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Abstract

Code coverage analysis plays an important role in the software testing process. More recently,
the remarkable effectiveness of coverage feedback has triggered a broad interest in feedback-
guided fuzzing. In this work, we discuss static instrumentation techniques for binary-level
coverage analysis without compiler support. We show that the proposed techniques are
precise, efficient, and transparent significantly beyond the state of the art.

We implement these techniques into two tools, namely, Spedi and bcov. Both tools are open
source and publicly available. Spedi shows that the disassembly and function identification of
stripped binaries can be highly accurate without resort to any external information. We build
on these important results in bcov where we statically instrument x86-64 ELF binaries to
track code coverage. However, improving efficiency and scaling to large real-world software
required an orchestrated effort combining several techniques.

First, we bring a well-known probe pruning technique, for the first time, to binary-
level instrumentation and effectively leverage its notion of superblocks to reduce overhead.
Second, we introduce sliced microexecution, a robust technique for jump table analysis which
improves CFG precision and enables us to instrument jump table entries. Additionally, smaller
instructions in x86-64 pose a challenge for inserting detours. To address this challenge, we
aggressively exploit padding bytes. Also, we introduce a greedy scheme to systematically
host detours in neighboring basic blocks.

We evaluate bcov on a corpus of 95 binaries compiled from eight popular and well-tested
packages like FFmpeg and LLVM. Two instrumentation policies, with different edge-level
precision, are used to patch all functions in this corpus - over 1.6 million functions. Our
precise policy has average performance and memory overheads of 14% and 22%, respectively.
Instrumented binaries do not introduce any test regressions. The reported coverage is highly
accurate with an average F-score of 99.86%. Finally, our jump table analysis is comparable to
that of IDA Pro on gcc binaries and outperforms it on clang binaries.

Our work demonstrates that static instrumentation can offer unique advantages in com-
parison to established methods like compiler instrumentation and dynamic binary instru-
mentation. It also opens the door for many interesting applications of static instrumentation,
which can go well beyond coverage analysis.
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Chapter 1

Introduction

1.1 Overview

The past few decades have witnessed tremendous progress in all aspects of computing and
communication. The fast pace of change has profoundly affected our lives economically,
socially, and maybe even politically. It led to what many describe as a revolution - an
information revolution. The exponential progress of Moore’s law means that tiny chipsets
are now capable of running complex software that can be shipped in every “thing.” In turn,
ubiquitous communication has enabled such “things” to be highly interconnected in the
massive network we call the Internet.

Indeed, modern technology has brought many opportunities as well as challenges. For
practitioners, enabling the former is of equal importance as addressing the latter. In this
context, the challenges of building systems that are functionally correct and secure are
of a particular significance, as software becomes more complex, and the Internet expands
relentlessly into the physical world. A software bug that flickers the screen during gameplay
can be annoying. However, a similar bug can be far more consequential as it moves into the
physical world, for example, by affecting the safety of a nuclear plant.

Recent years provide several examples of the potential real-world impact of software
errors. The infamous 2003 blackout in North America was caused, in part, by a software bug
in the alarm management system. The result is that a vast area covering the northeastern
US and Ontario in Canada had to stay without electricity. The blackout lasted between 2
hours and 4 days, depending on location. The losses are estimated to range between $7
and $10 billion [134]. Fast forward to December 2015, we find another power blackout,
albeit on a smaller scale in Ukraine. However, this blackout was caused by a deliberate
cyberattack conducted by, presumably, state-sponsored actors. While the attack started with
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social engineering techniques exploiting human errors, it remains a sobering reminder of the
potential role software bugs can play in the future of cyberwarfare.

Despite the importance of building software that is free of (critical) bugs, this still seems
to be more of a Utopian dream than a practical goal. The following is our attempt at distilling
the key challenges facing such an endeavor:

• Complexity. The number of bugs/defects in a piece of software is proportional to its
complexity. Software complexity can be measured simply by the number of lines of code
(LoC). Also, more sophisticated metrics are proposed in the literature, like McCabe’s
cyclomatic complexity [89] and Halstead’s metrics [60]. However, regardless of the
metric we use, modern software remains astonishingly complex, which renders the
mere understanding of a software’s functionality, let alone its validation, a monumental
task. For example, the Linux kernel v1.0 started in 1991 with around 10 KLoC. Less than
20 years later, it now stands at about 28.5MLoC in kernel v5.8 [54].

• Rapid change. Software is a fast-moving target. On average, ten commits of source
code are merged into the Linux kernel every hour [54]. The merging of thousands
of commits per day is a common practice in large organizations like Google [91] and
Facebook [61]. This need for speed and adaptability has pushed agile methods to the
forefront of software development, and created new engineering roles, like DevOps,
to enable it. However, such pace puts a lot of pressure on the testing and validation
processes to maintain software quality without significant slow downs.

• Market dynamics. Software engineering is driven by dynamics that are different
from other engineering disciplines. First, while users may not tolerate bugs in safety-
critical systems, they do tolerate some bugs in hardware and a lot more in software.
Subsequently, it is perfectly acceptable for software vendors to regularly push bug-
fixing updates. Second, users usually prefer software offering more features over one
with better quality, especially since it is difficult for them to assess the latter. Third,
software is often sold “as is” where vendors offer limited liability for the losses their
software causes. Given these dynamics, compromising quality by taking on some form
of technical debt might be unavoidable to stay competitive in the market [36, 2]. The
challenge, however, is the long-term management of such technical debt.

• Uncertainty and non-determinism. Software engineering is founded on the princi-
ples that computing is deterministic with fully predictable behavior. We assume that an
assignment like “x := 3” will set the value of x to 3, despite knowing that a hardware
glitch can affect the result at any time. We invest in system reliability to maintain this
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illusion of certainty and determinism. This illusion has served us well through the years
but it has become increasingly costly to maintain, as we build systems that deal with
uncertainty in various ways, like machine learning and cyber-physical systems. This
calls for uncertainty to be treated as a first-class concern in software testing [45, 48].

• Abstraction leakage. Modularity and hierarchical design are fundamental to manag-
ing the complexity of modern systems. In an ideal world, we would assume that such
abstractions will hide the details of the subsystems they encapsulate. Unfortunately, for
the implementation to be efficient, it is often infeasible to maintain perfect encapsulation,
which may allow determined adversaries to leak information about the internal state
of an encapsulated subsystem. This leakage can have serious security implications if
the leaked information is sensitive. The recent microarchitectural side-channel attacks,
as embodied in various variants of Meltdown [87] and Spectre [78], demonstrate the
shaky ground upon which rest several security mechanisms that we take for granted
like process isolation.

The importance of building correct and secure software was recognized early by the
research community, which responded with many techniques spanning the whole spectrum
of correctness guarantees from mathematically proving that programs are correct to effective
debugging and automatic program repair. In the following section, we briefly overview
these techniques and discuss the important role coverage analysis plays in the context of the
software development life cycle.

1.2 The Importance of Code Coverage Analysis

Code coverage analysis is commonly used throughout the software testing process [3]. Struc-
tural coverage metrics such as statement and branch coverage can inspire confidence in a
program under test (PUT), or at least identify untested code [67, 53]. Additionally, coverage
analysis has demonstrated its usefulness in test suite reduction [130], fault localization [100],
and detection of compiler bugs [83]. To understand why coverage analysis remains indispens-
able for software quality assurance despite its shortcomings [67], we need to briefly look at
alternative methods.

To claim that a program is correct, we must put forward a convincing argument of its
correctness. Ideally, in the form of a mathematical proof. Such a view was popular since
the early days of computer science and continued to thrive well into the eighties. Edsger
W. Dijkstra clearly stated that1: “The only effective way to raise the confidence level of a

1Quote from Edsger W. Dijkstra’s The Humble Programmer (1972).
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program significantly is to give a convincing proof of its correctness.” The logical foundation
for rigorously reasoning about programs, and subsequently proofing their properties, was
laid in the landmark paper of C.A.R. Hoare [65].

However, it became increasingly evident to the research community that proofs cannot
play in computer science the same role they play in mathematics, as the complexity of the
specification and constant modifications will render the maintenance of such proofs a very
costly endeavor [38]. For example, Klein et al. [77] estimate that the formal proof of the
seL4 microkernel, which consists of about 9 KLoC of C code only, required 8 person-years.
This estimation assumes that the task is conducted by team of experts in formal methods.
Additionally, it is acknowledged that a small modification in the source code can invalidate a
large part of the proof. That is, the effort of re-verifying the system after a small change is
highly disproportionate. It is generally difficult to justify such investments except in safety-
critical systems or maybe small subsystems of critical importance, such as the floating-point
unit of a processor [63].

The highly influential 1982 paper of Clarke and Emerson [32] has marked the birth of
model checking as an alternative method for rigorously reasoning about computing systems.
Given a formal specification of a property, a model checker considers all possible states of
a system to check whether the given property holds or, if it does not, provide a counter-
example. This automated workflow proved to be much more practical compared to theorem
proving. However, model checking comes with its own challenges, the main of which is
the well-known state explosion problem, where an exponential number of states need to be
considered in large systems. Several techniques were proposed to address this challenge,
including symbolic model checking using BDDs [27], bounded model checking with SAT
solvers [18], and property-directed reachability (PDR) analysis [23].

Model checking represents a fundamental technique for validating system designs ranging
from cache-coherence protocols in processors [12] to fault-tolerant algorithms in massively
distributed systems [95]. Additionally, model checking is widely used to verify hardware
implementations in the form of RTL (or gate-netlist). Nowadays, all major Electronic Design
Automation (EDA) tool vendors offer solutions for Formal Property Verification (FPV), where
properties are typically written in SystemVerilog, an IEEE standard language for describing
and verifying hardware. It is worth noting that even before FPV, formal equivalence checking,
for example, between optimized and unoptimized gate-netlists, has enjoyed quick adoption
by the industry. This adoption was motivated by the strong results of academic works like
Kunz and Pradhan [80] and Jain et al. [70].

Unfortunately, and despite significant progress [71], the success of model checking in
verifying software systems remains much less impressive compared to their hardware coun-
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Fig. 1.1: General workflow of the modern software development life cycle. A cycle iteration can be
at unit or system levels. The former may happen several times daily. Common methods for
increasing software quality are depicted beside their corresponding phase.

terparts. This discrepancy can be attributed to several factors. First, software typically has an
infinite state space where precise analysis is known to be undecidable in general. Second,
software is modified at a much faster pace than hardware, which renders the maintenance
of property specifications prohibitively expensive. Third, the market dynamics that govern
software are drastically different, as discussed in the previous section.

It is evident that for software development to be economically viable, it has to embrace
complexity and rapid change. This logically implies adopting an iterative process, which is
commonly known as the software development life cycle (SDLC). Fig. 1.1 illustrates the main
phases of this process. Note that a cycle iteration does not necessarily need to start with
the design phase. In fact, developers often spend the majority of their time moving between
implementation, testing, and debugging. Additionally, the design phase can benefit from the
feedback gained through implementation. Moreover, iterations may be hierarchical involving
a single unit (module) or the entire system.

Each phase of the SDLC represents an opportunity to apply a different set of techniques
to enhance software quality. We show several examples in Fig. 1.1. It is not the goal of this
section to survey the wide variety of techniques that are available in the literature. The
interested reader can find a wealth of information with a simple web search. Instead, we want
to emphasize that testing remains the main method by which we can enhance our confidence
in the functionality of a piece of software. Testing is not perfect. It can cost a lot of resources
and still miss bugs. However, it remains the most cost-effective method we have. Therefore,
improvements to testing techniques and methodology are highly desirable.

Software testing revolves around three main questions: (1) is the software behavior
exhibited by a test input correct? (2) can our test inputs effectively uncover bugs? (3) is the
testing conducted so far sufficient? Code coverage analysis might be unable to offer much
help with (1), which is also known as the test oracle problem. However, code coverage can
assist in (2) by guiding automatic test generation, as we shall discuss in the next section. More
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importantly, coverage metrics are the main tool by which practitioners assess (3). That is,
achieving a predetermined level of code coverage is typically a prerequisite to move between
different testing levels, e.g., from unit to system, as well as for releasing software to customers.
Additionally, particular code coverage requirements are mandated by the standards in safety-
critical domains [43, 68]. For example, the aerospace guidance DO-178C requires that critical
software components, whose failure can lead to a catastrophic result, must satisfy the highly
stringent modified condition/decision coverage requirements (MC/DC).

We discussed in this section the important role that code coverage plays in software
testing in general. Next, we elaborate on the role it plays in automatic test generation, a field
that has received a lot of attention in recent years.

1.3 Code Coverage in Test Generation

Testing is an indispensable but costly factor in software development [17, 97]. Hence, it is
natural to investigate techniques for test automation to reduce costs. In this respect, developers
may resort to differential testing [90, 59], where they use a program 𝑃

′ as a testing oracle for
program 𝑃 that implements the same functionality. In such doing, it is possible, to a large
extent, to avoid manually specifying whether the outcome of a test given to 𝑃 is valid or not.
Additionally, as software evolves, the size of its test suite and, subsequently, its execution
time will only increase over time. Test suite reduction techniques [130] can help reduce the
size of a test suite while maintaining its quality.

Among test automation techniques, automatic test generation (ATG) remains the area
that received the most attention [97]. It is the process of automatically generating inputs that
satisfy a given testing criterion. The problem is challenging since the generated inputs should
explore the behavior of a program under test (PUT) effectively and efficiently. Additionally,
developers typically have a long queue of issues they are aware of already. Hence, an ATG
tool has to uncover issues that developers would deem relevant.

Based on the insight we have about the internal structure of the program, we can classify
ATG to black-box, white-box, and grey-box testing. The former is driven by observing the
inputs and outputs of a PUT only. However, in white-box testing, we analyze the internals of a
PUT, e.g., paths in its control-flow graph (CFG), in an attempt to generate more effective tests.
The tremendous progress in SMT solvers, like Z3 [39] and CVC [11], has brought symbolic
execution [76] to the forefront of white-box test generation with several notable tools, such
as KLEE [28] and SAGE [52]. On the other hand, in grey-box testing, we collect lightweight
feedback from a PUT and use it to guide further input generation. In this way, it is less “blind”
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compared to black-box testing and, at the same time, more lightweight compared to white-box
testing.

Feedback-guided fuzzing combines lightweight feedback with pseudo-random test genera-
tion. In recent years, it emerged as a successful method for automatically discovering software
bugs and security vulnerabilities [105, 111, 131, 22]. Notably, the tool American Fuzzy Lop (or
simply AFL) [132] has pioneered the usage of code overage as a generic and effective feedback
signal. This success inspired a fuzzing “renaissance” and helped move fuzzing to industrial-
scale adoption like in Google’s OSS-Fuzz platform [98]. Generally, feedback-guided fuzzing
consists of a simple workflow where we (1) generate a test-case, (2) run an instrumented
version of the PUT to collect feedback, and (3) evaluate program feedback and schedule the
next execution. This loop continues until the allocated time budget of the fuzzing campaign
is reached. Typically, the goal is to maximize the number of (unique) crashes found.

To this end, balancing the trade-off between test efficiency and effectiveness is essential [21].
Ideally, fuzzers strive to reduce the time needed per fuzz cycle (efficiency) while exploring
newer program behavior in each test (effectiveness). In practice, however, effective techniques
for test generation (e.g., symbolic execution) and behavior monitoring (e.g., ASan) can be
expensive in terms of efficiency. Consequently, recent fuzzers tend to be judicious in leveraging
this effectiveness, e.g., QSYM [131] and REDQUEEN [7]. To carefully balance this trade-off, we
have to develop three key policies: (1) scheduling policy, which selects and prioritizes seeds
(test inputs) in the seed queue, (2) test-generation policy, which determines how to generate
new test cases, and (3) instrumentation policy, which decides how to instrument a PUT and
what feedback signals to collect.

Scheduling and test generation policies have received considerable attention. For instance,
formulating the seed scheduling problem asMarkov chains [22] andmulti-armed bandits [128].
Additionally, the traditional boundary between mutation-based and grammar-based test
generation is becoming increasingly blurry as both techniques are fused in state-of-the-art
fuzzers [19, 101, 123]. Note that exploring program structure might require collecting various
feedback signals beyond mere coverage such as progress in comparisons [84].

On the other hand, the implementation of instrumentation policies has been so far largely
limited to dynamic binary instrumentation (DBI) and compiler instrumentation. Both options
have some inherent drawbacks. DBI considerably slows down the entire PUT even if the
required feedback affects only a select set of functions. In comparison, compiler instrumenta-
tion is more efficient. However, it requires access to source code, which might not be available,
and changes to the build toolchain, which can be intrusive and cause conflicts with build
optimizations [69].
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These limitations are reflected in the instrumentation options available in AFL. AFL
users typically opt for compiler instrumentation, if possible, as DBI can incur more than 5x
performance overhead [132]. AFL tracks edge coverage by instrumenting every basic block
with code to update a shared hash map. The size of this map is 64 kB in order to fit in an
L2 cache. Despite this tuning, an average performance overhead of 36% is expected [94].
Generally, this overhead is unnecessarily incurred for all tests, even though the percentage of
coverage-increasing tests quickly drops over time [94, 7]. This highlights the importance of
being able to adapt the instrumentation policy dynamically. Yet another issue is that collisions
in the hash map of AFL increase in large binaries, which reduces the quality of coverage
feedback [47].

In this work, we show that static binary instrumentation (SBI) can provide a better alter-
native to DBI and compiler instrumentation. Specifically, our approach drastically improves
efficiency across key aspects of the fuzzing workflow, namely, instrumentation overhead, merging
(and comparing) coverage data, and policy adaptability. The latter property enables further
overhead reduction, eventually in a fuzzing campaign, by focusing on coverage increasing
inputs only [94]. Moreover, we allow fuzzers to dynamically adapt as they learn more about
the program structure so that, for example, they can exclude functions that are “uninterest-
ing” from coverage tracking. In this work, we focus on basic block coverage, which is an
empirically proven feedback signal [115]. However, the proposed techniques can be extended
in principle to collect various other feedback signals.

1.4 Proposed Coverage Analysis Workflow

Figure 1.2 depicts the workflow of bcov, the tool into which we implemented the majority of
our work. Given a binary module as input, bcov first analyzes module-level artifacts, such
as the call graph, before moving to function-level analyses to build the CFG and dominator
graphs. Currently, bcov accepts binaries in the popular Executable and Link Format (ELF).
Then, bcov will choose appropriate probe locations and estimate the required code and data
sizes depending on the instrumentation policy selected by the user. Our prototype supports
two instrumentation policies. The first is a complete coverage policy where, for any test
input, it is possible to precisely identify covered BBs. The second one is a heuristic coverage
policy where we probe only the leaf superblocks (SBs) in the superblock dominator graph.
Running a test suite that covers all leaf SBs implies that we reached 100% code coverage.
We refer to these policies as any-node and leaf-node policies, respectively. In our evaluation,
the any-node policy probes 46% of BBs on average compared to 30% in the leaf-node policy.
Average performance overheads are 14% and 8%, respectively.
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Fig. 1.2: Coverage analysis workflow of bcov. An ELF binary is patched with extra code segment
(trampolines) and data segment (coverage data). Our bcov-rt library dumps the data segment
at run-time. In our prototype, reporting coverage requires re-analyzing the binary.

The patching phase can start after completing the previous analysis phase. Here, bcov
first extends the ELF module by allocating two loadable segments: a code segment where
trampolines are written and a data segment for storing coverage data. Then, bcov iterates
over all probes identified by the selected instrumentation policy. Each probe represents a
single SB. Generally, patching a probe requires inserting a detour targeting its corresponding
trampoline. The detour can be a pc-relative jmp or call instruction. The trampoline first
updates coverage data and then restores control flow to its state in the original module as
depicted in Figure 1.3.

The data segment has a simple format consisting of a small header and a byte array that
is initialized to zeros. Setting a byte to one indicates that its corresponding SB is covered.
It is trivial to compress this data on disk as only the LSB of each byte is used. For example,
this enables storing complete coverage data of llc (LLVM backend) in 65KB only. 2 Our
data format also enables merging coverage data of multiple tests using a simple bitwise OR
operation. Dumping coverage data requires linking against bcov-rt, our small runtime library.
Alternatively, bcov-rt can be injected using the LD_PRELOAD mechanism to avoid modifying
the build system. Coverage data can be dumped on process shutdown or upon receiving a
user signal. The latter enables online coverage tracking of long-running processes. Note that
the data segment starts with a magic number which allows bcov-rt to identify it.

This design makes bcov achieve three main goals, namely, transparency, performance, and
flexibility. Program transparency is achieved by not modifying program stack, heap, nor any

2The binary has around 1 × 10
6 BBs which contain more than 4 × 10

6 instructions.
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36b62: cmp eax,0x140
36b67: sete al
36b6a: jmp 36bce

(a) original code

36b62: cmp eax,0x140
36b67: jmp 6002b8

(b) patched code

6002b8: mov BYTE PTR [rip+0xadd88],1
6002bf: sete al
6002c2: jmp 0x36bce

(c) trampoline

Fig. 1.3: bcov patching example. (a) instruction at 0x36b67 must be relocated as the size of jump
at 0x36b6a is only two bytes. (b) relocated instructions are replaced with a 5 byte detour
at 0x36b67. (c) coverage update happens at 0x6002b8. Control flow is then restored after
executing the relocated instruction at 0x6002bf.

general-purpose register. Also, coverage update requires a single pc-relative mov instruction
which has a modest performance overhead. Finally, bcovworks directly on the binary without
compiler support and largely without changes to the build system. This enables users to
flexibly adapt their instrumentation policy without recompilation.

1.5 A Comparison of Coverage Analysis Tools

There is a plethora of tools dedicated to coverage analysis. They vary widely in terms of
goals and features. Our approach is unique in that it tracks binary-level coverage via static
instrumentation. Therefore, we motivate the need for our approach by comparing it to the
approaches implemented in a representative set of popular tools.

Our discussion is based on Table 1.1. We start with source-level tools supported in gcc
and clang, which are gcov and llvm-cov, respectively. Both track similar artifacts such as
statement coverage. However, they differ in the performance of instrumented binaries. gcov
cannot accurately track code coverage in optimized builds. In comparison, llvm-cov features
a custom mapping format embedded in LLVM’s intermediate representation (IR). This format
allows it to cope better with compiler optimizations. Also, this format tracks various source
code regions with better precision compared to gcov.

The ability of a binary-level tool, like bcov, to report source-level artifacts is limited by the
binary-to-source mapping available. Off-the-shelf debug information can be used to report
statement coverage - the most important artifact in practice [69, 53]. In this setting, bcov offers
several advantages including: (1) detailed tracking of individual branch decisions regardless
of the optimization level, (2) precise handling of non-local control flow constructs, such as
longjmp and C++ exception handling, and (3) flexibility in instrumenting only a selected set
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Level Coverage
goal

Compiler
independence

Performance
overhead Flexibility Usability

gcov source complete ✕ ✕ ✕ ✓

llvm-cov source complete ✕ ✓ ✕ ✓

sancov IR heuristic ✕ n/a ✕ ✓

Intel PT binary heuristic ✓ ✓ ✕ ✕

drcov binary both ✓ ✕ ✓ ✕

bcov binary both ✓ ✓ ✓ ✓

Table 1.1: A comparison with representative coverage analysis tools. Compiler-dependent tools
require modifying the build system and recompilation which limits flexibility. The usability
of binary-level tools in the testing workflow is limited. In contrast, bcov is highly usable. It
only requires replacing a binary with an instrumented version.

of functions, e.g., the ones affected by recent changes, which is important for the efficiency of
continuous testing [69].

The recent fuzzing renaissance has motivated the need to improve efficiency by heuristi-
cally tracking coverage. SanitizerCoverage (sancov) [109] is a pass built into LLVM which
supports collecting various types of feedback signals including basic block coverage. It is used
in prominent fuzzers like LibFuzzer [85] and Honggfuzz [115]. The performance overhead
of sancov is not directly measurable as the usage model varies significantly between sancov
users. Also, sancov is tightly coupled with LLVM sanitizers (e.g., ASan) which add varying
overhead. Extending bcovwith additional feedback signals, similar to sancov, is an interesting
future work.

Hardware instruction tracing mechanisms, like Intel® PT (IPT), can also be used for
coverage analysis. However, IPT can dump gigabytes of compressed trace data within seconds
which can be inefficient to store and post-process. In our experiments, IPT dumped 6.5GB
trace data for a libxerces test that lasted only 5 seconds. Post-processing and deduplication
took more than 3 hours. In comparison, our tool can produce an accurate coverage report for
the same test after processing a 53 KB dump in a few seconds. Schumilo et al. [111] propose
to heuristically summarize IPT data on the fly and thus avoid storing the complete trace.

Dynamic binary instrumentation (DBI) tools can report binary-level coverage using
dedicated clients (plug-ins) like drcov. DBI tools act as a process virtual machine that JIT-
emits instructions to a designated code cache. This process is complex and may break
binaries. Moreover, JIT optimizations add overhead to the whole program even if we are only
interested in a selected part, such as a shared library. Our evaluation in Section 7.3.3 shows
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that bcov can provide drastic advantages in comparison to the popular DBI tools Pin [102]
and DynamoRIO [24].

