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Abstract

In this paper we study a particular class of n-node recurrent neural networks (RNNs). In the
3-node case we use monotone dynamical systems theory to show, for a well-defined set of param-
eters, that, generically, every orbit of the RNN is asymptotic to a periodic orbit. Then, within
the usual ‘learning’ context of Neural Networks, we investigate whether RNNs of this class can
adapt their internal parameters so as to ‘learn’ and then replicate autonomously certain external
periodic signals. Our learning algorithm is similar to identification algorithms in adaptive control
theory. The main feature of the adaptation algorithm is that global exponential convergence of
parameters is guaranteed. We also obtain partial convergence results in the n-node case.

Keywords: Recurrent neural networks, Learning systems, Nonlinear dynamics, Monotone dy-
namical systems.

1 Introduction

Recently, there has been considerable interest in Recurrent Neural Networks (RNNs) which exhibit
periodic or chaotic dynamics. For example, RNNs which generate stable oscillations have been used
to model certain biological phenomena. Indeed, Li and Hopfield (1989) have proposed such RNNs
as models for the dynamics of the olfactory bulb. See also Atiya and Baldi (1989) for an account of
‘oscillatory” RNN models in a biological context. RNNs which generate chaotic dynamics can be used
to model oscillations in the cortex and for controlling chaotic dynamical systems, see Babloyantz et
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al. (1995), Doyon et al. (1993), Sole et al. (1995) and references therein.

In this paper we are mainly interested in determining whether a class of RNNs can maintain a periodic
orbit, and, if so, can they be forced to learn such orbits. Such periodic orbits are meant to capture the
idea that certain activities or motions are learnt by repetition. In the literature, there are essentially
three approaches to this problem:

The first approach considers the behaviour of RNNs from a computational point of view. Pearlmutter
(1995) has shown that a fully interconnected 5-dimensional RNN can generate a stable limit cycle.
This empirical approach uses a dynamic version of the well-known steepest descent adaptation algo-
rithm to adapt the parameters or weights of the RNN so that, after a training period, the network
replicates a predetermined periodic signal. See also Doya and Yoshizawa (1989) for similar results.
This approach does not analyse the mechanism by which the periodic signal is generated nor does it
make any attempt to characterise the set of parameter values for which the RNN has periodic solu-
tions. Consequently, there is no guarantee that such a set of parameters exists and finding suitable
values for the parameters is left to the ‘steepest descent’ algorithm.

The second approach uses Hopf Bifurcation techniques to prove that certain classes of RNN generate
stable limit cycles. Whilst this approach can be used to determine parameter ranges for which such
limit cycles exist, by the very nature of the Hopf theorem, these existence results are local, both in
parameter and phase space. Hence, these results are not comprehensive enough. However, in view of
the highly nonlinear dynamics inherent to RNNs, they do represent a step forward in understanding
the dynamic behaviour of RNNs. For results in this direction see Atiya and Baldi (1989), Ruiz et al.
(1998), and the references therein.

The third approach considers an RNN as a monotone dynamical system. Whilst the theory of mono-
tone dynamical systems has its motivation in the analysis of partial differential equations arising in
mathematical biology (see Matano (1986), Hirsch (1988), and references therein) it has recently been
recognised that this theory has potential for analysing systems which arise in Neural Network applica-
tions. In fact, many classes of RNNs can be regarded as monotone dynamical systems and we believe
that this theory, as developed by Hirsch (1988), Smith (1995) and more recently by Mallet-Paret and
Sell (1996), provides a powerful tool for analysing the dynamics of RNNs. To our knowledge, specific
developments in this direction have been limited. Smith (1991) has studied a RNN with a cyclic
structure and the work of Mallet-Paret and Smith (1990) on general ‘cyclic’ dynamical systems, can
be applied to classes of cyclic RNNs.

In this paper we study a particular class of n-node RNNs. In the 3-node case we use monotone
dynamical systems theory to show, for a well-defined set of parameters, that, generically, every orbit
of the RNN is asymptotic to a period orbit. Then, within the usual ‘learning’ context of Neural
Networks, we investigate whether RNNs of this class can adapt their internal parameters so as to
‘learn’ and then replicate autonomously certain external periodic signals. Our learning algorithm is
similar to identification algorithms in adaptive control theory. The main feature of the adaptation
algorithm is that global exponential convergence of parameters is guaranteed. This is in contrast to
‘steepest descent’-based adaptation algorithms which only find local minima of the parameter error
cost functionals. We also obtain partial convergence results in the n-node case. Note that whilst we
use an identical network structure to that in Ruiz et al. (1998), our results differ on two accounts.
First, in Ruiz et al. convergence of a generic orbit of the RNN to a periodic orbit is only proved to
O(e) on time scales of O(1/¢). Secondly, in Ruiz et al. the learning algorithm is based on steepest
descent techniques. For this type of learning algorithm only local asymptotic convergence can be
guaranteed.

