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Cognitive load theory is considered universally applicable to all kinds of learning scenarios.
However, instead of a universal method for measuring cognitive load that suits different
learning contexts or target groups, there is a great variety of assessment approaches.
Particularly common are subjective rating scales, which even allow for measuring the three
assumed types of cognitive load in a differentiated way. Although these scales have been
proven to be effective for various learning tasks, they might not be an optimal fit for the
learning demands of specific complex environments such as technology-enhanced STEM
laboratory courses. The aim of this research was therefore to examine and compare the
existing rating scales in terms of validity for this learning context and to identify options for
adaptation, if necessary. For the present study, the two most common subjective rating
scales that are known to differentiate between load types (the cognitive load scale by
Leppink et al. and the naïve rating scale by Klepsch et al.) were slightly adapted to the
context of learning through structured hands-on experimentation where elements such as
measurement data, experimental setups, and experimental tasks affect knowledge
acquisition. N � 95 engineering students performed six experiments examining basic
electric circuits where they had to explore fundamental relationships between physical
quantities based on the observed data. Immediately after the experimentation, the
students answered both adapted scales. Various indicators of validity, which
considered the scales’ internal structure and their relation to variables such as group
allocation as participants were randomly assigned to two conditions with a contrasting
spatial arrangement of the measurement data, were analyzed. For the given dataset, the
intended three-factorial structure could not be confirmed, and most of the a priori-defined
subscales showed insufficient internal consistency. A multitrait–multimethod analysis
suggests convergent and discriminant evidence between the scales which could not
be confirmed sufficiently. The two contrasted experimental conditions were expected to
result in different ratings for the extraneous load, which was solely detected by one
adapted scale. As a further step, two new scales were assembled based on the overall
item pool and the given dataset. They revealed a three-factorial structure in accordance
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with the three types of load and seemed to be promising new tools, although their
subscales for extraneous load still suffer from low reliability scores.

Keywords: cognitive load, differential measurement, rating scale, validity, split-attention effect, STEM laboratories,
multitrait–multimethod analysis

INTRODUCTION

Experimentation in laboratory-like environments is an integral
aspect of higher science education (Trumper, 2003; Hofstein and
Lunetta, 2004; Lunetta et al., 2005). Guided by a predefined task,
learners manipulate experimental setups and observe scientific
phenomena in order to explore or verify functional relationships
between specific quantities in interaction with their theoretical
background (American Association of Physics Teachers, 2014;
Lazonder and Harmsen, 2016). Although this inquiry-based
format allows for unique hands-on learning experiences,
various empirical studies revealed contrary results concerning
the learning gain of laboratory courses (Volkwyn et al., 2008;
Zacharia and Olympiou, 2011; de Jong et al., 2013; Wilcox and
Lewandowski, 2017; Husnaini and Chen, 2019; Kapici et al.,
2019). In response, technology-based approaches are applied
to support students during experimentation and thereby
ensure essential learning and raise the effectiveness of
experimentation as a learning scenario (de Jong et al., 2013;
Zacharia and de Jong, 2014; de Jong, 2019; Becker et al., 2020).

The most common way to evaluate the effectiveness of new
approaches is to apply conceptual knowledge tests to measure
learning gains based on content-related knowledge (Etkina et al.,
2006; Vosniadou, 2008; de Jong, 2019). However, this procedure
does not account for learning as a complex cognitive process.
Since the focus of conceptual knowledge tests is merely on
learning outcomes, it remains unclear whether and how the
learning effects could be further increased and learning
processes made more efficient. This gap is closed by
considering cognitive load theory (CLT; Sweller et al., 1998,
2019; Sweller, 2020), which provides a useful framework to
describe learning in terms of information processing and
which respects human cognitive architecture as well as
learners’ prior knowledge and the demands of the instruction.
Hence, to evaluate the effects of a learning scenario, investigations
should not only solely consider the effectiveness in terms of
higher scores in knowledge tests but also the efficiency in terms of
an optimal level of cognitive demands. This integration of
cognitive processes as a key element of learning scenarios
requires sensitive and valid measurement instruments to
determine the cognitive load.

CLT outlines the working memory and the long-termmemory
as those entities that are central for processing information and
building up knowledge structures (Sweller et al., 1998, Sweller
et al., 2019) called schemata (Sweller et al., 1998). Already stored
knowledge can be retrieved from long-term memory to support
information processing in working memory. While the long-term
memory is considered permanent and unlimited in terms of
capacity, working memory is limited by the number of
information elements that can be processed simultaneously

(Baddeley, 1992; Sweller et al., 1998, Sweller et al., 2019;
Cowan, 2001). Consequently, learners cannot process
information with any desired complexity, which means that to
ensure successful learning, this limited capacity should be
respected. Any processing of information requires mental
processes that consume working memory capacity, which is
called cognitive load. CLT distinguishes three types of
cognitive load (Sweller, 2010; Sweller et al., 1998, Sweller et al.,
2019): intrinsic cognitive load (ICL), extraneous cognitive load
(ECL), and germane cognitive load (GCL). ICL is related to the
complexity of the learning content and depends on the learner’s
prior knowledge as already built-up schemata reduce the number
of elements that must be processed simultaneously in working
memory. ECL refers to processes that are not essential and
therefore hamper learning such as searching for relevant
information within the environment or maintaining pieces of
information in mind over a longer time (Mayer and Moreno,
2003). GCL represents the amount of cognitive resources devoted
to processing information into knowledge structures. The
amount of ECL imposed by a task affects the remaining
resources that can be devoted to germane processing. Current
theoretical considerations suggest that GCL cannot be essentially
distinguished from ICL as both are closely related to processes of
schema acquisition (Kalyuga, 2011; Jiang and Kalyuga, 2020). As
a consequence, a reinterpretation of CLT as a two-factor model
(ICL/ECL) is discussed. GCL is integrated into this model as a
function of working memory resources needed to deal with the
ICL of a task instead of representing an independent source of
working memory load (Sweller, 2010; Sweller et al., 2019).

One of the main goals of CLT is to derive design guidelines for
learning materials and environments that ensure that learning
processes can proceed efficiently and undisturbed by irrelevant
processing steps (Sweller et al., 2019). This can be achieved by
removing unnecessary and distracting information as well as by a
reasonable presentation format to avoid split-attention that
consumes cognitive capacities and impairs essential learning
(Mayer and Moreno, 1998; Ayres and Sweller, 2014).
Therefore, elements of information that need to be associated
with each other in learning should be presented without delay and
in spatial proximity as described by the multimedia design
principles of temporal and spatial contiguity (Mayer and
Fiorella, 2014). These principles are empirically proven to
reduce ECL and support learning in multimedia learning
scenarios (Schroeder and Cenkci, 2018).

Scientific experimentation in STEM laboratory courses is
assumed to be a highly complex learning scenario since
learners are confronted with numerous sources of information
such as experimental setups and measurement data which are
presented in various representational forms. Although most of
the given elements are typical features of the laboratory situation,
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not all of them are essential for the learning process. As CLT is
considered universal and applicable to various learning scenarios,
its framework can also be applied to laboratory courses (Thees
et al., 2020).

