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ABSTRACT
Scattering and scattering plates have a large diversity of applications. Scattering of optical and THz electromagnetic waves can be performed
with Galois scattering plates, which had found applications in acoustics first (i.e., with sound waves in concert hall acoustics). For binary
Galois scattering plates, the single scattering entities, i.e., mesas (for a binary 1) or voids (for a binary 0), have characteristic lateral dimensions
of half the wavelength of the electromagnetic waves to be scattered. Their optimal height is a quarter of the wavelength for plates used in
reflection. Meanwhile, not too elaborate lithographic techniques allow for the implementation of Galois plates for the THz range and even
for the visible spectral range. We had reported on such scattering plates before. However, in this paper, also the mathematical concept is
described and the fabrication technologies are emphasized. In contrast to the case of scattering plates with irregular surface morphologies,
Galois plate scattering is not diffuse, but there are many scattering/diffraction orders.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0053843

I. INTRODUCTION

Optical scattering plates have gained increasing interest
in the last decade due to a variety of possible very specific
applications—ranging from scattering standards for virtual sur-
faces in computer game programming to provision of privacy in
parts of large halls.1,2 In addition, since THz technology is gain-
ing momentum,3–8 THz scattering plates might enrich the THz
toolbox.

Typically, scattering plates have surfaces with specific rough-
ness morphologies. On the one hand, the latter can be irregu-
lar/statistical and produced by self-masking during a dry-etch pro-
cess.9–13 On the other hand, they can be regular and lithographically
structured using an etch mask.2,14–17 In Refs. 14–16 as well as par-
tially in Refs. 2 and 17, the pattern follows a binary sequence con-
structed using the binary Galois number field GF(2m).18–20 The latter

is transformed from a one-dimensional (1D) to a two-dimensional
(2D) pattern with the help of the Sino representation, which stems
from the Chinese remainder theorem (CRT).18

In Refs. 2 and 17, among other concepts, metallized Galois
structures have been used in combination with microfluidics to
improve optical sensing of refractive index changes, especially uti-
lizing the plasmonic properties of those structures.

We had reported on our earlier work on Galois plates in
Refs. 14–16, but here we also explain the mathematical founda-
tions and their implications for the design. Moreover, the fabrication
technologies are described in detail.

We have implemented 2D Galois scattering plates for the THz
range as well as for the visual spectral range, employing photo-
lithographical as well as e-beam-lithographical techniques, respec-
tively. Our experimental results, which have been achieved for reflec-
tive Galois plates, verify the usefulness of the concept. The scattered

AIP Advances 11, 065130 (2021); doi: 10.1063/5.0053843 11, 065130-1

© Author(s) 2021

https://scitation.org/journal/adv
https://doi.org/10.1063/5.0053843
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0053843
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0053843&domain=pdf&date_stamp=2021-June-21
https://doi.org/10.1063/5.0053843
http://orcid.org/0000-0001-6915-1630
http://orcid.org/0000-0002-3334-4112
http://orcid.org/0000-0001-9916-8732
http://orcid.org/0000-0002-6540-6218
mailto:fouckhar@physik.uni-kl.de
https://doi.org/10.1063/5.0053843


AIP Advances ARTICLE scitation.org/journal/adv

radiation is not diffusely spread but rather distributed over a large
number of scattering maxima (i.e., diffraction orders) over a large
solid angle, with the number of orders depending on the power m of
the binary-numbered Galois field GF(2m) and on the ratio of lateral
feature width d and wavelength λ.

II. MATHEMATICS OF GALOIS FIELDS (SEE REF. 18)
Binary Galois number fields are explained here because sur-

face reliefs, which show mesas according to the logical 1’s of
such sequences, are used further on in this contribution. Taking
λ as the vacuum wavelength of the electromagnetic radiation, the
mesas should ideally have a width of d = λ/2 and a height of h
= λ/4 for reflective scattering plates with a top metal coating. At
least for optical frequencies, this still constitutes a technological
challenge.

A. Mathematical groups and finite number fields
A group is a non-empty set G with a mapping G⧫G→ G of any

two elements a and b of the group, i.e., a⧫b, onto another element of
G. The group is associative

(a⧫b)⧫c = a⧫(b⧫c), (1a)

and there is an identity element e with

a⧫e = e⧫a = a, (1b)

and an inverse element a−1 with

a⧫a−1 = a−1⧫a = e. (1c)

The group will be called Abelian if commutativity exists,

a⧫b = b⧫a. (1d)

Moreover, the group will be called cyclic if it contains a primitive
element p such that any element a of the group can be written as a
natural-numbered power m of p,

pm = a. (2)

A number field contains both an additive group (+) and a multiplica-
tive group (⋅). The multiplicative group includes all the field elements
that are not the additive identity (the zero element). The latter can-
not be an element of the multiplicative group because it cannot
have an inverse element (whose existence is required for any group
element).

