, we fuse them under conjugation with elements of
T0 (recall that U0 is normalized by T0). Finally, we use W to conjugate them further. Notice
that thanks to the Chevalley relations we can do all this in Steinberg presentation, without
having to explicitly write down matrices.

(1) Conjugacy classes of U0: Notice that, by the commutation relations (Proposition 1.17),
for a suitable numbering of the positive roots we have

UkUk+1 · · ·UN . Uk+1 · · ·UN

for all k = 1, ..., N − 1, where N = |Φ+| is the number of positive roots.

It follows that we can compute the conjugacy classes of U0 with a “going down” procedure.

We compute the conjugacy classes of the subgroups Uk · · ·UN in a recursive way for k going
from N to 1, with representatives uk(rk) · · ·uN(rN) where rk ∈ F×q and rk+1, ..., rN ∈ Fq.
Then, we check that we have all the conjugacy classes in the subgroup by counting the
elements taken into account and comparing it to |Uk · · ·UN | = qN−k+1.

In practice, this means the following. Denote by u0 = u1(t1) · · ·uN(tN) a generic element
of U0, where t1, ..., tN are variables in Fq. We start with the elements of UN , i.e. uN(rN)
for rN ∈ Fq, and we conjugate them with u0. Clearly, here there is nothing to do, UN is
in the centre of U0. Thus, we have q distinct conjugacy classes of U0. Now, assume that
we have all the classes in Uk+1 · · ·UN (accounting for qN−k elements of U0). Then, we
consider Uk · · ·UN , and we conjugate the elements uk(rk) with u0, where rk ∈ F×q . The
resulting element is of the form

uk(rk)uk+1(fk+1(rk; t1, ..., tN)) · · ·uN(fN(rk; t1, ..., tN)),

for certain relations fk+1,...,fN between the variables. It is now easy to compute the
centralizer order of uk(rk) which is given by

|CU0 (uk(rk))| = |{t1, ..., tN ∈ Fq | fk+1(rk; t1, ..., tN) = 0, ..., fN(rk; t1, ..., tN) = 0}| .

We check if qN

|CU0
(uk(rk))|(q− 1) + qN−k is equal to |Uk · · ·UN | = qN−k+1. In case of positive

answer we can move to the next subgroup. Else, there are other classes to consider in this
subgroup. By inspection of uk(rk)

u0 , we identify elements of the subgroup that are not
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in this orbit. Let us say that uk(rk)uj(rj) are such elements, for j between k and N and
rk, rj ∈ F×q . Then, we proceed again by conjugating with u0, computing the centralizer
and comparing the number of elements taken into account and the order of the subgroup

qN

|CU0 (uk(rk))|
(q − 1) +

qN

|CU0 (uk(rk)uj(rj))|
(q − 1)2 + qN−k

?
= qN−k+1.

By continuing with this algorithm we obtain a list of representatives of the conjugacy
classes of U0, their centralizers in U0 and their orbits in U0. These informations are
needed for computing induction of characters from U0 to G and for point (3) below.

(2) Unipotent classes in B0: Thanks to the Chevalley relations, we can conjugate the
representatives found above by elements of T0 and choose new representatives for the
unipotent classes of B0.

In practice, we write h =
∏

α∈∆ hα(tα) for a generic element of T0, with tα ∈ F×q for
all α ∈ ∆. Then, we conjugate each element of the list from point (1) with h, and
choose an element from this orbit as representative. For example, like above, assume that
uk(rk)uj(rj) denote some representatives. Then we have

h(uk(rk)uj(rj)) = uk

(
rk
∏
α∈∆

t〈αk,α
∨〉

α

)
uj

(
rj
∏
α∈∆

t〈αj ,α
∨〉

α

)
.

In our cases (SL4(q) and Spin+
8 (q)) we can always choose h in a way to put to 1 at least

one of the arguments and to a chosen non-square of Fq for the other arguments.

Notice that conjugation with T0 could also be done after conjugation by W (done in point
(3) below). However, performing it at this point makes the list of unipotent elements and
the number of variables in the system smaller and somehow easier to handle.

(3) Unipotent classes of G: Again, thanks to the Chevalley relations we can act on the
list of unipotent classes with W . We write every element w ∈ W as a product of the
simple reflections. In CHEVIE ([MiChv]) this is automatically done with the commands
CoxeterGroup and CoxeterWords. Then, we conjugate the representatives computed
above in point (2) with the elements of W . This results in unordered products of elements
uk(rk). We reorder them with the commutation relations. Now, with help from the list
of orbits computed in point (1) above, we identify which classes of U0 belong to the same
class of G.

For example, we write w ∈ W in terms of the simple reflections as w = si1 · · · sil and we
conjugate the same example element from above (by abuse of notation)

w(uk(rk)uj(rj)) = uw(k)(±rk)uw(j)(±rj).

If w(k) > w(j) we reorder the expression with the commutation relations to obtain

uw(j)(±rj)uw(k)(±rk)
[
uw(k)(±rk), uw(j)(±rj)

]
.

Finally we check to which elements this expression is U0-conjugate.

The same procedure will be applied to find the unipotent classes of centralizers of semisimple
elements. For the non split cases the computation is similar with the occasional replacing of q
with q2 (for example in subgroups of D4(q) of type 2A3(q)).
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6.4 2-parameter Green functions

We want to perform Harish–Chandra/Lusztig induction/restriction from/to a Levi subgroups
L with disconnected centre. To this end, it is essential to compute the 2-parameter Green
functions of L. By knowing the fusion of the unipotent classes, we can directly determine QG

L

in the split Levi case, see Section 4.3. Then, we follow the discussion of Section 4.2 to get the
rest of the 2-parameter Green functions for the twisted Levi subgroups.

6.5 Gel’fand–Graev, regular and semisimple characters

Once we know the conjugacy classes of G and of all the Levi subgroups with disconnected centre,
especially the unipotent classes with their fusion, we can compute the (modified) Gel’fand–
Graev characters. In practice, their determination is just a direct evaluation of the induction
formula (Proposition 2.18). Explicitly, we have to evaluate some partial Gauss sums. All the
needed cases are given in Lemma 5.58.

By definition, the modified Gel’fand–Graev characters distinguish the classes with repre-
sentatives zu, where z ∈ Z(LF ) and u is unipotent in LF , for any F -stable Levi subgroup L.
Thus, they are a natural candidate to find the missing values in the partial character table of
uniform almost characters. Moreover, they have nice properties that make them easy to work
with. On one side, they have constituents in every Lusztig series (the regular characters), by
Corollary 5.24. On the other side, they behave well with respect to Harish–Chandra/Lusztig re-
striction, see Proposition 5.33. Furthermore, their constituents, the regular characters, behave
well with respect to Harish–Chandra/Lusztig restriction too, by Theorem 5.35.

Remark 6.10. These properties give us systems of equations for the values of characters.
Consider a certain regular character χG

z,(s) in the Lusztig series E (G, s) for a certain semisimple

element s ∈ G∗ and z ∈ H1(F,Z(G)). By definition, 〈ΓG
z , χ

G
(s),z〉 = 1. Then for every F -stable

Levi subgroup L of G we get the equation

〈ΓL
hL(z)zL

, ∗RG
L χ

G
(s),z〉 = |{(t) ⊂ L∗ | t semisimple such that (t) ⊂ (s)}|

by Theorem 5.35 and Remark 5.34 (if we choose resGL U1 ∈ Reguni(L
F ) as being the regular

unipotent class parametrized by 1 ∈ H1(F,Z(L))).
The regular characters χG

(s),z can be identified directly thanks to the scalar product be-
tween the uniform almost characters and the Gel’fand–Graev characters. By Theorem 1.65 and
Theorem 5.17, these are both multiplicity free.

By Remark 5.42, we can determine which characters are semisimple. Then, we also get
similar equations for these characters. With the difference that the scalar product between
semisimple and Gel’fand–Graev characters is zero. Notice, however, that for non-regular char-
acters it is not always true that their Lusztig restriction does not contain regular constituents.
We can check directly on the uniform almost characters if they do. In practice, we take scalar
products between their Lusztig restriction and the Gel’fand–Graev characters of the Levi sub-
groups.

Once these equations are known, we can get similar ones for the modified Gel’fand–Graev
characters, since they partition the ordinary ones. The interest being to include all the character
values for elements of the form zu ∈ Z(L)UL in the system of equations and to get as many
equations as there are elements of that form, where UL denotes the maximal unipotent subgroup
of L = LF .

We want to point out once again that we consider also the modified Gel’fand–Graev charac-
ters of the Levi subgroups with disconnected centre since they distinguish the splitting classes of
GF that they intersect. By taking scalar products as in the remark, we manage to get systems
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of equations involving the character values on every splitting class. The question is whether
there are enough equations to solve uniquely the system. We will see in Section 18 that there
is only one problematic case. That is, the values on some elements with decomposition su such
that CG(s) is not a Levi subgroup cannot be uniquely fixed.

As explained above, we want to perform Harish–Chandra/Lusztig restriction thanks to the
character formula of Proposition 3.30 (b), to some Levi subgroups LF of G. Since we only want
to take scalar products with modified Gel’fand–Graev characters, we only need to consider the
formula on elements of LF with Jordan decomposition zv, with z ∈ Z(LF ) and v unipotent. In
this case the formula becomes

(∗RG
L ψ)(zv) =

|LF |
|CG(z)F |

∑
u∈CG(z)Funi

Q
CG(z)
L (u, v−1)ψ(zu).

Thus, one just needs to find out what subgroup CG(z)F is, with Theorem 1.20 (a), and the
computation can be done explicitly.

6.6 Decomposition of almost characters

As discussed in Section 6.1, to decompose the almost characters, one should compute the non-
uniform almost characters via character sheaves, and perform the change of basis to Irr(G).
However, one goal of this work is to try to use methods as elementary as possible. And the
computation of character sheaves is, at the moment of the writing, still a theoretical challenge.

Another possibility is to create class functions which are orthogonal to the space of uniform
functions, or even irreducible characters, by Harish–Chandra/Lusztig inducing some cleverly
chosen class functions of some Levi subgroup. Although in theory this might give the means
to complete the character table, the character formula in Proposition 3.30 (a) makes it difficult
to actually perform these computations, in general. In some cases we will be able to use this
procedure for SL4(q).

There is a third possibility, which is the one that we are going to implement by default.
Instead of trying to decompose one character at a time, we will work one class at a time, and
compute the character values for each splitting class. The two important theoretical results
used to find these values rely on Gel’fand–Graev theory and on regular embeddings.

On the one hand, thanks to the explicit computation of the 2-parameter Green functions we
can apply Theorem 5.35 and Theorem 5.41 to all Levi subgroups that we will need to consider.
Thus, we get relations

∗RG
L χ

G
(s),z = εGεL

∑
(t)

χL
(t),hL(z)zL

for the regular characters, and

∗RG
L %

G
(s),z = εCG∗ (s)

∑
(t)

εCL∗ (t)%
L
(t),hL(z)zL

for the semisimple characters, where the sum is over the semisimple classes (t) of L∗ that fuse
to (s) in G∗.

On the other hand, by Remark 6.3 and Remark 6.4 the existence of a regular embedding
G ↪→ G̃ gives the possibility to see the uniform almost characters of GF as restrictions of the
uniform almost characters of G̃F̃ . In particular, Clifford theory can be applied, see Remark 3.15.

This is used to write down the general values of the irreducible constituents of every uniform
almost characters. Explicitly, by Clifford theory, the irreducible constituents of the restriction
χ|GF form a G̃F̃ -orbit for all χ ∈ Irr(G̃F̃ ). For example, assume that χ splits into two irreducible
characters of GF . Write the restriction χ|GF = θ1 + θ2, with the constituents θ1, θ2 ∈ Irr(GF )
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being G̃F̃ -conjugate. This implies that for classes gG̃
F̃

, g ∈ GF , that do not split as classes of

GF , θ1(g) = θ2(g) = χ(g)/2. Otherwise, if the class gG̃
F̃

splits into the classes gG
F

1 and gG
F

2

then θ1(g1) = θ2(g2) and θ1(g2) = θ2(g1). With the information that χ(gi) = θ1(gi) + θ2(gi)
(i = 1, 2), we can write this portion of the character table in the following way

g1 g2

θ1 f χ(g)− f
θ2 χ(g)− f f

with f an unknown algebraic integer. This discussion can be generalized, for classes/characters

that split into more than 2, easily. To explicitly compute the action of G̃F̃ on the splitting
classes of GF we use Remark 1.64. For each z ∈ H1(F,Z(G)) we choose an element gz ∈ G

such that g−1
z F (gz) ∈ Z(G) represents z. Then, up to GF -conjugacy the action of G̃F̃ is given

by conjugating with those elements gz. We introduce these unknowns f in all the characters
that decompose, at each splitting class.

Then, thanks to the system of equations discussed in Remark 6.10, most of the unknowns
f can be determined.

In practice, we take the following steps:

(a) We write every irreducible character of GF in terms of the uniform almost characters. To
do this, we introduce unknowns for every splitting character at every splitting class.

(b) We identify which of these irreducible characters are regular:

For example, we consider a uniform almost character (known from Lübeck’s table) which
is the sum of two irreducible constituents χ1, χ2 ∈ E (GF , s) (s ∈ G∗F

∗
is also known from

Lübeck’s table). Then:

� By taking scalar products 〈Γz, χ1 +χ2〉 (which must be 0 or 1) we determine if χ1, χ2

are regular characters, for z ∈ H1(F,Z(G)).

� If they are, we can choose 〈Γ1, χ1〉 = 1. In other words, we have χ1 = χ(s),1.

� Then, we fix the unknowns of χ1, on some unipotent elements, in such a way that
the scalar product above is correct.

� This also fixes the corresponding unknowns of χ2. Moreover, it becomes possible to
determine z ∈ H1(F,Z(G)) for which χ2 = χ(s),z

(c) Next, we can determine which of these regular characters are also semisimple, by checking
if CG∗(s)

◦ is a torus (this is known from Lübeck’s table).

(d) Due to Remark 5.42 it is also possible to identify the semisimple characters, by inspecting
character degrees.

(e) At this point, we can already reduce the number of unknowns in the table by imposing
gz′χ(s),z = χ(s),zz′ and gz′%(s),z = %(s),zz′ (since gz′Γz = Γzz′), where, by Remark 1.64,
conjugation by gz′ ∈ G for all z′ ∈ H1(F,Z(G)) is equivalent to conjugating with elements

of G̃F̃ .

(f) Regularity and semisimplicity both give us systems of equations. These involve some
of the unknowns and the values of the Gel’fand–Graev characters of Levi subgroups
(Theorems 5.35 and 5.41, see also Remark 6.10). We can use these equations to fix all
the values of regular and semisimple characters on the unipotent classes of GF .
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(g) For every semisimple class (s) of G∗F
∗
, we determine ϕs ∈ Irr(Z(GF )) such that

CE (GF , s) ⊆ CF(GF )ϕs ,

according to Proposition 5.54. To do this, we compare the values on central elements of
any uniform almost character in the span of E (GF , s).

(h) Then, for s ∈ G∗F
∗

semisimple we directly obtain the character values for all z ∈ Z(GF )
and u ∈ GF

uni:
χ(s),1(zu) = tzχ(s),1(u) = ϕs(z)χ(s),1(u).

The same applies for the semisimple character %(s),1.

(i) Let z ∈ GF be a semisimple element such that L = CG(z) is a Levi subgroup. Then, by
Remark 4.3 for any χ ∈ Irr(GF ), we have

(∗RG
L χ
)
(zu) = χ(zu).

(j) When χ, from the previous point, is regular, we can determine the decomposition of ∗RG
L χ

in
⊕

ϕ∈Irr(Z(LF )) CF(L)ϕ. In practice, we do it for the uniform almost character, say R,
of which χ is a constituent and then apply Lemma 5.57. To do this, we use the fact that
∗RG

LR has constituents in CF(LF )ϕ, for some ϕ ∈ Irr(Z(LF )), if 〈∗RG
LR,Γ

L
ϕ,z〉 6= 0 for

some z ∈ H1(F,Z(L)).

When χ is semisimple, we use the information for regular characters and the fact that
DG and ∗RG

L commute to get the decomposition of ∗RG
L χ in

⊕
ϕ∈Irr(Z(LF )) CF(L)ϕ.

(k) Thanks to points (f), (i) and (j), we can relate (and fix all) the values χ(zu) to the values
(∗RG

L χ)(u), for z such that CG(z) = L is a Levi subgroup and u ∈ L unipotent, when χ is
regular or semisimple.

(l) At this point, we are left with unknown character values only on elements zu, with z
semisimple such that C = CG(z) is not a Levi subgroup. By the character formula at
the end of Section 6.5, these unknowns appear in ∗RG

L χ for every F -stable Levi subgroup
contained in C. Then, thanks to point (j) we can relate these unknowns to the values of(∗RG

L χ
)
(u) for all u ∈ LF unipotent.

Remark 6.11. In SL4(q) every irreducible character that we need to decompose is either
regular or semisimple. Unfortunately, for Spin+

8 (q) this is not the case. Notice that the Lusztig
restriction of such characters to any F -stable Levi subgroup might have regular/semisimple
characters as constituents. So it is not clear what their scalar product with the Gel’fand–
Graev characters (of the Levi subgroup) is. However, notice that by the discussion in [Bo00,
beween Corollary 1.8.6 and (1.8.7)] all the characters in the same Lusztig series share with the
regular/semisimple characters an important property. Namely, if conjugation with gz ∈ G, for
z ∈ H1(F,Z(G)), fixes all the regular/semisimple characters of a Lusztig series, then it does
so for all the elements of that series. In practice, the method to decompose these characters is
similar to the one for regular/semisimple characters, and is better understood with an example.
We treat one in Section 18.3.

For the computations in Part II on SL4(q), we use a somehow different but equivalent
approach. We want to highlight how the modified Gel’fand–Graev characters really do contain
the missing information in the table of uniform almost characters. Then, we use the most basic
remarks about the modified Gel’fand–Graev characters to complete the generic character table,
and nothing else.

On the contrary, for Spin+
8 (q) we show how to work with the formalism of regular/semisimple

characters to complete the character table.
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Part II

The case of SL4(q) for q ≡ 1 (mod 4)
This part of the work is devoted to completing the computation of the generic character table
of SL4(q) where q is a power of a prime such that q ≡ 1 (mod 4). The starting point is the
partial table consisting of the uniform almost characters of SL4(q), computed automatically by
computer programs of Frank Lübeck. These are integer linear combinations of the Deligne–
Lusztig characters of SL4(q), see Section 6.1.

This computation is important as an example of finite groups of Lie type built from a
simple algebraic group with disconnected centre. It is small enough to be reasonable to try and
compute the full table but big enough such that the theory of Deligne–Lusztig fails to yield the
full table without auxiliary methods.

This case is also a preparation to the computation of more complicated tables, for example
D4(q) (simply connected case, for q odd). Therefore, one of the ulterior goals is to try to use
methods which are easily adaptable to other groups. For instance, no knowledge of generic
character tables of subgroups of SL4(q) is assumed.

The computations made to complete the character table include: the determination of
modified Gel’fand–Graev characters of SL4(q) and of two Levi subgroups L1 and L2, with
disconnected centre, respectively of type A1(q)2 and A1(q2), Harish–Chandra/Lusztig induc-
tion/restriction from/to L1 and L2, and Clifford theory.

The main information needed for most of these computations is the fusion of the unipotent
classes. This means computing the conjugacy classes of a maximal unipotent subgroup of
SL4(q) and identify their SL4(q)-classes.

7 The simply connected group of type A3 and the finite

groups SL4(q)

For the rest of this part of the work we fix the following notation.

Notation 7.1. We denote by G the simply connected algebraic group of type A3 defined over
Fq (which is SL4(F̄q)), where q is a prime power such that q ≡ 1 (mod 4). Then, we denote
by F the standard Frobenius morphism associated with the rational structure of G, and by
G = SL4(q) the finite group of Lie type GF . This is the special linear group of 4× 4 matrices
with entries in Fq and determinant one.

We will denote by B0 the Borel subgroup of G consisting of upper-triangular matrices
and by U0 = Ru(B0) (the unipotent radical of B0) the maximal unipotent subgroup of G
consisting of upper-triangular matrices with ones on the diagonal. Moreover, we write T0 for
the maximally split torus of G consisting of diagonal matrices, such that B0 = T0 n U0, and
its normalizer is denoted by N0 = NG(T0).

The Weyl group of G is W = N0/T0. The root system associated to G and relative to T0

is of type A3 and is denoted by ΦA3 . A base of positive roots of ΦA3 is denoted ∆A3 and the
set of positive roots relative to this base is denoted by Φ+

A3
. We denote by I the index set of

∆A3 , and for all i ∈ I we denote the root subgroups by Ui := Uαi .
Analogously for the subgroups of the finite group G, we will write B0 = BF

0 , U0 = UF
0 ,

T0 = TF
0 , N0 = NG(T0) and Ui = Uαi = UF

i .
When working with the finite fields, we will need to choose generators of F×q and F×q2 . From

now on µ ∈ F×q is fixed such that 〈µ〉 = F×q , and ρ ∈ F×q2 such that 〈ρ〉 = F×q2 and ρq+1 = µ.
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Lastly, when possible, the polynomial expressions in q will be given as product of the
cyclotomic polynomials. In what follows, they will be denoted by Φ1 = q − 1, Φ2 = q + 1,
Φ3 = q2 + q+ 1 and Φ4 = q2 + 1. Moreover, we denote the k-th power of the n-th root of unity
in C by ζkn := e2πi k

n .

It is easy to work with SL4 thanks to its matrix representation. However, to avoid confusions
and to make the results easier to read, we will write the elements of G and G using the Steinberg
presentation.

7.1 Roots, Chevalley generators and Chevalley relations

The root system ΦA3 of G with respect to the maximal torus T0 is of type A3. It has a base
of simple roots ∆A3 = {α1, α2, α3} (with index set I = {1, 2, 3}) with Cartan matrix

〈
αi, α

∨
j

〉
i,j∈I =

 2 −1 0
−1 2 −1
0 −1 2

 .

A3
α1 α2 α3

Figure 1: Dynkin diagram of type A3.

The positive roots Φ+
A3

of this root system are given in Table 1.

Table 1: Positive roots of ΦA3 written as sum of simple roots and as images under simple
reflections of simple roots.

α1 α1 α1

α2 α2 α2

α3 α3 α3

α4 α1 + α2 sα1(α2)
α5 α2 + α3 sα3(α2)
α6 α1 + α2 + α3 sα3sα1(α2)

We denote by Id4 the identity matrix of SL4 and by eij the 4 × 4 matrices with entry 1 in
position (i, j) and 0 everywhere else. Then, for i = 1, ..., 6 the root maps ui := uαi : F̄q → Ui

are given by

u1(t) := Id4 + te12, u4(t) := Id4 + te13,
u2(t) := Id4 + te23, u5(t) := Id4 + te24,
u3(t) := Id4 + te34, u6(t) := Id4 + te14.

Similarly, the opposite maximal unipotent subgroup U− is generated by vi(t) := ui(t)
T for

i = 1, ..., 6 and t ∈ F̄q ( T stands for the matrix transpose).
Then, the other Chevalley generators are given by (see Notation 1.47)

ni(t) := ui(t)vi(−t−1)ui(t) ∈ N0, and

hi(t) := ni(t)ni(−1) ∈ T0,

for t ∈ F̄×q and i = 1, ..., 6. Then, T0 =
〈
hi(t) | i ∈ I, t ∈ F̄×q

〉
and N0 = 〈T0, ni | i ∈ I〉, where

ni = ni(1) can be taken as representatives of the simple reflections sαi ∈ W , for i ∈ I.
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Table 2: Action of the Weyl group W on uj(t) via conjugation with the representatives ni of
the simple reflections, i.e. njui(t)nj

−1 for t ∈ F̄q, i = 1, 2, ..., 6 and j ∈ I.

n1 n2 n3

u1(t) v1(−t) u4(−t) u1(t)
u2(t) u4(t) v2(−t) u5(−t)
u3(t) u3(t) u5(t) v3(−t)
u4(t) u2(−t) u1(t) u6(−t)
u5(t) u6(t) u3(−t) u2(t)
u6(t) u5(−t) u6(t) u4(t)

Table 3: Commutation relations in U0 (s, t ∈ F̄q).

[u1(t), u2(s)] = u4(ts)
[u1(t), u5(s)] = u6(ts)
[u2(t), u3(s)] = u5(ts)

[u3(t), u4(s)] = u6(−ts)

Notation 7.2. In this part of the thesis, we will denote a general element of T0 by

h(t1, t2, t3) := h1(t1)h2(t2)h3(t3)

for t1, t2, t3 ∈ F̄×q .

The centre of G is disconnected and is given by (it follows from Theorem 1.18 (b))

Z(G) =
{
h(t, t2, t3) | t ∈ F̄×q , t4 = 1

} ∼= C4.

Notice that for q ≡ 1 (mod 4) the field Fq has four solutions to the equation t4 = 1. This means
that the centre of G is also the centre of the finite group SL4(q) (since Z(GF ) = Z(G)F by
Proposition 1.60).

By straightforward computations, we can determine the Chevalley relations (see Section 1.4).

Proposition 7.3. For t ∈ F̄q, s ∈ F̄×q , i = 1, ..., 6 and j ∈ I the following hold:

� hj(s)ui(t)hj(s)
−1 = ui(s

〈αi,α∨j 〉t).

� The action of W on U0 is given in Table 2.

� The commutation relations in U0 are given in Table 3.

� The action of W on T0 is given in Table 4.
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Table 4: Action of the Weyl group W on T0 via conjugation with the representatives ni of the
simple reflections, i.e. nihj(t)n

−1
i for t ∈ F̄×q and i, j ∈ I.

n1 n2 n3

h1(t) h1(t−1) h1(t)h2(t) h1(t)
h2(t) h1(t)h2(t) h2(t−1) h2(t)h3(t)
h3(t) h3(t) h2(t)h3(t) h3(t−1)

7.2 The finite special linear groups

Let F be the untwisted Frobenius endomorphism of G associated to the Fq-structure of G.
Explicitly, F acts on the matrices in G by raising every entry to the q-th power. Then G = GF

is a finite group.
By the discussion after Proposition 1.57 the group G inherits the Chevalley generators and

the Chevalley relations from G by restricting all formulas from Proposition 7.3 to Fq.
Proposition 7.4. The finite group of Lie type G = GF has order ([MaTe11, Table 24.1])

|G| = q6Φ3
1Φ2

2Φ3Φ4.

It is generated by unipotent elements,

G = 〈ui(t), vi(t) | i ∈ I, t ∈ Fq〉 .

It has a split BN-pair formed by the Borel subgroup (upper triangular matrices) B0 = T0 n U0

with T0 = TF
0 =

〈
hi(t) | i ∈ I, t ∈ F×q

〉
, U0 = UF

0 = 〈ui(t) | i ∈ I, t ∈ Fq〉 and the normalizer
of T0, N0 = NF

0 = 〈T0, ni | i ∈ I〉.
The action of the Weyl group W = N0/T0 on the unipotent elements is given in Table 2

when identifying the simple reflection sαi of W with the representative ni for i ∈ I.
The action of T0 on the unipotent elements is given by

hi(s)uα(t)hi(s)
−1 = uα(ts〈α,α

∨
i 〉)

for s ∈ F×q , t ∈ Fq and i ∈ I.
The commutation relations of the unipotent elements are given in Table 3.
Furthermore, W acts on T0 as

nihα(t)n−1
i = hsαi (α)(t)

for i ∈ I, α ∈ Φ and t ∈ F×q (where h−α(t) = hα(t−1) and hα+β(t) = hα(t)hβ(t)), see Table 4.
The centre of G is Z(G) = Z(G)F = {h(t, t2, t3) | t4 = 1} ∼= C4, for q ≡ 1 (mod 4).
Finally, the F -classes of the centre are

H1(F,Z(G)) ∼= Z(G).

Notation 7.5. The elements of the centre, Z = Z(G), will be denoted simply by

hZ(ka) := h
(
µ
q−1

4
ka , µ

q−1
2
ka , µ3 q−1

4
ka
)

for ka = 0, 1, 2, 3.

Remark 7.6. As discussed in Remark 1.64 we can associate to each element z ∈ H1(F,Z(G))
a representative tz ∈ T0. We choose for z = hZ(ka)

tka = h(ω
q4−1

4(q−1)
j, ω

q4−1
2(q−1)

j, ω3 q4−1
4(q−1)

j) ∈ T0

where ω ∈ F×q4 is a generator such that µ = ωq
3+q2+q+1, for ka = 0, 1, 2, 3.
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8 Fusion of unipotent classes

In this section, we compute the fusion of the unipotent classes. In other words, we explicitly
write to which conjugacy class of G belong the elements of each conjugacy class of U0.

As discussed in Section 6.3, we start by giving the conjugacy classes of U0.

Remark 8.1. The numbering of the positive roots is such that Uk+1 · · ·U6 C UkUk+1 · · ·U6 for
each k = 1, ..., 5. This can be seen by the commutation relations in Table 3.

Moreover, every element u ∈ U0 can be written uniquely as the ordered product

u = u1(r1)u2(r2) · · ·u6(r6)

with ri ∈ Fq.

Proposition 8.2. The conjugacy classes of U0 have representatives listed in the first column
of Table 5. They are also written in Table 59, in the appendix, with their U0-orbits.

Remark 8.3. There are
2q3 + q2 − 2q

different conjugacy classes in U0, in agreement with [GoRoe09, Table 1].

By acting with T0 we obtain representatives of the unipotent classes of B0.

Proposition 8.4. Representatives of the unipotent classes of B0 are given in the fourth column
of Table 5.

We give an example of the computation of the fusion from U0 to B0.

Example 8.5. Fusion of u1(r1)u2(r2)u3(r3) to B0, for r1, r2, r3 ∈ F×q :
We have, by Proposition 7.4,

h1(s1)h2(s2)h3(s3)(u1(r1)u2(r2)u3(r3)) = u1(r1s
2
1s
−1
2 )u2(r2s

−1
1 s2

2s
−1
3 )u3(r3s

−1
2 s2

3)

where s1, s2, s3 ∈ F×q .
It is clear that the argument of u3 can be set to 1 by imposing s2 = r3s

2
3. Then, the

expression becomes
u1(r1r

−1
3 s2

1s
−2
3 )u2(r2r

2
3s
−1
1 s3

3)u3(1).

Again, we can set the argument of u2 to 1 by imposing s1 = r2r
2
3s

3
3. Then, we obtain

u1(r1r
2
2r

3
3s

4
3)u2(1)u3(1).

Finally, the argument of u1 can be set to 1 only if r1r
2
2r

3
3 is a fourth power in F×q . Otherwise,

it can be set to a representative of the coset r1r
2
2r

3
3(F×q )4.

In other words, we proved that the unipotent elements u1(r1)u2(r2)u3(r3) are conjugate to
u1(µk)u2(1)u4(1) if r1r

2
2r

3
3 ∈ µk(F×q )4.

Notice that, this reflects the fact that the regular unipotent classes are parametrized by
H1(F,Z) (Proposition 5.4) which in this case is isomorphic to Z.

We complete the fusion of the unipotent classes, by conjugating with elements of the Weyl
group W . We conjugate only by elements of W that send a given representative to elements
of U0. We check at the end that the resulting list indeed contains representative of distinct
classes (by explicit matrix computations). Also, the list coincides with the unipotent classes
computed by Lübeck for the partial character table that he provided.

