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Abstract

The present thesis describes the development and the evaluation of a design procedure
of inducer with arbitrary meridional and blade shape. This special type of pump im-
peller, which is usually mounted upstream of a main pump impeller, is employed in
many applications demanding the realization of low NPSH values. An inducer basically
increases suction performance by producing mostly a small pressure rise while allow-
ing for a greater degree of cavitation, that is the formation of vapor bubbles, at its
inlet than a conventional pump impeller. This is achieved by specially designed blade
channels promoting the collapse of the produced vapor bubbles.
The main focus of the present thesis is the description of the design method, which
enables the generation of the three-dimensional blade geometry. The method is based on
a parametric representation of the geometry considering the particular requirements for
inducers and the publicly available design practice. Within this approach the sequence
of design steps is adapted from the classical design process of mixed flow and radial
impellers. As a consequence leading and trailing edge blade angles are determined
based on simplifications and certain empirical assumptions for multiple blade sections
and are used to design the blade camber curves. Along the camber curves the blade
profile is generated following a thickness distribution that has to be prescribed. A special
feature of the newly developed method is that arbitrary shaped, asymmetric thickness
distributions can be realized.
Due to the detailed description of the design and calculation steps a fully comprehensible
procedure is outlined, which covers the development of inducer bladings from an initial
set of duty parameters to the final three-dimensional blade geometry. The components
involved in the design procedure are tested by designing two exemplary inducers and they
are assessed by comparison with numerical simulations. Functioning of these inducers
in the real application is finally demonstrated with water tests.
The main result of this dissertation is a design software for inducers allowing for the
design of three-dimensional, asymmetrically profiled bladings. The developed software
is free of commercial third-party libraries. As a consequence a program is available
that can be modified and extended as desired. As potential future development goals
inducers with splitter and tandem blades as well as an integrated design of inducer and
impeller are proposed.
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Kurzfassung

Die vorliegende Dissertation beschreibt die Entwicklung und Erprobung einer Ausle-
gungsprozedur für Inducer mit beliebiger Meridian- und Schaufelgeometrie. Dieser
spezielle Typ eines Pumpenlaufrades, der in der Regel stromauf des eigentlichen Laufrads
angeordnet ist und deshalb auch als Vorsatzläufer bezeichnet wird, kommt in vielen An-
wendungen zum Einsatz, in denen niedrige NPSH-Werte realisiert werden müssen. Ein
Inducer erhöht die Saugfähigkeit der Pumpeneinheit, indem er einen meist geringen
Vordruck generiert und dabei bedingt durch seine Formgebung ein wesentlich höheres
Ausmaß an Kavitation, d.h. das Entstehen von Dampfblasen, an seinem Eintritt to-
leriert als ein konventionelles Pumpenlaufrad. Dieser Effekt wird durch speziell gestal-
tete Schaufelkanäle erzeugt, die den Zerfall von entstehenden Dampfblasen begünstigen.
Kern der vorliegenden Arbeit ist daher die Beschreibung einer parametrischen Ausle-
gungsprozedur, die eine Generierung der dreidimensionalen Schaufelgeometrie ermöglicht.
Das Verfahren beruht auf einer parametrischen Abbildung der Geometrie unter Berück-
sichtigung der besonderen Anforderungen an Inducer und der bestehenden, öffentlich
zugängigen Auslegungspraxis. Die Abfolge der Auslegungsschritte und den entsprechen-
den Berechnungen ist dabei der klassischen Auslegung von Diagonal- und Radialrädern
nachempfunden. Das bedeutet insbesondere, dass die Ein- und Austrittswinkel auf
verschiedenen Schaufelschnitten basierend auf vereinfachten und zum Teil empirischen
Annahmen bestimmt und zur Gestaltung der Schaufelskelettlinien verwendet werden.
Entlang dieser Skelettlinien wird das Schaufelprofil gemäß einer zu definierenden Dick-
enverteilung erzeugt. Eine Besonderheit der neu entwickelten Methode besteht dabei
darin, dass beliebig geformte, asymmetrische Dickenverteilungen realisiert werden kön-
nen. Durch die detaillierte Darstellung der einzelnen Auslegungs- und Berechnungs-
schritte wird ein vollständig nachvollziehbares Vorgehen dargelegt, welches die Entste-
hung der Inducerbeschauflung, ausgehend von vorgegebenen Betriebsdaten bis hin zur
dreidimensionalen Schaufelgeometrie abdeckt. Die einzelnen Komponenten der Ausle-
gungsprozedur werden anhand der Auslegung zweier Beispielinducer erprobt und durch
den Vergleich mit Strömungssimulationen bewertet. Die Funktionsfähigkeit dieser In-
ducer in der realen Anwendung wird schließlich im Wasserversuch demonstriert.
Ergebnis dieser Dissertation ist eine Auslegungssoftware für Inducer, die das Erzeu-
gen einer dreidimensionalen, assymetrisch profilierten Beschaufelung ermöglicht. Das
Programm ist frei von kommerziellen Bibliotheken von Fremdanbietern, sodass es in
Zukunft beliebig modifiziert und erweitert werden kann. Als mögliche Weiterentwick-
lungsziele werden insbesondere Inducer mit Splitter- und Tandembeschaufelungen sowie
die integrierte Auslegung von Inducer und Laufrad angesehen.
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1 Introduction

1.1 Problem Statement

Transporting and pressurizing some sort of fluid is an integral part of various appli-
cations ranging from processes in the chemical industry or in power plants and water
distribution systems to cooling and fuel supply systems. When fluids can be consid-
ered as incompressible and a continuous fluid flow is required this process is very likely
performed by centrifugal pumps.
The rotating motion of the impeller blades of centrifugal pumps inevitably causes a
local pressure drop at the inlet portion of the blade channels. High rotational speeds,
low inlet pressures or fluids that are stored and fed to the pump at a state close to the
saturation pressure increase the risk of cavitation in this region. Cavitation, that is the
transition of the fluid from the liquid to the vapor phase and the subsequent collapse of
the vapor regions, is feared due to its potentially disastrous effect on pump performance
and the damage it can cause to the pump impeller and other pump components.
Out of the application-specific need to operate pumps even under circumstances where
cavitation can’t be avoided the so-called inducer has been developed. The inducer
basically is an auxiliary impeller, which is able to produce a comparatively small pressure
rise even under heavily cavitating conditions at its inlet. Mounted upstream of the
regular pump the inducer is used to generate the pressure required for cavitation free inlet
flow to the subsequent impeller. This effectively reduces the risk of cavitation breakdown
of the whole pump and allows for operation way beyond the suction capabilities of
standard pumps.
Successful usage of inducers are reported from all sort of pump applications but the
one that is most popular and may have contributed most to the development of this
type of impeller is the liquid rocket engine. The concurrent desire to reduce the engine
weight and increase its performance lead to the development of turbopumps, which
operate at very high rotational speeds to generate the fuel pressure required for injection.
Combining this with low inlet pressures required to minimize fuel tank weight, these
pumps have to provide the highest suction performance known in the field.
The use of inducers in this sort of high performance machine but also in a broad range of
other applications produced well known design guide lines. These are mainly based on
empirical knowledge, which was obtained over years of design and test experience. With
the increasing availability of computing resources steadily improving numerical methods
emerge enabling researchers to investigate the features of new designs in more detail.
Modern 3D-CFD methods also help to understand the complex internal flow patterns

1



1 Introduction

specific to inducers. Of course this resulted in improvement of design techniques. But,
in spite of these improvements, there still is no definite publicly available standard for
inducer design and some parameters are still chosen based on expert knowledge treasured
by the industry and not available to independent researchers.
Even if performance data and some basic dimensions of tested inducers are regularly
provided, geometric details and the reasoning behind them is only rarely published. This
is especially true for geometric features like angle and thickness distributions, which are
among the most important parameters used by the designers to tweak the performance.
Furthermore commercial turbomachinery design software often hides the internal geo-
metrical processes from the user and only offers a limited selection of parameters to
determine the final blade shape. While this certainly helps in reducing time and effort
needed to obtain reasonable designs, understanding of the influence of certain parame-
ters might be complicated.
For these reasons this thesis aims to provide a fully comprehensible design procedure
enabling the future designer to investigate the influence of important geometric features
in a parametrical, systematic and very detailed way. Thus, it can be seen as a first step
to a better understanding of inducer design and performance.

1.2 Scope of this Work

This thesis wants to provide a description of a parametric inducer design procedure,
which is implemented in computer code. It enables the design engineer to create inducer
blades by specification of a parameter set. The choice of parameters is particularly
focused on the characteristic features of inducers but can be easily adapted for general
turbomachinery design. Whenever possible the parameters are adopted from publicly
available and accepted design practice. A most flexible procedure is realized by using
B-spline curves for the meridional section design as well as for the blade shape design.
Special emphasis is placed on the possibility to create asymmetric and sharpened blade
profiles, which are typical for inducers with high suction performance. An interface to
modern CAD and CFD tools is provided to enable a smooth transition to manufacturing
and numerical simulation.
This approach shall open the door to future studies of the influence of single or multiple
parameters on the performance characteristics of inducer-pumps. Throughout the in-
ducer design procedure analytical equations are preferred over empirical relations wher-
ever possible in order to facilitate systematic parameter variations.
Besides the geometrical design features a simplified two-dimensional meridional flow
computation is integrated in the design process to provide the blade design with a
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1 Introduction

simple but physical foundation by using the streamlines extracted from the flow solution.
Furthermore a basic non-cavitating head prediction method that operates in the two-
dimensional cascade planes is provided. These simple methods can be used by the
designer to obtain a direct feedback on the influence of the parameter changes on the
head produced by the inducer. Both methods, the meridional flow analysis and the
head prediction procedure, are verified and validated and their features as well as their
limitations are discussed. However, the geometrical design procedure does not rely in
any way on these analysis methods such that more advanced methods can be added to
the procedure in future projects easily.
The application of the design procedure is demonstrated and assessed by experimental
validation of a real inducer-pump setup. An existing test bench is modified to allow for
investigation of the influence of the inducer on the pump. In this test setup not only on
the head and efficiency characteristics but also the suction performance is investigated.
By utilizing a special casing design the inducer head is estimated during operation of
the whole pump unit. This will on the one hand show the potential of the prototypes
developed in this thesis and the other hand it will deliver indications pointing to possible
extensions and further developments of the design program.
Eventually, an equally important goal of this thesis is to offer a complete and compre-
hensible description of the steps needed to obtain a three-dimensional blade geometry.
It can therefore serve as a guide to students and researchers concerned with the design
of inducers or any other related device. The code developed is non-commercial and only
uses publicly available packages, so that it can be edited and extended as needed.

1.3 Outline

Chapter 2 deals with the theoretical fundamentals of this thesis. After a summary of
the historical background of inducer development, a classification of this special type of
impeller and an overview of the necessary design steps is provided. The fundamentals
of turbomachinery design are summarized and the mathematical notation used in this
thesis is explained. Since the design methods rely heavily on the usage of B-splines a
brief discussion of geometrical design is provided. Furthermore, a detailed description of
the meridional analysis and the head prediction method developed in the course of this
thesis is given. At the end of this chapter the relevant equations involved in performing
the CFD simulations presented in this thesis are summarized. In Chapter 3 the devel-
oped procedure is presented and the implementation of the design steps is explained
in detail. The description essentially follows the sequence of design steps. Verification
and validation of the components of the design system is presented in Chapter 4. After

3



1 Introduction

introducing the test cases the methods for the meridional flow analysis and the head
estimation are verified and validated by comparison with different types of numerical
simulations. The prototypes manufactured on the basis of the test case geometries are
eventually tested in a real pump unit in order to demonstrate that inducers generated
with the design procedure work as expected. Some concluding remarks and an outlook
to future research is given in Chapter 5.
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2 Theoretical Fundamentals and Methods

2.1 The Inducer

2.1.1 Purpose and Applications

The inducer is a special type of axial pump impeller, which is especially designed to
improve suction performance of a centrifugal pump. In the pioneering work of Ross and
Banerian [63] these devices are also denoted by “cavitating inducers” in order to point
out that these impellers are intended to operate with “considerable cavitation”. The need
to operate pumps in a state that is normally avoided due to the increased risks of damage
and performance breakdown primarily originated from rocket engine development. The
simple reason for this is that pumps with improved suction performance can be operated
at higher rotational speeds, which in turn allows for a reduction of pump weight. As it
turned out, higher rotational speeds could also prove advantageous in other commercial
applications where reduction in weight could lead to cheaper pump units and high-speed
drives could be employed [63]. Furthermore, applications requiring increased suction
performance are those, that are utilized to transport fluids at temperatures close to
their saturation pressure as it is the case for boiler feed pumps of e.g. thermal power
stations or in processes handling hydrocarbons or cryogenic fluids. Other commercial
applications making use of inducers are fuel feed systems and water jet propulsion [46].

2.1.2 Historical Background and State of the Art of Inducer Design

Inducers have been developed in the last century due to the increasing demand for pumps
that have high suction capabilities. This was a direct result of increasing pump speed and
the use of fluids that need to be handled close to their saturation pressure. As already
mentioned, the most popular application where both of these requirements have to be
met are liquid rocket engines. In this type of engine pumps that are driven by turbines,
so-called turbopumps, are used to pressurize cryogenic fuels. Obviously high rotational
speeds and low tank pressures are helpful in this kind of application in order to increase
the power-to-weight ratio, which is one of the key development goals in turbopump and
the whole rocket engine development [53]. Driven by research interest of the aerospace
industry but also by other industries a vast amount of publications focusing on inducers
appeared in the past and still new results are published on a regular basis. Because
of this only a brief overview of the work done in the past is presented and only those
findings are explicitly referenced that are most relevant for the present work.
The research in this field can be roughly categorized into the following groups:
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1. Influence of design details on non-cavitating and cavitating performance

2. Analysis of flow phenomena and related effects

3. Prediction of non-cavitating and cavitating performance

4. Establishing of design rules

Since most publications cover aspects of more than one of the above groups a strict
assignment of a single reference to one of the categories is hardly possible. As a matter
of fact, in most of the publications belonging (more or less) to the first group some
existing inducer designs are investigated and the influence of distinct geometrical features
on the performance is analyzed. For this purpose different theoretical, numerical and
experimental methods are used and the results are interpreted. Consequently, aspects
of the second, third and even the fourth group may be included as well.
Research topics belonging to the second group can be categorized further into inves-
tigations of non-cavitating and cavitating flow phenomena. While the non-cavitating
phenomena include effects like inlet recirculation (backflow), tip clearance flow and sec-
ondary flow effects, the former deals with phenomena like rotating cavitation, cavitation
instabilities, thermal effects on cavitation and the influence of cavitation on rotordynam-
ics. Since these topics are of minor interest in the context of the current work, they are
not mentioned explicitly in the remainder of this section but discussion of these phe-
nomena can be found in the well-known review papers also discussed below (see e.g.
Acosta [2], Janigro and Ferrini [37], Lakshminarayana [46]).
Methods described in research results of the third category can also be divided into
non-cavitating and cavitating performance prediction methods. The methods can range
from simple empirical relations to complex three-dimensional computational methods
[46]. As already mentioned above only some of the most relevant methods are addressed
and discussed briefly below.
Clearly, the references belonging to the fourth group are the most valuable in the context
of the present work. They summarize past design experience and formulate the state of
the art of inducer design. Appearing in form of review papers or monographs, the knowl-
edge summarized in these works is used as the basis for the geometry parametrization
applied in the design procedure developed in the course of this thesis.
Theoretical aspects about inducers were (publicly) discussed for the first time in the
already cited work of Ross and Banerian [63] but not much details about the actual
design are provided. Experimental investigations and some theoretical considerations
were presented by Carpenter [19], who investigated three-bladed helical inducers with
different solidity ranging from 2.5 to 3.25. It was noted by the author of this work that
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the upper limit of practical solidity might be well below the values under investigation.
Acosta [1] investigated two-, three-, and four bladed inducers in the same range of
solidity and analyzed the influence of tip clearance on cavitating and non-cavitating
performance. It was found that similar to non-cavitating performance an increase in tip
clearance reduces suction performance. In addition to this a visual study of different
cavitation phenomena was conducted.
Parallel to the aforementioned investigations theoretical and numerical methods describ-
ing the flow through inducers and estimating their performance evolved. The work of
Stripling and Acosta [66] and Stripling [65] for example, focused on the leading edge
design and presents a theoretical method to estimate the cavity shape and extend. A
method to predict the non-cavitating and cavitating (suction) performance was proposed
by Cooper [23]. The authors developed an approximate, three-dimensional approach to
compute the single and two-phase flow through inducers.
Many technical reports dealing with the design not only of the inducers of turbopumps
but of the whole rocket engine were produced by researchers at NASA at that time and
are publicly available today directly from NASA archive servers. Regarding the design
of the inducers the monograph by Jakobsen [36] is the most valuable one, because it
contains the state-of-the-art design guidelines of that time and considers all the relevant
details of the inducer design that are still applied today.
Besides giving a good overview of the topic and the reasoning of why inducers are useful
devices, the work of Janigro and Ferrini [37] also provides some valuable thoughts about
the design practice of inducers. Furthermore, the off-design behavior of the inducer is
discussed in the case of non-cavitating and cavitating flow and the influence of solid-
ity, tip-clearance, leading edge thickness and sweepback on cavitating performance at
design flow rate are investigated. Of special interest to the designer are the tendencies
mentioned about the beneficial impact of the leading edge backward sweep on cavitation
instabilities, which occur mostly at off-design operation. Valuable are also the attempts
to explain rotating cavitation and unstable cavitation, which are phenomena covered by
the second group of publications.
The three-dimensional flow field of non-cavitating rocket pump inducers was studied
extensively by Lakshminarayana [45] and Lakshminarayana and Gorton [48]. Perhaps
the most well-known survey of the major findings in this field at that time, consider-
ing mainly non-cavitating performance of inducers, is given by Lakshminarayana [46].
The work mainly focuses on internal flow structures and the most relevant theoretical
methods, which have been developed so far and have been used for the analysis of the
complicated flow in inducers.
Extensive information with a focus on preliminary design considerations not only for
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inducers but also for the different types of turbomachinery used in turbopump devel-
opment is given by Wisclicenus [71]. Although inducer design only is addressed in one
of the chapters useful hints especially for choosing the basic dimensions of the inducer-
impeller combination are provided.
A method to estimate the NPSH of inducers, was published by Furst and Desclaux [30].
It is based on the assumption of two-dimensional sheet cavitation and is not easy to
apply due to a complicated empirical relation [38].
One of the most concise description of the inducer, its applications and its flow phenom-
ena is given in the more recent review paper by Acosta [2]. Besides summarizing the
most important features and design parameters of inducers, some more practical impli-
cations of inducer applications are discussed. Especially the influence of the inducer on
system dynamics is described.
Bakir et al. [12] proposed a design procedure including performance estimation for axial
inducers, relying to some extent on the design guidelines of [36]. However, not all design
steps are documented and the details of performance estimation are not included in full
detail in the paper.
In the latest review paper published by Japikse [38] a historical overview of established
design practice is given and a survey of the corresponding literature is provided. How-
ever, the author states that generalization of the results extracted from these sources
might be difficult. According to the author CFD simulations are mandatory in the
inducer design process and should be applied to obtain improved designs.
In fact, with the increasing availability of computing power the number of studies using
three-dimensional, viscous CFD simulations also increased. Examples can be found in
references [14, 22, 24, 41] and many others.
Interestingly the comparatively old-fashioned topic of performance prediction by simple
analytical and semi-empirical methods that produce results a lot faster than any CFD
code available today was rediscovered recently. Although it was already concluded by
Lakshminarayana [46] that inviscid methods for performance prediction don’t really
help in understanding the real flow phenomena and fundamentally depend upon the
empirical models, they still can prove useful in preliminary design iterations. In what
follows two examples of such methods are described. In the first approach published
by Bramanti et al. [16] and by d’Agostino et al. [25] the single-phase flow through an
inducer is modeled as incompressible, inviscid and irrotational. The basic idea of the
method is the superposition of an axisymmetric meridional flow with a two-dimensional
slip velocity correction. This correction is applied on axial cross sections where the axial
velocity is assumed to be constant along the radial coordinate. Because fully guided
flow is assumed in the method, a model equation is used to account for flow deviation at
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the inducer trailing edge. Losses that are caused by incidence and friction are included
by using a combined loss function. This loss function depends on different coefficients
that are functions of inlet flow and inducer geometry. Unfortunately, these functions
are not published together with the validation data, which attests very good agreement
between the predicted and the test results.
In the second approach, Li [51] proposed a method consisting of a singularity method
in combination with a loss model and demonstrated its application to axial-flow induc-
ers. Under the assumption of steady, axisymmetric, inviscid and incompressible flow
and uniform inlet velocity the coaxial streamlines are computed by basic application
of the continuity equation. Using published experimental data of 17 different inducers
a correction factor to the model given in Kita et al. [42] was derived. All the induc-
ers investigated are designed with a cylindrical meridional section and only two of the
investigated inducers have blades with variable lead. Furthermore some assumptions
have to be made in the cases where thickness and tip clearance values have not been
reported. Despite its simplicity the results produced by the method show very good
agreement with experimental data. However, the original approach discussed in Li [51]
is limited to axial-flow inducers and the way the meridional flow is estimated cannot
directly be transferred to inducers with different hub and / or shroud shapes. This is
why in the present work an attempt is presented to extend the method to arbitrary
shaped inducers.
To conclude this section it shall be remarked that advices and guidelines regarding
the design of inducers can also be found in the textbooks by Brennen [17], Japikse
et al. [39] and Gülich [31]. In principal, they reflect the knowledge extracted from the
sources mentioned above (and others) but also include design experience of the authors.
However, this brief review of literature contributing to the topic of the inducers is by no
means complete. Almost certainly substantially broader knowledge is available in pump
and rocket propulsion companies that are developing inducers for commercial reasons.

2.1.3 Classification

Inducers are commonly divided into the group of low-head and high-head inducers.
According to Jakobsen [36] inducers with head coefficients of ψ ≤ 0.15 belong to the
first group and inducers with a head coefficient of ψ > 0.15 to the latter. Note that
head coefficient in this case was defined as ψ = gH/u2, where H is total head and u the
circumferential velocity at the inducer’s inlet diameter. Wisclicenus [71] instead uses
the hub to shroud diameter ratio defined as d2h/d2s at the outlet location to classify
inducers claiming that this parameter is directly related to the head rise capability.
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(a) Low-head, cylindrical hub and shroud (b) Low-head, tapered hub and shroud

(c) High-head, tapered hub, cylindrical shroud (d) High-head, tapered hub and shroud

Figure 2.1: Geometrical classification of inducers

Inducers with hub diameter ratios of less than 0.5 are considered low-head inducers and
inducers with higher hub diameter ratios high-head inducers. Additionally, inducers can
be classified with respect to their meridional shape [36]. Figure 2.1a shows a classical
low-head inducer with cylindrical hub and shroud. In this example the hub to shroud
diameter ratio defined as discussed above amounts to d2h/d2s = 0.25. Alternatively
the hub and shroud sections can be designed in a tapered way as depicted in Figure
2.1b. Despite the increase of hub diameter ratio, which in this case amounts to 0.45,
the maximum possible head rise at the hub is not affected drastically such that the
inducer can still be assigned to the group of low-head inducers. Tapering of the shroud
section on the other hand can be used to match the inducer to the downstream impeller
inlet. Of course this measure also affects the head which can be provided by the inducer
and additionally tends to complicate the inducer flow by guiding the flow in the inward
direction [37, 71]. If the hub diameter ratio at the discharge location is further increased
the transition to the high-head inducer takes place. Figures 2.1c and 2.1d depict high-
head inducers with cylindrical and tapered shroud. The discharge hub diameter ratios of
these examples amount to 0.64 and 0.7 respectively. It should be noted however that a
higher discharge hub diameter ratio not automatically leads to an increased head of the
inducer because the final blade design has crucial influence on the head generation on
each blade section. The discharge hub diameter ratio can rather be seen as a parameter
to match the inducer to the geometrical dimensions and the head rise requirements of
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the downstream impeller.
Independent of the meridional shape inducers can be categorized into shrouded and
unshrouded types. Although shrouded and even hubless inducers are documented [36]
their application is less common and the unshrouded version is most prevalent.
Inducers can be further differentiated according to the type of blading which is employed.
Early designs mainly used helical blades with constant blade angle and thickness. These
types are also called flat plate helical inducers, which are reminiscent of screws. Im-
provement of suction capability could be obtained by manually sharpening the blade
leading edges or by machining swept back blades. More recent or advanced designs em-
ploy helical blades of variable lead or even three-dimensionally and inversely designed
blades [9, 10, 70]. High-head inducers can also be considered to be composed of different
blade types [36] and can make use of splitter or tandem blades [2, 46].

2.1.4 Characteristics

The non-cavitating performance characteristics of inducers correspond very well to the
characteristics generally observed for axial machines. The head increases almost lin-
early with decreasing flow coefficient, while a quite distinct peak of maximum efficiency
is obtained. Opposed to radial machines the power consumption rises steadily when
advancing into part load, that is towards lower flow coefficients. One special feature,
which will be discussed in detail in Section 3.5.5, is that inducers are normally designed
for flow coefficients above the nominal value of the whole pump. Consequently most of
the time inducers operate with positive incidence angles.
Considering operation under cavitating condition, which is the real purpose of induc-
ers, as explained above, some very distinct characteristics have been discovered very
early in the development of these devices. In Figure 2.2, which is adapted from Janigro
and Ferrini [37], the different modes of operation are depicted for a typical swept back
inducer. The dashed line shows suction performance curves for an industrial inducer
application. A safety margin is applied in order to ensure that damage, head breakdown
and unstable operation are avoided. Nevertheless, this exemplary diagram makes clear
that tip vortex cavitation and vane tip cavitation already occur at normal operation
and moderate values of NPSH. This is even true for design conditions because typically
inducers are designed to operate with significant values of incidence, as already men-
tioned above. In Figure 2.2 this region is found left from the zero incidence line. A very
important conclusion drawn by Janigro and Ferrini [37] is that the backward sweep of
the leading edge effectively reduces the region of unstable cavitation and moves it away
from typical operation limits.
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Figure 2.2: Typical modes of cavitation of an industrial, swept back inducer (adapted
from Janigro and Ferrini [37])

The internal flow structure of inducers have been declared as one of the most complex in
the field of turbomachinery by Lakshminarayana [47]. Despite the broad availability of
CFD and the advancements in measurement equipment and techniques it is still not fully
understood, which geometrical parameters have influence on the specific flow patterns
and cavitation instabilities observed in inducers.

2.2 Turbomachinery Basics

2.2.1 Description of Turbomachinery Geometry

Traditionally, the impeller design starts with the definition of the meridional section as
illustrated exemplarily in Figure 2.3a. The meridional section consists of curves repre-
senting the contours of hub and shroud as well as projections of the leading and trailing
edge. When designing the hub and shroud curves the basic dimensions of the impeller
have to be considered in order to ensure the compliance with design requirements. These
basic dimensions, which for example determine the inlet and outlet diameters and the
axial length of an impeller, are either chosen based on experience or calculated based
on theoretical reasoning. Once the dimensioning is accomplished, the designer has great
freedom in drawing the hub and shroud curves. However, a smooth transition from the
inlet to the outlet location is usually desired. To provide the designer with a simple but
flexible way to specify these lines parametric B-splines are used to describe these curves.
This is explained in detail in Chapter 2.3.
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(a) Meridional section (b) Cascade View

Figure 2.3: Description of geometry and coordinate conventions

After the hub and shroud curves are defined the leading edge (le) and trailing edge (te)
of the blade can be designed (Figure 2.3a). These curves are also defined by means of
B-splines to give the designer full control of the curve shape. In the next step streamlines
are constructed between the hub and shroud curves ranging from leading to trailing edge
of the impeller, as indicated in Figure 2.3a. These streamlines, including the segments
of the hub and shroud curves, are used to generate surfaces of rotation, also called
streamsurfaces, on which the sections of the blade geometry are defined. The number of
streamlines is a design parameter and has impact on the spanwise blade shape. These
streamlines can in principle be drawn arbitrarily but a choice based on some physical
reasoning can be expected to approximate the path of the fluid flow more appropriately.
As a consequence, it can be assumed that these streamlines are well suited to be used
as foundation of the blade shape design.
The initial step of the blade design consists of developing the cascade plane for each of the
streamlines (Figure 2.3b). Ideally, a method is used that allows an angle conserving map-
ping of this two-dimensional cascade (or blade-to-blade) plane to the three-dimensional
and arbitrarily shaped surfaces of revolution. Supposing that this condition is fulfilled,
the cascade plane can be used to construct the two-dimensional camber curves or theta
curves θ(m′) representing the distribution of the real and undistorted local blade angle
βb(m′). By transferring these curves back to the streamsurface, the three-dimensional
camber curves are obtained as indicated in Figure 2.4a. Contrary to the traditional
definition used in axial machine design (see e.g. Dixon and Hall [27]), in this work the
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(a) Streamsurface coordinates (b) Blade profile in streamsurface

Figure 2.4: Streamsurface and blade profile geometry

camber curve is not considered to be identical to the mean camber line lying equidis-
tantly between the suction and pressure side of the blade profile in the streamsurface
(see Figure 2.4b). The reason for this choice is that the design of asymmetrical profiles,
which are a typical feature of inducer blades, is substantially facilitated. Figure 2.5
exemplarily shows a distribution of thickness value t over length coordinate l. It gets
clear that by the aforementioned interpretation of the camber curve it only requires the
definition of two different thickness distributions, one for the suction (tss(l)) and one for
the pressure side (tps(l)) of the blade section under consideration. The thickness values

Figure 2.5: Thickness distribution
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of the pressure side are deliberately chosen to be negative, mainly in order to facilitate
illustration in the remainder of this thesis. Since any other definition of signs would
also be conceivable, the total thickness t(l) is calculated by adding the absolute values
of both thickness distributions:

t(l) = |tss(l)|+ |tps(l)| (2.1)

To generate an asymmetric blade profile, the thickness values prescribed by the thickness
distributions just have to be applied to the opposite sides of the camber curve. Thus,
the suction and pressure side curves of the blade profile (or the blade section) lying on
the streamsurface are produced (Figure 2.4b). Some attention has to be paid to the way
this step is performed as there are different conceptions of how the thickness distribution
is used to obtain the blade profile [54]. This mainly concerns the choice of the direction
in which the thickness distribution is added to the camber curve and the definition of
the length coordinate. Since inducer blades are usually very thin relative to their length
and since the final profile shape can, from experience, be considered crucial for suction
performance [38], an adequate method has to be selected for this step. The technique
applied in the present work will be discussed in detail in Section 3.5.9.
An example for a three-dimensional blade profile constructed on the streamsurface gen-
erated by the corresponding streamline is depicted in Figure 2.6a. By lofting the blade
sections on all the streamlines used for the design the blade surface is finally obtained

(a) Blade section constructed on streamsurface (b) Final blade geometry

Figure 2.6: Three dimensional design of exemplary mixed flow impeller
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[54]. This step can be understood as a kind of stacking or sweeping of the three-
dimensional blade sections that are lying on the streamsurfaces as depicted in Figure
2.6b.