The operations + and ⋅ have to be distributive, i.e.,

a ⋅ (b + c) = a ⋅ b + a ⋅ c, (3a)

(a + b) ⋅ c = a ⋅ c + b ⋅ c. (3b)

If the set G is finite, the number field will be called finite, too, or a
Galois field.

In this chapter, we use a binary Galois field GF(24) exemplar-
ily, i.e., a field with 24 − 1 = 15 four-tuples of binary numbers
(1 or 0) plus the zero element 0000. In our experiments, we have
also used structures, which represent a field GF(28) with 28−1 eight-
tuples, GF(210) with 210−1 ten-tuples, or even GF(216) with 216−1
sixteen-tuples.

B. Finite number fields of the form GF(2m )
In this article, we are especially interested in residue fields.

A residue Galois field is mainly defined by the following
operations:

a + b = c mod p, (4a)

a ⋅ b = c mod p (4b)

(mod = modulo). In this case, the result of addition/multiplication
is the residue or remainder of the interim result devided by p. The
notation GF(p) shall be used only for these residue Galois fields from
now on throughout this paper.

The simplest example of such a field is GF(2), which only
contains the binary numbers 0 and 1 (for a binary residue field,
subtraction is identical to addition).

In the case of GF(2m) with m = 4, there are 16 ele-
ments/ four-tuples (including the zero element) of the number
field, i.e., (0000), (0001), (0010), (0100), (1000), (0011), (0110),
(1100), (1001), (0101), (1010), (0111), (1110), (1011), (1101),
and (1111).

The addition is defined column-wise, which, e.g., gives (1100)
+ (1111) = (0011). Addition is not the binary addition with
carryovers due to the residue arithmetic, the carryovers are
ignored.

The multiplication is defined in the following way: The exem-
plary four-tuples are considered as polynomials (here, with the least
significant bit on the far right), e.g., 0011 = 0 ⋅ x3 + 0 ⋅ x2 + 1 ⋅ x1

+ 1 ⋅ x0. Then, multiplication means the multiplication of polyno-
mials modulo a given primitive (here binary) polynomial μ(x) over
GF(p) of degree m = 4. In order to have an inverse in GF(2m), the
polynomial μ(x) has to be irreducible. In a set of polynomials, an
irreducible polynomial is the equivalent to a prime number in a set of
numbers.

In the case of GF(24), there are three irreducible polynomials;
here, we mention and use just μ(x) = x4 + x + 1. In Ref. 21, all
primitive binary irreducible polynomials are listed up to a degree
of 168.

To give an example for multiplication in GF(24), we take the
four-tuples (1001) and (0110),

(1001) ⋅ (0110)mod μ(x) = (x3 + 1) ⋅ (x2 + 1)mod μ(x)
= (x5 + x4 + x2 + x)mod (x4 + x + 1)
= x5 + x2 − 1 = x5 + x2 + 1. (4c)

Calculating the remainder mod μ is the same as setting the irre-
ducible polynomial to 0. This means that x4 = −(1 + x) = (1 + x)
(neglecting the minus sign because we are using a binary number
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field). Thus, the multiplication example from Eq. (4c) can be pur-
sued further,

x5 + x2 + 1 = xx4 + x2 + 1 = x(1 + x) + x2 + 1 = x + x2 + x2 + 1

= x + 2x2 + 1
binary©= x + 0x2 + 1 = x + 1,

(4d)

which gives the four-tuple (0011) as the multiplication result.
The 16 four-tuples of the GF(24) residue number field have

been mentioned above already to give an impression of the set G.
However, in order to “generate” the field ab initio, we have to use
a primitive four-tuple, e.g., (0100) = x2. We start with the element
(0001) and proceed by multiplying with the mentioned primitive
element. This is equivalent to multiplying each preceding four-tuple
with x2,

(0001
−

)→ (0100
−

)→ (0011
−

)→ (1100
−

)→ (0101
−

)→ (0111
−

)

→ (1111
−

)→ (1001
−

)→ (0010
−

)→ (1000
−

)→ (0110
−

)

→ (1011
−

)→ (1010
−

)→ (1110
−

)→ (1101
−

). (5a)

The tuples reappear after the maximum number of possible steps,
which is 15 = 24 − 1 for m = 4. Thus, these sequences are called
maximum number sequences.