1.6 Contributions and Outline

In this dissertation, we propose several techniques for efficiently tracking code coverage of
software at the binary level. We integrated the majority of our techniques into bcov, a tool for
coverage analysis of x86-64 binaries in the ELF format. However, we separately implemented
speculative disassembly and our CFG-based function identification technique in the tool
Spedi, which supports ARMv7 Thumb-2 binaries only. Both tools are publicly available on
the author’s Github page: https://github.com/abenkhadra.

Fig. 1.4 depicts our contributions and fits them in the workflow of static binary analysis.
Given an ELF binary, bcov uses traditional linear sweep disassembly to recover the instructions.
It identifies functions using either linker symbols or Call Frame Information (CFI) records.
However, this might not work in more adversarial settings, where linear sweep is not reliable,
and function definitions do not exist. To address these challenges, we propose a speculative
disassembly and CFG-based function techniques, both of which do not require access to
external information. We discuss each of the subsequent contributions in a separate chapter.
The outline of this work is as follows:

Chapter 2. bcov operates under two assumptions. First, linear sweep disassembly does not
produce errors like recovering invalid instructions. Second, function definitions are available,
for example, in linker symbols. These assumptions do not necessarily hold in stripped binaries.
To address this challenge, we propose speculative disassembly, where we initially recover a
superset of all possible basic blocks. Then, we refine this superset using conflict analyses to
identify the most likely instructions. This disassembly technique is implemented into Spedi.
Our experiments show that Spedi can outperform IDA Pro, the leading industry disassembler.

Chapter 3. The notion of a function is fundamental to many software analyses, including
our proposed techniques, as it determines the scope of the control-flow graph (CFG). In this
chapter, we discuss how to systematically identify functions in the case where linker symbols
are available. Additionally, we show that Call Frame Information (CFI) records are comparable
to linker symbols as a source of function definitions. This result has important implications
since CFI records are often overlooked by researchers, despite being generally available in
stripped binaries. Additionally, we propose a CFG-based function identification technique to
address the use cases where CFI records are incomplete or even unavailable. This technique
builds on the speculative disassembly technique of the previous chapter.

https://github.com/abenkhadra
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Fig. 1.4: Outline of our contributions that shows how they fit in the workflow of static binary analysis.
In benign binaries, bcov relies on traditional linear sweep disassembly. However, we developed
the highlighted techniques, which are implemented in Spedi, to deal with more adversarial
settings where we cannot rely on external information, such as linker symbols.

Chapter 4. Imprecision in the recovered control flow graph (CFG) can cause several
issues ranging from false positives in the reported coverage to crashes in the program under
test (PUT) due to incorrect instrumentation. To achieve high precision, we propose sliced
microexecution, a precise and robust technique for jump table analysis. Additionally, we use
the results of this analysis to instrument jump table entries. We show thereby that data-only
detours are achievable at scale. Our experiments show that bcov is comparable – or even
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outperforms – IDA Pro, the leading industry disassembler. Specifically, and unlike IDA Pro,
we demonstrate that bcov is largely unaffected by changing compilers and optimization levels.

Chapter 5. To track code coverage, it is generally inefficient to instrument all basic blocks
(BBs). To improve efficiency, we bring, for the first time to our knowledge, the probe pruning
technique of Agrawal [1] to binary-level coverage analysis. Basically, we exploit the dominator
relationships between BBs to group them into superblocks (SBs). Then, we arrange SBs in a
superblock dominator graph. Based on this, covering a single BB in an SB implies that all of
its dominators are also covered. Leveraging this dominator graph allow us to significantly
reduce both the instrumentation overhead and size of coverage data. Additionally, we discuss
an optimization technique to select a BB to instrument among possibly several BBs in the
same SB.

Chapter 6. In a variable-length ISA like x86-64, the size of a significant percentage of
BBs can be less the 5 bytes, which is too small to insert a detour without overwriting the
following BB. In such a case, bcov would overwrite padding bytes, if possible. However,
this can be insufficient. Leaving a small BB without instrumentation risks losing coverage
information about its superblock along with all of its dominators. We overcome this problem
by systematically hosting detours of small BBs in large neighboring BBs. We formulate this
problem as a resource allocation problem for which we propose a greedy strategy. Additionally,
we discuss in this chapter the techniques implemented in bcov to patch ELF binaries. We
show that they generally apply to stripped off-the-shelf binaries.

Chapter 7. Each of the previous chapters includes experiments that evaluate their dis-
cussed techniques. In this chapter, we discuss the experimental setup that is common across
all experiments. Also, we evaluate the tool, bcov, which efficiently integrates the majority of
the proposed techniques. Our experiments are extensive, involving 95 real-world binaries and
over 1.6 million functions. We separately applied two instrumentation policies, namely, the
leaf-node and any-node policy. In the former, we instrument only the leaves of the superblock
dominator graph. However, in the any-node policy, we additionally instrument critical su-
perblocks. The key result is that the instrumentation is transparent by not introducing any
test regressions. Also, the performance overhead is low with 8% and 14% for the leaf-node and
any-node policy, respectively. We conclude by discussing further issues and future outlook.

1.7 Publication List

This dissertation is primarily based on the work published in our ESEC/FSE’20 paper [16].
However, the speculative disassembly method of Chapter 2 and CFG-based identification
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technique of Section 3.3 are based on our CASES’16 paper [14]. For convenience, we list these
peer-reviewed papers here:

• M. Ammar Ben Khadra, Dominik Stoffel, and Wolfgang Kunz. 2020. Efficient Binary-
Level Coverage Analysis. In ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering - ESEC/FSE’20. Virtual Event,
USA.

• M. Ammar Ben Khadra, Dominik Stoffel, and Wolfgang Kunz. 2016. Speculative
disassembly of binary code. In International Conference on Compilers, Architecture and
Synthesis for Embedded Systems - CASES’16. Pittsburgh, PA, USA.

The road to discovering the techniques that are effective in practice never follows a
straight path. The ideas we present in this dissertation have been indirectly influenced by the
following works [13, 15], which we also conducted as part of this research:

• M. Ammar Ben Khadra, Dominik Stoffel, and Wolfgang Kunz. 2017. goSAT: Floating-
point Satisfiability as Global Optimization. In Proceedings of FormalMethods in Computer-
Aided Design - FMCAD’17. Vienna, Austria.

• M. Ammar Ben Khadra. 2017. E3Solver: decision tree unification by enumeration.
preprint arXiv:1710.07021 (oct 2017).



Chapter 2

Speculative Disassembly

Overview; The Disassembly Problem; Proposed Method; Experiments; Discussion.

2.1 Overview

Starting from a given address in memory, the CPU continuously executes instructions in the
familiar fetch-decode-execute cycle. This process dynamically skips data bytes potentially
mixed with the code stream. However, our goal is statically analyze the behavior of machine
code without necessarily executing it. To this end, wemust begin with a disassembly technique
to precisely recover machine instructions. The challenge, however, is that static disassembly
is equivalent, in the general case, to the halting problem [66].

Fortunately, binaries encountered in practice are much less adversarial than what they
could be in theory, which makes them amenable to automatic analyses. This is particularly
the case for binaries generated by popular compilers. Additionally, given the need to keep the
code modular and maintainable, assembly developers generally avoid writing arbitrary code
unless there was a real necessity. Of course, software designed with obfuscation in mind, e.g.,
malware, would always prove challenging for automatic analyses.

Our coverage analysis tool, bcov, uses linear sweep disassembly to recover instructions
in binaries. This method is fast and simple to implement. However, it depends on two key
assumptions. First, jump table data is written to a separate data section. Second, code padding
is implemented using nop instruction(s) instead of arbitrary data bytes, i.e., padding bytes can
be correctly disassembled. These assumptions allow linear sweep disassembly to be reliable
for x86-64 binaries [5]. This is typically the case, at least for the major compilers Visual Studio,
clang, and gcc. Our experiments confirm this result for the latter two compilers.

However, our assumptions do not always hold. For example, we observed that the gcc
compiler for the ARM® architecture still inlines jump table data in the code stream; A fact that
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is also noted by others [34]. Additionally, the rapidly increasing complexity of software forces
engineers to depend on third-party libraries to accelerate product delivery. Static obfuscation
techniques such as opaque predicates [93] and branch tables [86] might be employed by
third-party developers to protect their intellectual property (IP). In effect, this would limit
the ability to disassemble and verify such IPs. Finally, modern defenses against code injection
attacks, like Address Space Layout Randomization (ASLR) and “write xor execute” (WˆX), have
forced attackers to rely on code reuse attacks such as return-oriented programming [112, 30]
and its jump-oriented counterpart [20]. This raises the need for a disassembly method that can
recover all existing code “gadgets” to assess the attack surface exposed to potential attackers.

These use cases call for a principled disassembly technique that is more robust than the
commonly used linear sweep and recursive descent techniques. Our proposed solution is a
speculative disassembly technique which consists of two phases. In the first phase, we recover
all possible Basic Blocks (BBs) available in the binary. BBs that share the same control-transfer
instruction (CTI) are grouped into one Maximal Block (MB). In the second phase, MBs are
refined using conflict analyses in order to identify the most likely instructions.

Our proposed technique has several nice properties. First, it does not need to start from
a given entry address, which makes it suitable for analyzing firmware blobs. Second, it is
resilient to static obfuscation techniques, a useful property for auditing third-party IPs. Third,
unlike a similar method proposed by Kruegel et al. [79], our method does not depend on the
availability of function definitions, which makes it more practical.

In the next section, we will shed more light on the disassembly problem. Then, we discuss
our speculative disassembly method in more detail.

2.2 The Disassembly Problem

The goal of disassembly is to precisely recover instructions from a given binary code. Disas-
sembly is the fundamental first step for any static binary analysis (SBA), including the code
coverage analysis considered in this work. There is a wide spectrum of SBA applications
considered in the literature. For example, we can find formal verification [117, 110], static
instrumentation [4, 133], equivalence checking [37, 122], and security analyses [8, 35]. Ad-
ditionally, SBA can be essential even when the source code is available. Some analyses can
be carried out only at the binary level, such as static timing analysis [126]. Finally, compil-
ers might introduce bugs [83, 129] or unexpected side effects [8]. Such defects can only be
detected by reasoning about the actual machine instructions instead of the source code.

Formally, we can describe the problem as follows: given a buffer of bytes 𝐵 characterized
by (𝑠𝑡, 𝑠𝑧) where 𝑠𝑡 is the start address, and 𝑠𝑧 is its byte size. The goal is to recover the set 𝐼
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of valid instructions. Typically, we would also have 𝐸 which is the set of entry point addresses
such that ∀𝑒 ∈ 𝐸, 𝑠𝑡 ≤ 𝑒 < 𝑠𝑡 + 𝑠𝑧 holds. Executables usually have only one entry address.
However, the set 𝐸 would include all exposed functions in a shared library. An instruction is
considered valid if it can possibly be reached when execution starts at an entry 𝑒 ∈ 𝐸. Note
that the reachability from 𝑒 is a sufficient but not a necessary condition. Some code of interest
in 𝐵 might be unreachable. For example, it can be an artifact generated by the compiler or
simply code bloat that remained after software refactoring.

The fundamental challenge in disassembly is identifying data inlined in the code steam,
as data bytes may be decoded into spurious instructions. Additionally, variable-size ISAs
like x86-64 allow for multiple interpretations of the same byte sequence. The interpretation
depends on where we start disassembling. Similarly, some variants of RISC-like ISAs, e.g.,
Thumb1 and TriCore, also allow the instruction size to be variable to increase code density.
This variability means that spurious instructions may lead to missing valid ones.

The traditional algorithms of disassembly are linear-sweep and recursive-descent. In the
former, disassembly starts at 𝑠𝑡 and then follows the byte stream until the end of 𝐵. That is,
for each disassembled instruction 𝑡𝑖 , the disassembly of 𝑡𝑖+1 starts at address 𝑠𝑡𝑎𝑟𝑡(𝑡𝑖+1) such
that,

𝑠𝑡𝑎𝑟𝑡(𝑡𝑖+1) = 𝑠𝑡𝑎𝑟𝑡(𝑡𝑖) + 𝑠𝑖𝑧𝑒(𝑡𝑖)

Linear sweep is fast and simple. However, it may produce a significant number of disassem-
bly errors. In Fig. 2.1, for example, consider the byte sequence starting at 0xb992 where each
assembly instruction is shown next to its start address. Linear sweep incorrectly disassembles
the data bytes at 0xb998 and 0xb99a. Upon reaching 0xb99c, it disassembles the data to the
instruction rsb.w, which has a size of 4 bytes. Consequently, disassembly would continue at
0xb9a0, skipping the valid instruction at address 0xb99e.

Inlined data is not reachable at run time. Hence, it does not affect the execution of
the processor. Recursive descent disassembly tries to mimic this behavior by starting from
𝑒 = 0xb992 and then following the CFG. CFG traversal is based on the classification of
instructions depicted in Fig. 2.2. The key difference to linear sweep disassembly lays in the
treatment of control transfer instructions (CTI). Basically, upon encountering a direct CTI, the
target address will be added to E, a queue of disassembly addresses. In Fig. 2.1, for example,
starting from 𝑒 = 0xb992, the target address 0xb99ewill be queued as the instruction happens
to be also a conditional CTI. However, upon reaching the indirect CTI at 0xb996, the algorithm

1We use the term Thumb to refer to Thumb-2 ISA, which is the variable size extension to Thumb-1 introduced in ARMv7.



2.2 The Disassembly Problem 19

b992:1b b1

b994:01 99

b996:10 47

b998:48 b0

b99a:02 00

b99c:cb eb

b99e:01 0b

b9a0:39 46

b9a2:04 22

b9a4:af e7

cbz r3, b99e

ldr r1, [sp, #4]

bx r2

.data

.data

.data

lsrs r1, r0, #0xc

mov r1, r7

movs r2, #4

b b906

cbz r3, b99e

ldr r1, [sp, #4]

bx r2

add sp, #0x120

movs r2, r0

rsb.w fp, fp, r1

mov r1, r7

movs r2, #4

b b906

Fig. 2.1: Comparing correct disassembly (left) to linear sweep disassembly (right) for a sample ARM
Thumb code. Disassembling data bytes leads to recovering spurious instructions at addresses
0xb998, 0xb99a, and 0xb99c. The size of latter instruction is 4 bytes which causes the
instruction at 0xb99e to be missed.

would stop following that path since it can not know the possible run time values of r2. Then,
the algorithm would pop 0xb99e from the queue and follow it to continue the disassembly.

Recursive descent disassembly is correct as long as the encountered direct CTIs are suffi-
cient to explore the binary code. However, a significant part of the code may be reachable only
through indirect CTIs (ICTIs), which leads to low code coverage. In practice, disassemblers in
the industry, e.g., IDA Pro [64], combine both methods, linear sweep and recursive descent,
with custom heuristics to achieve high code coverage.

For example, simply identifying the entry of the function main requires using a heuris-
tic. ELF executables start execution at the function _start, which in turn indirectly calls
main through the function __libc_start_main. The address of main will be set as the first
parameter to function __libc_start_main in the register rdi. This makes identifying the
address of main relatively easy in position-dependent executables, as depicted in Fig. 2.3.
Unfortunately, or maybe fortunately from a security perspective, executables in modern Linux
distributions, including Android, are position-independent by default. Therefore, identifying
the run-time value of rdi, which holds the main entry, becomes significantly more difficult.

Symbol information, e.g., linker symbols, can assist in correct disassembly where we add
symbol addresses to 𝐸, the queue of entry addresses. However, symbols might be unavail-
able. And if available, they might be unreliable. Therefore, disassemblers in safety-critical
applications, like the work of Theiling [118], rely on pattern matching of known compiler
idioms. This assumes that the compiler used to produce the binary, or maybe even the exact
compiler version, is known a priori. Ideally, a disassembly technique must be generic and
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Instruction

Sequential Control transfer

DirectIndirect

UnconditionalConditionalUnconditional

Fig. 2.2: Instruction classification used in recursive-descent disassembly. The targets of direct CTIs
are collected in a queue of entry points. Typically, conditional instructions do not have an
indirect form. Disassembly does not continue after indirect CTIs.

00000000004056d0 <_start>:
4056d0: xor ebp,ebp
4056d2: mov r9,rdx
4056d5: pop rsi
4056d6: mov rdx,rsp
4056d9: and rsp,0xfffffffffffffff0
4056dd: push rax
4056de: push rsp
4056df: mov r8,0x4eae60
4056e6: mov rcx,0x4eadf0
4056ed: mov rdi,0x403eb0 ; sets the address of main
4056f4: call 403340 <__libc_start_main@plt>
4056f9: hlt

Fig. 2.3: Disassembly of the function _start taken from an x86-64 executable compiled with gcc-7.4.
Luckily, this particular binary is position dependent. The address of the function main is a
constant value 0x403eb0 stored in the register rdi.

does not demand such assumptions about the binary. This represents the goal of our proposed
disassembly technique.

2.3 Proposed Method

The workflow of our method is depicted in Fig. 2.4. It accepts an ELF binary as input. Then, it
recovers the set of all potential basic blocks in the code. A basic block (BB) is a sequence of
instructions that ends with a CTI. A Maximal Block (MB) is a set of all overlapping BBs such
that each BB has a unique entry address but shares the same CTI with the other BBs. A CFG
connecting MBs is then built based on encountered direct CTIs. Then, this CFG is used in the
overlap and CFG conflict analyses to identify valid instructions.
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Maximal block
recovery

Overlap conflict 
analysis

CFG conflict 
analysis

Binary Disassembly

Fig. 2.4: Workflow of proposed speculative disassembly method. The method consists of two phases
(1) speculatively recovering all BBs which are grouped in Maximal Blocks, and (2) conflict
analyses used for BB refinement.

Our proposed disassembly method provides provably complete code coverage. Also, our
experiments show that the proposed conflict analyses correctly identify valid instructions in
practice. This method leverages the following key insights:

• Data bytes can only exist after CTIs and before the beginning of valid BBs. That is, they
cannot exist, by definition, within the instruction sequence of a valid BB.

• More importantly, valid BBs are more connected to the CFG compared to spurious BBs
generated by speculative disassembly. This gives them more “weight” that we leverage
to resolve conflicts with spurious BBs.

We discuss this method in more detail in the remaining part of this section.

2.3.1 Recovery of maximal blocks

In this step, our goal is to determine all potential BBs available in a binary, i.e., to recover a
superset of valid BBs. To this end, we start disassembly at the buffer start 𝑠𝑡 , and continue until
the end of 𝐵. This is similar to linear sweep except that we speculatively attempt to disassemble
every possible instruction. In Thumb ISA, this would be every 2 bytes. In comparison, every
byte in x86 may represent the start of an instruction. Unlike recursive-descent disassembly,
we do not queue any addresses in 𝐸. Instead, we append every disassembled instruction to
one or more BBs, if applicable. Otherwise, we would create a new BB for that instruction.
BBs that meet at the same CTI are grouped in the same Maximal Block (MB). An MB is a
convenient container for all BBs that exhibit the same control-flow behavior.

Going back to Fig. 2.1. We group the BBs starting at the addresses 0xb99c and 0xb99e in
single MB, which ends with the CTI at 0xb9a4. This means that we have two BBs sharing the
same MB. They start with different instructions but share the remaining instructions starting
from 0xb9a0. We continue our discussion after introducing some necessary notation. For an
instruction t its end address is,

𝑒𝑛𝑑(𝑡) = 𝑠𝑡𝑎𝑟𝑡(𝑡) + 𝑠𝑖𝑧𝑒(𝑡)
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Note that 𝑠𝑡𝑎𝑟𝑡(𝑡) is unique for each 𝑡 . Also, for a basic block 𝑏𝑏 we have,

𝑒𝑛𝑑(𝑏𝑏) = 𝑠𝑡𝑎𝑟𝑡(𝑏𝑏) + 𝑠𝑖𝑧𝑒(𝑏𝑏)

where 𝑠𝑡𝑎𝑟𝑡(𝑏𝑏) = 𝑠𝑡𝑎𝑟𝑡(𝑡0) such that 𝑡0 is the first instruction in 𝑏𝑏. Similarly, 𝑒𝑛𝑑(𝑏𝑏) =
𝑒𝑛𝑑(𝑡𝑖) where 𝑡𝑖 is the last instruction in 𝑏𝑏. Also, 𝑠𝑖𝑧𝑒(𝑏𝑏) is the total size of a BB, which is
sum of the size of its instructions. We say that 𝑡 can append 𝑏𝑏 iff 𝑒𝑛𝑑(𝑏𝑏) = 𝑠𝑡𝑎𝑟𝑡(𝑡). For a
maximal block 𝑚𝑏, the sets 𝑇𝑚𝑏 and 𝐵𝐵𝑚𝑏 represent the sets of instructions and basic blocks
it contains, respectively. Also, 𝑒𝑛𝑑(𝑚𝑏) = 𝑒𝑛𝑑(𝑡𝑐𝑡𝑖) where 𝑡𝑐𝑡𝑖 is its unique CTI. We say that a
maximal block 𝑚𝑏𝑖+1 can append 𝑚𝑏𝑖 iff:

∃𝑏𝑏 ∈ 𝐵𝐵𝑚𝑏𝑖+1
, 𝑒𝑛𝑑(𝑚𝑏𝑖) = 𝑠𝑡𝑎𝑟𝑡(𝑏𝑏)

Maximal blocks are recovered using Algorithm 1. The discussion focuses on the Thumb
ISA as it is the one supported by Spedi, our tool prototype. Basically, we decode every
possible instruction 𝑡 (line #4), where the step size is two bytes for Thumb ISA (line #14).
Then, we check if 𝑡 is acceptable. An instruction is acceptable if (1) its bytes are disassemble
to valid ISA instruction, and (2) it does not violate ISA rules. For example, there are certain
restrictions on the usage of register pc in ARM ISA manuals that, if violated, can make such
instruction unexecutable, i.e., it causes the cpu to raise an exception. BBs containing such
instructions can be safely discarded at this early stage.

Then, we check whether 𝑡 represents a CTI (#line 6). If it does not, we search the current
MB looking for possible BBs that can be appended by 𝑡 (line #11). If none is found, a new BB
will be created containing only 𝑡 . However, if 𝑡 is a CTI, then it would be appended to a BB
like any other instruction. However, an MB has to be constructed now that at least one BB,
which contains the CTI instruction, is complete.

Basically, BBs contained in the current MB are classified into two main categories (1)
complete BBs which can be appended by the current CTI, or (2) incomplete BBs which hold a
sequence of instructions but without a CTI. Note that a complete BB may contain only one
CTI. Incomplete BBs are further classified into two sets, (1) invalid BBs, and (2) overlap BBs.
Overlap BBs are kept since they can potentially be appended by an instruction in the next
MB. For a BB to be regarded as an overlap BB it should satisfy the following:

𝑒𝑛𝑑(𝑚𝑏) − 𝑒𝑛𝑑(𝑏𝑏) < 𝑆𝑚𝑎𝑥
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where 𝑆𝑚𝑎𝑥 is the maximum size of an instruction in the current ISA. It is 4 bytes in Thumb,
and 15 bytes in x86 ISA. We keep all overlap BBs for the next MB (#line 9) and discard invalid
BBs. After all, a valid BB must end with a CTI.

Algorithm 1 has linear complexity in terms of buffer size 𝑂(|𝐵|). Classification of BBs
to complete, invalid, or overlap (line #9) is linear in 𝑂(|𝐵𝐵𝑚𝑏 |). However, in our current
implementation, mapping instructions to basic blocks is 𝑂(|𝐵𝐵𝑚𝑏 | ∗ |𝑇𝑚𝑏 |).

Theorem 1 The set of basic blocks recovered in Algorithm 1 is a superset of valid basic blocks
existing in buffer 𝐵.