2.2.2 Coordinate System and Velocity Notation

Throughout this thesis an cartesian x, y, z - coordinate system is used as the absolute
reference coordinate system. The x, y, z - coordinate system by default is oriented right-
handed with the z-axis definining the axis of rotation of the machine. At any axial
position z the radial coordinate r is computed by:

r =
√
x2 + y2 (2.2)

As already explained in the preceding section, the meridional view is obtained by cir-
cumferential projection of the edges of the blades and the hub and shroud contours into
the x, z - plane. In this thesis the meridional section is drawn in z, r coordinates, as
shown in Figure 2.3a for a generic mixed-flow impeller. In-between the hub and shroud
curves any desired number of streamlines may be used to define arbitrarily shaped sur-
faces of revolution, so called streamsurfaces, which are used for the blade design. Figure
2.4a shows an exemplary streamsurface of a generic mixed-flow impeller. Along each of
the streamlines the meridional coordinate m is defined as

m(u) = m(z(u), r(u)) =
u∫

u1

√
(dz/du)2 + (dr/du)2 du, (2.3)

where u is the curve parameter along the curve describing the streamline. It is convenient
to choose the curve parameter to range from 0 to 1, such that for u1 = 0 the leading
edge and for u2 = 1 the trailing edge location is obtained. A more in-depth discussion
of parametric curves is given in Section 2.3.
The circumferential coordinate rθ increases in the direction of positive angular coordi-
nate θ as defined by the right hand rule. Accordingly, rotation direction is considered to
be right, if it is in direction of positive circumferential or θ coordinate. In this case, the
value of angular velocity ω is assumed to be positive as well. With the angular velocity
ω the circumferential velocity u at any radial position r is computed as:

u = ω r = 2πn r (2.4)

Although the same symbol is used for the circumferential velocity and the curve param-
eter introduced above, it should be clear from the context and the physical units which
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(a) General velocity triangle (b) Swirl free conditions

Figure 2.7: Velocity triangles

quantity it refers to.
The magnitude of absolute flow velocity is calculated from its components along the
coordinate directions as follows:

c =
√
c2
z + c2

r + c2
θ (2.5)

Neglecting the circumferential component yields the meridional velocity:

cm =
√
c2
z + c2

r (2.6)

Viewed from the absolute frame of reference, which is stationary in the absolute coor-
dinate system, the flow-field that would be observed inside of the turbomachine would
be inherently unsteady. A fundamental approach in turbomachinery analysis there-
fore is the concept of relative flow velocity [27]. The relative flow velocity is considered
steady and is observable in a frame of reference that is stationary relative to the rotating
component.
On the streamsurfaces the circumferentially averaged flow conditions are described by
velocity triangles as depicted in Figure 2.7. Formally, the absolute velocity vector c
is obtained by vector addition of circumferential velocity u and relative velocity w,
i.e. c = u + w. Strict application of vector addition implies opposite signs of the
circumferential components of absolute and relative velocities, as can be seen from Figure
2.7a. If the circumferential components were both considered positive in the direction
of u, this would lead to a negative velocity component wθ and also to a negative flow
angle β. To avoid negative angles for the general velocity triangle of Figure 2.7a, which is
common for pump applications, a different sign convention is employed when performing
componentwise calculations. The circumferential component of absolute flow velocity
cθ is considered positive in the direction of u, whereas the circumferential velocity of
relative flow velocity wθ is defined positive against the direction of u. This leads to the
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following relations between the components of absolute and relative flow velocity:

wm = cm (2.7)

wθ = u− cθ (2.8)

Of course the sign of the circumferential component would have to be corrected accord-
ingly if the actual vector orientation of the relative flow velocity was required.
By convention the flow angle is measured against circumferential velocity (Figure 2.7a).
According to the convention introduced above relative flow and absolute flow angles are
obtained as follows:

β = arctan wm
wθ

= arctan cm
u− cθ

(2.9)

α = arctan cm
cθ

(2.10)

The velocity triangle depicted in Figure 2.7b, where the absolute flow has no circumfer-
ential component (cθ = 0), represents the so-called swirl free condition, which is often
assumed in case of axial inflow ducts. To describe the swirl condition at the inlet the
swirl number can be used:

δr = 1− cθ
u

(2.11)

For δr = 1 the swirl free inlet condition is obtained, for δr < 1 the swirl is considered
positive and for δr > 1 negative.
When designing the blade angles the effect of blade blockage can be incorporated in
the velocity triangle concept as already indicated in Figures 2.7a and 2.7b by dashed
arrow lines. Typically, it is assumed that only the meridional component is influenced
by the blade blockage while the circumferential component is not influenced. Thus,
blade blockage is introduced by means of the blockage factor b, which is used to correct
the meridional component as follows:

c′m = b cm (2.12)

The blockage factor is computed by relating the pitch of the impeller (2πr/Z) to the
pitch reduced by the tangential projection of the blade thickness (t/ sin βb):

b = 2πr/Z
2πr/Z − t/ sin βb

=
(

1− t Z

2π r sin βb

)−1

(2.13)
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As a consequence, the corrected flow angles are obtained by:

β′ = arctan w
′
m

wθ
= arctan b cm

u− cθ
(2.14)

α′ = arctan c
′
m

cθ
= arctan b cm

cθ
(2.15)

Because the blade blockage factor b itself is dependent upon the blade angle, which is
in general not known a priori, an iterative procedure is necessary to perform the blade
blockage correction. Alternatively, some reasonable estimate can be used to avoid the
iterative computation process. In the design procedure developed during the work on
this thesis the iterative blade blockage factor correction is included in the blade angle
computation.
For the most simple configuration of an axial machine with cylindrical hub and shroud
contours, the initial design of the blade profiles could be performed on a chosen number
of coaxial sections (at constant radii) between hub and shroud based on the assumption
that the streamlines are also of constant radius. Development of the sections into con-
formal cascade views with an infinite number of blades can then be obtained by using z
as the axial and rθ as the circumferential coordinate.
For mixed-flow and radial machines this approach cannot be adopted directly because
naturally the radius along the streamlines is varying. However, it can be shown that a
conformal transformation exists that can be used to obtain an equivalent representation
of the mixed flow cascade [49]. To accomplish the coordinate transformation, the radius-
normalized meridional coordinate m′ is introduced as follows:

m′(u) =
u∫

u1

dm
r(u) (2.16)

By using the angular coordinate θ as the second coordinate the theta curve (or camber
curve) can be designed in the m′ − θ system. While the transformation conserves the
blade angle, the length and thickness is not represented without distortion in the trans-
formed view. Consequently, the desired blade profile cannot be designed in this cascade
view alone. To circumvent this problem, Miller [54] presents a different approach of
blade profile construction. The method actually chosen and implemented in the design
procedure described in this thesis is explained in Section 3.5.9.
Figure 2.3b depicts an exemplary version of a transformed cascade. The blade theta
curve θ(m′) is depicted as a solid black line. Although the theta curve, strictly speaking,
is only equal to the camber curve in case of a symmetrical thickness distribution, they
are treated as being identical in this thesis. In analogy to the blade angle distribution the
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theta curve can also be considered as the wrap angle distribution. The general relation
between blade angle, wrap angle and the radius-normalized meridional coordinate in the
angle conserving cascade plane can generally be stated as:

tan βb = dm′
dθ (2.17)

Analogously to the definitions for axial machines the pitch or spacing s′ of the conformal
cascade in the m′ − θ plane is given by

s′ = 2π
Z

(2.18)

and the chord c′ is the straight connection of leading and trailing edge:

c′ =
√

(m′2 −m′1)2 + (θ2 − θ1)2 (2.19)

Consequently, solidity (or chord to pitch ratio) of the conformal cascade can be expressed
as:

σ′ = c′

s′
(2.20)

The camber angle, denoted by ∆βb in Figure 2.3b, is defined as the difference between
the blade angle at the trailing edge and the leading edge:

∆βb = β2b − β1b (2.21)

This angle is one of the parameters that have huge influence on the energy transmission
of the blades discussed in the following section.

2.2.3 Basic Equations

The energy transmission realized by any type of centrifugal pump is described by Euler’s
pump equation, which is a direct consequence of the conservation of angular momentum.
It relates the specific work transferred to the fluid to the average absolute flow velocities
at the impeller entry and exit locations:

yth = g Hth = ω (r2 cθ2 − r1 cθ1) (2.22)

Considering the sign convention for wθ (Equation 2.8) and using the velocity triangle
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(a) Entry location (index 1) (b) Exit location (index 2)

Figure 2.8: Velocity triangles at blade entry and exit locations

notation as depicted in Figures 2.8a and 2.8b Equation 2.22 can be rewritten in terms
of the relative flow as follows:

yth = ω2 (r2
2 − r2

1)− ω (r2wθ2 − r1wθ1) (2.23)

From Equation 2.23 it can be derived that the energy transmission is essentially com-
posed of two parts. The first portion ω2 (r2

2 − r2
1) is entirely due to the change in radius

while the second portion ω (r1wθ1−r2wθ2) describes the part due to the fluid deflection.
The specific work effectively transferred to the fluid is expressed in terms of the total
pressure rise from entry to exit:

y = ptot,2 − ptot,1
ρ

(2.24)

Instead of specific work usually the head of the pump is considered. It is defined as:

H = y

g
= ptot,2 − ptot,1

ρ g
= p2 − p1

ρ g
+ c2

2 − c2
1

2 g + z2
2 − z2

1 (2.25)

Since Equation 2.22 is valid for viscous flow, it includes the losses occurring in the
impeller due to friction. The relation between the theoretical head and the effectively
available head is expressed by the hydraulic efficiency:

ηh = y

yth
= H

Hth

(2.26)

Using a reasonable estimate for the hydraulic efficiency of the impeller, provided for
example by mathematical correlations based on earlier designs, it should be possible to
compute the exit flow conditions needed to produce the desired amount of head. The
designer now is confronted with the task to develop a blade shape that produces the
required flow conditions.
An important design parameter, not specific to inducers, is the incidence angle, which
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is defined as the difference between blade and flow angle:

i = β1b − β1 (2.27)

If blade blockage is to be considered at the inlet as illustrated in Figure 2.8a, the
definition is modified as follows:

i′ = β1b − β1
′ (2.28)

The choice of design incidence angle not only affects the position of the point of best
efficiency but is also critical for the stagnation point location on the blade profiles
[31]. Positive values of incidence produce a stagnation point on the pressure side and
negative values on the suction side of the blade. Experience has shown that best suction
performance of inducers is obtained for positive values of incidence angles [36], which
cause cavitation to start on the suction side surface of the blade [31].
An additional difficulty arises because the flow, even in the inviscid case, can’t be per-
fectly guided by a finite number of blades. This can be explained illustratively either
by the relative eddy concept [27] or by the reasoning of Gülich [31], who attributes the
deviation between flow and blade angle to the differences in velocity on blade pressure
and suction sides and the contribution of Coriolis acceleration.
Traditionally in axial machine design this deviation from the perfectly guided flow is
described by means of the deviation angle, which is defined by

δ = β2b − β2 (2.29)

or, in case of consideration of blade blockage as depicted in Figure 2.8b, by

δ′ = β2b − β2
′. (2.30)

Empirical relations to estimate the deviation angle for certain types of profiles have been
derived for compressor blades [20, 52] and applied in a modified version to inducers [36].
However, as stated by Jakobsen [36], the estimation process remains a trial-and-error
approach. Another formula which relates the deviation angle to the blade geometry
(blade angles and spacing-to-length ratio s/l) can be found in Gülich [31]:

δ =
(

2 + β2b − β1b

3

)(
s

l

)1/3
(2.31)

Unfortunately no details about the origin of this formula is given.
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As a consequence of the deviation phenomenon a specific amount of slip, denoted with
cθs, will exist between the circumferential components of the absolute velocity cθ2∞,
which would result from a flow that is leaving the rotor under the blade angle β2b,
and the actually realized value cθ2. For radial and mixed-flow machines this effect is
considered by means of the so-called slip-factor or Abströmbeiwert as defined by e.g.
Japikse et al. [39] or Gülich [31]:

γ = 1− cθ2∞ − cθ2
u2

(2.32)

The slip leads to a change in velocity triangles as depicted in Figure 2.8b. There is also
a different definition of slip-factor used by e.g. Lewis [49] and Dixon and Hall [27]. This
version is denoted by γ̃ and is related to the previous definition by

γ̃ = cθ2
cθ2∞

= 1− (1− γ)u2

cθ2∞
(2.33)

From Figure 2.8b the relation between slip factor γ and the deviation angle δ′ can be
readily derived:

γ = cm2
′

u2

(
1

tan(β2b − δ′)
− 1

tan β2b

)
(2.34)

While different in its mathematical formulation, the concept of slip is equivalent to
the idea of Minderleistung and the corresponding Minderleistungsfaktor explained in
detail by [58]. Similar to the slip factor approach empirical input is needed to perform
the computations that are required to obtain the value of the Minderleistungsfaktor.
However, in the design procedure presented in this thesis the slip-factor is used.
Different correlations are available to estimate the slip factor. Overviews of slip factors
used in practice can be found for example in Dixon and Hall [27] or Japikse et al. [39].
Up to now, no correlation is known to the author that has been proven to be applicable
to inducers, although there exists an approach to unify the theories for axial and radial
machines published by Qiu et al. [61] and Qiu et al. [62]. The present design procedure
therefore employs a user specified slip factor as will be described in Section 3.5.6. Of
course, any desired slip factor (or deviation angle) correlation could be implemented in
a future program version.
In axial machine design usually blade profiles are applied, which can be selected from
existing catalogs or computed by analytical relations. Experimental data of cascade tests
or theoretical calculations of these airfoils (or hydrofoils) can then be used to estimate
deviation angle and e.g. pressure distributions. Since in the design procedure which
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is developed in this thesis, the inducer is designed similar to a mixed flow machine
where angle and thickness distributions are prescribed along curved streamlines in a
user controlled way, the slip-factor approach is used to determine the exit blade angle.
However, because the physical meaning is the same and the equivalent deviation angle
can be computed easily, the extension of the design procedure to work with predefined
profiles is straightforward.

2.2.4 Characteristic Curves and Coefficients

The performance of a pump is described by the quantities head H, power P , efficiency
η and the net positive suction head NPSH. These quantities vary with the volume flow
rate Q and the rotational speed n. Characteristic curves are commonly obtained by
plotting the above quantities against flow rate Q while maintaining constant rotational
speed. As already stated in Equation 2.25 the head is a measure of the total pressure
rise provided by the pump. The hydraulic power Ph of the pump can be computed for
every operating point as follows:

Ph = ρgQH (2.35)

If the torqueM needed to drive the pump is known, the power P , in this case also called
shaft power, can be calculated by

P = Mω = M2πn (2.36)

By relating the hydraulic Power Ph to the shaft power P the efficiency η is obtained:

η = Ph
P

(2.37)

Suction capability of a pump is rated by means of its NPSH, which is defined as

NPSH = ptot,1 − pv
ρg

= p1 − pv
ρg

+ c2
1

2g (2.38)

NPSH (or NPSHr) is a measure for the total pressure at the pump inlet required for the
pump to operate under a certain amount of head loss due to cavitation. The percentage
of acceptable head loss is commonly defined as 3 % in which case the NPSH is denoted
by NPSH3 [26]. Since inducers are designed to operate under heavy cavitation and
contribute only little (around 10 % [37]) to the pumps overall head, higher percentages
are applied. Reported values for rocket engine turbopump inducers are e.g. 10 % [36]
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or even values of up to 50 % [38]. The NPSH of the pump can only be estimated during
the design process and has to be verified by NPSH or suction tests. During these tests
the head of the pump is recorded while lowering the inlet pressure. This is equal to
reducing the available NPSH (commonly denoted by NPSHa) of the system. Usually
the head data is plotted against the values of NPSHa to visualize the head drop.
Expressing the duty of turbomachines by means of dimensionless parameters allows a
comparison between different types and sizes of machines. Although these dimensionless
quantities are commonly used in the whole field, the mathematical definition and used
notation can differ slightly in the open literature as well as in the different industries.
This is why the parameters employed in the remainder of this thesis are explained
shortly in this section. The flow coefficient, which is used in the current work to give a
dimensionless measure of volume flow, is defined as the ratio between meridional flow
velocity and the circumferential blade velocity:

ϕ = cm
u

(2.39)

It can be defined with respect to different locations on different streamlines such that its
exact definition depends on the actual purpose. Its specific definition will be provided
whenever this coefficient is used (e.g. in the presentation and discussion of numerical or
test results). The same is true for the head coefficient which can generally be defined
as follows:

ψ = 2gH
u2 (2.40)

For radial impellers the head coefficient usually is defined with respect to the impeller
exit diameter d2 such that the circumferential velocity u2 = πd2n referring to this
diameter is employed in the formula of the head coefficient. Combining efficiency with
the flow and the head coefficients as defined above, the performance coefficient λ can be
obtained [27]:

λ = ϕψ

η
(2.41)

A dimensionless measure of NPSH is given by the cavitation coefficient according to
Gülich [31] (alternatively called cavitation parameter by Jakobsen [36]) which is given
as:

σ = 2gNPSH
u2 (2.42)
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The coefficients introduced above can be used to obtain dimensionless versions of the
characteristic curves as well as the head drop curves obtained from suction performance
tests. Only these dimensionless quantities are used in the discussion of the results of
this thesis.

2.3 Geometrical Design

2.3.1 Parametric Curves

The parametric representation of curves has some important advantages over explicit
and implicit equations when they are used for computer-aided geometric design. By
using parametric equations, arbitrary shaped and bounded curves can be described and
modified in an intuitive way, which facilitated the development of numerically stable
algorithms in the past [59]. Thus, the representation of curves by parametric equations
is preferred in most situations over the use of explicit and implicit equations [55].
The coordinates along parametric curves are explicit functions of an independent pa-
rameter u [59]. Consequently, the general parametric representation of a curve C in the
three-dimensional space can be written as:

C(u) = (x(u), y(u), z(u)), a ≤ u ≤ b (2.43)

Commonly the parameter interval is normalized, such that [a, b] = [0, 1] and unless
otherwise stated the normalized interval is used throughout this thesis.

2.3.2 B-Spline Curves

Extensive information about the application of nonrational and rational B-spline curves
and surfaces in computational design is available in literature. Comprehensive treat-
ments of the topic is given for example in Farin et al. [28], Hoschek and Lasser [32],
Mortensen [55] and Piegl and Tiller [59]. Since this work is mainly related to the appli-
cation of several techniques, only the most relevant fundamentals and selected methods
are briefly described. Because nomenclature can be slightly inconsistent when compar-
ing the different references, the notation of Piegl and Tiller [59] is used throughout this
work.
A B-spline curve of degree p can mathematically be expressed as follows:

C(u) =
n∑
i=0

Ni,p(u)Pi, a ≤ u ≤ b (2.44)

The curve is defined by n+1 control points Pi and the pth-degree B-spline basis functions
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Ni,p with i = 0, . . . n. By connecting the control points Pi, also called poles, with straight
lines the control polygon is obtained. Computation of the basis-functions requires the
specification of the so-called knot-vector. The knot vector U is a sequence of non-
decreasing, but not necessarily unique, real numbers uj for j = 0, . . . ,m:

U = {u0, u1, . . . , um−1, um} (2.45)

Between the number of control points n+ 1, the number of knots m+ 1 and the degree
p the following relation exists:

m = n+ p+ 1 (2.46)

By choosing specific values of the knots uj certain features of the curve can be obtained.
This will be addressed in the subsequent section. With the knot vector specified the
basis functions Ni,p can be calculated recursively according to the following equation
[59]:

Ni,0(u) =

1 if ui ≤ u < ui+1

0 otherwise
(2.47)

Ni,p(u) = u− ui
ui+p − ui

Ni,p−1(u) + ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u) (2.48)

The kth derivatives of the basis function can be computed with the following formula:

Nk
i,p(u) = p

 N
(k−1)
i,p−1

ui+p − ui
−

N
(k−1)
i+1,p−1

ui+p+1 − ui+1

 (2.49)

Using equation 2.49 the kth derivative for any curve parameter consequently is given
by:

C(k)(u) =
n∑
i=0

N
(k)
i,p (u)Pi, a ≤ u ≤ b (2.50)

B-spline curves have many favorable properties, which are discussed in detail in the
literature already mentioned above and which make them especially useful for geometri-
cal design. However, since B-spline curves are basically composed of polynomials, they
can be considered nonrational (or polynomial) curves. As such they are not capable of
representing simple and very common geometrical objects like circles and ellipses. To
overcome this limitation nonuniform rational B-spline (NURBS) curves, which can be
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understood as a generalization of B-spline curves, have been developed [59]. Introducing
the weights wi > 0 associated to the control points P i the rational basis functions are
defined by

Ri,p(u) = Ni,p(u)wi∑n
j=0Nj,p(u)wj

. (2.51)

With this the NURBS curve is written analogously to the B-spline curve as follows:

C(u) =
n∑
i=0

Ri,p(u)Pi, a ≤ u ≤ b (2.52)

Because nonrational B-spline curves are used exclusively in the procedures presented
in this work an extensive discussion of this type of curves is omitted at this point and
the reader is referred to the literature for a comprehensive description of the features
of NURBS. Nevertheless, it should be mentioned that if the weights wi are equal to a
non-zero constant for all i it can be shown that Ri,p(u) = Ni,p(u) and the (nonrational)
B-spline curve is obtained.
B-spline or NURBS surfaces can be constructed analogously to B-spline or NURBS
curves. A description is not given in this work because the design procedure is com-
pletely based on curves and algorithms that operate on these curves. The blade surface
construction is only performed in the last step of the design process when the blade is
exported for example to the STEP standard. Comprehensive information on the topic
of B-spline surfaces and the corresponding algorithms can be found in the literature
already cited.

2.3.3 Knot Vectors

Depending on the knot vector used for the computation of the basis functions described
in the previous section certain types of curves, which are useful in the geometric de-
sign process, can be provided. Retaining the nomenclature of Piegl and Tiller [59] knot
vectors are differentiated into clamped and unclamped versions. Both types can fur-
ther be subdivided into uniform and nonuniform knot vectors. In what follows the
aforementioned concepts are explained in more detail.
The clamped B-spline curve is obtained by repeating the first and last knots of the knot
vector p+ 1 times. Accordingly, the general definition of the clamped knot vector reads
as follows:

U = {a, . . . , a︸ ︷︷ ︸
p+1

, up+1, . . . , um−p−1, b, . . . , b︸ ︷︷ ︸
p+1

} (2.53)
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Any knot vector without or different multiplicities of first and last knots and the corre-
sponding B-spline curves are denoted unclamped. The reason for this naming convention
is that unless the knot vector is chosen as described above, the B-spline curve generally
does not reach the first and last control point [32]. If the spacing d between the interior
knots is equidistant, that is ui+1 − ui = d for all p ≤ i ≤ m − p − 1, the uniform knot
vector is obtained. Usage of this type of knot vector results in the uniform B-spline
curve. To illustrate the influence of the different knot vectors Figure 2.9a depicts an

B-spline
Control Points
Knots

(a) Unclamped, uniform B-spline

B-spline
Control Points
Knots

(b) Clamped, uniform B-spline

Figure 2.9: Different types of knot vectors and the resulting B-splines

exemplary unclamped B-spline curve of degree p = 3 using the uniform knot vector

U =
{

0, 1
9 ,

2
9 ,

3
9 ,

4
9 ,

5
9 ,

6
9 ,

7
9 ,

8
9 , 1

}
. (2.54)

Besides the B-spline curve, the control polygon as well as the knot locations are indicated
in Figure 2.9a and the following figures of this section. Obviously, the curve does not
extend to the first and last control point. In contrast, the clamped B-spline curve
illustrated in Figure 2.9b starts at the first and ends at the last control point. This
curve is defined by the uniform knot vector

U =
{

0, 0, 0, 0, 1
3 ,

2
3 , 1, 1, 1, 1

}
(2.55)

and uses the same control points as in the previous example of the unclamped curve.
If the spacing between the knots is not equal, the nonuniform B-spline is obtained. A
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knot vector

U =
{

0, 0, 0, 0, 1
10 ,

9
10 , 1, 1, 1, 1

}
. (2.56)

leads to the clamped, nonuniform B-spline curve, which is depicted in Figure 2.10a. As
can be seen from this figure the knot vector can be used to move parts of the curve
closer to the control polygon. For a knot vector without any interior knots

B-spline
Control Points
Knots

(a) Clamped, non-uniform B-spline

B-spline
Control Points
Knots

(b) Bézier Curve

Figure 2.10: Different types of clamped B-splines

U = {0, . . . , 0︸ ︷︷ ︸
p+1

, 1, . . . , 1︸ ︷︷ ︸
p+1

} (2.57)

the Bézier curve of degree p is obtained [59]. Figure 2.10b shows the Bézier curve, which
is generated by using the knot vector

U = {0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1} (2.58)

and the same control points as before.
Geometrically open and closed curves can be realized by different methods regardless of
the usage of a clamped or unclamped type of knot vector [59]. A feature that makes the
clamped B-spline curve favorable for geometrical design is the fact that it is tangential
to the first and last segments of the control polygon described by the control points.
This allows very intuitive curve modification by repositioning of selected control points.
Out of these reasons clamped B-splines are exclusively used in the design procedure
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presented in this thesis. Furthermore, no distinction is made between nonuniform and
uniform B-splines regarding the used algorithms. Unless otherwise stated, the reader
can assume that clamped, nonuniform B-splines are used.

2.3.4 Curve Construction by Interpolation

Curves can be constructed straightforwardly by designing a knot vector and specifying
the control points as described in the previous section. If a clamped knot vector is used,
start and end tangents can be prescribed by choosing the control points appropriately.
However, passing of a certain or multiple points is not guaranteed. If on the other hand
a curve is needed to pass exactly or approximately through a given set of points, either
some sort of interpolation or approximation is required. While approximation tries to
fit the B-spline curve as good as possible to a given set of points interpolation forces
the curve to pass through the points. In the present implementation only interpolation
procedures are used to keep the curve shape as predictable as possible. The interpolation
can be performed straightforwardly by solving Equation 2.44 for the unknown control
points Pi,j . Given Qk interpolation points with k = 0, . . . , n the corresponding n + 1
control points are obtained by solving the following system of equations:

Qk = C(uk) =
n∑
i=0

Ni,p(uk)Pi, k = 0, . . . , n (2.59)

Obviously this requires the specification of the knot values uk at the interpolation points.
Out of the different methods that are available for this task the three most common are
the equally spaced (or uniform), chord length (or chordal) and centripetal method [59].
Equally spaced knots ranging from 0 to 1 are obtained by simply setting

uk = k

n
, k = 0, . . . , n. (2.60)

As this can result in unexpected curve progressions, especially if the data to be interpo-
lated is distributed in an uneven way, this is in general not the recommended method
[59]. Better behavior is usually obtained by the chord length or centripetal methods.
Assuming that u0 = 0 and un = 1 the interior knots of the chord length method are
calculated as

uk = uk−1 + |Qk −Qk−1|
LQ

, k = 1, . . . , n− 1, (2.61)
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where LQ is the total chord length of the segments joining the interpolation points:

LQ =
n∑
k=1
|Qk −Qk−1| (2.62)

The centripetal method can be considered a modification of the chord length method and
differs from the chord length rule only by taking the square root of the chord-lengths,
such that

uk = uk−1 +

√
|Qk −Qk−1|

L∗Q
, k = 1, . . . , n− 1, (2.63)

and

L∗Q =
n∑
k=1

√
|Qk −Qk−1| (2.64)

According to Piegl and Tiller [59] the centripetal method yields better results in case of
“sharp turns” in the original data. Unless otherwise stated, the chord length method is
used throughout this work.

2.3.5 Remarks on Implementation

To avoid the need for a completely new implementation of all the necessary algorithms for
e.g. curve construction, interpolation and intersection, the python package pythonOCC
[57] is used. This library basically provides direct access from python to the 3D mod-
eling framework Open CASCADE Community Edition originally written in C++. Besides
reducing the development effort, the main advantage of using the pythonOCC library
lies in the availability of a huge amount of efficient, field-tested and reliable geometrical
algorithms, which can be effectively used in the development of the design procedure,
and the direct interface to neutral data formats like STEP and IGES. The latter is espe-
cially important when the generated geometry is to be used in a downstream process
of the CAE development chain like computational fluid dynamics (CFD) and structural
or thermal analysis. Avoiding errors or misunderstandings due to geometry exchange is
even more crucial if the geometry has to be prepared for machining or if the geometry
simply has to be shared with coworkers for further processing, who may even be using
different CAD systems.
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2.4 Simple Meridional Flow Analysis (SMA)

2.4.1 Governing Equation

The purpose of the meridional flow analysis is to provide an appropriate estimate of
the meridional flow field and a distribution of streamlines in the meridional section of
the turbomachine. Streamlines are defined as the curves that in any arbitrary point are
tangentially to the meridional flow velocity. A compact description of the meridional
flow can be obtained by using Stokes’ stream function. For incompressible flow Stokes’
stream function Ψ is related to the components of the meridional flow velocities by the
following equations:

cz = 1
r

∂Ψ
∂r

(2.65a)

cr = −1
r

∂Ψ
∂z

(2.65b)

The value of Ψ remains constant along a meridional streamline, which means that the
streamlines can be obtained by constructing isolines or contour lines of the stream
function distribution in the meridional plane.
As shown by Lewis [49] the governing equation for incompressible, rotational, axisym-
metric and inviscid flow can be derived with the help of the stream function as defined
by Equations 2.65a and 2.65b:(

∂2Ψ
∂z2

)
− 1
r

(
∂Ψ
∂r

)
+
(
∂2Ψ
∂r2

)
= −cθr

(dcθr)
dΨ + r2

ρ

dptot
dΨ (2.66)

Blade forces are not incorporated in Equation 2.66 but the distribution of swirl and total
pressure could be modelled by the terms on the right hand side. Under the assumption
of free-vortex flow, which is an appropriate estimate in the absence of blades, there is
no gradient of angular momentum and total pressure across the streamlines:

d(cθr)
dΨ = 0 (2.67a)

dptot
dΨ = 0 (2.67b)

Consequently, Equation (2.66) can be simplified as follows:
(
∂2Ψ
∂z2

)
− 1
r

(
∂Ψ
∂r

)
+
(
∂2Ψ
∂r2

)
= 0 (2.68)

Equation 2.68 is the basic equation used in the simple meridional flow analysis (SMA).
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The numerical solution is obtained by a finite differences method, which is explained in
detail in the following section.
Although Equation 2.68 is strictly valid only in the bladeless space (e.g. in the gap
between bladerows), it is used to calculate the streamlines that serve as the foundation
of the blade design. As a consequence, the streamlines and the corresponding velocity
field obtained by solution of above equation must be considered as a first approximation
to the real flow. In order to account for the actual spanwise distributions of total
pressure rise and blade forces, an iterative procedure combining meridional and blade
to blade solutions could be employed. However, since the real flow through a blade
row is viscous, turbulent, and three-dimensional by nature this would lead to a solution
which would potentially be more precise but would still remain an approximation to
the real problem as well. To keep the design method as simple as possible this iterative
process is omitted and instead the solution of Equation 2.68 is accepted as reasonable
approximation to the meridional flow. Hence, the method proposed in this thesis should
rather be understood as a simple design tool, which allows for rapid design iterations,
than an exact analysis tool.

2.4.2 Numerical Solution

A finite differences approach is implemented to solve Equation 2.68 for any arbitrarily
shaped meridional section in the z, r-plane as described in Section 2.2.1. Obviously a
boundary conforming grid is needed to represent the hub and shroud curves adequately.
Since simple finite difference formulas are only applicable on equidistant, rectilinear
grids, the problem has to be mapped to an equivalent rectangular domain, the so called
computational domain. To accomplish this transfer the equations as well as the geometry
under consideration have to be transformed into a new set of coordinates ξ, η. This
process is depicted in Figure 2.11. In the physical domain the problem is bounded by
four curves that are denoted by the corner nodes they are connecting. The lower curve
ab represents the hub contour, the upper curve dc describes the shroud contour and
the curves ad and bc constitute the inlet and the outlet borders respectively (see Figure
2.11a). The basic idea of the transformation procedure is to map the boundary curves to
the edges of a rectangle in the computational plane such that the hub and shroud (lower
and upper) borders correspond to constant values of the coordinate η, and inlet and
outlet (left and right) borders to constant values of the coordinate ξ. By dividing the
edges of the rectangle equidistantly as illustrated in Figure 2.11b the computational grid
is readily obtained. The indexing of the grid nodes starts for both the physical and the
computational domain from the lower left corner with index i increasing in streamwise
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(a) Physical domain (b) Computational domain

Figure 2.11: Transformation form the physical to the computational domain

direction (from inlet to outlet) and index j increasing in spanwise direction (from hub
to shroud). If the number of nodes in streamwise direction is denoted by Ni and the
number of nodes in spanwise direction by Nj and the index counting starts from zero,
the corresponding index ranges can be specified as i = 0 . . . Ni − 1 and j = 0 . . . Nj − 1.
To provide the inverse mapping, that is the mapping of the interior grid nodes from
the computational to the physical domain, different methods are available [60]. A very
common approach is the usage of differential equations that describe the relation between
the two sets of coordinates. In the present work an elliptical grid generation method is
chosen. To obtain the mapping relations the following set of inverse Laplace equations
is solved:

0 = α

(
∂2z

∂ξ2

)
− 2β

(
∂2z

∂ξ∂η

)
+ γ

(
∂2z

∂η2

)
(2.69)

0 = α

(
∂2r

∂ξ2

)
− 2β

(
∂2r

∂ξ∂η

)
+ γ

(
∂2r

∂η2

)
(2.70)

The derivation of these formulas and the computation of the geometric coefficients α, β
and γ is described in detail in Appendix A.2. Using the index convention as depicted
in Figure 2.12 and setting the spacings to ∆ξ = ∆η = 1 central differences are used to
discretize the grid generation equations. After rearranging the following formulas can
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Figure 2.12: Grid index convention

be obtained for the coordinate values at the indices i, j:

xi,j = 1
2 (αi,j + γi,j)

[
αi,j (xi+1,j + xi−1,j)

− 1
2βi,j (xi+1,j+1 − xi+1,j−1 − xi−1,j+1 + xi−1,j−1)

+ γi,j (xi,j+1 + xi,j−1)
]

with x = z, r (2.71)

Note that in the above equation x can be substituted by z or r because the equations are
identical for both coordinate directions. The geometric coefficients αi,j, βi,j, γi,j are anal-
ogously approximated by finite differences and the corresponding formulas are provided
in Appendix A.2.5, Equation A.21.
Equation 2.71 is solved iteratively using the SOR method, which is also explained in
detail in Appendix A.2.5. Taking n as the iteration index the iteration procedure can
be formulated as:

x
(n+1)
i,j,SOR = (ω − 1)x(n)

i,j,SOR + ωx
(n+1)
i,j,GS with x = z, r (2.72)
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The Gauß-Seidel step (GS) is defined as:

x
(n+1)
i,j,GS = 1

2
(
α

(n)
i,j + γ

(n)
i,j

)[α(n)
i,j

(
x

(n)
i+1,j + x

(n+1)
i−1,j

)

− 1
2β

(n)
i,j

(
x

(n)
i+1,j+1 − x

(n)
i+1,j−1 − x

(n+1)
i−1,j+1 + x

(n+1)
i−1,j−1

)
+ γ

(n)
i,j

(
x

(n)
i,j+1 + x

(n+1)
i,j−1

)]
with x = z, r (2.73)

As indicated in Equation 2.73 the geometric coefficients (α, β, γ) are taken at the last
iteration step (iteration index n) because they depend on the grid-coordinates and are
therefore not known a priori [56]. Consequently, the values of these coefficients have to
be computed after the final iteration loop.
Convergence is assessed based on the relative error in the solution variable. The iteration
process is stopped as soon as the maximum relative error is below a specified limit ε:

max
 |x(n+1)

i,j − x(n)
i,j |

max |x|

 < ε with x = z, r (2.74)

This condition has to be fulfilled for z and r coordinates simultaneously. However, an
upper limit of iterations is considered in order to avoid endless loops. The target value
of the convergence limit and the relaxation parameter ω can be set by the user. By
default the following values are used:

ω = 1.8 (2.75)

ε = 1.0× 10−6 (2.76)

If no value is provided or an invalid value is specified by the user, the optimum relaxation
factor is estimated according to the formula provided by Pletcher et al. [60]:

ωopt = 2
1 + (1− σ2)1/2 (2.77)

Considering uniform spacing in ξ and η direction (∆ξ/∆η = 1) and denoting the number
of nodes along i and j direction by Nj and Ni respectively the factor σ can be calculated
as follows:

σ = 1
2

(
cos

(
π

Ni − 1

)
+ cos

(
π

Nj − 1

))
(2.78)

Before the grid generation procedure is applied to the real problem of the meridional
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(a) Extended physical domain (b) Boundary nodes

(c) Initial grid (d) Final grid

Figure 2.13: Grid generation procedure

section, the physical domain is extended by a reasonable amount to move the boundaries
away from the region of interest (see Figure 2.13a). On the boundary curves the grid
nodes are placed equidistantly as depicted in Figure 2.13b. To initialize the interior
nodes linear segments are constructed from hub to shroud and divided into equidistant
segments. A comparison between the state of the grid after initialization and after the
iteration procedure is displayed in Figures 2.13c and 2.13d, respectively.
Once the grid generation is completed, Equation 2.68 can be solved in the computational
domain to obtain the stream function distribution. The transformed equation can be
written as (see Appendix A.3):

α

(
∂2Ψ
∂ξ2

)
− 2β

(
∂2Ψ
∂ξ∂η

)
+ γ

(
∂2Ψ
∂η2

)
− δ

r

((
∂Ψ
∂η

)(
∂z

∂ξ

)
−
(
∂Ψ
∂ξ

)(
∂z

∂η

))
= 0 (2.79)

The coefficient δ is equal to the Jacobian J and is computed from the known grid metrics:

δ = ∂z

∂ξ

∂r

∂η
− ∂z

∂η

∂r

∂ξ
= J (2.80)

Again central differences are used to discretize the above equation at the interior nodes
and the SOR method is used analogously to the grid generation problem. The discretized
equations are given in full detail in Appendix A.3. To produce the desired volume flow
through the impeller the boundary conditions have to be set adequately. The relation

38



2 Theoretical Fundamentals and Methods

between the fluid flow through a streamtube bounded by the surfaces that are generated
by the contour lines of Stokes’ stream function at the values Ψ2 and Ψ1 is given as follows:

Q12 = 2π (Ψ2 −Ψ1) (2.81)

Since the hub and shroud boundary curves are streamlines by definition, the value of
stream function can be arbitrarily chosen for all the nodes at one of these boundaries. In
the current implementation the stream function is set to zero at the hub (Ψh = Ψi,0 = 0)
but any other value would be possible. Considering that the full volume flux Q is passing
between hub and shroud the value at the shroud nodes, in the general case, can be
obtained from:

Ψs = Ψi,Nj−1 = Q

2π + Ψh (2.82)

To compute suitable values at the grid nodes on the inlet and outlet boundary nodes

(a) Uniform normal velocity (b) Velocity components

Figure 2.14: Inlet and outlet boundary conditions

a uniform normal velocity profile is assumed. As depicted in Figure 2.14a computation
of the normal velocity is accomplished by:

cn = Q

π (rs + rh) a
(2.83)

This relation can be used to calculate the volume flux through the streamtube with
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index j bounded by the streamlines of stream function values Ψj and Ψj+1:

Qj = cn π(rj + rj+1) aj (2.84)

Equation 2.84, in turn, can be used to compute the stream function at the boundary
node with index j from Equation 2.81 as follows:

Ψj+1 = Qj

2π + Ψj = 1
2 cn (rj + rj+1) aj + Ψj (2.85)

Using Equation 2.85 the stream function values are set for all nodes along the inlet and
outlet boundaries. The interior nodes are initialized by copying the values from the
inlet nodes to the nodes with the same index j. After initialization the SOR method is
used to obtain the solution for Ψ at the interior nodes iteratively. The formal iteration
procedure is given in the Appendix A.3. Convergence is judged analogously to the
grid generation procedure based on the maximum relative error in the solution variable
(∆Ψ)∗max as given in Equation A.29. Once the solution is obtained, the value of stream
function is available on all grid nodes including the boundaries. The next section deals
with the computation of the velocities and the extraction of streamlines for further usage
in the inducer design process.