Since cognitive load has rarely been seen as a main variable to
investigate the impact of hands-on laboratory courses, there
existed no valid measurement instruments that 1) addressed
the aforementioned characteristics of scientific hands-on
experimentation including context-specific load-inducing
sources and 2) provided results that allowed for a
differentiated interpretation of the three load types. Former
investigations by Kester et al. (Kester et al., 2005; Kester et al.,
2010) used the one-item scale by Paas (1992) in the context of
virtual science experiments, i.e., screen-based electricity
simulations, to rate mental effort as a measure of cognitive
load. There, the authors revealed higher transfer performance
for learning with integrated rather than split-source formats.
However, no differences concerning mental effort were found,
which could be due to the limitations of the one-item cognitive
load measurement (Kester et al., 2010). We intended to address
this gap for real hands-on experiments by considering existing
instruments that are known to differentiate load types and
adapting them to fit the context of lab courses.

Even though current theoretical approaches integrate GCL in
a dual intrinsic-extraneous load typology of cognitive load,
Klepsch et al. (2017) argued that creating supportive learning
scenarios requires a comprehensive understanding of task-related
aspects of cognitive load (ICL/ECL) as well as of a learner’s
deliberately devoted germane resources (GCL) and their
interactions. On these grounds, a differentiated measurement
of cognitive load capturing its three-partite nature is still
considered expedient.

The search for adequate instruments to measure the three
types of cognitive load has a long history in cognitive load
research. The most common approaches use subjective rating
scales where participants rate their perceived cognitive load by
evaluating their agreement with predefined statements (Brünken
et al., 2003; Krell, 2017; Jiang and Kalyuga, 2020). There exist
essentially two different rating scales that are proven to
differentially measure the three types of load. These are the
cognitive load scale (CLS; 10-item questionnaire) developed by
Leppink et al. (2013) and the (second version of the) naïve rating
scale (NRS; 8-item questionnaire) by Klepsch et al. (2017). Both
scales were applied in various learning contexts (Leppink et al.,
2014; Altmeyer et al., 2020; Andersen and Makransky, 2021a;
Andersen and Makransky, 2021b; Becker et al., 2020; Kapp et al.,
2020; Klepsch and Seufert, 2020, Klepsch and Seufert, 2021;
Skulmowski and Rey, 2020; Thees et al., 2020), while the
reliability of the subscales and the valid measurement of the
three load types were confirmed multiple times (Klepsch et al.,
2017; Becker et al., 2020; Klepsch and Seufert, 2020; Thees et al.,
2020; Andersen and Makransky, 2021a; Andersen and
Makransky, 2021b). However, their application in different
contexts usually requires moderate adaptations.

With the objective of identifying an appropriate scale to
measure the three types of cognitive load in the complex
context of STEM laboratory courses, we adapted two existing

cognitive load scales. We based our work on the original scales as
presented in Leppink et al. (2013) and Klepsch et al. (2017) as well
as former adaptations of the CLS in the target context by Thees
et al. (2020). In this process, both scales were adapted regarding
terminology and partly extended to take various characteristics of
the laboratory environment into account. Although these
adaptations are highly plausible, they require empirical,
evidence-based validation of the resulting scales in the
intended learning context. Accordingly, the main research
question of the present study was whether the adapted scales
can be considered as valid measurement instruments of cognitive
load for the context of STEM laboratory courses.

Validity is defined as the appropriateness of interpreting test
scores in an intended manner (Kline, 2000; AERA et al., 2011;
Kane, 2013). The presented analyses followed the concepts given
by the Standards for Educational and Psychological Testing
(AERA et al., 2011) where the overall evidence for validity is
based on considering multiple sources of evidence such as
content, internal structure, relation to other variables, and
response processes. As mentioned before, the main emphases
of the application and interpretation of the scales are the
suitability for the special context and the differentiated
measurement of the three types of cognitive load. Based on
this, the following sources of evidence were considered and
evaluated during the presented analyses.

A prerequisite for interpreting test scores in the target context
of STEM laboratory courses is that the items adequately represent
the addressed constructs (ICL, ECL, and GCL) in terms of their
formulation. In this sense, adequate itemsmust match the sources
of cognitive load that are part of STEM experiments as a learning
environment. This evidence based on content (AERA et al., 2011)
was considered during the item development, i.e., the adaptation
of the original items toward the target context. In order to
successfully distinguish between the three types of cognitive
load, each adapted scale is expected to show a three-partite
internal structure that matches the structure inherited by the
original scales. This evidence based on internal structure (AERA
et al., 2011) was considered during the analysis of the presented
dataset. The simultaneous application of two adapted scales that
are intended to measure the same constructs allowed for
evaluating convergent and discriminant evidence to determine
whether the same constructs were addressed by the respective
subscale and whether different types of load could be clearly
distinguished. The evaluation of properly addressing the intended
constructs was further addressed by inducing group-specific
differences by an external factor. By varying the presentation
format of crucial information that was relevant to the learning
process, ECL was varied, and the analyses evaluated whether the
adapted scales could detect these induced differences. In addition,
the scales should not indicate any differences in ICL since the
complexity of the content and the experimental tasks as well as
the representational forms were equal for both groups.
Furthermore, a negative correlation between prior knowledge
and ICL was expected, which is intended to verify the reduction of
perceived content-related complexity due to the already built-up
knowledge structures. These aspects related to an outer criterion
and were considered evidence based on relations to other variables
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(AERA et al., 2011). As both scales are applied as rating
scales and the individual process of rating each item is not
considered part of the analyses, evidence based on response
processes (AERA et al., 2011) was not considered in the present
analyses.

In the present study, both adapted scales were applied after
learners had participated in a technology-enhanced laboratory
course unit examining hands-on experiments in the context of
electricity. The experimental tasks and the overall procedure
followed the study design of Altmeyer et al. (2020).
Participants had to explore basic physical quantities by setting
up several electric circuits and observing automatically provided
measurement data while manipulating fundamental parameters.
To induce differences in ECL by an external factor, two
experimental learning conditions were included to contrast the
spatial arrangement of the learning-relevant measurement data as
a between-subject factor. One group received a split-source
format where the data were anchored as virtual displays to
their corresponding component using augmented reality and
therefore spread across the learning environment. The other
group received an integrated format where the data were
grouped together on a single display. Former studies in the
context of hands-on electricity laboratory courses have
emphasized that measurement values, which have to be
compared and related to each other in order to learn
successfully, should be presented in spatial proximity
(Altmeyer et al., 2020; Kapp et al., 2020; Thees et al., 2020) to
avoid the well-known split-attention effect (Schroeder and
Cenkci, 2018). Hence, the split-source format was expected to
trigger unnecessary search processes, and the corresponding
group was expected to rate higher ECL than the group with
the integrated format. Both groups received the same
experimental tasks and equal representational forms of the
data to avoid differences in the complexity of the learning
material. In terms of the evaluation of validity sources, this
leads to the following hypotheses.

Hypothesis based on the internal structure is as follows:

(H1) Since both adapted scales are intended to differentiate the
three types of cognitive load, confirmatory factor analyses
are expected to prove their three-partite internal structure.

