
RESEARCH ARTICLE

Evolution of cancer stem cell lineage involving

feedback regulation

Iqra BatoolID, Naim Bajcinca*

Faculty of Mechanical and Process Engineering, Technische Universität Kaiserslautern, Kaiserslautern,

Rheinland Pfalz, Germany

* naim.bajcinca@mv.uni-kl.de

Abstract

Tumor emergence and progression is a complex phenomenon that assumes special molec-

ular and cellular interactions. The hierarchical structuring and communication via feedback

signaling of different cell types, which are categorized as the stem, progenitor, and differenti-

ated cells in dependence of their maturity level, plays an important role. Under healthy con-

ditions, these cells build a dynamical system that is responsible for facilitating the

homeostatic regulation of the tissue. Generally, in this hierarchical setting, stem and progen-

itor cells are yet likely to undergo a mutation, when a cell divides into two daughter cells.

This may lead to the development of abnormal characteristics, i.e. mutation in the cell, yield-

ing an unrestrained number of cells. Therefore, the regulation of a stem cell’s proliferation

and differentiation rate is crucial for maintaining the balance in the overall cell population. In

this paper, a maturity based mathematical model with feedback regulation is formulated for

healthy and mutated cell lineages. It is given in the form of coupled ordinary and partial dif-

ferential equations. The focus is laid on the dynamical effects resulting from acquiring a

mutation in the hierarchical structure of stem, progenitor and fully differentiated cells. Addi-

tionally, the effects of nonlinear feedback regulation from mature cells into both stem and

progenitor cell populations have been inspected. The steady-state solutions of the model

are derived analytically. Numerical simulations and results based on a finite volume scheme

underpin various expected behavioral patterns of the homeostatic regulation and cancer

evolution. For instance, it has been found that the mutated cells can experience significant

growth even with a single somatic mutation, but under homeostatic regulation acquire a

steady-state and thus, ensuing healthy cell population to either a steady-state or a lower cell

concentration. Furthermore, the model behavior has been validated with different experi-

mentally measured tumor values from the literature.

Introduction

A tissue structure is comprised of various cell types arranged in a hierarchy according to spe-

cific characteristics, properties and functionalities. Typically, stem cells have the inherent

property of indefinite self-renewal and differentiation into specialized cells [1]. Self-renewal in
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stem cells results in the production of the cells identical to the parent [2]. As sources of a line-

age structure, stem cells produce progenitor cells via differentiation and their properties vary

accordingly. For a given cell type, cell lineage has to undergo a number of maturity levels

between the stem and differentiated cells. At the end of a cell line, the progenitor cells give rise

to a mature cell population which does not possess the power to proliferate anymore, but can

only experience apoptosis (the programmed cell death [3]). The specialised functions in the tis-

sue are performed by mature cells, while the tissue homeostasis is preserved by regulating the

ratio of stem cells’ self-renewal rate to differentiation. According to tumor stem cell hypothesis

[4], cancer invasion and maintenance is driven by a small number of cells possessing the prop-

erties of stem cells. It has been observed that cancer initiating cells are characterized by high

proliferative potential, capability to differentiate into diverse phenotypes and strength to

escape apoptosis [4, 5]. In fact, these so-called “tumor-initiating cells” are stem cells that have

acquired mutations [4], while the rest of the tumor cells are either mutated progenitor or dif-

ferentiated cells. The latter can undergo apoptosis and are less likely responsible to invade and

persist the tumor [6]. Therefore, it has been suggested to eradicate the cancer stem cells by

treatment to completely eliminate the cancer [7]. This motivates particularly the study of stem

cell dynamics and their role in the cancer evolution. In this sense, the present paper tends to

develop a mathematical modeling framework, which is useful to predict the observed behav-

ioral patterns of cancer evolution and, additionally, help in a purposeful impact by means of

external inputs (e.g. radiation) which leads to mutation acquisition.

Tumor development results from acquiring mutations and escaping the enzyme-coded fix-

ation process [8]. After acquiring a nonsense mutation, it can increase in number via cell divi-

sion. Although not all mutations are harmful, certain mutations can contribute to malignant

cell growth when acquired successively. While there exist various types of mutations, the ones

which are crucial to cancer are characterized by enhanced proliferative potential, reduced apo-

ptosis, genetic instability and reduced tumor suppression [5]. It has also been observed that

typically one to ten mutations are required in a cell to revamp into a malignant one [5, 9, 10].

The mutated cells also possess a progeny, because these cells not only proliferate, but can also

differentiate to successive cell types. In other words, there exists another hierarchical structure

of mutated (i.e. cancer) cells besides the healthy one. Herein, the interesting aspect to study is

the joint evolution of both progenies sharing the same environment.

The functionality of any multi-cellular organism as a whole depends greatly on the active

feedback regulation process [11]. The loss of this homeostatic control escalates the growth of

cells in the tissue which culminate in the advent of cancer. The precise nature of this feedback

is not known [11]. In the literature, it is assumed that the mature cells secrete feedback signals

which manipulate the stem cell’s division strength in order to maintain the balance between its

self-renewal and differentiation rate [11]. The escalating growth of the cell population may

approach the steady-state due to the effects induced by the feedback [12]. Various cell lineage

frameworks have been introduced in the literature to investigate the dynamics of tissue regula-

tion via feedback loop [11–13]. For a structural inspection of the feedback in a system consist-

ing of two different cell lines with distinct properties, it is necessary to consider a model of

each sub-population. The latter is based on the assumption that in every lineage, there exist a

chain of maturation stages, which is sequentially arranged [14, 15].

Maturity represents a quantitative macroscopic measure which characterises cell differenti-

ation. A variety of mathematical models have been formulated for explicit modeling of each

cell subpopulation in a lineage using discrete [11, 12, 16–23] cell maturity representations. The

discrete modeling paradigm assumes that maturation occurs only during the division of a cell,

yielding a sequence of maturation stages. However, it is becoming evident that differentiation

inherently displays continuous transitions. For instance, in neurogenesis cell differentiation
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without cell divisions are reported [24] and in haematopoiesis, stem cell lineage commitment

is described to be a continuous process [25]. Besides, in some tissues, such as the mammary

gland, different differentiation stages are not well-identified [26]. In addition to these experi-

mental evidences, a rationale for considering continuous maturity representation is provided

by the fact that differentiation is controlled by intracellular biochemical processes, which are

continuous in time, at least when averaged over a large number of cells. Finally, modeling con-

tinuous maturation is exceptionally relevant considering the heterogeneity observed in various

cancers (e.g. in breast cancer [27]) and thus necessitates a continuous maturity structured

modeling approach. In the literature, continuous maturity structured models have been pro-

posed in [28–30], where maturity is defined by a continuous variable which stands for the

remaining proliferative potential of the cell and its capability to perform cellular functions. In

[29], a continuous maturity structured model of granulopoiesis has been developed using par-

tial differential equations (PDEs) for bone marrow granulocyte precursors and ordinary differ-

ential equation (ODE) for the blood granulocytes. The population of stem cells is assumed to

be constant. The proliferation and mobilization rates along with apoptosis were modeled as

functions of cell maturity. The scaled maturity level lies between zero and one. While the

authors focused on the identification of the fastest mutation sequences leading to emergence

of the cancer, the feedback regulation from the mature cells was entirely neglected. Due to the

lack of regulation, such structures produce unbounded growth of cell populations only, and in

particular can not predict steady-state evolution. On the other hand, in [30], the authors have

used a similar maturity based continuous model along with additional stem cell dynamics in

the form of an ODE model. The model is rather general and supports hierarchical structures

of cell lineage. As opposed to [30], we assign a separate sub-population to mature cells

and introduce the feedback homeostatic regulation therefrom, which has been neglected in

both [29, 30]. Our model provides a generic framework to investigate the dynamics involved

in the evolution of both normal and mutated cell populations under continuous maturation

process and feedback regulation. The main motivation behind this model is to develop an

insight into the process, while taking into account most relevant features of this multi-step

process.