2.4.3 Velocity and Streamline Computation

Given the values of stream function on the nodes of the grid the velocity components
can be computed by solving Equations 2.65a and 2.65b. Again these equations are most
conveniently solved in the computational domain. The transformed versions of these
equations (see Appendix A.3) read:

cz = 1
rδ

((
∂Ψ
∂η

)(
∂z

∂ξ

)
−
(
∂Ψ
∂ξ

)(
∂z

∂η

))
(2.86a)

cr = 1
rδ

((
∂Ψ
∂η

)(
∂r

∂ξ

)
−
(
∂Ψ
∂ξ

)(
∂r

∂η

))
(2.86b)

Discretization of these equations using central differences is straightforward and the
velocities on the interior grid nodes can be readily computed (see Appendix A.3, Equa-
tion A.32). Some attention must however be paid to the treatment of the nodes on
the boundary curves that represent the inlet and outlet as well as the hub and shroud
contours. At the inlet and the outlet borders the velocity is assumed to be normal to
the boundary curve. Thus, the components of the velocity are retrieved from the known
value of the normal velocity. Given the local inclination of the boundary segment (see
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Figure 2.14b) the components at the inlet (index i = 0) and the outlet (index i = Ni−1)
are set for all nodes in spanwise direction (0 ≤ j ≤ Nj − 1) as follows:

cz,i,j = cn,i cosαn,i (2.87a)

cr,i,j = cn,i sinαn,i (2.87b)

Since by definition the hub and shroud boundaries are streamlines, the stream function
is constant along these curves. Hence, the partial derivatives of stream function with
respect to ξ are vanishing along these curves and equations 2.86a and 2.86b are simplified
as:

cz = 1
rδ

(
∂Ψ
∂η

)(
∂z

∂ξ

)
(2.88a)

cr = 1
rδ

(
∂Ψ
∂η

)(
∂r

∂ξ

)
(2.88b)

The remaining partial derivatives are approximated by forward differences at the hub
and backward differences at the shroud boundary. By using the three point formulas
[56] for the derivatives normal to the boundaries (in η direction) and central differences
along the boundaries (in ξ direction), the following equations are obtained:

cz,i,j =


1

4ri,jδi,j
(−3Ψi,j + 4Ψi,j+1 −Ψi,j+2) (zi+1,j − zi−1,j) for j = 0

1
4ri,jδi,j

(Ψi,j−3 − 4Ψi,j−2 + 3Ψi,j−1) (zi+1,j − zi−1,j) for j = Nj − 1
(2.89a)

cr,i,j =


1

4ri,jδi,j
(−3Ψi,j + 4Ψi,j+1 −Ψi,j+2) (ri+1,0 − ri−1,0) for j = 0

1
4ri,jδi,j

(Ψi,j−3 − 4Ψi,j−2 + 3Ψi,j−1) (ri+1,j − ri−1,j) for j = Nj − 1
(2.89b)

Equations 2.89a and 2.89b are used to compute the velocity components for 1 ≤ i ≤
Ni−2, that is on all nodes on the lower (hub) and upper (shroud) boundaries excluding
the corner nodes, which are considered to belong to the inlet and outlet borders. Note
that the Jacobion δ has to be computed analogously by forward and backward differences
on the hub and shroud boundaries:

δi,j =



1
4
(

(zi+1,j − zi−1,j) (−3ri,j + 4ri,j+1 − ri,j+2)
− (ri+1,j − ri−1,j) (−3zi,j + 4zi,j+1 − zi,j+2)

) for j = 0

1
4
(

(zi+1,j − zi−1,j) (ri,j−3 − 4ri,j−2 + 3ri,j−1)
− (ri+1,j − ri−1,j) (ri,j−3 − 4ri,j−2 + 3ri,j−1)

) for j = Nj − 1

(2.90a)
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Looking at Equations 2.89a and 2.89b it is evident that at nodes on the axis of rotation
(r = 0) some special treatment is required. This special case is likely to occur on the
hub boundary only as can be seen in the example provided in Figure 2.15. The case
is treated in the current implementation by copying the z-component of velocity from
the neighbor in η direction and setting the r- component to zero. At a stagnation point
at zero radius this might locally introduce some unphysical behavior, which, in general,
should not disturb the overall result.
Example solutions showing the stream function contours (the streamlines) and the cor-
responding distribution of meridional velocity for a generic mixed flow impeller are dis-
played in Figures 2.15a and 2.15b respectively. An overview of the complete meridional

0.0 0.3 0.6 0.9 1.2 1.5

× 103 / (m3s 1)

(a) Contours of stream function

0.7 1.0 1.3 1.6 1.9 2.2 2.5 2.8

cm / (ms 1)

(b) Contours of meridional velocity

Figure 2.15: Example solution of the SMA

flow analysis procedure is given in Figure 2.16. Hub, shroud, inlet and outlet curves
have to be provided point-by-point. The same number of points has to be specified for
hub and shroud and for inlet and outlet respectively. As a result, the grid generation
routine stays independent of any geometric algorithms and can in principle be applied to
arbitrary, two-dimensional geometries. Furthermore, it is possible to influence the grid
distributions on the boundaries by positioning the points appropriately. However, in
the developed design procedure this process is automated and the B-spline curves repre-
senting the hub and shroud shapes as well as the inlet and outlet segments are sampled
equidistantly before they are used as input to the grid generation process. The number
of nodes along the grid directions is implicitly set by the number of points provided for
the curves.
The iterative routines used for solving the grid and stream function equations are trans-
lated to Cython-Code [15] in order to reduce the computation time. Both routines
expect an equal set of numerical parameters, consisting of relaxation factor, maximum
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Figure 2.16: Overview of the SMA
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number of iterations and convergence tolerance. To set up the stream function solution
the volume flow rate has to be provided as well, so that the correct level of velocity is
obtained.
The streamline computation is performed with the help of the class Cntr of the mat-
plotlib._cntr module [33], which is part of the scipy package [69] and allows the
extraction of the coordinates at constant contour levels. As can be seen from Equation
2.81 the choice of equidistant contour levels leads to streamlines which enclose equal
parts of the volume flow rate through the meridional section.
The velocity components along the streamlines are computed by using the class Clough-
Tocher2DInterpolator of the scipy.interpolate module [69]. This method performs
interpolation of the data available at the grid nodes. Thus, it is able to deliver the
velocities at arbitrary coordinates in the meridional section. If coordinates very close
to, or even slightly outside of, the boundaries are specified, the aforementioned method
might fail. To avoid invalid or unphysical velocity values the NearestNDInterpolator
of the scipy.interpolate module, which simply uses the value at the closest grid point,
is provided as a fallback mechanism [69].
Once the solution is obtained, any desired number of streamlines can be requested.
Streamlines are represented by point coordinates and the corresponding velocity com-
ponents.

2.5 Simple Head Prediction (SHP)

2.5.1 Singularity Method

Basis of the SHP is a classical singularity method applied on the camber curves of
two-dimensional blade sections. The singularity method applied in the present the-
sis was originally proposed by Li [51] and allows to estimate the theoretical head on
strictly cylindrical blade sections. In order to apply this method to arbitrarily shaped
meridional sections it has to be reformulated in terms of m′, θ coordinates and the cor-
responding velocity components in the conformal cascade plane. Figure 2.17a shows a
general meridional configuration containing K streamlines on which the blade geometry
is available. The transfer of the corresponding blade sections from the meridional to
the cascade plane is achieved by sampling the meridional streamlines at i = 0 . . . N − 1
locations and evaluating the m′, θ coordinates of the camber curve at each sampling
point. Note that the number of sections K as well as the number of points along each
section N is not necessarily equal to the number of design sections Nk and the number
of points along the streamlines Ni, respectively (see Section 3.4.4).
An exemplary sketch of the resulting cascade for any k = 0 . . . K − 1 is shown in
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(a) Meridional view (b) Cascade plane

Figure 2.17: Singularity method - mapping from meridional to the cascade plane

Figure 2.17b. Following Lewis [50] the components of the relative velocity components
w = (wm, wθ) = (cm, ωr− cθ) are transformed to the cascade plane by multiplying with
the local radius:

Wm′ = r wm (2.91a)

Wθ = r wθ (2.91b)

The general approach of the singularity method (as well as the techniques described in
references [49] and [50]) is the superposition of a mean translational flow W̄ with the
flow induced by a singularity distribution located on the blade camber line Ŵ :

W = W̄ + Ŵ (2.92)

To calculate the induced velocity Ŵ , a potential vortex with an initially unknown local
vorticity density (that is the local vorticity strength per unit length) γj is placed at
the midpoint of each segment (j = 0 . . . N − 2) with length ∆sj between two geometry
points i and i + 1, as shown in Figure 2.17b. The blade circulation Γ is calculated by
summing up all vorticity elements:

Γ =
N−2∑
j=0

γj ∆sj (2.93)
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In order to solve for the unknown values of local vorticity density the conformal velocity
vector in the cascade plane is required to be tangential to the blade camber line. For-
mulating this constraint for each segment’s end point (i.e. starting from i = 1) leads to
the following system of equations:

tan (βb,i) = Wm′,i

Wθ,i

= W̄m′,i + Ŵm′,i

W̄θ,i + Ŵθ,i

, i = 1, . . . , N − 1 (2.94)

A general derivation of the formulas required to calculate the induced velocity com-
ponents can be found in Lewis [50]. By application of the coordinate notation of the
present thesis the cascade influence factors may be expressed as:

Fm′,i,j = Z

4π

 sin (Z (θi − θj))
cosh

(
Z
(
m′i −m′j

))
− cos (Z (θi − θj))

 (2.95a)

Fθ,i,j = − Z

4π

 sinh
(
Z
(
m′i −m′j

))
cosh

(
Z
(
m′i −m′j

))
− cos (Z (θi − θj))

 (2.95b)

With these formulas the components of the induced velocity can be written in the
following compact form:

Ŵm′,i =
N−2∑
j=0

Fm′,i,j γj ∆sj (2.96a)

Ŵθ,i =
N−2∑
j=0

Fθ,i,j γj ∆sj (2.96b)

The translational flow has to be modeled in such a way that the correct velocity triangles
(see Figure 2.17b) are obtained at the cascade entry (index 1) and cascade exit (index 2).
A feature of the method proposed in [51] is the consideration of blade blockage. In the
original method the flow velocity on streamsurfaces (that are the surfaces constructed
by revolution of the streamlines) are obtained by interpolation and extrapolation of
the mean stream tube velocities that are corrected by a blockage factor. Contrary to
the original approach the velocities along the streamlines are already known from the
previously described meridional flow analysis.
Since the meridional flow is computed without considering the influence of the blades,
the local blade blockage is computed according to Equation 2.13:

bi =
(

1− ti Z

2π ri sin βb,i

)−1

(2.97)
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Assuming mass conservation along the streamline, the meridional component of the
translational flow is defined as:

W̄m′,i = biWm′,i = Wm′1
biWm′,i

Wm′1
(2.98)

The termWm′1 indicates the known meridional flow velocity at the cascade entry location
and is directly coupled to the volume flow through the impeller. The term Wm′,i is the
local meridional velocity transferred to the cascade plane. Following Lewis [50] the
circumferential component of the translational flow is given by the following equation:

W̄θ,i = Wθ∞ +Wω,i (2.99)

In Equation 2.99 two terms appear that are not that obvious in their meaning. The first
term is the circumferential component of the vector mean velocity of the cascade flow,
which itself depends on the blade circulation. This fact would require to solve Equation
2.94 separately for each operating point under consideration. How this problem can be
resolved quite easily is explained further below in this section. The second term on the
right-hand side of Equation 2.99 is related to the influence of the local streamline radius
on the relative vorticity strength and is derived in reference [50] as follows:

Wω,i = ω
(
r2
i −

1
2
(
r2

1 + r2
2

))
. (2.100)

After inserting Equations 2.96, 2.98, 2.99 and 2.100 into Equation 2.94 and rearranging
the resulting system, the following system of linear equations is obtained for any blade
section k:

N−2∑
j=0

Ki,j γj ∆sj = Ri, (2.101)

where

Ki,j = tan (βb,i)Fθ,i,j − Fm′,i,j (2.102)

Ri = Wm′1 (biWm′,i/Wm′1)−Wθ∞ tan (βb,i)

− ω
(
r2
i −

1
2
(
r2

1 + r2
2

))
tan (βb,i) (2.103)

To avoid solving this system for multiple operating conditions the solution procedure
proposed by Lewis [50], based on superposition of so-called unit components, is applied.
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If the vorticity distribution is decomposed as follows

γj = Wm′1 γm′, j +Wθ∞ γθ, j + ω γω, j, (2.104)

three independent systems of equations are obtained for unit meridional flow velocity
Wm′1 = 1, unit circumferential flow velocity Wθ∞ = 1 and unit angular velocity ω = 1,
respectively:

N−2∑
j=0

Ki,j γm′, j ∆sj = biWm′,i

Wm′1
(2.105a)

N−2∑
j=0

Ki,j γθ, j ∆sj = − tan (βb,i) (2.105b)

N−2∑
j=0

Ki,j γω, j ∆sj = − tan (βb,i)
(
r2
i −

1
2
(
r2

1 + r2
2

))
(2.105c)

Before the systems are solved it is necessary to specify the Kutta condition on the last
segment by setting γN−2 = 0. This reduces the number of equations effectively to N−2.
Once the unit solutions are obtained, the corresponding circulations are calculated as:

Γm′ =
N−1∑
j=0

γm′, j ∆sj (2.106a)

Γθ =
N−1∑
j=0

γθ, j ∆sj (2.106b)

Γω =
N−1∑
j=0

γω, j ∆sj (2.106c)

By adequately scaling the unit solutions the actual total circulation can finally be com-
puted as follows:

Γ = Wm′1 Γm′ +Wθ∞ Γθ + ω Γω (2.107)
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2.5.2 Exit Flow

As shown by Lewis [50] the θ-components of the cascade flow at the entry and exit
locations can be calculated with the following equations:

Wθ1 = Wm′1

(
Z

4πΓm′
)

+Wθ∞

(
1 + Z

4πΓθ
)

+ ω
(
Z

4πΓω + 1
2
(
r2

1 − r2
2

))
(2.108a)

Wθ2 =−Wm′1

(
Z

4πΓm′
)

+Wθ∞

(
1− Z

4πΓθ
)

− ω
(
Z

4πΓω + 1
2
(
r2

1 − r2
2

))
(2.108b)

Returning to the previously stated problem of the unknown velocity Wθ∞, Equation
2.108a can now be rearranged to obtain:

Wθ∞ = 1
1 + Z

4πΓθ

[
Wθ1 −Wm′1

(
Z

4πΓm′
)

− ω
(
Z

4πΓω + 1
2
(
r2

1 − r2
2

))]
(2.109)

With Wθ∞ provided as a function of the unit solutions the total circulation can directly
be computed from Equation (2.107) in a straightforward manner. Likewise the relative
flow angle at the cascade exit (or discharge) location can readily be computed with the
help of Equation (2.108b):

β2 = arctan
(
Wm′2

Wθ2

)
(2.110)

2.5.3 Theoretical Head

In order to calculate the theoretical head produced by the blade section k under consid-
eration Euler’s pump equation for the relative system (Equation 2.23) is used:

H tot
th,k = 1

ρ g
(ptot,2 − ptot,1) = ω2 (r2

2 − r2
1)− ω (Wθ2 −Wθ1) (2.111)

Inserting Equations (2.108a) and (2.108b) leads to:

H tot
th,k = ω

Z

2πg (Wm′1 Γm′ +Wθ∞ Γθ + ω Γω) (2.112)
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Together with Equation (2.107) and using ω = 2πn the following, simple equation for
the theoretical head is obtained:

H tot
th,k = nZ

g
Γk (2.113)

The theoretical total head of the full inducer is finally computed by taking the arithmetic
average over all blade sections as proposed by Li [51]:

H tot
th = 1

K

K−1∑
k=0

H tot
th,k (2.114)

However, since during standard acceptance tests, the total pressure is not measured,
the head is corrected by the fraction caused by the dynamic pressure rise due to the
change in circumferential velocity of the absolute flow. Using again Equations (2.108a)
and (2.108b) the head associated to this velocity components is expressed as:

∆Hth,θ,k = 1
2g
[
c2
θ2 − c2

θ1

]
= 1

2g

[(
ωr2 −

Wθ2

r2

)2
−
(
ωr1 −

Wθ1

r1

)2]
(2.115)

Thus, the corrected theoretical head expected to be a more accurate estimate when
comparing with experimental test results is calculated as:

Hth,k = nZ

g
Γk −∆Hth,θ,k (2.116)

To compute the theoretical head of the entire inducer the same method of averaging as
in Equation 2.114 is applied:

Hth = 1
K

K−1∑
k=0

Hth,k (2.117)

The solution of Equations 2.105a, 2.105b and 2.105c can be obtained by any standard
procedure for the solution of linear systems of equations. In the present implementation
the solve method of the scipy.linalg module is used. Consequently, the whole proce-
dure including the inviscid meridional flow calculation provides a result almost instantly
if performed on an up-to-date workstation. Due to its simplicity the method can easily
be integrated into a preliminary design procedure and can be used in an interactive
environment delivering feedback on the influence of geometry changes on the inducer
performance.
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2.5.4 Loss Model

The singularity method described in the previous section is an idealized, two-dimensional
and inviscid approximation to the real flow conditions in the blade passages. Losses
that occur due to viscous effects have therefore to be considered by a loss model. In the
current work the very simple model developed by Li [51] is used. Because this model
was derived from experimental data, it should also include the influence of tip clearance.
The head loss predicted with this model is related to the mean inflow velocity at the
root mean square (rms) radius r1,rms =

√
1
2(r2

1h + r2
1s) as follows:

Hloss = fcξ
w2

1,rms

2g (2.118)

As can be seen from Fig. 2.18a the loss coefficient ξ can be expressed as a function of
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Figure 2.18: Loss model, reproduced from Li [51]

angle of attack αa at the rms-radius. Because the camber of inducers is comparatively
low and the blades are very long, no distinction is made between incidence and angle of
attack, and the latter is calculated as:

αa = βb − β (2.119)

The factor fc is a correction factor derived by Li [51] that is correlated to the number of
blades and the mean blade angle at the tip radius according to Figure 2.18b. The head
of the inducer is finally calculated by subtracting the head loss (Equation 2.118) from
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the mean theoretical head (Equation 2.117):

H = Hth −Hloss (2.120)

Analogously, the total head is calculated as follows:

H tot = H tot
th −Hloss (2.121)

2.5.5 Overview

With the loss model presented in the previous section the proposed method for head
prediction of non-cavitating inducers is complete. An overview of the SHP is given by the
flow chart in Figure 2.19, which also includes the most important formulas. An intrinsic
weakness of the method clearly is the one-way coupling of meridional and cascade flow.
This could lead to inaccurate predictions of the exit flow conditions. Another problem
that might restrict the application of the method is the fact that the loss model is applied
to the entire inducer only. As a result, there’s no information of the loss distribution
among the individual blade sections. A similar problem exists with the calculation
of the total head, which is simply assumed to be the arithmetic average of the blade
section heads. Nevertheless, these basic assumptions effectively reduce the complexity
of the method and help to provide a very simple and fast method for the overall head
prediction. Furthermore, the SHP alone does not require any iteration procedure and
consequently is fast in terms of computation time.

2.5.6 Limitations

At this point some remarks on important limitations of the method as proposed in the
previous sections are appropriate.
The first limitation concerns the treatment of the two-dimensional camber curve. In
the present implementation of the method the camber curve is directly used as the
geometrical foundation for the singularity method. Hence, the flow is constraint to
follow the angle distribution prescribed by the camber curve. The basic assumption,
which justifies this constraint, is that the blade is comparatively thin (or at least of
constant thickness), such that the camber line, the mean camber line as well as the
blade suction and pressure sides collapse into the same line (or can be considered of same
shape). Thus, a major drawback of the approach chosen in the current implementation
is that the actual profile design cannot be included in the cascade analysis. Only the
blockage effect is considered irrespective of the actual asymmetry of the underlying
thickness distributions.
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Figure 2.19: Overview of the SHP

A possible alternative, without transitioning to a more advanced analysis method, might
be to compute the mean camber line under consideration of the actual blade profiles
and to use this mean camber line to set up the singularity method. As a result, the
asymmetry of thickness distributions would be reflected by the angle distribution of the
mean camber line. However, unexpected blade angle distributions could be obtained
along the mean camber line by this approach, especially for blades with substantially
asymmetric thickness distributions.
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Furthermore, for truly single sided thickness distributions, where either suction or pres-
sure side thickness are set to zero, the camber curve effectively represents the suction
or pressure side of the blade. Application of the singularity method to this camber
curves might even provide a more direct feedback to the designer. Since the inducers
investigated in this thesis (see Section 4.2.3) are designed with a suction side thickness
distribution only, no recomputation of the camber curve is performed such that the
pressure side blade angle progression as intended by the designer is used as the input
for the singularity method.
The second restriction lies in the two-dimensional nature of the singularity method de-
scribed above. Three-dimensional effects due to the three-dimensional blade shape (e.g.
at the swept leading edge) simply cannot be reflected correctly by the two-dimensional
approach, since the flow is limited to the two-dimensional streamsurfaces. Furthermore,
three-dimensional flow features due to viscous effects are not considered in the present
model. Viscous effects are only introduced in an integral fashion for the whole inducer,
by means of a very simple loss model.
The third restriction concerns the computation of the average total head produced by
the complete blade by averaging over the single blade sections. This approach could be
seen as problematic or even questionable in so far as the average value of total head
is identical to the head produced on each streamline only in case of true free vortex
flow. In this case the streamline shape and velocity distributions computed with the
SMA are consistent with the cascade solution of the SHP. For any other distribution of
head predicted with the SHP the free vortex assumption is not strictly fulfilled anymore
and the previously computed streamline and velocity distributions are no longer valid
from a theoretical point of view. However, from a practitioner’s point of view this
inaccuracy could be accepted as long as the average value of head given by Equation
2.114 is reasonable and reflects changes in blade geometry.
As a consequence of the points discussed above, the SHP can of course only be con-
sidered a preliminary design tool, which produces an initial approximation to the head
produced by the inducer. To adequately describe the distribution of flow variables
three-dimensional, viscous methods have to be employed.

2.6 Computational Fluid Dynamics

2.6.1 Fundamental Equations

The commercial CFD code ANSYS CFX applied in this thesis uses a finite volume
method to solve the governing equations of fluid mechanics. In the incompressible case,
which is assumed for the flow through the inducers investigated, only the equations of

54



2 Theoretical Fundamentals and Methods

mass and momentum conservation are considered. Since Direct Numerical Simulations
(DNS) are still not feasible for the majority of turbomachinery flows, turbulence has
to be modeled. A very common approach to handle this issue, is the combination of
the Reynolds-Averaged Navier Stokes (RANS) equations with a two-equation turbulence
model. In what follows, the corresponding equations are discussed shortly. More details
can be found in textbooks (e.g. Pletcher et al. [60], Versteeg and Malalasekera [68]) or
the documentation of ANSYS CFX [5].
Making use of index notation and neglecting density fluctuations as well as momentum
sources the conservation equations of mass and momentum can be written as follows:

∂ρ̄

∂t
+ ∂

∂xj
(ρ̄ ūj) = 0 (2.122)

∂ρ̄ ūi
∂t

+ ∂

∂x j
(ρ̄ ūiūj) = − ∂p̄

∂xj
+ ∂

∂xj

(
τ̄ij − ρ̄ u′iu′j

)
(2.123)

The overline indicates time (or ensemble) averaged quantities and is usually dropped
from all terms but the product of fluctuating velocity components u′iu′j. For highly
compressible flows density or mass weighted averaging (Favre-averaging) has to be per-
formed [68]. In the incompressible case the equations above can be formulated as follows
[60]:

∂uj
∂xj

= 0 (2.124)

ρ

(
∂ui
∂t

+ ∂

∂x j
(ui uj)

)
= − ∂p

∂xj
+ ∂

∂xj

(
τij − ρ u′iu′j

)
(2.125)

The terms τij represent the components of molecular stress tensor and the terms ρ u′iu′j
are the so-called Reynolds stresses. For a Newtonian fluid the former can be expressed
as:

τij = µ

[(
∂ui
∂xj

+ ∂uj
∂xi

)
− 2

3δij
∂uk
∂xk

]
(2.126)

Making use of Equation 2.124, the second term in the square brackets vanishes and
Equation 2.126 is simplified to:

τij = µ

(
∂ui
∂xj

+ ∂uj
∂xi

)
(2.127)

According to the Boussinesq hypothesis the Reynolds stresses can be modeled analo-

55



2 Theoretical Fundamentals and Methods

gously by introducing turbulent viscosity µt and using the following approach:

−ρ u′iu′j = µt

(
∂ui
∂xj

+ ∂uj
∂xi

)
− 2

3δij
(
ρk + µt

∂uk
∂xk

)
(2.128)

Again, for incompressible flows this can be simplified as follows:

−ρ u′iu′j = µt

(
∂ui
∂xj

+ ∂uj
∂xi

)
− 2

3δijρk (2.129)

The effective viscosity is computed by adding molecular and turbulent viscosity:

µeff = µ+ µt (2.130)

With this assumption, also called the eddy viscosity hypothesis, the momentum equa-
tions solved by ANSYS CFX can be written as:

ρ

(
∂ui
∂t

+ ∂

∂x j
(ui uj)

)
= − ∂p

′

∂xj
+ ∂

∂xj

[
µeff

(
∂ui
∂xj

+ ∂uj
∂xi

)]
(2.131)

In ANSYS CFX the term 2
3δijρk is integrated into pressure by setting:

p′ = p+ 2
3ρk (2.132)

How this expression for pressure is treated by the solver is described in the documen-
tation of the code [5]. The turbulent kinetic energy k appearing in above equations is
defined as:

k = 1
2u
′
iu
′
i (2.133)

A related quantity often used for boundary value specification and initialization is tur-
bulence intensity I. It is defined as the ratio of the rms value of average fluctuating
velocity components and a reference velocity uref [68]:

I =

√
1
3u
′
iu
′
i

uref
=

√
2
3k

uref
(2.134)

In order to solve Equation 2.131 suitable values of turbulent viscosity have to be de-
termined with the help of a model. For turbomachinery flows typically two-equation
turbulence models are used for this purpose. The shear stress transport (SST) k-omega
model has gained high popularity because it provides a blending from the k-omega model
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at locations close to the wall to the k-epsilon model outside of the boundary layer. De-
pending on the distance from the wall the model thereby can make use of the beneficial
properties of both turbulence models . Hence, this model is chosen for the simulations
performed in the course of this thesis. However, recent investigations of inducers indi-
cate that the use of other models might be equally reasonable [41]. As the SST model
belongs to the k − ω type of turbulence models, turbulent viscosity is calculated by:

µt = ρ
k

ω
(2.135)

Thus, two additional equations are introduced; one for turbulent kinetic energy k and
one for turbulent frequency ω. These equations are described in detail in ANSYS, Inc.
[5] and read:

∂ (ρk)
∂t

+ ∂

∂xj
(ρujk) = ∂

∂xj

[(
µ+ µt

σk3

)
∂k

∂xj

]
+ Pk − β′ρkω (2.136)

∂ (ρω)
∂t

+ ∂

∂xj
(ρujω) = ∂

∂xj

[(
µ+ µt

σω3

)
∂ω

∂xj

]
+ (1− F1)2ρ 1

σω2ω

∂k

∂xj

∂ω

∂xj

+ α3
ω

k
Pk − β3ρω

2 (2.137)

The coefficients with index 3 are obtained by application of the formula

φ3 = F1φ1 + (1− F1)φ2, (2.138)

where φ represents any of the model coefficients. These coefficients are given in the
documentation [5] as follows:

α1 = 5/9 (2.139a)

β1 = 0.075 (2.139b)

σk1 = 1.176 (2.139c)

σω1 = 2 (2.139d)

α2 = 0.44 (2.139e)

β2 = 0.0828 (2.139f)

σk2 = 1 (2.139g)

σω2 = 1/0.856 (2.139h)
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The remaining coefficient β′ is specified as:

β′ = 0.09 (2.140)

To avoid overprediction of turbulent viscosity the limiter

µt = ρa1k

max (a1ω, SF2) (2.141)

is employed, where a1 = 0.031 and S is called invariant measure of strain rate. This
quantity is defined as

S =
√

2SijSij, (2.142)

where the components of strain rate are given by

Sij = 1
2

(
∂ui
∂xj

∂uj
∂xi

)
. (2.143)

The blending functions F1 and F2 are defined as:

F1 = tanh
{min

(
max

( √
k

β′ωy
,
500µ
ρωy2

)
,

4ρk
CDkωσω2y2

)}4 (2.144)

F2 = tanh
{max

(
s
√
k

β′ωy
,
500µ
ρωy2

)}2 (2.145)

They are functions of the distance to the nearest surface y, the turbulence quantities k
and ω and the viscosity µ. The coefficient CDkω is calculated as follows:

CDkω = max
(

2ρ 1
σω2ω

∂k

∂xj

∂ω

∂xj
, 1.0× 10−10

)
(2.146)

More details about e.g. the near-wall treatment and the numerical discretization can be
found in the solver documentation [5].

2.6.2 Inviscid, Two-Dimensional Axisymmetric Flow

To validate the SMA introduced in Section 2.4 a comparison with three-dimensional,
viscid flow is not appropriate since the method models inviscid, two-dimensional, axi-
symmetric flow. Consequently a different set of equations is to be solved in order to
produce the validation data. ANSYS Fluent is chosen for this task due to its ability to
solve the Euler equations for two-dimensional axisymmetric geometries [8]. In this case
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and under the assumption of incompressible, steady-state flow without sources Fluent
solves the following equations (in cylindrical coordinates z, r):

∂uz
∂z

+ ∂ur
∂r

+ ur
r

= 0 (2.147)

1
r

∂

∂z
(ruzuz) + 1

r

∂

∂r
(ruruz) = −1

ρ

∂p

∂z
(2.148)

1
r

∂

∂z
(ruzur) + 1

r

∂

∂r
(rurur) = −1

ρ

∂p

∂r
(2.149)

Details about the solver theory are included in the code documentation [8].
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3.1 Development Philosophy

The target of the newly developed program is to provide a comprehensible design system
that is independent of commercial software. All libraries used are free of cos, open
source and without dependencies on proprietary software. Nevertheless, interfaces to
common engineering software products are provided allowing for further processing of
the designed geometry in the CAE-process. Especially a smooth transition to grid
generation and computational fluid dynamics (CFD) is required. Since the program is
entirely developed in Python, it is laid out as a single python package. This package
itself consists of a set of modules containing the whole design functionality. The Python
programming language is mainly selected because of the availability of packages for
scientific computing and GUI development, which facilitate the extension and continued
development of the code by engineering students and researchers.

3.2 Design Overview

An overview of the design work flow is depicted in Figure 3.1 by means of a flow chart.
Starting from the basic parameters, which cover the fluid properties and the operating
conditions, the meridional shape of the inducer is designed. This design step includes the
calculation or specification of the basic dimensions constraining the final shape of hub
and shroud. Of particular importance in this early state of design is the dimensioning of
the inlet eye, as it has great impact on suction performance. Besides the diameters at the
inlet also the outlet dimensions and the axial extent of the inducer have to be defined.
These mainly depend on higher level requirements like the dimensions of already existing
downstream components or the mechanical connection to the pump assembly.
Once the basic dimensions are fixed, the hub and shroud curves as well as the leading
and trailing edge shape are designed by configuring and manipulating the correspond-
ing B-spline curves. Based on hub and shroud shapes two-dimensional streamlines are
computed and the meridional blade sections are extracted by intersecting with the lead-
ing and trailing edges. These blade sections are mapped to the cascade plane and are
subsequently used in the blade design step.
Before the blade shape is designed the number of blades and a certain type of blade
is chosen. In the present implementation two different blade types, which consider the
special demands of inducers, are provided. Furthermore blade sweep at the leading edge
can be configured. Depending on the choice of blade type, leading and trailing edge
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Figure 3.1: Overview of the design steps
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blade angles are determined and used to produce the camber curves of two-dimensional
blade sections in the cascade plane.
In the final step of blade design, thickness distributions are used to create the blade
profiles. These profiles can be exported directly to different data formats or be used
internally to create a three-dimensional blade surface, which is easily transferable to
a 3D-CAD via a .step file. Furthermore the present implementation provides export
capability for file formats used by the commercial turbomachinery grid generation soft-
ware ANSYS TurboGrid [7] and the commercial blade generation software BladeGen [4].
The final blade shapes can then be used to predict the non-cavitating inducer head with
the integrated simple head prediction (SHP) method or for more complex investigations
with CFD codes.
Input and output of design parameters are realized with the .json file format, which is
a standard to convert human-readable text files to programming language specific data
formats [35].
In the following section the design steps mentioned before are discussed in-depth and
parametrization and implementation details are presented.