The paper is organised as follows. In Section 2 we specify the class of RNNs under consideration and



make precise the notions of learning and replication. To do so we introduce the so-called Teaching
Network and Learning RNN. The Teaching Network provides the external periodic signal which is to
be learnt. In Section 3 we prove that the orbits of the Teaching Network are, generically, asymptotic
to a periodic orbit. In Section 4 we develop the parameter adaptation algorithm by which learning is
achieved. In the 3-node case our adaptation algorithm guarantees exponential convergence. We also
prove partial convergence results for the n-node case. In Section 5 we comment on the difficulties

encountered in proving exponential convergence in the n-node case.

2 Structure of the Teaching Network and Learning RNN

We consider the recurrent neural network (RNN) shown in Figure 1. In the figure, u(t) is the scalar

Figure 1: Class of recurrent neural networks.

input and y(t) is the scalar output of the network. The RNN depicted in Figure 1 is described formally
by the system of differential equations:

j?l(t) = —iL‘l(t) + ta.l’lhél,‘g(t),
.’tnfg(t) : —.%‘nfz(t) + tanhxn,l(t),
ino1(t) = —za1(t) 4 u(?), (1)
Tn(t) = —z,(t) + wi(t)tanhzy(t) + - + wp_1(t)tanh z,_1 (),

y(t) = tanhz,(?),

where z(t) := (z1(t),...,2,(t))T € R? is the state, 2(0) = zg € R, w(t) := (wi(t),...,wo_1(t))T €
R"~1 is the network parameter or weight vector, u(-) is the input, i.e. teaching signal, and y(-) is the
output. In (1) we have taken the nonlinear triggering function of the neurons equal to hyperbolic tan-
gent. However, any triggering function, with similar properties of oddity, boundedness, monotonicity
and smoothness, could have been considered. These properties are used in the proof of Lemma 3.1.
In Proposition 5.1 we use a triggering function a — tanh Aa.

We are interested in whether, by adapting the weights, the RNN (1) can learn and then replicate a
periodic teaching signal u(-). The use of a periodic teaching signal is motivated by the idea that most
learning systems need repetition. To make the problem solvable we restrict the class of signals that
are to be learnt. In fact, we assume that the signal u(-) to be learnt is given by

u(t) = tanh z,(¢),



where

2':1 (t) = —21 (t) + tanh z9 (t),
in_a(t) —Zn_2(t) + tanhz, 1(t), (2)
Zn-1(t) = —zp—1(t) + tanhz,(t),
Zn(t) = —z,(t) + witanhz(¢) + - +w})_qtanh z,_1(¢).
We refer to (2) as the Teaching Network. The Teaching Network, with state z(t) := (21(t),..., 2, (t))T €

R" and 2(0) := 2zp € R", has a similar structure to (1) but the corresponding weight vector
w* = (w},...,w;_;)T is fixed and the loop from y(t) to u(t) is closed with unity feedback. We
will see in Section 3 that the Teaching Network can have periodic solutions, which we can then use
as periodic teaching signals.

The RNN (1) will operate in two modes - as a Learning RNN in the Learning Phase and as a

Replicating RNN in the Replicating Phase.

1. As a Learning RNN (1) has time-varying weights and the input u(t) is equal to the output
tanh z, (t) of the Teaching Network. The time-varying weights of this Learning RNN are adapted
so as to enable learning of the periodic teaching signal tanh z,(¢) and unknown weights of the
Teaching Network.

2. As a Replicating RNN (1) has fixed weights and operates in a unity feedback configuration. The
output of this Replicating RNN is meant to agree with the output of the Teaching Network.

The overall process of learning /replication is described as follows: The Teaching Network produces at
its output an unknown periodic teaching signal. In the Learning Phase this signal is fed as input into
the Learning RNN. The weights of the Learning RNN are then adapted. We use a weight adaptation
algorithm which is similar to identification algorithms in adaptive control theory. In the case n =3
we can prove that the weights and states of the Learning RNN converge exponentially to those of the
Teaching RNN. After some finite time T', assumed long enough for the convergence to be adequate,
we switch from the Learning Phase to the Replication Phase so that weight adaptation is terminated
and the output of the Teaching Network is removed as input to the Learning RNN to be replaced
with its own output. The resulting Replicating RNN, with fixed weight vector w(T"), then reproduces
(approximately), as its output, the periodic teaching signal. As mentioned in the Introduction, it has
been shown experimentally that a class of recurrent networks with configurations similar to the one
considered here, are indeed able to learn and replicate certain types of periodic signals, see Doya et al.
(1989), Pearlmutter (1995) and Yang et al. (1994). We are interested in proving that such learning
and replication has taken place.

In the context of our learning/replication process, there are two crucial aspects. We must prove that
the Teaching Network produces periodic signals as its output and we must be able to prove that the
adapted weights of the Learning RNN converge to the fixed weights of the Teaching RNN. These
issues are dealt with separately in Sections 3 and 4, respectively.

