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Abstract

This review article reports current activities and recent progress on constructive approx-
imation and numerical analysis in physical geodesy. The paper focuses on two major topics
of interest, namely trial systems for purposes of global and local approximation and methods
for adequate geodetic application. A fundamental tool is an uncertainty principle, which
gives appropriate bounds for the quantification of space and momentum localization of trial
functions. The essential outcome is a better understanding of constructive approximation in
terms of radial basis functions such as splines and wavelets.

Key Words: uncertainty principle, trial systems, approximation methods, geodetic
applications.

*Correspondence to W. Freeden



1 Introduction

Physical geodesy is much concerned with the space £2(2) of square-integrable functions on the
unit sphere 2. The quantity ||F|[z2(q) is called the energy of the ‘signal’ F' € L£2(9). ‘Signals’
F € £%(Q) possess Fourier transforms F”(n, k) defined by

F(0k) = [ F€)Ynal©) dol6) 1)
Q
in terms of £2(Q)-orthonormal spherical harmonics {Y,k} n=01.. . From Parseval’s identity
k=1,...,.2n+1
we have
oo 2n+1 )
“FH%‘,Z(Q) = (£, F)EQ(Q) = Z Z (F/\(na k)) .
n=0 k=1

Usually one works more with the ‘amplitude spectrum’

{F/\('n,, k‘)} kn=0,1 _____

=1,....2n+1
than with the ‘original signal’ F € £2(Q). The ‘inverse Fourier transform’

oo 2n+1

F=Y Y F\n,k)Ynr (2)

n=0 k=1

allows the geodesist to think of the function F' as a sum of ‘wave functions’ Y}, ; of different
frequencies. One can think of their measurements as operating on an ‘input signal’ F' to produce
an output signal G = AF, where A is an operator acting on £2(£2). Fortunately, it is the case
that large portions of interest can be well approximated by operators that are linear, rotation—
invariant pseudodifferential operators (cf. Svensson, S.L. (1983)). If A is such an operator on
L£2%(9), this means that

AY, ;= A (n) Yok, n=0,1,...;k=1,...,2n+1, (3)

where the so—called symbol {A"(n)},,cy, is a sequence of real values (independent of k). Here Np
denotes the set of all non-negative integers and N denotes the set of all positive integers. Thus
we have the fundamental fact that the spherical harmonics are the eigenfunctions of the operator
A. Different pseudo-differential operators A are characterized by their eigenvalues A™(n). The
‘amplitude spectrum’ {G”\(n,k)} of the response of A is described in terms of the amplitude
spectrum of functions (signals) by a simple multiplication by the ‘transfer’ A™(n).

Physical devices do not transmit spherical harmonics of arbitrarily high frequency without severe
attenuation. The ‘transfer’ A"(n) usually tends to zero with increasing n. It follows from (3)
that the amplitude spectra of the responses (observations) to functions (signals) of finite energy
also are negligibly small beyond some finite frequency. Thus, both because of the frequency
limiting nature of the used devices and because of the nature of the ‘transmitted signals’, the
geoscientist is soon led to consider bandlimited functions. These are the functions F' € £2(f2)
whose ‘amplitude spectra’ vanish for all n > N (N € N fixed). In other words, each bandlimited
function F € £2(f2) can be written as a finite Fourier transform

N 2n+1

F=3% % F\nk)Yu (4)

n=0 k=1



A function F' of the form (4) is said to be bandlimited with the band N. In analogous manner,
F € £2() is said to be locally supported (spacelimited) with spacewidth p around an axis 7 € €,
if for some p € (—1,1) the function F' vanishes on the set of all £ € Q with —1 < ¢-n < p. From
(4) it readily follows that bandlimited functions are infinitely often differentiable everywhere.
Moreover, it is clear that F' is an analytic function. From the analyticity it follows immediately
that a non—trivial bandlimited function cannot vanish on any (non-degenerate) subset of €.
The only function that is both bandlimited and spacelimited is the trivial function. Now, in
addition to bandlimited but non—spacelimited functions, numerical analysis would like to deal
with spacelimited functions. But as we have seen, such a function (signal) of finite (space) sup-
port cannot be bandlimited, it must contain spherical harmonics of arbitrary large frequencies.
Thus there is a dilemma of seeking functions that are somehow concentrated in both space and
(angular) momentum domain. There is a way of mathematically expressing the impossibility of
simultaneous confinement of a function to space and (angular) momentum, namely the uncer-
tainty principle.

2 Trial Systems and Basis Property

The representation of a function F € £2(f2) (such as the gravitational potential on the earth’s
surface) in terms of countable (Hilbert) bases { By }n=0,1,.. C £2(f2) is one of the most interesting
and important problems in physical geodesy.

