
������������	
���������
���	�
 ��

��������
��

����
������

���������
�		

�������	

���������������������

����� ��������������������!"�##�#��$%��!%

&� %�"�'��$���(#$����) �� "�'��$�*� '�+ �����,��-�#%�����$%,.�,�#�'%

&'��� ��*�-'�

A B S T R A C T

Model-based Systems Engineering (MBSE) has established itself as a successful ap-
proach to realize increasingly complex systems within an acceptable timeframe. How-
ever, rapidly changing and evolving systems as well as their growing distributed
development pose additional challenges, especially with regard to the modifiability,
adaptability and reusability of their components. In addition, the demand for highly
flexible and customizable systems continues to grow. This results in a significantly
greater need for an efficient variant management.

Proven approaches and methods already exist in the respective development dis-
ciplines to face these challenges. A solid MBSE approach, however, must provide a
system-wide solution and answer how concurrent changes in a system model can
be handled efficiently, especially if several similar system variants are developed in
parallel. Industrial practice still shows a great deal of uncertainty in this respect. There
are no conclusive answers to many questions. How can changes in a SysML model
best be supported and, in particular, transferred effectively between model variants
and versions? Should one model contain all configurations or is a separate variability
model more useful? Which strategies are best suited to avoid imminent discrepancies
between variant configuration and implementation and how can individual model
components be efficiently reused?

In order to address these questions and provide practitioners with a helpful guide-
line, this master’s thesis examines and compares existing approaches for realizing
model variants in SysML with regard to their functionality as well as their effects
(positive and negative) on the overall system concept. Since the focus lies on the
feasibility of the shown approaches, they are applied by means of typical evolution
scenarios and subsequently evaluated with regard to relevant performance indicators
such as understandability, effort, granularity and independence. It is not expected that
one approach is the best choice for every initial situation and under all circumstances.
The introduced evaluation system thus aims to serve on the one hand as a situational
decision support and on the other hand to offer the opportunity to examine, classify
and evaluate own approaches and procedures more thoroughly.

keywords : Variability Management, Variability Realization, Model-based Systems

Engineering (MBSE), Systems Modeling Language (SysML)

ii

Z U S A M M E N FA S S U N G

Modellbasiertes Systems Engineering (MBSE) hat sich als erfolgreicher Ansatz etabliert,
um immer komplexere Systeme in einem akzeptablen Zeitrahmen realisieren zu
können. Sich schnell ändernde und erweiternde Systeme sowie deren zunehmend
verteilte Entwicklung stellen jedoch große Herausforderungen dar, insbesondere
hinsichtlich der Modifizierbarkeit, Anpassungsfähigkeit und Wiederverwendbarkeit
ihrer Komponenten. Die Nachfrage nach hochflexiblen und anpassbaren Systemen
steigt hingegen unentwegt an. Daraus ergibt sich ein hoher Bedarf an einem effizienten
Variantenmanagement.

In den jeweiligen Entwicklungsdisziplinen gibt es bereits bewährte Ansätze und
Methoden, um diesen Herausforderungen zu begegnen. Ein solider MBSE-Ansatz
muss jedoch eine systemweite Lösung bieten und beantworten, wie gleichzeitige
Änderungen in einem Systemmodell effizient gehandhabt werden können, insbe-
sondere wenn mehrere ähnliche Systemvarianten parallel entwickelt werden. Die
industrielle Praxis zeigt hier noch große Unsicherheiten. Auf viele Fragen gibt es
keine schlüssigen Antworten. Wie können Änderungen in einem SysML Modell am
besten unterstützt und insbesondere zwischen Modellvarianten und Versionen effek-
tiv übertragen werden? Sollte ein Modell alle Konfigurationen enthalten oder ist ein
separates Variabilitätsmodell sinnvoller? Welche Strategien sind am besten geeignet,
um drohende Abweichungen zwischen Variantenkonfiguration und Implementie-
rung zu vermeiden und wie können einzelne Modellkomponenten möglichst effizient
wiederverwendet werden?

Um diesen Fragen nachzugehen und Anwendern einen hilfreichen Orientierungs-
rahmen zu geben, werden in dieser Masterarbeit bestehende Ansätze zur Realisierung
von Modellvarianten in SysML hinsichtlich ihrer Funktionalität sowie ihrer Auswirkun-
gen (positiv und negativ) auf das Gesamtsystemkonzept untersucht und verglichen.
Da der Fokus auf der Machbarkeit der gezeigten Ansätze liegt, werden diese anhand
typischer Evolutionsszenarien zunächst angewendet und anschließend hinsichtlich
relevanter Leistungsindikatoren wie Verständlichkeit, Aufwand, Granularität und
Unabhängigkeit bewertet. Es wird nicht erwartet, dass ein einzelner Ansatz für je-
de Ausgangssituation und unter allen Umständen die beste Wahl sein kann. Das
eingeführte Bewertungssystem soll daher einerseits als situative Entscheidungshilfe
dienen und andererseits die Möglichkeit bieten, eigene Ansätze und Vorgehen genauer
hinterfragen, einordnen und bewerten zu können.

schlüsselwörter : Variabilitätsmanagement, Realisierung von Variabilität, Modell-

basiertes Systems Engineering (MBSE), Systems Modeling Language (SysML)

iii

To get the full value of joy you must have someone to divide it with.

— Mark Twain

A C K N O W L E D G M E N T S

Many thanks to everybody who supported me during this project. Writing a thesis is
always accompanied by some time constraints and missed opportunities. I thank my
friends and family for their understanding and continued support.

Special thanks go to Dr.-Ing. Martin Becker and Andreas Schäfer from the Institute for
Experimental Software Engineering (IESE), who both have always been very supportive
in all aspects of this undertaking. Without their comments, ideas, suggestions and
discussions, this thesis could not have been realized.

As for typography, many thanks to Prof. Dr.-Ing. André Miede1, who kindly provides
a beautiful LATEX-template which, despite some modifications and adjustments, servers
as the basis of this thesis. A big thanks in this context also to the whole LATEX-
community for further support, ideas and simply great software.

1 https://www.miede.de/

iv

https://www.miede.de/

C O N T E N T S

1 introduction 1

1.1 motivation . 1

1.2 problem statement . 1

1.3 research questions . 2

1.4 research approach . 2

1.5 main contributions . 3

1.6 thesis structure . 3

2 foundation 4

2.1 engineering approaches . 4

2.2 variability concepts . 9

2.3 literature review approach . 14

2.4 variability management . 18

2.5 variability realization . 23

3 conceptual model 29

3.1 variant driver . 29

3.2 variation management approaches 36

3.3 tool capabilities / limitations . 44

3.4 variability realization mechanisms 45

3.5 key performance indicators . 55

4 feasibility study 57

4.1 introduction . 57

4.2 variability realization with ea 59

4.3 evaluation . 74

5 conclusion 77

5.1 results . 77

5.2 discussion . 78

5.3 future work . 78

a appendix 79

bibliography 80

v

L I S T O F F I G U R E S

Figure 1.1 Overview of methodical research process 2

Figure 2.1 Three concerns of systems modeling (Weilkiens) 5

Figure 2.2 Variability in the PLE context (pure-systems GmbH) 8

Figure 2.3 PLE reuse approaches (Becker) 9

Figure 2.4 Example: Level of abstraction . 13

Figure 2.5 Example: FODA model (Kang et al.) 19

Figure 2.6 OVM notation (Pohl et al.) . 20

Figure 2.7 VAMOS concept (Weilkiens) . 22

Figure 2.8 Variability Mechanism Characterization (Zhang et al.) 25

Figure 2.9 Model-based Tool Chain (Bilic et al.) 27

Figure 3.1 Evolution and Variability (Schwägerl) 29

Figure 3.2 Feature evolution scenarios (Patzke) 33

Figure 3.3 Merge preview with LemonTree (Wieland) 38

Figure 3.4 Branching and merging concept of LemonTree (Wieland) 39

Figure 3.5 Example: Annotation with pure::variants 41

Figure 3.6 Decision support for Variation Management 42

Figure 3.7 Overview of Variability Realization Mechanisms 45

Figure 3.8 Example: Cloning . 47

Figure 3.9 Example: Module Replacement 50

Figure 3.10 Example: Annotation (Domis et al.) 51

Figure 3.11 Example: Polymorphism . 54

Figure 4.1 BCON: Visualization of product evolution 58

Figure 4.2 Example: Scenario (2) - Modified parametric diagram 61

Figure 4.3 Example: Scenario (2) - Altered display interface 61

Figure 4.4 Example: Scenario (4) - Sensor interface definition 63

Figure 4.5 Example: Scenario (4) - Sensor interface description 63

Figure 4.6 Example: Scenario (4) - Multi sensor interface definition 64

Figure 4.7 Example: Scenario (4) - Multi sensor interface description . . . 64

Figure 4.8 Example: Scenario (20) - Requirements diagram 66

Figure 4.9 Example: Scenario (20) - State machine diagram 67

Figure 4.10 Example: Scenario (20) - Sequence diagram 68

Figure 4.11 Example: Scenario (20) - State machine with multi transition . . 68

Figure 4.12 Example: Scenario (21) - Digital sensor (internal block diagram) 69

Figure 4.13 Example: Scenario (21) - Digital sensor (parametric diagram) . 70

Figure 4.14 Excursus: Commit dialog for DB change 72

Figure 4.15 Excursus: Diff of DB content (EA model) 72

vi

L I S T O F TA B L E S

Table 2.1 Literature search results . 16

Table 2.2 Literature search result evaluation 17

Table 3.1 Product line evolution scenarios (Patzke) 34

Table 3.2 Overview of tool capabilities . 44

Table 3.3 Explanation of mechanism primitives 46

Table 4.1 BCON: Product evolution (Zurbuchen) 57

Table 4.2 BCON: Additional product evolution 57

Table 4.3 Summery Scenario (2) . 60

Table 4.4 Summery Scenario (4) . 62

Table 4.5 Summery Scenario (6) . 65

Table 4.6 Summery Scenario (20) . 66

Table 4.7 Summery Scenario (21) . 69

Table 4.8 Summery Scenario (22) . 71

Table 4.9 Excursus: EA internal/external constraint options 73

Table 4.10 Evaluation of Variability Realization Mechanisms 74

Table 4.11 Effects of Variant Drivers on SysML diagrams 75

Table 4.12 Guideline and Recommendations 76

L I S T I N G S

Listing A.1 PowerShell script to export EA model content 79

vii

A C R O N Y M S

API Application Programming Interface

COTS commercial off-the-shelf

CVL Common Variability Language

DSL Domain Specific Language

EA Enterprise Architect

FODA Feature-Oriented Domain Analysis

FPGA Field Programmable Gate Array

IESE Institute for Experimental Software Engineering

INCOSE International Council on Systems Engineering

KPI Key Performance Indicator

MBSE Model-based Systems Engineering

MOF Meta Object Facility

OMG Object Management Group

OVM Orthogonal Variant Model

PLE Product Line Engineering

p::v pure::variants

SPL Software Product Line

SysML Systems Modeling Language

UML Unified Modeling Language

VAMOS Variant Modeling with SysML

VCS Version Control System

VEL Variability Exchange Language

XML Extensible Markup Language

viii

1
I N T R O D U C T I O N

1.1 motivation

This thesis was written in cooperation with the Fraunhofer Institute for Experimental
Software Engineering (IESE) in Kaiserslautern, Germany1. Motivated by their experi-
ences from different industrial settings, it addresses the increasing need for guidance
and decision support on how to handle variants and variability in SysML models in an
adequate manner. While a substantial amount of variability realization approaches
have already been discussed on the level of source code, there is little guidance for
practitioners on the model level. With this, there is also major uncertainty in dealing
with concurrent changes and parallel modeling of similar system variants. Although
models are expected to cope with complexity, it can be observed that they some-
times become overly complex themselves due to poor modularization and variability
realization.

The pressure of shorter development cycles and a stronger focus on individual,
customer-specific requirements is causing the demand for reusable artifacts to rise
steadily. In order to keep pace with these needs, the trend in systems engineering is
clearly continuing towards Product Line Engineering (PLE). While this entails great
methods to increase reusability and reduce time to market, it also introduces additional
challenges, especially in terms of variability. Model-based Systems Engineering (MBSE)
helps to increase system understanding and reduce overall complexity. However, in
order to be equally successful in coping with variability, methods and mechanisms
are required to deal with it systematically.

1.2 problem statement

While there are already a number of established methods to adequately realize
variability on the level of source code [Pat11][Ape+13][ZDB16], there are hardly any
concepts or studies on which approaches are suitable for a system-wide application,
especially for models.

In order to bridge this gap and to give practitioners guidance for a suitable approach,
this thesis will assess mechanisms for variability realization with respect to their
feasibility for use with SysML. For this purpose, it is necessary to first give an overview
of state-of-the-art approaches to variability realization from different development
disciplines and to characterize their underlying principles/mechanisms. Finally, a
subset of these mechanisms is transferred to an exemplary SysML model. In particular,
product lines and their increased reusability requirements are also taken into account.

1 https://www.iese.fraunhofer.de

1

https://www.iese.fraunhofer.de

1.3 research questions 2

1.3 research questions

The following research questions (RQ) can be derived from the identified problem
and shall be discussed within the scope of this thesis:

RQ1
Which mechanisms of variant realization exist and are suitable for
system modeling with SysML?

RQ2 How can these mechanisms be assessed?

RQ3 Are there limiting factors to consider when choosing a mechanism?

A reference to these questions is given at the corresponding places in the thesis
where they are discussed in more detail.

1.4 research approach

An overview of the main research activities is shown in Figure 1.1. A large part of
these activities (framed in red) is devoted to compiling the results of related work
and defining the conceptual model. Adjacent topics of interest are also outlined to
help narrow down and clarify the main subject, the realization of variability. The
expected results (output) and the main resources used (input) are also briefly listed.
The representation corresponds essentially with the structure of this thesis.

activity

Task Definition

Literature Review

Variability
Management

Variability
Realization

Related Case
Studies

Driver Implementation Tools Validation

Feasibility Study

Evaluation

input output

Related Work

Conceptual Model

IESE

[Pat11],
[ZDB16]

BCON
[Zur14]

KPIs /
Best practices

Examples

Guidelines /
Recommendations

Figure 1.1: Overview of methodical research process

1.5 main contributions 3

1.5 main contributions

As Figure 1.1 indicates, the thesis is intended to make the following contributions:

◮ Summarize the current state of research regarding methods and mechanisms to
realize variability.

◮ Provide examples that demonstrate the feasibility of these mechanisms within a
SysML model.

◮ Establish guidelines and recommendations for dealing with variability in the
MBSE context, derived from the examples provided.

1.6 thesis structure

The remainder of this thesis is structured as follows. Chapter 2 describes the founda-
tion. All important concepts and methods on which the following chapters are based
are introduced here. A reference to current research results is intended to provide a
comprehensive overview. Section 2.3 elaborates on the literature review carried out
for this purpose.

Chapter 3 introduces the conceptual model of the thesis and describes various
aspects of variability. At first, possible causes and triggers for variants are introduced
in Section 3.1. Section 3.2 discusses the possibilities and challenges of different variant
management approaches, followed by a more detailed examination of the required tool
support in Section 3.3. The main part is presented in Section 3.4, where mechanisms
for the realization of variability and its underlying principles are described. A list and
explanation of the Key Performance Indicators (KPIs) that can be used to evaluate the
different mechanisms concludes the chapter.

In Chapter 4, an exemplary product line evolution is introduced first. Its changes
are successively implemented in a SysML model to demonstrate the feasibility of the
methods and mechanisms shown. For this purpose a model of the virtual company
BCON is used [Zur14]. An evaluation of the implementation based on the presented
evaluation criteria concludes the feasibility study.

Chapter 5 summarizes the results of the thesis and offers an outlook on further
applications.

The Appendix contains information that did not into the body of this work for
reasons of better readability.

2
F O U N D AT I O N

In this chapter the basic concepts and terms relevant and necessary for the thesis are
introduced and explained. Furthermore, it is intended to give an overview of existing
publications on these subjects.

2.1 engineering approaches

Systems engineering became popular in the 1940s as a means of dealing with emerging
problems of increasingly complex systems. Initially driven by the rapidly growing
telephone industry, aerospace soon took over the leading role. Methods were sought
to cope not only with the increasing complexity, but also with the greater interdis-
ciplinarity and growing importance of component interaction. Important tasks are
the elaboration of a consistent system specification and requirements analysis, quality
assurance of all components and their system integration, risk and configuration man-
agement and system validation. Systems engineering is intended to organize all the
different disciplines, provide methodical support in solving problems and maintain a
holistic view of the system. The International Council on Systems Engineering (INCOSE)
is a non-profit membership organization and professional association in the field of
systems engineering. The following definition is taken from their handbook:

Systems engineering is an interdisciplinary approach and means to enable the
realization of successful systems. It focuses on defining customer needs and required
functionality early in the development cycle, documenting requirements, and then
proceeding with design synthesis and system validation while considering the com-
plete problem: operations, cost and schedule, performance, training and support, test,
manufacturing, and disposal. [INC15, p. 11]

Especially with the "increasing complexity of systems" and the growing number of
interacting engineering disciplines, "there is a rising need for interdisciplinary systems
engineering" [BZ18]. Nowadays, almost every company uses systems engineering,
albeit in different depths and with different names. The tasks and methods often
overlap with those of product and project management. In software-intensive projects,
the function is sometimes assigned to software architects who have the necessary
knowledge of the system topology.

2.1.1 mbse concepts

A traditional way used by scientists to master the increasing complexity and variabil-
ity of real-world phenomena is to resort to modeling [Jéz12]. Model-based Systems
Engineering (MBSE) can therefore be considered as an advancement of systems engi-
neering at a higher level of abstraction. But more than that, it applies the well-proven
engineering concept of divide and conquer. A complex system can be broken down
into as many models as needed in order to address all the relevant concerns in such a

4

2.1 engineering approaches 5

way that they become understandable enough. The models itself may be expressed
with any appropriate modeling language [Jéz12].

Initially, a model describing the rough system structure is established, which is then
refined in further development steps. All results from the respective development steps
are described and recorded within this model, to ensure a consistent and valid data
basis. The system description distinguishes between two system models: structural
and behavioral models. Structural models are used to specify the structural design
of the system and the technical realization of the interaction capability of system
elements. Behavioral models are used to define the system behavior and the type of
communication that the structural elements use [Sch19].

Figure 2.1 depicts the three important concerns in the context of system modeling:
Method, Tool and Language. Ideally, they all work hand in hand and thus support
the process of developing a sound system model.

Figure 2.1: Three concerns of systems modeling [Wei16, p. 7]

In practice, however, systems engineers often face many constraints in the selection
process. Tools are often very expensive, and their integration into a company can be
very time-consuming because the usage has to be well trained. The acceptance rate
for changes/innovations is sometimes low, especially in more traditional companies.
In addition, already established processes can lead to further limitations in the choice
of methods and languages. Some examples for each of these three concerns are:

Method: SYSMOD1, VAMOS2, OOSEM3, RUP SE4, . . .

Tool: Enterprise Architect, Cameo Systems Modeler, objeciF RM, IBM Rhapsody, . . .

Language: SysML, UML, BPMN5, . . .

Across all application domains, the interest in MBSE has increased significantly in
the last decade. While MBSE mainly has been followed by early adopters 10 years
ago, meanwhile the extensive usage of SysML/UML models has become mainstream.

1 The Systems Modeling Toolbox
2 Variant Modeling with SysML
3 Object-Oriented Systems Engineering Method
4 Rational Unified Process for Systems Engineering
5 Business Process Model and Notation

2.1 engineering approaches 6

Experiences from past and current projects of the Institute for Experimental Soft-
ware Engineering (IESE) with industry partners as well as statements from a survey
on systems engineering [Hei+17] and other industry publications resulted in the
identification of the following driving forces that motivate companies to adopt MBSE

approaches:

Increasing complexity. The increasing complexity of products, accompanied by in-
creasing interdisciplinarity with shorter change cycles, makes it necessary to use
processes and methods that counteract this. MBSE supports the satisfaction of the
resulting increasing need for cooperation and technical understanding between the
different disciplines. This creates a basis for discussing complex, interdisciplinary
problems and reduces the risk of misunderstandings caused by different definitions
of terms (cf. [ERZ14][Kai14][INC15]).

Standard adherence. Customers oblige their suppliers to assure process quality on
a given maturity level, e.g. by adhering to some process maturity model. This is for
instance the case in the automotive domain. Automotive SPICE6 is a domain-specific
variant of the international standard ISO/IEC 15504. The purpose of Automotive
SPICE is to assess the performance of the development processes of ECU7 suppliers
in the automotive industry. The standard requires suppliers to engineer and use
respective system and software architecture artifacts in the course of the engineering.
Being extrinsically motivated, many companies seek for approaches to provide the
necessary models in a cost-efficient manner. Hence, they are highly interested in reuse
of model parts.

Tool availability. The availability of promising modeling and analysis tools supports
the establishment of engineering and manufacturing networks. This supports the
reduction of the manufacturing and development depth and allows the development
to become increasingly specialized. Also, the activity of coordinating the engineering
projects moves further into the foreground of an engineer, similar to the activity of a
manager (cf. [FG13]).

Higher abstraction level. Last but not least, the representation of systems at a higher
level of abstraction is made possible and a platform is created for discussion with the
various stakeholders, some of whom may not even be familiar with the topic. This
promotes a common understanding and offers the possibility to identify ambiguities
early. The representation of a cross-system communication can in some cases be more
easily understood by three diagrams than by 80 pages of specifications. It will also
greatly facilitate and improve communication between all the actors involved. In
addition to increasing comprehensibility, an increase in the degree of abstraction can
support the implementation of software by using suitable models. Models can be
used to specify the behavior and automatically derive software implementations or
verification and validation artifacts (cf. [Kai14][INC15]). This is similar to the code level
and its evolution from assembler to higher, more abstract programming languages
and its associated increase in comprehensibility and reduced development time.

