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前言 
"天行健，君子以自强不息；地势坤，君子以厚德载物" 

/易经/ 
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校先进公路维修及建造技术研究所的所长巴拉姆·拉瓦尼（博士）教授，感谢他担任

本论文的外审评委。此外，我还要感谢来自本校工程力学研究所的所长拉尔夫·穆勒

（博士）教授，感谢他担任我的博士评审委员会主席。 

我还要感谢我在本所和国际研究院合作项目 2057 研究组的所有同事。每个人都以自己
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Abstract 
Recent studies on the environmental performance of additive manufacturing (AM) have shown 
that AM exhibits both complex potentials and challenges at different life stages compared to 
conventional manufacturing. To assess and ensure the environmental benefits of AM during the 
design phase, an eco-design approach is required. Existing eco-design for AM approaches 
described in the literature mainly focus on the use of lifecycle assessment (LCA) to analyze the 
environmental impacts of AM-specific design solutions. However, since LCA requires a full-
process chain model and detailed inventory data, it can only be performed after the design 
process or in a subsequent design stage. To integrate evaluation activities into the middle stage 
of the design process, energy performance assessment can be used as an alternative evaluation 
tool in eco-design for AM. However, the literature still lacks an eco-design for AM method 
based on energy performance quantification and assessment. By addressing this research 
problem, this dissertation contributes to the development of a holistic framework to implement 
eco-design for AM using energy performance assessment. This framework consists of the 
following three parts: a simulation tool for energy prediction in the design phase; an energy 
performance assessment model for AM; and a method for carrying out activities in eco-design 
for AM. To demonstrate the feasibility of the proposed method, three use cases are performed. 
Based on these use cases, it is concluded that with the use of the proposed method, AM 
designers will be able to select and develop optimal design solutions based on the energy 
performance of AM in the middle design stage. 
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Kurzfassung 
Aktuelle Studien für die Bewertung der Nachhaltigkeit der additiven Fertigung (AF) haben 
gezeigt, dass AF im Vergleich zur konventionellen Fertigung sowohl Potenziale als auch Her-
ausforderungen in verschiedenen Lebenszyklusphasen aufweist. Um die Umweltvorteile der 
AF während der Gestaltungsphase bewerten und sicherzustellen zu können, ist der Ansatz des 
Ökodesigns erforderlich. Bestehende Ansätze zum Ökodesign für die AF fokussieren sich 
hauptsächlich auf die Verwendung von Ökobilanzen, um die Umweltauswirkungen von AF-
spezifischen Gestaltungslösungen zu analysieren. Da Ökobilanzen jedoch ein vollständiges 
Prozesskettenmodell und detaillierte Inventardaten erfordern, können sie erst in einer späteren 
Phase oder nach dem Gestaltungsprozess durchgeführt werden. Um die Bewertung in der mitt-
leren Phase des Gestaltungsprozesses zu ermöglichen, kann die Bewertung der energiebezoge-
nen Leistung als alternatives Bewertungswerkzeug im Zuge des Ökodesigns für AF verwendet 
werden. In bestehenden Ansätzen gibt es jedoch noch keine Methode zum Ökodesign für AF, 
die auf der Quantifizierung und Bewertung der energiebezogenen Leistung basiert. Daher zielt 
die vorliegende Dissertation auf die Entwicklung und Validierung eines Konzepts zum Ökode-
sign für AF mittels der Quantifizierung und Bewertung der energiebezogenen Leistung der AF 
ab. Das Konzept umfasst drei Bestandteile: ein Simulationstool zur Quantifizierung des Ener-
gieaufwands der AF in der Gestaltungphase; ein Modell zur Beschreibung und Bewertung der 
energiebezogenen Leistung der AF; und eine Vorgehensweise zur Durchführung des Ökode-
signs für AF mittels des entwickelten Simulationstools und Bewertungsmodells. Um die Mach-
barkeit des Konzepts zur validieren, werden drei Anwendungsfälle durchgeführt. Die Ergeb-
nisse haben gezeigt, dass das entwickelte Konzept ein effizientes Instrument ist, um die Um-
weltvorteile der AF in der Gestaltungsphase zu ermitteln und zu gewährleisten. 
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Deutsche Zusammenfassung 
Die additive Fertigung (AF) ist ein Oberbegriff für Fertigungsverfahren, bei denen Bauteile 
durch schicht- oder elementweisen Materialauftrag generiert werden. Durch ihr Wirkprinzip 
bietet die AF vielfältige Vorteile gegenüber konventionellen Fertigungsverfahren und wird in 
vielen Branchen angewendet, wie z. B. in der Automobilindustrie oder in der Luft- und Raum-
fahrttechnik. Diese Vorteile sind beispielsweise die erhöhte Designfreiheit durch den Leichtbau 
und topologische Optimierung, die Vereinfachung der Prozesskette sowie die Umsetzung neuer 
Geschäftsmodelle. 