To simplify the situation, we can also think of this number field
as a binary-valued periodic sequence,

{qk} = 1010111 10001001 (5b)

(the gap is made for later reasons), of (24 − 1) bits, if we just take
the underlined least significant bit of all the 15 four-tuples from
(5a). To identify the four-tuples of the sequence in Eq. (5b) we can
successively observe the four subsequent bits to the right,

1010
±

a0

11110001001

10101
±

a1

1110001001

101011
±

a2

110001001

1010111
±

a3

10001001

1
®
q0

0101111
±

a4

000100 1
®
q14

⋅ ⋅ ⋅

101011110001001
±

a11

⋅ ⋅ ⋅

101011110001001 101
²

a14

0 ⋅ ⋅ ⋅

101011110001001 1010
±
a15= a0

⋅ ⋅ ⋅

(5c)

There is a recursion formula underlying this bit sequence (starting
with the index k = 0 on the far left)—in this example,

qk+4 = qk+1 + qk+0. (6)

The recursion formula is related to the irreducible polynomial
μ(x) = x4 + x + 1, which has been used to generate the sequence.
As mentioned before, its zeroes stand for x4 = −(x + 1) = (x + 1)
= x1 + x0.

Side remark: If we had used the multiplication by (0010) = x
instead of (0100) = x2 in our example above, we would have achieved
the same number sequence as in (5b) but starting at a different
position, i.e.,

{qk}alternative
= 10001001 1010111 (7)

(now the reason for the gap in Eq. (5b) becomes clear).

C. Room frequency spectrum of Galois maximum
number sequences

As mentioned before, 1D Galois fields have, e.g., been
applied to concert hall acoustics (thus not related to elec-
tromagnetic but rather sound waves) as maximum number
sequences. They have been realized as 1D reflecting surface
reliefs. Such sequences repeat after the maximum number
of permutations, e.g., in the GF(24) case after all 24 − 1
= 15 non-zero four-tuples or in a GF(28) case after all 28 − 1 = 255
non-zero eight-tuples.

Such structures have a pseudo-white 1Dx spatial frequency
spectrum dependent on the spatial frequency νx. The prefix “pseudo”
is used here because a number sequence is not continuous, but rather
defined point-wise. Thus, the spatial frequency spectrum is defined
point-wise too.

Analogous statements might be made for a corresponding 2Dx,y
structure (as we will see) but now we are dealing with two spatial
frequencies νx and νy and two scattering/diffraction angles βx and
βy. Such a structure can either be considered as a complicated 2Dx,y
diffraction grating or as the superposition of a large number of regu-
lar diffraction gratings with different grating constants gx ∼ 1/νx and
gy ∼ 1/νy.

A special transformation has to be performed to map the 1Dx
binary Galois number sequence onto a 2Dx,y array.

D. Mapping from 1D to 2D: The Sino representation
For improving concert hall acoustics with Galois scatterers, 1D

structures would probably be sufficient most often since the ensem-
ble of operagoers usually does not sit on many different levels. For
this paper, both in the THz and in the optical regime, we would
like to provide 2D scattering plates. Thus, a 1D sequence as in
(5b) is not sufficient. In order to map the 1D sequence onto a 2D
array with a pseudo-white spatial frequency spectrum in 2D, the
Chinese remainder theorem (CRT) is helpful, which results in the
so-called Sino representation.18 The CRT states that it is possible
to reconstruct consecutive integers in a certain interval from their
residues upon applying modulo functions, i.e., taking modulo a set
of coprime moduli. The situation will be simple and easy to visual-
ize if the number field has only two coprime factors because in this
case, the residues and numbers can be arranged in a 2D list, which is
exemplarily given further below.

If we take the set of 15 integers 0 to 14 (=15–1) as an exam-
ple, which has the coprime factors 3 and 5 with 3 ⋅ 5 = 15, then any
of these numbers can be reconstructed from the residues modulo 3
and 5. Again, as an example, let us assume that the residues are 1
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and 2 [see inter-relations in (8)]; then it is clear that the sought-after
integer number is 7. If the residues were 0 and 1, then the number
would be 6,

mod 3 − remainder & mod 5 − remainder↔ number,
0 & 0↔ 0,
1 & 1↔ 1,
2 & 2↔ 2,
0 & 3↔ 3,
1 & 4↔ 4,
2 & 0↔ 5,
0 & 1↔ 6,
1 & 2↔ 7,
2 & 3↔ 8,
0 & 4↔ 9,
1 & 0↔ 10,
2 & 1↔ 11,
0 & 2↔ 12,
1 & 3↔ 13,
2 & 4↔ 14.