3 Existence of attractive periodic solutions in the Teaching Network

In this section we consider properties of a 3-node version of Teaching Network (2):

21(t) = —z1(t) + tanh 2o(?),
29(t) = —22(t) + tanh 2z3(t), (3)
23(t) = —z3(t) + wi tanh 21 (¢) + w3 tanh 25(¢) .
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We prove, for a range of weight values, that each trajectory of (3) which does not converge to the
equilibrium z = 0, converges to a periodic orbit. We do so by regarding the system (3) as a monotone
dynamical system and by using techniques from monotone dynamical systems theory.

We begin with a lemma which is proved in Ruiz et al. (1998).
Lemma 3.1 Consider the system described by (3). If the fizred weights wi and wj satisfy

2wy —w} >8, 2w —4wi® >0, (4)
then

(i) the linearization of (8) about zero has one negative real eigenvalue and a pair of complex conjugate
eigenvalues with positive real part,
(ii) the origin is a unique equilibrium of (3).

Now it is easy to see, using the boundedness of a — tanha, that all solutions of (3) are bounded.
Combining this with the properties (i) and (ii) in Lemma 3.1, it is reasonable to expect that (3) will
admit periodic solutions for some, if not all, weight values satisfying (4). This result is proved in
the following weak sense in Ruiz et al. (1998): For weight values satisfying (4), the solution z(:)
converges to a periodic function to O(e) on time scales of O(1/¢). Our aim is to strengthen this result
to asymptotic convergence. First we introduce the concept of a competitive dynamical system.

Definition 3.2 Let f : V — R” be continuously differentiable on some open set V- C R" . A system
% = f(x) is said to be competitive on V if, and only if,

ofi
oz,

(£) <0, forall i#j, andforall z€V. (5)

Competitive systems are special cases of monotone systems. For a detailed study of monotone dy-
namical systems see Smith (1995) and the references therein. Note that we have defined the notion
of a competitive system with respect to the positive orthant in R* and the usual partial ordering:
z < y if and only if x; < y; for all ¢ # j, and x # y. The notion can be extended in an obvious way
by considering other orthants in R”.

The main result on competitive systems we need is the following proposition from Smith (1995).

Proposition 3.3 Let the system
& = f(z), 2(0) = z0 € R,

with f continuously differentiable on an open set V.C R3, be a competitive system on V. Suppose that
V' contains a unique equilibrium point x, which is hyperbolic. Suppose further that W*(x.), the stable
manifold at x., is one dimensional and tangential at x. to a non-negative vector v. If xg & W*(x.)
and the positive semi-orbit v+ (zg) := {z(t) : t > 0} has compact closure in V, then the w-limit set,
w(xg), of zg is a nontrivial periodic orbit.

Note that this result, sometimes referred to as Poincaré-Bendixson theorem for 3-dimensional systems,
does not generalize to higher dimensions, except in the special case of cyclic systems, see Mallet-Paret
and Smith (1990). Furthermore, monotone systems theory does not provide us with any information
concerning the uniqueness and stability of these periodic orbits. Nevertheless, Proposition 3.3 is a
useful tool for establishing the existence of attractive periodic orbits in the Teaching Network (3).

Theorem 3.4 Consider the Teaching Network (3). Suppose that the weights satisfy (4) and, in
addition, wy > 0. Then for each zop € W*(0), w(z0) is a non-trivial periodic orbit.



Proof In order to apply Proposition 3.3 we need some preliminary results:

(i) We show for all z9 € R®, that the positive semi-orbit y7(zg) has compact closure. Indeed, since
a — tanha is bounded, we can view (3) as an exponentially stable linear system driven with a
bounded input. Therefore every positive semi-orbit is bounded and so has compact closure in R3. In
fact the set {z € R® | ||z]| < 4(1 + ||w}|) + ||w3||} attracts all solutions.

(ii) It follows from (4) and Lemma 3.1, parts (i) and (ii), that z. = 0 is a unique hyperbolic equilibrium
of (3) with a one-dimensional stable manifold W?*(0).

(iii) In order to apply Proposition 3.3, we transform (3) into a competitive system on R*. We do so

by using a change of coordinates {; = —z1, €3 = 22, {3 = —2z3 which, when applied to (3), gives
£1(t) = —&1(t) — tanh &(t)
§2(t) = —&2(t) — tanh &5(¢), (6)

fg(t) = —&3(t) + wi tanh & (¢) — wh tanh & (¢) .

Since the weights satisfy (4), so that in particular wi < 0, and by assumption wj > 0, it follows that
the right hand side of (6) satisfies (5). Hence the system (6) is competitive.

(iv) Let P be the Jacobian matrix of the right hand side of (6) evaluated at zero. Clearly —P is
non-negative and (—P)? is a positive matrix (i.e (—P) is a primitive matrix). It follows (see, for
example Section 8.5 in Horn and Johnson (1985)) that —P has a positive eigenvector corresponding
to the (unique by Lemma 3.1) negative real eigenvalue of P. Hence the stable manifold for the zero
equilibrium of (6) is tangential at zero to a positive vector.