Proof. Algorithm 1 advances with a step size the is minimal according to current ISA
(line #14). Therefore, it disassembles every possible instruction. Let 𝑏𝑏 be a valid basic block.
Then, 𝑏𝑏 can either consist of a single 𝑡𝑐𝑡𝑖 . In such a case, it is recovered directly in a maximal
block. Otherwise, 𝑏𝑏 consists of 𝑇𝑏𝑏, a sequence of instructions, that ends with a 𝑡𝑐𝑡𝑖 where
∀𝑡𝑖 , 𝑡𝑖+1 ∈ 𝑇𝑏𝑏, 𝑒𝑛𝑑(𝑡𝑖) = 𝑠𝑡𝑎𝑟𝑡(𝑡𝑖+1). Algorithm 1 recovers all instruction sequences (line #11)
by (1) appending each disassembled instruction 𝑡 to an existing sequence, or (2) constructing
a new sequence 𝑇𝑏𝑏 containing only 𝑡 . However, upon encountering a CTI instruction, then
either (1) the CTI appends the sequence 𝑇𝑏𝑏, which means that the current𝑚𝑏 is now complete
(line #8), or (2) it is a spurious 𝑡𝑐𝑡𝑖 , which means that 𝑇𝑏𝑏 can be retained for the next maximal
block (line #9). In both cases, each 𝑚𝑏 would contain a superset of valid BBs that end with
the same CTI. □

Having recovered Γ𝑚𝑏, the list of MBs, we build the CFG Γ𝑐𝑓 𝑔 using direct CTIs only, as
shown in Algorithm 2. Basically, it is a single pass over Γ𝑚𝑏 where an edge is added between
𝑚𝑏 and𝑚𝑏𝑟 , if the latter is reachable from the former using a direct CTI (line #5). Another edge
should be added in conditional CTI (line #8), if 𝑚𝑏𝑖 can append 𝑚𝑏. Finding a remote target
(lines #4) returns a result only if the target MB contains an instruction with the designated
start address, otherwise, the procedure fails. This is similar for the procedure of finding an
immediate target (line #7). Failing to find a target means that the current MB, and all of its
direct predecessors, should be discarded since they do not target a valid BB. This is based on
the fact that Algorithm 1 guarantees the recovery of all valid BBs. However, in the analysis
of dynamically linked executables, we allow an MB to target an external ELF section, e.g.,
.plt section, but we make sure that the targeted section is at least executable. After all, valid
control flow can not target a section holding data, e.g., the section .rodata.

Algorithm 2 is linear in |Γ𝑚𝑏 |. Finding an immediate target (line #7) is typically 𝑂(1) as it
is the immediate successor of an 𝑚𝑏 in |Γ𝑚𝑏 |. The most costly operation is the binary search
required to find a remote MB (line #4). In this search, we take advantage of the ordering found
in |Γ𝑚𝑏 | which can be stated as:
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Algorithm 1:Maximal block recovery
Input : Byte buffer to be disassembled 𝐵

Output : List of maximal blocks Γ𝑚𝑏

1 addr := 𝑠𝑡

2 𝑚𝑏 := create_maximal_block()
3 while addr < end(B) do
4 inst := decode_inst_at(addr)
5 if acceptable(inst) then
6 if is_cti(inst) then
7 append(𝑚𝑏, 𝑖𝑛𝑠𝑡)
8 add_to_result(Γ𝑚𝑏, 𝑚𝑏)
9 𝑚𝑏 := get_overlaping_basic_blocks(𝑚𝑏)

10 else
11 𝑚𝑏:= create_or_append(𝑚𝑏, inst)
12 end
13 end
14 addr := addr + 2
15 end

Theorem 2 Let 𝑚𝑏𝑖 and 𝑚𝑏𝑗 be maximal blocks in Γ𝑚𝑏 such that 𝑖 < 𝑗 then 𝑒𝑛𝑑(𝑚𝑏𝑖) ≤

𝑒𝑛𝑑(𝑚𝑏𝑗).

Proof. Consider how MBs are recovered in Algorithm 1. Specifically, consider how new
MBs are added to |Γ𝑚𝑏 | (line #8). Each MB ends with a single CTI where 𝑒𝑛𝑑(𝑚𝑏) = 𝑒𝑛𝑑(𝑡𝑐𝑡𝑖).
Given that no two CTIs can start at the same address, then we have 𝑠𝑡𝑎𝑟𝑡(𝑡 𝑖

𝑐𝑡𝑖
) < 𝑠𝑡𝑎𝑟𝑡(𝑡

𝑗

𝑐𝑡𝑖
)

because instructions are disassembled in ascending order starting from 𝑎𝑠𝑡 . This leads to
𝑒𝑛𝑑(𝑡

𝑖

𝑐𝑡𝑖
) ≤ 𝑒𝑛𝑑(𝑡

𝑗

𝑐𝑡𝑖
) where the last 2 bytes of 𝑡 𝑗

𝑐𝑡𝑖
may overlap with 𝑡

𝑖

𝑐𝑡𝑖
. □

2.3.2 Overlap conflict analysis

In Algorithm 1, the current maximal block (𝑚𝑏) may retain overlap BBs (line #9). An overlap
BB might be appended with a CTI in the next MB to form a complete BB. In this case, we say
that both MBs overlap. Formally, for 𝑚𝑏𝑖 and 𝑚𝑏𝑗 to overlap where 𝑖 < 𝑗 the following holds,

𝑠𝑡𝑎𝑟𝑡(𝑚𝑏𝑗) < 𝑒𝑛𝑑(𝑚𝑏𝑖)

This situation creates a conflict that should be resolved because valid instructions cannot
overlap, in general. To resolve such conflict, we can either (1) invalidate 𝑚𝑏𝑖 altogether, or (2)
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Algorithm 2: Build direct CFG connecting MBs
Input : List of maximal blocks Γ𝑚𝑏

Output : Direct CFG Γ𝑐𝑓 𝑔

1 foreach 𝑚𝑏 in Γ𝑚𝑏 do
2 inst := get_cti(𝑚𝑏)
3 if is_direct_cti(inst) then
4 𝑚𝑏𝑟 = find_remote_target(inst)
5 add_edge(Γ𝑐𝑓 𝑔 , mb, 𝑚𝑏𝑟 )
6 if is_conditional_cti(inst) then
7 𝑚𝑏𝑖 = find_immediate_target(inst)
8 add_edge(Γ𝑐𝑓 𝑔 , mb, 𝑚𝑏𝑖)
9 end

10 end
11 end

shrink the size of 𝑚𝑏𝑗 to fit 𝑚𝑏𝑖 . Shrinking 𝑚𝑏𝑗 means increasing its start address such that
𝑒𝑛𝑑(𝑚𝑏𝑖) ≤ 𝑠𝑡𝑎𝑟𝑡(𝑚𝑏𝑗). To resolve an overlap, we take into account the following heuristics:

• Alignment. If 𝑚𝑏𝑗 can be appended to some 𝑚𝑏𝑘 , with 𝑘 < 𝑖, then it is more reasonable
to invalidate 𝑚𝑏𝑖 than to shrink 𝑚𝑏𝑗 .

• Connectedness. If 𝑚𝑏𝑖 is “more connected” to the CFG than 𝑚𝑏𝑗 , then it is more
reasonable to shrink 𝑚𝑏𝑗 than to invalidate 𝑚𝑏𝑖 .

To leverage both heuristics, we rely on the “weight” of an MB. In our implementation, the
weight of a particular MB is the sum of its instruction count and the instruction count of its
immediate predecessors in the CFG. Note that it is possible to additionally use the weight of
CFG successors, but we found our heuristic to be adequate in practice.

Algorithm 3 implements our overlap analysis. For each 𝑚𝑏, we look ahead to check if it
overlaps with its successors (line #2). Should an overlap 𝑚𝑏𝑜 exist, we first try to shrink its
size (line #4). If shrinking is inapplicable, we have to invalidate either 𝑚𝑏 or 𝑚𝑏𝑜 based on
their weight. Note that 𝑚𝑏𝑜 is shrinkable w.r.t. 𝑚𝑏 iff,

∃𝑡 ∈ 𝑇
𝑜

𝑚𝑏
∶ 𝑒𝑛𝑑(𝑚𝑏) ≤ 𝑠𝑡𝑎𝑟𝑡(𝑡)

In other words, an instruction 𝑡 that starts after 𝑚𝑏 ends should exist in 𝑚𝑏𝑜. If 𝑚𝑏𝑜 is
shrinkable, then we set its start address to the first 𝑡 that satisfies the above relation. Shrinking
𝑚𝑏𝑜 effectively invalidates some instructions at its beginning, which is not always applicable.
For example, another 𝑚𝑏𝑘 in Γ𝑐𝑓 𝑔 could be targeting one of those would-be invalidated
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Algorithm 3: Overlap conflict resolution
Input : CFG Γ𝑐𝑓 𝑔

Output : Modified CFG Γ𝑐𝑓 𝑔

1 foreach 𝑚𝑏 in Γ𝑐𝑓 𝑔 do
2 if has_overlap(𝑚𝑏) then
3 𝑚𝑏𝑜 = get_overlap_mb(𝑚𝑏)
4 if is_shrinkable(𝑚𝑏𝑜) then
5 shrink_if_applicable(𝑚𝑏𝑜)
6 else
7 invalidate_either(𝑚𝑏, 𝑚𝑏𝑜)
8 end
9 end

10 end

instructions. This leads to a conflict between 𝑚𝑏 and 𝑚𝑏𝑘 . Again, such conflict is resolved
using their weights.

We simplify our discussion of overlap analysis with the help of the example depicted
in Fig. 2.5. It is taken from du, one of the utilities found in GNU’s Coreutils, and shows
the instructions of 4 maximal blocks. We annotate each instruction with the index of its
corresponding maximal block. The example has two overlap conflicts in total. The first is
between 𝑚𝑏0 and 𝑚𝑏1 where,

𝑒𝑛𝑑(𝑚𝑏0) = 0x2cb12 < 𝑠𝑡𝑎𝑟𝑡(𝑚𝑏1) = 0x2cb0e

The second conflict is between 𝑚𝑏2 and 𝑚𝑏3 where,

𝑒𝑛𝑑(𝑚𝑏2) = 0x2cb1c < 𝑠𝑡𝑎𝑟𝑡(𝑚𝑏3) = 0x2cb1a

Resolving the first conflict is done by shrinking𝑚𝑏1 by invalidating the instruction at 0x2cb0e.
As for the second conflict, it is not possible to shrink 𝑚𝑏3 because it consists of a single
instruction. Consequently, 𝑚𝑏3 will be invalidated.

2.3.3 CFG conflict analysis

The goal of overlap conflict analysis is to ensure that each MB occupies an area that does
not overlap with other MBs. After resolving such inter-MB conflicts, we discuss here how to
resolve intra-MB conflicts between different BBs. Basically, each BB starts at a unique start
address within its MB. Therefore, only one BB might be a valid BB, while others are spurious.
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2cb08 : c2 f1

2cb0a : 1f 02

2cb0c : 20 fa

2cb0e : 02 f0

2cb10 : 70 47

2cb12 : 08 b1

2cb14 : 4f f0

2cb16 : ff 30

2cb18 : 00 f0

2cb1a : f8 b9

2cb1c : 00 29

2cb1e : f8 d0

rsb.w0 r2, r2, 1f

lsr.w0 r0, r0, r2

bx0 lr

mov.w2 r0, #-1

b.w2 2cf0c

cmp4 r0, #0

beq4 2cb12

and1 r7, r2, f0000000

cbz1 r0, 2cb18

cbnz3 r0, 2cb5c

rsb.w0 r2, r2, 1f

lsr.w0 r0, r0, r2

bx0 lr

cbz1 r0, 2cb18

mov.w2 r0, #-1

b.w2 2cf0c

cmp4 r0, #0

beq4 2cb12

Fig. 2.5: Overlap conflict example taken from du utility. Each instruction is subscripted with the
number of its corresponding maximal block. The disassembly after resolving overlap conflicts
is shown on the right.

Consider the MB depicted in Fig. 2.6, which ends with a conditional CTI at 0x9df8. It consists
of 3 BBs starting at addresses 0x9dec, 0x9df0, and 0x9df4, respectively. Each instruction
is annotated with the BB(s) it belongs to. For example, 𝑏𝑏0 and 𝑏𝑏1 meet at the instruction
0x9df2, and henceforth share all the following instructions.

Let us assume that overlap analysis sets the start address to 0x9dec. However, as far as
overlap analysis is concerned, any address greater or equal to 0x9decwould be acceptable. For
example, choosing to start at 0x9df0 means that instructions at 0x9dec, 0x9dee, and 0x9df4
have to be invalidated since they do not belong to the valid BB. Invalidating an instruction
would also mean invalidating any MBs that could be targeting it in Γ𝑐𝑓 𝑔 . Such a conflict is
resolved by weighing each BB and choosing the BB with the highest weight. The weight of a
BB is calculated similarly to the case of MB. It is the sum of its instruction count together
with the instruction count of its direct predecessors. In our example, 𝐵𝐵0 starting at 0x9dec
has the largest number of instructions. Additionally, basic blocks 𝐵𝐵1 and 𝐵𝐵2 have no direct
predecessors. Therefore, 𝐵𝐵0 represents the most reasonable choice to resolve the conflict.

2.4 Resilience to Obfuscation

Obfuscation is any transformation applied to a program to make it harder to reverse-engineer.
Obfuscation can be applied at source-code level (or similar) to make algorithms difficult to
reverse engineer. Additionally, it can also be applied to the binary code to make it difficult to
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9dec :10 b5

9dee :41 f2

9df0 :68 24

9df2 :c0 f2

9df4 :03 04

9df6 :23 78

9df8 :1b b9

push0 {r4, lr}

mov.w0 r4, 1268

movt0,1 r4,#3

ldrb0,1,2 r3, [r4]

cbnz0,1,2 r3, 9e02

movs1 r4, 68

lsls2 r3, [r4]

Fig. 2.6: CFG conflict example depicting three conflicting BBs in the same MB. Each instruction is
annotated with basic block(s) it belongs to.

disassemble. Our focus is on the latter techniques that are applied statically, i.e., without run-
time code generation or modification. Static obfuscation techniques try to violate assumptions
that normally hold in benign binaries. Specifically, the key violated assumptions are: (1)
control flow returns to the instruction that immediately follows a call, and (2) either branch
of a conditional CTI can be taken.

Linn et al. [86] implemented an effective obfuscator that violates assumption #1 by replac-
ing direct calls with branch subroutines. A branch subroutine would indirectly call the original
function at run-time, which complicates the recovery of the call graph. Moser et al. [93]
explored violating assumption #2 by introducing opaque constants that are provably difficult
to statically analyze. Such constants can be used to build an opaque predicate, which is a
conditional CTI that always branches to only one of its targets. In this way, junk bytes can be
inserted, for example, at the address of the fallthrough target to confuse static disassemblers.

Kruegel et al. [79] used speculative disassembly to build an effective x86 disassembler
tailored towards the obfuscator of Linn et al. [86]. This disassembler can also handle opaque
predicates to a significant extent. Our speculative disassembly method is inspired by the work
of Kruegel et al. [79]. We share the basic ideas of disassembling all possible instructions and
refinement through conflict analyses. Hence, we provide comparable resilience to obfuscation.
However, there are several differences between both methods, which we discuss in the
following:

Data structures. In the work of Kruegel et al., each instruction belongs to a single
fragment, a sequence of instructions that does not necessarily end with a CTI. In comparison,
in our method, each instruction belongs to a single Maximal Block (MB). Because of the
self-repairing property of x86 disassembly [108], a fragment would normally contain 1–3
instructions. This leads to producing many fragments and makes conflict analysis less efficient.

Function identification. Due to the inefficiencies in data structures, they demand
function entries (or their approximation) to be first identified using an external method. Then,
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237ae:
237b0:
237b2:
237b6:

ite le

movle r7, r0

bgt.w 229f8

.invalid

Fig. 2.7: Spurious ite produced by speculatively disassembly leads to a spurious conditional CTI at
0x237b2 followed by invalid instruction. Technique of Kruegel et al. would invalidated the
whole fragment.

they apply their speculative disassembly technique to each function individually. Our method
does not impose such restriction. Instead, we recover functions after completing instruction
recovery, as discussed later in Section 3.3.

Statistical analysis. Kreugel et al. speculatively disassemble gaps between functions in
a separate step. Here, they use bigram statistical learning in order to weight instructions.
Basically, every pair of instructions that appears more frequently together in their learning
corpus, will have more weight. This weight is used to calculate the total weight of a fragment,
and resolve conflicts. In comparison, we uniformly disassemble the whole code in one pass,
and we do not use statistical analyses.

Conflict analysis. They resolve conflicts in one step by assigning a weight to each
fragment and selecting fragments with the highest weight. A fragment’s weight is the number
of its direct predecessors but sometimes the successors maybe used as well. In comparison,
we do conflict analysis in two steps. First, we resolve conflicts among MBs in overlap analysis.
Then, we resolve conflicts among BBs in the same MB in CFG conflict analysis. This provides
better efficiency as our data structures are more coarse granular. It also provides flexibility in
tackling subtle cases.

For example, consider the MB depicted in Fig. 2.7, which is taken from the GNU utility du.
The CTI at 0x237b2 is conditional only because it happens to be the else case for the invalid
ite instruction at 0x237ae. Our overlap analysis can efficiently invalidate the ite instruction.
On the other hand, the method of Kruegel et al. would invalidate the whole fragment (and its
predecessors) since it conditionally branches at 0x237b2 into an invalid instruction.

To conclude, obfuscation and de-obfuscation are in a constant arms race. In speculative
disassembly, we guarantee to recover all static BBs. Effective refinement of these BBs depends
on how far an obfuscator can go. In principle, eliminating most direct CTIs is possible. This
would adversely affect the conflict analyses used in our method, as well as those of Kruegel
et al. However, this would also severely increase the performance overhead since indirect
branches are costly. Additionally, it will still not be strong enough to deter more sophisticated
dynamic analyses.
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# of Inst. # of CTI # of ICTI

nnet 13749 1942 413 (21.27%)

sha 14800 1843 413 (22.41%)

parser 17059 2916 561 (19.24%)

loops 23110 2759 492 (17.83%)

zip 26789 4057 848 (20.90%)

expr 30423 6728 813 (12.08%)

ls 30460 6640 963 (14.50%)

csplit 31342 6761 787 (11.64%)

ptx 34301 7634 913 (11.96%)

du 48809 10940 1380 (12.61%)

Table 2.1: Description of the benchmarks used to evaluate Spedi. Selected 5 largest binaries in
coreutils and coremark-pro benchmarks. We also show instruction statistics. Indirect
CTIs represent a significant fraction of total CTIs which complicates recursive-descent
disassembly.

2.5 Experiments

We implemented our speculative disassembly method in the tool Spedi. The implementation
details of this tool are highlighted in Section 7.1.1. The experimental setup is discussed in
Section 7.2.1. An overview of our benchmark binaries is given in Table 2.1. We show the
number of valid instructions in addition to indirect CTIs and the total number of CTIs. Note
that ICTIs constitute a significant percentage of all CTIs. This indicates that pure recursive
descent disassembly might not provide adequate coverage.

We identified valid instructions based on ARM code-mapping symbols. These symbols
are available in the symbol table to classify code regions. The symbols are a, t, and d, which
indicate are ARM, Thumb, and Data regions respectively. To collect the ground truth, we
built a designated disassembly mode into Spedi to read these symbols. This ground truth is
then validated against objdump, which can also use code mapping symbols, if available. The
metric we use to evaluate instruction recovery is the valid instruction ratio (VIR) metric. It is
the ratio of valid instructions, which are recovered by Spedi, compared to total number of
valid instructions in the binary.

Our results are shown in Table 2.2. We compare VIR results by providing objdump, IDA,
and Spedi with stripped binaries, i.e., without symbol information. objdump uses linear sweep
disassembly in the absence of linker symbols. It produces a high number of disassembly
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objdump IDA Spedi Time (ms)

nnet 49.37% 97.30% 99.94% 51

sha 50.13% 74.53% 99.95% 101

parser 50.00% 97.72% 99.95% 56

loops 49.98% 98.31% 99.96% 79

zip 50.08% 97.87% 99.97% 82

expr 50.47% 98.86% 99.97% 89

ls 54.00% 97.77% 99.97% 91

csplit 50.42% 98.78% 99.97% 94

ptx 50.47% 98.94% 99.97% 102

du 79.13% 98.18% 99.98% 146

Table 2.2: Instruction recovery results comparing objdump, IDA Pro, and Spedi. We also show the
average time needed by Spedi to process the binary.

errors where it consistently achieves a VIR of about 51%. This renders any SBA based on
it to be effectively useless. These poor results can be attributed to how objdump behaves
upon encountering a disassembly error. It skips the default size of an ARM instruction (4
bytes), which causes disassembly errors to cascade. Instead, skipping only 2 bytes would have
significantly improved the results of objdump. In comparison, IDA was in a better position
by achieving about 98% on average. For unclear reasons, sha was the exception with 74.53%.
Inspecting error causes, we noticed that IDA was skipping valid instructions even in sequence
of correctly disassembled BBs. Move instructions, e.g., movt and movs, were particularly
affected by such skipping.

On the other hand, Spedi demonstrates consistent results for all benchmarks. Actually,
our main source of disassembly errors lays in the procedure call_weak_fn, which consists of
7 ARM instructions. Unfortunately, our prototype still does not support mixed ARM/Thumb
disassembly. Note that achieving a VIR of 100 % does not mean that the disassembly method
is perfect, as some data bytes can still be decoded as instructions. However, Spedi can already
identify most data bytes generated for switch tables and PC-relative load instructions.

As for the scalability of Spedi, we show the average execution time of 10 runs. Our tool
did scale gracefully with increased program size. The only exception was the sha benchmark
with a relatively high run-time of 101ms. But this particular benchmark has very large
MBs with thousands of instructions. This makes building BBs and attaching instructions
to them expensive in our current prototype. Finally, note that the time required by Spedi
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cannot be directly compared to that of objdump or IDA. These tools implement very different
functionality. For example, objdump uses a simple linear sweep, while IDA performs more
analyses to build a disassembly database.

2.6 Discussion and Related Work

The disassembly problem was tackled by several works, either independently or as part of a
proposed SBA technique. We will try in this section to cover some prominent works that do
not rely on symbol information. Zhang et al. [133] used iterative linear sweep disassembly
using objdump to implement their binary rewriter. Anand et al. [4] used recursive descent
disassembly and speculative disassembled code areas that are unreachable by direct CTIs.
Such areas would be translated to LLVM IR to be later refined, or simply rewritten back to
the binary. Wartell et al. [125] used a speculative disassembly, but their instruction recovery
method depends on statistical machine learning. Hence, it is more complex than our approach
and prone to overfitting, similar to other machine learning techniques. The closest work to
ours is that of Kruegel et al. [79], which we previously discussed in Section 2.4.

Kinder et al. [75] approached CFG recovery from an abstract interpretation perspective.
They use recursive-descent disassembly until reaching an indirect CTI. Targets of indirect CTIs
are safely overapproximated using a custom abstract domain. Their analysis is implemented on
top of an Intermediate Representation (IR). In the case of encountering a loop, a significant part
of the CFG needs to be reanalyzed, which is computationally expensive. Harris et al. [62] used
recursive-descent disassembly combined with practical heuristics for function identification
and CFG recovery. Theiling [118] used recursive-descent disassembly in addition to pattern-
matching heuristics to detect common compiler idioms. The author identifies functions using
a top-down approach, which applies only to statically-linked programs.

Compared to other works, our approach is more lightweight by not relying on an Interme-
diate Representation (IR) and expensive analyses. Also, leveraging the CFG allows for better
robustness compared to approaches that use machine learning or custom heuristics. Moreover,
our speculative disassembly method lends itself easily to parallelization. It allows each thread
to independently process a memory region before merging results with the other threads.
Lastly, for a fairer comparison with other works, it is interesting to extend our method to x86.
We leave such an extension as future work.



Chapter 3

Function Identification

Overview; Symbol-based Identification; CFG-based Identification; Experiments; Discussion.

3.1 Overview

The notion of functions is important to our approach as it determines the scope of the CFG
and, consequently, the correctness of dominance relationships between BBs. Functions are
well-defined constructs in the source code. However, compiler optimizations, such as function
inlining and splitting1, significantly change the layout of corresponding binary-level functions.
Fortunately, these optimizations are not of concern to us as long as well-formed function
definitions are given to our coverage analysis tool, bcov.

Formally, a function is defined by the tuple 𝐹 = (𝑠𝑡, 𝑠𝑧, 𝐸𝑁 ), where 𝑠𝑡 and 𝑠𝑧 are its start
address and size in bytes respectively. The set 𝐸𝑁 represents the basic block entry points
where control flow enters the function. Similarly, we are also interested in 𝐸𝑋 , which is the
set of exit points leaving a function. However, the majority of exit points are either tail calls
or return to callers. Thus, we can automatically infer 𝐸𝑋 given the function definition 𝐹 .

We say that the definition of function 𝐹 is well-formed if (1) it does not overlap with
other function definitions, i.e., the function occupies a dedicated code region, and (2) all of its
basic blocks are reachable only through its entry points. For a set of function definitions, it is
straightforward to check that it satisfies condition #1. However, checking the satisfaction of
condition #2 is more complicated because of the existence of indirect CTIs. We might assume
that 𝐸𝑁 comprises all entry points, only to find out later, at run time, that an indirect CTI is
targeting an unidentified function entry. The fact is that the precise analysis of indirect CTIs,
similar to other problems in static analysis, is an undecidable problem in general [81].

1 Splitting is an optimization that can improve function inlining by dividing a function into multiple parts,
making them easier to inline.
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Fig. 3.1: Example of incorrect function identification. (left) correct function layout (right) an identifi-
cation technique incorrectly assigned the region between 𝑒3 and 𝑒5 to 𝐹2 instead of 𝐹3. In this
case, 𝑒3 is now an internal BB entry in 𝐹2.