Explicitly written out in mathematical language the problem is to find, to every value € > 0 and
every element F' € £2(f), a linear combination F(V) = 27]:]:0 an By, such that ||F — F() Hc2(Q) <

e. Written down in functional analytic notation the basis property of { By }n=0,1,... in L£2(9) equiv-
alently means that the space £2(f2) is the completion of the set span,_g; . (Bn) of all finite

linear combinations of functions B, (with respect to the || - [ z2(q)—topology):
2000 — a2
L(Q) = span (Bn) . (5)
n=0,1,...

In the literature a collection of georelevant basis systems {By, }5—0,1,... satisfying (5) are known
from which we list the most interesting ones (for notational purposes and more detailed infor-
mation on the function systems the reader is referred to Freeden, W. et al. (1998a)).

Spherical Harmonics. A particular role in physical geodesy is played by the system

{Yoktn=0,1,.; k=1,...2n+1

of spherical harmonics. Spherical harmonics are usually defined as the restrictions of homoge-
neous harmonic polynomials to the sphere. The polynomial structure has tremendous advan-
tages. Spherical harmonics of different degrees are orthogonal. The space Harm, of spheri-
cal harmonics of degree n is finite-dimensional: dim(Harm,) = 2n + 1. The basis property
of {Y, ktn=01,.;k=1,..,2n+1 1S equivalently characterized by the completion of the direct sum
D, Harmy, ie.:

||'||£2(n)

L£3(Q) = @ Harm,, ) (6)



As a matter of fact, spherical harmonic expansions (i.e. multipole expansions) are the classical
approaches to earth’s gravitational potential modelling. Particularly important spherical har-
monic models are OSU91A (cf. Rapp, R.H. et al. (1991), Rapp, R.H. (1997a,b)), GRIM4 (cf.
Schwintzer, P. et al. (1997)), GRIM4-54 (cf. Schwintzer, P. (1997)), and EGM96 (cf. Lemoine,
F.G. et al. (1996)). Some working groups are continuously improving these models on global
and/or regional scale (for example, Groten, E. (1996), Groten, E. et al. (1998), Konig, R. et al.
(1996), Rapp, R.H. (1997), Wenzel, G. (1998)). Many efforts are made to overcome the diffi-
culties arising in the numerical application of spherical harmonics, for example, Nyquist rate,
aliasing, etc. (cf. e.g. Jekeli, C. (1996), Schuh, W.-D. (1996), Strakhov, V.N. et al. (1998)). For
a historical perspective on global spherical harmonic analysis the reader is referred to Sneeuw,
N. (1994).

Bandlimited Radial Basis Functions. Kernel functions of the representation

i+t _q on+1
Ki&m) = > A7 Yar@Yar(m),  (&n) €
n=27 k=1

where A;, # 0 for all relevant n, may be used to establish the basis property in L£2(Q) as follows:
Choose a fundamental system Xy, of N; = Zi];lj_l(Qn + 1) points 71, ...,ny; on . Then the
space Harmyg;  oi+1_1 of all spherical harmonics of degree n with 29 < n <2t —1 can be
written in the form Harmg;  oi+1_1 = span;_y . n; K (1, ). Each bandlimited function of class
Harmyg; . 9i+1_; can be represented exactly in terms of the functions Kj(n1,-),..., K;(nn;,-)-
In other words, the advantage is when using bandlimited functions we do not need the function

at all positions. It suffices to know a finite set for each scale j € Ny. In conclusion,

H'H[}Z(Q)

LX) =P span K;(ni,") - (7)
j:0 ZZl,...,Nj

It should be noted that the addition theorem of the theory of spherical harmonics allows the
following reformulation of the kernel Kj(:,-) in terms of Legendre polynomials P,:

i ,
Ki(¢m = Y, AP2= —Pal&-m), (&n) €0 8)
n=27

Thus the kernel (8) constitutes a radial basis function, i.e. a (one-dimensional) function depend-
ing only on the spherical distance of the unit vectors £ and n. As example of a bandlimited
kernel function we mention the Shannon kernels K;(-,-) with A, =1 forn =27,... , 2011 1,
j=0,1,..

In physical geodesy bandlimited kernel functions are usually obtained by truncation of non-
bandlimited ones. The significance of bandlimited kernels will increase in future wavelet re-
search, since finite-dimensional scale and detail spaces may be generated exactly by bandlimited
radial basis kernels (cf. Freeden, W., Schreiner, M. (1998)). Moreover, fast evaluation can be
organized in form of pyramid schemata (cf. Schreiner, M. (1997b), Freeden, W. et al. (1998c)).