In the present paper, we consider the dynamical interaction of three different sub-popula-

tions: (i) the stem, (ii) progenitor and (iii) differentiated cells, while highlighting the effects of

feedback regulation from the mature cell population. More specifically, we analyze the cou-

pling of two progenies consisting of healthy and mutated cells, while our main interest lies in

investigating the feedback regulation from the separately modeled dynamics of mature cell

population into the stem and maturity structured progenitor cell populations. In our frame-

work, the stem and differentiated cells are modeled using ODEs, assuming minimum and

maximum maturity, respectively, while PDEs with continuous maturity distributions are used

to predict the evolution of the progenitor cells. In particular, the differentiation rate is not

assumed to be constant as in [30], it is rather considered to be a function of maturity. Although

there exist several models with feedback regulation in the literature, to our best knowledge,

this is a first attempt to cover the feedback regulation in a more generic framework of stem cell

lineage with continuous maturity distribution along with the mutated cell lineage resulting

from the mutation acquisition in healthy cells. Finally, it is also interesting to highlight that

our mathematical model can predict the stem cell hypothesis, claiming that even a small num-

ber of mutated stem cells can invade the overall cell population.

The paper is organized as follows. In the sequel, we introduce our model of stem cell lineage

for both healthy and mutated cell populations. Then, the steady-state solution are derived ana-

lytically in the following section. After that, we present the simulations of the developed

model, its validation using the experimental data from the literature and the numerical scheme
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that has been implemented to find numerical solution. Finally, we conclude with the short

outlook.

Methods

Mathematical model

The mathematical model of the stem cell line is rather complex as the cells vary continuously

in course of maturation with time. In the present paper, instead of considering the evolution

of net cell population, we split it into different sub-populations to account for their specific

dynamics, as depicted in Fig 1. The very initial cell state, i.e., stem cells, has the potential to

stay undifferentiated and not to divide frequently under the conditions of homeostatic regula-

tion [1, 31, 32]. As a middle stage in the cell evolution from stem cells all the way to full differ-

entiation, we discriminate the progenitor cells, which undergo proliferation at relatively high

rates and give rise to the population of fully mature cells. In the process of maturation, the pro-

liferative potential and mortality rate of progenitor cells vary drastically until the terminal dif-

ferentiation. To capture these dynamical effects, it is necessary to consider the maturity

distribution of progenitor cells, which is mathematically described by means of PDEs. The last

transition stage in the cell line from progenitor cells refers to fully mature cells that are special-

ized to perform their functions in the respective tissue without further division, and undergo

apoptosis after a short span of life.

The schematics of our model in Fig 1 depicts the possible interactions between subsequent

cell types ensuing from symmetric/asymmetric self-renewal, mutation, differentiation and

apoptosis. The two parallel cell lines refer to the healthy and mutated cells (perhaps cancer, if

cells acquire a lethal mutation) with zero and one mutation, respectively. Notice that, we con-

sider only one mutation to keep the model simple for investigation. The model can be scaled

up easily to the acquisition of multiple mutations. The potential for self-renewal is labeled as

the property only for the stem cells in both healthy and mutated states, while the differentia-

tion of cells is undertaken by both stem cell and progenitor cell populations. However, apopto-

sis can occur at all transition states with a certain rate. Since the number of cells increases with

each step of maturation [33], the evolution scheme of all cell states as described above may

lead to abnormal growth tending towards an unbounded number of cells. To avoid such unre-

strained behavior of cell growth, one has to introduce feedback regulation. The modeling

scheme in Fig 1 enables investigation of the dynamical behavior (i.e., evolution and control) of

Fig 1. Schematics of the model. Co-evolution of normal and mutated cells in the presence of feedback regulation. The

model captures the evolution of stem cell lineages with zero and one mutation. Stem cells can self-renew, differentiate

and undergo apoptosis. The resulting progeny continues to proliferate until terminally differentiates into mature cells.

Note that, during the division of a cell, there is a probability of getting a mutation. The feedback originates from the

mature cells and thus regulates the self-renewal and proliferation rate of stem and progenitor cells, respectively.

https://doi.org/10.1371/journal.pone.0251481.g001
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the overall cell population with and without feedback homeostatic regulation. The discrete

compartmental setting of the model facilitates the implementation and withdrawal of the feed-

back signals into and from the different transition states, respectively.

In the sequel, we explain the governing model equations for the cell lineage dynamics of

healthy and mutated cells. Thereby, C0(t) and C1(t) refer to the number of stem cells with zero

and one mutation, respectively. Similarly, P0(x, t) and P1(x, t) correspond to the progenitor

cells with zero and one mutation, respectively, while M0(t) and M1(t) refer to the number of

fully differentiated healthy and mutated cell populations. As the cells in the compartment of

the stem and mature cells are assumed to behave alike, one can infer a modeling scheme in the

form of ODEs. On the other hand, the healthy and mutated progenitor cells require a property

space, with cell maturity as a property variable. Since all the intermediate transitioning cell

states between stem and fully differentiated cells are modeled as progenitor cells, the cells

therein continuously differentiate to higher maturity states. Thus, the progenitor cells in both

healthy and mutated states require PDEs.

Stem cell population. Stem cells are assumed to possess zero maturity level and they define

the boundary conditions for the progenitor cell population at minimum maturity. The pri-

mary characteristics of stem cells responsible for their evolution are self-renewal and differen-

tiation. The self-renewal can occur in two different ways, symmetrically or asymmetrically.

