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Abstract

The existence of maximum entropy solutions for a wide class of re-
duced moment problems on arbitrary open subsets of R¢ is considered.
In particular, new results for the case of unbounded domains are ob-
tained. A precise condition is presented under which solvability of the
moment problem implies existence of a maximum entropy solution.
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1 Statement of the problem

To explain the basic ideas, we first describe a well known special case, the
so called Hamburger moment problem. Here, we want to find a nonnegative
function f : R +— R which has 2n + 1 given numbers py, . . ., p2, as moments

/xif(a:)da::pi i=0,...,2n.
R

More precisely, if we exclude the trivial case pg = 0 which implies f = 0, we
want to find a function in

(1) D:={f>0:(1+a™)feL'(R), f£0}
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such that u(f) = p with

Obviously, the problem is solvable only under certain assumptions on the pre-
scribed moment vector p. A straight forward requirement is the positivity of
all even moments. The exact conditions for solvability depend, of course, on
the underlying set (2 = R) as well as the moment functions 1,z,...,z?" (see
for example [1, 2] or the appendix). At this point, we just require p € u(D)
so that the moment problem is solvable by definition. However, the solution
is not unique and one often wants to find a particular solution of the problem
which is compatible with the given information p but which contains as little
additional information as possible. Such a solution is naturally obtained in the
maximum entropy framework ([6, 8]). Among all solutions f of the moment
problem p(f) = p we choose the one with maximal entropy

(2) H(f)Z—/Rflnfda:.

This special solution of the reduced Hamburger moment problem will be called
the mazimum entropy solution. The following formal investigation quickly
leads to the structure of the optimal density. The necessary condition on the
first variation at the maximum of the constrained optimization is

0=36(H(f)+ B+ (u(f) - p)) =—1nf—1+Zﬂix"

with Lagrange multipliers 8. Solving for f yields

f(z) =exp (Z )\,-a:i) = exp, ()

(the Lagrange multipliers have been renamed A after combining the constant
—1 with (). If it is possible to determine the free parameters A from the
constraint u(f) = p then f is the maximum entropy solution (which is unique
in D due to strict concavity of H). Therefore, the main concern of this article
is to answer the question whether the moment constraints can be satisfied
with exponential densities. The required integrability of exp, restricts the
parameter vector A to the set

A:={AeR"" : exp, e L'(R) }.



For A € A, on the other hand, moments of exp, to any order are well defined
so that the collection of integrable exponential densities

E:={exp, : A€ A}

is a subset of D defined in (1). We will show that p € u(E) is a necessary
and sufficient condition for the existence of a maximum entropy solution. In
general, however, u(E) is strictly contained in u(D). Consequently, there
exist admissible moment vectors p € u(D) for which the moment problem
is solvable but the maximum entropy problem has no solution. The reason
for this behavior is essentially the following (a detailed analysis will be given
for more general cases): If (f;)men is a maximizing sequence for the entropy
functional (2) such that u(f,,) = p for all m, then f,, converges in ! (R) (due
to an estimate of the L' norm in terms of the entropy). The uniform I.! bound
on z?"f,(z) then gives convergence of all lower moments. For the highest
moment [ z*"f,,(z) dz, Fatou’s Lemma guarantees boundedness, however its
value might drop in the limit so that the constraint p(lim,, , fm) = p is not
satisfied.

To show that this situation can occur, we focus our attention on those in-
tegrable exponential densities exp; which satisfy 5\2n = 0 (and thus also
Aon_1 = 0). Since the two highest Lagrange multiplier vanish, it is clear that
exp; is an optimal density already under a reduced number of constraints.
More precisely, with

pi =/$ieXP:\(~T)diE,
R

expj is the maximizer of H under the constraints that the moments are p; for
t=0,...,2n — 2. In particular, any function f which satisfies

Nl(f):ﬁla i=0,...,2n—1, ,u2n(f)>ﬁ2n

has less entropy than exp;. The trick to show that certain maximum entropy
problems are not solvable now relies on a perturbation argument: We slightly
perturb exp; by adding mass at large . The amount of mass is chosen in such
a way that it contributes essentially only to the highest moment (for |z| > 1,
the amplification of the mass through z?" is much stronger than for the lower
moments). By suitable additional perturbations (at small |z|) it is possible to
construct a function f which satisfies

:ul(f):ﬁ'w i:0,...,2n—1, ,u2n(f):ﬁ2n+c

where ¢ > 0 is some given number. Repeating this process and moving the
perturbation at large z to infinity, we end up with some sequence (f,,) which
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converges to exp; and whose highest moment drops in the limit (by ¢ > 0).
For the entropy H(f), small perturbations at large  have no considerable
contribution so that also limp, .o H(fm) = H(exps). Due to our general obser-
vation, however, H(exp;) is an upper bound for the entropies of all functions
which have the same lower moments as exp; but whose highest moment ex-
ceeds pa,. Consequently, (f,,) is really an entropy maximizing sequence whose
highest moment drops in the limit.

Obviously, this behavior is closely related to the unboundedness of the under-
lying domain 2 = R. Only in an unbounded situation, a contribution to the
highest moment can escape to infinity in the limit.

We remark that similar investigations for special moment problems have been
presented in a series of papers [9, 10, 11]. In these articles, the Hamburger and
Stieltjes moment problems are considered (the latter differs from the Ham-
burger case presented above in the domain ©Q = [0,00) and possibly in the
highest moment function which need not be of even order). The authors come
to the conclusion that no restrictions on the solvability of the maximum en-
tropy problem exist if the order of the highest moment is only large enough.
We stress that this result is in contradiction to an earlier work [5] on the Stielt-
jes problem which, on the other hand, is in accordance with our observations
presented here. (In [9, 10, 11] it is checked that the range of y;(exp,) is not
restricted for each individual z. However, it is not taken into account that the
range of ps,(exp,) might be restricted for a special choice of the other mo-
ments, which is exactly the case where solvability problems are encountered.)