We give an example of the computation of the fusion from B0 to G.
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Table 5: Representatives u of the classes of U0 and a representative in B0. The representatives
u are given with parameters rj ∈ F×q (j = 1, ..., 6), and they are written in the order they are
computed thanks to the algorithm discussed in Section 6.3. The second column contains the
number of classes of each type. The third column contains the centralizer order in U0 of u. The
last two columns contain representatives of the B0-class of u.

u #classes |CU0(u)| Representative in B0 Conditions

1 1 q6 1

u6(r6) q − 1 q6 u6(1)

u5(r5) q − 1 q5 u5(1)

u4(r4) q − 1 q5 u4(1)

u4(r4)u5(r5) (q − 1)2 q5 u4(µk)u5(1) r4r5 ∈ µk(F×q )2

u3(r3) q − 1 q4 u3(1)

u3(r3)u4(r4) (q − 1)2 q4 u3(1)u4(1)

u2(r2) q − 1 q4 u2(1)

u2(r2)u3(r3) (q − 1)2 q3 u2(1)u3(1)

u2(r2)u6(r6) (q − 1)2 q4 u2(µk)u6(1) r2r6 ∈ µk(F×q )2

u1(r1) q − 1 q4 u1(1)

u1(r1)u2(r2) (q − 1)2 q3 u1(1)u2(1)

u1(r1)u3(r3) (q − 1)2 q4 u1(µk)u3(1) r1r3 ∈ µk(F×q )2

u1(r1)u5(r5) (q − 1)2 q4 u1(1)u5(1)

u1(r1)u2(r2)u3(r3) (q − 1)3 q3 u1(µk)u2(1)u3(1) r1r
2
2r

3
3 ∈ µk(F×q )4

u1(r1)u3(r3)u5(r5) (q − 1)3 q4 u1(µk)u3(1)u5(1) r1r3r
2
5 ∈ µk(F×q )4

Example 8.6. Fusion of u1(µk)u3(1) to G, for k = 0, 1:
Conjugating with W yields the following list of conjugates in U0,

u1(µk)u3(1), u2(µk)u6(1), u3(µk)u1(1), u4(−µk)u5(1), u5(−µk)u4(1), u6(µk)u2(1).

With the commutation relations, we reorder these elements and check to what element of
B0 they are conjugate (with Table 59 in the appendix).

In the ordered form, the list becomes (recall that −1 ∈ (F×q )2)

u1(µk)u3(1), u2(µk)u6(1), u4(µk)u5(1).

Therefore, these elements belong to the same conjugacy class of G.

Proposition 8.7. There are 9 distinct unipotent conjugacy classes in G. They are fused from
U0 in G according to Table 7. A list of representatives with corresponding centralizer order in
G is given in Table 6.
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Table 6: Representatives u of the unipotent classes of G and the order of their centralizer. They
are ordered according to their Jordan normal form (partitions of 4), given in the first column.

u |CG(u)|
14 1 q6Φ3

1Φ2
2Φ3Φ4

212 u1(1) q6Φ2
1Φ2

22 u1(µk)u3(1), k = 0, 1 2q5Φ1Φ2

31 u1(1)u2(1) q4Φ1

4 u1(µk)u2(1)u3(1), k = 0, 1, 2, 3 4q3

Table 7: Representatives of the unipotent classes of G and their fusion from U0. When not
specified, the condition on the parameters is simply ri ∈ F×q .

Representative in G Representatives in U0 Conditions

1 1

u1(1) u1(r1)
u2(r2)
u3(r3)
u4(r4)
u5(r5)
u6(r6)

u1(µk)u3(1) u1(r1)u3(r3) r1r3 ∈ µk(F×q )2

u2(r2)u6(r6) r2r6 ∈ µk(F×q )2

u4(r4)u5(r5) r4r5 ∈ µk(F×q )2

u1(1)u2(1) u1(r1)u2(r2)
u1(r1)u5(r5)
u2(r2)u3(r3)
u3(r3)u4(r4)
u1(r1)u3(r3)u5(r5)

u1(µk)u2(1)u3(1) u1(r1)u2(r2)u3(r3) r1r
2
2r

3
3 ∈ µk(F×q )4

94



9 Levi subgroups with disconnected centre

The group SL4(q) has two F -stable proper Levi subgroups with disconnected centre (up to
conjugation).

For I = {α1, α3} the associated Levi subgroup of G is LI = 〈T0,Uα | α ∈ ΦI〉 with root
system ΦI = ±I.

Lemma 9.1. The centre of LI is disconnected and is given by

Z(LI) =
{
h(εt, t2, t) | ε = ±1, t ∈ F̄×q

}
.

Proof. This is computed explicitly thanks to Theorem 1.18 (b).

Lemma 9.2. The Levi subgroup LI has a semidirect product decomposition

LI
∼=
(
SL2(F̄q)× SL2(F̄q)

)
o
〈
h2(t) | t ∈ F̄×q

〉
.

Proof. By Corollary 1.19 we have LI = [LI ,LI ]Z(LI)
◦. Because G is simply connected, [LI ,LI ]

is simply connected (by Proposition 6.9) of type A1 × A1. This means that

[LI ,LI ] = 〈Uα | α ∈ ΦI〉 ∼= SL2(F̄q)× SL2(F̄q).

By definition of the hα (see Notation 1.47), we have hα1(t), hα3(t) ∈ [LI ,LI ] for any t ∈ F̄×q .
Then, we have

LI = [LI ,LI ]Z(LI)
◦ = [LI ,LI ]〈h2(t) | t ∈ F̄×q 〉

which is a semidirect product by the Chevalley relations (Proposition 7.3).

Lemma 9.3. The unipotent subgroup UI := 〈Uα1 ,Uα3〉 of LI is abelian.

Proof. It is straightforward from the commutation relations.

Thanks to the command TwistingElements of CHEVIE ([MiChv]) we get that there are
two GF -classes of F -stable Levi subgroups G-conjugate to LI . These are of type (I, 1W ) and
(I, sα2sα1sα3sα2).

Notation 9.4. We denote by L1 the Levi subgroup of type (I, 1) and by L2 the one of type
(I, sα2sα1sα3sα2).

We denote the two finite Levi subgroups by L1 := LF
I = LF

1 and L2 := LF ′
I
∼= LF

2 , where F ′

is the twisted Frobenius map obtained by composing F and conjugation with sα2sα1sα3sα2 ∈ W .

We have that L1 is a Levi of type A1(q)2(q − 1) and L2 is of type A1(q2)(q + 1).

9.1 Split Levi subgroup

We describe here the properties of L1.
It is easy to see that

L1 = 〈T1, Uα | α ∈ ΦI〉,

where T1 = TF
0 = {h(t1, t2, t3) | t1, t2, t3 ∈ F×q } and Uα = UF

α = {uα(t) | t ∈ Fq} for all α ∈ ΦI .

Proposition 9.5. We have L1
∼= (SL2(q)× SL2(q)) o {hα2(t) | t ∈ F×q }, and a maximal

unipotent subgroup of L1 is U1 := UF
I = 〈Uα1 , Uα3〉.

Proof. It follows from Lemma 9.2 and Lemma 9.3, since every factor is F -stable.
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Table 8: Representatives of the unipotent classes of L1, and of U1 with their fusion to L1

Repr. u0 in L1 |CL1(u0)| Repr. u in U1 condition |CU1(u)|
1 |L1| 1 q2

u1(1) q2Φ2
1Φ2 u1(r1) q2

u3(1) q2Φ2
1Φ2 u3(r3) q2

u1(µk)u3(1) 2q2Φ1 u1(r1)u3(r3) r1r3 ∈ µk(F×q )2 q2

Corollary 9.6. The Levi subgroup L1 has order |L1| = q2Φ3
1Φ2

2. Its maximal unipotent subgroup
has order |U1| = q2.

It follows from Proposition 9.5 that the unipotent conjugacy classes of SL2(q)× SL2(q) are
the same in L1 up to fusion.

Remark 9.7. The unipotent conjugacy classes of SL2(q) have representatives uSL2(µk) for uSL2

an isomorphism from F+
q to a maximal unipotent subgroup of SL2(q) and k = 0, 1 (see for

example [Bo11, Chapter 1.3]).

Proposition 9.8. Representatives of the unipotent conjugacy classes of L1 are listed in Table
8. Their centralizers (apart from the identity element) have order

|CL1(u)| = (q − 1)|CSL2(q)×SL2(q)(u)|/2

when seeing u ∈ L1 as an element of SL2(q)× SL2(q).

Proof. Because of the preceding remark, all unipotent conjugacy classes of SL2(q)×SL2(q) ⊂ L1

have representatives being products of elements in a subset of
{
u1(µk), u3(µl) | k, l = 0, 1

}
.

By direct computation, it is easy to see that all the classes fuse in pairs (apart from the
identity). In fact, conjugation with the elements h2(t) (t ∈ F×q ) allows us to set to 1 the
argument of exactly one of the factors ui(µ

k).
Because of this fusion, the formula for the centralizer orders follows directly.

Notation 9.9. We write Z1 for the centre of L1. We denote the elements of Z1 by

hZ1(ka, kb) = h(µ
q−1

2
ka+kb , µ2kb , µkb)

for ka = 0, 1, kb = 0, ..., q − 2.

Lemma 9.10. The centre of L1 is

Z1 = Z(LI)
F = {hZ1(ka, kb) | ka = 0, 1, kb = 0, ..., q − 2} ∼= C2 × Cq−1.

Proof. By Proposition 1.60 we have Z1 = Z(LF
I ) = Z(LI)

F . Let t ∈ F̄×q . Then, it is clear that

F (h(±t, t2, t)) = h(±t, t2, t)⇔ tq = t⇔ t ∈ F×q .

Every element of F×q can be written as µk for k = 0, ..., q − 2 and −1 = µ
q−1

2 .

As we will work with Gel’fand–Graev characters, it is convenient to know the F -conjugacy
classes of Z(LI).
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Lemma 9.11. We have
H1(F,Z(LI)) ∼= C2

with ker(hL1) = {hZ(0), hZ(2)} where hL1 is the canonical surjection from Lemma 5.8.

Proof. By Lemma 5.7 we have H1(F,Z(LI)) = Z(LI)/L (Z(LI)). It is easy to see that
L (Z(LI)) =

{
h(t, t2, t) | t ∈ F̄×q

}
, since for elements of the maximally split torus T0 the map

L acts as a q − 1 power. In conclusion, H1(F,Z(LI)) ∼= {h(±1, 1, 1)}.
Furthermore, we check that hZ(0), hZ(2) ∈ L (Z(LI)).

9.2 Twisted Levi subgroup

We describe here the properties of L2.
In this case the twisted Frobenius F ′ has a non-trivial action on the root system ΦI (α1 and

α3 are interchanged). Explicitly F ′ acts on a generic element of T0 as

F ′ (h(t1, t2, t3)) = h(tq3t
−q
2 , t−q2 , tq1t

−q
2 )

and on a generic element of UI as

F ′ (u1(t1)u3(t3)) = u1(tq3)u3(tq1).

Then the root system Φ2 of L2 is of type A1. It follows by explicit computations that

L2 = 〈T2, Uα | α ∈ Φ2〉,

where the twisted torus is

T2 = TF ′

0 = {h (t1, t2, t
q
1t2) | t1, t2 ∈ F×q2 s.t. tq+1

2 = 1}

and Uα = UF ′
I = {u1(t)u3(tq) | t ∈ Fq2} for α the positive root of Φ2.

Proposition 9.12. We have L2
∼= SL2(q2) o {h(1, t, t) | t ∈ F×q2 s.t. tq+1 = 1}.

Proof. This follows from the discussion above, where the part isomorphic to SL2(q2) has torus
{h (t1, 1, t

q
1) | t1 ∈ F×q2} and unipotent subgroup {u1(t)u3(tq) | t ∈ Fq2}.

Corollary 9.13. The Levi subgroup L2 has order |L2| = q2Φ1Φ2
2Φ4. Its unipotent subgroup has

order |U2| = q2.

It follows from Proposition 9.12 that the unipotent conjugacy classes of SL2(q2) are the
same in L2 up to fusion. However, this time no fusion happens.

Proposition 9.14. Representatives of the unipotent conjugacy classes of L2 are listed in Table
9. The centralizers of the unipotent elements have order

|CL2(u)| = (q + 1)|CSL2(q2)(u)|

when seeing the unipotent element u ∈ L2 as an element of SL2(q2).

Proof. We have that in SL2(q2) the unipotent elements uSL2(t) (t ∈ F×q2) fall into two classes

with representatives uSL2(1) and uSL2(ρ) depending whether t is a square of F×q2 or not. These

two representatives correspond in L2, respectively, to u1(1)u3(1) and u1(ρ)u3(ρq). For t ∈ F×q2

such that tq+1 = 1 we have

h(1,t,t) (u1(ρ)u3(ρq)) = u1

(
ρt−1

)
u3

(
ρqt−q

)
.

Since t is a square in F×q2 this expression is never equal to u1(1)u3(1).
The centralizer order follows directly from Proposition 9.12.
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Table 9: Representatives of the unipotent classes of L2, and of U2 with their fusion to L2

Repr. u0 in L2 |CL2(u0)| Repr. u in U2 condition |CU2(u)|
1 q2Φ1Φ2

2Φ4 1 q2

u1(ρk)u3(ρqk) 2q2Φ2 u1(λ)u3(λq) λ ∈ ρk(F×q2)2 (k = 0, 1) q2

Notation 9.15. We write Z2 for the centre of L2. We denote the elements of Z2 by

hZ2(ka) = h(ρ−qka
q−1

2 , ρka(q−1), ρka
q−1

2 )

for ka = 0, ..., 2q + 1.

Lemma 9.16. The centre of L2 is

Z2 = Z(LI)
F ′ =

{
h
(
ρ−qka

q−1
2 , ρka(q−1), ρka

q−1
2

)
| ka = 0, ..., 2q + 1

}
.

Proof. By Proposition 1.60, we have Z2 = Z(LF ′
I ) = Z(LI)

F ′ . Let t ∈ F̄×q . Then, it is clear
that

F ′(h(±t, t2, t)) = h(±t, t2, t)⇔ t2q+2 = 1⇔ t = ρk
q−1

2

for k = 0, ..., 2q + 1 and −1 = ρ
q2−1

2 .

We will work with Gel’fand–Graev characters, so it is convenient to know the F ′-conjugacy
classes of Z(LI).

Lemma 9.17. We have
H1(F ′, Z(LI)) ∼= C2

with ker(hL1) = {hZ(0), hZ(2)} where hL1 is the canonical surjection from Lemma 5.8.
The element zL2 (Remark 5.34) is h(−1, 1, 1).

Proof. By Lemma 5.7, we have H1(F ′, Z(LI)) = Z(LI)/L ′(Z(LI)), where L ′ is the Lang
map defined by F ′. Explicitly, L ′(Z(LI)) =

{
h(t, t2, t) | t ∈ F̄×q

}
. Therefore, the centre

Z(LI) has two F ′-conjugacy classes H1(F ′, Z(LI)) ∼= {h(±1, 1, 1)}. Furthermore, we check
that hZ(0), hZ(2) ∈ L ′(Z(LI)).

The element zL2 is given explicitly by Bonnafé in [Bo05, Table 1].

By writing the general elements of G in Bruhat form (Theorem 1.36), it is possible to find
a preimage to g−1F (g) = ẇ for w = s2s1s3s2.

Lemma 9.18. The element

gw = u4(−ρ)u5(ρ)h2(ρq − ρ)n2n1n3n2u4(−1)u5(1) ∈ G

is such that g−1
w F (gw) = n2n1n3n2.

Proof. This is a straightforward verification by using the matrix representation of the Steinberg
presentation.

With this element, we can explicitly apply resGL2
to the regular unipotent elements of G.

Corollary 9.19. We have

resGL2

(
(u1(1)u2(1)u3(1))G

)
= (u1(ρ)u3(ρq))L2 .

Proof. First we conjugate the representatives of the regular unipotent classes of L2 with gw, from
the previous lemma, to get representatives in GF . Then we can apply directly the definition of
resGL2

from [Bo05, Chapter 15.A].
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10 The 2-parameter Green functions

Following the discussion in Section 4, we can compute the 2-parameter Green functions for the
two types of Levi subgroups with disconnected centre of SL4(q) when q is odd.

Proposition 10.1. Let q be an odd prime power, G = SL4 when q ≡ 3 (mod 4), or G =
SL4 /〈±1〉 when q ≡ 1 (mod 4), and F a split Frobenius with respect to an Fq-structure on G.
Then

Q̃G
L1

=


Φ3Φ4 Φ2 1 1 . . .
. q2 . . 1 . .
. q2 . . 1 . .
. . qΦ2 . 1

2
Φ1 1 .

. . . qΦ2
1
2
Φ1 . 1


for a split Levi subgroup L1 with LF

1 = A1(q)2(q − 1), and

Q̃G
L2

=

Φ2
1Φ3 −Φ1 1 1 . . .
. . . qΦ1 −1

2
Φ1 1 .

. . qΦ1 . −1
2
Φ1 . 1


for a non-split Levi subgroup L2 with LF

2 = A1(q2)(q + 1).
In both cases the unipotent classes of G are ordered such that their Jordan forms are given

by the partitions 14, 212, 22 (two classes), 31, 4 (two classes) of 4. The unipotent classes of
the Levi subgroups have “same representatives” as the ones in Table 8 and Table 9 (see table
in the proof).

Proof. In both cases, G = GF has centre of order 2 and seven unipotent classes, since the
classes of G with Jordan normal forms 22 and 4 both split into two classes in the finite group.
As L1 is split of type A2

1, the Levi subgroup LF
1 has five unipotent classes with representatives

of Jordan types (12, 12), (12, 2), (2, 12) and two of type (2, 2). Finally, the class of regular
unipotent elements of L2 splits into two LF

2 -classes. The same computations of the previous
sections, applied to the groups of the statements, give us the unipotent classes of GF , LF

1 and
LF

2 , and their fusion. We choose the following representatives of the unipotent classes (in a
Steinberg presentation analogous to the one of Section 7.1):

GF 1, u1(1), u1(1)u3(1), u1(µ)u3(1), u1(1)u2(1), u1(1)u2(1)u3(1), u1(µ)u2(1)u3(1)
LF

1 1, u1(1), u3(1), u1(1)u3(1), u1(µ)u3(1)
LF

2 1, u1(1)u3(1), u1(ρ)u3(ρq)

From the fusion of the unipotent classes and by Corollary 4.20, we compute the values
QG

L1
(u, v−1) explicitly. Thus, with respect to the ordering of the splitting classes given in the

table, we find the stated result for Q̃G
L1

.
We denote the representatives of regular unipotent classes of L2 by v2 and v3. Moreover,

we set u3 := u1(1)u3(1) and u6 := u1(1)u2(1)u3(1). By the known Green functions for L̃2 in
G̃ (see Example 4.8) and our considerations in Remark 4.14, there are two unknown values in
Q̃G

L2
, denoted by a1 := Q̃G

L2
(u3, v2) and a2 := Q̃G

L2
(u6, v2).

Consider the cuspidal class function ψ on LF
2 that takes values 1 and −1 on v2, v3 respec-

tively, and zero everywhere else. By the Mackey formula this means, since |NG(L2)F : LF
2 | = 2,

that 〈RG
L2

(ψ), RG
L2

(ψ)〉 = N〈ψ, ψ〉, with N being equal 1 or 2 (depending on whether v2 and
v3 fuse in GF ). On the other hand, the norm of RG

L2
(ψ) can be computed from the character

formula using the (unknown) values of Q̃G
L2

(u, v) on the pairs of splitting classes. Then, the
norm equation above gives

(2a1 − qΦ1)2 + q2Φ1Φ2(2a2 − 1)2 = Nq3Φ1.
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Next, let ξ be the class function on LF
1 that takes values 1 resp. −1 on the two regular unipotent

classes, respectively. Since ψ is cuspidal, the Mackey formula shows that 〈RG
L1

(ξ), RG
L2

(ψ)〉 = 0

(see Remark 4.15). Using the known values of Q̃G
L1

, this translates to a1 = qΦ1(1 − a2). This
system of equations has rational solutions only for N = 2 (meaning that the classes of v2

and v3 don’t fuse in GF ). The solutions of this system are (a1, a2) ∈ {(qΦ1, 0), (0, 1)}. Both
correspond to a matrix as in the statement, but in one case the second and third lines are
interchanged.

It is easy, to use the previous result to find Q̃G
L for SL4(q) for q ≡ 1 (mod 4) thanks to

Proposition 4.13.

Proposition 10.2. Let G = SL4 and GF = SL4(q) with q ≡ 1 (mod 4). Then

Q̃G
L1

=


Φ3Φ4 Φ2 1 1 . . . . .
. q2 . . 1 . . . .
. q2 . . 1 . . . .
. . qΦ2 . 1

2
Φ1 1 . 1 .

. . . qΦ2
1
2
Φ1 . 1 . 1


for a split Levi subgroup L1 of type A2

1, and

Q̃G
L2

=

Φ2
1Φ3 −Φ1 1 1 . . . . .
. . . qΦ1 −1

2
Φ1 1 . 1 .

. . qΦ1 . −1
2
Φ1 . 1 . 1


for a non-split Levi subgroup L2 of type A2

1.
The unipotent classes are ordered according to Table 6, Table 8 and Table 9.

Proof. This directly follows from Proposition 10.1 and Lemma 4.13 applied to the surjection
i : SL4 → SL4 /〈±1〉 with ker(i) = ±1. Where we have checked the condition of the lemma,
ker(i) ⊂ {z−1F ′(z) | z ∈ Z(LI)}, explicitly (with the notation from the previous section).

Remark 10.3. Conjecture 5.32 is verified for L2.

To fix the row order for a given choice of representative, in the last proposition, we apply
Remark 5.34 with Lemma 9.17 and Corollary 9.19 to Proposition 10.2, i.e. the restriction of a
Gel’fand–Graev character is a Gel’fand–Graev character.
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Table 10: Non-zero values of the modified Gel’fand–Graev characters of G.

zu ΓG
ja;jb

(zu)

ka, kc = 0, 1, 2, 3, kb = 0, 1 ja, jb = 0, 1, 2, 3

hZ(ka) ijaka

4 Φ3
1Φ2

2Φ3Φ4

hZ(ka)u1(1) − i
jaka

4 Φ2
1Φ2Φ3

hZ(ka)u1(µkb)u3(1) ijaka

4 Φ1Φ2

(
q2(−1)jb+kb + 1

)
hZ(ka)u1(1)u2(1) ijaka

4 Φ1Φ2

hZ(ka)u1(µkc)u2(1)u3(1) ijaka

4

[
(q − 1) + q

(
1 + (−1)jb+kc

) (
(−1)

q−1
4 +

jb+kc
2
√
q − 1

)]

11 Modified Gel’fand–Graev characters

With Lemma 5.58 it is straightforward to compute the induction of the regular linear characters
of U (or ZU) to G.

Notation 11.1. In this section we denote by φj1,j2,j3 the linear character of U0 defined by

φj1,j2,j3 (u1(r1)u2(r2)u3(r3) · · ·u6(r6)) = φ(j1r1 + j2r2 + j3r3)

where j1, j2, j3 ∈ F×q and r1, ..., r6 ∈ Fq.
We keep the same notation also for linear characters of U1 (φj1,0,j3 with j1, j3 ∈ F×q ).

Remark 11.2. Recall that in Remark 7.6, we have chosen a representative tj ∈ L −1
T0

(z) for

z = hZ(j) ∈ H1(F,Z(G)), j = 0, 1, 2, 3. We compute φU0
j := tjφ1,1,1 = φ1,1,µ−j and denote the

Gel’fand-Graev character associated with hZ(j) by ΓG
j = IndGU0

φU0
j .

Then, the modified Gel’fand–Graev characters have two parameters ja and jb associated
respectively to the Z-part and to hZ(jb) (with same range 0, 1, 2, 3).

Proposition 11.3. There are 16 different modified Gel’fand–Graev characters of SL4(q). Their
values are given in Table 10. The table contains only the non-zero values (which are precisely
those on elements of the form zu for z ∈ Z and u unipotent).

Notice that following Remark 5.60 (a), we have hidden the ± sign from the values of
ΓG
jb

(
u1(µk)u2(1)u3(1)

)
by redefining jb 7→ jb ± 2 when the sign is negative.

Remark 11.4. The norm of the Gel’fand–Graev characters (the non modified ones) is, for all
z ∈ H1(F,Z(G))

〈ΓG
z ,Γ

G
z 〉 = q3 + q + 2,

which, by Corollary 5.24, is equal to the number of semisimple conjugacy classes of the dual
group of G. This number is in agreement with the one given in [BrLue13, Theorem 4.1].

We compute now the (modified) Gel’fand–Graev characters of L1.

Remark 11.5. By Lemma 9.11 the Gel’fand–Graev characters of L1 are parametrized by
H1(F,Z(L1)) ∼= {h(±1, 1, 1)}. For hZ1(j, 1) = h((−1)j, 1, 1) we choose a representative in
L −1

T0
(hZ1(j, 1))

tj = h(ρ−
q+1

2
j, 1, 1) ∈ T0.

Then, a representative of the T1-class of regular characters of U1, parametrized by hZ1(j, 1),
is φU1

j = tjφ1,0,1 = φµj ,0,1, for j = 0, 1.
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Table 11: Non-zero values of the modified Gel’fand–Graev characters of L1.

zu ∈ Z1U1 ΓL1
ja,jb;jc

(zu)

ka, kc = 0, 1, kb = 0, ..., q − 2 ja, jc = 0, 1, jb = 0, ..., q − 2

hZ1(ka, kb)
(−1)jakaζ

jbkb
q−1

2
Φ2

1Φ2
2

hZ1(ka, kb)u1(1) − (−1)jakaζ
jbkb
q−1

2
Φ1Φ2

hZ1(ka, kb)u3(1) − (−1)jakaζ
jbkb
q−1

2
Φ1Φ2

hZ1(ka, kb)u1(µkc)u3(1)
(−1)jakaζ

jbkb
q−1

2
(q(−1)jc+kc + 1)

We denote the Gel’fand–Graev characters of L1 by ΓL1
j = IndL1

U1
φU1
j for j = 0, 1.

By Lemma 9.10, there are 2(q − 1) linear characters of Z1 parametrized by ja = 0, 1 and
jb = 0, ..., q − 2.

Then, the modified Gel’fand–Graev characters of L1 are denoted by ΓL1
ja,jb;jc

with two pa-
rameters ja = 0, 1, jb = 0, ..., q−2 coming from the Z1-part and one parameter jc = 0, 1 coming
from hZ1(jc, 1) ∈ H1(F,Z(L1)).

Proposition 11.6. There are 4(q−1) distinct modified Gel’fand–Graev characters of L1. Their
(non zero) values are given in Table 11.

Remark 11.7. By explicit computation, the Gel’fand–Graev characters (the non modified
ones) of L1 have norm

〈ΓL1
z ,Γ

L1
z 〉 = Φ1Φ4.

We verify that this agrees with Lemma 5.26.
One interesting aspect of these characters comes from the fact that the differences

ΓL1
ja,jb;0

− ΓL1
ja,jb;1

have norm 2 (by explicit computation). Moreover, these differences are orthogonal to the space
spanned by the Deligne–Lusztig characters of L1, for all ja = 0, 1 and jb = 0, ..., q − 2. The
last assertion comes from the fact that every Deligne–Lusztig character takes the same values
at splitting classes while the Gel’fand–Graev characters (and their difference) do not.

Remark 11.8. The Gel’fand–Graev characters ΓL1
jc

are related to ΓG
jb

by Lemma 9.11. Explic-
itly,

∗RG
L1

ΓG
0 = ΓL1

0 ,
∗RG

L1
ΓG

1 = ΓL1
1 ,

∗RG
L1

ΓG
2 = ΓL1

0 ,
∗RG

L1
ΓG

3 = ΓL1
1 .

Finally, we compute the modified Gel’fand–Graev characters of L2. The treatment is anal-
ogous to the case of L1.

Remark 11.9. By Lemma 9.17 the Gel’fand–Graev characters of L2 are parametrized by
H1(F ′, Z(L2)) ∼= {h(±1, 1, 1)}. We choose for j = 0, 1 a representative in L −1

T0
(h((−1)j, 1, 1))

tj = h(ω−
q2+1

2
j, 1, ω−q

q2+1
2

j).
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Table 12: Non-zero values of the modified Gel’fand–Graev characters of L2

hu ∈ Z2U2 ΓL2
ja;jb

ka = 0, ..., 2q + 1, kb = 0, 1 ja = 0, ..., 2q + 1, jb = 0, 1

hZ2(ka)
ζjaka2q+2

2
Φ1Φ2Φ4

hZ2(ka)u1(ρkb)u3(ρqkb) − ζjaka2q+2

2

(
q(−1)jb+kb + 1

)

Then, the T2-class of regular characters of U2, parametrized by h((−1)j, 1, 1), has a repre-
sentative tjχ2 (by abuse of notation, see Notation 5.12 and the discussion that follows it).

The Gel’fand–Graev characters of L2 are given by ΓL2
j = IndL2

U2
(tjχ2) for j = 0, 1.

By Lemma 9.16, there are 2q+ 2 linear characters of Z2, parametrized by ja = 0, ..., 2q+ 1.
Then, the modified Gel’fand–Graev characters are denoted by ΓL2

ja;jb
with ja = 0, ..., 2q + 1

coming from the Z2-part and jb = 0, 1 coming from h((−1)jb , 1, 1) ∈ H1(F ′, Z(L2)).

Proposition 11.10. There are 4(q + 1) modified Gel’fand–Graev characters of L2, they are
given in Table 12.

Remark 11.11. By explicit computation, the Gel’fand–Graev characters (the non modified
ones) of L2 have norm

〈ΓL2
z ,Γ

L2
z 〉 = Φ2Φ4.

We verify that this agrees with Lemma 5.26.
Like in the case of L1, the differences

ΓL2
ja;0 − ΓL2

ja;1

have norm 2 (by explicit computation) and are orthogonal to the space spanned by the Deligne–
Lusztig characters of L2, for all ja = 0, ..., 2q + 1. Again, the orthogonality comes from the
fact that every Deligne–Lusztig character takes the same values at splitting classes while the
Gel’fand–Graev characters (and their difference) do not.

Remark 11.12. The Gel’fand–Graev characters ΓL2
jb

are related to ΓG
jb

by Lemma 9.17. Ex-
plicitly, we have

∗RG
L2

ΓG
0 = ΓL2

0 ,
∗RG

L2
ΓG

1 = ΓL2
1 ,

∗RG
L2

ΓG
2 = ΓL2

0 ,
∗RG

L2
ΓG

3 = ΓL2
1 .
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Table 13: Splitting class types of G. With representatives (in Steinberg presentation) and
indices range.

Name Representative indices range

c3(i1) hZ(i1)u1(1)u3(1) i1 = 0, 1, 2, 3

c4(i1) hZ(i1)u1(µ)u3(1)

c6(i1) hZ(i1)u1(1)u2(1)u3(1) i1 = 0, 1, 2, 3

c7(i1) hZ(i1)u1(µ)u2(1)u3(1)

c8(i1) hZ(i1)u1(µ2)u2(1)u3(1)

c9(i1) hZ(i1)u1(µ3)u2(1)u3(1)

c16(i1, i2) hZ1(i1, i2)u1(1)u3(1) i1 = 0, 1, i2 = 0, ..., q − 2

c17(i1, i2) hZ1(i1, i2)u1(µ)u3(1) q−1
4

- q−1
2
i1 + i2

c19(i1) hZ2(i1)u1(1)u3(1) i1 = 0, ..., 2q + 1

c20(i1) hZ2(i1)u1(ρq)u3(ρ) q+1
2

- q+3
4
i1

12 Decomposition of almost characters

Notation 12.1. To distinguish the notation for regular characters χ(s),z of G, L1 and L2, we
add a superscript

χG
(s),z, χ

L1

(s),z, χ
L2

(s),z.

Following the discussion of Section 6.6, we introduce unknowns f in every character that
decomposes at every splitting class of the partial character table.

In this section, we describe how to use the modified Gel’fand–Graev characters to find these
unknowns f . As already announced at the end of Section 6.6, we want to put the stress on
the importance of the Gel’fand–Graev characters. Therefore, we will present the most basilar
procedure to decompose the uniform almost characters. To this end, we use only the properties
of regular characters.