Non—-bandlimited Radial Basis Functions. Non-bandlimited kernel functions of the form

Ken) =Y 4,25 n 0, (6 e, o)
n=0



Figure 1: Legendre Polynomial Ps(cos()) and Legendre coefficients

Figure 2: Shannon Wavelet K3(cos()) and Legendre coefficients

satisfying the ‘summability condition’ > °° o A-2((2n + 1)/47) < oo have been extensively used
in physical geodesy. Examples are the Green kernel of the Beltrami operator A* (A = (n(n+
1))72,n =1,2,...), the (Abel-) Poisson kernel (A;! = 2,0 <h <1,n=0,1,...), the Stokes
kernel (At = k™21 0 <h <1,n=0,2,3,...), etc. The basis property of non-bandlimited
kernel functions with A,, # 0 for all n can be guaranteed as follows: Assume that {ng,7n1,...} is
a countable dense set of points on the sphere €). Then it follows that

EZ(Q) _ sz;aln K(n”’_)n'nzﬂ(ﬂ). (10)
n=0,1,...

Non-bandlimited kernel functions as presented above are radial basis functions depending only
on the inner product of the unit vectors £ and 7. They are of basic significance in spline and/or
wavelet theory of functions on the sphere (cf. Freeden, W. et al. (1998a)). As examples we
illustrate the Abel-Poisson kernel (cf. Figure 3) and the Abel-Poisson wavelet (cf. Figure 4).
Non-bandlimited kernels (such as the Abel-Poisson, Gaufl-Weierstraf}, Green, rational, Stokes,
Tikhonov, and locally (cap) supported kernels) have been extensively applied in physical geodesy,
mainly for purposes of local approximation. The palette of different approximation techniques
is large (for example, Albertella, A., Sacerdote, F. (1995), Bian, S., Menz, J. (1998), Brand, R.
et al. (1996), Cui, J. et al. (1992), De Santis, A., Torta, J.M. (1997), Grafarend, E., Engels, J.
(1992), Martinez, Z., Grafarend, E.W. (1997), Schreiner, M. (1994, 1997a), Thalhammer, M.
(1995)).

It should be noted that the statement (5) can be extended to the C'(£2)—norm for all continuous



Figure 3: Abel-Poisson kernel @, (cos(¥)) and Legendre coefficients, r = 0.3,0.5,0.7,0.9

Figure 4: Abel-Poisson Wavelet ¥,;(cos(?9)),j = 0,1,2 and Legendre coefficients

trial functions of the above type

n=0,1,...

i.e. any continuous function on €2, therefore, admits a uniform approximation on 2 in terms of
the basis system {Bp}n—0,1,... Moreover, the basis property (5) can be formulated in a variety
of different topologies (e.g. Sobolev topology (cf. Freeden, W. et al. (1998a)).

For some geodetic applications, such as the determination of the earth’s density distribution,
one has to deal with functions whose domain is not only a sphere B = {m cR3 | |z| =0 } but a
whole ball B = { & € R?*| |z| < 8}. Note that in this case the harmonic functions are not dense
in £? (Bmt), i.e. the approximation of a square-integrable function by a harmonic function is no
more guaranteed. Moreover, an infinite-dimensional space of so—called anharmonic functions,
which are functions that are (in the sense of £2 (Bjy:)) orthogonal to all harmonic functions,
has to be taken into account, too. Hence, a basis {B}n—0,1... C L£? (%) satisfying

L2 (Bint
£* (Bint) = “span B)" o) (12
n=0,1,...
can, for example, be obtained by taking the inner harmonics {H}:&} m—ot... and an appro-
k=1,...,2m+1
priate anharmonic basis {A;}i=o,1,..., such that
{Bu}n=01.. = {Hﬁﬁi}kﬁﬂ,;,...ﬂ U{Ai}i=o,1,...- (13)



For more details the reader is referred to Ballani, L. et al. (1993), Ballani, L., Stromeyer, D.
(1990), Michel, V. (1998, 1999).

Seen from a superficial point of approximation theory our foregoing treatment of basis systems
would suggest that, if we are looking for an approximation of a function on Q from discrete
data, all possible choices of basis systems would be applicable for geodetic purposes. Actually
it is necessary, in the case where several choices are possible, to choose the trial systems in
close adaption to the specific properties of the data. The essential reason is the uncertainty
principle, which offers a clarification of the mathematical characteristics of the aforementioned
basis systems {By }n=0,1,...-

3 Uncertainty Principle

Localization in Space. Suppose that F is of class £2(f2). Assume, without loss of generality,

that
1/2

1Pl 2y = / (F@)? doln) | =1 (14)
Q

We associate to F' the normal (radial) field O,F = nF(n), n € Q,ie. O : F — O,F,n € Q,
maps £2(Q) into the associated set of normal fields on Q. The ‘centre of gravity of the spherical
window’ is defined by the ezxpectation value in the space domain