Either way, there is a probability of acquiring a mutation during the division process, this

yields an influx into the mutated stem cell population. On the other hand, differentiation of

stem cells without mutation acquisition results in healthy progenitor cells, and those with a

mutation influence to mutated progenitor cells. The stem cell population increases by symmet-

ric self-renewal only, whereas the other mechanisms, e.g., mutation acquisition and differenti-

ation, cause a decrement. The dynamical behavior of the stem cells is then described by the

following mathematical expressions

d
dt

C0ðtÞ ¼ ½ð1 � 2mÞaS0
ðsÞ � maA0

ðsÞ � aD0
ðsÞ � dC0

�k0C0ðtÞ; ð1Þ

d
dt

C1ðtÞ ¼ ½aS1
ðsÞ � aD1

ðsÞ � dC1
�k1C1ðtÞ þ ½2maS0

ðsÞ þmaA0
ðsÞ�k0C0ðtÞ: ð2Þ

The initial conditions of healthy and mutated stems cells are C0(0) = c0 and C1(0) = c1, respec-

tively. In the above equations, k0 and k1 are the proliferation rates of stem cell with zero and

one mutation, respectively. The first term on the right-hand side in Eq (1) refers to symmetric

self-renewal with probability aS0
, which results either in a decrement in the stem cell popula-

tion by one, if the stem cells acquire a mutation with rate m, i.e. � aS0
ðsÞmk0C0, or increase the

pool by one in case of no mutation, i.e. ð1 � mÞaS0
ðsÞk0C0. The second term represents an

asymmetric self-renewal of stem cells with probability aA0
in which the stem cells decrease by

one, while asymmetrically self-renewing and acquiring a mutation. The third term represents

the differentiation of stem cells with probability aD0
, which is always followed by a decrement

in stem cell population by one. The resulting progeny from the differentiation of cells will

influx into the progenitor cell population. Note that the feedback signal s has been introduced

into the stem cell probability of self-renewal (symmetric/asymmetric) and differentiation to

maintain tissue homeostasis. This feedback signal is determined by the mature cell population,

as shown below in Eq (12). Finally, the fourth term describes the death of stem cells with a rate

of dC0
, which reduces the stem cell population by one.

In Eq (2), the first three terms in a square bracket on the right-hand side describe the sym-

metric self-renewal, differentiation and death of mutated stem cells C1 with the probability of
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aS1
aD1

, and dC1
, respectively. The last two terms (in the second square bracket) correspond to

the influx from healthy stem cell population C0 as a consequence of mutations acquired during

symmetric and asymmetric self-renewal, Eq (1).

Progenitor cell population. The maturity distribution of progenitor cells represented by

P0(x, t) and P1(x, t) constitutes of all maturity stages between stem and mature cell populations

with x as maturity variable. Obviously,
R x2

x1
Piðx; tÞdx, i = 0, 1, is equal to the number of cells

between maturity x1 and x2. The governing equations and the initial conditions for normal

and mutated progenitor cells read:

@tP0ðx; tÞ þ @x½g0ðxÞP0ðx; tÞ� ¼ ½ð1 � 2m0Þb0ðx; sÞ � m0ðxÞ�P0ðx; tÞ; ð3Þ

@tP1ðx; tÞ þ @x½g1ðxÞP1ðx; tÞ� ¼ ½b1ðx; sÞ � m1ðxÞ�P1ðx; tÞ þ 2m0b0ðx; sÞP0ðx; tÞ; ð4Þ

with initial conditions P0(x, 0) = p0(x), P1(x, 0) = p1(x) and boundary conditions

g0ð0ÞP0ð0; tÞ ¼ ½2ð1 � mÞaD0
ðsÞ þ ð1 � mÞaA0

ðsÞ�k0C0ðtÞ; ð5Þ

g1ð0ÞP1ð0; tÞ ¼ ½2aD1
ðsÞ þ aA1

ðsÞ�k1C1ðtÞ þ ½2maD0
ðsÞ þmaA0

ðsÞ�k0C0ðtÞ; ð6Þ

for t> 0.

The functions g0(x) and g1(x) stand for the differentiation rate of progenitor cells with zero

and one mutation, respectively. On the right-hand side of Eq (3), the first and second terms in

the square bracket represent the birth and loss of progenitor cells due to a mutation with the

rate m0. The progenitor cells are assumed to acquire one mutation at a time. The proliferation

rates β0(x, s) and β1(x, s) of healthy and mutated progenitor cells depend on the maturity level

and tend to zero as the cells achieve the higher maturity level [34]. The third term describes

the apoptosis of progenitor cells P0(x, t) with maturity dependent death rate μ0(x) and gener-

ally it gets higher as the cell matures. On the right-hand side of Eq (4), the first two terms in a

square bracket represent the proliferation and death of the mutated progenitor cells with the

rate β1(x, s) and μ1(x), respectively. The last term represents the influx from the healthy pro-

genitor cells via mutation. Note that, the proliferation potential and rate of apoptosis for the

progenitor cells is defined as function of maturity. The early progenitor cells have higher pro-

liferation potential as compared to the late progenitor cells. On the other hand, as mentioned

earlier the death rate of progenitor cells is meager for early progenitor cells and increases after

differentiating to a certain maturity level [35, 36], see Fig 2(a). Although this does not hold for

all cell types but true for of haemopoietic cells. There are many choices which can be suitable

for proliferation and death rates of progenitor cells. Here, we borrow from [30] the following

functional forms for βi and μi,

biðx; sÞ ¼ �
1

2
biðsÞ tanh ðrbiðx � obi

ÞÞ þ
1

2
biðsÞ; ð7Þ

miðxÞ ¼
1

2
di tanh ðrmiðx � omi

ÞÞ þ
1

2
di; ð8Þ

where i = 0, 1, and bi and di represent the maximum rate of proliferation and apoptosis, respec-

tively. Furthermore, obi
represent the maturity level at which the progenitor cells proliferate at

half of the maximum rate and rbi refers to the steepness of the proliferation switch. Similarly,

the maturity at which progenitor cells die at half of the maximum rate isomi
and the steepness

of the switch is rmi . Here, the feedback signal s is introduced in the proliferation rate of
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progenitor cells. The behavior of the functional forms of βi (for a fixed value of feedback, i.e.,

s = 1) and μi are depicted in Fig 2(a).

Next, we introduce the differentiation function gi(x) which describes the rate at which the

cells mature. It is a strictly positive and continuously differentiable function. In the pool of pro-

genitor cells, continuous differentiation takes place alongside cellular division (maturation

process). In maturity-time representation, mitosis takes place at same maturity levels [37].

From the modeling viewpoint, it means that in an infinitesimal time interval (t, t + dt), a cell

with maturity x either matures to level x + dx with probability g(x)dt or divides into two

daughter cells with probability β(x, s)dt. The progenitor cell population is heterogeneous with

respect to cell maturation velocities [37] and typically, the maturity rate decreases along with

an increasing maturity level. In order to define g(x), we fix the maximum maturation velocity

equal to one then we use a monotonically decreasing function of the following functional form

gi(x) = exp(−hi x), i = 0, 1 in our model. Here, the differentiation functions gi(x) are bounded

between 0 and 1, thus the parameters hi are to be selected in such a way that gi(x) should not

get near zero within the specified range of maturity variable, i.e., xmin� x� xmax, see Fig 2(b).

We assume lower differentiation potential for mutated cells because poor cellular differentia-

tion is one of the important traits of cancer [38, 39].