6 Software Process Improvement and Capability Determination
7 Electronic Control Unit

2.1 engineering approaches 7

The above criteria show some general motivations for the introduction of MBSE.
However, the realization and especially the degree of realization can vary greatly. In
its simplest form, MBSE can be used to improve communication and comprehensibility.
In a next step the aim would be to establish a system-wide traceability. Meaning,
that the stakeholder needs can be consistently traced to their implementation and are
also used for system verification. This consistency implies a greater level of detail
and increases the interdependencies between diagrams (model views). In a final step,
the model itself becomes the system specification. Consequently, it not only adds
information to any existing system documentation, but itself represents all aspects of
the system. Required documentation can thus be derived from it as needed.

As shown in Figure 2.1, systems modeling is not bound to any particular language.
In the context of this thesis, however, SysML was chosen for this purpose because it
is widely used and offers good tool support [AZ13]. SysML is a graphical, Unified
Modeling Language (UML) based, standardized modeling language. The standard
was published in 2007 as a joint effort of the Object Management Group (OMG) and
INCOSE and is currently released under version 1.5. Within SysML there are a variety
of different diagrams which can be (with the exception of the requirements diagram)
divided into two categories, structure and behavior. The following chapters assume a
basic familiarity with SysML, its diagram types and their usage. Additional information
can be found in [Wei14]. As far as the other two aspects (tools and methodology)
are concerned, initially no stipulation is made in order to be as widely applicable as
possible. For the feasibility study, however, Enterprise Architect (EA)8 will be used as
the tool for implementation of the system model and its changes.

2.1.2 ple concepts

Product Line Engineering (PLE) is a way to engineer a portfolio of related products in
an efficient manner, taking full advantage of the products’ similarities while respecting
and managing their differences. "Engineer" in this context means all of the activities
involved in planning, producing, delivering, and deploying, sustaining, and retiring
products [YC17].

To this end, PLE separates the engineering process into the two major activities of
application and domain engineering. Domain engineering concentrates on all common
aspects of a product line and provides reusable parts called domain assets. An important
part of this is scoping, which continuously checks whether components should be
implemented as domain assets, and thereby enables strategically planned reuse [Bec17].
Application engineering on the other hand, creates products by using domain assets
as well as creating new (application specific) assets. Scoping and domain engineering
focus therefore on a development for reuse, while application engineering implements
a development with reuse. Another aspect, that can be regarded as a high-level concept,
is the separation of problem and solution space. Any product, that is actually build
or intended for use by a customer exists in the solution space. The problem space
contains all the customer needs that a product shall be able to fulfill. In other words,
the product in the solution space implements the hypotheses of the developer on how
to meet the customer needs from the problem space. Complaints, requirements and

8 https://www.sparxsystems.de/

https://www.sparxsystems.de/

2.1 engineering approaches 8

changes can often only be formulated in the problem space and need to be transferred
to the solution space in order to improve the product hypothesis [Ols15].

The four-part division resulting from the combination of the problem space and
solution space with domain and application engineering is shown Figure 2.2. The
problem space describes hereby the variable and common parts of the product line,
reflecting the desired range of product variants. The associated solution space describes
the constituent assets of the product line and its relation to the problem space, i.e. rules
for how elements are selected. Several different options are available for modeling the
information in these four quadrants. The problem space can be described e.g. with
Feature Models, or with a Domain Specific Language (DSL). There are also a number
of different options for modeling the solution space, for example component libraries,
DSL compilers, generative programs and also configuration files [pur20].

Figure 2.2: Variability in the PLE context [pur20, p. 6]

Variability in the PLE context must therefore be viewed from two perspectives.
The first one being the variability in the problem space where a specific product is
decomposed as a set of features that can appear within that product. The features in
the problem space represent what functionality must be implemented in the system.
On the other hand, solution space variability represents the variability within design
artifacts which are used to extend, customize or change the system in order to
implement product features. In other words, the solution space represents how the
features are implemented in the given system [Bil+18].

The beneficiaries of these two representations are not identical. While product
features and characteristics are described from the perspective of system users/design-
ers, the solution space focuses on developers, who are provided with a selection of
implementation variants. Variation in the problem space automatically lead to at least
one corresponding variation in the solution space. This does not necessarily apply vice
versa. Therefore, a larger amount of variation points in the solution space can be as-
sumed. Interestingly, as the literature review will show, significantly more approaches
and publications deal with the presentation and management of variants rather than
with their realization. Both aspects will be further elaborated in Sections 2.4 and 2.5.

2.2 variability concepts 9

2.2 variability concepts

Variability represents a capability to change or adapt a system and has been recognized
as the key to systematic and successful reuse [Bec03]. As mentioned before there are
two aspects to consider, especially in the context of PLE. A variability at the specification
level (problem space) describes a design decision that can affect the behavior of the
system as well as its qualities. A variation point at the implementation level (solution
space) will implement this variability by using appropriate mechanisms. Variation
points therefore represent variability, as a spot in an asset where variation will occur,
i.e. where variability is realized [Bec03].

In practice, different approaches for reuse can be considered when applying product
line engineering. These differ in type and extent of reuse. Figure 2.3 shows an overview
of practical reuse approaches. With regard to planning effort, a distinction is made
between ad-hoc and strategic approaches. A further distinction concerns the artifacts
that arise. While cloning creates new and independent assets, the other approaches
aim at developing a common platform with a higher degree of reusable parts.

Figure 2.3: PLE reuse approaches [Bec17, p. 32]

Clone & Own. Copy and modify can be applied to any artifact. It requires no
planning. The approach will be explained in more detail in Section 3.4 as a basic
mechanism for realizing variability.

Reuse Repository. The creation of a repository from which parts can be selected and
reused if needed. In contrast to the platform-based approaches, the repository is not a
result of deliberate planning. Rather, it is a collection of artifacts that could potentially
be reused in the future. Artifacts in the repository are therefore not necessarily
designed for reuse and may need modifications before their application.

Managed Cloning. Unlike the spontaneous Clone & Own, managed cloning attempts
to manage and strategically plan reuse. However, there are still no shared assets – they
remain to be created by copying – and therefore no variation points exist within the
artifacts.

2.2 variability concepts 10

Platform. Reusable components are stored as domain assets and form the common
basis for all products. Only assets used in all products are considered part of the
platform. Therefore, no variability exists within the domain assets. All specialization
is implemented via application assets.

Product Line. By extending the platform to also include specialized assets that
are not used by all but only some products, variation points are introduced in the
domain assets. This increases the proportion of potentially reusable components of
the common platform.

Production Line. In a production line, the common platform integrates all assets.
There is no application engineering anymore. The generation of products is done by
selecting the corresponding domain assets.

Configurable Product. A product that contains all variants and takes on its spe-
cific form through configuration (at runtime). Variability exists only in the domain
assets [Bec17].

There is no general statement as to which approach is most suitable. The decision
depends on many factors, e.g. number of products/variants, development history,
commonalities, etc. Section 3.2 will elaborate on this further and examine the effects
of a chosen approach on the realization of variants in more detail.

At the implementation level, Patzke defines a variability mechanism as "a particular
way of intentionally realizing variability in core assets. The purpose of variability
mechanisms is to balance reuse effort and evolution effort by efficiently organizing
common elements and variants, as appropriate in the particular context of product line
engineering" [Pat11, p. 46]. This means a specification describing how to specialize the
variation point to a distinct variant, and a mechanism to realize this specialization is
required. A single point of variation is thus associated with a mechanism that handles
the variability. Various mechanisms can be used for this purpose. These mechanisms
can be roughly categorized into three classes. [Bec03]:

Selection. An existing solution can be selected to specialize the variation point. The
selection is described in the corresponding specification.

Generation. The generation of a solution, e.g. through an external generator. The
specification forms the input of the generator and the generated output specializes
the variation point.

Substitution. Supports the specialization of the variation points by unique, externally
provided solutions. Therefore, the corresponding variation points can be considered
as some kind of interface.

Sections 2.5.1 and 3.4 will further investigate and explain concrete mechanisms of
all these three classes, particularly relevant for model-based systems engineering.

2.2 variability concepts 11

2.2.1 types of variability

The type of variability can be related to what can be expressed by the variation point
i. e. what the variation point can be used for. It is important to note that variation
points can affect both the architecture and the element level. In other words, at the
element level they refer to what elements can be attached to the variation points.
But from an architectural point of view, setting the variation points themselves can
also be used to represent variability and can be understood as an expression of
architectural/topological variability. The following list presents the three types of
variability:

(1) Option

a) Optional

(2) Selection

a) Multiplicity

i. Alternative

ii. Multiple coexisting

b) Openness

i. closed

ii. open range

(3) Topology

Option. An option is the simplest form of a variation point. A feature constrained
by the variation point can be either present (selected) or absent (not selected) in the
resulting variant. There is no third choice.

Selection. In contrast to the option where a binary decision is required, the selection
offers a choice between several alternatives. Two further aspects must be taken into
account hereby: Multiplicity and Openness. Does the selection of one alternative
exclude others or can multiple alternatives be selected concurrently? Is the list of
possible alternatives complete and closed or can new alternatives be added? Especially
at the beginning of a product line development it is often not possible to answer the
second question conclusively. Nevertheless, it is important to consider at an early
stage whether many changes can be expected at a variation point and additional
variants are to be expected. During implementation, attention can already be paid to
extensibility and the model/architecture can be prepared accordingly.

Topology. Another aspect to consider is the already mentioned topological variability.
When choosing variation points it is necessary to be aware of how and where they
will affect the model. In case a variation point is used several times in several different
views and diagrams throughout the model, keeping an overview of its impact is much
more difficult. Adding another alternative for such a variation point can therefore
be both time-consuming and error-prone. It is important to note that this does not
mean a high number of different variation points, but rather the effects of a single
variation point being used at multiple locations in the model. This challenge can only
be addressed by appropriate tool support and a well designed system architecture.

2.2 variability concepts 12

From a product development perspective, it can already be assumed that both
variation points in the form of options and simple alternatives should not cause
any major difficulties. In contrast, open and topological variability already show the
potential to be the main complexity drivers in this respect.

2.2.2 level of abstraction

In order to achieve high reusability of components, it is desirable to be able to insert
variation points basically everywhere. The extent to which variation points can be
inserted is merely limited by the level of detail of the system model and the technical
possibilities offered by the tools used. As already mentioned, the level of detail of the
system model can be freely chosen (depending on what is to be achieved with the
model) and may even change over its life cycle. The selection of appropriate variation
points is therefore not a trivial task, especially with regard to the resulting number
of variants and the topological dependencies. Considering that the more variation
points exist, the more ambiguous and complex the model can become. It is therefore a
trade-off between higher reusability and higher complexity. This shall be illustrated
by a simple example.

Figure 2.4 shows a system equipped with sensors that shall be connected via its
sensor interface. For simplicity, a sensor itself consists of only one software and
hardware component. Other components and details are not relevant at this point.
Figure 2.4a shows the decision to introduce only a single variation point in the sensor
interface. Elements that contain a variation point are outlined in red. For each variation
of the interface, therefore, both the hardware and software aspects have to be modeled.
Figure 2.4b now introduces a new interface variant (Sensor C) outlined in green,
that consists of HW A and SW C. In Figure 2.4c, the same system is modeled, but
more variation points have been added to the hardware and software components. In
addition, the specific sensors were replaced by a new, generic element, which always
consists of a hardware and a software component. Figure 2.4d shows the changes
necessary to implement Sensor C in this setup.

This simple example already shows that the reuse of common parts increases with
the number of variation points. In Figure 2.4b the redefinition of HW A is redun-
dant. Nevertheless, the visibility of the individual variants in Figures 2.4c and 2.4d
is significantly less, because a concrete instance of a sensor is not shown. Additional
considerations and restrictions must be documented separately to show which combi-
nations of hardware and software are allowed when selecting a particular variant and
thus form a sensor. Immediate information about which and how many sensors are
available is missing.

2.2 variability concepts 13

(a) single variation point (b) new sensor

(c) multiple variation points (d) new component

Figure 2.4: Level of abstraction

What is also evident from Figure 2.4 is a difference in architecture between real-
ization with single and multiple variation points. At a higher level of abstraction,
variation points are easier to manage and understand. The level of abstraction refers
to the degree of complexity with which a system is viewed. The higher the level,
the less detail. The lower the level, the more details. The highest level of abstraction
is the entire system. The decomposition of the system into more and more compo-
nents results in more possibilities for variation points and thus potentially greater
interdependencies and complexity. It is therefore important to stress the relevance of
deliberate planning as to which components can potentially contain variation points.
If the architecture can be adapted to this at an early stage, it simplifies later changes
tremendously.

2.3 literature review approach 14

2.3 literature review approach

According to Fink a research literature review is "a systematic, explicit, [comprehensive,
(p. 44)] and reproducible method for identifying, evaluating, and synthesizing the
existing body of completed and recorded work produced by researchers, scholars, and
practitioners" [Fin10, p. 3].

The procedures proposed by Fink and other studies respectively their underlying
guidelines [KC07] were mostly adopted for the preparation of this literature review.
One study “Variability in Software Systems - A Systematic Literature Review” is par-
ticularly noteworthy, as it was carried out in 2014 on a very similar objective [Gal+14].
Results of this study will be taken into account in the appropriate places.

Although an extensive and conclusive literature research as proposed by [Fin10]
could not be carried out due to a lack of time, an overview of all activities conducted
in this regard is given in this section. First the approach is described briefly. Then the
used databases are named and all queries are listed. Finally, the results are shown
and summarized with regard to the research questions formulated in Section 1.3. A
more detailed list and evaluation of potentially relevant documents obtained by this
method concludes the review of related work.

Approach. The search has mainly focused on automated searches within digitally
accessible libraries. In addition to that, a manual target search with IESE internal
resources was carried out (including documentation of best practices, project reports
and developed approaches in the context of PLE, MBSE and Systems Engineering).
Cross-references found in the literature were also checked for their relevance. In order
to remain as up-to-date as possible, the search was repeated several times during
the course of this thesis, paying particular attention to additions and changes. All
statements refer to the result of the latest search on 2020-07-15. Special attention was
given to publications and authors in connection with the two major conferences SPLC9

and MODELS10.

The following inclusion criteria were applied to the contents found:

◮
Papers matching the search string and describe approaches within the scope
of this thesis.

In order to reduce the number of results to a reasonable level, the following exclusion
criteria were applied:

◮ Papers not focusing on the realization of variability in the MBSE context.

◮ Papers not written in English or German.

◮ Papers not accessible through one of the stated databases or from IESE.

9 Systems and Software Product Line Conference
10 Model Driven Engineering Languages and Systems

2.3 literature review approach 15

Databases. The following search databases were used to identify relevant papers
and publications. All of them are known to contain a large number of publications,
especially in the field of (computer) science.

◮ Google Scholar (http://scholar.google.com/)

◮ Digital Bibliography & Library Project (https://dblp.uni-trier.de/)

◮ ScienceDirect Elsevier(http://www.sciencedirect.com/)

◮ ACM Digital Library (http://dl.acm.org/)

◮ IEEE Xplore (http://ieeexplore.ieee.org/)

◮ Semantic Scholar (https://www.semanticscholar.org/)

Since the searches were repeated several times, it was particularly noticeable that
the results of Semantic Scholar increased steadily. Within only 6 months, the number
of entries found for unchanged search queries increased to more than 30 times the
original value. Unfortunately, the relevance of the found entries did not increase to
the same extent.

Search strings. In accordance with the research questions (cf. 1.3), the following
database search queries were used to identify relevant documents:

◮ "variability management" AND "MBSE"

◮ "variability management" AND "model-based systems engineering"

◮ "variability management" AND ("model-based systems engineering" OR "MBSE")

◮ "variability realization" AND ("model-based systems engineering" OR "MBSE")

◮ "variability realization" AND "sysml"

◮ ("variability realization" OR "variability management") AND ("model-based
systems engineering" OR "MBSE") AND "sysml"

Search results. The total number of search results is shown in Table 2.1. The evalua-
tion and extraction of relevant papers from these results can be found in Table 2.2 on
pages 16 to 17. In general, the results can be classified into the two areas of variability
modeling and variability realization. Since the term variability modeling is slightly
misleading, as it is less about variability in the context of MBSE, but rather about
visualizing and organizing variability capabilities (of a product/product family) as
such. In the context of this thesis the term variability management is therefore used.

The already mentioned study [Gal+14] by Galster et al. shows that the number of
published papers is highest in the two major development areas design and architecture.
Especially in these areas, the focus is on the visualization aspect of feature variability
and thus the variability management. In contrast, the realization of variability during
the implementation phase is only addressed in about 10% of the reviewed studies.
The obtained search results support this statement. Significantly more studies and
publications could be found in connection with the modeling and structuring of
variability within product families than for their realization.

http://scholar.google.com/
https://dblp.uni-trier.de/
http://www.sciencedirect.com/
http://dl.acm.org/
http://ieeexplore.ieee.org/
https://www.semanticscholar.org/

2.3 literature review approach 16

search string
google

scholar
dblp

science

direct
acm dl

ieee

xplore

semantic

scholar

"variability management" AND "MBSE" 81 0 1 3 0 1240

"variability management" AND
"model-based systems engineering"

112 1 8 4 1 1600

"variability management" AND
("model-based systems engineering" OR
"MBSE")

133 1 8 4 1 1750

"variability realization" AND ("model-based
systems engineering" OR "MBSE")

28 0 0 2 0 1210

"variability realization" AND "sysml" 38 0 2 2 0 1700

("variability realization" OR "variability
management") AND ("model-based systems
engineering" OR "MBSE") AND "sysml"

84 0 5 3 1 282

Table 2.1: Literature search results from 2020-07-15, 8:00 pm

Although the focus of this thesis is on the implementation aspect of variability, both
areas and the approaches contained therein will be briefly described in the following
sections. On one hand, this helps to distinguish their underlying mechanisms more
clearly, and on the other hand, both aspects can often not be applied in complete
isolation. Decisions in the choice of a management method have an impact on the
possible implementation options.

title author published comment relevancy

Flexible Product Line
Derivation Applied to a Model
Based Systems Engineering
Process

Cosmin Dumitrescu,
Patrick Tessier,
Camille Salinesi,
Sebastien Gérard,
Alain Dauron

"Complex Systems Design &
Management 2012" pp. 227–239

Springer, 2013

◮ development of a flexible
configuration process for
product line deviation
◮ automotive context

Capturing variability in Model
Based Systems Engineering

Cosmin Dumitrescu,
Patrick Tessier,
Camille Salinesi,
Sebastien Gérard,
Alain Dauron, Raul
Mazo

"Complex Systems Design &
Management 2013" pp. 125–139

Springer, 2014

◮ use of CO-OVM
◮ focus on the representation
of variability
◮ automotive context

Coping with Variability in
Model-Based Systems
Engineering: An Experience in
Green Energy

Salvador Trujillo,
Jose Miguel Garate,
Roberto Erick
Lopez-Herrejon,
Xabier Mendialdua,
Albert Rosado,
Alexander Egyed,
Charles W. Krueger,
Josune de Sosa

ECMFA 2010: "Modelling
Foundations and Applications"
pp. 293–304 [Tru+10]

◮ variability management and
implementation with SysML
◮ over-exposed (150%) model
◮ energy context

A review of know-how reuse
with patterns in model-based
systems engineering

Quentin Wu, David
Gouyon, Éric Levrat,
Sophie Boudau

"Complex Systems Design &
Management 2018" pp. 219–229

◮ knowledge and know-how
preservation and reuse through
patterns

Bridging the gap between
product lines and systems
engineering: an experience in
variability management for
automotive model based
systems engineering

Cosmin Dumitrescu,
Raul Mazo, Camille
Salinesi, Alain
Dauron

SPLC 2013: Proceedings of the
17th International Software
Product Line Conference,
pp. 254–263

◮ use of CO-OVM
◮ focus on domain engineering
◮ automotive context

Model-based systems
engineering with requirements
variability for embedded
real-time systems

Mole Li, Firat
Batmaz, Lin Guan,
Alan Grigg, Matthew
Ingham, Peter Bull

Proceedings of 2015 5th IEEE
International Model-Driven
Requirements Engineering
Work-shop (MoDRE) Canada,
2015, pp. 36–45

◮ variability modeling by
extending OVM
◮ aerospace context

continues on next page

2.3 literature review approach 17

title author published comment relevancy

How to Boost Product Line
Engineering with MBSE - A
Case Study of a Rolling Stock
Product Line

Hugo G. Chalé
Góngora, Marco
Ferrogalini,
Christophe Moreau

"Complex Systems Design &
Management 2014" pp. 239–256

◮ PLE reuse strategies
◮ over-exposed (150%) model
in combination with variability
model (OVM)
◮ transportation context

Towards Solving MBSE
Adoption Challenges: The
D3 MBSE Adoption Toolbox

Mohammad Chami,
Aiste
Aleksandraviciene,
Aurelijus
Morkevicius,
Jean-Michel Bruel

INCOSE International
Symposium Vol. 28, Issue 1,
2018, pp. 1463–1477

◮ MBSE adoption approach

Model-based Product Line
Engineering – Enabling
Product Families with Variants

Matthew Hause,
James Hummell

IEEE Aerospace Conference,
2015

◮ over-exposed (150%) model
in combination with variability
model (OVM)
◮ aerospace context

Model-based product line
engineering in an industrial
automotive context: an
exploratory case study

Damir Bilic, Daniel
Sundmark, Wasif
Afzal, Peter Wallin,
Adnan Causevic,
Christoffer Amlinger

SPLC 18: Proceedings of the
22nd International Systems and
Software Product Line
Conference - Volume 2 [Bil+18]

◮ variability management and
implementation with SysML
◮ over-exposed (150%) model
◮ automotive context

CO-OVM: A Practical
Approach to Systems
Engineering Variability
Modeling

Cosmin Dumitrescu
PhD Thesis, Université
Panthéon-Sorbonne - Paris I,
2014 [Dum14]

◮ introduction of CO-OVM

An Integrated Model-based
Tool Chain for Managing
Variability in Complex System
Design

Damir Bilic, Etienne
Brosse, Andrey
Sadovykh, Dragos
Truscan, Hugo
Bruneliere, Uwe
Ryssel

IEEE / ACM 22nd,
International Conference on
Model Driven Engineering
Languages and Systems, 2019

[Bil+19]

◮ over-exposed (150%) model
◮ automated variability
information exchange
◮ automotive context

Software Product Line
Engineering and Variability
Management: Achievements
and Challenges

Andreas Metzger,
Klaus Pohl

FOSE 2014: Proceedings of the
on Future of Software
Engineering, 2014, pp. 70–84

[MP14]

◮ summery of major research
achievements in PLE and
variability management

Variability in Software Product
Lines

Felix Bachmann,
Paul C. Clements

Software Engineering Institute,
Pittsburgh, USA, 2005

◮ guidelines for the creation of
core assets with included
variability

Variant Modeling with SysML Tim Weilkiens
MBSE4U Booklet Series, 2016

[Wei16]
◮ VAMOS approach

A survey of variability
modeling in industrial practice

Thorsten Berger, Ralf
Rublack, Divya Nair,
Joanne M. Atlee,
Martin Becker,
Krzysztof Czarnecki,
Andrzej Wąsowski

Proceedings of the Seventh
International Workshop on
Variability Modelling of
Software-intensive Systems,
2013 [Ber+13]

◮ industrial survey
◮ compares the use of different
modeling approaches during
various development phases

Three Cases of Feature-Based
Variability Modeling in
Industry

Thorsten Berger,
Divya Nair, Ralf
Rublack, Joanne M.
Atlee, Krzysztof
Czarnecki, Andrzej
Wąsowski

Model-Driven Engineering
Languages and Systems: 17th
International Conference,
MODELS 2014 [Ber+14]

◮ exploratory case study about
feature modeling
◮ industrial practices

How Domain-Specific
Modeling Languages Address
Variability in Product Line
Development

Juha-Pekka Tolvanen,
Steven Kelly

Proceedings of the 23rd
International Systems and
Software Product Line
Conference, 2019 [TK19]

◮ focus on domain specific
languages

= high relevancy = medium relevancy = low relevancy

Table 2.2: Literature search result evaluation

2.4 variability management 18

2.4 variability management

This section presents approaches and concepts that focus on the modeling aspect of
variability in the problem space. It is about visualizing product or feature variability
and managing their dependencies. The presented approaches are notable because of
their frequent mention in literature as well as their successful application in practice.