Hypotheses based on relation to other variables are as follows:

(H2) Since both adapted scales include subscales that are
intended to measure the same latent variable, high
correlations between corresponding subscales
(convergent evidence) and low correlations between
different subscales (discriminant evidence) are expected.

(H3) The integrated presentation of measurement data reduces
perceived ECL compared to the split-source format.

(H4) Since the complexity of the learning material was not
varied and participants were randomly assigned to the
conditions, equal ratings for ICL are expected.

(H5) Since ICL depends on learners’ prior knowledge, negative
correlations between prior knowledge scores and ICL
ratings are expected.

Furthermore, insufficient evidence for the internal structure
might cast doubt on the appropriateness of the respective
adaptations and challenge validity evidence based on content
or other variables. In reaction, the construction of a new scale
based on the overall item pool is considered a useful procedure to
contribute to scale development for the target context, leading to
the following research question:

(RQ) Is it possible to merge both scales into a new scale that fulfills
the intended three-partite structure as well as detects the
induced differences in ECL?

MATERIALS AND METHODS

Item Development
While the NRS was already available in German (Klepsch et al.,
2017), the CLS had to be translated to implement it in German
university courses. We translated the scale with an emphasis on
maintaining the meaning of the original items while applying
comprehensible and grammatically correct formulations. We
have already implemented the translated scale in previous
studies (Altmeyer et al., 2020; Thees et al., 2020), where it has
proven useful in principle, and we have further refined it for the
present study. As both scales were not originally intended to be
used in the context of STEM laboratory courses, all the items had
to be adapted. The most important aspect was to emphasize the
experiment itself consisting of the experimental tasks and
procedures as well as all the components of the experimental
setup and the learning environment, such as data displays and
instruments. The adaptation intended to point out that the scales
are referring to the cognitive load induced by the experimental
tasks and not any accompanying activities such as pre- or
posttests or preparation phases which are mandatory for
graded laboratory courses. Hence, any formulations referring
to general terms such as “lecture,” “lesson,” or “activity” were
replaced by “experiment” or “experimental task.” The results can
be found in Tables 1, 2.

Concerning the NRS (Table 1), the items of the ICL and GCL
subscales were adapted by replacing the term “activity” as
mentioned before. For the ECL subscale, the term
“information” was specified as “measurement data.” These
data are seen as the crucial information of the scientific
context and the basis for any learning process as the
information about the mutual dependencies between the
physical quantities of the behavior of experimental
components is solely represented by the data. The 7-point
Likert scale level was adopted from the original work by
Klepsch et al. (2017), including the labeling of the scale range
as “absolutely wrong” (left endpoint; German: “Stimme
überhaupt nicht zu”) and “absolutely right” (right endpoint;
German: “Stimme voll zu”).

Concerning the CLS (Table 2), the references within the items
were also adjusted to the “experiment.” Furthermore, for the ICL
and GCL subscales, the contents of the learning scenario
(formerly statistics and corresponding formulas) were replaced
by “measurement procedure,” “representations,” and “physical
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laws.” This resulted in one additional item for each subscale
(CLS-3 and CLS-12). Another item was added to the ICL subscale
referring to the complexity of the experimental setup (CLS-4). For
ECL, the term “instructions” was directed to the “experimental
task” and the “work booklet.” There, another item was added
concerning the operation of the experimental setup (CLS-7).
Hence, the original 10-item scale was expanded to a 14-item
scale in order to capture various facets of the context.
Furthermore, the scale range was adjusted to a six-point Likert
scale. Within this step, the term “very” was excluded from each
item. The labeling of the scale range was adopted from the
original work by Leppink et al. (2013), ranging from “not at
all” (left endpoint; German: “Trifft gar nicht zu”) to “completely
the case” (right endpoint; German: “Trifft voll und ganz zu”).

Participants
The sample originally consisted of N � 117 engineering students
from a medium-sized German university (approximately 14,000
students in total) who attended the same introductory physics
lecture. Six of them had to be excluded due to language problems,
and another 16 students had to be excluded due to missing values
in the overall dataset. The remaining N � 95 students constitute
the sample for all further analyses. Participants were randomly
assigned to group 1, receiving an integrated presentation format

(N � 48; 15% female, 81%male; age:M � 19.8, SD � 1.3; semester:
M � 1.9, SD � 1.3), and group 2 (N � 47; 15% female, 74% male;
age:M � 20.1, SD � 1.5; semester: M � 2.3, SD � 1.7), receiving a
split-source presentation format. The investigation was
conducted during the winter semester 2019. Participation was
reimbursed with a bonus percentage of 5% for the final
examination score.

Materials
During the intervention, participants performed structured
physics experiments for which they had to construct several
electrical circuits and analyze measurement data to derive
fundamental laws for voltage and current (well known as
Kirchhoff’s laws), which are based on a former study by
Altmeyer et al. (2020). This inquiry process was guided by
structured task descriptions in which six different circuits were
examined. Learners had to build up these circuits with typical
educational equipment (i.e., cables, a voltage source, and
resistors) based on a given circuit diagram and answered a set
of single-choice items concerning the relation of voltage or
amperage at all components based on the observed data. To
observe a variety of data in order to derive physical laws, learners
were encouraged to manipulate fundamental parameters of the
experiment, i.e., the source voltage (Figure 1). The data were

TABLE 1 | Original and adapted NRS, based on the work of Klepsch et al. (2017).

Type
of
load

Original scale Adapted scale #

Item—German Item—English Item—German Item—English

ICL Bei der Aufgabe musste man viele
Dinge gleichzeitig im Kopf bearbeiten

For this task, many things
needed to be kept in mind
simultaneously

Beim Experimentierenmusste man viele
Dinge gleichzeitig im Kopf bearbeiten

During experimentation, many
things needed to be kept in mind
simultaneously

NRS-1

Diese Aufgabe war sehr komplex This task was very complex Das Experimentieren war sehr komplex Experimentation was very
complex

NRS-2

ECL Bei dieser Aufgabe ist es mühsam, die
wichtigsten Informationen zu erkennen

During this task, it was
exhausting to find the
important information

Beim Experimentieren war es mühsam,
die wichtigsten Informationen zu
erkennen

During experimentation, it was
exhausting to find the important
information

NRS-3

Die Darstellung bei dieser Aufgabe ist
ungünstig, um wirklich etwas zu lernen

The design of this task was
very inconvenient for learning

Die Darstellung der Messwerte beim
Experimentieren war ungünstig um
wirklich etwas zu lernen

The presentation of
measurement data was very
inconvenient for learning

NRS-4

Bei dieser Aufgabe ist es schwer, die
zentralen Inhalte miteinander in
Verbindung zu bringen

During this task, it was
difficult to recognize and link
the crucial information

Beim Experimentieren war es schwierig,
die richtigen Messwerte und Bauteile
miteinander in Verbindung zu bringen

During experimentation, it was
difficult to link appropriate data
and components

NRS-5

GCL Ich habe mich angestrengt, mir nicht
nur einzelne Dinge zu merken, sondern
auch den Gesamtzusammenhang zu
verstehen

I made an effort, not only to
understand several details
but also to understand the
overall context