3.3 Basic Design Parameters

The basic design parameters are divided into fluid parameters and duty parameters.
Since the fluid is considered to be incompressible, the only fluid properties that have
to be specified are density and saturation pressure. These values are mainly used to
convert pressure values to head values and vice versa. By specification of the rotational
speed n, the volume flow rate Q and the Head H the design point of the inducer is
fixed. The range of operation to be considered in the head estimation routine can
already be set at this point by choosing values of the maximum and minimum volume
flow rate. Furthermore, the direction of rotation has to be specified in order to obtain
the proper blade orientation. According to the coordinate convention (see Section 2.2.2)
the direction of rotation can be right (positive) or left (negative). As already indicated
in Section 2.5 only the static part of the head effectively increases the NPSHa of the
downstream pump impeller. Hence, a parameter is provided, which allows the designer
to toggle the usage of the corrected head, i.e. the head reduced by the amount of
circumferential dynamic head. This setting influences the calculation of the trailing
edge blade angle as will be described in Section 3.5.6. Further parameters required to
perform the velocity triangle and energy transmission computation are estimates of the
hydraulic efficiency and the swirl number. The latter can be specified at the hub and
at the shroud section, respectively, and interpolated values are used at the intermediate
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sections. In the common case of axial inflow conditions both values are set to one.
At this point one of the main problems of inducer design (see also Japikse [38]) is already
obvious: Can the inducer be considered as a separate component or should it be designed
together with the impeller as one unit? If the target head of the inducer is prescribed, the
blade angle is effectively determined by the design rule that is applied. If the inducer
is intended for an existing pump application with an already designed impeller and
already fixed inlet dimensions, then two options will arise. Either the impeller has to
be modified to account for the inlet swirl or the impeller is kept as it is and a decreased
efficiency or a shift of best efficiency point (BEP) is accepted. If on the other hand a
new design is attempted from scratch, a similar problem arises. In addition to the exit
flow conditions in this case also the discharge dimensions of the inducer are unknown.
Thus, multiple iterations of inducer and impeller design are very likely to be required
until an acceptable solution is achieved. In both cases an efficient and parametric design
system, which in a first step covers only the inducer, is a valuable tool for the designer.
Nevertheless, the option of a coupled or combined inducer-impeller design could be of
interest in the future. This is why the essential methodology for geometry generation
developed in the following sections is not strictly limited to inducers and can be extended
in a straightforward way to any type of pump impeller.

3.4 Meridional Section

The starting point for the meridional design is an adequate choice of the basic dimen-
sions of the impeller. These dimensions are used to constrain the shape of the merid-
ional section by initially fixing four control points as indicated in Figure 3.2. In the
z, r-coordinate system of the meridional plane the control points defined by the basic
dimensions can be specified as follows:

p1h = (z1h, r1h)

p1s = (z1s, r1s)

p2h = (z2h, r2h)

p2s = (z2s, r2s)

The problem of finding or choosing the basic dimensions of the inducer thus reduces to
setting the coordinates of these four points. To obtain optimum suction performance,
the inlet eye, which is described by d1h = 2 r1h and d1s = 2 r1s, that is by the points
p1h and p1s, has to be designed carefully and based on physical reasoning. This will be
dealt with in the following section. Since the inflow is assumed to be aligned axially, the
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Figure 3.2: Initial meridional section

inlet location (index 1) is orientated perpendicular to the axis of rotation. This means
that the z-coordinates at the hub and shroud are set to equal values (z1h = z1s). The
dimensions at the outlet location (index 2) on the other hand can be designed more freely
by specification of the z, r coordinates at hub and shroud. Using this direct approach
the geometrical matching of the inducer to an existing pump inlet is facilitated and the
axial length of the inducer can be directly controlled by the designer.
Once inlet and outlet dimensions are fixed, the curves representing the hub and shroud
contours have to be constructed. A flexible way of describing these curves is neces-
sary to allow for almost arbitrary shaped geometries of hub and shroud. While smooth
contours are typically used for the hub curve, straight and simple tapered shroud con-
figurations are prevalent in practice. The reason for this is that tight clearances have to
be guaranteed and contact of the blade tip with the casing has to be avoided.
In the last step of meridional section design the leading and trailing edges have to be
defined. In general they can be positioned freely along the hub and shroud curves but
their design already has influence on the final blade shape. Particularly the axial extent
of the blade is determined and the more subtle parameter of blade sweep can be affected
by the position and shape of the leading and trailing edge.

3.4.1 Inlet Eye Design

Defining the inlet eye requires the specification of the hub and shroud diameters at the
inducers inlet. The hub diameter d1h usually is limited by mechanical reasons, that
is for example the minimum shaft diameter required or the dimensions of a bolt or a
nut needed to axially secure the inducer on the shaft. Therefore, it is either specified
directly or it is specified indirectly by setting a fixed value of hub to shroud diameter
ratio ν1 = d1h/d1s. What remains is the problem of finding the appropriate shroud
diameter to obtain a desired value of suction specific speed Ωss.
The inlet eye design is performed based on the so-called Brumfield Criterion [36], which
basically leads to the same conclusion as the reasoning of Dixon [27].

64



3 Development and Implementation

(a) Constant meridional velocity (b) Velocity triangle at the shroud (s)

Figure 3.3: Brumfield Criterion - inlet conditions

In Figure 3.3a the meridional flow approaching the inducer (or any other type of impeller)
is depicted. The flow is assumed to be inviscid and swirl-free such that the velocity
diagram displayed in Figure 3.3b is obtained immediately in front of the impellers leading
edge. A generalized derivation of the equations including the effect of swirl is provided
in Appendix B. Independent of the swirl of the inflow angular speed of the blade may
be expressed in terms of circumferential velocity at the outer diameter as follows:

ω = 2πn = 2u1s

d1s
(3.1)

Supposing that the meridional velocity cm1 is uniformly distributed in the cross sectional
area at location 1 and introducing the hub blockage factor k = 1− ν2

1 the volume flow
can be expressed as:

Q = cm1
π

4 (d2
1s − d2

1h) = cm1
π

4d
2
1s(1− ν2

1) = cm1
π

4kd
2
1s (3.2)

The total pressure along the streamline at the outer diameter can be calculated according
to:

ptot,1s = p1s + 1
2ρc

2
1s (3.3)

Due to the acceleration of the fluid caused by the rotating blades the local pressure p
close to the blades is reduced [27]. Cavitation inception occurs when the pressure p at
some location is decreased to vapor pressure pv. With the blade cavitation coefficient
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defined as

σb = p1s − pv
1
2ρw

2
1s
, (3.4)

the pressure p1s can be expressed as:

p1s = σb

(1
2ρw

2
1s

)
+ pv (3.5)

The blade cavitation coefficient is an empirical factor, which relates the inflow con-
ditions to a certain level of cavitation observed during experiments. Typical values
corresponding to the cavitation inception point, which is the point where the first oc-
currence of cavitation is detected during suction performance test runs, lie in the range
of σb = 0.2 . . .0.4 for standard pump impellers [27]. According to Japikse et al. [39]
this range is extended to σb = 0.1 . . .1 in industrial practice and to values of σb < 0.1
for rocket turbopumps. For carefully designed inducers even lower values of σb < 0.001
are indicated by Japikse [38] but the corresponding levels of cavitation are not clear.
Assuming the velocity triangle as depicted in Figure 3.3b the net positive suction head
Hs or NPSH can be written in terms of blade cavitation number:

Hs = NPSH = (ptot,1s − pv)
gρ

= 1
2g
[
σbw

2
1s + c2

1s

]
= 1

2g
[
(1 + σb)c2

m1 + σbu
2
1s

]
(3.6)

Typically suction performance of pumps is expressed by means of the suction specific
speed, which can be defined in a dimensionless way as follows [27]:

Ωss = 2πn Q1/2

(gNPSH)3/4 (3.7)

When comparing values of suction specific speed, it has to be considered that there exist
different unit conventions. In Appendix C the conversion factors from the dimensionless
version to the European and US-American unit conventions are provided. Furthermore,
the level of head drop at which NPSH is evaluated in the experiment has to be specified.
In practice, usually NPSH3 at 3 % head drop of the whole pump is used in the above
equations. For inducers also different values ranging from 10 % [36] to 30 % [2] or even
50 % [38] are documented.
By substitution of the net positive suction head Hs, the volume flow Q and the angu-
lar velocity ω in the definition of suction specific speed, as given in Equation 3.7, by
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Equations 3.6, 3.2 and 3.1 respectively the following equation is obtained:

Ωss = (πku2
1scm1)1/2(

1
2 [(1 + σb)c2

m1 + σbu2
1s]
)3/4 (3.8)

Introduction of the flow coefficient ϕ1 = cm1/u1s finally leads to:

Ωss = (πkϕ)1/2(
1
2 [(1 + σb)ϕ2 + σb]

)3/4 (3.9)

Equation 3.9 represents the general relation between suction specific speed, flow coeffi-
cient and the blade cavitation coefficient. Following Dixon and Hall [27], the maximum
theoretically achievable suction specific speed can be derived from this equation by com-
puting (dΩss/dϕ) = 0. As a result, the optimum flow coefficient depending only on the
blade cavitation number can be obtained by:

ϕ =
(

σb
2 (1 + σb)

)1/2

(3.10)

Of course, the inverse relationship can equally be determined and reads as follows:

σb = 2ϕ2

1− 2ϕ2 (3.11)

Elimination of σb in Equation 3.9 with the help of Equation 3.11 on the other hand gives
the optimum suction specific speed for fixed hub blockage factor k as a function of flow
coefficient:

Ω∗ss = Ωss

k1/2 =

π
(

2
3

)3/2
(1− 2ϕ2)3/2

ϕ2


1/2

(3.12)

The value denoted by Ω∗ss is also called corrected suction specific speed. Equation 3.12,
which is known as Brumfield’s criterion [36], can be used to calculate the flow coefficient
which would be required to provide optimum suction performance. Computation of the
corresponding optimum shroud diameter then is straightforward:

d1s =
(

4Q
π2ϕnk

)1/3

(3.13)

It has to be noted that both Equations 3.12 and 3.13 are solved by iterating towards
a satisfying solution because the hub blockage factor k is not known a priori. In the
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current design procedure the design for maximum suction specific speed is accomplished
by a combined iterative procedure, which updates k at the beginning of every iteration
step. The updated k is then kept constant to solve Equation 3.12 for the flow coefficient
ϕ, which in turn is used to compute an update of d1s from 3.13. Of course, it is
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Figure 3.4: Theoretical tendencies of inducer inlet design

also possible to choose the inlet diameter manually without maximizing suction specific
speed. Figure 3.4a shows the theoretical relationship between corrected suction specific
speed Ω∗ss and flow coefficient ϕ, which is a direct result of the chosen inlet dimensions. If
a certain value of blade cavitation coefficient is assumed the discrepancy to the optimally
achievable values of suction specific speed according to Brumfield’s criterion, displayed
as a dashed line, can directly be retrieved from this diagram.
Figure 3.4b, which is adapted from Jakobsen [36], can either be used to check the suction
specific speed that is theoretically achievable with a set of chosen design parameters or
to select a diameter suitable to obtain a desired level of suction specific speed. The
corrected suction specific diameter d∗ss is obtained by expressing speed n in Equation
3.13 in terms of corrected suction specific speed:

d∗ss = d1s
k1/2 (gHs)1/4

Q1/2 =
(

2
π2ϕΩ∗ss

)1/3

(3.14)
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3.4.2 Hub and Shroud Design

The hub and shroud curves are designed by one or multiple segments, which are repre-
sented by uniform B-spline curves. By default the B-spline curves are cubic (of degree
3) as long as at least four control points are given. If less control points are given, the
degree is reduced. Piecewise linear curves are obtained by setting the degree of the
B-spline to 1. In this case, the B-spline curve is equivalent to the control polygon.
The curves are directly constructed from the control points specified by the user and the
corresponding uniform knot vector (see Section 2.3). In case of multiple curve segments,
the start and end points of joining segments have to be identical to ensure a valid curve
without interruptions (G0 continuity). Furthermore, the tangential direction can be
forced to be equal at the joining point of two segments (G1 continuity). In this case, the
control points are shifted accordingly. Figure 3.5a depicts the control polygons of the hub
and shroud section of an generic inducer with tapered shroud and smooth hub section.
Both hub and shroud section consist of three curve segments. At the hub B-spline curves
are used and at the shroud piecewise linear curves are employed as described above. By
fixing the starting point of one segment at the inlet and the end point of the same or
any other segment at the outlet it is ensured that the main dimensions are respected
by the meridional shape design. This is indicated by the filled gray square marker. The
curve progression upstream, downstream and in-between these points can be designed
without constraints. Evaluation of the B-spline curves resulting from the control polygon
leads to the curves shown in Figure 3.5b. If either no control points are specified or

(a) Control points of curve segments (b) Hub and shroud curve

Figure 3.5: Meridional curve design - consideration of basic dimensions

the provided control points are inconsistent with the basic dimensions, a default curve
construction method is provided for the hub and the shroud as illustrated in Figure 3.6a.
Given the straight line connecting the points defined by the basic dimensions at the hub
the z-coordinates of three points distributed equidistantly are used as initial values. The
r-coordinate of the first and last of these points is replaced by the radius of the inlet
or outlet point respectively to obtain horizontal tangents at the entry and discharge
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(a) Default control points of hub and shroud
curve

(b) Default hub and shroud curve

Figure 3.6: Meridional curve design - default curve construction

locations. At the shroud the straight segment connecting the already available points
is used. Both hub and shroud are extended tangentially to provide some space for the
leading and trailing edge positioning and the meridional flow analysis. The resulting
curves for the example under consideration are depicted in Figure 3.6b
On top of the simple meridional analysis (SMA), which is performed on every change of
the underlying meridional curves and provides a visualization of the meridional velocity
field, a method to compute the meridional area as well as the mean velocity progression
is implemented. The method is based on a geometrical procedure developed by Krämer
[44], who also used it to generate streamtubes of equal flow in the meridional section.
Hence, this method, which is described shortly in the remainder of this section, could
alternatively be used to obtain streamlines in the meridional section. In the first step
the meridional section is triangulated (see Figure 3.7a) by equidistantly sampling the
hub and shroud curve and then finding the closest connections from hub to shroud as
explained in detail by Krämer [44]. As a result, straight lines linking hub and shroud
are obtained. On these lines the midpoint of a circle, which is tangentially to both the
hub and shroud curve is computed iteratively. The contact points of the circle with the
hub and shroud curves are used together with the midpoint as the control points of a
parabolic (degree two) B-spline reaching from hub to shroud (see Figure 3.7b). Because
of this construction method the B-splines are perpendicular to the hub and shroud
sections and are well suited to be used as quasi-normals of the meridional flow field.
The midpoints of the circles, that are the central points of the control polygons defining
the quasi-normals, are directly used to compute the midline by means of interpolation
with a cubic B-spline curve. The meridional velocity can subsequently be sampled from
the flow field computed with the SMA as described before. To compute the cross-
sectional area distribution along the midline integration along the quasi-normals has
to be performed. Supposing that n is the curve parameter of the quasi normal i as
depicted in Figure 3.7c the corresponding cross sectional area is obtained by integration
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(a) Triangulation

(b) Construction of Quasi-Normals

(c) Area Progression based on Quasi-Normals

Figure 3.7: Meridional area progression

as follows:

Ai =
∫ n2

n1
2πr(n) dn (3.15)

Under the assumption of constant meridional flow velocity along the quasi-normals,
segments of equal flow can be computed, which, as already mentioned, might be used
to construct an alternative set of streamlines. Another set of less physical streamlines
could also be obtained by simply computing equidistantly spaced segments along the
quasi normals. Although in principle any arbitrary set of streamlines could be used to
derive the blade sections, the major drawback of these two alternative sets of streamlines
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is, that there is no physical relation between the velocity field and the streamline shape.

3.4.3 Leading and Trailing Edge Design

The leading and trailing edges are positioned by specification of the control points ple,h,
pte,h on the hub and ple,s, pte,s on the shroud curve. These control points can be moved
along the curves by modification of their length coordinate lh and ls respectively. As
indicated in Figure 3.8a the length coordinate is defined as the arc length evaluated
along the hub or shroud curve. To make the specification more intuitive for the designer
the percentage of curve length, which is obtained by normalizing the arc length with
respect to the total curve length, is used.
By default, a straight segment obtained by using only the two control points at hub
and shroud is used. Additional intermediate control points can be specified in a non-
dimensional way, by considering the hub point with coordinates (0,0) and the shroud
point with coordinates (1,1). Figure 3.8b shows the leading and trailing edge represented
by B-spline curves of degree two (parabolic) using one additional intermediate control
point. If more than three control points are specified, cubic B-spline curves are generated
in the same fashion as already explained in Section 3.4.2 for the hub and shroud curves.

(a) Defining control points (b) Curves

Figure 3.8: Leading and trailing edge design

As an alternative approach of parametrization, the inclination angles εle and εte mea-
sured against the radial direction can be used to construct the shroud points of leading
and trailing edges. With these angles a straight line is constructed and the intersection
point of this line with the shroud curve is used as the shroud point of the leading or
trailing edge as indicated in Figure 3.9. By convention, the angles are considered pos-
itive if counter-clockwise rotation would be required to align the edge with the radial
direction with the minimum amount of rotation. Thus, in Figure 3.9 the leading edge
inclination would be considered positive and the trailing edge inclination negative, i.e.
εle > 0 and εte < 0.
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Note that both approaches mentioned so far do not require the leading and trailing edges
to be coincident with the inlet and outlet points defined by the basic dimensions (plotted
as gray squares). However, a setting is provided to fix the control points of the edges at
the hub and shroud section independently to the corresponding points determined from
the basic dimensions. By not constraining the positions of the edges a great degree of
freedom is given to the designer and the design of the meridional shape is decoupled
from the leading and trailing edge design. Nevertheless, the designer should tend to
position the blades edges close to the inlet and outlet locations to avoid unexpected
performance behavior.

Figure 3.9: Alternative parametrization of leading and trailing edge

3.4.4 Transformation to the Cascade Plane

With the meridional section readily laid out the SMA is used to compute any desired
number of streamlines from the inlet to the outlet, which are subsequently used to
construct the blade sections. Compared to conventional centrifugal pump impellers
a higher number of sections can be necessary for inducers to correctly represent the
swept and therefore the highly three-dimensional leading edge shape (see Section 3.5.4).
To develop the blade sections in the cascade plane a mapping of coordinates allowing
the transfer from the three-dimensional z, r, θ (or x, y, z) space to the m′, θ plane and
vice versa has to be provided. The procedure developed in this thesis is based on the
approach of Miller [54] and makes use of B-splines to accomplish the mapping. At the
beginning of the mapping procedure the streamlines, which are available as a discrete set
of points on the meridional grid (see Section 2.4.3), are interpolated using chord-length
parametrization. By splitting the resulting B-spline curves at their intersections with
the leading and trailing edge, three curve segments are obtained. These segments are
sampled equidistantly with a specified number of points. By default, 100 points are used
for the blade section between leading and trailing edge and 10 points are used upstream
and downstream of the blade edges. The three sets of points are then interpolated again
using uniform parametrization ranging from u0 = −1 to u1 = 0 for the upstream part
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Figure 3.10: Curve parametrization and index convention

of the streamline, from u1 = 0 to u2 = 1 for the blade section and from u2 = 1 to
u3 = 2 for the downstream part of the streamline. With this convention the leading
and trailing edge locations can always be identified by the curve parameters u1 = 0 and
u2 = 1, respectively. Figure 3.10 illustrates the parameter convention for the example
of a generic mixed-flow impeller. Along the streamline curves the meridional and radius
normalized meridional coordinates m and m′ are computed and the four following B-
spline curves are generated by interpolation:

Czrm(u) =


z(u)
r(u)
m(u)

←→

z(m)
r(m)
u(m)

 = Czru(m) (3.16)

Czrm′(u) =


z(u)
r(u)
m′(u)

←→

z(m′)
r(m′)
u(m′)

 = Czru(m′) (3.17)

The curves used for the direct mapping, that is for the mapping to the cascade plane, are
called Czrm(u) and Czrm′(u) and use the parameter u along the streamlines introduced
before. With the help of these curves the coordinates z, r,m and m′ can be computed
conveniently for any parameter u in the valid parameter range. By reversing the roles
of the curve parameter u and the m and m′ coordinates, which is completely legitimate
since they are both increasing by definition (see Section 2.2.2), the inverse mappings
Czru(m) and Czru(m′) are obtained. Thus, the curve parameter u can be computed for
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any value of m or m′ by simply evaluating the corresponding B-splines. No mapping
is required for the circumferential coordinate θ because it directly translates from the
three-dimensional z, r, θ to the m′, θ coordinate system. Using the above mappings it is
a straightforward process to transfer a blade section developed in the cascade plane to
the three-dimensional space.
To facilitate storage, access and manipulation of the data along the blade sections it is
organized in a three-dimensional array B:

BNk×Ni×Nd =
[
D0 . . . DNk−1

]
(3.18)

The first dimension is of size Nk and represents the sections along the spanwise direction.
For each blade section a two-dimensional array Dk of size Ni×Nd is stored, where Ni is
the number of points and Nd is the number of quantities stored along the blade section:

DNi×Nd
k =


u0 v0 m0 m′0 . . .
... ... ... ... . . .

uNi−1 vNi−1 mNi−1 m′Ni−1 . . .


k

(3.19)

In principle Nd can be extended to accommodate the desired number of quantities of
interest. In the current implementation Nd is of size 13 and at the section k the following
quantities are stored for every index i:

Dk,i = [u, v, z, r, m, m′, θ, βb, t, cz, cr, cm, l3d]k,i (3.20)

Similar to the streamwise curve parameter u the spanwise parameter v is provided to
allow for simple interpolation along the spanwise direction (from hub to shroud). This
parameter could be chosen in different ways (e.g. by chord-length or centripetal method)
and independently at every streamwise location i to achieve the desired interpolation
results. However, a more convenient approach using uniform parametrization is imple-
mented, such that the blade sections are treated as curves of constant span coordinate.
Besides the wrap angle θ, the blade angle βb, the thickness t and the velocity compo-
nents of the meridional flow cz, cr and cm, the length coordinate in the three-dimensional
space l3d is stored. These values are necessary for the construction of the blade profile,
as will be explained in Section 3.5.9.
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3.5 Blade Design

3.5.1 Number of Blades

Common inducer designs have two to four blades, where three seems to be the most
widely spread number of blades [31, 36]. There’s no correlation known that could be
used to select the optimum number of blades for a new inducer design. This parameter
therefore has to be selected out of experience or by a trial-and-error approach. Besides
the best trade-off between flow guidance and friction losses also more system related
aspects can be important when choosing the blade number Z. As indicated by Jakob-
sen [36] having a common denominator of the number of inducer and impeller blades
is supposed to be advantageous. Another parameter, which is not well documented
but directly coupled to the used number of blades of the inducer and the downstream
impeller, is the relative positioning between these two components.

3.5.2 Helical Blade

The helical blade type is the classical version of the inducer blade. Helical inducers can
be further divided into constant and variable pitch (or lead) versions. In case of constant
or approximately constant blade thickness the most basic version of the inducer, the so
called flat plate inducer, is obtained. These types of inducers have been extensively
studied in the past (see e.g. Acosta [1]) and were favored because of their comparably
easy manufacturing [36].
The basic equation describing the helical blade shape (in terms of the blade lead per
radian λ) relates the radii r at any axial location z to the blade angle βb and reads as
follows:

λ(z) = r(z) tan(βb(z)) = const. (3.21)

As described by Jakobsen [36] the wrap angle can be computed by solving the following
equation numerically for θ:

dz = tan(βb) d(rθ) (3.22)

By specification of the blade angle distribution βb,ref(z) at some reference radius rref the
blade angle can be computed at arbitrary coordinates (z, r) using the equations above.
A common choice for the reference radius is the rms-radius rrms [36]. Since the leading
and trailing edges are in general no straight radial lines, the z-coordinate range varies
on the different blade sections. Thus, the reference blade angle distribution is expressed
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with respect to the normalized axial coordinate z∗:

z∗ = z − zte
zle − zte

(3.23)

With the blade angle distribution available at the reference radius (e.g. at rrms) the
blade angle at any location given by z, r coordinates is computed as follows:

βb(z∗, r) = arctan
(
λ(z∗)
r

)

= arctan
(
rref

r
tan(βb,ref(z∗))

)
(3.24)

Equation 3.24 is particularly useful to calculate the blade angle at the leading and
trailing edge and could be employed to solve Equation 3.22 directly (e.g. by using a
finite differences method) as proposed by Jakobsen [36]. However, this approach could
lead to inconsistency in the blade angle values, which are alternatively recomputed
from Equation 2.17, i.e. by differentiation of the θ curve. To avoid this inconsistency
Equation 2.17 is used instead to compute the wrap angle θ(m′) along the blade section
by integration of the blade angle:

θ = θ(m′le) +
∫ m′

m′
le

dm′
tan βb

(3.25)

In the current implementation linear and parabolic blade angle progressions are provided
by setting the exponent p in the following equation either 1 or 2:

βb,ref(z∗) = βb,le + (βb,te − βb,le) (z∗)p (3.26)

For both types of progression the specification of a constant angle segment starting from
the leading edge is possible. This is realized by providing a threshold value z∗const and
defining the angle distribution as follows:

βb,ref(z∗) =

βb,le , z∗ ≤ z∗const

βb,le + (βb,te − βb,le) z∗p , z∗ > z∗const

(3.27)

Figure 3.11 depicts the two different blade angle distributions comparing the versions
with and without a constant angle section starting from the blade leading edge. The
linear version is shown in Figure 3.11a, the parabolic in Figure 3.11b.
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(b) Parabolic distribution

Figure 3.11: Blade angle distributions at reference radius

3.5.3 General Blade

Since the helical blade is mostly fixed by specification of the angle distribution on the
reference radius, the designer’s freedom in shaping the other blade sections is limited.
Towards the hub sections undesirably large blade angles can result from this design rule
and a careful matching of meridional shape and blade angle has to be performed. Hence,
the designer could prefer a distinct and less restricting way of prescribing the blade angle
progression in such kind of situations. Furthermore, the designer might be used to the
procedure commonly applied in the design of conventional centrifugal pump impeller
design where the blade mean line can be specified either by prescribing the blade angle
(βb) or the wrap angle (θ) progression freely on different blade sections running from
leading to trailing edge. Out of these reasons a different blade type, the general blade,
is introduced. Two different design modes have been implemented, called the Theta
and the Beta design mode. In both cases angle distributions are described by means
of the control points of uniform B-splines of degree three, to allow for a comparatively
simple parametrization of the curves. Although exactly the same set of parameters is
used to define the control points for both the Theta and the Beta design modes, the
interpretation of the parameters naturally differs slightly. This will be explained in more
detail below, considering first the Theta design mode.
In the current implementation only the hub and the shroud sections are used to define
the entire blade but an extension to more blade sections would be straightforward. The
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advantage of a reduced number of blade sections, on which design manipulations are
manually performed, is that a smooth blade is obtained by linearly interpolating the
control points of the intermediate sections. Figure 3.12a shows the parametrization of

(a) Wrap angle (θ) distribution

m ′
le m ′

te
m ′

βb, le

βb, te

β
b

(b) Derived blade angle (βb) distribution

Figure 3.12: General blade design (Theta design mode)

the wrap angle (θ) progression on the hub section of an exemplary high head inducer.
The θ curve (or camber curve) is parametrized by six control points p(1) to p(6). To
avoid confusion with the indices previously used for the inlet and outlet locations and
the indices commonly used for the velocity triangles at the leading and trailing edge (see
Section 2.2.2), the indices of the coordinates of the control points are written in round
brackets. Because the first and the last points are constraint by the leading and trailing
edge coordinates they can be equivalently expressed by different indices:

p(1) = (m′(1), θ(1)) = (m′1, θ1) = (m′le, θle) (3.28)

p(6) = (m′(6), θ(6)) = (m′2, θ2) = (m′te, θte) (3.29)

The last notation is the one which will be used in the remainder of this section as it
prevents the indices from being mistaken. In the θ design mode, the control points p(2),
p(3) and p(4), p(5) have to be positioned in such a way that the blade angles at the leading
and trailing edge are realized as desired. Supposing the blade angles at the leading and
trailing edges are fixed (see Sections 3.5.5 and 3.5.6), the corresponding control points
have to be located along the ray at the corresponding angle (see Figure 3.12a). Four
parameters are used to define the locations of the four remaining control points. They
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are called m′∗(2), m′
∗
(5), m′

∗∗
(3) and m′

∗∗
(4) and are specified in a normalized way as follows:

m′
∗
(2) =

m′(2) −m′le
m′te −m′le

(3.30)

m′
∗∗
(3) =

m′(3) −m′(2)

m′(5) −m′(2)
(3.31)

m′
∗∗
(4) =

m′(4) −m′(2)

m′(5) −m′(2)
(3.32)

m′
∗
(5) =

m′(5) −m′le
m′te −m′le

(3.33)

This means that the meridional position of the second point and the second last point
are specified as a percentage of the total meridional length (radius normalized) and the
third point and the third last point as a percentage of the remaining distance in-between
the second and second last points. Thus, the m′ coordinates of the control points are
calculated with the help of the following formulas:

m′(2) = m′le + (m′te −m′le)m′
∗
(2) (3.34)

m′(3) = m′le + (m′(5) −m′(2))m′
∗∗
(3) (3.35)

m′(4) = m′te − (m′(5) −m′(2))m′
∗∗
(4) (3.36)

m′(5) = m′te − (m′te −m′le)m′
∗
(5) (3.37)

The corresponding θ-coordinates are then set as follows:

θ(2) = θle + (m′(2) −m′le)/ tan(βb,le) (3.38)

θ(3) = θle + (m′(3) −m′le)/ tan(βb,le) (3.39)

θ(4) = θte − (m′te −m′(4))/ tan(βb,te) (3.40)

θ(5) = θte − (m′te −m′(5))/ tan(βb,te) (3.41)

By computing the derivative along the camber curve the blade angle distribution is
obtained. As can be seen from Figure 3.12b the s-shaped camber curve at the hub
section results in a smooth progression of blade angle with a distinct local minimum,
which in this case is displayed in an exaggerated way due to the unequal scaling of
the axes. Although the blade angle at the blade edges is ensured by this method, it
has to be noted that due to the underlying properties of the uniform B-spline curves
the extent of the constant blade angle section cannot be controlled precisely. This is
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becoming especially clear by looking at the change in slope of the blade angle curve in
Figure 3.12b close to the blade edges. The easiest way to obtain a curve that passes the
second or second last control point would be to add a fourth control point along the ray
at the leading or trailing edge angles, respectively. Nevertheless, this is not considered
by default and the parameters provided can be used to obtain a desired progression
very conveniently. Similar to the normalization used for the leading and trailing edge
curve parametrization additional interior control points, between p(3) and p(4), can be
specified. The normalization in this case is performed with respect to the third and the
third from last control point. Although this provides some additional degree of freedom,
it should normally not be necessary to include more control points, all the more, as a
smooth transition from the leading edge to the trailing edge angle is generally desired.

m ′
le m ′

(2) m ′
(3) m ′

(4) m ′
(5) m

′
te

m ′

βb, le

βb, te

β
b

(a) Blade angle (βb) distribution

m ′
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te
m ′

θle

θte

θ

(b) Derived wrap angle (θ) distribution

Figure 3.13: General blade design (Beta design mode)

In case of the Beta design mode, the blade angle progression at the hub and shroud
sections is prescribed instead of the wrap angle by using the same set of parameters.
Consequently, the same formulas 3.34 to 3.37 are applied to obtain the m′ coordinates
of the control points. Constant blade angle sections at the leading and trailing edge of
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the blade are obtained by simply setting:

βb,(2) = β1b = βb,le (3.42)

βb,(3) = β1b = βb,le (3.43)

βb,(4) = β2b = βb,te (3.44)

βb,(5) = β2b = βb,te (3.45)

The resulting distribution is illustrated in Figure 3.13a, this time for the shroud section of
the exemplary high head inducer. As before the actual meridional length (in terms of m′

coordinate) of the constant angle segment is not enforced by the current parametrization
because preference is given to a smooth (C2 continuous) curve shape with a minimum
number of control points.

m ′

θ

Hub
Intermediate
Shroud

(a) Theta curves (camber curves)

m ′

β
b

Hub
Intermediate
Shroud

(b) Blade angle distributions

Figure 3.14: Result of Theta design mode

While the blade angle prescription might seem like a very intuitive and convenient
way to obtain the desired flow turning, it is not guaranteed that a valid blade shape is
obtained from this method. The reason for this is that the control over the wrap angle is
effectively lost by directly designing the blade angle progression. In fact the wrap angle
progression is obtained by integration of the βb curve as already seen in case of the helical
blade type. Since there is no coupling between the m′ coordinates of the different blade
sections, the wrap angle resulting from this angle can vary drastically along the spanwise
direction and highly twisted blades with strong lean could be obtained. Nevertheless,
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the resulting camber curve derived from the specified blade angle distribution is depicted
in Figure 3.13b. A very careful adjustment of the blade angle in streamwise as well as
in spanwise direction is necessary to generate a valid blade shape. This can be a very
time consuming trial and error process which is why the Theta design mode is generally
preferred.
As already mentioned only the hub and shroud sections are prescribed in the current
implementation. The intermediate sections are obtained by linear interpolation of the
parameters introduced above. By application of the same construction procedure as
previously used for the hub and shroud sections the B-spline curves on the intermediate
sections are assembled. With this procedure it is ensured that the blade angles comply
with the desired angles already computed on all the blade sections. Figures 3.14a and
3.14b show the theta curves and the blade angle progressions for the hub, shroud and
the intermediate blade sections of the exemplary inducer.