99 =/(0nF(n))F(n) dw(n) = /77(17(77))2 dw(n) € R, (15)

Q Q

thereby interpreting (F(n))? dw(n) as surface mass distribution over the sphere £ embedded in
Euclidean space R3. It is clear that g lies in the space Q¢ of Q: |gg| < 1. The variance in
the space domain is understood in canonical sense as the variance of the operator O

o0 = / (0 — 92) F(n)| du(n)
Q

- / 7 — g2 (F(m)? dw(n) € R (16)
Q

Observing the identity ‘n — gf_ﬁ,)|2 =1+ (gf.ﬁ,))2 —2n - gg, n € Q, it follows immediately that
o =1-(g9)% Obviously, 0 < o9 < 1.

Figure 5 gives a geometric interpretation of gg and ag. We associate to gg, gg # 0, and its

normalization 7@ = g%/ ‘gg| the spherical cap C = {7] e ‘1 —n-n9<1- |gPQ‘ } Then the

boundary dC is a circle with radius (¢9)'/2,

Localization in Momentum. Next the expectation value in the ‘momentum domain’ (more accu-
rately, the space of Fourier transforms which is understood analogously to the momentum space
in physics) is introduced to be the expectation value of the negative Beltrami operator —A* on .
Then, for F € Hy (), I €N, i.e. for all F € £2(Q) such that there exists a function G € £2(Q)



Figure 5: Localization in a spherical cap

with G (n, k) = (=n(n + 1))!F"(n, k) for all n,k we have

& = [ (~ayFm) Fadot) € &

Correspondingly, the variance in the ‘momentum domain’ is given by

o5 = / (-2 - 65 ) F) dotn) € R

Q

The square roots, Vo© and Vo—2", are called the uncertainties in O and —A*, respectively.

operator expectation value
space 0 9% = [ (OyF(n)) F(n)dw(n)
Q
momentum —A* g = (—ArF(n)) F(n)dw(n)
0
operator variance
2
space (0] of = g{ ((On — gg) F(n)) dw(n)
. " 2
momentum —A* o™ = ‘( Ay — gz )F(n)‘ dw(n)
Q

‘Space/momentum’ Localization.

The uncertainty relation measures the trade-off between ‘space localization’ and ‘momentum
localization’ (‘spread in momentum’). It states that sharp localization in space and ‘momentum’



are mutually exclusive.
For the uncertainties we get from (Freeden, W., Windheuser, U. (1997)) the following theorem.

Theorem 3.1 Let F be of class Ha(S2) such that ||F||z2(q) = 1. Then

gg:A*)z B (g;A*)Q

ofox™ > g7 —A~ ; (17)
9r

provided that g;A* # 0. If the right hand side of (17) is non—vanishing, then

ARALA > 1, (18)
where

1/2
A_A* _ O';A* . g_A* 1/2
F (=an)?_( —ax)? B ( E )
g
I

9p

and

Finally we discuss some examples which are of particular interest for us:

Localization of Spherical Harmonics. We know that [ (Y, x(£))? dw(€¢) = 1. Now it is easy to
Q

see that

o _ o _
gYn,k = 0, JYn,k =1.

Moreover, we find
—A* —A*
gYn’k — n(n + 1), UYn,k — O

In other words, spherical harmonics show an ideal momentum localization, but no space local-
1zation.

Therefore, the use of spherical harmonic expansions of higher and higher degrees for the deter-
mination of the gravitational field becomes more and more difficult. In particular, local changes
of a function under consideration affect the whole amplitude spectrum, which is an unfortunate
feature for constructive approximation.

Localization of the Abel-Poisson Kernel. Consider the function @, : [-1,+1] = R, r < 1, given
by
1 1— 72 o 21+ 1

r = — == T E— npn .
@) Am (1472 —2rt)3/2 &= Ar rPa(t)

An eagsy calculation gives us

4T 2°

-T

1+ 72 1/2 1
1Qr 21,411 = (@r2(1)? = ( ) I



Furthermore, for Q,(t) = ||QT||ZZ}[71 1) Q:(t), t € [-1,+1], we obtain after an elementary

calculation \
O = 2 o _(l=r
Qr 1472’ Qr 1472) 7
A 672 _ar 1272(rt £ 52 4+ 1)
~ == —— O',. pr—
gQr (]_ — 7‘2)2’ QT‘ (1 —_ 7'2)4
and
AQ _ 1—7"2 AfA* _ \/67' .
Qr 2r Qr 1—r2

Thus we finally obtain

o p-ar _ V6 _ 3
AQTAQT =3 _\/g>1.