In the following, our detailed considerations will not be restricted to the case
of Hamburger moment problems. We just require some basic properties which
are also satisfied in many other situations.

For some special cases, our results are already presented elsewhere. In partic-
ular, moment problems on bounded sub domains of R have been considered in
[14, 4]. In [13], the problem is even investigated on compact Hausdorff spaces
with general entropy functionals (however, the moment functions are assumed
to be continuous). Our main emphasis is therefore on the case of unbounded
Q). Nevertheless, bounded domains are reconsidered in our general setting
since they serve as important tool for the unbounded situation. It turns out,
however, that the criterion for solvability of the maximum entropy problem is
not so much boundedness of the underlying domain. It is rather related to the
geometry of the set A of possible Lagrange multipliers (see Section 3 for a list
of results).



2 Assumptions

First, the domain of interest can be any non empty, open subset  C R? with
d € N. The moment functions aqg = 1, a4, ..., ay should be measurable on {2
and satisfy the condition

vo{ze€Q: A-a(z)=0}=0  VAeRV™\{0}.

This implies in particular, that {ao, ..., ay} are linearly independent functions
(in [13] such a system of functions is called pseudo—Haar). In addition, we
assume that all a; are bounded on bounded subsets of 2. In cases where 2 is
unbounded, we need the additional requirement ay > 0 and

ja:(z)] 0 i=0,... . N—1.
1+CLN(.’I7) |z|—o00

In accordance with the initial example, we define the basic space
D:={f>0: (1+4an)feL'(Q), f£0}.

On D, the calculation of a—moments is possible since each a; can be estimated
by 1+ an. We denote

u(f) = /Qa(a:)f(a:) dz, a(z) = (1,a.(x), ..., an(x))".

If the dependence on ) is important, we also write u(f;€2). (Similarly, we
will use the obvious notation D(f2)). The elements of u(D) will be called
admissible moment vectors because for p € u(D) there exists, by definition, at
least one solution of the problem u(f) = p with f € D. Again, the exponential
densities

exp,(z) : = exp (Z Aiai(I)) = exp(A - a(z))

will play an important role. The admissible set of parameters is called
A:={XeRV* : exp, € D(Q) }
and the corresponding densities are collected in

E:={exp, : A€ A}.



Sometimes, it will be convenient to work with normalized densities

_ f@) _ f@)
o fdy po(f)

Obviously, D* C D and also E* C E since ay = 1 such that

f*(z) f eD.

(exp,)* = expj«, with A" =X —In(ug(exp,))eo-

Here, e is the first unit vector in R¥*1. The parameters A\* of normalized
exponential densities will be collected in A* C A.

3 The result

Given an admissible moment vector p € u(D) (so that the moment problem
has at least one solution f € D), we want to answer the question whether
we can find a special solution of the moment problem which is optimal with
respect to the entropy

H(f) = —/flnfdx.
Q
The solvability turns out to be closely related to the structure of the set
A={XeR"" :exp,eD}.
e If A = () the problem has no solution (Corollary 7.3).

o If A # () but AN AA = 0 the problem is always solvable (Theorem 6.1).

e If AN OA # (D there are always some admissible vectors for which the
problem has no solution (Theorem 8.4).

Whenever A # (), entropy maximizing sequences always converge to exponen-
tial densities exp,. In the case A N OA # (), however, it is possible that the
limit density does not satisfy the moment constraint.

The moment constraints for which this can happen are easily characterized:

e Pick any A € AN OA.
e Calculate the moment vector py = p(exp,).

e Add any positive number to the highest component p : = p)+eey, € > 0.
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Then, p is an admissible vector (i.e., there exists a positive density f such
that u(f) = p) but the maximum entropy problem with constraint p has no
solution.

In Section 4 we give some preparatory remarks for the proofs of the above
results (Sections 5 to 8). Finally, in Section 9, we show how standard results
easily follow from our general considerations.

4 General remarks

Instead of working with the entropy functional H(f) = — fQ fIn f dx directly,
we consider the so called relative entropy

H(f, f) :z/ﬂfln?da:.

In our setting, it is very convenient to choose a fixed normalized exponential
density f = exp; with A € A* as reference density. (Here we assume that
A # (. Nevertheless, the case of empty A will also be treated.) Then

(3) H(f, f)=—X-u(f) — H(f).

Under the constraint u(f) = p, maximizing H(f) is therefore equivalent to
minimizing H(f, f). Our second remark concerns the effect of normalizing the
density f. A simple calculation shows that

~

H(f, f) = mo(f)H(F*, f) + po(f) In po(£)

and it is easy to prove

Lemma 4.1  f minimizes relative entropy under the constraint u = p if and
only if f* is a minimizer under the condition u = p/po.

Due to Lemma 4.1 it is possible to characterize those moment vectors in u(D)
for which a maximum entropy solutions exist by restricting the considerations
to the case pp = 1 (i.e. to probability densities).

A simple but powerful argument concerns the splitting of the entropy which is
induced by a splitting of the domain €2. If €); is an open subset of {2 we denote

H(f, Fi) = flngdx

Q0



so that H(f, f) = H(f, ;%) + H(f, f; Q). Now, if f is an optimal density
with respect to the constraint p = u(f) then f|, is necessarily an optimal
density with respect to the constraint p(*) = u(f;€;). Otherwise, one could
replace f on €2; by another density with less relative entropy but the same
moments p*) thus improving H(f, f) in contradiction to the optimality of f.
This argument will be useful to extend results known for bounded domains (2
to unbounded ones.

For our arguments we will also need some general results on maximum entropy
problems which can be found for example in [8]. For convenience, we list these
results here.

Lemma 4.2 Let f € D. Then
o flnk>-1f,

A

H(f, f) is strictly convez in f,

if f € D* then H(f, f) > 0 with equality only in the case f = f,

if fo— f in LM (Q) and (fo)nen C D then H(f, f) < liminf H(f,, f),

if F C D* is convez, (fo)nen C F and H(fn, f) — infrer H(f, f) < o0
then f, converges in L' (Q).