3.5.4 Blade Sweep

It is commonly accepted that a certain amount of backward- or forward-sweep has
positive influence on the suction performance and stability under cavitating conditions
without decreasing the head rise significantly. Several studies have been performed in the
past. Investigations on this topic are documented for example in references [3, 13, 37].
Therefore, a design procedure for inducers should enable the designer to define the sweep
angle of the leading edge in a parametrical way.
The definition of sweep angle used in this thesis is depicted in Figure 3.15. The sweep
angle ∆θ1s is measured against the positive rotating direction such that a positive sweep
angle corresponds to a backward sweep design and a negative sweep angle to a forward

Figure 3.15: Definition of blade sweep in front view
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sweep design. Both designs are reported in the open literature [17, 36] but the back-
ward swept design is the predominant one in unshrouded inducers, due to structural
advantages [22].
Acosta et al. [3] developed a theoretical model to investigate the effect of swept leading
edges on the cavitation behavior of an inducer. The investigations performed with
this model indicate improved cavitation behavior for both backward and forward sweep
designs. However, the inducer geometries used are very specific and extracting some
design advice from these results is hardly possible (and not intended by the authors).
Very little information is available in the open literature on how exactly the sweep angle
progression from hub to shroud should be designed. Acosta et al. [3] used an involute
curve to define the leading edge shape in the front view (looking from inlet to outlet) but
no detailed information about the construction of the main blade geometry is provided.
Bakir et al. [13] investigated the effect of successively increasing the backward sweep
of a cylindrical inducer from 29◦ to 101◦. While suction performance and cavitation
stability could be improved substantially by increasing the backward sweep, a shift of
best efficiency point to higher flow rates was observed. At the same time the slope of the
head characteristic curve was reduced. Based on these results a backward sweep angle
between 65 and 90◦ is recommended by Gülich [31]. As was already stated above these
recommendations are again based on specific investigations and any generalization is
subject of a certain degree of uncertainty. However, good initial designs are very likely
if sweep angles are chosen in this range.
Choi et al. [22] performed another specific study of the effect of blade sweep on the
hydraulic performance of an inducer. Numerical and experimental investigations of a
backward and a forward sweep inducer designed for the same application are performed
in this study. Interestingly the results indicate that a forward swept design can even
improve efficiency and the leading edge tip backflow pattern while suction performance
is maintained. This advantage is attributed to the fact that a smaller inlet diameter
and a reduced axial length could be used for the forward sweep design. Although
generalization of these results is equally arguable, it clearly shows that there is still
potential for optimizing every individual application. The procedure developed in this
thesis therefore wants to provide a flexible way to design the leading edge shape and
leave room even for unconventional design solution.
In the current procedure the blade sweep is parametrized by means of the sweep angle
∆θ1s at the leading edge shroud position as depicted in Figure 3.15. A linear progression
of wrap angle from zero at the hub to the specified value at the shroud is realized by
interpolation with the spanwise parameters at the leading edge. By default, a uniform
parametrization is used along the blade section as described in Section 3.4.4 and the
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sweep back angle at any spanwise location v = 0 . . .1 is calculated as:

∆θ1(v) = (∆θ1s −∆θ1h) v + ∆θ0h = ∆θ1s v (3.46)

(a) Meridional view (b) Cascade view

Figure 3.16: Cut back of leading edge

An alternative option is provided to perform a cut of a virtual straight radial leading edge
before the additionally specified sweep back is realized. With this procedure the sweep
angle is also controlled by the meridional leading edge curve, which can be advantageous
for the overall blade wrap distribution. Figure 3.16a depicts a meridional section with
the virtual radial leading edge indicated by a dotted line. The final leading edge curve
is obtained by virtually cutting away the excessive material over an axial length of
∆z1 = z1(v) − z1h while assuming a constant radius r1(v) and a blade angle at each
blade section close to the leading edge. Developing the cascade view at this radius the
geometric properties of the cut can be derived as shown in Figure 3.16b. Thus, the
virtual cut is considered by increasing the starting value of wrap angle θ at each section
by

∆θ∗1(v) = z1(v)− z1h

r1(v) tan(βb,le)
. (3.47)

The total leading edge wrap angle then is computed by

∆θ1(v) = ∆θ∗1(v) + ∆θ′1s v, (3.48)

where ∆θ′1s is the additionally specified sweep angle. Of course any other progression
of sweep angle with respect to spanwise parameter v or an alternative parameter like
radius r is easily implemented within this structure. In the current work only the linear
progression is used as it does not further increase the number of design parameters.
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3.5.5 Leading Edge Blade Angle

The selection of the entry blade angle is critical to guarantee the required operational
range on the one hand and the suction performance on the other hand. According to
Acosta [2] typical values of blade angle range from 7 to 15◦. This coincides with the
historical study of blade angles presented by Japikse [38], which includes blade angles
between 5 and 15◦.
In the present design method two options are provided to specify the blade angle. It is
either specified directly or it is determined based on the incidence to blade angle ratio.
In the latter case the inlet flow angle is computed for any radius r1 from the following
equation:

β1 = arctan
(

cm1

2πr1nδr

)
(3.49)

At this point blockage can either be neglected or included by replacing cm1 with cm1
′ =

b1cm1. Consequently, β1 should be replaced by β′1:

β1
′ = arctan

(
cm1

′

2πr1nδr

)
(3.50)

Furthermore, it is very common to assume a constant mean velocity at the inlet such
that cm1 = cm1, where cm1 is taken as the arithmetic average of the meridional velocity
along the leading edge. However, it is also possible to use the local meridional velocity
which is provided by the SMA. For the typical assumption of swirl free inlet conditions
δr is set to 1.
If the blade angle is specified directly, the resulting incidence angle can be checked by
using Equations 2.27 or 2.28. If the second approach is used, that is, the incidence to
blade angle ratio i/β1b is prescribed, the following equation will have to be solved for
β1b

β1b = β1

1− (i/β1b)
(3.51)

While this is straightforward when blockage is neglected, an iterative solution is nec-
essary when blockage is to be included, since the blockage factor (see Equation 2.13)
depends on the blade angle. Thus, Equation 3.51 is modified to

β1b (1− (i/β1b)) = arctan
(
b1 cm1

2πr1nδr

)
(3.52)
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with

b1 =
(

1− t1 Z

2 π r1 sin βb1

)−1

. (3.53)

Computation of the leading edge blade angle β1b is performed for all desired locations
along the leading edge.
Recommendations on how to choose the incidence or the incidence to blade angle ratio
can be found in the literature. Depending on the blade thickness Jakobsen [36] proposes
values between 0.35 for thin and 0.5 for thick blades with the mean value of 0.425 being
the generally preferred value. He suggests that higher values than 0.425 should also
be chosen if a wide range of flow rate is desired. The reasoning behind this is, that
zero incidence should not be obtained at the maximum required flow rate. A similar
guideline is provided by Gülich [31], who states that the incidence should not fall below
1◦ at the maximum desired flow rate.
Depending on the blade type according to Sections 3.5.2 and 3.5.3 different options are
provided to determine the leading edge blade angle β1b along the spanwise direction.
For the helical blade only one parameter, either blade angle or incidence to blade angle
ratio, has to be specified to fix the inlet blade angle at the reference radius. In case
of the general blade type the same helical blade angle progression along the leading
edge can be used, or instead the parameters may be set independently for the hub and
shroud sections. Linear interpolation then is used to compute the blade angle at the
points along the leading edge directly or the incidence to blade angle ratio, which in
turn is used to calculate the blade angle with the help of Equation 3.51 or 3.52.

3.5.6 Trailing Edge Blade Angle

Similar to the blade entry angle design different methods to determine the exit blade
angle are provided. For both the helical and the general blade type the exit blade angle
can either be determined by specification of the blade camber angle or by using Euler’s
equation (Equation 2.22). While the application of the first option is straightforward,
the latter requires further assumptions and some more input. As can be seen from the
velocity triangle in Figure 2.8b the exit blade angle is equal to the flow angle under the
assumption of blade congruent flow. This can be expressed as:

tan β2b = cm2
′

u2 − cθ2∞
(3.54)

To avoid writing all the relations twice blade blockage is included in the above equation
and in the following equations as well without loss of generality. If blade blockage is to
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be neglected, the correct equations are obtained by simply setting the blockage factor
to one.
The relation between the perfectly guided flow and the velocity triangle for a finite
number of blades is expressed by the slip factor concept introduced in Section 2.2.3.
Thus, with the help of Equation 2.32 the velocity component cθ2∞ can be replaced with

cθ2∞ = cθ2 + u2(1− γ), (3.55)

which leads to the following expression for the trailing edge blade angle:

β2b = arctan
(

cm2
′

γu2 − cθ2

)
(3.56)

From Euler’s pump equation (Equation 2.22) the circumferential component of the ab-
solute flow velocitiy cθ2 is computed by:

cθ2 = 1
u2

(
y

ηh
+ u1cθ1

)
(3.57)

The circumferential velocity at the inlet can be expressed by using the swirl number as
follows:

cθ1 = u1(1− δr) (3.58)

Introducing Equations 3.55, 3.57 and 3.58 into Equation 3.54 the following expression
for the exit blade angle is obtained:

β2b = arctan
(

cm2
′u2

y/ηh − γu2
2 + u2

1(1− δr)

)
(3.59)

Obviously, two estimates for hydraulic efficiency ηh and slip factor γ have to be provided
at this point. According to Jakobsen [36] a hydraulic efficiency of 0.85 can be applied.
Gülich [31] suggests a range of 0.7 to 0.9, which is why a default value of 0.8 is defined. As
already indicated earlier in Section 2.2.3 no slip factor correlations have been established
yet for inducers. Hence, the task of choosing the slip factors is passed to the designer.
Depending on the blade type, that is helical or general, either one value for the reference
radius has to be specified or the values, which are to be used at the hub and shroud
sections. Linearly interpolated values of the slip factor are then used at the intermediate
blade sections.
In case of swirl free inflow conditions (δr = 1), which are typically assumed, the last term
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of the denominator in Equation 3.59 vanishes. Analogously to the leading edge angle
computation an iterative solution of Equation 3.59 is only required if blade blockage is
considered, since the blade blockage factor depends on the blade angle itself.
The specific work y included in Equation 3.59 is generally assumed to be equal on all the
blade sections. Since the specific work is directly related to the total pressure rise caused
by the inducer blades (see Equation 2.24), this complies with the free vortex assumption
used in the meridional flow analysis. However, in conventional pump acceptance tests
usually only static pressures are measured and used to specify the pumps performance
and suction capability. For inducer applications this means that only the static pressure
rise effectively increases the NPSHa of the downstream impeller, and as a consequence
decreases the NPSHr of the whole pump unit. Therefore, it can be seen as a valid
option to exclude the circumferential dynamic pressure rise due to swirl generated by
the inducer from the design considerations.
Subtracting the fraction yθ due to swirl from the specific work y, the corrected specific
work, denoted by yc, is derived as follows:

yc = y − yθ = y − 1
2
(
c2
θ2 − c2

θ1

)
= 1
ρ

(p2 − p1) + 1
2
(
c2
m2 − c2

m1

)
(3.60)

Making use of Euler’s pump equation the following relation is obtained:

yc = ηh (u2cθ2 − u1cθ1)− 1
2(c2

θ2 − c2
θ1) (3.61)

The solution of this quadratic equation in cθ2 is given by:

cθ2 = ηhu2 −
√

(ηhu2)2 − (2yc + u2
1(1− δr)(2ηh − (1− δr))) (3.62)

Equation 3.62 can now be used in conjunction with Equation 3.56 to calculate the
trailing edge blade angle. However, if the radicand in the above equation gets negative,
there’s no valid solution for the above procedure. To avoid failure of the whole design
program the blade angle is limited to β2b = 90◦ in this case. Thus, the option of applying
the correction of the specific work as explained above should be used carefully.

3.5.7 Solidity

Typical values found in the literature range from 1.5 to 3 at tip section for two- to
four-bladed inducers [1]. Jakobsen [36] argued that a solidity from 2.0 to 2.5 might
be necessary to achieve optimum suction performance. More recent tendencies seem
to indicate that also smaller values of solidity of around 1 might be sufficient for low
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performance applications [39]. Gülich [31] claims that optimum values of solidity lie in
the range of 1.4 and 1.8. He further states that solidity values larger than 2.5 aren’t
advantageous. Other references alternatively provide values of wrap angle. According to
Lakshminarayana [46] rocket turbopump inducers feature wrap angles of around 360◦.
In the work of Bakir et al. [13] solidity at the tip of a three-bladed inducer was gradually
reduced from 2.95 to 2.35 by successively cutting back the leading edge. This was equal
to a reduction of wrap angle from 339◦ to 267◦. The results of this investigations showed
that the reduction of wrap angle had no substantial effect on overall performance. In
fact, the cutting of the leading edge improved the suction performance and reduced
pressure fluctuations during cavitation tests (see also Section 3.5.4). Since solidity in
the current implementation is practically fixed by defining the camber curves, the wrap
angle is used as an input parameter where applicable. However, solidity is computed in
the cascade view of the hub and the shroud section as c′/s′ (see Figure 2.3b). In the
design work flow the value is provided to the designer in order to support the camber
curve design.

3.5.8 Thickness Distribution

The thickness distribution is used to add the desired amount of material to the already
designed camber curves. In this way the final blade profile, which should guide the flow
in the expected way is obtained. Thus, an appropriate way of shaping the thickness
distribution is needed.
Different two- and three-dimensional methods of adding the thickness distribution to
the blade camber are compiled by Miller [54] but normally not much detail is provided
about this step in the open literature, especially for mixed-flow and radial impellers.
In the current work the three-dimensional approach proposed by Miller [54] is adopted
to provide a general method to construct symmetric as well as asymmetric profiles. The
latter is of huge interest when designing inducers since the thickness is usually added
only in the direction pointing to the suction side of the blade camber line [31]. This
means that the blade camber line is effectively interpreted as the blade’s pressure side.
Furthermore, a specific wedge-shaped sharpening of the suction side leading edge is
usually performed to improve the suction performance of inducers [36]. It is therefore
desirable to include this geometrical detail in a parametrical way into the blade profile
design.
Similar to the blade camber line or blade angle definition, the thickness distribution
is represented by a uniform B-spline curve of degree three describing the progression
of blade thickness along the length of the three-dimensional camber curve. Both co-
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(b) Default thickness distribution with parametric leading edge sharpening

Figure 3.17: Exemplary thickness distributions

ordinates are normalized by the total camber curve length lmax (see Figure 2.4a) as
follows:

l∗ = l/lmax (3.63)

t∗ = t/lmax (3.64)

Exemplary progressions of the thickness distributions (t∗(l∗) progressions) are depicted
in Figure 3.17. Similar to the camber curve design procedure the curve is controlled
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by positioning the control points. By default five control points p(1) . . . p(5) are used to
generate a smooth progression of thickness as illustrated in Figure 3.17a. Their locations
can be specified by the user based on only few input parameters. Since the first and
the last control points are fixed by the specification of the leading and trailing edge
thickness, the three interior control points remain to be defined. If no user input is
provided, they are preset as follows:

p(2) = (0.1, t∗max) (3.65)

p(3) = (0.5, t∗max) (3.66)

p(4) = (0.9, t∗max) (3.67)

This means that control points with a user-specified maximum thickness value tmax are
provided at 10 %, 50 % and 90 % of the total camber curve length.

(a) Leading edge sharpening (b) Elliptical edge rounding

Figure 3.18: Detailed edge design

An additional setting is provided that facilitates the leading edge sharpening already
mentioned above. If a distribution including the sharpening is requested, the default
thickness distribution is defined by seven control points p(1) . . . p(7) where, like before,
only the interior points have to be specified. This is illustrated in Figure 3.17b. The
two additional control points are used to generate a wedge-shaped thickness progression
starting from the leading edge thickness. A sketch of the desired wedge-shaped leading
edge geometry is shown in Figure 3.18a. In this two-dimensional view the blade is
imagined as being unwrapped from the surface of revolution (the streamsurface) and
flattened out into the plane, which of course results in a simplification of the real three-
dimensional blade shape. However, since the change in radius along the streamlines in
the entry region close to the leading edge can be assumed as being small, the angle
distortion can also be expected to be small and thus of little influence. Furthermore,
this geometric description can merely be seen as a tool for the designer to manipulate
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the leading edge shape of the final blade in a parametrical way. The real value of the
(three-dimensional) wedge angle is hardly measurable such that the distortion resulting
from this simplified parametrization is of minor importance.
To accomplish the leading edge sharpening two additional parameters, the wedge length
lw and the wedge angle αw have to be provided. Using the normalized version of the
wedge length l∗w, the first two of the interior control points are fixed by the following
default values:

l∗(2) = l∗w (3.68)

t∗(2) = t∗le + l∗w tanαw (3.69)

l∗(3) = 1
2 (l∗w + max (0.1, t∗max/ tanαw)) (3.70)

t∗(3) = min (t∗le + l∗(3) tanαw, t∗max) (3.71)

While the second control point p(2) is directly determined by the wedge parameters, the
third control point p(3) is chosen such that it is located midway between the point of
10 % camber length and the point where the wedge-shape would first reach the maximum
thickness value tmax. The thickness value at this length coordinate then is either the
thickness resulting from the wedge-shape or the maximum thickness, whichever value is
smaller. Thus, the control points are fixed as follows:

p(2) = (l∗(2), t
∗
(2)) (3.72)

p(3) = (l∗(3), t
∗
(3)) (3.73)

p(4) = (max (0.1, t∗max/ tanαw), t∗max) (3.74)

p(5) = (0.5, t∗max) (3.75)

p(6) = (0.9, t∗max) (3.76)

Once the control points are initially defined, the designer can move them freely and add
additional or remove intermediate control points. However, the already set values of the
input parameters are ignored in that case.
As a final step of thickness distribution design treatment of the edges is considered. This
edge treatment is incorporated into the thickness distribution in order to obtain properly
rounded edges of the three-dimensional blade profile. In the current implementation
elliptical arcs are used at both ends of the thickness distribution. The elliptical round
off is constructed separately for suction and pressure sides by an iterative algorithm,
which is explained exemplarily for the situation at the leading edge as depicted in Figure
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3.18b. Goal of the algorithm is the construction of an elliptical arc (gray), which starts
tangentially to the thickness axis (t or t′) from the leading edge point ple and connects
smoothly to the thickness distribution (black). The arc is derived from an ellipse with
user specified aspect ratio a/b. It is found by searching for the boundary point pb, where
the ellipse and the thickness distribution share their tangential direction.
To achieve zero thickness at the leading edge of the final profile the ellipse major axis is
shifted by tle/2 such that the center point pm = (lm, tm) = (a, tle/2). From the tangent
equation of the shifted ellipse

(l − lm)(lb − lm)
a2 + (t− tm)(tb − tm)

b2 = 1 (3.77)

an expression for the unknown value of lm can be retrieved by differentiation and rear-
ranging as follows:

lm = ∂t

∂l

(
a

b

)2
(tb − tm) + lb (3.78)

0
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−tle/2

0
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t
∗

(a) Leading edge, two-sided
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t ∗te /2
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(b) Trailing edge, single-sided

Figure 3.19: Elliptical rounding

The algorithm now iteratively evaluates the thickness distribution curve to obtain the
coordinates and the slope of the potential boundary point. At every iteration step
it checks whether the ellipse equation is satisfied at the current boundary point by
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computing the error

(lb − lm)2

a2 + (tb − tm)2

b2 − 1 = εe (3.79)

Since the thickness curve is a parametric curve, the target value is the curve parameter
ub. The parameter search is constrained by bracketing the solution inside the interval
[u1, ub,max], that is between the leading edge curve parameter and a certain maximum
parameter. By default the maximum parameter is set to 10 % of the whole parameter
range between leading edge and trailing edge:

ub,max = 0.1 (u2 − u1) + u1 (3.80)

Once the error εe is below a certain tolerance value, the algorithm stops and the param-
eter at which the boundary point is found is used to trim the thickness curve appropri-
ately. Only slight modifications are necessary to adopt this procedure to the geometric
situation at the trailing edge. The resulting elliptical shapes are depicted in Figure 3.19a
for a two-sided but asymmetric thickness distribution and in Figure 3.19b for a single-
sided thickness distribution. As already mentioned in Section 2.2.1 the pressure side
thickness distributions are assigned a negative sign just to provide a clear presentation
of both thickness distributions in a single illustration.
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Figure 3.20: Two- and single-sided thickness distributions

Similar to the blade camber line design only the thickness distributions belonging to the
hub and shroud sections of the blade are prescribed directly by the designer. On both of
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these sections two thickness distributions are required to provide the necessary thickness
data for the completion of the suction side and the pressure side of the profile. The
intermediate sections are obtained by linear interpolation in the spanwise direction on
a point-by-point basis. As a result, two series of thickness distributions are obtained as
illustrated in Figure 3.20a. For single sided, asymmetric profiles one of the distributions
is simply set to a straight line with zero thickness on all of the blade sections (Figure
3.20b).
In contrast to the approach of Miller [54] the curves representing the leading edge,
main blade and trailing edge segments are not merged in the current implementation
but are stored separately in order to keep control over the curve parametrization and
the number of nodes used for the profiles at the leading and trailing edges. This is
particularly important if the blade edges are very thin compared to the maximum blade
thickness and only take up a very small part of the total blade length, which is normally
the case for inducers. By using a single parametrized curve one could risk that the
blade edges are not represented adequately, when evaluating points along the curves.
Therefore, the number of points used for the blade profile generation are provided as
input parameters, which can be specified by the user. How the thickness distributions
are finally used to construct the final blade profile is described in detail in the following
section.

3.5.9 Blade Profile

The blade profile is composed of the camber (or theta) curve and the thickness distri-
butions on the suction and pressure sides. Again there are several possible methods
to construct the profiles from these ingredients. Since a very precise representation
of the blade is desired, especially due to the importance of the edge shape design, the
three-dimensional method proposed by Miller [54] is adopted in the present implementa-
tion. The first step of this method consists of the construction of the three-dimensional
camber curve, which is a matter of simple mapping of coordinates. In the next step
three-dimensional normals are computed at the parametrical locations used for the cor-
responding thickness distribution. Because the normal construction is computational
expensive, due to the interpolation steps involved, the same normals are used to apply
the suction side and the pressure side thickness to the camber curve. This requires a
sampling of the thickness distributions so that thickness values on suction and pressure
side are available at the same length coordinates. The sampling is performed separately
for each of the three segments of the thickness distributions, that is the leading edge,
main blade and the trailing edge segment, to ensure that the desired number of nodes
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Figure 3.21: Sampling of the thickness distributions

is returned. Furthermore, the curvature of the thickness distributions at the edge seg-
ments require a reduction of node spacing in order to adequately represent the edge
shape. This is realized by a geometrical node spacing, which is applied to the edge
segments. If the total number of nodes of the segment under consideration is denoted
by ni, the geometrical spacing of the nodes is prescribed by the following formula:

li = li−1 + f i−1 lni−1 − l0∑ni−1
j=0 f j

, i = 1, . . . ni − 1 (3.81)
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The rate of growth of the spacing can be controlled by the factor f , which by default is
set to a value of 1.2. To obtain a smooth transition from the edge segments the nodes
of the main blade segment are distributed by means of a cosinus function [6]:

li = (1− cosφi)
2 (lni−1 − l0) + l0, i = 1, . . . ni − 1 (3.82)

The φi are obtained by dividing the interval [φ0, φni−1] equidistantly. The limits of the
interval are calculated by:

φ0 = arccos
(

1− 2
[

∆l0
lni−1 − l0

])
(3.83)

φni−1 = arccos
(

1− 2
[
1− ∆lni−1

lni−1 − l0

])
(3.84)

Similar to the geometrical node distribution used for the edge segments the spacing
at the transition to the edges is controlled by the values used for ∆l0 and ∆lni−1. By
default they are set as 1.2 times the distance to the last node of the edge distribution at
the leading edge and 1.2 times the distance to the first node of the distribution at the
trailing edge, respectively. An exemplary sampling of the entire thickness distribution
is shown in Figure 3.21a. The total number of nodes was reduced to improve the
visualization of the increase in node density towards the blade edges. A detailed view
of the leading edge sampling is provided in Figure 3.21a. As already mentioned before
the numbers used for the edge segments and the main blade segments can be specified

m ′

θ

m ′

θ

(a) Normals in cascade plane (b) Sampling of normals

Figure 3.22: Normal directions along blade camber curve
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Figure 3.23: Three-dimensional blade profile construction

by the user. By default 15 nodes are used for the edge segments and 60 for the main
blade segment. Since the boundary nodes are included in both the edge and the main
blade segment, this leads to a total of 88 points used for each profile side. The process of
final profile construction is depicted in Figure 3.22, 3.23 and 3.24. In these figures also
a reduced number of points is used to improve the visualization of the procedure. First
the two-dimensional normals are created at the parametric locations of the points along
the thickness distribution. In the blade-to-blade view, as depicted in Figure 3.22a,
the normals are straight lines perpendicular to the camber curve, since the cascade
view is angle conserving as explained earlier. However, the real thickness cannot be
applied without distortion effects in this view [54]. Because of this, the normals are
transferred on a point-by-point basis to the three-dimensional space. As indicated in
Figure 3.22b the sampling of the normals is limited to a reasonable length t′max to both
sides of the camber curve. This length is estimated by dividing local thickness by radius
and searching the maximum value on any of the blade sides. To guarantee that the
real thickness is reached on the three-dimensional normals the maximum value found is
corrected by a factor of 1.1. This estimation process can be expressed by the following
formula:

t′max = 1.1×max (max (tss/r),max (tps/r)) (3.85)

An adequate number of points has to be sampled from the segment of the normal limited
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Figure 3.24: Blade profile

by t′max to both sides of the camber curve to ensure a smooth normal curve in three-
dimensions. In the current implementation 5 points on each side of the camber curves
are used by default. Parametrization of the curves ensures that evaluation of the normals
at a parameter value of 0 results in a point on the camber curve. Once the mapping
to the three-dimensional space is completed the sampled points are interpolated by a
uniform B-spline of degree three to obtain normal curves lying in the surface of revolution
representing a streamsurface. Along these curves, which are illustrated exemplarily in
Figure 3.23a, the real thickness can be used to fix the point of the blade surface. This
is depicted in more detail in Figure 3.23b. At each point of the three-dimensional
camber curve the points on the corresponding normal at a distance of tss and tps are
set (and stored) as the points constituting the suction side and pressure side profile,
respectively (see Figure 3.24a). Although not necessary for the construction of the final
blade surface, the blade profile points can be mapped back to the cascade plane. As a
result, the two-dimensional blade profile is obtained as depicted in Figure 3.24b. In the
boxes at the lower left and upper right corners of this figure detail views are provided,
which illustrate the increase of node density at leading and trailing edge, respectively.
The process described above is performed for all streamlines so that multiple blade sec-
tions are obtained between hub and shroud. These blade sections are used to construct
the blade surface. Several export options are provided to export the generated blade ge-
ometry into different data formats to facilitate, for example, the grid generation process
in the CFD work flow.
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4.1 Overview

Two test cases are used to demonstrate the functioning of the components of the imple-
mented design procedure. In Section 4.2 the two designs are discussed and compared
in detail. Since both test cases are chosen with the ultimate target to fit them to an
existing experimental pump unit investigated by Knapp [43], they are developed using
the same meridional section.
Verification and validation of the simple meridional flow analysis (SMA) introduced
in Section 2.4 is of particular importance because the streamlines provided by this
method are the foundation of the blade design, and thus should be physically reasonable.
Furthermore, a realistic estimate of meridional velocity should be obtained in order to
appropriately represent the velocity triangles involved in the blade angle design. Finally,
the meridional velocity distributions along the streamlines are used as input to the simple
head prediction method (SHP) and consequently have an impact on the quality of head
prediction. In a first step of verification the simple case of a cylindrical meridional section
is considered in order to prove correct implementation of the numerical scheme. Due
to the assumption of inviscid, free-vortex flow, it is not possible to perform validation
based on experimental data. Instead, the SMA is tested on the meridional section of the
final inducer test cases mentioned above and the results are compared with the solution
of a two-dimensional, inviscid numerical simulation employing a commercial CFD code.
Accuracy of both the SMA and the reference CFD solutions is analyzed and discussed.
A similar procedure of verification and validation is performed for the simple head predic-
tion method (SHP) described in Section 2.5. To make sure that the singularity method,
which is the main component of the SHP, is implemented correctly, a comparison with
an analytical solution of a cascade of flat plates is performed. Proceeding with the de-
sign process, two different blades are created, one for each of the blade types described
in Sections 3.5.2 and 3.5.3. Since no flow field measurements of these inducers are avail-
able, these prototypes are used to test the SHP against the results of three-dimensional,
viscous CFD simulations of the blade passage. After an analysis of the uncertainty of
the results the outcome of this comparisons is discussed in Section 4.4.
To validate and evaluate the developed design procedure, the prototypes generated
are eventually investigated experimentally in conjunction with the already mentioned
single stage volute pump. A detailed description of the real pump setups as well as the
measurement procedures and a discussion of the results of the investigations are given
in Section 4.5.
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4.2 Test Cases

4.2.1 Basic Design Considerations

To obtain a similar hydraulic design fitting to the existing pump assembly, the design
point of the entire pump is kept unchanged and is defined as:

Q = 100 m3h−1 (4.1a)

HP = 30 m (4.1b)

n = 3000 min−1 (4.1c)

Based on the reasoning of Janigro and Ferrini [37] the inducers are designed for approx-
imately 10 % of the whole stage head HP . Using this percentage, the inducers design
head is set as

H = 3 m. (4.2)

This head is assumed to be the corrected head neglecting the circumferential dynamic
pressure rise due to the swirl produced by the inducer, as discussed in Section 3.5.6.
Thus, the total head rise of the inducer is expected to be higher than the above design
value. Since the inducer is operating in series with the impeller and is mounted on the
same shaft, volume flow rate Q and speed n can be adopted from the pump and applied
to the inducers as well.
However, several modifications of the original pump were necessary to employ an inducer
impeller configuration in the original pump unit. A new impeller is designed to provide
space for mounting the inducer on the original shaft. Furthermore, an additional pressure
tap is provided to judge the static pressure rise generated by the inducer during operation
of the entire inducer-pump stage. Further details about this impeller design are given
in Appendix D. The whole pump stage is described in Section 4.5.1.
In the design steps that are described in the following sections the inflow to the pump
is assumed to be swirl free (swirl number δr = 1). The working fluid is supposed to be
pure water at 25 ◦C with constant density and vapor pressure:

ρ = 997 kg/m3 (4.3a)

pv = 3170 Pa (4.3b)

To obtain a uniform representation of the non-dimensional characteristic values, flow
coefficient, head coefficient and cavitation coefficient are computed based on the di-
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mensions of the experimental setup (see Section 4.5.1). Hence, flow coefficient and
cavitation coefficient are computed with respect to the diameter at the suction pressure
tap dp1 = 97 mm and head coefficient with respect to the main impellers outer diameter
D2 = 163 mm using the following formulas:

ϕ = 4Q
π2nd3

p1
(4.4a)

ψ = 2gH
(πnD2)2 (4.4b)

σ = 2gNPSH(
πnd2

p1

)2 (4.4c)

Consequently, design flow and head coefficient denoted by subscript d are given as
follows:

ϕd = 0.247 (4.5)

ψd = 0.09 (4.6)

4.2.2 Meridional Design

Due to space limitations and the need to match the inducer to the existing pump as-
sembly the meridional shape of the inducers is confined to certain dimensions. This is
illustrated in Figure 4.1, which shows a sketch of the meridional section of the inducer.
The dashed lines indicate the (virtual) inducer inlet and outlet planes, where the latter
is identical to the impeller inlet plane. A convenient feature of the design program is
that arbitrary meridional shapes can be represented. Therefore, although not necessary
in general, the rounding at the upstream end of the inducer hub (also called inducer
nose) and the downstream transition to the radial section of the main impeller is already
considered during inducer design. The smallest possible hub diameter is chosen based
on structural and mechanical considerations. Sufficient hub wall thickness as well as suf-
ficient clearance for the bolt securing the inducer on the shaft have to be provided. As
can be seen from Table 4.1 the final inlet hub diameter is fixed as d1h = 20 mm. Choos-
ing a design suction specific speed of Ωss = 9.35, which corresponds to nss ≈ 495 min−1

or Nss ≈ 25 550 min−1, the inlet diameter d1s is estimated as d1s = 120 mm by using
Equations 3.12 and 3.13 with the known inlet hub diameter. Using this diameter should
theoretically permit to reach NPSH ≈ 1 m, which is equal to a cavitation coefficient
of σ ≈ 0.084 according to Equation 4.4c. Note that the optimum flow coefficient for
the inducer amounts to ϕopt = 0.134, if computed for the inlet geometry of the inducer
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Figure 4.1: Meridional view with basic dimensions

defined by d1s and d1h.
The hub and shroud diameter at the inducer exit d2h and d2s are determined by the
impeller inlet diameters. These are denoted by upper case letters so that d2h = D1h =
41.9 mm and d2s = D1s = 97 mm. In general, the axial length lax of the inducer is a
result of the desired blade wrap angle (or solidity). However, in the current case it is
also limited by the increased overhang of the inducer-pump assembly. While at the hub

Table 4.1: Basic dimensions of test cases
Dimension Value Unit

d1h 20 mm
d1s 120 mm
d2h(D1h) 41.9 mm
d2s(D1s) 97 mm
lax 81.4 mm
D2 163 mm
b2 17.6 mm

a smooth transition towards the impeller is realized by a single B-spline curve, multiple
linear curve segments are used at the shroud section. As a result, a cylindrical segment at
the inlet of the inducer is obtained before the diameter is decreased towards the impeller
inlet. A further advantage of the straight curve segments is that the (normal) clearance
between inducer tip and the casing wall (shroud), which is chosen as 0.5 mm, can be
achieved more easily in the manufacturing process. Figure 4.2a shows the area circles
and the geometrical midline constructed with the algorithm explained in Section 3.4.2.
The circles are used to compute the quasi-normals that are employed to calculate the
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Figure 4.2: Analysis of meridional area distribution

area distribution. In Figure 4.2b this area distribution is displayed along the normalized
length of the midline. The SMA is applied to this meridional section in order to compute
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Figure 4.3: Generation of blade sections

streamlines and the meridional velocity field. By evaluating the velocity field at the
midline coordinates the velocity distribution as shown in Figure 4.2b is obtained. Figure
4.3a displays the 15 streamlines used for the test case designs. This comparatively
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high number of streamlines is needed to adequately represent the three-dimensional
leading edge shape resulting from the backward sweep, as will be described below.
The computation domain is automatically extended upstream and downstream of the
meridional curves in order to guarantee smooth streamlines, which are not influenced by
the boundary conditions. Trimming of the streamlines at the intersection points with
the leading and trailing edge curves delivers the blade section curves as shown in Figure
4.3. These curves are the foundation of the blade design of both test cases presented in
the following section.