Beim Experimentieren habe ich mich
angestrengt, mir nicht nur einzelne
Dinge zu merken, sondern auch den
Gesamtzusammenhang zu verstehen

During experimentation, I made
an effort, not only to understand
several details but also to
understand the overall context

NRS-6

Es ging mir beim Bearbeiten der
Lerneinheit darum, alles richtig zu
verstehen

My point while dealing with
the task was to understand
everything correct

Es ging mir beim Experimentieren
darum, alles richtig zu verstehen

My point while experimenting
was to understand everything
correct

NRS-7

Die Lerneinheit enthielt Elemente, die
mich unterstützten, den Lernstoff
besser zu verstehen

The learning task consisted
of elements supporting my
comprehension of the task

Die Aufgaben, die ich während dem
Experimentieren bearbeiten musste,
haben mich dabei unterstützt, den
Lernstoff besser zu verstehen

The experimental task supported
my comprehension of the
content

NRS-8
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provided automatically via a technology-enhanced measuring
system and were visualized in real time. Hence, every
interaction with the experiment that led to a change in its
physical properties could be immediately observed as a change
in the displayed data. The experimental tasks were, in terms of the
complexity of the examined circuits and the required prior knowledge,
comparable to such experiments that are part of the corresponding
introductory physics laboratory courses which are mandatory for
university STEM programs. Hence, the learning content and the

complexity of the laboratory work instructions matched the
curriculum of university engineering students.

The learning environment consisted of the following: a work
booklet that detailed the experimental tasks and circuit diagrams
and the experimental components such as wires, a range of
resistors, a voltage source, and a device that virtually displayed
the automatically gathered measurement data (Figures 2, 3). For
group 1, the measurement data were presented in a clearly
arranged matrix on a tablet display (Figure 2). For group 2,

TABLE 2 | Original and adapted CLS, based on the work of Leppink et al. (2013).

Type
of load

Original scale Translated Adapted scale #

Item—English Item—German Item—English Item—German

ICL The topic/topics covered in
the activity was/were very
complex

Die während der Aktivität
behandelten Themen waren sehr
komplex

The experiment covered topics
that I perceived as complex

Die beim Experimentieren thematisierten
Inhalte empfinde ich als komplex

CLS-1

The activity covered formulas
that I perceived as very
complex

Die Aktivität behandelte Formeln,
welche ich als sehr komplex
empfand

I perceived the measurement
procedure as complex

Das Aufnehmen der Messwerte habe ich als
komplex empfunden

CLS-2

The experiment covered
representations that I perceived
as complex

Die beim Experimentieren verwendeten
Darstellungen habe ich als komplex
empfunden

CLS-3

I perceived the experimental
setup as complex

Die experimentellen Aufbauten habe ich
inhaltlich als komplex empfunden

CLS-4

The activity covered concepts
and definitions that I
perceived as very complex

Die Aktivität behandelte
Konzepte und Definitionen,
welche ich als sehr komplex
empfand

The experiment covered physical
laws that I perceived as complex

Die beim Experimentieren betrachteten
physikalischen Zusammenhänge habe ich als
komplex empfunden

CLS-5

ECL The instructions and/or
explanations during the
activity were very unclear

Die Arbeitsaufträge und/oder
Erklärungen zur Aktivität waren
sehr unklar

The instructions during the
experiment were unclear

Die Arbeitsaufträge zum Experimentieren
waren unklar

CLS-6

The operation of the experimental
setup was unclear

Das Bedienen des Experiments war unklar CLS-7

The instructions and/or
explanations were, in terms of
learning, very ineffective

Die Arbeitsaufträge und/oder
Erklärungen waren sehr
ungeeignet für den Lernfortschritt

The instruction during the
experiment was, in terms of
learning, ineffective

Die Arbeitsaufträge zum Experimentieren
waren für meinen persönlichen Lernfortschritt
ungeeignet.

CLS-8

The instructions and/or
explanations were full of
unclear language

Die Arbeitsaufträge und/oder
Erklärungen enthielten viele
sprachliche Unklarheiten

The work booklet was full of
unclear language

Die Experimentieranleitung enthielt viele
sprachliche Unklarheiten

CLS-9

GCL The activity really enhanced
my understanding of the
topic(s) covered

Die Aktivität hat mein Verständnis
zu den betrachteten Themen
wirklich gefördert

The experiment enhanced my
understanding of the topic
covered

Das Experimentieren heute hat mein
Verständnis zu dem betrachteten
Themengebiet gefördert

CLS-10

The activity really enhanced
my knowledge and
understanding of statistics

Die Aktivität hat mein Wissen und
Verständnis zu Statistik wirklich
gefördert

The experiment enhanced my
understanding of the
measurement procedures

Das Experimentieren heute hat mein
Verständnis zur Aufnahme von Messwerten
gefördert

CLS-11

The activity really enhanced
my understanding of the
formulas covered

Die Aktivität hat mein Verständnis
zu den betrachteten Formeln
wirklich gefördert

The experiment enhanced my
understanding of the physical
laws covered

Das Experimentieren heute hat mein Wissen
zu den betrachteten physikalischen
Zusammenhängen gefördert

CLS-12

The experiment enhanced my
understanding of the
representations covered

Das Experimentieren heute hat mein
Verständnis zu den verwendeten
Darstellungen gefördert

CLS-13

The activity really enhanced
my understanding of
concepts and definitions

Die Aktivität hat mein Verständnis
zu Konzepten und Definitionen
wirklich gefördert

The experiment enhanced my
general understanding of
physical concepts and definitions

Das Experimentieren heute hat mein
allgemeines Verständnis zu physikalischen
Konzepten und Definitionen gefördert

CLS-14
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smartglasses (Microsoft HoloLens, first-generation developer
edition) were used as a see-through head-mounted augmented
reality device, and the measurement values were presented as
virtual 3D components next to the corresponding real parts of the
electric circuits within the visual field of the smartglasses using
visual marker recognition (Figure 3). Both groups received equal
representational forms, i.e., numerical values and a virtual needle
deflection. Accordingly, the only difference between the two
groups was the spatial arrangement of the virtual real-time
measurement displays. Further information on the technical

implementation of the learning environment was described by
Altmeyer et al. (2020) and Kapp et al. (2020).

Both adapted subjective rating scales were applied as shown in
Tables 1, 2 in order to measure cognitive load in a differentiated way.

Prior knowledge was determined via conceptual knowledge
consisting of 10 single-choice items, which were also used in a
similar form by Altmeyer et al. (2020). These items were selected
from a conceptual knowledge test originally developed by Urban-
Woldron and Hopf (2012) and Burde (2018) based on their
compatibility with the physical concepts (i.e., voltage and current

FIGURE 1 | Example of the experimental task description (translated for this publication, corresponds to the circuits given in Figures 2, 3).

FIGURE 2 | The learning environment as experienced by group 1 (presentation of the measurement data via separate display on a tablet).
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in simple circuits, Kirchhoff’s laws) and the complexity of the
circuits (i.e., parallel and serial circuits with few components)
addressed during the experimentation phase. Five of the items
were directly related to circuits that were part of the experimental
tasks and were therefore considered “instruction-related” in
subsuming analyses. The items were already available in
German, but to match the formal representation of the
instructions from the experiment, we adapted the symbols of
the circuit diagrams (symbols for resistors, voltage source, etc.).
An example item can be found in Figure 4.