Die AF wird als ein Mittel zur Reduzierung der Umweltauswirkung in Produktionssystemen 
gesehen, da sie beispielsweise keine produktspezifische Ausrüstung oder zusätzliche Hilfs-
stoffe benötigt und daher den entsprechenden Ressourceneinsatz einspart. Ferner ermöglicht 
die AF das Zusammenführen von Bauteilen, wobei mehrere Teile in ein Bauteil oder wenig 
komplexe Bauteile integriert werden. Dadurch werden die entsprechenden Fertigungsschritte, 
Transport, Lagerung und Verpackung reduziert, was mit einer Verringerung des Ressourcen-
aufwands in Produktionssystemen einhergeht. Allerdings existieren auch kritische Stimmen, 
die Nachteile der AF gegenüber konventionellen Fertigungsverfahren aufzeigen. Beispiels-
weise benötigen viele Verfahren der AF Pulver als Ausgangswerkstoff, dessen Produktionspro-
zesse zusätzlichen Energieeinsatz erfordern. Ebenfalls schätzen aktuelle Forschungen den spe-
zifischen Energieaufwand der AF ungefähr ein bis zwei Größenordnungen höher als den der 
konventionellen subtraktiven und umformenden Fertigung ein. Zur Sicherstellung der Umwelt-
vorteile der AF sollen daher die Umweltauswirkung und der Ressourceneinsatz der AF in der 
Gestaltungsphase ermittelt werden. 

Ökodesign beschreibt die Integration des Nachhaltigkeitsbewusstseins in der Gestaltung von 
Produkten, Prozessen oder Systemen, wobei Umweltauswirkung und Ressourceneinsatz mini-
miert werden und gleichzeitig ein möglichst hoher Nutzen zu stiften ist. Ökodesign stellt für 
AF einen Schlüsselfaktor dar, um die Umweltvorteile der AF in der Gestaltungsphase zu ana-
lysieren und zu verbessern. Die vorhandenen Ansätze zum Ökodesign für AF fokussieren sich 
auf die Verwendung von Ökobilanzen, in dem Gestaltungslösungen durch die Sachbilanz und 
Wirkungsabschätzung der Prozesskette mit AF bewertet werden. Da die Ökobilanz ein voll-
ständiges Prozesskettenmodell und detaillierte Daten zu den In- und Outputs erfordert, kann sie 
nur nach dem Gestaltungsprozess oder nur in einer späteren Gestaltungsphase durchgeführt 
werden. Weisen die Designlösungen nach der Ökobilanz Mangel auf, sind die Aktivitäten in 
der Gestaltungsphase zu wiederholen, was zu zusätzlichem Zeit- und Kostenaufwand führt. 

Um die Aktivitäten in der Gestaltung und Bewertung näher zusammen zu bringen, kann die 
Bewertung der energiebezogenen Leistung als ein alternatives Bewertungsinstrument im Öko-
design für AF verwendet werden. Die energiebezogene Leistung beschreibt messbare Ergeb-
nisse bezüglich Energieeffizienz, Energieeinsatz und Energieverbrauch eines Systems oder 
Prozesses und wird durch eine Energieleistungskennzahl (EnPI) ausgeprägt. Im Vergleich zu 
einer Ökobilanz, bei der zahlreiche Umweltauswirkungen zu ermitteln sind, werden bei der 
Bewertung der energiebezogenen Leistung ausschließlich energierelevante Auswirkungen be-
trachtet. Daher erfordert die Bewertung der energiebezogenen Leistung weder ein vollständiges 
Prozesskettenmodell noch die detaillierten Daten der In- und Outputs und kann früher in der 
Gestaltungsphase durchgeführt werden. Beim gegenwärtigen Stand der Forschung fehlt jedoch 
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ein Ansatz zur Integration der Bewertung der energiebezogenen Leistung in das Ökodesign für 
AF, was als die Forschungslücke dieser Arbeit darstellt. 

Die vorliegende Dissertation zielt auf die Entwicklung und Validierung eines Konzepts zum 
Ökodesign für AF mittels der Quantifizierung und Bewertung der energiebezogenen Leistung. 
Das Konzept umfasst drei Bestandteile: ein Simulationstool zur Quantifizierung des Energie-
aufwands der AF in der Gestaltungphase; ein Modell zur Beschreibung und Bewertung der 
energiebezogenen Leistung der AF; und eine Vorgehensweise zur Durchführung des Ökode-
signs für AF mittels des entwickelten Simulationstools und Bewertungsmodells. Diese werden 
im Folgenden beschrieben. 