We start by fixing the notation used to identify the characters and classes in the table
provided by Lübeck.

Notation 12.2. The conjugacy classes of G are divided into class types (see Section 6.1). The
class types are denoted by ci with i = 1, ..., 29. To identify a particular class of a class type
suitable indices are specified ci(j, k, l, ...).

Notation 12.3. The uniform almost characters of G are denoted by Ri with i = 1, ..., 54. If
a family of uniform almost characters is associated to a semisimple class type of G∗ = G∗F

∗

whose representatives are parametrized by indices j, k, l, ..., then the particular almost character
associated with a particular semisimple class is denoted by Ri(j, k, l, ...).

Tables 13 and 14 show respectively the conjugacy class types of SL4(q) that split and the
uniform almost characters that are not irreducible. The notation h∗(t1, t2, t3) in Table 14 stands
for hα∗1(t1)hα∗2(t2)hα∗3(t3) where α∗1, α

∗
2, α

∗
3 are, respectively, the dual roots of α1, α2, α3.

12.1 Decomposition of R15 and R18

The almost characters R15 and R18 belong to the Lusztig series E (G, s15) (known from Lübeck’s
table). They even belong the same Harish–Chandra series by Lemma 12.6, below.
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Table 14: Non irreducible almost characters of G. With range of indices.

Name Norm Representative for associated ss. class indices range

R15 2 s15 = h∗(1,−1, 1)

R18 2 s15 = h∗(1,−1, 1)

R20 2 s20 = h∗(1,−1, 1) (twisted)

R21 2 s20 = h∗(1,−1, 1) (twisted)

R33(k1) 2 s33(k1) = h∗(−1, µk1 ,−1) k1 = 0, ..., q − 2, q−1
4

- k1

R35(k1) 2 s35(k1) = h∗(−1, ρk1
q+1

2 ,−1) k1 = 0, ..., 2q + 1, 2 - k1

R37(k1) 2 s37(k1) = h∗(−1, ρk1
q−1

2 ,−1) k1 = 0, ..., 2q − 3, 2 - k1, q+1
2

- k1

R39(k1) 2 s39(k1) = h∗(−1, ρk1(q−1),−1) k1 = 0, ..., q, q+1
2

- k1

R41(k1) 2 s41(k1) = h∗(−1, µk1 ,−1) k1 = 0, ..., q − 2, q−1
4

- k1

R43 4 s43 = h∗(µ
q−1

4 , µ
q−1

4 , µ
q−1

4 )

R47(k1) 4 s47(k1) = h∗((−1)k1 , (−1)k1 , (−1)k1) k1 = 0, 1

R51 4 s51 = h∗(µ3 q−1
4 , µ3 q−1

4 , µ3 q−1
4 )

Lemma 12.4. The irreducible constituents of R15 are regular characters and those of R18 are
not.

Proof. The scalar product with the (non-modified) Gel’fand–Graev characters gives〈
R15,Γ

G
z

〉
G

= 1,
〈
R18,Γ

G
z

〉
G

= 0,

for all z ∈ Z = H1(F,Z(G)).
We know by Remark 5.28 and Clifford theory that the regular characters of any Lusztig

series form a unique G̃F -orbit. Then, the scalar product implies that the constituents of R15

are regular while those of R18 are not.

To continue, we need to know the precise parametrization of the regular characters of R15.
We denote by χG

(s15),0 the irreducible constituent common to R15 and ΓG
0 .

By imposing
〈
χG

(s15),0,Γ
G
0

〉
G

= 1 one finds a relation between the unknowns introduced for

the classes c3(0) and c6(0).
With this relation, we can compute〈
χG

(s15),0,Γ
G
0

〉
G

= 1,
〈
χG

(s15),0,Γ
G
1

〉
G

= 0,
〈
χG

(s15),0,Γ
G
2

〉
G

= 1,
〈
χG

(s15),0,Γ
G
3

〉
G

= 0.

It follows that the other constituent of R15 is contained in ΓG
1 and ΓG

3 . It will be denoted by
χG

(s15),1.

Lemma 12.5. The class (s15) of G∗ splits into two classes of L∗1 and

∗RG
L1

(
χG

(s15),0 − χG
(s15),1

)
= ΓL1

0,0;0 − ΓL1
0,0;1.

Proof. By explicit computation, we get
〈∗RG

L1
R15,Γ

L1
ja,jb;jc

〉
L1

= 3δja,0δjb,0.

Since the restrictions ∗RG
L1
χG

(s15),0 and ∗RG
L1
χG

(s15),1 are parametrized by the same semisim-
ple classes of L∗1, they have the same number of irreducible constituents. Also, the modified
Gel’fand–Graev characters and the Harish–Chandra restriction of regular characters are mul-
tiplicity free. This, together with the fact that only one irreducible constituent is common to
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both ΓL1
ja,jb;0

and ΓL1
ja,jb;1

for all ja = 0, 1 and jb = 0, ..., q−2 (see Remark 11.7), forces ∗RG
L1
χG

(s15),i

to have two constituents χL1

(t15),i and χL1

(t′15),i, i = 0, 1. These must be such that χL1

(t15),0 = χL1

(t15),1

and χL1

(t′15),0 6= χL1

(t′15),1.

Then, the two conclusions follow:

∗RG
L1

(χG
(s15),0 − χG

(s15),1) = χL1

(t′15),0 − χ
L1

(t′15),1 = ΓL1
0,0;0 − ΓL1

0,0;1,

and (s15) splits into two classes of L∗1, denoted here (t15) and (t′15).

Lemma 12.5 and the formula for Harish–Chandra restriction directly give the unknowns f
for all the classes of type c16. Moreover, we get relations between the unknowns of c3(j) and
c6(j), for each j = 0, 1, 2, 3.

It remains to find four unknowns f6,j, j = 0, 1, 2, 3, one for each class of type c6. Relations
among them are found thanks to the scalar products of χ(s15),0 and the modified Gel’fand–
Graev characters. These are known by Lemma 12.4 and by explicitly computing scalar products
between R15 and the modified Gel’fand–Graev characters.

We get the linear system of equations∑
j=0,1,2,3

f6,jζ
kj
4 = 0, k = 0, 1, 2, 3.

The unique solution is given by f6,j = 0 for j = 0, 1, 2, 3.

Lemma 12.6. The irreducible constituents of R15 and R18 are related by

RG
L1

(
ΓL1

0,0;0 − ΓL1
0,0;1

)
= χG

(s15),0 − χG
(s15),1 + ψ18 − ψ′18

where ψ18 and ψ′18 denote the constituents of R18.

Proof. By explicit computation, we get
〈
RG

L1

(
ΓL1

0,0;0 − ΓL1
0,0;1

)
, RG

L1

(
ΓL1

0,0;0 − ΓL1
0,0;1

)〉
G

= 4. Then,

since the degree of RG
L1

(
ΓL1

0,0;0 − ΓL1
0,0;1

)
is zero, it must be that

RG
L1

(
ΓL1

0,0;0 − ΓL1
0,0;1

)
= θ − θ′ + θ′′ − θ′′′

for irreducible character θ, θ′, θ′′, θ′′′ of G belonging to the same Harish–Chandra series.
Taking the scalar products with χG

(s15),0 and χG
(s15),1 proves the first part of the formula.

The only other possible irreducible characters that might belong to the same Harish–
Chandra series are R17 and the constituents of R18 as they belong to the same Lusztig series
(they are parametrized by the same semisimple class in the dual group, by Table 12). It follows
that the other constituents must come from R18, since R17 is irreducible.

Evaluating the expression of the previous lemma one finds the unknowns f for the con-
stituents of R18 on all splitting classes of type c3, c4, c6, c7, c8, c9, c16 and c17.

For the classes c19 and c20 one needs to consider the Levi L2 and Lusztig restriction.

Lemma 12.7. The class (s15) of G∗ does not split as class of L∗2 and we have

∗RG
L2

(
χG

(s15),0 − χG
(s15),1

)
= ΓL2

0;0 − ΓL2
0;1.

Proof. This proof is analogous to the one of Lemma 12.5.
By direct computation, we find

〈∗RG
L2
R15,Γ

L2
ja;jb

〉
L2

= δja,0. Recall that the functions ΓL2
ja;jb

are multiplicity free. This is true also for ∗RG
L2
χG

(s15),k (k = 0, 1). Since only one irreducible

constituent is not common to both ΓL2
ja;0 and ΓL2

ja;1 for all ja = 0, ..., 2q + 1, by Remark 11.11.
This proves both the formula and that (s15) does not split in L∗2.

Gathering all the information obtained so far gives the following result.

Proposition 12.8. The values of the class functions χG
(s15),0−χG

(s15),1 and ψ18−ψ′18 (orthogonal

to R15 and R18) are as given in Table 15.
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Table 15: Certain class functions orthogonal to R15 and R18.
χG

(s15),0 − χG
(s15),1 ψ18 − ψ′18

c3 q3 q2

c4 −q3 −q2

c6 0 q
c7 0 −q
c8 0 q
c9 0 −q
c16 q q
c17 −q −q
c19 q −q
c20 −q q

12.2 Decomposition of R20 and R21

The discussion for R20 and R21 is completely analogous to that for R15 and R18. We point out
only the differences.

Lemma 12.9. The irreducible constituents of R20 are regular characters and those of R21 are
not.

Like after Lemma 12.4 we can write the decomposition R20 = χG
(s20),0 + χG

(s20),1.

Lemma 12.10. The class (s20) of G∗ does not split as class of L∗1 and we have

∗RG
L1

(
χG

(s20),0 − χG
(s20),1

)
= ΓL1

1,0;0 − ΓL1
1,0;1.

This follows from
〈∗RG

L1
R20,Γ

L1
ja,jb;jc

〉
L1

= δja,1δjb,0.

Lemma 12.11. The class (s20) of G∗ splits into two classes of L∗2 and we have

∗RG
L2

(
χG

(s20),0 − χG
(s20),1

)
= ΓL2

q+1;0 − ΓL2
q+1;1.

This follows from
〈∗RG

L2
R20,Γ

L2
ja;jb

〉
L2

= 3δja,q+1.

Lemma 12.12. The irreducible constituents of R20 and R21 are related by

RG
L1

(
ΓL1

1,0;0 − ΓL1
1,0;1

)
= χG

(s20),0 − χG
(s20),1 + ψ20 − ψ′20

where ψ20 and ψ′20 denote the constituents of R20.

Proposition 12.13. The values of the class functions χG
(s20),0−χG

(s20),1 and ψ21−ψ′21 (orthogonal

to R20 and R21) are given in Table 16.

12.3 Decomposition of R33, R35 and R41

The same computations are applied for these cases, however it turns out that no Lusztig
restriction is needed to achieve the decomposition.

Lemma 12.14. The irreducible constituents of R33(j), R35(k) and R41(l) are regular characters
for all j, k, l in their respective range (see Table 14).
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Table 16: Certain class functions orthogonal to R20 and R21.
χG

(s20),0 − χG
(s20),1 ψ21 − ψ′21

c3(j) q3(−1)j q2(−1)j

c4(j) −q3(−1)j −q2(−1)j

c6(j) 0 q(−1)j

c7(j) 0 −q(−1)j

c8(j) 0 q(−1)j

c9(j) 0 −q(−1)j

c16(j, l) q(−1)j q(−1)j

c17(j, l) −q(−1)j −q(−1)j

c19(j) q(−1)j −q(−1)j

c20(j) −q(−1)j q(−1)j

This is proved like Lemma 12.4, and like in the discussion that follows it, we can write
the decompositions R33(j) = χG

(s33(j)),0 + χG
(s33(j)),1, R33(j) = χG

(s35(k)),0 + χG
(s35(k)),1 and R37(l) =

χG
(s37(l)),0 + χG

(s37(l)),1.

Lemma 12.15. The classes (s33(j)) of G∗ all split into four classes of L∗1 and

∗RG
L1

(
χG

(s33(j)),0 − χG
(s33(j)),1

)
= ΓL1

0,2j;0 − ΓL1
0,2j;1 + ΓL1

0,q−1+2j;0 − ΓL1
0,q−1+2j;1.

Proof. The scalar product with the modified Gel’fand–Graev characters gives〈∗RG
L1
R33(j),ΓL1

ja,jb;jc

〉
L1

= δja,0δjb,2j + δja,0δjb,q−1+2j + 4δja,jmod 2δjb,0.

Again, the result follows by the multiplicity freeness of ∗RG
L1
R33(j) and ΓL1

ja,jb;jc
and the fact

that ΓL1
ja,jb;0

and ΓL1
ja,jb;1

differ only by one constituent.

Lemma 12.16. The classes (s35(j)) of G∗ all split into two classes of L∗1 and

∗RG
L1

(
χG

(s35(j)),0 − χG
(s35(j)),1

)
= ΓL1

0,j;0 − ΓL1
0,j;1 + ΓL1

1,q−1+j;0 − ΓL1
1,q−1+j;1.

This is proven by 〈∗RG
L1
R35,j,Γ

L1
ja,jb;jc

〉
L1

= δja,0δjb,j + δja,1δjb,q−1+j.

Lemma 12.17. The classes (s41(j)) of G∗ all split into two classes of L∗1 and

∗RG
L1

(
χG

(s41(j)),0 − χG
(s41(j)),1

)
= ΓL1

1,2j;0 − ΓL1
1,2j;1 + ΓL1

1,q−1+2j;0 − ΓL1
1,q−1+2j;1.

This is proven by 〈∗RG
L1
R41,j,Γ

L1
ja,jb;jc

〉
L1

= δja,1δjb,2j + δja,1δjb,q−1+2j.

The main difference with the cases of R15, R18, R20 and R21 is that we have the following norms:〈
RG

L1

(
ΓL1

0,2j;0 − ΓL1
0,2j;1

)
, RG

L1

(
ΓL1

0,2j;0 − ΓL1
0,2j;1

)〉
G

= 2,

〈
RG

L1

(
ΓL1

0,k;0 − ΓL1
0,k;1

)
, RG

L1

(
ΓL1

0,k;0 − ΓL1
0,k;1

)〉
G

= 2,

〈
RG

L1

(
ΓL1

1,2l;0 − ΓL1
1,2l;1

)
, RG

L1

(
ΓL1

1,2l;0 − ΓL1
1,2l;1

)〉
G

= 2,

for j, k, l in the range given in Table 14 for (respectively) R33(j), R35(k) and R41(l). Then,
RG

L1

(
ΓL1

0,2j;0 − ΓL1
0,2j;1

)
, RG

L1

(
ΓL1

0,k;0 − ΓL1
0,k;1

)
and RG

L1

(
ΓL1

1,2l;0 − ΓL1
1,2l;1

)
are exactly the orthogonal

class functions needed to decompose R33(j), R35(k) and R41(l).
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Table 17: Certain class functions orthogonal to R33(k), R35(k) and R41(k) for k in the ranges
given in Table 14.

χG
(s33(k)),0 − χG

(s33(k)),1 χG
(s35(k)),0 − χG

(s35(k)),1 χG
(s41(k)),0 − χG

(s41(k)),1

c3(j) q2(q + 1)(−1)kj q2(q + 1)i3kl q2(q + 1)(−1)(k+1)j

c4(j) −q2(q + 1)(−1)kj −q2(q + 1)i3kl −q2(q + 1)(−1)(k+1)j

c6(j) q(−1)kj qi3kl q(−1)(k+1)j

c7(j) −q(−1)kj −qi3kl −q(−1)(k+1)j

c8(j) q(−1)kj qi3kl q(−1)(k+1)j

c9(j) −q(−1)kj −qi3kl −q(−1)(k+1)j

c16(j, l) qζ2kl
q−1 + qζ−2kl

q−1 qζklq−1 + qζ−klq−1(−1)kj qζ2kl
q−1(−1)kj + qζ−2kl

q−1 (−1)kj

c17(j, l) −qζ2kl
q−1 − qζ−2kl

q−1 −qζklq−1 − qζ−klq−1(−1)kj −qζ2kl
q−1(−1)kj − qζ−2kl

q−1 (−1)kj

c19(j) 0 0 0
c20(j) 0 0 0

Proposition 12.18. The values of the class functions χG
(s33(j)),0−χG

(s33(j)),1, χG
(s35(j)),0−χG

(s35(j)),1

and χG
(s41(j)),0 − χG

(s41(j)),1 (orthogonal to R33(j), R35(j) and R41(j)) are given in Table 17.

12.4 Decomposition of R39

Lemma 12.19. The irreducible constituents of R39(j) are regular characters for all j in the
range given in Table 14.

This is proved as for Lemma 12.4. We get the decomposition R39(j) = χG
(s39(j)),0 +χG

(s39(j)),1.

Lemma 12.20. The classes (s39(j)) of G∗ do not split as classes of L∗1 and

∗RG
L1

(
χG

(s39(j)),0 − χG
(s39(j)),1

)
= 0.

This comes from
〈∗RG

L1
R39,j,Γ

L1
ja,jb;jc

〉
L1

= 2δja,j+1 mod 2δjb,0.

Lemma 12.21. The classes (s39(j)) of G∗ each split into three classes of L∗2 and

∗RG
L2

(
χG

(s39(j)),0 − χG
(s39(j)),1

)
= ΓL2

q+1+2j;0 − ΓL2
q+1+2j;1 + ΓL2

q+1−2j;0 − ΓL2
q+1−2j;1.

This comes from
〈∗RG

L2
R39(j),ΓL2

ja;jb

〉
L2

= δja,q+1+2j + δja,q+1−2j + 2δja,(j+1)(q+1) mod 2(q+1).

Proposition 12.22. The values of the class functions χG
(s39(j)),0 − χG

(s39(j)),1 (orthogonal to

R39(j)) are given in Table 18.

12.5 Decomposition of R37

The character R37 has degree Φ3
1Φ2Φ3. Therefore, by Proposition 3.28 its constituents are

cuspidal (they have the same degree polynomial since they are GL4(q)-conjugate by Clifford
theory). So their Harish–Chandra restriction to L1 is identically zero.

Lemma 12.23. The classes (s37(j)) of G∗ do not intersect L∗1, however they split into two
classes of L∗2 and

∗RG
L2

(
χG

(s37(j)),0 − χG
(s37(j)),1

)
= ΓL2

j;0 − ΓL2
j;1 + ΓL2

qj;0 − ΓL2
qj;1.
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Table 18: Certain class functions orthogonal to R39(k) for k in the range given in Table 14.
χG

(s39(k)),0 − χG
(s39(k)),1

c3(j) −q2(q − 1)(−1)j(k+1)

c4(j) q2(q − 1)(−1)j(k+1)

c6(j) q(−1)j(k+1)

c7(j) −q(−1)j(k+1)

c8(j) q(−1)j(k+1)

c9(j) −q(−1)j(k+1)

c16(j, l) 0
c17(j, l) 0

c19(j) qζ
j(q+1+2k)
2q+2 + qζ

j(q+1−2k)
2q+2

c20(j) −qζj(q+1+2k)
2q+2 − qζj(q+1−2k)

2q+2

Table 19: Certain class functions orthogonal to R37(k) for k in the range given in Table 14.
χG

(s37(k)),0 − χG
(s37(k)),1

c3(j) −q2(q − 1)i3jk

c4(j) q2(q − 1)i3jk

c6(j) qi3jk

c7(j) −qi3jk
c8(j) qi3jk

c9(j) −qi3jk
c16(j, l) 0
c17(j, l) 0

c19(j) qζ
j(q+1+2k)
2q+2 + qζ

j(q+1−2k)
2q+2

c20(j) −qζj(q+1+2k)
2q+2 − qζj(q+1−2k)

2q+2

This comes from
〈∗RG

L2
R37(j),ΓL2

ja;jb

〉
L2

= δja,j + δja,qj.

Proposition 12.24. The values of the class functions χG
(s37(j)),0 − χG

(s37(j)),1 (orthogonal to

R37(j)) are given in Table 19.

12.6 Decomposition of R43, R47 and R51

These are the last almost characters left to be decomposed. With the knowledge of the rest of
the character table and the Gel’fand–Graev characters of G it is possible to decompose them.

Lemma 12.25. The irreducible constituents of R43, R47 and R51 are regular characters.

This is proved similarly to Lemma 12.4, with the difference that here there are four distinct
constituents instead of two.

Once this is known, the decomposition follows since there are 16 irreducible constituents to
be found and 16 Gel’fand–Graev characters.

In practice, we can remove from the modified Gel’fand–Graev characters all the constituents
but one. This is one of the characters that we are looking for.
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12.7 Closing remarks

We complete the discussion on the decomposition of uniform almost characters of SL4(q) by
pointing out all the information that we could have used directly from the theory of Gel’fand–
Graev characters.

First of all, we can say that the constituents of R18 and R21 are semisimple. This is a
consequence of the fact that any Lusztig series contains semisimple characters that are the dual
of the regular characters of the same series (by definition). And, there are no other possibilities
in those Lusztig series. Equivalently, we can see it by their character degrees (see Remark 5.42).
Moreover, the constituents of R33, R35, R37, R39, R41, R43, R47 and R51 are regular semisimple
characters. This is easy to see, because there are no other characters in their Lusztig series.
Equivalently, from Lübeck’s table we know that they belong to Lusztig series parametrized by
regular semisimple elements of G∗. More precisely, the centralizers in G∗ of those semisimple
elements are indicated as being tori of G∗.

Once the regular /semisimple characters are identified, we can use Theorem 5.37 and Re-
mark 5.39 to directly fix their character values on regular unipotent elements. At the same
time, we fix the values of the Harish-Chandra restriction to L1 of the regular/semisimple char-
acters on the regular unipotent elements of L1. Since there are only two unipotent classes of
SL4 that split in SL4(q), at this point, all character values at unipotent elements are fixed.

Secondly, thanks to scalar products with the modified Gel’fand–Graev characters we can
identify the decomposition of every character χ and RG

L χ in
⊕

ϕ∈Irr(Z(G)) CF(G)ϕ, respectively

in
⊕

ϕ∈Irr(Z(L)) CF(L)ϕ for L = L1 or L = L2. With this information, we can fix every character

value on non-unipotent elements (see Remark 5.55).
We will use this approach in the case of Spin+

8 (q). However, notice that in SL4(q) all the
non-irreducible uniform almost character are either regular or semisimple. This is no longer
the case for Spin+

8 (q).

111







Part III

The case of Spin+8 (q) for q odd

In this part of the work, we want to construct the generic character table of Spin+
8 (q), with q

odd. To this goal, we apply the theory of Gel’fand–Graev characters to decompose the uniform
almost characters of Spin+

8 (q). However, there is a new obstacle arising in the case of Spin+
8 (q)

compared to SL4(q). One crucial fact of the decomposition of the uniform almost characters
of SL4(q) is that their constituents are all either regular or semisimple. This is no longer true
for Spin+

8 (q). It is, nevertheless, possible to write systems of equations involving the values of
any character and the values of modified Gel’fand–Graev characters of the Levi subgroups of
Spin+

8 (q).
In theory, the system of equations arising this way fixes the values for those elements that

have semisimple part whose centralizer is a Levi subgroup. This comes from the fact that, by
their definition there are as many modified Gel’fand–Graev characters in any Levi subgroup
LF as there are classes with that property, i.e. such that the centralizer of the semisimple part
of a representative of the class is L.

The problem arises for elements whose semisimple part has a centralizer which is not a Levi
subgroup of Spin8. However, the number of these cases is small enough that it seems that some
ad-hoc methods might fix them.

13 The simply connected group of type D4 and the finite

groups Spin+
8 (q)

Like for SL4, we first need to determine Chevalley generators and relations for the semisimple
simply connected group Spin8. We use for this the construction developed by Geck in [Ge17],
that results in a 16-dimensional faithful representation.

From now on we fix the following notation.

Notation 13.1. We denote by G a simply connected simple algebraic group of type D4 defined
over Fq (which is Spin8(F̄q)), where q is an odd prime power. Then, we denote by F the
Frobenius morphism associated with the rational structure of G, and by G = Spin+

8 (q) the
finite group of Lie type GF .

We denote by B0 the Borel subgroup of G consisting of upper-triangular matrices and by
U0 = Ru(B0) (the unipotent radical of B0) the maximal unipotent subgroup of G consisting of
upper-triangular matrices with ones on the diagonal (with respect to the representation built
from [Ge17]). Moreover, we write T0 for the maximally split torus of G consisting of diagonal
matrices, such that B0 = T0 n U0, and we denote its normalizer by N0 = NG(T0).

The Weyl group of G is W = N0/T0. The root system associated to G and relative to T0

is of type D4 and is denoted by ΦD4 . A base of positive roots of ΦD4 is denoted by ∆D4 and
the set of positive roots relative to this base is denoted by Φ+

D4
. We denote by I the index set

of ∆D4 , and for all i ∈ I we denote the roots subgroups by Ui := Uαi .
Analogously for the subgroups of the finite group G, we will write B0 = BF

0 , U0 = UF
0 ,

T0 = TF
0 , N0 = NG(T0) and Ui = Uαi = UF

i .
When working with the finite fields, we will need to choose generators of F×q and F×q2 . As

in the previous part of the work, µ ∈ F×q is fixed such that 〈µ〉 = F×q , and ρ ∈ F×q2 such that

〈ρ〉 = F×q2 and ρq+1 = µ.
Again, when possible, any polynomial expressions in q will be given as product of the

cyclotomic polynomials. They will be denoted by Φ1 = q − 1, Φ2 = q + 1, Φ3 = q2 + q + 1,
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Φ4 = q2 + 1 and Φ6 = q2 − q + 1.

Notice, before we start, that D4 is the only indecomposable root system that has a diagram
permutation of order 3. We call triality automorphism the graph automorphism of G arising
from the permutation of order 3 of the external nodes of the Dynkin diagram of type D4, see
[Ca72, Chapter 12.2] for details on automorphisms of Chevalley groups (p. 200 for graph auto-
morphisms). We denote, both, the triality permutation and the induced triality automorphism
by τ .

13.1 Explicit construction of the algebraic group

Geck gives in [Ge17] an explicit identification of the BN pair of G. He does it by representing
the elements of U0, N0 = NG(T0) and T0 as maps over a vector space whose basis elements
are indexed by W -obits of “minuscule” weights. This results in a 16-dimensional faithful rep-
resentation of G. We follow here this construction step-by-step to get a Steinberg presentation
of G.

13.1.1 Roots and weights

The root system ΦD4 of G of type D4 with respect to a maximal torus T0 has a base of simple
roots ∆D4 = {α1, α2, α3, α4} (with index set I = {1, 2, 3, 4}) with Cartan matrix

〈
αi, α

∨
j

〉
i,j∈I =


2 0 −1 0
0 2 −1 0
−1 −1 2 −1
0 0 −1 2

 .

D4
α1

α2

α3 α4

Figure 2: Dynking diagram of type D4. The white dots represent the roots for which the
associated fundamental dominant weights are minuscule.

The positive roots Φ+
D4

of this root system are given in Table 20.
The construction of the algebraic group starts with the identification of the minuscule

weights. See [Ge17, Section 2 (after Remark 2.1) and Table 1] for the definition and the list of
all minuscule dominant weights. For D4 there are three minuscule weights λ1, λ2 and λ4, where
λi is the fundamental dominant weight associated to αi, i.e. 〈λi, α∨j 〉 = δij for i, j ∈ I.

Then, we need the union of the W -orbits of the minuscule dominant weights, this set will be
denoted Ψ. From [Ge17, Theorem 4.11] we have that ZΨ is isomorphic to the character group
of T0. Consequently, the fundamental group of G is trivial (hence G is simply connected) if
ZΨ is equal to the weight lattice Λ. It is easy to see that, if one considers the union of the
W -orbits of all three λ1, λ2 and λ4 then ZΨ = Λ. However, one can choose more economically
only λ1 and λ2 and still have ZΨ = Λ.

From now on, Ψ denotes the union of the W -orbits of the minuscule dominant weights λ1

and λ2. The elements of Ψ are listed in Table 21 partially ordered according to the partial
order � defined by µ � µ′ if µ = µ′ or µ − µ′ is a sum of positive roots. The enumeration of
the elements of Ψ = {µ1, ..., µ16} is chosen such that i < j whenever µj � µi.
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Table 20: Positive roots written as sums of simple roots and as images under simple reflections
of simple roots.

α1 α1 α1

α2 α2 α2

α3 α3 α3

α4 α4 α4

α5 α1 + α3 sα1(α3)
α6 α2 + α3 sα2(α3)
α7 α3 + α4 sα4(α3)
α8 α1 + α2 + α3 sα2sα1(α3)
α9 α1 + α3 + α4 sα4sα1(α3)
α10 α2 + α3 + α4 sα4sα2(α3)
α11 α1 + α2 + α3 + α4 sα4sα2sα1(α3)
α12 α1 + α2 + 2α3 + α4 sα3sα4sα2sα1(α3)

13.1.2 Chevalley generators

Following [Ge17], we can construct a faithful representation of the algebraic group Spin8 and
determine its Chevalley generators. To lighten the notation all the bars over the maps in [Ge17]
were dropped here.

Let k = F̄q, for q odd, and M a free k-module with basis {zµ | µ ∈ Ψ} (to be precise,
let MZ = 〈zµ | µ ∈ Ψ〉Z then M = k ⊗MZ). Then, for i ∈ I and t ∈ k we define the maps
ui(t), vi(t) ∈ GL(M) by

ui(t) : zµ 7→
{
zµ + tzµ+αi µ+ αi ∈ Ψ,
zµ else,

vi(t) : zµ 7→
{
zµ + tzµ−αi µ− αi ∈ Ψ,
zµ else.

Then, it is proved in [Ge17, Theorem 4.11 and Example 5.6] that

G = Gk(Ψ) := 〈ui(t), vi(t) | i ∈ I, t ∈ k〉

is the simply connected Chevalley group of type D4. We give now the details of the construction
of these maps and, in particular, of the Steinberg presentation of G.

The construction of the Chevalley groups in [Ge17] gives a way of writing down elements
explicitly fixing, among others, the signs occurring in the Chevalley relations.

For i ∈ I, we define the nilpotent linear maps of M

ei : zµ 7→
{
zµ+αi µ+ αi ∈ Ψ,
0 else,

fi : zµ 7→
{
zµ−αi µ− αi ∈ Ψ,
0 else.

Then, we set ui(t) = idM + tei and vi(t) = idM + tfi, for t ∈ k.
Then, [Ge17, Lemma 4.8] states that there is a unique group isomorphism W → N0/T0. It

is such that si 7→ niT0 for all i ∈ I (si = sαi are the simple reflections of W ), with ni = ni(1)
where ni(t) = ui(t)vi(−t−1)ui(t) are maps acting on M as

ni(t) : zµ 7→


tzµ+αi µ+ αi ∈ Ψ,
−t−1zµ−αi µ− αi ∈ Ψ,
zµ else,
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Table 21: W -orbits of minuscule weights λ1 and λ2 (ordering given by the partial order � from
“big” to “small”), and their scalar products with the simple coroots.