Note that in this case the value Ag AéN is independent of r. Letting r formally tend to 1 we

r

space domain momentum domain

Figure 6: Abel-Poisson kernel Uncertainty Principle: Agh (left), AéN (right) and the constant
h

0 . A-AT
value AQh AQh

are able to interpret the localization properties of the Dirac kernel on 2:

o

OESY %Pn(t)a t=¢&-m,  {me.

n=0

As a matter of fact, letting r tend to 1 shows us that the variances in the space domain take the
constant value 0. On the other hand, the variances in the momentum domain converge to co.

10



Hence, the Dirac kernel shows ideal space localization, but no momentum localization. Thus, all
intermediate cases of ‘space—momentum localization’ occur when discussing the Abel-Poisson
kernel. It should be pointed out that the Abel-Poisson kernel does not satisfy a minimum
uncertainty state.

The minimum uncertainty state is provided by the bell-shaped (Gaussian) probability density
function.

Localization of the Gaussian Function. Consider the function
GA(t) = e~ e [-1,41], A>0,

An elementary calculation shows us that

é)\(t) = ’Y(/\)e_(’\/2)(1—t)’ y(A) = (1/\/E> (% (1 B 6_2/\)>—1/2’

21 41] = 1. Furthermore, it is not difficult to deduce (cf. Freeden, W. et al.
— 7_'_

(1997c)) that AZAZ"" — 1 as X\ — oco. This shows us that the best value of the uncertainty
principle (Theorem 3.1) is 1.

satisfies Hé)\‘

. . . . . s 1 AO —A* . 0 . A-A*
Figure 7: Gaussian Function Uncertainty Principle: A & (left), A & (right) and A &, A &

Summarizing our results we are led to the following conclusions: The uncertainty principle rep-
resents a trade-off between two ‘spreads’, one for the position and the other for the momentum.
The main statement is that sharp localization in space and in momentum are mutually exclusive.
The reason for the validity of the uncertainty relation (Theorem 3.1) is that the operators O and
—A* do not commute. Thus O and —A* cannot be sharply defined simultaneously. Extremal

11



members in the space/momentum relation are the polynomials (i.e. spherical harmonics) and
the Dirac function(al)s. An asymptotically optimal kernel is the Gaussian function.

For the considerations of three-dimensional functions G € £? (]R3) we assume that a separation
ansatz F(rn) = G(r)H(n), r € Rf, n € Q, is possible. Furthermore, we deal with functions
in H1;0(R), i.e. square-integrable functions G that are differentiable almost everywhere, such
that G’ is square-integrable and G(0) = 0. In this context we introduce the operator @ with
Q-G(r) = rG(r) for the space localization and the operator P with P,G(r) = G'(r) for the
momentum localization. Note that P is anti-symmetric: P* = —P.

For the investigation of the localization property of the spherical part we can use the results
derived above. Concerning the radial part G the expectation values

@ = [rGwyar (19)
0

& = [cogGwar (20)
0

and the variances

O'g = 7o<(r - gg) G(r))2 dr (21)
0
of = Z ((5-4) G(r))2 ar (22)

occur. Also in this situation an uncertainty principle can be derived, which is similar to Heisen-
berg’s uncertainty principle in quantum mechanics.

Theorem 3.2 Let G € L£? (]Ra') be differentiable, where

o
(6.6)zs(ug) = [ (G10)
0

Then 1
0805 > 7 (23)
i.e. 1
AZAG > 5, (24)
where )
1 1
Ag = (ag) * and AL = (c&)” - (25)

Proof: Using the £? (R] )-scalar product (., .)LQ(RSF) we obtain:
(PQ — QP)G,G) 2 (gt

12



)
G)LQ(RE)")
((0-58) 6 (7 48)6) - (P81 (0 8))
S ((P prayel (Q - gg) G)

c2(rf)
The Cauchy-Schwarz inequality implies

(PQ=QP)G,G)papg) < 400G

An easy calculation yields

(PQ - QP)G, G)@(RD =

Hence, the uncertainty principle is valid.

The estimate (Theorem 3.1) allows us to give a quantitative classification in form of a canonically
defined hierarchy of the space/momentum localization properties of kernel functions of the form

K(.’I,‘, y) = Z an By, (x)Bn (y)’ (26)
n=0

where z and y are in the relevant domain. In view of the amount of space/momentum localization
it is also important to distinguish bandlimited kernels (i.e. a, = 0 for all n > N) and non-
bandlimited ones. Non-bandlimited kernels show a much stronger space localization than their
comparable bandlimited counterparts. Actually, if a, = ap1 = 1 for many successive integers
n, then the support of (26) in space domain is small.

