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Abstract

A general approach to wavelets is presented within a framework of a separable
functional Hilbert space . Basic tool is the construction of H-product kernels
by use of Fourier analysis with respect to an orthonormal basis in #H. Scaling
function and wavelet are defined in terms of H-product kernels. Wavelets are
shown to be 'building blocks’ that decorrelate the data. A pyramid scheme pro-
vides fast computation. Finally, the determination of the earth’s gravitational
potential from single and multipole expressions is organized as an example of
wavelet approximation in Hilbert space structure.

Introduction

Wavelets are ”building blocks” that enable fast decorrelation of data. In other
words, three features are incorporated in this way of thinking about wavelets,
namely basis property, decorrelation, and fast computation. In the first part
of the paper we discuss these aspects in a general (functional) Hilbert space
setup. The definition of scaling function and wavelet is based on the concept
of product kernels in functional Hilbert spaces. By virtue of the basis property
each member of the Hilbert space can be expressed in stable way as linear com-
bination of dilated and shifted copies of a "mother function”, i.e. a member
of the Hilbert space with vanishing zeroth moment. The wavelet transform
maps members of the Hilbert space into an associated two-parameter class of
space and scale dependent elements. Wavelets show the power of decorrela-
tion. As a consequence the representation of the data in terms of wavelets
is somehow ”more compact” than the original representation, that is to say,
we search for an accurate approximation by only using a small fraction of the
original information of an element of the Hilbert space. Typically the decor-
relation is achieved by building wavelets which decay towards low and high
frequencies, i.e. in information theory jargon by bandpass filtering. Finally,
the main question in wavelet approximation is how to decompose a function
into wavelet coefficients, and how to reconstruct efficiently the function under
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consideration from the wavelet coefficients. There is a pyramid algorithm that
makes these steps simple and fast. The fast decorrelation power of wavelets is
the key to applications such as data compression, fast data transmission, noise
cancellation, signal recovering etc. The paper ends with geopotential determi-
nation by harmonic wavelets. In this case the product kernels are written as
series expansions in terms of single or multipoles. As numerical example we
present the wavelet decomposition and reconstruction of the gravitational po-
tential of the earth. The calculations are based on the NASA GSFC and NIMA
Joint Geopotential model EGM96 which gives a series expansion of the earth’s
gravitational potential in terms of multipoles (i.e. solid spherical harmonics).

1 Basic Settings

Let (M, (-,-)%) be a separable real functional Hilbert space over a certain do-
main Y C R", i.e. H consists of functions F' : 3 — R. Furthermore, let
{U;}, =01, be a complete orthonormal system in (7, (-,+)3). In a separable
real functional Hilbert space (H, (-, )% ) any function F' € H can be represented
as Fourier expansion relative to {Up},_o, . by

F =) F\n)Uy, (1)

with ”Fourier coefficients”
FMn)=(F, U}y ,n=0,12,.... (2)

The idea we follow in this paper is to present in the #H-framework a J-level
approximation of a function (signal) F' € H by means of a wavelet analysis.
Essential tools are the concept of H-product-kernels and H-convolutions which
should be discussed now.

1.1 Product Kernels

Any function I' : ¥ x ¥ — R of the form

L(z,y) =Y TN(n)U; (@)U (y), (3)
n=0
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z,y € ¥ with T"(n) € R, n € Ny, is called an H-product kernel (briefly
called H-kernel). The sequence {I'"(n)},_q, _ is said to be the symbol of the
H-kernel (3).

Definition 1.1. A symbol {T"*(n)},,_,, . of an H-product kernel (3) is called
‘H-admissible if it satisfies the following conditions:

() 3 (m)’ <o,

n=0

(i) Y (D)5 () < oo

n=0

for all z € .
‘H-convolutions will be introduced in the following way.