During a division process, progenitor cells can also undergo a mutation. In this model, the

healthy progenitor cells P0(x, t) acquire a mutation with a mutation rate m0 to either proliferate

into a mutated progenitor cell population P1(x, t) or to differentiate into a mutated differenti-

ated cell population M1(x, t).
Mature cell population. The mature cell population is constituted by all the cells that attain

the maximum maturity level, i.e. x�. Here, maximum maturity is assumed to be same for both

normal and mutated cells. Normally, cancers are graded as ‘low-differentiated’ and ‘well-dif-

ferentiated’ cancers based on the level of maturation of the cells in an organ where the cancer

arises. This implies that mutated cells are as mature as normal cells in ‘well-differentiated’ can-

cers. However, mutated cells may remain immature sometimes if mutations are taking place in

early phases of maturation because mutated cells grow rapidly and divide before cells are fully

mature. Nevertheless, it is plausible to assume that also the mutates cells can achieve the maxi-

mum maturation level. Mature cells do not possess any proliferating potential and only

Fig 2. Birth, death and differentiation functions for progenitor cells. (a) Birth and death functions for both, healthy

and mutated progenitor cell populations. The solid black and red lines represent the birth and death rate of healthy

progenitor cell population, respectively, whereas the dotted black and and red lines depict the birth and death rate of

mutated progenitor cells. (b) Differentiation function of healthy and mutated progenitor cell populations represented

by black and red line, respectively.

https://doi.org/10.1371/journal.pone.0251481.g002
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undergo apoptosis after a particular time. Therefore, mature cells cannot acquire any addi-

tional mutation and are specialized to perform their assigned functions in the tissue. The fol-

lowing equations describe the healthy and mutated density of mature cells represented by

M0(t) and M1(t), respectively:

dM0

dt
¼ g0ðx

�ÞP0ðx
�; tÞ � dM0

M0; M0ð0Þ ¼ m0; ð9Þ

dM1

dt
¼ g1ðx

�ÞP1ðx
�; tÞ þ 2m0g0ðx

�ÞP0ðx
�; tÞ � dM1

M1; M1ð0Þ ¼ m1: ð10Þ

In Eq (9), the first term on the right-hand side describes the inflow into healthy mature cells

via terminal differentiation of progenitor cells with maturity rate g0(x�), while the second term

defines the apoptosis of the mature cells with a rate of dM0
. The first term on the right-hand

side of Eq (10) is the influx from fully differentiated mutated progenitor cells, and the second

term represents the influx from healthy progenitor cells due to an acquired mutation. The last

term involving the rate dM1
refers to the death of mutated mature cell population.

Feedback regulation. In the signaling mechanism among the cells, the growth response is

modulated by cytokine proteins along with other proliferation regulating factors [11]. Cyto-

kines bind to their specific membrane-associated receptors which results in the activation of

signal transduction pathways [40]. Studies have shown that in order to maintain the number

of cells in balance, these signals have to depend on the mature cell population [41, 42]. The

dynamics of cytokine signaling molecules S can be described by an ODE as: _S ¼ u � dSS �
gSM; where υ is the maximum secretion rate of cytokine signals, δS represents the natural dec-

rement of the signals S, and γ is the rate by which the total mature cell population M = M0 +

M1 (consisting of both healthy and mutated mature cells) regulate the cytokine signals. Substi-

tuting s = (δS/υ)S and ks = γ/δS, the above equation turns into

_s ¼ dSð1 � s � kssMÞ: ð11Þ

Since the cytokine signals are typically secreted at a higher rate than that of proliferation and

differentiation of the cells, these drift quickly to a steady state. Hence, using quasi-steady state

approximation, the equilibrium state for the feedback signal intensity

s ¼
1

1þ ksM
ð12Þ

follows from Eq (11). This shows that in the absence of mature cell population, the signal

intensity is maximal, i.e., s = 1, and it drops to a minimum with a significant increase in the

mature cell population. The nature of this signal can be understood as a controlling parameter

that identifies the need for proliferation based on how many cells are present in the vicinity.

These signals get weaker and weaker with a larger number of cells, i.e., there are not enough

resources critical for the division process.

The probabilities aSiðsÞ, aAi
ðsÞ and aDi

ðsÞ in Eqs (1) and (2) and the maximum birth rates

bi(s) in the birth functions βi(x, s) of progenitor cells in Eqs (3) and (4) are assumed to change

linearly in s, cf. Eq (7), given that slopes are positive which leads to the following linear forms

aSiðsÞ ¼ �aSi
s, aAi
ðsÞ ¼ �aAi

s, aDi
ðsÞ ¼ �aDi

s and biðsÞ ¼ �bis, where �aSi
, �aAi

, �aDi
and �bi represent

maximum symmetric self-renewal, maximum asymmetric self-renewal, maximum differentia-

tion of stem cell and maximum birth rate of progenitor cells, respectively.
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Results

Steady-state solutions

In this section, we derive the steady-state solutions of our governing Eqs (1)–(10). For the sake

of convenience, we hereby simplify the notation, reading

d
dt

C0ðtÞ ¼ g00ðsÞC0ðtÞ; C0ð0Þ ¼ c0 ð13Þ

d
dt

C1ðtÞ ¼ g10ðsÞC1ðtÞ þ g11ðsÞC0ðtÞ; C1ð0Þ ¼ c1; ð14Þ

for the populations of healthy and mutated cells, respectively, with γ00, γ10 and γ11 defined as

g00ðsÞ≔ ½ð1 � 2mÞaS0
ðsÞ � maA0

ðsÞ � aD0
ðsÞ � dC0

�k0 ð15Þ

g10ðsÞ≔ ½aS1
ðsÞ � aD1

ðsÞ � dC1
�k1; g11ðsÞ ¼ ½2maS0

ðsÞ þmaA0
ðsÞ�k0: ð16Þ

In a similar manner, the PDEs that describe the progenitor cells read:

@tP0ðx; tÞ þ @x½g0ðxÞP0ðx; tÞ� ¼ g0ðx; sÞP0ðx; tÞ; ð17Þ

@tP1ðx; tÞ þ @x½g1ðxÞP1ðx; tÞ� ¼ g1ðx; sÞP1ðx; tÞ þ 2m0b0ðx; sÞP0ðx; tÞ; ð18Þ

where γ0(x, s) and γ1(x, s) are given by

g0ðx; sÞ≔ ð1 � 2m0Þb0ðx; sÞ � m0ðxÞ; g1ðx; sÞ≔ b1ðx; sÞ � m1ðxÞ: ð19Þ

Finally, the equations of mature cell population stay same as before in Eqs (9) and (10). In the

sequel, we assume the following conditions:

c0; c1;m0;m1 2 R�0; p0; p1 : ½0; x�� ! R�0

g0x
; g1x
2 L1ð½0; x��Þ

b0ðx; sÞ; b1ðx; sÞ 2 L
1
ð½0; x�� � RÞ; m0ðxÞ; m1ðxÞ 2 L

1
ð½0; x��Þ

g00ðsÞ≔ g00ðMÞ is a decreasing function; i:e:; g00ðþ1Þ < 0:

9
>>>>>>>=

>>>>>>>;