The proof is now complete since we can use (i) - (iv) to apply Proposition 3.3 to (6). O

Remark 3.5 (i) The conclusions of Theorem 3.4 will hold if the triggering function a + tanha is
replaced by any other function o with similar properties of oddity, boundedness, monotonicity and
smoothness provided that the inequalities (4) are scaled appropriately to account for o'(0) # 1.

(ii) Note that in the case wi and w} satisfying (4) but with wj < 0, we have not been able to find
a change of coordinates which converts (3) into a competitive system in the sense of Definition 3.2.
This has prevented us from extending Theorem 3.4 to the case ws < 0. However in Ruiz et al. (1998)
we have shown, for such weight parameters, a weaker convergence to a periodic function to O(e) on
time scales of O(1/¢).

Figure 2: Attractive limit cycle with w3 > 0

We illustrate the result of Theorem 3.4 by a simulation. We set wj = —20 and w3 = 10. These
weights satisfy the conditions required in Theorem 3.4. Figure 2 shows the solution z(-) for a variety



of initial conditions for z(0). For comparison, Figure 3 shows simulations in the case wj = —34 and
wj = —7 where the inequalities (4) are satisfied but where wj < 0.

Figure 3: Attractive limit cycle with w3 < 0

Note that for any weight values satisfying (4), not only does every simulation we have tried produce
solutions converging to a periodic function, but that for each pair of weights this periodic function
is unique, i.e. simulations suggest that for each pair of weights satisfying (4), (3) has a limit cycle
which attracts all solutions except those starting in W#(0). This is illustrated by Figures 2 and 3.

It is easy to see that the solution z(-) of the Teaching Network (2) is constant if, and only if, one of
its components z;(-) is. We conclude this section with a lemma concerning the linear independency
of the functions tanh z; (-) and tanh z9(+) in the case of the 3-node teaching network.
Let

B(t) := (tanh z; (t), tanh z5(¢))T . (7

Lemma 3.6 Assume that z(-) is a non-trivial periodic solution of (3). Then the functions tanh z(:)
and tanh zo(-) are linearly independent or equivalently

/0 "B)B()Tdt > 0, (8)

where T 1is the period of z(-).

Proof  Suppose that tanhz;(-) and tanhzy(-) are dependent. Since neither of tanhz;(-) and
tanh zo(-) are constant, we can find a # 0 so that

tanh zo(-) = atanh z;(-).
Substituting for z2 in the first equation in (3) gives
21(t) = —2z1(t) + a tanh 21 (¢) .

It then follows that z1(-) is constant since the only periodic solution of a first order equation is a
constant solution. This implies that z(-) is constant which is a contradiction. Therefore tanh z1(-)
and tanh zy(-) are linearly independent. Now (8) holds if, and only if [j (v B(t))%d¢t > 0 for all
non-zero v € R?, i.e.

vIB(:)#0, for all non-zero v e R2,

i.e. if, and only if, tanh z; () and tanh z9(-) are linearly independent. |



Remark 3.7 (i) The condition given by (8) states that B(-) is persistently exciting, see Morgan and
Narendra (1977).

(ii) We have been unable to obtain necessary and sufficient conditions for persistency of excitation
of (tanh z;(-),...,tanhz, 1(-))T, in the case of an n-node Teaching Network. In Proposition 5.1 we
show, for a Teaching Network with triggering function a — tanh Aa in place of a — tanha, that
persistency of excitation can fail even though the Teaching Network has a limit cycle. However, all
our simulations suggest that persistency of excitation holds generically amongst those weight vectors
w* yielding periodic solutions.

4 Learning the output from the Teaching Network

In this section we construct weight adaptation algorithms which enable the Learning RNN to learn
the output of the Teaching Network. More accurately, in the case n = 3 the learning algorithms
guarantee that the state x(¢) and weight vector w(t) of the Learning RNN converge exponentially to
the state z(t) and fixed weight vector w* of the Teaching Network. The weight adaptation algorithms
are similar to identification algorithms in adaptive control. The convergence proofs use the persistency
of excitation property (8). We also obtain partial convergence results for the n-node case.

Theorem 4.1 Consider the 3-node Teaching Network (3) and the corresponding 3-node Learning
RNN

#1(t) = —z1(t) + tanh o (1),
da(t) = —x2(t) +u(t), (9)
z3(t) = —z3(t) + wi(t) tanhz1(t) + wa(t) tanh o(t),

where
u(t) = tanhzs(t). (10)

Define the weight adaptation algorithm by

(1)
wa(1)

—(z3(t) — z3(t)) tanh z1 (),

—(z3(t) — 23(t)) tanh za(t) . (11)

Then for arbitrary initial conditions z(0),z(0) € R® and w(0) € R?, the closed-loop system (3), (9),
(10) and (11) has a unique solution defined on [0,00). Furthermore, if z(-) is a nontrivial periodic
solution of (3), then there exist M, A > 0 independent of z(0) € R® and w(0) € R?, so that

lz(t) — 2()|| < Me™™ and |w(t) —w*|| < Me™™,  forall t>0. (12)

Proof Existence and uniqueness of solutions on [0, c0) is guaranteed because the right hand side
of the closed-loop system (3), (9), (10) and (11) is continuous and affine linearly bounded.
Let e(t) = z(t) — z(t). Then

é(t) = —e(t) + Palt),
éz(t) —€2 (t), (13)
és(t) = —es(t) + wr(t) tanhzy (¢) + wa(t) tanh z(t) + wifi () + w3 fa(?)

where, for i =1 or 2,
Bi(t) := tanh z;(t) — tanh z;(¢) and w;(t) == w;(t) — w; .