According to Metzger and Pohl [MP14], there are generally two approaches as to
how the variability of a product line can be explicitly specified and represented in a
model:

Integrated documentation. The integrated documentation describes all variation
points and their characteristics directly inside the model. For this purpose, numerous
modeling languages have been proposed, ranging from simple annotations to domain-
specific language extensions.

Orthogonal documentation. The orthogonal documentation captures all variability
aspects in a separate model. The resulting variability model does not contain any
design decisions or feature descriptions. The strict separation aims to reduce overall
complexity and increase comprehensibility. To ensure system consistency, the vari-
ability model relates the variability it defines to other (software) development models
such as feature models, use case models, design models, component models and test
models. Common parts are not part of the variability model at all.

A survey conducted in 2013 concluded that feature-based modeling of variability is
most popular among practitioners [Ber+13]. An attempt is made to summarize the
concepts as briefly and concisely as possible. The presentation makes no claim to be
complete. For further information, please refer to the respective literature.

2.4.1 foda

Feature modeling was proposed as part of the Feature-Oriented Domain Analysis
(FODA) method by Kang et al. [Kan+90]. In FODA, a domain is defined as a set of
current and future systems that share common capabilities. The goal of the domain
analysis is to discover and represent commonalities and variabilities between them.

In [Kan+90, p. 3], the term feature is introduced as "a prominent or distinctive
user-visible aspect, quality, or characteristic of a software system". The resulting model
is usually displayed as a feature tree with mandatory and optional features, as well as
cross-tree dependency relationships (e.g. Feature A requires Feature B, or Feature A ex-

cludes Feature C). Mandatory features describe the common parts of a system, whereas
optional features indicate its variation points. Later the representational possibilities
were further extended, e.g. to include cardinalities by Czarnecki et al. [CHE05]. It is
a representative for the integrated documentation of variability, where variability is
modeled from the end user (stakeholder) perspective.

2.4 variability management 19

Figure 2.5: Representation of a feature tree according to FODA [Kan+90, p. 36]

Figure 2.5 shows an example of a simple feature tree. A car is shown with two
mandatory features (Transmission, Horsepower) and one optional feature (Air condi-
tioning). There are two alternatives for the choice of transmission, of which Manual is
more fuel efficient. As an additional constraint, the selection of the AC requires the
Horsepower to be greater than 100.

The representation is very clear and easy to understand even for non-professionals.
The range of features, however, reveals nothing about the internal system imple-
mentation. Therefore restrictions are not always comprehensible: Why does the air
conditioning system need more than 100 horsepower? The reasons for these restrictions
remain hidden in the architectural implementation of the system and is deliberately
excluded in this user-centric view.

2.4.2 ovm

The Orthogonal Variant Model (OVM) as described by Pohl et al. in [PBL05] captures
all variability aspects (of software) in a separate model. Although the approach has its
origins in software engineering, it can nevertheless be applied to systems engineering.
OVM also uses feature trees to depict variability using variants, variation points, and
variability dependencies among each other. But unlike FODA, the focus is on the
variability aspect alone. The resulting orthogonal variability model is thus devoted
primarily to capturing and representing variability and does not include any design
decisions or feature descriptions. Pohl et al. state that "software development models
(e.g. feature models) are already complex, and they get overloaded by adding the
variability information" [PBL05, p. 75].

The orthogonal variability model however relates the variability defined by it to
other (software) development models such as feature models, use case models, design
models, component models, and test models [PBL05]. This is achieved by references
e.g. trace, implement between the models. However, the consistency and correctness
of these relationships poses a major challenge. Especially when the overall system
is growing and several views emerge, each of which has references to the variability

2.4 variability management 20

model [Tru+10][Bil+18]. A practical application and extension of OVM was proposed
by Dumitrescu. His CO-OVM (Constraint Oriented Orthogonal Variability Model)
suggests a variant management metamodel for SysML models that allows an explicit
representation of variability during system conception by focusing on requirements
and constrains [Dum14].

Figure 2.6: OVM notation [PBL05, p. 85]

Figure 2.6 summarizes the elements and notation capabilities of OVM. The vast
majority of the identified case studies used OVM for variability modeling. One reason
for this could be that it provides an independent description of variability and can
also be applied retrospectively to an already existing system model. In addition, there
is plenty of tool support that encourages the use of OVM notations.

2.4.3 cvl

The Common Variability Language (CVL) "is a modeling language to specify the
variability aspect of any model that is defined based on the Meta Object Facility
(MOF)" [Wei16, p. 44]. For this purpose, a base model e.g. created with SysML or any
other Domain Specific Language (DSL) is extended with a variability model in CVL,
which describes all variable aspects. An additional resolution model is then used
to describe how the variable elements shall be resolved respectively realized. "A
model-to-model transformation creates the resolved model in the same language as
the base model, for example SysML" [Wei16, p. 44].

The concept and language of CVL was planned to be an adopted standard of the
OMG. "Unfortunately the adoption process has stopped and it seems that CVL will not
become a standard anymore" [Wei16, p. 44]. Although it has been mentioned in some
studies and examined in more detail (cf. [Sve+10]), it will not be considered further in
this thesis due to its declining attention and importance with regard to SysML.

2.4 variability management 21

2.4.4 vamos

Variant Modeling with SysML (VAMOS) is most recently described in Weilkiens book
with the same name [Wei16]. The concept itself is not completely new, but was tailored
by Weilkiens to SysML-specific needs. "It uses the profile mechanism of SysML to extend
the language with a concept for variant modeling" [Wei16, p. 7]. The introduced
stereotypes are described later on. A special tool support is not necessary and not
intended, since the method aims to be completely SysML-compliant. Weilkiens argues
that while the use of specific tools for variant modeling has its advantages (especially
when the requirements for variant modeling are demanding), the price is paid with
much higher effort and complexity. This is reflected in particular in the acquisition
and maintenance costs of the tools, as well as their training.

In essence, the VAMOS approach consists of the following three different types of
elements. The representation of all components and their relationships is usually done
in package diagrams.

The Core. The core contains the "normal" system model, which is independent of
the variant aspects except for the assignment of variation points. Variation points are
elements (docking points) of the core, which are refined by variant elements. The
core therefore does not specify a particular system, but can be seen as a toolbox that
allows many different types of systems depending on the selection (configuration) of
these variant elements [Wei16, pp. 11-20]. Variation points can therefore be seen as
interfaces to the core, allowing it to be customized.

The Variants. "A variant is a complete set of variant elements that varies the system
according to a variation. A variant is also known as a feature of the system" [Wei16,
p. 4]. Multiple manifestations of a variant are summarized under one variation. These
relationships can be represented as a feature model/tree analogous to the OVM and
FODA approaches mentioned above. The variations form the branches and the variants
form the leaves of the feature tree. Additional properties of the variation packages
allow the modeling of constraints and cardinalities. Between variants there can also
be XOR or REQUIRES dependencies [Wei16, pp. 22-25].

The Configurations. "A variant configuration is a valid set of variants and the
core" [Wei16, p. 5]. A configuration can be conveniently displayed as a matrix view,
that shows the selection of a specific variant for each variation point. It therefore binds
each variation point of the core to a specific variant and thus ultimately defines a
specific system variant.

2.4 variability management 22

Figure 2.7: Weilkiens conceptual model of VAMOS [Wei16, p. 4]

Figure 2.7 shows the conceptual model of the elements used in VAMOS and their
relationship to one another. The three parts previously outlined are shown in blocks
of different colors. The picture illustrates how the configuration binds the core and
its variations together. A variation is the discriminator for variants. The structure is
recursive, so a variant can again include variations. In its basic concept it is similar to
CVL - both separating the common part from the system parts that are only valid for a
specific variant. The main difference is that CVL stores the core part and the variant
part in different models. In VAMOS both parts are in the same model but separated by
their package organization.

Although VAMOS can be used to realize variability, it was deliberately included in
this section. This is because of its strong structural and packet-oriented nature. It does
not provide support for modeling behavioral variability. Considering this limitation
to structural variability, however, VAMOS could still be regarded as a realization
mechanism with a low granularity or a high level of abstraction. Other research,
though, shares the classification as a method that primarily serves the visualization of
variability (cf. [Bil+19]).

Nevertheless, this approach can be sufficient and practical, especially for smaller
systems, because it does not require any other tool and allows the direct integration
of variability information into the SysML model. This corresponds to the approach of
integrated documentation according to Metzger and Pohl [MP14].

2.5 variability realization 23

2.5 variability realization

This section focuses on approaches and concepts that deal with variability in the
solution space. Both, approaches from the literature and those that have already been
successfully applied in practice are presented. The focus is on the question of how
variability can be implemented at the element level.

For this purpose, a short overview of approaches from related engineering disci-
plines is given first. A review of approaches from the field of systems engineering
concludes the section. The transfer of the approaches to the model level and their
evaluation can be found in Section 3.4 as part of the conceptual model.

2.5.1 software engineering

Compared to its siblings, software engineering is a relatively young engineering
discipline. However, early on in its development, there was already a strong focus on
reuse of (code) artifacts. Design for and realization of reusability are part of numerous
proposed and meanwhile well established concepts and methods.

The relatively low barrier of being able to incorporate far-reaching changes even late
in the development process makes many of these mechanisms particularly interesting
for software engineering. Even existing code can be refactored by these measures,
which also leads to a widespread use. Although it is not advisable to consider
reusability in retrospect, there is still almost always the possibility.

Component-based software engineering was proposed at a conference in 1968

by McIlroy to cope with the ever-increasing complexity of emerging systems [McI69].
By dividing software into components, their reusability and overall quality ought
to be increased. Components must be clearly documented, well tested and thus be
robust even against unintended use. This principle is still followed today. Frameworks
facilitating this principle are for example the Component Object Model (COM), .NET
or the Common Object Request Broker Architecture (CORBA).

Over the time many design patterns emerged, that provided reusable solutions for
recurring problems. Although originally proposed as purely architectural concepts by
Christopher Alexander, these design patterns gained more popularity in computer
science after the book Design Patterns: Elements of Reusable Object-Oriented Software

was published by the so-called "Gang of Four" in 1995 [Gam+95]. The consistent and
widespread adoption of these patterns has further sharpened the view of an entire
community on common and interchangeable interfaces/classes. Stronger attention
towards object-oriented programming also contributed to this. Later guidelines, in-
cluding the very famous Clean Code: A Handbook of Agile Software Craftsmanship [Mar08],
still promote many of these patterns to improve the readability and reuse of newly
developed as well as refactored code artifacts.

Software Product Lines (SPLs) sometimes also referred to as Software Families have an
even stronger focus on reusability. By separating application and domain engineering,
this method provides tools and techniques for creating a collection of similar software
systems from a shared set of assets using a common means of production (cf. SEI11).

11 Software Engineering Institute - https://www.sei.cmu.edu/

https://www.sei.cmu.edu/

2.5 variability realization 24

Key elements are the separation of common and product-specific components as
well as the clear identification of variability within the product line. Especially in the
predictive planning of software reuse, SPLs differ from previous approaches, which
were rather opportunistic in this respect. From these basic ideas of SPLs, PLE emerged
as a generalized, not just software-specific method for managing reuse and variability.

According to Trujillo et al. SPL approaches can be broadly categorized in two main
groups depending on how they express variability in software artifacts. In compositional

approaches, also known as positive variability, the variable parts are encapsulated in
modular units which are put together according to the features selected for building a
system. In integrative approaches, also known as negative variability, the artifacts contain
both the common and variable parts. Building a system means keeping the variable
parts of the desired features in the artifacts while removing those parts belonging to
unselected features [Tru+10]. This corresponds to the terms Substitution and Selection

as introduced in Section 2.2.

The following list contains the most frequently mentioned realization mechanisms
for variability in the context of software engineering [PBL05][Pat11][Ape+13][ZDB16]:

◮ Cloning

◮ Conditional Compilation

◮ Conditional Execution

◮ Polymorphism

◮ Module Replacement

◮ Aspect-Orientation

◮ Frame Technology

Apel et al. differentiate between Annotation-based and Composition-based approaches.
Annotation-based approaches annotate a common code base, such that code that
belongs to a certain feature is marked accordingly. During product derivation, all
code that belongs to deselected features or invalid feature combinations is removed
(at compile time) or ignored (at run time) to form the final product. Examples of these
are Conditional Compilation or Conditional Execution. In practice, annotation-based
approaches are widely used due to their simplicity and the fact that they are already
natively supported by many programming environments and languages. Composition-
based approaches implement features in the form of composable units, ideally one
unit per feature. During product derivation, all units of all selected features and
valid feature combinations are composed to form the final product. An example is a
framework that can be extended with plugins. In principle, any combination of both
approaches is possible as well [Ape+13, p. 51].

Patzke introduced tactics that are helpful in classifying and characterizing the
mechanisms as well as pointing out important aspects to consider when using:

Increase VP explicitness. Increasing the visibility of variation points (VPs) makes
variants easier to detect and product line assets easier to evolve.

Allow appropriate variant granularities. Associated variant elements of different
sizes should be realized by mechanisms that support a corresponding spectrum.

2.5 variability realization 25

Limit late binding. Later binding times lead to less degree of freedom for realizing
variants.

Isolate variants. Separating common and variant modules allows them to evolve
independently.

Provide automated production. Automation reduces application engineering effort.

Provide defaults. Defaults reduce the number of variants.

This list of criteria was extended by Zhang et al. in 2016 and resulted in the
characterization of the mechanisms shown in Figure 2.8.

Figure 2.8: Variability Mechanism Characterization [ZDB16]

Technique. Links the abstracted variability mechanisms to their actual implementa-
tion, i.e. their respective development or programming technique. Some techniques
are supported by almost all programming languages, others can only be applied in
specific languages [ZDB16].

Binding Time. Describes the time at which the selection of a variant occurs. While
most mechanisms define their VPs and variants at the time of creation/construction,
some allow dynamic selection at runtime. Early binding time resolve the variability
configuration space early and potentially optimize running efficiency, while mecha-
nisms with late binding time provide more flexibility [ZDB16].

Granularity. Defines the level up to which elements/components can contain varia-
tion points. While text-based mechanisms can basically support any granularity of
code variants, other mechanisms enforce a certain size or form of the variants within
the code structure (e.g., a function, a class, or a file) [ZDB16].

Explicit VPs. Describes whether a variation point is clearly recognizable as such.
Since variability is a cross-cutting concern with (often highly) scattered realization
code, mechanisms with implicit variation points tend to cause challenges in develop-
ment and maintenance [ZDB16].

Variant Isolation. While Patzke mentions the isolation of variants and describes
them also as open or closed, Zhang et al. extend this aspect and consider both aspects
separately. Isolation refers to the categories of annotation-based versus composition-
based approaches, e.g. whether all variants are structured in separate modules or
combined in a single file. Code using annotative mechanisms is more integrated but
potentially more complex, while the variability code using compositional mechanisms
is less complex but more fragmented [ZDB16].

2.5 variability realization 26

Open Variation. Reflects the extensibility of a variation point, i.e. whether the VP can
be extended independently by attaching external modules (plugins, etc.). In case the
variable code must be compiled together with the core code, extending is not possible.

Non-Code Artifacts. Indicates whether this mechanism can be used for other artifacts
besides code, e.g. for data files, models or text files.

Defaults. Ability to specify a standard selection. If no selection is specified for a VP,
the standard variant is chosen. This simplifies the variation logic and reducing the
number of variants (by one) [ZDB16].

2.5.2 electrical/mechanical engineering

While many mechanisms for realizing variability can be found in the literature that
focus on software engineering, it should be mentioned that of course other engineering
disciplines, such as electrical or mechanical engineering, have also developed methods
to deal with the increasing number of variants.

In electrical engineering, there is a trend towards modular hardware design. Lower
component prices and the large number of commercial off-the-shelf (COTS) components
are driving this development. The modular ideology divides a system into several
independent parts, each of which can also be used in other systems. Open-source
hardware platforms are gaining momentum, particularly in single board computer
and development board design. As far as variability of these products is concerned,
the focus is on well-defined and consistent interfaces. Components can be exchanged,
replaced or extended, possibly even manufacturer-independently. Also, there is still
a recognizable trend towards gradual merging of hardware and software. The use
of Field Programmable Gate Arrays (FPGAs) delays the decision which functions are
ultimately to be performed by hardware or software. Hardware description languages
such as VHDL12 or Verilog allow the realization of functions in hardware at a very late
stage (cf. [Lie+09]). At component level, many manufacturers offer microcontrollers
of various configurations in pin-compatible packages. Within a product family, for
example, the memory can be easily increased even after the PCB has been layouted.

In mechanical engineering, design reuse is also a subject of research. Compared to
software engineering, however, the reuse of mechanical (or electrical) components is
much more complicated, since they are physical components that are more difficult to
modify and customize. Often large quantities are manufactured or ordered and stored
to reduce costs. While processors can be reprogrammed, the rework of other stored
components causes high costs or is not possible at all. As these retrofits are costly
and often difficult to implement, this means that "compatibility among interacting
components requires more consideration" [ONX08, p. 18]. Approaches to achieve reuse
include the use of standard components. "Modular design is [also] an established
method in this domain" [ONX08, p. 18]. Similar to electrical engineering, the emphasis
here is on standardized interfaces (e.g. mounting points, adapter plates).

In the case of computer-aided design, however, most of the methods and approaches
from software engineering apply. 3D models and layouts can be reused, copied and

12 Very High Speed Integrated Circuit Hardware Description Language

2.5 variability realization 27

extended, as they represent digital artifacts (similar to code). In mechanical engi-
neering, or to be more specific for mechatronic systems, a solution pattern based on
MBSE was proposed by Anacker et al. [Ana+13][ADG14]. This methodology identifies
solution knowledge and process solution patterns from existing mechatronic systems
to provide meaningful reuse during the design of new systems. Through this process,
as much (even implicit) knowledge as possible should be preserved.

2.5.3 systems engineering

The literature review has identified some approaches in the field of systems engineer-
ing. However, the majority of publications deals with the modeling and representation
of variability instead of its implementation at the model level. The following is a
brief summary of publications that address the implementation to some extent. In
particular, the practical application and the difficulties identified can be helpful in the
later evaluation of the different approaches.

In an exploratory case study, Berger et al. present industrial practices of three
companies that use variability modeling and thus show how modeling is applied in
industry. According to them, there is a large gap between the theoretical methods and
their practical application in everyday use. The primary benefit of variability modeling
lies in variability management – organizing, visualizing, and scoping features – less
in configuration and automation [Ber+14]. All three cases mainly use Conditional
Compilation as a mechanism to realize code variability.

A recent study from Bilic et al. describes a tool-supported approach that allows to
annotate SysML models with variability data. This variability information can then be
exchanged between a system modeling tool and a variability management tool using
the Variability Exchange Language (VEL) [Bil+19]. By using the proposed tool chain,
variant realization (with SysML) and variant management (in pure::variants (p::v)13) are
seamlessly coupled. The study was demonstrated through an example from Volvo
CE14 and suggests a potential improvement in efficiency.