Proof: Using the estimate zlnz > —% we get immediately

The strict convexity of H(f, f ) in the first argument follows directly from the
corresponding property of z — xln 5 The remaining results can be taken
from Theorems 1.4.1, 1.5.5 and Theorem 3.1.1 in [8] which require probability
densities. |

Since fIn(f/f) > —%f, the negative part of fIn(f/f) is integrable and thus

A

relative entropy is well defined. However, H(f, f) = —+oo is still possible.
Nevertheless, for any p € u(D) we can find a particular solution f € D of the
moment problem u(f) = p which is bounded and compactly supported (see
Theorem A.2 in the appendix). Consequently, — < H(f, f) < oo and we
can always assume the existence of minimizing sequences with finite relative
entropy.



The second result we need for our argument concerns the solvability of the en-
tropy optimization problem if the prescribed moment vector p already belongs
to an exponential density.

Theorem 4.3  If p € u(E) then the unique solution of the problem to mini-
mize relative entropy H(f, f) under the constraint f € D and pu(f) = p is given
by exp, where X is uniquely determined through the relation u(exp,) = p.

Proof: According to Lemma 4.1 we can restrict ourselves to the case py = 1.
Theorem 3.1.4 in [8] then proves the result. n

All the remaining investigations aim at the relation between p(E) and p(D). If
u(E) = p(D) then, according to Theorem 4.3, the maximum entropy problem
admits a unique solution for any admissible moment vector. In some cases,
w(E) is a proper subset of u(D). Then, the maximum entropy problem will
not be solvable for p € u(D)\u(FE).

5 Structure of A

The solvability of the maximum entropy problem is closely related to the struc-
ture of the set A or more precisely to the structure of its boundary. Throughout
this section, we assume that A # (). The following Lemma clarifies the geom-
etry of the interior int(A) which is just an open half space in RV "1,

Lemma 5.1  Let Ay :=sup{ Ay : A € A}. Then the interior of A has the
form

int(A) = { A e RV™ . Ay < A} }.

In particular, if Q is bounded then NS, = oo and thus A = RN+1_. If K C int(A)
is compact and P : R — R is a polynomial then there exists A € int(A) such
that for all A € K

|P(an)]exp(X - a) < exp(A - a).

Proof: First, let us consider the case of bounded 2. Since, by assumption, all
a; are bounded, the same holds for exp(A - a), where A is an arbitrary vector
in RVt Thus, (1 + ay)exp, € L) for all A € RV, For the second
statement, we just set A = Ageg with

exp(Xo) : = max{ |P(an(z))|exp(A-a(z)) : 2€Q, A€ K }.



If Q is unbounded, we denote I : = {A € RV*' : Ay < A} } and first show
I C A. To every A € I there exists A € A such that Ay < Ay. Since the
growth of ay dominates over all a;, we get
A-a(z) — A-a(z)
1+an (:c) |z|—00

>5\N_)\N>O-

In particular, there exists some R > 0 such that A-a(z) > X - a(z) for all
|z > R. The integrability of (1 + ay)exp, then follows from the one of
(1 4+ an)expy since on |z| < R the function (1 + ay)exp, is bounded. By
definition of )%, every A € A satisfies Ay < A so that cl(A) C cI(I) which
completes the proof of the first statement. For a compact K C int(A) we
define 8 := max{ Ay : A € K} so that the difference 4¢ : = A}, — (3 is positive.
Then, for any A € K

(8 + 2¢)an(x) — A - a(x) \
1+CLN(33) |a:|—>oo/ 2€+B_)\N 2 2>0

and hence (8 + 2¢)ay(z) > X - a(z) for |z| > R and R large enough. Conse-
quently,

|P(an)|exp(A-a) < |P(ay)| exp(—eay) exp((8 + 3€)ay), |z| > R.

Now, |P(ay)|exp(—eay) is uniformly bounded and exp((8 + 3¢)an) is inte-
grable because § + 3¢ < A} by construction. Setting A : = Ageo + (8 + 3¢)en
with A large enough, we have proved the Lemma. ]

Obviously, int(A) is a convex set but convexity of A can also be shown directly
using Holder inequality. Indeed, for any p, ¢ > 1 with %—F% =land A\;, s €A
we find

1 1
(1+an) eXP1y 41y, = (1 +an)expy, ) ((1 + an) exp,,)? € L'(Q).

The second statement in Lemma 5.1 is needed to show differentiability proper-
ties of the mapping A — po(exp,). Besides this, the following result contains
other important properties.

Lemma 5.2  The function A — uo(exp,) is strictly convex on the convez set
A C RN*L. On int(A) it is infinitely often differentiable and on A N OA direc-
tional derivatives can be defined for admissible directions (a direction & € SV is
called admissible in A € A if for some € > 0 also A+ €£ € A). More precisely,
the function 6 +— po(expgy,1(1-g)x,) 38 in C'([0,1]) for any pair A\, Ay € A
and the derivative (Ay — A1) - p(€XPgyr,1(1-0),) 18 Strictly increasing in 6. If
ANOA =0 then £ - u(expym)) — +0oo whenever £ € RN*! satisfies €y > 0 and
()\(”))neN 18 a sequence which converges to a point on OA.
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Proof: If A € int(A), Lemma 5.1 yields integrable majorants expy € L'(Q)
for derivatives of exp, which are locally uniform in A. Thus A — po(exp,) €
C*®(int(A)). Its first derivative is just

Vano(exp,) = p(exp,)

and for the Hessian, we find

H[po(exp,)] = / a® aexp, dz.
Q

This matrix is positive definite (and thus A — pe(exp,) is strictly convex)
because for any vector 0 # 8 € RV +!

BT Hyluo(expy )]8 = /Q(ﬂ -a)? exp, dz > 0.