13



The figure below gives a rough qualitative illustration of the consequences of the uncertainty
principle in constructive approximation:

ideal momentum localization, no momentum localization,
no space localization ideal space localization
bandlimited : non-band- :
limited
spherical kernels Dirac
harmonics function(al)s

To be more specific, on the left end of this scheme we have the spherical harmonics with their
ideal momentum localization. However, they have no space localization, as they are restrictions
of polynomials. The present standard way in physical geodesy of increasing the accuracy is to
increase the maximum degree of the spherical harmonics expansions under consideration.

On the right end of the scheme there is the Dirac functional which maps a function to its value
at a certain point. Hence those functionals have ideal space localization but no momentum
localization. Consequently, they are used in a finite pointset approximation (see, for example,
Cui, J. (1995) and the references therein).

Radial basis functions exist as bandlimited and non-bandlimited functions. Every bandlimited
radial basis function refers to a finite number of frequencies. This reduction of the momentum
localization allows a finite variance of the space in the uncertainty principle, i.e. this method
has both a momentum localization and a space localization. If we move from bandlimited
to non-bandlimited radial basis functions the momentum localization decreases and the space
localization increases in accordance to the uncertainty principle. In consequence, if the accuracy
has to be increased in radial basis approximation, a denser point grid is required in the region
under investigation.

Note that the classical radial basis functions have been constructed for Euclidean spaces like
the plane. Recently radial basis functions have been studied for the sphere (cf. Freeden, W. et
al. (1998a) and the references therein). Canonical generalizations to georelevant manifolds (like
ellipsoid (cf. e.g. Thong, N.C., Grafarend, E.W. (1989)), spheroid, and actual earth’s surface)
are under current development. For more details about constructive approximation on closed
(regular) surfaces the reader is referred to Freeden, W. (1987), Freeden, W., Schneider, F.
(1998a,b). The varieties of the intensity of the localization on the sphere can be illustrated by
considering the kernel function

KEn) =Y 4,22 2P ), (€n) € 9. (27)

n=0

By choosing A;, = dnm we obtain a spherical harmonic in Harm, (), i.e. we arrive at the left
end of our scheme. On the other hand, if we define A,, = 1 for all n € N, we obtain the kernel
which is the Dirac functional in the Hilbert space £2(f2). Bandlimited kernels have the property
A, =0for alln > N, N fixed. For radial basis functions we usually define A4,, in a way such

14



that lim A,2 = 0. The slower this convergence is, the lower is the momentum localization and
n—oo

the higher is the space localization.

Seen from numerical point of view, the scheme motivates that spherical harmonic based methods
of constructive approximation are efficiently suitable for recovering globally and homogeneously
the long wavelengths of the earth’s gravitational potential. Spherical harmonics diagonalize
invariant pseudodifferential operators. Geodetic observables are connected by use of rotation—
invariant pseudodifferential operators within a simply structured Meissl scheme (cf. Rummel,
R., Van Gelderen, M. (1995)). But spherical harmonics as non-space localizing polynomial
structures certainly need an adaptive uniformly dense coverage of data all over the sphere. Lo-
cal changes are not treatable locally; they affect all constituting elements of a function (e.g. the
whole table of orthogonal coefficients). The crucial point besides numerical calamities is that
equidistributed material of sufficiently small data width is simply not available on global basis
and will not be for the forseeable future. In the opinion of the authors the future use of spherical
harmonics is therefore limited in physical geodesy.

What we really need for the future satellite scenario are more and more space localizing basis
systems in order to model medium—to—short—wavelengths features of the earth’s gravitational
potential. In this respect it should be mentioned that satellite-to—satellite tracking (SST) is
understandable as a transition from spherical harmonic (multipole) modelling being responsible
for the ‘low frequency contribution’ to spline and/or wavelet modelling being appropriate for
‘higher frequency parts’. Therefore, seen in the interdependence of increasing space localiza-
tion and decreasing frequence localization (cf. Freeden, W. (1998), Freeden, W. et al. (1999)),
satellite—to—satellite tracking may be mathematically considered the interface of global expan-
sion by ideally frequency localizing, but non-space localizing polynomials (spherical harmonics)
and multiscale expansion (multiresolution analysis) by frequency as well as space localizing ra-
dial basis functions (e.g. splines and/or wavelets).

