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Abstract

Wearable systems have been applied in various studies as a convenient and efficient solution for
monitoring health and fitness. There is a large number of commercial products in the growing mar-
ket of wearable systems that can be worn as wristbands, clasps, or in the form of clothing. How-
ever, these systems only provide general information about the intensity and possibly the type of
user activity, which is not sufficient for monitoring strength and conditioning exercises. To achieve
optimal muscular development and reduce the risk of exercise-related injury, a wearable system
should provide reliable biomechanical details of body movements as well as real-time feedback
during training. In addition, it should be an affordable, comfortable, and easy-to-use platform for
different types of users with different levels of movement intensity and work autonomously over
long periods of time. These requirements impose many challenges on the design of such systems.
This study presents most of these challenges and proposes solutions.
In this work, a low-cost and light-weight tracking suit is designed and developed, which integrates
multiple Inertial measurement units (IMUs). A novel data acquisition approach is proposed to
improve the energy efficiency of the system without the use of additional devices.
Given a valid calibration, IMUs, comprising inertial sensors and magnetometers, can provide accu-
rate orientation in three dimensions (3D). Unlike the inertial sensors, magnetometer measurements
are easily disturbed by ferromagnetic materials in the vicinity of the sensor, either inside the IMU
casing or in the final mounting position. Therefore, this work proposes a practical method for
in-field magnetometer calibration and alignment to the coordinate system of an IMU. This method
is verified experimentally in terms of magnitude deviation, heading error, plane projections, and
repeatability. The results show a higher accuracy compared to the related works.
Sensor to body calibration is a critical requirement for capturing accurate body movements.
Therefore, a theoretical analysis of an existing method is carried out, showing its limited appli-
cability for hip and knee joints. On this basis, by applying geometric constraints, a method is
proposed for estimating the positions of three IMUs (mounted on the pelvis, upper leg, and lower
leg) simultaneously. The result of experiments with different types of movements and arbitrary
intensity shows that the proposed method outperforms the previous method.
Moreover, two real-time tracking algorithms based on the extended Kalman filter (EKF) are pro-
posed for lower body motion estimation. The first approach provides an estimate of the pelvis
orientation. The second approach estimates the position of IMUs and the joint angles with respect
to the pelvis by incorporating the result of body-IMU calibration. The modeling of the biomechan-
ical constraint compensates for lack of a reliable horizontal reference, e.g. Earth’s magnetic field.
Experiments to track strength exercises such as squat and hip abduction/adduction show promising
results.
In order to finally provide a monitoring application in which users can follow the exercises accord-
ing to the instructions and taking into account their health status, this work proposes an approach
for the identification of exercises based on an online template matching algorithm, which de-
tects the correct performance using a previously recorded exercise in the presence of a supervisor.
Therefore, unlike most identification algorithms, no large datasets are required for training. The
algorithm is optimized here to reduce execution time while maintaining the accuracy. Experiments
show that for the specific application of this study, i.e. squat exercise monitoring, the proposed
method outperforms the related works in optimization of online template matching.
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1. Introduction

Strength training is one of the critical components of most fitness and rehabilitation processes.
When doing strength exercises, it is important to follow the correct routine to avoid injuries
and achieve better results. Also, the final goal, e.g. the return to the sport in rehabilitation, is
achieved by following a routine. Therefore, the monitoring of such exercises is advantageous
with regard to performance improvement, injury prevention, and rehabilitation [13].
Wearable motion tracking systems are a convenient and efficient solution for monitoring sports
activity. To this end, the wearable system should be ubiquitous, easy to use, and comfortable
enough to be worn during exercises. The data provided should include biomechanical details
of the movements, e.g. joint angle and the position of body segments, to evaluate the quality of
the performance and provide real-time feedback to the user [90].
Recent advances of microtechnology in the design of miniaturized lightweight sensors and em-
bedded systems enable the integration of motion sensing systems into clothing. This ensures a
stable sensor placement and thus the reliability of the measurements and above all comfort for
the user. However, there are still some challenges in developing a robust and low-cost multi-
sensor wearable motion tracker [21].
The aim of thesis is to present the design and development of a wearable multi-sensor system
that is affordable for all types of users and can be used for a long time for the application of ex-
ercise monitoring. In order to obtain more accurate results when the target is a variety of users
with different body shapes and sizes, a novel body-IMU calibration is also proposed. The result
of this calibration approach serves as an observation model for an EKF, which is designed to
accurately estimate the positions of the leg segments and the joint angles. Finally, an approach
is proposed based on an online template matching method for exercise identification. This ap-
proach is evaluated in terms of accuracy and execution time, taking into account different types
of motion signals.
This offers a complete wearable platform to monitor lower body strength exercises in real-time
and to provide feedback on the quality of the user’s performance.

1.1. Motivation

1.1.1. Monitoring of strength exercises

Strength is the ability of a muscle or a group of muscles with the same functional role in produc-
ing force, which is critical for athletic performance, as well as for activities of daily living [66].
The assessment of this quantity helps physicians and therapists plan programs to maintain and
develop strength [44].
Musculoskeletal contractions can be classified into concentric, eccentric, and isometric con-
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2 1. Introduction

tractions. All these types occur during smooth and coordinated movement of strength exercise.
These contractions, which are the result of resistance training, could have an impact on the
overall energy expenditure [51]. Although the extent of the effects depends on body composi-
tion and body size, a quantitative assessment of the effects in terms of frequency, duration, and
intensity could help to predict energy expenditure [18, 97].
The results in [1] have shown the increases in maximum muscle strength and fast muscle capac-
ity for both highly trained and untrained groups of individuals. For the elite cyclist in particular,
a similar study, but over a longer period of time, demonstrated a relatively higher power output
as a result of strength and endurance training compared to pure endurance training. The realized
factors for these results are the increased peak torque and its earlier achievement [110].
According to [111], strength training also influences running and cycling endurance perfor-
mance.
The study in [146] indicates the lower body resistance training, including full squat and split
squat, could improve the muscle strength and jumping ability of elite female water polo players.
Moreover, there have been several studies on the relationship between exercise and the improve-
ment of cognitive activities and mood, based on analysis of the Brain-derived neurotrophic
factor (BDNF). The application of this strategy in patients with dementia, Parkinson’s dis-
ease, and schizophrenia has been shown to successfully improve on the life skills of these
patients [94, 137, 140].

The importance of monitoring such exercises in terms of performance improvement, injury
prevention and rehabilitation is assessed here using various examples.

1.1.1.1. Performance improvement

In a study of the influence of direct monitoring of training on strength performance in [76], the
primary results show that the extent and rate of training load increases were more significant
for directly monitored compared to unsupervised training. This evaluation was based on the
strength performance measurements, e.g. repetition maximum (RM) and body composition,
e.g. fat-free mass (FFM), before and after 12 weeks of the training program. They relate these
results to the way in which the personal trainers encourage the use and tolerance of the higher
training loads, resulting in optimized stimulation of motor units and muscle tissue mass in each
session, in addition to psychological factors, in particular, competitiveness i.e., performances
for the audience and external motivation.

1.1.1.2. Injury prevention

The detection of hip joint osteoarthritis based on the range of motion (ROM), is investigated
in [60], among former elite long-distance runners, soccer players, weight lifters, and shooters
aged 45-68 years. The results showed that apart from a direct correlation between body mass
index (BMI) and this disorder, a clear left-right difference in hip rotation only occurs in patients
with severe osteoarthritis.
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The strength deficits and imbalances in the long head of biceps femoris (LHBF) are the two
potential and quantifiable risk factors in hamstring injuries, which are the most common in-
juries in male professional football players [151]. The rate of hamstring injuries decreases with
corrective strength training and retesting of isometric, concentric, and eccentric strength.

According to [55], 50 to 75% of regular runners suffer overload injuries of lower body. The
studies in [130] show that the strength exercises while monitoring the ROM could reduce the
risk of such injuries. They evaluated the ROM in the frontal and transverse planes, before and
after a six-weeks strength exercise training session, in healthy women. The result showed that
the increase in muscle strength in hip abductors and external rotators affects the biomechanics
of the lower extremities, which reduces the stress on the joints of the lower extremities and the
risk of injuries.

A decade-long study [45] of 1401 soccer players from 10 European countries identified 2123
lower extremity injuries in the major muscle groups: adductors, hamstrings, quadriceps, and
calf. Of these, the 34% was known as overload injuries, 27% were re-injuries with another
identical injury. There are other potential extrinsic risk factors, such as fatigue, match stress,
and season planning. However, previous injuries on the same muscle or other muscle groups
have been identified as critical risk factors.

The abnormal movement biomechanics of the trunk, hip, and knee, caused by impaired hip
strength, could have a strong impact on neuromuscular control and therefore be associated with
injuries to the anterior cruciate ligament (ACL). Such anomalies could be used to assess and
predict this type of injury [61]. Their treatment after anterior cruciate ligament reconstruction
(ACLR) could, in addition to the planning of targeted rehabilitation, significantly reduce the
recurrent injuries and resulting functional disabilities [47].

1.1.1.3. Rehabilitation

In Alpine skiing, the risk of re-injury of the ACL or the other knee after surgery is high. To
achieve the state of return to sports, the athlete should achieve adequate endurance, strength,
and eccentric control in the lower extremities. Therefore, three phases of the rehabilitation pro-
cess are proposed in [65]; advanced functional, sports-specific, and return to the sports phase.
Everyone should meet the minimum criteria to move to the next level. The advanced functional
phase for restoring muscular strength includes squat exercises from shallow to the skier tuck
position and leg press with repetitions to increase endurance. The athlete should maintain the
specific joint angles during various stages of the exercises as squats deeper than 60 degrees
could increase anterior tibial translation.
Since the sports-specific phase requires the performance of jump landing tasks in order to
achieve sufficient stance stability, the minimum criterion for entering this phase is to maintain
a symmetrical bilateral squat with 60 degrees of knee flexion for 30 seconds and a one-legged
squat of knee flexion for 30 degrees while maintaining optimal knee alignment. More precisely,
the reason for controlling the dynamic of the hip joint is the hip’s tendency to adduction and
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internal rotation during flexion. This was observed during weight-bearing in intense activities
such as running or landing from a jump [100].

1.1.2. System for monitoring strength exercises

The previous section discussed the benefits of monitoring strength exercise in terms of perfor-
mance improvement, injury prevention, and rehabilitation. This section describes how such
services are provided using a system for monitoring the strength exercises.
As has been described, performance improvement is achieved by monitoring the strength ex-
ercises by measuring RM, which can be achieved by consistently indicating the number of
repetitions during the exercise. Therefore, a system is needed that tracks the movements pre-
cisely and recognizes the correctly performed exercises. The exercise identification process,
which is based on a precise tracking of lower body movements, provides the repetition num-
bers that can later be used to evaluate user performance in relation to RM. Moreover, external
motivation to improve the performance can be achieved by receiving visual feedback from the
monitoring system of the identified phases of the exercise.
By consistently estimating the joint angles of the lower extremities, such a system provides a
reliable measure of ROM, which is the most important factor in the detection and prevention of
injuries. Furthermore, the quantification of the imbalances can be achieved by such a platform,
which additionally provides a precise estimation of the leg segment positions.
According to the previous section, the knee joint angle is used to identify each stage of the
rehabilitation process. Moreover, the symmetrical execution of the strength exercise can be rec-
ognized as a factor in the progress of rehabilitation by tracking the leg segment positions. In
addition to the knee joint angle, the 3D estimation of the hip joint angle helps to control the
dynamics by detecting abduction and internal rotation during flexion.
In rehabilitation clinics, these values are usually measured manually using goniometers. How-
ever, this procedure is time-consuming and cumbersome and cannot provide precise measure-
ments in dynamic situations [144]. Moreover, clinicians need to be trained in the correct place-
ment of such devices, and therefore it is imperative that patients go to rehabilitation centers to
monitor their progress in recovery.

1.1.3. Technology and social factors

There are a variety of technologies and social factors which drive interest in sports monitoring
equipment [77]:

1.1.3.1. The proliferation of smartphones

”Smartphones will become the sixth sense for the user, gathering information from wireless
sensors in the user’s environment and from the network, interpreting the information, and pro-
viding valuable feedback to the user.” Joshua J. Romero [112].
Smartphones offer a combination of built-in sensor units, software platform, touchscreen dis-
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play, and wireless connectivity (e.g. Bluetooth and Wi-Fi) for the development of basic fitness
monitoring.

1.1.3.2. Wearable technologies and e-textiles

Recently, wearable technologies have become more popular and more accessible than before
due to lower prices. The miniaturization of their components and advances in e-textiles have
made it possible to integrate sensor units into clothing. Therefore, they are now considered to
be fashion items, indicating the user’s interest in maintaining his or her well-being rather than a
sign of illness [31].

1.1.3.3. Social networking and gamification

The ability to record and share fitness data on social networks is offered by most sports mon-
itoring devices via the cloud and Internet-enabled technologies. This encourages users to stay
motivated and set new goals by competing with family and friends [113].
Moreover, gamification in the form of individual interaction [5] or social competition [36] leads
to increasing encouragement to keep up with physical activity.

1.2. Problem Formulation

Wearable systems offer not only professional athletes, but also ordinary people who are willing
to lead a healthy life and motivated to stay in training, the opportunity for self-reflection.
IMU-based motion detection systems are the area of interest for most fitness applications, un-
like traditional technologies such as optical and mechanical trackers [147], [4]. The main reason
for this is that they can work in a self-contained manner (independent of external hardware).
They are also unobtrusive, comparably inexpensive, and easy to set up and use.
Most of the existing products have only one sensing unit [121]. They therefore only provide
biometric information and not biomechanical details of movements. As described above, a
strength exercise monitoring system should provide such detailed information, including joint
angles and body segment positions. However, products with more sensing units are not easy to
use for daily training due to complications in placement and high prices [142], [153].
Moreover, a wearable system should be able to function autonomously over long periods of
time in different training situations. These requirements lead to many challenges when design-
ing such a system. For instance, to accurately estimate joint movements, several sensing units
should be placed on the body and connected to a control unit for data acquisition and process-
ing. This increases the total weight and power consumption, which consequently reduces user
comfort and the system operational lifetime. Furthermore, the complexity and dimensions of
the sensing units and their connections can have a negative effect on system cost and aesthetics
and thus on user acceptance.

The first step in using the motion tracking suit is to calibrate the IMUs, especially the mag-
netometer, which can easily be influenced by ferromagnetic materials in its vicinity.
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Moreover, knowing how each IMU is attached to each body segment when the user wears the
textile is critical to providing the biomechanical details of the movement. The use of assump-
tions and information from anthropometric tables could lead to inaccurate tracking because
there are different types of target persons with different body shapes. In addition, there are dif-
ferent types of clothing material used for the design of the wearables, which result in different
sensor placements, even for a specific person. Manual measurements of these parameters are
also cumbersome and error prone. Therefore, an accurate, robust, and autonomous sensor-body
calibration method is required for a wearable training suit.
Although the use of low-cost, lightweight IMUs in the wearable system increases user accep-
tance, the inherent noise and unstable bias of their measurements, even when well-calibrated,
lead to high error due to drift. It is therefore necessary to minimize this error by fusing and filter-
ing the measurements in order to obtain higher-level information, i.e. joint angles and segment
positions. These parameters are necessary to quantify the critical factors for the monitoring of
strength exercises such as ROM, imbalances, or symmetrical performance.
To obtain RM, a real-time exercise identification process is also required to determine the num-
ber of correct repetitions during the exercise.

1.3. Contributions

The contributions of this work are the following:

• Design and development of a low-cost motion tracking system, including a network of
wired microelectromechanical systems (MEMS) IMUs that fits into a suit for the fea-
sible detection of human body motions. Using miniaturized IMUs and textile cables,
the system is designed to be light-weight and easy to use, providing maximal movement
flexibility for the user. A customized firmware with a novel cascaded approach to data ac-
quisition and a power-management process extends the autonomous operating time com-
pared to conventional approaches. Power consumption and data quality are evaluated in
different experiments that show the potential use of the proposed platform in personal
training scenarios. These are described for two different system configurations in the fol-
lowing conference papers [117], [118]:

Sarvenaz Salehi, Gabriele Bleser, Norbert Schmitz, and Didier Stricker. A low-cost and
light-weight motion tracking suit.
In 10th International Conference on Ubiquitous Intelligence and Computing (UIC) (2013),
pp. 474-479. 16

Sarvenaz Salehi, Gabriele Bleser, and Didier Stricker. Design and development of low-
cost smart training pants (stants).
In 4th International Conference on Wireless Mobile Communication and Healthcare, At
Athen, Greece (2014), IEEE, pp. 39-44. 15, 16, 28, 65

• A practical method for in-field magnetometer calibration and alignment with inertial sen-
sors, in an IMU. The procedure is attitude independent and works without the need for
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precise equipment or external heading information.
In the first step, bias, scale factors, and non-orthogonality parameters are estimated based
on magnitude information and data collected under motion. In the second step, mis-
alignment parameters are determined from the inclination using the gravity measured by
accelerometers under static conditions. In each step, an initial guess establisher based on
linear least squares, followed by a non-linear optimization, leads to a reliable estimate of
all calibration parameters.
Different performance aspects of the method are evaluated in several tests with real data.
This approach and its results are described in the following conference paper [119]:

Sarvenaz Salehi, Navid Mostofi, and Gabriele Bleser. A practical in-field magnetometer
calibration method for imus.
In Proceedings of the IROS Workshop on Cognitive Assistive Systems: Closing the
Action-Perception Loop (2012), pp. 39-44.

• A new body-IMU autocalibration method developed specifically for the lower body.
First, an observability analysis of an existing position calibration method is presented,
which shows its limited applicability for the hip and knee joints. On this basis, a method
is proposed to simultaneously estimate the positions of three IMUs (mounted on the
pelvis, upper leg, and lower leg) relative to those joints. In addition, new constraints are
proposed to improve the estimation. An experimental evaluation based on simulated and
real data shows an improvement in terms of accuracy and robustness compared to a pre-
vious method, especially when it comes to suboptimal (low-variation) movements during
calibration. This method and part of the results are presented in the following conference
paper:

Sarvenaz Salehi, Gabriele Bleser, Attila Reiss, and Didier Stricker. Body-imu autocali-
bration for inertial hip and knee joint tracking.
In Proceedings of the 10th EAI International Conference on Body Area Networks, Bo-
dyNets15, ICST (Institute for Computer Sciences, Social-Informatics and Telecommuni-
cations Engineering), pp. 51-57. 16

• Two approaches for real-time lower body pose estimation. The first approach estimates
the orientation of pelvis, which is considered as the body reference. The second approach
estimates the leg pose, ie the hip and knee joint angles and position of the IMUs, which
are mounted on the leg segments. The latter can be interpreted as the position of leg seg-
ments.
The proposed orientation estimator is based on an EKF with an extended state vector,
containing the angular acceleration and magnetic disturbance offset. This leads to better
results in compared to a conventional orientation estimator.
The leg pose estimation approach is also based on an EKF, where only inertial mea-
surements contribute as control inputs in the filter. In the proposed approach, the joints’
constraints are incorporated as observation models. This algorithm assumes that the joint
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axes and the positions in relation to the IMUs are known. These values are achieved by
the body-IMU calibration algorithm. The evaluation of this approach shows promising
results.

• An efficient online template matching approach for exercise identification, which pro-
vides real-time user feedback by counting the correctly performed exercises. By utilizing
the motion primitives detection and the feature extraction concepts, this method reduces
execution time while maintaining the accuracy. Moreover, the identification process is
verified in comparison to the related works, using different types of motion signals, i.e.
hip and knee joint angles and the leg segments’ positions for the squat exercises.

The result of the last three contributions is published in the following conference pa-
per [120] and article:
Sarvenaz Salehi and Didier Stricker. Validation of a low-cost inertial exercise tracker.
In Proceedings of SENSORNETS 2020

Sarvenaz Salehi, Didier Stricker. Strength exercise monitoring with inertial sensors.
Submitted in Communications in Computer and Information Science book series (CCIS),
Springer
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1.4. Organization of the thesis

This thesis is organized in the following way:
Chapter 2 Background and Related Work presents the background and the related works

of IMU calibration and more specifically, the magnetometer calibration, body-IMU calibration,
orientation and body pose estimation and exercise identification.

Chapter 3 System Design provides an overview of the related products and scientific projects
in motion capturing technologies and wearable motion monitoring systems. Moreover it de-
scribes the system design of a low-cost and energy efficient IMU-based suit. The design ap-
proach is presented in three divisions: the hardware, including the sensing and controller units,
the firmware including a novel cascaded approach for data acquisition and a power manage-
ment process, and the software platform for development of exercise monitoring applications.
Moreover, the system was evaluated in terms of power consumption, weight and cost, and mea-
surement quality, in comparison to the other similar available systems.

Chapter 4 System Calibration is dedicated to the calibration procedure required before
using the motion tracking suit. The first stage is IMU calibration, including a practical and
in-field magnetometer calibration. The second stage is body-IMU calibration for extracting
the IMU positions with respect to the joints. Here, an observability analysis of an existing
method is presented. Based on that, new constraints are proposed to improve the estimation.
This approach is extensively evaluated with different types of movements using synthetic and
real data.

Chapter 5 Lower Body Motion Tracking explains two real-time motion tracking approaches
based on EKF, which are used to estimate the lower body pose, during the strength exercises.
The first is pelvis orientation estimation, and the second is leg pose estimation. The latter
provides the positions of leg segments and knee and hip joint angles. This is followed by an
evaluation of lower body pose estimation for squat and abd/adduction exercise.

Chapter 6 Exercise Monitoring addresses the exercise identification, using an online tem-
plate matching algorithms. Moreover, solutions are proposed to reduce execution time while
maintaining the accuracy. This approach is evaluated and compared to the related works using
motion signals, i.e. joint angles and the leg segment positions for squat exercise identification .

Chapter 7 Conclusion summarizes the thesis and gives suggestions for future work.





2. Background and Related Work

This chapter presents a background for the key concepts for calibration, body motion tracking
and exercise identification, as well as an overview of the existing algorithms. Section 2.1 de-
scribes the IMU calibration. The focus is on the related work of magnetometer calibration as it
presents greater challenges in motion estimation compared to the inertial sensors. An introduc-
tion to the movements of the joints of the lower body is presented in Section 2.2. The studies
and estimation theory related to body-IMU calibration are discussed in Section 2.3. Section
2.4 describes the filtering techniques and related research on orientation and lower body motion
estimation. Finally, Section 2.5 introduces the related concepts of data mining in time series,
followed by related work on exercise identification.

2.1. IMU Calibration

In an IMU, the inertial sensors, including accelerometer and gyroscope, are integrated with
an aiding sensor. One of the most commonly used aiding sensors is magnetometer. Given
a valid calibration, IMUs can provide accurate orientation in three dimensions. While gyro-
scopes measure angular velocities, accelerometers, under moderate body accelerations, provide
a vertical reference, and the Earth’s magnetic field vector measured by magnetometers is a use-
ful reference in the horizontal plane. Ferraris et al. proposed in [35] a practical method for
the calibration of inertial sensors, where the bias, scale factors and mounting misalignment of
these sensors with respect to the IMU case coordinates are obtained using two sets of static and
rotating IMU measurements. This method is used in this thesis.
In contrast to inertial sensors, magnetometer measurements are easily disturbed by ferromag-
netic materials i.e., hard/soft iron [7] in the vicinity of the sensor, either inside the IMU casing
or in the final mounting position. As a result, parameters such as biases, scale factors, non-
orthogonality of the axes, and misalignment of the magnetometer coordinate frame with the one
of inertial sensors, which is normally pre-calibrated by the manufacturer, are rendered invalid
after installation at the customer’s site. This can significantly degrade tracking performance.
To compensate for such errors, a specific in-field calibration for magnetometers is required. It
should be mentioned that this work covers the time-invariant disturbances, that move with the
sensor frame while external effects caused by hard/soft iron materials outside the IMU coordi-
nate frame need to be handled online, e.g. either by adapting the calibration parameters or by
discarding the corresponding measurements [109, 114].

Various methods for magnetometer calibration have been proposed in the literature. The use
of precise external references such as Helmholtz coils for magnetometer calibration [133] is
expensive and may not be practical for all types of applications. Other proposed methods use
the Earth’s magnetic field, sometimes in combination with attitude information. Swing is a tra-

11
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ditional attitude-dependent method that requires a number of known headings in the horizontal
plane [16]. A simpler approach is to use only information about the Earth’s magnetic field, such
as field magnitude (scalar checking) or inclination. Using field magnitude, an ellipsoid fitting
approach is proposed in [106], which is, however, based on minimizing algebraic distances and
leads to a suboptimal estimation of the calibration parameters.
Vasconcelos et al. [145] suggest a geometric approach to obtain an optimal estimate of the cal-
ibration parameters using a maximum likelihood estimator (MLE). However, the method turns
out to be sensitive with regard to a perturbed initial guess, where the latter is not uncommon
when working with real data. There is also a solution for the alignment problem proposed,
which requires external information sources. In [2], Alonso and Shuster present a complete
calibration procedure based on scalar checking and a so-called centering approach. Although
misalignment is proven to be unobservable from the magnitude, the proposed work lacks a so-
lution for correcting such. Besides the field intensity, another bit of information concerning the
Earth’s magnetic field is its inclination, which can be obtained from the gravity measured by
accelerometers under static conditions.
Hu et al. [50] use an ellipsoid fitting method for bias estimation, and a solution based on the
inclination obtained from accelerometer measurements is provided to estimate the remaining
calibration parameters in one coefficient matrix. However, the accuracy of this method depends
on the location on Earth. At the equator, where magnetic field vector and gravity are orthogonal,
the scale factors are unobservable, and their estimation deteriorates as we approach the equator.
Furthermore, additional noise and errors caused by the use of accelerometer data acquired under
motion lead to a degraded estimate of the respective parameters.