Clearly, from (13),
ea(t) = e tes(0), for all ¢t > 0. (14)



Since a — tanha has a global Lipschitz constant equal to 1 we have that
1Bi(t)| < |e;(t)|, forall t>0 and i=1,2. (15)
It follows, using Variation of Contants in the first equation in (13), and then taking estimates, that
ler(®)] < e 'er(0)] + fye )| Ba(s)|ds
< e flea(0) + fye *Ilex(s)lds
< e”'lex(0)] + e7"t[e2(0)]
< e7tler(0)| + 2e7H2e7ea(0)] .
Hence there exists M7, A\; > 0 such that
lei(t)| < Mye=™? forall ¢t>0 and i=1,2. (16)

It remains to show that
n(t) == (e3(t), dn (1), wa(1)"
decays to zero exponentially. First we show that the weights are bounded. Indeed, differentiating

V() = g ln(o)?

along solutions and using (15) and (16), we obtain, for all ¢ > 0, that

y * * 1 1 * * —
V(1) = —e3(t) + es(t) (wiBr(t) +wifa(t) < —5e3(t) + 5 (jwil + [w3])* Mie ™. (17)
Integrating (17) from 0 to ¢ gives
_1 2 _1 K 2 1 o * *\2 ar2,—2\1t
V() =5ln®IF < VO) =5 [ es(s)ds +5 [ (lwil + |wp])” Mie ™" dt < oo, (18)

It follows from (18) that 7(-), and in particular w(-), is bounded. Next we look at the differential
equation which describes the evolution of 7(-). This can be written in the form

i(t) = An(1) + POn() + D) (19)
where
- . 0 00
A() ==(_Btt) B ) P =~ 0 0 |.
—fBa2(t) 0 0

D(t) := ([wi(t)Bi(t) + wa(t)B2(t)],0,0)T and B(-) is given by (7). Notice that P(¢) and D(t), which
we consider as perturbation terms in (19) decay to zero exponentially. In analysing (19) we first
consider the ‘unperturbed’, homogeneous system

£(t) = AE®), £(0) := &, (20)

with £(t) € R®. Since B(-) satisfies the persistency of excitation condition (8) it follows from Corollary
2.3 in Narendra and Annaswamy (1989), that the system given by (20) is uniformly exponentially



stable. Now, using the fact that lim;_ o |[|P(¢)|| = 0, it follows from standard perturbation results,
(see for example Rugh (1996), p. 134), that for the transition matrix ¥(-,-) of

v(t) = (A(t) + P(t))v(t),
there exists My, Ao > 0 so that
[T(t, )| < Mapem>(=2) (21)

for all t > s, and s > 0. Using Variation of Constants in (19) and estimating, using (21), gives, for
allt >0,

t
In(®)|] < Mae *25(0) +/ Mae 29| D(s)|ds . (22)
0
Now using the boundedness of w(-) and the exponential decay to zero of 31(-) and S=(-) given by (15)

and (16) we have that || D(¢)|| converges to zero exponentially as ¢ tends to co. It then follows that
there exists M, A > 0 so that (12) holds. O

Remark 4.2 Note that the learning algorithm (11) is realizable since z3(-) can be obtained from the
teaching signal tanh z3(-) using the invertibility of a + tanh a.

Figure 4: Reference signal u(t) (dotted), learning signal y(t) (continuous)

Figure 4 shows the results from a simulation of the learning algorithm where the weights of the
teaching signal are w* = (—20, 10), 2(0) = (0.4736,0.8745,1.8497), z(0) = (0,0,0) and w(0) = (0,0).
Figure 5 demonstrates the exponential convergence of the output error as proved in Theorem 4.1.

logly(t) - u(t)

_12| i

-14

o 10 20 30 40 50 60 70 80 20 100

t
Figure 5: Output error on a logarithmic scale: log |y(t) — u(t)|

The convergence of the weight parameters is shown in Figure 6.
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o 1‘0 2‘0 3‘0 4‘0 50 6‘0 7‘0 8‘0 9‘0 100
Figure 6: Weight dynamics wi, ws

The weight adaptation (11) is chosen to make the right hand side of (17) semi-negative definite,
except for a term which decays to zero exponentially. Note that the algorithm (11) guarantees not
only local, but global convergence. A similar construction can be used in the n-node case to obtain
the following partial extension of Theorem 4.1.