Here we have used the fact that {ay,...,an} is pseudo—Haar. Indeed, 5 #
0 implies vol{z € Q : (8-a(z))> > 0} > 0. On a line segment A(F) =
BXs + (1 — 0)A; where 8 € [0,1] and Aj, A2 € int(A) we consider the function
9(6; ) : = po(expyp); Q). Then g(-;2) € C*([0,1]) with

9'(6; ) = (A2 — A1) - p(expy ey ),
§'(6;9) = / ((a — A1) - a(2))? expyg (2) d.

For A\;, A2 € A (i.e. possibly on the boundary), we extend these relations
through a limiting process over bounded sets Qg : = {z € Q : |z| < R}. To
investigate the approximation properties we focus on the difference p(exp ,\(9))—
p(expyg); 2r) = 1(expyg); 7). Due to our assumptions on a; we can find
constants C; > 0 such that |a;| < C;(1 + an). Then, using Hélder inequality,
we get

. 0 1-6
|ui(expyg); )| < C /QC (1 +an)expy,) ((1+an)exp,,) = dz
R

<c, (/Q (1+ an) expy, dx)o (/ﬂ

< G; max/ (14 an)expy. dv —— 0.
=12 /g i R—c0

1-6
(1+ an)expy, d:c>
j
7

Consequently, g(-;Qg) and its derivative converge uniformly to g(-; ) respec-
tively ¢'(-; Q) so that g € C*([0,1]). If ; < By, we get for the increase in g’
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with monotone convergence

02 02

g'(02;Q) — ¢'(61;2) = lim g"(s;Qg)ds = / g"(5;Q)ds > 0.
R—o0 01 6;
We remark that ¢”(s;2) need not be continuous so that we cannot infer g €
C?([0,1]). Nevertheless, a strictly increasing derivative g'(6;2) implies strict
convexity of g and thus also of A — pg(exp,) throughout A. Finally, let us
investigate the behavior of A — & - u(exp,) at the boundary if ANOA = () and
&n > 0. Choosing a sequence ()\(”))neN which converges to a point A € OA
we split p(expym)) = p(expym; Qr) + p(expym; 2%). The constant R > 0 we
choose in such a way that

et 1
an(z) >1 and fovZN ~5 |z| > R.

On the bounded domain Qf we get immediately pu(expym); Qr) — p(exps; Qr)
for n — oo, which is a bounded contribution. On |z| > R we find

£ - pexpym; Q) = / Evan <1+z Gii() )exp,\(n) dx

1 1
> 5&\7 / ay expym) dr = §§NMN(6XP,\(n);Q§z)-
R

If un(expyem; Q%) had a bounded subsequence then one could show with the
help of Fatou’s lemma that also uy(exps; %) < co. Since ay > 1 on Q% we
would find

/(1 + ay) expy dz = / (1+ ay) expy da:—i—/ (1+ an)expy dz < o0
Q Qr

c
R

in contradiction to A N 9A = 0. m

Corollary 5.3  The moment map \ — u(exp,) is a diffeomorphism from
int(A) onto int(u(E)).

Proof: According to Lemma 5.2, the moment map (which is just Vo (exp,))
is infinitely smooth on int(A). Since A — po(exp,) is strictly convex, the Jaco-
bian of the moment map never vanishes. Consequently, it is an injective, open
mapping with a smooth inverse (inverse function theorem). u
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6 The case A#() and ANOA=10

From Theorem 4.3 we already know that the maximum entropy problem is
solvable if p € u(F). We will now prove that in the cases under consideration
u(E) = u(D) so that the problem is, in fact, solvable for any admissible
moment vector. The basic idea is to show that the function

2(A;p) = po(expy) — A~ p

attains its minimum on A for any p € u(D). Then, the necessary condition
for an extremum in A yields

0=Viz(\) = /Qa(x) exp(A - a(z)) dz — p

which gives p = u(exp;) € u(E).

Theorem 6.1  Assume A # (0 and ANOA = 0. Then u(E) = u(D), i.e. for
any p € u(D) there exists a unique A € A such that p(exp,) = p. In particular,
the mazimum entropy problem is uniquely solvable for any admissible moment
vector.

The proof of Theorem 6.1 splits up into two lemmas. First, for given p € p(D),
we investigate the behavior of

(4) z(A;p) i =polexpy) = A-p,  AEA

at OA respectively at |A| — oco. To this end, we pick some A € A and consider
(4) along rays with directions & € SV. Due to the structure of A (which equals
int(A) in the case under consideration), a ray in direction £ hits the boundary
if £y > 0 unless A = () as for bounded Q. To treat all cases notationally in
the same manner we introduce

sp(E,N) :=sup{s : A+sE €A}
which is +o0 if the boundary OA is not met in direction &.

Lemma 6.2 Let A# (0 and ANOA=0. Forp € u(D), \€ A and € € ST,
the function

s 2(A + s&; p)

attains its unique minimum in the open interval I(€,N) 1= (—s5(—E&, A), 55(€, ).
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Proof: From Lemma 5.2 we know that z(s) : = 2(X + s&; p) is strictly convex

and contained in CY(I(£,))). Also, if s3(6,) < oo, i.e. & points towards
OA # (), then

2'(s) = & - (u(expx,4¢) — p) ——— 0.
3_>3b(£7A)

To treat the case s,(€,A) = co we introduce two complementary half spheres
Lt:={¢ec SN :¢-p>0}, L™ :={¢eSYN : ¢-p<0}.