Furthermore, knowledge tests concerning concrete
measurement data and a usability questionnaire were applied,

but these were excluded from the presented analyses (Thees et al.,
in preparation). Eventually, students were asked for demographic
data on a voluntary basis.

Procedure
After receiving general information about the study and data
protection as well as providing written consent for participation,
the students completed the prior knowledge test (pretest). All the
items were presented consecutively on a computer screen, and
completion took approximately 10 min.

Afterward, participants were introduced to the actual learning
environment, i.e., the work booklet, the experimental

FIGURE 3 | (a) Representation of the AR view as seen through the smartglasses by participants. (b) Researcher wearing smartglasses.

FIGURE 4 | Example of the conceptual knowledge items as presented to the participants (Urban-Woldron and Hopf, 2012, translated for this publication).
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components, and the operation of the displaying device (tablet or
smartglasses). They were randomly assigned to one of the two
intervention groups. Students using the smartglasses were able to
wear their own glasses or contact lenses at the same time without
any limitation.

The introduction was followed by the experimentation
phase, in which students conducted the six experimental
tasks as presented in the work booklet. After setting up
each circuit, a supervisor checked and corrected the wiring
in order to ensure safe experimentation. Students did not
prepare for this experiment, and no further guidance or
support was provided. The experimentation phase lasted
approximately 30 min.

Subsequently, participants consecutively completed the
subjective cognitive load rating scales as paper–pencil tests,
starting with the adapted CLS. Each student received the same
order of items, but the items were presented in a randomized order
so that they were not grouped by their intended three-partite
structure. Answering both questionnaires took less than 10min.

Eventually, students answered questions concerning
demographic data on a voluntary basis in a paper–pencil format.

Data Analysis
For each subscale, the mean values were calculated as scores,
which were scaled to [0; 1] afterward.

To provide evidence based on the internal structure, the
reliability of each subscale for both scales was calculated as
internal consistency (Cronbach’s alpha; αc) with the conventional
threshold of αc � 0.70 for acceptable reliability (Kline, 2000). In
addition, confirmatory factor analyses (CFA)were conducted for both
scales, evaluating their intended three-factorial structure representing
the three types of cognitive load (addressing H1). There, correlations
between the factors (i.e., the subscales) were allowed.

To provide evidence based on relations to other variables, both
scales were compared following the procedure of a traditional
multitrait–multimethod analysis (Campbell and Fiske, 1959) in
order to search for convergent and discriminant evidence as each
method (scale) addresses each trait (type of load). There, the
correlations between the subscale scores for the two applied
methods as well as the reliability scores in terms of internal
consistency were considered and compared via a correlation table
called MTMM matrix (addressing H2). Although there are no clear
guidelines concerning thresholds, strong evidence is indicated if the
correlations between the same traits measured by different methods
are higher than the correlations between different traits measured by
different methods. The traditional evaluation of the correlation table
was complemented with a subsuming confirmatory MTMM, which
was calculated as a correlated trait–correlated method model via a
CFA, which allowed for correlations between all components (Eid,
2000). Furthermore, it was checked whether the scales could detect
differences in the subscales between the two intervention types
(grouping variable) during the study. Therefore, group-specific
ECL scores were compared using a two-sided independent sample
t-test (addressingH3). An equivalent t-test was conducted to compare
group-specific ICL scores (addressing H4). In addition, the
correlations between the ICL subscales and the score in the pretest
were included. There, a negative correlation was expected as higher

prior knowledge is assumed to reduce the complexity of the content
due to already existing knowledge schemata (addressing H5).

Going one step further, we intended to combine both scales in
order to merge them into a new scale with better model fit
concerning the tripartite structure (addressing RQ). This was
based on an exploratory factor analysis (EFA), which was
conducted using all items of both scales together. In this
instance, the Kaiser–Meyer–Olkin measure revealed a good
sampling adequacy with an overall KMO � 0.79. The
individual KMOj values were in the range of [0.65; 0.89].
Furthermore, Bartlett’s test of sphericity, χ2(231) � 1,006.4,
p < 0.001, revealed adequate item correlations. The scree plot
and a parallel analysis were taken into account to determine the
optimal number of factors, which was found to be three. Since the
factors to be extracted were allowed to correlate with each other,
an oblique factor rotation (“oblimin”) was applied. As the
intention was to find a short and concise scale, we limited the
number of items included for each subscale to three. Two new
models were developed based on the factor loadings and the
relation to the group variable in the presented study. Both scales
were evaluated by conducting a confirmatory factor analysis with
their intended three-factorial structure.

In general, the significance level for type I errors was considered
as α � 0.05. For each confirmatory analysis, the following indices
were applied with their corresponding cutoff values indicating
acceptable model fit: the comparative fit index (CFI) and the
Tucker–Lewis index (TLI), each ≥0.95, as well as the root mean
square error of approximation (RMSEA) and the standardized
root mean square residual (SRMR), each ≤ 0.08.

All the confirmatory analyses were conducted using the
lavaan package (version 0.6-6) in the R programming
language (version 3.6.0). For the EFA, the psych package
(version 1.8.12) was used.

RESULTS

Validity Evidence Based on Internal
Structure
The reliability analyses revealed insufficient values for the NRS,
αc(ICL) � 0.52, αc(ECL) � 0.53, and αc(GCL) � 0.62, and mixed

TABLE 3 | Correlation table for MTMM analysis (MTMM matrix; only correlations
with p < 0.05 are displayed).

Method A: NRS Method B: CLS

Trait ICL ECL GCL ICL ECL GCL

NRS ICL (0.55)
ECL 0.302 (0.53)
GCL 0.262 −0.242 (0.62)

CLS ICL 0.531 0.373 n.s3 (0.85)
ECL 0.203 0.551 −0.353 0.362 (0.43)
GCL n.s3 n.s3 0.481 0.222 −0.222 (0.89)

n.s. � not significant (p > 0.05).
( ) : reliability (Cronbach’s alpha).
1Monotrait–heteromethod coefficients.
2Heterotrait–monomethod coefficients.
3Heterotrait–heteromethod coefficients.
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results for the CLS, αc(ICL) � 0.86, αc(ECL) � 0.43, and αc(GCL)
� 0.90. Concerning the NRS, all the subscales did not reach the
common threshold of αc � 0.70. In contrast, the subscales of the
CLS for ICL and GCL showed satisfying results, but not for ECL.

The subsuming CFA also revealed no clear results.
Concerning the NRS, the model fit indices did not reach the
conventional thresholds, CFI � 0.83, TLI � 0.72, RMSEA � 0.11,
and SRMR � 0.09. Concerning the CLS, RMSEA � 0.07
indicated an acceptable model fit, while the other indices
narrowly missed the range for acceptable values, CFI � 0.94,
TLI � 0.93, and SRMR � 0.09. In sum, there was no consistent
indication of an acceptable model fit for both scales concerning
the assumed structure with three inherent factors, which
contradicts Hypothesis 1.