Definition 1.2. Let F be of class H. Suppose that I is an H-kernel of the
form (3) with H-admissible symbol {T'*(n)},,_, ; _, then the convolution of T
against F is defined by

(T #3 F)(z) = (D(z,-), F)u = Y_T0)F"(n)U; (). (4)
n=0

From (4) we immediately see that
(T *% F)"(n) =T"(n)F (n), neN. (5)
The convolution of two H-product kernels with H-admissible symbols leads to
the following result.
Theorem 1.3. Let I'y and 'y be H-kernels with H-admissible symbols
(D)} sy, and {T5(m)},_q,., respectively. Then
(T'1 #3¢ T2)(z,y) = (T1 #9 T2(-,9)) (z) (6)
= (Pl (‘T’ ')a PQ(') y))'H
o
=Y T ()T (m)U; (2)Un(y)
n=0

holds for all x,y € ¥, and {(T'1 *y FZ)A(”)}nzo,l,... given by
(T1 %3¢ T2)" (n) = T (n)T2 (). (7)

constitutes an H-admissible symbol of the H-kernel I'y x4 I's.
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1.2 H-scaling Functions

After having explained the convolution between two H-kernels with
‘H-admissible symbols we are now interested in developing countable families
{Ts}, J € Z, of H-product kernels I'; which may be understood as scaling
functions in our H-wavelet concept.

As preparation we introduce a dilation operator acting on these families in the
following way: Let I'; be a member of the family of product kernels. Then
the dilation operator Dy, k € Z, is defined by DyI'; = T'j . In particular, we
have I'y = D I'g. Thus we refer to I'y as the "mother kernel”. Moreover, we
define a shifting operator Sy, x € ¥, J € Z, by S;I'y = T'j(z,-) and S,T'; =
T';(-,z), respectively. In doing so we consequently get by composition of the
operator I'j(z,-) = Sz D T for all z € ¥ and all J € Z. Note that all kernels
T'; are symmetric, so that T'y(z,y) =Ts(y,z), z,y € X for all J € Z.

We are now in position to introduce scaling functions.

Definition 1.4. Let {(®)"(n)},_q,, ., J € Z, define an H-admissible symbol
of a family of H-kernels satisfying additionally the following properties:

2

(@) Jim ((@,)"(n)" =1, neN

@) (@)"m)* > (@s1)"(n)*, Je€ZneN
(i) lm ((®,)"(n)°=0, neN

() (@) (0)2 =1, JeZ.

Then {(®,)" (n)}nzo 1 is called the generating symbol of an H-scaling func-
tion. The family of H-kernels {®;}, J € Z, given by

o0

es(z,y) =) ()" (Ui(@)Unly),  z,y€T, (8)

n=0

is called H-scaling function.

From the results of the previous section it follows immediately that ®;(z,-) €
H, z € X2, J € Z. Furthermore it is easily seen that ®; x¢ ®; is an H-kernel
with H-admissible symbol {((®,)" (n))?}, n=0,1,... .

This leads us to the following result.
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Theorem 1.5. Let {(<I>J)/\(n)}n:071,m, J € Z, be the generating symbol of a
scaling function ® 5. Then

Jlg{.lo |[Fy = Flly =0 (9)
holds for all F € H, where Fjy given by
FJ:(Q)J*'H@J)*’HF, FeH (10)

is said to be the J-level approzimation of F.

Proof. We introduce the operator Ty : H — H, J € Z, by
FJ:TJF:(@J*'HQJ)*'HF. (11)

From the definition of the convolution and the fact that ® x4 ® 7 is an H-kernel
with #-admissible symbol it follows that

T;F = ((20)"(n))*F(n)U;. (12)
n=0

But this implies that

175l = sup [5Gy (13)
Gen

IG5 =1

= (Z«@J)A(n))‘*(GA(n))Q))

N[=

n=0

=

< sup ((®,)"(n))? (Z(GA(H))Q)

neNy n—0

< sup ((24)"(n))? < o0
n€Ny

for every J € 7Z, since {(®5)"(n)},—¢ ;... is H-admissible.