(8)

In mapping the Galois sequence from 1D to 2D and naming the
two coprime numbers v and w, we can arrange the numbers in a v
× w array/matrix/list. To illustrate this, it is helpful to rearrange the
inter-relations in (8) into the list in Table I, with one remainder for
the number modulo 3 and the second one for the number modulo 5.

The “geometrical” sequence of these 15 numbers in the list is
illustrated with arrows in Table II.

The same “geometrical” sequence can and has to be applied for
the 15 binary numbers from the exemplary 1D sequence in Eq. (5b),
related to the binary residue number field GF(24) (see Table III) and
this is what is called the Sino-representation of the number sequence
in Eqs. (5a)–(5c).

This very arrangement of numbers has a point-wise white spa-
tial frequency spectrum both in the νx- and in the νy-direction, as
had the 1D number sequence only in the νx-direction. This is the

TABLE I. Mapping of the 1D residue Galois field with two coprime factors related to
(8) into a 2D array/matrix/list.

mod5-remainder = 0 = 1 = 2 = 3 = 4

mod3-remainder = 0 0 6 12 3 9
mod3-remainder = 1 10 1 7 13 4
mod3-remainder = 2 5 11 2 8 14

TABLE II. 2D list of the set of 15 numbers 0–14 from Table I with the sequence of
numbers marked.

TABLE III. “Geometrical” sequence of the 15 binary numbers from the exemplary 1D
sequence in Eq. (5b), related to the residue number field GF(24).

reason why the Sino-representation is the optimum for scattering
plate applications.

For applications in optics, we assume a circular light spot
and, therefore, prefer a geometrically nearly quadratic (rather than
extremely rectangular) 2D array with v ≈ w (the light spot is sup-
posed to fit into the array, not having parts of the spot beyond the
geometrical boundaries of the array). In addition, for high powers of
2, the number fields will have more than just two coprime moduli. In
that case, a weaker rule suffices in order to allow for a nearly pseudo-
white 2D spatial frequency spectrum, i.e., the two factors should be
nearly equal, but they do not have to be primes. For example, for a
number field GF(212), which has 212 − 1 = 4095 = 63 × 65 elements,
a 63 × 65 2D array will fulfill the task.

III. TECHNOLOGY FOR PREPARATION
OF GALOIS PLATES

As stated before, for our scattering experiments, we used
the binary residue number fields GF(28), GF(210), and GF(216)
as 2D arrays of 1’s and 0’s. They have been implemented via a
2D surface relief with a metallic top coating intended for use in
reflection—nominally with d = λ/2 wide and h = λ/4 high mesas for
the 1’s (and λ/2 wide voids with height 0).

A. 2D binary reflective THz Galois scattering plates
Figure 1 illustrates the technological process for preparation

of a 2D binary reflective THz Galois scattering plate. The design
frequency is 0.75 THz, equivalent to a vacuum wavelength of
λ = 400 μm. Thus, any “bit” has a desired width of d = λ/2 = 200 μm,
and in the case of 1’s/mesas, the desired height of h = λ/4 = 100 μm.
Note that a refractive index or permittivity does not have to be con-
sidered since the final surface relief will have a metallic film as the
uppermost layer and is intended for use in reflection.

The process is based on Ni electro-forming/plating because the
latter gives dense and sinkhole-free metallic layers, and its spatial
resolution suffices for the mentioned characteristic lateral bit size of
200 μm.

The process starts with a bare Si wafer. A 10 nm thin Cr
layer—intended as an adhesion-promotion agent—is deposited via
electron-beam-evaporation onto the substrate. Then, a 200 nm thin
Cu layer is deposited also via electron-beam-evaporation. It will
serve as the lower electrode during the later Ni electro-forming step.
A thick photoresist is spin-coated on top of the Cu layer and pro-
cessed photolithographically, i.e., pre-baked, exposed through an
appropriate exposure mask, developed, and post-baked. The pho-
toresist is AZ®-125nXT by MicroChemicals, Ulm, Germany, espe-
cially developed for electro-forming processes. The structured pho-
toresist layer is the structural basis for the Ni film, which is deposited
during the subsequent electro-plating step. The Ni layer extends over
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FIG. 1. THz scattering plate: sketch of the technological process for sample prepa-
ration. The thick photoresist is AZTM-125nXT by MicroChemicals, Ulm, Germany.
The process is based on Ni electro-forming/plating because the latter gives dense
and sinkhole-free metallic layers and its spatial resolution suffices to achieve the
lateral feature size of 200 μm at 0.75 THz.