Simulationstool zur Quantifizierung des Energieaufwands der AF 

In der Gestaltungsphase sind Experimente zur Bemessung des Energieaufwands der AF zeit- 
und kostenaufwendig, da die Prozessdauer der AF variiert, je nach angewandtem Verfahren 
und Prozessparametern von Stunden bis hin zu Tagen. Daher zielt diese Arbeit zunächst auf die 
Entwicklung eines Simulationstools ab, das den Energieaufwand der AF in der Gestaltungs-
phase schnell und zuverlässig vorhersagt. Um dies zu erreichen, werden zunächst zwei reprä-
sentative AF-Systeme (SLM-Maschine und FDM-Drucker) spezifiziert und die Energieflüsse 
zwischen den Systemkomponenten in Modellen abgebildet. Anschließend wird anhand der 
Energiemodelle ein Simulationstool auf der Plattform MATLAB/Simulink entwickelt, wobei 
der NC-Code- und Datenbank-getriebene Ansatz verwendet wird. Um die Genauigkeit und Zu-
verlässigkeit der Simulation nachzuweisen, werden abschließend Experimente durchgeführt 
und mit den Simulationen verglichen. Zur Verwendung des Simulationstools wird zunächst aus 
der Prozessgestaltung der AF ein Prozessparametersatz in Form eines NC-Codes erstellt und in 
das Simulationstool geladen. Danach berechnet das Simulationstool den Energieverbrauch an-
hand der Zeitdaten, die aus dem NC-Code erhoben werden, und den Leistungsdaten der AF-
Systeme, die in einer Datenbank hinterlegt werden. Nach der Simulation können die Simulati-
onsergebnisse in einer Leistungskurve visualisiert werden und die Daten in eine TXT-Datei 
exportiert werden. 

Modell zur Beschreibung und Bewertung der energiebezogenen Leistung der AF 

Die energiebezogene Leistung der AF beschreibt die messbaren Größen, die für Energiever-
brauch, -effizienz und -einsatz der AF relevant sind und als EnPI vom Entwickler definiert 
werden. Basierend auf den EnPI wird im Rahmen dieser Dissertation ein Modell entwickelt, 
das die energiebezogene Leistung der AF beschreibt und die EnPI in drei Dimensionen konkre-
tisiert. Die erste Dimension beschreibt originale EnPI, die vom Designer nach eigenen Anfor-
derungen definiert werden. Bei den originalen EnPI können vier Hauptarten: direkte energeti-
sche Werte, Verhältnis von energetischen Werten, Kombination der energetischen und nicht-
energetischen Werte und nicht-energetische Werte. Da die originalen EnPI unterschiedliche 
Einheiten besitzen und daher nicht direkt miteinander verglichen werden können, werden sie 
nach der Min-Max-Skalierung im Wertbereich in [0, 1] normalisiert. Die normalisierten EnPI 
bilden daher die zweite Dimension des Bewertungsmodells. Da die EnPI entsprechend der An-
forderungen im Anwendungsszenario unterschiedliche Wichtigkeit aufweisen können, werden 
die EnPI nach der Methode paarweisen Vergleich gewichtet. Die Gewichtungsfaktoren werden 
abschließend mit den normlaisierten EnPI aggregiert, was die dritte Dimension des Bewer-
tungsmodells bildet und die endgültige energiebezogene Leistung der AF repräsentiert.  
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Vorgehensweise zur Durchführung des Ökodesign für AF 

Um die Durchführung des Ökodesigns für AF zu ermöglichen, wird im Rahmen der Disserta-
tion eine Vorgehensweise entwickelt, die die Schritte und die dafür verwendeten Hilfsmittel 
beschreibt und in folgende fünf Phasen eingeteilt wird: 

q Phase 1: Situationsanalyse: Ausgehend von einem Anwendungsszenario werden zu-
nächst in der Situationsanalyse die Anforderungen erfasst und die funktionellen und geo-
metrischen Merkmale des vorhandenen Produkts beschrieben. Anschließend werden die 
Prozessketten der konventionellen Fertigungsverfahren spezifiziert. Abschließend werden 
die additiven Fertigungsverfahren und -anlagen ausgewählt, die für das Anwendungssze-
nario geeignet sind und mit konventionellen Fertigungsverfahren aus technischer und wirt-
schaftlicher Perspektive verglichen und bewertet. 

q Phase 2: Topologische Optimierung: Im Anschluss an die Situationsanalyse wird in der 
zweiten Phase das Produkt mittels der topologischen Optimierung gestaltet. Dafür werden 
zunächst der Designraum des zu optimierenden Produkts und die mechanischen Randbe-
dingungen anhand des Anwendungsszenarios definiert. Anschließend wird eine Finite-Ele-
mente-Analyse (FEA) durchgeführt und das Volumen mit geringen Beanspruchungen ent-
fernt und eine neue Geometrie generiert. Basierend auf der neuen Geometrie werden die 
FEA und Volumenreduktion wiederholt, um eine Geometrie mit noch geringen Volumen 
zu erzeugen. Diese iterativen Optimierungsschleifen werden so lange durchgeführt, bis das 
vorgegebene Optimierungsziel (z. B., erwünschte Massenreduzierung) erreicht ist. 