Now, from Parseval’s identity, we obtain

Jim ||T;F — Fl3, (14)
= lim ) (1= ((27)"(n)*)*(F"(n))*.

n=0
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From the conditions (i), (ii) and (iv) of Definition 1.4 we are able to deduce
that ((®)"(n))? < 1 for n € Ny. But this shows us that

0<(1—((2,)"(n)*)? <1 (15)

is valid for all n € Ny. Therefore the limit and the infinite sum in (14) may be
interchanged. By applying (i) and (iv) we finally arrive at the desired result. OJ

Note that condition (iii) has not been used yet. This condition, however, is
needed as assumption for defining H-wavelets and establishing a multiresolu-
tion analysis.

According to our construction, for any F' € H, each T;F defined by (11)
provides an approximation of F' at scale J. In terms of filtering ®; x3 ®;
may be interpreted as low-pass filter. 7 is the convolution operator of this
low-pass filter. Accordingly we understand the scale space V; to be the image
of H under the operator T';:

As an immediate consequence we obtain the following result.

Theorem 1.6. The scale spaces satisfy the following properties:

(i) {Ug}CVsCV,y CH, J<J, (17)

Gi) N vr={05), (18)
—o Il

(i) J:QOOVJ =*H, (19)

(i) if Fy € Vy then D_1Fj € Vj_1, JEZ. (20)

Proof. From the conditions (ii) and (iv) of Definition 1.4 we easily get the
validity of the first assertion of Theorem 1.6. The identity (18) follows directly
from the conditions (iii) and (iv) of Definition 1.4. The formula (19) is a con-
sequence of Theorem 1.5, while (20) follows immediately from the definition of
the shifting operator Dj. O
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If a collection of subspaces of H satisfies the conditions of Theorem 1.6 we call
them a multiresolution analysis (MRA).

The definition of the scaling functions now allows us to introduce H-wavelets.
Basic tool again is the concept of #-kernels.

1.3 H-wavelets

We start with the definition of wavelets by aid of a ”refinement (scaling) equa-
tion”.

Definition 1.7. Let {(®;)"(n)},_o,. . J € Z, be the generating symbol
of an 7#-scaling function as defined l,)); Definition 1.4. Then the generating
symbol {(\Ifj)/\(n)}n:(),l,___, J € Z, of the associated H-wavelet is defined via
the "refinement equation”

(Z)Nm) = ((@542)" (1))* = ((87)"(n)))2. (21)
The family {;}, j € Z, of H-kernels given by
Ti(z,y) = > () )Ui(2)Unly),  zy€eT, (22)
n=0

is called H-wavelet associated to the H-scaling function {®;}, J € Z. The
corresponding mother wavelet is denoted by Uy.

Clearly we are able to define a dilation and a shifting operator in the same way
as we did before. For this reason any wavelet can be interpreted as a dilated and
shifted copy of the corresponding mother wavelet like ¥;(z, ) = S D;Tq(:, ).
We can easily derive from (21) that

J
(@40 ()7 = D () (n))? (23)
j=—o00
J
= ((®0)"(n))” +>_((Tj)"(n))>. (24)

=0
Similar to the definition of the operator T; we are now led to convolution
operators R; : H — H, given by

R;F = (\IJJ *y \I/J) xqy I, FeH. (25)
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Thus the identity

J
Oy i @y = Y, (U5 7)) (26)

j=—o0
J

= q)() *9y CI)() + Z(\Il] *9y \IJJ')
j=0

can be written in operator formulation as follows:

J J
Try = Z Rj =T+ ZRJ (27)
7=0

j=—o0

The convolution operators R; describe the ”detail information” of F' at scale
J. In terms of filtering, (¥; xy ¥;), j € Z, may be interpreted as a band-pass
filter. This fact immediately gives rise to introduce the detail spaces as follows:

Wj = Rj(H) = {(¥j %3 Vj) ¥n F | F € H}. (28)

W contains the ”detail information” needed to go from an approximation at
level J to an approximation at level J + 1. Hence we get

J J
Z Wj =Vo + ZWj =Vit1 (29)
=0

j=—0o0
and
Vi+Wr=Vj1, J e Z. (30)

It should be noted that, in general, the sum in (29) is neither direct nor or-
thogonal. But there exist examples leading to an orthogonal multiresolution
which should be discussed later on.