2.1.1. Parameter estimation: Data fitting

In the estimation theory, parameter estimation techniques deal with the estimation of values that
do not change over time, e.g. the calibration parameters described in the previous section. In
such techniques, the measurement vector ~z is modeled as:

~z = h(~x) + ~v (2.1)

, where ~x is the parameter vector, and ~v is both measurement noise and unknown modelling
errors. For data fitting an estimate of x, ~̂x, minimizes the sum over the squared norm of residuals
as defined in the following:

argmin~x ‖ ~z − h(~x) ‖ (2.2)

Assuming the Euclidean norm, this can be solved by using least-squares estimation. For a
nonlinear measurement model as for the problem of calibration parameters, a numerical solution
can be achieved by a nonlinear optimization method like Gauss-Newton. In this method, ~v is
assumed to be a zero-mean Gaussian process. h(~x) is linearized using the Taylor expansion.
Starting with some initial guess, ~̂x0, an estimation of the parameter vector is obtained through
an iterative procedure as follows:
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~̂xk+1 = ~̂xk + (HT (k)H(k))−1H(k)(~z − h(~̂x(k))) (2.3a)

H(k) =
∂h(x)

∂x

∣∣∣∣
x=~̂x(k)

(2.3b)

, where H(k) is the Jacobian matrix of the measurement model with respect to the parameters
and is realized in the current estimate. This process is successful if the initial guess is close to
the global minimum, otherwise, it results in a local minimum or divergence. This problem is
addressed in this work using the linear least-squares approximation to find an initial guess.

2.2. Lower Body Movements

Here the focus is on three important components involved in the movements of the lower body:
hip and knee joints and pelvic bone.

Figure 2.1.: Joints and bone segments in lower body [10]

2.2.1. Hip joint

The articulation between the pelvis and the femoral head is the hip joint, Figure 2.1, which can
be interpreted as a ball and socket joint. The movements take place around three mutually per-
pendicular axes: flexion and extension around a transverse axis, internal and external rotations
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Figure 2.2.: Natural misalignment of the knee joint axis with mechanical and anatomical axis
of lower body [48]

(medial and lateral) around a longitudinal axis, abduction, and adduction around the sagittal
axis, see Figure 2.3.

2.2.2. Knee joint

The articulation between patella, femur, and tibia is the knee joint, Figure 2.1, which can form a
hinge joint since it mainly allows flexion and extension rotation around the knee joint axis (joint
line), which in a native knee, has a misalignment of 3 degrees with respect to transverse axis of
the body [24], see Figure 2.2. The joint axis during the flexion/extension movement of the knee
simultaneously exhibits internal/external rotations. More precisely, in an open chain kinetic,
the tibia rotates externally during knee extension, and in a closed kinetic chain femur rotates
internally during knee flexion. Therefore, due to these movements and natural misalignment,
the expected estimate of rotation axis based on the measurements of the sensors attached to the
adjacent segments is a vector that is not parallel to the hip joint flexion/extension axis. This
fact was taken into account when defining a new geometrical joint constraint for the body-IMU
calibration in Chapter 4.

2.2.3. Pelvic bone

The pelvis can move relative to the thigh at the hip joint and relative to the trunk at the lum-
bosacral joint. The movements relative to the hip joint are the reverse of the standard thigh
movements since the same muscle group is involved in such movements, see Figure 2.3. As
a result, simultaneous rotation of pelvis and thigh in different directions can be difficult. This
leads to suboptimal movements for the body-IMU calibration process as elaborated in the ob-
servability analysis in Chapter 4.

2.3. Body-IMU Calibration

Body-IMU calibration is a key requirement for capturing accurate body movements in applica-
tions based on wearable systems [105,155]. The mounting positions of IMU in relation to joints
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(a) (b) (c)

(d) (e) (f)

Figure 2.3.: Pelvis and thigh reverse movements with the same muscle group [88]: (a) Hip
abductor muscles (b) Hip adductor muscles (c) Medial rotator muscles (d) Lateral
rotator muscles (e) Hip flexor muscles (f) Hip extensor muscles
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are critical information in joint angle estimation using accelerometer measurements, especially
during fast rotations [22] and when modeling kinematic chains [80]. The use of assumptions
and information from anthropometric tables could lead to inaccurate tracking because there are
different types of target users with different body shapes. In addition, there are various types of
clothing materials used in the design of the wearables that result in varying sensor placements,
even for one individual. Manual measurements of these parameters are also cumbersome and
error-prone. Therefore, an accurate, robust, and autonomous sensor-body calibration method is
required for a wearable training suit.

In order to compensate for the resulting errors, [93] uses a rotational mapping based on the
integration of gyroscope measurements. Thus, the tracking accuracy of the joint angle is limited
to time due to drift. In [65] and [71], the IMU positions are used during tracking. However,
these parameters are determined by manual measurements, which is not accurate. In [156],
a method based on Kalman filters to minimize the position errors is proposed. However, this
method requires multiple IMUs on each segment with controlled positional errors in relation
to each other. Furthermore, the large state vector, required for this method is not efficient,
considering the computational power available in mobile applications. The derivation of an
efficient, robust, and precise method based on a practical procedure is a crucial as well as a
challenging task when developing a wearable system with multiple embedded IMUs. Here
the related work, based on the condition of acquiring the measurements, is examined in three
different groups of methods: static, functional, and autocalibration.

2.3.1. Static

This type of calibration is also known as single or double pose calibration, where the subject
should hold one or two known poses. The measurements during these poses are compared with
the expected measurements, and an alignment rotation is estimated. This estimated rotation is
used during tracking of body movements to align the measurements with the segments. In [122],
a T-pose is introduced, in which the subject stands upright and holds the arms horizontally to
the side, see Figure 2.4.
In [12], a simple and easy-to-perform calibration procedure was developed, which is based on

two static poses, Figure 2.5; For the upper body, the IMU mounted on the torso is calibrated
first. The orientation of this IMU is determined by means of two accelerometer measurements
from standing in the reference pose and bending forward, respectively. The direction of the
body z axis in IMU is obtained from the first measurement, i.e. the gravity. The x is calculated
by the cross product of the two measurements since the bending is around x body axis. The y
axis then is the cross product of z and x direction to obtain a right-handed coordinate system.
For the IMUs on arms, the z directions are determined from accelerometer measurements at the
nominal pose, and their x and y axes by comparing their magnetometer measurements those on
the torso.

Palermo et al. [96] propose a similar approach for the lower body with two static poses:
standing and sitting/lying with the legs stretched out. The problem with such methods is that
the joint axes, as well as the IMU positions, cannot be identified.
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Figure 2.4.: Body IMU calibration for upper body based on two static poses

Figure 2.5.: Body IMU calibration based on two static poses
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2.3.2. Functional

In [34], [93], two functional calibration procedures are proposed, to obtain joint axes of the
lower body based on a fusion of the measurements of each IMU. The estimated joint axes are
then used to track the joint angles in a reliable and clinically interpretable way. However, these
procedures require passive and precisely controlled movements that are difficult to perform
without supervision.
Moreover, none of the above-mentioned contributions provides a method for estimating the
sensor positions with respect to the adjacent joints.

2.3.3. Autocalibration

In order to enable a ubiquitous fitness tracking, a calibration method should be performed by
subject autonomously and without supervision or the need to use additional tools. In [123], Seel
et al. propose a novel and practical method for estimating the joint axis of a hinge joint and the
IMU positions with respect to a spheroidal joint, based on the gyroscope and accelerometer
measurements of two IMUs mounted on adjacent segments. In [124], the applicability of these
methods is discussed for the examination of joints with different degree of freedom (DOF),
and simple extensions are presented. In [123, 124], the method is applied to the knee and ankle
joints, while in [90], it is adopted for a home-based clinical knee rehabilitation system. The
methods of Seel et al. work without the need for dedicated calibration movements. However, it
did not provide an analysis of the types of movement that lead to the most accurate results. If
there are insufficient variations in the different DOFs, the position calibration method will lead
to inaccurate results. This was shown when applying the method to the hip joint, where it is
difficult to perform movements with sufficient variation.

The proposed IMU position estimation method in this thesis builds upon the method pre-
sented in [123, 124] , considering to improving its accuracy and robustness under suboptimal
movement conditions and making it applicable to the body-IMU calibration for the designed
IMU-based exercise tracker focusing on the hip and knee joints.

2.3.3.1. Bayesian parameter estimation

In Bayesian approach the parameters are assumed to be the random values, derived from the
probability distribution, P (x), and the aim is to find an estimate, x̂ that is most probable given
the measurements. This is called maximum a posteriori(MAP), which is calculated according
to the Bayes rune as follows:

x̂MAP = arg maxxP (z|x)P (x) (2.4)

, where P (x|z) is the conditional probability distribution of some measurements given the pa-
rameters. Since the peak of this probability is often in an area of x with constant probability, in
Equation 2.4, P (x) can be discarded. This gives the MLE:

x̂MLE = arg maxxP (z|x) (2.5)
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This is particularly useful when there is little prior knowledge available. Similar to the data fit-
ting, the Gaussian measurement model is assumed, and P (z|x) is defined by a normal distribu-
tion. Therefore, the MLE can be solved using the least-squares estimation(LSE) techniques.In
this work, this approach is applied in the body-IMU calibration process.

2.3.3.2. Observability analysis

A system is observable when the amount of information contained in the measurements is suffi-
cient for parameter estimation. This can be evaluated by estimating a lower limit of the measure-
ment model noise, i.e. variance of v in 2.1. This is known as Cramer-Rao Lower Bound(CRLB).
Assuming the estimator 2.5 is unbiased:

E[x̂− x] =

∫
(x̂− x)P (z|x)dz = 0 (2.6)

Then from derivative of 2.6 with the assumption of the integrability of the derivative of an
integrand:

∂

∂x

∫
(x̂− x)P (z|x)dz =

∂

∂x
0 (2.7a)∫

∂

∂x
((x̂− x)P (z|x))dz = 0 (2.7b)∫

−P (z|x) + (x̂− x)
∂

∂x
P (z|x)dz = 0 (2.7c)

The derivative of probability can be calculated using the natural logarithm:

∂ln y

∂x
=

1

y

∂y

∂x
⇒ ∂P (z|x)

∂x
= P (z|x)

∂lnP (z|x)

∂x
(2.8)

knowing that
∫
P (z|x)dz = 1, Equation 2.7c is rewritten to:∫

(x̂− x)P (z|x)
∂lnP (z|x)

∂x
dz = 1 (2.9)

To derive the estimator variance, Equation 2.9 is modified to:

( ∫
((x̂− x)

√
P (z|x))(

√
P (z|x)

∂lnP (z|x)

∂x
)dz
)2

= 1 (2.10)

, which, according to Cauchy-Schwarz [134] can be formed in the following inequality:∫ (
(x̂− x)

√
P (z|x)

)2
dz ·

∫ (√
P (z|x)

∂lnP (z|x)

∂x

)2
dz ≥ 1 (2.11)
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, which is equivalent to:

E[(x̂− x)2] ≥ E
[(∂lnP (z|x)

∂x

)2]−1

(2.12)

, whereE[.] is the expected value. The left side of this inequality is the variance of the estimated
parameter, and the right side is the inverse of the Fisher information matrix (FIM). Therefore,
for variance to be bounded the FIM matrix should be invertible. In other words, the system is
observable when the corresponding FIM is full rank. Note that if FIM = 0, the variance is
infinite, i.e. nothing known about the parameters. This criterion is used to detect the suboptimal
movements for body-IMU calibration. As in [148] with the assumption of Gaussian model in
2.1, the FIM can be simplified as follows:

∂lnP (z|x)

∂x
=

∂

∂x
ln
[
c exp

(−1

2
(vTΣ−1

z v)
)]

=
∂

∂x

(
ln c− vTΣ−1

z v

2

)
= HTΣ−1

z v (2.13)

Substituting into FIM in 2.12:

FIM = E
[
(HTΣ−1

z v)(HTΣ−1
z v)T

]
(2.14a)

= E
[
HTΣ−1

z vvT (Σ−1
z )TH

]
(2.14b)

= HTΣ−1
z E[vvT ](Σ−1

z )TH (2.14c)

= HTΣ−1
z Σz(Σ

−1
z )TH (2.14d)

= HTΣ−1
z H (2.14e)

2.4. Body Motion Tracking

One of the most commonly used techniques for sensor fusion and motion estimation is Kalman
filtering. Therefore, this section starts with an introduction to this technique.

2.4.1. Kalman filter

The Kalman filter [54] is a linear estimator that uses the statistical model of states, known as the
process model, and the statistical model of the relation between states and observations, known
as the measurement model. In a recursive approach, the Kalman filter estimates the state of a
process by minimizing mean squared error. This is achieved by two groups of linear difference
equations:

• Time update or prediction equations, where the current estimate and error covariance are
propagated in time, resulting in an a priori estimate.

• Measurement update or correction, where the predicted state estimate is improved ac-
cording to new measurements, therefore results in a posteriori estimate.
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Since the motion process and measurement models are mainly nonlinear, an extended version
of the Kalman filter, EKF, is commonly used.

2.4.2. Extended Kalman filter

The EKF [53] is based on the linearization of all the nonlinear models around the currently
estimated states. For a system with the states xk and the measurements zk, time update and
measurement update stages in an EKF are presented in Equations (2.15) and (2.17).

xk = f(xk−1, uk−1, wk−1) (2.15a)
zk = h(xk, vk) (2.15b)

, where uk−1 is the control input. wk−1 and vk are process and measurement noises each with co-
variances of Qk−1 and Rk. They are assumed to be zero-mean Gaussian noises and independent
from each other.

x̂−k = f(x̂k−1, uk−1) (2.16a)

P−k = FkPk−1F
T
k +WkQk−1W

T
k (2.16b)

with

Fk =
∂f

∂x
|x̂k−1,uk−1

(2.16c)

Wk =
∂f

∂w
|x̂k−1,uk−1

(2.16d)

Here, the superscript minus signifies a priori estimate.

Kk = P−k H
T
k (HkP

−
k H

T
k + VkRkV

T
k ) (2.17a)

x̂k = x̂−k +Kk(zk − h(x̂−k )) (2.17b)
Pk = (I −KkHk)P

−
k (2.17c)

with

Hk =
∂h

∂x
|x̂−k (2.17d)

Vk =
∂h

∂v
|x̂−k (2.17e)

, where x̂k is an a posteriori estimate of the state, and Kk is the filter gain, which is a weighting
factor for the actual versus predicted measurements(h(x̂−k )).
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2.4.3. Orientation estimation

In the literature, there are many methods for real-time orientation tracking using IMU measure-
ments. Of all of them, those based on recursive approaches and especially Kalman filtering have
shown more promising results [62]. Here, the focus is on methods for orientation estimation in
body motion tracking applications.
In [71], a complementary Kalman filter is designed to estimate the angular velocity offset and
orientation error in states based on accelerometer and gyroscope measurements. However, the
integration of angular velocity and the exclusive use of accelerometer measurements to estimate
the offset leads to a drift in the horizontal plane.
Marins et al. proposed an EKF-based approach using inertial and magnetic sensors [74]. The
states contain quaternions to represent the orientation (Appendix C), which is a computation-
ally more efficient solution compared to the Euler angles used in [71] and does not suffer from
singularity [19]. They applied an iterative Gauss-Newton algorithm to obtain a linear obser-
vation model by estimating quaternions from accelerometer and magnetometer measurements.
This reduces the computation, but at the same time increases the uncertainty of the noise of the
quaternion measurement model.
The problem of uncertainty in the assumption of constant measurement noise can lead to a
non-robust estimate during the whole tracking because the measurements contain outliers. For
example, the accelerometer measurements for dynamic body movements contain not only grav-
ity but also high accelerations from the movement. Furthermore, magnetometers in the vicinity
of ferromagnetic materials or other magnetic fields lead to distorted measurements [7]. There-
fore, Sabatini proposed in [114] an adaptive approach to scale the measurement noise when the
outliers are detected. Outlier detection is performed by comparing the vector norm with the
known reference values. For magnetometers, the reference value of the local dip angle is also
taken into account. Since the uncertainty of the magnetic disturbances is high, a more robust
approach is to estimate them as a random process. In [109], the estimation error is obtained as
a first-order Markov process in a complementary Kalman filter. The process noise is adapted
based on the deviation of the magnetic measurements from the reference vector norm and the
dip angle. Another approach in [115] introduced a variable state dimension extended Kalman
filter (VSD-EKF), in which the filter switches between two different models of magnetic distur-
bances. These disturbances are detected on the basis of a fading memory average of normalized
innovation and two upper and lower crossing thresholds. For the disturbances below the lower
threshold, the filter switches to a quiescent EKF with disturbances modeled as first-order Gauss
Markov (GM) process (GM-1). If they are higher than the upper threshold, the filter switches
to high-order EKF, where the disturbances are modeled as a second-order GM (GM-2). In this
thesis, the magnetic disturbances are assumed to be small and change slowly; therefore, they
are modeled as a GM-1, similar to a quiescent EKF in [115].

2.4.4. Lower Body Pose Estimation

In all related work in this section, it is assumed that the leg segments are rigid bodies that are
connected to each other at the knee, hip, and ankle joints. To track the movement, at least one
IMU is mounted on each segment.
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In [154], the orientation from accelerometer and magnetometer measurements is estimated with
the help of axis-angle representation. A linear Kalman filter is used to smoothen these measure-
ments and fuse them with the gyroscope measurements. The linear acceleration error caused by
placing the sensor far from the center of the joint is not considered in this approach. Further-
more, the magnetic disturbances are not modeled. It therefore leads to the wrong estimation in
the vicinity of ferromagnetic materials.
To account for the error of linear acceleration, the idea of using physical and virtual sensors,
based on Newton-Euler equations for estimating the joint angle, is presented in [27, 28]. Ac-
cording to these methods, the joint acceleration can be measured by placing a pair of virtual
sensors on the adjacent links on the center of the joint. In these approaches, a joint angle is
defined by the directional difference in the measured acceleration of sensors in the joint coor-
dinate frame. In [23], Cheng et al. provide an overview that compares four different methods
for measuring the joint angle in two dimensions. They demonstrated that when the sensors are
mounted far from the center of the joint, especially for fast rotations, a method called Com-
mon Model Rejection with Gyro Differentiation (CMRGD) achieves less error and is easier to
implement compared to the other methods. In this method, the gyroscope measurements are
numerically differentiated to derive the angular acceleration needed to calculate the joint center
acceleration vector.
Instead of using magnetometers, as they can be easily distorted, several studies have applied
biomechanical constraints to improve the body motion estimation in the horizontal plane. Such
studies can be divided into two categories:
In the first category, the joint angles are estimated in a state estimation approach, based on
the known mounting orientations of the IMUs. Then the position of the end effectors of the
leg segments is calculated using the forward kinematics and assuming the known segment
lengths [67,105]. In [67], assuming a constant joint acceleration and using the Denavit Harten-
berg (DH) convention, the angle is estimated with respect to each possible DOF at hip and knee
joints in an EKF. The accelerometer measurement model follows a similar approach in [23]
and [28].

In the second category, the state vector contains the relative orientation and the position of
the segments. In [64], an optimization approach considers the biomechanical constraints to-
gether with the biases of the inertial sensors and the error of the limited DOF at the knee joint.
In addition, the body-IMU calibration parameters are estimated simultaneously, but the accu-
racy of such parameters is not evaluated in that work. Moreover, this approach cannot be used
in a real-time application because it requires a batch of observations. In [138], a similar ap-
proach is developed by considering additional priority equations and using a sliding window
optimization, which makes it more suitable for real-time estimation. They have also provided
an assessment of repeatability in the estimation of calibration parameters. However, this ap-
proach is still associated with high computational cost due to the online estimation of additional
calibration parameters.

In the same category of methods, Luinge et al. [70] used the kinematic coupling (KIC) al-
gorithm for a hinge joint. Assuming A and B are IMUs, which are mounted on the adjacent
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segments of the joint m from the coupling concept, the following constraint is defined:

G∆~P =G ~lmB −G ~lmA (2.18)

, where G∆~P is the relative position of B wrt. A and G~lmA,G~lmB are the distance vectors
between jointm and the respective IMUs, all defined in the global coordinate system, G, which
is typically aligned with gravity and magnetic north. In this approach, the EKF state vector
with a length of 21 contains following parameters: the relative positions and velocities of two
adjacent segments of the joint, the error in the orientation of the segments, gyroscope biases,
and the acceleration of sensor A predicted by low-pass filtering, in order to extract the gravity
measurement. They also prove an extension of this approach for two joints, knee and ankle, to
estimate the positions and the velocities of three segments. Therefore, if no magnetic field is
estimated the length of the state vector, when no magnetic field is estimated, is increased to 39
for 13 state variables. For this algorithm, the joint positions are required to be known with an
accuracy of 2− 3cm.
In this thesis, a similar approach to [70] is used to estimate the relative position of the segments
of a leg, with respect to a reference point, in this case the pelvis, provided that the orientation
of pelvis is known. The body-IMU calibration parameters are integrated to reduce the error due
to angular velocity drift. Therefore, there is no need for additional states or measurements, e.g.
magnetometer.

2.5. Exercise Monitoring

It is common practice that the trainers initially monitor trainees and instruct them based on
their state of health while they perform a strength exercise for the first time so that they can
later perform the exercise independently. The likelihood of injury is usually high in this later
phase, as the correct way doing of the exercise cannot be adequately controlled. This is impor-
tant, especially in the rehabilitation process, where the ROM is limited in the different phases
of recovery. Since the physical characteristics and abilities of individuals vary, a personalized
monitoring application is necessary. Therefore, patients who normally have difficulty going to
the rehabilitation centers can do the exercises at home.
Exercise identification is the process of identifying the start and stop time of one repetition
of an exercise, which could be composed of multiple smaller components, known as motion
primitives. Short-term factors such as fatigue or long-term factors such as different stages in
rehabilitation will result in the motion pattern of an individual to differ over time. Therefore,
the identification algorithm should deal with the spatial and temporal variability.
A further challenge in the identification of movement data is the scalability to the higher dimen-
sion to achieve online monitoring.
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(a) (b)

Figure 2.6.: Similarity measures: (a) Euclidean distance (b) DTW distance

2.5.1. Time series data mining

A time series is a collection of values, for example, motion signals that are provided sequentially
over time. In time-series data mining, the goal is to realize the human ability in recognition of
the shape of the data; In other words, identification of similarities between patterns while ignor-
ing small fluctuations and considering different time scales, e.g. if the exercises are performed
correctly from time to time but at different speeds. Some of the important terms in this area are
introduced below:

2.5.1.1. Similarity measure

This is defined by a function which returns the distance, D(X, Y ), between two input time
series X, Y and has the following properties:

D(X, Y ) ≥ 0, D(X, Y ) = D(Y,X), D(X,Z) ≤ D(X, Y ) +D(Y, Z) (2.19)

The Euclidean distance is one of the computationally simple examples of the similarity measure
used in data mining [57]. Although it is time- and space-efficient, it is highly sensitive to the
fluctuations in the time axis [8]. The similarity measure used in this thesis is the DTW [11]
which compared to Euclidean handles the local distortions in the time axis better, see Figure 2.6
and usually provides robust results [30]. This is described in detail in Chapter 6.
Assuming the set of all subsequences of length m in X , SmX , and X ′ ∈ SmX , a subsequence
similarity measure is defined as:

Dsubseq(X, Y ) = min(D(X ′, Y )) (2.20)

, which represents the distance of Y from its best matching point in X .
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2.5.1.2. Range query

Based on a similarity measure D, the range query finds a set of time series,S, which lie within
a given distance, ε, from a given query, Y :

S = {Xi ⊂ X|D(Xi, Y ) ≤ ε} (2.21)

2.5.1.3. Subsequence matching

Based on the range query with a subsequence similarity measure, subsequence matching finds
all subsequences X ′ ∈ X with Dsubseq(X

′, Y ) ≤ ε.

2.5.1.4. Segmentation

Segmentation is the process of finding the starting and ending location of a pattern of interest in
the time-series data. In motion segmentation, this results in the sequence of motion data being
divided into motion primitives. zero velocity crossing (ZVC) is a popular method for extracting
motion primitives, which is explained in more detail in the next section.