Validity Evidence Based on Relations to
Other Variables
In order to compare the behavior of both adapted scales in terms
of an MTMM approach, a correlation table based on Pearson’s
correlation was calculated (MTMM matrix; Table 3). Here, the
correlations between the two methods concerning each trait
(monotrait–heteromethod coefficients) became significant (p <
0.05) with a range of r � 0.48 to r � 0.55 (Cohen, 1988), indicating
convergent evidence between the two scales. These correlations
were higher than those significant correlations between different
traits measured by different methods (heterotrait–heteromethod
coefficients), emphasizing discriminant evidence. The same
results were found concerning the correlations between
different traits measured by the same method
(heterotrait–monomethod coefficients), which were also lower
than the monotrait–heteromethod coefficients. Furthermore, the
patterns (ranks and sign of correlations) of the
monomethod–heterotrait blocks were comparable for both
methods. In contrast, the reliability values (Cronbach’s αc)
showed high variance. In sum, based on the correlation table
(Table 3), these findings emphasized convergent and
discriminant evidence.

The subsuming confirmatory MTMM analysis revealed
acceptable values for RMSEA � 0.06 and SRMR � 0.08. In
contrast, CFI � 0.93 and TLI � 0.91 were slightly below the
range for acceptable model fit.

Table 4 shows the group-dependent scores for each subscale.
The results from the independent-sample t-test revealed for the
adapted NRS a significant difference in favor of group 1 (lower

ECL) in accordance with Hypothesis 3, while the CLS showed no
group-specific differences. However, both NRS and CLS indicate
no differences between groups concerning ICL in accordance
with Hypothesis 4. Details of the test statistics can be found in
Table 4.

Furthermore, there were no significant correlations between
the pretest results and the ICL-related subscales, both for the full
pretest scores, r � −0.12 and p � 0.25 for the NRS, r � −0.02 and
p � 0.82 for the CLS, and the intervention-related items, r � −0.07
and p � 0.51 for the NRS, r � 0.01 and p � 0.89 for the CLS. These
results contradict Hypothesis 5.

Evaluation of Combined Scales
All the items of both scales were taken into account to merge
them into a new scale. First, an exploratory factor analysis was
conducted to evaluate which items group together. Both the scree
plot and a parallel analysis indicate a three-factorial structure.
The items with the highest loading indicate conformity with the
types of load known from theory, although some items with lower
loadings are not grouped in accordance with their intended
position. Table 5 displays the extracted factor loadings.

For the first new model (referred to as model 1), the three
items with the highest (positive) loadings were included because
they represent their respective factor in a reliable manner. Hence,
the ICL consisted of the items CLS-2, CLS-3, and CLS-4, the ECL
subscale consisted of CLS-9, NRS-4, and CLS-6, and the GCL
subscale consisted of CLS-10, CLS-12, and CLS-13. The
subsuming CFA revealed adequate to good model fit, CFI �
0.98, TLI � 0.98, RMSEA � 0.05, and SRMR � 0.06.

In this way, model 1 corresponds directly to the structure
revealed by the EFA for the given dataset. In terms of validity, it
therefore meets the evidence source of the internal structure. The
second model (referred to as model 2) aimed to integrate another
source of evidence (evidence based on relation to other variables)
by including those items in the ECL subscale that had proven to
be sensitive toward the induced differences between the groups.
Hence, for model 2, the same items as in model 1 were used to
merge the ICL and GCL subscales because of their high loadings.
For the ECL subscale, we used the full subscale of the NRS (NRS-
3, NRS-4, and NRS-5) in order to incorporate the ability to detect
a significant difference in terms of ECL. A subsuming
confirmatory factor analysis also revealed adequate to good
model fit, CFI � 1.0, TLI � 1.0, RMSEA � 0.00, and SRMR � 0.06.

Since both new models shared the same items for ICL and
GCL, they reached the same (sufficient) level of reliability for

TABLE 4 | Group-specific results for both adapted scales.

Scale Subscale Group 1 (M(SD)) Group 2 (M(SD)) t-test

t df p

NRS ICL 0.25 (0.15) 0.25 (0.15) 0.00 93.0 1
ECL 0.14 (0.14) 0.21 (0.17) 2.17 89.3 0.03
GCL 0.72 (0.19) 0.71 (0.16) -0.43 91.7 0.67

CLS ICL 0.20 (0.14) 0.21 (0.14) 0.12 92.9 0.91
ECL 0.13 (0.09) 0.14 (0.11) 0.44 87.6 0.66
GCL 0.68 (0.19) 0.67 (0.21) -0.11 91.0 0.92
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these subscales, αc(ICL) � 0.79 and αc(GCL) � 0.90. They slightly
differed concerning the reliability of their ECL subscales, αc(ECL,
model 1) � 0.54 and αc(ECL, model 2) � 0.57 which are still below
the desired cutoff value αc � 0.70. Furthermore, the sensitivity
toward group-specific differences in ECL seemed to be inherited
as model 1 showed no significant difference, t(90.3) � −0.64 and
p � 0.52, while model 2 adopted the significant differences from
the full adapted NRS, t(89.3) � 2.17 and p � 0.033.

DISCUSSION

Validity Based on Content
Both scales had to be adapted, and the CLS had to be expanded to
fit the desired context. Since experimenting in STEM laboratory
courses has been commonly based on generating and interpreting
the measurement data, the measurement procedure and the
corresponding quantities as well as their functional
relationships and scientific laws are the main source of the
information that has to be processed in order to generate new
knowledge structures. Especially concerning the adapted and
expanded CLS, the item development included all those
relevant sources of content-related complexity in the subscales
dedicated to measure ICL as well as GCL, whereas the items of the
NRS merely consisted of general expressions. Hence, the adapted
CLS appears to be slightly advantageous as a higher number of
typical aspects from the learning scenario were directly addressed
within the items.

Following the concept of ECL as presented by CLT, processes
that do not contribute to essential learning originate from
irrelevant and distracting elements. These include language
issues and presentation formats that demand unnecessary

search processes and representational holding. While the CLS
originally included text comprehension as a source of ECL, the
adapted version was not expanded toward the presentation
formats (e.g., by addressing distracting search processes in the
items), though this was a specific part of the presented study. In
this case, the adapted CLS could be limited in its ability to cover
all relevant load-inducing aspects that learners face throughout
the experimental procedure. In contrast, the NRS already
addressed presentational aspects, which were retained for the
adapted version.

In sum, all subscales covered relevant aspects of the learning
environment, but each with a specific main emphasis toward
instructional design aspects. Based on the item formulation, the
adapted CLS seems to address more precisely ICL and GCL, while
the adapted NRS seems to address ECL in a more sensitive way
for the context of laboratory learning scenarios. Furthermore, this
emphasizes a general need for developing and validating specific
instruments that directly address the characteristics of learning
scenarios and include all crucial load-inducing elements. A
more general item formulation might be too abstract, which
could result in participants not being able to relate the items to
the given situation without being further introduced to the
intention and the meaning of the respective scale (e.g.,
Klepsch et al., 2017).