Figure 2.9: Model-based Tool Chain [Bil+19]

13 pure-systems GmbH - https://www.pure-systems.com/
14 Volvo Construction Equipment - https://www.volvoce.com/

https://www.pure-systems.com/
https://www.volvoce.com/

2.5 variability realization 28

A schematic representation of the process is depicted in Figure 2.9. The variability
in the Problem Domain (Variability Management) is handled with a dedicated feature
model (in pure::variants). In the Solution Domain (Variability Realization) a single,
over-exposed (150%) model is used. VEL is used to exchange variability information
between these two representation and allows automatic traceability between feature
model and implementation. As a result and with an extension of the modeling tool
used (Modelio15), a specific 100% model can be automatically generated for any
particular variant. This study is particularly interesting because it focuses on SysML

and uses a very similar approach to that in the feasibility study (cf. Chapter 4).

A study conducted by Tolvanen and Kelly investigated DSLs and especially how they
address variability in product line development [TK19]. For this purpose 23 different
cases were examined. Various company sizes, languages and models from a wide
range of fields were examined. In particular how they apply reuse and production
line approaches. About 50% of the identified approaches are currently not (yet) used
in real projects, because they are still in an evaluation and testing phase. Nevertheless,
especially the diversity of these approaches shows how difficult a generally valid
solution is and how different the requirements are. Since the study focuses on domain-
specific modeling languages, SysML is not part of it.

The fact that some studies have only recently been published and were supported
by notable companies shows that, on the one hand, current research is addressing
these issues and, on the other hand, that there is a growing need to find practicable
solutions on how to implement variability.

15 Open source extensible modeling environment - https://www.modelio.org/

https://www.modelio.org/

3
C O N C E P T UA L M O D E L

This chapter describes the conceptual model and thus all aspects that were further
investigated in the context of this thesis. The topic is approached from the outside to
the inside. For this purpose, the causes for variants are first examined and described
in detail. Afterwards, the approaches for variation management already introduced
in Section 2.1.2 will be further elaborated. The selection of such an approach already
has far-reaching effects on the possibilities for variability realization. Subsequently,
the possibilities and limitations of tool-supported variant modeling are discussed.
The main part includes an overview of existing mechanisms for the realization of
variability with special emphasis on the modeling aspect. A presentation of KPIs, with
which mechanisms can be evaluated, compared and thus be chosen, concludes the
chapter.

3.1 variant driver

Two aspects significantly influence the creation of variants. In the following, these
drivers are discussed in more detail. While variability describes the intentional co-
existence of different variants at the same point in time, evolution i.e. the implementa-
tion of changes over time, leads to new variants (revisions) as well.

Figure 3.1: Evolution and Variability [Sch18, p. 6]

Figure 3.1 shows both of these driving factors. While product/system evolution
over time is principally inevitable, variability is somewhat controllable. However, there
are circumstances that cannot be foreseen or controlled.

Evolution leads to variation in time, variability leads to variation in space. At a first
glance, they seem orthogonal. But, since each new variant is once again subject to
temporal variation and the evolution of a domain assets can have in turn an impact
on all variants, there are situations where they overlap. In practice, both aspects must
be considered equally.

29

3.1 variant driver 30

3.1.1 variability

Variation points are required wherever a system feature may have different charac-
teristics. Within the context of Product Line Engineering (PLE), these variation points
can be used to create new variants. Usually, this is the result of continuous product
improvements and portfolio expansions. Meaning that a product is to receive a new
feature or an existing feature is changed. The reasons for this can be of different nature.
But what these types of new variants have in common is their deliberate creation and
a changed configuration of internal properties. Examples of this are:

◮ additional new feature (technological innovation)

◮ new variant with a subset of functionality for a different price segment

In contrast, there are also often drivers for variability that do not occur intentionally
or cannot be planned. Thus, it is especially important to become aware of these drivers
in system modeling, e.g.:

◮ new regulations (laws, standards)

◮ changed environmental constraints

◮ change in a used third-party component (interface, API, discontinuation)

Even if the triggers themselves are not predictable, it helps to become aware of their
existence. Especially those that can potentially lead to frequent changes.

The variant drivers listed below are characterized by the trigger that requires a
system change and thus a new/changed variation point. The examples listed here are
intended to provide a comprehensive overview of the different areas where changes
occur and new variation points can arise. There is no claim to completeness.

system context. Many changes can occur in the system context. New system
components (participants/actors/peer systems) can be added or modified. For this
purpose, existing interfaces may have to be extended or new ones added. Unintentional
changes can also occur in interfaces to external systems, since these are not exclusively
controlled by the system. This type of externally influenced system adaptation often
occurs in the IT environment. Newly discovered security vulnerabilities or changed
Application Programming Interfaces (APIs) to third-party systems force developers to
modify their systems accordingly to remain functional. If the system is not designed
for such changes in the system context, this can have far-reaching consequences for
its durability and usability. Changes in environmental conditions also fall into this
category because they define the system boundaries. Such changes can also have
various effects on the overall system and its implementation.

effect chain. Effect chains include both functions as well as their relations. A
change in the effect chain creates new functionalities simply by rearranging or com-
bining existing signals. No new components are involved. For example, input signals
can pass through different processing steps depending on the product variant. The
implementation of a second algorithm would also be an example. Algorithm A is less
accurate, but requires less performance. Algorithm B is more accurate and requires a

3.1 variant driver 31

more powerful processor. Depending on the product variant and its configuration, the
appropriate algorithm must be selected. Depending on this selection, some elements,
interfaces and connections remain unused.

information flow. A change in the information flow affects first of all the
interfaces of the system or its components. These changes can subsequently lead to
other changes, such as alternative processing paths (see Effect Chain) or changed
behavior (see Behavior). Information flow, however, primarily concerns a change in
content, such as a changed data type.

behavior . Trigger for the system change is the need to behave differently. Be-
havioral change is mainly reflected in the behavior diagrams (Activity, Use Case,
Sequence and State Machine). Therein they lead to additional states, transitions or
messages. The correlation between intended and modeled behavior is very clear and
straightforward. Nevertheless, a change in behavior may also affect other aspects of
the model or, vice-versa, might haven been triggered by them.

element properties . A system change is triggered by a variation of its properties.
These can be system-level properties or requirements (performance, reliability, etc.) or
the properties of individual system components. A change refers both to the attributes
themselves and to their assigned values. For example, a temperature sensor could
have a parameterizable threshold for triggering an interrupt or not. This would make
the attribute itself optional. If the threshold is now varied, an additional variation
point at the parameter level is created. With the help of parametric and requirements
diagrams, these configurations and variations can be well documented, but they often
have far-reaching consequences for other model components as well.

allocation. A change in allocation occurs when tasks and responsibilities are
reassigned. For example, functions that were previously performed by one or more
components are rearranged and now performed by another component. As a result,
relations between system components are also subject to change. Moving a complex
calculation to another processor with less workload would be an example. The
increasing integration of multiple functions into one chip (SOC1) is another example
of how allocation varies. In this case several components are replaced by one. This is
often the result of cost reduction or technical innovations.

composition. This refers to changes to the system structure and the assignment
of responsibilities. Decisions to remove optional components or extract commonalities
in libraries are examples. These types of changes have far-reaching effects on the
decomposition of the entire system.

bug fix / maintenance . Identified defects and/or improvements to already
existing functionalities can always be a reason for changes. The affected model areas
can vary as well as the implications for them. Initially, it must be identified which
variants are affected in order to be able to implement a system-wide or variant-specific
correction. The changes caused by defects do not usually lead to a planned new

1 System on a chip

3.1 variant driver 32

product variant, but merely correct functional deficits of an already existing variant.
Thus, bug fixes are not to be understood as a new feature but are rather a variant
evolution.

3.1.2 evolution

As mentioned before, change is inevitable. Developers are humans and therefore
make mistakes. Furthermore, it is almost impossible to foresee changing internal
or external requirements, or new functionalities demanded by users, at the time of
deployment [Sch18].

There are several approaches to classify product line evolution scenarios. A straight-
forward and easy to understand classification scheme was introduced in [Zur14, p. 62].
It differentiates the scenarios according to the trigger or "drivers of change".

(1) Maintenance

a) Bug Fix

b) Change (requirement, environmental constraint, etc.)

(2) Evolution

a) add new feature

b) remove existing feature

c) create new variant (select, add and change features)

d) remove existing variant (and associated features)

While Maintenance in this classification can be regarded similar to variability, Evolu-

tion focuses on the further development of the variation points within a product line.
As soon as a product line evolves, the interaction of its common and variable parts
usually has to change as well. The adaptation is done by a family engineer using an
appropriate variability mechanisms. It is necessary to apply these mechanisms in a
disciplined manner to minimize further complexity. A change in common parts may
change other variants as well. The decision to implement a change in a common part
or only specifically for one variant has a major impact on the product line. Apart
from these two possibilities, there are alternatives, e.g. implementing the solution
as another domain asset and selecting that one for this variant by means of a new
variation point. This allows to decide for each variant which implementation to use.
The structure of the product line has a great influence on the possibilities. In case of a
production line (150%), application engineering is omitted and any change has to be
integrated with a new variation point if not intended for all variants.

A set of basic evolutionary scenarios covering the most important types of changes to
a product line has been developed by Patzke [Pat11]. The remedy proposed in his work
is to capture evolutionary steps and reapply them later when a similar developmental
situation occurs. Especially the ability to transfer the described evolution steps to
elementary realization activities are of interest, since this could also be applied to SysML

elements as well. The feature evolution described by Patzke is shown in Figure 3.2.
It summarizes the most atomic evolution possibilities that a product line asset can

3.1 variant driver 33

undergo. Figure 3.2a depicts the changes to the features, while Figure 3.2b shows
the changes to the corresponding (code) artifacts. A list of the captured product line
evolution scenarios follows in Table 3.1. Although Patzke created this list for code
artifacts, all aspects can nevertheless be applied to the model level.

Figure 3.2: a) Elementary feature evolution b) corresponding pseudocode [Pat11, p. 135]

3.1 variant driver 34

id name
feature

evolution

steps

(cf . 3 .2)
scenario

ES1
optional feature
creation

1, 2

realize a new feature
which depends on an ex-
isting feature

ES2
optional variation
point creation

2

make an existing feature
an optional variant ele-
ment

ES3
alternative feature
creation

3, 5

create an alternative fea-
ture as a substitute for an
existing common feature
element

ES4
alternative variation
point creation

5

make existing alterna-
tives more explicit by
realizing their common
variation point

ES5
common feature
extraction

4, 5

consolidate common el-
ements and converting
them into alternatives

ES6
alternative feature
addition

(6), 7

realize an additional al-
ternative feature by ex-
tending an existing vari-
ation point

ES7 default addition 8

reducing complexity by
adding a default selec-
tion

ES8
addition of multiple
coexisting possibilities

9

make several features,
that have been alterna-
tives previously, avail-
able simultaneously

ES9
variable feature
extraction / inlining

10/11

both methods concern
the coupling of variants;
depending on the total
number of variants, it
may be necessary to con-
vert them from closed
to open variation or vice
versa

Table 3.1: Product line evolution scenarios captured from Figure 3.2 [Pat11, pp. 137-143]

3.1 variant driver 35

es1 Optional Feature Creation implements a new feature, e.g. a new functionality.
Afterwards, products containing the pre-existing features or extended by the new
(optional) feature should be producible. The simplest approach is to clone an ex-
isting element and modify it to realize the new feature. A less intrusive method of
implementation would be Conditional Compilation.

es2 Optional Variation Point Creation differs from Optional Feature Creation as the
new feature already existed as an element of the common code but was not explicitly
designed as a variation point. Language-agnostic variability mechanisms, such as
Conditional Compilation, tend to be the best choice for realizing this scenario.

es3 Alternative Feature Creation substitutes an existing common feature with an
alternative. This may be necessary, for example, if a new feature is required but
existing elements cannot (yet) be removed or replaced. The simplest approach is a
two-step process. First, the common element for which an alternative is to be provided
is identified. Second, this element is made a variant by introducing an alternative
variation point. The creation of variants can be achieved with Cloning or Conditional
Compilation. For variant selection Conditional Compilation is most appropriate.

es4 Alternative Variation Point Creation creates new alternatives from already existing
elements, which, however, did not previously represent variability, by recognizing and
explicitly realizing their common variation point.

es5 Common Feature Extraction is a consolidating scenario to eliminate duplicate
elements. First, common elements are extracted and differing elements are then
converted into alternative.

es6 Alternative Feature Addition is the extension of an existing variation point by a
new alternative.

es7 Default Addition is an optimization scenario that favors one alternative over
others by declaring it a default. This ultimately reduces complexity, since no selection
has to be made for this variation point. The default selection can be overwritten, but if
this is not done explicitly, the default selection will be chosen.

es8 Addition of Multiple Coexisting Possibilities becomes necessary when several
features that were previously alternatives must be available simultaneously. The
selection of alternatives is no longer limited to an exclusive disjunction.

es9 Variable Feature Extraction / Variable Feature Inlining are two (complementary)
scenarios which are usually applied to alternative or coexisting features and concern
their coupling resp. isolation. Depending on the number of variants, it may make
sense to keep them together in one module or develop them further separately.

[Pat11, pp. 138-143]

3.2 variation management approaches 36

3.2 variation management approaches

This section deals with the question of how system-wide variability and reusability of
components can be implemented. Methods for implementing reusability in the PLE

context were already introduced in Section 2.1.2. At this point, three of these concepts
will be discussed in more detail and the resulting possibilities for variant realization
will be investigated. Since the methods are rather abstract and coarse-grained, it could
be assumed that they have little or no influence on concrete variation points. However,
restrictions and general stipulations can already result from decisions made at this
level, limiting the choice of tools and mechanisms for later implementation.

It has already been shown which causes can lead to a large number of variants. If a
high degree of flexibility is required for a system or if many changes are foreseeable,
an approach should be chosen as early as possible to deal with the resulting number
of variants [Lab17]. While it seems difficult to decide on a method in advance and to
apply it consistently, there are some aspects that can be helpful in the selection process
even at an early stage. If necessary, deviation from the method can always be made
at certain points. The following considerations are intended to assist in determining
which approach may be suitable and when.

3.2.1 managed cloning

A new variant is created by copying an existing model or parts thereof, which are
then modified to suit the specific requirements of the new system variant. Cloning
can generally be applied to any artifacts and therefore appears again in the list of
realization mechanisms. The term Managed Cloning is used to distinguish it from the
ad-hoc Clone & Own approach and to emphasize the intended degree of structuring.
In principle, the advantages, but also the limitations of cloning and managed cloning
are alike. However, especially at system level, this approach should not be applied
without careful consideration.

Systematic use. The use of managed cloning is no different from normal cloning.
However, since the duplication of components and their independent evolution leads
to a loss of relatedness, an important aspect of managed cloning is the maintenance
of traceability and the visualization of changes. This is intended to ensure that
relations and similarities between clones can still be identified in retrospect. In software
engineering, this principle has already been used for a long time. Version Control
Systems (VCSs) such as SubVersion2 or Git3 are used to store all changes to an (code)
artifact into a repository. Each modification is assigned a unique revision number and
contains information about the changes, the creation date and the author. Applied
to a model, this allows concurrent accessibility for all users and a clear presentation
of the history of changes. Derived clones are branches of the original model and can
be modified independently, but still have information about their origin. Later on,
entire branches, or only certain features of them, known as "cherry picking", can be
merged back into the main model. This means, for example, that the current version
of a model can be branched off and a change can be implemented for test purposes.

2 https://subversion.apache.org/

3 https://git-scm.com/

https://subversion.apache.org/
https://git-scm.com/

3.2 variation management approaches 37

In case the result is satisfactory, all changes can be committed and merged into the
main model. If the test fails, the branch has no immediate effect on the main model
and can simply be discarded.

Benefits. Although not as easy as clone % own, using managed cloning is still
relatively simple and intuitive. Because changes are stored in a repository (and can be
reverted), there is very little risk involved. Correctness can be further increased by a
review step. After a change has been committed, it must first be checked and released
by a different person. Since the variants are developed in isolation, there is no risk
of unintended side effects. The main advantage, however, is the possibility to work
on the model distributed and in parallel. Everyone can access the most recent data
and view/track changes made by others. A graphical visualization of differences is
especially helpful in this case. If the change to a model can be considered as an atomic
step that has been formally described and documented, then this step can be reapplied
(to other models or components) and thus also be reused. This so-called patching can
be helpful, for example, when recurring model changes have to be implemented to
multiple variants. Strictly speaking, all these advantages have little to do with cloning
itself - they are advantages that come from using a VCS. These advantages remain the
same, regardless of whether the variants were created by cloning or in any other way.
Nevertheless, the use of a VCS allows and encourages cloning of models at system
level.

Limitations. The introduction of a VCS requires planning, training and consistent
utilization. Training and the creation of a common understanding is often neglected.
However, this is especially important in daily use. Apart from the technical require-
ments (server, administration, access rights, security), the greatest difficulty is the
resolution of conflicts. The opportunity to make concurrent changes to the system
model inevitably leads to these conflicts when merging. While graphical tools can help
to solve the conflicts, it is nevertheless a difficult, time-consuming and error-prone task.
It requires a mutual understanding to merge both your own and other people’s modi-
fications. The limitations therefore mainly result from the capabilities provided by the
tools used. Since many VCSs come from the source code domain, they are specialized
in processing text files. Models can be stored and managed as artifacts, but tools like
diff and merge do not work with binary files. Special tools are therefore required. These
tools must highlight the differences between the models, such as missing or changed
components, values or dependencies. They must also support the user in making
decisions during the merging process and ideally be fully integrated into the modeling
tool. It is important to point out that while tool support can help to keep track of the
clones, it does not indicate how strong the similarities remain. Suppose a defect is
discovered in a component that has been copied multiple times. By using a VCS, the
variants that contain this component can possibly be identified. However, the bug fix
must be manually applied to all variants and (much more importantly) separately
adapted and validated. It should also be noted that the consistent management of
clones is necessary right from the product/project start. A later use is not at all, or only
very difficult, to realize. A study by Rubin et al. shows the (re-)creation of a (software)
product line from variants that have been realized by cloning. These variants were
transferred either into libraries or into a 150% model in order to be able to manage
them. A process that can take years depending on the number of variants [RCC13].

3.2 variation management approaches 38

Example. LemonTree4 is a proprietary tool that offers a large range of functionality
for the implementation of managed cloning. It combines proven techniques and
features of a VCS with a full integration into Enterprise Architect (EA). This enables
collaborative modeling and distributed work while keeping track of all changes.
Most importantly the diff tool can visualize conflicts and differences graphically
(cf. Figure 3.3). All impacted elements are listed and a merge preview allows to
examine the resulting diagram immediately. Conflicts that arise can thus be solved
with a simple selection mechanism ("take theirs" vs. "take mine"). It supports different
types of diagrams.

Figure 3.3: Merge preview with LemonTree [Wie17, p. 32]

LemonTree uses a 3-way diff in order to be able to display both own and third-party
changes to the common base model (main version). All changes that were made are
always traced back and compared with the last common main version. In contrast,
a 2-way diff would only show the differences between two versions and would not
provide information about who made which changes.

An example of the branching and merging concept of models is depicted in Fig-
ure 3.4. It shows the joint work on several model components and the creation of a
specific model version A2, which is composed of three different model revisions. For
this purpose the main version A1 is cloned (branched) and further developed by two
teams (Feature Team & Basis Team). Intermediate results are checked in regularly to
the respective branch. Version A2 can ultimately be created by merging all desired
development results.

4 LieberLieber Software GmbH - https://www.lieberlieber.com/lemontree/

https://www.lieberlieber.com/lemontree/

3.2 variation management approaches 39

Figure 3.4: Branching and merging concept of LemonTree [Wie17, p. 38]

In order to avoid conflicts at all, there are also other approaches that prevent users
from accessing the components currently under development. But, instead of these
rather pessimistic approaches, LemonTree encourages parallel work. The resulting
conflicts must be resolved during merging, which requires a greater knowledge of the
system, but joint and distributed work yields results much faster. Ultimately, the fact
that developers are constantly confronted with the changes made by their colleagues
contributes to a common understanding and greater knowledge of the system.

3.2.2 product line (90%)

Product lines consist of both domain and application assets. An essential aspect,
however, is the development of a common asset base, containing the reusable parts.
Contrary to the platform strategy, special assets can also be part of this base.

Systematic use. Since the asset base is the foundation for each product variant,
its structure and continuous further development is the core of each product line.
Changes, affecting both domain and application assets, lead to either modified or new
assets. New variation points can therefore arise in both. Common (domain) assets
must be deliberately designed for reuse when they are created. The most important
aspect in this regard is modularization. This requires clear boundaries, objectives and
interfaces. Furthermore, the knowledge about them must be made explicit so that they
can be considered and used accordingly during application development.

Benefits. The development of a large number of reusable components offers many
advantages. First of all, their use usually leads to a lean and well-structured model. As
a result of this clear structure, the impact of changes can be identified rather quickly.
However, the transparent separation of interfaces, components and responsibilities
not only improves the representation, but also increases the understanding of all
participants involved. Essentially, the use of common assets contributes to the devel-
opment and allows shorter development cycles. In addition, the development risk can

3.2 variation management approaches 40

be reduced because the high amount of reused components allows to reach a high test
coverage. As the approach also offers the possibility of integrating application-specific
solutions whose reusability does not have to be taken into account, individual solu-
tions can also be implemented with little effort. The separation between application
and domain engineering contributes to the fact that features and product variants can
be developed in parallel.

Limitations. One of the biggest limitations is the high effort, especially in the initial
setup, continuous maintenance and further development of the common platform. The
decision to implement certain features as domain assets has far-reaching consequences
and thus requires planning. The use of domain assets can also limit the degree of
freedom in the development. Ultimately, this can prevent innovation. Continuous
(and exclusive) reuse of assets leaves little room for truly new solutions or alternative
approaches [Kru17]. Another aspect to consider is the search and identification of
suitable assets.

3.2.3 production line (150%)

The use of an over-exposed (150%) model is probably the most common method to
manage variants in the MBSE context. Several studies have already demonstrated how
it has successfully been used to establish a product line in a professional environment.
In fact, all the practical approaches examined followed this method. This circumstance
certainly benefits from the fact that there is already very good tool support for it, and
even existing models are suitable for introducing this method afterwards [RCC13].