2.5.2. Exercise identification

After motion data segmentation, each segment can be labeled to identify a type of exercise.
Usually, repetition in strength exercise involves a sequence of increasing and decreasing ve-
locity. Therefore, the ZVC approach is one of the most optimal approaches to find the motion
primitives where the velocity of the signal changes the sign. In [37], it is assumed that the ZVCs
of different DOFs coincide, therefore the motion primitive is detected, where more than two
DOFs have ZVCs with a time difference of 300ms. This method was applied to the position
data obtained from electromagnetic sensors.
The Hidden Markov Model (HMM) is a stochastic approach that considers a signal as unob-
servable sequences of Markov states. At each time point, the system undergoes a state transition
defined by a probability in a transition matrix. In [52], a template-free approach is proposed,
where the data is windowed and the probability density function of each window was used in
a hidden Markov model (HMM) in order to different states of the movements. The segment is
identified, where the transition between the states occurs.
HMM is used more in the template-based approaches. In [9], this approach is applied to the
segmentation of movements in sign language, which contains the finger positions, measured
with ultrasonic gloves. Although they have reduced dimensionality using principle component
analysis (PCA), their approach suffers from expensive computational costs. In [68], a two-step
approach is proposed to solve this problem by reducing the number of HMM runs. This is
achieved by first scanning the observation signal for the candidate segments, using ZVC or ve-
locity peaks in the joint angles.
There are other learning-based classifiers that are used for motion identification, such as Con-
volutional Neural Networks (CNNs) [143] or support vector machine (SVM) [84]. However,
these need enough labeled training data to ensure acceptable accuracy.
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An alternative method that does not require training data is DTW. DTW is a popular template-
based algorithm that calculates the distance between each point of the observed signal and the
template and creates a distance matrix. This matrix is searched for a warping path, which leads
to a minimum distance. This can be applied to identify an exercise, given a template of motion
data, performed, and captured under the supervision of a trainer. DTW is a suitable solution for
such cases as it allows temporal and spatial variations. However, the time complexity of DTW
is O(n2), so that it can only be used for offline scenarios due to the high computational cost,
especially in higher dimensions. In [63] an online DTW approach is proposed. To speed up
the process of searching for the warping path, a similar approach to [103] is used to apply con-
straints to the warping path by defining two ranges for the start and end points. This constrains
the warping path to eliminate unnecessary calculations. However, this leads to approximate
results compared to the original DTW. Moreover, this method requires training of multiple
template classes and the time complexity is still high as all distances in the matrix of each tem-
plate class must be updated on the arrival of each sample in the stream. This approach is applied
for motion segmentation of a personalized virtual rehabilitation in [150], where they applied the
k-nearest neighbor approach to find the best motion primitives. UCR [102] finds the best-so-far
subsequences in the static time series using the idea of early abandoning of DTW computation
based on a cascading lower bounds. This prune off many candidates during the search, which
leads to higher speed. This approach applies an incremental z-score normalization, which re-
sults in fast and accurate processing. SUCR [41] is UCR for streaming time series. Both UCR
and SUCR can only find the subsequences that have the same length as the template. In [116]
an online approach is proposed that addresses the problem of subsequent matching using DTW.
This algorithm has a linear time complexity of O(n), which means the processing time of the
current observation point does not depend on the past data length. Moreover, it only requires a
single matrix to find the matching subsequence. In [116], they experimented the algorithm with
various types of datasets, including an experiment on joint position data from an optical motion
capture system is presented. However, the analysis is restricted to the execution time while no
detailed analysis is provided in terms of precision and accuracy. In this thesis, this algorithm
is optimized using an online segmentation technique based on ZVC and evaluated for real-time
motion identification of different types of motion signals and compared with [116] and three
other modifications of it in terms of both execution time and accuracy.





3. System Design

This chapter introduces the design and development of a low-cost motion tracker system, in-
cluding a network of wired MEMS-based IMUs that fits into a suit for the feasible capturing
of human body motion. In order to enable long-term data acquisition, using a microcontroller
low power consumption is used a new approach for data acquisition for multiple sensing units
is proposed. This method reduces the load on the central processing unit (CPU) and the wiring
effort.
The first section presents related works. Section 3.2 describes the proposed design. This con-
tains the details of the hardware and firmware design, including a novel cascaded approach to
data acquisition and a power management process to increase the energy efficiency of the sys-
tem. It also provides the specification of the software platform. The system is evaluated in
Section 3.3 in terms of power consumption, weight, cost, and measurement quality compared
to similar products available.

3.1. Related Work

This section explains the most common technologies used for motion capturing. These include
visual, inertial, and magnetic tracking systems. Section 3.1.4 presents a more specific type of
such a system, namely wearable motion monitoring systems, and describes their design consid-
erations for two main components, i.e. the sensing units and the communication interface.

3.1.1. Visual systems

The visual motion capture system can be defined as a system that encodes motion from succes-
sive images into values such as body segment positions or joint angles. Research in this field
can be divided into two areas: marker-based and marker-free systems.

3.1.1.1. Marker-based systems

In these systems, markers are attached to the body segments, and their positions are recorded by
multiple surrounding cameras. One type of markers is passive markers that have a retroreflective
material so that they reflect the infrared light emitted by the LEDs. These LEDs are mounted
around the camera lens [147]. The positions of these markers are tracked by triangulating
multiple overlapping projections from two or more calibrated cameras. The other type is active
markers that can generate light themselves. While the former can have problems such as false
reflections or noisy and missing data, the latter provides clean, high-quality motion detection

29
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and real-time visualization without time-consuming post-processing [101].
However, there are problems with both techniques when using for body motion tracking, such
as the unreliable detection of bony landmarks, soft tissue, and wobble markers that lead to faulty
estimates.

3.1.1.2. Marker free systems

The availability of high-resolution cameras promotes the use of marker-free techniques for
human motion tracking in many applications, e.g. in film production, gaming, and diagno-
sis [15,32,69,87]. With this method, the subject does not need to wear the markers since every
pixel recorded is a marker. The optical flow technique is used to estimate the movement of each
pixel over time [49].
The model-based approaches in [25, 40] predict a number of parameters such as joint angles
and synthesize the human model from the perspective of different cameras. They compare the
real image edges with the synthesized ones and update the parameters for the best match.
Learning-based approaches such as [29] derive the 3D pose directly from the images or track
the variables learned from the observation and then reconstruct the movements. In [127], a
low-cost solution based on depth images is introduced using Kinect [91].
In order not to be limited to indoor infrastructure, i.e. fixed installed cameras, [126, 149] pro-
pose the idea of single or multiple cameras worn on the body. The relative positions of body
segments, as well as the global body position, are estimated based on structure from motion
(SFM). Here, the changes in the images of the external environment caused by the movements
of the users are recorded. However, it is a challenge to use such systems for body motion track-
ing applications because the single-camera approach does not capture detailed body motions,
and the multi-camera approach has a heavy weight and high computational latency. Moreover,
both systems require knowledge of the environment in advance, which consequently requires
intensive calculations to reduce errors and delays in data during 3D localization.

3.1.2. Inertial systems

In contrast to visual systems, inertia-based systems are of interest for most applications of track-
ing human body motion. The main reason is that they can operate independently of exter-
nal hardware. They are also unobtrusive, comparatively inexpensive, and easy to set up and
use [79, 153].
In these systems, an IMU is mounted on each body segment, usually consisting of a 3-axis
accelerometer, a gyroscope, and a magnetometer. The measurements from these sensors are
recorded and processed to obtain the orientation and/or position of each segment or to esti-
mate the joint angles directly. Using this data and biomechanical constraints, such systems
track body movement. Filtering and sensor fusion approaches are used to reduce noise and
drift during tracking [108]. As systems for human body tracking are mostly presented as wear-
able systems, further details on such products in relation to wearable motion trackers are dealt
with in Section 3.1.4. The related works on various filtering and sensor-fusion approaches for
inertia-based tracking of body motion are previously discussed in Sections 2.4.3 and 2.4.4.
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3.1.3. Magnetic systems

Magnetic motion detection is a cost-effective approach without occlusion problems [85, 99].
This technique uses a magnetic transmitter consisting of three orthogonal coils. These coils
generate an electromagnetic dipole field. The orientations and positions are extracted from the
relative current and voltage between magnetic receivers mounted on the body segments and the
magnetic transmitter. However, the result of tracking is influenced by electrical and magnetic
interference and the area covered by a magnetic source. Several methods of filtering and system
design are proposed to solve these problems [3, 92].

3.1.4. Wearable motion monitoring systems

With the advent of low-cost, miniaturized sensor technologies, a wide variety of wearable prod-
ucts containing such technologies are now available on the market. This contributes to the
monitoring and maintenance of the physical well-being of individuals in the consumer sector.
According to [75], the global market for wearable sensors is expected to exceed US$ 2600 mil-
lion by 2024, with a compound annual rate of 29% over the forecast period. Here, such products
are described with regard to their sensing units and their communication interfaces in Sections
3.1.4.1 and 3.1.4.2.

3.1.4.1. Sensing unit

Depending on the type of movements that need to be captured in different applications, wear-
able systems consist of single or multiple sensing units. Note that a sensing unit implies the
integration of different sensors that can be accommodated in a single package and only be worn
at one point of the body.

Single sensing unit
There are a large number of commercial products available in the form of a single sensing unit.
The wristbands are one of the most popular wearable devices because they are portable and eas-
ily accessible. In addition to the inertial sensor technology offered by most of the smartwatches
available on the market, some of them have an integrated global positioning system (GPS) for
outdoor activities, e.g. running [39].
By using pressure sensors and the compass, altitude, air pressure, and tidal curve can be made
available to the user [20].
By using optical sensors that detect the blood flowing through the veins, the user’s heart rate
can also be monitored and recorded [121].
More accurate monitoring of heart rate could be achieved by chest straps that measure cardiac
parameters. This data is used to analyze exercise intensity and calorie consumption [98].
Clasps are another type of wearables that can be placed anywhere on clothing [124] [132].
All the above systems provide only general information about the intensity and possibly the na-
ture of user activity. However, due to their limited number of sensing units, they do not provide
the biomechanical details of body movements.
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Multiple sensing units
By increasing the number of sensing units, sufficient details about body movements can be pro-
vided. However, this can greatly increase the cost and weight of the wearable systems. One of
the best-known manufacturers of IMU-based wearable systems is Xsens [153]. Their products
are either strap-based with wireless trackers or in the form of a lycra suit with up to 17 wired
trackers, see Figure 3.1. The output rate of strap-based systems is 60Hz, and that of the suit
is 240Hz, both for the maximum number of trackers. A software package provides real-time
3D animation and diagrams for joint angles, segment positions, and kinematics. Although these
systems provide data acquisition in any environment along with validated kinematic data, they
have high prices [153]. They also do not support integration with personal mobile devices such
as mobile phones or tablets. Therefore, their use is limited to the studios or for scientific re-
search purposes.
A simpler and more affordable solution, also based on IMUs, is offered by a startup company
called Enflux [33]. A solution for recording whole-body movements, shown in Figure 3.1 with
10 IMUs from this company, costs ten times cheaper than Xsens. Trousers and shirts have sep-
arate control units placed on the pelvis and chest. These units provide the measurements with
the output rate of 66 Hz. The product comes with several Android and Windows-based apps
for the prevention of sports injuries. A similar product is Smartsuit Pro from Rokoko [107],
which integrates 19 IMUs (see Figure 3.1). However, the sensing units are bulkier and the price
is twice as high as [33]. Furthermore, many scientific research projects have not targeted such
products, so the quality of the measurements and motion estimation still needs to be validated.
Athos [6] uses a different motion-capturing approach that provides fitness tracking solutions
based on electromyography (EMG) technology (see Figure 3.2). The full-body suit contains 18
EMG sensors and four heart rate sensors. It provides real-time information about the activity
of several muscle groups on the smartphone. Therefore, the user can see both the muscle dis-
tribution and the left-right balance during the workout. The cost of a shirt and shorts with two
integrated cores is similar to Enflux. However, this system does not provide detailed biome-
chanical information, which is crucial for self-training applications without supervision.

3.1.4.2. Communication interface

In most commercial IMUs, extra modules such as transceiver and battery are added to the sens-
ing unit to achieve high mobility through wireless networking. This increases power consump-
tion and leads to bulky packages that can hinder the user’s movements during the workout.
Therefore, such units are not suitable for integration into clothing. Moreover, the wired net-
working approach, which is usually based on the star topology, poses other problems, such as
high complexity of connections in body network and low flexibility of movement [82, 136].
To increase flexibility, an alternative is the use of textile cables [33, 139]. This additionally
facilitates the integration of connections into the clothing. As a further solution for better inte-
gration in clothing, the use of smart textiles in products such as Athos (introduced in Section
3.1.4.1) is proposed. Similar products are evaluated in [22] and [78] for different types of appli-
cations, including gait analysis. However, their degree of accuracy does not yet meet the high
requirements of sports monitoring applications with regard to the estimation of joint kinemat-
ics. Moreover, each sensing unit should be dimensioned differently for different body areas of
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(a) Xsens (b) Enflux

(c) Rokoko (photo taken from fixguide.com)

Figure 3.1.: Commercial products integrating multiple sensing units: (a) Xsens suit (b) Entflux
(c) Rokoko
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Figure 3.2.: Athos motion capture suit

different users [141].
When considering inertia-based motion detection suits with integrated wired IMUs, they usu-
ally have a control unit embedded in the garment or a hub that collects the readings from all the
sensors and sends them via a wireless connection to a PC or mobile device for further process-
ing. The type of wireless connection is an essential factor for the accessibility of the system.
For example, the proprietary solution of the wireless communication protocol in [153] does
not make it accessible to every personal mobile device, while the standard connections such as
Bluetooth allow easier access [6, 33].

3.2. Proposed system design

This section introduces a novel design for a light-weight wearable system with low power con-
sumption and multiple integrated IMUs. In hardware design, components are selected to reduce
the overall cost and size of the system. This is described in Section 3.2.1. In addition to a selec-
tion of low-power components in hardware design, the power consumption is reduced mainly
by a novel approach to data acquisition and power management in the firmware design process.
This is explained in detail in Section 3.2.2. Finally, Section 3.2.3 provides a brief description of
the software platform, including the user interface.

3.2.1. Hardware design

The hardware platform, shown in Figure 3.3, consists of multiple small-size (20 x 15 x 3 mm)
and light-weight (2g) sensing units, which contain MPU9150 IMUs from Invensense1 (Figure
3.2.1).
MPU9150 consists of 3-axis accelerometer and 3-axis gyroscope in addition to a 3-axis magne-
tometer (AK8975). This chip also contains a FIFO (first-in-first-out) buffer that reduces power
consumption by allowing the CPU to trigger a burst reading of sensors and going in the low-
power mode while the unit is collecting the measurements.

1https://www.invensense.com/products/motion-tracking/9-axis/mpu-9150/
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Figure 3.3.: harware components: (1) 5 IMUs are mounted on pelvis (a, not visible), up-
per/lower right leg(b/c) and upper/lower left leg(d/e); (2) controller unit;(3) textile
cables; (4) tablet to store and process data.
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(a) (b)

Figure 3.4.: (a) IMU (b) IMU connector

The controller unit (CU) (see Figure 3.5) is a SAM4N microcontroller 2 from Microchip (for-
merly Atmel) based on a 32-bit ARM Cortex-M4 RISC processor. It operates with a maximum
clock frequency of 100MHz. Featuring a variety of serial interfaces, this microcontroller sup-
ports further expansion of the system in order to deploy different types of sensors and com-
munication interfaces. In this work, SAM4N XplainedPro3 is used, which is an evaluation
board for this microcontroller. This board contains an embedded debugger, which facilitates the
programming.
IMUs communicate with the microcontroller via the inter-integrated circuit (I2C) bus4, and the
microcontroller receives the interrupts from the IMUs through the general purpose input output
(GPIO) pins.

The IMUs are connected to each other and to the CU via 6-wire textile cables. To reduce
the effects of cross talk and high capacitance of the I2C bus, the data lines are distributed over
multiple cables, where more than one I2C connection exists. The connectors for the textile
cables are designed based on standard 2.54 mm pin header for easier plugging and unplugging
of the IMU boards. These connectors together with the textile cables are then sewed and fixed
on a pair of stretch pants making sure that the connectors provide a suitable placement of IMUs
for lower body motion capturing.

The data transmission to an external processing device, such as a smartphone or laptop, is
possible through the universal asynchronous receiver-transmitter (UART) interface of micro-
controller and is implemented via Bluetooth. The Bluetooth module is HC05, which follows
standardized protocol the IEEE 802.15.1 standardized protocol and the maximum range of
100m.

3.2.2. Firmware design

The firmware is designed to provide two functionalities: initialization and data transfer.
The initialization module detects and configures the available or user-selected IMUs and CU

2https://www.microchip.com/wwwproducts/en/ATsam4n16c
3https://www.microchip.com/DevelopmentTools/ProductDetails/PartNO/ATSAM4N-XPRO
4https://www.i2c-bus.org/
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Figure 3.5.: controller unit contains (1) the microcontroller evaluation board; (2) Bluetooth
module; (3) battery; (4) charger

interfaces.
In the data transfer module, the measurements are read from the sensors and transmitted to a
remote device for further processing.
For efficient data acquisition from multiple IMUs without adding additional components such
as multiplexers [104], a new cascaded approach is designed, which in contrast to the star-based
networking approach has less wiring complexity. In addition, a power management approach
based on direct memory access (DMA), has further optimized the system’s energy consump-
tion. Before describing the proposed methods, the main hardware modules used in this devel-
opment are explained in the following paragraphs.

Peripheral DMA Controller The SAM4N microcontroller contains a bus matrix that manges
the Peripheral DMA Controller(PDC) in parallel to the CPU. This refers to the communication
between the peripheral devices, e.g. I2C and memory can be operated without CPU interfer-
ence. This module can be configured through the user interface of the peripheral device. This
interface contains sets of pointers and counters for the current and next data transfer. Using
the transmit and receive signal, a peripheral triggers its channel on the PDC, to launch a data
transfer. When data is transferred, the peripheral generates an end-of-transfer interrupt. This
module is used in this work in mono directional receive mode for IMU data read via I2C, and
in mono directional transmit mode for data transfer over Bluetooth via UART.

I2C interface enables serial communication over one clock line and one data line with the
speed of up to 400Kbits/s. One or multiple master devices communicate with slave devices via
this interface. Each message contains START/STOP conditions, the address frame including a
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unique address of a slave device, data frame, read/write and ACK/NACK bits. Most IMUs have
a single factory hard-coded address. It is therefore impossible to connect multiple similar IMUs
to the same bus without additional hardware. This problem is addressed in the next section, and
a solution is proposed.

Auxiliary I2C sensor interface is integrated into most of the MEMS based inertial sensors
in the market [14, 86], to enable the connection with aided sensors e.g. magnetometers or pres-
sure sensors. This interface supports two modes of master and pass-through. The latter is used
for the external system to directly control the access to an external sensors on the auxiliary bus,
directly. The former, which is used in this work, allows the sensor to act as a master and read out
measurements of the external sensor directly without the intervention of an external processor.
After configuration for different modes, this interface follows the same protocol as I2C interface
for data transfer. In this work, the auxiliary bus has been deployed for communicating with a
magnetometer in the same IMU as well as with a cascaded IMU. This connection is elaborated
in the next section.

3.2.2.1. Cascaded approach

To retrieve the readings from multiple IMUs based on a polling approach, the CU should contin-
uously switch between all these sensors. This causes a high CPU load and power consumption.
Furthermore, the switching time leads to a lower output sampling rate and probably to data
loss. To avoid such problems, the auxiliary I2C functionality of IMU was used to support
master-slave transactions. This allows the design of a cascaded sensor-reading approach where
each sensor in the higher level acts as the master and retrieves the data stored in a sensor in the
lower level as the slave. For this approach, sensors are initialized before the main data transfer
starts. During the data transfer, sensor measurements of all levels are taken from the buffers of
the sensors of the highest level.
All sensor data can be called up according to a particular order of reading. This sequence is
adapted to common joint angle estimation algorithms that use kinematic chains and a hierarchi-
cal processing scheme, such as the one presented in Chapter 5. Here, the first measurements
update the base of a limb, e.g. the pelvis in a lower-body setting, followed by the second and
third sensor measurements that update the upper and lower segments of the limb, e.g. the thighs
and lower legs. In addition, this cascaded approach results in much less complicated wiring
than the switching approach.

In this work each IMU can support up to five slaves via the auxiliary I2C bus. In order to
keep the sequence and avoid operation interference, two slaves are defined to read a certain
number of bytes and one slave is defined to write control values. Since the magnetometer is
connected to the sensor via the auxiliary bus, two other slaves are reserved for controlling and
reading from this sensor.

Since the microcontroller provides two separate I2C buses with a two-level cascaded method
on each I2C bus, up to 8 IMUs can be connected. Figure 3.6 displays the first level of the
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Figure 3.6.: Data acquisition using the cascaded approach.

cascaded configuration. The buffers of the sensors in the higher level are configured to filled
with the data provided by the slaves from the sensors in the lower level at the same speed as
their sampling rate.

3.2.2.2. Power management

The data transfer module puts the CPU into sleep mode by means of a Wait For Interrupt func-
tion. The firmware enables I2C data transfer on a DMA channel when a Data Ready interrupt
is received from a master IMU. Therefore, the measurements are transferred from the IMU to
memory while the CPU is switched back to sleep mode and waiting for a Transfer Complete
interrupt. This process is executed sequentially for all available master IMUs.
Once the I2C transfer is complete, the UART data transfer on a DMA channel is activated to
transfer the data from the memory to the external device.
A SysTick timer is used to prevent deadlock situations by checking and restarting the blocked
data transfer processes.

3.2.3. Software

The software for monitoring the strength exercises is implemented on a Macbook in C++ and
on an Android-based tablet in Java and Java native interface (JNI), which is used to develop
the methods of calibration, motion tracking and identification in the Chapters 4, 5, and 6. In
addition, a user interface is developed to select among the available IMUs. This is beneficial
since a user can customize the system for different types of exercises.
For real-time feedback, a stick figure visualization is developed using Open GL ES. Further-
more, an identification and guidance feature is provided for the current and the next phases of
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(a) concentric phase (b) eccentric phase

Figure 3.7.: The stick figure visualization of squat exercise on tablet. Each phase of squat is
detected and user is guided to the next phase

1 IMU
no

DMA

1 IMU
with

DMA

2 IMUs
with

DMA

2 IMUs
with DMA

and
cascaded

Time
[us]

2646 7.77 15.4 7.84

Table 3.1.: Effect of using DMA and cascaded approach on the CPU processing time

the squat exercise. Figure 3.7 shows this application on the tablet.

3.3. Experimental results

In the following, the system evaluation in terms of power consumption, weight, and costs, as
well as measurement quality, is presented.

3.3.1. Power consumption

To evaluate the performance of the proposed data acquisition method in reducing the power
consumption, CPU processing time and power consumption are measured in two experiments
and compared with the direct reading, subsequently referred to as the traditional method. Both
the proposed and the traditional methods are interrupt-driven and use the sleep mode. However,
in the traditional method at each sampling, the IMU measurements are directly read through
I2C and written on the UART interface.

In the first experiment, the processing time, as one of the major factors in increasing the
power consumption is measured by counting the CPU cycles in read/write mode and dividing
those through the clock speed.

The results in Table 3.1 shows that using DMA reduces the CPU load during sampling by
99 percent.
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4 IMUs,
sampling

4 IMUs,
init.

8 IMUs,
sampling

traditional
method [mA]

22.6 13.2 not
supported

proposed
method [mA]

9.5 12.7 9.8

Table 3.2.: Comparison of the CPU current drain

Moreover, with the cascaded approach, one more IMU can be added without increasing the
processing time by eliminating the need for switching between different I2C addresses.
For a more practical evaluation, the second experiment measures the current consumption while
sampling a maximum number of IMUs, which the current system can support without using
extra components, i.e. , 4 IMUs using the traditional and 8 using the proposed method. The
results in Table 3.2 show that using the proposed method reduces the power consumption by 58
percent.
During initialization, both methods have almost comparable power consumption, the value is
slightly less for the proposed method, since it establishes the connection to 4 IMUs on a single
I2C bus, while the traditional method requires two I2C buses.
The result for the sampling of 8 IMUs implies that the use of the proposed methodology to
increase system capacity to support twice the number of IMUs will further optimize power
consumption.
The total power consumption of the system with a 5V power supply was measured 414 mW.

3.3.2. Weight and cost

The weight of the proposed system is compared with two commercially available inertial motion
capturing systems in Table 3.3. Since the commercial systems cover the full-body, the respective
weights have been halved for easier comparison. The table shows that the weight of the IMUs
used in this work is significantly lower than those used in other products.
Moreover, the total cost of the components used, including the controller, eight IMUs, the
required amount of textile cables, and the pants, is less than 200 euros, which can be a promising
premium price for an affordable final product.

3.3.3. Measurement Quality

The IMUs were individually calibrated using the procedures described in Chapter 4. The eval-
uation focuses on the quality of the inertial data (rather than the magnetometers), which provide
the most critical information for motion tracking (Chapter 5).
Figure 3.9 illustrates the calibration results of one IMU by showing the calibrated accelerom-
eter and gyroscope measurements, which were continuously captured under 24 different static
poses and 24 different 90-degree rotations, i.e. four on each side of the calibration cube with
the IMU mounted inside, Figure 3.8.
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XSENS
[153]

Animazoo
[4]

Proposed
system

IMU weight [g] 30 11.2 2
controller
weight [g]

200 45 164

suit
weight(Total)
[g]

965 750 453

Table 3.3.: Weight comparison

Figure 3.8.: Inertial sensor calibration: Calibration cube in different static poses on a leveled
calibration table.

Having applied the estimated calibration parameters, the plots nicely illustrate the absence
of sensor biases, scale errors and crosstalk between the different axes; e.g. during the static
poses, as expected, one accelerometer axis measures around 9.81 m/s2 (i.e. gravity), while the
other axes measure around 0 m/s2. The peaks are also expected since they correspond to the
24 rotations of the cube.