In conclusion, any F' € H can be approximated as follows: starting with Ty F
we find (in connection to (27))

J
TjF =TyF+ ) R,;F (31)
j=0

for any J € Z. In other words, the partial "reconstruction” Rj;F is nothing
else than the ”difference of two smoothings” at two consecutive scales

R;F =T, 1F —TyF. (32)
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Definition 1.8. The wavelet transform WT at scale j € Z and position © € ¥
is given by

WT(F)(j;2) = (Y;(z,-), F)u,  FeH. (33)

Combining (33) and (26) we can formulate the main result of our wavelet theory
as follows.

Theorem 1.9. Let {(2)"(n)},—o ., J € Z, be the generating symbol of an
H-scaling function. Suppose that {(\Ilj)/\(n)}n:(),l,...’ j € Z, is the generating
symbol of the corresponding H-wavelet. Furthermore, let F' be of class H. Then

J—-1

Fy = (®o#p @) sy F+ D (T 59 WIT(F)(j,)) (34)
j=0

is the J-level approzimation of F satisfying
1F = Fll3 = 0. (35)

lim
J—=o0
The limit relation (35) shows the essential characteristic of wavelets. We change
the approximated solution from Fj to Fjy; by adding the so-called detail
information of level J as the difference of two smoothings of two consecutive

scales J and J + 1 and what is more important, we are able to guarantee
limy_,o F; = F in the sense of the [-||,-topology provided that F' € H.

The following scheme summarizes the essential steps of our wavelet approach
in the framework of a separable functional Hilbert space.

To(G) T,(G)... T;(G) Ty (G)... 122 F
M M M M m
Vo C Vi ... C Vj C Vj+1 H
Vo + Wo + ...+ Wj_l + Wj + H
w w w w W

To(G)+Ro(G) + ...+R;.1(G) + Rij(G) + ... = F

2 Fast Multiscale Evaluation

Until now efforts have been made to establish the basis property and the ability
of bandpass filtering in terms of wavelets. Next we come to the third feature of
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wavelet approximation, viz. fast computation, which will be realized in form
of a pyramid scheme for bandlimited wavelets.

For simplicity we assume that {®;(-,-)} ez is a family of bandlimited kernels,
such that ((®;)"(n))? > 0forn=0,...,2/ —1 and ((®;)"(n))? =0 forn > 27.
Then

®;(z,) € Hy,.. 2i—1 = span{Us,... ,Us;_,}
and
Uj(z,-) € Hy,.. gi+11 = span{Us,... ,Usit1_1}

holds for all z € ¥, i.e.

2/ -1

Oi(z,y) = (@) (U (2)Us(v),
n=0
2i+1_1

iz,y) = Y, () \0)U;(x)U;(y)
n=0

for (z,y) € ¥ x ¥. Consequently, the scale spaces and the detail spaces,
respectively, fulfill the relations V; = Hy  9i_1, Wj C Hg . 9j+1_1. Simple
examples are given below:

(a) orthogonal (Shannon)
1 for n=0,...,N,
AYA — ) 3 4Vj
() (n)_{O for n>N;+1
(b) non-orthogonal (smoothed Shannon)
1 for n=0,...,29h

(®;)"(n) = % for n=2h,... N,

0 for n>N;+1
for fixed h € [0,1),
(¢) non-orthogonal (CP)

— 92=0n)? —Jj+1 — .
(®;)(n) = (1-277n)*(14+277"'n) for n=0,...,N;
0 for n>N;+1
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with

N — 0 for j€7Z,57<0
Tl 221 for j€Z,5>0

Note that the case (a) leads to an orthogonal multiresolution analysis, i.e. the
detail and the scale spaces satisfy V1 = V; @ W, W; LWy, k # 3, 7 > 0.
In the cases (b) and (c) the scale and detail spaces are still finite-dimensional,
but the detail spaces are no longer orthogonal.