For £ € L™ we get —s€ - p — +00. Since pg is always positive we see that
2(s) — oo for s — oo. In the case £ € Lt we first assume that {z € Q :
€ - a(z) > 0} has positive measure. Then, there exists some € > 0 such that
also B:={z : £-a(x) > €} has positive measure in 2. We obtain

() 2 ([ s do) explse) = (-4:56) -

which certainly goes to 400 due to the exponential increase. It remains to
exclude the case where £ - a(z) < 0 on Q. To this end we pick f € D such
that p = p(f). Since, by definition, {z : f(z) > 0} has positive measure and
{z : £ - a(xz) = 0} has measure zero due to the pseudo—Haar property, we find
that U := {2z : £ - a(z) f(z) < 0} has positive measure and hence

§-p:/ﬂﬁ-a(ac)f(ac)da:§/Uﬁ-a(a:)f(a:)dx<0

in contradiction to the assumption £ € L. We conclude that on each endpoint
of the interval I(¢, ), z(s) either diverges or the slope 2'(s) becomes +oo. In
any case, there exist points s;, sy € I(£, A) such that 2'(s;)2'(sy) < 0. Applying
mean value theorem, we find s* € I(¢, A) such that 2/(s*) = 0 and due to strict
convexity of z, s* is the unique minimizer. [

A basic result on optimization problems now shows that z always has a unique
minimizer A\ which concludes the proof of Theorem 6.1. The notation is the
same as in Lemma 6.2 and the elementary proof is omitted.

Lemma 6.3 Assume () # A C _]RN+1 is open and convex. Further, let
z: A — R be strictly convex. If for A € A

s+ z(A + s8§), seI(EN)

attains its minimum for all directions ¢ € SV then z has a unique minimizer
A e A
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7 The case A =10

Let us now turn to the extreme case A = (). The non solvability follows
from a Theorem which applies in the most general setting. We start with a
preparatory result.

Lemma 7.1  Let Q; be an open, bounded subset of a possibly unbounded,
open Q2 C R? and let g € D(Q) be a mazimum entropy solution. Then g|Ql €
E(Q4) is of exponential type.

Proof: We denote g; : = gl . If we assume g, # 0 then g; € D({y) is
the maximum entropy solution under the constraint p = p(g;€;) because
otherwise, the global entropy

H(g):—/ glngdx—/ glngdz
91 Q\Ql

could be increased by modifying g on 2; without changing the moment vector
u(g; Q). Since € is bounded, we know A(£2;) = RV¥*! and thus Theorem
6.1 shows that g; = exp, for some A € R¥*!. The remaining case g = 0
cannot appear. Since g Z 0, we can find an open, bounded €, C  with
0 C Qy and g, : = g|,, # 0. Applying the considerations to g, yields

g1 = 92‘91 = eXp)\‘Ql Z0. [ |

With the help of Theorem 4.3 and the above Lemma we can now completely
characterize the moment vectors p € u(D) for which the maximum entropy
problem is solvable.

Theorem 7.2  Let p € pu(D). Then the mazimum entropy problem is solv-
able if and only if p € pu(E). The optimal density is always of exponential

type.

Proof: First, we assume that p € p(F). Using Theorem 4.3 we see that
the maximum entropy problem has a unique solution of exponential type.
Conversely, if there exists a solution g € D, we exhaust {2 with an increas-
ing sequence of bounded, open sets €2, C €,,; and Lemma 7.1 shows that
In = glg, = expyw for certain A ¢ RN+ Applying Lemma 7.1 again to a
pair 0, C 11 we also see that expym) = expyw+n on £,. Taking logarithm
and regrouping yields (A**1) — X(M). g = 0 on Q, so that with the pseudo—
Haar property A1) = X\(") = . Since also glg, — g in L'(Q) we find that
g = exp, (at least a.e.). In particular, u(g) € pu(E). n
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Corollary 7.3 If A = 0 then for any p € u(D) the mazimum entropy
problem is not solvable.

Proof: A = () implies F = () and thus also u(E) = 0. u

8 The case ANIA # 0

With Theorem 7.2, the moment vectors for which the maximum entropy prob-
lem is solvable are completely characterized as moments of exponential densi-
ties. What remains to be investigated is the question whether p(FE) is possibly
a proper subset of u(D). In this case, there are admissible moment vectors
p € u(D) for which the maximum entropy problem is not solvable. Our aim
is to characterize these vectors.

Since 2 is necessarily unbounded in the case under consideration, the moment
function ay is distinguished in so far as it dominates all other a; for large |z|.
This property reflects itself in a special behavior of the highest components of
A and p. To stress this fact and to simplify notation, we introduce the order
relation

)T

T
(Uo,...,UN) Z(vo,...,UN <<= Uy ="g,-..,UN_1 = UN_1,UN = UN.

Then, we have the following dual result.

Lemma 8.1 Assume A € A and p € pu(D). Then all A\ < X and all p > p
also belong to A respectively (D).

Proof: The result on A has already been shown in Lemma 5.1. For p € p(D),
Theorem A.2 in the appendix tells us that 3-p < 0 for all 0 # 8 € R¥*! which
satisfy B-a < 0 a.e. on Q. If p=p+ dey with § >0 then B-p= - p+ On9.
Consequently, also p € u(D) if Sy < 0. That this is indeed the case follows
easily by contradiction. Assuming On > 0 we choose R > 0 so large that

ﬂzaz
g ﬁNaN —=, |z| > R.
Then, we find
NZ‘I Biai(z)
G - a(:c) = 5NaN(a:) (1 + - BNTN(Q?)) > 0, |.’L‘| > R.
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in contradiction to our assumption on J. [

We have already seen, that A N A = @ implies solvability of the maximum
entropy problem for any choice of p € u(D). Conversely, if ANIA # @), we can
always find admissible moment vectors such that the problem is not solvable.

Lemma 8.2 Let A€ ANOA and p > p = u(exps). Then p € u(D)\u(E).

Proof: Assume p = u(exp,) for some A € A. Then A — z(A; p) = po(exp,) —

A - p satisfies on the line segment A\(6) = 6\ + (1 — 0)\ (see Lemma 5.2)

L200);0) = (A~ N (lexpre) — 0)

The derivative of pg(exp,)), and thus also of z(A(6); p), is strictly increasing
so that

A=NE=p) <(A=N(p—p)=0.