In order to obtain quantitative results, the calibrated measurements of the proposed IMU
were compared with those of two available commercial IMUs: Xsens [153] and Trivisio [142].
For this, 3000 calibrated inertial data samples were captured from each IMU in a static pose.
For the proposed IMU, the temperature conditions were similar to those during the calibration
procedure. For the commercial IMUs, the factory calibration parameters were used, i.e. no
re-calibration was performed. The results in Table 3.4 show acceptable gyroscope biases for the
proposed IMU, which are in the range between the Xsens and the Trivisio.

The average accelerometer vector length also nearly equals gravity for all of the IMUs. Gy-
roscope and accelerometer noise levels are given in terms of the trace of the covariance matrix.
While the accelerometer noise level of the proposed IMU is in the same order of magnitude as
the Trivisio, both are two orders of magnitude higher than the Xsens.

For the gyroscopes, the noise level of the proposed IMU is lower compared to both commer-
cial IMUs (one order of magnitude compared to Trivisio and two orders of magnitude compared
to Xsens). Note that the quality of the gyroscope measurements plays a dominant role in inertial
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Figure 3.9.: Calibration results.

MPU9150 Trivisio XSENS
Gyroscope bias
[rad/s]

0.004 0.0006 0.04

Accelerometer
vector length
mean [m/s2]

9.818 9.819 9.816

Gyroscope
covariance trace

2.4× 10−6 4.1× 10−5 5.55×10−4

Accelerometer
covariance trace

0.001 0.002 0.00001

Table 3.4.: Measurement quality evaluation in terms of noise levels (standard deviation under
static conditions).
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motion estimation.
The above experiment shows that, under static conditions, the measurement quality provided
by the proposed low-cost and light-weight IMU is comparable to well-known commercial sys-
tems. Assessment of its long-term behavior and the measurement quality under dynamic and
varying temperature conditions is presented in the next chapters.

3.4. Conclusion

This chapter presented the design and development of a low-cost and unobtrusive wearable sys-
tem for lower body motion capturing, designed for long-term monitoring and support of users’
daily workout. Low power consumption and user convenience, which are two fundamental
challenges in the development of motion capture systems, are considered in design and devel-
opment aspects.
Energy-efficient systems are necessary for many applications, such as long-term health moni-
toring. In the proposed system, this is achieved by utilizing low-power components and a novel
data acquisition approach, that reduces the CPU load.
The system is designed so that all electronic components can be integrated and/or hidden in a
flexible suit. This makes it more appealing and convenient for the user. Low weight and small
dimensions of the components provide a suitable platform for applications with high dynamics,
such as sports training.
Furthermore, given the small form factor and light weight of the sensors allow for more stable
and precise positioning on the limbs, reducing unwanted motion artifacts.
Future work will focus on further miniaturization of the controller board to increase wearing
comfort. Additionally, the data transmission of this system can be further optimized further by
implementing a real-time and in-situ motion tracking approach on the controller unit. This re-
duces the packet size by transferring only three angles instead of nine measurements per IMU.
In addition to providing the tracking and detection algorithms in a mobile platform, the current
software is customized to select which of the connected IMUs are involved in the monitoring
process. When a user study is conducted in the future, the software’s user interface can be fur-
ther enhanced to provide more personalized options, such as the planning of exercises based on
the evaluation of progress.



4. System Calibration

To use the IMUs to track the body movements, these sensors must be calibrated before they are
attached to the body segments. Therefore, the first two sections of this chapter are dedicated
to the calibration of sensors in the IMU. Since the magnetometer measurements can easily be
influenced, e.g. due to the ferromagnetic materials in the vicinity, this work in Section 4.2
proposes a practical and in-field magnetometer calibration. This approach is evaluated in terms
of magnitude deviation, heading error, plane projection, and repeatability.
Moreover, after mounting, knowledge of the IMU poses relative to the body segments is crucial
to enable accurate pose estimation. This is known as body-IMU calibration and is described
in Section 4.3. The observability analysis of an existing method is presented, and based on
this, new constraints are proposed to improve the autocalibration procedure. This approach is
evaluated using synthetic and real data containing different types of movements.

4.1. Inertial Sensors Calibration

In order to convert the digital outputs of the gyroscopes and accelerometers to physically mean-
ingful measurements of 3D angular velocity (rad/s) and 3D acceleration (m/s2), the sensors
must be calibrated for offsets, scale factors and alignment errors in the three sensitive axes. The
measurements of the gyroscope(~̃ω) and the accelerometer(~̃a), can be formalized as:

~̃ω = CωSω~ω +~bω (4.1a)

~̃a = CaSa~a+~ba, (4.1b)

where ~ω, ~a are the true angular velocity and acceleration, and ~bω, ~ba are the gyroscope and
accelerometer biases. Sω and Sa are the diagonal matrices containing the scale factors of the
three axes of each sensor. Cω and Ca are the rotation matrices representing the misalignment
between the actual and nominal sensitivity axes of the sensors. Here the influence of the linear
acceleration on the angular velocity is assumed to be negligible.

The typical calibration principle is to expose the inertial sensors to a known angular velocity
and linear acceleration and to select the calibration parameters in such a way that the observed
sensor output becomes as probable as possible. However, in order to avoid the need for sophisti-
cated equipment, such as a turntable, a method proposed by Ferraris et al. [35] was used, which
is based on known rotations and local gravity. The procedure requires a series of manual ma-
nipulations of a high-precision cube containing the IMU on a leveled surface (see Figure 3.8).
More precisely, for each of the six sides, the cube is first held stationary and then rotated in steps
of 90 degrees on the respective side. The calibration parameters of both the 3D accelerometer
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and gyroscope are then derived by solving a linear equation system based on the sensor model,
the known poses and orientations, and the raw measurements captured under static poses and
single-axis rotations. The necessary equipment, i.e. a calibration table (33 × 33 cm), which
can be precisely leveled and has an orthogonal edge on one side, as well as a high-precision
aluminum cube (15 × 15 × 15 cm) with a mounting plate (6 × 10 cm) for IMU fixation were
explicitly designed (see Figure 3.8). The calibration procedure is performed once for each sen-
sor before integration into the motion capture suit, and the resulting calibration parameters are
permanently stored.

4.2. Magnetometer Calibration

This work proposes a practical method for in-field magnetometer calibration and alignment to
the coordinate system of an IMU. The procedure is attitude-independent and works without the
need for precise equipment or external heading information. It is based on the assumption of
a homogeneous magnetic field during calibration, i.e. of constant magnitude and inclination of
the Earth’s magnetic field vectors independent of the IMU pose. In order to extract this infor-
mation correctly from the IMU measurements, the manual procedure is divided into two steps
with different data collection approaches that are easy to perform and less error-prone than the
one-step method proposed in [50]. In the first step, partly inspired by the method in [106],
bias, scale factors and, non-orthogonality parameters are estimated using ellipsoid fitting and
a set of magnetometer measurements recorded under motion. After an orthogonal coordinate
system has been defined in the first step, a rotation, which aligns this system with the IMU
coordinate system given by the inertial sensors, is achieved in the second step. This step is
based on the assumption of constant inclinations and uses a set of accelerometer measurements
under different static poses, thus removing errors due to body acceleration. In contrast to the
method in [50], the proposed approach is independent of the location on earth since the mag-
netometer calibration parameters are estimated in the first step purely from the magnetometer
measurements. The presented method provides a reliable parameter estimation, which is con-
firmed by several experiments comparing the results with two calibration methods provided by
commercial IMUs.

4.2.1. Parameters

4.2.1.1. Magnetometer calibration parameters

As shown in [106], to convert the sensor readings, ~̃m, into the true magnetic field, ~m, in the
magnetometer coordinate system, each axis should be corrected for bias, scale factor, and non-
orthogonality, according to the following model:

~m = CmS
−1
m ( ~̃m−~bm), (4.2)

where ~bm defines the bias vector, Sm is a diagonal matrix containing the scale factors, and
Cm is a lower triangular matrix that is used to correct non-orthogonality as suggested in [145].
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4.2.1.2. Misalignment parameters

Equation (4.2) defines an orthogonal magnetometer coordinate system. To relate the calibrated
magnetometer measurements, ~m, to the inertial measurements, namely acceleration, and angu-
lar velocities, the respective coordinate systems must be aligned. Since the IMU frame and
the magnetometer frame are both orthogonal, the alignment consists of a rotation, which can
be parametrized in a minimal way by an axis-angle representation (Appendix C). The resulting
model for converting ~m into an aligned vector, ~maligned, is then given by:

~maligned = Rot(~θ)~m, (4.3)

where ~θ contains the axis-angle parameters of the rotation, and Rot(~θ) denotes their conver-
sion to a rotation matrix (see Appendix C).

4.2.2. Calibration Method

As already mentioned, the calibration method consists of two steps. The first step is to sample
the IMU while manually rotating it in all directions to obtain sufficient coverage of the ellip-
soid. The magnetometer calibration parameters are then calculated from the recorded raw mag-
netometer measurements. In the second step, the IMU is sampled while it is static and posed
in different directions. The misalignment parameters are then estimated using the recorded
magnetometer measurements (calibrated with the results of the first step) and the acceleration
measurements, which provide the gravity under static conditions.

4.2.2.1. The first step (dynamic)

Assuming a homogeneous field such as the Earth’s magnetic field without disturbances, the lo-
cus of the true magnetometer measurements in the sensor frame is on the surface of a sphere
with the center at the origin and the radius equal to the intensity of the local magnetic field. This
sphere is deformed into an ellipsoid as a result of biases, scale factors, and non-orthogonality
[145]. Therefore, the compensation of these effects can be seen as a problem of fitting an ellip-
soid to the raw measurements by minimizing the sum of the squared geometric distances [38],
for which a nonlinear least-squares optimization technique is required. With Equation (4.2), the
minimization problem is defined as:

argminCm,Sm,bm

n∑
i=1

(‖CmSm−1( ~̃mi −~bm)‖ −mref )2, (4.4)

where n is the number of magnetometer measurements. The constant mref is equal to the local
geomagnetic field intensity, which can be selected according to the given location. Here, it is
set to unit length since only the direction of the magnetic vector is important for the application
of motion tracking.
Typically, an iterative nonlinear optimization technique requires a good initial guess. This is
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Figure 4.1.: Illustrates the development of the residuals in relation to the performed iterations
when starting with the same initial guess.

achieved by the linear least-squares approximation proposed in [106], which is based on Sin-
gular Value Decomposition (SVD). Since the experiment has shown that under realistic cal-
ibration conditions the initial guess is easily perturbed by sensor noise, a preliminary study
examined various optimization tools with respect to their sensitivity to such disturbances. Our
final method uses the Levenberg Marquart algorithm (LMA) [83], which proved to be consid-
erably more robust than the Newton method as used in [145] (see Figure 4.1 for the selected
results of the preliminary study).

4.2.2.2. The second step (static)

In order to obtain the misalignment parameters, we used inclination which is defined as the
angle between the Earth’s magnetic field vector and the horizontal plane of the Earth and varies
at different geographical locations [89]. However, this angle can be considered constant for a
local area, where the calibration procedure takes place. Using the fact that the gravity vector, ~g,
is always orthogonal to horizontal plane of the Earth, the following equation is derived:

~gT ~maligned = cos(π/2− α), (4.5)
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where α indicates the local inclination angle. Here, ~g, as obtained from the accelerometers
under static conditions, and ~maligned are assumed to be normalized and specified in the IMU
coordinate frame. Substituting (4.3) in (4.5) results in a nonlinear optimization problem, which
is again solved with LMA:

argmin~θ,α

n∑
i=1

(~gTi Rot(
~θ)~mi − cos(π/2− α))2, (4.6)

where n is the number of measurements, ~mi is the normalized ith calibrated magnetometer
measurement, and ~gi is the normalized ith calibrated gravity measurement.
In order to obtain an initial guess, (4.5) can be reformulated using R := Rot(~θ) and c =
cos(π/2 − α). This results in an equation system, which is linear with respect to R and c and
can be solved for these parameters with SVD: R to the axis-angle representation [128] after
having orthogonalized the matrix using SVD:

~gTi R~mi − c = 0 (i = 1...n) (4.7)

Parameter c provides an initial guess for the inclination, while initial values for ~θ are obtained
by converting R to the axis-angle representation.

4.2.3. Experimental Results

4.2.3.1. Test setup

The proposed calibration algorithm was implemented and tested using measurements from a
commercially available IMU [142], which includes a two axes magnetometer (MS2100) com-
bined with a single axis magnetometer (SEN−Z65) both manufactured by PNI1, and a tri-axes
accelerometer (ADXL345) manufactured by Analog Devices2. The IMU measurements were
sampled at 100 Hz using a USB transceiver. Figure 4.2 illustrates the effects and working prin-
ciples of magnetometer calibration, visualizing the uncalibrated measurements in comparison
to the calibrated ones. Ideally, after calibration, the data points should lie on the surface of a
unit sphere located at the origin of the IMU coordinate system, i.e. the vectors should have
unit length regardless of the IMU pose. In order to quantify the performance of the proposed
calibration procedure, various criteria were defined and evaluated. First, the deviation from unit
length (magnitude deviation) was evaluated on the basis of calibrated data sequences recorded
under arbitrary IMU rotations. Then, the directional accuracy of the calibrated magnetic field
measurements was investigated in terms of the heading error and plane projections based on
known motions. These were performed in an especial test setup, as illustrated in 4.3 and con-
sisted of rotations around the three axes of the cube, the latter being aligned with the IMU
mounted inside. Using the above criteria, the results of the proposed algorithm were compared
with the results of the calibration method provided with the software development kit (SDK)
of the IMU, which corresponds to the aforementioned method of Hu et al. [50], and with the

1https://www.pnicorp.com/
2https://www.analog.com/en/index.html
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Figure 4.2.: Magnetometer measurements before (red) and after (blue) calibration by the pro-
posed method. In order to simplify comparison, the uncalibrated measurements are
scaled to the mean value of the magnitudes. Ideally, the calibrated measurements
should map to a unit sphere.
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Figure 4.3.: A high precision aluminum cube on a turntable made of glass and aluminum with
a flat wooden plate as a levelled base served as test setup for performing known
motions. Here, the Xsens MTi is mounted inside the cube.

calibrated magnetometer measurements of the Xsens MTi, which like established commercial
IMU provided a baseline for the comparison. Prior to recording the evaluation sequences, both
IMUs were calibrated in an outdoor area (in Kaiserslautern, Germany) to ensure a homoge-
neous magnetic field. The calibration of the Xsens MTi was performed based on the instruc-
tions in [153]. The calibration parameters for the Trivisio IMU were determined using both
the method provided in the SDK (Hu et al. ) and the proposed method. Since the proposed
calibration algorithm is based on a manual data acquisition procedure, in addition to the above
accuracy evaluation, the repeatability of the method was assessed in terms of the variation of
bias parameters when performing the calibration tasks several times.

4.2.3.2. Results

Before discussing the results of the various accuracy evaluations as described before, it is worth-
while to consider the advantage of the proposed algorithm over Hu et al., based on a dataset,
which was recorded at a location near the equator. As mentioned before, when being based on
inclination information, the scale factor estimation deteriorates significantly as the inclination
angle approaches zero degrees. The effect is visible in Figure 4.4, where the measurements cal-
ibrated with Hu et al. (purple) deviate from the unit sphere, while the measurements calibrated
with the proposed method are well aligned. This result demonstrates the independence of the
proposed method from its location on Earth and a clear superiority over Hu et al. The reason is
that in our method biases, scale factors and non-orthogonality parameters are obtained purely
from magnetometer measurements based on magnitude information, whereas inclination is only
used for the calibration of misalignment.



52 4. System Calibration

m
a

g
Z

-2

2

-1

21

0

mag
Y

1

mag
X

1

0
0

2

-1 -1

our method

Hu method

Unit sphere

Figure 4.4.: Magnetometer measurements calibrated with our method (blue) and the method of
Hu et al. (purple). The dataset was sampled in a location close to the equator.

1. Magnitude deviation After calibration, the measured magnetic field vectors should
have a unit length independent of the IMU pose. The deviation in magnitude from unit length
has, therefore, been defined as a measure for accuracy. Figure 4.5 shows the results on a data
sequence of 5000 samples, while the IMUs were rotated around different axes. The mean
magnitude of our method is 0.99, that of Xsens is 0.98 and that of Hu et al. is 1.11. Hence, our
method provides comparable results to Xsens and surpasses Hu et al. Another useful conclusion
that can be drawn from such an experiment is the expected level of magnitude variation, which
can be helpful to distinguish valid magnetometer measurements from disturbed outliers in real-
time orientation estimation.

2. Heading error As mentioned before, heading errors were determined using the test setup
of Figure 4.3. After mounting the IMU in the aluminum cube, heading changes of 90 degrees
were performed in three different attitudes. Given these known poses, the initial magnetometer
vector was rotated accordingly and then compared with the measured vectors. The test con-
ditions were the same for both IMUs and for each pose, the first 100 measurements sampled
under static conditions were used. Since it is important to track the heading change in most
orientation tracking applications, this test evaluates the change of heading without the need for
local heading values as reference. The results are visualized in Figure 4.6. The angular errors in
terms of mean and standard deviation (SD) were calculated for each of the three methods. The
mean error for our method is 1.6◦, which is low in comparison with 2.07◦ for Xsens and 1.92◦

for Hu. The SDs were 0.74◦, 0.79◦, and 0.9◦ respectively. This evaluation shows that the head-
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Figure 4.5.: Magnitudes of the magnetic field vectors measured under a wide range of rotations
and calibrated with the three methods.

ing angle changes are reliable even when the IMU is tilted ±90 degrees in different attitudes
because the magnetometer measurements with our method are well-calibrated and aligned with
the frame of the IMU.

3. Plane projections As a last accuracy test, the IMUs were rotated around the x-, y-, and
z-axes and the projections of the calibrated measurements on the three coordinate planes (yz,
xz, xy) were examined. The results are shown in Figure 4.7. Ideally, the projected measure-
ments should form a circle with eccentricity zero. Therefore, the error is calculated based on the
eccentricity of the ellipses, which are fitted to each set of projected data. For the three data-sets
the eccentricity [around x, around y, around z], calibrated according to our method, is equal
to [0.07,0.07,0.07], for Hu equal to [0.16,0.11,0.16], and for Xsens equal to [0.17,0.08,0.14].
Hence, our method provides the most consistent results. This error obviously increases if or-
thogonality and alignment are not taken into account in the calibration procedure. Since the
rotations have been performed on the planes of the aluminum cube, which are assumed to be
aligned with the IMU coordinate frame, the result of the projections is not close to the circle, if
the axes of the magnetometer are not well-aligned.

4. Repeatability To demonstrate the repeatability of our method, we repeated the manual
data acquisition procedure and calibration ten times. The percentage of the standard deviation
of the biases for the three axes with respect to the range of measurements in these tests was cal-
culated with [0.07, 0.036, 0.35] percent. This shows that variations in the manual data capturing
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Figure 4.6.: Heading errors resulting from the three calibration methods.
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Figure 4.7.: Projection of the calibrated magnetometer measurements on the different coordi-
nate planes using the three calibration methods.
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process lead to repeatable calibration parameters. It should be mentioned that in all the mea-
surements for this experiment, almost the entire ellipsoid surface, the locus of magnetometer
measurements, was covered with 3, 000 samples, which proved to be a suitable number of sam-
ples to obtain consistent results. An assessment of how the coverage of measurements affects
the number of iterations is presented in [145].

4.3. Body-IMU Calibration

At the beginning of this section, the problem of body-IMU calibration is formulated and de-
scribed. Section 4.3.2 provides a preliminary observability analysis of the method, which is
presented in [123]. An additional correction to this method based on [124] is described in
Section 4.3.3.

Based on the observability analysis, a new calibration approach is presented in Section 4.3.4
which, in contrast to Seel, considers three linked segments with IMUs (pelvis, upper leg, lower
leg) and two joints (hip, knee), respectively, in one estimation problem. This makes it possible
to benefit from an additional constraint, which is shown in experiments to provide more robust
and accurate results under suboptimal movement conditions (see Section 4.3.9).

4.3.1. Problem formulation

The problem of IMU position estimation can be defined as follows (see Figure 4.8) [124]:
Suppose two IMUs, A and B, are mounted on two segments connected via a joint m. Us-
ing measurement sequences from A and B, the goal is to determine the two IMUs’ positions,
lmS, S ∈ {A,B}, relative to the joint m. More precisely, lmS refers to the vector from the joint
center to the IMU center, specified in the local coordinate frame of the IMU. Consider, for
instance, the case where m is the knee joint. Then, IMU A is placed on the upper leg segment,
IMU B is placed on the lower leg segment, and the goal is to derive the two vectors from the
knee joint center to the IMUs in their respective coordinate frames.

For the above problem, an implicit, stochastic measurement model for the timestamp i can
be formulated as:

0 = h(xm, zmi) + emi, (4.8a)

where

zmi = [aAi, aBi, ωAi, ωBi, αAi, αBi]
T (4.8b)

xm = [lmA, lmB]T . (4.8c)

Here, zmi refers to the measurement vector at timestamp i ∈ 1 . . . k. This measurement vector
includes 3D acceleration, aSi, angular velocity, ωSi, and angular acceleration, αSi, of both
IMUs, S = {A,B}. Note that αSi is assumed to be derived from ωSi, e.g. via a five-point
stencil [81] or estimated together with orientation and angular velocity in an EKF, which is
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Figure 4.8.: Illustration of the IMU position estimation problem. IMUs A and B are mounted
on the adjacent segments of the joint m.

described in detail in Chapter 5. The quantity xm refers to the parameter vector comprising the
IMU positions. Finally, emi ∼ N(0,Σ) is assumed to be an additive Gaussian measurement
noise.

For a given Equation (4.8), a point estimate of xm can be obtained by maximizing the maxi-
mum likelihood function:

max
x

∏
i=1...k

P (zmi|xm). (4.9)

Using the logarithm formulation and then eliminating all constant terms from the optimization,
this results in a weighted least-squares problem, which can be solved with standard techniques:

min
x

∑
i=1...k

||emi||2Σ. (4.10)

Considering a spheroidal joint, Seel et al. introduces the following deterministic measurement
model for estimating the IMU positions [123]:

emi = ‖aAi − ΓAi‖ − ‖aBi − ΓBi‖, (4.11a)

where

ΓSi = ωSi × (ωSi × lmS) + αSi × lmS, (4.11b)

and emi denotes the residual to be minimized. This model can be directly used in (4.10), even
if the latter is reduced to a least-squares formulation due to its deterministic nature.
The following section presents a preliminary observability analysis of the optimization problem
(4.10) in combination with the model (4.11), in which we identify major failure cases.



58 4. System Calibration

4.3.2. Observability analysis

The observability of the general optimization problem in (4.10) can be evaluated by computing
the FIM, which can be defined in our setting as derived in Section 2.3.3.2:

FIM = Jh
TΣ−1Jh. (4.12)

Here, Jh denotes the Jacobian of the measurement model (4.8) in relation to the parameter
vector xm:

Jh =


∂em1

∂lmA

∂em1

∂lmB...
...

∂emk

∂lmA

∂emk

∂lmB

 . (4.13)

If Jh has the full column rank, then FIM has the full rank [148], which indicates observability.

Using the measurement model (4.11), the partial derivatives in (4.13) for the timestamp i:

∂emi
∂lmS

= − a
′
Si
T

‖a′Si‖
([ωSi]×[ωSi]× + [αSi]×), S ∈ {A,B}, (4.14)

where
a′Ai = aAi − ΓAi, a

′
Bi = −(aBi − ΓBi).

Fo simplicity, the timestamp subscript is omitted here, and the following notations are intro-
duced:

[ωSi]×[ωSi]× := WS =−(ωSz
2 + ωSy

2) ωSxωSy ωSxωSz
ωSxωSy −(ωSz

2 + ωSx
2) ωSzωSy

ωSxωSz ωSzωSy −(ωSy
2 + ωSx

2)

 (4.15a)

− a′Si
T

‖a′Si‖
:= [âSx, âSy, âSz]

T . (4.15b)

By substituting Equation (4.15) into (4.14), we obtain:

∂emi
∂lmS

= [CA1, CA2, CA3, CB1, CB2, CB3], (4.16)

where

CS1 = âSxWS11 + âSy(WS12 + αSz) + âSz(WS13 − αSy) (4.17a)
CS2 = âSx(WS21 − αSz) + âSyWS22 + âSz(WS23 + αSx) (4.17b)
CS3 = âSx(WS31 + αy) + âSy(WS32 − αx) + âSz(WS33) (4.17c)



4.3. Body-IMU Calibration 59

with

S ∈ {A,B}

and WSpq, p, q ∈ {1, 2, 3} refers to the components of WS .
Now, to analyze the observability of (4.10), one can examine the situations in which the com-

ponents in (4.16) are dependent. Considering each IMU (the respective blocks of Jh) separately,
two cases leading to rank deficiency are:

1. if there is no rotation in at least two DOFs. For instance, assume ωSx = ωSy = 0 for
a sequence of measurements, and consequently αSx = αSy = 0, resulting in CS3 = 0.
Then, the third column in the respective block and in the (measurement) rows of Jh is
zero, which reduces the rank. This is the case with the knee joint, since the dominant
rotation is flexion/extension, i.e. only in one DOF.

2. When rotation appears with the same angular velocity in three DOFs for a sequence
of measurements. In this situation, ωSx = ωSy = ωSz is in (4.17), which leads to in
αSx = αSy = αSz. By substituting these equalities, the columns in (4.16) are related by
CS1 + CS2 + CS3 = 0.