Systematic use. An existing product line can be converted into a 150% model with
reasonable effort. For this purpose, the variant with the largest possible proportion of
components is taken and used as the new base model. All variation points (at which
other system variants may vary) are then added to this base model. In this way, all
components of the system variants are integrated into the base model. The variation
points must be documented and described accordingly. A separate feature model
represents all selection and configuration options for them. All future changes and
additions will only be made to the base model. The variation points are visible and
explicit, which simplifies the identification in the model. The approach is therefore
very beneficial especially on a high level of abstraction.

Benefits. The creation of a base model requires relatively little initial effort. Even
when setting up a new production line, the first step is to start with a variant and then
gradually add more variation points. The activity is therefore initially no different
from setting up a single system. Previous work can usually be transferred completely
and used as a starting point for the base model. Since all variants are derived from
this base model, they automatically receive all changes and no (manual) transfers
are necessary. When planning a new system variant, the clear representation of
features and related components is especially helpful. Similar to feature trees or OVM,
technological dependencies can be traced to the realization of variants. In other words,
a relationship between feature and implementation remains visible and preserved.
Although the base model contains much more information, and therefore much more
elements, about the entire product line than the other methods (actually all of them!),

3.2 variation management approaches 41

the complexity can be slightly reduced by structuring all dependencies in a separate
feature model.

Limitations. Collaborative work on a single, large model has proven to be very
difficult. Concurrent changes lead to conflicts and modifications can have far-reaching
effects on the entire system and all its variants. Therefore a very large testing effort is
necessary to guarantee the quality for the whole production line permanently. Even
variants not directly affected by a change may have to be reviewed again. Furthermore,
as the number of variation points and their descriptions increases, the base model
becomes increasingly confusing and complex. The derived product variants (100%) no
longer contain information about variation points, this information is only available
in the base model.

Example. Figure 3.5 shows the representation of a variation point within a 150%
model. To demonstrate this, a rather simple state machine was chosen. In the interac-
tion of Enterprise Architect (EA) and pure::variants (p::v) a variation point is defined as
a special element pvRestriction of the type «constraint». In this example the variation
point is named Warnings and affects two elements overall. On the one hand a new
state (CheckValues) is added, if the feature Warnings is selected. On the other hand
the direct transition from the state ReadSensors to UpdateDisplay is only included if
Warnings is not selected.

Figure 3.5: Annotation with pure::variants (example based on [Beu13])

Both possibilities to attach a variation point to an element are shown in this example.
They can either be defined internally or attached externally as a note. A corresponding
feature model in p::v allows to include the variation point Warnings as an alterna-
tive/option in a specific product variant and to automatically create a 100% model of
the variant, which only contains the selected elements.

3.2 variation management approaches 42

decision support

A short summary of the points discussed is given below. For this purpose, Figure 3.6
shows the connections between important criteria and their relationship to one of the
three approaches depicted. The lines intentionally do not indicate a direction. Thus the
image can be read in both directions. A single criteria has positive effects on linked
approaches, just as an approach benefits from all linked criteria.

Figure 3.6: Decision support for variation management

Number of products. As the number of products increases, so does the complexity
and obscurity of their variants. In order to keep track and gain as much benefit as
possible from the reuse of their components, product or production lines are therefore
advisable. Managed cloning should only be considered if the number of products is
low.

Parallel Customization. If many variants have to be developed and created in paral-
lel, working on a single common basis is a limiting factor. Therefore, product lines or
managed cloning are more suitable for this purpose, whereas a production line can be
quite difficult to maintain.

Mass Customization. Customer-specific mass production can only be effectively
realized with a production line. All variation points and their characteristics are fully
described, which enables the fast and automatic generation of variants.

VM Tooling. Since variant management is not part of system modeling, additional
tools are required to implement product or production lines. If these tools are already
available and their application is familiar, it is advisable to utilize their support and
set up a product or production line.

Planning Uncertainty. If there is a high degree of planning uncertainty, the use of
product lines should be avoided. This is the case, for example, if variation points

3.2 variation management approaches 43

often have to be inserted or changed subsequently, or if there are uncertainties in
the separation of special and general components. In a production line there is
no separation between domain and application assets, so variation points can be
integrated even late in the process.

Application-specific Parts. As the number of application-specific parts increases, the
significance of production lines is declining. The integration of too many special parts
in a 150% model is not reasonable, because of their low reuse. In this case, product
lines that can be extended according to customer specifications are a good solution.

Organizational Constraints. Organizational constraints can result from distributed
teams, for instance. These may be divided according to customers, functions or
responsibilities, making it difficult to work together on a common model. Therefore,
these constraints primarily have a negative effect on production lines, where a single
base model has to be maintained. Merging changes, for instance, can be difficult once
time differences or language barriers have to be overcome.

Variation Management Effort. While the effort for managed cloning hardly changes
for each new variant, it does decrease for a product line by the proportion of reused
components. On the other hand, once a production line is set up, the generation of
variants requires the least effort. If the goal is to be able to produce many variants
with minimal effort, then the production line is the best choice.

Although this list is certainly not exhaustive, it gives an idea of aspects to consider
when choosing a suitable variant management approach. On the other hand, it also
helps to identify limiting factors to avoid selecting a method that may be unfavorable.
In this aspect, it refers to RQ3, along with the limitations of tool support, which are
described in more detail in the next section.

3.3 tool capabilities / limitations 44

3.3 tool capabilities / limitations

Motivated by the examples from the previous section, this section aims to discuss the
necessary/desired capabilities and limiting factors of tools in more detail.

All previously described approaches require the support of tools for an efficient
and systematic application. Depending on the chosen approach, there are sometimes
identical, but sometimes also very specific requirements for these tools. The following
overview in Table 3.2 is intended to give an overview of some of these requirements. If
a specific approach is to be used, a tool that meets the necessary requirements should
be chosen if possible. However, a suitable method can also be identified based on the
capabilities of a tool already in use.

capability
managed

cloning

product

line (90%)
production

line (150%)

Annotation

Automatic generation of variants (100%)

Validation (REQUIRES, XOR) of feature selection /
combination

Branching (creation of a new variant / product)

Merging (conflict indication & resolution)

Comparing (2/3-way diff and preview)

Cherry picking (patch, without rebase)

Version control (model history, documentation,
traceability)

Impact analysis (on other variants)

Review / approval step

Import / export

Asset management (search & find, identification of
common assets)

= required = optional = not necessary

Table 3.2: Overview of tool capabilities

The list does not claim to be complete, but merely serves as an overview. The
absence of tool support for a particular task does not automatically mean that the
corresponding method cannot be used. However, the task may then have to be
executed manually, which is both more time-consuming and error-prone. Especially if
it concerns a frequent repetition of certain tasks.

In practice, the listed capabilities are often not bound to a single tool, but can/must
be performed by several interacting tools. Further restrictions result from this (often
multi-vendor) distribution. With annotation, for example, the modeling tool must
support some kind of annotation in the model, whereas an additional selection tool
must be able to read and interpret this annotation. Standard interfaces such as VEL

can be used for the exchange of information, or the tools are already designed by the
manufacturer to be compatible. A widely used combination of the tools Enterprise
Architect (EA) and pure::variants (p::v) for the realization of variability in a 150%
model, which was also used for the feasibility study, will be examined more closely
for possible problems at the end of Section 4.2.

3.4 variability realization mechanisms 45

3.4 variability realization mechanisms

In the following section, mechanisms for the realization of variability are listed and
explained. They were selected because of their applicability in the MBSE context and
thus to models. The mechanisms will be characterized according to their underlying
principle, advantages and limitations. Wherever possible, they are supplemented by
small examples that are intended to demonstrate their practical use.

The findings of Zhang et al. were used as a starting point for the list of mecha-
nisms [ZDB16]. They have been transferred to the model level and it has been checked
whether the original statements are still valid for models. In order to increase the un-
derstandability, the terminology was adapted accordingly. The mechanisms presented
are intended to answer RQ1.

Figure 3.7: Overview of Variability Realization Mechanisms

3.4 variability realization mechanisms 46

The illustration in Figure 3.7 provides a first overview of the identified mechanisms
and their underlying principles/primitives. On the vertical axis the mechanisms have
been classified into ones that are extrinsic to the modeling language (SysML) and ones
that are intrinsic, i.e. they use features of the modeling language itself. Table 3.3 briefly
characterizes the used primitives in more detail.

primitive description

Model diff Comparison and visualization of differences (added, removed, modified) between mod-
els, i.e. their views, elements and values.

Model patch Utilizing a revision history, certain modifications can be packaged in a patch and subse-
quently applied (merged/transferred) to other models.

Module import Complete or partial insertion of own or prefabricated (third-party) model parts.

Module import
by reference

Only a reference to the prefabricated model element is added. When changes are made
to the source element, they are automatically transferred to the variants. This can be
an advantage in terms of maintainability, traceability and consistency, but also a dis-
advantage in terms of ambiguity of all side effects, their testability and system-wide
plausibility.

Module import
by copy

A copy of the prefabricated model element is created and added. This copy may evolve
independently and has no relation to the original. Disadvantages result from the high
maintenance effort and the low reusability.

Selection Mechanism to select/deselect variant elements based on decision criteria, e.g. if/switch
constructs.

Macro
Expansion

A preprocessor substitutes macro with predefined content, e.g. replacement of a pa-
rameter by a specific value or simple calculations when deriving a specialized model
instance.

Annotation Embedding variability constructs formulated in another language into the modeling
language.

Stereotype /
Tagged Value

Extensibility mechanisms for creating new model elements by introducing
domain/problem-specific properties. Usually, these are derived from existing classes
or elements but can be adopted for specialized usage.

Constraint Used primarily to model physical system parameters and restrictions, such as perfor-
mance or reliability, by adding mathematical or logical expressions. User-defined con-
straints can also be used to define variation points (especially with p::v).

Comment /
Note

Textual annotations, usually intended for human readers to increase clarity on certain
aspects.

Transformation Automatic generation of a model, using a combination of composition, selection, and
generation mechanisms or by successive application of multiple model patches.

Parameteriza-
tion

Introduction of characteristics, whose state is evaluated at runtime and used for control
flow decisions, behavior control or component selection.

Control
constructs

Elements and keywords provided by SysML that facilitate a variable control flow decided
at evaluation time.

Inheritance Specialization (by adoption, modification, extension) of existing properties and meth-
ods of a more general element. Multiple elements of the same type can exist and the
selection can occur at runtime.

Templating Ability to predefine structures generically and specifically equip them when used in
UML.

Table 3.3: Explanation of mechanism primitives

3.4 variability realization mechanisms 47

cloning

Cloning is a very simple and intuitive approach to create variants in all engineering
disciplines. The cloning approach can be used in any phase of the system development
process and offers the possibility to quickly create a new and independent system
variant.

Principle. The new system variant is created by copying an existing system model
and then filling it with the new specific system properties.

Use. Since the size of the cloned system model is not important, it can range from a
single artifact, e.g. a block, functional structures and subsystems to complete systems.
Technically speaking, a clone can be created either by copying the artifacts directly or
by using configuration management branches (cf. managed cloning).

Example. Figure 3.8 shows the generation of two product variants using cloning.
Model variant 1 (left) shows the decomposition of a car into 3 blocks, of which
the combustion engine system is described in a generic way. The model variants 2

and 3 are now created by copying the entire model and replacing the generic engine
block with one that is specific to its variant. Both new variants are independent and
can implement their own behavior. Although it is not necessary to generate and/or
maintain a generic variant, it helps to indicate the variation point.

Figure 3.8: Cloning

3.4 variability realization mechanisms 48

Advantages. The cloning approach can be applied regardless of the modeling lan-
guage, method, and tool. This makes it fast and quite cost effective, especially in
the early stages of creation, which is further supported by the fact that no special
knowledge of the approach itself is required. The maintenance and evolution of the
newly created system variant is furthermore independent from its source, i.e. changes
in the respective system variants have no influence on each other. Thus, cloning does
not pose a risk for existing (and possibly verified) system variants - in contrast to
most other approaches. Changes do not have to be coordinated with other system
variants, which again influences speed and simplicity. In the context of prototyping
and early testing, the properties of the cloning approach described above are a big
advantage. A new system variant can be quickly and easily checked for feasibility
and, if necessary, quickly discarded due to its independence. Only a small amount of
development effort is required [KG08].

Restrictions. Since there are no direct dependencies between the model clones, all
changes are only local and must be transferred manually between the system vari-
ants as required (for example, feature update/upgrade). As the number of variants
increases, this leads to a lower maintainability of the system family as a whole. In
addition, modelers and users of the model variants cannot see which parts of a model
have been copied and which changes may need to be applied to other variants as
well. The knowledge of similarities between the clones tends to be quickly lost – in
result, the engineers might forget to port a bug fix or a functionality upgrade to
some relevant clones [Dub+13]. Without appropriate tool support (e.g. a 2/3-way-diff
of model variants) the comparison of model variants quickly becomes a complex
and error-prone task. Although cloning is initially intuitive and simple, over time
independence is usually paid for with increased maintenance costs and declining
model quality. Therefore, the approach should only be used if a small number of
variants (<= 5) and low frequency of changes over time can be expected. Cloning of
model fragments can be also deliberately used as a variability mechanism if their
later similarity is expected to be low [Tis+12]. In this case, the rationale for using
Cloning is the high effort and low benefit of using other variability mechanisms such
as Conditional Compilation for the dissimilar code. Deliberate cloning is therefore
performed if there is no prospect of a viable variant consolidation in the future. A de-
tailed investigation of the motivation for and experience with cloning in an industrial
environment is provided in the study by Dubinsky et al. [Dub+13].

libraries

The use of libraries is widespread in all engineering disciplines. A typical application
of this in MBSE is the field of standards. In this context, standards in static architectures
are already provided for use, such as ISO/IEC 80000 for the definition of value
properties.

Principle. Common model elements are stored in libraries, which can then be used
to create the system model.

Use. Prefabricated (third-party) libraries are integrated on a functional, logical or
physical level and their content is used by the other system packages. This principle

3.4 variability realization mechanisms 49

is well-known from other disciplines like software and hardware. In software engi-
neering, libraries can be linked statically or dynamically to the rest of the system.
In hardware development, third-party CAD models can be provided to facilitate the
integration of the respective hardware parts. For example, 3D models with exact
mechanical dimensions are available that can also describe the electrical behavior of
the components under various conditions and enable their simulation. Libraries form
rather independent units and contain functions and properties that can be called or
used by other elements. When creating libraries, the focus can be on simple and direct
reuse or the possibility of providing elements, systems, functions without having to
provide an insight into the internal structure ("black box"). The use of libraries requires
well-defined interfaces and highly isolated components. It is therefore a method that
supports modularization. When library functions are used in multiple locations, the
risk of topological variability increases. However, especially in the modeling context,
libraries can also be used to manage user-defined elements. SysML allows the creation
of stereotypes that can be used for recurring design decisions. A systematic use of
design libraries was introduced by Kruse. For this purpose several libraries have
been set up to support functional, behavioral and structural modeling. All of them
provided generic SysML elements for reuse [Kru17]. In this aspect it resembles Module
Replacement.

Advantages. Low engineering effort in combination with high reuse rate. If the
library can be locked for modifications, this guarantees the consistency of library
usage across all variants. The use of libraries thus contributes to a clearer structure
and separation of responsibilities. Parallel working is (partially) supported.

Restrictions. Often libraries are only available in compiled form as a "black box". The
concrete inner life is not known and cannot be changed. Due to this unchangeability,
errors are very difficult to reproduce and cannot be corrected independently. If there
are changes (e.g. due to updates) the effects and possible undesired side effects on
other model components are difficult to overlook. The extent of the components in a
library is limited to modules/functions. Depending on the design of the library, there
may be little or no possibilities for parameterization, which can have a major influence
on the realization. If, for example, a different representation of an output variable is
required and the library offers no possibilities for this, the only remaining option is
the often time-consuming search for another, more suitable library or an adaptation
by means of wrappers (cf. Adapter Pattern [Gam+95]). Changes at the interface of a
library, also leads to high efforts.

module replacement

A widely used approach to modularization and realization of reusable components in
both mechanical and software engineering.

Principle. The models are modularized into submodels with a uniform interface. If
the system variants differ in individual modules, the respective module variant is
created and integrated into the new system variant by a selection mechanism, e.g. the
selection of different state machines or processor modules (SOM) in different system
variants. The approach is in principle very similar to Libraries. However, libraries have

3.4 variability realization mechanisms 50

a stricter organization and also refer to prefabricated third-party components whose
implementation is unknown. Both mechanisms follow the substitution principle and
require therefore well-defined interfaces.

Use. This principle is known from Product Lifecycle Management (PLM) systems,
for example, where part variants can be selected in generic parts lists by feature code
or parameters. The decisive factor here is the use of a uniform interface. In hardware
development, this can be realized by using standardized connectors, for example.
In software development, this principle can be found, for example, in the selective
binding of software libraries or components at compile/link/runtime. With regard
to MBSE, the VAMOS approach also follows this principle [Wei16], but is limited to the
visualization aspect. A matrix view allows the identification of the modules belonging
to a selected variant. However, it is not easily possible to generate an automated model
view from it.

Example. Figure 3.9 shows the transformation of a model with the generic block
"combustion engine system" (left) into a specialized model in which this block is
replaced by one of the «ModelLibrary» variants. It is important to note that any of the
three available variants in the library can be selected. Although their internal behavior
may differ, all variants share a common interface and are therefore interchangeable.

Figure 3.9: Module Replacement

Advantages. The approach is rather easy to implement. If the modules are selected
manually, no special tool is required. Maintaining clear interfaces between the model
modules/packages promotes the basic idea of strict separation of concerns. Generated
modules thus have a high potential for reuse.

Restrictions. In order to enable an automatic creation of individual system variants,
the selected modeling tool must support appropriate modularization and model
import capabilities. Cross-module dependencies and restrictions must usually be

3.4 variability realization mechanisms 51

described symbolically, since the elements in the module variants often have different
IDs. If changes are made to the module interfaces, these must be transferred to all
variants. Unlike with libraries, the variants here exist as separate components having
identical interfaces but do not share one common interface.

conditional compilation (aka . annotation)

In the context of feature-based systems and software product line engineering con-
ditional compilation is a well-known and widely adopted variability realization
mechanism.

Principle. In a so-called 150% model, the entire system family is modeled in a generic
manner. The respective model variants (100% models) can be automatically derived
from this 150% model via parameterization and a selection mechanism.

Use. The approach follows the preprocessor principle, i.e. special annotations are
used to identify the model parts that are not contained in all model variants. A
separate preprocessor tool is then used to make the necessary adjustments, typically
removal of optional elements, parameterization, or the selection of alternatives. Tools
such as pure::variants (p::v) or Gears5 support this automatic derivation of variants.
They also allow to define constraints and dependencies between selections. SysML itself
includes means to annotate elements such as comments, tagged values and constraints
to provide additional information about these elements and to allow data transfer to
the preprocessor tools.

Example. The user interface of p::v depicted in Figure 3.10 shows on the left side a list
of selectable features. The right side shows an exemplary section of the corresponding
150% model. As can be seen in this example, the optional feature "acceleration_to_speed"
is not selected and corresponding elements in the model are therefore grayed out.
Once all features for a variant have been selected, the model for this variant can be
generated automatically. All grayed out elements will not be included.

Figure 3.10: Annotation [DAB15]

5 BigLever Software, Inc. - https://biglever.com/

https://biglever.com/

3.4 variability realization mechanisms 52

Advantages. As changes are only made to the 150% model, all model elements are
automatically reused. Furthermore, feature updates/upgrades can be applied very
quickly to the different system variants. Changes are made directly in the 150% model
and, if necessary, are selectively activated via parameters for the system variants. The
preprocessor tools often also support a comparison of the system variants with each
other. In this way, differences between system variants can be quickly identified and
reviewed.

Restrictions. After the preprocessor has generated the model variants, the original
variation points are no longer identifiable, i.e. it is no longer clear in the derived
model, which parts of the model are also used in other model variants or how the
model variants differ. Both dependencies and parameterization can only be handled at
the more abstract configuration level and are often not visible in the model itself. As
the number of variable model elements increases, the complexity of the corresponding
views increases as well, since the 150% model contains the full range of all possible
configurations. If there are many optional elements, e.g. blocks/ports or states, or if the
model elements are connected in different ways, the resulting views quickly become
confusing. Analogous to the software world, this can quickly lead to a preprocessor
hell, where the core content of the model is no longer directly apparent due to all the
preprocessor annotations. When working on a common 150% model, problems often
arise in everyday practice due to concurrent development activities in the different
system variants. If the model is changed for one system variant, it must be ensured
for the remaining variants that this change does not cause any unintended side effects.
Obviously, this leads to additional coordination and assurance efforts.

delta-/aspect-orientation

Principle. Delta-/Aspect-Oriented approaches strictly separate the core from change
set (aka. aspects, delta), which can be automatically applied on demand onto the core.

Use. As this mechanism is typically not supported by modeling languages, it requires
an external transformation tool. Similar technology-centric approaches have been
repeatedly proposed as Subject-Orientation, Feature-Orientation, Change-Orientation,
and Delta-Orientation.

Advantages. As a compositional mechanism like Module Replacement or Polymor-
phism, Delta-Aspect-Orientation has in theory similar benefits such as clear separation
of common and variant content. Any model element can become subject to modifica-
tions injected into the model from the outside. Furthermore, Deltas/Aspects provide
means of consolidating variant behavior, which would otherwise be scattered over
many modules and tangled with common content as well as with other variations.
This might lead to better model maintainability.

Restrictions. As Delta-/Aspect-Orientation is normally not supported by a modeling
language itself, it is difficult to be applied rapidly in engineering and probably needs
more learning effort. Furthermore, it is often not that trivial to oversee the full impact
of a change. These are probably reasons, why these mechanisms are not widely used
in industry.