ð20Þ

To address the question of the existence of any steady-state under a homeostatic regulation, we

need to solve the following system of equations, for the steady-state unknowns �C0, �C1, �P0, �P1,
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�M0 and �M1:

g00ð
�MÞ�C0 ¼ 0 ð21Þ

g10ð
�MÞ�C1 þ g11ð

�MÞ�C0 ¼ 0 ð22Þ

d
dx
½g0ðxÞ�P0ðxÞ� ¼ �g0ðxÞ�P0ðxÞ ð23Þ

d
dx
½g1ðxÞ�P1ðxÞ� ¼ �g1ðxÞ�P1ðxÞ þ 2m0�b0ðxÞ�P0ðxÞ ð24Þ

g0ðx
�Þ�P0ðx

�Þ � dM0

�M0 ¼ 0 ð25Þ

g1ðx
�Þ�P1ðx

�Þ þ 2m0g0ðx
�Þ�P0ðx

�Þ � dM1

�M1 ¼ 0; ð26Þ

with �g0ðxÞ≔ g0ðx; �MÞ, �g1ðxÞ≔ g1ðx; �MÞ and �b0ðxÞ ¼ b0ðx; �MÞ and the boundary conditions

given as

g0ð0Þ
�P0ð0Þ ¼ ð1 � mÞ½2aD0

ð �MÞ þ aA0
ð �MÞ�k0

�C0 ð27Þ

g1ð0Þ
�P1ð0Þ ¼ ½2aD1

ð �MÞ þ aA1
ð �MÞ�k1

�C1 þm½2aD0
ð �MÞ þ aA0

ð �MÞ�k0
�C0: ð28Þ

The trivial steady-state, i.e., �C0 ¼ 0, �C1 ¼ 0, �P0 ¼ 0, �P1 ¼ 0, �M0 ¼ 0, �M1 ¼ 0 is evident from

Eqs (21)–(26). However, the system also admits a non-trivial steady-state under the assump-

tion γ00(0) > 0. In this case, from Eq (21) we get immediately

g00ð
�MÞ ¼ 0: ð29Þ

Now, using Eq (15) in the above relation, we obtain:

½ð1 � 2mÞaS0
ð �MÞ � maA0

ð �MÞ � aD0
ð �MÞ � dC0

�k0 ¼ 0; ð30Þ

where the probabilities aS0
ð �MÞ, aA0

ð �MÞ, and aD0
ð �MÞ are defined as

aS0
ð �MÞ ¼

�aS0

1þ ks �M
; aA0

ð �MÞ ¼
�aA0

1þ ks �M
; aD0

ð �MÞ ¼
�aD0

1þ ks �M
; ð31Þ

and �aS0
, �aA0

; �aD0
2 R>0. By employing the above relations in Eq (30), we derive the relation for

�M , which is:

�M ¼
1

ksdC0

½ð1 � 2mÞ�aS0
� m�aA0

� �aD0
� dC0

�: ð32Þ

Next, to solve the ODEs (23) and (24) for progenitor cells, we compute the boundary condi-

tions at the final maturity, i.e., x = x� from the Eqs (25) and (26)

�P0ðx�Þ ¼
dM0

�M0

g0ðx�Þ
; �P1ðx

�Þ ¼ �
2m0dM0

�M0

g1ðx�Þ
þ
dM1

�M1

g1ðx�Þ
: ð33Þ
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The steady-state values result by solving the ODEs (23) and (24) for the healthy and mutated

progenitor cells �P0ðxÞ and �P1ðxÞ:

�P0ðxÞ ¼
dM0

�M0

g0ðxÞ
ef0ðxÞ; ð34Þ

�P1ðxÞ ¼
ef1ðxÞ

g1ðxÞ
2m0

Z x�

x
e� f1ðxÞ�b0ðxÞ�P0ðxÞdx � 2m0dM0

�M0 þ dM1

�M1

� �

; ð35Þ

with

f0ðxÞ≔
Z x�

x

�g0ðxÞ

g0ðxÞ
dx; f1ðxÞ≔

Z x�

x

�g1ðxÞ

g1ðxÞ
dx: ð36Þ

Further, we use the boundary conditions given in Eqs (27) and (28) to compute the steady-

state values of healthy and mutated stem cells, respectively

�C0 ¼
dM0

�M0ð1þ ks �MÞ
k0ð1 � mÞ½2�aD0

þ �aA0
�
ef0ð0Þ ð37Þ

�C1 ¼
1þ ks �M

k1½2�aD1
þ �aA1

�
l1e

f1ð0Þ �
mdM0

�M0

1 � m
ef0ð0Þ

� �

; ð38Þ

where l1 ≔ 2m0�b0ð0Þ
�P0ð0Þ

R x�

0
ef1ð0Þdx � 2m0dM0

�M0 þ dM1

�M1. Eventually, we derive the

steady-state relation for mutated mature cells �M1 from Eq (22):

�M1 ¼
1

dM1
ef1ð0Þ

l2dM0

�M0

ð1 � mÞ
� 2m0ef1ð0Þ�b0ð0Þ

�P0ð0Þ

Z x�

0

ef1ð0Þdx
� �

ð39Þ

where l2 ¼ 2m0ð1 � mÞef1ð0Þ þmef0ð0Þ � g11k1ð2�aD1
þ�aA1

Þ

g10k0ð2�aD0
þ�aA0

Þ
ef0ð0Þ:Note that, the steady-state relation

for healthy mature cells �M0 can be easily determined utilizing Eqs (32) and (39).

From the above derivation of steady-states, we can summarise the following observations.

The steady-states of our coupled nonlinear model cannot be defined explicitly, but the sum of

the steady-states of healthy and mutated mature cells, used to compute feedback can be repre-

sented by an explicit relation. Moreover, the steady-states of stem and progenitor cells highly

depend on the steady-state of mature cells due to the feedback inclusion.

Model simulations

In this section, we present the model simulations for illustration purposes. The initial states

and the used parameters are given in Table 1. The forthcoming results are computed by the

numerical scheme given at the end of this section. The maturity variable x belongs to [0, 5]

with the value of maximum maturity x� set to be 5. The step sizes for time Δt and maturity Δx
used in simulations are 0.01 and 0.05, respectively. The behavioral patterns of the model are

investigated hereby with the objective to observe the evolution of all six sub-populations with

the feedback regulation, which is determined from the total number of both healthy and

mutated mature cells. In general, after acquiring a mutation, the mutated cell gains fitness and
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thus differ considerably from healthy cells [17]. Therefore, the probability of mutated stem

cells to self-renew is greater in simulations relative to the healthy ones, while the death rate is

reduced, see Table 1. The feedback influences the the probabilities of symmetric/asymmetric

self-renewal and differentiation in stem cells whereas in progenitor cells, the feedback is influ-

encing the maximum proliferation rate bi in the birth function β(x, s). The simulations are ini-

tialized with healthy stem cells as c0 ≔ C0(0) = 18000mL−1, while all the rest of the sub-

populations have been set to zero. Initially, the feedback signal is maximum, i.e., equal to one,

because no differentiated cells exist, while over the course of time, the increase in the healthy

and mutated mature cell population leads to a reduction of the feedback signal, as shown in

Fig 3. The parameters used in Figs 3–5 are given in Table 1. The exponential growth in healthy

stem cell population results in the increase of all healthy and mutated cell types Fig 4(a). A

steady-state is achieved in healthy stem cells and consequently in all other sub-populations, see

Figs 4 and 5. The achieved steady-states coincide with the analytically calculated steady states

of all cell states in Eqs (35)–(39). The feedback signal plays the central role in the stabilization

of the model states. In the absence of this feedback signal, the exponential growth continues

and thus results in an unnatural number of cells.