3. In addition, when considering both IMUs, from (4.16), another case leading to rank de-
ficiency is, when two IMUs rotate with the same angular velocities in all DOFs for a
sequence of measurements.

In the case of the hip joint, it is indeed difficult to perform movements with sufficient but
different angular velocities in all the DOFs of the pelvis, due to the limited movements of
the pelvis. This was explained in detail in Section 2.2. In addition, as discussed in [17], the
pelvis rotations are in-phase with the upper leg swings during the relatively high velocities. The
similar movements are possible in the calibration phase, as it was visible in our experiments.
It is therefore difficult to avoid situations (2) and (3). Note that the movements on the two
segments related to a joint should be simultaneous since, otherwise, situation (1) occurs.

4.3.3. Seel et al. method with correction using joint axes

As indicated in Section 4.3.1, Seel et al. propose a correction of the estimated positions of
two IMUs B and C in the degenerate case (1) of a hinge joint n (see Figure 4.9) [124]. In
this case, every point on the hinge joint axis rn is a solution of (4.11). The correction of the
estimated vectors, lnS, S ∈ {B,C} corresponds to a shift of the joint center, n, on the known
joint rotation axes, rnS, S ∈ B,C, as represented in the coordinate frames of both IMUs. The
shift computation is based on the assumption that the true joint center is the point on the joint
axis that is closest to both IMUs. This can be formalized as:

SenCoR =
1

2
(rTnB · lnB + rTnC · lnC)rnS, S ∈ {B,C}, (4.18)

where SenCoR denotes the shift of the joint center of rotation (COR) represented in the local
coordinate frame of S. The left superscript indicates the latter. Moreover, rnS, S ∈ B,C are
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assumed to be known by calibration [124]. The corrected IMU positions are then:

l′nB = lnB − BenCoR, l
′
nC = lnC − CenCoR. (4.19)

The above correction method was included in the experimental evaluation in Section 4.3.9.

4.3.4. Proposed method

The previous section describes different cases of movements, which can lead to inaccurate
results, when applying the IMU position calibration method of [124] to the hip and knee joint.
Therefore, this section proposes a novel method, which improves upon the existing one through
the following extensions:
The estimation of the positions x = [xm, xn]T of the three IMUs S ∈ {A,B,C} (on the pelvis,
upper leg, lower leg) with respect to the two joints m,n (hip, knee) (see Figure 4.9), from the
IMU measurements z = [zm, zn]T is modeled jointly in one optimization problem analogous
to Equation (4.10), but with a new measurement model, which is introduced in the following.
S = {A,B,C}, z = {zm, zn}, and x = {xm, xn}, which are estimated with an estimator
similar to Equation (4.10) reformulated in Equation (4.20).

x̂LSE = arg minx(ei
TΣz

−1ei), (4.20)

in which

ei =

 emieni
emni

 , Σz =

[
Σzm 0

0 Σzn

]
The components in ei will be explained in Sections 4.3.6 and 4.3.7. Although the contribution
here focuses on IMU position calibration, since the joint rotation axes and a preliminary es-
timate of joint angles are critical for the proposed algorithm here, as well as in the following
chapter, the next section describes a method for estimating such parameters.

4.3.5. Joint Rotation Axis and Angle Estimation

Considering a hinge joint such as n (see Figure 4.9), the measurements of gyroscopes mounted
on the two adjacent segments provide useful information to identify the joint axis ~rn. Since the
rotation is limited to only one direction, i.e. the joint axis, any difference between the angular
velocities of the two segments in the plane perpendicular to the rotation contrary to this limited
degree of freedom. It is also obvious that the difference between the angular velocities of the
segments in the direction of the joint axis is the joint angular velocity. These facts are defined
in the Equations (4.21) and (4.22) for each timestamp i during the rotation.

‖~ωBi × B~rn‖ − ‖~ωCi × C~rn‖ = 0 (4.21)

θ̇n = ~ωBi · B~rn − ~ωCi · C~rn (4.22)
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Figure 4.9.: Illustration of the IMU position estimation problem specifically addressing the
lower body. The spheroidal joint n refers to the hip (three rotation axes: rmx, rmy,
and rmz), and the hinge joint n refers to the knee (one rotation axis: rn). The two
joints are linked via the upper leg segment, with a fixed length of lmn. The IMUs
A,B,C are mounted on the segments connected through the hip and knee joints.
They are placed on the pelvis, upper leg, and lower leg, respectively. The quantities
lmA, lmB, lnB, lnC are the IMU position vectors to be estimated. RGA, RGB, RGC

are the orientations of the IMU with respect to the global coordinate frame G.
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Thus, in an optimization problem with Equation (4.21) as a cost function, the joint axis can
be estimated using a set of measurements from two gyroscopes on the segments of a joint.
The change in joint angle is obtained from the integration of (4.22). Though these facts are
explained for the knee joint, the same could be true for hip if, during the Body-IMU calibration,
movements on the joint are limited to only one of flexion/extension, abduction/adduction or
internal/external rotations for the respective DOF.

4.3.6. Proposed measurement model

First, instead of considering only the lengths of the acceleration vectors in Equation (4.11),
the proposed stochastic measurement model takes into account the relative orientations of the
IMUs, leading to:

0 = a′Ai +RABia
′
Bi + emi (4.23a)

0 = a′Ci +RCBia
′
Bi + eni, (4.23b)

where [emi, eni]
T ∼ N(0,Σ) and the relative rotation RY X from X to Y can be obtained as

RY X = RT
GYRGX . Here, RSG, S ∈ {X, Y } is the orientation of IMU S with respect to a fixed

global frame G, which is typically aligned with gravity and magnetic north. The global orienta-
tions are estimated using an EKF (see Chapter 5). However, since the movements required for
the calibration could be defined as specific rotations in each DOF of each joint, an alternative
to calculating the relative rotation RAB at the timestamp i is to apply the method in Section
4.3.5 and the first estimated orientations of the two adjacent segments in one of the following
equations:

RAiB1 = RT
A1Ai

RA1GR
T
B1G

(4.24a)

RA1Bi
= RA1GR

T
B1G

RT
BiB1

, (4.24b)

where RS1Si
= Rot(θ), S ∈ {A,B} and θ is the change in the joint angle, which can be

calculated from the method in Section 4.3.5. The same approach can be used to calculate
the relative rotation RBC . This is a preliminary estimate of joint angle as it exhibits a slow
drift caused by integration of bias inherit in gyroscope measurements. However, the accuracy
is sufficient for the current estimation problem compared to using the global orientations, as
shown in the experimental results, Section 4.3.9.2.

4.3.7. Constraints of three connected segments

The hip and knee are considered together in an optimization problem. This allows the exten-
sion of the measurement models in (4.23) with additional constraints modeling the fact that
these joints, m,n in Figure 4.9, are linked via the upper leg segment lmn. We assume the
flexion/extension joint axes of the hip and knee, rmy and rn, as being approximately coplanar.
Moreover, they intersect with each other due to the natural misalignment of knee joint axis and
the mechanical axis of the lower body, as described in Section 2.2. In Figure 4.10 (upper), the
geometry is illustrated for an ideal coplanar case with intersecting axes, where the latter span
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the plane P1 with the normal vector nP1. Furthermore, lmB and lnB are, by definition, coplanar,
spanning the plane P2 with the normal vector nP2. Assuming that rmy and rn are not parallel,
the normal vectors can be obtained using cross products:

nP1 = rmy × rn (4.25a)
nP2 = lmB × lnB. (4.25b)

As is visible in the figure, in the ideal case, P1 and P2 intersect at a line lP12 := nP1 × nP2,
which is parallel to lmn = lmB − lnB. Moreover, nP1, which is perpendicular to lP12, is also
perpendicular to lmn. These facts can be formalized, which leads to the following constraints:

0 = (lmn × lP12) + emn1 (4.26a)

0 = (nTP1 · lmn) + emn2, (4.26b)

where emn1 and emn1 account for the fact that the assumed coplanarity of rmy, rn, and lmn is
an approximation (see Figure 4.10). In a real setup, For the case that rmy and rn are skew, see
Figure 4.10(lower), we can still define a plane consisting of one of them and a vector parallel
to the other, which is coplanar with the first one. Since rmy and rn are pointing almost in the
same direction, the new plane has a very small angle, with lmn. By an approximation, the same
constraints in Equation (4.26) can be applied.

4.3.8. Observability analysis of proposed method

Note that when combining (4.23) with (4.26), the respective Jacobian for one timestep i is:

Jhi =



∂emi

∂lmA

∂emi

∂lmB
03×3 03×3

03×3 03×3
∂eni

∂lnB

∂eni

∂lnC

03×3
∂emn1i

∂lmB

∂emn1i

∂lnB
03×3

01×3
∂emn2i

∂lmB

∂emn2i

∂lnB
01×3


(4.27a)

where

∂emn1i

∂lmB
= [lP12]T× + lmn × ([lnB]T×nP2), (4.27b)

∂emn1i

∂lnB
= −[lP12]×

T + lmn × ([lmB]T×nP2), , (4.27c)

∂emn2i

∂lmB
= nP1, (4.27d)

∂emn2i

∂lnB
= −nP1 (4.27e)
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(a) Idealized geometry with intersecting joint axes at hip and knee.

(b) Realistic geometry with skew joint axes.

Figure 4.10.: Illustration of the constraints formulated in (4.26): The upper figure shows the
idealized geometry, which is the basis for the constraints. It approximates the
more realistic setup in the lower figure with skew joint axes, leading to the plane
P̂1. The latter can be assumed to have a small angle α with respect to the ideal
plane P1.
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and ∂eni

∂lnS
is computed similarly to (4.14). When considering the second and third block of Jhi,

it can be seen that the rank depends is not only on the angular velocities but also on the relative
position vectors, as well as the joint rotation axes. This results in a more complex expression,
which is difficult to simplify. The rank of the first and last three columns can still be reduced,
as discussed in Section 4.3.2. However, by incorporating the constraint on lmB, both the error
emi and the estimation error of lmA are assumed to be reduced.
Figure 4.11 illustrates the data flow between different components of the proposed method.
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Type 1 Type 2
rad/s [12, 13, 23] [12, 13, 23]

A [0.56, 0.51, 0.13] [3.45, 5.43, 1.67]
B [0.8, 0.53, 2.6] [3.62, 6.05, 7.29]
C [3.18, 1.56, 3.7] [7.89, 10.94, 13.38]

Table 4.1.: The angular velocity variations for the simulated IMU measurements: 12 represents
the variation between the first and the second DOF for each IMU A, B, C. Each
number expresses the mean of squared differences between the simulated angular
velocities for all the timesteps.

4.3.9. Experimental results

4.3.9.1. Synthetic data

Different IMU position calibration methods (Seel et al. and the proposed one) were first evalu-
ated using noisy synthetic measurements simulated at 100Hz for setup, as illustrated in Figure
4.9. To obtain sufficient variations of the input data for the optimization problem, the mea-
surements were downsampled to 10Hz. The simulator output comprises a 3D accelerometer,
gyroscope, and magnetometer measurements as well as the global orientations of each segment
with respect to a fixed reference frame G. These values are calculated based on the inputs to
the simulator, which include joint angles (generated from sine functions with different scales
in each DOF), IMU to body poses, and also measurement noise specifications comparable to
those of the IMUs used in the real data tests listed below.

To evaluate the accuracy and robustness of different methods for different types of move-
ments, two sets of joint angle sequences were simulated, each with 100 randomly generated
IMU to body poses: Type 1 provides low variations among the DOFs of each segment, whereas
the knee joint is modeled with one DOF. This resembles a natural calibration movement. Type 2
provides high variations among the DOFs and additionally models both joints with three DOFs.
Hence, the type 1 set provides more realistic but suboptimal movement conditions, whereas the
type 2 set is expected to work well with both calibration methods. In order to extract the joint
rotation axes required in (4.25), the movements, in which each segment rotates in all possible
DOFs separately, were produced. Further details about the simulated joint trajectories in rela-
tion to the resulting angular velocity variations are given in Table 4.1.

The proposed method and the method of Seel et al. were implemented in Matlab using
lsqnonlin with the LMA. In the following, the behavior of these methods is evaluated through
several experiments.

The effect of introducing only relative IMU orientations, as formalized in Equation (4.23)
without coupling, the two estimation problems are illustrated in Figure 4.12, where the root
mean squared error (RMSE) for the estimated IMU positions is provided for ten different
mounting orientations using type 2 trajectories. This shows already an improvement of the
proposed method concerning accuracy and robustness under optimal movement conditions.
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Figure 4.12.: RMSE for ten different IMU mounting orientations when applying the measure-
ment model defined in (4.23) to type 2 movements.

Figure 4.13 illustrates the RMSE when applying the different calibration methods to the
two different types of movements. Here, the proposed method also includes the constraint
introduced in Section 4.3.7. The results show that higher motion variations during calibration
improve the performance of both algorithms. However, with fewer variations, our proposed
method outperforms the ones of Seel et al. As the correction related to that method which is
described in Section 4.3.3 resulted worse than the original in some cases, especially in the type
2 movements; they both are presented in Figure 4.13.

Moreover, the convergence of both calibration methods was tested using 100 random initial
values. Figure 4.14 presents the results of this test for measurements simulated from one IMU
to body configuration. This shows that the two methods are generally not sensitive to the initial
values. Nevertheless, for type 2 trajectories, both methods converge to similar results, with
less than 1 cm error. However, our proposed method converges faster. For suboptimal type 1
trajectories, the method of Seel et al. converges with a large error of 61 cm, while our proposed
method converges with only 3 cm error.

4.3.9.2. Real data

To evaluate the proposed method on real measurements, a dataset was recorded from 7 subjects,
2 women and 5 men, who each performed 3 trials using a prototype wearable system described
in Chapter 3 and an optical reference system, the NaturalPoint OptiTrack system with 12 Prime
13 cameras, operated with Motive software [95]. The experimental setup is shown in Figure
4.15.
To obtain the IMU poses, each IMU was rigidly connected to a rigid body marker. The IMUs

were interconnected via textile cables. In order to reduce artifacts due to movement of the gar-
ment, the IMU-marker-sets were strapped firmly on the pelvis and one leg. We also used straps
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Figure 4.13.: RMSE for 100 different IMU to body configurations when using the measurement
model defined in (4.23) and the additional constraint in (4.26).

to attach marker clusters on anatomical landmarks around the hip and knee joints, from which
we determined the joint CORs.
In each trial, the subjects performed movements of types A and B. In order to assess the re-
peatability of the process, each subject carried out three trials. Data is captured in both optical
systems and IMUs with a frequency of 50Hz. The IMU measurements were then downsam-
pled to 5Hz to be used for optimization in both calibration methods.
A hand-eye calibration was performed to transform the coordinates of the optical system into
the IMU coordinates. Note that errors due to marker positioning are present, however, similarly
for all the tested methods. The data from type B movements was first used to estimate the axes
of the joints by applying the method described in Section 4.3.5.
The calibration algorithms were applied to both types of data. The the process for each one is
described below:

A. Calibration with random movements in all directions
The variations of the resulting angular velocity for the random movements in all the trials are
presented in Tables 4.2, 4.3, and 4.4, and show that the real data correspond to simulated type
1 movements for IMU A, which verifies the simulation of suboptimal movements of pelvis.
For IMUs B and C, however, the variations are higher and thus more similar to type 2. These
variations and their relation to the observability conditions are analysed in detail in Section
4.3.9.4.
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(b) Type 2 trajectory

Figure 4.14.: Convergence test with 100 random initial values for the IMU position. In
this test the true value of lmA is [0.05, 0.09, 0.03] and the true value of lmB is
[−0.17, 0.004, 0.03].
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Figure 4.15.: Test setup. The red arrows show three IMUs which are mounted on 1.pelvis (not
visible), 2.upper leg and 3.lower leg
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The global IMU orientations required in Equation (4.23) have been calculated using the
method described in Section 5.1.2. The estimated IMU position vectors were then compared
with the reference vectors calculated from the positions of the optical markers. Figure 4.16
illustrates the overall RMSE in all the four segments for all trials when applying the different
calibration methods to the real measurements. It shows that the proposed method provides more
accurate or comparable results in 80% of the trials, while a slightly worse performance can be
observed in four of the trials. The average error over all trials is 16.9 ± 0.8cm (mean± SD)
for the proposed method, which is lower than that of the Seel et al. method with an error of
18.13± 0.7cm.
A more detailed evaluation can be made on the basis of the error in relation to each segment.
This is shown in Tables 4.5 and 4.6. It can be observed that the errors of both methods in seg-
ments lmA and lmB are higher than the ones in lnB and lnC , as the movements of these segments
around the hip joint are more limited than the ones around the knee. This was theoretically
proven in the Observability analysis Section 4.3.2, conditions 2 and 3, which refer to the angu-
lar velocity variation (see Table 4.1). Nevertheless, due to additional constraints, the proposed
method performs better; the average error over all the trials for lmA and lmB in the Seel et al.
method are respectively 17.1 ± 1.7 and 26.0 ± 1.6cm, while these errors are 15.4 ± 1.4 and
24.5± 1.9cm, in the proposed method.
On the other hand, the errors in Seel et al. method related to knee adjacent segments lnB and
lnC are 12.6± 1.4, 11.5± 1.5cm, and in the proposed method, 10.7± 1.7, 12.1± 1.5cm, which
are much better than those for the adjacent segments of the hip.
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B. Calibration with separate movements on each DOF
To estimate the relative orientations of the segments here, the method in Section 4.3.5 is used.
Figure 4.17 illustrates the overall RMSE in all the four segments for all trials, showing that the
proposed method gives more accurate results with an average error of 15.1±0.6cm. The aver-
age error for the segment lmB is 18.7±2.0cm, which is 6cm less than in the first experiment.
This error for other segments differs only by about 1cm when comparing the experiments with
type A and type B movements. The detailed result is presented for the Seel et al. method in
Table 4.7 and the proposed method in Table 4.8.

The results of the above experiments show that the proposed method performs better in ex-
periments with type B movement, while method proposed by Seel et al. performs worse than
with type A. This proves experimentally the first condition of observability, which is discussed
in Section 4.3.2. Moreover, during the random movements experiment, the subjects have per-
formed fast and hardly controlled movements to excite all the segments simultaneously. This
led to a high deviation of accelerometer measurements from gravity (see Figure 4.18). In the
orientation estimation filters (see Section 5.1.2), these measurements are usually considered as
outliers, and the estimated orientation in the presence of such measurements is prone to error.
This results in a higher error in the proposed method when such measurements are used as in-
put. However, this is not the problem for the proposed relative orientation estimation method in
Section 4.3.6 since the accelerometer measurements are not necessary. In addition, because the
subjects concentrate on only one DOF, they perform more controlled movements. Therefore,
the assumption of the hinge joint type in Section 4.3.6 is relatively accurate.
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Figure 4.16.: Results on real measurements from random movements: RMSE of the Body-
IMU calibration using Seel et al. and the proposed method, with respect to optical
tracker.
In the diagram test number of all the trials are ordered from 1 to 21 which means
the first 3 are related to the trials performed by subject 1, the second 3 are related
to subject 2, and so on
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Figure 4.17.: Results on real measurements from the movements on each DOF separately:
RMSE of the body-IMU calibration using Seel et al. and the proposed method,
with respect to optical tracker.
In the diagram test number of all the trials are ordered from 1 to 21 which means
the first 3 are related to the trials performed by subject 1, the second 3 are related
to subject 2, and so on.
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Figure 4.18.: Histogram of the accelerometer measurements which have the vector norm devi-
ation higher than 2.5m/s2 in comparison to gravity vector. The average capture
time duration was approximately 10 seconds which equals to 500 samples in each
trial.
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4.3.9.3. Repeatability

Repeatability was evaluated by considering three repetitions of calibration movements for each
subject and the resulting SD as shown in Tables 4.5 to 4.8. The average SD over all subjects and
for movements of types A and B are 2.9cm and 3.1cm, respectively, when using the proposed
method. These values, when using the Seel et al. method, are 3.27cm and 3.38cm for type A
and B movements, respectively. This shows slightly better repeatability of the proposed method.

4.3.9.4. Evaluation of observability conditions over experimental trials

Figure 4.19 represents the percentage of the measurements captured during each trial with ran-
dom movements having the observability conditions 1, 2, or 3 or all together. The criteria are
determined on the basis of the measured angular velocity and a threshold value of 0.5 radians.
The threshold is chosen relatively low so that the average number of limited movements of the
segments around the hip can be considered useful measurements. Due to the noise inherited in
the sensor data, it is difficult to determine exactly what percentage of the data could contribute
to a better estimation of IMU positions under such conditions. Nevertheless, a rough evaluation
is still possible. Here, this evaluation is carried out under the assumption of an upper threshold
of 10% for the worst data condition and a lower threshold of 20% for the best data condition.
Taking into account the Figure 4.16 and the result of the Seel et al. method, it can be observed
that the trials 1-5, 11, 14-16, which contain less than 10 percent of data with all the criteria,
resulted in a relatively high error(> 17cm), while trials 6 and 9 contained more than 20 percent
of data where all criteria led to relatively small errors(< 16cm). There are, however, two ex-
ceptions: trial 18 with a higher percentage of the proper data yielded the worst error, and trial 7
with not a high percentage of proper data yielded a better error similar to trials 6 and 9. Overall,
this evaluation could be used to establish a primary method for verifying the data quality for
body-IMU calibration, either during or after measurement acquisition. For this evaluation, the
result of the Seel et al. method is used because according to the previous section, it is more sen-
sitive to the input data. However, such a quality verification could also improve the optimization
problem in the proposed method, when using the measurements of random movements.

4.4. Conclusion

This chapter presented the calibration process required for a suit to track the lower body move-
ments.
The beginning is the IMU calibration, which includes two separate processes of inertial and
magnetic sensors calibration. For the latter, a complete magnetometer calibration method was
presented and evaluated. The method requires no any external equipment or precise information
about the local magnetic field and provides an in-field and practical calibration procedure for
end-users to be applied after installation. The proposed method obtains biases, scale factors,
and non-orthogonality parameters in solving a geometric ellipsoid fitting problem, using only
the fact that the magnitude of the true Earth magnetic field vector, measured in an orthogonal
coordinate, is always constant. This leads to the optimal estimate of the calibration parameters.
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Figure 4.19.: The percentage of measurements with observability criteria. The criteria were
detected based on the measured angular velocity and threshold of 0.5 radian.

During the design process, special attention was paid to choose an optimization tool, which is
insensitive to a perturbed initial guess, which can be the result of applying suboptimal ellipsoid
fitting on a set of noisy data.
For a complete magnetometer calibration procedure, so that this sensor can be used with the
inertial sensors in an IMU, an alignment procedure has been proposed, which is based on the
fact that in a homogeneous field, the inclination is always constant. Hence, there is no need for
external heading information. The calibration parameters obtained were evaluated in different
test scenarios demonstrating in most cases, higher precision in comparison with the calibration
method included in the SDKs of the two available commercial IMUs. Additionally, the re-
peatability of the proposed method was investigated in terms of the variation in the estimated
bias parameters, when performing multiple calibrations. The results indicate that in a homoge-
neous magnetic field, different ways of data capturing lead to the same bias calibration results.
These evaluations also provide indications for online filtering and outlier rejection of the mag-
netometer measurements in a motion tracking scenario, which is the subject of the next chapter.

Furthermore, this chapter presents a novel and practical IMU to body position autocalibration
method, specifically developed for the lower body. In this work, first, a theoretical analysis of an
existing position calibration method is performed, showing its limited applicability for the hip
and knee joints. Based on this, a method is proposed to simultaneously estimate the positions
of three IMUs (mounted on the pelvis, upper leg, lower leg) relative to these joints. Finally, an
experimental evaluation is performed based on simulated and real data. The presented method
shows a significant improvement in terms of accuracy and robustness compared to a previous



82 4. System Calibration

method, especially when it comes to suboptimal (low variation) movements during calibration.
This was also confirmed by extensive tests with real data and different types of movements.

It is also shown that for random movements, the global IMU orientations are erroneous due
to the presence of outliers, especially from accelerometer measurements. Therefore, a simple
method of orientation tracking is proposed, which can be realized using only gyroscope mea-
surements, while the subject performs movements separately around each DOF. This shows
an overall improvement, specifically for the leg segments, which cannot provide enough useful
movements for calibration.

In addition, a primary method is proposed to verify the quality of the recorded measurements
for body-IMU calibration. This is based on the observability conditions and the result of the
Seel et al. method in the experiments with type B movements, as this method is more sensitive
to such conditions. This approach can give a rough indication during data acquisition whether
the variation of movements is sufficient for an acceptable resulted accuracy when only random
movements are possible. The approach is to be examined more closely in the future with more
test subjects.



5. Lower Body Motion Tracking

In order to provide biomechanical details of the lower body movements, an exercise monitoring
application shall estimate hip and knee joint angles, as well as the position of the leg’s segments.
Here, these parameters are estimated with respect to an IMU mounted on a reference point on
the body, i.e. pelvis. Therefore, tracking the orientation of an IMU mounted on the pelvis, here
referred to as pelvis orientation, is critical during the exercise. This, as well, helps to identify
the correct exercise (see Chapter 6).
This chapter explains two different approaches, which are used for real-time estimation of lower
body motion during the strength exercise.
The first is orientation estimation, which is used to estimate both pelvis orientation and the
global IMU orientations in the proposed Body-IMU calibration algorithm of Chapter 4. This
approach is explained and evaluated in Section 5.1.
The second is the leg pose estimation, which provides knee and hip joint angles, and the position
of the IMUs mounted on the leg’s segments, here referred to as leg’s segment position. Theses
parameters are all estimated with respect to the coordinate frame of IMU mounted on the pelvis.
In this approach, body-IMU calibration parameters, along with the kinematic constraints at
joints, are incorporated in tracking the movements of the leg. Although this algorithm was
proposed for leg movements, any other combination of two joints with similar characteristics,
i.e. a socket-ball connected to a hinge joint, can be tracked using this method. The leg pose
estimation approach and its evaluation for two strength exercises are described in Section 5.2.