3.4 variability realization mechanisms 53

conditional execution

Models are evaluated by both humans and machines in order to convey and docu-
ment system properties and behavior. As with programming languages, some model
contents can be subject to conditions, i.e. they are only considered in certain situations
or configurations.

Principle. At evaluation time of the model the decision is made on whether and how
certain generic model elements, such as optional blocks or parameter values, should
be used.

Use. In SysML there are means to model optional or alternative behavior, for instance
decision nodes in activity diagrams and conditional function calls. Within sequence
diagrams, variation in system interaction can be modeled by using keywords such as
alt, par, or loop. The assurance diagram offers another possibility to model parametric
relationships between properties of system elements [Wei14]. The decision criteria can
stem from software parameters, hardware configurations, or user interactions. Every
state the system can take and every decision path is defined during the modeling of
the system; the actual use is chosen and evaluated at execution (view) time.

Advantages. The model retains a high degree of flexibility due to the late binding to
variants and thus offers easy adaptability to special needs, as all relevant information
is summarized in it. A further advantage of the Conditional Execution is the simple
and intuitive application. The impact of the variability can be analyzed with analysis
tools that come along the modeling language. In addition, the late instantiation of
the model that comes with this approach offers good opportunities to facilitate the
management of unforeseen requirements.

Restrictions. As the number of variants increases and the lifecycle progresses, a clear
and unambiguous distinction between the common parts of the model and the specific
ones becomes more and more difficult, as there is no direct separation of. A particular
strength is to be found in the decision criteria of the different model levels. This and
the easy adaptability lead to a very low reusability of the general parts. This approach
is therefore more suitable for systems with a small number of variations, which are
also limited to a small part.

polymorphism

A widely used principle in software development is polymorphism, which can be
considered as the provision of a single interface to entities of different types or the
use of a single symbol to represent multiple different types.

Principle. Functions and classes exist in several different specializations (types),
whereby the selection of a specialization can take place either at the time of modeling
or during the evaluation of the system variant.

Use. The use of a generalized element makes it possible to maintain a uniform
interface for all its instances. It furthermore allows the inheritance of functions and at-
tributes from the generalized element to the specialized element. The ability to select a
specific type during instantiation allows to create dynamically systems. This method is

3.4 variability realization mechanisms 54

already widely used in software development and part of various design patterns. The
languages SysML/UML support inheritance through their generalization/specialization
relationships as a language construct.

Example. In Figure 3.11, the combustion engine system is first divided into the
two blocks diesel and gasoline. For the gasoline variant there are now again three
alternative types depicted. With each level, additional functions and properties can be
defined - the elements are thus described in an increasingly specific form. However,
each higher-level element also defines more general behavior, which is common to
all special element types. Although the representation is resembling feature trees,
the focus here is not on the organization and classification of features but on their
implementation. It can nevertheless help to visualize variation points.

Figure 3.11: Polymorphism

Advantages. By defining a generalized element and the resulting reduced effort
to create a new specialization, a simple and fast mechanism is provided to specify
new variants. System interfaces can be designed as generalized elements, allowing
plug-and-play functionality. Furthermore, generalized elements offer high reusability
and can be easily extended.

Restrictions. Extensive usage of polymorphism tends to increasing the complexity
of the models, especially when inclusion polymorphism is used. Changes to existing
interfaces are cumbersome and error-prone due to their far-reaching effect on all
variants (children). If type selection is dynamic at evaluation time, this selection may
not be deterministic and may be difficult to reproduce.

3.5 key performance indicators 55

3.5 key performance indicators

In order to facilitate a conscious decision for or against a variability mechanism,
relevant criteria that should be considered in the decision process are discussed below.
Of course, such decisions cannot be made universally and completely detached from
the system context. Nevertheless, this list of criteria is intended to show, with reference
to the RQ2, how the identified mechanisms can be characterized and assessed.

Method. As mentioned earlier, not every mechanism is equally suitable for every
variation management approach. While modularization is the main focus for the
development of a product line (90%), the production line (150%) rather requires
possibilities to label optional elements. However, the association to a method cannot
be understood as binding. Rather, it is an indication of which mechanisms can be
regarded as more helpful once a particular method has been chosen.

Tool support. Although this aspect should not be overestimated, tool support may
be necessary for the efficient application of a mechanism. If the modeling language
already contains all necessary features for this purpose, this ultimately saves time and
effort for the acquisition, maintenance and training of additional tools.

Effort. Here two aspects must be taken into account. On the one hand, there is
an initial effort, which ultimately enables to derive a new product variant from
the product line by using the selected mechanism. This includes, for example, the
creation of a library or the development of a 150% model before it can be used.
Some mechanisms have no initial effort, e.g. cloning. The second aspect concerns the
remaining effort, which exists after all necessary preparatory work has been done. This
also includes the existing experience. Especially in brownfield engineering, there is
always pre-existing experience that should be considered. Sometimes it is preferable to
take the second or third-best choice, if there is already experience with the respective
mechanism. To this end, the following questions should be considered: How did the
product or product line come into being and what initial efforts have already been
made to support variability? Which mechanisms and artifacts already exist within
the individual engineering disciplines or already at system level? How can these be
meaningfully adapted, changed or supplemented? Which modifications develop the
product line further and still retain enough flexibility for future changes? Ultimately,
it is precisely in the last point that a cost-benefit comparison must be made. How
much effort is justified to maintain the flexibility of a product line?

Granularity. Depending on the used variability mechanism, the granularity of the
variation points and respective realization variants differ. While some mechanisms, e.g.
cloning, support almost any granularity of changes in the model, other mechanisms
enforce a certain size or form of the variation points within the model (e.g., a modeling
element, a view). While mechanisms supporting any granularity range are more
flexible in variability realization, model variants using mechanisms with a limited
granularity range are usually more disciplined, well-structured, and easier to maintain.
Regarding variability and quality (non-functional) attributes, Etxeberria et al. state
that, in "a product line, quality attribute requirements have also variability, because
not all the products require the same level of security, performance, etc. This aspect
has [. . .] been neglected or ignored by most of the researchers as attention has been

3.5 key performance indicators 56

mainly put in the variability to ensure that it is possible to get all the functionality
of the products" [ESB10]. In relation to models, this is particularly reflected at the
parameter level. A high granularity is generally necessary to realize such parameter
variability.

Variant isolation. Depending on the used variability mechanism, realization variants
for each variation point are either included in one package or stored in isolated
modules or packages. Based on this difference, Kästner [Käs12] grouped these mech-
anisms into two categories: annotative mechanisms (i.e., Condition Compilation,
Conditional Execution) and compositional mechanisms (the remaining ones). Variabil-
ity realizations using annotative mechanisms are more integrated but potentially more
complicated to understand, while the variability realizations using compositional
mechanisms are less complicated but also more fragmented (cf. [Ape+13]).

Open variation. A related concern is whether a mechanism supports open variation,
i.e. the range of possible variants for a variability can be easily extended. In conse-
quence, the respective realization variants need to be added to the variation point.
If open variation is supported, these additions can be realized without interference
with the existing variant realizations. For instance, external modelers can provide
customization packages (e.g. plugins) extending the model with their own model
elements, while treating the core as a "black box" with defined variation points. This
is especially helpful to avoid that some core properties need to be assured again and
again, every time a new variant is supported for an open variability. On the other
hand, open variation can become unmanageable and uncontrollable.

Explicit variation points. Depending on the used variability mechanism, the form of
variation points differs. If annotation is used, variation points are annotated model
fragments, which are explicitly represented and easy to identify. In contrast, if a
capability of the modeling language is used for variability realization, e.g. parame-
terization in combination with some conditional evaluation, then it becomes hard to
distinguish between product line variability and some other aspect, where parameteri-
zation is used. Since variability is a cross-cutting concern with (often highly) scattered
realizations, mechanisms with implicit variation points tend to cause challenges in
development, maintenance and understandability in general.

Independence. Can variants be further developed independently of each other?
Through a high degree of independence, the influence of a change on other variants
can be avoided. This is of particular interest if concurrent changes often have to be
made to individual variants or if operational constraints divide feature development
among different teams or locations. On the other hand, this can lead to considerably
more effort if the same changes have to be applied to several variants in the same way.

Support of defaults. In variability realization, Patzke [Pat11] argues that the default
selection in a variation point can reduce the number of variants (by one) and simplify
the variation logic. It is especially convenient when features of a variation point are
optional (in this case the default is null and requires no specialization at all).

An application of these mechanisms and a subsequent evaluation based on these
KPIs will follow in the feasibility study.

4
F E A S I B I L I T Y S T U D Y

For the implementation and demonstration of feasibility, a practical example is used.
BCON, the virtual company introduced in the master’s thesis of Zurbuchen, is used for
this purpose. The company offers both weather stations and controls for refrigerated
transport. In the course of the thesis, commonalities, especially in measurement
technology, were identified and the resulting product line was transferred into an
integrated lifecycle management concept [Zur14]. In order to illustrate different aspects
of variant realization, a few change scenarios for the product line are first introduced
and subsequently applied.

4.1 introduction

The product line evolution is exemplarily shown by some change scenarios, that were
already presented in the master’s thesis [Zur14]. The scenarios shown in Table 4.1 were
selected because they represent typical scenarios and focus only on the manageable
product line of the weather stations.

scenario description

(2) WeatherStationConnectPro shall add the influence of wind to calculate real outdoor temperature.

(4) WeatherStationConnectTrendline and WeatherStationConnectPro shall have an ozone sensor to give
advice for outdoor sports.

(6) The temperature measurement calculation is wrong in all products.

(12) WeatherStationConnectPro shall display battery status of connected sensors.

(13) WeatherStationConnectPro shall issue a (temperature) warning when temperature is falling or rising
above certain temperatures or any other simple condition on any sensor value.

(17) WeatherStationConnectPro shall have a new feature called RoomHealth, which monitors and con-
trols the temperature and humidity in a room via its home automation interface.

Table 4.1: BCON: Product evolution based on [Zur14, pp. 55-56]

The scenarios listed in Table 4.2 were added in order to further elaborate and
illustrate certain aspects.

scenario description

(20) WeatherStationConnectBasic shall be able to operate at ambient temperatures of -50 degrees Celsius.

(21) WeatherStationConnectTrendline shall support digital temperature sensors.

(22) WeatherStationConnectTrendline shall support a digital high precision temperature sensor.

Table 4.2: BCON: Additional product evolution

57

4.1 introduction 58

To increase readability and provide a quicker overview of progression, the scenarios
are shown graphically in Figure 4.1. The representation focuses exclusively on product
features and shows their evolution over time. To this end, the features of all individual
products are first shown in their basic configuration (left). This information was
mainly retrieved from the product feature matrix (cf. [Zur14, pp. 126-127]). All further
product variants can be derived from already known feature sets by reusing, adding
and changing these features. At the time of release, each product has a unique
combination of name and version identifier. This is represented as a box.

Basic V1.00

+ TemperatureSensor

+ WiredConnection

+ BatteryOperation

+ Weatherproof

+ UserInterface

+ Casing = SMALL

+ Design = ENTRY

+ DisplaySize = SMALL

+ DisplayType =
MONOCHROME

+ ECU = 16BIT

Trendline V1.00

+ AirpressureSensor

+ HumiditySensor

+ TemperatureCurve

+ AlarmClock

+ MultipleSensors

+ MultiStation

+ SD-Card

* Casing = MEDIUM

* Design = STYLISH

* DisplaySize = MEDIUM

Pro V1.00

+ WindSensor

+ WirelessConnection

+ InternetConnectivity

+ WeatherForecast

+ RainDetection

+ RollerBlindsControl

+ ActuatorControl

+ GridOperation

+ USB

+ WLAN

* Casing = BIG

* Design = ROBUST

* DisplaySize = BIG

* DisplayType = COLOR

* ECU = RASPBERRY

Basic V1.01

f TempCalculation (Bug fix)

&

Trendline V1.01

+ OzoneSensor

& TempCalculation (Bug fix)

Trendline V2.00

+ DigitalSensorInterface

Trendline V2.01

+ HighPrecisionSensor

Basic V2.00

+ LowTemperature

* Casing = MEDIUM

Pro V1.01

+ OutdoorTemperature
&

Pro V1.02

+ BatteryStatus

+ TemperatureWarning

& TempCalculation (Bug fix)

& OzoneSensor

Pro V1.03

+ RoomHealth

(6) (20)

(4) (4,6) (21) (22)

(2) (4,6,12,13)(12, 13) (17)

(6)

(4,6)

time

Figure 4.1: BCON: Visualization of product evolution

The only relationship between nodes is inheritance. All properties are automatically
propagated. Each node therefore only needs to specify its changes relative to its origin.
Options for this are (+) for a new/additional feature, (-) for a deselected/removed
feature and (*) for a modified feature. When changing a feature, a new value must
always be specified. Although bug fixes are not (always) directly function-related, they
are represented here in a very similar way. A f is used to indicate a bug fix. Since
some features shall be used in multiple variants, the patch node provides an option
to transfer individual changes between different product variants. The black-marked
input includes the entire history, while the second input (dashed line) only refers to
the modifications of the last node and does not take its history into account. For the

4.2 variability realization with ea 59

sake of clarity, a shared feature is additionally listed with an & sign in the description.
The numbers above the arrows refer to the corresponding change scenarios.

The following information, among others, can be taken from the representation:

◮ Although the bug fix is eventually propagated into all product variants, this
happens not at the same time. While the Basic and Trendline products get the
bug fix in V1.01, it takes until V1.02 for the Pro variant to get the updated
calculation as well.

◮ The Trendline V1.01 was not released until both, the bug fix and the new feature
OzoneSensor were implemented.

◮ With V2.00 the Basic variant changes its casing size to MEDIUM to fit all the
necessary additional equipment.

◮ While the release of new product variants is generally not (and does not have to
be) synchronized, sometimes multiple products receive an update at the same
time. This can be the case, for example, when presenting products at exhibitions.

The visualization of such a product line evolution offers a quick and reliable overview
of all existing functionalities. The relationships, dependencies and common features re-
main transparently visible. Since only changes are described, the presentation remains
relatively lean and clear. Due to the lack of depth and the focus on functionality rather
than implementation, it is not primarily intended for developers, but for product
managers or release planning. Although features occur in several variants and are
presented as shared, the implementation in individual products may vary due to
technological requirements or limitations.

Naturally, this presentation also reaches its limits with an increasing number of
releases and loses its main benefit - clarity. From time to time consolidation is therefore
advisable. For this purpose, the current status of a variant is summarized along with
all current features and forms the basis for a new diagram. This can happen, for
example, at fixed times (e.g. annually) or when changing to a new major version.

If the reuse of features has been realized e.g. by (managed) cloning, the illustration
of chronological evolution and features history becomes particularly important and
helpful to maintain a general overview.

4.2 variability realization with ea

The BCON system model introduced in [Zur14] serves as the basis for the implemen-
tation. However, it had to be adapted and changed considerably, since it was not fully
SysML-compliant. For time reasons the new EA model is not yet complete. The initial
focus was on the views most relevant to demonstrate the following examples.

This section attempts to provide a holistic view of changes to the model. Some
of the evolution scenarios introduced before are explained in more detail and will
be examined with regard to their drivers. Subsequently, the necessary changes to
the model are explained and demonstrated. Finally, the results will be discussed.
Although the scenarios were deliberately chosen to show different types of variability
and to demonstrate a variety of drivers, they are still very close to a real product
evolution.

4.2 variability realization with ea 60

scenario (2)

Description. Due to several customer requests, the company BCON has decided to
add a new feature to the WeatherStationConnectPro. Wind data shall be used to give
a statement about the real outside temperature. Since the WeatherStationConnectPro

already has a wind sensor, no mechanical/electrical changes are necessary. The
function can be realized in software.

For the calculation of the wind chill index the following formulas shall be used1:

Twc = 13.12 + 0.6215 · To − 11.37 · v+0.16
w + 0.3965 · To · v+0.16

w (4.1)

Twc = To + [
(−1.59 + 0.1345 · To)

5
] · vw (4.2)

with Twc being the wind chill index (adjusted outdoor temperature), based on the
Celsius temperature scale; To the measured outside air temperature in degrees Celsius;
and vw the wind speed at 10 m (33 ft) standard anemometer height, in kilometers per
hour. Formula 4.1 is used for temperatures at or below 0 °C and wind speeds above
5 km/h. Formula 4.2 is used when the temperature is at or below 0 °C and wind
speed is more than 0 km/h, but lower than 5 km/h.

Impact. This scenario results in two fundamental changes. On one hand, the new
functionality (calculation of wind chill index) must be implemented, on the other
hand, the interface to the display must be extended by an additional parameter
(real temperature). Table 4.3 below shows a summary of these changes as well as
their corresponding drivers and the example diagrams chosen to illustrate them.
The representation of this table will be used for the other scenarios as well, because
it allows a quick and easy overview and comparison. The evolution steps refer to
the basic feature evolution steps listed in Table 3.1, the drivers were introduced in
Section 3.1 and the variability types were discussed in Section 2.2.1.

Scenario (2) WeatherStationConnectPro shall add the influence of wind to calculate real outdoor tem-
perature.

Change(s) 1. add new functionality 2. modify display interface

Evolution
Step(s)

ES1 - optional feature creation ES6, ES8 - alternative (coexisting) feature ad-
dition

Driver(s) Effect Chain Information Flow

Variability
Type(s)

Option Alternative (multiple)

Example
Diagram(s)

parametric diagram block (interface)

Table 4.3: Summery Scenario (2)

1 Climate Normals, Government of Canada, accessed 7 July 2020, https://www.canada.ca/en/

environment-climate-change/services/climate-change/canadian-centre-climate-services/

display-download/technical-documentation-climate-normals.html

https://www.canada.ca/en/environment-climate-change/services/climate-change/canadian-centre-climate-services/display-download/technical-documentation-climate-normals.html
https://www.canada.ca/en/environment-climate-change/services/climate-change/canadian-centre-climate-services/display-download/technical-documentation-climate-normals.html
https://www.canada.ca/en/environment-climate-change/services/climate-change/canadian-centre-climate-services/display-download/technical-documentation-climate-normals.html

4.2 variability realization with ea 61

Realization. The required calculation for the wind chill index can be represented in a
parametric diagram (Figure 4.2). The necessary signals (temperature and wind speed)
are already provided here. The diagram also contains the analog-digital conversion
of the sensors. Assuming that the wind speed is provided in meters per second, an
additional conversion is required. The additional output signal (Twc) must be defined
accordingly. To simplify matters, only one formula (4.1) is shown. The additional
(optional) elements are outlined in red.

Figure 4.2: Modified parametric diagram

Figure 4.3: Altered display interface

For the extension of the display inter-
face, there are several ways to model
the desired result. Only a single block
can be defined for the interface, repre-
senting which signals the display can ac-
cess. In that case everything is described
in it and internal constraints can be as-
signed to each property (signal), keep-
ing the model as lean and clear as possi-
ble. Figure 4.3 shows another possibility.
The display interface is specialized by its
three product variants. Common proper-
ties can be inherited automatically. The
selection mechanism can choose one of the specializations. An advantage is that the
model makes it easier to see which properties the respective variant have. A disadvan-
tage is that if only two variants share a property, it must be defined twice (e.g. Pa).

Discussion. Both changes can be implemented with relatively little effort. Additional
(optional) blocks, as well as additional properties can be equipped with variation
points. The selection (also multiple) can be realized using pure::variants (p::v).

4.2 variability realization with ea 62

scenario (4)

Description. Product management at BCON has decided to integrate a new feature
into the two products WeatherStationConnectTrendline and WeatherStationConnectPro.
A new sensor shall be able to measure the ozone values and give the user a recom-
mendation for outdoor sports. For this purpose, the already existing interface used
for several sensors shall be extended.

Impact. Since the product line is already designed for different sensors, the integra-
tion of a new sensor is initially straightforward. A new sensor must be introduced
into the system context and the corresponding interface has to be extended. However,
the higher the level of detail in the model, the more potential points of variation can
arise even from this supposedly simple modification. For example, does the physical
interface differ, are additional hardware components (transceivers) necessary for com-
munication, or are there variations in data rate or format? Not all aspects can be dealt
with in this example, so in the following we assume that the lowest point of variation
is at the sensor interface and that all characteristics are already well defined with this
selection (cf. 2.2.2).

Scenario (4) WeatherStationConnectTrendline and WeatherStationConnectPro shall have an ozone sensor
to give advice for outdoor sports.

Change(s) 1. add new component (sensor)

Evolution
Step(s)

ES6, ES8 - alternative (coexisting) feature addition

Driver(s) System Context

Variability
Type(s)

Alternative (multiple), Topological

Example
Diagram(s)

block (system context, interface)

Table 4.4: Summery Scenario (4)

Realization. To expand the sensor interface, two aspects must be considered. First, the
sensor interface definition must be extended. All sensors are part of the SmartWeath-
erSensor system. Figure 4.4 shows the necessary extension. While Figure 4.4a shows
the SmartWeatherSensor system with only two sensors, Figure 4.4b shows 5 sensors
in total. The new ozone sensor is outlined in red. This aspect specifies the affiliation
and structural arrangement of the sensors as well as all other components connected
to the SmartWeatherSensor system.

The second aspect concerns the interface or the description of the data transferred
via it. This is represented by a port definition and an interface block for each sensor. In
case of an additional sensor, this description must be extended accordingly. Figure 4.5
shows the necessary changes and the new elements for the ozone sensor.

4.2 variability realization with ea 63

(a) initial sensor interface definition (b) additional sensors

Figure 4.4: Sensor interface definition

Figure 4.5: Sensor interface description

Discussion. By extending the interface with additional sensors, "only" further option-
al/alternative elements must be added. This can be realized relatively easily with EA

and by means of p::v the sensors can be assigned to the corresponding product variants
afterwards. The procedure is quite straightforward. However, the problem of open
variability shall be demonstrated with this example. Assuming that the interface is
repeatedly extended, so that ultimately 18 sensors must be supported. An exemplary
representation is shown in Figures 4.6 and 4.7. Both the interface definition and its
description gain in complexity and an overview is nearly impossible.