Each scale space V;, j € Ny, can be understood as finite dimensional repro-
ducing Hilbert space with the inner product (-, -)y; and the reproducing kernel
I'y; being canonically defined by

Nj 1 A A
(F,G)y, = 7;) WF (n)G"(n), F,G €My, n,
and
Nj
Ty, (z,y) = Y_((8;)" ()’ Un(@)Un(y), =y€I,
n=0

respectively. We observe that 'y, = ®; ¢y @; = @;2) for all 7 € Ny.

The key idea of our fast evaluation method is based on the following observa-
tions:

(1) For some suitably large J, the scale space V; is ‘sufficiently close’ to H.
Consequently, for each F' € H, there exists a function of class V; such that the
error between F' and Q(JQ) 3¢ F' (understood in the ||-||3—topology) is negligible.
This is the reason why F' is assumed to be of class V; for the remainder of this
section.

(2) For j = 0,...,J consider sequences Y, = {yle,... ,yij}, L; > N; of
pointsyiLj €X,i=1,...,L;,j=0,1,...,J, such that

Vj=Ho,..n; = span(‘l)f)('ayfj)a o ’(I);Q)("yg))

(the existence of pointsets Yz, C ¥ fulfilling the desired property is well-known
from interpolation theory (see, for example, [2]).
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In an a priori step the coefficients wl 7 have to be determined from the systems
of linear equations

L;
Z yz 7yl ):62',/67 iak:]-a"'aLja (36)
=1
7 =0,...,J and can be stored elsewhere. Looking carefully at the systems,

it can be recognized that the coefficients wlL,fc do not depend on the particular
function F' under consideration, but only on the chosen pointsystems.

Next our considerations are divided into two parts, viz. the initial step concern-
ing the scale level J and the pyramid step establishing the recursion relation.

2.1 The Initial Step

The exact approximation

L,
J,8=> a’Sy’), Sev, (37)

i=1

to the bounded linear functional £ on V; defined by

LS =(S,F)y, =8 #, F, SeV; Fevy, (38)
is given by
L,
T =N wlceP (), i=1,...,Ly. (39)

Since @52) is the reproducing kernel of V; (with respect to the |- ||y, -topology),

it follows in accordance with our assumption F' € V;, that <I>F]2) xy, F = F.
Thus we find

Zw g ) xv, F waé F(y (40)

fore=1,...,Ly.

This gives rise to the following conclusion.
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Lemma 2.1. If F is a member of class Vj, then

Ly
S *y, F:ZaiLJS(yiLJ)
i=1

holds for all S € V;.

Lemma 2.1 immediately enables us to formulate

Lemma 2.2. Let <I>(JZ) xy F be a function of class Vj, then

Ly
I ¢y F= ZaiLJI‘(-,yiLJ)
i=1

holds for all H-kernels T'(-,-) with T"(n) =0 forn=N; +1,N; +2,....

Proof. @SZ) x9 F' € Vj can be represented as follows:

L,
2
<I>(JQ) xy F = ZaiLJ(I)S)(-,yiLJ).
=1

In spectral language, i.e. expressed in terms of the orthonormal system U},
this immediately implies

Ly
L
F\n) =) a;"Un(y;”)

i=1

for all n =1,... ,N;. But this shows us that

oo LJ

Iy F = ZF/\(n)ZaiLJU;f(y{”)U,;k
n=0 =1

Ly ,
L
= Za’z’ JF('ayz' J)a
=1
as desired. O

The next theorem clarifies the remarkable consequences for our wavelet con-
cept.
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Theorem 2.3. Under the assumptions of Lemma 2.2 we have
Ly
Oy sy F o= > al@5(,y")
i=1