4.2.3 Blade Design

Table 4.2 gives an overview of the essential properties of the two inducer test cases
designed to validate the design procedure developed in this thesis. The first test case

Table 4.2: Basic properties of the test cases
HEL GEN

Number of blades 3 3
Blade type Helical General
Angle distribution Parabolic B-spline (Theta Mode)
Thickness type Suction Side Only Suction Side Only

is a helical design, in the following denoted by the acronym HEL, which stands for the
helical blade type described in Section 3.5.2. The second test case, analogously denoted
by GEN, is an inducer with the general blade type. While inducer HEL employs a
parabolic angle distribution at the reference radius, the Theta design mode is used
for inducer GEN to define the angle distribution based on a B-spline curve. For both
inducers thickness is added only to the suction side of the three-dimensional camber
curve, such that the pressure side of the final blade effectively represents the angle
distribution.
A more detailed collection of the geometrical features of the blade designs is summarized
in Table 4.3. Following Jakobsen [36] the leading edge blade angle is computed based
on the ratio of incidence to leading edge blade angle for both design examples. For the
helical inducer HEL the ratio (i/βb,le)rms = 0.425 is used at the reference diameter rrms.
In case of inducer GEN the ratio is varied from 0.425 at the shroud to 0.325 at the hub in
order to avoid overly large blade angles at the hub section. Although the effect is small
due to small leading edge blade thickness (see Table 4.3), blade blockage is considered
in the computation of the leading edge blade angles by application of Equation 3.52.
The equation is solved under the assumption of a mean meridional velocity that is equal
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Table 4.3: Geometrical details of the test cases
HEL GEN

Parameter Unit Hub Shroud Hub Shroud
tle mm 0.1 0.1 0.1 0.1
tte mm 0.5 0.5 0.5 0.5
θle

◦ 0 76.3 0 76.7
θte

◦ 221.5 215.8 230.0 216.7
βb,le

◦ 54.6 13.5 56.9 13.4
βb,te

◦ 54.4 24.4 71.9 22.4
σ′ − 3.03 1.21 3.07 1.21

to the arithmetic mean of the meridional velocity at the leading edge points. For the
helical blade this equation only has to be solved once for the reference radius. The blade
angle values at the leading edge coordinates of the real blade sections shown in Figure
4.3 are then obtained with the help of Equation 3.24. For inducer GEN, by contrast,
Equation 3.52 is solved for each blade section individually.
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Figure 4.4: Comparision of blade angle distribution along LE and TE

To visualize the differences of both design approaches Figure 4.4a depicts the blade
angle distributions along the normalized leading edge length for both inducers. As can
be seen from this figure almost identical blade angles are obtained at the shroud section,
whereas bigger differences are achieved around the mid of the leading edge. In this region
the general blade type uses smaller leading edge blade angles. However, the increase
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in blade angle is steeper towards the hub, such that eventually a higher blade angle
is obtained at the hub. As for the leading edge blade angle the trailing edge angle is
computed differently for both cases. For the helical inducer HEL only the blade angle
at the reference radius rrms has to be computed. This is achieved by application of
Equations 3.56 and 3.62 assuming a slip factor of γ = 0.8 and a hydraulic efficiency of
ηh = 0.8, which is a reasonable estimate according to Gülich [31]. Inducer GEN on the
other hand uses a prescribed camber angle at the hub and shroud blade sections. As
can be extracted from Table 4.3 camber angles are ∆βb = 15◦ at the hub and ∆βb = 9◦

at the shroud section. Inducer HEL employs a parabolic angle distribution at the

0.0 0.2 0.4 0.6 0.8 1.0
m ′ ∗

10

20

30

40

50

60

70

80

β
b
/
(
◦
)

Hub
Intermediate
Shroud

(a) Inducer HEL

0.0 0.2 0.4 0.6 0.8 1.0
m ′ ∗

10

20

30

40

50

60

70

80

β
b
/
(
◦
)

Hub
Intermediate
Shroud

(b) Inducer GEN

Figure 4.5: Blade angle distribution along blade sections

reference radius with a constant angle section ranging from the leading edge to 25 %
of axial length. In case of Inducer GEN the blade angle is retrieved from a B-spline
curve prescribing the wrap angle distribution. This results in the angle distributions
depicted in Figure 4.5a and 4.5b, respectively. For the sake of clarity only three of the
thirteen intermediate angle distributions are displayed in these figures. It should also
be noted that the blade angle is plotted against the normalized m′ coordinates along
the individual blade sections, which is why the leading edge corresponds to an abscissa
value of 0 and the trailing edge to a value of 1. In Figures 4.6a and 4.6b, on the other
hand, the wrap angle θ is plotted against the actual m′ coordinate of each blade section.
This leads to the conformal representation of the camber curves displaying the true
blade angle (see Section 2.2.2). Figures 4.6a and 4.6b clearly show that the two design
examples provide completely different blade shapes. A direct comparison of the blade
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Figure 4.6: Wrap angle distribution along blade sections

angle distributions on hub and shroud as depicted in Figures 4.7a and 4.7b points this
out even more. The distinctive difference between the two blades is that in the case of
the general blade the angle distribution blends smoothly and with zero slope (tangential
to the horizontal direction) into the leading and trailing edge angle. This is achieved by
setting the control point parameters introduced in Equations 3.30 - 3.32 as follows:

m′
∗
(2) = 25 % (4.7a)

m′
∗∗
(3) = 33 % (4.7b)

m′
∗∗
(4) = 66 % (4.7c)

m′
∗
(5) = 90 % (4.7d)

For the helical blade a constant angle segment of blade angle distribution is only realized
where the meridional sections are cylindrical (with constant radius). This is approxi-
mately true at the outer sections (see Figures 4.3b and 4.5a). Due to the parabolic angle
distribution defined on the reference radius the trailing edge angle is generally reached
with significant, nonzero slope.
A backward swept leading edge is designed for both cases by application of Equation
3.48 and by adding a sweep angle of

∆θ′1s = 45◦. (4.8)
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Figure 4.7: Comparison of blade angle distribution along blade sections

As a result, a backward sweep angle of approximately 76◦ is obtained for both inducers
(see Table 4.3). The final leading edge shapes are depicted in Figure 4.8a. Clearly, very
similar leading edge shapes are obtained for both test cases. At the trailing edge, as can
be seen from the rear view displayed in Figure 4.8b, bigger differences between the two
designs exist. This is due to the distinct wrap angle distributions shown in Figures 4.6a
and 4.6b.
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Figure 4.8: Leading and trailing edge shape
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Blade thickness is specified equally for both inducer designs. A maximum thickness of
3 mm at the hub and 2 mm at the shroud is prescribed. The suction side leading edge
sharpening was performed with a wedge angle of 7◦ and a wedge length of 5 % of the
three-dimensional camber curve length. By default this sharpening is applied uniformly
from hub to shroud in order to obtain a smooth blade surface. The ellipse ratio is set to
a value of a/b = 2 at leading and trailing edge. Since the blade length is similar for both
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Figure 4.10: Blade profiles in cascade view
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inducers, due to nearly equal values of solidity, the normalized thickness distributions
are almost identical. Hence, the thickness distribution shown in Figure 4.9 qualitatively
applies to both inducer variants discussed in this section.
The final blade profiles are depicted in the conformal cascade plane in Figures 4.10a and
4.10b for inducers HEL and GEN, respectively. Again, only three intermediate sections
between hub and shroud are displayed. However, all fifteen blade sections including
hub and shroud sections are used to construct the final blade surface. The plots of
the profiles clearly show that despite similar total wrap angles at the shroud and hub
sections very different blade shapes are created especially at the inner sections. While the
shroud sections are almost identical, the trailing edge shapes due to the different wrap
angle distributions at the intermediate sections differ significantly. The most obvious
difference, however, is found in the s-shaped profile at the hub section, which is a direct
result of the around 17.5◦ higher trailing edge blade angle of inducer GEN.

4.3 Verification and Validation of the SMA

4.3.1 Cylindrical Meridional Section

As a test case to verify the implementation of the SMA the most simple cylindrically
shaped meridional section depicted in Figure 4.11a is considered. For this geometry the
radial locations rk of K streamlines can be expressed analytically by basic application
of the continuity equation as done by Li [51]. According to the continuity equation the
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Figure 4.11: Verification of the SMA
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volume flow rate Q is related to the mean axial velocity by

Q = cmπ
(
r2
K−1 − r2

0

)
, (4.9)

where index k = 0 corresponds to the hub radius rh and k = K− 1 to the shroud radius
rs. If the mean axial velocity cm is assumed to be constant, the same relation can be
formulated for the flow rate Qk between two adjacent streamlines:

Qk = cmπ
(
r2
k+1 − r2

k

)
(4.10)

Supposing equal flow rates between each pair of adjacent streamlines, the flow rate Qk

is related to the total flow rate by:

Qk = Q

K − 1 (4.11)

Combination of the equations above leads to the following recursion formula for the
radial streamline locations:

rk+1 =
√
r2
K−1 − r2

0
K − 1 + r2

k, k = 0, . . . , K − 1 (4.12)

To compare this result with the streamlines computed by the SMA an arbitrary cylindri-
cal meridional shape is considered and the coordinates of seven streamlines (K = 7) are
computed. A grid with ni×nj = 150×30 nodes is used and the convergence tolerance is
set to 1× 10−6. The dimensions of the meridional can be extracted from Figure 4.11a.
Along each streamline computed with the SMA 10 points are evaluated equidistantly.
As can be seen from Figure 4.11b, the implemented method reproduces the analytical
result very well. Since this case is the most simple one, the more complex meridional
geometry of the inducer test cases presented earlier is investigated in the next section.

4.3.2 Inducer Test Cases

An extended version of the original meridional section of the experimental pump unit is
used to validate the simple meridional flow analysis developed to generate streamlines
and the corresponding velocity distributions. Since the meridional flow analysis is limited
to inviscid, free-vortex flow, validation is performed against the commercial CFD solver
Fluent (Version 18.2), which provides the possibility to model inviscid, axisymmetric
flow. The numerical setup of the case in the SMA and Fluent is described shortly in
what follows. In a first step grid dependency of the solution is investigated separately for
both methods. Following this, qualitative comparisons of the streamline distributions
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and the velocity fields as well as a quantitative assessment of the predicted velocities
along selected evaluation lines are presented and a discussion of the results is provided.

Numerical Setup - SMA

Grid influence on the solution is studied by application of the Grid Convergence Index
(GCI) methodology [11, 21], which is based on generalized Richardson Extrapolation.
To estimate the uncertainty attributed to discretization, three successively refined grids
are used with the grid refinement factor defined as

rk+1,k =
(
nk
nk+1

)1/2

, (4.13)

where nk is the number of cells used at grid size index k. Table 4.4 lists the grid properties
used for the study of grid convergence. Refinement is performed by doubling the number
of nodes in both grid directions. As a result, refinement factors of approximately 2 are
obtained. The quantity φk denotes the variable of interest computed on the grid with

Table 4.4: Grid sizes used in the grid convergence study of the SMA

Grid Size Index Ni ×Nj
No. of
Nodes

No. of Cells
nk

Refinement
Factor r

1 300× 60 18000 17641 r21 = 2.02
2 150× 30 4500 4321 r32 = 2.04
3 75× 15 1125 1036 −

index k. With the differences between the solutions computed on the different grids
denoted by ε21 = φ1 − φ2 and ε32 = φ2 − φ3, respectively, the apparent order p is
computed with the formulas given by Celik et al. [21]:

p = 1
ln(r21) |ln (|ε32/ε21|) + q(p)| (4.14)

q(p) = ln
(
rp21 − s
rp32 − s

)
(4.15)

s = 1 · sgn (ε32/ε21) (4.16)

A fixed point iteration method with the initial guess

p(0) = 1/ ln(r21) |ln (|ε32/ε21|)| (4.17)
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is used to solve Equation 4.14 for p. Extrapolated values of the solution variable are
then computed as follows:

φ21
ext = (rp21φ1 − φ2) / (rp21 − 1) (4.18)

According to the procedure described by Celik et al. [21] the approximate relative er-
ror ea, the estimated extrapolated error eext, and the grid convergence index GCI are
calculated and reported:

e21
a =

∣∣∣∣∣φ1 − φ2

φ1

∣∣∣∣∣ (4.19)

e21
ext =

∣∣∣∣∣φ21
ext − φ1

φ21
ext

∣∣∣∣∣ (4.20)

GCI21 = Fs · e21
a

rp21 − 1 (4.21)

A factor of safety Fs = 1.25 is chosen as recommended for three-grid studies [11]. By
replacing indices 2 and 1 with 3 and 2 in above relations the extrapolated value and
the error estimates for grid size index 2 can be obtained as well. The GCI method is

Line A
Line B
Line C

Figure 4.12: Test case setup and evaluation lines

applied to the stream function Ψ, which is the solution variable directly obtained from
the implemented numerical scheme of the SMA, and the meridional velocity cm. Both
variables are evaluated and averaged along three lines in the meridional sections. These
lines are displayed in Figure 4.12 and are denoted with Line A, Line B and Line C.
Line A represents the inducer leading edge curve, Line B the trailing edge curve and
Line C the middle streamline extracted from the SMA solution on the finest grid (grid
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size index 1). Before the results of the GCI method are presented, the iteration error
is investigated by looking at the convergence of the scheme. The convergence behavior
of the different grids measured by the tolerance level (∆Ψ)max,rel as defined in Equation
A.29 is depicted in Figure 4.13a. As expected, convergence to machine accuracy is
achieved with less iterations on the smaller grids. In practice this level of convergence is
not required, such that substantially less iterations are needed. This is demonstrated by
evaluation of the mean values of meridional velocity along Line C at solution tolerance
levels ranging from 10−4 to the lowest value achievable, which is approximately 10−15.
The trend of the mean value of meridional velocity along Line C is depicted in Figure
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Figure 4.13: Convergence on different grids

4.13b. This result clearly indicates that for all grids under consideration a tolerance
below 10−5 to 10−6 is sufficient to reduce the iteration error to an acceptable level.
Limiting the tolerance to a value of this range has the advantage that the computation
time needed by the solution procedure is kept low, while maintaining high accuracy.
Looking at the absolute values of velocity on the ordinate of Figure 4.13b it can already
be noticed that the actual value of the target quantity only depends slightly on the
grid resolution. As already mentioned this is further investigated by means of the GCI
method introduced above. Table 4.5 reports the most important quantities obtained
with the help of this method for the mean values of stream function and meridional
velocity along the evaluation lines A, B and C. The apparent order p of the scheme
reflects the expected order of the implementation, which should theoretically be around
2, very well, especially if it is considered, that interpolation is involved in the evaluation
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Table 4.5: Results of the uncertainty analysis with the GCI method
ΨA cAm ΨB cBm ΨC cCm

p 1.67 2.87 1.88 1.96 2.08 1.89
e21

a (%) 0.001 42 0.002 95 0.029 46 0.058 15 0.007 02 0.013 82
e32

a (%) 0.004 72 0.022 99 0.113 33 0.238 24 0.031 30 0.053 76
e21

ext (%) 0.000 63 0.000 45 0.010 74 0.019 50 0.002 11 0.004 96
e32

ext (%) 0.002 05 0.003 41 0.040 19 0.077 64 0.009 13 0.018 78
GCI21 (%) 0.000 79 0.000 57 0.013 43 0.024 38 0.002 63 0.006 20
GCI32 (%) 0.002 57 0.004 26 0.050 26 0.097 13 0.011 42 0.023 48

of the variables along the lines. Approximate errors and extrapolated errors are at a
very low level, even for the mid-size grid with index 2. The same is true for the actual
values of GCI. For the fine grid (index 1) the GCI21 values calculated for the different
variables are below 0.03 %, for the coarser grid (index 2) the values of GCI32 are already
below 0.1 %. This indicates that grid size 2 is already sufficient to obtain appropriate
results. To illustrate the findings of the GCI method, a slightly modified version of the
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Figure 4.14: Influence of grid size on solution variables

estimated extrapolated error is used:

e21
ext,φ =

(
1−

∣∣∣∣∣ φφ21
ext

∣∣∣∣∣
)

(4.22)
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This error basically represents the normalized difference between the solution variable
φ obtained on any of the grids and the corresponding extrapolated value. Figures 4.14a
and 4.14b depict the trend of this error measure with the decrease in grid spacing. The
dashed lines indicate the extrapolation towards zero grid spacing, which is assigned to a
grid spacing index of 0. Although this assignment is arbitrary, the curve trends can help
to estimate the influence of the grid refinement on the approximate error. As already
indicated, low values of error are already obtained for grid size index 2. This is the reason
why the results of this grid are used in the comparison with the CFD simulations.

Numerical Setup - CFD

To compare the results of SMA and CFD, identical boundary curves are used for the
SMA and the Fluent simulation. In the latter case, the meridional section is discretized
with an unstructured, quadrilateral dominant mesh, which is automatically generated
by the ANSYS Workbench mesher. Analogously to the the previous section the GCI
method is applied to gauge the grid influence on the solution variables. Three different
grid sizes are used to evaluate the uncertainty attributed to discretization. The node

Table 4.6: Grid sizes used in the grid convergence study of the 2D CFD setup

Grid Size Index No. of Nodes No. of Cells nk
Refinement
Factor r

1 35117 34664 r21 = 2.00
2 8896 8665 r32 = 1.98
3 2324 2206 −

and cell numbers as well as the corresponding refinement factors are listed in Table
4.6. Grid refinement factors close to 2 are realized for both levels of refinement. Figure
4.15 displays the coarsest mesh (index 3). Fluent’s two-dimensional coupled solver with
second order discretization of pressure and momentum is used to compute the inviscid
axisymmetric flow. The boundary conditions are defined as depicted in Figure 4.15.
Since the problem is considered axisymmetric, the segment of the hub line at zero
radius is defined as axis boundary. The remaining part of the hub curve and the shroud
curve are set as walls. At the inlet a uniform velocity according to the mass flow
rate is prescribed. The outlet is defined as outflow boundary [8]. In order to provide
accurate reference solutions and ensure little influence of iteration error, computations
are performed until very low values of residuals (below 10−10) are obtained for all of the
grids.
The same evaluation lines as depicted in Figure 4.12 are imported into the post-processor
and the solution variables are extracted from the CFD data on the grid. Again, stream
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Figure 4.15: 2D Grid (Grid 1) and boundary conditions used for the CFD simulation

function and meridional velocity are averaged along these lines and the GCI method
is applied. The results are summarized in Table 4.7. All variables under investigation
reveal an apparent order above 1, the only exception being the mean meridional ve-
locity c̄Am along Line A. However, the computed apparent order is used to estimate the
uncertainty as recommended by Celik et al. [21]. As can be seen from the tabulated
data, approximate relative and estimated extrapolated errors are below 1 % even for the
coarse grid. Grid convergence indices for the fine and the medium grids are below 0.4 %
and 0.75 %, respectively.
Analogously to the previous section, the estimated extrapolated error according to Equa-
tion 4.22 is computed and the results are plotted against the grid size index in Figures
4.16a and 4.16b. The trend towards the extrapolated values are again indicated by
dashed lines. Similar degressive progressions with increasing number of cells, can be
observed for both parameters. Contrary to the results of the SMA the average values
along Line C exhibit the biggest dependency on the grid. For the solutions on the finest

Table 4.7: Results of the GCI method for the CFD case
Ψ̄A c̄Am Ψ̄B c̄Bm Ψ̄C c̄Cm

p 1.80 0.12 3.47 4.99 1.13 1.24
e21

a (%) 0.035 82 0.025 98 0.021 45 0.002 56 0.237 96 0.341 37
e32

a (%) 0.121 52 0.027 92 0.230 34 0.077 59 0.510 70 0.789 13
e21

ext (%) 0.014 49 0.289 74 0.002 12 0.000 08 0.199 89 0.250 55
e32

ext (%) 0.050 31 0.315 64 0.023 57 0.002 65 0.438 33 0.592 77
GCI21 (%) 0.018 12 0.363 23 0.002 65 0.000 10 0.249 36 0.312 41
GCI32 (%) 0.062 92 0.395 80 0.029 46 0.003 31 0.545 52 0.736 60
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Figure 4.16: Influence of grid size on solution variables (CFD)

grid (index 1) the estimated extrapolated errors are below 0.5 % for all the solution
variables. This is why the fine grid solutions are used as reference for the validation
presented in the next section.

Results

The meridional flow analysis has two major goals. First, smooth meridional streamlines
are needed as a foundation of blade section design. Second, an estimate of meridional
flow velocity is needed as input for the singularity method used in the head prediction
method. Thus, the method should produce reasonable estimates of the stream function
levels as well as an approximation of the velocity field. The first point is validated by
comparing the isolines of stream function of the SMA and the CFD solution. Three
intermediate levels of stream function are extracted and plotted together in Figure
4.17. As can be seen from this figure, almost indistinguishable streamline progressions
are obtained. Only small differences of streamline slope can be observed when closely
examining the region at the exit boundary. Since the exit boundary is usually placed
at some distant downstream of the region of interest, this can be considered a minor
issue. The second point, that is the estimation of meridional velocity, is assessed based
on the progressions along the evaluation lines. Figures 4.18a, 4.18b and 4.18c depict
these values along the normalized meridional length coordinate m∗, which is computed
independently for each of the three lines. In case of Line A and Line B this coordinate
runs from hub to shroud. Since Line C represents a streamline, the meridional curve
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Figure 4.17: Isolines of stream function - SMA vs. CFD

length is measured from the inlet to the outlet. For all three lines very good agreement
of the velocity profiles is observable. Discrepancies mainly exist close to the boundaries
at hub and shroud. Especially for Line A, which represents the leading edge location,
the influence of the upstream stagnation point at the hub is visible. It can be assumed
that this is caused by the special treatment of the nodes at zero radius in the velocity
computation as described in Section 2.4.3. In fact, in case of the SMA a very fine
grid would be necessary to resolve the smooth progression of velocity at the stagnation
point at zero radius, as it occurs at the inducer nose. However, the overall shape of the
curve matches the result of the CFD simulation reasonably well and the quantitative
prediction of the velocity level is satisfying. This is even more true for the other two
evaluation lines. Looking at Line C (Figure 4.18c) small discrepancies are only visible
towards the outlet boundary. In the region between the dotted lines, which indicate the
leading and trailing edge points found at the intersections of Line A and B with Line
C, almost perfectly matching velocity distributions are obtained. This is of particular
interest because the velocity data on this range of the streamline is used as input for
the SHP.
To gain a more complete and illustrative impression of the computed velocity fields,
Figures 4.19a and 4.19b show contour plots of the meridional velocity distribution.
The same number of contour levels and the same legend limits are used to produce
these figures. Notable differences mainly exist at the hub stagnation point, as already
discussed above, and towards the exit boundary. These discrepancies can be expected
because the free-vortex assumption is not made in the commercial code and a different
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Figure 4.18: Meridional velocity along evaluation lines - SMA vs. CFD

set of equations with different boundary conditions is solved (see Section 2.6.1). Despite
this fact, very good agreement of the contour shapes and levels generated by the two
different solution methods can be observed.
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(a) SMA

(b) CFD

Figure 4.19: Contours of meridional velocity - SMA vs. CFD

4.4 Verification and Validation of the SHP

4.4.1 Cascade of Flat Plates

Implementation of the singularity method described in Section 2.5.1 is verified with the
help of the analytical solution of a non-staggered cascade of flat plates with infinitesimal
thickness. The analytical solution is given by Scholz [64] and reads

γ(x)
w∞

= 2 sinα∞
cosh

(
π
2
l
t

)
√√√√√sinh

(
π l
t
− π x

t

)
sinh

(
π x
t

) , (4.23)

where nomenclature is adapted so that x is the coordinate along the plate starting from
the leading edge, l the total (chord) length, t the spacing of the cascade and α∞ the
angle of attack. The equation above is applied to the cascade configuration depicted in
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Figure 4.20a by setting r = 1 m. As a consequence, the following relations are obtained:

m′ = x

r
(4.24)

l′ = l

r
(4.25)

t′ = t

r
= 2π

Z
(4.26)

With l
t

= l′

t′
= Zl

2π and C1 = r w∞, Equation 4.23 can be written as:

γ(m′)
C1

= 2 sinα∞
cosh

(
Z l′

4

)
√√√√√sinh

(
Z l′

2 −
Z
2m
′
)

sinh
(
Z
2m
′
) (4.27)

(a) Cascade geometry
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Figure 4.20: Verification of the singularity method of the SHP

Vorticity density distribution γ is computed for C1 = 1 m2/s and l′ = 1 using Ni = 500
points along the plates. Displaying only a reduced number of points, the result is shown
together with the corresponding analytical solution in Figure 4.20b. As can be seen,
excellent agreement between the result of the implemented singularity method and the
analytical solution is achieved. Although effects due to thickness are not included, this
proves that implementation at least in the limiting case of zero thickness was successful.

124



4 Verification and Validation

4.4.2 Inducer Test Cases
Numerical Setup - SHP

The result of the SHP, which is used to predict the head of the inducers under consider-
ation, is influenced only by the number of blade sections Nk and the number of points
used along the blade camber line Ni (see Figure 2.17b). In all cases an equidistant
distribution of nodes is used. Before a comparison with the CFD results is attempted,
the influence of these parameters on the predicted head value is investigated. The sen-
sitivity of the solution to these parameters is determined by the relative difference to a
reference solution, which is defined as:

∆ψ∗th =
∣∣∣∣∣ψth − ψth,refψth,ref

∣∣∣∣∣× 100 % (4.28)

The number of sections used varied between one and fifteen. In the former case only
the middle blade section is used, while in the latter all blade sections are used to obtain
the mean head generated. Figure 4.21a shows the relative difference of theoretical head
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Figure 4.21: Investigation of the numerical parameters of the SHP

coefficient with respect to the head coefficient obtained with all the blade sections:

ψth,ref = ψth,Nk=15 (4.29)

The trends indicate that at least five sections are required to obtain results within a
relative difference of 5 %. However, since the solution of the systems of linear equations
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is very fast on a modern workstation, all fifteen sections are used to compute the head
curves discussed in the remainder of this thesis. Although the curves depicted in Figure
4.21a behave similar for both test cases, there is very likely a significant influence of the
geometry on the result. Considering that the total head is calculated by averaging over
all included blade sections it is quite obvious that an adequate number of blade sections
is needed to correctly represent the blade geometry. This might be especially true if
there are stronger variations of blade angle distribution in spanwise direction (from hub
to shroud), as it is the case for inducer GEN. The sensitivity of the solution depending
on the number of blade sections included also indicates that the method of averaging
the heads of the individual blade sections to compute the total head might be a critical
weakness of the current method. To investigate the influence of the number of nodes
along the blade sections this number is varied from 50 to 3000. The relative difference
of head coefficient in this case is defined with respect to the solution obtained with the
highest node number, that is:

ψth,ref = ψth,Ni=3000 (4.30)

Looking at the progression of this value as a function of node number as depicted in
Figure 4.21b, it can be seen quite clearly that the solution is considerably less sensitive
to this parameter. Again, inducer GEN exhibits a stronger sensitivity to the parameter
under investigation. This might as well be due to the distinct blade angle progression
used for this variant. However, a number of nodes of 500 already yields differences below
0.1 % for both geometries under consideration. This is why Ni = 500 is used to compute
the results presented within this thesis.

Numerical Setup - CFD

In order to judge the head prediction computed by the SHP it is compared with CFD
results. The latter are obtained by employing a reduced simulation model that considers
only one blade channel of the inducer. Nevertheless, the real three-dimensional blade
geometry including the tip gap is represented in these simulations. Since the inducer
is modeled without the downstream pump components, the outflow section is modified.
This was done by extending the original meridional section radially. A three-dimensional
view of the passage model of inducer HEL, is depicted in Figure 4.22. The model
consists of three domains, called inflow, inducer and outflow. While the inflow domain
is stationary, the inducer and outflow domains are modeled as rotating. To connect
the domains and allow for frame and pitch change Frozen Rotor interfaces are used.
Rotational periodicity is set up on the periodic faces. All walls are modeled as non-
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slip walls and are considered as adiabatic and smooth. The shroud walls are set as
stationary. As a consequence, the corresponding boundaries in the rotating domains
have to be defined as counter-rotating. The hub walls as well as the inducer blades are
defined as rotating. Incompressible and isothermal single phase flow of water at 25 ◦C is
assumed in all simulation runs. Turbulence is modeled with the SST-Turbulence model
and the automatic wall function provided by ANSYS CFX for omega-based turbulence
models (see reference [5] for more details) is used. The node spacing at the walls is chosen
so that average values of around y+ ≈ 30 are obtained in all the domains. At the inlet
boundary the total pressure and at the outlet the mass flow is specified. Inlet turbulence
level is set by using the Medium Intensity option, which is equal to a specification of a
turbulence intensity of 5 % and µ/µt = 10 [5]. Steady state simulations are performed
for different flow rates in order to obtain the head curve for the two inducer variants.
The High Resolution option is chosen for Advection Scheme and Turbulence Numerics
Settings. A physical timescale equal to 1/ω is set for all simulation runs. Flow coefficient
is varied from 140 % to 50 % of design flow coefficient. This is equal to a variation of
volume flow rate from 140 m3/h to 50 m3/h. RMS residuals of mass and momentum
below 1× 10−4 are ensured for all simulated points. However, most of the simulations
reach much smaller residuals and almost constant progressions of characteristic values
after less than 300 iterations, which is the maximum number of iterations performed for
each flow rate. Final evaluation of the characteristic values is performed in the post-
processing at evaluation planes upstream and downstream of the inducer (see Figure
4.22). The upstream evaluation plane is moved axially away from the inducer leading
edge in order to avoid interference of the head evaluation by possible backflow due to
inlet recirculation. Its axial position is chosen identical to the pressure tap location in
the experimental setup. Different methods of averaging are applied to the CFD result
in order to obtain results that are comparable to the SHP. The actual averaging method
used is described together with the presentation of the corresponding results.

Table 4.8: Grid sizes used in the grid convergence study for inducers HEL and GEN
Grid Size Index No. of Cells nk Refinement Factor r

HEL GEN HEL GEN
1 960860 919970 r21 = 1.45 r21 = 1.46
2 315640 297434 r32 = 1.37 r22 = 1.35
3 123220 119778 − −

Grid influence is studied by means of the GCI methodology already introduced. A
three-grid study with the grids listed in Table 4.8 is performed for both inducers under
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Figure 4.22: Simulation model

consideration. The table also includes the refinement factors, which are above the rec-
ommended minimum value of 1.3. While the grids for inflow and outflow domains are
created manually with the grid generation software ANSYS ICEM CFD [6], the inducer
blade passage domain is discretized with ANSYS TurboGrid [7]. Independent of the
grid size index ten cells are used to resolve the tip clearance.
Mass flow averaged values of total pressure evaluated at the inlet and exit sections
(see Figure 4.22) are used to compute head coefficient and efficiency at the design flow
coefficient (ϕ/ϕd = 1). The results of the GCI method applied to these variables are
summarized in Table 4.9. Although the inducers are similar in dimension and shape

Table 4.9: Results of the GCI method for the 3D-CFD cases
ψ η

HEL GEN HEL GEN
p 1.02 5.14 3.64 1.38
e21

a (%) 0.281 73 0.246 21 0.309 64 0.397 54
e32

a (%) 0.335 70 1.077 24 0.893 76 0.512 02
e21

ext (%) 0.618 04 0.041 58 0.108 05 0.579 76
e32

ext (%) 0.901 51 0.287 90 0.417 36 0.975 00
GCI21 (%) 0.767 81 0.051 95 0.135 21 0.728 93
GCI32 (%) 1.116 82 0.358 84 0.523 88 1.230 75

and the same numerical setup is used for both variants, different trends of the apparent
order as well as the uncertainty due to discretization can be observed. While the results
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of inducer HEL indicate a higher apparent order and smaller values of uncertainty in
efficiency than the results of inducer GEN, it is the other way around for head coefficient.
However, the GCI lies below 0.8 % for the fine grid and below 1.25 % for the medium grid
for both variables under consideration. To illustrate the influence of the grid refinement
on the uncertainty in the solution variables, the estimated extrapolated error according
to Equation 4.22 is depicted in Figures 4.23a and 4.23b for head coefficient and efficiency,
respectively. As can be seen from the figures, the estimated extrapolated error lies
below 1 % for both solution values. Because of this and the advantage of having a
substantially reduced computation time the medium grid (grid size index 2) is used for
the investigations in this thesis.
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Figure 4.23: Influence of grid size on solution variables (3D-CFD)

Results

Comparisons of total head rise computed with the SHP and CFD are depicted in Fig-
ures 4.24a and 4.24b for inducers HEL and GEN, respectively. Besides the total head
coefficient (based on total head, see Equation 2.121) also the theoretical head coefficient
obtained with the SHP (based on Equation 2.114) is displayed. The head coefficients are
plotted against normalized flow coefficient ϕ∗ = ϕ/ϕd, where ϕd is the flow coefficient at
the design flow rate. As already mentioned, head coefficient is computed with respect to
the outer diameter D2 of the main pump impeller, although not present in the current
study. In case of the CFD results the mass flow weighted average of total pressure in the
entry and exit planes is used for the computation of total head coefficient. Evidently,
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Figure 4.24: Head coefficient characteristics (based on total head H tot)

the head prediction underestimates the head for Inducer HEL, while for Inducer GEN
very good agreement is achieved close to the design flow rate and even at weak part-load
and overload. The result of the CFD simulation predicts significantly higher head coeffi-
cients for Inducer HEL than for inducer GEN. Comparing the theoretical head curves it
can be seen that the difference in the total head estimated by the SHP is mainly caused
by the loss model. However, in both cases a good approximation to the head curve slope
is provided by the simple model approach.
Since the total head is usually not the quantity that is of the biggest interest to the
engineer (because it cannot be measured with a simple pressure tap), the head coefficient
based on corrected head according to Equation 2.117 is investigated as well. Different
to the total head calculation, the sum of area weighted average of static pressure and of
dynamic pressure based on the meridional velocity component in the evaluation planes
is used to compute this head from the CFD results. The curves displayed in Figures
4.25a and 4.25b indicate similar trends for both solutions. Again for inducer GEN quite
good agreement of the head coefficient close to design flow rate is achieved. In contrast
to the CFD results the head of inducer GEN at design conditions is predicted by the
SHP to be higher than that produced by Inducer HEL. The simple method as well as
the CFD simulation predict an unstable head characteristic around 60 % of design flow
rate. A further parameter of interest during design iterations is the discharge flow angle
of the inducer. This angle can be computed by evaluating formula 2.110 in case of the
SHP. It is assumed that this angle is equal to the vane discharge angle, which is achieved
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Figure 4.25: Head coefficient characteristics (based on corrected head H)

immediately at the blade trailing edge location. To extract the equivalent angle from
the result of the three-dimensional CFD simulation circumferentially averaged values of
the flow angle at equidistant radial positions are calculated on a surface immediately
downstream of the trailing edge. Figures 4.26a and 4.26b depict the distribution of the
discharge angle at design flow rate plotted against the normalized meridional coordinate
measured from hub to shroud. From these figures it becomes clear, that the three-
dimensional CFD simulation predicts a much more complex discharge flow pattern than
suggested by the simplified flow model. Strong deviation from the blade angle can be
observed close to hub and shroud, where the influence of the wall friction and the tip
clearance in case of the shroud section is evident. At the hub the SHP also predicts
the highest deviation but the distribution of flow angle is completely different and much
simpler in shape. According to the CFD result the flow is well guided by the blade
from around 30 % to 75 % of the trailing edge length. In this region slightly negative
deviation angles are predicted (flow angle greater than blade angle), which is most
probably caused by an increased meridional through-flow velocity in this region. The
simple head prediction method also indicates flow angles greater than the blade angle
at the upper region of the blade trailing edge. This indicates that the method can
only deliver an idealized concept of the real flow through the inducer. It is expected
that a coupling between the cascade flow (singularity method) and the meridional flow
solution could improve the prediction of flow features. However, viscous effects, which
are known to heavily influence the flow field of inducers [46], are not considered by

131



4 Verification and Validation

0.00 0.25 0.50 0.75 1.00
m ∗

10

20

30

40

50

60

70
β
/
(
◦
)

SHP
CFD
Blade

(a) Inducer HEL

0.00 0.25 0.50 0.75 1.00
m ∗

10

20

30

40

50

60

70

β
/
(
◦
)

SHP
CFD
Blade

(b) Inducer GEN

Figure 4.26: Exit flow angle (along trailing edge, from hub to shroud), ϕ∗ = 1

either the singularity method of the SHP or the meridional flow analysis of the SMA.
Furthermore, the tip leakage and secondary flows caused by the interaction with the
blade surfaces are not included in the current method. Nevertheless, reasonably good
agreement between arithmetically averaged discharge flow angle extracted from CFD
can be obtained, as is demonstrated by the values in Table 4.10.