Using p = p+dey with § > 0 and Ay = A%, we get Ay > A% which contradicts
A € A and hence p & u(E). |

The next Lemma shows that the converse statement is also true. Its proofis the
mathematically strict version of the introductory argument which explained
the possible failure of an optimizing sequence to converge to a solution of the
maximum entropy problem.

Lemma 8.3  Let p € u(D)\u(E). Then p > u(exp,) for some A € OA. Any
relative entropy minimizing sequence ( fy)nen C p(D) which satisfies u(fy) = p
converges to exp,.

Proof: By normalization, we will restrict our considerations to the case p €
pw(D*)\p(E*). Also, we choose the reference density f = exp; with A € OA.
In the non—empty convex set F' defined by

F:={feD": u(f)=p}

we select a sequence (fy,)nen C F which satisfies

Modifying f, on subsets of {2, a new sequence (g,)nen is constructed. The
corresponding sets (2, should be open, bounded and satisfy

1 ~
Filon 20, () =gl < o B H05) <
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and

0 C i, (J% =92  min{lz]:2€9Q} — 0.
neN n—oo

We set

gn(z) : = .
falz) z€Qf

where A\() is uniquely defined through u(expywm); Qn) = p(fy; Q). Obviously,
p(fn) = p(gn) = p and the relative entropy does not increase by the modifica-
tion on €, so that (g, )neny C F is also a minimizing sequence. Using Lemma
4.2, we can infer the L'—convergence of (g, )nen. The limit function g is even
contained in D*. To see this, we first notice that with Fatou’s lemma

(5) /(l—l—aN)gda: < liminf/(l—l—aN)gn dz =1+ pn.
Q Q

n—oo

so that g € D. On the other hand, the uniform bound on the ay—moment yields
convergence of all other moments. To see this, we remark that by assumption

|ai(z)|

B <y Vel
1+an(z) =

with 7, — 0 for m — oco. Consequently,

J

The same estimate also holds for each g,. Since a; are locally bounded, we
have

lag|gdz < v / (1+ay)gdr = ym(1+ pn).
Q

/ a;gdr = lim a;gn dx

n—oo Qm
/ a;gdz — p;

Altogether, the lower moments converge and the highest moment might drop
(due to (5)). Hence, u(g) < p. To show that g is of exponential type, we take
some ¢ € N such that g|m #Z 0. By construction, we have

and thus

< Ym(1+ pn).

lim / a;gn dz
n—o0 0

C
m

gnlg, = €XPrw,  Vn >

18



Since ; is bounded, A(€;) and p(E (%)) = u(D(€;)) are diffeomorphic so
that

AP = (1(gn; %)) m d(p(g; ) =: A

(¢ denotes the inverse of the mapping A — p(exp,;€:)). In particular, g,|q,
converges to exp,[q,. Repeating the same argument for i +1 we find gn[,, , —
expy | q, and due to the pseudo—Haar property A= A. Consequently g = exp,
and A € A because g € D. Since we have assumed p ¢ u(FE), the case
u(exp,) = p cannot appear and we really find a drop u(exp,) < p in the limit.
It remains to show that A € A. Due to our construction of (2,),en We get

H(gn, f) = H(expym), £ Q) + H(fa, f; Q)
= (A® = Nu(f; ) + H(fn, F;02) —— (A = Vp.

n—o0

A ~

In addition, we know from Lemma 4.2 that H(g, f) < liminf,, , H(gy, f) so
that altogether

~ A~

(A = A)ulexp,) < (A= A)p.

Since p(exp,) < p and Ay = A& we find (Ay — A8)(un(exp,) — pv) < 0 which
implies Ay = A% so that A € A. Finally, the mixed sequence

f].agla f2,g2,f3, .

is also a minimizing sequence in F' and thus converges in L'(Q). Since the
subsequence (g, )nen converges to exp, the same holds also for the subsequence
(fn)nen which shows that every minimizing sequence converges to the same
limit. ]

We combine Lemma 8.2 and Lemma 8.3 in a final theorem.
Theorem 8.4 Assume ANOA #0. Then

w(D)\u(E) ={p : p> plexp,), A€ ANIA}.

In particular, the mazimum entropy problem is solvable if and only if p € u(D)
satisfies p # p(expy) for all X € AN OA.
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9 Examples

9.1 The Hausdorff moment problem

In the classical reduced Hausdorff problem, the setting is Q2 = [0,1] and
ai(z) = x* for i = 0,...,N. Since Q is bounded, A = R¥™! so that the
maximum entropy problem is always solvable (Theorem 6.1). For further in-
vestigations on this special case like solvability conditions for the moment
problem (i.e. the structure of u(D) = u(E)) or convergence of the maximum
entropy distributions for N — oo we refer to [14]. The case of bounded 2 C R?
is also called generalized Hausdorff moment problem and Theorem 6.1 shows
solvability of the maximum entropy problem whenever the moment problem
itself has a solution (if all moments are prescribed, solvability conditions can
be found in [15]). For the case of general entropy functionals (which are ap-
plied to measures on a compact Hausdorff space) and constraints based on
continuous moment functions we refer to [13].

9.2 The Stieltjes moment problem

For the reduced Stieltjes moment problem the underlying space is the positive
half line ! = R" and the moment functions are again monomials a;(z) = z°
with ¢ = 0,...,N. For N = 2, non trivial conditions for the existence of a
maximum entropy solution have been presented in [16]. If py is normalized to
one, the condition is 1 < py/p? < 2. While the lower bound is related to the
solvability of the moment problem, the upper bound restricts the applicability
of the maximum entropy approach (we know from Lemma 8.1 that the highest
moment ps is not restricted in u(D)). According to Theorem 8.4, problems
arise whenever p > u(exp,) with A € 9A. For N = 2, normalized densities
exp, with A € OA are of the form

exp,(z) = |A\1| exp(A1z), A1 < 0.