5.1. Orientation estimation

The orientation of IMU is estimated as a quaternion (see Appendix C), which defines a rotation
from a global frameG to the sensors’ fixed frame S. As shown in Figure 5.1, the global frame is
defined relative to the earth magnetic field and gravity reference vectors, which can be measured
using magnetometer and accelerometer.

In this work, two approaches are implemented and compared. The first estimator is based
on a common sensor fusion approach in the literature, where the zero angular acceleration is
assumed [46, 74]. The second estimator contains an extended state vector, which provides the
estimation of angular acceleration and magnetic field bias.

5.1.1. Common Estimator

In this approach, the orientation and angular velocities, ~x = [~qSG,
S~ωGS] are estimated as

states of an EKF. The following explains the process model and measurement models of the
filter.

83
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Figure 5.1.: The global coordinate system with respect to reference vectors i.e. gravity, ~gG, mea-
sured by accelerometer and earth magnetic field, ~mG, measured by magnetometer.

Process model: The time-continuous process model is the following:

~̇qSG = Ω(−S~ωGS)~qSG (5.1a)
S ~̇ωGS = ~wω, (5.1b)

where the angular velocity is modeled by a random-walk process with a zero-mean white Gaus-
sian noise ~wω, with the covariance ofQω. The discrete form of the above formulation is obtained
by integration in the duration from tk−1 to tk i.e. ∆t. Equation (5.2) shows this formulation,
which is used in the EKF prediction stage.

~qk = (I4x4cos(|~uk−1|/2) + Ω(~ωk−1)
sin(|~uk−1|/2)

|~uk−1|/2
)~qk−1 (5.2a)

~ωk = ~ωk−1, (5.2b)

where the suffices indicating coordinates are removed for brevity. uk−1 is the integration of
angular velocity over ∆t. This can be approximated by ωk−1∆t assuming the angular velocity
is constant during this time.

Accelerometer measurement model:

S~̃a = −RSG~gG + ~va (5.3)

Note that in this model, the body acceleration is considered in the measurement noise.

Gyroscope measurement model:

S ~̃ω =S ~ωGS + ~vg (5.4)

Magnetometer measurement model:
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For magnetometer there are many different approaches are proposed in the literature to deal
with the error due to magnetic disturbances. In this work the focus is on estimating such errors
in the process model. Therefore instead of a comparative study of different measurement mod-
els only one model in 5.5 is used for both Estimator 1 and 2.

S ~̃m = RSG
G ~mref + ~vm (5.5)

In the above models ~va,~vg,~vm, are the zero-mean Gaussian white noise vectors with the co-
variances of Ra, Rg, Rm, defined respectively for accelerometer, gyroscope, and magnetometer
measurements.

5.1.1.1. Outlier rejection

The outliers of accelerometer and magnetometer are detected using the thresholds on the norm
of these vectors, accth,magth. In the case of outliers, the related measurement noise covariances
are increased so that the correction of the measured outlier does not corrupt the estimation.

5.1.2. Extended Estimator

In the common estimator, the angular acceleration was assumed to be zero, which is not the case
during intensive movements. Therefore, in the extended estimator, the angular acceleration is
realized using a random walk model:

~αk = ~̇ωk−1 (5.6a)
~ωk = ~αk−1∆t+ ~ωk−1 (5.6b)

The integration of quaternion with non zero angular acceleration is explained in Appendix C.

Additionally, the state vector is extended to include the magnetic field disturbances as an
additive bias. This is modeled as a first-order GM process.

˙bm = −µbm + wm, (5.7)

where µ is the inverse of time constant of the process.
In every filter time update, this bias, i.e. magnetic disturbance, is predicted using the following
equation:

bmk
= bmk−1

exp(−µ∆t) (5.8)

Before each magnetometer measurement correction, the estimated bias is subtracted from the
measurements.

5.1.3. Experimental results

With the setup, similar to what is described in Section 4.3.9.2 and shown in Figure 4.15, the
orientation of IMU mounted on the pelvis is captured by both smart suit and optical system.
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Parameter Value

Ra 10−3I3×3

Rg 10−4I3×3

Rg 10−3I3×3

Qbm 10−4I3×3

Qω 5× 10−5I3×3

µ 20
accth 0.25× 9.8m/s2

magth 0.25

Table 5.1.: Values of the parameters which are used in the EKFs for orientation estimation

This experiment was carried out with 7 subjects each performing the squat exercise.
Both orientation estimators are implemented in Matlab. The initial orientations are estimated
using the first accelerometer and magnetometer measurements and applying TRIAD algorithm
[129]. In order not to be dependent on the local magnetic field information, mref in Equation
5.5 is estimated using a moving average filtering of the magnetometer measurements.
Here the covariance of the related outlier is multiplied by 103. Table 5.1 presents the value of
other parameters, which are required for both filters.
Figure 5.2 shows the estimated angular acceleration using the extended estimator and angular
acceleration computed from the numerical differentiation of angular velocity. The result indi-
cates that the estimated angular acceleration has less noise in comparison to the numerically
computed version.
Figure 5.3 shows the comparison of the measured magnetic field versus the corrected magnetic
field from the experiments with different subjects. Primarily, it illustrates the deviation of the
vector norm from the mean for measured and corrected, which here is considered to be the ref-
erence magnetic field.

The orientations from IMU and optical system, are estimated as quaternions and for better
understanding are converted to Euler angles. The error of both estimators is calculated with
respect to optical results and illustrated in Figure 5.4. This figure shows that the extended
estimator has an overall better result in comparison to the common version. The overall error
for all the subjects with the new estimator is 7.4 degrees, while this error with the common
estimator is 10.1 degrees.
The comparison of error from the extended estimator with an optical tracker is shown in Figure
5.5 for a representative experiment.



5.1. Orientation estimation 87

0 200 400 600 800
-40

-20

0

20

[r
a
d
/s

2
]

Numerical 
X

Estimated 
X

0 200 400 600 800
-1

0

1

2

[r
a
d
/s

]

Measured 
X

Estimated 
X

0 200 400 600 800
-10

0

10

[r
a
d
/s

2
]

Numerical 
Y

Estimated 
Y

0 200 400 600 800
-1

0

1

[r
a
d
/s

]

Measured 
Y

Estimated 
Y

0 200 400 600 800
-10

0

10

[r
a
d
/s

2
]

Numerical 
Z

Estimated 
Z

0 200 400 600 800
-1

0

1

[r
a
d
/s

]

Measured 
Z

Estimated 
Z

Figure 5.2.: The estimate versus numerically computed angular acceleration from a representa-
tive experiment where a subject performing the squat exercise.
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Figure 5.4.: The comparison of error from the common estimator with the extended estimator
from result of the tests with 7 subjects performing the squat exercise.
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sentative experiment where a subject performing the squat exercise.
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5.2. Pose Estimation

In this work, an EKF is designed, which deduces leg pose from the IMU measurements, the
estimated joint axes, and IMU positions. The two latter are obtained from the Body-IMU cali-
bration method in Chapter 4.
For this estimation, the assumptions are (c.f. Figure 5.6):
(1) a simple biomechanical model for leg, with rigid segments connected via frictionless joints:
hip(m) with 3 DOF, knee(n) with one DOF
(2) at least one IMU sitting on each rigid segment that should be tracked, A on the pelvis, B on
the upper leg, C on the lower leg
(3) forward kinematics equations
(4) constant acceleration in the integration duration.
The state vector is presented in Equation (5.9), which includes the velocities, ~v, and positions,
~p, of the upper and lower segments in addition to the hip rotation quaternion and the knee joint
angle, all of which are resolved in the pelvis IMU coordinate frame:

~x = [A~vB
A~vC

A~pB
A~pC ~qhip ~θknee] (5.9)

5.2.1. Kinematic Process Model

The kinematic process model is defined in Equation (5.10) (tilde superscripts indicate the mea-
surements, and the vector arrows are removed for simplicity).

AvBk
=A vBk−1

+A ãBk−1
∆t (5.10a)

AvCk
=A vCk−1

+A ãCk−1
∆t (5.10b)

ApBk
=A pBk−1

+A vBk−1
∆t+

AãBk−1
∆t2

2
(5.10c)

ApCk
=A pCk−1

+A vCk−1
∆t+

AãCk−1
∆t2

2
(5.10d)

qABk
= exp(RABk−1

ω̃Bk−1
− ω̃Ak−1

)⊗ qABk−1
(5.10e)

θBCk
= θBCk−1

+ ∆t(ω̃C · Crn − ω̃B · Brn) (5.10f)

,where

AãBk−1
= RABk−1

ãBk−1
− ãAk−1

(5.11a)
AãCk−1

= RABk−1
RBCk−1

ãCk−1
− ãAk−1

(5.11b)

where accelerometer and gyroscope measurements, ã and ω̃, are included as the control inputs.
The knee joint angle is predicted based on the model, which is described in Section 4.3.5 in the
previous Chapter.
In every prediction step of k, RAB is calculated from qAB, which is the hip joint rotation, using
the quaternion to rotation matrix conversion (Appendix C.3.1) and RBC is calculated from ~θBC
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Figure 5.6.: Illustration of the leg segment positions, A~pB, A~pC , as are defined by the position
of IMUs mounted on the upper segment, IMU B, and lower segment, IMU C with
respect to the coordinate frame of IMU A mounted on the pelvis. The spheroidal
joint m refers to the hip, and the hinge joint n refers to the knee (one rotation
axis: rn). The two joints are linked via the upper leg segment. The quantities
lmA, lmB, lnB, lnC are the IMU position vectors with respect to joints which are
estimated based on the proposed method in Section 4.3.4

and Brn using the axis angle to rotation matrix conversion (Appendix C.2). ∆t is the sampling
time, in other words, the duration between two prediction steps of k and k − 1.

5.2.2. Observation Model

The observation model is defined based on assumption 1: the segments pelvis and upper leg
connected in hip joint, Equation (5.12b), and upper and lower legs connected in the knee joint,
Equation (5.12a):

A~pBk
= −RAB

~BlmB + ~AlmA (5.12a)
A~pCk

= −RAB(RBC
~C lnC − ~BlnB + ~BlmB) + ~AlmA (5.12b)

5.2.3. Experimental Results

The experiment setup is similar to what is described in Section 4.3.9.2. The pose estimation
algorithm is implemented in Matlab and evaluated for the leg movements in strength exercises.
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Parameter Value

Ra 10−4I3×3

Rg 10−4I3×3

Rl 10−8I3×3

Qv 102I3×3

Table 5.2.: Values of the parameters which are used in the EKF for pose estimation

The state vector is initialized, using the Equations (5.12a) and (5.12a) and the initial global
orientations, using the orientation estimator explained in Section 5.1.2. The IMU positions and
joint axes are obtained from algorithms explained in Chapter 4. Table 5.2 shows the values of
noise covariances, which are used in the filter.

5.2.3.1. Joint Angles

The precision of the estimated joint angle evaluated using the optical tracking system [95] as the
ground truth. In order to estimate the joint angle in the optical system from the marker positions
accurately, an experimental setup was created for a subject, by mounting two markers on each
leg segment, as shown in Figure 5.7. The subject performed a simple knee flexion/extension
and hip abduction. In optical tracking one vector, which is the subtraction of two single marker
positions is assumed on each leg segment. The knee joint angle is obtained from the angle
between vectors related to upper and lower legs. The right hip joint angle is obtained from the
angle between the left and right upper legs. The result of knee flexion/extension is evaluated in
the sagittal plane and shown in Figure 5.8.
The error for the right and left knee are 6.65 ± 6.26 and 4.46 ± 3.93 (mean ± SD) degrees,
respectively.
The result of hip abduction is evaluated in the frontal plane and shown in Figure 5.9. The error
in this test is 4.90± 3.66(mean± SD) degrees.

under comparable conditions, however, leave room for improvement. The higher error ob-
served for the right joint could result from magnetic disturbances generated by the controller,
battery or smartphone, or could be the result of soft tissue artifacts. This will be further investi-
gated as part of our future work.

5.2.3.2. Segment Position

With the setup shown in Figure 4.15, the positions of IMUs mounted on the leg segments are
captured by both smart suit and optical system. This experiment was carried out with 7 subjects
each performing squat and hip abduction/adduction exercises.
The results for squat exercise are presented in Table 5.3. The average error for all subjects in
the estimation of PC is 9.68cm, which is higher than PB, with an error of 7.66cm. The reason
for this is that the error of PC contains errors related to the knee joint angle plus the error of
IMU position in particular lnC . Figure 5.11 shows the estimated positions of leg segments in
squat exercise for one representative subject using the proposed approach and optical tracker.
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Figure 5.7.: Setup for joint angle estimation evaluation. In order to simplify two single markers,
shown with arrows, are placed on each segment.
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method with the optical tracker result.
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Squat
PB PC

cm [RMS, STD, Max] [RMS, STD, Max]

subj. 1 [8.47, 10.02, 4.10] [8.98, 8.43, 36.16]
subj. 2 [7.72, 5.13, 16.53] [7.69, 3.87, 14.20]
subj. 3 [6.05, 4.44, 15.30] [9.12 5.49, 17.68]
subj. 4 [6.57, 4.93, 19.92] [7.51, 6.14, 24.64]
subj. 5 [8.91, 5.10, 18.02] [7.84, 4.14, 16.96]
subj. 6 [7.20, 4.03, 13.73] [5.47, 3.55, 12.84]
subj. 7 [6.40, 4.65, 15.27] [7.42, 5.15, 18.53]

Table 5.3.: Error of estimated upper and lower segments positions using the proposed method
for squat exercise.

Abd/Adduction
PB PC

cm [RMS, STD, Max] [RMS, STD, Max, RMS]

subj. 1 [5.19, 3.38, 10.57] [ 10.53, 6.91, 21.40]
subj. 2 [4.83, 2.97, 25.61] [ 9.96, 6.14, 24.84]
subj. 3 [4.60, 1.99, 8.52] [ 10.63, 5.66, 21.18]
subj. 4 [7.16, 3.87, 13.84] [ 12.31, 7.14, 24.65]
subj. 5 [6.10, 3.64, 12.40 ] [12.43, 8.58, 27.58]
subj. 6 [7.74, 4.58, 15.56 ] [16.28, 11.0, 34.62]
subj. 7 [8.09, 5.95, 19.45] [ 16.33, 12.84, 42.45]

Table 5.4.: Error of estimated upper and lower segments positions using the proposed method
for abduction and adduction exercise

The results for abduction/adduction exercise are presented in Table 5.4. The average error for
all subjects in the estimation of PC is 12.63cm which is more than twice of PB with the error
of 6.24cm. An accumulated error from the knee joint angle and the IMU position causes this
higher error, as was described for the squat exercise.
The errors in segment position estimation for squat exercise are also compared, when using dif-
ferent body-IMU calibration approaches, in Figure 5.10. As was expected from the evaluation
of Chapter 4, the proposed calibration method has led to a better result for the estimation of
segment positions.
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in [124] (red) and the proposed method in Section 4.3.4 (green)
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IMU measurements and proposed method versus optical tracker from a represen-
tative experiment
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5.3. Conclusion

This chapter explains two approaches for real-time estimation of orientation and lower body
motion. These approaches provide the orientation of pelvis, which is considered as the body
coordinate reference point, hip and knee joint angles, and leg segment positions, all with respect
to pelvis. Using such information, the critical measures for monitoring the strength exercises,
such as ROM and the posture imbalances, can be determined. Moreover, they can be applied
in the exercise identification process. Additionally, joint angles and segment positions provide
good visual feedback of the user’s performance (Figure 3.7).
The proposed orientation estimator is based on an EKF with a state vector, including angular
acceleration and magnetic disturbance offset. The result of this algorithm was evaluated and
shown that in comparison with a common orientation estimator, it achieves better results when
applying to the measurements of IMU mounted on the pelvis while performing the squat. In
future work, the estimated magnetic disturbances can be further evaluated with a known source
magnetic field. Moreover, the current approach can be extended using an adaptive tuning for
the measurement noise in order to optimize the filtering in the presence of outliers.
The pose estimation approach is also based on an EKF, where only inertial measurements are
contributing as control inputs in the estimation. This reduces the computational complexity as
there is no observation model related to those measurements. Instead, the constraints, which are
defined based on the assumption of connected segments at joints, by incorporating the body-
IMU calibration parameters, comprise more simplified observation models.The evaluation of
this approach shows relatively good results considering the dynamic of the performances.
Figure 5.12 presents the computational graph of the process in the current chapter, body motion
tracking, in connection with the calibration process in the previous chapter, and exercise identi-
fication in the next chapter.
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6. Exercise Identification

This chapter presents the process of exercise identification. The focus is on online template
matching approaches based on Dynamic Time Warping (DTW). DTW is described in Section
6.1 in the offline form. Section 6.2 addresses challenges of online DTW-based approaches and
describes four various methods in the related work for optimizing their performance. Section
6.3 presents the proposed method. Section 6.4 evaluates and compares the result of the formerly
discussed methods, in the application of squat exercise identification using two different types
of motion signals and in terms of accuracy and execution time.

6.1. Offline DTW

The DTW transformation calculates minimum distances between the two signal sequences,
regardless of the difference in acceleration and deceleration. This means, this algorithm uses
an elastic transformation of the time series to recognize similar shapes with different phases.
If X = (x1, ..., xn) is the source sequence and Y = (y1, ..., ym) is the query sequence and
X, Y ∈ Φ, where Φ is the feature space, the DTW transformation is d : Φ × Φ → R ≥ 0.
The algorithm first builds up a local cost matrix Cl, which contains all the pairwise distances
between the features in X and Y as follows:

Cl ∈ Rn×m, ci,j =‖ ci − cj ‖, i ∈ 1, ..., n, j ∈ 1, ...,m, (6.1)

where ‖ . ‖ is the vector norm. The areas of the matrix with the minimum values define the
warping path.
This method has a time complexity of O(n2). Therefore, it is efficient for a finite number of
features in X . With increasing length of X , for example, in the case of a real time exercise
identification process with a stream of features, the number of possible warping paths grows
exponentially. Therefore, a dynamic programming approach is introduced to reduce complexity
as follows:

dtw(i, j) = ci,j +min


dtw(i, j − 1)
dtw(i− 1, j)
dtw(i− 1, j − 1)

dtw(0, 0) = 0, dtw(i, 0) = dtw(0, j) =∞
(i = 1, ..., n; j = 1, ...,m),

(6.2)

where ci,j is defined in (6.1). This reduces the temporal and spatial complexity toO(mn), which
is still not applicable for online template matching of streaming data.

99



100 6. Exercise Identification

6.2. Online DTW

There are many different proposed methods for accelerating the DTW, such as lower bounding
in [58], where the range of the search for the warping path is limited, or the early abandoning
in [59] that consists of starting an incremental computation of DTW and stopping if it exceeds a
lower bound. However, these methods can not solve the problem of template matching for on-
line streaming. Rkthanmanon et al. in [102] propose UCR-DTW, combining eight techniques
to accelerate DTW. The experimental results show that this method has a low computational
time and high accuracy. However, it is assumed that the subsequence and query have the same
length. Moreover, the combination of several techniques results in a complex structure. In [116]
Sakurai et al. have introduced an efficient DTW-based method with a simple structure for moni-
toring the streaming subsequences, which reduces the temporal and spatial complexity to O(n).
This approach is discussed in detail in the next Section.
Other than accelerating and improving the storage requirement, there are some proposed meth-
ods to increase the accuracy while maintaining the time complexity, mostly based on the nor-
malization idea; As described in [102] in the problem of identification of video images, the
scale can change due to many factors, such as camera zooming, camera tilt angle, or for exam-
ple, different clothing of the subject. Therefore, they should be normalized for a meaningful
calculation of distances between the template and the video sequences. In the normalization
process, the query and streaming subsequence are transformed into comparable ranges. There-
fore, the different amplitude levels can not be mistaken with different structures. [43], [102]
propose z-score normalization during online streaming based on SPRING using a fixed-length
sliding window. As different sizes of the window can cause unwanted fluctuations, which af-
fect the robustness of DTW against disturbances in the time axis, [152] proposes a dynamic
z-score normalization. To solve the problem of z-score normalization, where z-score coeffi-
cient changes frequently in a data stream, [42] proposes an online min-max normalization for
improving SPRING. However, none of these works directly considers higher data dimensions,
which can highly degrade the optimization of accuracy and speed for online DTW-based ap-
proaches. In the current work, the proposed solutions in [43], [42], and [152] are discussed
and evaluated for exercise identification with one-dimensional data from the knee joint angle.
In addition, [43] and [152] are extended to consider higher data dimensions, as it is critical for
such application.
Approximation based approaches, such as Piecewise Aggregated Approximation(PAA) [56],
attempt to reduce the processing time by transforming the original sequence into a symbolic
representation. In PAA, the equal-lengthed intervals of a sequence are approximated by their
mean values. Based on PAA, iSax technique, one of the most powerful indexing techniques,
was developed in [125] using Euclidean distances. It is shown that iSax is very accurate and
fast. However, using Euclidean distance as the similarity measure makes it vulnerable in deal-
ing with the time fluctuations. In this work, the concept of PAA is adopted and extended to
other features besides mean value, in order to increase the efficiency of the online DTW-based
approach in SPRING [116].
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6.2.1. SPRING

SPRING introduces a new definition of the distance matrix, known as subsequence time warp-
ing matrix (STWM), where each cell contains d(t, i), which is the best distance to match X[t]
to Y [i], along with the start position s(t, i). In other words, the d(t, i) is the distance of a sub-
sequence starting from s(t, i) to t. This leads to a reduction in the processing time and space
required to store DTW matrix. In fact, only two arrays of length of the query, m, related to the
distances and start points, should be stored and updated at every each sample arrival.
The distance in SPRING is calculated as follows:

d(t, i) =‖ xt − yi ‖ +dbest,

dbest = min


d(t, i− 1)
d(t− 1, i)
d(t− 1, i− 1)

d(t, 0) = 0, d(0, i) =∞
(t = 1, ..., n; i = 1, ...,m).

(6.3)

Therefore, the starting points should be updated according to the new distance in Equation (6.4):

s(t, i) =


s(t, i− 1) (d(t, i− 1) = dbest)
s(t− 1, i) (d(t, i− 1) = dbest)
s(t− 1, i− 1) (d(t− 1, i− 1) = dbest)

(6.4)

There are two different types of subsequent matching: best query and range query. While range
query finds a local minimum, the best query, among all the possible subsequences, finds a sub-
sequent with the shortest distance from a query Y starting at each sample received, X[ts].
For online streaming data with semi-infinite length, the range query is preferable to the best
query. To avoid the heavily overlapping matched subsequences, SPRING proposes a modified
range query called disjoint query with an additional condition such that among all the subse-
quences close enough to the query sequence, dtw(X[ts : te], Y ) < ε0, the algorithm reports
only the local minimum; which means the distance is the smallest.
Therefore, after the operation in Equation 6.4 start and end time of a best-so-far found subse-
quence and its DTW distance to the query are updated respectively: ts = s(t,m), te = t, and
dmin = d(t,m), when condition d(t,m) < dmin ∧ d(t,m) ≤ ε is true.
According to disjoint query, the matched subsequence at time t− 1 is reported at time t if none
of the updated entries of d(t, k) with k = 1, ..,m follows the previous condition, unless its start
time is after previously detected end time, in that case, it possibly belongs to the next matching
subsequence. The condition for reporting the matched subsequence can be summarized as:

dmin ≤ ε ∧ (∀d(t, k) > dmin ∨ s(t,m) > te) (6.5)

Before the next search starts, dmin and all the entries of the list d whose starting time are before
te are set to infinity, so that a currently matched subsequence is not considered in the next
search. At the end of each time point, the old lists are substituted by the new lists. At each
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time tick only two lists of size m have to be updated and only four lists need to be stored.
SPRING has a simple structure and can be implemented with few lines of code. Moreover,
query and subsequence from stream don’t need to have a similar length, as is required for UCR-
DTW [102]. In addition, this approach can be easily extended to multidimensional queries and
subsequences. However, this increases the execution time, as shown in the experimental results
in Section 6.4.