Theorem 4.3 Let 2(t) and z(t) be given by (1) and (2) respectively. Define the weight adaptation
algorithm by
w;i(t) = —[zn(t) — zn(t)]tanh z;(t), for i=1,...,n—1. (23)

Then

(i) there exist M, X > 0 so that

lzi () — ()| < Me ™™, forall t>0 and i=1,...,n—1,

(i) the weights w;(-) are bounded,
(111) limy o0 |20 (t) — 2n(t)] = 0,

(iv) for any t; > 0 we have

lim @ (t)7 ( /t o B(s)B(s)Tds) B(t) =0, (24)

t—00
where B(t) := (tanhz1(t), ..., tanhz,_1(t))7.
Proof As in the proof of Theorem 4.1, introduce
e(t) == xz(t) — 2(t), Bi(t) := tanh z;(¢t) — tanh z;(¢), w(t) == w(t) —w".
Then

n—1

én(t) = —en(t) + Y (wi(t)tanh z;(t) + wiBi(t)) . (25)
i=1

Part (i) follows analogously to the corresponding result in Theorem 4.1. To prove parts (ii) and (iii)
let

V() = lIn)1,

where 7(t) := (en(t),@1(t),...,0n—1(t))T. Then, as in the 3-node case,
y * * 1 1 * * —
V() = —en(t)” + en(®) [WiA1(t) + -+ wi_1fna (O] < —Zen(®) + S(wf] + - 4 [wf_y ) MPe
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and Lt
V(t) <V(0) -

2 Jo

It follows that e, (-) and @(-) are bounded, and e, (-) € L?(0,c0). Then, from (25), it follows that é,(-)

is bounded. Hence, using Barbilat’s Lemma (see Corollary 2.9 in Narendra and Annaswamy (1987)),

1 o0
en(s)2ds + 5/0 M2(wh] 4 ..+ |wi_y])2e 2Mdt < 0.

limy_, « €,,(t) = 0. This proves (ii) and (iii). All that remains is to prove the partial convergence (iv).
To do this we borrow techniques from partial convergence proofs in adaptive control (see Theorem
2.7.4 in Sastry and Bodson 1979). Now for each i =1,...,n — 1,

lim w;(t) = — lim (e, (¢) tanh 2;(¢)) = 0. (26)

t—o0 t—o0
Let t; > 0 be arbitrary. We claim that

t+11
lim |w(s)T B(s)|*ds = 0. (27)

t—o0 Jt

Indeed, using
n—1

én(t) = —ea(t) + D(OTB() + D wit)Bi(t)
i=1
and the facts that e, (-) € L?(0,00), w(-) € L*(0, 00), and from (i) and the global Lipschitz continuity
of a + tanha, that |B;(t)| < Me™* for each i = 1,...,n — 1, (27) holds if

i [ e (s)2ds = 0.
t—o0 Jt
Now, from (25), é,(-) € L*(0,00) and
n—1
én(t) = —én(t) + D (ibi(t)tanh () + wi(t)(1 — (tanh (1)) (t) + wi (1 — (tanh 2:(8)?)4 (1)) ,
i=1

yields é,(-) € L*(0,00). Then, using part (iii), we have

t+t1 t+t1
tim [ én(s)ds = Jim (en(t+t1)én(t+t1) —en(t)én(t) — / en(s)én(s)ds> 0,
S t

t—00 Jt

and therefore (27) holds as claimed. Let M; > max(||B(-)|loo, ||0(:)]|cc)- Then, following the tech-
niques in the proof of Theorem 2.7.4, in Sastry and Bodson (1979), we have

(1) ( /t o B(S)B(S)Tds) ()
t+t1 t+t1
_ /t B(s)T B(s)B(s) b (s)ds + /t (@(t) — @(s))TB(s)B(s)  (@(t) + @(s))ds

t+t1 . t+1t1
< / w(s)T B(s)B(s)Tw(s)ds +2M sup |w(s)] / |t — s|ds
t

— s€E[t,t+t1]
t+t1 .
= / [0(s)T B(s)|*ds + M7t} sup ||w(s)]- (28)
t sE[t,t+t1]
Taking limits in (28) as t tends to oo, using (26) and (27), gives (iv). O

Corollary 4.4 Under the assumptions of Theorem 4.3:

(1) If z(-) is periodic and B(-) is persistently exciting, then e(-) and w(-) converge to zero exponen-
tially;
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(ii) If z(-) is periodic with period T, then

lim 1 (£)7 ( /0 ’ B(s)B(s)Tds> B(t) =0, (29)

t—00

i.e. the weight vector converges to Ker (fOT B(s)B(s)Tds).

Proof
(i) This follows using the same techniques as in the proof of Theorem 4.1.
(ii) This follows by taking ¢; = 7 in Theorem 4.3, part (iv). O

Whilst the conclusions of Corollary 4.4 give us exact generalisations of the results we obtained in
the 3-node case, Corollary 4.4 is unsatisfactory because the additonal conditions of periodicity and
persistency of excitation are, in general, uncheckable, except by simulations. Note that Weif§ (1997)
has obtained similar results to Corollary 4.4 for a slightly more general RNN structure including
self-connections of the neurons. More recently, one of the authors, see Weif} (1998), has shown that if
z() is periodic, then convergence of the weight error given in (24), and of e, () to zero, is exponential.