Validity Evidence Based on Internal
Structure
Concerning their internal consistency for the given dataset, the
subscales of the adapted NRS and adapted CLS cannot be seen as
sufficiently reliable. Moreover, these low indices are far below
those of the original work by Klepsch et al. (2017) and therefore

TABLE 5 | Results of the EFA for all items of both NRS and CLS.

Item Factor 1 interpreted as ICL Factor 2 interpreted as GCL Factor 3 interpreted as ECL

CLS-3 0.75 -0.04 0.03
CLS-2 0.74 -0.11 0.05
CLS-4 0.73 0.03 -0.01
NRS-2 0.72 -0.02 -0.16
CLS-5 0.66 0.13 0.14
NRS-1 0.53 -0.03 -0.16
CLS-1 0.48 0.36 0.25
NRS-3 0.40 -0.04 0.22
CLS-7 0.31 -0.06 0.27
CLS-10 -0.05 0.95 0.02
CLS-12 0.02 0.82 -0.11
CLS-13 -0.09 0.79 0.13
CLS-14 0.05 0.72 -0.01
CLS-11 0.10 0.62 -0.16
NRS-8 0.11 0.48 -0.21
CLS-9 0.10 0.11 0.60
NRS-6 0.27 0.22 -0.49*
NRS-7 -0.01 0.23 -0.48*
NRS-4 0.09 -0.12 0.47
CLS-6 0.31 -0.05 0.45
NRS-5 0.23 0.01 0.35

Highest item loadings are given in bold.
*Negative loadings were not considered for combined scales.
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challenge the benefits and appropriateness derived from the
content analysis (Validity Based on Content). It is probable
that the a priori specification of load-inducing content will not
fit the subjective impressions of the learners during the
experimentation phase. In contrast, the subscales for ICL and
GCL of the adapted CLS show a good internal consistency. Except
for ECL, the values are in the range of the original work by
Leppink et al. (2013) or former adaptions of the scale (Thees et al.,
2020; Andersen and Makransky, 2021a, Andersen and
Makransky, 2021b). Here again, the insufficient reliability for
ECL casts doubt on whether the items of this specific subscale are
appropriate to measure the intended type of cognitive load.
Especially in comparison with the findings of Thees et al.
(2020), who used a very similar formulation of the ECL items
in another scientific context (thermodynamics instead of
electricity), these results challenge a broad applicability of a
simple adaption of the original CLS and raise the question of
how to integrate context-specific sources of load while the overall
pedagogical approach remains comparable (e.g., inquiry-based
learning).

The results of the CFA also undermine the intended internal
structure of each scale as the model fit indices do not provide
sufficient formal evidence for the three assumed factors. Hence,
the confirmatory analysis strengthens criticisms of the
appropriateness of the three-factorial structure as intended
during the item development. This might be a consequence of
a rather small sample size because the conventional rule of thumb
that the number of participants should be more than 10 times the
number of items is only reached for the adapted NRS, but not for
the CLS. Another limiting factor might be the reduction of the
scale range from a 10-point to a six-point scale for the
adapted CLS.

In sum, these findings reveal that the intended internal
structure of the instruments is not fully represented in the
data, which constrains the interpretation of the single
subscales. We must therefore reject the first hypothesis and
question the appropriateness of the adapted scales to
differentiate between three different types of load in the
context of technology-enhanced laboratory courses. Although
the CFAs mostly narrowly missed the acceptable range for the fit
indices, which can be interpreted as a case of a too small sample
size, the low indices for internal consistency as the reliability
measure for four out of six subscales remain the main issue for the
internal structure.

Validity Based on Relations to Other
Variables
Assuming the three-factorial structure of the scales as validated in
various former studies, a traditional MTMM matrix based on a
correlation table was analyzed. Although the reliability of all the
subscales adapted from the NRS and for EL adapted from the CLS
was not sufficient, significant correlations and repeating patterns
indicate convergent and discriminant validity between the two
scales. This means that the corresponding subscales in both
approaches have meaningful coincidence and that each
subscale can be distinguished from the others according to

their interpretation as different types of cognitive load. These
findings preliminarily emphasize the scales’ appropriateness as
load-measuring instruments. However, the strength of evidence is
limited due to missing cutoff values for the traditional
interpretation of correlation patterns. Furthermore, the results
could not be sufficiently reproduced by a confirmatory MTMM
approach as not all indices indicate an acceptable model fit.
Hence, although there are promising findings based on the
traditional comparison of correlation patterns, we cannot
provide sufficient formal evidence for convergent and
discriminant validity, which means that the second hypothesis
is not clearly supported by the data of the present study. Thus, the
MTMM analysis does not support the internal structure of both
scales as being directed to the same three different latent variables.

Concerning the contrasted presentation formats, a sensitive
scale was expected to reflect group-specific differences in ECL in
favor of group 1. For the given dataset, only the adapted NRS
revealed a significant difference between the two intervention
groups. As expected, group 1 reported lower scores for ECL.
Hence, the findings support the third hypothesis for the adapted
NRS and emphasize it as the more sensitive scale toward the
contrasted presentation formats and the accompanying load
sources, i.e., the spatial split of related information elements.
The missing sensitivity of the adapted CLS toward differences in
ECL might be the consequence of a biased focus on language
issues and an insufficient adaptation toward other load-inducing
sources for this specific subscale. However, these findings are in
accordance with a study conducted by Skulmowski and Rey
(2020), who also revealed that the NRS is more likely to detect
differences in ECL than the CLS. In their research, the authors
also argued that the original items of the CLS might focus too
much on the verbal aspects of the learning scenario, while the
NRS addresses information processing in a more generalized way.

Both adapted scales did not show significant differences
concerning ICL scores, which is in accordance with the
intention to provide both groups with equal content,
experimental setups, and representational forms of the
measurement data. Hence, the fourth hypothesis is supported
for both scales. However, there is no significant correlation
between the scores of both ICL subscales and the specific or
full prior knowledge scores, which contradicts the theory-based
expectation that learners with lower prior knowledge will perceive
a higher ICL. Eventually, a missing correlationmight indicate that
learners’ prior knowledge was sufficient as a conceptual
prerequisite to successfully conduct the experimental tasks.
However, this leads to a rejection of the fifth hypothesis
because this result does not support the compliance of the ICL
subscale with the theoretical concept of ICL in terms of the CLT.

In sum, the direct comparison between the two adapted scales
via theMTMMmatrix emphasizes but does not prove convergent
and discriminant evidence due to insufficient support by the
confirmatory model fit. The relation to the grouping variable for
the given study emphasizes the adapted NRS as more sensitive
toward differences in ECL, which is in accordance with previous
findings. As expected, both scales reveal equal ICL ratings for
both groups. However, the relation between ICL and prior
knowledge could not be verified. Eventually, the relation to
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other variables revealed mixed to rather unfavorable results as
most of the underlying hypotheses had to be rejected.

Combined Scales
As the internal structure of each adapted scale remains challenged
after considering evidence based on the reliability scores as well as
after the CFAs and the MTMM approaches, we decided to
construct a combined instrument based on the given item
pool of both scales. As the first step, the EFA revealed a three-
factorial structure for the combined dataset. In addition, the items
with the highest factor loadings indicate accordance with the
expected underlying latent variable so that the three factors can be
interpreted as related to the three types of cognitive load
(Table 5). Given the self-imposed restriction of using only
three items per factor to obtain a concise scale, two models
were derived that considered those items with the highest positive
factor loadings and findings from validity evidence based on the
relation to the grouping variable.