6.2.2. Normalization-supported SPRING(NSPRING)

To improve the accuracy of SPRING a normalization supported SPRING(NSPRING) is pro-
posed in [43]. This approach is based on z-score normalization where xt is normalized to x′t
according to Equation 6.6:

x′t =
xt − µ
σ

(6.6)

, where µ = 1
m

∑m
i=1 xi is the mean value and σ2 = 1

m

∑m
i=1 x

2
i − µ2 is the variance of a

sequence. To apply the normalization in the time series, the length of a subsequence must be
known. This is not possible in SPRING, as the length of the subsequence is known when it is
identified. In NSPRING, this length is assumed to be equal to the length of query.
In this method given a sequence of X = {x1, ..., xn} and a query of Y = {y1, ..., ym}, first,
to calculate the intermediate z-normalization, a buffer stores the first m values arrived from X .
Afterwards, two temporary variable, sum1 and sum2 are calculated:

sum1 = xt′ + xt′+1 + ...+ xt (6.7a)
sum2 = x2

t′ + x2
t′+1 + ...+ x2

t (6.7b)

, where t′ = t −m + 1, with xt′ and xt as the first and the last value of the buffer. Each entry
of STWM in NSPRING stores four values, d(t′, k), s(t′, k), M(t′, k), and SD(t′, k) which are
obtained in following:

d(t′, i) =‖ xt
′ −M(t′, i)

SD(t′, i)
− yi ‖ +dbest,

dbest = min


d(t′, i− 1)
d(t′ − 1, i)
d(t′ − 1, i− 1)

d(t′, 0) = 0, d(0, i) =∞
(t′ = 1, ..., n; i = 1, ...,m).

(6.8)

s(t′, i) =


s(t′, i− 1) (d(t′, i− 1) = dbest)
s(t′ − 1, i) (d(t′, i− 1) = dbest)
s(t′ − 1, i− 1) (d(t′ − 1, i− 1) = dbest)

(6.9)

m(t′, i) =


M(t′, i− 1) (d(t′, i− 1) = dbest)
M(t′ − 1, i) (d(t′, i− 1) = dbest)
M(t′ − 1, i− 1) (d(t′ − 1, i− 1) = dbest)

(6.10)
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SD(t′, i) =


SD(t′, i− 1) (d(t′, i− 1) = dbest)
SD(t′ − 1, i) (d(t′, i− 1) = dbest)
SD(t′ − 1, i− 1) (d(t′ − 1, i− 1) = dbest)

(6.11)

, where s(t′, 0) = t′, M(t′, 0) = sum1/m and SD(t′, 0) =
√
sum2/m−m(t′, i)2.

It can be noticed that d(t′, i) and s(t′, i) are obtained similar to SPRING, Equations 6.4, 6.3,
with a difference that xt′ is normalized before DTW distance calculation using the intermediate
mean value and standard deviation stored in two lists of m and sd. Besides, at a current time
point, t, these lists are updated for the arrived value in time point t′. This results in a delay
of m = t′ − t time points in reporting the matched subsequence, in comparison to SPRING
which has only a negligible delay due to disjoint query. To maintain low temporal and spatial
complexity, after the buffer is full, before inserting a new value, the old entry can be deleted
from the buffer while updating sum1 and sum2:

sum1 = sum1 − xt′ + xt (6.12a)
sum2 = sum2 − x2

t′ + x2
t . (6.12b)

The conditions to find the minimum path and reporting the matched subsequence is similar to
SPRING, as described in Section 6.2.1. This approach has similar time and space complexity
as SPRING for one-dimensional data. However, it has an inherent delay. Moreover, for higher
dimensions, more lists are required to be updated and stored at each time point which makes it
inefficient for such applications.

6.2.3. Improved SPRING(ISPRING)

Since the incrementally computed z-score coefficients change by every new entry, the compu-
tational cost in NSPRING is high. Moreover, new z-score coefficients are not applied to the
preceding time entries, which can lead to inaccuracy. Therefore, [42] proposes an improved
SPRING(ISPRING) based on a min-max normalization, where x is normalized as follows:

x′t =
xt − xmin
xmax − xmin

. (6.13)

In this method, when a new sample arrives, a monitoring window of size l checks if a new
minimum or maximum value among all the window entries can be found. With a new min-
max coefficient for normalization, all the time warping distances need to be calculated from
the entries of the monitoring window i.e. entries from time t − l + 1 to the current time t.
Otherwise the algorithm only updates the entries of current list d(t, k) based on x′t, which is
normalized using the previous min-max coefficient. When a minimum distance as a candidate
for a best-so-far subsequence is detected, the entries of the candidate subsequence from ts to
te is searched for the current min-max coefficient used for normalization. If it is not found,
the distance needs to be corrected by expanding the subsequence backward and adding up the
distances between the first entry of query and all the previous entries until the subsequence
contains the min-max coefficient. This search can be left earlier as the distance exceeds the
minimum criteria. Otherwise, the matched subsequence is reported.
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In contrast to UCR [102], ISPRING finds the patterns whose lengths are different with those
of query, and claimed to have better results. However in practice similar to z-score coefficient,
the min-max coefficient is changing frequently, which results in higher computational cost.
Moreover, this method does not adopt the disjoint query in SPRING, which results in reporting
many overlapping subsequences, as presented in the experimental results. The extension of
ISPRING to support multidimensional data is rather complicated, as the search for minimum
and maximum values of each DOF directly influences the distance calculation.

6.2.4. Dynamic Normalization based Real-time Pattern Matching
(DNRTPM)

Normalization on the fixed-length sliding window causes unwanted structural distortions, which
contradicts the natural robustness of DTW with respect to fluctuations in the time axis. To
solve this problem, a dynamic z-score normalization approach is proposed in a recent work,
[135]. This approach is based on the STWM concept in [116], where the z-score coefficient
is calculated incrementally at each time point based on the current entry and the previous z-
score coefficient. This results the standard deviation and mean value for the first entries of a
candidate subsequence to be different than those of its last entries. To compensate for this, an
amplification and a shifting factor are introduced:

ηk =
σts,te
σts,k

, δk =
µts,k − µts,te

σts,te
, k = ts, ..., te (6.14)

, where σts,k and µts,k are standard deviation and mean value calculated incrementally, at time
k, based on the entries from time ts to k. According to the invariance properties, it is proved
that these values are similar to the ones of the query for a candidate subsequence under one
condition:

k′ − ts
te − ts

=
k

m− 1
→ ηk = η′k′ , δk = δ′k′ (6.15)

, where η′k′ and δ′k′ are the amplification and shifting factors of the subsequence, while η′k and
δk are those of the query. The mapping between k and k′ is achieved through DTW itself as
follows:

d(t, k)) = min


d′(t, k − 1)
d′(t− 1, k)
d′(t− 1, i− 1)

d′(i, j) =‖
x′s(i,j),t − y′0,k

ηk
‖ +d(i, j)

i = t− 1, t; j = k − 1, k.

d(t,−1) = 0, d(−1, k) =∞
(t = 0, ..., n; i = 0, ...,m)

(6.16)

, where x′s(i,j),t is the z-score normalization of xt on the subsequence of X[s(i, j) : t] and y′0,k
is kth normalized value of the query. Therefore, in each time point this method requires to
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loop over all the values in the query three times for calculation of d′(i, j), before updating the
minimum distance. The list of start point is updated according to the position of minimum
distance:

s(t, k) =


s(t− 1, k) (d(t, k) = d′(t− 1, k))
s(t, k − 1) (d(t, k) = d′(t, k − 1))
s(t− 1, k − 1) (d(t, k) = d′(t− 1, k − 1))

s(t, 0) = t; t = 0, ..., n; k = 0, ...,m− 1.

(6.17)

The conditions for reporting a matching subsequence including disjoint query are similar to
SPRING conditions.
As described above, this algorithm contains two extra loops of normalizations and distance
calculations in order to apply the mapping required to optimize the normalization. Therefore, it
has higher computational cost in comparison to SPRING.

6.3. Proposed method

In this work on the basis of SPRING a method is proposed to increase the temporal and spatial
efficiency, while maintaining the accuracy, specifically for the application of exercise identifi-
cation. As discussed in the previous sections, the proposed optimizations of online DTW-based
approaches lack the consideration for multidimensional input data. This impedes applying such
methods for strength exercise monitoring, where the motion signals, including multiple DOFs,
define a correctly performed exercise. Therefore, the proposed method optimizes SPRING to
support multidimensional data by exploiting the common characteristics of the motion signals
based on two concepts of motion primitive detection and feature extraction. These concepts and
the procedure of identification are explained in the following sections.

6.3.1. Motion primitive detection

Since a strength exercise usually contains a periodic pattern in which the velocity of movement
increases and decreases sequentially, the Zero Velocity Crossing (ZVC) method is chosen to
detect the motion primitives in both query and streaming signal. Therefore, a motion primitive
is detected, where the sign of derivative is changing on the dominant DOF of motion signals,
e.g. positions or joint angles. The derivative is calculated here, with a numerical differentiation
over a sliding window. This causes a delay in reporting the identified movements i.e. half of the
window length. However, to detect the motion primitives where the velocity changes abruptly,
this window length needs to be small. Consequently, the delay is small as well. The dominant
DOF is selected on each dataset by finding a dimension of the query signal, which has the
highest standard deviation and thus the greatest variations. The detected motion primitives in a
query of joint angles are presented in Figure 6.1, where the knee joint angle is a dominant DOF.
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6.3.2. Feature extraction

The features including velocity, variance, and mean value are selected in this approach, Figure
6.1, as they define the movements by introducing the higher level information from the original
motion signals. These features are calculated from each DOF of motion primitive. Therefore,
for each motion primitive, tens of position or joint angle samples, as the input to the online
identification algorithm, are reduced to three features in each dimension. This, as shown in
the experimental results, has highly increased the speed of the identification algorithm while
maintaining its accuracy.

6.3.3. Identification

The proposed identification method is described in Algorithm 1. Using the approach described
in Section 6.3.1, the dominant DOF is determined from the query. This is used in the ZVC
method to detect the motion primitives associated with each DOF (see Algorithm 2), both in
the query and in the streaming motion signal. The features, including mean and variance are
calculated incrementally and extracted after a motion primitive is detected. For velocity the
incremental calculation is not applied, as the higher number of points involved in the numerical
differentiation leads to less error [81]. For each motion primitive, all types of features from all
DOFs generate a feature vector. This is achieved by Algorithms 3 and 4. The latter explains
the velocity calculation in which one of the three different numerical differentiation techniques,
i.e. five-point stencil, symmetric and Newton’s quotient [81], are applied depending on number
of sample points available. This number in the motion primitive detection is equal to the half
of the length of sliding window and in the feature extraction is equal to the number of samples
in each motion primitive. The feature vectors together with the timestamps of their associated
motion primitives are used to calculate the distance required for DTW in SPRING approach
(Section 6.2.1); In Equation 6.3, yi and xt can each be replaced by the feature vector of the
motion primitive i in the query signal and of the motion primitive t in the streaming signal.
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Figure 6.1.: Feature extraction of query signal using the proposed method. The query contains
4DOF joint angles captured during a squat exercise. Each DOF is defined by three
different features: velocity, mean, and variance. These are correlated with each
detected motion primitive. The detection motion primitives are presented by the
black circle markers on the knee joint angle, as it has the highest variance and
serves as a dominant DOF.
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Algorithm 1 Proposed Exercise Identifier
Initialization:
determine the dominant degree of freedom, DOFd
set len to half of the length of sliding window rounded up, i.e. ceiling(WinLength/2)
Input: a new value of xt
Output: start and stop points of a matched subsequence if any

1: sum1 = sum1 + xt;
2: sum2 = sum2 + x2

t ;
3: Insert sum1 in S1;
4: Insert sum2 in S2;
5: Insert xt in S;
6: Insert t in T ;
7: ls = length(S);
8: if ls > len then
9: vt = CalculateV elocity(S(ls− len : ls,DOFd), T (ls− len : ls,DOFd));

10: Insert vt into V ;
11: end if
12: if length(V ) == len+ 1 then
13: if MotionPrimitiveDetected(V (1), V (len+ 1)) then
14: CurrentSpringT ime = T (ls− len);
15: f = FeatureExtraction(S, T, S1(ls− len), S2(ls− len), ls− len);
16: [FMatched, tstart, tstop, dmin] = SPRING(f, CurrentSpringT ime, tstart, tstop, dmin);

17: if FMatched then
18: return tstart, tstop, dmin;
19: end if
20: S = S1(ls− len : ls);
21: S1 = S1(ls− len : ls)− S1(s− len− 1);
22: S2 = S2(ls− len : ls)− S2(s− len− 1);
23: sum1 = S1(len);
24: sum2 = S2(len);
25: V = V (len);
26: else
27: delete V (1) from V ;
28: end if
29: end if

Algorithm 2 MotionPrimitiveDetected
Input: Vprev, Vcurrent
Output: True if it is detected and False otherwise.
ε = 1e−5;
return (Vprev <= ε and Vcurrent >= ε)or(Vprev >= ε and Vcurrent <= ε);
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Algorithm 3 FeatureExtraction
Input: S, T, S1, S2, lenaverage
Output: feature vector

1: f(1 : DataDimension) = calculateV elocity(S, T );
2: Mean = S1/lenaverage;
3: f(DataDimension+ 1 : 2 ∗DataDimension) = Mean;
4: f(2 ∗DataDimension+ 1 : 3 ∗DataDimension) = S2/lenaverage −Mean2;
5: return f ;

Algorithm 4 CalculateVelocity
Input: S, T
Output: Average velocity of S.

1: ls = length(S);
2: for i← 1 to DataDimension do
3: v(i) = 0, counter = 0;
4: if ls ≥ 5 then
5: for j ← 3 to ls− 2 do
6: h = T (j)− T (j − 1)
7: //five-point stencil
8: v(i) = v(i)+(S(j−2, i)−8∗S(j−1, i)+8∗S(j+1, i)−S(j+2, i))/(12∗h);

9: counter = counter + 1;
10: end for
11: else if ls ≥ 3 then
12: //symmetric difference quotient
13: for j ← 2 to ls− 1 do
14: h = T (j)− T (j − 1)
15: v(i) = v(i) + (S(j + 1, i)− S(j − 1, i))/(2 ∗ h);
16: counter = counter + 1;
17: end for
18: else if ls == 2 then
19: //Newton’s difference quotient
20: h = T (2)− T (1)
21: v(i) = (S(2, i)− S(1, i))/h;
22: counter = 1;
23: end if
24: v(i) = v(i)/counter;
25: end for
26: return v
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6.4. Experimental Results

Five online template matching methods described before, are implemented and evaluated in
Matlab to identify the strength exercise of squat in a stream of motion signal. The input data
is the result of lower body estimated pose using the approach explained in Chapter 5, during
an experiment with 7 subjects, in which they performed squat exercises together with other
movements. In this experiment, the first squat, which was performed on the instruction of a
supervisor, served as a template to identify the next repetitions in the streaming motion signal.
After squats, the subjects performed other movements. Figure 6.2 shows an example of stream-
ing data including joint angles and leg segment positions. This example has been used for a
detailed analysis in the evaluation of all methods, unless for the case of ISPRING, where the
algorithm fails to identify any true positives in this signal. In this case, a different example is
selected for further analysis.

Streaming signals in all the test trials from all subjects contain some random movements and
similar exercises such as squats, hip abduction/adductions, knee flexion/extensions, etc. The
signal duration is, on average, 1 minute, which means receiving around 6000 samples.
The execution time of each method is measured using TIC function in Matlab, which includes
the processing time of query normalization and feature extraction in addition to stream data
identification. For the proposed method the time to detect the dominant DOF is also considered
in execution time.
The common performance metrics, accuracy, precision, recall, and F1 score are measured based
on the comparison of algorithmic and manual identification. This comparison provides the
number of true positives (TP ), false positives (FP ), true negatives (TN ), and false negatives
(FN ) out of the total number of features in the streaming signal. These are used in the following
formulas in order to calculate those metrics:

Accuracy =
TP + TN

total

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1score =
2×Recall × Precision
Recall + Precision

(6.18a)

(6.18b)

(6.18c)

(6.18d)
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Figure 6.2.: An example of streaming signal captured during performing squats and other types
of movements.
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For a fair comparative evaluation, all the methods which include the disjoint query are tuned
for the threshold ε in the inequality of 6.5 and separately for each type of movement, so that they
identify at least one TP in three of the trials. The tuning starts with a value in the range of the
distances in the middle of STWM column and increasing it till a TP is found. The following
sections present the evaluation of the results of each method.

6.4.1. Identification with SPRING

SPRING method is implemented here as proposed in [116]. Therefore, no feature extraction
is required. However, to have the same range in all DOFs, each vector sample of joint angles,
including hip and knee joint, is normalized.
The method is used for squat exercise identification with three different types of motion signals:
1DOF: only knee joint angle, 4 DOF: hip and knee joint angles, 6DOF: upper and lower leg seg-
ment positions. Results in terms of performance metrics and execution time are presented in
Tables 6.1, 6.2, and 6.3. The best performance is related to test with the position signals as
the squat can be identified better, among other movements, by incorporating more DOFs. As
expected, the execution time for processing 1DOF is less than the other tests.

For a detailed analysis of the process of online DTW, embedded in SPRING method, the
STWM matrix is visualized in Figure 6.3, where the darker colour indicates lower values, and
the lighter colour higher values. This is collected from the test with 4DOF joint angles. It
can be easily noticed there’s a high amount of data, which should be processed at each sample
arrival in order to update all the values in a related column. This is one of the disadvantages of
SPRING which leads to high execution time especially when the query is large.
Moreover, in this example the algorithm fails to identify the forth and seventh performed squats.
This can be due to a slight difference in the amplitude of the second DOF, hipY , at the end of
the movement, where it has a delay to rise from its minimum compared to other DOFs. This
is visible in 6.3, where the STWM column after the identified subsequence is only light in the
middle and not in the lower area, where the distances to the end of query exist. This as well
delays reporting the identification due to disjoint query as the algorithm searches for a better
transition in the shape of the signal. As the experiment with the proposed method in Section
6.4.5 shows, such amplitude deficiencies do not influence the result as other high level features
are involved in the identification process.

Squat
subj. 1 subj. 2 subj. 3 subj. 4 subj. 5 subj. 6 subj. 7

Accuracy[%] 99.9 99.9 99.9 99.8 99.9 99.8 99.5
Precision[%] 50.0 50.0 71.4 40.0 60.0 40.0 16.0
Recall[%] 50.0 40.0 100.0 80.0 85.7 80.0 80.0
F1 Score[%] 50.0 44.4 83.3 53.3 70.6 53.3 26.6
Execution Time[s] 3.16 1.98 1.76 1.16 1.60 2.80 1.42

Table 6.1.: Squat identification with knee joint angle based on SPRING method.
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SPRING
subj. 1 subj. 2 subj. 3 subj. 4 subj. 5 subj. 6 subj. 7

Accuracy[%] 99.4 99.7 99.4 99.8 99.6 99.9 99.9
Precision[%] 100.0 31.2 100.0 40.0 100.0 100.0 83.3
Recall[%] 25.0 100.0 40.0 80.0 71 .0 40.0 100.0
F1 Score[%] 40.0 47.6 57.1 53.3 83.3 57.1 90.9
Execution Time[s] 3.22 2.58 2.29 1.43 2.08 3.56 1.77

Table 6.2.: Squat identification with knee and hip joint angles based on SPRING method.

SPRING
subj. 1 subj. 2 subj. 3 subj. 4 subj. 5 subj. 6 subj. 7

Accuracy[%] 99.9 99.9 99.9 99.9 99.9 99.9 99.9
Precision[%] 100.0 100.0 100.0 100.0 100.0 100.0 83.3
Recall[%] 50.0 80.0 60.0 60.0 42.8 20.0 100.0
F1 Score[%] 66.6 88.8 75.0 75.0 60.0 33.3 90.9
Execution Time[s] 2.97 1.90 2.08 1.45 2.31 3.71 1.44

Table 6.3.: Squat identification with leg positions based on SPRING method.
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6.4.2. Identification with ISPRING

As the search for min-max coefficients in each DOF, which is required for normalization in
ISPRING method, affects the warping distance calculations, it is not practical to extend this
method for a multidimensional identification. Therefore only knee joint angle is used here
as input. This signal is normalized using Equation 6.13 and the current min-max coefficient
reported in the monitoring window. The normalization results in a modified range for both
streaming signal and query, which degrades the identification performance as a specific range
of motion at knee mainly defines the squat exercise. Therefore, as shown in Figure 6.4, the
random movements before the main exercise are identified falsely as squats. If the length of the
subsequence candidate is less than the query, as it could be the case when the subject performs
squats with different speeds, it leads to a distorted normalized signal as shown in the example of
Figure 6.4, which leads to fail identifying the first squat. This is due to assuming a fixed-length
window for the min-max coefficient search.
Moreover, since the disjoint query proposed in SPRING is not supported in ISPRING, there are
many overlapped matching subsequences, Figure 6.4. This is considered in the calculation of
performance metrics by discarding all the overlapped identified subsequences in one area.
It can be noticed that the execution time in all trials is less than SPRING method as ISPRING
does not include the search for disjoint query. Also, the min-max coefficient search is optimal
by deploying Binary search and Quicksort functionalities as described in [42].

Squat
subj. 1 subj. 2 subj. 3 subj. 4 subj. 5 subj. 6 subj. 7

Accuracy[%] 92.5 95.32 91.52 92.63 78.94 96.47 50
Precision[%] 60.0 50.0 50.0 25.0 0 75.0 0
Recall[%] 75.0 20.0 20.0 20.0 0 60 0
F1 Score[%] 66.66 28.57 28.57 22.22 0 66.66 0
Execution Time[s] 2.32 1.58 1.14 0.71 2.19 1.14 1.07

Table 6.4.: Squat identification with knee joint angle based on ISPRING method. Note that for
a better comparison of the metrics with the other methods, the overlapping matches
in one area, for both false positives and true positives, were counted as one.
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6.4.3. Identification with NSPRING

The normalized signal according to NSPRING method is calculated using xt′−M(t′,i)
SD(t′,i)

in the
Equation 6.8. In this experiment, the normalization results in the inconsistency, which is caused
by extremely small standard deviations and division by such values. This problem is resolved to
some extent by considering a lower bound of 10−6 and resetting to this value when the standard
deviation is lower. Note that in the test with 4DOF joint angles, these values are not normalized
as it caused similar numerical problems. Figure 6.5 shows this problem, which causes the
query and streaming signals to not always be in the same range in contrast to what is expected
from a normalization process. As a result, the overall performance of this method is worse
than SPRING while the execution time is higher especially for 4DOF data, 6.6. This is due
to four added lists of M and SD for each DOF, which have to be maintained and/or updated
at receiving each new sample. Moreover, as described in Section 6.2.2, there is an inherit
delay in reporting the identification, Figure 6.5. The result here is not compatible with [43]
since they claimed that they achieve the same results as SPRING. However, they used different
performance metrics and input signals for their evaluations, which could justifiy this different
outcome.
This method is evaluated for both one dimensional and multidimensional joint angle signals,
6.5, 6.6, as well as for multidimensional leg segment position signal. The latter is not presented
here, due to the poor performance of this algorithm, where the ε threshold tuning process fails
to achieve any true positives in any of the trials.

NSPRING
subj. 1 subj. 2 subj. 3 subj. 4 subj. 5 subj. 6 subj. 7

Accuracy[%] 99.87 99.85 99.74 99.72 99.91 99.89 99.70
Precision[%] 25.0 0 0 16.67 80.0 0 9.09
Recall[%] 25.0 0 0 40.0 57.14 0 20.0
F1 Score[%] 25.0 0 0 23.53 66.67 0 12.50
Execution Time[s] 3.61 2.83 2.50 1.65 3.13 3.83 2.04

Table 6.5.: Squat identification with knee joint angle based on NSPRING method.

NSPRING
subj. 1 subj. 2 subj. 3 subj. 4 subj. 5 subj. 6 subj. 7

Accuracy[%] 99.91 99.89 99.91 98.26 99.79 99.82 99.25
Precision[%] 0 0.5000 66.67 5.75 41.18 0 10.53
Recall[%] 0 20.0 40.0 100.0 100.0 0 80.0
F1 Score[%] 0 28.57 50.0 10.87 58.33 0 18.60
Execution Time[s] 7.90 6.23 5.30 4.01 5.10 8.40 4.32

Table 6.6.: Squat identification with knee and hip joint angles based on NSPRING method.
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6.4.4. Identification with DNRTPM

The normalization process of DNRTPM is evaluated using the knee joint angle. The simi-
lar problem of numerical inconsistency in NSPRING is evident in the normalized signal by
DNRTPM as they both apply z-score normalization, Figure 6.6. However, the precision here
is slightly better, see Table 6.7, as the z-score normalization is refined using amplification and
offset correction proposed in Equation 6.14.
This algorithm is further developed to be used for multidimensional joint angles and leg seg-
ment positions. The results are presented in Tables 6.8, 6.9. The overall execution time is much
higher than other evaluated methods in this chapter. The reason is that this method goes through
three loops over all the samples in the query to find the best normalized distance as defined by
Equation 6.16. Although this method offers an interesting approach for the dynamic normaliza-
tion by integrating it in an online DTW, it is not practical, specifically for a real time exercise
identification due to its numerical failures and high execution time.

DNRTPM
subj. 1 subj. 2 subj. 3 subj. 4 subj. 5 subj. 6 subj. 7

Accuracy[%] 99.90 99.90 99.81 99.90 99.63 99.92 99.92
Precision[%] 33.33 0 16.67 0 26.09 100.0 100.0
Recall[%] 25.0 0 20.0 0 85.71 20.0 20.0
F1 Score[%] 28.57 0 18.18 0 40.0 33.33 33.33
Execution Time[s] 26.65 21.48 19.32 13.89 19.46 32.95 16.64

Table 6.7.: Squat identification with knee joint angle based on DNRTPM method.