q Phase 3: Gestaltung des AF-Arbeitsplatzes: Ein AF-Arbeitsplatzes besteht aus einer AF-
Anlage und den damit verbundenen Peripherien. Zur Gestaltung des AF-Arbeitsplatzes 
werden zunächst entsprechend der in der Situationsanalyse ausgewählten AF-Anlage die 
notwendigen Peripherien definiert. Anschließend wird die erforderliche Grundfläche fest-
gelegt, in dem die AF-Anlage und die Peripherien positioniert werden. Hinsichtlich der 
Arbeitsabläufe für die Bedienung der AF-Anlage sowie auch der Peripherien wird abschlie-
ßend das Systemlayout des AF-Arbeitsplatzes geplant. 

q Phase 4: Gestaltung des Bauprozesses: Basierend auf dem optimierten Produkt und dem 
gestalteten AF-Arbeitsplatz wird zunächst ein Parametersatz für einen Bauprozess erstellt, 
in dem die Parameter wie Schichtdicke, Aufbaurate und Orientierung des Aufbaus definiert 
werden. Anschließend werden thermisch-strukturelle Simulationen des Bauprozesses 
durchgeführt, um die Spannung und Verformung des Bauteils aufgrund der Wärmezufuhr 
zu bewerten. Abschließend werden die Post-Prozesse definiert, wodurch die Oberflächen-
qualität und die geometrische Genauigkeit des durch AF hergestellten Bauteils verbessert 
werden.  

q Phase 5: EnPI-basierte Bewertung: In der letzten Phase werden EnPI entsprechend dem 
Anwendungsszenario und den Anforderungen definiert und parallele Designlösungen fest-
gelegt. In den vorherigen Phasen für die Produkt-, System- und Prozessgestaltung sind un-
terschiedlichen Designvariante erlaubt, was zu parallelen Designlösungen führt. Anhand 
des Simulationswerkzeuges und Bewertungsmodells werden die Energieaufwände und 
EnPI der Designlösungen quantifiziert, normalisiert und mit den Gewichtungen aggregiert. 
Abschließend wird durch den Vergleich der aggregierten EnPI eine optimale Designlösung 
ausgewählt und in der Produktionsphase eingeführt. 
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Um das Konzept zur validieren, werden drei Anwendungsfälle umgesetzt. Die Ergebnisse ha-
ben gezeigt, dass das entwickelte Konzept ein effizientes Instrument ist, um die Umweltvorteile 
der AF in der Gestaltungsphase zu ermitteln und zu gewährleisten. 
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List of Abbreviations 
ABS Acrylonitrile butadiene styrene 

AM Additive manufacturing 

CAx Computer-aided, x = D design, 
M manufacturing, P planning 

CED Cumulative energy demand 

CExD Cumulative exergy demand 

CNC Computer numerical control 

DED Directed energy deposition 

DIN German Institute for 
Standardization 

DoE Design of experiments 

EBM Electron beam melting 

EC European Commission 

ECCP European Climate Change 
Program 

EEC European Economic Community 

EnPI(s) Energy performance indicator(s) 

EU European Union 

e.g. exempli gratia 

etc. et cetera 

FAST Function analysis system 
technique 
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1 Introduction 
Additive Manufacturing (AM) is the general term for production processes in which materials 
are added to create components [ISO15c, VDI 14]. Following the commercialization of 
stereolithography (SLA) in the late 1980s, AM has been adopted in numerous industrial sectors, 
such as aerospace, manufacturing, automotive, and health care [Wohl19]. In manufacturing, 
AM was first applied for rapid prototyping, in which low-cost plastics are used to print product 
models to demonstrate their geometric features [Wohl19, Gebh16]. Today, with advances in 
material science and mechanical engineering, AM can be used for rapid tooling, direct 
manufacturing, and repair and overhaul, in which metal components can be produced to ensure 
the long-term functional lifespan of products [Wits16, Levy03]. 

In parallel with the development of AM technology, environmental issues were worsening. In 
1992, the United Nations held the Earth Summit in Rio de Janeiro, where it was agreed that “(..) 
States should reduce and eliminate unsustainable patterns of production and consumption (…)”; 
in 2015, the Paris Agreement, which aims to keep the increase in the global average temperature 
to well below 2 °C above pre-industrial levels or to limit the increase to 1.5 °C above pre-
industrial levels, was proposed [Unit15, Unit92]. To achieve these goals, manufacturing 
systems require cleaner production technologies with less environmental impacts. Due to its 
unique processing mechanism, AM is considered to have environmental benefits, as it produces 
less material waste and facilitates the lightweighting of products and shortening of supply 
chains [Baum17a, Huan16, Chen15]. However, recent studies have also argued that under 
certain conditions, the environmental performance of AM can be worse than that of 
conventional manufacturing [Baum17a, Kell17]. For example, a number of AM processes 
require powders or filaments as feedstock, and the production process of such feedstock 
requires additional energy use. During the build process, the processing time can be up to hours 
or days, and a longer build also leads to increased electricity consumption. To realize the 
environmental benefits of AM, its environmental performance should be evaluated and 
improved during the design phase. 