µ 〈µ, α∨1 〉 〈µ, α∨2 〉 〈µ, α∨3 〉 〈µ, α∨4 〉
λ1 1 0 0 0
λ1 − α1 -1 0 1 0
λ1 − α1 − α3 0 1 -1 1
λ1 − α1 − α2 − α3 0 -1 0 1
λ1 − α1 − α3 − α4 0 1 0 -1
λ1 − α1 − α2 − α3 − α4 0 -1 1 -1
λ1 − α1 − α2 − 2α3 − α4 1 0 -1 0
λ1 − 2α1 − α2 − 2α3 − α4 -1 0 0 0
λ2 0 1 0 0
λ2 − α2 0 -1 1 0
λ2 − α2 − α3 1 0 -1 1
λ2 − α1 − α2 − α3 -1 0 0 1
λ2 − α2 − α3 − α4 1 0 0 -1
λ2 − α1 − α2 − α3 − α4 -1 0 1 -1
λ2 − α1 − α2 − 2α3 − α4 0 1 -1 0
λ2 − α1 − 2α2 − 2α3 − α4 0 -1 0 0

for t ∈ k×.
To have an effective description of the elements of G, we need root maps from F̄q to the

root subgroup Uα for each α ∈ Φ+
D4

.
Set ui(t) := uαi(t) := idM + teαi for i = 1, ..., 12, and αi ∈ Φ+

D4
. To define ej := eαj , for

j = 1, ..., 12, we choose a sequence i, i1, i2, ..., il ∈ I such that αj = sαi1sαi2 · · · sαil (αi) as in
Table 20. Then, we define

ej := eαj := ni1ni2 · · ·nilein−1
il
· · ·n−1

i2
n−1
i1

for j = 1, ..., 12.
Notice that ej are defined up to a sign and that they perform the following transformation

on M

ej(zµ) =

{
±zµ+αi µ+ αj ∈ Ψ,
0 else.

It is now possible to explicitly compute niej for all i ∈ I and j = 1, ..., 12, given in Table 22
(on the left). This in turn is used to get the explicit action of the Weyl group W on U0, this
is shown in Table 22 (on the right) for all α 6= αi (cases with equality are not needed in what
follows).
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Table 22: Action of the Weyl group W on the maps ei, ui(t) via conjugation with the repre-
sentatives nj of the simple reflections, for j ∈ I, i = 1, ..., 12, ei = eαi and ui(t) = uαi(t).

n1 n2 n3 n4

e1 − +e1 −e5 +e1

e2 +e2 − −e6 +e2

e3 +e5 +e6 − +e7

e4 +e4 +e4 −e7 −
e5 −e3 +e8 +e1 +e9

e6 +e8 −e3 +e2 +e10

e7 +e9 +e10 +e4 −e3

e8 −e6 −e5 +e8 +e11

e9 −e7 +e11 +e9 −e5

e10 +e11 −e7 +e10 −e6

e11 −e10 −e9 +e12 −e8

e12 +e12 +e12 −e11 +e12

n1 n2 n3 n4

u1(t) − u1(t) u5(−t) u1(t)
u2(t) u2(t) − u6(−t) u2(t)
u3(t) u5(t) u6(t) − u7(t)
u4(t) u4(t) u4(t) u7(−t) −
u5(t) u3(−t) u8(t) u1(t) u9(t)
u6(t) u8(t) u3(−t) u2(t) u10(t)
u7(t) u9(t) u10(t) u4(t) u3(−t)
u8(t) u6(−t) u5(−t) u8(t) u11(t)
u9(t) u7(−t) u11(t) u9(t) u5(−t)
u10(t) u11(t) u7(−t) u10(t) u6(−t)
u11(t) u10(−t) u9(−t) u12(t) u8(−t)
u12(t) u12(t) u12(t) u11(−t) u12(t)

To compute the commutation relations of U0, [uα(t), uβ(s)] = uα(−t)uβ(−s)uα(t)uβ(s),
we use [Ge17, Proposition 4.2] stating that, when they are non-trivial, they are of the form
[uα(t), uβ(s)] = uα+β(cts) for c ∈ {±1} given by [eα, eβ] = ceα+β (as a Lie subalgebra of
Endk(M)). The non-trivial Lie brackets [eα, eβ] are

[e1, e3] = e5

[e1, e6] = e8

[e1, e7] = e9

[e1, e10] = e11

[e2, e3] = e6

[e2, e5] = e8

[e2, e7] = e10

[e2, e9] = e11

[e3, e4] = −e7

[e3, e11] = e12

[e4, e5] = e9

[e4, e6] = e10

[e4, e8] = e11

[e5, e10] = −e12

[e6, e9] = −e12

[e7, e8] = −e12.

We describe now the semisimple elements contained in the maximally split torus T0. The
latter is of the form T0 = 〈hi(t) | i ∈ I, t ∈ k×〉, where by [Ge17, Lemma 4.4] the semisimple
elements hi(t) are represented by maps of M given by

hi(t) = ni(t)ni(−1) : zµ 7→ t〈µ,α
∨
i 〉zµ.

These elements normalize U0. For i ∈ I, α ∈ Φ+, t ∈ k and s ∈ k×, we get ([Ge17, Lemma
4.6])

hi(s)uα(t)hi(s)
−1 = uα(ts〈α,α

∨
i 〉).

Notation 13.2. From now on we write

h(t1, t2, t3, t4) := h1(t1)h2(t2)h3(t3)h4(t4)

for a generic element of T0, for t1, t2, t3, t4 ∈ k×.

Finally, the centre of G is isomorphic to C2×C2 by [Ge17, Corollary 4.9 and Example 5.7],
(but also by explicit computation with Theorem 1.18 (b))

Z(G) =
{
h(t1, t2, 1, t1t2) | t21 = t22 = 1

}
.

Notice that (unlike in the case of SL4) for every odd q the equation t21 = t22 = 1 in F̄q has all its
solutions in Fq and therefore Z(G) is also the centre of the finite group GF .
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Table 23: Action of the Weyl group W on T0 via conjugation with the representatives ni of
the simple reflections, i.e. nihj(t)n

−1
i for t ∈ F̄×q and i, j ∈ I.

n1 n2 n3 n4

h1(t) h1(t−1) h1(t) h1(t)h3(t) h1(t)
h2(t) h2(t) h2(t−1) h2(t)h3(t) h2(t)
h3(t) h1(t)h3(t) h2(t)h3(t) h3(t−1) h4(t)h3(t)
h4(t) h4(t) h4(t) h3(t)h4(t) h4(t−1)

13.2 The finite spin groups Spin+
8 (q)

Let F be the untwisted Frobenius endomorphism of G associated to the Fq-structure of G.
Then G = GF is a finite group.

By the discussion after Proposition 1.57 the group G inherits the Chevalley generators and
the Chevalley relations from G by restricting all formulas from Section 13.1.2 to parameters
from Fq.

Proposition 13.3. The finite group of Lie type G = GF has order ([MaTe11, Table 24.1])

|G| = q12Φ4
1Φ4

2Φ3Φ2
4Φ6.

It is generated by unipotent elements,

G = 〈ui(t), vi(t) | i ∈ I, t ∈ Fq〉 .

It has a split BN-pair formed by the Borel subgroup B0 = T0 n U0 with
T0 = TF

0 =
〈
hi(t) | i ∈ I, t ∈ F×q

〉
, U0 = UF

0 = 〈ui(t) | i ∈ I, t ∈ Fq〉 and the normalizer of T0,
N0 = NF

0 = 〈T0, ni | i ∈ I〉.
The action of the Weyl group W = N0/T0 on the unipotent elements is given in Table 22

when identifying the simple reflections sαi of W with their representatives ni for i ∈ I.
The action of T0 on the unipotent elements is given by

hi(s)uα(t)hi(s)
−1 = uα(ts〈α,α

∨
i 〉)

for s ∈ F×q , t ∈ Fq and i ∈ I.
The non trivial commutation relations between unipotent elements of U0 are (they directly

follow from the discussion in Section 13.1.2)

[u1(t), u3(s)] = u5(ts),

[u1(t), u6(s)] = u8(ts),

[u1(t), u7(s)] = u9(ts),

[u1(t), u10(s)] = u11(ts),

[u2(t), u3(s)] = u6(ts),

[u2(t), u5(s)] = u8(ts),

[u2(t), u7(s)] = u10(ts),

[u2(t), u9(s)] = u11(ts),

[u3(t), u4(s)] = u7(−ts),
[u3(t), u11(s)] = u12(ts),

[u4(t), u5(s)] = u9(ts),

[u4(t), u6(s)] = u10(ts),

[u4(t), u8(s)] = u11(ts),

[u5(t), u10(s)] = u12(−ts),
[u6(t), u9(s)] = u12(−ts),
[u7(t), u8(s)] = u12(−ts).

The centre of G is Z(G) = Z(G) = {h(t1, t2, 1, t1t2) | t21 = t22 = 1}.
The F -classes of Z(G) are H1(F,Z(G)) ∼= Z(G).
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Notation 13.4. The elements of the centre, Z = Z(G), will be denoted simply by

hZ(ka, kb) := h
(
µ
q−1

2
ka , µ

q−1
2
kb , 1, µ

q−1
2

(ka+kb)
)

for ka, kb = 0, 1.

Remark 13.5. As discussed in Remark 1.64 we can associate to each element z ∈ H1(F,Z(G))
a representative gz ∈ T0. We choose for z = hZ(ka, kb)

g(ka,kb) = h
(
ρ−

q+1
2
ka , ρ−

q+1
2
kb , 1, ρ−

q+1
2

(ka+kb)
)
∈ T0,

for ka, kb = 0, 1.
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14 Fusion of unipotent classes

We compute, in this section, the fusion of the unipotent classes. In other words we explicitly
write to which conjugacy class of G belong the elements of each conjugacy class of U0.

As discussed in Section 6.3, we start by giving the conjugacy classes of U0.

Remark 14.1. The numbering of the positive roots is such that Uk+1 · · ·U12 C UkUk+1 · · ·U12

for each k = 1, ..., 11. This can be seen by the commutation relations in Proposition 13.3.
Moreover, every element u ∈ U0 can be written uniquely as the ordered product

u = u1(r1)u2(r2) · · ·u12(r12)

with ri ∈ Fq.

Proposition 14.2. The conjugacy classes of U are listed in Table 24, in the first column. They
are also listed in the appendix with their U0-orbits in Table 60.

Remark 14.3. There are
2q5 + 5q4 − 4q3 − 4q2 + 2q

different conjugacy classes in U0, in agreement with [GoRoe09, Table 1].

By acting with T0 we obtain the representatives of the unipotent classes of B0.

Proposition 14.4. Representatives of the unipotent classes of B0 are given in the fourth column
of Table 24.

We give an example of the computation of the fusion from U0 to B0.

Example 14.5. Fusion of u1(r1)u2(r2)u4(r4) to B0, for r1, r2, r4 ∈ F×q :
We have, by Proposition 13.3,

h1(s1)h2(s2)h3(s3)h4(s4)(u1(r1)u2(r2)u4(r4)) = u1(r1s
2
1s
−1
3 )u2(r2s

2
2s
−1
3 )u4(r4s

−1
3 s2

4)

where s1, s2, s3, s4 ∈ F×q .
It is clear that the argument of u4 can be set to 1 by imposing s3 = r4s

2
4. Then, the

expression becomes
u1(r1r

−1
4 s2

1s
−2
4 )u2(r2r

−1
4 s2

2s
−2
4 )u4(1)

The first and/or second arguments can be set to 1 only if, respectively, r1r4 and/or r2r4 are
squares of F×q . Otherwise, they can be set to a chosen non-square of F×q , for example µ.

In other words, u1(r1)u2(r2)u4(r4) is conjugate to u1(µk)u2(µl)u4(1) if r1r4 ∈ µk(F×q )2 and
r2r4 ∈ µl(F×q )2.

The next step is the fusion from B0 to G. This is performed thanks to the action of the
Weyl group (Table 22) on the representatives of B0. In practice, we write a list of elements
of W in reduced form and lift them to a product of the ni in N0. Then, we conjugate the
representatives of B0 with these elements of N0 (only with those that do not concern the blank
cases of Table 22).

This results in a list of elements of U0 in an unordered product of the ui. We reorder the
products with the commutation relations in Proposition 13.3, and use Table 60 to find which
element of U0 are conjugate.

We give an example of the computation of the fusion from B0 to G.

121



Table 24: Representatives of the conjugacy classes of U0 and their representative in B0, with
r1, ..., r12 ∈ F×q . They are listed in the order in which they are computed thanks to the algorithm
discussed in Section 6.3. The second column contains the number of classes of each type.
The third column contains the centralizer order in U0 of u. The last two columns contain
representatives of the B0-class of u. (Continues on the next page)
u #classes |CU0

(u)| Representative in B0 Conditions

1 1 q12 1

u12(r12) q − 1 q12 u12(1)

u11(r11) q − 1 q11 u11(1)

u10(r10) q − 1 q10 u10(1)

u9(r9) q − 1 q10 u9(1)

u9(r9)u10(r10) (q − 1)2 q10 u9(µk)u10(1) r9r10 ∈ µk(F×q )2

u8(r8) q − 1 q10 u8(1)

u8(r8)u9(r9) (q − 1)2 q10 u8(µk)u9(1) r8r9 ∈ µk(F×q )2

u8(r8)u10(r10) (q − 1)2 q10 u8(µk)u10(1) r8r10 ∈ µk(F×q )2

u8(r8)u9(r9)u10(r10) (q − 1)3 q10 u8(µk)u9(µl)u10(1) r8r10 ∈ µk(F×q )2, r9r10 ∈ µl(F×q )2

u7(r7) q − 1 q9 u7(1)
u7(r7)u8(r8) (q − 1)2 q8 u7(1)u8(1)

u7(r7)u11(r11) (q − 1)2 q9 u7(µk)u11(1) r7r11 ∈ µk(F×q )2

u6(r6) q − 1 q9 u6(1)

u6(r6)u7(r7) (q − 1)2 q9 u6(µk)u7(1) r6r7 ∈ µk(F×q )2

u6(r6)u9(r9) (q − 1)2 q8 u6(1)u9(1)

u6(r6)u11(r11) (q − 1)2 q9 u6(µk)u11(1) r6r11 ∈ µk(F×q )2

u6(r6)u7(r7)u9(r9) (q − 1)3 q8 u6(µk)u7(1)u9(1) r6r7 ∈ µk(F×q )2

u6(r6)u7(r7)u11(r11) (q − 1)3 q9 u6(µk)u7(µl)u11(1) r6r11 ∈ µk(F×q )2, r7r11 ∈ µl(F×q )2

u5(r5) q − 1 q9 u5(1)

u5(r5)u6(r6) (q − 1)2 q9 u5(µk)u6(1) r5r6 ∈ µk(F×q )2

u5(r5)u7(r7) (q − 1)2 q9 u5(µk)u7(1) r5r7 ∈ µk(F×q )2

u5(r5)u10(r10) (q − 1)2 q8 u5(1)u10(1)

u5(r5)u11(r11) (q − 1)2 q9 u5(µk)u11(1) r5r11 ∈ µk(F×q )2

u5(r5)u6(r6)u7(r7) (q − 1)3 q8 u5(µk)u6(µl)u7(1) r5r7 ∈ µk(F×q )2, r6r7 ∈ µl(F×q )2

u5(r5)u6(r6)u10(r10) (q − 1)3 q8 u5(µk)u6(1)u10(1) r5r6 ∈ µk(F×q )2

u5(r5)u6(r6)u11(r11) (q − 1)3 q9 u5(µk)u6(µl)u11(1) r5r11 ∈ µk(F×q )2, r6r11 ∈ µl(F×q )2

u5(r5)u7(r7)u10(r10) (q − 1)3 q8 u5(µk)u7(1)u10(1) r5r7 ∈ µk(F×q )2

u5(r5)u7(r7)u11(r11) (q − 1)3 q9 u5(µk)u7(µl)u11(1) r5r11 ∈ µk(F×q )2, r7r11 ∈ µl(F×q )2

u5(r5)u6(r6)u7(r7)u11(r11) (q − 1)4 q8 u5(µk)u6(µl)u7(µm)u11(1) r5r11 ∈ µk(F×q )2, r6r11 ∈ µl(F×q )2,

r7r11 ∈ µm(F×q )2

u4(r4) q − 1 q8 u4(1)
u4(r4)u5(r5) (q − 1)2 q6 u4(1)u5(1)
u4(r4)u6(r6) (q − 1)2 q6 u4(1)u6(1)
u4(r4)u8(r8) (q − 1)2 q7 u4(1)u8(1)

u4(r4)u12(r12) (q − 1)2 q8 u4(µk)u12(1) r4r12 ∈ µk(F×q )2

u4(r4)u5(r5)u6(r6) (q − 1)3 q6 u4(1)u5(µk)u6(1) r5r6 ∈ µk(F×q )2

u3(r3) q − 1 q8 u3(1)
u3(r3)u4(r4) (q − 1)2 q5 u3(1)u4(1)

u3(r3)u8(r8) (q − 1)2 q8 u3(µk)u8(1) r3r8 ∈ µk(F×q )2

u3(r3)u9(r9) (q − 1)2 q8 u3(µk)u9(1) r3r9 ∈ µk(F×q )2

u3(r3)u10(r10) (q − 1)2 q8 u3(µk)u10(1) r3r10 ∈ µk(F×q )2

u3(r3)u11(r11) (q − 1)2 q8 u3(1)u11(1)

u3(r3)u4(r4)u8(r8) (q − 1)3 q5 u3(µk)u4(1)u8(1) r3r8 ∈ µk(F×q )2

u3(r3)u8(r8)u9(r9) (q − 1)3 q8 u3(µk)u8(µl)u9(1) r3r9 ∈ µk(F×q )2, r8r9 ∈ µl(F×q )2

u3(r3)u8(r8)u10(r10) (q − 1)3 q8 u3(µk)u8(µl)u10(1) r3r10 ∈ µk(F×q )2, r8r10 ∈ µl(F×q )2

u3(r3)u8(r8)u11(r11) (q − 1)3 q8 u3(µk)u8(1)u11(1) r3r8 ∈ µk(F×q )2

u3(r3)u9(r9)u10(r10) (q − 1)3 q8 u3(µk)u9(µl)u10(1) r3r10 ∈ µk(F×q )2, r9r10 ∈ µl(F×q )2

u3(r3)u9(r9)u11(r11) (q − 1)3 q8 u3(µk)u9(1)u11(1) r3r9 ∈ µk(F×q )2

u3(r3)u10(r10)u11(r11) (q − 1)3 q8 u3(µk)u10(1)u11(1) r3r10 ∈ µk(F×q )2

u3(r3)u8(r8)u9(r9)u10(r10) (q − 1)4 q8 u3(µk)u8(µl)u9(µm)u10(1) r3r10 ∈ µk(F×q )2, r8r10 ∈ µl(F×q )2,

r9r10 ∈ µm(F×q )2

u3(r3)u8(r8)u9(r9)u11(r11) (q − 1)4 q8 u3(µk)u8(µl)u9(1)u11(1) r3r9 ∈ µk(F×q )2, r8r9 ∈ µl(F×q )2

u3(r3)u8(r8)u10(r10)u11(r11) (q − 1)4 q8 u3(µk)u8(µl)u10(1)u11(1) r3r10 ∈ µk(F×q )2, r8r10 ∈ µl(F×q )2

u3(r3)u9(r9)u10(r10)u11(r11) (q − 1)4 q8 u3(µk)u9(µl)u10(1)u11(1) r3r10 ∈ µk(F×q )2, r9r10 ∈ µl(F×q )2

u3(r3)u8(r8)u9(r9)u10(r10)u11(r11) (q − 1)5 q8 u3(r3r2
11r
−1
8 r−1

9 r−1
10 µ

kµl)×
u8(µk)u9(µl)u10(1)u11(1)

r8r10 ∈ µk(F×q )2, r9r10 ∈ µl(F×q )2
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u #classes |CU0
(u)| Representative in B0 Conditions

u2(r2) q − 1 q8 u2(1)
u2(r2)u3(r3) (q − 1)2 q5 u2(1)u3(1)

u2(r2)u4(r4) (q − 1)2 q8 u2(µk)u4(1) r2r4 ∈ µk(F×q )2

u2(r2)u5(r5) (q − 1)2 q6 u2(1)u5(1)
u2(r2)u7(r7) (q − 1)2 q6 u2(1)u7(1)
u2(r2)u9(r9) (q − 1)2 q7 u2(1)u9(1)

u2(r2)u12(r12) (q − 1)2 q8 u2(µk)u12(1) r2r12 ∈ µk(F×q )2

u2(r2)u3(r3)u4(r4) (q − 1)3 q5 u2(µk)u3(1)u4(1) r2r4 ∈ µk(F×q )2

u2(r2)u3(r3)u9(r9) (q − 1)3 q5 u2(1)u3(µk)u9(1) r3r9 ∈ µk(F×q )2

u2(r2)u4(r4)u5(r5) (q − 1)3 q6 u2(µk)u4(1)u5(1) r2r4 ∈ µk(F×q )2

u2(r2)u4(r4)u7(r7) (q − 1)3 q6 u2(µk)u4(1)u7(1) r2r4 ∈ µk(F×q )2

u2(r2)u4(r4)u9(r9) (q − 1)3 q7 u2(µk)u4(1)u9(1) r2r4 ∈ µk(F×q )2

u2(r2)u4(r4)u12(r12) (q − 1)3 q8 u2(µk)u4(µl)u12(1) r2r12 ∈ µk(F×q )2, r4r12 ∈ µl(F×q )2

u2(r2)u5(r5)u7(r7) (q − 1)3 q6 u2(1)u5(µk)u7(1) r5r7 ∈ µk(F×q )2

u2(r2)u3(r3)u4(r4)u9(r9) (q − 1)4 q5 u2(µk)u3(µl)u4(1)u9(1) r2r4 ∈ µk(F×q )2, r3r9 ∈ µl(F×q )2

u2(r2)u4(r4)u5(r5)u7(r7) (q − 1)4 q6 u2(µk)u4(1)u5(µl)u7(1) r2r4 ∈ µk(F×q )2, r5r7 ∈ µl(F×q )2

u1(r1) q − 1 q8 u1(1)

u1(r1)u2(r2) (q − 1)2 q8 u1(µk)u2(1) r1r2 ∈ µk(F×q )2

u1(r1)u3(r3) (q − 1)2 q5 u1(1)u3(1)

u1(r1)u4(r4) (q − 1)2 q8 u1(µk)u4(1) r1r4 ∈ µk(F×q )2

u1(r1)u6(r6) (q − 1)2 q6 u1(1)u6(1)
u1(r1)u7(r7) (q − 1)2 q6 u1(1)u7(1)
u1(r1)u10(r10) (q − 1)2 q7 u1(1)u10(1)

u1(r1)u12(r12) (q − 1)2 q8 u1(µk)u12(1) r1r12 ∈ µk(F×q )2

u1(r1)u2(r2)u3(r3) (q − 1)3 q5 u1(µk)u2(1)u3(1) r1r2 ∈ µk(F×q )2

u1(r1)u2(r2)u4(r4) (q − 1)3 q7 u1(µk)u2(µl)u4(1) r1r4 ∈ µk(F×q )2, r2r4 ∈ µl(F×q )2

u1(r1)u2(r2)u6(r6) (q − 1)3 q6 u1(µk)u2(1)u6(1) r1r2 ∈ µk(F×q )2

u1(r1)u2(r2)u7(r7) (q − 1)3 q6 u1(µk)u2(1)u7(1) r1r2 ∈ µk(F×q )2

u1(r1)u2(r2)u10(r10) (q − 1)3 q7 u1(µk)u2(1)u10(1) r1r2 ∈ µk(F×q )2

u1(r1)u2(r2)u12(r12) (q − 1)3 q8 u1(µk)u2(µl)u12(1) r1r12 ∈ µk(F×q )2, r2r12 ∈ µl(F×q )2

u1(r1)u3(r3)u4(r4) (q − 1)3 q5 u1(µk)u3(1)u4(1) r1r4 ∈ µk(F×q )2

u1(r1)u3(r3)u10(r10) (q − 1)3 q5 u1(1)u3(µk)u10(1) r3r10 ∈ µk(F×q )2

u1(r1)u4(r4)u6(r6) (q − 1)3 q6 u1(µk)u4(1)u6(1) r1r4 ∈ µk(F×q )2

u1(r1)u4(r4)u7(r7) (q − 1)3 q6 u1(µk)u4(1)u7(1) r1r4 ∈ µk(F×q )2

u1(r1)u4(r4)u10(r10) (q − 1)3 q7 u1(µk)u4(1)u10(1) r1r4 ∈ µk(F×q )2

u1(r1)u4(r4)u12(r12) (q − 1)3 q8 u1(µk)u4(µl)u12(1) r1r12 ∈ µk(F×q )2, r4r12 ∈ µl(F×q )2

u1(r1)u6(r6)u7(r7) (q − 1)3 q6 u1(1)u6(µk)u7(1) r6r7 ∈ µk(F×q )2

u1(r1)u2(r2)u3(r3)u4(r4) (q − 1)4 q4 u1(µk)u2(µl)u3(1)u4(1) r1r4 ∈ µk(F×q )2, r2r4 ∈ µl(F×q )2

u1(r1)u2(r2)u3(r3)u10(r10) (q − 1)4 q5 u1(µk)u2(1)u3(µl)u10(1) r1r2 ∈ µk(F×q )2, r3r10 ∈ µl(F×q )2

u1(r1)u2(r2)u4(r4)u6(r6) (q − 1)4 q6 u1(µk)u2(µl)u4(1)u6(1) r1r4 ∈ µk(F×q )2, r2r4 ∈ µl(F×q )2

u1(r1)u2(r2)u4(r4)u7(r7) (q − 1)4 q6 u1(µk)u2(µl)u4(1)u7(1) r1r4 ∈ µk(F×q )2, r2r4 ∈ µl(F×q )2

u1(r1)u2(r2)u4(r4)u12(r12) (q − 1)4 q7 u1(µk)u2(µl)u4(µm)u12(1) r1r12 ∈ µk(F×q )2, r2r12 ∈ µl(F×q )2,

r4r12 ∈ µm(F×q )2

u1(r1)u2(r2)u6(r6)u7(r7) (q − 1)4 q6 u1(µk)u2(1)u6(µl)u7(1) r1r2 ∈ µk(F×q )2, r6r7 ∈ µl(F×q )2

u1(r1)u3(r3)u4(r4)u10(r10) (q − 1)4 q5 u1(µk)u3(µl)u4(1)u10(1) r1r4 ∈ µk(F×q )2, r3r10 ∈ µl(F×q )2

u1(r1)u4(r4)u6(r6)u7(r7) (q − 1)4 q6 u1(µk)u4(1)u6(µl)u7(1) r1r4 ∈ µk(F×q )2, r6r7 ∈ µl(F×q )2

u1(r1)u2(r2)u4(r4)u6(r6)u7(r7) (q − 1)5 q6 u1(1)u2(µk)×
u4(r4r6r

−1
2 r−1

7 µk−l)×
u6(µl)u7(1)

r1r2 ∈ µk(F×q )2, r6r7 ∈ µl(F×q )2
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Example 14.6. Fusion of u1(µk)u2(1)u3(1) to G, for k = 0, 1:
Conjugation with W yields the following list of conjugates in U0,

u1(µk)u2(1)u3(1), u1(µk)u2(1)u7(1), u2(µk)u1(1)u3(1), u2(µk)u1(1)u7(−1),

u3(µk)u8(−1)u4(1), u5(−µk)u6(−1)u4(1), u6(µk)u5(1)u4(1), u8(−µk)u3(1)u4(1).

With the commutation relations, we reorder these elements and check to what element of
B0 they are conjugate (with Table 60).

In the ordered form the list becomes

u1(µk)u2(1)u3(1), u1(µk)u2(1)u7(1), u1(1)u2(µk)u3(1), u1(1)u2(µk)u7(−1),

u3(µk)u4(1)u8(−1)u11(1), u4(1)u5(−µk)u6(−1)u9(µk)u10(1)u12(−µk),
u4(1)u5(1)u6(µk)u9(−1)u10(−µk)u12(−µk), u3(1)u4(1)u8(−µk)u11(µk).

From Table 25, it is easy to see that the first and third elements are already in the same
class (same for the second and fourth elements).

For the other elements, we need Table 60 to identify to which class they belong.
Finally,

u1(µk)u2(1)u3(1), u1(µk)u2(1)u7(1), u3(−µk)u4(1)u8(1), u4(1)u5(µk)u6(1)

belong to the same conjugacy class of G.

Lübeck computed a parametrization of the unipotent classes of G and their centralizers.
He gives lists the unipotent classes in terms of Jordan normal forms of representatives in
SO+

8 (q).10 There are 28 distinct unipotent classes in G. Therefore, once a list of 28 candidate
representatives is found (and every element of U0 is conjugate to one of these) it is not checked
that they are indeed not conjugate to each other.11

The representatives computed here are associated to those computed by Lübeck thanks to
their Jordan normal form (after projecting to SO8). Only for two classes this is not enough to
identify them. The two classes with Jordan blocks 3212 have different centralizer, with orders,
2q8(q − 1)2 and 2q8(q + 1)2. By explicit computation, one of the classes is centralized only
by two elements of the maximally split torus T0. Then, it must be the one with centralizer
2q8(q + 1)2.

Proposition 14.7. There are 28 distinct unipotent conjugacy classes in G. They fuse in G
according to Table 26. A list of representatives with corresponding centralizer in G is given in
Table 25.

Remark 14.8. Although the “same” representatives of the unipotent classes can be chosen
for all q odd, it is obvious from Table 26 that the fusion of classes is not the same. This
is a consequence of −1 being a square of F×q for the congruence q ≡ 1 (mod 4) but not for
q ≡ 3 (mod 4).

The triality automorphism τ of G leaves invariant the unipotent subgroup U0. It is pos-
sible to compute the permutation of the unipotent classes performed by τ , once the fusion of
unipotent classes is known (Table 26 and Table 48).

We end this section with an example of the action of the triality on the unipotent classes.
This action is summarized in Table 48.

10The spin group is related to the orthogonal group by the short exact sequence 1→ C2 → Spin8 → SO8 → 1.
In other words there is a projection from Spin8 to SO8.

11The number of unipotent classes can be computed knowing representatives of the unipotent conjugacy
classes of SO8. See for example [LiSe12, Proposition 3.19].
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Table 25: Representatives of the unipotent classes of G and the order of their centralizer.

Jordan blocks Representative u |CG(u)|
18 1 q12Φ4

1Φ4
2Φ3Φ2

4Φ6

2214 u1(1) q12Φ3
1Φ3

2

24+ u1(µk)u2(1), k = 0, 1 2q10Φ2
1Φ2

2Φ4

24− u1(µk)u4(1), k = 0, 1 2q10Φ2
1Φ2

2Φ4

315 u2(µk)u4(1), k = 0, 1 2q10Φ2
1Φ2

2Φ4

3221 u1(µk)u2(µl)u4(1), k, l = 0, 1 4q10Φ1Φ2

3212 u1(1)u3(1) 2q8Φ2
1

3212 u1(µ)u2(1)u4(1)u12(1) 2q8Φ2
2

42+ u1(µk)u2(1)u3(1), k = 0, 1 2q6Φ1Φ2

42− u1(µk)u3(1)u4(1), k = 0, 1 2q6Φ1Φ2

513 u2(µk)u3(1)u4(1), k = 0, 1 2q6Φ1Φ2

53 u1(µk)u2(1)u3(µl)u10(1), k, l = 0, 1 4q6

71 u1(µk)u2(µl)u3(1)u4(1), k, l = 0, 1 4q4

Example 14.9. Triality sends the element u1(1)u2(1)u3(µ)u10(1) to u2(1)u4(1)u3(µ)u10(1)
which can be reordered with the commutation relations to give u2(1)u3(µ)u4(1)u7(µ)u10(1).