Fig 6 depicts another behavior of the model in which all the parameters used are same as in

Table 1 but the symmetric self-renewal rate of stem cells �aS0
¼ 0:175 and their death rate

dC0
¼ 0:016 day−1. Contrary to Fig 4, the healthy stem cells C0 in Fig 6(a) start decreasing after

a gradual increase for a while and eventually land to a very low number. Indeed, similar behav-

ior has been shown by the healthy mature cells in Fig 6(c), whereas the mutated stem and

mature cells still attain their respective steady-states, as shown in Fig 6(a) and 6(b). In accor-

dance with the dynamics of healthy and mutated stem cell populations described in Eqs (1)

and (2), respectively, the probabilities of symmetric/asymmetric self-renewal and differentia-

tion rates are influenced by the feedback signal. The rapidly increasing healthy and mutated

Table 1. Initial values and parameters of the model for both, healthy and mutated cell lineages, where i = 0 stands for the parameters of healthy cell line with zero

mutation and i = 1 represents the parameters of mutated cell lineage with one mutation.

Parameters and their description Parameters values Units

i = 0 i = 1

ci: Initial stem cell density 18000 [19, 43] 0 mL−1

mi: Initial mature cell density 0 0 mL−1

�aSi
: Maximum symmetric self-renew probability 0.1846 [44] 0.25 -

�aAi
: Maximum asymmetric self-renew probability 0.6554 [44] 0.60 -

�aDi
: Maximum differentiation probability 0.16 [44] 0.15 -

dCi : Stem cells’ death rate 0.0125 [19] 0.053 [36] day−1

dMi
: Mature cells’ death rate 1.8 [36] 1.9 [36] day−1

m: Mutation rate of stem cells 10−4 [45, 46] - -

m0: Mutation rate of progenitor cells 10−6 [47] - -

ki: Stem cell proliferation rate 0.47 [31] 0.60 day−1

obi
: Maturity at proliferation switch 2.50 2.50 days

rbi : Steepness of progenitor cells proliferation switch 2 2 -

omi
: Maturity at death switch 2.50 2.70 days

rmi : Steepness of progenitor cells death switch 2 2 -

bi: Max. progenitor cells proliferation rate 1.51 [48] 1.8 day−1

di: Max. progenitor cells death rate 2.15 1.8 day−1

ks: Ratio of γ to δS 1.85 × 10−9 1.85 × 10−9 -

https://doi.org/10.1371/journal.pone.0251481.t001
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Fig 3. Cytokine feedback signals. With the increasing number of mature healthy and mutated cells, the feedback

signal reduces over time.

https://doi.org/10.1371/journal.pone.0251481.g003

Fig 4. Healthy and mutated stem and mature cells. (a) Healthy stem cells with initial value of 18000mL−1 grow

exponentially and converge to a steady-state. (b) Mutated stem cells with initial condition equal to zero, increase

exponentially and attain a steady-state at relatively large value. (c) Healthy mature cells depict a similar behavior with

initial condition equal to zero. (d) Mutated mature cells depict a similar behavior with initial condition equal to zero.

https://doi.org/10.1371/journal.pone.0251481.g004
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mature cell number in Fig 6(c) and 6(d) tends to abate the value of cytokine feedback signals

pursuant to the relation in Eq (12). It can be easily observed from Eq (1) that, as the feedback

signal drops, the probabilities of symmetric/asymmetric stem cell self-renewal aS0
=aA0

and dif-

ferentiation aD0
also decrease. Note that these probabilities vary linearly with feedback signal s

Fig 6. Number of healthy and mutated stem and mature cells. (a) Healthy stem cells with initial value of 18000mL−1

grow exponentially and start decreasing in number. (b) Mutated stem cells with initial condition equal to zero, increase

exponentially until attain a steady-state at relatively large value. (c) Healthy mature cells with initial condition equal to

zero, depict the same behavior as healthy stem cells. (d) Mutated mature cells depict a similar behavior as mutated stem

cells with initial condition equal to zero.

https://doi.org/10.1371/journal.pone.0251481.g006

Fig 5. Density distribution of progenitor cells. Left: Distribution of healthy progenitor cells P0(t, x). Right:

Distribution of mutated progenitor cells P1(t, x). It continues to grow towards a higher number and approaches a

steady-state.

https://doi.org/10.1371/journal.pone.0251481.g005
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having a positive slope. As a consequence, with the temporal evolution of healthy stem cells,

death rate dominates over self-renewal, and healthy stem cells start declining in number, cf. Eq

(1).

In Eq (2) for mutated stem cells, the decline in feedback signal reduces the probability of

self-renewal and differentiation in mutated stem cells. Nevertheless, the mutated cells still

manage to grow in a higher number due to the increased fitness as stated before and thus

approaching a steady-state. This scenario, in which the healthy cell line deteriorates and only

mutated cells prevail over time, could also be called ‘pure cancerous steady-state’. The estab-

lishment of the steady-state via feedback regulation has already been suggested in the literature

[11], where the authors have considered ODE settings for the discrete cell populations of the

stem cells all the way to the differentiated cells. Moreover, it is mentioned that the whole

dynamics of stem cell lineages can be controlled by a single negative feedback loop, i.e., cyto-

kine signaling.

Fig 7 demonstrates the behavior of the model concerning different initial values of the stem

cell population. All other cell population states (mutated stem cells, healthy and mutated pro-

genitor cells, and mature cells) are initialized with zero number of cells. The parameter values

used are similar as in Table 1. It can be seen that with any number of initial healthy stem cells

C0(0), the steady states are achieved at the same time in healthy stem C0(t) and mature M0(t)
cells, Fig 7(a) and 7(c); however, the magnitudes of the steady states are different. On the other

Fig 7. Number of healthy and mutated stem and mature cells with different initial conditions of healthy stem

cells. The rest of the states have initial conditions equal to zero. (a) Healthy stem cells achieve a respective steady state

for a corresponding initial value. (b) Mutated stem cells with initial condition equal to zero, attain a same steady-state

at all initial values of C0(t). (c) Healthy mature cells with initial condition equal to zero, depict the same behavior as

healthy stem cells. (d) Mutated mature cells depict a similar behavior as mutated stem cells with initial condition equal

to zero.

https://doi.org/10.1371/journal.pone.0251481.g007
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hand, in mutated cell populations, the effect of different initial conditions is reflected only in

the rates at which the steady states are achieved, while the magnitude of steady-state is the

same for all initial values, see Fig 7(b) and 7(d). It implies that no matter how many healthy

stem cells are there at any particular age, the subsequent mutations can lead to a substantial

amount of mutated cell populations.