A key factor for realizing the environmental benefits of AM is eco-design, which refers to any 
type of design in which environmental issues are considered [Peng18]. In the existing literature, 
eco-design for AM approaches mainly focus on the use of lifecycle assessment (LCA) and 
comprise two steps: The first step is to propose one or multiple design solutions with AM, in 
which innovative design tools such as topology optimization or process chain planning are 
applied. In the second step, the environmental impacts of the AM-specific design solutions are 
evaluated using LCA. Based on the LCA results, a decision can be made as to whether the AM-
specific design solution should be implemented or requires further improvements [Yang19, 
Vanl17]. However, the implementation of LCA requires the entire process chain model with 
AM and detailed inventory data; hence, LCA can only be executed after the design process or 
in the later design stage (e.g., the designing of entire process chain). This approach to firstly 
design and secondly to assess the environmental performance is known as the “evaluate after 
design” principle, which implies a loose collaboration between design and evaluation activities. 
Should the LCA results indicate that the environmental performance of the design with AM is 
insufficient, the decisions that have already been made must be repeated, leading to an increase 
in development time and costs. Compared to the “evaluate after design” principle, a better 
approach is to perform the evaluation in the middle design stage (e.g., during product and 
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process design), an approach known as the "evaluate during design" principle. When applying 
LCA in the middle design phase without a process chain model, designers need to use a lifecycle 
inventory (LCI) database on the assumption that the processes of their design cases are the same 
as or at least equivalent to the reference processes in the LCI database. However, in AM, 
flexible and individual design cases are very common, which can lead to deviations between 
the unique processes in a design case and the reference processes in an LCI database. Such 
deviations may lead to unreliable LCA results. Since LCA is not appropriate for the middle 
design stage, an alternative evaluation tool called energy performance assessment can be 
applied. Compared to LCA, energy performance assessment focuses only on the energy use, 
energy efficiency, and energy consumption of a system or process and neglects other 
environmental impacts [ISO14]. In addition, energy performance assessment requires neither a 
fully modeled process chain with AM nor detailed inventory data. The benefit of the neglection 
of other environmental impacts and the non-need for process chain models is that energy 
performance assessment can be performed much earlier in the design process.  

In the existing literature, there is an absence of an approach regarding the use of energy 
performance assessment in eco-design for AM. To address this research gap, this dissertation 
proposes a holistic framework for the realization of eco-design for AM based on energy 
performance quantification and assessment. 
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2 State of the Art 
This chapter describes the theoretical background of AM and existing approaches related to the 
research focus of this dissertation. The origin and applications of AM, as well as the associated 
terminology and processes, are introduced in Chapter 2.1. Thereafter, the environmental 
properties of AM are characterized in Chapter 2.2, in which the benefits and challenges of AM 
in terms of resource efficiency and sustainability improvement are explained. Chapter 2.3 
presents the definition and concept of eco-design as well as its importance for improving the 
environmental performance of AM. Existing approaches related to eco-design for AM are 
described in Chapter 2.4 and evaluated in Chapter 2.5, based on which the research gap 
addressed in this dissertation is identified.  

2.1 Additive Manufacturing (AM)  

2.1.1 A brief history of AM and terms 

2.1.1.1 Timeline of the development of modern AM processes 
The history of AM can be divided into three periods: prehistory, dating from the 1860s to the 
1960s, in which objects were manually constructed layer by layer without the use of any cutting 
tools or computers; precursors, ranging from the 1960s to the mid-1980s, in which AM 
technologies encompassed all features of modern AM processes except for the use of computer 
interfaces; and modern processes, which date from the mid-1980s and are characterized by 
commercialized AM processes that are fully supported by computers and information 
technology [Bour16]. Today, AM technology applications are in the era of modern processes, 
a brief timeline of which is depicted in Figure 2-1. 

 
Figure 2-1: A brief timeline of the development of modern AM processes (based on [Wohl19]) 

In 1987, 3D Systems introduced the first commercial SLA system to the market, which 
represents the advent of modern AM technology [Bour16, Hull84]. SLA belongs to vat 
photopolymerization, which is one of the seven categories of AM processes introduced in 
Chapter 2.1.4 [ISO15c]. In the following years, different SLA systems were released by 
companies from Japan, the USA, and Germany [Wohl19]. 

 

1987
Stereolithography 
(SLA)

1991
Fused deposition 
modeling (FDM)

Laminated object 
manufacturing (LOM)

1993
Inkjet printing 
technology

1999
Selective laser 
melting (SLM)

2000
Direct metal 
deposition (DMD)

2007
SLA for 
medical 
applications

2002
Biomaterials for 
tissue engineering

2008
Microfabrication 
of electronic 
device

2011
Hybrid laser 
sintering and 
machining

2013
3D printing 
of LEAP 
engine 
nozzle

1990 2000 2010

2015
Nanofabrication of 

circuit board

2020

1992
Selective laser 
sintering (SLS)

State of the Art 3 

 

2 State of the Art 
This chapter describes the theoretical background of AM and existing approaches related to the 
research focus of this dissertation. The origin and applications of AM, as well as the associated 
terminology and processes, are introduced in Chapter 2.1. Thereafter, the environmental 
properties of AM are characterized in Chapter 2.2, in which the benefits and challenges of AM 
in terms of resource efficiency and sustainability improvement are explained. Chapter 2.3 
presents the definition and concept of eco-design as well as its importance for improving the 
environmental performance of AM. Existing approaches related to eco-design for AM are 
described in Chapter 2.4 and evaluated in Chapter 2.5, based on which the research gap 
addressed in this dissertation is identified.  