But in view of the amount of space/frequency localization it is also worth distinguishing ban-
dlimited kernel functions from non-bandlimited ones. As a matter of fact, non-bandlimited
radial basis functions show a much stronger space localization than their bandlimited coun-
terparts. Thus we are led to the conclusion that for the ‘medium—wavelength contributions’
bandlimited kernel functions or moderately space localizing non—-bandlimited kernel functions
should be used for approximation. The canonical interface from ‘medium—to—short—wavelengths
features’ is satellite gravity gradiometry (SGG) that should be handled by a multiscale analysis
of more and more space localizing non—-bandlimited radial basis function. In the opinion of the
authors we are thus led to the following scheme.

Current Status Future Concepts
Potential differences, | satellite — to satellite
geoid heights, satellite gravity
satellite altimetry tracking gradiometry
etc.
Fourier (orthogonal) | spline/wavelet wavelet
expansion by expansion expansion
spherical by by
harmonics bandlimited | non—-bandlimited
kernels kernels
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4 Approximation Methods

It is only relatively recently that radial basis function techniques such as splines and wavelets
play a fundamental role in modern numerical analysis on the sphere. Starting point of spherical
splines are the early eighties (Freeden, W. (1981, 1987, 1990), Wahba, G. (1981, 1987)).

Spline functions are canonical generalizations of ‘spherical polynomials’, i.e. spherical harmonics,
having desirable characteristics as interpolating, smoothing, and best approximating functions
(cf. Freeden, W. (1981, 1990), Freeden, W. et al. (1996a,b, 1998a), Wahba, G. (1990)). By
spline interpolation we mean a variational problem of minimizing an ‘energy’-norm of a suitable
Sobolev space. According to the choice of the norm, bandlimited as well as non-bandlimited
splines can be distinguished. Spherical splines have been successfully applied to linear inverse
problems of satellite geodesy (cf. Schneider, F. (1996)). Spherical tensor spline approximation
in satellite gravity gradiometry (SGG) is due to Schreiner, M. (1994). It is also remarkable
that the spherical interpolating processes by splines open new perspectives for solving boundary
value problems of elliptic equations even for georelevant non-spherical boundaries (cf. Freeden,
W. (1987)). Moreover, a variant formulated for the interior of the (spherical) earth enables
modelling of the anharmonic part of the earth’s density. Figure 8 shows the result of an anhar-
monic spline interpolation of PREM, which is a radially symmetric model for the earth’s density
distribution. More precisely, the harmonic part of PREM is constant, and the approximation to
PREM has been obtained by adding an anharmonic spline, which was calculated according to
given interpolation points, to the constant harmonic density (see the PhD thesis due to Michel,
V. (1999)). The horizontal axes have the range -earthradius to +earthradius (the enumeration
is based on the used point grid), and the vertical axes refer to the density.

The construction of spherical wavelets has seen an enormous increase of activities over the last
five years. Methods to introduce wavelets by convolution kernels or related constructions are due
to Freeden, W., Windheuser, U. (1995, 1996, 1997), Go6ttelmann, J. (1998), and Holschneider,
M. (1996).

Spherical wavelets are building blocks that enable fast decorrelation of data on the sphere. Thus
three features are incorporated in this way of thinking about georelevant wavelets, namely basis
property, decorrelation, and fast computation. First of all, wavelets are building blocks for gen-
eral data sets derived from functions. By virtue of the basis property each element of a general
class of functions (e.g. the earth’s gravitational potential seen as as member of a set of potentials
within a Sobolev space framework) can be expressed in stable way as a linear combination of
dilated and shifted copies of a ‘mother function’. The role of the wavelet transform as a mapping
from the class of functions into an associated two-parameter family of space and scale depen-
dent functions is properly characterized by least squares properties. Secondly, wavelets have the
power to decorrelate. In other words, the representation of data in terms of wavelets is somehow
‘more compact’ than the original representation. We search for an accurate approximation by
only using a small fraction of the original information of a function. Typically the decorrelation
is achieved by building wavelets which have a compact support (localization in space), which
are smooth (decay towards high frequencies), and which have vanishing moments (decay to-
wards low frequencies). Different types of wavelets can be found from certain constructions of
space/momentum localization. In this respect the uncertainty principle tells us that sharp lo-
calization in ‘space and momentum’ is mutually exclusive. Nevertheless, it turns out that decay
towards long and short wavelengths (i.e. in information theoretic jargon, bandpass filtering) can
be assured without any difficulty. Moreover, vanishing moments of wavelets (see Freeden, W.,
Windheuser, U. (1997), Freeden, W., Schreiner, M. (1998)) enable us to combine (polynomial)
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Figure 8: anharmonic spline interpolation of radially symmetric inner structures of the earth:
PREM (top left), reconstruction (top right) and comparison of the profiles

outer harmonic expansions (responsible for the long-wavelength part of a function) with wavelet
multiscale expansions (responsible for the medium—to—short-wavelengths contributions).