Feedback signal as Hill function. Here we want to analyse the model behavior when we

define the relation between feedback signal s and total number of mature cells M using Hill

function as compared to the behavior produced by the relation in Eq (12). Since increase in

the concentration of mature cells represses the feedback signal, we define their relation using

the Hill function as follows:

s ¼
1

1þ
M
KM

� �n ;
ð40Þ

where KM is the mature cell concentration (2.6 × 106 mL−1) at which feedback signal is half a

maximum and n is the Hill coefficient. Note that the Eq (40) coincides with Eq (12) when

n = 1 and KM = 1/ks. The simulations have been performed using Hill feedback function in Eq

(40) and it turns out that the model depicts the similar behavior to the previous case, compare

Fig 8 with Figs 4 and 6. In Fig 8(a)–8(d), the model parameters used are similar as in Table 1,

whereas in Fig 8(e)–8(h) the parameter values which have been varied are symmetric and

asymmetric self renewal rate of stem cells as �aS0 ¼ 0:175 and �aA0 ¼ 0:6650, respectively.

It is to be noted that the dynamics of the stem and progenitor cells are maintained in

homeostasis by inducing feedback only in the self-renewal rates. One can also achieve homeo-

stasis by inducing the feedback in the death rates [49]. However, death rates are kept constant

in the current paper; see Table 1. Moreover, in our model, the division rates of stem cell popu-

lations {ki, i = 0, 1}, are not depending on feedback signal because it has been validated in [11,

50] that an efficient control mechanism underlies the modulation of self-renewal and differen-

tiation rates as compared to the maintenance of proliferation rates in stem cells. It is evident

Fig 8. Model behavior by using Hill feedback function for various Hill coefficient values. (a)-(d) All cell states achieve non-trivial steady states. (e)-

(h) Pure cancerous steady states where healthy cells decline with time.

https://doi.org/10.1371/journal.pone.0251481.g008
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from the simulation results as well that even without feedback regulation in division rates, the

mutated stem cell population does achieve a steady-state.

Model validation

In this section, we validate the behavior of our model with different experimental measure-

ments taken from the literature. In Fig 9, we use the tumor volume measurements for three

different cancers, namely prostate, breast and colon for validation purpose. The experimental

data sets are taken from [51–53]. These data sets are obtained by establishing human tumor

xenografts in mice. The only measurements available are tumor volumes from the day of

implantation and during exponential growth. We fit our model’s parameters for validation

purposes since we do not have the experimentally measured parameter values from these

experiments. To compare our model behavior with the tumor volume, we first compute the

total number of mutated cells N(t), which is the sum of mutated stem, progenitor, and mature

cells, as

NðtÞ≔ C1ðtÞ þ
Z x�

x0

P1ðx; tÞdxþM1ðtÞ:

Then, considering the effective volume of a cell in the tumor to be 4.18 × 10−6 mm3 [54], the

whole tumor volume V(t) is computed as [55]

VðtÞ ¼ 4:18� 10� 6NðtÞmm3:

The tumor volume calculated from the cell count of the proposed model (blue lines) fits very

well to the experimental data (black marks) in all three scenarios, see Fig 9. The grey shaded

regions depict the predicted model behavior before and after the available experimental values.

Our model attains a steady-state in all three simulations due to the feedback via cytokine sig-

nals. Note that, the steady-states may vary in reality for different cancer types and also individ-

ually but the proposed model is flexible enough to depict various steady-state scenarios. The

healthy cell lineage is considered to be initially at a steady-state. The parameters used in Fig 9

are given in Table 2.

Fig 9. Model fitting to the experimental data. Validation of the model using different experimental data for breast, prostate and colon cancer cells.

The data are available only during the exponential growth and the model (blue line) fits the data (black dots) for the given values. The grey shaded

regions are the model predictions before and after the available experimental measurements and a steady-state is achieved under cytokine feedback

signaling.

https://doi.org/10.1371/journal.pone.0251481.g009
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The model has been further validated by using another experimental data set generated in

vitro experiments on TUBO cancer cells and is reported in [57], see Fig 10. TUBO cancer cells

are a cloned line derived in vitro from a BALB-neuT mouse mammary carcinoma. The data

set consists of mean ± standard deviation for total cell count. The model fits to the mean values

for more than 65 percent of the data set. The initial conditions for healthy cell line are equal to

their respective steady-state values. The initial condition of mutated stem cells is equal to

2 × 104 mL−1 and for mutated progenitor and mature cells are equal to zero. The parameter

values used in the Fig 10 which differ from the ones in Table 1 are given in Table 3. The expo-

nential growth and achievement of the steady-state requires enhanced proliferation and self-

renewal rates of stem cells. The sum of the probabilities for symmetric self-renewal, asymmet-

ric self-renewal and differentiation is still kept equal to 1.

Implemented numerical scheme

In this section, the numerical method used to solve the governing nonlinear Eqs (1)–(10) is

presented. We apply already developed finite volume method (FVM) with central upwind

scheme for the flux approximation on hyperbolic partial differential equations in MATLAB.

The domain of the problem has been discretized in both, space and time. The timeline is dis-

cretized into Nt steps with equidistant interval Δt = tk + 1 − tk. The spatial stepsize is given by

Δx = x�/Nx, where Nx is the maximum number of spatial nodes given by xj = jΔx, 0� j� Nx.

The discretized progenitor cell density associated with the jth spatial interval at time k reads

Pk
i;j ¼

1

Dx

Z xjþ1
2

xj� 1
2

Piðy; t
kÞdy; where i ¼ 0; 1:

The necessary Courant-Friedrichs-Lewy (CFL) condition for convergence of the solution

requires maxx2fxjggiðxÞ
Dt
Dx � 1: The PDEs (3)–(4) are hyperbolic in nature and with the discreti-

zation defined above, we can implement the following algorithm to solve the coupled differen-

tial equations.

Table 2. Parameters used for model validation in Fig 9. The values of the parameters used in the simulations of Fig 9 are presented for all three cancer types.