4.2 variability realization with ea 64

Figure 4.6: Multi sensor interface definition

Figure 4.7: Multi sensor interface description

scenario (6)

Description. Intensive tests have shown that a rounding error in the temperature
calculation can cause an incorrect result. Since this calculation is used in all products,
it affects them all.

4.2 variability realization with ea 65

Impact. Bug fixes and maintenance are not included in the feature evolution steps in
Table 3.1 because they are not considered planned activities. Although maintenance
in the sense of continuous improvement and refactoring may well be considered
plannable, both activities are rather meant to be applied ad-hoc. However, it is often
precisely for these reasons that adjustments must be made to the model. In the list of
variant drivers, they have therefore been listed as a special case and this scenario has
been deliberately included as an example. Depending on the type and extent of the
defect, all aspects of system modeling can be potentially affected. In this example, the
calculation is defined as a block (containing the formula) in a parametric diagram and
can therefore be easily corrected without affecting other elements. A presentation of
the realization was omitted because it does not yield any gain in knowledge.

Scenario (6) The temperature measurement calculation is wrong in all products.

Change(s) 1. implement bug fix

Evolution
Step(s)

—

Driver(s) Bug fix / Maintenance

Variability
Type(s)

—

Example
Diagram(s)

—

Table 4.5: Summery Scenario (6)

Discussion. In an over-exposed (150%) model, a later correction of defects is usually
less time consuming and error-prone compared to other methods. Since all of the
content is in a shared model, defects can be corrected both in the common part and
in the special parts. As soon as the variants are newly generated, the changes are
automatically applied to all of them. However, it depends on the nature of the defect. If
only certain variants are affected or if the correction has to be implemented differently
in variants, the introduction of additional variation points must be considered. The
more variation points and variants already exist, the more difficult it becomes to keep
track of such dependencies and impacts.

With higher modularization (e.g. libraries), it depends on the location of the defect
and the form in which the content of the module can be changed. Defects due to
incorrect use of libraries (incorrect configuration, parameterization) can be more
easily corrected. If a module itself or its interface needs to be changed, the effects
on other users must be considered as well. It is possible that the "incorrect" behavior
corresponds exactly to the expectations of another variant using the library.

The situation is fundamentally different if cloning was used to create variants.
Since the clones may have evolved independently of each other, it is either difficult
or impossible to determine which variants are affected by the bug or whether a
variant can integrate the bug fix or not. Especially in this context, a consistent variant
management e.g. through managed cloning pays off.

4.2 variability realization with ea 66

scenario (20)

Description. For some years now, the sales figures of the WeatherStationConnectBasic

have been declining. During a workshop, solution proposals were developed and a
new potential application area was identified. For this, it is necessary that the weather
station is functional at outdoor temperatures down to -50 degrees Celsius. The R&D
department was able to design a concept and suggested the integration of a small
additional heating element.

Impact. First, a new stakeholder need is introduced. From this, new functional
requirements for the system can be derived. The introduction of new components
(heating) results in new participants in the system context as well as changed behavior
and communication. The impact of this change is enormous and resembles the
necessary steps of a new development. Nevertheless, a large part of the already
existing functions can be completely reused and just extended by new components.

Scenario (20) WeatherStationConnectBasic shall be able to operate at ambient temperatures of -50 de-
grees Celsius.

Change(s) 1. change requirements 2. add new component (heating)

Evolution
Step(s)

ES3 - alternative feature creation ES1 - optional feature creation

Driver(s) System Context, Element Properties System Context, Behavior

Variability
Type(s)

Alternative (single) Option, Topological

Example
Diagram(s)

requirements diagram state machine diagram, sequence diagram

Table 4.6: Summery Scenario (20)

Realization. The implementation is divided into several steps. First, the new require-
ment is defined as an alternative to the existing requirement for the operating temper-
ature. Since other variants use the same requirements catalog, they cannot simply be
changed. The new requirement results in two new (technical) system requirements.

Figure 4.8: Requirements diagram

Figure 4.8 shows the changed re-
quirement diagram. SN-3 thus intro-
duces a new variation point and SN-
3.2 is newly added as a (mutually
exclusive) alternative to SN-3.1.

Although, of course, structural
changes are also necessary when
new components are added in the
system context, etc., these are not
shown because the steps for this
have already been illustrated in Sce-
nario 4. The focus is therefore more
on the changes in behavioral model-
ing.

4.2 variability realization with ea 67

The changes in behavior are shown by means of an exemplary state machine and
a corresponding sequence diagram. Figure 4.9 shows two state machine diagrams
and highlights the changes required due to the additional heating in red. The original
procedure (without heating) is shown in Figure 4.9a and is as follows: After the system
initialization, a new measurement value is requested from the temperature sensor
once per second. As soon as this temperature is known, the new value is transmitted
to the display for visualization. Until the system is shut off, nothing changes in this
cycle (continuous loop). Figure 4.9b illustrates the added check of the temperature
condition. A decision node and two new transitions are required to implement this
comparison. The initial procedure does not change at all, only two optional actions
are triggered (depending on the temperature value), that switch the heating ON or
OFF.

(a) initial state machine (b) modified state machine

Figure 4.9: State machine diagram

To illustrate the change in communication, Figure 4.10 shows the sequence diagram
corresponding to the above state machine. Figure 4.10a shows the initial communica-
tion between the sensor and display only. In order to keep the diagram easy to read,
the communication is simplified.

With the additional heating, a new object (HeatingSystem) is introduced in Fig-
ure 4.10b. This object adds its own lifeline to interact with the other components.
Since the heating is optional, its communication is shown in a new alt fragment.
This fragment allows to define conditions and ultimately model different messages
depending on their evaluation result. Thus the dependence of the transmitted message
on the temperature value can be depicted directly. The messages heatingON() and
heatingOFF() are intended to control the heating, this can be done by activating a relay,
for example. This is why no response is shown for either message. If the heating is
not included in a variant, both the object (HeatingSystem) and the fragment can be
hidden using constraints, which again leads to Figure 4.10a.

4.2 variability realization with ea 68

(a) initial sequence diagram (b) modified sequence diagram

Figure 4.10: Sequence diagram

Discussion. Adding new requirements as elements and assigning constraints to them
is not a problem. Changing their parameter values, however, is. As shown in the
example, it is necessary to insert a new requirement, even if only one value changes.
No variation point can be set to the parameters (Operating Temperature) or their
values, because the requirements are considered only as text. With an increasing
number of different parameter values, this can lead to greater confusion in the model.
Especially when variants often differ in their non-functional properties. For example,
because different performance or security is required.

Figure 4.11: State machine with multi transition

The behavior diagrams already
offer intrinsically the possibility to
model dependencies and option-
al/alternative elements through de-
cision nodes, fragments, etc. This al-
lows variability to be represented
quite well with a mixture of Annota-
tion and Conditional Execution – the
actual behavior is thus decided at
run/view time. Nevertheless, there
is a problem with changing the deci-
sion criteria. The values at decision
nodes, fragments and transitions can-
not be constrained and are only rep-
resented as text. This means that a
change in the criteria automatically
leads to a new transition/message
(including further annotations). As
the number increases, the diagram
will quickly become overloaded. Figure 4.11 shows an example of just two more
transitions and the two annotations (selection criteria) for their corresponding variants
heatEarly and heatLate. The heatLate variant differs only in the threshold values at which
the heating is switched ON and OFF. Yet, the diagram looks much more complex than
Fig. 4.9b. Transitions only allow external constraints, which is not beneficial for clarity.

4.2 variability realization with ea 69

scenario (21)

Description. Due to its increasing popularity and decreasing price, the WeatherSta-

tionConnectTrendline shall also support digital temperature sensors. For this purpose
the sensor interface must be extended accordingly.

Impact. This scenario is very similar to Scenario 4, but differs in one aspect. By
changing the signal type that is transmitted via the interface from analog to digital,
the downstream processing also changes. Functions such as A/D conversion or the
time averaging of measured data are no longer necessary, as these are already handled
by the digital sensors themselves. Thus the allocation of these functions changes.

Scenario (21) WeatherStationConnectTrendline shall support digital temperature sensors.

Change(s) 1. add new component (sensor) 2. modify signal processing

Evolution
Step(s)

ES6, ES8 - alternative (coexisting) feature ad-
dition

ES3 - alternative feature creation

Driver(s) System Context, Information Flow Effect Chain, Allocation

Variability
Type(s)

Alternative (multiple), Topological Alternative (single), Topological

Example
Diagram(s)

internal block (sensor) parametric diagram

Table 4.7: Summery Scenario (21)

Realization. The extension of the sensor interface was already shown in Scenario 4

and is therefore not illustrated here. The focus is on the shift of responsibilities with
regard to the analog-to-digital conversion. Figure 4.12 therefore shows the internal
block representation of the new sensor, that contains the necessary conversion. It is
important to note that this sensor must be either additionally modeled (as in this
case) or must provide both signals (analog and digital), since both analog and digital
sensors can be used in a variant. Possibly even in any combination.

Figure 4.12: Internal block diagram of digital sensor

4.2 variability realization with ea 70

Figure 4.13 is a detailed extract from Figure 4.2 and shows in particular the extension
of the parametric diagram by the new digital input for the temperature data. If a
digital sensor is used, both the analog input and the A/D conversion are not needed
and are therefore grayed out. However, for analog temperature sensors, both are still
available and can still be used. The data type for the new digital input is directly
defined as integer and equals To. It can therefore be routed directly to the output, but
may also be used for the WindChillCalculation.

Figure 4.13: Parametric diagram with new digital sensor

Discussion. The relocation of functionalities is usually not a major problem. Blocks
can always be attached with constraints. However, the larger distribution of these
constraints (across several diagrams) increases topological dependencies. Potentially,
functions could also be modeled redundantly. In this example it is assumed that the
two A/D conversions are not identical (e.g. different resolution). However, they could
also be identical components, which then have to be modeled several times at different
locations. As far as the signal flow is concerned, special attention must be paid to the
distribution. In this example both signals were simply combined and considered to be
equivalent. If a combination of analog and digital sensors exists in one variant, it must
be decided via annotations which signal is used for the calculation and for displaying.
Perhaps the physical location of the sensors is relevant for this decision.

scenario (22)

Description. After introducing digital temperature sensors for the WeatherStation-

ConnectTrendline, BCON has decided to increase the resolution of these sensors. In
order to realize the higher resolution, the data type must be changed from integers to
decimal numbers.

Impact. This time the change no longer only affects the interface description (new
interface) or the signal transmission (changed signal path, physical description), but
also affects the content of the data to be transmitted itself. As a result, variation points
occur wherever this data is processed. Since no variant with exclusive digital or analog

4.2 variability realization with ea 71

sensors is intended, the implementation is not an option but a new (coexisting) alter-
native for the sensor interface. However, for the variation points on the components
that ultimately process the data, there is only one additional (mutually exclusive)
alternative – the data arrives either as integer or float/real and must be processed
accordingly.

Scenario (22) WeatherStationConnectTrendline shall support a digital high precision temperature sen-
sor.

Change(s) 1. modify data processing

Evolution
Step(s)

ES3 - alternative feature creation

Driver(s) Information Flow

Variability
Type(s)

Alternative (single), Topological

Example
Diagram(s)

—

Table 4.8: Summery Scenario (22)

Discussion. No constraints and therefore no variation points can be attached to
parameters respectively their values or data types. It is therefore not possible to realize
a variation of the data type automatically. The only solution would be to create a
second (alternative) signal with a different data type and to insert an additional
variation point at each position where this signal is used. Depending on how often
the signal is used, each variation introduces significant topological dependencies.
Regardless of how the variation is implemented, each use of the new signal must
be individually assessed and verified. In particular, a change in data type can cause
problems such as rounding/calculation errors, display errors, transmission problems.
Other components may require a special format and are not flexible in this respect –
common issues arise in relation to the representation of date/time.

Although changes to names, data types or parameters have proven to be very
difficult and time-consuming, it should be noted that SysML itself follows the Single
Source of Truth (SSOT) principle and is therefore not the primary cause of this problem.
SSOT focuses on the handling of intentional redundancy and aims to provide correct
and reliable data at all times. Parameters and properties that are used multiple times
should therefore only be defined once and distributed to the appropriate places in the
model using references. When working with EA, however, several problems arose, so
that it was not always possible to work reliably with references to existing properties
and parameters. The resulting repeatedly defined properties led to ambiguities and
had to be checked and adjusted individually when changes were made. Especially
data types could not be assigned and managed centrally.

4.2 variability realization with ea 72

excursus

As already mentioned, the combination of Enterprise Architect (EA) and pure::variants
(p::v), which was also used for the feasibility study, has been examined in more detail.
In particular with regard to the possibilities of representation and granularity of the
variation points. The insights gained in this respect will be briefly explained in the
following. Since the combination of these tools is not unusual in practice, the results
may help to develop a better understanding of what is possible and where difficulties
may arise. The aim is not to undermine their use, but only to raise awareness of
possible pitfalls and limitations.

In order to examine the possibilities and potential problems more closely, a very
simple EA model was first generated. Since EA stores the model content in a database
using the Microsoft Jet Database Engine, it can be easily read and processed by other
programs as well. With the help of Microsoft PowerShell a script (cf. A.1) was created
to extract the Extensible Markup Language (XML) structures stored in all relevant
database tables and display the content as readable strings. This data could then be
transferred to a Version Control System (VCS), making it possible to ultimately track
and evaluate all changes to the model. Once this processing chain was set up, small
changes were made to the model and committed to the VCS incrementally. The impact
on the database content could be evaluated immediately with the internal diff tool.

Figure 4.14: Commit dialog

Figures 4.14 & 4.15 show an example of such
a database change for an added constraint
element. The commit dialog depicted in Fig-
ure 4.14 shows, that 8 lines have been added.
A comparison with the base version, shown
in Figure 4.15, reveals the specific entries and
shows in which table the changes were made.
With this procedure, a good insight could
be gained into how EA stores and structures
the elements internally in its database. One
by one, different diagrams were created and
filled with additional elements.

Figure 4.15: Differences (highlighted) of DB content compared to base version

4.2 variability realization with ea 73

The following list shows the main sequence of changes made:
(1) Create new diagram

(2) Add new elements

(3) Add new connections (relation between elements)

(4) Add (internal) constraints to elements

(5) Add (external) constraints to elements/connections

(6) Add attributes and methods to elements

(7) Add parameter and (default) values

(8) Change values/data types

Since the exchange mechanism between EA and p::v is based on constraint elements,
special attention was paid to them. The objective was to identify to which elements
a constraint can be (internally) added and to which elements/connections external
constraints can be attached. Table 4.9 shows a summary of the findings. It indicates
in which database table the respective types are stored. If it was possible to define
internal constraints, the table in which they are stored is also indicated. An attempt
has been made to give as general a statement as possible across the various types of
diagrams. Unfortunately, this was not always possible, especially for the connections.
In all cases though, it was possible to define either an internal or external constraint
for elements and connections.

type table(s)
internal

constraint

constraint

table(s)
external

constraint

Element
t_object

t_diagramobjects
partly t_objectconstraint yes

Connector
t_connector

t_diagramlinks
partly t_connectorconstraint partly

Attribute t_attribute yes t_attributeconstraints no

Method t_operation yes t_operationspres no

Parameter
t_attribute

t_operationparams
no - no

Values (Defaults) t_attribute no - no

Data type
t_attribute
t_operation

t_operationparams
no - no

Table 4.9: EA internal/external constraint options

Methods and attributes of elements are not accessible for external constraints, but
allow to define a variation point internally. However, as Table 4.9 shows, there is a
problem at parameter level. No variation point can be assigned to their number, name,
type and value. This becomes even more obvious considering that these properties
are not stored in the database as separate objects, but as text properties of their
parent elements. Similar restrictions were also shown in the case study [Tru+10]. Their
list of supported SysML elements also lacks parameters, values and data types. As
mentioned before, this limitation entails some disadvantages. For example, Etxeberria
et al. explicitly states the importance for the realization of varying (non-functional)
requirements, which are usually expressed by parameters [ESB10].

4.3 evaluation 74

4.3 evaluation

In Table 4.10 below, the mechanisms identified in Section 3.4 are evaluated according
to the criteria described in Section 3.5. Most of the information presented is based on
the experience gained during the feasibility study. Since not all mechanisms were used,
information had to be supplemented in part by other sources (cf. [Pat11][ZDB16]).
Aspect-/Delta-Orientation was omitted due to its lack of practical relevance.

mechanism m
eth

o
d
(1
)

eff
o
rt
(2
)

gra
n

u
la

rit
y

is
o
latio

n

o
pen

explic
it

in
d
epen

d
en

ce

d
efa

u
lts

Cloning all low
→

any yes no no high no

Libraries 90%
150%

low(3)

ր

modules
packages

yes yes yes medium no

Module
Replacement

90%
150%

medium(3)

ց

modules
packages

yes yes no medium no

Conditional
Compilation

150% high
ց

any(4) no no yes(5) low yes

Conditional
Execution

all low(6)

ր

behavior no no no low no

Polymorphism 90%
150%

medium
ց

modules
packages

yes yes yes medium no

Table 4.10: Evaluation of Variability Realization Mechanisms

Remarks:

(1) The method refers to the variation management approaches presented in Section 3.2: Managed Cloning,
Product Line (90%), Production Line (150%).

(2) Effort describes the initial effort first, but also tries to make a statement whether the continuous effort is
constant (→), increasing (ր) or decreasing (ց).

(3) Both approaches are essentially very similar. However, Module Replacement is considered more flexible and
customizable, so the effort decreases over time, while Libraries are considered as prefabricated assets and as
such are difficult to customize and may need to be replaced to support new functionalities.

(4) In principle, the granularity is not restricted, but no variation points at parameter level were possible in the
tool combination used.

(5) Variation points are only visible and thus explicit in the base model (150%), not in the the derived variant
models (100%).

(6) The initial effort required to introduce decision points is small, but maintaining dependencies (across multi-
ple diagrams) quickly adds complexity and effort. In particular because of their low explicity.

impact of variant driver on realization

The following Table 4.11 shows a juxtaposition of the variant drivers introduced
in Section 3.1 and the 8 SysML diagram types. The representation is intended to
provide an overview of which drivers have low, medium or high influence on which
views/diagrams.

4.3 evaluation 75

variant driver a
ctiv

it
y

blo
ck

pa
cka

ge

pa
ra

m
etric

req
u
ir

em
en

t

se
q
u
en

ce

st
ate

u
se

ca
se

System Context

Effect Chain

Information Flow

Behavior

Element Properties

Allocation

Composition

Bug fix / Maintenance

= high impact = medium impact = low impact

Table 4.11: Effects of Variant Drivers on SysML diagrams

The information contained in Table 4.11 is intended to serve as a basis for discussion
and to provide an exemplary classification or rough orientation. The actual impact
of the drivers on the views must be analyzed within the individual modeling and
variant management approaches. With the help of experts and practitioners, these
data could be discussed and further elaborated, e.g. through interviews or surveys.
The individual influences can vary greatly. The presentation should therefore serve
as a stimulus to identify own driving factors and to record the frequencies of their
change. If, for example, it is known in advance which variant drivers are usually to be
expected, it can be deduced which views/diagrams will be affected more frequently
by changes. Modularization and changeability can thus be taken into account early
on in the implementation of the model. As a result, the system model is much better
prepared for change.

impact of variability type on realization

As already suspected in Section 2.2.1, the examples of the feasibility study have
demonstrated that open and topological variability is particularly difficult to cope
with.

Open Variability. It is difficult to prepare for open variability and frequent changes
or extensions require continuous effort. The only countermeasure is the awareness
of this problem and the preparation of the model for frequent changes and easy
extensibility at these points, e.g. by modularization (polymorphism, libraries, plugins).
Explicit modeling and adherence to variation points helps to achieve this. Consider
open/closed principle.

Topological Variability. Topological variability is even more difficult to manage. A
great system understanding is necessary to keep the effects of such far-reaching
changes completely transparent. Possibilities to counteract this are the sparing use of
variation points and the division of a complex system into several components (divide
and conquer), each of which implements variability in a self-contained manner and
thus follows the basic principle of maintainable systems (low coupling, high cohesion).
Especially important is the clear separation of common and variable parts.

4.3 evaluation 76

impact of granularity on realization

If a variation point with the required granularity is not possible, it must be handled
on the next higher level of granularity. This may lead to redundancy if, for example,
several methods have to be created that differ only in their return value. The use of an
appropriate mechanism that supports any granularity can be beneficial.

recommendations

The following Table 4.12 summarizes once again the main advantages and limitations
of the identified variability realization mechanisms, and provides a short recommen-
dation for their use.

variability

mechanism

practical

benefits

practical

challenges

recommendations

Cloning Quick introduction with
low effort. Independence
from other variants. Ap-
plies to any artifact type
and size.

High long-term maintenance
effort. Incomplete propaga-
tion of changes and bug fixes,
leading to lower model qual-
ity.

Quick removal of short-lived
clones. Periodic clone evalua-
tion and refactoring to other
mechanisms in case of main-
tenance problems or increas-
ing number of variants.

Libraries Shared model content is
packaged into model li-
braries (separation and divi-
sion).

It can be difficult to repro-
duce errors, if interna of a li-
brary are not visible. Search
and identification may be dif-
ficult.

Well suited for variants
whose contents should not be
changed and kept consistent.

Module
Replacement

Separation of common and
variant elements. High flex-
ibility. Each variant element
can evolve in isolation.

Hard to identify variation
points and variant elements.

Managing variation points
and variant modules with ap-
propriate tool support.

Conditional
Compilation

Rather easy to introduce.
No limited granularity. Ex-
plicit variation points. No
language support necessary.
No model evaluation penal-
ties.