Thanks to Table 60, the latter is conjugate to u2(1)u3(µ)u4(1)u9(1).
Finally, by Table 26, we have that this element is conjugate to u1(µ)u2(1)u3(1)u10(1) if

q ≡ 1 (mod 4) or to u1(µ)u2(1)u3(µ)u10(1) if q ≡ 3 (mod 4).
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Table 26: Representatives of the unipotent classes of G and their fusion from U0. When not
specified, the condition on the parameters is simply ri ∈ F×q . (continues on the next page)

Representative in G Representatives in U Conditions

1 1

u1(1) u1(r1)
u2(r2)
u3(r3)
u4(r4)
u5(r5)
u6(r6)
u7(r7)
u8(r8)
u9(r9)
u10(r10)
u11(r11)
u12(r12)

u1(µk)u2(1) u1(r1)u2(r2) r1r2 ∈ µk(F×q )2

u3(r3)u8(r8) −r3r8 ∈ µk(F×q )2

u4(r4)u12(r12) −r4r12 ∈ µk(F×q )2

u5(r5)u6(r6) r5r6 ∈ µk(F×q )2

u7(r7)u11(r11) −r7r11 ∈ µk(F×q )2

u9(r9)u10(r10) r9r10 ∈ µk(F×q )2

u1(µk)u4(1) u1(r1)u4(r4) r1r4 ∈ µk(F×q )2

u2(r2)u12(r12) −r2r12 ∈ µk(F×q )2

u3(r3)u9(r9) −r3r9 ∈ µk(F×q )2

u5(r5)u7(r7) r5r7 ∈ µk(F×q )2

u6(r6)u11(r11) −r6r11 ∈ µk(F×q )2

u8(r8)u10(r10) r8r10 ∈ µk(F×q )2

u2(µk)u4(1) u2(r2)u4(r4) r2r4 ∈ µk(F×q )2

u1(r1)u12(r12) −r1r12 ∈ µk(F×q )2

u3(r3)u10(r10) −r3r10 ∈ µk(F×q )2

u5(r5)u11(r11) −r5r11 ∈ µk(F×q )2

u6(r6)u7(r7) r6r7 ∈ µk(F×q )2

u8(r8)u9(r9) r8r9 ∈ µk(F×q )2

u1(µk)u2(µl)u4(1) u1(r1)u2(r2)u4(r4) r1r4 ∈ µk(F×q )2, r2r4 ∈ µl(F×q )2

u1(r1)u2(r2)u12(r12) −r1r12 ∈ µl(F×q )2, −r2r12 ∈ µk(F×q )2

u1(r1)u4(r4)u12(r12) −r1r12 ∈ µl(F×q )2, −r4r12 ∈ µk+l(F×q )2

u2(r2)u4(r4)u12(r12) −r2r12 ∈ µk(F×q )2, −r4r12 ∈ µk+l(F×q )2

u3(r3)u8(r8)u9(r9) −r3r9 ∈ µk(F×q )2, r8r9 ∈ µl(F×q )2

u3(r3)u8(r8)u10(r10) −r3r10 ∈ µl(F×q )2, r8r10 ∈ µk(F×q )2

u3(r3)u9(r9)u10(r10) −r3r10 ∈ µl(F×q )2, r9r10 ∈ µk+l(F×q )2

u5(r5)u6(r6)u7(r7) r5r7 ∈ µk(F×q )2, r6r7 ∈ µl(F×q )2

u5(r5)u6(r6)u11(r11) −r5r11 ∈ µl(F×q )2, −r6r11 ∈ µk(F×q )2

u5(r5)u7(r7)u11(r11) −r5r11 ∈ µl(F×q )2, −r7r11 ∈ µk+l(F×q )2

u6(r6)u7(r7)u11(r11) −r6r11 ∈ µk(F×q )2, −r7r11 ∈ µk+l(F×q )2

u8(r8)u9(r9)u10(r10) r8r10 ∈ µk(F×q )2, r9r10 ∈ µk+l(F×q )2

u3(r3)u8(r8)u9(r9)u10(r10)u11(r11) −r3r9 ∈ µk(F×q )2, r8r9 ∈ µl(F×q )2, r3r2
11r
−1
8 r−1

9 r−1
10 = −4
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Representative in G Representatives u in U Conditions

u1(1)u3(1) u1(r1)u3(r3)
u1(r1)u6(r6)
u1(r1)u7(r7)
u1(r1)u10(r10)
u2(r2)u3(r3)
u2(r2)u5(r5)
u2(r2)u7(r7)
u2(r2)u9(r9)
u3(r3)u4(r4)
u3(r3)u11(r11)
u4(r4)u5(r5)
u4(r4)u6(r6)
u4(r4)u8(r8)
u5(r5)u10(r10)
u6(r6)u9(r9)
u7(r7)u8(r8)
u1(r1)u2(r2)u6(r6)
u1(r1)u2(r2)u10(r10)
u3(r3)u8(r8)u11(r11)
u5(r5)u6(r6)u10(r10)
u1(r1)u4(r4)u7(r7)
u1(r1)u4(r4)u10(r10)
u3(r3)u9(r9)u11(r11)
u5(r5)u7(r7)u10(r10)
u2(r2)u4(r4)u7(r7)
u2(r2)u4(r4)u9(r9)
u3(r3)u10(r10)u11(r11)
u6(r6)u7(r7)u9(r9)
u3(r3)u8(r8)u9(r9)u11(r11)
u3(r3)u8(r8)u10(r10)u11(r11)
u3(r3)u9(r9)u10(r10)u11(r11)

u1(r1)u2(r2)u4(r4)u12(r12) r1r2r4r12 ∈ (F×q )2

u3(r3)u8(r8)u9(r9)u10(r10) r3r8r9r10 ∈ (F×q )2

u5(r5)u6(r6)u7(r7)u11(r11) r5r6r7r11 ∈ (F×q )2

u3(r3)u8(r8)u9(r9)u10(r10)u11(r11) δ := r3r2
11r
−1
8 r−1

9 r−1
10 = −2 if q = 1 (mod 4)

or δ 6= −2,−4 and δ(δ + 4) ∈ (F×q )2

u1(µ)u2(1)u4(1)u12(1) u1(r1)u2(r2)u4(r4)u12(r12) r1r2r4r12 ∈ µ(F×q )2

u3(r3)u8(r8)u9(r9)u10(r10) r3r8r9r10 ∈ µ(F×q )2

u5(r5)u6(r6)u7(r7)u11(r11) r5r6r7r11 ∈ µ(F×q )2

u3(r3)u8(r8)u9(r9)u10(r10)u11(r11) δ := r3r2
11r
−1
8 r−1

9 r−1
10 = −2 if q = 3 (mod 4)

or δ 6= −2,−4 and δ(δ + 4) ∈ µ(F×q )2

u1(µk)u2(1)u3(1) u1(r1)u2(r2)u3(r3) r1r2 ∈ µk(F×q )2

u1(r1)u2(r2)u7(r7) r1r2 ∈ µk(F×q )2

u3(r3)u4(r4)u8(r8) −r3r8 ∈ µk(F×q )2

u4(r4)u5(r5)u6(r6) r5r6 ∈ µk(F×q )2

u1(r1)u2(r2)u4(r4)u7(r7) r1r2 ∈ µk(F×q )2

u1(µk)u3(1)u4(1) u1(r1)u3(r3)u4(r4) r1r4 ∈ µk(F×q )2

u1(r1)u4(r4)u6(r6) r1r4 ∈ µk(F×q )2

u2(r2)u3(r3)u9(r9) −r3r9 ∈ µk(F×q )2

u2(r2)u5(r5)u7(r7) r5r7 ∈ µk(F×q )2

u1(r1)u2(r2)u4(r4)u6(r6) r1r4 ∈ µk(F×q )2

u2(µk)u3(1)u4(1) u1(r1)u3(r3)u10(r10) −r3r10 ∈ µk(F×q )2

u1(r1)u6(r6)u7(r7) r6r7 ∈ µk(F×q )2

u2(r2)u3(r3)u4(r4) r2r4 ∈ µk(F×q )2

u2(r2)u4(r4)u5(r5) r2r4 ∈ µk(F×q )2

u1(r1)u2(r2)u4(r4)u6(r6)u7(r7) r6r7 ∈ µk(F×q )2, r4r6r
−1
2 r−1

7 = 1

u1(µk)u2(1)u3(µl)u10(1) u1(r1)u2(r2)u3(r3)u10(r10) r1r2 ∈ µk(F×q )2, r3r10 ∈ µl(F×q )2

u1(r1)u2(r2)u6(r6)u7(r7) r1r2 ∈ µk(F×q )2, −r6r7 ∈ µl(F×q )2

u2(r2)u3(r3)u4(r4)u9(r9) −r2r4 ∈ µl(F×q )2, −r3r9 ∈ µk+l(F×q )2

u2(r2)u4(r4)u5(r5)u7(r7) −r2r4 ∈ µl(F×q )2, r5r7 ∈ µk+l(F×q )2

u1(r1)u3(r3)u4(r4)u10(r10) r1r4 ∈ µk+l(F×q )2, r3r10 ∈ µl(F×q )2

u1(r1)u4(r4)u6(r6)u7(r7) r1r4 ∈ µk+l(F×q )2, −r6r7 ∈ µl(F×q )2

u1(r1)u2(r2)u4(r4)u6(r6)u7(r7) r1r2 − r1r4r6r−1
7 ∈ µk(F×q )2, −r6r7 ∈ µl(F×q )2

u1(µk)u2(µl)u3(1)u4(1) u1(r1)u2(r2)u3(r3)u4(r4) r1r4 ∈ µk(F×q )2, r2r4 ∈ µl(F×q )2
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Table 27: F -stable Levi subgroups with disconnected centre and their fixed points.

L Type LF

M1 ({α2, α3, α4}, 1) M1 = A3(q)(q − 1)

M2 ({α2, α3, α4}, s1s3s2s4s3s1) M2 = 2A3(q)(q + 1)

M3 ({α1, α2, α4}, 1) M3 = A1(q)3(q − 1)

M4 ({α1, α2, α4}, s3s2s4s3s1s3s2s4s3) M4 = A1(q)3(q + 1)

L1 ({α2, α4}, 1) L1 = A1(q)2(q − 1)2

L2 ({α2, α4}, s3s2s4s3) L2 = A1(q2)(q2 − 1)

L3 ({α2, α4}, s1) L3 = A1(q)2(q2 − 1)

L4 ({α2, α4}, s1s3s2s4s3s1s3s2s4s3) L4 = A1(q)2(q + 1)2

L5 ({α2, α4}, s3s2s4s3s1) L5 = A1(q2)(q2 + 1)

15 Levi subgroups/centralizers with disconnected centre

In G there are nine F -stable proper Levi subgroups with disconnected centre, up to conjugacy
and up to triality. Four of them are maximal (denoted Mi, i = 1, 2, 3, 4), four are minimal
(denoted Li, i = 1, 2, 3, 4) and one is both minimal and maximal (denoted L5) w.r.t. inclusion
of Levi subgroups with disconnected centre. They are listed in Table 27.

Of these, M3 and M4 are the only Levi subgroups that are stable under the action of
the triality automorphism. We give its action on their unipotent classes in Table 49 (see
Example 14.9 for the computation). The other Levi subgroups are permuted by the triality
automorphism τ . So we can do all the computations for just one Levi in each τ -orbit, and the
results are easily adaptable for the others.

Notation 15.1. We denote by I1 = {α2, α3, α4}, I2 = {α1, α2, α4} and I3 = {α2, α4} the bases
of the root systems of the Levi subgroups considered below.

We can easily compute, thanks to Theorem 1.18 (b) the following centres

Z(LI1) = {h(εt2, εt, t2, t) | ε = ±1, t ∈ F̄×q },
Z(LI2) = {h(ε1t, ε2t, t

2, t) | ε1, ε2 = ±1, t ∈ F̄×q },
Z(LI3) = {h(t1, εt2, t

2
2, t2) | ε = ±1, t1, t2 ∈ F̄×q }.

For each case below, if we discuss the Levi of type (Ii, wi) we denote, without explicit
mention, by F ′ = F ◦ w−1

i and by φ the automorphism induced by F ′ on X(T0) ⊗Z R (see
discussion before Definition 1.54). Also, we denote by L ′ the Lang map associated with F ′.
In this section, we denote by ω ∈ F×q4 a generator of F×q4 .

The treatment is analogous to that of Section 9, for SL4(q). Therefore, we omit the details
that require the same computations and give only the results.

For the decomposition of the uniform almost characters, we also need another subgroup
which is not a Levi subgroup. By the algorithm of Borel–de Siebenthal [MaTe11, Chapter 13]
there is a semisimple element s ∈ G (s ∈ T0) with centralizer of type A4

1 (to be precise s =
h(−1,−1, 1,−1)). This centralizer, that we denote by C = CG(s), is not a Levi subgroup of G
since it is not conjugate to any LI for I ⊆ ∆D4 . Notice that C is a semisimple group (Z(C)◦ = 1)
but it is not simply connected (see page 139 for details). However, the “order polynomial”
of finite groups of Lie type does not distinguish between isogeny types (see discussion after
[MaTe11, Corollary 24.6]), thus |C| = | SL2(q)|4 where C := CF .

We discuss now the determination of resGL for the Levi subgroups L introduced above.
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Figure 3: Subgroup lattice of Levi subgroups with disconnected centre of Spin+
8 (q), up to

triality. The lines represent inclusions: a single line indicates a twisted Levi subgroup and a
double line corresponds to a split Levi subgroup.

D4(q)

A3(q)(q − 1) A1(q)3(q − 1) 2A3(q)(q + 1) A1(q)3(q + 1) A1(q2)(q2 + 1)

A1(q)2(q − 1)2 A1(q2)(q2 − 1) A1(q)2(q2 − 1) A1(q)2(q + 1)2

Remark 15.2. To compute resGL , we use a “zig-zag” procedure that can be followed graphically
in Figure 3. We make extensive use of the transitivity of resGL . It is easy to check from the
definition given in [Bo05, Section 15.A] that for split Levi subgroups the class of

∏
α∈∆

GF
uα(1)

is sent to the class of
∏

α∈∆
LF
uα(1) where ∆GF and ∆LF are respectively bases of the root

system of GF and LF (with ∆LF ⊆ ∆GF ).
For clarity reasons, in the twisted cases, we are going to compute representatives of the

unipotent classes, in GF ′ (instead of GF ) for F ′ some twisted Frobenius associated to the
twisted Levi subgroups. To be able to compare these representatives of the regular unipotent
classes with resGL , we need to compute a preimage under the Lang map of the twisting element
associated with L.

We start with L2 = A1(q2)(q2−1) since as Levi subgroup of M1 = A3(q)(q−1) its treatment
is analogous to the one of A1(q2)(q + 1) as Levi subgroup of SL4(q). Lemma 9.18 gives a hint
for finding an element gw2 ∈ G such that g−1

w2
F (gw2) represents the twisting element s3s2s4s3

in NG(T0)F . The idea is to change the indices in Lemma 9.18 according to

1, 2, 3, 4, 5, 6 7→ 2, 3, 4, 6, 7, 10.

We obtain the element

g = u6(−ρ)u7(ρ)h3(ρq − ρ)n3n2n4n3u6(−1)u7(1),

where ρ is our chosen generator of F×q2 , such that g−1F (g) = n3n2n4n3h3(−1)h4(−1). With this
element, we can compute that

resGL2

(
(u1(1)u2(1)u3(1)u4(1))G

)
= (u2(ρ)u4(ρq))L2 .

Because L2 is split in M2 and resGL2
is transitive, we also get the restriction to M2. Next, we

treat L3 and L4. They are both twisted Levi subgroups of, respectively, M3 and M4, with
twisting element s1. As such the only possibilities for a preimage of g−1F (g) = n1 are (in
Bruhat form) g = u1(r1)h(t1, t2, t3, t4) or g = u1(r1)h(t1, t2, t3, t4)n1u1(r′1) for some r1, r

′
1 ∈ F̄q

and t1, t2, t3, t4 ∈ F̄×q . A quick check gives a candidate, which in turn allows us to compute

resM3
L3

and resM4
L4

. Since M3 is a split Levi of G, we get resGL3
= resM3

L3
◦ resGM3

. Again, thanks to
L3 being split in M4 and the transitivity of resGL3

, we also get resGM4
.

At the moment of the writing, no solution has been found for computing resGL5
. The reason

being the size of the system of equation to solve, and no educated guess (on the form of gw5)
being apparent.
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M1 (split)

Root system ΦM1
∼= ΦA3 ±{α2, α3, α4, α6, α7, α10}

Structure M1
∼= SL4(q) o 〈h1(t) | t ∈ F×q 〉

Order |M1| q6Φ4
1Φ2

2Φ3Φ4

Centre ZM1 = Z(LF
I1

) {hZM1
(ka, kb) | ka = 0, 1, kb = 0, ..., q − 2}

hZM1
(ka, kb) := h(µ2kb+

q−1
2
ka , µkb+

q−1
2
ka , µ2kb , µkb)

Unipotent subgroup UM1 = 〈U2, U3, U4, U6, U7, U10〉
Commutation relations [u2(t1), u3(t2)] = u6(t1t2), t1, t2 ∈ Fq,

[u2(t1), u7(t2)] = u10(t1t2), t1, t2 ∈ Fq,
[u3(t1), u4(t2)] = u7(−t1t2), t1, t2 ∈ Fq,
[u4(t1), u6(t2)] = u10(t1t2), t1, t2 ∈ Fq.

Unipotent classes Table 28

H1(F,Z(LI1)) {h((−1)ka , (−1)ka , 1, 1) | ka = 0, 1}
ker(hM1) {hZ(0, 0), hZ(0, 1)}
Repr. tz=L −1

T0
(z) for h(ρ

q+1
2
ka , ρ−

q+1
2
ka , 1, 1)

z = h((−1)ka , (−1)ka , 1, 1)

Regular character of UM1

parametrized by φM1

µka ,1,1
: u2(t2)u3(t3)u4(t4) 7→ φ

(
µkat2 + t3 + t4

)
h((−1)ka , (−1)ka , 1, 1)

Table 28: Representatives of the unipotent classes of M1, and of UM1 with their fusion to M1.

Repr. u0 in M1 |CM1(u0)| Repr. u in UM1 condition |CUM1
(u)|

1 q6Φ4
1Φ2

2Φ3Φ4 1 q6

u2(1) q6Φ3
1Φ2 u2(r2) q4

u3(r3) q4

u4(r4) q4

u6(r6) q5

u7(r7) q5

u10(r10) q6

u2(µk)u4(1) 2q5Φ2
1Φ2 u2(r2)u4(r4) r2r4 ∈ µk(F×q )2 q4

u3(r3)u10(r10) −r3r10 ∈ µk(F×q )2 q4

u6(r6)u7(r7) r6r7 ∈ µk(F×q )2 q5

u2(1)u3(1) q4Φ2
1 u2(r2)u3(r3) q3

u2(r2)u7(r7) q4

u3(r3)u4(r4) q3

u4(r4)u6(r6) q4

u2(r2)u4(r4)u6(r6) q4

u2(µk)u3(1)u4(1) 2q3Φ1 u2(r2)u3(r3)u4(r4) r2r4 ∈ µk(F×q )2 q3
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M2 (twisted by s1s3s2s4s3s1)

Action of φ on ΦI1 α2 ↔ α4, α3 ↔ α3, α6 ↔ α7, α10 ↔ α10

Root system ΦM2 ±{β1 := 1
2
(α2 + α4), β2 := α3,

1
2
(α6 + α7), α10} =

(of type B2) = ±{β1, β2, β1 + β2, 2β1 + β2}
Action of F ′ on T0 F ′ (h(t1, t2, t3, t4)) = h(t−q1 , tq4t

−q
1 , tq3t

−2q
1 , tq2t

−q
1 )

Action of F ′ on UM2 F ′ (u2(t2)u3(t3)u4(t4)u6(t6)u7(t7)u10(t10)) =
u4(tq2)u3(tq3)u2(tq4)u7(tq6)u6(tq7)u10(tq10)

UF
β1

〈uβ1(t) | t ∈ Fq2〉 with uβ1(t) := uα2(t)uα4(tq)

UF
β2

〈uβ2(t) | t ∈ Fq〉 with uβ2(t) := uα3(t)

UF
β3

〈uβ3(t) | t ∈ Fq2〉 with uβ3(t) := uα6(t)uα7(tq)

UF
β4

〈uβ4(t) | t ∈ Fq〉 with uβ4(t) := uα10(t)

Structure M2
∼= SU4(q) o 〈h(ρ(q−1)ka , 1, ρ2qka , ρ(q−1)ka) | ka = 0, ..., q〉

Order |M2| q6Φ2
1Φ4

2Φ4Φ6

Centre ZM2 = Z(LF ′
I1

) {hZM2
(ka, kb) | ka = 0, 1, kb = 0, ..., q}

hZM2
(ka, kb) := h

(
ρ

q2−1
2

ka+2(q−1)kb , ρ
q2−1

2
ka+(q−1)kb , ρ2(q−1)kb , ρ(q−1)kb

)
Unipotent subgroup UM2 = 〈UF

β | β ∈ Φ+
M2
〉

Commutation relations [uβ1(t1), uβ2(t2)] = uβ3(t1t2)uβ4(tq+1
1 t2), t1 ∈ Fq2 , t2 ∈ Fq,

[uβ1(t1), uβ3(t2)] = uβ4(Tr(t1)Tr(t2)− Tr(t1t2)), t1, t2 ∈ Fq2 .

Unipotent classes Table 29

H1(F ′, Z(LI1)) {h((−1)ka , (−1)ka , 1, 1) | ka = 0, 1}
ker(hM2) {hZ(0, 0), hZ(0, 1)}
Repr. tz=L ′−1

T0
(z) for h(ρ−

q−1
2
ka , ρ−

q+1
2
ka , ρ−qka , ρ−qka)

z = h((−1)ka , (−1)ka , 1, 1)

Regular character of UM2

parametrized by φM2

ρka ,1
: uβ1(t1)uβ2(t2) 7→ χ2(ρkat1)φ(t2)

h((−1)ka , (−1)ka , 1, 1)

zM2 (Remark 5.34) h(−1,−1, 1, 1)

resGM2
resGM2

(
(u1(1)u2(1)u3(1)u4(1))G

)
= (uβ1(ρ)uβ2(1))M2

Table 29: Representatives of the unipotent classes of M2, and of UM2 with their fusion to M2.

Repr. u0 in M2 |CM2(u0)| Repr. u in UM2 condition |CUM2
(u)|

1 q6Φ2
1Φ4

2Φ4Φ6 1 q6

uβ2(1) q6Φ1Φ3
2 uβ2(t1) t1 ∈ F×q q4

uβ4(t1) t1 ∈ F×q q6

uβ1(ρk) 2q5Φ1Φ2
2 uβ1(t1) t1 ∈ ρk(F×q2)2 q4

uβ3(t1) t1 ∈ ρk(F×q2)2 q5

uβ2(t1)uβ4(t2) t1t2 ∈ −µk(F×q )2 q4

uβ1(ρ)uβ3(1) q4Φ2
2 uβ1(t1)uβ3(t2) t2t

−1
1 /∈ F×q q5

uβ1(ρk)uβ2(1) 2q3Φ2 uβ1(t1)uβ2(t2) t1 ∈ ρk(F×q2)2, t2 ∈ F×q q3
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M3 (split)

Root system ΦM3 ±{α1, α2, α4}
Structure M3

∼= SL2(q)3 o 〈h1(t) | t ∈ F×q 〉
Order |M3| q3Φ4

1Φ3
2

Centre ZM3 = Z(LF
I2

) {hZM3
(ka, kb, kc) | ka = 0, ..., q − 2, kb, kc = 0, 1}

hZM3
(ka, kb, kc) := h(µka+ q−1

2
kb , µka+ q−1

2
kc , µ2ka , µka)

Unipotent subgroup UM3 = 〈U1, U2, U4〉, it is abelian

Unipotent classes Table 30

Triality on UM3 Table 49

H1(F,Z(LI2)) {h((−1)ka , (−1)kb , 1, 1) | ka, kb = 0, 1}
ker(hM3) {hZ(0, 0)}
Repr. tz=L −1

T0
(z) for h(ρ−

q+1
2
ka , ρ−

q+1
2
kb , 1, 1)

z = h((−1)ka , (−1)kb , 1, 1)

Regular character of UM3

parametrized by φM3

µka ,µkb ,1
: u1(t1)u2(t2)u4(t4) 7→ φ

(
µkat1 + µkbt2 + t4

)
h((−1)ka , (−1)kb , 1, 1)

Table 30: Representatives of the unipotent classes of M3, and of UM3 with their fusion to M3.
Because UM3 is abelian all the centralizers of elements in UM3 have order q3.

Repr. u0 in M3 |CM3(u0)| Repr. u in UM3 condition

1 q3Φ4
1Φ3

2 1

u1(1) q3Φ3
1Φ2

2 u1(r1)

u2(1) q3Φ3
1Φ2

2 u2(r2)

u4(1) q3Φ3
1Φ2

2 u4(r4)

u1(µk)u2(1) 2q3Φ2
1Φ2 u1(r1)u2(r2) r1r2 ∈ µk(F×q )2

u1(µk)u4(1) 2q3Φ2
1Φ2 u1(r1)u4(r4) r1r4 ∈ µk(F×q )2

u2(µk)u4(1) 2q3Φ2
1Φ2 u2(r2)u4(r4) r2r4 ∈ µk(F×q )2

u1(µk)u2(µl)u4(1) 4q3Φ1 u1(r1)u2(r2)u4(r4) r1r4 ∈ µk(F×q )2,

r2r4 ∈ µl(F×q )2
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M4 (twisted by s3s2s4s3s1s3s2s4s3)

Action of φ on ΦI2 id

Root system ΦM4 = ΦI2 ±{α1, α2, α4}
Action of F ′ on T0 F ′ (h(t1, t2, t3, t4)) = h(tq1t

−q
3 , tq2t

−q
3 , t−q3 , tq4t

−q
3 )

Action of F ′ on UM4 F ′ (u1(t1)u2(t2)u4(t4))) = u1(tq1)u2(tq2)u4(tq4)

Structure M4
∼= SL2(q)3 o 〈h(ρqka , ρqka , ρ(q−1)ka , ρqka) | ka = 0, ..., q〉

Order |M4| q3Φ3
1Φ4

2

Centre ZM4 = Z(LF ′
I2

) {hZM4
(ka, kb, kc) | ka = 0, ..., q, kb, kc = 0, 1}

hZM4
(ka, kb, kc) := h(ρ

q2−1
2

kb+(q−1)ka , ρ
q2−1

2
kc+(q−1)ka , ρ2(q−1)ka , ρ(q−1)ka )

Unipotent subgroup UM4 = 〈U1, U2, U4〉, it is abelian

Unipotent classes Table 31

Triality on UM4 Table 49

H1(F,Z(LI2)) {h((−1)ka , (−1)kb , 1, 1) | ka, kb = 0, 1}
ker(hM4) {hZ(0, 0)}
Repr. tz=L ′−1

T0
(z) for h(ρ−

q+1
2
ka , ρ−

q+1
2
kb , 1, 1)

z = h((−1)ka , (−1)kb , 1, 1)

Regular character of UM4

parametrized by φM4

µka ,µkb ,1
: u1(t1)u2(t2)u4(t4) 7→ φ

(
µkat1 + µkbt2 + t4

)
h((−1)ka , (−1)kb , 1, 1)

zM4 (Remark 5.34) 1

resGM4
resGM4

(
(u1(1)u2(1)u3(1)u4(1))G

)
= (u1(1)u2(1)u4(1))M4

Table 31: Representatives of the unipotent classes of M4, and of UM4 with their fusion to M4.
Because UM4 is abelian all the centralizers of elements in UM4 have order q3.

Repr. u0 in M4 |CM4(u0)| Repr. u in UM4 condition

1 q3Φ3
1Φ4

2 1

u1(1) q3Φ2
1Φ3

2 u1(r1)

u2(1) q3Φ2
1Φ3

2 u2(r2)

u4(1) q3Φ2
1Φ3

2 u4(r4)

u1(µk)u2(1) 2q3Φ1Φ2
2 u1(r1)u2(r2) r1r2 ∈ µk(F×q )2

u1(µk)u4(1) 2q3Φ1Φ2
2 u1(r1)u4(r4) r1r4 ∈ µk(F×q )2

u2(µk)u4(1) 2q3Φ1Φ2
2 u2(r2)u4(r4) r2r4 ∈ µk(F×q )2

u1(µk)u2(µl)u4(1) 4q3Φ2 u1(r1)u2(r2)u4(r4) r1r4 ∈ µk(F×q )2,

r2r4 ∈ µl(F×q )2
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L1 (split)

Root system ΦL1 ±{α2, α4}
Structure L1

∼= SL2(q)2 o 〈h1(t), h3(t) | t ∈ F×q 〉
Order |L1| q2Φ4

1Φ2
2

Centre ZL1 = Z(LF
I3

) {hZL1
(ka, kb, kc) | ka, kb = 0, ..., q − 2, kc = 0, 1}

hZL1
(ka, kb, kc) := h(µkb , µka+ q−1

2
kc , µ2ka , µka)

Unipotent subgroup UL1 = 〈U2, U4〉, it is abelian

Unipotent classes Table 32

H1(F,Z(LI3)) {h(1, (−1)ka , 1, 1) | ka = 0, 1}
ker(hL1) {hZ(0, 0), hZ(0, 1)}
Repr. tz=L −1

T0
(z) for h(1, ρ−

q+1
2
ka , 1, 1)

z = h(1, (−1)ka , 1, 1)

Regular character of UL1

parametrized by φL1

µka ,1
: u2(t2)u4(t4) 7→ φ

(
µkat2 + t4

)
h(1, (−1)ka , 1, 1)

Table 32: Representatives of the unipotent classes of L1, and of UL1 with their fusion to L1.
Because UL1 is abelian all the centralizers of elements in UL1 have order q2.

Repr. u0 in L1 |CL1(u0)| Repr. u in UL1 condition

1 q2Φ4
1Φ2

2 1

u2(1) q2Φ3
1Φ2 u2(r2)

u4(1) q2Φ3
1Φ2 u4(r4)

u2(µk)u4(1) 2q2Φ2
1 u2(r2)u4(r4) r2r4 ∈ µk(F×q )2
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L2 (twisted by w2 = s3s2s4s3)

Action of φ on ΦI3 α2 ↔ α4

Root system ΦL2 ±{β := 1
2
(α2 + α4)}

(of type A1)

Action of F ′ on T0 F ′ (h(t1, t2, t3, t4)) = h(tq1, t
q
1t
−q
3 tq4, t

2q
1 t
−q
3 , tq1t

q
2t
−q
3 )

Action of F ′ on UL2 F ′ (u2(t2)u4(t4)) = u4(tq2)u2(tq4)

UF
β 〈uβ(t) | t ∈ Fq2〉 with uβ(t) := uα2(t)uα4(tq)

Structure L2
∼= SL2(q2) o 〈h(ρ(q−1)ka , 1, ρ2qkaµkb , ρ(q−1)ka) | ka = 0, ..., q, kb =

0, ..., q − 2〉
Order |L2| q2Φ2

1Φ2
2Φ4

Centre ZL2 = Z(LF ′
I3

) {hZL2
(ka, kb) | ka = 0, ..., q2, kb = 0, 1}

hZL2
(ka, kb) := h(µka , ρka−

q2−q
2

kb , ρ2ka+(q−1)kb , ρka+
(q−1)

2
kb)

Unipotent subgroup UL2 = UF
β , it is abelian

Unipotent classes Table 33

H1(F ′, Z(LI3)) {h(1, (−1)ka , 1, 1) | ka = 0, 1}
ker(hL2) {hZ(0, 0), hZ(0, 1)}
Repr. tz=L ′−1

T0
(z) for h(1, ω−

q2+1
2

ka , 1, ω−q
q2+1

2
ka)

z = h(1, (−1)ka , 1, 1)

Regular character of

UL2 parametrized by φL2

ρka
: uβ(t1) 7→ χ2

(
ρkat1

)
h(1, (−1)ka , 1, 1)

zL2 (Remark 5.34) h(1,−1, 1, 1)

gw2 ∈ G h3

(
ρ
q+1

2

)
h4

(
ρ
q+1

2

)
u6(−ρ)u7(ρ)h3(ρq − ρ)n3n2n4n3u6(−1)u7(1)

with g−1
w2
F (gw2) = ẇ2

(
g−1
w2
F (gw2) = n3n2n4n3

)
resGL2

resGL2

(
(u1(1)u2(1)u3(1)u4(1))G

)
= (uβ(ρ))L2

Table 33: Representatives of the unipotent classes of L2, and of UL2 with their fusion to L2.
Because UL2 is abelian all the centralizers of elements in UL2 have order q2.