FIG. 2. THz GF(28) 2D scattering plate with 15 × 17 = 255 elements: SEM micro-
graphs of excerpts of the structured photoresist layer and (in the inset) of the final
structured Ni layer (SEM = scanning electron microscope). The characteristic lat-
eral width of any “bit” is nominally d = λ/2 = 200 μm. The SEM micrographs have
each been taken under a non-zero angle with respect to the normal. The very
good quality of the photoresist pattern is apparent. The final Ni structure shows a
still acceptable roughness, especially at the top of the edges of the mesas. Due
to the tolerances in etching, the experimentally achieved final characteristic lateral
width is (190 ± 10) μm, which is accompanied by a 5% decrease as compared to
the nominal value.

the entire photoresist structure such that it has to be lapped and
polished until the photoresist mesas (inverse to the Ni mesas) are
excavated again. Finally, the photoresist structure is etched away
such that the structured Ni layer with its Ni mesas remains as the
main part of the reflective device.

Figure 2 shows scanning electron microscope (SEM) images
related to a THz GF(28) scattering plate nominally optimized for
a frequency of 0.75 THz. The micrographs show just an excerpt of
the structured photoresist layer after processing and, in the inset,
an even smaller part of the final structured Ni layer. The char-
acteristic lateral width of any “bit” should be d = λ/2 = 200 μm.
The very good quality of the photoresist pattern is obvious. The
final Ni structure shows a still acceptable roughness, especially at
the top of the edges of the mesas. Due to the tolerances in etch-
ing, the experimentally achieved final characteristic lateral width is
(190 ± 10) μm, which is accompanied by a 5% decrease as compared
to the nominal value. Thus, the optimal wavelength is reduced by 5%
as compared to the design wavelength. Hence, the optimal frequency
is increased by 5%.

FIG. 3. Optical frequency scattering plate: sketch of the technological process for
sample preparation. The procedure is explained in more detail in the text. PMMA
(polymethylmethacrylate) 950 K 4% from Allresist, Strausberg, Germany, is used
as the e-beam-lithographic resist. E-beam lithography is necessary due to the
desired better resolution than in the THz case.
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B. 2D binary reflective optical Galois scattering plates
Figure 3 gives a sketch of the technological process for sample

preparation of a 2D binary reflective optical frequency (“optical”)
Galois scattering plate. Before the resist layer is applied, a metallic
three-layer sequence (Cr-Ti-Cr) has to be deposited. Such three-
layer stacks allow for steeper flanks upon dry-etching and, thus,
for better shape accuracy. PMMA (polymethylmethacrylate) 950 K
4% from Allresist, Strausberg, Germany, is used as the e-beam-
lithographic resist. After exposure, development, and fixation, i.e.,
after the processing of the resist layer, it acts as a soft etch mask for
a first main dry-etch step, which is used to structure the upper Cr
layer. Then, the latter acts as a hard etch mask in a second main
dry-etch step. After the first etch step, the residues of the resist are
removed (in an intermediate etch step). In the second main etch step,
the Ti layer is structured, leading to the final reflective device with Cr
as its upper metal everywhere on the surface, i.e., on the Ti mesas as
well as in-between.

The design wavelength λ of these “optical” reflective Galois
scattering plates has been either 642 or 800 nm, being the emis-
sion wavelengths of semiconductor laser diodes to be used for the
scattering measurements.

Figures 4 and 5 contain SEM micrographs of the PMMA pat-
tern of a binary 2D GF(216) number field (design wavelength λ
= 642 nm) and a cut-out of a final Cr pattern, again of a binary
2D GF(216) number field (but for λ = 800 nm), respectively. The
structures are of good quality and spatial resolution.