2.1 Additive Manufacturing (AM)  

2.1.1 A brief history of AM and terms 

2.1.1.1 Timeline of the development of modern AM processes 
The history of AM can be divided into three periods: prehistory, dating from the 1860s to the 
1960s, in which objects were manually constructed layer by layer without the use of any cutting 
tools or computers; precursors, ranging from the 1960s to the mid-1980s, in which AM 
technologies encompassed all features of modern AM processes except for the use of computer 
interfaces; and modern processes, which date from the mid-1980s and are characterized by 
commercialized AM processes that are fully supported by computers and information 
technology [Bour16]. Today, AM technology applications are in the era of modern processes, 
a brief timeline of which is depicted in Figure 2-1. 

 
Figure 2-1: A brief timeline of the development of modern AM processes (based on [Wohl19]) 

In 1987, 3D Systems introduced the first commercial SLA system to the market, which 
represents the advent of modern AM technology [Bour16, Hull84]. SLA belongs to vat 
photopolymerization, which is one of the seven categories of AM processes introduced in 
Chapter 2.1.4 [ISO15c]. In the following years, different SLA systems were released by 
companies from Japan, the USA, and Germany [Wohl19]. 

 

1987
Stereolithography 
(SLA)

1991
Fused deposition 
modeling (FDM)

Laminated object 
manufacturing (LOM)

1993
Inkjet printing 
technology

1999
Selective laser 
melting (SLM)

2000
Direct metal 
deposition (DMD)

2007
SLA for 
medical 
applications

2002
Biomaterials for 
tissue engineering

2008
Microfabrication 
of electronic 
device

2011
Hybrid laser 
sintering and 
machining

2013
3D printing 
of LEAP 
engine 
nozzle

1990 2000 2010

2015
Nanofabrication of 

circuit board

2020

1992
Selective laser 
sintering (SLS)

State of the Art 3 

 

2 State of the Art 
This chapter describes the theoretical background of AM and existing approaches related to the 
research focus of this dissertation. The origin and applications of AM, as well as the associated 
terminology and processes, are introduced in Chapter 2.1. Thereafter, the environmental 
properties of AM are characterized in Chapter 2.2, in which the benefits and challenges of AM 
in terms of resource efficiency and sustainability improvement are explained. Chapter 2.3 
presents the definition and concept of eco-design as well as its importance for improving the 
environmental performance of AM. Existing approaches related to eco-design for AM are 
described in Chapter 2.4 and evaluated in Chapter 2.5, based on which the research gap 
addressed in this dissertation is identified.  

2.1 Additive Manufacturing (AM)  

2.1.1 A brief history of AM and terms 

2.1.1.1 Timeline of the development of modern AM processes 
The history of AM can be divided into three periods: prehistory, dating from the 1860s to the 
1960s, in which objects were manually constructed layer by layer without the use of any cutting 
tools or computers; precursors, ranging from the 1960s to the mid-1980s, in which AM 
technologies encompassed all features of modern AM processes except for the use of computer 
interfaces; and modern processes, which date from the mid-1980s and are characterized by 
commercialized AM processes that are fully supported by computers and information 
technology [Bour16]. Today, AM technology applications are in the era of modern processes, 
a brief timeline of which is depicted in Figure 2-1. 

 
Figure 2-1: A brief timeline of the development of modern AM processes (based on [Wohl19]) 

In 1987, 3D Systems introduced the first commercial SLA system to the market, which 
represents the advent of modern AM technology [Bour16, Hull84]. SLA belongs to vat 
photopolymerization, which is one of the seven categories of AM processes introduced in 
Chapter 2.1.4 [ISO15c]. In the following years, different SLA systems were released by 
companies from Japan, the USA, and Germany [Wohl19]. 