Table 4.10: Average discharge flow angle
Inducer β2,CFD β2,SHP β2b

HEL 34.02◦ 32.79◦ 34.39◦
GEN 32.75◦ 33.79◦ 34.47◦

The exit flow patterns are investigated in more detail by comparing the circumferentially
averaged meridional velocity component in the discharge section as depicted in Figures
4.27a and 4.27b. Clearly, the trend of the velocity profiles is only roughly represented
by the meridional velocity, which is a direct result of the SMA. Because the influence of
the blade is neglected in this simplified analysis both velocity profiles are identical and
predict the maximum velocity at 75 % of meridional trailing edge length. Compared to
the CFD results huge differences in the absolute values of velocities and their location
along the trailing edge exist. The global peak of meridional velocity computed by CFD
is significantly higher and located at around 60 % for inducer HEL and 75 % for inducer
GEN. The maximum values of meridional velocity are similar for both inducers. Towards
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Figure 4.27: Meridional velocity (along trailing edge, from hub to shroud), ϕ∗ = 1

the hub and shroud walls a reduction of meridional velocity can be observed for both
inducers. Due to the shift of velocity maximum towards the shroud the drop in velocity
is steeper for inducer GEN. Close to the hub both inducers show a small fluctuation
of meridional velocity, with a local peak of velocity that is more developed in case of
inducer HEL. According to Euler’s pump equation (Equation 2.22) head generation of
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Figure 4.28: Circumferential velocity (along trailing edge, from hub to shroud), ϕ∗ = 1
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the inducers is directly related to the change of the circumferential velocity component of
the absolute flow. Assuming swirl free inflow and considering that the change in radius
along the blade section is small for the inducers under investigation, the generated
circumferential velocity can be seen as the main reason for head rise. Figures 4.28a and
4.28b depict the circumferentially averaged distributions of this velocity component in
the discharge section for both inducers. Compared to the results of the CFD simulation,
the distributions predicted by the SHP reach significantly higher values at the shroud.
While for inducer HEL the value of circumferential velocity rises continuously from
hub to shroud, there is a soft decrease starting from the hub for inducer GEN. From
approximately 15 % of meridional trailing edge length the velocity rises even stronger
and reaches a higher value at the shroud. Completely different and more complicated
distributions are predicted by the CFD simulations. This indicates that viscous effects,
which are not included in the singularity method of the SHP, cause a very different flow
pattern at the inducer’s discharge. For both inducers a softly oscillating distribution
can be observed from hub to approximately 50 % of trailing edge length. Starting from
there, especially for inducer GEN a much weaker increase of the circumferential velocity
component compared to the SHP prediction is found. Interestingly, for both inducers
the intersection point of the inviscid prediction by the SHP and the CFD result lies close
to 50 % of the meridional trailing edge length. This might be a reason why, despite the
huge differences in the discharge flow patterns, the average head is quite well predicted.
At this point it should be remarked that the above investigations are performed without
considering the effect of the impeller or other downstream components on the inducer
discharge flow. To validate the results above with experimental data, elaborate and
costly flow field measurements would be required on an especially designed test bench
for inducers. Although such investigations have been performed, the question remains
if the findings are representing the actual flow pattern in the real inducer application
together with an impeller.
In addition to the already discussed results the singularity method adopted in the SHP
also allows to evaluate the head produced by the single blade sections. The head rise
produced by the fifteen blade sections from hub to shroud (k = 0 . . . 14) is displayed in
Figure 4.29a. According to this figure the SHP predicts higher theoretical total head
coefficients for inducer HEL on the interior sections (k = 2 . . . 9). On the inner and
outer sections higher head coefficients are estimated for inducer GEN. The figure clearly
demonstrates that, according to the SHP, most of the the head is produced at the outer
sections for both test-cases and the head decreases continuously towards the hub section.
Furthermore, each single blade section can be judged by analyzing the head rise along
the blade section from leading to trailing edge. This is depicted for hub, shroud and
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Figure 4.29: Theoretical head coefficient distribution, ϕ∗ = 1

a middle section (k = 7) in Figure 4.29b, where the theoretical total head coefficient
is plotted against normalized three-dimensional camber curve length (corresponding to
section k). As already observed before, the head rise is highest at the shroud (or tip)
sections and significantly lower at the hub section. At the shroud and mid section a
steeper head rise is predicted for inducer GEN. For both test cases there is no more
head rise after approximately 75 % of the blade length at the outer section. In fact,
a small decrease of head coefficient can be observed in both cases along the remaining
part of this section. It can be assumed that this effect is due to reduction in diameter
caused by the contraction of the meridional shroud contour on the one hand and due to
the decrease in blade thickness towards the trailing edge on the other hand. The hub
section of variant GEN contributes slightly more to the total head, although negative
head coefficients are predicted for up to 75 % of blade length. This indicates that the
blade shape could be optimized in this region.

4.5 Validation of Inducer Designs

4.5.1 Experimental Setup

An experimental test bench developed at the institute’s laboratories is used to validate
the designed prototypes in conjunction with a real pump unit. The test bench, originally
setup and used in the investigations carried out by Knapp [43], is modified to incorporate
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the newly developed inducer pump. A new impeller that has to comply with two main
requirements is designed. First, it was reduced in axial length to create space for the
inducer. This is done by adapting the meridional section and the positioning of the
leading edge. Second, the impeller still needs to operate appropriately with the original
volute to avoid excessive material and manufacturing costs for a new volute design.
This is achieved by adapting the blade angle distributions accordingly. Details about
the impeller design are provided in Appendix D. Since the test rig was formerly used to

Figure 4.30: Schematic of the pump loop

investigate different volute design criteria, multiple volute configurations are available.
The volute selected for the current investigations was designed and investigated together
with the original impeller by Knapp [43]. The volute is named Alpha because of the
underlying design rule prescribing the volute angle α as a function of wrap angle. Further
details about the volute design and numerical as well as test results of the original
pump configuration are reported in [43]. Several modifications of the original test bench
have been made in order to realize the investigations described in this thesis. Figure
4.30 depicts a schematic drawing of the pump loop including auxiliary devices and
sensors. An overview of the used sensors, including measurement ranges and accuracies
is provided in Table 4.11.
Following the recommendations of Knapp [43] a torquemeter with appropriate range and
integrated speed sensor to automatically acquire torque and speed signals is installed.
Furthermore, a differential pressure probe is used for the measurement of the head.
However, the originally used absolute pressure sensors are not removed but are used in
parallel to the differential pressure probe in order to keep results comparable to earlier
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Table 4.11: Sensors
Quantity (Symbol) Sensor Range Unit Accuracy

Absolute pressure (p1) E+H Cerabar M 0 . . .10 bar 0.2 %
Absolute pressure (p2) E+H Cerabar M 0 . . .10 bar 0.2 %
Absolute pressure (p3) E+H Cerabar M 0 . . .10 bar 0.2 %
Absolute pressure (ptank) E+H Cerabar M 0 . . .10 bar 0.2 %
Difference pressure (∆p12) ABB 266MST 0 . . .2.5 bar 0.04 %
Difference pressure (∆p13) ABB 266MST 0 . . .20 bar 0.04 %
Volume flow rate (Q) E+H Promag 50W80 0 . . .180 m3/h 0.4 %
Temperature (T ) E+H TST414 223 . . .673 K 0.5 %
Torque (M) KTR Dataflex 16/50 −50 . . .50 Nm 0.1 %
Speed (n) KTR Dataflex 16/50 0 . . .4000 rpm (-)

investigations. The locations of the pressure taps are indicated in the section view of

(a) Full measurement section (b) Detail view

Figure 4.31: Experimental pump unit

the inducer-pump assembly displayed in Figure 4.31a. An additional pair of differential
and absolute pressure sensors is installed to estimate the head rise generated by the
inducer. To achieve this, a new casing is designed that allows to measure the pressure
between inducer and impeller at the outer diameter directly in front of the wear ring
of the impeller. As can be seen from Figure 4.31b the pressure is measured from the
plenum that results out of the grooves in the wear ring seat and the inducer casing. Since
this location cannot be accessed easily by drilling in radially, the plenum is connected
axially to a flange protruding from the volute block. Additional o-ring seals are required
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to seal the system. A second tap, used as air vent, is provided at the top of this
flange. The whole inflow section was made out of PMMA to obtain visual access to the
inducers leading edge during test runs. This is not only helpful while measuring NPSH
characteristics but can also be an advantage when measuring head curves at higher inlet
pressures because small amounts of vapor can develop even under normal operation [18].

4.5.2 Pump configurations

Three pump configurations are investigated to judge the influence of the inducers on the
performance. As a reference the pump impeller is investigated without mounting one of
the inducers. A special nut was created for this purpose.
Figure 4.32a shows a section view of this configuration, which is called Pump IMP. The
other two configurations are named according to the inducer prototype that is used,
i.e. Pump HEL and Pump GEN. An exemplary section view of inducer pump HEL is
depicted in Figure 4.32b. Both pumps use the same inflow and outflow configuration,
such that the differences in measurement results can be fully attributed to the inducers
and the interaction with the impeller.
The hardware was manufactured in the universities workshops by CNC-machining. A
high-strength aluminum alloy EN AW 7022 (AlZn5Mg3Cu) was employed for the im-
peller and the inducers because of its good machinability. The impeller hub and blades
were produced from one piece and the shroud was fixed to it with three bolts per blade.
Figure 4.33a shows a top view of the impeller, Figure 4.33b shows the two inducers from
a lateral view.

(a) Pump IMP (b) Pump HEL

Figure 4.32: Pump configurations
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(a) Impeller (b) Inducers GEN (left) and HEL (right)

Figure 4.33: Test hardware

4.5.3 Measurement Procedure

Two different measurement types are conducted for each of the pump configurations;
Head and NPSH measurements. During a head measurement rotational speed is kept
constant by fixing the frequency of the frequency converter. The signals of the sensors
are acquired with a National Instruments NI USB-6259 data acquisition device and are
processed in a custom built LabView software. This program is also used to regulate
the volume flow rate through the test bench by controlling the valve. Starting from the
highest possible flow rate, which is around 130 m3/h in the current configuration, the
flow rate is reduced successively, while keeping the inlet total pressure approximately
constant at 2 bar. For each flow rate ten repeated measurements of the signals are
performed. In every measurement loop the mean value of continuously acquired data
over 1 s of measurement time is stored in an output file. The sampling rate is set to
10 kS/s on all analogue channels. The only digital signal, the frequency of the speed
sensor, is captured continuously and is stored together with the averaged analogue data.
In the case of NPSH measurements speed and flow rate are kept as constant as possible,
while the tank pressure is reduced step by step. This is achieved by lowering the tank
pressure by venting or by evacuating with the help of a vacuum pump. The signal
acquisition procedure is identical to the head measurements.
During all measurements visualization is realized by means of two network cameras
that are mounted close to the pump inlet. A freeze image of the inducer or impeller is
generated by synchronizing a stroboscope with the frequency signal of the speed sensor.
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4.5.4 Characteristic values

The data acquired from the sensors is used to compute the characteristic values of the
pump. By neglecting any possible amount of swirl and assuming uniform pressure in
the measurement sections the head of the inducer is computed according to Equation
2.25 as follows:

H12 = ∆p12

ρ g
+ c2

m2 − c2
m1

2 g (4.31)

Analogously, the pump head is calculated by:

H = H13 = ∆p13

ρ g
+ c2

m3 − c2
m1

2 g (4.32)

Alternatively, the signals of the absolute pressure sensors could be used to calculate the
head as follows:

H12,abs = p2 − p1

ρ g
+ c2

m2 − c2
m1

2 g (4.33)

Habs = H13,abs = p3 − p1

ρ g
+ c2

m3 − c2
m1

2 g (4.34)

Although the absolute pressures are acquired during measurements, they are not used
in the evaluation of the results presented in this thesis. Since the pressure taps are
connected to differential pressure sensors (∆p12,∆p13) and the absolute pressure sensors
(p1, p2, p3) are mounted at equal horizontal level, the hydrostatic head components (z2−
z1) and (z3−z1) are equal to zero and consequently do not appear in the above equations.
With the cross sectional areas at the pressure tap locations (see Figure 4.34) denoted
by Ap1, Ap2, and Ap3 the mean meridional velocities at these points are computed by

cm1 = Q/Ap1 = 4Q/(πd2
p1) (4.35a)

cm2 = Q/Ap2 = 4Q/(πd2
p) (4.35b)

cm3 = Q/Ap3 = 2Q/(πbp2(D1s +D1h)) (4.35c)

The corresponding values of power and efficiency are computed according to Equations
2.36 and 2.37. Because shaft power is measured for the entire inducer-impeller assembly,
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Figure 4.34: Schematic of the measurement section

these values can only be provided for the whole pump:

Ph = Ph,13 = ρgQH13 (4.36)

η = η13 = ρgQH13

Mω
(4.37)

Under the same assumptions as above NPSH is calculated based on the suction pressure
and the mean inlet velocity according to Equation 2.38:

NPSH = p1 − pv(T )
ρg

+ c2
m1
2g (4.38)

Saturation pressure is considered to be a function of temperature T only, which is
evaluated during measurement and evaluation.
Because the maximum speed of the frequency controlled motor used at the test bench
is limited to a value slightly below the nominal speed of n = 3000 rpm a conversion of
the characteristic parameters is performed based on the affinity laws as given in DIN
EN ISO 9906:2012 [26]. If the data measured at the speed nm is indicated by index m
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the conversion to nominal speed n is applied as follows:

Q = Qm

(
n

nm

)
(4.39a)

H = Hm

(
n

nm

)2
(4.39b)

P = Pm

(
n

nm

)3
(4.39c)

η = ηm (4.39d)

NPSH = NPSHm

(
n

nm

)2
(4.39e)

The dimensionless characteristic parameters as defined in Section 2.2.4 are computed
by the following equations:

ϕ = cm1

up1

(4.40)

ψ = 2gH
u2

2
(4.41)

λ = φψ

η
(4.42)

σ = 2gNPSH
u2
p1

(4.43)

In order to provide a uniform representation of the dimensionless characteristics, flow
coefficient ϕ as well as the cavitation coefficient σ are computed with respect to the
diameter at the inlet pressure tap, and the head coefficient ψ is computed with respect
to the impeller outlet diameter. The circumferential velocities at these locations are
computed by:

up1 = πndp1 (4.44)

u2 = πnD2 (4.45)

Head coefficients corresponding to the head measurements H12 and H = H13 are calcu-
lated according to Equation 4.41:

ψ12 = 2gH12

u2
2

(4.46)

ψ = ψ13 = 2gH13

u2
2

(4.47)
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A discussion of uncertainty analysis and an evaluation of uncertainty for the actual
measurement data is provided in Appendix E.

4.5.5 Experimental Results
Non-Cavitating Characteristic Curves

Characteristic curves are obtained at an inlet total pressure level of 2 bar and at the
maximum rotational speed realizable with the available equipment (motor and frequency
converter). By application of the affinity laws given in Equations 4.39 the results are
converted to nominal speed of 3000 rpm. Figure 4.35 depicts a comparison of head coef-
ficient, efficiency and performance coefficient curves for the three pump configurations.
All points represent the mean values of 10 repeated measurements at approximately
constant operating conditions. Quantitative analysis of the characteristic coefficients
at 50 %, 80 %, 100 %, 120 % of the design flow rate are summarized in Table 4.12. By

Table 4.12: Experimental results - characteristic coefficients
ϕ∗ Pump ψ13 ψ12 η λ

IMP 1.005 0.182 0.603 0.603
0.50 HEL 1.035 0.278 0.593 0.593

GEN 1.033 0.273 0.597 0.597
IMP 0.966 0.098 0.739 0.739

0.80 HEL 0.977 0.210 0.735 0.735
GEN 0.979 0.207 0.743 0.743
IMP 0.907 0.048 0.781 0.781

1.00 HEL 0.919 0.155 0.779 0.779
GEN 0.919 0.148 0.784 0.784
IMP 0.806 0.018 0.778 0.778

1.20 HEL 0.826 0.108 0.784 0.784
GEN 0.825 0.096 0.788 0.788

adding the inducers the characteristic curves are not altered significantly for the op-
erating points close to design flow rate. Head coefficient is increased only slightly in
this range of operation. In part-load, starting from around 60 % of design flow rate,
a stronger influence of the inducers can be observed. Head coefficient rises faster with
decreasing flow rate for pump configurations HEL and GEN and then becomes instable
at approximately 40 % of nominal flow rate. In comparison to this, the base pump con-
figuration IMP does not exhibit this behavior and provides an almost horizontal head
coefficient characteristic towards shut-off head. However, shut-off head is not measured,
such that it cannot be ruled out that any instability exists for this pump configuration
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Figure 4.35: Characteristic curves

at lower flow rates (between ϕ∗ = 0.1 and ϕ∗ = 0.0). The reason for the instability
occurring with the inducer configurations might be that the inducer head breaks down
at a certain flow rate as was already indicated by the results presented in Section 4.4.2.
The underlying flow mechanism is not completely understood but it can be assumed
that increased part load recirculation leading to vortex breakdown are causing the drop
in head coefficient [31]. However, since the instability is weak in terms of drop in head
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coefficient and occurs first at strong part-load, it does not prevent the application of the
inducers.
Analyzing the experimental results quantitatively, it can be found that at design flow the
head coefficient of the whole pump (ψ13) rises from 0.907 to 0.917, which is approximately
equal to 1.3 % of the head of pump IMP without any inducer. This clearly indicates
that there is interaction between inducer and the subsequent impeller since the heads
do not simply add up. In fact, the swirl produced by the inducer effectively reduces the
head of the impeller, such that the pump head remains almost unaltered.
Looking at the efficiency characteristic curve, it can be seen that the influence of the
inducers is rather small. This indicates that a good matching between inducer and
impeller could be achieved. In fact, the inducer-impeller configuration GEN operates
at slightly higher efficiencies from about 60 % of design flow rate. However, efficiency is
reduced at smaller flow rates for both inducer configurations. Furthermore, the point
of best efficiency (BEP) is shifted to approximately 110 % - 115 % of nominal flow rate.
Without changing the inducer-impeller combination a redesigned volute with a smaller
cross sectional area could be developed to match the BEP to the desired design values.
Other possibilities involve changes to the impeller like changing outlet width or blade
number [31].
Performance coefficient λ, also shown in Figure 4.35, is a measure for the input power
required to drive the pump unit. While the rise in performance coefficient caused by
the inducers is only marginally at design and overload, it is higher at part load. Due
to increased surface friction, tip leakage and other secondary flow losses, an increase
in input power and a decrease in efficiency is expected over the entire operating range.
However, this is not observable. In fact, the result is in accordance with the observations
made for efficiency. An implication of this finding is once more, that the impeller is well
adapted to work in combination with both of the inducers. On the other hand it can
be assumed that the impeller design is very tolerant of varying inflow conditions (with
and without pre-swirl).
Investigation of the head generation of the inducers is done by evaluating the head
coefficient ψ12. This head coefficient is depicted again for all pump configurations in
Figure 4.36. In case of pump configuration IMP no inducer is present, such that the
pressure difference measured might be explained by the leakage flow through the wear
ring gap (see Figure 4.31b). Furthermore, the pressure measurement at this position
close to the impeller inlet could be influenced by recirculation from the impeller leading
edge. This recirculation process, which intensifies with increasing part load, would
increase the pressure measured at the outer diameter. By computing the difference
between the interpolated data of head coefficient ψ12 of the measurements with inducer
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Figure 4.36: Inducer head coefficient (ψ12)

(pump configurations HEL and GEN) and without inducer (pump configuration IMP) an
estimate of the influence of the inducers is obtained. This difference of head coefficients
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Figure 4.37: Inducer head coefficient (∆ψ12)

is defined as ∆ψ12 = ψ12 − ψIMP
12 and is depicted in Figures 4.37a and 4.37b from

80 % to 120 % of design flow coefficient together with the data of the SHP and the
CFD simulations presented previously in Chapter 4.4.2 for both inducer prototypes. Of
course, the results of SHP and CFD are not directly comparable with the measured
values because the pressure evaluation method is different. While in the SHP and CFD
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the averaged static pressures at the inducer discharge are used, the circumferentially
averaged static pressure at the outer diameter between inducer and impeller is measured
in the experiment. Furthermore, effects due to interaction between inducer and impeller
cannot be removed by the simple subtraction of head coefficients. For the SHP the
difference relative to the corresponding measurement value is found to be around 23 %
for Inducer HEL and 7 % for inducer GEN. In case of the CFD simulation the equivalent
differences are approximately 13 % and 10 % for inducer HEL and GEN, respectively.
Taking into account the huge differences in effort required to produce these results and
considering the simplifications included in the SHP as well as in the CFD simulation,
which only models a single blade channel, the agreement can be rated as good. The
experimental data based on the static pressure at the outer diameter confirms that the
helical inducer provides a higher head than the general blade design. This cannot be
reproduced by the SHP and the amount of difference is underpredicted also by the CFD
result. A deeper investigation of the distribution of flow, especially at the inducer’s
discharge, is needed to understand the origin of this behavior.

Cavitating Performance

While the results discussed so far are obtained under non-cavitating conditions, the in-
fluence on suction performance has yet to be addressed. Hence, suction performance
is evaluated by performing head drop measurements to obtain NPSH as described in
Section 4.5.3. NPSH measurements are performed for 80 %, 100 %, 120 % of design flow
rate. Figure 4.38 depicts the head drop curves at design flow rate (ϕ∗ ≈ 1) for all pump
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Figure 4.38: Pump head coefficient (ψ) at design flow rate (ϕ∗ ≈ 1)
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configurations. The effect of adding the inducers is clearly visible; significantly lower cav-
itation coefficients are achieved with pump configuration HEL and GEN. Furthermore,
the head drop occurs more abruptly for the inducer pumps, whereas a comparatively
soft drop of head is observed for pump IMP. This is the reason why with the current
test bench configuration tank pressure has to be reduced very carefully and in small
steps when approaching the head drop condition. Hence, a comparably high number
of measurement points is necessary for the inducer configurations. This is why markers
are omitted for the individual measurement points in the figures displaying the head
drop curves. Evaluating the cavitation coefficient at a 3 % drop of head leads to the

Table 4.13: Experimental results - suction performance (ϕ∗ ≈ 1)
Pump σ3% nss/(rpm) Nss/(rpm) Ωss

IMP 0.273 207.63 10723.04 3.92
HEL 0.088 485.86 25092.19 9.18
GEN 0.081 514.27 26559.83 9.72

values summarized in Table 4.13. Head drop is computed with respect to the head
measured at the highest value of cavitation coefficient. Since inlet pressure is lowered
successively, this is equal to the head measured at the first measurement point of the
head drop measurement run. Computation of the cavitation coefficient is performed
by interpolating the measured data linearly and then searching for the desired drop in
head numerically. The tabulated values indicate that cavitation coefficient is reduced by
more than two thirds at design flow coefficient (ϕ∗ ≈ 1). Although not explicitly listed,
similar reductions of the cavitation coefficient can be found in case of the measurement
at part-load (ϕ∗ ≈ 0.8) and overload (ϕ∗ ≈ 1.2).
Suction specific speed, calculated for design flow rate Q = 100 m3/h and rotational speed
n = 3000 rpm, is more than doubled as can be seen from Table 4.13. Besides the non-
dimensional version Ωss also the European (nss) and US-American version of suction
specific speed are provided as they might be more common to the reader. Conversion
factors are provided in Appendix C.
The values obtained in the measurements at design flow coefficient are slightly lower
than the design value of nss ≈ 495 min−1 for inducer HEL and moderately higher than
the design value for inducer GEN. This might be caused by the small differences in
leading edge blade angle design of the two inducers (see Figure 4.4a) and points out
how important an exact control of the leading edge shape is for the designer of inducers.
It should also be considered that measurement uncertainty rises with decreasing values
of cavitation coefficient (see Appendix E). Nevertheless, both inducer designs provide
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a very good initial design, which could be used to refine the design parameters and
produce an improved design.
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Figure 4.39: Inducer head coefficent (ψ12) at design flow rate (ϕ∗ ≈ 1)
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Figure 4.40: Cavitation coefficient characteristic curves

Analogously to the non-cavitating case, the inducer head coefficient ψ12 is used to inves-
tigate the influence of the inducers. At the design flow coefficient the head drop curves
depicted in Figure 4.39 are obtained. As expected, the head coefficient of the pump
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configuration IMP is substantially lower than the head coefficients of the other config-
urations. Comparing the curves of the inducer pumps (HEL and GEN) to the curves
for the whole pump (Figure 4.38) the drop of inducer head coefficient ψ12 appears a lot
softer.
If ψ12 is now evaluated at σ3% of the whole pump, it becomes clear, that the inducer
is already operating with a substantially higher decrease of head coefficient. In fact,
the inducer head coefficient is already reduced by approximately 15 % - 20 % at this
operating point.
The cavitation coefficient characteristics of the pump configurations are obtained by
plotting σ3% against normalized flow coefficient ϕ∗ in the measured range from 80 %
to 120 % (Figure 4.40a). Both inducers significantly reduce cavitation coefficient at all
three operating points. Inducer GEN reaches slightly lower values at 100 % and 120 % of
design flow coefficient. A similar trend can be observed if cavitation coefficient at 20 %
of drop of inducer head coefficient, denoted by σ20%,ψ12 , is evaluated at the different flow
rates. Figure 4.40b shows these progressions for both pump configurations HEL and
GEN.
Of course this reflects only an excerpt of the full cavitation characteristic of the pump.
Further measurements at part-load and overload are required to investigate the full
range of operation and to detect possible instabilities due to cavitation. Nevertheless,
the present investigation confirms the intended reduction in cavitation coefficient for the
design point of the pump.
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An integral inducer design procedure was developed and tested on a real experimental
pump unit. Making use of B-splines the geometric design steps provide a parametrical
way of controlling and manipulating blade shape, opening the door to optimization
methods. The meridional section can be designed freely, allowing for arbitrary hub and
shroud shapes. This is not only of interest for high head inducers, which use a tapered
hub contour to support the pressure rise process, but also for inducers with converging
shroud shapes. The latter can be necessary to match the inducer with a large inlet
diameter to an impeller with a smaller suction diameter.
A two-dimensional, inviscid flow computation method is integrated in the design pro-
cedure to generate physically motivated streamlines in the meridional plane. These
streamlines are used as the basis of the blade section design. In the present thesis two
different blade shapes are implemented; the helical and the general blade. While the
helical blade design can be considered the classical method, the general blade shape of-
fers greater design flexibility because the blade angle distributions can be designed more
freely. Both methods provide the possibility to create a blade with specified amount of
backward or forward sweep in a parametrical way. Emphasis is also placed on the devel-
opment of a three-dimensional method to generate the blade profile in an asymmetric
manner. Two thickness distributions can be designed independently, and the corre-
sponding thicknesses are added on the opposite sides of the three-dimensional camber
curve. This is especially useful if the profiling is performed only for the suction side
(or the pressure side) of the blade. A parametric approach of wedge-shaped leading
edge sharpening is incorporated into the thickness distribution design. However, the
method can be easily extended to other sharpening or other profile shapes. To generate
manufacturing-ready blade surfaces an elliptical rounding of the blade edges is provided
operating at the thickness distribution level. With this approach an undistorted map-
ping of the profile to the three-dimensional space is achieved. However, different edge
types and various other ways to apply them to the blade profile are imaginable.
The blade sections can finally be used in a simple head prediction procedure. This
procedure is based on a singularity method that only operates on the two-dimensional
blade camber curves in the cascade plane and delivers estimates of theoretical head and
discharge flow conditions. Changes of meridional flow velocity as well as blade blockage
are considered by the method. Viscous effects are introduced into the method by a very
simple loss model giving an estimate of the total head loss.
In order to test the design method two inducers with different blade types were designed
and manufactured. Verification and validation of both, the meridional flow analysis and
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the head prediction method, were performed based on simple analytical solutions and
with the help of numerical simulations of the two inducer prototypes. The meridional
flow analysis provided a quite good agreement with the numerical solutions computed by
a commercial CFD code. Although reasonable estimates for the head of the inducers were
observed, the limitations of the head prediction method are revealed by investigation of
the discharge velocity profiles of the inducers. However, rough estimates of head and
average discharge angles can still be useful in the early design stage. In the last step the
inducer prototypes were examined experimentally. The results show that the inducer
designs reduce cavitation coefficient at three percent of head drop by a factor of around
three and more than double suction specific speed of the pump unit. Furthermore, the
efficiency of the pump is not altered significantly by application of the inducers.
This successful application of the design method does not only demonstrate the func-
tionality of the developed procedure but also indicates the potential for future inducer
developments. Since the design method does not rely on any commercial software,
its extension and further development are feasible without limitations. Future steps
could include the design of inducers featuring splitter or tandem blades as well as the
unified design of inducer and impeller. A different direction of research could address
more advanced performance analysis methods like quasi three-dimensional or full three-
dimensional codes, which also consider the cavitating performance of the inducer. Appli-
cation of these methods could be used to produce far more optimized inducer geometries
in the future.
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A Meridional Flow Computation

A.1 Governing Equation

The governing equation of simplified meridional flow (Equation 2.68) has to be solved
numerically for arbitrary shaped meridional sections. A finite difference method is ap-
plied in this thesis, which itself depends on the usage of an appropriate grid. Thus, the
next section deals with the grid generation problem before the solution procedure of
Equation 2.68 is discussed.
The formulas provided in the following two sections are based on the explanations and
mathematical derivations available in the open literature, e.g. [29, 56, 60, 67]. They are
included in this appendix in order to serve as a compact reference for readers that may
be confronted with similar problems.

A.2 Elliptical Grid Generation

A.2.1 Transformation of Partial Derivatives

The two-dimensional flow domain of arbitrary shaped meridional sections can hardly be
represented by a Cartesian or rectilinear grid. Hence, the grid lines are generally curved
in the physical space. Unfortunately, calculation of derivatives by means of finite differ-
ences along these curved grid lines is difficult. To circumvent this problem a coordinate
transformation is performed leading to a rectilinear or a Cartesian representation of the
physical grid in the computational domain.
If the physical coordinates in two dimensions are given as (x, y), which can simply be
replaced by (z, r) in case of the meridional section discussed in Section 2.4.2, then the
equivalent points in the computational domain are described by (ξ, η) coordinates as
follows [56]:

ξ = ξ(x, y) (A.1)

η = η(x, y). (A.2)

Accordingly, the inverted procedure is written as:

x = x(ξ, η) (A.3)

y = y(ξ, η) (A.4)

Considering these relations the partial derivatives have to be transformed to the com-

163



A Meridional Flow Computation

putational coordinate system according to the chain rule. The first partial derivatives
read: (

∂

∂x

)
=
(
∂

∂ξ

) (
∂ξ

∂x

)
+
(
∂

∂η

) (
∂η

∂x

)
(
∂

∂y

)
=
(
∂

∂ξ

) (
∂ξ

∂y

)
+
(
∂

∂η

) (
∂η

∂y

)

Analogously, the second order partial derivatives can be formulated as:(
∂2

∂x2

)
=
(
∂

∂x

) (
∂

∂x

)
=
(
∂

∂x

)[(
∂

∂ξ

) (
∂ξ

∂x

)
+
(
∂

∂η

) (
∂η

∂x

)]

=
(

∂2

∂x∂ξ

) (
∂ξ

∂x

)
+
(
∂

∂ξ

) (
∂2ξ

∂x2

)
+
(

∂2

∂x∂η

) (
∂η

∂x

)
+
(
∂

∂η

) (
∂2η

∂x2

)
(
∂2

∂y2

)
=
(
∂

∂y

) (
∂

∂y

)
=
(
∂

∂y

)[(
∂

∂ξ

) (
∂ξ

∂y

)
+
(
∂

∂η

) (
∂η

∂y

)]

=
(

∂2

∂y∂ξ

) (
∂ξ

∂y

)
+
(
∂

∂ξ

) (
∂2ξ

∂y2

)
+
(

∂2

∂y∂η

) (
∂η

∂y

)
+
(
∂

∂η

) (
∂2η

∂y2

)

For the mixed partial derivatives the following expressions can be obtained:(
∂2

∂x∂ξ

)
=
(
∂

∂x

) (
∂

∂ξ

)
=
[(

∂

∂ξ

) (
∂ξ

∂x

)
+
(
∂

∂η

) (
∂η

∂x

)](
∂

∂ξ

)

=
(
∂2

∂ξ2

) (
∂ξ

∂x

)
+

(
∂

∂ξ

) (
∂2ξ

∂x∂ξ

)
+
(

∂2

∂η∂ξ

) (
∂η

∂x

)
+

(
∂

∂η

) (
∂2η

∂x∂ξ

)
(

∂2

∂x∂η

)
=
(
∂

∂x

) (
∂

∂η

)
=
[(

∂

∂ξ

) (
∂ξ

∂x

)
+
(
∂

∂η

) (
∂η

∂x

)](
∂

∂η

)

=
(

∂2

∂ξ∂η

) (
∂ξ

∂x

)
+

(
∂

∂ξ

) (
∂2ξ

∂x∂η

)
+
(
∂2

∂η2

) (
∂η

∂x

)
+

(
∂

∂η

) (
∂2η

∂x∂η

)
(

∂2

∂y∂ξ

)
=
(
∂

∂y

) (
∂

∂ξ

)
=
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∂

∂ξ

) (
∂ξ

∂y

)
+
(
∂

∂η

) (
∂η

∂y

)](
∂

∂ξ

)

=
(
∂2

∂ξ2

) (
∂ξ

∂y

)
+
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∂

∂ξ

) (
∂2ξ

∂y∂ξ

)
+
(

∂2

∂η∂ξ

) (
∂η

∂y

)
+

(
∂

∂η

) (
∂2η

∂y∂ξ
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∂y∂η

)
=
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∂

∂y

) (
∂

∂η

)
=
[(

∂

∂ξ

) (
∂ξ

∂y

)
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∂

∂η

) (
∂η

∂y
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∂

∂η
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=
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∂ξ∂η
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∂ξ
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∂
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) (
∂η

∂y

)
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∂

∂η

) (
∂2η

∂y∂η

)
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Because of the following relations all terms in the gray boxes evaluate to zero:

(
∂2ξ

∂x∂ξ

)
=
(
∂

∂x

) (
∂ξ

∂ξ

)
=
(
∂

∂x

)
(1) = 0(

∂2η

∂x∂ξ

)
=
(
∂

∂x

) (
∂η

∂ξ

)
=
(
∂

∂x

)
(0) = 0(

∂2ξ

∂x∂η

)
=
(
∂

∂x

) (
∂ξ

∂η

)
=
(
∂

∂x

)
(0) = 0(

∂2η

∂x∂η

)
=
(
∂

∂x

) (
∂η

∂η

)
=
(
∂

∂x

)
(1) = 0(

∂2ξ

∂y∂ξ

)
=
(
∂

∂y

) (
∂ξ

∂ξ

)
=
(
∂

∂y

)
(1) = 0(

∂2η

∂y∂ξ

)
=
(
∂

∂y

) (
∂η

∂ξ

)
=
(
∂

∂y

)
(0) = 0(

∂2ξ

∂y∂η

)
=
(
∂

∂y

) (
∂ξ

∂η

)
=
(
∂

∂y

)
(0) = 0(

∂2η

∂y∂η

)
=
(
∂

∂y

) (
∂η

∂η

)
=
(
∂

∂y

)
(1) = 0

Therefore, the mixed partial derivatives can be simplified to:(
∂2

∂x∂ξ

)
=
(
∂2

∂ξ2

) (
∂ξ

∂x

)
+
(

∂2

∂η∂ξ

) (
∂η

∂x

)
(

∂2

∂x∂η

)
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(

∂2

∂ξ∂η
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∂ξ

∂x
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∂x
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∂ξ2
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∂ξ