DNRTPM
subj. 1 subj. 2 subj. 3 subj. 4 subj. 5 subj. 6 subj. 7

Accuracy[%] 99.92 99.90 99.77 99.44 99.85 99.90 99.77
Precision[%] 0 0 31.25 15.63 0 0 12.50
Recall[%] 0 0 100.0 100.0 0 0 20.0
F1 Score[%] 0 0 47.62 27.03 0 0 15.38
Execution Time[s] 35.71 29.24 24.75 16.21 23.25 41.04 19.98

Table 6.8.: Squat identification with knee and hip joint angles based on DNRTPM method.
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DNRTPM
subj. 1 subj. 2 subj. 3 subj. 4 subj. 5 subj. 6 subj. 7

Accuracy[%] 99.63 99.33 99.50 99.90 99.67 99.90 97.25
Precision[%] 6.25 9.09 17.24 0 23.53 0 3.65
Recall[%] 25.00 60.00 100.00 0 57.14 0 100.00
F1 Score[%] 10.00 15.79 29.41 0 33.33 0 7.04
Execution Time[s] 33.59 21.88 23.18 19.64 27.04 43.63 14.99

Table 6.9.: Squat identification with leg positions based on DNRTPM method.

6.4.5. Identification with the proposed method

The proposed method, as described in Section 6.3 is developed and evaluated here for squat
identification using different types of motion signals i.e. joint angles and leg segment positions.
In this experiment, the length of sliding window is selected to be five as this reduces the velocity
calculation for ZVC to one simple equation of symmetric quotient difference from three points,
i.e. ceiling(5/2).
The extracted features for both query and streaming signal are presented in Figure 6.7 and 6.8.
Each feature contains a higher level of information than the original signal, which further mini-
mizes the DTW. This can be realized by comparing the features related to different movements
in Figure 6.7 and 6.8. Therefore, the identification performance is comparable with SPRING
and higher than all the other methods as presented in Table 6.10 to Table 6.12. The excep-
tion here is the performance of SPRING method for position signals, which is higher than the
proposed method. This can be due to minimal values of variance compared to other features.
Further evaluation of different features and their effectiveness in the process of exercise identi-
fication is the subject of future work.
Each DOF adds three types of features. Therefore, for the case of 4DOF joint angles and 6DOF
position signals the vector length is 12 and 18 respectively. The results in Tables 6.11 and 6.12
verify that this does not affect the execution time, as the proposed motion primitive detection
technique in Section 6.3 reduces the number of times in which a column in STWM needs to
be updated. As the length of query is reduced to its motion primitives, this results in further
improvement of execution time as the number of distance calculations and the search path for
disjoint query is shorter than the original signal.
Figure 6.9 provides a detailed analysis on how the STWM matrix is established in this method.
In comparison to Figure 6.3 for the same signal, this matrix has a smaller size, and therefore
less content. This yields to less space and time complexity. Moreover, the proposed method
does not fail to identify the subsequence with a different amplitude, as was the case for the test
of SPRING method with the same signal.
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Figure 6.7.: Feature extraction from the hip and knee joint angles using the proposed method.
The features extracted from the joint angles in motion primitives of the streaming
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Proposed method
subj. 1 subj. 2 subj. 3 subj. 4 subj. 5 subj. 6 subj. 7

Accuracy[%] 97.92 97.52 97.58 96.09 90.16 96.67 98.37
Precision[%] 100.0 100.0 100.0 50.0 27.27 50.0 66.67
Recall[%] 25.00 20.0 20.0 40.0 42.86 20.0 40.0
F1 Score[%] 40.00 33.33 33.33 44.44 33.33 28.57 50.0
Execution Time[s] 0.24 0.11 0.11 0.10 0.09 0.08 0.11

Table 6.10.: Squat identification with knee joint angle based on the proposed method.

Proposed method
subj. 1 subj. 2 subj. 3 subj. 4 subj. 5 subj. 6 subj. 7

Accuracy[%] 98.35 70.18 98.27 100.0 99.38 98.29 98.90
Precision[%] 100.0 4.00 100.0 100.0 100.0 75.0 62.50
Recall[%] 25.0 40.0 20.0 100.0 85.71 60.0 100.0
F1 Score[%] 40.0 7.27 33.33 100.0 92.31 66.67 76.92
Execution Time[s] 0.27 0.20 0.17 0.14 0.18 0.17 0.14

Table 6.11.: Squat identification with knee and hip joint angles based on the proposed method.

Proposed method
subj. 1 subj. 2 subj. 3 subj. 4 subj. 5 subj. 6 subj. 7

Accuracy[%] 98.72 97.98 98.97 98.15 95.74 97.84 98.17
Precision[%] 100.0 100.0 100.0 100.0 60.0 100.0 66.67
Recall[%] 50.0 20.00 60.0 20.0 42.86 20.0 40.0
F1 Score[%] 66.67 33.33 75.0 0.33 50.0 33.33 50.0
Execution Time[s] 0.30 0.22 0.18 0.16 0.21 0.17 0.18

Table 6.12.: Squat identification with leg positions based on the proposed method.
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6.4.6. Performance comparison

The average of the performance metrics of each method over all the trials and separately for
different types of input signals are presented in Tables 6.14 to 6.15. This result verifies that the
proposed method outperforms all the other method in terms of execution time while DNRTPM
has the worst time performance. The precision of the proposed method outperforms the other
methods in the case of test with the knee angle, while in this test SPRING has the highest
recall rate. In the case of 4DOF joint angles SPRING method has the best performance while
DNRTPM has the worst. The accuracy related result of proposed method is slightly worse than
SPRING in the multidimensional cases.

Accuracy[%] Precision[%] Recall [%] F1 Score[%] Execution [s]
time

SPRING 99.85 46.78 73.67 54.53 1.98
ISPRING 85.34 37.14 27.80 30.38 1.45
NSPRING 99.81 18.68 20.31 18.24 2.80
DNRTPM 99.85 39.44 24.39 21.92 21.49
Proposed method 96.33 70.56 29.69 37.57 0.12

Table 6.13.: Squat identification with the knee joint angle.

Accuracy[%] Precision[%] Recall [%] F1 Score[%] Execution [s]
time

SPRING 99.91 79.23 65.20 61.35 2.42
NSPRING 99.55 24.88 48.57 23.77 5.90
DNRTPM 99.79 8.48 31.43 12.86 27.17
Proposed method 94.77 77.36 61.53 59.50 0.18

Table 6.14.: Squat identification with hip and knee joint angles.

Accuracy[%] Precision[%] Recall [%] F1 Score[%] Execution [s]
time

SPRING 99.95 97.62 58.98 69.97 2.26
DNRTPM 99.31 8.54 48.88 13.65 26.28
Proposed method 97.94 89.52 36.12 48.81 0.22

Table 6.15.: Squat identification with leg positions.
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6.5. Conclusion

This chapter explains the application of online template matching for exercise identification,
which provides real-time feedback to users by counting the number of correctly performed ex-
ercises. This can also be used to obtain a measure of repetition maximum(RM), which is one
of the critical factors in monitoring the strength exercise. To optimize the procedure of online
dynamic time warping approaches, a state of the art approach known as SPRING [116], and
three modifications of it; ISPRING [42], NSPRING [43] and DNRTPM [152] are explained
and analysed.
On the basis of SPRING, and inherit characteristics of motion signals, a new identification
method is proposed. This method improves the temporal and spatial complexity of the online
DTW-based approaches, by utilizing two concepts of motion primitive detection and feature
extraction. Moreover, this method can be easily extended to support higher dimensions of input
data, which makes it superior to the other optimization approaches, as they mainly rely on the
normalization techniques with high complexities to increase the accuracy. These approaches are
evaluated using different motion signals, i.e. hip and knee joint angles and the leg segments’ po-
sitions for identification of the squat exercise in a streaming motion signal. The results show that
the proposed method significantly improves the execution time while maintaining the accuracy.
While this method outperforms other optimization approaches, it has comparable results and
in some cases slightly worse performance than SPRING, in terms of precision and recall rate.
This can be due to a low contribution of some features in the subsequence matching process,
as observed for the case of variance feature in the experiments with the position signals. Since
the proposed approach leads to high efficiency, the algorithm can be extended with additional
features to further improve the accuracy without additional computational cost. Moreover, there
are different exercise phases, e.g. concentric and eccentric phases of the squat, that could be
identified differently depending on the characteristics or critical features for the correct perfor-
mance.



7. Conclusion

This thesis focuses on the design and development of an IMU-based suit for the application
of strength exercise monitoring. The main motivation is to provide critical measures for mon-
itoring strength exercises, which are the essential components in the fitness and rehabilitation
process. Recent advances in technology, particularly in inertial sensing and wearable systems,
along with the widespread usage of smartphones and social networks, have led to increasing
demand for such sport monitoring devices. Such systems, on the one hand, need to be ubiqui-
tous and unobtrusive, available to all types of users, and work for the long possible duration of
sporting sessions. Therefore, they must be low-cost and energy-efficient. On the other hand,
these systems should provide a reliable estimate of the motion parameters such as body seg-
ment positions and joint angles in real-time. To meet these challenges, the previous chapters
discussed all steps from the design and development of the hardware to the calibration of the
IMU sensors, body-IMU calibration, lower body motion tracking, and exercise identification,
and solutions are proposed respectively. These solutions are supported in each topic with ex-
perimental evaluation. The concluding results of this work are discussed in Section 7.1. Section
7.2 suggests the future work.

7.1. Results

First, a wearable system with an embedded network of IMUs is designed and developed. All
system components can be well integrated and hidden in a flexible suit. A novel data acquisition
approach is proposed in order to reduce the CPU load. Moreover, a comparative evaluation of
the system is presented. The results in terms of power consumption, cost, weight, and sensor
measurements, qualify the system for the application of exercise monitoring.
In the next step, before the motion tracking, the system must be calibrated once before and once
after mounting the IMUs.
Since magnetometer measurements in the vicinity of ferromagnetic materials can easily be dis-
turbed, their calibration procedure usually requires external equipment or precise information
about the external magnetic field. Therefore, a complete in-field and practical magnetometer
calibration method is presented and evaluated. The method provides biases, scale factors, and
non-orthogonality parameters, taking the advantage of the fact that the magnitude of the true ge-
omagnetic field vector is always constant. This introduces a geometric ellipsoid fitting problem,
which is solved in a nonlinear, least-square estimator. Furthermore, the misalignment between
inertial sensors and magnetometer is estimated on the basis of a constant inclination assumed
in the homogeneous field. Hence, the whole process was carried out without external heading
information or additional equipment. Various experiments, in terms of magnitude deviation,
heading error, plane projection, and repeatability have shown a high precision of the estimated
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parameters with the proposed method.
After the IMUs are integrated into the suit and the user wears the suit, the position of IMUs rel-
ative to the body segments and the joint axes relative to the IMU coordinates must be estimated
in the body-IMU calibration process. These parameters are the prerequisite for most algorithms
for tracking body movements. Therefore, this work presents a novel and practical body-IMU
autocalibration method, which is specifically developed for the lower body. At first, a theoret-
ical observability analysis of an existing calibration method is performed, which demonstrates
its limited applicability for the hip and knee joints. Based on this, a method is proposed to
simultaneously estimate the positions of three IMUs (mounted on the pelvis, upper leg, lower
leg) relative to the joints. Both methods are evaluated using two types of movements; Type A,
which involves random movements in all directions, and Type B, which involves the separate
movements in every possible degree of freedom of each joint. In the experimental evaluation,
based on simulated and real data, the proposed method shows a significant improvement in
terms of accuracy and robustness, compared to the previous method, especially for suboptimal
(low variation) movements during calibration.
Since the global orientation estimation in for type A movements is faulty due to outliers in the
accelerometer measurements, an optimal orientation estimation method is proposed, which can
be realized using only gyroscope measurements and the measurements of Type B movements.
In addition, it is shown that if due to the limited balance or motion ability, only measurements
of Type A movements are available, the conditions of observability, in particular angular ve-
locity, can be evaluated to allow a primary quality check of the acquired data and the resulting
calibration parameters.

The lower body pose estimation includes two online tracking procedures: pelvis orientation
estimation and leg pose estimation with respect to pelvis. In order to estimate the pelvis orienta-
tion, an EKF is developed, where the state vector consists of angular velocity, angular acceler-
ation, magnetic disturbances, and orientation. The algorithm is evaluated based measurements
taken on the suit worn by subjects and while they were performing squat exercises. This shows
the improvements in orientation estimation, resulting from inclusion of angular acceleration and
magnetic disturbance in the states compared to a conventional EKF-based orientation estimator.

The leg pose estimation is based on another EKF, where inertial measurements contribute as
control inputs. This leads to a reduction of the computational complexity because not in ev-
ery correction step of the filter do the observation matrices associated with these measurements
have to be calculated. This approach proposes an observation model that uses the constraints
of the joints and takes into account the joint axes and positions from the body-IMU calibration
process.

This approach is evaluated based on measurements of subjects performing squat and abduc-
tion/adduction exercises. This provides an accurate estimate of the hip and knee joint angles
(average∼5 degrees) and the positions of the leg segments (average∼9 cm), which can provide
critical measures for monitoring strength exercises such as ROM and posture imbalances.
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To monitor the strength exercises, the idea is to capture a template signal while instructing
users to perform the movements correctly according to their ability and state of health. This
template is used in an online template-matching algorithm based on DTW that was evaluated
using the join angles and segment positions estimated by the pose estimation approach, while
users performed the squat exercise. This method is optimized using a motion primitive detec-
tion technique and feature extraction. The results show that compared to other optimization
approaches, the proposed method led to a lower execution time while maintaining a good ac-
curacy. This effectively provides a measure for RM, which is one of the critical factors in
monitoring strength exercises.

7.2. Future Works

7.2.1. System design

7.2.1.1. Extension and further miniaturization

By exploiting the advantages of the proposed method, i.e. those of simplified wiring and low
power consumption, the system can be extended with additional IMUs. It is therefore possible
to track the details of the core movements, which is of crucial importance in many strength
exercises. Furthermore, wearing comfort can be improved by further minimizing the size of the
controller unit.

7.2.1.2. User acceptance

In this work, the system quality is evaluated under different aspects like power consumption,
weight, and costs. In addition, a user study on the suit’s wearing quality and its flexibility during
the exercises helps to further develop the product, taking user acceptance into account.

7.2.1.3. In-situ embedded tracking

A further future focus of work is the in-situ implementation of the tracking algorithm as this
reduces the packet size and thus increases energy efficiency.

7.2.2. Calibration

7.2.2.1. Measurement noise and other uncertainty

In the body-IMU calibration process, it is assumed that all the measurements are contributing to
the same uncertainty. However, considering the IMU noise characteristics, error in calibration
of each sensor, and each movement, the problem should assume different uncertainties. Here,
varying uncertainties could account not only for different types of movements during calibra-
tion, but also, e.g. for varying amounts of garment movements or other soft tissue artifacts due
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to different suit materials and styles or different body shapes.

7.2.2.2. Experimental observability analysis

The observability criteria were experimentally verified for most of the trials with calibration
movements, in Section 4.3.9.4. However, some exceptions were observed. These are subject to
further investigations in the future. In addition, the idea of quality control of the captured data
based on observability criteria to obtain better calibration results can be developed with more
experiments by more subjects.

7.2.2.3. Movement categories

In the experimental evaluation of this thesis, it is assumed that the subjects are healthy and able
to perform the calibration movements at high intensities. This helps to better evaluate the algo-
rithm for extreme situations when the probability of error due to acceleration outliers is high.
However, in order to cover different types of applications, especially those related to rehabili-
tation, the experiments need to be extended to different categories, such as slow, medium, and
high intensity. As with the slower movements, there are fewer possibilities of error due to the
outliers, but at the same time, fewer variations in movement lead to inaccurate estimates from
the optimization problem (see Section 4.3.2), while movements with high intensity for the same
duration have more variations with a higher probability of outliers. Therefore, the thresholds
for quality control can be estimated differently for each category.

7.2.3. Pose Estimation

7.2.3.1. Evaluation using a known magnetic field

In the proposed approach for pelvis orientation estimation, which is presented in Section 5.1,
the estimated magnetic disturbances are evaluated by the magnitude deviation. However, a more
accurate assessment can be obtained using a magnetic field from a known source and comparing
the estimation in the absence and presence of that source.

7.2.3.2. Heading evaluation

As discussed in Section 5.2, the use of the information obtained from the body-IMU calibration
approach and joint constraints for leg pose estimation relaxes the requirement for a reference
in the horizontal plane such as the Earth’s magnetic field. However, this must be evaluated
practically, specifically for exercises that stimulate movements in this plane, such as lateral or
medial hip rotation.
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7.2.3.3. Adaptive noise tuning

The proposed approach for estimating the leg position can be extended by an adaptive tuning for
the measurement noise to optimize the filtering for outliers. Methods such as adaptive Kalman
filtering [73], [72], or the combination of Kalman filtering and machine learning in [26], where
the dynamic representation of motion and noise models can be learned from data, can be used
to further optimize the estimation.

7.2.4. Exercise Identification

7.2.4.1. Exercise phase identification

In the current work, a simple form of phase detection using the estimated knee joint angle and a
predefined threshold was implemented to guide the user in performing the exercise (see Section
3.2.3). A more sophisticated approach is to use the identification method in Chapter 6 to iden-
tify different phases by taking into account their different characteristics, segments involved,
and characteristics that are related or critical to the correct performance of each phase.

7.2.4.2. Repeatability

More experiments over a longer period of time for each subject can help to analyze the repeata-
bility of the identification method and, if necessary, to adjust the threshold for disjoint query
accordingly. The result of such experiments is beneficial for rehabilitation processes as the pa-
tients’ performance may vary depending on the type of injury, fatigue, and stage of recovery.
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B. Mathematical Notations

Notation Meaning

~̃ω gyroscope vector measurement
~̃a accelerometer vector measurement
~̃m magnetometer vector measurement
~ω angular velocity vector
~a acceleration vector
~m magnetic field vector
~bω gyroscope measurement bias
~ba accelerometer measurement bias
~bm magnetometer measurement bias
Cω gyro misalignment rotation matrix
Ca accelerometer misalignment rotation matrix
Cm magnetometer misalignment rotation matrix
Sω gyro scale factor diagonal matrix
Sa accelerometer scale factor diagonal matrix
Sm magnetometer scale factor diagonal matrix
mref reference magnetic field
~g measured gravity vector
G global frame
RXY rotation matrix from Y to X
qXY quaternion of rotation from Y to X
ωGS angular velocity of sensor with respect to global frame
~lmS distance vector from IMU to joint m
~nP normal vector of plane P
~x state vector
~α angular acceleration vector
~rnS rotation axis of a hinge joint, n, measured in the frame of sensor S
~rmS rotation axis of a spheroidal joint, m, measured in the frame of sensor S
P (z|x) probability density function of z given x
Γ acceleration from rotation
N(µ,Σ) multivariate normal distribution with the mean of µ and covariance Σ
exp exponential function
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C. Quaternion, Conversions and
Filtering

C.1. Quaternion

Quaternion is a hyper-complex number (C.1b), which is commonly used to present a 3D rota-
tion in a four dimensional vector form((C.1c)).

q = qw + qxi+ qyj + qzk (C.1a)

~q = [qw qx qy qz]
T (C.1b)

(C.1c)

This work follows Hamilton definition of quaternion and expresses a passive rotation, meaning
that coordinate frames are transformed. In order to transform the presentation of a 3D vector
vA from frame A to the frame B, the quaternion qBA which presents rotation from A to B can
be applied according to Equation C.2.

~vB = ~qBA ⊗ ~vA ⊗ ~q∗BA (C.2)

where ⊗ is a quaternion multiplication which is a standard algebraic multiplication of form
C.1b. The 3D vectors are in the form of quaternion, ~v = [0 vx vy vz]

T and q∗BA is conju-
gation of qBA, which also defines inverse of the quaternion:

~q∗ = [qw − qx − qy − qz]T (C.3)

The quaternion multiplication of q1 ⊗ q2 can also be written as matrix vector multiplication
of [q1]Lq2 or [q2]Rq1.

C.1.1. Quaternion Derivative and Integration

When the quaternion is the transformation from global to local frame, the quaternion derivative
is following:

~̇q =
1

2
~ω ⊗ ~q (C.4)

Here ~ω is the quaternion form of 3D angular velocity vector which is assumed to be of the
global frame with respect to the local frame and measured in the local frame i.e. S~ωSG.
Considering that the the derivative of angular velocity can be non zero, as it is the assumption
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in Section 5.1.2, the quaternion integration is achieved using the first-order of Taylor expansion
[131]:

qk = q∆T ⊗ qk−1 (C.5a)

with

q∆T = qω̄ +
∆T 2

24
ωk−1 ⊗ ωk (C.5b)

qω̄ = exp(ω̄∆T ) (C.5c)

, where ω̄ is the median angular rate defined by:

ω̄ = ωk−1 +
1

2
ω̇∆T (C.6)

C.2. Axis-Angle

Axis-angle represents the rotation of angle of the magnitude θ around a unit vector ~u = [ux uy uz],
defining the axis of rotation. Which can be presented as a quaternion using exponential map-
ping:

q = exp(~uθ/2) = cos(θ/2) + ~u sin(θ/2) (C.7)

C.3. Conversions

C.3.1. Quaternion to Rotation Matrix

R =

q2
w + q2

x − q2
y − q2

z 2(qxqy − qwqz) 2(qxqz + qwqy)
2(qxqy + qwqz) q2

w − q2
x + q2

y − q2
z 2(qyqz − qwqx)

2(qxqz − qwqy) 2(qyqz + qwqx) q2
w − q2

x − q2
y + q2

z

 (C.8)

C.3.2. Axis Angle to Rotation Matrix

The equivalent rotation matrix of angle axis is the following:

R =

 v2
xC + c vxvyC + zc vxvzC + vys

vyvxC + vzs v2
yC + c vyvzC − vxs

vxvzC − vys vxvyC + vxs v2
zC + c

 (C.9)

, where c = cosθ, s = sinθ, C = 1− c
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C.4. Filtering

C.4.1. Accelerometer/Magnetometer Model Jacobian

In both accelerometer and magnetometer measurement models in the orientation estimators
described in Section5.1, the measurement in the reference frame, ~v ∈ {g̃G, m̃ref} is mapped
to the measurement in the sensor frame using (C.8). Therefore the model should be linearised
using (2.17e) which results the following jacobian:

H =

H11 H12 H13 H14

H21 H22 H23 H24

H31 H32 H33 H34

 (C.10)

where
H11 = 2vxqw − 2vyqz + 2vzqy, H24 = H11, H33 = −H11

H12 = −2vxqy + 2vyqx + 2vzqw, H23 = H12, H34 = H12

H13 = −2vxqy + 2vyqx + 2vzqw, H22 = −H13, H31 = H13

H14 = −2vxqz − 2vyqw + 2vzqx, H21 = −H14, H32 = −H14

C.4.2. Quaternion Jacobian

In both EKFs, presented in this thesis, the kinematic model includes the state transition, which
is defined by (C.5). In order to calculate the transition matrix, Fk in (2.16), Equation (C.5)
should be linearised with respect to the related states, here quaternion, q, angular velocity, ω,
and angular acceleration, α:

∂qk
∂qk−1

= [q∆T ]LI4×4) (C.11a)

∂qk
∂wk−1

= [qk−1]R(
∂qω̄
∂ω̄

I3×3 +
∆T 2

24
[ωk]RI4×3) (C.11b)

∂qk
∂αk−1

= [qk−1]R(
∆T

2

∂qω̄
∂ω̄

I3×3) (C.11c)

with In×n being the identity matrix of order n and I4×3 =

[
01×3

I3×3

]

In order to compute ∂qω̄
∂ω̄

the Equation (C.7) is used:

∂qω̄
∂ω̄

=

[
−(ω̄∆T/|ω̄|) sin(|ω̄∆T |)

sin(ω̄∆T )(I3×3|ω̄|2 − ω̄ω̄T )/|ω̄|3 + cos(ω̄∆T )ω̄ω̄T∆T/|ω̄|2

]
(C.12)
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[87] MÜNDERMANN, L., CORAZZA, S., AND ANDRIACCHI, T. P. The evolution of methods
for the capture of human movement leading to markerless motion capture for biomechan-
ical applications. Journal of NeuroEngineering and Rehabilitation 3, 1 (2006), 1. 30

[88] MUSCOLINO, J. Manual Therapy for the Low Back and Pelvis: A Clinical Orthopedic
Approach. LWW in touch series. Wolters Kluwer Health, 2014. 15, 141

[89] NATIONAL CENTERS FOR ENVIRONMENTAL INFORMATION. http://www.ngdc.
noaa.gov/ngdc.html. [Online; accessed 25-January-2020]. 48

[90] NERINO, R., CONTIN, L., DA SILVA PINTO, W., MASSAZZA, G., ACTIS, M., CAPAC-
CHIONE, P., CHIMIENTI, A., AND PETTITI, G. A bsn based service for post-surgical
knee rehabilitation at home. In Proceedings of the 8th International Conference on Body
Area Networks (2013), ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications), pp. 401–407. 1, 18

[91] NICORA, D. A. Microsoft kinect, Sept. 13 2016. US Patent 9,440,134. 30

[92] O’BRIEN, J. F., BODENHEIMER JR, R. E., BROSTOW, G. J., AND HODGINS, J. K.
Automatic joint parameter estimation from magnetic motion capture data. 31

[93] O’DONOVAN, K. J., KAMNIK, R., O’KEEFFE, D. T., AND LYONS, G. M. An inertial
and magnetic sensor based technique for joint angle measurement. Journal of biome-
chanics 40, 12 (2007), 2604–2611. 16, 18
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