 

1987
Stereolithography 
(SLA)

1991
Fused deposition 
modeling (FDM)

Laminated object 
manufacturing (LOM)

1993
Inkjet printing 
technology

1999
Selective laser 
melting (SLM)

2000
Direct metal 
deposition (DMD)

2007
SLA for 
medical 
applications

2002
Biomaterials for 
tissue engineering

2008
Microfabrication 
of electronic 
device

2011
Hybrid laser 
sintering and 
machining

2013
3D printing 
of LEAP 
engine 
nozzle

1990 2000 2010

2015
Nanofabrication of 

circuit board

2020

1992
Selective laser 
sintering (SLS)

State of the Art 3 

 

2 State of the Art 
This chapter describes the theoretical background of AM and existing approaches related to the 
research focus of this dissertation. The origin and applications of AM, as well as the associated 
terminology and processes, are introduced in Chapter 2.1. Thereafter, the environmental 
properties of AM are characterized in Chapter 2.2, in which the benefits and challenges of AM 
in terms of resource efficiency and sustainability improvement are explained. Chapter 2.3 
presents the definition and concept of eco-design as well as its importance for improving the 
environmental performance of AM. Existing approaches related to eco-design for AM are 
described in Chapter 2.4 and evaluated in Chapter 2.5, based on which the research gap 
addressed in this dissertation is identified.  

2.1 Additive Manufacturing (AM)  

2.1.1 A brief history of AM and terms 

2.1.1.1 Timeline of the development of modern AM processes 
The history of AM can be divided into three periods: prehistory, dating from the 1860s to the 
1960s, in which objects were manually constructed layer by layer without the use of any cutting 
tools or computers; precursors, ranging from the 1960s to the mid-1980s, in which AM 
technologies encompassed all features of modern AM processes except for the use of computer 
interfaces; and modern processes, which date from the mid-1980s and are characterized by 
commercialized AM processes that are fully supported by computers and information 
technology [Bour16]. Today, AM technology applications are in the era of modern processes, 
a brief timeline of which is depicted in Figure 2-1. 

 
Figure 2-1: A brief timeline of the development of modern AM processes (based on [Wohl19]) 

In 1987, 3D Systems introduced the first commercial SLA system to the market, which 
represents the advent of modern AM technology [Bour16, Hull84]. SLA belongs to vat 
photopolymerization, which is one of the seven categories of AM processes introduced in 
Chapter 2.1.4 [ISO15c]. In the following years, different SLA systems were released by 
companies from Japan, the USA, and Germany [Wohl19]. 

 

1987
Stereolithography 
(SLA)

1991
Fused deposition 
modeling (FDM)

Laminated object 
manufacturing (LOM)

1993
Inkjet printing 
technology

1999
Selective laser 
melting (SLM)

2000
Direct metal 
deposition (DMD)

2007
SLA for 
medical 
applications

2002
Biomaterials for 
tissue engineering

2008
Microfabrication 
of electronic 
device

2011
Hybrid laser 
sintering and 
machining

2013
3D printing 
of LEAP 
engine 
nozzle

1990 2000 2010

2015
Nanofabrication of 

circuit board

2020

1992
Selective laser 
sintering (SLS)



4 State of the Art 

 

In 1991, Stratasys proposed an FDM system, and Helisys introduced a laminated object 
manufacturing (LOM) system [Feyg95, Crum89]. FDM and LOM respectively represent two 
AM process categories: material extrusion and sheet lamination [ISO15c]. 

In 1992, DTM (today a part of 3D Systems) released a selective laser sintering (SLS) system, 
which belongs to powder bed fusion, one of the seven categories of AM processes [ISO15c, 
Deck86]. 

In 1993, the Massachusetts Institute of Technology (MIT) invented a technique for bonding 
ceramic powders using liquid binder through an inkjet head, which is commercialized by 
Soligen [Cima92]. This technology belongs to the AM process category of binder jetting 
[ISO15c]. In the following years, different companies proposed similar inkjet head-based AM 
processes, in which the build material (e.g., wax) is directly dripped onto a platform through an 
inkjet head, instead of adhering the powder with a binder agent [Wohl19]. These processes fall 
under the AM process category of material jetting [ISO15c].  

In 1999, SLM, which is a process similar to SLS, was introduced. The main difference between 
SLS and SLM is that the latter completely melts the powder, while SLS only partially melts the 
powder [Mein99]. Hence, metal parts produced by SLS must be heat-treated, whereas doing so 
is not necessary for metal parts made using SLM. 

In 2000, Precision Optical Manufacturing (POM) released a direct metal deposition (DMD) 
system, which uses laser and metal powder to produce and repair products [Mazu00]. DMD 
belongs to the AM process category named directed energy deposition. Other directed energy 
deposition processes, however, employ different materials and heat sources. For example, an 
electron beam can be used to replace a laser beam, and a metal wire can replace metal powder 
[Wu18, Murr12]. 

Previously, AM was mainly applied for rapid prototyping, in which plastic prototypes are 
printed to demonstrate the geometrical features of a product [Wohl19, Gebh16]. Today, the 
applications of AM have been extended from prototyping to the direct manufacturing of 
functional parts and tools [Gebh16], and industries such as aerospace, biology, electronics, and 
construction have adopted AM. For example, in 2002, Envisiontec began offering the 
Perfactory and Bioplotter machines for printing biomaterials in tissue engineering [Chua17]. In 
2007, Advanced Laser Materials introduced a high-strength and high-temperature-resistant 
SLA resin for medical use [Butt19]. In 2008, Nuvostronics released PolyStrata microfabrication 
technology for producing electronic devices [Wohl19]. In 2015, Nano Dimension introduced 
the Dragonfly 2020 system, which is used for printing electrical circuits [Davi15].  