To illustrate the algorithm in the n-node case we consider an example with n = 5 and
w* = (—1.0012,—1.0609, 0.9491, 1.4653).

In the simulations we choose z(0) = (—0.4170,—0.4739, —0.5049, —0.4906, —0.4056) for the Teaching
Network, and z(0) = (0,0,0,0,0) and w(0) = (0,0,0,0) in the Learning RNN and weight adaptation
algorithm. The weights of the Teaching Network were chosen so that the linearization of (2) about z =
0 has one pair of unstable complex conjugate eigenvalues and three exponentially stable eigenvalues.
Whilst we have been unable to prove that this type of eigenvalue configuration produces oscillatory
behaviour, our simulations suggest that this is the case. Figures 7, 8 and 9 show the output signals,
the output error convergence on a logarithmic scale and the weight convergence. It is clear, in this
simulation, that both the state error £ — z and the weight error @ converge to zero exponentially.
This claim is supported by the fact that the matrix ( fol 0B (s)B(s)Tds) is positive definite which,
combined with the apparent periodicity of z(-), would give us the required persistency of excitation
condition needed to apply Corollary 4.4.

L L L L L L L L
o 10 20 30 40 50 60 70 80 20 100

Figure 7: Reference signal u(t) (dotted), learning signal y(¢) (continuous)

5 Further comments on weight convergence

In Section 3 we proved that the 3-node Teaching Network has periodic solutions. In Section 4
we proved that the Learning RNN can learn these periodic outputs in the sense that the output

13



o 1‘0 2‘0 3‘0 4‘0 5‘0 éO 7‘0 8‘0 9‘0 100
Figure 9: Weight dynamics wy, ..., ws

error and weight error converge to zero exponentially. The proof of this exponential convergence
used persistency of excitation conditions. For n-node RNNs, we could only obtain partial conver-
gence results. There are two major obstacles to obtaining a general theory in the n-node case.
First, we have not been able to determine conditions on the weights of the n-node Teaching Net-
work (2) which guarantee the existence of periodic solutions. The existence of periodic solutions is
fundamental to our idea of learning by repetition. Secondly, we have not been able to prove that
(tanh z1(-),...,tanh z, 1(-))7 is persistently exciting, or, equivalently in the case when z(-) is periodic,
that the functions tanh z;(-),...,tanh z,_1(-) are linearly independent.

Our simulations suggest that linear independency, and hence the persistency of excitation condition,
holds generically amongst those weight parameters for which the Teaching Network (2) has periodic
solutions. However, there do exist Teaching Networks which have periodic solutions but which violate
the linear independency condition. To construct such an example we need to modify (2) slightly by
replacing the triggering function a — tanh a with a — tanh Aa for some A\ > 0.

Proposition 5.1 Let z(t) be given by (2) but with triggering function a — tanhAa for some X > 0.
Assume wj, = —1 for some k € {1,...,n — 1} and w} =0 otherwise.

(i) If
A>1, (30)

then the modified Teaching Network possesses a limit cycle.

(ii) If z(-) is a periodic solution of the modified Teaching Network, then z,_; = —zk_1_; for j =
0,...,k —2. In particular, for n > 4, if k > 3, then the functions o(z1(+)),...,0(zn_1(:)) are
linearly dependent.
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Proof

(i) Let F(2) = (f1(2),-.., fa(2))T denote the right hand side of the modified Teaching Network.
Consider first the case k = 1. Then the Teaching Network forms a cyclic system (where components
are indexed modulo n) with

0)]=A">1.

e

The existence of a limit cycle follows from Atiya and Baldi (1989) using techniques from Hastings et.
al. (1977).
Let k£ > 1. Then the dynamics for components z, ..., z, are given by a cyclic n — k 4+ 1-dimensional

az]—i—l

sub-system which, as in the case k = 1, has a limit cycle. For the other k¥ — 1 components let
X ={f:R — R, f continuous and periodic}

and define a nonlinear operator P : X — X by

t
(PO = [ _exp(—(t=n)o(s()ar,

with f + PJ(f) denoting P composed with itself j times. If 2, ..., 2, are the component functions
of the limit cycle for the n — k 4+ 1-dimensional sub-system extended to R by periodicity, then the
periodic functions z; 1 = P(zx),...,21 = P¥71(2;), restricted to [0, 00), determine the remaining k—1
components of the solution and hence the required limit cycle for the modified Teaching Network.
(ii) By the structure of the modified Teaching Network

2i-1() = (Pz)() for j = 2., (31)
and

zj(+) = (P"Iz,)(-) for j =1,...,n . (32)

On the other hand using P(—f) = —Pf in the nth equation of the modified Teaching Network gives,

() = (P(=2))() = =(Pz)(-) = —(P"Fz) () = —2-1() - (33)

Applying PJ to (33), and using (31), (32) and (33), we obtain
zn—j(+) = (Pl2)(-) = (PP (—zp—1)) (") = —Z(k—1)—;(-) for j=0,...,k - 2.