Both models showed acceptable to good model fit in
subsuming CFAs concerning their three-factorial internal
structure, emphasizing their capability to differentiate between
the three types of load. While the subscales for ICL and GCL are
equal in both models and consist of items from the adapted CLS,
the models differ concerning the ECL subscale. While model 1
follows the ranking of factor loadings from the EFA, resulting in a
mix of items from both adapted NRS and CLS, model 2 inherits
the full ECL subscale from the adapted NRS. This step is not
based on the findings from the EFA, but respects the fact that this
particular subscale was able to detect group-specific differences in
ECL which are likely to exist in studies that contrast presentation
formats to address well-known multimedia effects such as split-
attention (Schroeder and Cenkci, 2018). Hence, model 2
constitutes a further development as it integrates validity
evidence based on the relation to other variables.

However, both models still suffer from low internal
consistency concerning ECL, which reduces the reliability of
the acceptable model fits. This issue might result from the fact
that the items dedicated to measuring ECL cover different load-
inducing elements such as data presentation or verbal
components. Hence, they cannot be expected to equally
contribute to the score, and so, reaching a high internal
consistency remains difficult. Andersen and Makransky
(2021b) even considered ECL as a multidimensional variable,
which presents a plausible reason for our low internal consistency
findings. Eventually, we follow the results of the presuming EFA
by considering ECL as an unidimensional factor which addresses
multiple learning-irrelevant elements.

In sum, model 2 is considered the best scale based on the
given item pool and the given dataset. Concerning the content
of the new subscales for ICL and ECL, the items refer to
concrete aspects of the experimental tasks, i.e., those
components that are a priori determined the basis of the
learning process. Hence, the combination of both NRS and
CLS showed that the most valuable items for the given dataset
were taken from the CLS, but the NRS provided a meaningful
supplement. Furthermore, the restriction to three items per
subscale emphasizes the need to focus on those elements of the

learning environment that are mandatory to deal with during
the learning process.

Future Work
To address a wider range of technology-based learning scenarios,
our adapted versions could be enhanced by integrating items
from other adaptations. For example, Andersen and Makransky
(2021a) included the term “information display format” as a
source of load in their ECL subscale, which was based on the
original CLS. This term would directly address the contrasted
presentation formats in our study without any bias toward a
certain technology. On the contrary, such general formulations
require a clarification as to what they are referring to, such as by a
short introduction prior to the subjective rating, where the term is
specified for each intervention group.

As most of the samples used in comparable studies consist of
university students, studies validating the application of the
considered scales in school contexts are missing. At the school
level, learners are expected to have a different amount of prior
knowledge and metacognitive skills. Hence, the measurement of
cognitive load based on subjective experiences could be much
more challenging (Brünken et al., 2003; Klepsch et al., 2017).
Therefore, the scales have to be adapted concerning the item
formulation as well as the scale levels and the endpoint labeling.
In addition, items on passive load (mental load) and active load
(mental effort), developed by Klepsch and Seufert (2021), could
be added. The authors could show that the item on passive load
related to the ICL factor of their scale and the item on active load
related to the GCL factor. Klepsch and Seufert recommended the
use of these additional items with children and tasks that require
learners’ self-regulation (e.g., laboratory work). Such adaptation
might demand further investigations toward validity evidence.
Future work might consider expert ratings for the item content to
strengthen the explanatory power of the content-related evidence
(Brünken et al., 2003; Klepsch et al., 2017). Furthermore, it will be
essential to validate the new and further developed scales on a
large sample as well as to consider that further (back-)
translations of the presented (German) scales might affect
validity aspects.

In the present study, only some of all possible sources
providing evidence for the validation of the cognitive load
scales were examined. Future studies should not only
experimentally manipulate the ECL but also systematically
manipulate all three types of cognitive load and verify whether
the developed scales can also reflect variations in the ICL and
GCL. Manipulation of ICL could be achieved by contrasting
laboratory tasks with different levels of complexity or by
contrasting groups with different levels of prior knowledge
(evidence based on the relation to other variables). However,
previous research suggesting that a subject’s ability to reliably
differentiate between ICL and ECL depends on a sufficient level of
prior knowledge (Zu et al., 2021) should also be considered. GCL
could be manipulated by providing or not providing self-
regulation prompts during student experimentation.

Another option for analyzing validity evidence based on the
relation to other variables could be a direct comparison between
subjective ratings and objectives measures such as eye-tracking
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data. Recent developments of mobile eye-tracking devices allow
for collecting data in dynamic situations such as laboratory
courses and might even be applied to augmented reality-based
learning scenarios (Kapp et al., 2021) so that various approaches
of technology-enhanced learning scenarios can be accompanied
by both the subjective rating scales and the objective gaze-based
measures. Nevertheless, the interpretation should consider prior
research indicating that there might be no linear relationship
between objective and subjective measures but that they rather
cover different facets of cognitive load (Minkley et al., 2021).

Conclusion
In this article, we present supporting and critical points regarding
the validity of two popular subjective cognitive load-rating scales
in the context of technology-enhanced science experiments.
Although the content of the adapted items seemed to be
promising in terms of addressing various facets of the learning
environment, the low internal consistency and the insufficient
evidence for the intended three-factorial structure negate the
appropriateness of the adapted scales. However, based on the
correlations between the subscales, there are various indications
that the addressed latent variables (i.e., ICL, ECL, and GCL) are
comparable in both scales and can be distinguished from each
other. Again, these assumptions cannot be formally confirmed
based on the given dataset. In sum, three of five deduced
hypotheses toward different sources of evidence in terms of
validity had to be rejected due to insufficient formal evidence.
Hence, there are no sufficient results that favor either the adapted
NRS or the adapted CLS, although they seem to be convincing
regarding their content.

The interpretation of this conflict is twofold. First, for the
learning context under investigation, we question the current
state of the adapted scales as they are not appropriate to measure
different types of cognitive load. This would explain the
insufficient reliability and the insufficient model fits
concerning the assumed internal structure. In contrast, one
could assume that the items of both scales are capable of
representing the real load-inducing elements, but each scale
addresses some but not all facets of the learning environment.
Hence, solely by combining both item pools, it was possible to
reach an adequate scale (model 2). At this point, the advantages of
both adapted scales were combined to form a promising new scale
for the context of complex science learning scenarios (although
this scale is not without its flaws). The internal consistency of the
ECL subscales is not acceptable but can be made plausible via the
inherent multiple aspects covered by the items.

The presented study is an example of applying known and
empirically validated scales to an essential and realistic learning
scenario from STEM education. Since inquiry-based learning
scenarios contain multiple information sources, researchers must
develop new instruments to be able to correctly measure cognitive
load. Moreover, the issues raised in the analyses show that it is
necessary to seek for validity based on different sources such as
content, internal structure, and relation to other variables. In this
sense, we want to encourage the community to contribute to the
question of how to create valid and suitable questionnaires to
determine cognitive load in specific complex learning scenarios.
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