It is important to note that determining 𝐸𝑁 has a direct effect on the probe pruning
techniques that we later discuss in Chapter 5. In theworst-case scenario, it is possible to add the
entries of all BBs to 𝐸𝑁 . This would render probe pruning ineffective, as we have to instrument
all BBs. In other words, over-approximation of 𝐸𝑁 increases the instrumentation overhead.
On the other hand, under-approximation of 𝐸𝑁 may lead to more serious consequences,
including crashes in the binary. For example, for a BB that is reachable only from another
function, missing its entry from 𝐸𝑁 might lead us to incorrectly assume that it represents
padding bytes. In effect, the misidentified BB might be overwritten, which leads to executing
code with unintended consequences.

We discuss the issues associated with imprecise function identification based on Fig. 3.1.
In a code region 𝐶 , assume that the correct function layout consists of functions 𝐹1 … 𝐹4 where,
for the sake of simplicity, each function has single entry located at the function start. A
function identification technique 𝐼𝑐 applied on 𝐶 was able to detect four functions. However,
𝐼𝑐 misidentified the size of 𝐹2 and, since 𝐹2 must not overlap with 𝐹3, slightly shifted the start of
𝐹3 to the new entry 𝑒5. Starting from this function layout, 𝐼𝑐 has to add 𝑒3 to the set of entries
of 𝐹2, i.e., 𝐸𝑁2 = {𝑒2, 𝑒3}. Compared to the actual functions entries, this solution comes at the
expense of additional instrumentation overhead at 𝑒5. Note that 𝑒5 is presumably dominated
by 𝑒3. Therefore, in the correct function layout, the additional instrumentation probe at 𝑒5
would have been pruned.

So what if 𝐼𝑐 did not detect 𝑒3? That is, the entry set of 𝐹2 now contains 𝐸𝑁2 = {𝑒2}. Hence,
we will not insert a probe in 𝑒3. In this case, a call from 𝐹4 targeting 𝑒3 might go undetected
by our coverage analysis tool. Even worse, the BB at 𝑒3 might be incorrectly considered as
padding since it is not targeted by any BB inside 𝐹2. Recall that 𝑒3 should have been assigned by
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𝐼𝑐 to function 𝐹3. Building on this incorrect assumption, our tool might incorrectly overwrite
𝑒3 to exploit its area, which may lead to a program crash.

Our previous discussion shows how imprecision in function identification can have
dramatic consequences on the correctness of instrumentation and the precision of the reported
coverage. Identifying functions with high precision depends on the setting in which we
conduct binary analysis. In the usual setting, we assume that linker symbols, or at least Call
Frame Information (CFI) records, do exist and are trustworthy. Section 3.2 discusses how we
leverage this information. However, in the case where this assumption does not hold, we can
still resort to the CFG based identification technique of Section 3.3, which does not require
access to external information.

3.2 Symbol-based Identification

We discuss how to identify the function layout under the assumption that linker symbols,
or at least CFI records, are available. We collectively refer to this information as function
symbols. Then, we build on that to identify function entries and exits.

3.2.1 Function layout

The process of compiling a C/C++ file goes through four main phases; First, the file needs to
be pre-processed where macros and include headers are expanded to produce a compilation
unit. Second, the compiler converts this compilation unit to an assembly file. Then, comes
the assembler, which converts the latter file to a relocatable object file. Finally, the linker will
takeover linking multiple object files into an ELF binary, be it an executable or shared library.

To merge multiple code and data sections, the linker relies on symbol tables embedded in
the object files. These symbol tables must define, among other things, the layout of functions
in the code section. Typically, these symbols remain in the final binary and are sufficient
for identifying functions. Fig. 3.2 depicts a simple bash script that uses the popular readelf
utility to dump the static functions available in a binary. Note that a binary’s debug build
provides more detailed information, including variable definitions. However, producing a
debug build requires supplying additional compiler options like -g. Modifying the compiler
options imposes a limitation that we like to avoid. Therefore, and by design, our techniques
do not rely on debug information.

Coverage analysis is usually an internal activity within the organization that builds the
software. Therefore, keeping linker symbols should not be difficult. However, the vast majority
of commercial off-the-shelf (COTS) software is distributed in the form of stripped binaries
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readelf -s binary | grep -P ’\sFUNC\s’ | \
gawk ’{

address = strtonum("0x"$2)
size = strtonum($3)
func_name = $8
if (address != 0 && size != 0)

print address ,size ,func_name
}’

Fig. 3.2: A script that dumps the function definition of a non-stripped binary. It skips dynamically
linked functions, which are not of interest to us for the purpose of instrumentation.

to save space, or maybe to complicate reverse engineering. Moreover, some software builds
instruct the linker to immediately strip symbols. We can achieve this in gcc, for example,
by supplying the option -s. To accommodate these use cases, we turn to another source of
information for identifying function layouts, namely, Call Frame Information (CFI) records.

CFI records are generally found in the .eh_frame section, which is part of the loadable
image of an ELF binary, i.e., this section cannot be stripped. The .eh_frame section is similar
in format to the .debug_frame section. However, the latter is part of debug information and
is available only in debug builds. CFI records store the data necessary for stack unwinding.
Hence, they must be available to enable C++ exception handling. However, CFI records are
useful for several other purposes, such as crash reporting and performance profiling. Note that
CFI records might not contain all the function definitions that are included in linker symbols.
To save space, developers might decide to exclude CFI records of leaf functions. Nevertheless,
our experiments show that CFI records provide a very large subset of the functions contained
in symbol information.

3.2.2 Function entries

The main entry of a function is trivially defined by its start address. Other functions can either
call or tail-call targeting only the main entry. We have empirically validated this assumption
in our binary dataset (described in Section 7.2.2). That is, we have not found any instance
where a (direct) call targets a basic block in another function. 2 Actually, the existence of such
artifacts indicates that the given function definitions might not be precise.

However, non-local control transfer mechanisms, such as longjmp and exception handling,
violate this assumption by branching indirectly to an internal BB. We consider the targets
of non-local control transfer mechanisms to be auxiliary function entries. Such entries are
not dominated by, or even unreachable from, the main function entry. Auxiliary entries of

2We found a few functions that have intra-procedural calls. They were found only in libopencv_core.
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1 PL_warnhook = PERL_WARNHOOK_FATAL;
2 PL_diehook = NULL;
3 JMPENV_PUSH(ret);
4
5 /* Effective $^W=1. */
6 if ( ! (PL_dowarn & G_WARN_ALL_MASK))
7 PL_dowarn |= G_WARN_ON;

(a) source code

420089: mov QWORD PTR [rip+0x2be0cc],0x6d7680 # 6de160 <PL_warnhook>
420094: mov QWORD PTR [rip+0x2b7c71],0x0 # 6d7d10 <PL_diehook>
42009f: mov QWORD PTR [rsp+0x90],rax
4200a7: call 41fe20 <__sigsetjmp@plt>
4200ac: mov ebp,eax
4200ae: mov DWORD PTR [rsp+0x160],eax
4200b5: lea rax,[rsp+0x90]
4200bd: mov BYTE PTR [rsp+0x164],0x0
4200c5: mov QWORD PTR [rip+0x2b7bec],rax # 6d7cb8 <PL_top_env>
4200cc: mov ax,WORD PTR [rip+0x2b7dad] # 6d7e80 <PL_delaymagic>
4200d3: mov WORD PTR [rsp+0x166],ax
4200db: mov al,BYTE PTR [rip+0x2b7c9f] # 6d7d80 <PL_dowarn>
4200e1: test al,0x6

(b) machine code

Fig. 3.3: Example of setjmp usage in perl v5.28.1. (a) source code taken from function
S_gen_constant_list. Call to setjmp happen in the macro at line #3. (b) correspond-
ing assembly generated by gcc v7.3. Call to setjmp is located at 0x4200a7. We consider the
following address 0x4200ac to be an auxiliary function entry.

longjmp are identified during CFG construction. They are simply the successor of each basic
block that calls setjmp. Fig. 3.3 depicts an example of setjmp, as used in perl v5.28.1.

The identification of auxiliary entries of exception handling is more elaborate. The Itanium
C++ ABI [55] specifies the exception handling standard used in modern Unix-like systems. Of
interest to us in this specification is the landing pad, which is a code section responsible for
catching, or cleaning up after, an exception. A function may have several landing pads, e.g., it
catches exceptions of different types. We consider each landing pad to be an auxiliary entry.
Collecting landing pad addresses requires bcov to iterate over all CFI records in the .eh_frame
section. More specifically, bcov examines all Frame Description Entry (FDE) records looking
for a pointer to a language-specific data area (LSDA). If such a pointer exists, then bcov
would parse the corresponding LSDA to extract landing pad addresses. Note that LSDAs can
generally be found in the .gcc_except_table section. We refer the reader to [56] for more
details on LSDA format, and the role it plays in exception handling.
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Type x86-64 ARMv7

call call bl/blx

jump jmp b/bx

return ret varies

Table 3.1: CTI comparison between x86-64 and ARMv7. The latter allows a large number of instruc-
tions to directly modify the pc register which complicates the identification of returns.

3.2.3 Function exits

We analyze the CFG to identify its exit points, i.e., the basic blocks where control flow leaves
a function. We consider two parameters: (1) the type of the control-transfer instruction
(CTI), which can be jmp, call, or return, and (2) whether it is direct or indirect instruction.
Table 3.1 maps the type of CTI used in this analysis to the actual instructions found in x86-64
and ARMv7 respectively. ARMv7 allows a large number of instructions to directly modify
the pc register, which complicates the identification of returns, and control flow analyses in
general. For example, a function may return by simply executing the instruction mov pc, lr

where lr typically stores the return address. Alternatively, the same task can be achieved
using a combination of push lr and pop pc.

A jmp targeting another function is a tail-call and generally also an exit point. However,
the jump table analysis presented in Chapter 4 can determine that certain indirect jmps are in
fact intra-procedural, i.e., they are local to the function. On the other hand, a call typically
returns, i.e, is not an exit point, except for calls to non-return functions. The non-return
analysis implemented in our tool, bcov, is responsible for identifying such functions. Finally,
we consider all ret instructions to be exit points.

3.3 CFG-based Identification

The symbol-based method discussed previously relies on assumptions that largely hold in
practice. Developers will not find it difficult to keep linker symbols, or at least keep the part
defining function layouts. Moreover, the experiments of Section 3.4.1 show that CFI records do
exist in COTS binaries and are largely comparable to linker symbols in terms of completeness.
This is expected since CFI records are required to implement essential functionality. For
example, to assist in debugging by generating a stack backtrace after a program crash.

We present here a technique for function identification that relies solely on analyzing
the CFG without recourse to any external information, not even to CFI records. There are
several use cases for such a technique. For example, functions that do not participate in
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Algorithm 4: Collect targets of direct calls
Input : List of machine instructions 𝐼
Output : List of direct call targets 𝑇𝑐𝑎𝑙𝑙

1 foreach inst in 𝐼 do
2 if is_call(inst) and is_direct(inst) then
3 𝑡 = get_target_address(inst)
4 add_target(𝑇𝑐𝑎𝑙𝑙 , 𝑡)
5 end
6 end

Algorithm 5: Collect targets of tail calls
Input : List of machine instructions 𝐼
Input : Sorted and de-duplicated list of call targets 𝑇 ′

𝑐𝑎𝑙𝑙

Output : List of tail-call targets 𝑇𝑡𝑎𝑖𝑙

1 foreach inst in 𝐼 do
2 if is_jump(inst) and is_direct(inst) then
3 𝑡 = get_target_address(inst)
4 𝑐 = get_current_address(inst)
5 (𝑒𝑙𝑜𝑤 , 𝑒ℎ𝑖𝑔ℎ) = get_bounds(𝑇 ′

𝑐𝑎𝑙𝑙
, 𝑐 )

6 if 𝑡 < 𝑒𝑙𝑜𝑤 or 𝑡 > 𝑒ℎ𝑖𝑔ℎ then
7 add_target(𝑇𝑡𝑎𝑖𝑙 , 𝑡)
8 end
9 end

10 end

stack unwinding might not have CFI records. Our CFG-based technique can complement the
definitions found in CFI records to fill in these missing functions. Additionally, developers of
C programs that do not use stack unwinding features, e.g., function backtrace(), might opt
for omitting CFI records altogether to reduce the binary size. This can be accomplished in
gcc by supplying the option -fno-asynchronous-unwind-tables.

Our proposed CFG-based technique consists of two main phases. First, we approximate
the function layout by leveraging calls and tail-calls existing in the binary. Then, we improve
this approximation via a CFG traversal which also helps to locate function exit points.

3.3.1 Function layout approximation

Starting from a disassembled binary, our first goal is to collect the targets of direct calls. These
are the most obvious hints left behind by the compiler. The method used to disassemble the
binary is irrelevant here. It can be a simple linear sweep or the more elaborate speculative
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disassembly method discussed in Chapter 2. This step is shown in Algorithm 4, where we
collect the initial approximation of function entries in the set of targets 𝑇𝑐𝑎𝑙𝑙 .

Algorithm 5 builds on that to identify tail calls and collect their targets in 𝑇𝑡𝑎𝑖𝑙 . Note
that 𝑇𝑐𝑎𝑙𝑙 is crucial for the identification of 𝑇𝑡𝑎𝑖𝑙 . In practice, the majority of jumps are intra-
procedural, i.e., targets are within the same function. Therefore, we leverage our initial
guess about function entries in 𝑇𝑐𝑎𝑙𝑙 to distinguish between intra-procedural jumps and inter-
procedural jumps (tail calls). Basically, we take two parameters into account to classify a
particular jump instruction. They are the jump instruction’s address 𝑎𝑑𝑑𝑟 , and its target 𝑡 .
We use 𝑎𝑑𝑑𝑟 to determine the bounds of current function [𝑒𝑙𝑜𝑤 , 𝑒ℎ𝑖𝑔ℎ] (line #5) where,

𝑒𝑙𝑜𝑤 = 𝑚𝑎𝑥{𝑒 ∈ 𝑇𝑐𝑎𝑙𝑙 ∶ 𝑒 < 𝑎𝑑𝑑𝑟}

and conversely,

𝑒ℎ𝑖𝑔ℎ = 𝑚𝑖𝑛{𝑒 ∈ 𝑇𝑐𝑎𝑙𝑙 ∶ 𝑒 > 𝑎𝑑𝑑𝑟}

And then we check the target 𝑡 against the function bounds [𝑒𝑙𝑜𝑤 , 𝑒ℎ𝑖𝑔ℎ] (line #6). An
out-of-bound target is definitely a tail call since it leaves the current function. On the other
hand, a jump instruction with an in-bounds target is considered an intra-procedural jump, at
least for this stage. Note that we used 𝑇

′

𝑐𝑎𝑙𝑙
for the bound search in (line #5). This is simply to

exploit binary search which is more efficient.
The end result of this function layout analysis phase is the set 𝑇 = 𝑇𝑐𝑎𝑙𝑙 ∪ 𝑇𝑡𝑎𝑖𝑙 which

represents an overapproximation of function entries as depicted in Fig. 3.4. Next, we attempt
to improve this approximation and complete function definitions. Note that we have so far
recovered function entries only. That is, auxiliary entries and function exits are still missing.

3.3.2 CFG traversal

In the previous phase, we assumed that a jump with a target 𝑡 that lays within the range
[𝑒𝑙𝑜𝑤 , 𝑒ℎ𝑖𝑔ℎ], is intra-procedural. This is usually, but not necessarily the case. In fact, multiple
functions might exist in the region [𝑒𝑙𝑜𝑤 , 𝑒ℎ𝑖𝑔ℎ]. However, these functions might be called only
indirectly and, therefore, their entries are still not discovered.

Our goal in this phase is to detect such functions and complete the function definitions.
This is achieved using Algorithm 6. It starts from the approximated entries 𝑇 , which we
assume to be sorted and de-duplicated for better efficiency. Then, we analyze the region
between current entry 𝑡 and its immediate successor 𝑡 ′. First, we construct the basic blocks
and connect them in a CFG. However, this step can be omitted if a CFG, which connects
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(d)

Fig. 3.4: CFG-based function identification phases. (a) collected the targets of direct calls, (b) collected
the targets of tail-calls, namely, e5 and e6, (c) analyzing functions by CFG traversal of identified
entries, (d) marked code regions are assigned to newly created functions such as F7.

maximal blocks, was already constructed to enable speculative disassembly. Then comes CFG
traversal, which is the core step of this phase.

We do a depth-first search (DFS) traversal starting from 𝑡 , the function’s main entry. DFS is
more memory efficient compared to BFS. More importantly, it enables us to correctly analyze
the exit points along the traversed program paths. For example, a function that pushes lr to
specific location on the stack should use that same location to return to its caller. In other
words, a push should match a pop on the same CFG path. Additionally, we analyze auxiliary
entries. However, this analysis is limited to setjmp/longjmp entries. Recall that, unlike
the symbol-based technique of Section 3.2, we do not assume the existence of CFI records.
Accordingly, we do not assume that the binary uses standard exception handling mechanisms.

Starting only from the entry 𝑡 , CFG traversal allows us to complete the function definition.
This includes identifying the exit points and the byte size 𝑠. The latter can be simply calculated
by 𝑒𝑛𝑑(𝐵𝐵𝑙) − 𝑡 , where 𝐵𝐵𝑙 is the last basic block reachable by CFG traversal. The key
assumption here is that for a function 𝐹 with main entry 𝑡 , all basic blocks must be reachable
from the main entry. Generally, this assumption holds in C/C++ binaries generated by popular
compilers like clang and gcc.

After recovering the definition of 𝐹 , the following relation is expected to hold,

𝑡 + 𝑠 + 𝜖 >= 𝑡
′

where 𝑡 ′ is the start of the successor function, while 𝜖 represents the maximum size of the
padding area, which may be used to align the start address of functions. Padding can improve
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Algorithm 6: CFG traversal phase
Input : List of machine instructions 𝐼
Input : Approximated function entries 𝑇
Output : List of function definitions Δ
Output : List of marked regions 𝑀

1 foreach t in 𝑇 do
2 𝑡

′ = get_next_target(𝑇 , 𝑡)
3 𝛿 = build_function(𝐼 , 𝑡 , 𝑡 ′)
4 add_function(Δ, 𝛿)
5 𝑠 = get_size(𝛿)
6 if 𝑡 + 𝑠 + 𝜖 < 𝑡 then
7 add_marked_region(𝑀 , 𝑡 + 𝑠, 𝑡 ′)
8 end
9 end

code cache locality, or maybe required to comply with ABI rules. For example, in x86-64
ABI, functions are aligned to a 16-byte boundary by default. Should the above relation not
hold, then it is probably the case that there are more than one function in the region between
𝑡 + 𝑠 and 𝑡

′. This is the case Fig. 3.4, for example, where there exit two functions in the
region between 𝑒5 and 𝑒3. Such code regions are marked for further processing. In our
implementation, we simply assume that each marked region contains a single function like 𝐹7
in our example. However, it is not difficult to imagine implementing the CFG traversal as a
fix point analysis where a newly discovered region is marked in each iteration. The fix point
would be reached after not discovering any new code regions.

Lastly, we consider the issue of analyzing calls to non-return functions, e.g, abort. During
CFG traversal, we assume that each call generally returns to its caller. Hence, we continue
CFG traversal after the call instruction. This might lead us to erroneously traverse into
another function. We address this issue by identifying calls targeting common non-return
functions like abort and exit. We identify these calls by analyzing the function addresses of
the .plt section and mapping them to their corresponding function names.

3.4 Experiments

Identifying the main function entries is straightforward if linker symbols are available. In
Section 3.2, we build on that to identify auxiliary entries as well as exit points. In this section,
we focus on the following research questions:

• Do CFI records exist in COTS binaries? And if so, to what extent are they complete?
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Fig. 3.5: Evaluating the completeness of CFI records in terms of coverage ratio relative to .text
section. (a) distribution of all 5,538 binaries, (b) distribution of a subset consisting of 3,574
“relevant” binaries.

• Does our CFG-based identification technique improves upon the state-of-the-art?

We attempt to answer each question in the following discussions.

3.4.1 Function definitions in CFI records

To identify the main function entries, the symbol-based identification technique of Section 3.2
may use linker symbols or CFI records, with the latter being our only option in stripped COTS
binaries. Therefore, to use CFI records as a source of function definitions, it is imperative to
first evaluate their completeness.

First, we quantify to what extent CFI records are available. We conducted an experiment
where we check for the existence of the .eh_frame section in x86-64 ELF binaries. Our subject
is a typical Ubuntu 16.04 installation used by the author. Searching default executable and
library paths like /usr/bin and /lib, we found a total of 6,852 binaries of which only 1.5% did
not have an .eh_frame section. The majority of these latter binaries are related to the system
packages klibc and syslinux. We repeated the same experiment on an Ubuntu 18.04 installation.
We found 5,538 ELF binaries in total. This time all binaries did have an .eh_frame section.
This indicates that CFI records are generally available in stripped off-the-shelf binaries.

We have established the availability of CFI records, but we still do not know the extent
to which these records are complete. After all, an eh_frame section with only a handful of
function definitions is not that useful. We measure the completeness of CFI records by the
percentage of the area they cover in the .text section, the default code section in ELF binaries.
Specifically, if the functions described in CFI records cover all the code, then there will be
no need for linker symbols anymore. Also, this would mean that the function identification
problem is essentially “solved” even for stripped binaries.
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We stay with our latest dataset of 5,538 binaries found in an Ubuntu 18.04 installation. For
each binary, we dump its CFI records using the command readelf --debug-dump=frames.
Then, we sum the record’s byte sizes. This sum will then be divided by the size of .text
section to obtain our coverage ratio. Fig. 3.5 shows the distribution of coverage ratios across
our dataset. It is noticeable here that about 400 binaries have a coverage ratio of less than 5%.
Recall that the .eh_frame section is available in all of these binaries. The purpose of having
an .eh_frame section with almost no CFI records is not clear though. On the other hand, we
have a comfortable majority of about 4,000 binaries (72% of total) with a high coverage ratio
of more than 90%.

Our dataset is comprehensive, but it is not necessary representative of the binaries we
expect to analyze. In order to obtain a more representative dataset, we omitted system binaries
found in the paths /usr/lib/syslinux, /usr/lib/klibc, and /usr/lib/debug/. We also
omitted smaller binaries, which have a .text section size of less than 4KB. This results in
a dataset consisting of 3,574 binaries that we deem to be “relevant”. The coverage ratio
distribution is now quite different as shown in Fig. 3.5b.

Admittedly, the relevance of a binary is a subjective criterion. Nevertheless, the overall
trend is clear. CFI records are mostly complete in larger user-space binaries. Note that a
coverage ratio of 90% does not necessarily mean that remaining 10% of the .text section
represent missed functions. Padding bytes and other data inlined between functions are
normally not accounted for in CFI records.

3.4.2 CFG-based function identification

The results presented in the previous section show that CFI records are usually complete.
Despite that, there exist practical use cases where CFI records are either incomplete or
missing altogether. Here comes the role of the CFG-based identification method, which
we implemented in the tool Spedi. We highlight the implementation details of this tool
in Section 7.1.1. The experimental setup is discussed in Section 7.2.1. An overview of our
benchmark binaries was previously given in Table 2.1.

We measure the quality of function definitions recovered using Spedi by comparing them
to those recovered using IDA Pro, the leading industry disassembler. We focus on the identified
function boundaries represented by the start and end addresses. The ground truth is obtained
from linker symbols and then cross-checked with IDA Pro on non-stripped binaries. This is
needed to confirm that IDA Pro can correctly identify functions if linker symbols are available.
Then, binaries were stripped of all symbols using the popular utility strip and given as input
to both Spedi and IDA Pro.



3.4 Experiments 45

Orig. IDA Spedi

RF PRF RF PRF

nnet 296 70 1 294 2

sha 296 49 1 292 3

parser 325 102 1 321 3

loops 337 79 3 332 3

zip 377 97 2 372 4

expr 172 103 2 165 6

ls 247 114 6 233 11

csplit 174 107 4 170 3

ptx 191 114 5 186 3

du 305 175 15 291 12

Table 3.2: CFG-based function identification results in comparison to IDA Pro.

Table 3.2 shows the results, which we classify into two categories: recovered functions (RF)
and partially recovered functions (PRF). The former indicates that both function boundaries
were precisely identified by the tool, while the latter indicates that only one boundary was
identified. Fig. 3.6 visualizes this function recovery data for better readability. Across all
benchmarks, Spedi precisely recovered 97.6% of the functions on average. Compare this to
37.1% recovered by IDA Pro. Based on this, our CFG-based technique demonstrates a clear
advantage. However, improving our results requires facing some challenging corner cases.
For example, assume that 𝐹1 and 𝐹2 are two adjacent functions where 𝐹2 is tail-called only
from 𝐹1. In such a case, our technique would merge both functions into one function that
starts with 𝐹11 and, accordingly, is deemed as partially recovered. The lack of calls to 𝐹2 from
other functions makes it obscure to our CFG-based technique. It suggests that complementary
techniques might be needed to fill this gap.