In order to match the area of the scattering plates as well as pos-
sible to the area of the spot of radiation, we typically stitch/tile many
Galois plates to one another into a 2D square array. In the case of
a scattering plate from the GF(216) number sequence, we employ a
16 × 16 stitching array of v × w = 255 × 257 Galois bit arrays. In
cases with GF(28), a 256 × 256 stitching array of the v × w = 15 × 17
Galois bit arrays is used. As an undesired consequence, the stitch-
ing introduces a periodicity with a large grating constant into the
scattering plate. However, the corresponding spatial frequency is the

FIG. 4. Optical frequency GF(216) 2D scattering plate with 4096 sixteen-tuples
or 255 × 257 = 65 535 bits: the SEM micrograph of the PMMA pattern after
processing. The design wavelength is 642 nm.

FIG. 5. Optical frequency GF(216) 2D scattering plate with 255× 257 = 65 535 bits:
cut-out of the SEM micrograph of the Cr pattern after the complete technological
process. The design wavelength is 800 nm here.

smallest occurring spatial frequency, adding only a fine structure to
the distribution of diffracted intensity.

IV. THEORETICAL EXPECTATIONS EXEMPLARILY
FOR THE OPTICAL CASE16

Figures 6–8 show theoretical results, which have been obtained
using MatLabTM by The MathWorks, Natick, MA, USA, accord-
ing to Kirchhoff’s diffraction theory for an ideal optical binary 2D
Galois plate of type GF(28) and a wavelength of 642 nm for normal
incidence.

How many scattering/diffraction orders can be expected? For
normal radiation incidence, the diffraction angle ß is given by

sin β = r
λ
d

, (9a)

FIG. 6. Optical frequency 2D binary scattering plate, ideal, GF(28), λ = 642 nm,
normal incidence: numerical result and normalized intensity as a function of angle
of detection (scattering angle). The calculation has been performed under the
assumption of an optimal width d of the mesas of λ/2 in both lateral dimensions.
Thus, d/λ = 0.50. The assumed mesa height is h = λ/4. The lines are only guides
to the eye.
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with the diffraction order r and the grating constant d. Even
for r = 1, no diffraction order at all should be expected for d/λ = 0.5
or λ/d = 2 because the absolute value of the sine function cannot be
larger than 1.

However, since Galois fields are based on maximum number
sequences, there is a larger grating constant (beyond d), i.e., v ⋅ d.
Thus, Eq. (9a) has to be rewritten as

sin β = r
λ

v ⋅ d . (9b)

In the case of GF(28), an array of v × w = 15 × 17 bits has to be
considered; hence,

sin β = r
λ

15 ⋅ d . (9c)

Thus. for d/λ = 0.5 or λ/d = 2, the absolute value of r as a whole
number has to be smaller than or equal to v/2 = 15/2, i.e.,

∣r∣ ≤ int( v
2
) = int(15

2
) = int(7.5) = 7 (9d)

and ∣rmax∣ = 7. Thus, seven maxima should be expected in this exam-
ple on each side of the zeroth order—in cases where d/λ has the ideal
value of 0.5.

However, this also illustrates that a different number of maxima
should be expected as soon as d/λ is not 0.5.

Figure 6 shows the calculated normalized scattering intensity
dependent on the angle of detection, i.e., the scattering angle. The
calculation has been performed under the assumption of an optimal
width d of the mesas of λ/2 (→ factor 1/2 below) in both lateral dimen-
sions. Thus, for the GF(28) plate, there should be and indeed are
seven maxima on each side of the specular direction. The specular
peak should (nearly) vanish, as long as each mesa has the optimum
height and ideally steep flanks. The lines in Fig. 6 are only guides to
the eye.

Figure 7 shows the result from Fig. 6 in a polar diagram
with the normalized intensity on a logarithmic scale. The broad-
ening of the point maxima to dashes is due to an integration over

FIG. 7. Optical frequency 2D binary scattering plate, ideal, GF(28), λ = 642 nm:
numerical result related to Fig. 6, the polar diagram with the normalized intensity
on a logarithmic scale, the detector width taken into account.

FIG. 8. Optical frequency 2D binary scattering plate, ideal, GF(28), λ = 642 nm:
numerical result just for the specular direction. As expected for h = λ/4 in reflection,
a minimum appears for the design wavelength of 642 nm.

a certain angle of detection, corresponding to the width of the
(numerically assumed) photodetector intended for use. A small
specular peak can be recognized when observed carefully. At this
point in time, we cannot identify its reason clearly, but we assume
that it is related to sampling errors (discretization in the lateral
dimensions).

Figure 8 shows the ideal GF(28) Galois scattering plate, just
dealing with the specular direction (no deflection). This figure
reveals that indeed a minimum intensity can be expected for
the design wavelength of 642 nm for h = λ/4 and a reflective
device.