Param. Values Param. Values

Breast Prostate Colon Breast/Prostate/Colon

c0 7 × 104 mL−1 3 × 104 mL−1 2.50 × 105 mL−1 c1 1.0 × 104 mL−1

k0 1 0.985 1.041 ks 12.8 × 10−10

d0 1.50 day−1 1.67 day−1 [36] 1.50 day−1 dM0
2.1 day−1 [36]

d1 1.33 day−1 1.32 day−1 1.36 day−1 m0 3.97 × 104 mL−1

�aS0
0.355 0.3175 0.362 ob0

1.45 days

�aA0
0.60 0.5825 0.584 m0 10−6 [47]

�aD0
0.045 0.10 0.054 b1 0.85 day−1 [48]

�aS1
0.40 0.40 0.39 rm0

¼ rm1
8

�aD1
0.10 0.10 0.11 m 10−4 [45, 46]

k1 0.61 day−1 [31] 0.60 day−1 0.61 day−1 �aA1
0.50

dC0
0.24 day−1 0.17 day−1 0.24 day−1 om0

2.80 days [36]

dC1
1.0 day−1 [56] 1.6 day−1 1.0 day−1 [56] om1

2.95 days

b0 1.10 day−1 1.23 day−1 [48] 1.10 day−1 rb0
¼ rb1

2

dM1
0.3 day−1 0.5 day−1 0.3 day−1 ob1

1.80 days

https://doi.org/10.1371/journal.pone.0251481.t002
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First, the initial conditions are given as

C0
i ¼ ci; P0

i;j ¼
1

Dx

Z xjþ1
2

xj� 1
2

piðyÞdy; M0

i ¼ mi; for i ¼ 0; 1:

For each time step k, the feedback from mature cells is calculated as

sk ¼
1

1þ ksðMk
0
þMk

1
Þ
:

Then, the stem cell population at time tk+1 can be discretized as follows

Ckþ1
i � Ck

i þ Dt
d
dt

Ck
i

� �

; i ¼ 0; 1; ð41Þ

Fig 10. Model fitting to the experimental data. The model has been validated with the data set derived by TUBO

Cancer cell line [57]. The experimental data are represented by black error bars representing mean ± standard

deviation. The blue line is the model fit to the experimental measurements. Our proposed model predicts an

establishment of the steady-state in grey shaded area where no measurements of cell count were available.

https://doi.org/10.1371/journal.pone.0251481.g010

Table 3. Values of the parameters used in Fig 10.

Parameters Value Parameter Value

m 0.34 × 10−5 �aS1 0.09

�aS0 0.3555 �aA1 0.22

�aA0 0.6065 �aD1 0.69

�aD0 0.038 dM0
2.20 day−1

dC0
0.2391 day−1 dM1

0.30 day−1

dC1
1.773 day−1 ks 1.89 × 10−7

https://doi.org/10.1371/journal.pone.0251481.t003
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and the following relation result for healthy and mutated stem cells, respectively

Ckþ1
0
¼ ð1þ Dtðð1 � 2mÞaS0

ðskÞ � maA0
ðskÞ � aD0

ðskÞ � dS0
Þk0ÞCk

0

Ckþ1
1
¼ ð1þ DtðaS1

ðskÞ � aD1
ðskÞ � dS1

Þk1ÞCk
1

þDtmð2aS0
ðskÞ � aA0

ðskÞÞk0Ck
0
:

The boundary conditions for progenitor cells at j = 0 are given as

Pkþ1
0;0

¼ fð1 � mÞð2aD0
ðskÞ þ aA0

ðskÞÞk0Ck
0
g=g0ðx0Þ

Pkþ1
1;0

¼ fð2aD1
ðskÞ þ aA1

ðskÞÞk1Ck
1
þ ð2aD0

ðskÞ þ aA0
ðskÞÞmk0Ck

0
gg1ðx0Þ:

The discretization of the PDEs concerning the density of the progenitor cell populations is

given in accordance with the central upwinding scheme as follows

Pkþ1
0;j ¼ Pk

0;j �
Dt
Dx

g0ðxjÞP
k
0;j � g0ðxj� 1ÞP

k
0;j� 1

� �

þDtðð1 � 2m0Þb0ðxj; skÞ � m0ðxjÞÞPk
0;j

Pkþ1
1;j ¼ Pk

1;j �
Dt
Dx

g1ðxjÞP
k
1;j � g1ðxj� 1ÞP

k
1;j� 1

� �

þDtððb1ðxj; skÞ � m1ðxjÞÞPk
1;j þ 2m0b0ðxj; skÞPk

0;jÞ:

Finally, the discretized ODEs for mature cells are given as following

Mkþ1
0

¼ Mk
0
þ Dtðg0ðxNx

ÞPk
0;Nx
� dM0

Mk
0
Þ

Mkþ1
1

¼ Mk
1
þ Dtðg1ðxNx

ÞPk
1;Nx
þ 2m0b0ðxNx

; skÞPk
0;Nx
� dM1

Mk
1
Þ;

which also involves the influx from progenitor cells Pk
0

and Pk
1

at the maximum maturity x = x�.
The mature cell populations M0 and M1 will manipulate the feedback in the next time step and

consequently, feedback will alter the dynamics of stem, progenitor or both cell populations to

stabilize the exponential growth.

Discussion

The model predicts the evolution of healthy and mutated stem cell lineages in various case

studies. Both lineages evolve with time and achieve a steady state under homeostatic regula-

tion. According to the stem cell hypothesis, the persistence of cancer is regulated by a small

number of cancer cells which share the same biological properties as the stem cells [4]. The

results of this model are in accordance with the stem cell hypothesis because the mutated stem

cells are responsible for the evolution and persistence of the whole mutated cell lineage due to

their elevated self-renewal and differentiation potential, see Figs 4 and 5. Moreover, it is com-

prehensible that an efficient feedback mechanism must exist with heavy cross-talks between

the cells themselves and the extracellular environment to robustly regulate the system compris-

ing of cell lineages with various cell types. In the proposed model, the feedback in both the

stem and progenitor cell populations, allows mimicking the intercellular interactions among

the cells. Besides, the model provides an insight that the self-renewal rate of stem cells is a very

sensitive parameter for the persistence and maintenance of healthy cell lines. As shown in Fig

6, the feedback’s influence led to the extinction of the healthy cell line because the self-renewal

rate of stem cells was reduced. In a nutshell, the critical ratio of stem cells’ self-renewal rate to

the differentiation rate should be preserved to maintain homeostasis in the healthy cell

population.
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The proposed model has some drawbacks too. First, the model assumes a single mutation

leading to cancer evolution, which might not be accurate in many cases, but the model struc-

ture is flexible to incorporate more mutations and to predict the evolution of cancer depending

on their individual effects. Secondly, the model assumes only cytokines feedback signaling but

of course, there exist several feedback mechanisms, for instance, chalone [11], mechanosensing

[58] etc. Furthermore, the simulations are performed assuming linear dependence on the feed-

back signal, which might not be very realistic; however, the precise nature of this feedback is

still unknown.

Conclusion

We propose a generic modeling framework to investigate the coupled dynamics of the healthy

and mutated cell lineages, entailing homeostatic regulation. We show that the model predicts

familiar behavior and evolutionary patterns of cancer. For instance, the small number of

mutated stem cells is responsible for evolving the whole mutated cell lineage. Moreover, the

healthy cell line significantly declines in number due to the sensitivity of the symmetric self-

renewal rate of stem cells. Thus, the symmetric and asymmetric self-renewal rates of stem cells

are crucial for the persistence and maintenance of both cell lines. The model is also validated

with different experimental measurements of the tumor available in the literature. Concerning

future work, it is possible to extend our model to include additional phenomena, e.g., cell de-

differentiation and other feedback mechanisms. Its architecture also enables heterogeneous

type mutations to be introduced, which can be of interest to gain additional insights into the

development of cancer and, additionally, in the faster emergence of cancer. An appealing

future step concerns the stability analysis of the dynamical behavior and sensitivity analysis for

the process parameters.
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