Speculative disassembly introduces a peculiar type of errors. Specifically, these errors
are located at the entry of functions that are (1) preceded by padding bytes, and (2) called
only indirectly. In such a case, the CFG conflict analysis of Section 2.3.3 cannot select a
specific basic block among, potentially, several ones in a maximal block. Therefore, we
default to selecting the largest possible basic block, a choice that may lead to identify spurious
instructions introduced by padding bytes. However, the locality of such errors makes them of
less significance.
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Fig. 3.6: Evaluating CFG-based function identification. We show the results of precisely recovered
functions in comparison to the ground truth.

3.5 Discussion and Related Work

Generally, there are two models of binary-level functions considered in the literature. They
are the contiguous model and the chunk model. In the former, a function occupies a single
contiguous code region. In contrast, the chunk model is more general by allowing a function
to span multiple chunks. Each chunk in turn is a contiguous code region. This model might
be motivated by a need to maintain the mapping between a source-level function and its
potentially multiple parts in the binary. As a result, a single chunk might be shared between
several functions. This model is adopted in tools like Dyninst [92] and rev.ng [41].

However, this work adopts the contiguous function model. It is simple; yet, we found
it to be consistent with the symbol-based definitions in our large dataset. Moreover, it can
be augmented with additional analyses to identify function entries and exits. This provides
enough flexibility to handle special situations that might arise in practice, for example, using
ret to implement indirect calls in Retpoline [120]. Additionally, link-time and post-link
optimizations are becoming widespread and more aggressive in changing a function layouts.
Consequently, we do not believe that the generality of the chunkmodel justifies the complexity
it requires to use it in practice.

Identifying functions using liker symbols is straightforward. Of course, this assumes that
such symbols are trustworthy. Therefore, we looked at CFI records as an alternative source
of function definitions. We have shown that they are largely complete in larger binaries, as
demonstrated by our experiments in Section 3.4.1 on a large dataset of stripped off-the-shelf
binaries. This is an important result since CFI records are often overlooked in the literature.
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Additionally, this result shows that the coverage analysis techniques considered in this work
can support off-the-shelf binaries without resort to linker symbols.

For the use caseswhere symbol-based techniques are inadequate, we proposed a CFG-based
technique that does not rely on external information. This is, it recovers function definitions
by analyzing only the binary. We first presented this technique in our CASES’16 paper [14],
where we demonstrated its effectiveness on ARM Thumb binaries. In the following year,
two research works independently proposed similar CFG-based techniques and successfully
applied them to x86 binaries. They are the works of Andriesse et al. [6] and Qiao et al.[104].
Moreover, the effectiveness and practicality of the CFG-based technique has motivated the
developers of Binary Ninja, a commercial binary analysis tool, to adopt it [103].

Before these proposals, the research community has largely relied on pattern matching
heuristics, andmore recently, machine learning techniques. Functions prologues and epilogues
often contain instructions for stack setup and tear down, respectively. Manually developing
heuristics for detecting such patterns is not difficult. However, as we noted previously,
compiler optimizations are only getting more aggressive. Hence, functions do not necessarily
have to start with, or even have, instructions for stack setup. As a result, pattern matching
heuristics are generally brittle and costly to maintain.

Pattern matching can be automated using machine learning, a research theme that has
been considered by several works. The beginning was with Rosenblum et al. [108], who
leveraged logistic regression. Also notable are the works of Bao et al. in ByteWeight [10] and
Chul et al. [113] who, for the first time, leveraged neural networks. These proposals attempt
to recognize function boundaries by learning byte-level features. With features at such a
low level, coupled with the aggressiveness of modern compiler optimizations, it becomes
challenging for machine-learning techniques to generalize beyond the training set [6].



Chapter 4

Jump Table Analysis

Overview; Sliced Microexecution; Experiments; Discussion and Related Work.

4.1 Overview

Recovering the targets of indirect control transfer instructions is desirable in several appli-
cations, such as reverse engineering and control flow integrity. However, this problem is
undecidable in general, which means that we can only aspire to obtain approximate solutions.
That is, either an over-approximation or under-approximation of the actual set of targets.
Nevertheless, the switch statement in C and C++ is commonly implemented as an indirect
jmp that uses a lookup-table in a manner amenable to precise analysis.

The C/C++ language standards mandate that; if the value of the controlling expression
of a switch does not match any case label, then the control flow should be transferred to
the default label if one exists. Otherwise, no statement within the switch body should be
executed. Compilers satisfy this requirement by ensuring that the value of the controlling
expression is bounded. Also, this bound must be intra-procedural since switch statements
cannot span beyond the scope of the current function. The key insight that we leverage is
that combining boundedness and function locality enables the analysis of jump tables to be
precise and distinguish them from other constructs of indirect control transfer.

Compilers enjoy a lot of flexibility in implementing switch statements. For example, a
switch statement that has few case labels, like the one in Fig. 4.1, will probably be compiled
to a series of conditional CTIs. A jump table can be control-bounded by checking the value
of the controlling expression against a bound condition. Alternatively, should the expected
values be dense, e.g., many values below 16, the compiler might prefer a data-bounded jump
table by using a bitwise andwith 0xf. Additionally, compilers are free to divide a switchwith
many case labels into multiple jump tables. Our goal in this analysis is to recover precise



4.2 Sliced Microexecution 49

switch (ilen) {
case 4:

*codestr ++ = PACKOPARG(EXTENDED_ARG , (oparg >> 24) & 0
xff);

/* fall through */
case 3:

*codestr ++ = PACKOPARG(EXTENDED_ARG , (oparg >> 16) & 0
xff);

/* fall through */
case 2:

*codestr ++ = PACKOPARG(EXTENDED_ARG , (oparg >> 8) & 0xff
);

/* fall through */
case 1:

*codestr ++ = PACKOPARG(opcode , oparg & 0xff);
break;
default:

Py_UNREACHABLE ();
}

Fig. 4.1: Example of a switch statement taken from function write_op_arg in cpython v3.7.3. The
variable ilen represents the controlling expression. This particular example has only four
cases, which is usually compiled to a series of conditional CTIs, instead of a single indirect
jmp.

information about each jump table. This includes its entry type, control-flow targets, and the
total number of entries.

The analysis of such jump tables offers a number of benefits. First, it increases CFG
precision, which improves the efficiency of probe pruning. Second, it enables jump table
instrumentation where we modify jump table entries instead of inserting detours. Third,
it allows us to avoid disassembly errors. The latter issue is relevant to architectures such
as ARM, where compilers usually inline jump table data in the code section. Fortunately,
in x86-64, such data typically reside in a separate read-only section, which enables correct
disassembly using a simple linear sweep [5].

4.2 Sliced Microexecution

We propose sliced microexecution, a novel method for jump table analysis that combines
classical backward program slicing with microexecution [51]. The latter refers to the ability
to emulate any code fragment without manual inputs. Basically, for each indirect jmp in
a function, bcov attempts to test the sequence of hypotheses depicted in Table 4.1. If they
are invalid, then bcov aborts the analysis and considers the jmp in question to be a tail call.
Otherwise, bcov proceeds with the actual recovery depending on the type of jump table,
which can generally either be control-bounded or data-bounded.
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Hypothesis Action

(1) Depends on constant base address? if yes test (2) else abort

(2) Is constrained by a bound condition? if yes test (3) else assume (4)

(3) Bound condition dominates jump table? if yes do recovery else assume (4)

(4) Assume jump table is data-bounded do recovery and try to falsify

Table 4.1: Hypotheses tested, or falsified, to analyze a jump table. Backward slicing answers (1)-(3).
Microexecution is used to falsify assumptions and recover the jump table.

We discuss this method based on the example shown in Figure 4.2. First, bcov has to
test hypothesis (1) by backward slicing from 0x9f719 until it reaches instruction at 0x9f712,
which has a memory dependency. This dependency stores the base address in r15. So is this
base address constant? Backward slicing for r15 shows that it is, in fact, a constant. Note
that jump tables should depend on a single variable used as the index. The base address is a
constant determined at compile-time.

We move now to test hypothesis (2). To this end, bcov spawns a condition slicer upon
encountering each conditional jmp like the instruction at 0x9f707. This slicer is used to
check whether the variable influencing the bound condition is also the jump table index. This
happens to be the case in our example at 0x9f6f0, where the value in r12b influences both
the condition at 0x9f707 and the jump table index. Now that a bound condition is found, we
need to test it against hypothesis (3).

A jump table might be preceded by multiple conditional comparisons that depend on the
index. We apply heuristics in order to quickly discard the ones that cannot represent a bound
condition, e.g., comparisons with zero. However, there can still be more than one candidate.
Here, we leverage the fact that a bound condition should dominate the jump table. Otherwise,
a path in the CFG would exist where the index value remains unbounded. We check for
dominance during the backward CFG traversal needed for slicing. Basically, it should not be
possible to bypass the bound condition.

Backward slicing produces a slice (code fragment), which captures the essential instruc-
tions affecting the jump table. This slice represents a univariate block-box function with the
index as its input variable. Modifying the index should trigger behavioral changes, especially
in the observed jump address at the output. Assuming that this slice represents a jump table,
we reason about its behavior using microexecution. Also, we try to validate our assumption
by widely varying the index.
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9f6a1: lea r15,[rip+0xe69e4] ; set base
.
9f6f0: movzx eax,r12b ; index is r12b
9f6f4: cmp r12b,0x5b ; bound comparison
9f6f8: mov QWORD PTR [rsp+0x8],rax
9f6fd: mov rax,QWORD PTR [rbx]
9f700: mov r13,QWORD PTR [rax+0x10]
9f704: mov ecx,r13d
9f707: ja 9f880 ; jump to default case
9f70d: mov rax,QWORD PTR [rsp+0x8]
9f712: movsxd rax,DWORD PTR [r15+rax*4]
9f716: add rax,r15
9f719: jmp rax ; jump to matching case

Fig. 4.2: Example of a jump table taken from perl v5.28 compiledwith gcc v7.3. Highlighted instructions
are not part of the backward slice. The jump table base is set relatively far at 0x9f6a1.

Before starting microexecution, bcov needs to first load the code and data segments of
the binary. We implemented a custom ELF loader to support this functionality. Then, bcov
initializes a valid memory environment for the given code slice. For example, it allocates
memory for the pointer [rsp+0x8] and assigns a valid address to rsp. It is now possible to
start “fuzzing” the index. However, the expected behavior of the slice depends on the type of
jump table.

In control-bounded jump tables, a change in behavior must be observed between the
intervals [0, 𝑏) and (𝑏, +∞), where 𝑏 is the bound constant. This constant is located in the
first instruction that sets the flags before the bound condition. In our example, this is the
instruction at 0x9f6f4 where 𝑏 equals 0x5b (or 91). bcov tests 24 index values in total, 8 of
which are sampled from [0, 𝑏] including 0, 𝑏 − 1, and 𝑏. The remaining 16 values increase
exponentially, in power of 2, starting from 𝑏 + 1. We found this scheme to give us high
confidence in the analysis results.

The jump table is expected to target an instruction inside the current function for most
inputs in [0, 𝑏). In contrast, the jump table should not be reachable for all inputs in (𝑏, +∞).
That is, the bound condition should redirect control flow to the default case. Table 4.2 shows
the expected behavior of our running example for four different index values. Should the
behavior of the code slice not match what we expect from a control-bounded jump table, then
we abort and assume it to be data bounded. Note that we are not strict about the behavior for
input 𝑏 since the bound condition might check for equality.

Assuming that a given indirect jmp represents a data-bounded jump table, we need
effective techniques to (1) stop backward slicing, (2) validate our assumption, and (3) explore
the bound limits. Note that compilers might use more than one bitwise instruction to bound
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Address Check r12b=0 r12b=45 r12b=91 r12b=128

0x9f712 Accessed a read-only memory segment? yes yes maybe n/a

0x9f719 Reached jmp instruction? yes yes maybe no

0x9f719 Target address within function? yes yes yes yes

Table 4.2: Expected behavior of jump table example for 4 different index values (r12b). Behavioral
checks are apply to specific instruction addresses. The bound constant is 91. Jump tables
are typically stored in a read-only segment to maintain run-time control-flow integrity. For
all index values greater than 91, we expect the bound condition to redirect control flow to
the default case, which is also expected to be within the function.

the index. Moreover, developers might prefer computed gotos over switch statements. 1

In this case, they need to assume responsibility for checking index bounds. To cope with
this implementation diversity, bcov continues backward slicing as long as the current slice
depends on only one variable. For example, assume that rax holds the index. Then, rax is
used as a base register to read from memory. This means that the current slice would depend
on rax in addition to the accessed memory variable. We would stop backward slicing before
this increase in dependencies.

Having identified the relevant program slice, we validate our assumption and explore
the bound limits of the jump table. To this end, bcov executes the slice 24 times, each time
increasing the index exponentially while setting the least significant bits to one. This allows
us to explore the bound limits in the common case of a bitwise and with a bitmask like
0xf. We also try other bit patterns to better penetrate possible combinations of bitwise
instructions. Our key insight is that we should not have full control over the jump target. In
other words, supplying an arbitrary index value should reflect in a constrained jump table
target. Additionally, similar to the case of control-bounded jump tables, the jump targets
must be located inside the current function. Should the slice withstand our diverse tests, then
we can be highly confident that it represents a jump table we could falsify this assumption.

Our experiments show that sliced microexecution is precise and robust against various
compiler optimizations. It even allowed bcov to recover the jump tables of the core loop of
the Python interpreter, which are located in function _PyEval_EvalFrameDefault. Note
that these jump tables are compiled from complex computed gotos. However, recall that in
computed gotos, it is the developer’s responsibility to ensure the boundedness of the index.
Fig. 4.3 shows a computed goto example where the index is not intra-procedurally bounded.
Actually, the bounds are enforced in the callers of function mlp_filter_channel_x86. In

1Computed gotos is a gcc extension to C which is also supported in clang. See: https://gcc.gnu.org/
onlinedocs/gcc/Labels-as-Values.html

https://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html
https://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html
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static void mlp_filter_channel_x86(
int32_t *state , const int32_t *coeff ,
int firorder , int iirorder ,
unsigned int filter_shift , int32_t mask ,
int blocksize , int32_t *sample_buffer)

{
const void *firjump = firtable[firorder ];
const void *iirjump = iirtable[iirorder ];

Fig. 4.3: Computed goto usage example taken from libavcodec, which is part of ffmpeg v4.1.3. Input
variables fireorder and iirorder are not intra-procedurally bounded. Therefore, precise
identification of the bound limits requires an inter-procedural analysis, which is complex and
might still not be precise enough.

such a case, bcov can identify the base and maybe speculatively recover some jump table
targets, but it cannot be sure about the bound limits. A precise inter-procedural analysis is
needed to address this challenge.

4.3 Experiments

As part of this work, we implemented two different techniques for jump tables analysis.
We started with an analysis that combines pattern matching and data flow analysis. We
implemented this technique in Spedi, which supports ARM Thumb binaries. The technique
demonstrated promising results in comparison to IDA Pro even on optimized binaries [14].
However, pattern matching is generally brittle and does not generalize well. Also, the used
benchmarks were relatively small.

These shortcomings were addressed in sliced microexecution, which is implemented in
bcov, and the focus of our experiments. The experimental setup is discussed in Section 7.2.2.
Our experiments are guided by the following research questions:

• Have we improved upon the state of the art in jump table analysis?

• What insights can we gain from our large dataset of jump tables?

4.3.1 Comparison with the state of the art

Evaluating sliced microexecution requires comparing bcovwith representative binary analysis
tools. We experimented with BAP [26] and angr [114], which are the leading academic tools.
However, BAP does not have built-in support for jump table analysis. On the other hand,
angr (tested version 8.18.10) does support such an analysis. However, it crashed on opencv
and llc binaries. For the remaining binaries, angr reported significantly fewer jump tables
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Fig. 4.4: Normalized jump table analysis results in comparison to IDA Pro. (a) IDA Pro shows signifi-
cant variance on clang binaries. (b) both tools are comparable on gcc binaries. (c) varying
the build type did not affect bcov.

compared to IDA Pro. Sometimes less than half the number of existing jump tables. Therefore,
we compare bcov only with IDA Pro (version 7.2). This should not affect our results since
IDA Pro is the leading industry disassembler.

Next, we have to establish the ground truth of jump table addresses. Specifically, the
addresses of their indirect jmp instructions. This is challenging as compilers do not directly
emit such information. Therefore, we conducted a differential comparison. We observed that
bcov and IDA Pro agree on the majority of jump tables, including their targets, so we manually
examined the remaining cases where they disagree. Both tools did not report false-positives,
i.e., they only missed jump tables. This is expected in bcov as repeated microexecution inspires
high confidence in its results. Therefore, our ground truth is the union of jump table addresses
recovered by both tools. This dataset contains 46,425 jump tables found in 95 binaries.

Figure 4.4 depicts the recovery percentages relative to this ground truth. We control for
different factors affecting compilation. We observe that IDA Pro delivers lower accuracy
on clang binaries compared to gcc binaries. Also, the accuracy of IDA Pro was affected by
compiler optimizations as we changed the build type. On the other hand, bcov demonstrates
high robustness across the board.
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4.3.2 Distribution of jump tables

The number of jump tables in our dataset is relatively large. To be exact, there are 46,425
jump tables. In this section, we query this dataset to gain more insights about how jump
tables are generated by compilers. Fig. 4.5 shows various distributions of our dataset divided
by four key factors, namely, build type, used compiler, benchmark subject, and entry type.

We observe that higher compiler optimizations lead to emittingmore jump tables. Note that
the number of switch statements in the source code remains unchanged. This suggests that
splitting large switch statements can be a useful optimization. Additionally, it is remarkable
that clang emits significantly more jump tables compared to gcc. Also, we find that the
number of jump tables does not correlate well with binary size. For example, the xerces
library is a bit larger than magick library. Despite this, it contains less than third of the jump
tables contained in the latter.

Now we discuss the types of jump table entries, which is a deciding factor in the ability
to patch jump tables. Generally, an entry can either store an absolute address or an offset.
The latter would be added to the current pc to determine the target address. Smaller offsets
cannot be used in patching, as the code section of the trampolines cannot be reached from
the current pc. For example, an unsigned 8-bit offset enables reaching only 255 bytes further
apart. Fortunately, 8-bit and 16-bit offset represent only 8.3% of the jump tables. In fact, such
small offsets are used exclusively in opencv, which makes it an outlier case. Other binaries
rely either on soff32 or abs64 entries. It worth noting that abs64 entries constitute the
majority of entry types. This can be attributed to the fact that our executable subjects are
position-dependent. We expect soff32 entries to be the main choice for compilers, as the
current trend towards more position-independent executables continues in the future.

4.4 Discussion and Related Work

In this chapter, we discussed sliced microexecution, a novel technique for jump table analysis
that combines classical program slicing with microexecution. Our experiments show that this
technique is fast, precise, and robust. Our discussion was purposefully focused on the general
case. In practice, however, we encountered several corner cases that are worth highlighting.

Generally, the targets of jump tables are intra-procedural. This distinguishes them from
the (rather rare) construct of tail-call tables. The targets of the latter are inter-procedural,
i.e., they target other functions. However, we observed that jump tables can, in certain
situations, contain inter-procedural entries. The observed instances were limited to llc. For
example, the function PromoteFloatResult consists of a single switch statement which, in
one of its labels, calls the leaf function PromoteFloatRes_BITCAST. The compiler decided to
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Fig. 4.5: Distribution of jump tables across our dataset. The type of a jump table entry depends on
its signedness, size, and value type. For example, an entry of type soff32 is a signed 32-bit
offset, while abs64 is an unsigned 64-bit absolute address.

optimize out the tail call to a leaf function. Instead, it inserted a jump table entry that directly
targets the function PromoteFloatRes_BITCAST.

Also in llc, the function SoftenFloatResult represents another interesting example.
Again it consists of a single switch statement where the default label leads to executing
the function llvm_unreachable. In debug builds, llvm_unreachable simply logs an error
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message and aborts. In other builds, however, it is replaced with __builtin_unreachable.
This signals to the compiler that the code in question cannot be reachable. In other words, its
behavior is undefined. The compiler leverages this hint by inserting an entry in the jump
table, targeting the padding bytes of the current function. In this way, should the program
ever reach this code, it will simply continue executing any function that happens to be the
successor of the current function.

The analysis of jump tables has been considered in several works. A combination of
pattern matching and data-flow analysis has been proposed by Meng et al. [92]. Our work in
[14] explores similar techniques. Cifuentes et al. [31] are probably the first to use backward
slicing. The generated slice is converted to a canonical IR expression, and then checked
against known jump table forms. A custom value-set analysis using SMT solving has been
implemented in JTR [34]. It is applied after lifting instructions to LLVM IR. Kinder et al. [74]
approached the problem from an abstract interpretation perspective. They proposed several
abstract domains, which build on a custom IR. However, their precision and performance
evaluations are relatively limited.

In contrast to other works, our sliced microexecution technique semantically reasons
about jump tables without manual pattern matching. Also, we do not lift instructions to
an IR. Lifting binary instructions to an IR is known to be challenging and error-prone [73].
Additionally, it can drastically affect the performance of the analysis [131]. Instead, sliced
microexecution leverages the executable instruction semantics already existing in off-the-shelf
multi-architectural emulators, such as QEMU. As a result, porting our technique to other
ISAs, we believe, will not require a major effort.



Chapter 5

Probe Optimizations

Overview; Probe Pruning; Probe PruningAlternatives; Optimized Probe Selection; Experiments;
Discussion and Related Work.

5.1 Overview

Tracking code coverage requires instrumenting the program under test with probes, such
that visiting a probe implies that a certain number of code artifacts, e.g., basic blocks, have
been covered. Probe instrumentation needs to be transparent and efficient. Sometimes both
goals are interdependent. For example, inefficient instrumentation might break transparency
by introducing regressions on performance tests.

This chapter focuses on improving the efficiency of probe instrumentation. Specifically, we
discuss techniques for pruning redundant probes. Here, we build on the work of Agrawal [1],
where we leverage dominance relationships between basic blocks to build superblocks, which
we connect in a superblock dominator graph. First, we provide the necessary background
about this technique and discuss how it can be used for probe optimization. Then, we compare
it to other well-known alternatives. Lastly, we show how to select the best basic block to
instrument among several ones that share the same superblock.

5.2 Probe Pruning

Tracking basic block coverage by instrumenting every basic block can be highly inefficient.
Additionally, such instrumentation is quite challenging to do in ISAs that feature variable-size
instructions. For example, a basic block can occupy only one byte in x86-64 ISA, which leaves
no room to insert a detour. Probe pruning reduces the need to instrument smaller basic blocks.
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Moreover, it makes testing more efficient by reducing both the instrumentation overhead and
the size of coverage data. In this section, we provide the necessary background on the probe
pruning technique implemented in bcov based on Agrawal [1]. The original work considered
source-level probe pruning for C programs. We focus instead on binary-level pruning for
both C and C++ programs.

Given a function 𝐹 with a set of basic blocks 𝐵 connected in a CFG. The straightforward
way to obtain complete coverage data is to probe every basic block 𝑏𝑏 ∈ 𝐵. However, it
is possible to significantly reduce the number of required probes by computing dominance
relationships between basic blocks in a CFG. We say that 𝑏𝑏𝑖 predominates 𝑏𝑏𝑗 , 𝑏𝑏𝑖 𝑝𝑟𝑒

←←←←←←←←←←←←←←←←←←⇁ 𝑏𝑏𝑗 ,
iff every path from function entry (𝐸𝑁 ) to 𝑏𝑏𝑗 goes through 𝑏𝑏𝑖 . Similarly, 𝑏𝑏𝑖 postdominates
𝑏𝑏𝑗 , 𝑏𝑏𝑖 𝑝𝑜𝑠𝑡

←←←←←←←←←←←←←←←←←←←←←←←⇁ 𝑏𝑏𝑗 , iff every path from 𝑏𝑏𝑗 to function exit (𝐸𝑋 ) goes through 𝑏𝑏𝑖 . We say
that 𝑏𝑏𝑖 dominates 𝑏𝑏𝑗 iff 𝑏𝑏𝑖

𝑝𝑟𝑒

←←←←←←←←←←←←←←←←←←⇁ 𝑏𝑏𝑗 ∨ 𝑏𝑏𝑖

𝑝𝑜𝑠𝑡

←←←←←←←←←←←←←←←←←←←←←←←⇁ 𝑏𝑏𝑗 . The predominator and postdominator
relationships are represented by the trees 𝑇𝑝𝑟𝑒 and 𝑇𝑝𝑜𝑠𝑡 respectively. The dominator graph
(DG) is a graph that captures all dominance relationships. It is obtained by merging both trees
𝐷𝐺 = 𝑇𝑝𝑟𝑒 ∪ 𝑇𝑝𝑜𝑠𝑡 , i.e, by merging the edges of both trees. This results in a directed graph that
is usually cyclic.