This gives a very simple linear dependence of the z;. Oddity of tanh (-) yields

o(zn—j(1) = —0(2g—1-5 () for j =0,... .k —2.
a

For a modified Teaching Network of dimension n > 4 with k > 3 the resulting dependency of the
functions o(z1(+)),...,0(zp—1(-)) means that the corresponding persistency of excitation condition
fails. This in turn means that exponential convergence of the weights cannot be guaranteed. To
actually find suitable parameters by which failure of exponential convergence of weights is observed
can be quite delicate. The failure of exponential convergence does occur in the case n =5 and k =3
with A = 3, for which, by Proposition 5.1, z2(-) = —z5(-) and z1(-) = —z4(-). For the simulation
we choose z(0) = (0.3975,0.4463, —0.0064, —0.3975, —0.4463)T, x(0) = (0.3,0.1,0.2,—0.1,0.3)T and
w(0) = (—0.05,0.1,—0.3,0.1)7. In this simulation the components wy and w3 converge to zero
exponentially and, on the time scale of the simulation, are almost indistinguishable. The components
W and w4 do not converge to zero. Notice the strange behaviour of |@4(t)| which appears to converge,
to zero but then, after ¢ = 500, rises to a non zero value.
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Figure 10: Logarithm of weight error for a 5-dimensional cyclic system

Remark 5.2 (i) For wj = +1 in Proposition 5.1, the modified Teaching Network is a cooperative
system and therefore it cannot have a limit cycle. See Hirsch (1988).

(ii) Whilst the modified cyclic Teaching Network is useful in illustrating that failure of the persis-
tency of excitation can lead to non-convergence of the weights, from the point of view learning
its significance is limited. This is due to the fact that the components z1(:),. .., 2zx—1(-) do not
contribute to the dynamics of the output neuron z, in the Teaching Network. Hence the same
output can be generated by a cyclic Teaching Network of dimension n — k 4+ 1 which, in all our
simulations, yields a linearly independent set of functions {tanh z;(-),...,tanh z,,_1(-)}.

6 Conclusions

We have shown, using a result from monotone dynamical systems theory, that a certain 3-node
RNN with fixed weights, the so-called Teaching Network, has periodic solutions. The motivation
behind the need for the Teaching Network to have periodic solutions arises from the observation that
learning usually requires repetition. We then used the periodic output of the Teaching Network as a
teaching signal to be learnt by a 3-node Learning RNN. The Learning RNN has a similar structure
to the Teaching Network but with time-varying weights. The algorithm by which the weights are
adapted is similar to parameter identification algorithms in adaptive control. We were able to prove
global exponential convergence of the state and weights of the Learning RNN to the fixed weights
and periodic solution of the Teaching Network. This global and exponential convergence is much
sharper than the local and asymptotic convergence which is usually associated with gradient descent
adaptation. Note also that the inherently nonlinear nature and the resulting limit cycle-like structure
of the periodic solutions of the Teaching Network and Learning/Replicating RNN provides robustness
of the learnt signal against external disturbances. This contrasts with the case of linear RNNs as
developed by Blach and Owens (1992) and Reinke (1994) which are sensitive to such disturbances.
We also obtained partial convergence results in the n-node case by using techniques from adaptive
control. Under appropriate persistency of excitation type conditions we obtain global exponential
convergence as in the 3-node case.

Techniques for speeding up the exponential convergence of the weights in the case when the persistency
of excitation condition is satisfied have been developed in Wei§ (1997) for a similar RNN structure.
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These techniques could also be applied to our class of RNN.

Applications of our results to the control of a robot arm have been developed in Ruiz et al. (1998), in
the case of a gradient descent weight adaptation algorithm, and in Waschler (1997), with our weight
adaptation algorithm.

An area of research which requires further work is to make use of monotone dynamical systems theory
in studying more general RNN structures. So far our results are restricted, in the main, to a special
class 3-node RNNs. Another issue, which we did not address here, is to understand the detailed
structure of the class of periodic signals which can be generated by the Teaching Network. Our
simulations suggest that the periodic signals are very nearly sinusoidal. This issue would be important
if many Learning RNNs were combined in parallel so as to facilitate learning of more complicated
signals. See Ruiz et al. (1997) for preliminary simulation-based studies of RNNs comprised of several
3-node networks in parallel.

Finally, we have restricted attention to the problem of learning and then replicating a teaching signal.
Another issue of interest is to consider the recall capabilities of RNNs. More precisely, how can we
build into the Learning RNN, mechanisms for recognising a previously learnt signal so as to then
speed-up, or even by-pass, re-learning. Preliminary results in this direction are reported in Waschler
et al. (1998).
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