Computing the moments yields u;(exp,) = 1/|A;| and po(exp,) = 2/A2. Con-
sequently, the solvability condition p € u(D) and ps/p? < 2 obtained from
Theorem 8.4 coincides with the result in [16]. The case N = 3 is treated in
[17] and [10]. The resulting conditions require knowledge of the moments of

exp, (z) = exp(A\g + A7 + Ag2?), A2 < 0or Ay =0and A\ <0.

While A, = 0 leads to the simple restriction p3/p3 < 6 if ps/p? = 2, the
case Ao < 0 is more complicated and involves error functions. If we restrict
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to the case pp = p1 = 1 (p1 = 1 can always be achieved by scaling z) the
exponential densities exp, with A € 0A depend only on a single parameter
s. If we plot the second and third moment depending on s, all points located
above this curve in the (ps, p3) plane correspond to moment vectors for which
the maximum entropy problem is not solvable (see Figure 1). For p; > 2 there
are no restrictions on the highest moment p3. The lower bound for ps is again
caused by the solvability condition for the moment problem. Using Schwartz
inequality we find immediately for any f € p(D)

p= [ aledfe)de < VavE
0

which amounts to p3 > p2 since p; has been scaled to one.

1 15 2 25 3
3

Figure 1: The maximum entropy problem is solvable if the scaled moment
constraint is located between the curves in the moment plane.

We remark that there are restrictions on the solvability for any N > 2 (see
for example [5]) in contrast to the result presented in [10, 9] which negates
restrictions for V > 4.

9.3 The Hamburger moment problem

The Hamburger moment problem has already been presented in the introduc-
tion. Here, 2 = R, the moment functions are monomials and N = 2n is
even. For N = 2, the boundary of A is empty because exp(Ag + A1) is never
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integrable on R. Hence, the maximum entropy solution always exists (Theo-
rem 6.1), giving rise to the well known Maxwellian distributions. In the case
N = 4, restrictions apply as described in [9, 11]. The boundary 9A consists
exactly of the Maxwellians

exp, (z) = exp(Ag + 1T + A?), s < 0.

In terms of the centered moments

fi(f) - = /R(x—u)"f(x) dz, _ m(f)

U:_Mo(f)’

the solvability conditions can easily be stated. If p € u(D) is given, we can
calculate the corresponding centered moments p. If p3 # 0 there can be no
A € OA such that p > p(exp,) because all Maxwellians satisfy fi3(exp,) = 0 so
that us(exp,) # p3. On the other hand, if 53 = 0 then the relation pgps/p3 < 3
is necessary for the existence of a maximum entropy solution. This is due to
the fact that for Maxwellians figjl4/22 = 3 holds. For N = 6, restrictions
are reported only for the symmetric case where all odd centered moments
vanish [9]. Otherwise, no restrictions are found. However, Theorem 8.4 shows
that also for the non symmetric case such conditions exist. Indeed, every
A= (Ao, .. .,)\4,0,0)T € A with A3 # 0 gives rise to a half line consisting of
non symmetric moments in p(D) for which the maximum entropy problem is
not solvable. Moreover, for any even N > 4 there are exceptional moment
vectors in contrast to the statement in [9, 11].

9.4 A multidimensional example

Recently, the work by Levermore [12] has raised interest in maximum entropy
solutions to moment problems on R®. In the Kinetic Theory of gases, it is well
known [3] that the atomic velocities v of a gas in thermodynamical equilib-
rium are distributed according to a special exponential density, the so called
Mazwellian

—_ P _|v —uf? v 3
(6) M(v) = 2T} p ( 5T ) : eR.

Here, p denotes the density of the gas, u its average velocity and T the tem-
perature. The time evolution of p, u,T is governed by Euler equations.

The crucial point in this context is, that (6) maximizes the physical entropy

H(f)= | finfdv
RS
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under the constraint that the velocity moments based on

ag(v) = 1, a1 (v) = vy, az(v) =vq, az(v) = vs, as(v) = %|v|2
are prescribed. (The corresponding moments are algebraic combinations of
p,u,T.) The basic idea in [12] is that for gases whose state is somewhat away
from equilibrium, one can still describe the velocity distribution of the atoms
with the help of a maximum entropy function. Only the number of moment
constraints is supposed to increase, in order to allow for more structure in the
distributions. The simplest model in three dimensions, which contains more
than quadratic moments, is characterized by the so called 14 moment system.
The additional moment functions are

v]z_a /Uga V12, U103, Va3,

as well as the cubic terms |v|?v;, i = 1,2,3 and the quartic a;3(v) = |v[*. The
time evolution of the velocity moments is given in the form of a symmetric
hyperbolic system of partial differential equations (the so called 14 moments
system) which is an extension of the Euler system.

Clearly, the assumptions of Section 2 are satisfied in this case. Moreover, the
intersection of A with its boundary is not empty since A;3 = 0 does not rule
out the integrability of exp, (all Maxwellians (6), for example, correspond
to points on A N A). Hence, Theorem 8.4 implies that there are moment
vectors for which the maximum entropy problem has no solution. For the
14 moments system, this means that the domain of definition (the set of all
possible moments u(E)) has a quite complicated structure. It is a convex set
where half lines originating in moment vectors corresponding to Maxwellian
distributions are excluded. In particular, the domain of definition of the 14
moments system is not convex in contrast to the Euler system. For the case of
one dimensional atomic velocities, the situation has been investigated in [7].

9.5 Extreme examples

Finally, we want to give some examples where A% # 0 so that the boundary
of A is different from { A € A : Ay = 0}. To obtain A} > 0, the domain Q2
obviously has to become very small at large z. Setting

Q:=J%, 2= [n,nﬂn (1+Lp<:")>], r>1

n
neN
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and a;(z) = x, we find

[ expla)da =30 = = ¢t

where ( is the Riemann Zeta function. Consequently, z — exp(z) € L' (Q) for
all » > 1. On the other hand, for » = 2 the decay of (2, is not strong enough
to give also integrability of the first moment. We get

(7) / zexp(z) de = % +R,

where > R, is finite. In particular, exp((1 + €)z) ¢ L'(Q2) for ¢ > 0 and
zexp((1 — €)r) = zexp(—ex) exp(z) € L1 (Q) so that A2 = 1. Since zexp(z) &
L' (Q), however, this example falls into the class A N AA = ().
If we choose r = 3, we have
[ rew@den [ aexpla)don
zexp(z)dr ~ — z*exp(z) dz ~ —.
p = p -

n n

Using similar arguments, we find again A? = 1 but now A = (0,1)" € AN dA.