Given a dominator graph and the fact that a particular 𝑏𝑏 is covered, this implies that
all dominators (predecessors) of 𝑏𝑏 in DG are also covered. This allows us to avoid probing
basic blocks that do not increase our coverage information. However, we are interested in
moving a step further by leveraging strongly-connected components (SCCs) in the DG. Each
SCC represents a superblock, a set of basic blocks with equivalent coverage information. The
superblock dominator graph (SDG) is constructed by merging SCCs in the DG. That is, each
SB node in SDG represents a SCC in the DG. An edge is inserted between 𝑆𝐵𝑖 and 𝑆𝐵𝑗 iff
∃ 𝑏𝑏 ∈ 𝑆𝐵𝑖 , ∃ 𝑏𝑏

′
∈ 𝑆𝐵𝑗 where 𝑏𝑏 dominates 𝑏𝑏′.

Constructing the SDG offers several benefits. First, it is a convenient tool to measure
the coverage information gained from probing any particular basic block. Second, it enables
compressing coverage data by tracking superblocks instead of individual basic blocks. For
example, we found that the number of superblocks represents 46% of all basic blocks in
our precise any-node policy. This percentage goes does down to about 30% in the heuristic
leaf-node policy. Third, it provides flexibility in choosing the best basic block to probe in
a superblock. We show later in Section 5.4 how this flexibility can be leveraged to reduce
instrumentation overhead.

Figure 5.1 depicts an SDG that is obtained from a CFG. Note that 𝐸𝑁 and 𝐸𝑋 are virtual
nodes commonly used to simplify dominance analysis. The SDG can easily tell us that probing
𝐷 provides strictly more information than probing 𝐶 or 𝐴 because covering 𝐷 implies that 𝐴
and 𝐶 are also covered. Moreover, given that 𝐴 and 𝐶 share the same SB, probing 𝐴 might
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Fig. 5.1: An example CFG and its corresponding SDG. First, predomominator and postdominator trees
are constructed and merged in a dominator graph (DG). Nodes in SDG represent strongly-
connected components in DG. In the leaf-node policy, we probe only the leaf nodes in SDG,
namely, D, E, and H. In the any-node policy, we additionally probe either A or C.

be a better choice since 𝐶 is a loop head. That is, instrumenting it can unnecessarily trigger
multiple coverage updates.

We implemented two instrumentation policies in bcov. They are the leaf-node and any-
node policies. In the leaf-node policy, we instrument only the leafs of the SDG. Covering all
such leaf nodes implies that all nodes in SDG are also covered, i.e., achieving 100% coverage.
However, writing, maintaining, continuously running tests is costly. Moreover, the correlation
between high coverage ratio and defect freedom is questionable [67]. Therefore, developers in
practice might settle for 80% as a target coverage ratio [69]. Nevertheless, leaf nodes can still
provide high coverage information. This makes the leaf-node policy useful to approximate
the coverage of a test suite at a relatively low overhead.

Generally, we are also interested in inferring the exact set of covered basic blocks given
any test input. This is usually not possible in the leaf-node policy. For example, given an
input that visits the path 𝐴 → 𝐶 → 𝐵 → 𝐻 → 𝐺, the leaf-node policy can report that the
covered set is {𝐵, 𝐻 , 𝐺}. However, this policy can make no statement about the coverage of
𝐴 and 𝐶 since they do not dominate the visited probe in 𝐻 . We address this problem in the
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Algorithm 7: Identification of critical superblocks in the any-node policy
Input : Superblock 𝑠𝑏

Input : Superblock dominator graph 𝑆𝐵𝐺

Input : Control flow graph 𝐶𝐹𝐺

Output : Is critical superblock? (boolean)
1 if child_count(𝑆𝐵𝐺, 𝑠𝑏) < 2 then
2 return true
3 end
4 Mark all basic blocks in CFG as unvisited
5 Mark a representative basic block 𝑏𝑏 in 𝑠𝑏 as visited
6 for 𝑠𝑏𝑖 ∈ get_children(𝑆𝐵𝐺, 𝑠𝑏) do
7 Mark a representative basic block 𝑏𝑏 in 𝑠𝑏𝑖 as visited
8 end
// CFG traversal

9 visit_predecessors(𝐶𝐹𝐺, 𝑏𝑏)
10 visit_successors(𝐶𝐹𝐺, 𝑏𝑏)

// Now check results
11 𝑒𝑛 = get_entry(𝐶𝐹𝐺)
12 𝑒𝑥 = get_exit(𝐶𝐹𝐺)
13 if visited(𝑒𝑛) and visited(𝑒𝑥) then
14 return true
15 else
16 return false
17 end

any-node policy. The set of superblocks instrumented in this policy is a super set of those of
the leaf-node policy. More precisely, 𝑆𝑎𝑛𝑦 = 𝑆𝑙𝑒𝑎𝑓 ⋃ 𝑆𝑐 , where 𝑆𝑐 represents the set of critical
superblocks. Each 𝑠𝑏 ∈ 𝑆𝑐 can be visited by at least one path 𝑝 in the CFG, such that the path
𝑝 bypasses all the children of 𝑠𝑏 in the SDG.

It is possible to determine 𝑆𝑐 using an (|𝑉 | + |𝐸|) algorithm where 𝑉 and 𝐸 are the nodes
and edges in the CFG, respectively. The steps are described in Algorithm 7. We first check the
number of SDG children of a given 𝑠𝑏. If it equals zero, then this is a leaf node and, therefore,
will be probed in both instrumentation policies. However, it can be shown that should an 𝑠𝑏

have a single child, then it must be critical. Because otherwise, it would have been merged in
the same SCC together with its child.

We come to the general case of an 𝑠𝑏 that has two or more children in the SDG. For each
such superblock, we mark its children in the SDG as visited in the CFG. Then, we pick an
arbitrary basic block 𝑏𝑏 ∈ 𝑠𝑏 and traverse the CFG backwards and forwards starting from
𝑏𝑏. If 𝐸𝑁 and 𝐸𝑋 are both both reachable, then we add 𝑠𝑏 to 𝑆𝑐 , otherwise we consider 𝑠𝑏 to
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be non-critical since it can not bypass its children in the SDG. For further details, we advise
interested readers to refer to [1]. In Figure 5.1, the superblock {𝐵, 𝐺} is non-critical. However,
the superblock {𝐴, 𝐶} is critical. Subsequently, it will be probed in the any-node policy.

5.3 Probe Pruning Alternatives

There are several probe pruning techniques proposed in the literature. We ultimately de-
cided to choose Agrawal’s technique [1]. First, it is optimal in terms of probe count. More
importantly, its distinct notion of superblocks provides crucial flexibility in choosing probe
locations. This, in turn, allows us to further reduce instrumentation overhead.

In this section, we compare Agrawal’s pruning technique to other well-known techniques.
This discussion offers a better understanding of alternative design options. The first alternative
in our discussion is the proposal of Tikir and Hollingsworth [119], which we will simply refer
to as TH technique. Also, the popularity of SanitizerCoverage [109] (henceforth sancov) make
us include it in this comparison since it implements a modified version of the TH technique.

We first need to introduce a couple of definitions. We say that a basic block is a full
predominator if it predominates all of its successors in the CFG. Similarly, a full postdominator
postdominates all of its predecessors in the CFG. The TH technique prunes full predominators.
This is extended in sancov by also pruning full postdominators that have more than one
predecessors in the CFG. Therefore, both techniques are simpler to implement in comparison
to Agrawal’s technique. They require the construction of dominator trees only. However, the
simplicity of these alternatives brings along considerable drawbacks, including a potential
loss in coverage information and suboptimal instrumentation.

We elaborate on these issues based on Figure 5.2. First, it is possible to visit the critical
edge A→C without signaling coverage feedback, as the probe in B is not visited. However,
sancov solves this issue using its edge coverage mode, which is the default, by splitting critical
edges with dummy basic blocks before pruning probes. In comparison, the any-node policy
in bcov ensures that either A or C is instrumented, which has the same effect. This allows
us to avoid introducing dummy basic blocks, which is cumbersome to do at the binary level.
Second, the techniques of TH and sancov may introduce redundant instrumentation and
thereby increase the overhead. In Figure 5.2b, they would instrument D and E, although
both nodes provide identical coverage information. After all, 𝐷 and 𝐸 belong to the same
superblock. bcov does not suffer from such redundancy since it strictly picks only one probe
per superblock.

We implemented the TH and sancov techniques and tested them along with bcov on the
same dataset. This allows us to fairly quantify the difference. The dataset consists of our
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Fig. 5.2: Basic block pruning techniques in TH and sancov would instrument highlighted nodes.
(a) Coverage for critical edge A→ C is lost. (b) Instrumentation of D is redundant.

benchmarks, which are described in Section 7.2.2, compiled with gcc-7 in release build. It
contains more than 2.6 × 10

6 basic blocks. TH and sancov report that 49% and 43% of the
basic blocks need to be probed, respectively. Compare this to 45% reported by the any-node
policy of bcov. Additionally, we noticed that 7% of the probes in TH are either completely
redundant (multiple probes per superblock), or do not provide optimal coverage (inner nodes
in the SB-DG). Compare this to around 2.5% in the sancov technique. This suggests that bcov
instruments a comparable percentage of basic blocks while providing superior edge-level
precision. Equally important is the fact that the notion of superblocks, which is unique to
Agrawal’s technique, enables us to optimize the selection of probes, as discussed in the next
section.

5.4 Optimized Probe Selection

Generally, probing a basic block (BB) requires inserting a detour targeting its designated
trampoline. A detour occupies 5 bytes and can either be a direct jmp or call. Consequently,
one or more original instructions must be relocated to the trampoline. This relocation overhead
varies due to the instruction-size variability in the x86-64 ISA. Note that a pc-relative mov,
which occupies 7 bytes, represents an unavoidable overhead in each trampoline, which is
required to update coverage data. Hence, our goal is to reduce the relocation overhead.

To this end, we iterate over all BBs in a given superblock and select the one expected to
incur the lowest relocation overhead. First, we have to establish whether a detour can be
accommodated in the first place. A BB that satisfies 𝑠 + 𝑝 < 5 is considered a guest, where 𝑠
and 𝑝 are the byte size and padding size respectively. A superblock that contains only guest
BBs is handled via detour hosting, which is discussed later in Section 6.2.

Now we examine (1) the type and size of the last instruction of each basic block (BB) and
(2) whether the BB is targeted by a jump table. These parameters are translated into the BB
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Type RP Relocation overhead

return maybe Can be only 1 byte depending on padding size
long-jump no Size of jmp instruction which is ≥ 5 bytes
long-call no Size of call instruction which is ≥ 5 bytes
jump-tab no Size of jmp instruction to original code (5 bytes)
short-call yes Similar to long-call but with RP overhead added
short-jump yes Similar to long-jump but with RP overhead added
internal maybe Size of relocated instruction(s) inside the BB
long-cond no Rewriting incurs a fixed overhead of 11 bytes
short-cond yes Similar to long-cond but with RP overhead added

Table 5.1: BB type classification used in probe selection. Types are shown in ascending order based
on expected relocation overhead. The terms long and short are relative to detour size (5
bytes). Short types require relocating preceding (RP) instruction(s).

types depicted in Table 5.1. We show examples of patching these BB types in Table 5.2. We
organize these BB types in a total order. This means that, for example, we strictly prefer
a long-call over a long-cond should both exist in the same superblock. This type order is
primarily derived from empirical observation. However, we did not necessarily experiment
with all possible combinations. Preferring long-call over short-call should be intuitive. The
latter incurs an additional overhead for relocating at least one instruction preceding the call.

We observed that return basic blocks are usually padded (55% on average). Their padding
size is often more than 3 bytes, which translates to a relocation overhead of only one byte
- the size of a ret instruction. Also, favoring long-jump over long-call provided around 3%
improvement in both relocation and performance overheads. On the other hand, short-call
had only a slight advantage over short-jmp. This might be due to the fixed two-byte size of
the latter, which leads to relocating more instructions. However, our experiments were not
always conclusive, e.g., choosing between jump-tab and short-call.

Relocating an instruction depends on its relation to the PC (rip in x86-64). Position-
independent instructions can be simply copied to the trampoline.
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However, we had to develop a custom rewriter for position-dependent instructions. It
preserves the semantics of the original instruction whether it explicitly or implicitly depends
on rip. Note that it is important for rewritten call instructions to preserve the exact return
address. In Table 5.2, for example, shifting the long-call detour to 0x13165fd, i.e., before
padding, might seem innocent. The return address would differ by only one byte, after all.
However, this change can introduce test suite regressions in some benchmarks.
Specifically, a small modification of the return address has caused test regressions in libxerces,
compiled with gcc in a debug build. Surprisingly, other builds of the same library did not
exhibit similar regressions.

Jump table instrumentation has the unique property of preserving the original code. It is
a data-only mechanism that enables us to probe even a one-byte BB. However, in order to be
applicable, a BB has to be targeted by a patchable jump table. A jump table is patchable if its
entries are either 32-bit offsets or absolute addresses. This ensures that the trampoline can
be reached from the original code. In our dataset, we observed that about 92% out of a total
of 46,425 jump tables are patchable. Actually, we found that 8-bit and 16-bit offsets are used
only in libopencv_core.

5.5 Experiments

We implemented the probe pruning technique of Agrawal [1] in the tool bcov. Then, we built
upon that to leverage its superblocks to optimize probe selection, as discussed in Section 5.4.
In this section, we attempt to answer the following research questions:

• How are probes distributed across different builds, compilers, and subject binaries?

• What is the distribution of probe types? What insights can that provide about the
effectiveness of the proposed probe selection strategy?

The experimental setup is discussed later in Section 7.2.2. We investigate these research
questions based on examining a total of 13,563,866 probes in our dataset, produced by the
any-node policy.

5.5.1 Probe count distribution

The various distributions of instrumentation probes are depicted in Fig. 5.3. We observe
that, for the same instrumentation policy, debug builds generally require more probes. We
attribute this to having more code. After all, reducing code size is a primary goal for compiler
optimizations. Besides, note that debug builds can emit several unreachable basic blocks in
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lto release debug
0

1,000,000

2,000,000
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(a) build type

clang-5.0 clang-8.0 gcc-5.5 gcc-7.3
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(b) used compiler

gas ffmpeg magick llc opencv perl python xerces
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(c) benchmark

Fig. 5.3: Distribution of probe count across our dataset. (a) the higher number of probes in debug
builds can be attributed to their larger code size. (b) gcc-5.5 was unable to build llc in lto
build, which caused its number of probes in to be lower for lto builds. (c) the average number
of probes is not highly correlated with the code size. For example, the smaller python binary
has unexpectedly higher number of probes compared to perl.
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each function, i.e., dead code. To maintain high precision, bcov instruments all dead code
basic blocks, which further increases the total probe count.

Varying the compiler did not significantly affect the probe count. Note that gcc-5.5 was
unable to compile llc in lto build. Expectedly, the number of probes in its case is lower than
other compilers. Fig. 5.3c depicts the distribution of the average probe count across different
binary subjects. The probe count is usually, but not always, proportional to code size. Here,
python is notable as, despite having a smaller code size, it required significantly more probes
compared to perl.

5.5.2 Probe type distribution

In the previous section, we looked at the distribution of probe counts in our dataset. Now, we
move to discuss the distribution of various probe types. Specifically, we examine the average
percentage of each probe type in our subject binaries. Recall that the probe type is the primary
criterion relied upon in the probe selection scheme of Section 5.4. Our results are depicted
in Fig. 5.4. Similar to the previous section, we divide the results according to the build type,
compiler, and subject binary.

We start by examining the effect of modifying the build type. Most notable here is that
debug builds offer an abundance of return, long-jump, and long-call probes. In turn, bcov
seems to be capable of effectively leveraging this observation to reduce overhead. In fact, we
observe that, on average, these three probe types alone constitute over 70% of all probes in
debug builds. However, this percentage drops to about 41% in lto builds, as compilers try to
reorder code and use smaller instructions to reduce the code size.

Varying the compiler does affect the distribution of probe types. But using a different
version of the same compiler does not seem to have much effect. While the ratio of return
probes is comparable across compilers, the ratio of long-jump is distinctly different. Specifi-
cally, about 24% of the probes of clang binaries are long-jump. Compare this to 20% in the
case of gcc. Instead, long-call is the most common probe type in gcc representing about
23% of all probes. Finally, we observe that subject binaries seem to have inherent differences
that make the distribution of probe types quite different. For example, long-call probes
represent about 29% of all probes in magick, but only 13% in ffmpeg.

5.6 Discussion and Related Work

In this chapter, we discussed the optimizations of probes in bcov. First, we reviewed the probe
pruning technique of Agrawal’s [1], which we adopt in our work. Then, we compared it



5.6 Discussion and Related Work 69
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Fig. 5.4: Distribution of probe type ratios across our dataset. (a) debug builds provide more probes of
the types return, long-jump, and long-call. (b) clang provides more long-jump probes
compared to gcc. Conversely, gcc might provide more long-calls. (c) subjects vary signifi-
cantly in probe type ratios.
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with alternative techniques implemented in Tikir et al. [119] sancov [109]. We showed that
both techniques are simpler to implement, but suffer from inefficiencies that are alleviated
by Agrawal’s technique. Later, we discussed a strategy to optimize the selection of an
instrumentation probe in a superblock.

Also, we demonstrated that our probe selection strategy is effective in reducing the
relocation overhead. However, it is not necessarily optimal. We observed high variance in the
percentage of padded return, i.e., a return is not always the best choice. Also, a loop-aware
strategy might reduce performance overhead by avoiding loop heads. Such optimizations are
left for future work.

Marre and Bertolino [88] have attempted to generalize Agrawal’s technique by introducing
the concept of spanning sets. A spanning set is a minimum subset of entities with the property
that any set of test cases covering this subset also covers every entity in the program. However,
such generalization is out of the scope of this work. Also, we believe that Agrawal’s technique
is sufficient for our purpose. On another note, Ball and Larus [9] have investigated the problem
of optimal basic block profiling. Profiling counts the number of times each basic block is
executed. On the other hand, our work is only concerned with optimal basic block coverage,
i.e., whether a basic block is executed or not.



Chapter 6

Static Instrumentation

Overview; Detour Hosting; ELF Patching; Experiments; Discussion and Related Work.

6.1 Overview

Instrumenting a binary for coverage tracking can be achieved either by modifying the binary
on disk (static) or by instrumenting it in memory at run-time (dynamic). Static instrumentation
offers several attractive properties. First, a binary needs to be analyzed only once. Its
instrumented version can then be executed several times in a test suite incurring only the
overhead caused by instrumentation. In comparison, dynamic binary instrumentation (DBI)
tools interleave analysis and instrumentation, which not only increases the overhead but also
makes them challenging to implement correctly [25]. Additionally, static instrumentation
is more usable compared to DBI. It is often sufficient to replace the original binary with an
instrumented version. In comparison, DBI requires modifying the build system to allow it to
intercept the binary before it executes. However, it is worth noting that DBI tools can provide
superior observability, which includes JIT-compiled and self-modifying code.

This work builds on static instrumentation. Here, we discuss the techniques we imple-
mented to (1) cope with the instruction-size variability of x86-64 ISA, and (2) extend an
ELF binary with two additional ELF segments, which are used to host trampoline code and
coverage data.

6.2 Detour Hosting

The instruction-size variability in x86-64 suggests that some BBs are simply too short to insert
a detour without overwriting the following BB. In our dataset, we found that about 6.5% of all
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ad67f3: jmp ad6803
ad67f5: nop [multi-byte]
ad6800: call QWORD PTR [rax+0x58]

(a) original code

ad67f3: jmp 1d31afa ; jump to relocated host
ad67f8: call 1d31b39 ; hosted detour
ad67fd: nop DOWRD PTR [rax]
ad6800: jmp ad67f8 ; jump to hosted detour

(b) patched code

1d31b39: mov BYTE PTR [rip+0x4f8d01],1
1d31b40: sub QWORD PTR [rsp], -6
1d31b45: jmp QWORD PTR [rax + 0x58]

(c) trampoline

Fig. 6.1: Detour hosting example taken from llc v8.0 compiled with clang v5.0. (a) host is a short jmp
at 0xad67f3 followed by 11 padding bytes. (b) inserting 2 detours leaves 3 padding bytes. (c)
return address adjusted at 0x1d31b40. Original call at 0xad6800 is rewritten to a matching
jmp at 0x1d31b45

BBs are short. That is, their byte size is less than 5 bytes. Left without a probe, we risk losing
coverage information of a particular short BB and, potentially, all of its dominators.

One possible solution is to relocate the entire function to a larger memory area. In this
way, we can inline coverage update code without affecting adjacent functions. However,
function relocation is costly in terms of code size and the engineering effort required to fix
relocated code references. For example, throwing an exception from a relocated function
without fixing its corresponding CFI record can lead to abrupt process termination.

The method adopted in bcov is detour hosting, where the detour of a short BB (guest)
can be hosted in a larger BB (host). This method does not require function relocation and
preserves the stability of code references at the basic block level. To be applicable, the size of
a guest BB needs to be at least 2 bytes, which is sufficient to insert a short detour targeting a
host BB that is reachable, i.e., within about ±128 bytes. The host BB must be large enough to
accommodate two regular detours, i.e., at least 10 bytes. The first detour targets its trampoline
while the other detours would target the trampolines of their respective guests. Note that we
can safely overwrite padding bytes of both the guest and host. Also, the host does not need
to be entirely relocated. Relocating a subset of its instructions might be sufficient.

Figure 6.1 depicts a detour hosting example. It involves a guest consisting of an indirect
call (3 bytes). The tricky part about a call instruction is that we must preserve its return
address. To this end, we use a sub instruction (5 bytes) in the trampoline to adjust the return
address from 0xad67fd to its original value of 0xad6803. This adjustment also clobbers the
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CPU flags. In this context, however, the flags can be safely clobbered since they are not
preserved across function calls in the x86-64 ABI. Note that this is the only case where we
modify the CPU state.

Now, we have the following allocation problem: given a guest 𝑔 and a set of suitable hosts
𝐻 = {ℎ1, ℎ2, .., ℎ𝑛}, find the host ℎ𝑖 whose selection incurs minimal overhead. Moreover, we
are also interested in the more general formulation: given a set of guests 𝐺 = {𝑔1, 𝑔2, .., 𝑔𝑘}

and a set of hosts 𝐻 = {ℎ1, ℎ2, .., ℎ𝑛}, where each host is suitable for at least one guest, find a
function mapping𝑀 ∶ 𝐺 → 𝐻 such that the overhead is minimal. We approach this problem
using a greedy strategy where we prefer, in this order, (1) packing more guests in a single
host, (2) a host already selected to be probed over an intact host, (3) a host that is closer to the
guest. Basically, for each guest, we iterate over all reachable BBs. A BB can offer a hosting
offset, if possible. A higher offset means that more guests are packed in this host. The initial
offset is 5 bytes from the start of host. Should offered offsets be equal, we look into (2) in
order to avoid, as much as possible, relocating otherwise intact BBs. Finally, should both (1)
and (2) be equal, then we look into (3) in order to have better code cache locality.

It is not possible to patch one-byte guests. Also, neighboring basic blocks might be too
small to host a detour for others. Moreover, our current prototype does not support hosting
guests in some corner cases. For example, a call instruction that depends on rsp, like call
QWORD PTR [rsp+0x38], can not be safely rewritten to a matching pair of call detour and
jmp in the trampoline. In such a case, the first call to the trampoline will modify rsp value. In
turn, the corresponding jmp in the trampoline will read an incorrect rsp value. We decided to
leave this additional work for the future. Fortunately, these corner cases did not significantly
affect the correctness of the reported coverage.

In the case that a guest cannot be hosted, we can still reduce the potential loss in coverage
information. To this end, we try to probe all of the immediate predecessors of the current SB,
containing the guest, in the SB-DG. However, this does not necessarily imply adding more
probes. For example, additional probes are unnecessary in the leaf-node policy, should the
current SB have siblings in the SB-DG. Also, the predecessors might be probed already in the
any-node policy.

6.3 ELF Patching

The Executable and Linkable Format (ELF) is a popular file format for executables, shared
libraries, and object code. It is part of the System V application binary interface [58]. The
specification was originally developed by UNIX System Laboratories (USL), and subsequently
adopted by most Unix and Unix-like systems. The ELF format is designed to be flexible,
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Fig. 6.2: Typical layout of an ELF file. The segment (program) and section headers provide two different
views that can be used to interpret the file’s contents. For each view, we show some of the
most common headers. Note that the areas described by different segment headers often
overlap. In fact, LOAD segments usually act as containers for other segment types.

extensible, and cross-platform. It consists of an ELF file header that describes two subsequent
header tables which are:

• Segment headers (officially program headers). Specifies zero or more memory segments
to be loaded into the main memory.

• Section headers. Specifies zero or more sections, which can be used for debugging
among other tasks.

The segment and section header tables provide two different views to interpret the file’s
contents. These views are depicted in Fig. 6.2. Note that the format is flexible. For example,
the segment header table does not necessarily need to be located directly after the ELF header.