Annotated models are harder
to understand due to varia-
tion point nesting, tangling,
scattering, etc. They have the
tendency to erode and are
harder to maintain during
evolution.

Analyze and manage the
complexity of annotated vari-
ation points against variabil-
ity erosion. Refactoring in
case of maintenance prob-
lems.

Conditional
Execution

Easy to introduce and un-
derstand, as modeling ex-
perts already know the lan-
guage features. Variability
impact can be analyzed
with model analysis tools.

Hard to distinguish between
the variation logic and com-
mon model content. Variation
logic adds some evaluation
penalties in the model.

Separate the variability con-
cern clearly from the com-
mon model content. Follow
naming rules for the variabil-
ities. Consider using Condi-
tional Compilation instead.

Polymorphism Separation of common and
variant elements. High flex-
ibility. Each variant element
can evolve in isolation.

Lower efficiency due to
fragmentation of variant
elements. Increased risk of
defects.

Avoid in embedded context if
runtime variability is not nec-
essary. Consider using Mod-
ule Replacement instead.

Table 4.12: Guideline and Recommendations

5
C O N C L U S I O N

5.1 results

It could be shown that the mechanisms for the realization of variability identified
by Patzke [Pat11] can in principle be transferred from the code level to the model
level. They differ slightly in their application, possibilities and limitations. The criteria
for their evaluation also had to be adapted and supplemented. In contrast to the code
level, however, modeling requires a greater focus on a general reuse approach. On one
hand, this decision limits the choice of mechanisms, but on the other hand it offers a
higher potential for the reuse of model elements in the overall system context.

Furthermore it could be shown that the effort for variant modeling increases with
the level of detail in the model. If, for example, a new sensor is added to the weather
station, it can be easily displayed as a new component in the system context. In case
the model is used to support communication between stakeholders, this representation
can be sufficient. If, on the other hand, the model is used for the specification of the
system, all aspects (such as communication, interfaces, data rate, parameters, behavior,
etc.) must be considered. This increases the necessary effort immensely, especially if
dependencies to other products (within a product line) exist or arise because of this
change.

With regard to the research questions formulated at the beginning of this thesis, a
brief reference to the places where the points were discussed is given below:

RQ1

A list of variability realization mechanisms suitable for the use with
SysML models can be found in Section 3.4. In particular, Figure 3.7 gives
an overview of all identified and examined mechanisms.

RQ2

The key performance indicators used to asses the variability mecha-
nisms are listed and explained in Section 3.5. A practical evaluation
of the identified mechanisms is shown in Table 4.10. Guidelines and
recommendations for the application of these mechanisms are summa-
rized in Table 4.12.

RQ3

Limiting factors are discussed throughout the thesis. Of particular
note are the Sections 3.2 and 3.3, where management approaches as
well as aspects of tool support are discussed. Both limit the choice of
mechanisms. Further restrictions are also listed in Table 4.10.

Although a 150% model has major difficulties, especially in terms of parallel
development, the current trend seems to be in this direction. At least that is what
the few relevant studies indicate. From the practical work it can be confirmed that
modeling and managing variability is most comfortable with a 150% model. It provides

77

5.2 discussion 78

a good separation between feature and implementation view, allows fast and automatic
generation of variants and supports all types of variability. Nevertheless, several
limitations emerged that should not be underestimated. Parallel working is difficult,
which could be improved by a VCS, but not solved in principle. Further aspects are
the (tool-dependent!) granularity of variation (im-)possibilities and the increasing
complexity and incomprehensibility of the 150% model. This was particularly evident
in cases of topological variability or with a high number of variants (open variability).

5.2 discussion

Although some guidelines, recommendations and challenges could be identified and
formulated with the conducted feasibility study, they do not cover the wide range
of possibilities in variant modeling sufficiently. The research carried out therefore
represents only a small part of it. Even if, to the best of my knowledge and belief,
some statements are transferable and generally valid, there is no proof of this. More
detailed investigations are necessary to obtain a more conclusive result, especially
with regard to other modeling methods and tools.

5.3 future work

In order to obtain a broader overview and more general statements/guidelines, further
research must be conducted. Examples of further areas for this would be:

◮ extend the BCON model for reference and demonstration purposes

◮ investigate the effect of different modeling methods on variability

◮ investigate the influence of tool features on the realization of variability more

◮ what possibilities are offered by other tools (e.g. regarding adaptability [Bil+19])

A survey of practitioners and system developers could provide valuable insights
into which approaches are actually used in industry today and whether the problems
and difficulties described in Chapter 4 are perceived in a similar way. The list of
suggested tool capabilities (cf. Table 3.2) can thereby be compared and extended if
necessary. A comparison of the typical variant drivers would also be useful to check
the validity of the information given in Section 3.1.

A
A P P E N D I X

1 # Step 1: Open EA project file
$ModelPath = "Projekt_EA.EAP"

function Convert-XmlElementToString
{

6 [CmdletBinding()]
param(

[Parameter(Mandatory=$True)]
$xml

)
11

$sw = [System.IO.StringWriter]::new()
$xmlSettings = [System.Xml.XmlWriterSettings]::new()
$xmlSettings.ConformanceLevel = [System.Xml.ConformanceLevel]::Fragment
$xmlSettings.Indent = $True

16 $xw = [System.Xml.XmlWriter]::Create($sw, $xmlSettings)
$xml.WriteTo($xw)
$xw.Close()
return $sw.ToString()

}
21

Set-Alias "Log" "Write-Host"

Step 2: Open current project file in EA
$EA = New-Object -ComObject "EA.Repository" -Strict

26 $Res = $EA.OpenFile($ModelPath)
$EA.App.Visible = $True

Step 3: Get list of DB tables
$EATables = ([xml] $EA.SQLQuery("SELECT * FROM usystables")).EADATA.Dataset_0.Data.Row

31

$EADB = @{}
$EATables |
? ToVer -eq "9.9.9" | # skip deprecated tables
Select -ExpandProperty TableName |

36 % {
Log ". read $_"
$EADB.$_ = ([xml] $EA.SQLQuery("SELECT * FROM $_")).EADATA.Dataset_0.Data.Row

}

41 # Step 4: Convert DB content into (readable) strings
$EADBDump = ""
$EADB.GetEnumerator() |
% {

$EADBDump += (("=" * 20) + $_.Name + ("=" * 50)) + "‘r‘n"
46

$xml = $_.Value
if ($xml) {

$EADBDump += Convert-XmlElementToString -xml $Xml
$EADBDump += "‘r‘n" *2

51 }
}

Step 5: Show DB content
Write-Host $EADBDump

Listing A.1: PowerShell script to export EA model content

79

B I B L I O G R A P H Y

[AZ13] Albert Albers and Christian Zingel. “Challenges of Model-Based Systems Engi-
neering: A Study towards Unified Term Understanding and the State of Usage of
SysML.” In: Lecture Notes in Production Engineering. Springer Berlin Heidelberg,
2013, pp. 83–92. doi: 10.1007/978-3-642-30817-8_9.

[Ana+13] H. Anacker et al. “Solution patterns to support the knowledge intensive de-
sign process of intelligent technical systems.” In: Proceedings of the International
Conference on Engineering Design, ICED 6 (Aug. 2013), pp. 101–112.

[ADG14] Harald Anacker, Roman Dumitrescu, and Jürgen Gausemeier. “Design Frame-
work for the Integration of Cognitive Functions Based on Solution Patterns.”
In: Gausemeier, J. and Rammig, F. and Schäfer, W. (Hrsg.): Design Methodology for
Intelligent Technical Systems, Springer, Berlin. 2014.

[Ape+13] Sven Apel et al. Feature-Oriented Software Product Lines. Springer, 2013.

[Bec03] Martin Becker. “Towards a General Model of Variability in Product Families.” In:
Software Variability Management Workshop. Jan. 2003, pp. 19–27.

[Bec17] Martin Becker. Textbook: Product Line Engineering. v2.1. 2017.

[BZ18] Martin Becker and Bo Zhang. “How do our neighbours do product line engineer-
ing?” In: Proceeedings of the 22nd International Conference on Systems and Software
Product Line. ACM Press, 2018, pp. 190–195. doi: 10.1145/3233027.3233045.

[Ber+13] Thorsten Berger et al. “A survey of variability modeling in industrial practice.”
In: Proceedings of the Seventh International Workshop on Variability Modelling of
Software-intensive Systems. ACM Press, 2013. doi: 10.1145/2430502.2430513.

[Ber+14] Thorsten Berger et al. “Three Cases of Feature-Based Variability Modeling in
Industry.” In: Model-Driven Engineering Languages and Systems: 17th International
Conference, MODELS 2014. Valencia, Spain, Sept. 2014, pp. 302–319. doi: 10.1007/
978-3-319-11653-2_19.

[Beu13] Danilo Beuche. “pure::variants.” In: Systems and Software Variability Management.
Springer Berlin Heidelberg, 2013, pp. 173–182. doi: 10.1007/978-3-642-36583-
6_12.

[Bil+18] Damir Bilic et al. “Model-Based Product Line Engineering in an Industrial Au-
tomotive Context: An Exploratory Case Study.” In: Proceeedings of the 22nd Inter-
national Conference on Systems and Software Product Line. Vol. 2. ACM Press, Sept.
2018, pp. 56–63. doi: 10.1145/3236405.3237200.

[Bil+19] Damir Bilic et al. “An Integrated Model-based Tool Chain for Managing Vari-
ability in Complex System Design.” In: Models and Evolution Workshop (ME 2019),
co-located with the IEEE / ACM 22nd International Conference on Model Driven Engi-
neering Languages and Systems (MODELS 2019). Sept. 2019. doi: 10.1109/MODELS-
C.2019.00045.

[CHE05] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. “Formalizing
cardinality-based feature models and their specialization.” In: Software Process:
Improvement and Practice 10 (Jan. 2005), pp. 7–29. doi: 10.1002/spip.213.

[DAB15] Dominik Domis, Rasmus Adler, and Martin Becker. “Integrating variability and
safety analysis models using commercial UML-based tools.” In: Proceedings of the
19th International Conference on Software Product Line. SPLC. ACM Press, July 2015.
doi: 10.1145/2791060.2791088.

80

https://doi.org/10.1007/978-3-642-30817-8_9
https://doi.org/10.1145/3233027.3233045
https://doi.org/10.1145/2430502.2430513
https://doi.org/10.1007/978-3-319-11653-2_19
https://doi.org/10.1007/978-3-319-11653-2_19
https://doi.org/10.1007/978-3-642-36583-6_12
https://doi.org/10.1007/978-3-642-36583-6_12
https://doi.org/10.1145/3236405.3237200
https://doi.org/10.1109/MODELS-C.2019.00045
https://doi.org/10.1109/MODELS-C.2019.00045
https://doi.org/10.1002/spip.213
https://doi.org/10.1145/2791060.2791088

bibliography 81

[Dub+13] Y. Dubinsky et al. “An Exploratory Study of Cloning in Industrial Software Prod-
uct Lines.” In: 17th European Conference on Software Maintenance and Reengineering.
IEEE, Mar. 2013. doi: 10.1109/csmr.2013.13.

[Dum14] Cosmin Dumitrescu. “CO-OVM: A Practical Approach to Systems Engineering
Variability Modeling.” PhD thesis. Université Panthéon-Sorbonne, Paris, June
2014.

[ERZ14] Martin Eigner, Daniil Roubanov, and Radoslav Zafirov, eds. Modellbasierte virtuelle
Produktentwicklung. Springer Berlin Heidelberg, 2014. doi: 10.1007/978-3-662-
43816-9.

[ESB10] Leire Etxeberria, Goiuria Sagardui, and Lorea Belategi. “Quality aware Software
Product Line Engineering.” In: Journal of the Brazilian Computer Society 14.1 (2010),
pp. 57–69. doi: 10.1007/bf03192552.

[FG13] Jörg Feldhusen and Karl-Heinrich Grote, eds. Pahl/Beitz Konstruktionslehre.
Springer Berlin Heidelberg, 2013. doi: 10.1007/978-3-642-29569-0.

[Fin10] Arlene Fink. Conducting Research Literature Reviews: From the Internet to Paper, 3rd
Edition. SAGE Publications, Inc., 2010.

[Gal+14] Matthias Galster et al. “Variability in Software Systems - A Systematic Literature
Review.” In: Software Engineering, IEEE Transactions on 40 (Mar. 2014), pp. 282–306.
doi: 10.1109/TSE.2013.56.

[Gam+95] Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. 10.5555/186897. Addison-Wesley Longman Publishing Co., Inc., 1995. isbn:
0201633612.

[Hei+17] Jens Heidrich et al. “Systems Engineering as an Enabler for Future Innovation.”
In: Tag des Systems Engineering. Carl Hanser Verlag GmbH & Co. KG, Nov. 2017,
pp. 87–96. doi: 10.3139/9783446455467.009.

[INC15] INCOSE. Systems Engineering Handbook: A Guide for System Life Cycle Processes and
Activities. 4th ed. Wiley, 2015.

[Jéz12] Jean-Marc Jézéquel. “Model-Driven Engineering for Software Product Lines.” In:
ISRN Software Engineering 2012 (2012), pp. 1–24. doi: 10.5402/2012/670803.

[Kai14] Lydia Kaiser. “Rahmenwerk zur Modellierung einer plausiblen Systemstruktur
mechatronischer Systeme.” Dissertation. Fakultät für Maschinenbau, Universität
Paderborn, 2014.

[Kan+90] Kyo Kang et al. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech.
rep. CMU/SEI-90-TR-021. Software Engineering Institute, Carnegie Mellon Uni-
versity, 1990.

[KG08] Cory J. Kapser and Michael W. Godfrey. “"Cloning Considered Harmful" Consid-
ered Harmful: Patterns of Cloning in Software.” In: Empirical Software Engineering
13.6 (July 2008), pp. 645–692. doi: 10.1007/s10664-008-9076-6.

[Käs12] Christian Kästner. “Virtual Separation of Concerns: Toward Preprocessors 2.0.”
In: it - Information Technology 54.1 (Feb. 2012), pp. 42–46. doi: 10.1524/itit.2012.
0662.

[KC07] Barbara Kitchenham and Stuart Charters. Guidelines for Performing Systematic
Literature Reviews in Software Engineering. Tech. rep. Keele University and Durham
University, 2007.

[Kru17] Benjamin Kruse. “A Library-Based Concept Design Approach for Multi-
Disciplinary Systems in SysML.” PhD thesis. ETH Zurich, 2017. doi: 10.3929/
ETHZ-B-000172379.

https://doi.org/10.1109/csmr.2013.13
https://doi.org/10.1007/978-3-662-43816-9
https://doi.org/10.1007/978-3-662-43816-9
https://doi.org/10.1007/bf03192552
https://doi.org/10.1007/978-3-642-29569-0
https://doi.org/10.1109/TSE.2013.56
https://doi.org/10.3139/9783446455467.009
https://doi.org/10.5402/2012/670803
https://doi.org/10.1007/s10664-008-9076-6
https://doi.org/10.1524/itit.2012.0662
https://doi.org/10.1524/itit.2012.0662
https://doi.org/10.3929/ETHZ-B-000172379
https://doi.org/10.3929/ETHZ-B-000172379

bibliography 82

[Lab17] Mirko Karl-Heinz Laborenz. “Variantenmodellierung und -management in der
frühen Phase der Produktentwicklung.” Studienarbeit TU Kaiserslautern. Oct.
2017.

[Lie+09] Jörg Liebig et al. “RobbyDBMS.” In: Proceedings of the First International Workshop
on Feature-Oriented Software Development. ACM Press, 2009. doi: 10.1145/1629716.
1629729.

[Mar08] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship. Prentice
Hall, Aug. 2008. 464 pp. isbn: 0132350882.

[McI69] Malcolm Douglas McIlroy. “Mass produced software components.” In: Software
Engineering: Report of a conference sponsored by the NATO Science Committee. Ed. by
P. Naur and B. Randell. NATO. Garmisch, Germany, Jan. 1969, pp. 79–87.

[MP14] Andreas Metzger and Klaus Pohl. “Software product line engineering and vari-
ability management: achievements and challenges.” In: Proceedings of the Fu-
ture of Software Engineering - FOSE 2014. ACM Press, May 2014, pp. 70–84. doi:
10.1145/2593882.2593888.

[Ols15] Dan Olsen. “Problem Space versus Solution Space.” In: The Lean Product Playbook.
John Wiley & Sons, Inc, May 2015, pp. 13–22. doi: 10.1002/9781119154822.ch2.

[ONX08] S. K. Ong, Andrew Y. C. Nee, and Q. L. Xu. Design Reuse in Product Development
Modeling, Analysis and Optimization. World Scientific, Nov. 2008. doi: 10.1142/
6929.

[Pat11] Thomas Burkhard Patzke. “Sustainable Evolution of Product Line Infrastructure
Code.” PhD thesis. TU Kaiserslautern, 2011.

[PBL05] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product Line
Engineering: Foundations, Principles and Techniques. 1st ed. Springer, 2005. doi:
10.1007/3-540-28901-1.

[RCC13] Julia Rubin, Krzysztof Czarnecki, and Marsha Chechik. “Managing cloned vari-
ants.” In: Proceedings of the 17th International Software Product Line Conference. SPLC.
ACM Press, Aug. 2013. doi: 10.1145/2491627.2491644.

[Sch19] Andreas Schäfer. “Methode zur modellbasierten Entwicklung von multidiszi-
plinären Systemen in kleinen Unternehmen.” Diplomarbeit TU Kaiserslautern.
Aug. 2019.

[Sch18] Felix Schwägerl. “Version Control and Product Lines in Model-Driven Software
Engineering.” PhD thesis. Universität Bayreuth, Feb. 2018.

[Sve+10] Andreas Svendsen et al. “Developing a Software Product Line for Train Control:
A Case Study of CVL.” In: Software Product Lines: Going Beyond. Springer Berlin
Heidelberg, 2010, pp. 106–120. doi: 10.1007/978-3-642-15579-6_8.

[Tis+12] Christian Tischer et al. “Developing long-term stable product line architectures.”
In: Proceedings of the 16th International Software Product Line Conference. Vol. 1. SPLC.
ACM Press, Sept. 2012, pp. 86–95. doi: 10.1145/2362536.2362551.

[TK19] Juha-Pekka Tolvanen and Steven Kelly. “How Domain-Specific Modeling Lan-
guages Address Variability in Product Line Development.” In: Proceedings of the
23rd International Systems and Software Product Line Conference. SPLC. ACM Press,
Sept. 2019, pp. 155–163. doi: 10.1145/3336294.3336316.

[Tru+10] Salvador Trujillo et al. “Coping with Variability in Model-Based Systems Engineer-
ing: An Experience in Green Energy.” In: Modelling Foundations and Applications.
Springer Berlin Heidelberg, 2010, pp. 293–304. doi: 10.1007/978-3-642-13595-
8_23.

https://doi.org/10.1145/1629716.1629729
https://doi.org/10.1145/1629716.1629729
https://doi.org/10.1145/2593882.2593888
https://doi.org/10.1002/9781119154822.ch2
https://doi.org/10.1142/6929
https://doi.org/10.1142/6929
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1145/2491627.2491644
https://doi.org/10.1007/978-3-642-15579-6_8
https://doi.org/10.1145/2362536.2362551
https://doi.org/10.1145/3336294.3336316
https://doi.org/10.1007/978-3-642-13595-8_23
https://doi.org/10.1007/978-3-642-13595-8_23

bibliography 83

[Wei14] Tim Weilkiens. Systems Engineering mit SysML/UML: Anforderungen, Analyse, Ar-
chitektur. dpunkt.verlag, 2014.

[Wei16] Tim Weilkiens. Variant Modeling with SysML. MBSE4U Booklet Series, 2016.

[Wie17] Konrad Wieland. Model Versioning and Enterprise Architect. PowerPoint Presenta-
tion, LieberLieber Software GmbH. July 2017.

[YC17] Bobbi Young and Paul Clements. “Model Based Engineering and Product Line
Engineering: Combining Two Powerful Approaches at Raytheon.” In: INCOSE
International Symposium 27.1 (July 2017), pp. 518–532. doi: 10.1002/j.2334-
5837.2017.00376.x.

[ZDB16] Bo Zhang, Slawomir Duszynski, and Martin Becker. Variability Mechanisms and
Lessons Learned in Practice. Tech. rep. Fraunhofer Institute Experimental Software
Engineering (IESE), Kaiserslautern, 2016. doi: 10.1109/VACE.2016.012.

[Zur14] Gabriela Zurbuchen. “A Case Study for Integrated Lifecycle and Variant Manage-
ment in a SME Context.” MA thesis. TU Kaiserslautern, 2014.

[pur20] pure-systems GmbH. pure::variants User’s Guide. v5.0.0.685. 2020.

https://doi.org/10.1002/j.2334-5837.2017.00376.x
https://doi.org/10.1002/j.2334-5837.2017.00376.x
https://doi.org/10.1109/VACE.2016.012

D E C L A R AT I O N

Hereby, I declare that I have composed the presented thesis independently on my own
and without any other resources than the ones indicated. All thoughts taken directly
or indirectly from external sources are properly denoted as such.

Freiburg i. Br., August 2020

Florian Rohlf

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Research Questions
	1.4 Research Approach
	1.5 Main Contributions
	1.6 Thesis Structure

	2 Foundation
	2.1 Engineering Approaches
	2.2 Variability Concepts
	2.3 Literature review approach
	2.4 Variability Management
	2.5 Variability Realization

	3 Conceptual Model
	3.1 Variant Driver
	3.2 Variation Management Approaches
	3.3 Tool Capabilities / Limitations
	3.4 Variability Realization Mechanisms
	3.5 Key Performance Indicators

	4 Feasibility Study
	4.1 Introduction
	4.2 Variability realization with EA
	4.3 Evaluation

	5 Conclusion
	5.1 Results
	5.2 Discussion
	5.3 Future work

	A Appendix
	 Bibliography
	Declaration