Repr. u0 in L2 |CL2(u0)| Repr. u in UL2 condition

1 q2Φ2
1Φ2

2Φ4 1

uβ(ρk) 2q2Φ1Φ2 uβ(λ) λ ∈ ρk(F×q2)2 (k = 0, 1)
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L3 (twisted by s1)

Action of φ on ΦI3 id

Root system ΦL3 ±{α2, α4}
(of type A1 × A1)

Action of F ′ on T0 F ′ (h(t1, t2, t3, t4)) = h(t−q1 tq3, t
q
2, t

q
3, t

q
4)

Action of F ′ on UL3 F ′ (u2(t2)u4(t4)) = u2(tq2)u4(tq4)

UF ′
α for α ∈ ΦL3 {uα(t) | t ∈ Fq}

Structure L3
∼= SL2(q)2 o 〈h(ρ(q−1)ka+kb , 1, µkb , 1) | ka = 0, ..., q, kb =

0, ..., q − 2〉
Order |L3| q2Φ3

1Φ3
2

Centre ZL3 = Z(LF ′
I3

) {hZL3
(ka, kb, kc) | ka = 0, ..., q − 2, kb = 0, ..., q, kc = 0, 1}

hZL3
(ka, kb, kc) := h(ρ2ka+(q−1)kb , µka+ q−1

2
kc , µ2ka , µka)

Unipotent subgroup UL3 = 〈U2, U4〉, it is abelian

Unipotent classes Table 34

H1(F ′, Z(LI3)) {h(1, (−1)ka , 1, 1) | ka = 0, 1}
ker(hL3) {hZ(0, 0), hZ(0, 1)}
Repr. tz=L ′−1

T0
(z) for h(1, ρ−

q+1
2
ka , 1, 1)

z = h(1, (−1)ka , 1, 1)

Regular character of UL3

parametrized by φL3

µka ,1
: u2(t2)u4(t4) 7→ φ

(
µkat2 + t4

)
h(1, (−1)ka , 1, 1)

zL3 (Remark 5.34) 1

gw3 ∈ G u1(r)h3(ωq
q2+1

2 )n1u1(ρ
q−1

2 ) with rq − r = ωq(q+1) q
2+1
2

with g−1
w3
F (gw3) = ẇ3

(
g−1
w3
F (gw3) = n1

)
resGL3

resGL3

(
(u1(1)u2(1)u3(1)u4(1))G

)
= (u2(1)u4(1))L3

Table 34: Representatives of the unipotent classes of L3, and of UL3 with their fusion to L3.
Because UL3 is abelian all the centralizers of elements in UL3 have order q2.

Repr. u0 in L3 |CL3(u0)| Repr. u in UL3 condition

1 q2Φ3
1Φ3

2 1

u2(1) q2Φ2
1Φ2

2 u2(r2)

u4(1) q2Φ2
1Φ2

2 u4(r4)

u2(µk)u4(1) 2q2Φ1Φ2 u2(r2)u4(r4) r2r4 ∈ µk(F×q )2
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L4 (twisted by s1s3s2s4s3s1s3s2s4s3)

Action of φ on ΦI3 id

Root system ΦL4 ±{α2, α4}
(of type A1 × A1)

Action of F ′ on T0 F ′ (h(t1, t2, t3, t4)) = h(t−q1 , tq2t
−q
3 , t−q3 , tq4t

−q
3 )

Action of F ′ on UL3 F ′ (u2(t2)u4(t4)) = u2(tq2)u4(tq4)

Structure L4
∼= SL2(q)2 o 〈h(ρ(q−1)ka , ρ−kb , ρ(q−1)kb , ρ−kb) | ka, kb =

0, ..., q〉
Order |L4| q2Φ2

1Φ4
2

Centre ZL4 = Z(LF ′
I3

) {hZL4
(ka, kb, kc) | ka, kb = 0, ..., q, kc = 0, 1}

hZL4
(ka, kb, kc) := h(ρ(q−1)kb , ρ(q−1)ka+ q2−1

2
kc , ρ2(q−1)ka , ρ(q−1)ka)

Unipotent subgroup UL4 = 〈U2, U4〉, it is abelian

Unipotent classes Table 35

H1(F ′, Z(LI3)) {h(1, (−1)ka , 1, 1) | ka = 0, 1}
ker(hL4) {hZ(0, 0), hZ(0, 1)}
Repr. tz=L ′−1

T0
(z) for h(1, ρ−

q+1
2
ka , 1, 1)

z = h(1, (−1)ka , 1, 1)

Regular character of UL4

parametrized by φL4

µka ,1
: u2(t2)u4(t4) 7→ φ

(
µkat2 + t4

)
h(1, (−1)ka , 1, 1)

zL4 (Remark 5.34) 1

resGL4
resGL4

(
(u1(1)u2(1)u3(1)u4(1))G

)
= (u2(1)u4(1))L4

Table 35: Representatives of the unipotent classes of L4, and of UL4 with their fusion to L4.
Because UL4 is abelian all the centralizers of elements in UL4 have order q2.

Repr. u0 in L4 |CL4(u0)| Repr. u in UL4 condition

1 q2Φ2
1Φ4

2 1

u2(1) q2Φ1Φ3
2 u2(r2)

u4(1) q2Φ1Φ3
2 u4(r4)

u2(µk)u4(1) 2q2Φ2
2 u2(r2)u4(r4) r2r4 ∈ µk(F×q )2
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L5 (twisted by s3s2s4s3s1)

Action of φ on ΦI3 α2 ↔ α4

Root system ΦL5 ±{β := 1
2
(α2 + α4)}

(of type A1)

Action of F ′ on T0 F ′ (h(t1, t2, t3, t4)) = h(t−q1 tq3, t
−q
1 tq4, t

−2q
1 tq3, t

−q
1 tq2)

Action of F ′ on UL2 F ′ (u2(t2)u4(t4)) = u4(tq2)u2(tq4)

UF
β 〈uβ(t) | t ∈ Fq2〉 with uβ(t) := uα2(t)uα4(tq)

Structure L5
∼= SL2(q2)o〈h(ω(q2−1)ka , ω(q−1)ka , ω−(q−1)(q2−1)ka , ω−q

2(q−1)ka) | ka =

0, ..., q2〉
Order |L5| q2Φ1Φ2Φ2

4

Centre ZL5 = Z(LF ′
I3

) {hZL5
(ka, kb) | ka = 0, 1, kb = 0, ..., q2}

hZL5
(ka, kb) := h(ω

q4−1
2

ka+(q+1)(q2−1)kb , ω
q4−1

2
ka+(q2−1)kb , ω2(q2−1)kb , ω(q2−1)kb )

Unipotent subgroup UL5 = UF
β , it is abelian

Unipotent classes Table 36

H1(F ′, Z(LI5)) {h(1, (−1)ka , 1, 1) | ka = 0, 1}
ker(hL5) {hZ(0, 0), hZ(0, 1)}
Repr. tz=L ′−1

T0
(z) for h(1, ω−

q2+1
2

ka , 1, ω−q
q2+1

2
ka)

z = h(1, (−1)ka , 1, 1)

Regular character of

UL5 parametrized by φL5

ρka
: uβ(t1) 7→ χ2

(
ρkat1

)
h(1, (−1)ka , 1, 1)

zL5 (Remark 5.34) h(1,−1, 1, 1)

gw5 ∈ G [??]

with g−1
w5
F (gw5) = ẇ5

resGL5
[??]

Table 36: Representatives of the unipotent classes of L5, and of UL5 with their fusion to L5.
Because UL5 is abelian all the centralizers of elements in UL5 have order q2.

Repr. u0 in L5 |CL5(u0)| Repr. u in UL5 condition

1 q2Φ1Φ2Φ2
4 1

u2(ρk)u4(ρqk) 2q2Φ4 u2(λ)u4(λq) λ ∈ ρk(F×q2)2 (k = 1, 2)
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CG(s)F of type A1(q)4

Root system ΦC ±{α1, α2, α4, α12}
(of type A4

1)

Structure C = 〈Uα | α ∈ ΦC〉 (it is semisimple)
C ∼= SL2(q)3 o 〈h3(t1), u±α12(t2) | t1 ∈ F×q , t2 ∈ Fq〉

Order |C| q4Φ4
1Φ4

2

Centre Z(C) = Z(C) {h((−1)ka , (−1)kb , 1, (−1)kc) | ka, kb, kc = 0, 1}
Unipotent subgroup UC = 〈U1, U2, U4, U12〉, it is abelian

Unipotent classes Table 37

Repr. tz=L −1
T0

(z) for h(ρ−
q+1

2
ka , ρ−

q+1
2
kb , 1, ρ−

q+1
2
kc)

z=h((−1)ka , (−1)kb , 1, (−1)kc)

Regular character of UC

parametrized by φC
µka ,µkb ,µkc ,1

: u1(t1)u2(t2)u4(t4)u12(t12) 7→ φ
(
µka t1 + µkb t2 + µkc t4 + t12

)
h((−1)ka , (−1)kb , 1, (−1)kc)

Table 37: Representatives of the unipotent classes of C, and of UC with their fusion to C.
Because UC is abelian all the centralizers of elements in UC have order q4.

Repr. u0 in C |CC(u0)| Repr. u in UC condition

1 q4Φ4
1Φ4

2 1

u1(1) q4Φ3
1Φ3

2 u1(r1)

u2(1) q4Φ3
1Φ3

2 u2(r2)

u4(1) q4Φ3
1Φ3

2 u4(r4)

u12(1) q4Φ3
1Φ3

2 u12(r12)

u1(µk)u2(1) 2q4Φ2
1Φ2

2 u1(r1)u2(r2) r1r2 ∈ µk(F×q )2

u1(µk)u4(1) 2q4Φ2
1Φ2

2 u1(r1)u4(r4) r1r4 ∈ µk(F×q )2

u1(µk)u12(1) 2q4Φ2
1Φ2

2 u1(r1)u12(r12) r1r12 ∈ µk(F×q )2

u2(µk)u4(1) 2q4Φ2
1Φ2

2 u2(r2)u4(r4) r2r4 ∈ µk(F×q )2

u2(µk)u12(1) 2q4Φ2
1Φ2

2 u2(r2)u12(r12) r2r12 ∈ µk(F×q )2

u4(µk)u12(1) 2q4Φ2
1Φ2

2 u4(r4)u12(r12) r4r12 ∈ µk(F×q )2

u1(µk)u2(µl)u4(1) 4q4Φ1Φ2 u1(r1)u2(r2)u4(r4) r1r4 ∈ µk(F×q )2,

r2r4 ∈ µl(F×q )2

u1(µk)u2(µl)u12(1) 4q4Φ1Φ2 u1(r1)u2(r2)u12(r12) r1r12 ∈ µk(F×q )2,

r2r12 ∈ µl(F×q )2

u1(µk)u4(µl)u12(1) 4q4Φ1Φ2 u1(r1)u4(r4)u12(r12) r1r12 ∈ µk(F×q )2,

r4r12 ∈ µl(F×q )2

u2(µk)u4(µl)u12(1) 4q4Φ1Φ2 u2(r2)u4(r4)u12(r12) r2r12 ∈ µk(F×q )2,

r4r12 ∈ µl(F×q )2

u1(µk)u2(µl)u4(µm)u12(1) 8q4 u1(r1)u2(r2)u4(r4)u12(r12) r1r12 ∈ µk(F×q )2,

r2r12 ∈ µl(F×q )2,

r4r12 ∈ µm(F×q )2
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Remark 15.3. There is a surjective homomorphism of algebraic groups iC : (SL2(q))4 → C
given by sending the generators of (SL2)4 to those of C.

We construct iC explicitly now. We fix root maps of SL2

u+
SL2

: F̄q → SL2, t 7→
(

1 t
0 1

)
, u−SL2

: F̄q → SL2, t 7→
(

1 0
t 1

)
such that SL2 = 〈u+

SL2
(t), u−SL2

(t) | t ∈ F̄q〉, then for t ∈ F̄q the elements u±1 (t) = (u±SL2
(t), 1, 1, 1),

u±2 (t) = (1, u±SL2
(t), 1, 1), u±3 (t) = (1, 1, u±SL2

(t), 1) and u±4 (t) = (1, 1, 1, u±SL2
(t)) are generators of

(SL2)4. For t ∈ F̄×q , we denote by h′i(t) = u+
i (t)u−i (−t−1)u+

i (t) the generators of the maximally
split torus that normalizes the “unitriangular matrices” of (SL4)4. Then for t1, t2, t3, t4 ∈ F̄×q ,
we simply write h′(t1, t2, t3, t4) = h′1(t1)h′2(t2)h′3(t3)h′4(t4).

Then, iC is defined by iC(u±1 (t)) = u±α1(t), iC(u±2 (t)) = u±α2(t), iC(u±3 (t)) = u±α12(t) and
iC(u±4 (t)) = u±α4(t) for all t ∈ F̄q.

It follows, by an easy computation, that for t1, t2, t3, t4 ∈ F̄×q we have

iC (h′(t1, t2, t3, t4)) = h(t1t3, t2t3, t
2
3, t4t3)

which implies that the kernel of the morphism has order 2 and is given by

ker(iC) = {h′(ε, ε, ε, ε) | ε = ±1} ≤ Z
(
(SL2)4

)
.

Finally, notice that iC satisfies the conditions to apply Proposition 4.12, in order to compute
the 2-parameter Green functions of CF (in the next section).
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16 The 2-parameter Green functions

In this section, we determine the two parameter Green functions for the subgroups introduced
in the previous section (the nine Levi subgroups M1, ...,M4, L1, ..., L5 and the centralizer C).

Here is the analogue of Proposition 10.1 for SU4(q), which we need for Spin+
8 (q) since the

group Spin8 has Levi subgroups of type 2A3(q).

Proposition 16.1. Let q be an odd prime power and G = SL4 when q ≡ 1 (mod 4), or
G = SL4 /〈±1〉 when q ≡ 3 (mod 4), and F a twisted Frobenius with respect to an Fq-structure
on G. Then

Q̃G
L2

=

Φ2
2Φ6 Φ2 1 1 . . .
. . qΦ2 . 1

2
Φ2 1 .

. . . qΦ2
1
2
Φ2 . 1


for a split Levi subgroup L2 with LF

2 = A1(q2)(q − 1), and

Q̃G
L4

=


Φ4Φ6 −Φ1 1 1 . . .
. q2 . . 1 . .
. q2 . . 1 . .
. . . qΦ1 −1

2
Φ2 1 .

. . qΦ1 . −1
2
Φ2 . 1


for a non-split Levi subgroup L4 with LF

4 = A1(q)2(q + 1).
The unipotent classes are ordered as in Table 29, Table 33 and Table 35 (where we see G,

L2 and L4 as Levi subgroups of Spin8).

Proof. Instead of doing the same computation twice for the stated groups and congruences,
we did them once for the Levi subgroups A1(q2)(q2 − 1) and A1(q)2(q + 1)2 inside the Levi
2A3(q)(q + 1) of Spin+

8 (q). Then, Lemma 4.11 assures that the solution is what we claim. The
argument is analogous to the proof of Proposition 10.1. By explicit calculations one finds the
result for the split case, by Corollary 4.20. Then, thanks to scalar products of Lusztig-induced
cuspidal class functions and the norm equation one can fix the unknowns for the non-split
case.

As for Proposition 10.1 one can use Remark 5.34 to fix the order of the rows.
We consider now G = Spin8 with a split Frobenius F , such that GF = Spin+

8 (q) with q
odd. Moreover, let G→ G̃ be a regular embedding. Of the 13 unipotent classes of G six split
into two and three split into four classes in GF (see Table 25). By the general discussion in
Section 4.2 this means that, every splitting unipotent class of a Levi subgroup L introduces at
least 9 unknowns in the matrix Q̃G

L . It turns out that this number can be reduced to 5 thanks
to the diagonal action of L̃F . Therefore, we are missing 5 equations per Levi subgroup and
splitting class of that Levi subgroup.

The types of maximal Levi subgroups with disconnected centre of Spin+
8 (q) are M1 =

A3(q)(q−1), M2 = 2A3(q)(q+1), M3 = A1(q)3(q−1), M4 = A1(q)3(q+1) and L5 = A1(q2)(q2 +
1). It turns out that to compute the Green functions for these Levi subgroups we need also to
consider minimal Levi subgroups with disconnected centre L1 = A1(q)2(q−1)2, L2 = A1(q2)(q2−
1), L3 = A1(q)2(q2−1) and L4 = A1(q)2(q+1)2. Figure 4 summarizes the situation by showing
the diagram of inclusions for these Levi subgroups. Each of these has one splitting unipotent
class, and we denote by fi the (cuspidal) class function of Li that has values 1, -1 on the
splitting classes and 0 elsewhere.

The reason why we need L1 to L4 is because we want to emulate the proof of Proposition 10.1.
While 〈

RG
Li
fi, R

G
Lj
fj
〉

= 0 for i, j = 1, . . . , 5, i 6= j

141



Figure 4: Subgroup lattice of Levi subgroups with disconnected centre of Spin+
8 (q), up to

triality. The lines represent inclusions: a single line corresponds to Levis already treated in
Propositions 10.1 and 16.1, a double line indicates a split Levi subgroup and, therefore, that
the Green function can be computed explicitly using Proposition 4.2, dashed lines indicate non-
split Levi subgroups for which the Green functions must be computed with methods similar to
those used in the proof of Proposition 10.1.

D4(q)

A3(q)(q − 1) A1(q)3(q − 1) 2A3(q)(q + 1) A1(q)3(q + 1) A1(q2)(q2 + 1)

A1(q)2(q − 1)2 A1(q2)(q2 − 1) A1(q)2(q2 − 1) A1(q)2(q + 1)2

by the Mackey formula, an analogous formula for Mi, i = 1, . . . , 4, need not hold since a class
function f of Mi taking 1, -1 on splitting unipotent classes is not cuspidal. However,〈

RG
Mi
f, RG

Lj
fj
〉

= 0 for all i, j such that Lj *Mi

again, by the Mackey formula.
In conclusion, the plan to get the 2-parameter Green functions of Spin+

8 (q) is the following.
First, we determine Q̃G

L for the split Levi subgroups L = M1,M3,L1 by explicit computations
(see Section 4.3). Second, we compute Q̃G

Li
for i = 2, . . . , 5 thanks to Propositions 10.1 and 16.1

and Lemma 4.6. Then using this knowledge and Lemma 4.6 we get Q̃G
L for the maximal Levi

subgroups L = M2,M4.
Unfortunately, for the non-split Levi subgroups only 4 of the 5 equations (one of which is

the norm equation) needed to find the unknowns can be obtained by the procedure described
above. However, Digne, Lehrer and Michel prove in [DLM97, Thmeorem 3.7] and [DLM92,
Conjectures 5.2 and 5.2’] that, when q is “large enough” (q > q0 for q0 a constant depending
only on the Dynkin diagram), for all regular unipotent elements u of G̃F , Q̃G

L (u, v) = 1 for
exactly one regular unipotent class (v)L

F
and Q̃G

L (u, v′) = 0 for all other regular unipotent
elements v′ of LF . This gives the last equation.

Theorem 16.2. The 2-parameter Green functions for Spin+
8 (q), q odd, are given in the tables

in the appendix:

Q̃G
M1

Table 50

Q̃G
M2

Table 51

Q̃G
M3

Table 52

Q̃G
M4

Table 53

Q̃G
L1

Table 54

Q̃G
L2

Table 55

Q̃G
L3

Table 56

Q̃G
L4

Table 57

Q̃G
L5

Table 58
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The unipotent classes of Spin+
8 (q) are ordered according to Table 25, while those of the Levi

subgroups are ordered according to all the tables in the previous section.

Remark 16.3. By the discussion in Section 4.4, every matrix computed here is valid for any
odd q.

In practice, it is possible to use the result of Lübeck ([Lue20]) and Lemma 4.6 to find the
same 2-parameter Green functions that we found here, but without the “large q” condition.

Proof. By Proposition 10.1 and Proposition 16.1 we know Q̃M1
L1

, Q̃M1
L2

, Q̃M2
L2

and Q̃M2
L4

. By

an analogous computation of those propositions we get Q̃M3
L1

, Q̃M3
L3

, Q̃M4
L3

and Q̃M4
L4

(we use
Corollary 4.20 for the split Levi subgroups).

Next, Q̃G
M1

, Q̃G
M3

and Q̃G
L1

are computed directly thanks to the fusion of unipotent classes
(Section 14) of GF and the discussion of Section 4.3. Thanks to Lemma 4.6, we directly obtain
Q̃G

L2
= Q̃M1

L2
· Q̃G

M1
and Q̃G

L3
= Q̃M3

L3
· Q̃G

M3
.

The situation is now graphically summarized in Figure 4. The Levi subgroups in solid boxes
are those with known Green functions (which are valid for all odd q), while those in dashed
boxes have to be found and, unfortunately, will be shown to be valid only for large enough q.
The reason is the following. Both Q̃G

L4
and Q̃G

L5
have 5 unknown entries and in total we get 7

scalar products of the form 〈
RG

Li
fi, R

G
Lj
fj
〉

= 0 for i 6= j,

plus two norm equations. Since (as can be seen from Figure 4) equations of the form〈
RG

Mi
f, RG

Lj
fj
〉

= 0 for Lj *Mi

do not provide new information, a solution is provided by the above mentioned result of Digne,
Lehrer and Michel (valid for q large enough), see Proposition 5.33.

Setting Q̃G
L (u, v) to 1 or 0 for pairs of regular unipotent elements allows us to solve the

system of equations for L4 and L5. Then, the Lusztig restriction of Gel’fand–Graev characters
allows us to select the only correct solution. We mention, however, that the norm equation
now yields two rational solutions. Only one of them satisfies |CLF (v)|Q̃G

L (u, v) ∈ Z, which has
to hold by the definition of the modified Green functions.

Thanks to Lemma 4.6 we obtain the equations Q̃G
L2

= Q̃M2
L2
· Q̃G

M2
and Q̃G

L4
= Q̃M2

L4
· Q̃G

M2

which are enough to determine the Q̃G
M2

.

Similarly for M4 we have the equations Q̃G
L3

= Q̃M4
L3
· Q̃G

M4
and Q̃G

L4
= Q̃M4

L4
· Q̃G

M4
. However

this time, we also use the fact that Q̃G
M4

is invariant under triality to greatly reduce the number

of unknowns in the system. Finally, we can solve the system for Q̃G
M4

, completing the proof.

To use the character formula for Lusztig restriction (Proposition 3.30 (b)) we need also the
2-parameter Green functions Q̃C

L for the centralizer C that is not a Levi subgroup, described
in the previous section.

The Levi subgroups common to both G and C that we consider are M3, M4, L1, L3 and
L4. The situation is graphically summarized in Figure 5.

The subgroup CF has 41 unipotent elements. This makes it impractical to print the tables
for Q̃C

L here. However, their determination is made easy thanks to the surjective morphism
(SL2(q))4 → C, discussed in Remark 15.3, and Proposition 4.12.

Let G =
∏

i Gi be a semisimple algebraic group which is the product of some simple
algebraic groups Gi. Let Fi be a Steinberg endomorphism of Gi. Then, F =

∏
i Fi is a

Steinberg endomorphism of G such that

F :
∏
i

Gi →
∏
i

Gi, (g1, g2, ...) 7→ (F1(g1), F2(g2), ...).
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Figure 5: Levi subgroups common to both G and C that we consider.

CF

A1(q)3(q − 1) A1(q)3(q + 1)

A1(q)2(q − 1)2 A1(q)2(q2 − 1) A1(q)2(q + 1)2

Denote by Li the Lang map of Gi determined by Fi (Li(gi) = g−1
i Fi(gi) for gi ∈ Gi). Then,

L =
∏

i Li is the Lang map of G associated to F . Denote by Ui maximal F -stable unipotent
subgroups of Gi, and U =

∏
i Ui a maximal F -stable unipotent subgroup of G.

In this situation we can apply the following proposition.

Proposition 16.4 ([DiMi20, Proposition 8.1.9 (ii)]). Let X,X′ be two varieties. Then, for
g ∈ Aut(X) and g′ ∈ Aut(X′) automorphisms of finite order, we have

Trace (g × g′, H∗c (X×X′)) = Trace (g,H∗c (X)) Trace (g′, H∗c (X′))

It follows directly that, for an F -stable Levi subgroup L ≤ G, with decomposition L =
∏

i Li

we have for all u ∈ GF
uni and v ∈ LF

uni

QG
L (u, v) =

∏
i

QGi
Li

(ui, vi)

where ui ∈ (Gi)uni and vi ∈ (Li)uni such that u = (u1, u2, ...) and v = (v1, v2, ...).
Analogously, for Q̃G

L (u, v) := |vLF |QG
L (u, v−1) the same relation holds

Q̃G
L (u, v) =

∏
i

Q̃Gi
Li

(ui, vi)

since |vLF | =
∏

i |v
LFi
i |.

In the present case, the above discussion means that all the 2-parameter Green functions of
(SL2(q))4 are determined by those of SL2(q). But in SL2(q) the only proper Levi subgroups are
maximal tori. Thus, we need just the ordinary Green functions of SL2(q). These are known,
since those of GL2(q) are known (they can be found in CHEVIE) and by Remark 4.14.

There are (up to conjugacy) two F -stable maximal tori of SL2 (the Weyl group of SL2 is
the symmetric group S2), denote them by T1 for the split one and by T2 for the twisted one.
With the notation as in Remark 15.3, SL2(q) has three unipotent classes with representatives
1, u+

SL2
(1) and u+

SL2
(µ) and the values of its ordinary Green functions are:

u QSL2
T1

(u) QSL2
T2

(u)

1 Φ2 −Φ1

u+
SL2

(1) 1 1
u+

SL2
(µ) 1 1

This together with Proposition 4.12 allows us to write all the 2-parameter Green functions
of CF that we need. Therefore, although we do not display these Green functions here, because
the dimension is excessive, we have proved:

Theorem 16.5. The matrices Q̃C
M3

, Q̃C
M4

, Q̃C
L1
Q̃C

L3
and Q̃C

L4
are determined by the ordinary

Green functions of SL2(q).
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17 Modified Gel’fand–Graev characters

In this section, we give all the modified Gel’fand–Graev characters for G and for the Levi
subgroups L1, . . . , L5,M1, . . . ,M4 of Spin+

8 (q) . These can be computed explicitly by using
Lemma 5.58. In the results, we denote the k-th power of the n-th root of unity in C by
ζkn := e2πi k

n .
We use the notation from Section 15 for the next proposition. Also, for modified Gel’fand–

Graev characters we separate the indices coming from the “centre part” from those coming
from the “unipotent part” with a semicolon “;”.

Proposition 17.1. The Gel’fand–Graev characters of G are given by

ΓG
jc,jd

= IndGU0
φµjc ,µjd ,1,µjc+jd

for jc, jd = 1, 2.
The modified Gel’fand–Graev characters of G are given in Table 38.
The Gel’fand–Graev characters of M1 are given by

ΓM1
jc

= IndM1
UM1

φM1

µjc ,1,1

for jc = 1, 2.
The Gel’fand–Graev characters of M2 are given by

ΓM2
jc

= IndM2
UM2

φM2

ρjc ,1

for jc = 1, 2.
The Gel’fand–Graev characters of Mi, i = 3, 4, are given by

ΓMi
jd,je

= IndMi
UMi

φMi

µjd ,µje ,1

for jd, je = 1, 2.
The Gel’fand–Graev characters of Li, i = 1, 3, 4, are given by

ΓLi
jd

= IndLiULi
φLi
µjd ,1

for jd = 1, 2.
The Gel’fand–Graev characters of Li, i = 2, 5, are given by

ΓLi
jc

= IndLiULi
φLi
ρjc

for jc = 1, 2.
The modified Gel’fand–Graev characters of the Levi subgroups are given in Tables 39 to 47.

Remark 17.2. By explicit computations we notice the following:

(a) The norm of the Gel’fand–Graev characters ΓG
jc,jd

are

q4 + 3q2

in agreement with [BrLue13, Theorem 4.1].