We statically instrument binaries by leveraging the flexibility offered by the ELF format.
Our goal is to extend a given ELF file 𝐹 with two additional segments. The first segment
will be used to write trampoline code, while the second stores coverage data. Let us refer to
these segments as 𝑆𝑐 and 𝑆𝑑 , respectively. Extending the input file 𝐹 can be achieved in the
following steps:
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ELF Header:
Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
Class: ELF64
Data: 2’s complement , little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0
Type: DYN (Shared object file)
Machine: Advanced Micro Devices X86 -64
Version: 0x1
Entry point address: 0x5850
Start of program headers: 64 (bytes into file)
Start of section headers: 132000 (bytes into file)
Flags: 0x0
Size of this header: 64 (bytes)
Size of program headers: 56 (bytes)
Number of program headers: 9
Size of section headers: 64 (bytes)
Number of section headers: 28
Section header string table index: 27

Fig. 6.3: ELF header example produced by readelf utility. Patching the file may affect the start of
program headers. Also, patching should increase the number of program headers by two.

• Create the output file 𝐹
′ such that 𝑠𝑖𝑧𝑒(𝐹 ′

) ≥ 𝑠𝑖𝑧𝑒(𝐹 ) + 𝑠𝑖𝑧𝑒(𝑆𝑐) + 𝑠𝑖𝑧𝑒(𝑆𝑑 ) + 𝑠𝑖𝑧𝑒(𝑇
′
),

where 𝑇 ′ refers to the new segment header table.

• Copy the contents of 𝐹 to 𝐹
′, except the section header table, which will be appended

to the end of 𝐹 ′.

• Add a new segment header table 𝑇 ′. The new table maintains all the headers of 𝑇 but
adds two headers to describe 𝑆𝑐 and 𝑆𝑑 .

• Patch the ELF header of 𝐹 ′ to point to the relocated segment header table 𝑇 ′. Figure 6.3
shows an ELF header, which is dumped using readelf utility, together with the fields
that need to be modified.

Generally, these steps are effective in patching any shared library. However, the default
ELF loader (ld.so), at least for the Linux systems we tested, makes them unusable as-is to patch
executables, because it expects the segment header table, specifically the header PT_INTERP,
to be part of the first loadable segment. Developing a customized loader can provide a
workaround. But, this solution is intrusive and not easily portable. To address this issue, we
implemented three techniques in bcov which are discussed in the following:

• Head patching. We instruct the linker to leave enough space for two segment headers
after the original headers. This space will be used later by bcov. Note that the size of
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single segment header in x86-64 is 56 bytes. Hence, we only need 112 bytes. To support
this feature, the user has to modify one line in the default linker script to add 112 bytes.
Specifically, it is the line that sets SEGMENT_START.

• Middle patching. Assuming that an ELF segment has a file offset 𝑃𝑜𝑓 𝑓 , a virtual address
𝑃𝑎𝑑𝑑𝑟 , and an alignment value 𝑃𝑎𝑙𝑖𝑔𝑛. Then, the system loader expects that:

𝑃𝑜𝑓 𝑓 𝑚𝑜𝑑 𝑃𝑎𝑙𝑖𝑔𝑛 = 𝑃𝑎𝑑𝑑𝑟 𝑚𝑜𝑑 𝑃𝑎𝑙𝑖𝑔𝑛

The common value of 𝑃𝑎𝑙𝑖𝑔𝑛 on Linux is 0x200000, which is relatively large. Therefore,
there is usually an empty space between the end of the first loadable segment and
beginning of the subsequent segment. If large enough, this space can be used to relocate
the segment header table. In such a case, the size of first loadable segment needs to be
also increased to include the relocated table. We empirically observed that the majority
of binaries in Ubuntu have 9 ELF segments or more. Patching the binary would add
another two. Therefore, middle patching may require more than 616 bytes of free space
after the first loadable segment, given that a single entry in the header table occupies
56 bytes. This space might not be available, especially if 𝑃𝑎𝑙𝑖𝑔𝑛 was set to a low value
like 4KB.

• Overlay patching. In the case where middle patching is not possible, we can still
attempt a generalization of it, which we call overlay patching. The basic idea is to
relocate the header table to a free space between any two segments, if possible, or to
the end of the file’s contents. However, instead of increasing the first segment’s size
to just include the segment header table, as in middle patching, now the size should
additionally include all segments in-between. In effect, the first segment becomes
overlaid on top of the other segments. This will not dramatically increase the file size.
However, the memory overhead can be high as all the appended segments will be loaded
twice; first, as part of the first segment and then as a standalone segment.

The previously discussed techniques explore different design trade-offs. Head patching is
elegant but requires modifying the build system, which makes it generally inapplicable to
patching off-the-shelf binaries. Overlay patching may solve the latter problem but have a high
memory cost where one (or more) segments will be loaded twice. On the other hand, middle
patching, if applicable, can offer a reasonable compromise. Figure 6.4 depicts the layout of
files produced by these patching techniques.
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Fig. 6.4: ELF patching types based on the location of segment header table, (a) the linker is instructed
to leave space after the original header table, (b) header table relocated to the space after
the first loadable segment, (c) header table relocated to the end of original segments. In the
latter two techniques, the size of the first segment must be increased to include the relocated
header table. This is required to satisfy the requirements expected by the program loader.

6.4 Experiments

The static instrumentation techniques discussed in this chapter are implemented in the tool
bcov. In this section, we evaluate them guided by the following research questions:

• What are the key characteristics of detour hosting? How is it affected by different build
types, compilers, and binaries?

• Can bcov patch off-the-shelf binaries without modifying the build system?

6.4.1 Detour hosting effectiveness

To evaluate the detour hosting strategy of section 6.2, we use the following metrics:

• Mean ratio of guest probes to the number of all probes (guest/probe). A very low ratio
indicates that detour hosting might not be effective. In other words, disabling it might
not cause a significant loss in the reported coverage.
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Fig. 6.5: Evaluation of detour hosting by showing how key metrics vary across different build types,
compilers, and binaries, (a) guest probes are more sparse in debug builds which reduces the
ratios guest/probe and guest/host, (b) there is no significant difference across the compilers,
(c) differences are more noticeable but still small across the binaries.

• Mean guest-hosting ratio (guest/host). A high ratio may indicate that our strategy
is effective in packing more guests in a single host, which can reduce the number of
affected hosts and, subsequently, also the instrumentation overhead.

• Mean ratio of vanilla hosts among all hosts (vanilla/host). Recall that we prefer in-
strumenting hosts that are chosen by the current instrumentation policy over hosts
that would otherwise remain intact. The reason is that instrumentation overhead is
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expected anyway for the former type of hosts. A lower vanilla/host ratio indicates that
our strategy is more effective at avoiding vanilla hosts.

Figure 6.5 depicts our evaluation results. We vary the build type, used compiler, and binary
to see how this affects our ratios of interest. However, despite these changes, we observe that
the ratios do not vary significantly. The mean guest/probe ratio is about 5% in release and
link-time optimization (LTO) builds, but falls to 3% in debug builds. We attribute this to code
size optimizations, which confronts bcov with smaller basic blocks and forces it to fall back to
guest probes. The question now is whether a ratio like 3% is low enough to justify disabling
detour hosting. Unfortunately, it is difficult to give a general answer because this depends on
the instrumented program and the testing targets.

For example, a single superblock, which is represented by a guest probe, might be dom-
inated by several superblocks in the superblock dominator graph of a particular function.
Consequently, and without detour hosting, the loss in reported coverage can be high. On the
other hand, a single guest probe might represent only itself in other functions, which leads to
missing a single basic block. To summarize, the coverage lost by omitting a particular guest
probe can vary considerably not only between different functions but also within the same
function given different test inputs.

We move to discuss the remaining metrics of interest. In debug builds, the guest/host ratio
is 1.14 but a bit higher in the other build types at 1.20. This indicates that guest probes in
debug builds are not only fewer in number, but also further apart and, therefore, are less likely
to share the same host. As for the vanilla/host ratio, it is relatively high in debug builds at 23%.
This is another indicator of low probe density, which makes bcov resort to instrumenting
more vanilla hosts.

6.4.2 Patching off-the-shelf binaries

The ability to patch off-the-shelf binaries is important to the usability of bcov, or any other
static instrumentation tool for that matter. It allows users to track coverage without modifying
the build system. In section 6.3, we discussed three techniques that we implemented to support
ELF patching. These techniques are only needed to patch executables, or more precisely,
binaries that have a segment of type PT_INTERP. Recall that, in contrast to executables, the
segment header table in shared libraries does not necessarily need to be part of the first
loadable segment, which greatly simplifies the task.

The instrumentation techniques implemented in bcov explore different trade-offs. Head
patching requires modifying the build system. The change is small and does not add any
overhead. But still, we do not expect such a change to be widely used in off-the-shelf binaries.
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Fig. 6.6: Distribution of the applicability of patching techniques. The dataset consists of 5,820 binaries
found in a typical Ubuntu installation. Expectedly, head patching is inapplicable to off-the-
shelf binaries. The right-most result shows the number of shared libraries, which allow the
segment header table to be relocated anywhere in the file.

At least not in the near future. This leaves us to choose between middle and overlay patching.
The latter adds significant overhead because all the segments that lay between the first
segment, and the relocated header table, shall be duplicated by the loader. Naturally, this begs
the question of whether or not middle patching is sufficient in practice.

To answer this question, we first look at our benchmark subjects, which are 95 binaries
in total. bcov successfully patched 81 binaries using middle patching. Also, it employed of
overlay patching in 4 instances. However, both techniques were inapplicable to the remaining
10 binaries, of which two were, fortunately, shared libraries and, therefore, their segment
header table can be freely relocated. In effect, we utilized head patching for 8 out of 95 binaries.
Hence, we had to modify the build system, but that was only on infrequent occasions.

These positive results motivate a wider experiment. We developed a python script that
given an ELF binary, it reports back the patching techniques applicable to it. This script
additionally reports “anywhere” for shared libraries to indicate that their segment header
table can be freely relocated as long as it does not overwrite the data of original segments.
Then, we collected a large dataset of ELF binaries by searching the default executable and
library paths in a typical Ubuntu workstation used by the author. This dataset of 5,820 binaries
was given to our checker script as input.

Figure 6.6 depicts the distribution of our results. It clearly reveals that bcov, and static
instrumentation in general, is largely applicable, without requiring any modifications to how
software is built. Middle patching would work for 94.62% of the binaries. This percentage
goes to over 99.99% in overlay patching, which remains a reasonable option despite its higher
memory overhead. Note that 3617 (or about 62%) of the binaries in our dataset are shared
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libraries. We note again that libraries can be easily patched by bcov without incurring
additional memory overhead.

6.5 Discussion and Related Work

6.5.1 Detour hosting

The variability in the size of x86-64 instructions poses a significant challenge. It allows basic
blocks to be smaller than 5 bytes, which is too small to fit a detour instruction. To address
this challenge, some tools rely on inserting INT3, a one-byte instruction that is usually used
by debuggers to set breakpoints. Upon reaching an INT3, a running process will trigger a
SIGTRAP signal, which must be handled either by the same process, as used in DynInst [44],
or a monitoring process, as used in Untracer [94]. This mechanism comes at a high cost as
every trap involves context switching by the operating system. Additionally, it may affect the
functionality of programs that implement custom signal handling.

In the design of bcov, we relied on detour hosting, instead. The basic idea is simple; A
basic block needs to fit a short detour (2 bytes) that targets a long detour (5 bytes) located
nearby, more precisely, within a range of about ±128 bytes. This technique is already known
in the reverse engineering and systems programming communities. For example, the library
syscall_intercept [116], which is part of Intel’s persistent memory programming kit [57],
uses a limited form of detour hosting where the long detour can be inserted only in the
padding area of a given function. However, patching would fail if such an area does not exist
or is not close enough.

Inserting a long detour in the body of a nearby host basic block assumes that the start of
the host is precisely known based on the CFG. Otherwise, we risk breaking the binary. In this
work, we addressed this challenge by recovering the CFG with high precision outperforming
the leading binary analysis tools, as demonstrated in the evaluation of our jump table analysis
of Section 4.3 and the transparency results of Section 7.3. This precision enabled bcov to
choose a host for a given guest probe in a way that is both correct and optimized.

Our detour hosting strategy targets a sweet spot balancing performance and relocation
overheads. It was able to host up to 14 guests in a single host. Also, vanilla hosts represent
only about 20% of all the hosts. That is, the strategy is effective in targeting hosts where
we expect relocation overhead anyway. Moreover, it was capable of hosting about 94% of
all the guests. We observed that the remaining guests are usually located in relatively small
functions, having less than five basic blocks. In such a case, relocating the entire function,
where coverage update code can be inlined, maybe a better alternative to detour hosting.
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Generally, the fixed size of instructions in RISC ISAs alleviates the need for detour hosting.
However, their addressing range can be significantly lower than the ±2GB offered by x86-64.
Note that we patch each ELF module individually. This means that we only need an addressing
range that is large enough to reach our patch code segment from the original code. For example,
a range of 60MBwould be sufficient for our largest benchmark. As a consequence, AArch64 can
accommodate a wide variety of binaries as it offers a detour range of ±128MB. In comparison,
AArch32 offers a range of just ±32MB. In such a case, a single detour instruction might not
be sufficient. Additional options need to be investigated, such as relocating functions, literal
pools, and changes to linker scripts.

On a similar note, x86-64 allows us to update coverage data using a single mov instruction,
which has a memory operand with 32-bit offset. Generally, emulating the same functionality
in RISC ISAs requires more instructions and would clobber at least one register. Nevertheless,
viable alternatives do exist. For example, it is possible to update coverage data in AArch64
using the following sequence:

adrp x1, #pimm1 ; load page-aligned address
strb w1,[x1],#pimm2; set coverage byte to zero

Basically, ardp loads a page-aligned address into x1 with a comfortable pc-relative range
of ±4GB. Then, strb would use the least significant byte of x1, which always has a zero value,
to update coverage where pimm2 indexes into a 4KB page. This assumes that coverage data is
initialized to a value other than zero. Saving and restoring the clobbered register, which is x1
in our example, is not always necessary. A liveness analysis can help us acquire a register
that stores a dead value. Similar analyses are already implemented in DBI tools like Pin [102]
and DynamoRIO [24].

6.5.2 ELF patching

In Section 6.3, we discussed techniques for extending an existing ELF binary by allocating ad-
ditional code and data segments. Our tool, bcov, requires only two segments. Also, we believe
that supporting these two segments is sufficient for the majority of static instrumentation
applications. It is worth noting that other ELF patching tools, like the LIEF library [107], may
attempt to be more generic by adding support for more than two segments. However, we
believe that this would complicate the implementation and increase the memory overhead,
all without providing significant added value.

We have shown that the ELF patching techniques implemented in bcov, namely, head,
middle, and overlay, are powerful and generic enough to apply to off-the-shelf binaries. This an
encouraging result demonstrating the usability of our tool and static binary instrumentation in
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general. We are not aware of any other instrumentation tool with such broad applicability. For
example, LIEF [107] supports only overlay patching, which comes at a considerable memory
overhead, as discussed previously. Moreover, we are not aware of any tool that supports the
head and middle patching techniques.

Instrumentation using trampolines is known for a long time [50, 46]. It is typically used
in restricted applications such as API hooking in Detours [40] and CWSandbox [106]. In
comparison, we systematically use trampolines at a fine granularity to instrument individual
basic blocks. Also, our tool does not require compiler support, thanks to the precision of the re-
covered CFG. Note that compilers offer limited support for inserting padding nop instructions,
which can be later overwritten by detours. For example, to specify the size of the padding
area at function entry, gcc offers the command line option -fpatchable-function-entry.

As an alternative to trampolines, several works have recently considered static instrumen-
tation using reassembly [124, 42, 133] and recompilation [96, 4, 127]. Both techniques allow
instrumentation code to be inlined in the recovered assembly and IR, respectively. Instead
of using detours, this would allow us to directly inline coverage update code. However,
code inlining means that code references need to be relocated and fixed, e.g., in CFI records,
which is challenging to correctly implement, as distinguishing references from scalars is an
undecidable problem in general. In comparison, detours maintain reference stability and,
thereby, allowed us to scale to large C/C++ binaries transparently. Additionally, trampolines
make it easy to map analysis results of instrumented binaries back to original ones.



Chapter 7

Tool Evaluation

Tool Implementation; Experimental Setup; Evaluation Results; Discussion and Limitations.

7.1 Tool Implementation

Our contributions are implemented the in the tools Spedi and bcov. In this section, we discuss
the implementation of both tools.

7.1.1 Implementation of Spedi

The tool Spedi is implemented in about 4,500 LoC in C++. The source code is publicly
available: https://github.com/abenkhadra/spedi. This tool implements the speculative
disassembly method proposed in Chapter 2, and the function identification technique of
Section 3.3, which focuses on identifying functions in the binary-only settings.

The architecture of Spedi is depicted in Fig. 7.1. Basically, it consists of an ELF reader, a
disassembly framework, and the core engine. We adapted our ELF reader, with few modifica-
tions, from [33] . ELF is a popular standard format for binaries in Unix-like operating systems.
However, our method is generic and is not tied to ELF or any other binary format. To decode
bytes to corresponding assembly instructions, we use the capstone framework [29]. It is a
multi-architecture disassembly framework, which makes our implementation easier to port
to other ISAs supported by capstone like x86 and PowerPC. Our main contribution is the
core speculative disassembly engine.

https://github.com/abenkhadra/spedi
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Fig. 7.1: Software architecture of Spedi tool.

7.1.2 Implementation of bcov

We implemented the majority of the techniques discussed in this work in the tool bcov,
which is publicly available: https://github.com/abenkhadra/bcov. Our tool accepts an
ELF module (executable or shared library) as input. It starts with a set of module-level analyses
such as reading function definitions, parsing CFI records, and building the call graph. Our
non-return analysis implementation is similar to [92]. We omit the details as they are not
part of our core contribution. Then, bcov moves to function-level analyses such as building
the CFG (including jump tables), dominator trees, and superblock dominator graph.

Probes are determined based on the instrumentation policy set by the user. bcov can be
used for patching or coverage reporting. The latter mode requires a data file dumped from a
patched module. The instrumentation policy used for coverage reporting must match the one
used for patching. For example, to patch a binary like perl, the user can issue,

bcov -m patch -p any -i perl -o perl.any

The tool mode is set using the option -m. The instrumentation policy (option -p) can be
set to any, which refers to the any-node policy, or all which refers to the leaf-node policy.

Coverage data can be dumped by injecting libbcov-rt.so, our run-time library, using
the LD_PRELOAD mechanism. For example, the following command produces a dump file
that has the extension ‘.bcov’ in the current working directory,

export LD_PRELOAD="[full -path -to-bcov -rt]/libbcov -rt.so"
./perl.any -e ’print "Hello , bcov!\n"’

The dump data file can be supplied to bcov for coverage reporting,

bcov -m report -p any -i ./perl -d perl.any.bcov > report.out

Currently, bcov cannot persist analysis results to disk. Therefore, the original binary must
be re-analyzed to report coverage. Coverage will be reported for each basic block in the file

https://github.com/abenkhadra/bcov
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report.out. The data in each line lists (1) BB address, (2) BB instruction count, (3) is covered,
and (4) is fallthrough ,i.e., does not terminate with a branch.

We implemented the modern SEMI-NCA dominator tree algorithm [49] and Tarjan’s
classical SCC algorithm. We used capstone [29] for disassembly and implemented a wrapper
around unicorn [121] for microexecution. In total, this required about 17,000 LoC in C++
(testing code excluded). The run-time library bcov-rt is implemented in C in 250 LoC.

7.2 Experimental Setup

We discuss in this section the experimental setup used to evaluate our tools.

7.2.1 Experimental Setup of Spedi

Our experiments have been conducted on a Linuxmachine with Intel® Core™ i7-4800 processor
and 16 GB of RAM. The experimental binaries are selected from the popular benchmark suites
Coreutils (available at: https://www.gnu.org/software/coreutils/) and CoreMark Pro
(available at: https://www.eembc.org/coremark-pro/). They are cross-compiled for ARM®

Thumb using gcc versions 4.8 and 5.1 respectively. This shows that our results are not limited
to a specific compiler version. We selected the biggest five binaries in each benchmark suite.
These binaries were previously described in Table 2.1. Compilation was done at the highest
optimization option (-O3) to give the compiler enough chance to challenge the disassembler.

Our results are reported for the disassembly of the .text section in each executable
binary. Executables are dynamically linked to demonstrate that our techniques remain
effective even when not all functions are available. To compare our results to alternative
disassemblers, we picked IDA Pro, the leading industry disassembler, and objdump which is
a popular disassembly tool from the GNU binutils package (available at https://www.gnu.
org/software/binutils/). We used IDA Pro v6.9.1 in our experiments. Experimental data
was extracted from IDA Pro using its IDAPython API. IDAs refers to results obtained from
IDA Pro for non-stripped binaries, i.e., with linker symbols available. Otherwise, all results
are obtained from stripped binaries.

7.2.2 Experimental Setup of bcov

For our evaluation, we used eight modules which are summarized in Table 7.1. They are
selected from popular open-source packages offering diverse functionality. We compiled each
module using four compilers in three different build types. Specifically, we used the compilers
gcc-5.5, gcc-7.4, clang-5.0, and clang-8.0. This gives us a representative snapshot of the past

https://www.gnu.org/software/coreutils/
https://www.eembc.org/coremark-pro/
https://www.gnu.org/software/binutils/
https://www.gnu.org/software/binutils/
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Module Package Lang. Domain

gas binutils-2.32 C Assemblers
perl perl-5.28.1 C Interpreters
python cpython-3.7.3 C Interpreters
libMagickCore ImageMagick-7.0.8 C Image processing
ffmpeg FFmpeg-4.1.3 C Video processing
libxerces-c-3.2 xerces-c-3.2.2 C++ XML processing
libopencv_core opencv-4.0.1 C++ Computer vision
llc llvm-8.0.0 C++ Compilers

Table 7.1: Selected subjects used to evaluate bcov. Used recent package versions.

three years of developments in gcc and clang respectively. The build types are debug, release,
and lto. The latter refers to link-time optimizations. Compiler optimizations were disabled
in debug builds and enabled in release and lto builds. Enabled optimizations depend on the
default options of their respective package, which can be at levels O2 or O3.

Compilation results in 12 versions of each module and a total of 95 binaries. 1 Our tool
was capable of patching 88 binaries without modifying the build system. However, we had to
modify the linker script in 7 instances where relocating ELF program headers was not possible.
We instructed the linker to leave 112 bytes, which is enough for our segment headers, after
the original program headers. This change is small affecting only one line in the linker script.
The bcov-rt runtime was injected using the LD_PRELOAD mechanism. All experiments were
conducted on an Ubuntu 16.04 PC with Intel® i7-6700 CPU and 32GB of RAM.

7.3 Evaluation Results

This section is dedicated to the evaluation of bcov as standalone tool. We separately evaluated
several techniques implemented in bcov, like sliced execution, in the previous chapters. Recall
that the techniques implemented in Spedi are already evaluated in Section 2.5 and Section 3.4.
Our evaluation of bcov is guided by the following research questions:

RQ1 Can bcov scale to large real-world binaries transparently?

RQ2 What is the instrumentation overhead in terms of performance, memory, and file size?

RQ3 To what extent can bcov provide better efficiency in comparison to its direct alternatives,
namely, DBI tools?

RQ4 Can bcov accurately report binary-level coverage?
1Compiling llc with gcc-5.5 in lto build resulted in a compiler crash.
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Fig. 7.2: Comparing the code size of our subjects to objdump (code size about 339KB). Code size
reported with GNU size utility.

We investigate each of these research questions in the following sections.

7.3.1 Scalability and transparency

Our choice of subjects directly supports the claim regarding the scalability of the proposed
techniques. Figure 7.2 shows a comparison in terms of code size relative to objdump, a
commonly used subject in binary analysis research. Note that bcov can analyze and patch
llc, our largest subject, in 30 seconds. In our experiments, we used bcov to instrument all
functions available in the .text section. This amounts to more than 1.6 × 10

6 functions across
95 binaries. The policies leaf-node and any-node have been applied separately, i.e., subjects
were instrumented twice.

Transparency is important in coverage instrumentation. This practically means that
bcov should not introduce test regressions. We evaluated this criterion by replacing original
binaries with instrumented versions and re-running their test suites. Our instrumentation did
not introduce any regressions despite the fact that (1) we systematically patch all functions,
even compiler-generated ones, and (2) our benchmark packages include extensive test suites.
For example, the perl test suite runs over one million checks.

7.3.2 Instrumentation overhead

Figure 7.3 depicts the instrumentation overhead relative to the original binaries. The average
performance overhead of the leaf-node and any-node policies are 8% and 14%, respectively.
The overhead is measured based on the wall-clock time required to run individual test suites,
e.g., run “make test” to completion. This covers the overhead associated with instrumentation
in addition to dumping coverage data to disk. The latter overhead varies depending on the
number of processes spawned during testing.
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Fig. 7.3: Overhead of the any-node instrumentation policy. (a) performance overhead accounts for
instrumentation and dumping coverage data, (b) memory and file size overhead (c) distribution
of memory overhead between code (relocated and coverage update) and coverage data.