V. EXPERIMENTAL SETUPS AND RESULTS
Earlier in this paper, stitching/tiling has already been men-

tioned as a means to match the scattering plate area with the area
of the spot of radiation as much as possible. In the optical case, the
laser spot diameter is 1 mm, while the area of the stitched array is
about 1.3 × 1.3 mm2. Thus, the laser spot fits completely onto the
stitched Galois scattering plate. Even in the THz case, stitching/tiling
is applied; however, during the measurements reported here, the
THz radiation is focused and the focal area is nearly identical to a
single Galois tile (sub-array).

As also mentioned before, of course, this tiling or stitching
introduces another (a large) grating constant, which also causes a
non-zero scattering intensity in the specular direction (i.e., in the
zeroth order).

A. THz setup and results
Figure 9 presents the photographic (nearly) top-view of

the THz scattering setup. It has been built and operated by
the TeraTec group of the Fraunhofer IPM Institute in Kaisers-
lautern, Germany. It includes an emitter with a mean fre-
quency of 0.75 THz. The emitter is positioned at −20○ with
respect to the sample normal. Moreover, there is the sample
holder and a slewable detector, making the setup a one-axis
goniometer.

Figure 10 shows a diagram of the scattering intensity as a func-
tion of the scattering angle for a fixed frequency of 0.75 THz. Due
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FIG. 9. THz scattering measurements: (nearly) top-view of the THz measurement
setup. It has been implemented and operated by the TeraTec group of the Fraun-
hofer IPM Institute in Kaiserslautern, Germany. It includes an emitter at −20○ with
respect to the sample normal, the sample holder, and the detector. The emitter
radiates with a mean frequency of 0.75 THz.

FIG. 10. THz scattering measurements of the GF(210) plate: scattering intensity as
a function of the scattering angle for a fixed frequency of 0.75 THz. The wavelength
is λ = 400 μm. The desired mesa widths have been d = λ/2 = 200 μm in both
lateral dimensions, but according to Fig. 2 [there for a GF(28) plate], the actual
widths are d = (190 ± 10) μm. The mesa heights are h = λ/4 = 100 μm. Due to
fabrication imperfections of the mesas, the zeroth order (to be observed for the
specular angle of +20○) is still quite strong. According to Eq. (9b), a number of
int(31/2) = 15 maxima should be expected on each side of the specular peak.
Taking any small peak to the right of the zeroth peak in the diagram, one might
count 14 maxima.

to fabrication imperfections of the mesas, the zeroth order (to be
observed for the specular angle of +20○) is still quite strong.

Underlying this result is reflective scattering from a GF(210) 2D
scattering field with (1024 = 31 × 33) bits. According to Eq. (9b),
this implies that int(31/2) = 15 maxima should be expected on any
side of the specular peak. Taking any small peak to the right of the
zeroth peak in the Fig. 10, one might count 14 maxima. However,
it is not astonishing that the diffraction efficiency is also reduced by
fabrication imperfections so that one (or some) orders are strongly
diminished.

FIG. 11. THz scattering measurements for the GF(28) plate: The result is achieved
for an angle of detection of +20○, i.e., for specular reflection. The minimum
appears for (0.79 ± 0.02) THz, which is related to a 5% increase as compared
to the theoretical value. In addition, this corresponds to the 5% decrease in the
characteristic width d from that shown in Fig. 2 as compared to the desired value
of 200 μm. Data are taken from our own publication.15

In Fig. 11, an experimentally obtained THz spectrum in reflec-
tion is given, which has been achieved with a THz scattering plate
with GF(28), also for an angle of incidence of −20○. The angle of
detection is fixed at +20○, which corresponds to the specular direc-
tion. For the specular reflection, a minimum should be expected for
the design wavelength of 0.75 THz. However, the minimum appears
for (0.79 ± 0.02) THz, which is related to a 5% increase as com-
pared to the theoretical value. In addition, this corresponds to the
5% decrease in the characteristic width d from that shown in Fig. 2
as compared to the desired value of 200 μm.

In a partially qualitative, partially quantitative sense, the exper-
imentally obtained graph shown in Fig. 10 can, in principle, be com-
pared to the calculated result in Fig. 6 since the width and the height
of the mesas are (nearly) ideal, i.e., d/λ = 0.5, h = λ/4, in both cases.
The latter are scaled versions of each other. Beyond the influence of
fabrication imperfections, the quantitative difference in the number
of expected as well as received scattering maxima is due to the fact
that Fig. 6 deals with a scattering plate based on GF(28), while Fig. 10
is related to GF(210).