Thirdly, the main question of recovering a function on the sphere, e.g. the earth’s gravitational
potential is how to decompose the function into wavelet coefficients, and how to reconstruct
efficiently the potential from the coeflicients. There is a ‘tree algorithm’ or ‘pyramid algorithm’
that makes these steps simple and fast. In this respect it is desirable to switch between the
original representation of the data and its wavelet representation in a time proportional to the
size of the data. In fact, the fast decorrelation power of wavelets is the key to applications such
as data compression, fast data transmission, noise cancellation, signal recovering, etc.

Multiresolution analysis of the gravity field based on classical Euclidean (wavelet) theory or
related multilevel techniques has been presented by Arabelos, D., Tscherning, C.C. (1995), Be-
likov, M., Groten, E. (1995), Li, L.T. et al. (1998), Schwarz, K.P., Zuofa Li (1997), and Zuofa
Li (1996). Multilevel methods for regional adaptive gravity field modelling have been proposed
by Kusche, J. et al. (1998), Kusche, J. (1998), and Rudolph, S. (1998). First test computations
for gravity field recovery using spherical wavelets are due to Backer, M. (1995) and Windheuser,
U. (1996). Wavelet investigations dealing with inverse problems of satellite geodesy are due
to Schneider, F. (1997). An integrated concept of physical geodesy by means of bandlimited
harmonic wavelets has been proposed by Freeden, W., Schneider, F. (1998). Application in
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scalar problems of airborne gravimetry are due to Bayer, M. (1996), Freeden, W., Schneider,
F. (1998), and Schneider, F. (1997). Vectorial and tensorial wavelets on the sphere for use in
satellite—to—satellite tracking and satellite gradiometry can be found in Bayer, M. et al. (1998),
Freeden, W. et al. (1997a, 1998a, 1999), and Freeden, W., Schneider, F. (1998).
Three-dimensional wavelets for the inner space and the outer space of the sphere are constructed
in Michel, V. (1998, 1999) as a method for the gravimetry problem to determine the earth’s den-
sity from potential values. Figures 9 and 10 show a multiscale reconstruction of the harmonic
part of the earth’s density anomaly plotted on the earth’s surface from EGM96 data.

5 Fast Evaluation

Our results have shown that future activities in gravitational field determination should con-
centrate on combined models, where expansions in terms of spherical harmonics have to be
combined with more and more space localizing trial functions, for example, radial basis func-
tions such as splines and wavelets. Even for local approximation the philosophy of the authors
developed from the uncertainty principle is the following three step procedure: First an outer
harmonic approach should be used to model the global trends, i.e. the low-wavelengths part.
In a second step bandlimited wavelets showing moderate space localizing phenomena may be
taken for the medium frequency band of the earth’s gravitational potential. Finally, the third
step consists of non-bandlimited wavelet approximation to analyze the fine structure, i.e. short-
wavelengths phenomena for local areas within a global concept. An example of this approach is
given in Freeden, W. et al. (1998).

For the use of combined approximation methods fast algorithms are required. Basic steps to
future work are fast Fourier procedures, fast wavelet schemata, and fast summation techniques
(such as panel clustering). Helpful are the following research notes: Arabelos, D., Tscherning,
C.C. (1998), Bldha, T. et al. (1996), Dahmen, W. (1997), Freeden, W. et al. (1998b,c), Glock-
ner, O. (1997), Jiang, Z. et al. (1997), Lanser, M. (1997), Lehmann, R. (1997), Lin, Q.W. et
al. (1997), Risbo, T. (1996), Sideris, M.G. (1995), Sneeuw, N. (1996), and Schreiner, M. (1997),
Sweldens, W. (1997), etc.

A challenge for future work is the problem of combining efficiently and economically data of dif-
ferent types and data coming from different heights (cf. Arabelos, D., Tscherning, C.C. (1998),
Freeden, W. et al. (1999)). In particular, the vectorial and tensorial nature of satellite data (for
example, satellite-to—satellite tracking, satellite gradiometry) requires adequate approximation
procedures. Future numerical methods should be able to handle such problems automatically.

6 Final Remark

An attempt to categorize recent developments in the field of trial functions and approximation
methods based on an uncertainty principle has, of course, an element of arbitrariness, and we
apologize to any author who might consider his/her paper(s) misplaced or forgotten. Never-
theless, we believe that any such errors are compensated for by the constructive structure thus
given to the paper.
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Figure 9: bandlimited reconstruction of density anomalies on the earth’s surface at scales 4 (top
left) to 10 (bottom)
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Figure 10: non-bandlimited reconstruction of density anomalies on the earth’s surface at scales
4 (top left) to 10 (bottom)
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