∂y
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=
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∂ξ∂η

) (
∂ξ

∂y
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+
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∂η2

) (
∂η

∂y

)

Inserting the expressions for the mixed partial derivatives the second order derivatives
can be written as:(

∂2

∂x2

)
=
[(

∂2

∂ξ2

) (
∂ξ

∂x

)
+
(

∂2

∂η∂ξ

) (
∂η

∂x

)] (
∂ξ

∂x

)
+
(
∂

∂ξ

) (
∂2ξ

∂x2

)

+
[(

∂2

∂ξ∂η

) (
∂ξ

∂x

)
+
(
∂2

∂η2

) (
∂η

∂x

)] (
∂η

∂x

)
+
(
∂

∂η

) (
∂2η

∂x2

)

=
(
∂2

∂ξ2

) (
∂ξ

∂x
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+
(
∂2

∂η2

) (
∂η

∂x
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+ 2
(

∂2

∂η∂ξ

) (
∂ξ

∂x

) (
∂η

∂x

)
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+
(
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∂ξ
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∂x2
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∂

∂η
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∂2η

∂x2
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∂ξ2
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∂ξ
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∂ξ
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+
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∂ξ
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(
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For the mixed partial derivative the following transformation can be obtained analo-
gously:(

∂2

∂x∂y

)
=
(
∂

∂x

) (
∂

∂y

)
=
(
∂

∂x

)[(
∂

∂ξ

) (
∂ξ

∂y

)
+
(
∂

∂η

) (
∂η

∂y

)]

=
(
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∂ξ∂x

) (
∂ξ
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)
+
(
∂

∂ξ

) (
∂2ξ

∂x∂y

)
+

(
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∂η∂x
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∂η
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)
+
(
∂
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) (
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∂x∂y

)

This equation can be further simplified by inserting the already derived expressions for
the terms in the gray boxes:(

∂2

∂x∂y

)
=
(
∂

∂ξ

) (
∂2ξ

∂x∂y

)
+
(
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∂η
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∂2η

∂x∂y

)

+
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(
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∂η∂ξ
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)

+
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∂ξ∂η
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∂x

)
+
(
∂2
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) (
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)

=
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∂ξ
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∂x∂y

)
+
(
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∂η

) (
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∂x∂y

)

+
(
∂2

∂ξ2

) (
∂ξ

∂x

) (
∂ξ

∂y

)
+
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) (
∂η

∂x

) (
∂η

∂y

)

+
(
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∂η∂ξ

) [(
∂η

∂x

) (
∂ξ

∂y

)
+
(
∂ξ

∂x

) (
∂η

∂y

)]

A.2.2 Transformation Metrics

The relation between the partial derivatives in the physical and the computational co-
ordinate system can be described by the metrics of the transformation. By writing the
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total differentials for both coordinate systems the following relations are obtained:

dξ =
(
∂ξ

∂x

)
dx+

(
∂ξ

∂y

)
dy

dη =
(
∂η

∂x

)
dx+

(
∂η

∂y

)
dy

dx =
(
∂x

∂ξ

)
dξ +

(
∂x

∂η

)
dη

dy =
(
∂y

∂ξ

)
dξ +

(
∂y

∂η

)
dη

The partial derivatives of the coordinates of the computational system with respect
to the physical coordinates are called the direct metrics or just metrics, the partial
derivatives of the physical coordinates with respect to the computational coordinates are
called computational or inverse metrics [56]. Written in matrix notation the equations
above read: dξ

dη

 =
 ∂ξ∂x ∂ξ

∂y
∂η
∂x

∂η
∂y

dx
dy


dx
dy

 =
∂x∂ξ ∂x

∂η
∂y
∂ξ

∂y
∂η

dξ
dη


From this notation it gets clear that the the following relation exists between the partial
derivatives:  ∂ξ∂x ∂ξ

∂y
∂η
∂x

∂η
∂y

 =
∂x∂ξ ∂x

∂η
∂y
∂ξ

∂y
∂η

−1

= A−1

Realizing that the determinant of the Jacobian matrix, usually just called the Jacobian,
is given by

J = detJ = det
∂x∂ξ ∂y

∂ξ
∂x
∂η

∂y
∂η

 = detJT = detA = ∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ

the inversion of Matrix A can be performed as:

A−1 = 1
J

 ∂y
∂η
−∂x
∂η

−∂y
∂ξ

∂x
∂ξ
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The relations between the direct and inverse metrics can therefore be stated as:

∂ξ

∂x
= 1
J

∂y

∂η
(A.5a)

∂ξ

∂y
= − 1

J

∂x

∂η
(A.5b)

∂η

∂x
= − 1

J

∂y

∂ξ
(A.5c)

∂η

∂y
= 1
J

∂x

∂ξ
(A.5d)

A.2.3 Inverse Laplace Equation

Delivering smooth and unique solutions, elliptic partial differential equations are often
used to generate structured grids [29, 60, 67]. The relation between the computational
and the physical coordinates in the two dimensional case under consideration is given by
a system of two Laplace equations, which is the most simple case of an elliptical system:

0 = ∇2ξ =
(
∂2ξ

∂x2

)
+
(
∂2ξ

∂y2

)
(A.6)

0 = ∇2η =
(
∂2η

∂x2

)
+
(
∂2η

∂y2

)
(A.7)

Because ξ and η are the known coordinates of a prescribed rectilinear or Cartesian grid
in the computational domain this system has to be inverted to obtain the coordinates
x and y in the physical domain. By inserting the relations for the transformed second
partial derivatives the Laplace operator can be written as:

∇2 =
(
∂2

∂x2

)
+
(
∂2

∂y2

)
=
(
∂2

∂ξ2

)(∂ξ
∂x

)2

+
(
∂ξ

∂y

)2


︸ ︷︷ ︸
A

+ 2
(

∂2

∂ξ∂η

)[(
∂ξ

∂x

) (
∂η

∂x

)
+
(
∂ξ

∂y

) (
∂η

∂y

)]
︸ ︷︷ ︸

B

+
(
∂2

∂η2

)(∂η
∂x

)2

+
(
∂η

∂y

)2


︸ ︷︷ ︸
C
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+
(
∂

∂ξ

)[(
∂2ξ

∂x2

)
+
(
∂2ξ

∂y2

)]
︸ ︷︷ ︸

D

+
(
∂

∂η

)[(
∂2η

∂x2

)
+
(
∂2η

∂y2

)]
︸ ︷︷ ︸

E

Using the formulas for the grid metrics (Equation A.5) the following expressions can be
obtained for the terms indicated by A, B, C:

A = 1
J2

(∂x
∂η

)2

+
(
∂y

∂η

)2
 = 1

J2 α

B = − 1
J2

[(
∂x

∂ξ

)(
∂x

∂η

)
+
(
∂y

∂ξ

)(
∂y

∂η

)]
= − 1

J2 β

C = 1
J2

(∂x
∂ξ

)2

+
(
∂y

∂ξ

)2
 = 1

J2 γ

The terms D and E can be identified with Equations A.6 and A.7 so that these terms
can be set D = E = 0. Finally, the inverse system of Laplace equations in terms of x
and y reads:

0 = α

(
∂2x

∂ξ2

)
− 2β

(
∂2x

∂ξ∂η

)
+ γ

(
∂2x

∂η2

)
(A.8)

0 = α

(
∂2y

∂ξ2

)
− 2β

(
∂2y

∂ξ∂η

)
+ γ

(
∂2y

∂η2

)
(A.9)

The geometrical coefficients in the equations above are defined as:

α =
(
∂x

∂η

)2

+
(
∂y

∂η

)2

β =
(
∂x

∂ξ

)(
∂x

∂η

)
+
(
∂y

∂ξ

)(
∂y

∂η

)

γ =
(
∂x

∂ξ

)2

+
(
∂y

∂ξ

)2

A.2.4 Grid Generation Procedure

Central differences are used to discretize the partial derivatives occurring in Equations
A.8 and A.9. The first and second order partial derivatives can be approximated by the
following equations: (

∂x

∂ξ

)
i,j

= xi+1,j − xi−1,j

2∆ξ
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(
∂x

∂η

)
i,j

= xi,j+1 − xi,j−1

2∆η(
∂y

∂ξ

)
i,j

= yi+1,j − yi−1,j

2∆ξ(
∂y

∂η

)
i,j

= yi,j+1 − yi,j−1

2∆η

(
∂2x

∂ξ2

)
i,j

= xi+1,j − 2xi,j − xi−1,j

∆ξ2(
∂2x

∂η2

)
i,j

= xi,j+1 − 2xi,j − xi,j−1

∆η2(
∂2y

∂ξ2

)
i,j

= yi+1,j − 2yi,j − yi−1,j

∆ξ2(
∂2y

∂η2

)
i,j

= yi,j+1 − 2yi,j − yi,j−1

∆η2

Similarly the mixed partial derivatives can be approximated by:(
∂2x

∂ξ∂η

)
i,j

= xi+1,j+1 − xi+1,j−1 − xi−1,j+1 + xi−1,j−1

4∆ξ∆η(
∂2y

∂ξ∂η

)
i,j

= yi+1,j+1 − yi+1,j−1 − yi−1,j+1 + yi−1,j−1

4∆ξ∆η

Substituting the partial derivatives with their finite difference representations, the dis-
cretized Laplace equations are obtained:

0 = αi,j
xi+1,j − 2xi,j + xi−1,j

∆ξ2

− 2βi,j
xi+1,j+1 − xi+1,j−1 − xi−1,j+1 + xi−1,j−1

4∆ξ∆η

+ γi,j
xi,j+1 − 2xi,j + xi,j−1

∆η2 (A.13)

0 = αi,j
yi+1,j − 2yi,j + yi−1,j

∆ξ2

− 2βi,j
yi+1,j+1 − yi+1,j−1 − yi−1,j+1 + yi−1,j−1

4∆ξ∆η

+ γi,j
yi,j+1 − 2yi,j + yi,j−1

∆η2 (A.14)
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In these equations the geometrical coefficients α, β, γ are also approximated by finite
differences:

αi,j =
(
xi,j+1 − xi,j−1

2∆η

)2

+
(
yi,j+1 − yi,j−1

2∆η

)2

(A.15a)

βi,j = xi+1,j − xi−1,j

2∆ξ
xi,j+1 − xi,j−1

2∆η + yi+1,j − yi−1,j

2∆ξ
yi,j+1 − yi,j−1

2∆η (A.15b)

γi,j =
(
xi+1,j − xi−1,j

2∆ξ

)2

+
(
yi+1,j − yi−1,j

2∆ξ

)2

(A.15c)

A.2.5 Solution of the Discretized Equations

Rearranging the discrete versions of the inverse Laplace equations leads to the following
equations for the grid coordinates x and y:

xi,j =
[
2
(
αi,j
∆ξ2 + γi,j

∆η2

)]−1[
αi,j
∆ξ2 (xi+1,j + xi−1,j)

− βi,j
2∆ξ∆η (xi+1,j+1 − xi+1,j−1 − xi−1,j+1 + xi−1,j−1)

+ γi,j
∆η2 (xi,j+1 + xi,j−1)

]
(A.16)

yi,j =
[
2
(
αi,j
∆ξ2 + γi,j

∆η2

)]−1[
αi,j
∆ξ2 (yi+1,j + yi−1,j)

− βi,j
2∆ξ∆η (yi+1,j+1 − yi+1,j−1 − yi−1,j+1 + yi−1,j−1)

+ γi,j
∆η2 (yi,j+1 + yi,j−1)

]
(A.17)

The actual values of the coordinates in the computational (ξ, η) plane have no influence
on the solution of the aforementioned equations [56]. Therefore, the grid spacing is
usually chosen as:

∆ξ = ∆η = 1 (A.18)
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In this case, Equations A.16 and A.17 can be further simplified:

xi,j = 1
2 (αi,j + γi,j)

[
αi,j (xi+1,j + xi−1,j)

− 1
2βi,j (xi+1,j+1 − xi+1,j−1 − xi−1,j+1 + xi−1,j−1)

+ γi,j (xi,j+1 + xi,j−1)
]

(A.19)

yi,j = 1
2 (αi,j + γi,j)

[
αi,j (yi+1,j + yi−1,j)

− 1
2βi,j (yi+1,j+1 − yi+1,j−1 − yi−1,j+1 + yi−1,j−1)

+ γi,j (yi,j+1 + yi,j−1)
]

(A.20)

Analogously, the following expressions are obtained for the coefficients α, β, γ:

αi,j = 1
4
[
(xi,j+1 − xi,j−1)2 + (yi,j+1 − yi,j−1)2

]
(A.21a)

βi,j = 1
4
[
(xi+1,j − xi−1,j) (xi,j+1 − xi,j−1) + (yi+1,j − yi−1,j) (yi,j+1 − yi,j−1)

]
(A.21b)

γi,j = 1
4
[
(xi+1,j − xi−1,j)2 + (yi+1,j − yi−1,j)2

]
(A.21c)

The coefficients α, β, γ depend non-linearly on the grid coordinates, which of course
are not known a priori. Hence, the above equations represent a coupled system of non-
linear equations. Although there exist direct methods for the solution of such systems,
an iterative approach is used because of its simpler implementation and lower need of
resources. Furthermore, it is not necessary to obtain an exact solution of the already
discretized (and therefore approximate) equations.
A formulation of an iterative procedure is already given by Equations A.19 and A.20. If
all terms on the right hand side are considered to originate from the previous iteration
step, the Jacobi method (JA) is obtained (only the x equation is shown in what follows):

x
(n+1)
i,j,JA = 1

2
(
α

(n)
i,j + γ

(n)
i,j

)[α(n)
i,j

(
x

(n)
i+1,j + x

(n)
i−1,j

)

− 1
2β

(n)
i,j

(
x

(n)
i+1,j+1 − x

(n)
i+1,j−1 − x

(n)
i−1,j+1 + x

(n)
i−1,j−1

)
+ γ

(n)
i,j

(
x

(n)
i,j+1 + x

(n)
i,j−1

)]
(A.22)
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Although it is possible to compute the coefficients α, β, γ during the solution process
like the coordinates themselves, this approach is not used because in this case no con-
sistent set of the coefficients is present during the iteration step. Another possibility
is to calculate the coefficients lagging one iteration step for the whole grid [56]. This
approach is used in the current implementation. By convention the iteration procedure
is performed in a nested loop, looping over the second index j first. Usage of all already
computed values at the current iteration step leads to the Gauß-Seidel Method:

x
(n+1)
i,j,GS = 1

2
(
α

(n)
i,j + γ

(n)
i,j

)[α(n)
i,j

(
x

(n)
i+1,j + x

(n+1)
i−1,j

)

− 1
2β

(n)
i,j

(
x

(n)
i+1,j+1 − x

(n)
i+1,j−1 − x

(n+1)
i−1,j+1 + x

(n+1)
i−1,j−1

)
+ γ

(n)
i,j

(
x

(n)
i,j+1 + x

(n+1)
i,j−1

)]
(A.23)

The Gauß-Seidel method can be improved by the Successive Over-Relaxation or SOR al-
gorithm, which accelerates convergence by a combination of the solutions of the previous
iteration and the current iteration level of the Gauß-Seidel method:

x
(n+1)
i,j,SOR = (ω − 1)x(n)

i,j,SOR + ωx
(n+1)
i,j,GS (A.24)

It can be shown that the relaxation parameter ω has to lie in the range of 0 < ω < 2.
Usually ω is chosen in the range of 1 < ω < 2 to obtain overrelaxation and therefore
faster convergence. For ω = 1 the SOR method is identical to the Gauß-Seidel method.
The iteration procedure is stopped if a convergence criterion is satisfied or the maximum
number of iterations is reached. In the current implementation convergence is judged
based on the relative error of the solution variable x. The iteration process is stopped
if the maximum relative error falls below a specified tolerance ε:

max
 |x(n+1)

i,j − x(n)
i,j |

max |x|

 < ε (A.25)

A.3 Solution Method

To finally solve the governing equation of simplified meridional flow (Equation 2.68)
the partial derivatives have to be transformed as was shown in Section A.2. After
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introducing the appropriate terms, the transformed equation can be written as

α

(
∂2Ψ
∂ξ2

)
− 2β

(
∂2Ψ
∂ξ∂η

)
+ γ

(
∂2Ψ
∂η2

)
− δ

r

((
∂Ψ
∂η

)(
∂z

∂ξ

)
−
(
∂Ψ
∂ξ

)(
∂z

∂η

))
,

where δ is equal to the Jacobian J :

δ = ∂z

∂ξ

∂r

∂η
− ∂z

∂η

∂r

∂ξ
= J

Substituting the partial derivatives with their central difference approximations and
rearranging the whole equation yields:

Ψi,j = 1
2 (αi,j + γi,j)

[
αi,j (Ψi+1,j + Ψi−1,j) + γi,j (Ψi,j+1 + Ψi,j−1)

− 1
2βi,j (Ψi+1,j+1 −Ψi+1,j−1 −Ψi−1,j+1 + Ψi−1,j−1)

− 1
4
δi,j
ri,j

(
(Ψi,j+1 −Ψi,j−1)(zi+1,j − zi−1,j)− (Ψi+1,j −Ψi−1,j)(zi,j+1 − zi,j−1)

)]
(A.26)

The value of the Jacobian δ at the grid location i, j is analogously discretized by:

δi,j = 1
4
[
(zi+1,j − zi−1,j) (ri,j+1 − ri,j−1)− (zi,j+1 − zi,j−1) (ri+1,j − ri−1,j)

]
Equation A.26 is solved by the SOR method as described in Section 2.4.2 for the grid
coordinates. Thus, the iteration step is defined as:

Ψ(n+1)
i,j,SOR = (ω − 1)Ψ(n)

i,j,SOR + ωΨ(n+1)
i,j,GS (A.27)

Assuming again that the procedure loops over index j first, the Gauß-Seidel step can be
written as:

Ψ(n+1)
i,j,GS = 1

2 (αi,j + γi,j)

[
αi,j

(
Ψ(n)
i+1,j + Ψ(n+1)

i−1,j

)
+ γi,j

(
Ψ(n)
i,j+1 + Ψ(n+1)

i,j−1

)
− 1

2βi,j
(
Ψ(n)
i+1,j+1 −Ψ(n)

i+1,j−1 −Ψ(n+1)
i−1,j+1 + Ψ(n+1)

i−1,j−1

)
− 1

4
δi,j
ri,j

(
(Ψ(n)

i,j+1 −Ψ(n+1)
i,j−1 )(zi+1,j − zi−1,j)− (Ψ(n)

i+1,j −Ψ(n+1)
i−1,j )(zi,j+1 − zi,j−1)

)]
(A.28)
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Analogously to grid generation, convergence is judged based on the maximum relative
error in the solution variable Ψ:

(∆Ψ)∗max = max
 |Ψ(n+1)

i,j −Ψ(n)
i,j |

max |Ψ|

 < ε (A.29)

Once the stream function is computed on all the interior grid nodes the flow velocity can
be calculated. Stokes’ stream function Ψ is connected to the meridional flow velocities
by the following equations:

cz = 1
r

∂Ψ
∂r

(A.30a)

cr = −1
r

∂Ψ
∂z

(A.30b)

Inversion of above equations with the transformation rules for the partial derivatives
leads to the following equations for the velocity components:

cz = 1
r

∂Ψ
∂r

= 1
rδ

((
∂Ψ
∂η

)(
∂z

∂ξ

)
−
(
∂Ψ
∂ξ

)(
∂z

∂η

))
(A.31a)

cr = −1
r

∂Ψ
∂z

= 1
rδ

((
∂Ψ
∂η

)(
∂r

∂ξ

)
−
(
∂Ψ
∂ξ

)(
∂r

∂η

))
(A.31b)

These equations can be discretized and applied on the computational grid straightfor-
wardly. The velocity components on the grid nodes (with uniform spacing ∆ξ = ∆η = 1)
are computed by central difference approximations:

cz,i,j = 1
4ri,jδi,j

[
(Ψi,j+1 −Ψi,j−1)(zi+1,j − zi−1,j)− (Ψi+1,j −Ψi−1,j)(zi,j+1 − zi,j−1)

]
(A.32a)

cr,i,j = 1
4ri,jδi,j

[
(Ψi,j+1 −Ψi,j−1)(ri+1,j − ri−1,j)− (Ψi+1,j −Ψi−1,j)(ri,j+1 − ri,j−1)

]
(A.32b)
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B Brumfield Criterion

The Brumfield Criterion as documented by Stripling and Acosta [66] is only applicable
to swirl-free inlet conditions (or flow without pre-whirl). Thus, to extend this design
criterion to inlet flow with swirl (or pre-whirl) Equation 3.6 has to be modified. Con-
sidering the general velocity triangle given in Figure 2.7a the absolute velocity at the
inducer inlet can be expressed as:

c2
1 = c2

m1 + c2
θ1 = c2

m1 + (1− δr)u2
1 (B.1)

Analogously to the steps explained in Section 3.4.1, the NPSH (Equation 3.6) is modified
as follows:

Hs = NPSH = 1
2g
[
(1 + σb)c2

m1 + u2
1s

(
σbδ

2
r + (1− δr)2

)]
(B.2)

Consequently, suction specific (Equation 3.9) has to be transformed to:

Ωss = (πkϕ)1/2(
1
2

[
(1 + σb)ϕ2 + σbδ2

r + (1− δr)2
])3/4 (B.3)

The optimum flow coefficient is found by differentiation with respect to flow coefficient
ϕ and setting (dΩss/dϕ) = 0. This leads to the following formula for the optimum flow
coefficient:

ϕ =
(
σbδ

2
r + (1− δr)2

2 (1 + σb)

)1/2

(B.4)

With this the blade cavitation number can be expressed as:

σb = 2ϕ2 − (1− δr)2

δ2
r − 2ϕ2 (B.5)

It can be verified easily that for swirl-free inlet condition (δr = 1) the original relations
given in Equation 3.10 and 3.11 are restored. Inserting Equation B.5 into Equation B.3
Brumfield’s criterion for inflow with swirl is obtained by:

Ω∗ss = Ωss

k1/2 =

π
(
2δr − 1

2

)3/2
(δ2
r − 2ϕ2)3/2

ϕ2


1/2

(B.6)
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C Conversion Factors for Suction Specific Speed

To convert the suction specific speed to or from its different but commonly used defini-
tions the following relations can be used:

nss → Nss : Nss =


(
1.59× 104 gpm/(m3

s )
)1/2

(3.28ft/m)3/4

 · nss = 51.65 · nss

Ωss → nss : nss =
{ 60

2π g
3/4
}

min−1 · Ωss = 52.93 min−1 · Ωss

Ωss → Nss : Nss =

 60
2π

(
1.59× 104 gpm/(m3

s )
)1/2

(3.28 ft/m)3/4 g3/4

min−1 · Ωss

= 2733.72 min−1 · Ωss.

With the curly braces { } it is indicated, that only the numerical value of the enclosed
expression is to be used for the conversion. The conversion factors are obtained by
setting g = 9.81 m/s2.
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D Impeller Design

The experimental investigations presented in this thesis are carried out with a modified
version of the experimental pump developed by Knapp [43]. For this purpose a new
impeller is produced, which on the one hand is modified to accommodate the inducer on
the same shaft and on the other hand is able to handle the swirl that is generated by the
upstream inducer. The meridional section of this impeller is displayed in Figure D.1a.
Note that the hub and shroud curve in this plot are extended for the design purpose. An
average absolute flow angle of α = 55◦ is assumed resulting in a swirl number distribution
as depicted in Figure D.1b. The swirl number amounts approximately to δh = 0.66 at
the hub and δs = 0.80 at the shroud section. As already indicated in Figure D.1a five
blade sections are used for the impeller blade design. The Blade angle distribution is
designed in ANSYS BladeGen [4] using Bézier-splines with four control points on each
blade section. Figures D.2a and D.2b show the blade angle and blade wrap distributions
designed for the impeller. At the leading edge the blade angle is varied from 40.6◦ at
the hub to 22.5◦ at the shroud. A constant blade angle of 30◦ is set at the trailing edge.
The blade thickness is kept constant at 3 mm and an elliptical rounding is performed
at the leading edge. The final mechanical design of the impeller was done using the
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r
/
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m
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(a) Meridional section of the impeller
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rle

∗
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0.70

0.75

0.80

0.85

δ r

(b) Swirl number distribution

Figure D.1: Impeller design - meridional section and swirl number

SIEMENS NX CAD system. Considering the requirements of CNC manufacturing the
impeller hub and shroud are designed separately. Three countersunk-head bolts are used
to fix the shroud to the blades. A threadlocker is used to secure and seal the threads.
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(a) Blade angle distribution
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(b) Camber curves

Figure D.2: Impeller design - blade and wrap angle distributions

Because of the high accuracy of the university workshop’s equipment nearly perfect fit
of the blade tips and the inner shroud contour is obtained such that leakage flows can
be assumed to be minimal. As a consequence of this split impeller design there is no
fillet between the blade tip and the shroud surface. The fillet between the blade root
and the hub is designed with a radius of 2 mm.
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E Uncertainty Analysis

Experimental uncertainty analysis is performed based on the guidelines and remarks in
DIN EN ISO 9906:2012 [26] and IEC 60193 [34]. The total uncertainty of a measured
quantity x is composed of random and systematic uncertainty as follows:

ux =
√
u2
x,r + ux,s2 (E.1)

The process of estimating the uncertainty of the measured data as given above is not
uncontroversial. According to the Guide to the expression of uncertainty in measure-
ment (GUM) [40] the procedure of separately considering and combining random and
systematic uncertainties is equivalent to adding some safety margin to the uncertainty
evaluation. In the GUM on the other hand no such assumption is made. It either consid-
ers random uncertainties, which are based on multiple measurements (Type A evaluation
of uncertainty), or uncertainties that do not rely on multiple measurements and make
use of other available data like manufacturer’s specifications (Type B evaluation of un-
certainty). Nevertheless, the method given by standard DIN EN ISO 9906:2012 [26] is
applied in this thesis, since it is the currently available standard for pump acceptance
tests. However, the law of propagation of uncertainty according to the GUM is used as
will be shown below.
In case of repeated measurements as required by standard DIN EN ISO 9906:2012 [26]
the random uncertainty can be estimated statistically from the measured data. If n
repeated measurements of the quantity x are performed, the arithmetic mean x and the
standard deviation s are given by:

x = 1
n

n∑
i=1

xi (E.2)

s =
√√√√ 1
n− 1

n∑
i=1

(xi − x)2 (E.3)

According to standard DIN EN ISO 9906:2012 [26] the random uncertainty of the mea-
sured quantity is computed by application of the following formula:

ux,r = t s√
n

(E.4)

The value of Student’s t depends on the number of measurements n and the level of
confidence chosen. Usually a 95 % level of confidence is applied, such that t = 2.26 in case
of 10 repeated measurements. Values of t for different numbers of repeated measurements
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E Uncertainty Analysis

are tabulated in DIN EN ISO 9906:2012 [26]. Since the characteristic values of head,
efficiency, power and NPSH are not measured directly, the total uncertainty is composed
of the uncertainty of the measured quantities used in their calculation. According to the
law of propagation of uncertainty as given in the GUM [40] and with the formulas already
provided in Section 4.5.4 the corresponding combined uncertainties can be estimated as
follows:

uH,r/s =

√√√√( ∂H

∂(∆p)

)2

u2
∆p,r/s +

(
∂H

∂Q

)2

u2
Q,r/s (E.5a)

uP,r/s =

√√√√( ∂P
∂M

)2

u2
M,r/s +

(
∂P

∂n

)2

u2
n,r/s (E.5b)

uη,r/s =

√√√√( ∂η

∂(∆p)

)2

u2
∆p,r/s +

(
∂η

∂Q

)2

u2
Q,r/s +

(
∂η

∂M

)2

u2
M,r/s +

(
∂η

∂n

)2

u2
n,r/s

(E.5c)

uNPSH,r/s =

√√√√(∂(NPSH)
∂p

)2

u2
p,r/s +

(
∂(NPSH)

∂Q

)2

u2
Q,r/s (E.5d)

Because above equations are applicable to the random uncertainty as well as to the
systematic uncertainty either index r or s is valid, which is indicated by writing the
index as r/s. The partial derivatives occurring in Equation E.5 are obtained from the
formulas used for the computation of the characteristic values as given in Equations
2.25, 2.36, 2.37 and 2.38:(

∂H

∂(∆p)

)
= 1
ρg(

∂H

∂Q

)
= Q

g

[
1
A2

2
− 1
A2

1

]
(
∂P

∂M

)
= 2πn(

∂P

∂n

)
= 2πM(

∂η

∂Q

)
= ∆p

2πMn
+ 3ρQ2

4πMn

[
1
A2

2
− 1
A2

1

]
(

∂η

∂(∆p)

)
= Q

2πMn
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(
∂η

∂M

)
= − ∆pQ

2πM2n
− ρQ3

4πM2n

[
1
A2

2
− 1
A2

1

]
(
∂η

∂n

)
= − ∆pQ

2πMn2 + ρQ3

4πMn2

[
1
A2

2
− 1
A2

1

]
(
∂NPSH
∂p

)
= 1
ρg(

∂NPSH
∂Q

)
= Q

gA2
1

Introducing these expressions into Equations E.5 the following formulas can be used
to evaluate the combined uncertainties (either random or systematic) for head, power,
efficiency and NPSH:

uH,r/s =

√√√√( 1
ρg

)2

u2
∆p,r/s +

(
Q

g

[
1
A2

2
− 1
A2

1

])2

u2
Q,r/s (E.7a)

uP,r/s = 2π
√

(n)2 u2
M,r/s + (M)2 u2

n,r/s (E.7b)

uη,r/s = 1
2π


(
Q

Mn

)2
u2

∆p,r/s +
(

∆p
Mn

+ 3ρQ2

2Mn

[
1
A2

2
− 1
A2

1

])2

u2
Q,r/s

+
(

∆pQ
M2n

+ ρQ3

2M2n

[
1
A2

2
− 1
A2

1

])2

u2
M,r/s

+
(

∆pQ
2πMn2 + ρQ3

4πMn2

[
1
A2

2
− 1
A2

1

])2

u2
n,r/s


1/2

(E.7c)

uNPSH,r/s =

√√√√( 1
ρg

)2

u2
p,r/s +

(
Q

gA2
1

)2

u2
Q,r/s (E.7d)

Note that these equation are derived under the assumption that gravitational accelera-
tion g, vapor pressure pv and the mean value of density ρ are free of uncertainties during
measurements (see IEC 60193 [34]). To calculate the actual values of uncertainty of a
quantity the mean values of the measured values are inserted in the above equations.
The systematic uncertainty is estimated based on the accuracy specifications provided
by the sensor manufacturers. Typically the uncertainty u∗x,s relative to the full range
(∆x)max of the sensor is specified by the manufacturer. Thus, the uncertainty can be
calculated by:

ux,s = u∗x,s · (∆x)max (E.8)
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The relative (total) uncertainty, which is used to judge the class of acceptance test
accuracy, is consequently obtained by calculating:

u∗x =

√
ux,r2 + ux,s2

x
(E.9)

Table 4.11 includes the estimated systematic uncertainties of the sensors employed in the
measurements performed during the work on this thesis. Even though the uncertainty
of efficiency measurement could be estimated with the help of the formulas presented in
this section, standard DIN EN ISO 9906:2012 [26] provides the following, substantially
simpler formula:

u∗η =
√
u∗Q + u∗H + u∗M + u∗n (E.10)

To keep the analysis consistent, this formula is not used in this thesis. Nevertheless,
it was checked that similar values of uncertainty result from both formulas. Once the
uncertainty is estimated, the real value of x can be assumed to lie in the range x ± ux
with a certain level of confidence.
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Figure E.1: Uncertainty intervals of head measurement for all pump configurations

Uncertainty of the actual measurements performed in the course of this thesis is eval-
uated with help of the relations discussed above. In the detail view of the full head
characteristic shown in Figure E.1a the confidence interval of each measured mean value
is illustrated in form of error bars for flow and head coefficient. Obviously, the relative
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uncertainty intervals are small for the flow coefficient as well as for the head coefficient
and would be barely visible in the full plot of the head characteristic.
The same is true for the other quantities of interest and for NPSH test runs as well.
Figure E.1b exemplarily shows the the uncertainty intervals for efficiency during the head
measurements. Although the confidence intervals appear larger than the ones previously
shown for head coefficient, the relative uncertainty for almost all operating conditions lies
below the levels required by standard DIN EN ISO 9906:2012 [26]. This is illustrated
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Figure E.2: Relative uncertainties for head characteristic measurements

in Figures E.2 for the quantities obtained from a non-cavitating head characteristic
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Figure E.3: Relative uncertainties for NPSH characteristic measurements (ϕ∗ = 1)

measurement and in Figure E.3 for the head drop (NPSH) measurements at design flow
rate (ϕ∗ = 1). Besides the relative uncertainty of the measurements, the uncertainty
levels according to standard DIN EN ISO 9906:2012 [26], if available, are included in
the figure. Most of the operating points have been acquired with an uncertainty lower
than the requirements of class 1. However, as soon as the signals approach the lower
measuring range limit as is the case for flow rate (Figure E.2a) and NPSH (Figure E.3d)
at the operating points at low values of flow and cavitation coefficient, respectively. In
case of the head characteristic this also causes an increased uncertainty of efficiency

185



E Uncertainty Analysis

(Figure E.2d). The same effect is observed for the measurements of inducer head (H12)
as depicted in Figure E.2c for pump IMP where no inducer is installed. In this case the
pressure differences approach zero at overload and thus the relative uncertainty rises.
At the same time the pump head (H13) remains basically unaffected (Figure E.2b).
Induced by the identical mechanism the uncertainty rises for the head measurement
when the differential pressure drops due to cavitation (see Figures E.3a and E.3b) during
NPSH measurements. Nevertheless, relative uncertainties of pump head and efficiency
(Figures E.3a and E.3c) remain acceptable. The effects discussed above are natural
behavior and in general cannot be avoided without switching to different sensors during
measurement or limiting the measurement range of the whole test bench. In case of
the NPSH measurement, which depends mainly on the range and accuracy of the inlet
absolute pressure sensor, a different sensor could be applied to reduce uncertainty at
low inlet pressures. Measurement range of this sensor could at least be halved without
limiting the operating range of the test bench. Another effect that might influence
accuracy of NPSH measurements in the present test bench configuration is that at low
cavitation coefficients vapor bubbles are recirculating upstream of the inducer and could
possibly cause faulty suction pressure measurements.
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