For example, all opencv tests are executed within a single process that dumps coverage
data only once. In contrast, unit testing of llc spawns over 7,500 processes in about 40 s. This
results in dumping 4GB of coverage data, which significantly contributes to the overall delay.
Online merging of coverage data might reduce this disk IO overhead. In such settings, and
before dumping new coverage data, the current process try to merge its current data with
previously dumped data. This will reduce the required space at the cost of slowing down
the dumping of data to disk. To give a better intuition, we note that without online merging,
llvm-cov would dump over 320GB of coverage (and profiling) data for the same benchmark.

The average memory and file size overheads introduced by bcov are 22% and %16, respec-
tively. We measure the memory overhead relative to loadable ELF segments only since bcov
does not affect the run-time heap or stack. Note that other static instrumentation techniques
need to duplicate the code segment [4, 82]. This suggests that the overhead of bcov is rea-
sonable. Coverage data represents only 6% of the memory overhead. It is worth noting that
compiler optimizations can force bcov to relocate more instructions. This might be due to
emitting smaller basic blocks. However, our static instrumentation techniques are effective
in reducing the difference in relocation overhead between debug and optimized builds, as
shown in Figure 7.3c.
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Fig. 7.4: Comparing the performance overhead of Pin, DynamoRIO (DR), drcov, and bcov. Omitted
perl and python as DR was unable of completing their test suite runs. (*) The actual overhead
of Pin for llc is over 130x.

7.3.3 Comparison with DBI tools

Pin and DynamoRIO (DR) are the most popular DBI tools. Both act as a process virtual
machine that instruments programs while JIT emitting instructions to a code cache. This
complex process creates the following sources of overhead: (1) JIT optimization, and (2) client
instrumentation. To evaluate this overhead on our test suites, we installed the latest stable
releases of both tools, namely, Pin v3.11 and DR v7.1. We then replaced each of our subjects
with a wrapper executable. In the case of shared libraries, we replaced their test harness with
our wrapper. In doing so, we make the test system run our wrapper, which, in turn, runs
its corresponding original binary, but under the control of a DBI tool. The wrapper reads a
designated environment variable to choose between Pin and DR.

Fig. 7.4 depicts the performance overhead of Pin and DR without client instrumentation.
It also shows the overhead of DR after enabling drcov, its code coverage client. Note that Pin
does not have a similar coverage client built-in. The overhead is measured relative to original
binaries and is averaged for four different release builds. Both tools introduced regressions
on perl and python. However, DR made tests hung on perl and crashed on the python test
suite. This highlights the challenges of maintaining transparency in DBI tools. Note that
the DBI overhead of executable subjects is significantly higher than that of shared libraries.
This can be attributed to the start-up delay, which dominates in short-running tests. The
average performance overheads of Pin and DR are 29.1x and 4.1x, respectively. Enabling
drcov increases DR’s average overhead to 7.3x. Our experiments show that bcov can provide
drastically better performance, transparency, and usability.
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7.3.4 Accuracy of the reported coverage

We evaluate the accuracy of the coverage reported by our tool via a comparison with a
corresponding instruction trace. Note that for the same test input, non-determinism may
cause spurious errors in the coverage report if we compare original binaries separately to
instrumented ones. For example, repeatedly printing a simple “Hello World” message using
perl produces different instruction traces. Therefore, we obtain the trace from binaries that
are instrumented with the any-node policy.

Initially, we obtained the ground truth traces using Intel PT (IPT). To this end, we collected
about 2,000 sample tests from our test suites. Running these tests produces 104GB of IPT data
and 444MB of bcov coverage data. We used the standard perf tracing facilities in the kernel
v4.15, and later also kernel v5.3. We tried many IPT configurations and restricted ourselves to
tests terminating in ≤ 5 seconds. Despite these efforts, we could not reliably evaluate bcov
due to non-deterministic loss in IPT data. After all, disks might just be incapable of keeping
up with the CPU [72].

We then turned to drcov to obtain the ground truth. This DR client dumps the address
of encountered basic blocks heads, i.e., first instructions. We leverage the fact that our
instrumentation does not modify BB heads. Based on this, we expect BBs reported as covered
by bcov to appear in the trace of drcov. We consider these BBs to be true positives (TP). On the
other hand, a BB reported by bcov that was not found in the trace represents a false-positive
(FP). Similarly, a false-negative (FN) is a tracked BB that was missed by bcov. Both FPs and
FNs represent errors in the reported coverage.

Also, we take into account the fact that drcov reports the heads of dynamic BBs. This
means that should A and B be consecutive BBs where A is fallthrough, i.e., does not end with
a branch, drcovmight only report the head of A. Our evaluation method is conservative given
the potential overapproximation of the CFG.

Our results are shown in Table 7.2. They are based on running the test suites of subjects
compiled with gcc-7 in release build. The results are representative of other build types. The
subjects are instrumented with bcov and also run under the control of DR’s drcov. We list the
average/maximum of TPs across all test processes. For example, the average number of TP
BBs among 7,862 llc processes is 45,184.5, and the maximum is 90,952. The average precision
and recall across all subjects are 99.97% and 99.95%, respectively. This results in an average
F-score of 99.86%. Our evaluation suggests that the reported coverage errors are practically
negligible. Nevertheless, there is still room for further improvement. Specifically, improving
CFG precision and detour hosting can reduce FPs and FNs respectively.
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module proc. # drcov size bcov size BB Inst. TP BB TP Inst. Precision Recall

xerces 80 12.34 4.32 116378 420096 9523 / 21927 40651 / 92144 99,98% 99.42%
magick 58 7.71 2.90 125521 521107 5689 / 20709 21614 / 83444 99,98% 99.94%
llc 7862 3481.97 4176.16 1067151 4343021 45184 / 90952 257209 / 461656 99,98% 99.68%
gas 1235 71.94 38.56 60511 220447 2916 / 5015 11045 / 19578 99.93% 99.67%
ffmpeg 3309 423.45 762.39 496404 3050228 9682 / 14489 41439 / 63591 99.98% 99.94%

Table 7.2: Evaluating the accuracy of bcov based on drcov traces. We show the number of processes
spawned during testing, corresponding dump sizes in MB, and the total number of BBs and
instructions in original binaries. Both tools dump one data file per process. For each subject,
we list the average/maximum of true positives (TP). FPs and FNs are also considered by
listing the average precision and recall, respectively. DR could not complete the test suite
runs of perl and python. Omitted opencv as drcov’s data was invalid due to a bug.

7.4 Discussion and Limitations

CFG precision. The precision of the CFG recovered by bcov can significantly affect the
accuracy of its coverage report. While the implemented jump table and non-return analyses
significantly increase CFG precision, they are still not perfect. Specifically, our prototype
might still miss jump tables, albeit only in a few situations. Also, while our experiments
show that the non-return analysis implemented in bcov is comparable to that of IDA Pro,
both tools face the challenge of may-return functions. Such functions usually, but not always,
return to their caller. We encountered a may-return function in perl that is particularly
noteworthy. It is function Perl__force_out_malformed_utf8_message shown in Fig. 7.5.
In one binary, it is called 88 times out of 89 total, with the argument die_here set, i.e, it will
not return. Developers can signal to the compiler that a particular call will not return using,
for example, __builtin_unreachable. Such information is not available in the binary, so
we simply assume that all calls to may-return functions are return calls. As a result, bcov may
spuriously report basic blocks that follow a may-return call as covered.

Conditional instructions. Simple if statements might be compiled to conditional
(predicated) instructions. For example, several C/C++ compilers may use a single conditional
instruction, like cmov and setge, to assign a value to the variable c,

if (a < b) c = 0; else c = 1;

Binary-level coverage analysis tools like bcov can report whether a particular cmov is covered.
However, this does not imply that it actually took effect, i.e., modified the target value.
Tracking such effects is out of our scope, as we are not concerned with data-flow coverage.
Note that source-level coverage tools like gcov have the same limitation.

Nevertheless, bcov can be extended to handle such cases. Basically, we can check that
the assignment of a particular cmov<condition> did take effect by inserting a detour tar-
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if (c_len == (STRLEN) -1) {
_force_out_malformed_utf8_message(p, p_end ,
utf8n_flags ,
1 /* 1 means die */ );
NOT_REACHED; /* NOTREACHED */

}
if (c > 255 && OP(n) == ANYOFL && !

ANYOFL_UTF8_LOCALE_REQD(flags)) {
_CHECK_AND_OUTPUT_WIDE_LOCALE_CP_MSG(c);

}

Fig. 7.5: Example of a may-return call taken from function S_reginclass in perl v5.28. The call to
_force_out_malformed_utf8_message will not return since the boolean flag die_here is
set to 1. The macro NOT_REACHED expands to __builtin_unreachable in gcc and clang.
That is, it hints the compiler that this particular call will not return.

geting a guarded coverage update instruction. The guard is simply a short jump j<negated

condition>. In this way, the coverage update instruction will be executed only if the guard
<condition> is satisfied. The detour can be flexibly inserted around a particular cmov, but we
must ensure that the guard jmp reads the exact CPU flags of cmov. However, this schememight
not be practical in ISAs like ARMv7, where the majority of instructions can be predicated.

Threats to validity. The subjects we selected for evaluation are written in both C and
C++ by different software teams. Also, they are publicly available, well maintained, and
include extensive test suites. Moreover, our subjects are relatively large and offer diverse
functionality. Based on this, we believe that we addressed the internal threats to validity to a
satisfactory level. However, similar to the majority of scientific experiments, there might still
be concerns regarding the external validity of our results. Our subjects are representative of
user-space software in Linux. However, generalizing our results to other operating systems
requires further investigation. Also, our static approach cannot be directly applied to dynamic
code, e.g., JIT code. While the simple primitives we use to implement detours and update
coverage apply to system software like kernel modules, special considerations might exist,
e.g., overlapping instructions.
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Conclusion and Outlook

We conclude by summarizing our key contributions and discussing potential future work.
Speculative disassembly. Disassembly is the first step for virtually all static binary

analyses. We have shown that speculative disassembly can provide a principled framework to
accurately identify instructions in stripped binaries. Our method proceeds in two main phases.
First, we recover all potential basic blocks in the binary and group them into maximal blocks.
Second, we use conflict analyses to identify the most likely basic blocks. Our experiments
demonstrate interesting results outperforming the leading industry disassembler, IDA Pro. In
future work, we can implement further analyses to assist in the case where conflict analyses
are insufficient. For example, a statistical bi-gram analysis can further indicate that a particular
sequence of instructions is more likely.

Function identification. The function is a core abstraction in software analysis. In the
case where symbol information is available, we have shown how functions can be easily
identified based on the contiguous function model. In stripped binaries, Call-Frame Infor-
mation (CFI) records are a valuable source of function definitions. However, this source is
often overlooked in the literature. Therefore, we show that CFI records are largely complete
in stripped off-the-shelf binaries, which further widens the applicability of our techniques.
Furthermore, we proposed a CFG-based identification technique to address the case where
binaries are stripped from CFI records.

Jump table analysis. Tracking coverage requires a fine-grained level of instrumenta-
tion, which requires, in turn, a precise analysis for jump tables. To this aim, we proposed
sliced microexecution as a novel technique that combines backward program slicing with
microexecution. Basically, for each indirect jump, we try hard to falsify a few hypotheses
about the behavior of jump tables. If we are not successful, then we can conclude with
high confidence that the indirect jump at hand represents a jump table. Our technique does
not rely on static approximations or brittle heuristics. The conducted experiments show
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that sliced microexecution provides superior precision and robustness compared to IDA Pro.
Additionally, we moved a step further by instrumenting jump table entries for the first time
to our knowledge, which further pushed the state of the art in binary instrumentation.

Probe optimization. Instrumenting all basic blocks is both expensive and unnecessary.
Therefore, a probe pruning technique should be implemented to improve efficiency. We have
chosen Agrawal’s technique and demonstrated that in comparison to alternatives, it provides
superior accuracy while instrumenting a comparable number of basic blocks. Further, we
leveraged the flexibility that superblocks provide to optimize the selection of probes. Our
probe selection scheme is simple yet effective in reducing overhead. We believe that more
sophisticated selection techniques can offer additional efficiency gains, for example, by
avoiding loop heads when possible.

Static instrumentation. In this work, we developed several techniques to transparently
instrument binaries with low overhead. We showed that a limited number of simple yet
powerful instruction rewriting primitives, examples of which are depicted in Table 5.2, can
allow code to be transparently relocated to the trampoline segment. Additionally, the un-
precedented precision of CFG recovered by bcov has opened new opportunities for exploiting
padding bytes and systematically hosting detours in neighboring basic blocks. These tech-
niques allowed us to relocate only what is necessary, instead of relocating entire functions
as implemented in PEBIL [82], for example. Also, we discussed how to patch an ELF file by
inserting additional segments and shown that it is generally possible to patch ELF binaries
without modifying the build system.

Outlook. If we had to summarize the core contribution of this work in one sentence, then
it will be: coverage analysis at the binary level can be efficient and transparent without requiring
compiler support. To validate this claim, we combined several techniques and efficiently
implemented them in software prototypes. Then, we used this software to conduct large
experiments on several popular packages like FFmpeg and LLVM. Our prototypes are publicly
available and open source. This lays the groundwork for interesting future work that can
follow many directions. For example, researchers might want to explore other applications of
static instrumentation beyond coverage analysis like profiling and fuzzing.

Additionally, insisting on not requiring compiler support had allowed us to gain generality,
but this comes at a high cost in instrumentation efficiency. In fact, our experiments show that
inserting detours and subsequent code relocation account for 96% of the overall performance
overhead. This overhead can be largely avoided by inlining coverage update instructions
directly in the original code. However, code inlining would probably require some support
from the compiler to correctly relocate basic blocks. For example, the post-link optimizations
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implemented in BOLT [99], which include basic block reordering, require the compiler to
emit code relocations, among other information.

To conclude, coverage analysis was traditionally limited to compiler instrumentation and
dynamic binary instrumentation, we hope that this work has convinced you that static binary
instrumentation is a viable alternative even without compiler support.
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Zusammenfassung

Die Code-Abdeckungsanalyse spielt eine wichtige Rolle im Software-Testprozess. Strukturelle
Abdeckungsmetriken wie Statement- und Verzweigungsabdeckung können das Vertrauen in
ein zu testendes Programm (PUT) stärken oder zumindest ungetesteten Code identifizieren.
In letzte Jahre hat die bemerkenswerte Effektivität des Abdeckungsfeedbacks ein breites In-
teresse an Feedback-gesteuertem Fuzzing ausgelöst. In dieser Arbeit diskutieren wir statische
Instrumentierungstechniken, die eine Abdeckungsanalyse auf binärer Ebene ohne Com-
pilerunterstützung ermöglichen. Wir zeigen, dass die vorgeschlagenen Techniken präzise,
effizient und transparent sind und den Stand der Technik deutlich übertreffen.

Wir implementieren diese Techniken in zwei Tools, nämlich Spedi und bcov. Beide Tools
sind quelloffen und öffentlich verfügbar. Spedi zeigt, dass die Disassemblierung und Funk-
tionsidentifikation von gestrippten Binärdateien ohne Rückgriff auf externe Informationen
sehr genau sein kann. Wir bauen auf diesen wichtigen Ergebnissen in bcov auf, wo wir
x86-64 ELF-Binärdateien statisch instrumentieren, um Code-Abdeckung zu ermitteln. Die
Verbesserung der Effizienz und die Skalierung auf große, existierende Software erforderte
jedoch eine orchestrierte Lösung, die viele Techniken kombiniert.

Zuerst bringen wir eine bekannte Probe-Beschneidungstechnik zum ersten Mal zur Binär-
Instrumentierung ein und nutzen effektiv den Begriff der Superblöcke, um den Overhead
zu reduzieren. Zweitens führen wir Sliced Microexecution ein als eine robuste Technik für
die Analyse von Sprungtabellen, die CFG-Präzision verbessert und die Instrumentierung
von Sprungtabelleneinträgen ermöglicht. Zusätzlich stellen die kleineren Anweisungen in
x86-64 eine Herausforderung für das Einfügen von Detours dar. Um diese Herausforderung
zu meistern, nutzen wir Padding Bytes aggressiv aus. Außerdem führen wir ein Greedy-
Algorithmus ein, um systematisch Detours in benachbarte Basisblöcke einzubauen.

Wir evaluieren bcov auf einem Korpus von 95 Binärdateien, die aus acht populären
und gut getesteten Programmen wie FFmpeg und LLVM kompiliert wurden. Zwei Instru-
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mentierungsverfahren mit unterschiedlicher Kantengenauigkeit werden verwendet, um alle
Funktionen in diesem Korpus zu patchen - über 1,6 Millionen Funktionen. Unsere präzises
Verfahren hat einen durchschnittlichen Leistungs- und Speicher-Overhead von 14% bzw.
22 %. Instrumentierte Binärdateien führen keine Testregressionen ein. Die Genauichkeit der
berichteten Abdeckung ist hoch mit einem durchschnittlichen F-Score von 99,86 %. Schließlich
ist unsere Sprungtabellenanalyse vergleichbar mit der von IDA Pro auf gcc-Binärdateien und
übertrifft sie auf Clang-Binärdateien.

Unsere Arbeit zeigt, dass statische Instrumentierung einzigartige Vorteile im Vergleich
zu etablierten Methoden wie Compiler-Instrumentierung und dynamischer Binärinstrumen-
tierung bieten kann. Sie öffnet auch die Tür für viele interessante Anwendungen der statischen
Instrumentierung, die weit über die Code-Abdeckungsanalyse hinausgehen können.

9.1 Zusammenfassung der Techniken

Hier werden die Techniken und Ergebnisse dieser Arbeit kurz zusammengefasst.

9.1.1 Spekulative Disassemblierung

Die Disassemblierung ist der erste Schritt für praktisch alle statischen Binäranalysen. Wir
haben gezeigt, dass spekulative Disassemblierung ein prinzipielles Rahmenwerk zur genauen
Identifizierung von Anweisungen in gestrippten Binärdateien. Unsere Methode läuft in
zwei Hauptphasen ab. Als erstes stellen wir alle potenziellen Basisblöcke in der Binärdatei
und gruppieren sie in Maximalblöcke. Zweitens verwenden wir Konfliktanalysen, um die
wahrscheinlichsten Basisblöcke zu identifizieren. Unsere Experimente zeigen interessante
Ergebnisse, die den führenden Industrie-Disassembler, IDA Pro, übertreffen. In zukünftiger
Arbeit können wir weitere Analysen implementieren, um den Fall zu unterstützen, dass Kon-
fliktanalysen unzureichend sind. Zum Beispiel eine statistische Bi-Gramm-Analyse anzeigen
kann, dass eine bestimmte Sequenz von Anweisungen wahrscheinlicher ist.

9.1.2 Funktionsidentifikation

Die Funktion ist eine Kernabstraktion in der Softwareanalyse. Für den Fall, dass Symbolinfor-
mationen zur Verfügung stehen, haben wir gezeigt, wie Funktionen auf der Grundlage des
zusammenhängenden Funktionsmodells leicht identifiziert werden können. In gestrippten
Binärdateien sind Call-Frame Information (CFI)-Datensätze eine wertvolle Quelle für Funk-
tionsdefinitionen. Diese Quelle wird jedoch in der Literatur oft übersehen. Daher zeigen
wir, dass CFI-Datensätze in gestrippten Standard-Binärdateien weitgehend vollständig sind,
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was die Anwendbarkeit unserer Techniken weiter ausweitet. Außerdem stellen wir eine
CFG- basierte Identifizierungstechnik vor für den Fall, dass Binärdateien aus CFI Datensätzen
entfernt worden sind.

9.1.3 Analyse der Sprungtabellen

Die Analyse der Code-Abdeckung benötigt eine feinkörnige Instrumentierung, die wiederum
eine präzise Analyse für Sprungtabellen erfordert. Zu diesem Zweck haben wir die Sliced
Microexecution als neue Technik vorgeschlagen, die Backward Program Slicing mit Microex-
ecution kombiniert. Grundsätzlich versuchen wir für jeden indirekten Sprunganweisung,
einige Hypothesen über das Verhalten von Sprungtabellen zu falsifizieren. Wenn uns das
nicht gelingt, dann können wir mit hoher Sicherheit davon ausgehen, dass der betreffende in-
direkte Sprunganweisung eine Sprungtabelle darstellt. Unsere Technik verlässt sich nicht auf
statische Approximationen oder spröde Heuristiken. Die durchgeführten Experimente zeigen,
dass Sliced Microexecution im Vergleich zu IDA Pro eine höhere Präzision und Robustheit
bietet. Außerdem sind wir einen Schritt weiter gegangen, indem wir Sprungtabelleneinträge
instrumentiert, was den Stand der Technik im binären Instrumentierung weiter vorantreibt.

9.1.4 Optimierung der Probes

Die Instrumentierung aller Basisblöcke ist sowohl aufwändig als auch unnötig. Daher sollte
eine Probe-Beschneidungstechnik implementiert werden, um die Effizienz zu verbessern. Wir
haben die Technik von Agrawal gewählt und gezeigt, dass sie im Vergleich zu Alternativen eine
höhere Genauigkeit bietet trotz die vergleichbare Anzahl von instrumentierten Basisblöcken.
Außerdem haben wir die Flexibilität genutzt, die die Superblöcke bieten, um die Auswahl der
Probes zu optimieren. Unsere Strategie zur Auswahl der Probes ist einfach aber effektiv bei der
Reduzierung des Overheads. Wir glauben, dass ausgefeiltere Auswahltechniken zusätzliche
Effizienzgewinne bieten können, zum Beispiel durch die Vermeidung von Schleifenköpfen,
wenn dies möglich ist.

9.1.5 Statische Instrumentierung

In dieser Arbeit haben wir mehrere Techniken entwickelt, um Binärdateien mit geringem
Overhead transparent zu instrumentieren. Außerdem haben wir gezeigt, dass eine begren-
zte Anzahl einfacher, aber leistungsfähiger Anweisungen-Umschreibprimitive, von denen
Beispiele in Tabelle 5.2 dargestellt sind, eine transparente Verlagerung von Code in das
Trampolin-Segment ermöglichen können. Zusätzlich eröffnete die einzigartige Präzision
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der von bcov rekonstruierten CFG neue Möglichkeiten zur Ausnutzung von Padding-Bytes
und zur systematischen Unterbringung von Umwegen in benachbarten Basisblöcken. Diese
Techniken erlaubten es uns, nur das Nötigste zu verlagern, anstatt ganze Funktionen zu
verlagern, wie es z. B. in PEBIL [82] implementiert ist. Außerdem haben wir besprochen, wie
man eine ELF-Datei durch Einfügen zusätzlicher Segmente patchen kann, und gezeigt, dass
es generell möglich ist, ELF-Binärdateien zu patchen, ohne das Build-System zu modifizieren.

9.2 Ausblick

Wenn wir den Kernbeitrag dieser Arbeit in einem Satz zusammenfassen müssten, dann wäre
es sein: Die Abdeckungsanalyse auf binärer Ebene kann effizient und transparent sein, auch
ohne Compiler-Unterstützung. Um diese Behauptung zu validieren, haben wir mehrere Tech-
niken kombiniert und effizient in Software-Prototypen implementiert. Anschließend haben
wir mit diesen Prototypen umfangreiche Experimente mit mehreren populären Program-
men wie FFmpeg und LLVM durchgeführt. Unsere Prototypen sind öffentlich verfügbar und
quelloffen. Dies legt den Grundstein für interessante zukünftige Arbeiten, die in viele Rich-
tungen gehen können. Zum Beispiel könnten Forscher andere Anwendungen von statischer
Instrumentierung jenseits der Abdeckungsanalyse wie Profiling und Fuzzing erforschen.

Außerdem haben wir durch den Verzicht auf Compiler-Unterstützung an Allgemeinheit
gewonnen, was jedoch einen hohen Preis für die Effizienz der Instrumentierung bedeutet. In
der Tat zeigen unsere Experimente, dass das Einfügen von Detours und die anschließende
Codeverschiebung 96% der Gesamtleistung Overhead verursacht. Dieser Overhead kann
weitgehend vermiedet werden durch das Inlinen von Anweisungen zur Aktualisierung der
Abdeckung direkt in den ursprünglichen Code. Allerdings würde Code-Inlining wahrschein-
lich eine gewisse Unterstützung durch den Compiler, um Basisblöcke korrekt zu verschieben.
Zum Beispiel sind die Post-Link-Optimierungen, die in BOLT [99] implementiert sind und die
die Neuordnung von Basisblöcken beinhalten, erfordern vom Compiler “Code Relocations”,
neben anderen Informationen, auszugeben.

Abschließend sei gesagt, dass die Code-Abdeckungsanalyse traditionell auf die Compiler-
Instrumentierung und die dynamische Binär-Instrumentierung beschränkt war. Wir hoffen,
dass diese Arbeit Sie davon überzeugt hat, dass die statische Binär-Instrumentierung auch
ohne Compiler-Unterstützung eine sinnvolle Alternative darstellt.
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