In Fig. 12, a result will be given, which is based on a GF(28) case,
where the mesa width is not d/λ = 0.50 but rather d/λ = 0.86. Thus,
Fig. 12 might be compared to Fig. 6 to reveal the influence of d/λ on
the number of scattering maxima.

According to Eqs. (9a) and (9b), a value of d/λ = 0.86 should
lead to a number of 14 scattering maxima on both sides of the spec-
ular peak (instead of 7 in Fig. 6). This finding might be considered an
opportunity for manipulation of the number of scattering maxima.
However, it has to be kept in mind that in a non-ideal case (i.e., d/λ
> 0.5), the diffraction efficiency of the zeroth (specular) order will
be increased, and the diffraction efficiencies of any higher order (i.e.,
∣r∣ > 0) will be reduced (due to the non-ideality and due to the larger
number of scattering maxima/diffraction orders).

B. Optical frequency setup and results
The setup for the measurements at optical frequencies is again

a one-axis goniometer. The semiconductor laser emits linearly
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FIG. 12. Scattering measurements for the optical frequency range, GF(28)—
qualitatively comparable to the result given in Fig. 6: the multiplicity of maxima
can be clearly observed. The emission wavelength λ of the semiconductor laser
is 642 nm, and the mesa width d is 550 nm in both lateral dimensions, i.e.,
d/λ = 0.86. The mesa height is h = λ/4.

polarized light. A half-wave plate and a polarizer are used to pro-
vide two different planes/directions of linear polarization. However,
no differences in the results could be observed for different planes of
linear polarization.

As discussed in connection to Eqs. (9a)–(9d), the number of
maxima (diffraction orders beyond the zeroth one) is not only
related to the quantity v of the v × w array but also to the ratio
λ/d. Ideally, this ratio should be λ/d = 2 or d/λ = 0.5. To show the
influence of deviations of the latter’s ratio from the value 0.5, we
deliberately used a non-ideal ratio. According to Eqs. (9a)–(9d), this
measure can be used to manipulate the number of maxima.

Results are given here for a GF(28) plate and a laser of an emis-
sion wavelength of λ = 642 nm. With mesa width d = 550 nm (instead
of 321 nm), the ratio is d/λ = 0.86 (instead of 0.50). The device is a v
× w = 17horizontal × 15vertical array. In that case, according to

sin β = r
1

v ⋅ 0.86
= r

1
17 ⋅ 0.86

= r
1

14.6
, (9e)

∣rmax∣ = 14 should be expected on each side of the specular direction.
This expectation is verified by the experiment. In Fig. 12, a 1D

cut through the plane of detection, through the optical axis, and
through the observable maxima is shown, horizontal and centered
on the zeroth order, with 14 maxima on each side of the specu-
lar direction. The specular reflection peak is not negligible since
there has been stitching of Galois structures and non-ideal mesa
flanks. Hence, the intensities of all higher orders (i.e., ∣r∣ > 0) are
diminished.

Moreover, it has to be stressed that the diffraction efficien-
cies of any order, including the zeroth one, also depend on the
number of existing orders. Thus, there is a trade-off between the
diffraction intensity of the zeroth order (i.e., the specular reflec-
tion) and the number of other orders. More clearly, the fewer
diffraction orders exist, the larger will be the intensity of specular
reflection.

The Galois plate concept clearly works even for optical frequen-
cies, and through (deliberate) deviation from the condition d/λ = 0.5,
the number of diffraction orders can be changed considerably.

VI. CONCLUSIONS
In this paper, we have emphasized the mathematical design

basis as well as the technological fabrication processes to prepare
binary residue 2D Galois scattering plates—both for the THz range
and for the optical frequency range. As in Refs. 14–16, we have
verified the theoretically expected scattering behavior by experi-
mental results. The scattering intensity distributions incorporate a
multitude of maxima.

By varying the mesa (bit) width d or the wavelength λ, the
number of scattering maxima (diffraction orders) can be varied
strongly. However, diffraction efficiency for all orders will be dimin-
ished if the number of orders is increased by applying ratios
d/λ > 0.5.

By fabricating multilevel scattering plates instead of binary
ones, the range of operating frequencies/wavelengths could be
broadened18—also at the expense of diffraction efficiency.

THz and optical Galois scattering plates offer another opportu-
nity to the tool box of scattering plates.
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