(b) The differences ΓLi
θ;0 − ΓLi

θ;1 are precisely the difference of two regular characters of Li, for
all θ ∈ Irr(Z(Li)) and for all i = 1, ..., 5.
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Table 38: Non-zero values of the modified Gel’fand–Graev characters of G.

zu ka, kb, kc, kd = 0, 1 ΓG
ja,jb;jc,jd

(zu) ja, jb, jc, jd = 0, 1

hZ(ka, kb)
(−1)jaka+jbkb

4
Φ4

1Φ4
2Φ3Φ2

4Φ6

hZ(ka, kb)u1(1) − (−1)jaka+jbkb

4
Φ3

1Φ3
2Φ2

4

hZ(ka, kb)u1(µkc)u2(1) (−1)jaka+jbkb

4
Φ2

1Φ2
2Φ4

(
q3(−1)jc+jd+kc+

q−1
2 + 1

)
hZ(ka, kb)u1(µkc)u4(1) (−1)jaka+jbkb

4
Φ2

1Φ2
2Φ4

(
q3(−1)jd+kc+

q−1
2 + 1

)
hZ(ka, kb)u2(µkc)u4(1) (−1)jaka+jbkb

4
Φ2

1Φ2
2Φ4

(
q3(−1)jc+kc+

q−1
2 + 1

)
hZ(ka, kb)u1(µkc)u2(µkd)u4(1) − (−1)jaka+jbkb

4
Φ1Φ2

(
1 + q3(−1)jc+jd+kc+kd+ q−1

2 +

+q3(−1)jd+kc+
q−1

2 + q3(−1)jc+kd+ q−1
2

)
hZ(ka, kb)u1(1)u3(1) (−1)jaka+jbkb

4
Φ2

1Φ2Φ3

hZ(ka, kb)u1(µ)u2(1)u4(1)u12(1) − (−1)jaka+jbkb

4
Φ1Φ2

2Φ6

hZ(ka, kb)u1(µkc)u2(1)u3(1) − (−1)jaka+jbkb

4
Φ1Φ2

(
q2(−1)jc+jd+kc+

q−1
2 + 1

)
hZ(ka, kb)u1(µkc)u3(1)u4(1) − (−1)jaka+jbkb

4
Φ1Φ2

(
q2(−1)jd+kc+

q−1
2 + 1

)
hZ(ka, kb)u2(µkc)u3(1)u4(1) − (−1)jaka+jbkb

4
Φ1Φ2

(
q2(−1)jc+kc+

q−1
2 + 1

)
hZ(ka, kb)u1(µkc)u2(1)u3(µkd)u10(1) − (−1)jaka+jbkb

4
Φ1Φ2

hZ(ka, kb)u1(µkc)u2(µkd)u3(1)u4(1) (−1)jaka+jbkb

4

(
1 + q(−1)jc+jd+kc+kd+ q−1

2 +

+q(−1)jd+kc+
q−1

2 + q(−1)jc+kd+ q−1
2

)

Table 39: Non-zero values of the modified Gel’fand–Graev characters of M1.

zu ka, kc = 0, 1, kb = 0, ..., q − 2 ΓM1
ja,jb;jc

(zu) ja, jc = 0, 1, jb = 0, ..., q − 2

hZM1
(ka, kb)

(−1)jakaζ
jbkb
q−1

2 Φ3
1Φ2

2Φ3Φ4

hZM1
(ka, kb)u2(1) − (−1)jakaζ

jbkb
q−1

2 Φ2
1Φ2Φ3

hZM1
(ka, kb)u2(µkc)u4(1)

(−1)jakaζ
jbkb
q−1

2 Φ1Φ2

(
q2(−1)jc+kc+ q−1

2 + 1
)

hZM1
(ka, kb)u2(1)u3(1)

(−1)jakaζ
jbkb
q−1

2 Φ1Φ2

hZM1
(ka, kb)u2(µkc)u3(1)u4(1) − (−1)jakaζ

jbkb
q−1

2

(
q(−1)jc+kc+ q−1

2 + 1
)
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Table 40: Non-zero values of the modified Gel’fand–Graev characters of M2.

zu ka, kc = 0, 1, kb = 0, ..., q ΓM2
ja,jb;jc

(zu) ja, jc = 0, 1, jb = 0, ..., q

hZM2
(ka, kb)

(−1)jakaζ
jbkb
q+1

2 Φ2
1Φ3

2Φ4Φ6

hZM2
(ka, kb)uβ2(1) − (−1)jakaζ

jbkb
q+1

2 Φ1Φ2
2Φ6

hZM2
(ka, kb)uβ1(ρkc) − (−1)jakaζ

jbkb
q+1

2 Φ1Φ2

(
q2(−1)jc+kc+ q−1

2 + 1
)

hZM2
(ka, kb)uβ1

(ρ)uβ3
(1) − (−1)jakaζ

jbkb
q+1

2 Φ1Φ2

hZM2
(ka, kb)uβ1

(ρkc)uβ2
(1)

(−1)jakaζ
jbkb
q+1

2

(
q(−1)jc+kc+ q−1

2 + 1
)

Table 41: Non-zero values of the modified Gel’fand–Graev characters of M3.

zu ΓM3
ja,jb,jc;jd,je

(zu)

ka = 0, ..., q − 2, kb, kc, kd, ke = 0, 1 ja = 0, ..., q − 2, jb, jc, jd, je = 0, 1

hZM3
(ka, kb, kc)

(−1)jbkb+jckcζjakaq−1

4
Φ3

1Φ3
2

hZM3
(ka, kb, kc)u1(1) − (−1)jbkb+jckcζjakaq−1

4
Φ2

1Φ2
2

hZM3
(ka, kb, kc)u2(1) − (−1)jbkb+jckcζjakaq−1

4
Φ2

1Φ2
2

hZM3
(ka, kb, kc)u4(1) − (−1)jbkb+jckcζjakaq−1

4
Φ2

1Φ2
2

hZM3
(ka, kb, kc)u1(µkd)u2(1)

(−1)jbkb+jckcζjakaq−1

4
Φ1Φ2

(
q(−1)jd+je+kd+ q−1

2 + 1
)

hZM3
(ka, kb, kc)u1(µkd)u4(1)

(−1)jbkb+jckcζjakaq−1

4
Φ1Φ2

(
q(−1)jd+kd+ q−1

2 + 1
)

hZM3
(ka, kb, kc)u2(µkd)u4(1)

(−1)jbkb+jckcζjakaq−1

4
Φ1Φ2

(
q(−1)je+kd+ q−1

2 + 1
)

hZM3
(ka, kb, kc)u1(µkd)u2(µke)u4(1) − (−1)jbkb+jckcζjakaq−1

4

(
1 + q(−1)jd+je+kd+ke+

q−1
2 +

+q(−1)jd+kd+ q−1
2 + q(−1)je+ke+

q−1
2

)
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Table 42: Non-zero values of the modified Gel’fand–Graev characters of M4.

zu ΓM4
ja,jb,jc;jd,je

(zu)

ka = 0, ..., q, kb, kc, kd, ke = 0, 1 ja = 0, ..., q, jb, jc, jd, je = 0, 1

hZM4
(ka, kb, kc)

(−1)jbkb+jckcζjakaq+1

4
Φ3

1Φ3
2

hZM4
(ka, kb, kc)u1(1) − (−1)jbkb+jckcζjakaq+1

4
Φ2

1Φ2
2

hZM4
(ka, kb, kc)u2(1) − (−1)jbkb+jckcζjakaq+1

4
Φ2

1Φ2
2

hZM4
(ka, kb, kc)u4(1) − (−1)jbkb+jckcζjakaq+1

4
Φ2

1Φ2
2

hZM4
(ka, kb, kc)u1(µkd)u2(1)

(−1)jbkb+jckcζjakaq+1

4
Φ1Φ2

(
q(−1)jd+je+kd+ q−1

2 + 1
)

hZM4
(ka, kb, kc)u1(µkd)u4(1)

(−1)jbkb+jckcζjakaq+1

4
Φ1Φ2

(
q(−1)jd+kd+ q−1

2 + 1
)

hZM4
(ka, kb, kc)u2(µkd)u4(1)

(−1)jbkb+jckcζjakaq+1

4
Φ1Φ2

(
q(−1)je+kd+ q−1

2 + 1
)

hZM4
(ka, kb, kc)u1(µkd)u2(µke)u4(1) − (−1)jbkb+jckcζjakaq+1

4

(
1 + q(−1)jd+je+kd+ke+

q−1
2 +

+q(−1)jd+kd+ q−1
2 + q(−1)je+ke+

q−1
2

)

Table 43: Non-zero values of the modified Gel’fand–Graev characters of L1.

zu ΓL1
ja,jb,jc;jd

(zu)

ka, kb = 0, ..., q − 2, kc, kd = 0, 1 ja, jb = 0, ..., q − 2, jc, jd = 0, 1

hZL1
(ka, kb, kc)

(−1)jckcζ
jaka+jbkb
q−1

2
Φ2

1Φ2
2

hZL1
(ka, kb, kc)u2(1) − (−1)jckcζ

jaka+jbkb
q−1

2
Φ1Φ2

hZL1
(ka, kb, kc)u4(1) − (−1)jckcζ

jaka+jbkb
q−1

2
Φ1Φ2

hZL1
(ka, kb, kc)u2(µkd)u4(1)

(−1)jckcζ
jaka+jbkb
q−1

2

(
q(−1)jd+kd+ q−1

2 + 1
)

Table 44: Non-zero values of the modified Gel’fand–Graev characters of L2.

zu ΓL2
ja,jb;jc

(zu)

ka = 0, ..., q2, kb, kc = 0, 1 ja = 0, ..., q2, jb, jc = 0, 1

hZL2
(ka, kb)

(−1)jbkbζjaka
q2−1

2
Φ1Φ2Φ4

hZL2
(ka, kb)uβ(ρkc) −

(−1)jbkbζjaka
q2−1

2

(
q(−1)jc+kc+

q−1
2 + 1

)
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Table 45: Non-zero values of the modified Gel’fand–Graev characters of L3.

zu ΓL3
ja,jb,jc;jd

(zu)

ka = 0, ..., q − 2, kb = 0, ..., q, kc, kd = 0, 1 ja = 0, ..., q − 2, jb = 0, ..., q, jc, jd = 0, 1

hZL3
(ka, kb, kc)

(−1)jckcζjakaq−1 ζ
jbkb
q+1

2
Φ2

1Φ2
2

hZL3
(ka, kb, kc)u2(1) − (−1)jckcζjakaq−1 ζ

jbkb
q+1

2
Φ1Φ2

hZL3
(ka, kb, kc)u4(1) − (−1)jckcζjakaq−1 ζ

jbkb
q+1

2
Φ1Φ2

hZL3
(ka, kb, kc)u2(µkd)u4(1)

(−1)jckcζjakaq−1 ζ
jbkb
q+1

2

(
q(−1)jd+kd+ q−1

2 + 1
)

Table 46: Non-zero values of the modified Gel’fand–Graev characters of L4.

zu ΓL4
ja,jb,jc;jd

(zu)

ka, kb = 0, ..., q, kc, kd = 0, 1 ja, jb = 0, ..., q, jc, jd = 0, 1

hZL4
(ka, kb, kc)

(−1)jckcζ
jaka+jbkb
q+1

2
Φ2

1Φ2
2

hZL4
(ka, kb, kc)u2(1) − (−1)jckcζ

jaka+jbkb
q+1

2
Φ1Φ2

hZL4
(ka, kb, kc)u4(1) − (−1)jckcζ

jaka+jbkb
q+1

2
Φ1Φ2

hZL4
(ka, kb, kc)u2(µkd)u4(1)

(−1)jckcζ
jaka+jbkb
q+1

2

(
q(−1)jd+kd+ q−1

2 + 1
)

Table 47: Non-zero values of the modified Gel’fand–Graev characters of L5.

zu ΓL5
ja,jb;jc

(zu)

ka, kc = 0, 1, kb = 0, ..., q2 ja, jc = 0, 1, jb = 0, ..., q2

hZL5
(ka, kb)

(−1)jakaζ
jbkb
q2+1

2
Φ1Φ2Φ4

hZL5
(ka, kb)uβ(ρkc) −

(−1)jakaζ
jbkb
q2+1

2

(
q(−1)jc+kc+

q−1
2 + 1

)
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18 Decomposition of almost characters

In this section, we discuss the case q ≡ 1 (mod 4). For the other odd congruence, the discussion
is completely analogous.

In the generic character table of G = Spin+
8 (q) there are 579 irreducible character types,

of which 14 are unipotent, and 237 class types. Of these class types 134 come from splitting
classes of G = Spin8, we will denote them generically by ci. Each one of these classes intersects
at least one of the Levi subgroups introduced in Section 15 (up to triality).

In the table of uniform almost characters, provided by Lübeck, there are 182 (non-unipotent)
types of characters which are not irreducible. We want to decompose these. Recall that, by
Remark 6.4, they are all true characters.

First of all, notice that we don’t need to consider the unipotent characters.

Remark 18.1. The unipotent characters have already been computed by Geck and Pfeiffer
in [GePf92]. To be precise, they treat the case of a connected reductive group G̃ of type
D4 with connected centre and such that its derived subgroup is simply connected. However,
thanks to Proposition 3.11 their work also gives the unipotent characters in our case (G simply
connected). We just need to specify the regular embedding G ↪→ G̃.

For the rest of the characters, we proceed as explained in Section 6. We start by introducing
unknowns, i.e. for each character χj that decomposes and for each class (belonging to a splitting
class of G) in a class type ci we introduce unknowns fj,i in the table.

Remark 18.2. By Remark 5.55, each character introduces (in theory) only one unknown per
class type. In practice, all values on a certain class type differ only by a root of unity (each
class type has a representative in the centre of the centralizer of any of its elements).

We know that the constituents of each uniform almost character form a unique G̃F -orbit
by Clifford theory (Theorem 2.21) and Remark 6.4. Then, we can relate their unknowns
on different classes thanks to the conjugation with representatives in G of H1(F,Z(G)) (see
Remark 1.64).

Finally, we write systems of equations involving the modified Gel’fand–Graev characters
and the unknowns fj,i of the Levi subgroups that intersect the class ci, via Lusztig restriction.

As seen in Figure 4, the Levi subgroup lattice of Spin+
8 (q) is richer than that of SL4(q). This

means that some splitting classes might be contained in more than one Levi subgroup. For
example those of the form zu with z ∈ Z(L1) and u ∈ L1 unipotent might be contained also in
M1 or M3. Thus, one needs to be careful that all the computations/labellings are consistent.

We treat in some detail representative examples of the computations. In practice, we de-
compose a regular character, a semisimple character and a character which is neither of those.

Notation 18.3. � Recall that we denote by G∗ the dual group of G, with Frobenius F ∗

corresponding to F . Then, we will write G∗ := G∗F
∗
.

� Furthermore, recall that for g ∈ G, we use the notation AG(g) := CG(g)/CG(g)◦.

� We denote by hα∗1 , hα∗2 , hα∗3 , hα∗4 the coroots of G∗, whose span is the dual T∗0 of our
reference maximally split torus T0 of G. Then, in short, for t1, t2, t3, t4 ∈ F̄×q , we will use
the notation h∗(t1, t2, t3, t4) := hα∗1(t1)hα∗2(t2)hα∗3(t3)hα∗4(t4) for the elements of T∗0.

� Characters and classes will be indexed as they are in the table provided by Lübeck.

� Recall that, at the end of Section 13.2, we have chosen elements in G representing ev-
ery z ∈ H1(F,Z(G)). For z = hZ(ka, kb) (notation as in Section 13.2) we denote this
representative by g(ka,kb), for ka, kb = 0, 1.

� Finally, recall that we denote the triality automorphism of G by τ .
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18.1 A regular character

In this section, we treat the example of a regular character which is not semisimple.
We consider the Lusztig series E (G, s15) with s15 = h∗(1, 1,−1, 1) ∈ G∗. It is easy to see

that the centralizer CG∗(s15) is of type A4
1 and AG∗(s15) ∼= C2 × C2 is of order 4. Because the

centralizer is not a torus, the element s15 is not regular. Therefore, the regular characters and
the semisimple characters of E (G, s15) are distinct. Because s15 is triality invariant, we expect
some triality invariance to appear here and there in the computations below.

We decompose the uniform almost character in the span of E (G, s15) which has non-zero
scalar product with the Gel’fand–Graev characters. We denote this character by R15. The
character R15 has norm equal to 4. Its irreducible constituents are the regular characters
χ := χ(s15),hZ(0,0), χ

g(0,1) = χ(s15),hZ(0,1), χ
g(1,0) = χ(s15),hZ(1,0), and χg(1,1) = χ(s15),hZ(1,1).

Due to these conjugations, we can write the unknowns of these characters just in terms of
those of χ. Moreover, we get some other constraint by imposing R15 = χ+χg(0,1) +χg(1,0) +χg(1,1) .
Furthermore, by forcing 〈ΓG

ka,kb
, χg(ka,kb)〉 = 1, for ka, kb = 0, 1, we can fix the unknowns of 3

unipotent classes in terms of the others. Other equations are given by Theorem 5.37 (a), i.e.
χ(u) = 0 for u regular unipotent since χ is not semisimple.

Next, it is easy to check that tzR15 = R15 (for example on the identity element), for all
z ∈ Z(G). Thus, by Proposition 5.54, the constituents of R15 belong to CF(G)1Z , where 1Z is
the trivial character of Z(G). This fixes χ(zu) = χ(u) for all z ∈ Z(G) and z unipotent.

At this point, we used all the information available at the level of G, we turn, then, to the
computations in the Levi subgroups.

Notation 18.4. Because we are considering Lusztig restriction of characters only on elements
of the form zu (z central and u unipotent), we will encounter many characters that look like
the Steinberg character (when restricted to those elements). However, they cannot be it for
geometric reasons (the Steinberg character belongs to the Lusztig series associated with 1). We
denote these characters by St′L to make it apparent that they have values in common with StL.

Lemma 18.5. We have the following relations:

(a) ∗RG
L1
χ=St′L1

+ χL1

(s15),1∈CF(L1)1⊕CF(L1)ϕ with ϕ :Z(L1)→C, hZL1
(ka, kb, kc) 7→(−1)kb,

(b) ∗RG
L2
χ=χL2

(s15),zL2
∈CF(L2)ϕ with ϕ :Z(L2)→C, hZL2

(ka, kb) 7→(−1)ka,

(c) ∗RG
L3
χ=−St′L3

∈CF(L3)1,

(d) ∗RG
L4
χ=St′L4

+χL4

(s15),1∈CF(L4)1⊕CF(L4)ϕ with ϕ :Z(L4)→C, hZL4
(ka, kb, kc) 7→(−1)kb+kc,

(e) ∗RG
L5
χ=0

(f) ∗RG
M1
χ=χM1

(s15),1∈CF(M1)1 and it is not a semisimple character of M1,

(g) ∗RG
M2
χ=χM2

(s15),zM2
∈CF(M2)1 and it is not a semisimple character of M2,

(h) ∗RG
M3
χ = St′M3

+ χM3

(s15),1 ∈ CF(M3)1 ⊕ CF(M3)ϕ with

ϕ : Z(M3)→ C, hZM3
(ka, kb, kc) 7→ (−1)ka+kb+kc,

(i) ∗RG
M4
χ = −St′M4

− χM4

(s15),1 ∈ CF(M4)1 ⊕ CF(M4)ϕ with

ϕ : Z(M4)→ C, hZM4
(ka, kb, kc) 7→ (−1)ka+kb+kc,

Also, the same relations hold when applying triality to the Levi subgroups (as expected).
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Proof. We start with a preliminary remark. Notice that for all the Levi subgroups L different
from M3 and M4 the canonical surjection hL has kernel of order 2 (as seen in Section 15). Then,
for those Levi subgroups ∗RG

LR15 is twice the sum of, possibly different, irreducible characters.
Also, since the constituents of R15 are regular characters, by Theorem 5.35 the restriction
∗RG

LR15 is, up to sign, a true character.

(a) We explicitly compute 〈ΓL1
0,0,0;k,

∗RG
L1
R15〉 = 4, 〈ΓL1

0, q−1
2
,0;k
, ∗RG

L1
R15〉 = 2 for k = 0, 1. By

inspection of the values ∗RG
L1
R15(zu) we can identify the part in common with ΓL1

0,0,0;k and

ΓL1

0, q−1
2
,0;k

(where z ∈ Z(L1) and u unipotent in L1). Then, we can write the decomposition

∗RG
L1
R15 = 4 · St′L1

+ 2
∑

z∈H1(F,Z(L1)) χ
L1

(s15),z. Finally, the claim follows by the remark at
the beginning of the proof, Theorem 5.35 and Remark 5.53.

The other points are proven in the exact same way. We just give the different decompositions.

(b) We compute 〈ΓL2

q2−1
2

,0;k
, ∗RG

L2
R15〉 = 2 for k = 0, 1, which implies the decomposition

∗RG
L2
R15 = 2

∑
z∈H1(F,Z(L2)) χ

L2

(s15),z.

(c) We directly see on the character values that ∗RG
L3
R15 = −4 · St′L3

.

(d) We compute 〈ΓL4
0,0,0;k,

∗RG
L4
R15〉 = 4 and 〈ΓL4

0, q+1
2
,1;k
, ∗RG

L4
R15〉 = 2 for k = 0, 1, which implies

the decomposition ∗RG
L4
R15 = 4 · St′L4

+ 2
∑

z∈H1(F,Z(L4)) χ
L4

(s15),z.

(e) We compute ∗RG
L5
R15 = 0.

(f) We compute 〈ΓM1
0,0;k,

∗RG
M1
R15〉 = 2 for k = 0, 1, which implies the decomposition

∗RG
M1
R15 = 2

∑
z∈H1(F,Z(M1)) χ

M1

(s15),z. By Lemma 18.7 (f), in the next section, the con-

stituents of ∗RG
M1
R30 are not regular (R30 = DGR15 is the sum of semisimple characters).

It follows that χM1

(s15),z is not semisimple, for z ∈ H1(F,Z(M1)).

(g) This is exactly like the previous point with M1 replaced with M2.

(h) We compute 〈ΓM3
0,0,0;k,

∗RG
M3
R15〉 = 4 and 〈ΓM3

q−1
2
,1,1;k

, ∗RG
M3
R15〉 = 1 for k = 0, 1, which

implies the decomposition ∗RG
M3
R15 = 4 · St′M3

+
∑

z∈H1(F,Z(M3)) χ
M3

(s15),z.

(i) We compute 〈ΓM4
0,0,0;k,

∗RG
M4
R15〉 = −4 and 〈ΓM4

q+1
2
,1,1;k

, ∗RG
M4
R15〉 = −1 for k = 0, 1, which

implies the decomposition ∗RG
M4
R15 = −4 · St′M4

−
∑

z∈H1(F,Z(M4)) χ
M4

(s15),z.

Also, the same relations hold when applying triality to the Levi subgroups, by explicit compu-
tation (as expected).

We can now use Lemma 18.5 to fix the unknown values of χ. By the triality invariance of
R15 every time we mention a Levi subgroup L, in the discussion that follows, we imply L or
τ(L) or τ 2(L).

First of all, we have 12 unknown character values on unipotent classes. We already fixed
3 of them with the scalar products 〈χ,ΓG

z 〉 = δ1,z, for z ∈ H1(F,Z(G)). Then, by points
(c), (e) and (f) (or (g)) of the Lemma we get 9 other linearly independent equations between
those unknowns, fixing the values completely. In practice, each of those statement of the
lemma translates as ∗RG

L χ(zu) = 0 for z ∈ Z(LF ) and u regular unipotent in LF , where
L = L3,L5,M1,M2. For M1 and M2 this is a consequence of Theorem 5.37 (a).

The knowledge of χ(zu) for all z ∈ Z(G) and u ∈ Guni implies the knowledge of χL
(s15),1(zu)

with u ∈ LF
uni, for any F -stable Levi subgroup L. Then, by Lemma 18.5 we get the values more
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generally for z ∈ Z(LF ). In practice, we have χL
(s15),1(zu) = ϕ(z)χL

(s15),1(u) if χL
(s15),1 ∈ CF(LF )ϕ

for a certain ϕ ∈ Irr(Z(LF )). In particular, we know the values χ(su) for all semisimple s ∈ G
such that L = CG(s) is a Levi subgroup, and u ∈ CG(s)Funi. Indeed, in this case we have
∗RG

L χ(su) = χ(su), by the character formula in Proposition 3.30 (b) and Remark 4.3.
The only problematic cases are the classes intersecting our centralizer C = CG(s) of type

A4
1 with s = h(−1,−1, 1,−1). There are 24 unknowns on these classes. By Figure 5, we get

equations for these unknowns from ∗RG
L χ when L = M3,M4,L1,L2,L4 (and their images under

triality). In total this provides 12 linearly independent equations. We can further reduce the
number of unknowns by considering the triality symmetry. It is an easy check that τ(R15) = R15.
Equivalently, E (G, s15) is triality-invariant and its regular characters are all constituents of R15.
Then, since triality fixes the identity and permutes the elements g(ka,kb) for ka, kb = 0, 1 (not
both 0), we have τ(χ) = χ while the other characters χg(ka,kb) are permuted. This fact fixes 8
other unknowns.

In the end, we know χ(g) for all g ∈ G up to some cases where g has semisimple part
h(−1,−1, 1,−1). In total there are 4 unknowns left in the system.

18.2 A semisimple character

In this section. we treat the semisimple characters of the Lusztig series E (G, s15). By inspection
of the degree polynomials, we see that DGR15 = R30, see Remark 5.42.

Since R15 is the sum of regular characters of G, R30 is the sum of semisimple characters (by
definition). We write % = DGχ, then R30 = %+ %g(0,1) + %g(1,0) + %g(1,1) .

The main difference with the last section is that we use Remark 5.39 instead of Theo-
rem 5.37 (a) (in G but also in the Levi subgroups). This tells us that

%(uz) = εCG∗ (s15)

∑
z′∈Z(GF )

σzz′−1〈χ,ΓG
z′ 〉 = σz =

ΓG
z (u1)

|Z(G)F |

for uz a regular unipotent element in the class parametrized by z ∈ H1(F,Z(G)).
Because % is not regular, we get the equations 〈%,ΓG

z 〉 = 0 for all z ∈ H1(F,Z(G)). Like
before, this fixes 3 more unknowns on the unipotent classes.

We have seen in the previous section that R15 ∈ CF(G)1Z . Then, by Proposition 5.54 also
% ∈ CF(G)1Z . This fixes %(zu) = %(u) for all z ∈ Z(G) and z unipotent.

Next, we consider the Levi subgroups.

Notation 18.6. Because we are considering Lusztig restriction of characters only on elements
of the form zu (z central and u unipotent), we will encounter many characters that look like the
trivial character (when restricted to those elements). However, they cannot be it for geometric
reasons (the trivial character belongs to the Lusztig series associated with 1). We will denote
these characters 1′L to make it apparent that they have values in common with 1L.

Lemma 18.7. We have the following relations:

(a) ∗RG
L1
%=1′L1

+ χL1

(s15),1∈CF(L1)1⊕CF(L1)ϕ with ϕ :Z(L1)→C, hZL1
(ka, kb, kc) 7→(−1)kb,

(b) ∗RG
L2
%=χL2

(s15),zL2
∈CF(L2)ϕ with ϕ :Z(L2)→C, hZL2

(ka, kb) 7→(−1)ka,

(c) ∗RG
L3
%=1′L3

∈CF(L3)1,

(d) ∗RG
L4
%=1′L4

+ χL4

(s15),1∈CF(L4)1⊕CF(L4)ϕ with ϕ :Z(L4)→C, hZL4
(ka, kb, kc) 7→(−1)kb+kc,

(e) ∗RG
L5
%=0
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(f) ∗RG
M1
%=%M1

(s15),1∈CF(M1)1 and it is not a regular character of M1,

(g) ∗RG
M2
%=%M2

(s15),zM2
∈CF(M2)1 and it is not a regular character of M2,

(h) ∗RG
M3
% = 1′M3

+ χM3

(s15),1 ∈ CF(M3)1 ⊕ CF(M3)ϕ with

ϕ : Z(M3)→ C, hZM3
(ka, kb, kc) 7→ (−1)ka+kb+kc,

(i) ∗RG
M4
% = 1′M4

− χM4

(s15),1 ∈ CF(M4)1 ⊕ CF(M4)ϕ with

ϕ : Z(M4)→ C, hZM4
(ka, kb, kc) 7→ (−1)ka+kb+kc,

Also, the same relations hold when applying triality to the Levi subgroups (as expected).

Proof. The statements follow by Lemma 18.5, the fact that DG and ∗RG
L commute and by

evaluating scalar products of the Lusztig restrictions ∗RG
LR30 with the (modified) Gel’fand–

Graev characters of L.

Like in the previous section, we use points (c), (e) and (f) (or (g)) of this lemma to fix the
unknown values on the unipotent classes. In practice we have ∗RG

L3
%(uz) = 1, ∗RG

L5
%(uz) = 0,

∗RG
M1
%(uz) =

Γ
M1
z (u

M1
1 )

|Z(M1)| and ∗RG
M2
%(uz) =

Γ
M2
z (u

M2
1 )

|Z(M2)| for uz a regular unipotent element of the Levi

LF in the class parametrized by z ∈ H1(F,Z(L)), where L is respectively L3 , L5, M1 or M2.
Again, thanks to the character values on the unipotent classes, we can use the lemma to

find %(su) for s ∈ G semisimple such that L = CG(s) is a Levi subgroup, and u ∈ CG(s)Funi.
And, by exactly the same arguments as at the end of the previous section, we can fix almost
all the values %(su) for s = h(−1,−1, 1,−1) (and u ∈ CG(s)Funi).

In the end, like for χ, we know %(g) for all g ∈ G up to some cases where g has semisimple
part h(−1,−1, 1,−1). In total there are 4 unknowns left in the system.

18.3 A third possibility

It is clear that for characters that are both regular and semisimple we can apply a procedure
which is a mixture of the last two sections, to find all the character values. And the computa-
tions are made even easier by the fact that the Lusztig restriction of these characters may have
constituents which are both regular and semisimple.

Therefore, we consider the decomposition of a uniform almost character whose constituents
are neither regular nor semisimple. However, we will see that the method to use is similar to
the one of the previous cases.

One more time, we work in ZE (G, s15). We have three uniform almost characters R18, R20

and R21 that are permuted by triality (by explicit inspection of their values). We choose to
treat R18. This character has norm equal to 2. Then, before starting the computations, we
have to determine for which z ∈ H1(F,Z(G)) the element gz ∈ G fixes the constituents of R18.
Assume that R18 = θ + θgz for θ irreducible. Then, if z ∈ ker(hL), for a certain Levi subgroup
L, ∗RG

LR18 is twice an irreducible character (recall that hL : H1(F,Z(G)) → H1(F,Z(L)) is
the canonical surjection). Thus, we check for which L = M1, τ(M1), τ 2(M1) not all the values
of ∗RG

LR18 are multiples of 2. In practice, we look for character values equal 1. Since 1
2

is not
an algebraic integer a restriction that takes value 1 must be the sum of two distinct irreducible
characters.

In the present case we have that g(0,1) fixes the constituents of R18. Then we have the
decomposition R18 = θ + θg(1,0) = θ + θg(1,1) . Moreover, we can use the relation θg(0,1) = θ to
greatly reduce the number of unknowns (to 25).

We proceed similarly to the last two sections to fix the unknown values of θ.
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Since θ is not a regular character we can impose 〈θ,ΓG
z 〉 = 0 for all z ∈ H1(F,Z(G)) and

because it is not semisimple we have θ(u) = 0 for all regular unipotent elements u ∈ G.
The main “difficulty” comes from the fact that we know nothing, a priori, about the Lusztig

restriction of θ (namely, its constituents might be regular, semisimple or neither). However, by
taking scalar products with the modified Gel’fand–Graev characters of the Levi subgroups and
by some ad hoc arguments, we can find the analogue of Lemmas 18.5 and 18.7.

Lemma 18.8. We have the following relations:

(a) ∗RG
L1
θ = St′L1

+ 1′L1
+ 2χL1

(s15),1 ∈ CF(L1)1 ⊕ CF(L1)ϕ with

ϕ : Z(L1)→ C, hZL1
(ka, kb, kc) 7→ (−1)kb,

(b) ∗RG
L2
θ=
∑

z∈H1(F,Z(L1)) χ
L2

(s15),z∈CF(L2)ϕ with ϕ :Z(L2)→C, hZL2
(ka, kb) 7→(−1)ka,

(c) ∗RG
L3
θ=St′L1

− 1′L3
∈CF(L3)1,

(d) ∗RG
L4
θ = St′L1

+1′L4
+2χL4

(s15),z ∈ CF(L4)1⊕CF(L4)ϕ where 1 6= z ∈ H1(F,Z(L4)) and with

ϕ : Z(L4)→ C, hZL4
(ka, kb, kc) 7→ (−1)kb+kc,

(e) ∗RG
L5
θ=0

(f) ∗RG
M1
θ=χM1

(s15),1 + %M1

(s15),1∈CF(M1)1,

(g) ∗RG
M2
θ ∈ CF(M2)1 ,

(h) ∗RG
M3
θ − χM3

(s15),1 − χ
M3

(s15),z ∈ CF(M3)1 with z = h(1,−1, 1, 1) ∈ H1(F,Z(M3)),

(i) ∗RG
M4
θ + χM4

(s15),1 + χM4

(s15),z ∈ CF(M4)1 with z = h(1,−1, 1, 1) ∈ H1(F,Z(M4)).

Proof. We first prove points (c), (e) and (f), then use them to prove the rest.

(c) By examining its values, we see that ∗RG
L3
R18 ∈ CF(GF )1. Next, we explicitly compute

〈ΓL3
0,0,0;k,

∗RG
L3
R18〉 = 2 for k = 0, 1. We have seen in Lemma 18.5 (c) that the only regular

character in
CF(L3)1 ∩

⋃
(t)⊆(s15)

E (L3, (t))

is St′L3
, where the union is on the semisimple classes (t) of L∗F

∗
3 contained in the class

(s15) of G∗F
∗
. Finally, we check easily that ∗RG

L3
R18 − 2 · St′L3

= 2 · 1′L3
.

(e) We compute ∗RG
L5
R18 = 0.

(f) We compute 〈ΓM1
0,0,0;k,

∗RG
M1
R18〉 = 1 for k = 0, 1. Then, both χM1

(s15),1 and χM1

(s15),z are

constituents of ∗RG
M1
R18, where 1 6= z ∈ H1(F,Z(M1)). Moreover, we see on the values

that ∗RG
M1
R18 − χM1

(s15),1 − χ
M1

(s15),z = %M1

(s15),1 + %M1

(s15),z. Therefore, there are four possibilities

for the restriction of θ, ∗RG
M1
θ = χM1

(s15),a + %M1

(s15),b for a, b being any combination of 1, z.
For the time being we still have some degree of freedom for choosing in which case we are.
Ultimately, it is the semisimple part that will give us a relation to fix the values of θ on
unipotent elements (remember that only the semisimple characters have non-zero value on
regular unipotent classes). We choose ∗RG

M1
θ = χM1

(s15),a+%M1

(s15),1 (a = 1 or z). Before fixing
a, notice that we have enough information to fix all the values of θ on unipotent elements
of G. From point (c) we have the equation ∗RG

L3
θ(u) = −1 for u regular unipotent in L3.