Ly
(@) 5 ®y) s F = D 0" (Dy %1 ®5) (")
im1

and
L,
L L
Uy1 x4 F = ZaiJ‘I‘J—l(',yiJ)
=1
Ly
L L
(Tg1 o Uya) sy F o= > a7’ (U sy Uya)(,:07).
i=1
In conclusion, the vector a?’/ = (alLJ, .. ,aij)T € R does not depend on

the special choice of the q)(JQ)—kernel in Vj. Wavelet transform, lowpass, and
bandpass filter can be computed by use of the same set of coefficients.

2.2 The Pyramid Step
The pyramid step provides an algorithm such that the vector a7 € REV serves
as starting vector for a sequence of vectors a’i € R, j = 0,...,J —1,J,

which fulfill the following properties:

(i) The vectors a® satisfy
Li
2 Lj =(2), Lj
7wy F=3 a0 (,y")
i=1

for j=0,...,J.
(ii) The wavelet transforms are given by
Lj
2 L; +(2 L;
\Pg—)l *H F = Z a,; ! \Pg_)l(,yz J)
i=1

forj=1,...,dJ.
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(iii) The vector ali

is obtainable from a”i+1, j =0,...,J — 1, by recursion.

In the remainder of this section the properties (i), (ii) and (iii) are described

in more detail.

The exact approximations Ji,;, j =0,...,J —1,
Lj
Lj oy Lj
J; 8= a’Sy”), SeV;
=1

to the bounded linear functional £ on V; defined by
LS=8 w, (@ « F), SeV;, Fev,

(note that <I>§-2) *y F € V) are given by the coefficients

Lj

L; L; 9 L

a;”’ :Zwl’gljc}g. )("yij)’ I=1,...,L;
i=1

Consequently we have for [ = 1,... ,N;
Lj
L; Lj  ~(2 L;
o’ = Z’wl,f(q’g- )('7yi ") xy F).
i=1

Thus we are led to the following lemma.

Lemma 2.4. If <I>§.2) *y, F is a member of class Vj, then

L;
S *y, (@;2) xy F) = Zafi S(yz-Lj)
i=1
holds for all S € V;.

By the same arguments as given in the last subsection we obtain

Lemma 2.5. Let <I>§-2) x4 F be a function of class Vj, then
Lj
L; L;
' ¢ F= Zaiq‘(-,yi’)
i=1

holds for all H-kernels T'(-,-) with T"(n) = 0, n = N; + 1,N; +2,....

particular for <I>§-2) (-,7))-

(41)

(42)

(44)

(in
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Finally this yields for the computation of the convolutions under consideration:

Theorem 2.6. Under the assumptions of Lemma 2.5 we have

L; L;
QJ *H F = a; @](ayzj)a

(@) *3 @) *3) F =

‘Msims

L; L;
a;” (@ 3 @5) (- y;7)

-~
Il
—

and
Li . L.
U1 *y F = > a9 1(,y7),
i=1

L;
L; L;
(\I/j—l *Hy \I/j_l) *y F = .Zjlaij(qjj—l *y \Ilj_l)(~,yij).
1=

From Theorem 2.6 we can deduce

Ly
(1)(2)1 4y F = Z Ly 1(I,(J)1( yLJ . (45)
i=1
where
Z @ (g w F). (46)

On the other hand, by virtue of Lemma 2.2, we have

CI'()l xy F = ZaLJ(I)J G yLJ) (47)
=1

Combining (46) and (47) we obtain

LJ 1 LJ
a’™ = 30w e ) (48)
i=1 k=1
for I =1,...,L;—1. If we assume the pointsets Y7, to be hierarchical, i.e.

yfj = yf”l, i=1,...,L;,7=0,...,J —1 and observing the symmetry of
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the matrix (wlLZJ ~1), we are led to a reduction of computational costs as follows:

LJ ILJ

Ly Lj_y LJ ) Lj—1 Ly
I ) > TR s
=1 k=1
Ly_1Lj_

L L Lj_
_ ZZle J(I)Z)( Jl,yle)
=1 k=1
Ly,

L 2 L L
PN el
i=1 k=Lj_1+1
Lj_1

L 2 Lj_
SRS Y ST R R RO

=1 k=Lj_1+1

The recursion relation (48) leads us to the following decomposition scheme:

F - at’ - atr—1 - ... ato
{ ! !
(WT)(F)(J;-) (WT)F)(J—15) (WT)(F)(0;-)

The bandpass filter R;(F') can be deduced from the formula
Ri(F) = W =y (WT)(F)(5;-)

Lj
L; L;
= D a’ (T Ty o).
i=1

This allows the following reconstruction scheme of F":

ato ot al2
{ 1 4
Ro(F) Ri(F) Ry (F)
hY pY pY

To(F) — 4+ — Ti(F) — + — T(F) — + —

We have seen that the vectors a do not depend on the special choice of the

scaling function {®;};cn,. In other words, we are able to reconstruct a function
with respect to different wavelets just by the knowledge of the vectors a’s.
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3 Gravitational Field Determination

In this section we discuss as a georelevant example the problem of multiscale
gravitational field determination using single- and multipoles. For that purpose
we understand X to be the surface of the earth which is assumed to be regular
(i.e.: (i) ¥ divides R? uniquely into the bounded region ¥ (inner space)
and the unbounded region X' (outer space) determined by $¢%* = R3 \ Rint,
Yint = ¥ U X (i) Dt contains the origin, (iii) ¥ is a closed and compact
C®-surface being free of double points). As trial systems {Un}n=0,,... for
gravitational field determination we use the following examples (cf. [1]):

(i) single poles

n=01,...,

|z — zn|’

where (z,)n=0,1,... forms a pointset which is dense on a regular surface
B inside the earth (for instance, B may be chosen as a ”Bjerhammar
sphere” or a surface parallel to X in the earth’s interior).

(ii) multipoles

o\’ 1
_— - - 1= =0,1,...
(3:1:0) |z — zo|’ bl=nn=01,..,

where z is a fixed point in £, j = (41, jo, 73) is a triple of non-negative
integers with

] = d1+ do + ( 9 )9 o)
JI=JTJj2T73 a0 927 O 0

(for instance, xy can be chosen to be the origin).

=0

(iii) solid spherical harmonics

n+1
(%) Yok (%) n=01,...:k=1..2n+1,

where « is a radius satisfying o < infrex|z|. {Ynk}tk=1,.. 2n+1 denotes a
(maximal) linearly independent system of spherical harmonics of degree
n,n=0,1,....
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(iv) solid ellipsoidal harmonics

Qnk (%) T

where @, ; are the Legendre functions of second kind, = is an element
of an ellipsoid of revolution with semiminor axis u and b denotes the
semiminor axis of an arbitrary but fixed (internal) ellipsoid which may
be called the reference ellipsoid (cf. [3]). If the eccentricity E reduces to
zero, then the reference ellipsoid becomes the sphere with radius « and
the fraction Qp k(iu/E)/Qnk(ib/ E) reduces to (a/|z|)" .

(v) Dirichlet (evaluation) functionals
DNz,z,), n=0,1,...,

where (z)p=0,1,... forms a countable dense system of points on ¥ and
I’ induced by one of the trial systems (i)-(iv) denotes an #-kernel with
H-admissible symbol T (n).