In the last example we cover the case A4 < 0. Obviously, this is only possible
if the moment function ay increases very slowly. Choosing 2 = R and a;(z) =
In(1 + |z|) we obtain

/Qexp()\lal(:c))dwz/R(l—F\:c|))‘1 d

which is finite only if A\; < —1.

A Solvability criterion for the reduced moment
problem

The appendix is devoted to a characterization of those vectors p € RNT!

which can be moments of a function in D. First, we want to derive a necessary

condition so let us assume p = u(f) with f € D. Certainly, if there is a linear

combination (- a(x) of the moment functions which is almost everywhere non
positive on {2 we get

ﬁ-p:/ﬂﬁ-a(x)f(x)d:cgo.
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Since {ay, - - -, an} is pseudo—Haar, we know that vol({z € Q : f-a(z) =0}) =
0 provided 3 # 0. Consequently, if -a <0 a.e. on 2 and 3 # 0 we even get
B-a <0 a.e. on Since f € D we also have vol({z € Q : f(z) >0}) > 0so
that §-p < 0.

Lemma A.1  Let p € u(D). Then for all 0 # B € RN™' which satisfy
B-a<0 a.e on§Q the relation 3 - p < 0 holds.

Geometrically, u(D) forms a cone in RV ™! since D is a cone in ! (Q) and p is
a linear map. Lemma (A.1) then relates u(D) to polars of conic hulls

Cq:=ch ({a(a:) : :UEQ}), QcQ, vol(\Q)=0.
Indeed, the polar of Cg is just [18]

ng::{ﬁéRNH . B-n<0VneCy)}
={BeR : B-a(z) <OVz e}

and thus Lemma A.1 implies Cg C u(D)°. More precisely, we find
(8) u(D) C int(Cg)

as the following separation argument shows. Assuming p € p(D) and p ¢
int(Cg), we can find 0 # § € C% such that 3-p > 0. However, Lemma A.1
yields 8- p < 0 for all 3 € Cg which is a contradiction. The inverse inclusion
to (8) can be shown if we select a special Q. We define Q0 as the set of all
Lebesgue points of the moment functions a;, i.e. those z € (2 for which

1
I i(y) — ai(z)| dy = 0.
rl—r)I(l) VO](BT) /Br(a:) |a (y) 4 (33)‘ y

Since {ay, ...,an} are locally integrable, the non Lebesgue points form a set
of measure zero [19]. Picking some p € int(Cgq,) we can find N + 1 linearly
independent vectors 7y, ...,nn € int(Cq,) on a small sphere around p such
that p is in the interior of their convex hull, i.e.

N N
p:Zami, Zaizl, a; >0 1=0,...,N.
i=0 i=0

By definition of Cq, , each n; can be written as a positive combination of vectors

a(;)

M
i = Zﬂija(xj)v ﬁz’j >0, z; € Q.
j=0
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Thus

M N
p:Z%’a(xj)a 'szzaiﬁij>0, 7=0,..., M.
Jj=0 i=0

We remark that {a(z;) : 7 = 0,...,M } contains N + 1 linearly indepen-
dent vectors which are, without loss of generality, a(xy),...,a(zy) (otherwise
span{ a(z;) : j=0,...,M } could not contain 7y, ...,ny). By construction,
each z; is a Lebesgue point of a so that we can approximate a(z;) by integral
expressions

w) = [ a0 = e ®

where cl(B,(z;)) C Q. Using implicit function theorem it is easy to see that,
for r small enough, we can find positive parameters fy](.r) > 0 such that

(9) p= Zvy)a(’"’(w) = /Q a(y) (Z Wﬁr)f}r)(y)) dy € u(D)

so that with (8) the equality u(D) = int(Cq, ) holds. To construct the param-

eters 'yj(.r), we define the smooth mapping

M

q)(yacm"'aCM) :ZV]C]_/)

=0

Then ®(7, a(xy),-..,a(zy)) = 0 and the derivative with respect to vy, ..., vy
at this point has full rank

0((1)0 .. .(I)N)
det (—8(1/0 o)

) = det(a(zg) - -a(zn)) #0

since a(xy),...,a(zy) are linearly independent. Thus, if a(zy),...,a(xy) are
slightly varied (by going over to a()(x),...,a (xy)), a corresponding slight
change of 7y, . .. v can be found such that ® stays zero. The implicit function
theorem shows that the function 2 which relates changes in a(z;) to those in
7v; has the same smoothness as ® and is, in particular, continuous so that
positivity of +y; is preserved under small deviations. (9) now follows with

A= 55D (z0), ..., a" (zu)), 0<F<N, A =7, >N

We conclude our considerations with
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Theorem A.2 A vector p € RV*! is contained in u(D) if and only if for
all 0 # B € RN which satisfy 3-a < 0 a.e. on Q the relation 3-p < 0 holds.
Moreover, each p € pu(D) is the moment vector of a bounded f € D which is
compactly supported in ).

Proof: One direction of the statement is just Lemma A.1. For the converse
direction take p € R¥*! such that 8- p < 0 for all 0 # 8 € RV*! which satisfy
B-a <0 ae. on . Using the definition of the polar Cg this shows that
B-p <0 forall € Cy which implies p € int(Cq,) = u(D) again by a sep-
aration argument. Finally, from (9) we deduce that p € u(D) is the moment
vector of some bounded and compactly supported f € D. [
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