From point (e) we get the equation ∗RG
L5
θ(u) = 0 for u regular unipotent in L5. And from
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the discussion above we have ∗RG
M1
θ(u) = σM1

1 for u in the regular unipotent class of M1

parametrized by 1 ∈ H1(F,Z(M1)). With these equations, we can fix the unknowns of
θ on unipotent classes. Finally, we can explicitly compute ∗RG

M1
θ on unipotent classes

fixing a = 1.

As already mentioned in point (f), the relations that we just proved are enough to fix all the
values θ(u) for u ∈ G unipotent. This allows us to explicitly compute the scalar product
between ∗RG

L θ and the Gel’fand–Graev characters of LF , for L = L2,L4,L5,M2,M3,M4.

(a) We compute 〈ΓL1
0,0,0;k,

∗RG
LR18〉 = 2 and 〈ΓL1

0, q−1
2
,0;k
, ∗RG

LR18〉 = 2. Thanks to Lemma 18.5

we know what regular characters of L1 can appear here. Therefore, we deduce that
∗RG

LR18 = 2·St′L1
+2
∑

z∈H1(F,Z(L1)) χ(s15),z+. . . . The non-regular part is easily determined

to be 2 · 1′L1
. Moreover, we compute the following scalar products with the (usual)

Gel’fand–Graev characters: 〈ΓL1
0 , ∗RG

L θ〉 = 1 and 〈ΓL1
1 , ∗RG

L θ〉 = 3. The result follows.

(b) We compute the scalar products with the Gel’fand–Graev characters: 〈ΓL2
k ,
∗RG

L θ〉 = 1.
From Lemma 18.5, we know the only possible regular characters that can be constituents
of ∗RG

L θ. And we check the stated result.

(d) The proof happens to be exactly like the one for point (a).

(g,h,i) Although it might be possible to give more precise information on the Lusztig restriction
of θ to L = M2,M3,M4, it is enough for us to know the decomposition of ∗RG

L θ in⊕
ϕ∈Irr(Z(LF )) CF(LF )ϕ. We see directly that ∗RG

M2
R18 ∈ CF(M2)1; then by Lemma 5.57

all its constituents have the same property. For L = M3,M4 the restriction ∗RG
LR18

has constituents not in CF(LF )1. We identify them thanks to scalar products with the
modified Gel’fand–Graev characters of LF and Lemma 18.5. Then, we see, by subtracting
these constituents from ∗RG

LR18, that we obtain a class function in CF(LF )1. And, by
Lemma 5.57 each constituent also lies in CF(LF )1.

As already stated in the proof, we can use points (c), (e) and (f) to fix all the remaining
unknown character values of θ on unipotent classes of G. And then, exactly like in the two
previous sections we use all of Lemma 18.8 to find the values θ(su) for s ∈ G semisimple such
that L = CG(s) is a Levi subgroup, and u ∈ CG(s)Funi. Again, when CG(s) is not a Levi
subgroup, we can find all but 4 unknowns, exactly like in the last two sections.

Notice that, as already stated, the other non-irreducible uniform almost characters in the
span of E (G, s15) are obtained by applying triality to R18. Then by applying τ to θ (or by re-
producing the same computations as above), we complete the determination of the irreducible
characters in the Lusztig series E (G, s15), up to four unknowns per character that we decom-
posed.

18.4 Closing remarks

What we have seen in Section 18 can be summarized as follow.
Assuming that:

� we know the values of the irreducible characters of G on the unipotent classes,

� we know the uniform almost characters of G, and

� we know the 2-parameter Green function QG
L for all F -stable Levi subgroup L, then
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we can compute the character values on all the elements of the form su where s is semisimple
such that CG(s) is a Levi subgroup of G and u ∈ CL(s)uni, including the case s ∈ Z(G).

When CG(s) is not a Levi subgroup then we still get informations on the character values
for elements su if moreover

� we know Q
CG(s)
L for all the F -stable Levi subgroups of G contained in CG(s), and

� we find other relations by ad hoc methods.

To compute the character values on unipotent classes, we need:

� the values of the uniform almost characters of G on unipotent classes,

� the values of the Gel’fand–Graev characters of GF and of its Levi subgroups,

� the 2-parameter Green functions QG
L for all Levi subgroup L.

We have seen in the rest of the work that to compute the Gel’fand–Graev characters and
the 2-parameter Green functions the main tool needed is the fusion of unipotent classes from
the maximal unipotent subgroup U0 to G. This can, in principle, always be computed by the
method described in Section 6.3. Notice that, at the moment of the writing, it doesn’t seem
to be possible to implement the algorithm of Section 6.3 in a computer program in general for
the treatment of finite groups of Lie type, without specifying the characteristic of G. At our
knowledge there is no computer program that solves equations over a finite field Fq where q is
specified only up to congruence.

Summarizing, the computation of the generic character table can be achieved when it is
possible to find the values on unipotent elements and on elements whose semisimple parts have
centralizers which are not Levi subgroup. We are convinced that the first part is possible for
Spin+

8 (q). In fact, every character has at most the number of unknowns that appeared in the
case of χ or %. For other characters in a G̃F -orbit of order 4 this number is equal. In this case
these characters are either regular or semisimple. While for characters with only one distinct
G̃F -conjugate this number is lower. This is due to the fact that there exist elements of G̃F

fixing the character, thus removing unknowns, like in the previous section. The other reason is
that for the cases that we treated, we never used more than a third of the equations available.
In practice, on unipotent elements, each character has at most 15 unknowns, and we get at
least one equation involving them from each of 23 Levi subgroups (counting also the images
under triality of M1,M2,L1, ...,L5). Moreover, notice that even if we treat distinct characters
we always encounter the same equations between the unknowns, up to the character values
of the uniform almost character that is being decomposed. This is obvious since the Lusztig
restriction functor ∗RG

L only depends on the Levi subgroup L and not on the character being
restricted. In other words, the left-hand side of any equation of Lemma 18.5 is always the
same independently of the character that we are considering. The only dependency on the
uniform almost characters comes from the right-hand side of the equation, and we have shown
how this can be determined. Furthermore, we know that the equations that we obtain (like in
Lemma 18.5) are all solvable since their solution yields (portions of) the character table, which
exists.

On the other side, the number of unknowns left in the system is so small that we believe that
with ad-hoc methods it is possible to complete the character table. For example, we did not
use the fact that irreducible characters have norm equal one, that the scalar product between
different irreducible characters is zero, or the second orthogonality relation.
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Appendices

A Tables

A.1 Unipotent classes representatives

Table 48: Unipotent classes of Spin+
8 (q). The table shows the Jordan normal form, the num-

bering of the class, a representative in Steinberg presentation (〈µ〉 = F×q ) and the image under
the triality automorphism. On the classes with Jordan form 53 the triality automorphism acts
differently depending on the congruence of q. The action for q ≡ 1 (4) is given first.

18 u1 1 u1

2214 u2 u1(1) u2

24+ u3 u1(1)u2(1) u7

u4 u1(µ)u2(1) u8

24− u5 u1(1)u4(1) u3

u6 u1(µ)u4(1) u4

315 u7 u2(1)u4(1) u5

u8 u2(µ)u4(1) u6

3221 u9 u1(1)u2(1)u4(1) u9

u10 u1(1)u2(µ)u4(1) u12

u11 u1(µ)u2(1)u4(1) u10

u12 u1(µ)u2(µ)u4(1) u11

3212 u13 u1(1)u3(1) u13

3212 u14 u1(µ)u2(1)u4(1)u12(1) u14

42+ u15 u1(1)u2(1)u3(1) u19

u16 u1(µ)u2(1)u3(1) u20

42− u17 u1(1)u3(1)u4(1) u15

u18 u1(µ)u3(1)u4(1) u16

513 u19 u2(1)u3(1)u4(1) u17

u20 u2(µ)u3(1)u4(1) u18

53 u21 u1(1)u2(1)u3(1)u10(1) u21/u22

u22 u1(1)u2(1)u3(µ)u10(1) u23/u24

u23 u1(µ)u2(1)u3(1)u10(1) u24/u23

u24 u1(µ)u2(1)u3(µ)u10(1) u22/u21

71 u25 u1(1)u2(1)u3(1)u4(1) u25

u26 u1(1)u2(µ)u3(1)u4(1) u28

u27 u1(µ)u2(1)u3(1)u4(1) u26

u28 u1(µ)u2(µ)u3(1)u4(1) u27
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Table 49: Representatives of the unipotent classes of the Levi subgroups A1(q)3(q − 1) and
A1(q)3(q + 1) of Spin+

8 (q) with the action of triality, where 〈µ〉 = F×q .

v1 1 v1

v2 u1(1) v4

v3 u2(1) v2

v4 u4(1) v3

v5 u1(1)u2(1) v9

v6 u1(µ)u2(1) v10

v7 u1(1)u4(1) v5

v8 u1(µ)u4(1) v6

v9 u2(1)u4(1) v7

v10 u2(µ)u4(1) v8

v11 u1(1)u2(1)u4(1) v11

v12 u1(1)u2(µ)u4(1) v14

v13 u1(µ)u2(1)u4(1) v12

v14 u1(µ)u2(µ)u4(1) v13
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A.2 2-parameter Green functions

Table 50: Q̃G
L (u, v) for the split Levi subgroup A3(q)(q − 1) of Spin+

8 (q).

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12

v1 Φ2
2Φ4Φ6 Φ2 . . . . 1 1 . . . .

v2 . q2Φ2
2 Φ2Φ4 Φ2Φ4 Φ2Φ4 Φ2Φ4 . . 1 1 1 1

v3 . . . . . . qΦ2Φ4 . qΦ2 . qΦ2 .
v4 . . . . . . . qΦ2Φ4 . qΦ2 . qΦ2

v5 . . . . . . . . . . . .
v6 . . . . . . . . . . . .
v7 . . . . . . . . . . . .

u13 u14 u15 u16 u17 u18 u19 u20 u21 u22 u23 u24 u25 u26 u27 u28

v1 . . . . . . . . . . . . . . . .
v2 2 . . . . . . . . . . . . . . .
v3

Φ1

2
Φ2

2
. . . . 1 . . . . . . . . .

v4
Φ1

2
Φ2

2
. . . . . 1 . . . . . . . .

v5 2q2 . Φ2 Φ2 Φ2 Φ2 . . 1 1 1 1 . . . .

v6 . . . . . . qΦ2 . 1+εq
2
q 1−εq

2
q 1+εq

2
q 1−εq

2
q 1 . 1 .

v7 . . . . . . . qΦ2
1−εq

2
q 1+εq

2
q 1−εq

2
q 1+εq

2
q . 1 . 1

εq = (−1)
q−1

2
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Table 51: Q̃G
L (u, v) for the twisted Levi subgroup 2A3(q)(q + 1) of Spin+

8 (q).

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12

v1 Φ2
1Φ3Φ4 −Φ1 . . . . 1 1 . . . .

v2 . q2Φ2
1 −Φ1Φ4 −Φ1Φ4 −Φ1Φ4 −Φ1Φ4 . . 1 1 1 1

v3 . . . . . . . qΦ1Φ4 . qΦ1 . qΦ1

v4 . . . . . . qΦ1Φ4 . qΦ1 . qΦ1 .
v5 . . . . . . . . . . . .
v6 . . . . . . . . . . . .
v7 . . . . . . . . . . . .

u13 u14 u15 u16 u17 u18 u19 u20

v1 . . . . . . . .
v2 . 2 . . . . . .
v3 −Φ1

2
−Φ2

2
. . . . 1 .

v4 −Φ1

2
−Φ2

2
. . . . . 1

v5 . 2q2 −Φ1 −Φ1 −Φ1 −Φ1 . .
v6 . . . . . . . qΦ1

v7 . . . . . . qΦ1 .

u21 u22 u23 u24 u25 u26 u27 u28

v1 . . . . . . . .
v2 . . . . . . . .
v3 . . . . . . . .
v4 . . . . . . . .
v5 1 1 1 1 . . . .

v6
εq−1

2
q − εq+1

2
q εq−1

2
q − εq+1

2
q 1 . 1 .

v7 − εq+1

2
q εq−1

2
q − εq+1

2
q εq−1

2
q . 1 . 1

εq = (−1)
q−1

2
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Table 52: Q̃G
L (u, v) for the split Levi subgroup A1(q)3(q − 1) of Spin+

8 (q).
u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12

v1 Φ2Φ3Φ2
4Φ6 ∗ Φ2Φ4 Φ2Φ4 Φ2Φ4 Φ2Φ4 Φ2Φ4 Φ2Φ4 Φ2 Φ2 Φ2 Φ2

v2 . q4Φ2 . . . . q2Φ4 q2Φ4 . . . .

v3 . q4Φ2 . . q2Φ4 q2Φ4 . . . . . .

v4 . q4Φ2 q2Φ4 q2Φ4 . . . . . . . .

v5 . . q2Φ2Φ4 . . . . . q2 . . q2

v6 . . . q2Φ2Φ4 . . . . . q2 q2 .

v7 . . . . q2Φ2Φ4 . . . q2 q2 . .

v8 . . . . . q2Φ2Φ4 . . . . q2 q2

v9 . . . . . . q2Φ2Φ4 . q2 . q2 .

v10 . . . . . . . q2Φ2Φ4 . q2 . q2

v11 . . . . . . . . q3Φ2 . . .

v12 . . . . . . . . . q3Φ2 . .

v13 . . . . . . . . . . q3Φ2 .

v14 . . . . . . . . . . . q3Φ2

u13 u14 u15 u16 u17 u18 u19 u20 u21 u22 u23 u24 u25 u26 u27 u28
v1 1 1 . . . . . . . . . . . . . .
v2 2q . . . . . 1 1 . . . . . . . .
v3 2q . . . 1 1 . . . . . . . . . .
v4 2q . 1 1 . . . . . . . . . . . .
v5 qΦ1 . Φ2 . . . . . 1 1 . . . . . .
v6 qΦ1 . . Φ2 . . . . . . 1 1 . . . .
v7 qΦ1 . . . Φ2 . . . 1 . . 1 . . . .
v8 qΦ1 . . . . Φ2 . . . 1 1 . . . . .

v9 qΦ1 . . . . . Φ2 .
1+εq

2

1−εq
2

1+εq
2

1−εq
2

. . . .

v10 qΦ1 . . . . . . Φ2
1−εq

2

1+εq
2

1−εq
2

1+εq
2

. . . .

v11
qΦ2

1
4

qΦ2
2

4
Φ1Φ2

2
.

Φ1Φ2
2

.
Φ1Φ2

2
.

q−4−εq
4

q−2+εq
4

q−εq
4

q−2+εq
4

1 . . .

v12
qΦ2

1
4

qΦ2
2

4
.

Φ1Φ2
2

Φ1Φ2
2

. .
Φ1Φ1

2

q−2+εq
4

q−εq
4

q−2+εq
4

q−4−εq
4

. 1 . .

v13
qΦ2

1
4

qΦ2
2

4
.

Φ1Φ2
2

.
Φ1Φ2

2
Φ1Φ2

2
.

q−εq
4

q−2+εq
4

q−4−εq
4

q−2+εq
4

. . 1 .

v14
qΦ2

1
4

qΦ2
2

4
Φ1Φ2

2
. .

Φ1Φ2
2

.
Φ1Φ2

2

q−2+εq
4

q−4−εq
4

q−2+εq
4

q−εq
4

. . . 1

∗ = q
4

+ 3q
3

+ 3q
2

+ q + 1

εq = (−1)
q−1

2
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Table 53: Q̃G
L (u, v) for the twisted Levi subgroup A1(q)3(q + 1) of Spin+

8 (q).

u1 u2 u3 u4 u5 u6 u7 u8

v1 −Φ1Φ3Φ2
4Φ6 ∗ −Φ1Φ4 −Φ1Φ4 −Φ1Φ4 −Φ1Φ4 −Φ1Φ4 −Φ1Φ4

v2 . −q4Φ1 . . . . q2Φ4 q2Φ4

v3 . −q4Φ1 . . q2Φ4 q2Φ4 . .
v4 . −q4Φ1 q2Φ4 q2Φ4 . . . .
v5 . . −q2Φ1Φ4 . . . . .
v6 . . . −q2Φ1Φ4 . . . .
v7 . . . . −q2Φ1Φ4 . . .
v8 . . . . . −q2Φ1Φ4 . .
v9 . . . . . . −q2Φ1Φ4 .
v10 . . . . . . . −q2Φ1Φ4

v11 . . . . . . . .
v12 . . . . . . . .
v13 . . . . . . . .
v14 . . . . . . . .

u9 u10 u11 u12 u13 u14 u15 u16 u17 u18 u19 u20

v1 −Φ1 −Φ1 −Φ1 −Φ1 1 1 . . . . . .
v2 . . . . . −2q . . . . 1 1
v3 . . . . . −2q . . 1 1 . .
v4 . . . . . −2q 1 1 . . . .
v5 q2 . . q2 . qΦ2 . −Φ1 . . . .
v6 . q2 q2 . . qΦ2 −Φ1 . . . . .
v7 q2 q2 . . . qΦ2 . . . −Φ1 . .
v8 . . q2 q2 . qΦ2 . . −Φ1 . . .
v9 q2 . q2 . . qΦ2 . . . . . −Φ1

v10 . q2 . q2 . qΦ2 . . . . −Φ1 .

v11 q3Φ1 . . . − qΦ
2
1

4 − qΦ
2
2

4 . Φ1Φ2

2 . Φ1Φ2

2 . Φ1Φ2

2

v12 . q3Φ1 . . − qΦ
2
1

4 − qΦ
2
2

4
Φ1Φ2

2 . . Φ1Φ2

2
Φ1Φ2

2 .

v13 . . q3Φ1 . − qΦ
2
1

4 − qΦ
2
2

4
Φ1Φ2

2 . Φ1Φ2

2 . . Φ1Φ2

2

v14 . . . q3Φ1 − qΦ
2
1

4 − qΦ
2
2

4 . Φ1Φ2

2
Φ1Φ2

2 . Φ1Φ2

2 .

u21 u22 u23 u24 u25 u26 u27 u28

v1 . . . . . . . .
v2 . . . . . . . .
v3 . . . . . . . .
v4 . . . . . . . .
v5 . . 1 1 . . . .
v6 1 1 . . . . . .
v7 . 1 1 . . . . .
v8 1 . . 1 . . . .

v9
1−εq

2
1+εq

2
1−εq

2
1+εq

2 . . . .

v10
1+εq

2
1−εq

2
1+εq

2
1−εq

2 . . . .

v11 − q−εq4 − q+2+εq
4 − q+4−εq

4 − q+2+εq
4 1 . . .

v12 − q+2+εq
4 − q+4−εq

4 − q+2+εq
4 − q−εq4 . 1 . .

v13 − q+4−εq
4 − q+2+εq

4 − q−εq4 − q+2+εq
4 . . 1 .

v14 − q+2+εq
4 − q−εq4 − q+2+εq

4 − q+4−εq
4 . . . 1

∗ = q4 − 3q3 + 3q2 − q + 1

εq = (−1)
q−1

2
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Table 54: Q̃G
L (u, v) for the split Levi subgroup A1(q)2(q − 1)2 of Spin+

8 (q).

u1 u2 u3 u4 u5 u6 u7 u8

v1 Φ2
2Φ3Φ2

4Φ6 ∗ Φ2
2Φ4 Φ2

2Φ4 Φ2
2Φ4 Φ2

2Φ4 (2q2 + 2q + 1)Φ4 (2q2 + 2q + 1)Φ4

v2 . q4Φ2
2 q2Φ2Φ4 q2Φ2Φ4 q2Φ2Φ4 q2Φ2Φ4 . .

v3 . q4Φ2
2 q2Φ2Φ4 q2Φ2Φ4 q2Φ2Φ4 q2Φ2Φ4 . .

v4 . . . . . . q2Φ2
2Φ4 .

v5 . . . . . . . q2Φ2
2Φ4

u9 u10 u11 u12 u13 u14 u15 u16 u17 u18 u19 u20

v1 Φ2
2 Φ2

2 Φ2
2 Φ2

2 3q + 1 Φ2 . . . . 1 1
v2 q2 q2 q2 q2 4q2 . Φ2 Φ2 Φ2 Φ2 . .
v3 q2 q2 q2 q2 4q2 . Φ2 Φ2 Φ2 Φ2 . .

v4 q2Φ2
2 . q2Φ2

2 . q(3q + 1)Φ1
2 q

Φ2
2

2
Φ1Φ2

2
Φ1Φ2

2
Φ1Φ2

2
Φ1Φ2

2 2qΦ2 .

v5 . q2Φ2
2 . q2Φ2

2 q(3q + 1)Φ1
2 q

Φ2
2

2
Φ1Φ2

2
Φ1Φ2

2
Φ1Φ2

2
Φ1Φ2

2 . 2qΦ2

u21 u22 u23 u24 u25 u26 u27 u28

v1 . . . . . . . .
v2 1 1 1 1 . . . .
v3 1 1 1 1 . . . .

v4
(2+εq)q−1

2
(2−εq)q−1

2
(2+εq)q−1

2
(2−εq)q−1

2 1 . 1 .

v5
(2−εq)q−1

2
(2+εq)q−1

2
(2−εq)q−1

2
(2+εq)q−1

2 . 1 . 1

∗ = (2q4 + 3q3 + 3q2 + q + 1)Φ2

εq = (−1)
q−1

2
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Table 55: Q̃G
L (u, v) for the twisted Levi subgroup A1(q2)(q2 − 1) of Spin+

8 (q).

u1 u2 u3 u4 u5 u6 u7 u8

v1 Φ2
1Φ2

2Φ3Φ4Φ6 −Φ1Φ2Φ4 −Φ1Φ2Φ4 −Φ1Φ2Φ4 −Φ1Φ2Φ4 −Φ1Φ2Φ4 2q4 + q2 + 1 2q4 + q2 + 1
v2 . . . . . . . q2Φ1Φ2Φ4

v3 . . . . . . q2Φ1Φ2Φ4 .

u9 u10 u11 u12 u13 u14 u15 u16 u17 u18 u19 u20

v1 Φ4 Φ4 Φ4 Φ4 −Φ1 Φ2 . . . . 1 1
v2 . q2Φ1Φ2 . q2Φ1Φ2 −qΦ1Φ2

2 qΦ1Φ2

2 −Φ1Φ2

2 −Φ1Φ2

2 −Φ1Φ2

2 −Φ1Φ2

2 qΦ2 qΦ1

v3 q2Φ1Φ2 . q2Φ1Φ2 . −qΦ1Φ2

2 qΦ1Φ2

2 −Φ1Φ2

2 −Φ1Φ2

2 −Φ1Φ2

2 −Φ1Φ2

2 qΦ1 qΦ2

u21 u22 u23 u24 u25 u26 u27 u28

v1 . . . . . . . .

v2
1+εqq

2
1−εqq

2
1+εqq

2
1−εqq

2 1 . 1 .

v3
1−εqq

2
1+εqq

2
1−εqq

2
1+εqq

2 . 1 . 1

εq = (−1)
q−1

2

Table 56: Q̃G
L (u, v) for the twisted Levi subgroup A1(q)2(q2 − 1) of Spin+

8 (q).

u1 u2 u3 u4 u5 u6 u7 u8

v1 −Φ1Φ2Φ3Φ2
4Φ6 −q4 + 2q2 + 1 −Φ1Φ2Φ4 −Φ1Φ2Φ4 −Φ1Φ2Φ4 −Φ1Φ2Φ4 Φ4 Φ4

v2 . −q4Φ1Φ2 −q2Φ1Φ4 −q2Φ1Φ4 q2Φ2Φ4 q2Φ2Φ4 . .
v3 . −q4Φ1Φ2 q2Φ2Φ4 q2Φ2Φ4 −q2Φ1Φ4 −q2Φ1Φ4 . .
v4 . . . . . . −q2Φ1Φ2Φ4 .
v5 . . . . . . . −q2Φ1Φ2Φ4

u9 u10 u11 u12 u13 u14 u15 u16 u17 u18 u19 u20

v1 −Φ1Φ2 −Φ1Φ2 −Φ1Φ2 −Φ1Φ2 Φ2 −Φ1 . . . . 1 1
v2 q2 q2 q2 q2 . . −Φ1 −Φ1 Φ2 Φ2 . .
v3 q2 q2 q2 q2 . . Φ2 Φ2 −Φ1 −Φ1 . .

v4 q2Φ4 . q2Φ4 . −qΦ2
1

2
q

Φ2
2

2
Φ1Φ2

2
Φ1Φ2

2
Φ1Φ2

2
Φ1Φ2

2
. .

v5 . q2Φ4 . q2Φ4 −qΦ2
1

2
q

Φ2
2

2
Φ1Φ2

2
Φ1Φ2

2
Φ1Φ2

2
Φ1Φ2

2
. .

u21 u22 u23 u24 u25 u26 u27 u28

v1 . . . . . . . .
v2 1 1 1 1 . . . .
v3 1 1 1 1 . . . .

v4 − εqq+1

2

εqq−1

2
− εqq+1

2

εqq−1

2
1 . 1 .

v5
εqq−1

2
− εqq+1

2

εqq−1

2
− εqq+1

2
. 1 . 1

εq = (−1)
q−1

2
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Table 57: Q̃G
L (u, v) for the twisted Levi subgroup A1(q)2(q + 1)2 of Spin+

8 (q).

u1 u2 u3 u4 u5 u6 u7 u8

v1 Φ2
1Φ3Φ2

4Φ6 ∗ Φ2
1Φ4 Φ2

1Φ4 Φ2
1Φ4 Φ2

1Φ4 (2q2 − 2q + 1)Φ4 (2q2 − 2q + 1)Φ4

v2 . q4Φ2
1 −q2Φ1Φ4 −q2Φ1Φ4 −q2Φ1Φ4 −q2Φ1Φ4 . .

v3 . q4Φ2
1 −q2Φ1Φ4 −q2Φ1Φ4 −q2Φ1Φ4 −q2Φ1Φ4 . .

v4 . . . . . . q2Φ2
1Φ4 .

v5 . . . . . . . q2Φ2
1Φ4

u9 u10 u11 u12 u13 u14 u15 u16 u17 u18 u19 u20

v1 Φ2
1 Φ2

1 Φ2
1 Φ2

1 −Φ1 1− 3q . . . . 1 1
v2 q2 q2 q2 q2 . 4q2 −Φ1 −Φ1 −Φ1 −Φ1 . .
v3 q2 q2 q2 q2 . 4q2 −Φ1 −Φ1 −Φ1 −Φ1 . .

v4 q2Φ2
1 . q2Φ2

1 . −qΦ2
1

2 q(1− 3q)Φ2

2
Φ1Φ2

2
Φ1Φ2

2
Φ1Φ2

2
Φ1Φ2

2 . 2qΦ1

v5 . q2Φ2
1 . q2Φ2

1 −qΦ2
1

2 q(1− 3q)Φ2

2
Φ1Φ2

2
Φ1Φ2

2
Φ1Φ2

2
Φ1Φ2

2 2qΦ1 .

u21 u22 u23 u24 u25 u26 u27 u28

v1 . . . . . . . .
v2 1 1 1 1 . . . .
v3 1 1 1 1 . . . .

v4
(εq−2)q−1

2 − (εq+2)q+1
2

(εq−2)q−1
2 − (εq+2)q+1

2 1 . 1 .

v5 − (εq+2)q+1
2

(εq−2)q−1
2 − (εq+2)q+1

2
(εq−2)q−1

2 . 1 . 1

∗ = −(2q4 − 3q3 + 3q2 − q + 1)Φ1

εq = (−1)
q−1

2

Table 58: Q̃G
L (u, v) for the twisted Levi subgroup A1(q2)(q2 + 1) of Spin+

8 (q).

u1 u2 u3 u4 u5 u6 u7 u8

v1 −Φ3
1Φ3

2Φ3Φ6 Φ2
1Φ2

2 Φ2
1Φ2

2 Φ2
1Φ2

2 Φ2
1Φ2

2 Φ2
1Φ2

2 −Φ1Φ2 −Φ1Φ2

v2 . . . . . . . −q2Φ2
1Φ2

2
v3 . . . . . . −q2Φ2

1Φ2
2 .

u9 u10 u11 u12 u13 u14 u15 u16 u17 u18 u19 u20

v1 −Φ1Φ2 −Φ1Φ2 −Φ1Φ2 −Φ1Φ2 −Φ1 Φ2 . . . . 1 1

v2 . q2Φ1Φ2 . q2Φ1Φ2
qΦ2

1
2

− qΦ
2
2

2
−Φ1Φ2

2
−Φ1Φ2

2
−Φ1Φ2

2
−Φ1Φ2

2
. .

v3 q2Φ1Φ2 . q2Φ1Φ2 .
qΦ2

1
2

− qΦ
2
2

2
−Φ1Φ2

2
−Φ1Φ2

2
−Φ1Φ2

2
−Φ1Φ2

2
. .

u21 u22 u23 u24 u25 u26 u27 u28

v1 . . . . . . . .

v2
1−εqq

2

1+εqq

2

1−εqq
2

1+εqq

2
1 . 1 .

v3
1+εqq

2

1−εqq
2

1+εqq

2

1−εqq
2

. 1 . 1

εq = (−1)
q−1

2
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B Unipotent classes of the unipotent subgroup

Table 59: Representatives of the unipotent conjugacy classes of U0, with generic elements in
their U0-orbit. r1, ..., r6 ∈ F×q , t1, ..., t6 ∈ Fq.

u xu # classes order |CU0 (u)|

u6(r6) u6(r6) q − 1 1 q6

u5(r5) u5(r5)u6(t1r5) q − 1 q q5

u4(r4) u4(r4)u6(−t3r4) q − 1 q q5

u4(r4)u5(r5) u4(r4)u5(r5)u6(t1r5 − t3r4) (q − 1)2 q q5

u3(r3) u3(r3)u5(t2r3)u6(t1t2r3 + t4r3) q − 1 q2 q4

u3(r3)u4(r4) u3(r3)u4(r4)u5(t2r3)u6(t1t2r3 − t3r4 + t4r3) (q − 1)2 q2 q4

u2(r2) u2(r2)u4(t1r2)u5(−t3r2)u6(−t1t3r2) q − 1 q2 q4

u2(r2)u3(r3) u2(r2)u3(r3)u4(t1r2)u5(t2r3−t3r2)u6(t1r3r2 +t1t2r3−t1t3r2 +t4r3) (q − 1)2 q3 q3

u2(r2)u6(r6) u2(r2)u4(t1r2)u5(−t3r2)u6(−t1t3r2 + r6) (q − 1)2 q2 q4

u1(r1) u1(r1)u4(−t2r1)u6(−t5r1) q − 1 q2 q4

u1(r1)u2(r2) u1(r1)u2(r2)u4(t1r2 − t2r1)u5(−t3r2)u6(−t1t3r2 − t5r1) (q − 1)2 q3 q3

u1(r1)u3(r3) u1(r1)u3(r3)u4(−t2r1)u5(t2r3)u6(t1t2r3 − t2r3r1 + t4r3 − t5r1) (q − 1)2 q2 q4

u1(r1)u5(r5) u1(r1)u4(−t2r1)u5(r5)u6(t1r5 − t5r1) (q − 1)2 q2 q4

u1(r1)u2(r2)u3(r3) u1(r1)u2(r2)u3(r3)u4(t1r2 − t2r1)u5(t2r3 − t3r2)
u6(t1r3r2 + t1t2r3 − t1t3r2 − t2r3r1 + t4r3 − t5r1)

(q − 1)3 q3 q3

u1(r1)u3(r3)u5(r5) u1(r1)u3(r3)u4(−t2r1)u5(t2r3 + r5)
u6(t1t2r3 + t1r5 − t2r3r1 + t4r3 − t5r1)

(q − 1)3 q2 q4
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Table 60: Representatives of the unipotent conjugacy classes of U0 in Spin+
8 (q), with generic

elements in their U0-orbit. r1, ..., r12 ∈ F×q , t1, ..., t12 ∈ Fq. (Continues on the following pages)
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