Then it is known from [1] for our trial systems that

L2(%) = spann—oyr..(Un]s) 1£®

and

O(S) = spanm—or. (Unlg) 10

Moreover, we have

POt(O)(Eewt) = Spa'nn:O,l,...(Un|Eemt)H'”C(W),

where Pot(0) (Sezt) is the space of all V € C?)(xet) n O©)(Tewt) satisfying
AV = 0 in X and V(z) = O(1/|z]), || — oo. In order to make use
of our Hilbert space framework of wavelets we have to orthonormalize the
system (Up)n=o,1,... (for example, by virtue of the well-known Gram-Schmidt
process) with respect to the ||- || 2(s)-topology obtaining a system (H;)n=0,1,...,

(H) € Pot®)(xeat), n = 0,1,... with the following properties:

(1) (U})n=0,1,... defined by U} = H}|s is a complete orthonormal system in

the Hilbert space ((£*(%), (-, '))52(2))
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(ii) H is the unique solution of the boundary value problem HY € Pot(%) ($eat)
corresponding to the Dirichlet data H|s = U}, n =0, 1,..., respectively.

Let V' be the uniquely determined solution of the boundary value problem
V € Potl0)(Zeat), V|x = F. Then it is known (cf. [1]) for our trial system that
the £2(X)-convergence of the Fourier expansion

N
Fy =Y F\n)Uy;
n=0
with

F0) = (R U)oy = [ V@3 (a) dos(a)

to the function F on the surface ¥ implies ordinary pointwise convergence of
the sum

N
Vy = Z FMNn)H:
n=0

to the potential V as N — oo for every point z € K with K C % and
dist(K,X) > p > 0. In every compact subset K C X the convergence is
uniform (cf. [1]). To be more specific, the limit relation

Jm lF = Fyleam) =0
implies

lim sup |V(z) — Vn(z)| = 0.
N—o reK

From our wavelet approach presented above it follows that the J-level wavelet
approximation F; given by

*

F; = q)(()Un) *r2(3) CI)(()U")> *r2(3) F

T
D)

+ (‘IJ‘EU;) *CZ(E) ‘I{gUé)) *ﬁZ(Z) F
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converges to the function F' in ||-[| z2(s;)-norm, where we have used the canonical
abbreviations
[e.e]

" (a,y) = 3 (8,) U3 (2)Us ()
n=0

V(@) = SN n)U (@)U (y)

n=0

for j € Z and (z,y) € ¥ x ¥. But this immediately implies that

Vio= (0" wpas) @) 2oy F
J-1
HY Hy,
=0
with
o (wy) = 3 (25)" ) H; () ()
n=0
T () = D ()" () Hy(2) Hyy (y)
n=0

converges in pointwise sense to the potential V € Pot(%) (2eet) with V|y = F
as J — oo for every z € K C £ and dist(K,X) > p > 0. In every compact
subset K C X% the convergence is in fact uniform, i.e.

lim sup |V (z) — Vy(z)|=0
J—00 rzeK

for J € Z and (z,y) € Xt x 3eat.

Finally we give a numerical test example. In accordance with the EGM96-
model, we choose X to be a spherical earth’s surface, i.e. X is supposed to
be a sphere around the origin (centre of gravity) with mean earth’s radius
R = 6378km. V is the earth’s gravitational potential corresponding to the
EGM96 model on ¥. The multiresolution analysis "looks at’ the earth’s gravi-
tational potential through a microscope, whose resolution gets finer and finer.
Thus it associates to the gravitational a sequence of smoothed versions, labelled
by the scale parameter. An illustration of the gravitational potential as a mul-
tiresolution analysis at the earth’s surface is shown for the levels j = 3,...,8
based on the solid spherical harmonics as orthonormal system. The computa-
tions have been performed on the basis of the CP-wavelets.
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-500.0 0.0 500.0

raw data set

N

-100.0 0.0 100.0 200.0 -200.0 0.0 200.0

T3(F) R3(F)

B

-200.0 0.0 200.0  400.0 -100.0 0.0 100.0

Tu(F) R4(F)
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-500.0 0.0 500.0 0.0 100.0

T5(F) Rs(F)

-500.0 0.0 500.0 -50.0 0.0 50.0
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-500.0 0.0 500.0
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