With the expansion of the fields of application of AM, the combination of AM with 
conventional manufacturing represents an important advance in state-of-the-art manufacturing 
technologies. In 2011, Matsuura released the LUMEX Avance-25 machine, in which laser 
sintering and computer numerical control (CNC) machining are combined [Sriv20]. In the 
following years, other companies released hybrid AM systems combining laser wielding 
deposition and CNC machining [Merk16]. The integration of AM with conventional machining 
processes enables the production of complex and versatile components.  

In 2013, General Electric (GE) decided to use fuel nozzles produced by AM on Leading Edge 
Aviation Propulsion (LEAP) engines, the nozzles of which are constructed using AM and are 
single components, whereas previous nozzles were 20-piece assemblies [Wohl19]. The new 
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nozzles made by AM are lighter and much more durable than the previous nozzles, which 
indicates the successful application of AM technology in modern industries. 

2.1.1.2 AM terms and synonyms 
According to the standard ISO/ASTM 52900, the term “additive manufacturing” is defined as 
a “ (..) process of joining materials to make parts from 3D model data, usually layer upon layer, 
as opposed to subtractive manufacturing and formative manufacturing methodologies (…)” 
[ISO15b]. Similarly, the German standard VDI 3405 defines an AM process as a “(..) 
manufacturing process in which the workpiece is built up in successive layers or units (…)” 
[VDI 14]. The equipment used for AM purposes, including the hardware and software 
accessories used to carry out build cycles, is defined as an AM machine. Furthermore, an AM 
machine and its auxiliary units comprise an AM system [ISO15b]. 

As depicted in Figure 2-2, many synonyms are used in addition to the term AM [Bour16]. The 
most widespread synonym for AM is “3D printing,” which implies that an AM process is “(..) 
3D analog to ubiquitous 2D printers (…)” [Bour16]. To better facilitate the development of AM 
technologies, the ASTM F42 Technical Committee on Additive Manufacturing held a meeting 
on January 14, 2009, in West Conshohocken, Pennsylvania, in which the term “additive 
manufacturing” was formally selected as the name for processes involving joining materials to 
create parts [Bour16]. Additionally, the term AM has been adopted and embraced by the ISO 
Technical Committee TC 261, which is working on the development of standards for AM. 
Today, the term AM has been widely adopted by research communities. 

 
Figure 2-2: Synonyms of AM (according to [Bour16]) 

2.1.1.3 Difference between AM and conventional manufacturing 
A manufacturing process can be regarded as a combination of operations for the production of 
geometrically defined solid bodies (German: “ (..) Verfahren zur Herstellung von geometrisch 
bestimmten festen Körpern (…)”) [DIN03]. There are three fundamental methods for the 
shaping of material into a physical form:  formative shaping, in which the desired geometry is 
created by applying pressure (e.g., bending) to a body of raw material; subtractive shaping, in 
which the desired geometry is created by the selective removal of materials (e.g., milling); and 
additive shaping, in which the desired geometry is created through the successive addition of 
material [ISO15b]. The essential difference among these methods is the volume change that a 
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workpiece undergoes [Gebh16]. For example, assuming a constant material density, the volume 
of a workpiece before and after the shaping of material can be regarded as V0 and V1, 
respectively, as depicted in Figure 2-3. In subtractive manufacturing, V1 will be smaller than 
V0 due to the material removal. In formative shaping, V1 will be equal to V0, as material is 
neither removed nor added. It is only in additive shaping that V1 will be greater than V0, as the 
material will be applied in an additive fashion. Thus, by observing the volume change of the 
workpiece during the shaping process, AM processes can be distinguished from conventional 
manufacturing processes. 

 
Figure 2-3: Distinguishing between AM and conventional manufacturing 

In addition to the shaping of materials, AM processes demonstrate the following technical 
characteristics during their application: 

q Preparation of a computer-aided design (CAD) model and parameter set: Before a 
build task is performed with an AM machine, a digital parameter set is needed. To generate 
such a parameter set, AM pre-processing software is used, in which the CAD model of a 
component can be sliced and process parameters such as layer thickness and print speed 
can be defined. Finally, the parameter set containing all process information can be directly 
used to start a build task [Gebh16]. 

q Wide range of materials: Today, AM is able to process basically any type of material, 
including polymers, metals, composite materials, and ceramics [Krut98]. Feedstock should 
be produced in different forms for different AM processes; for example, SLM requires 
powders, while FDM applies filaments. 

q Absence of cutting or clamping tools: The build of layers during AM does not require the 
cutting or clamping tools used in conventional subtractive processes. Hence, theoretically, 
AM can create a part in all possible orientations without any clamping problems [Gebh16]. 
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workpiece undergoes [Gebh16]. For example, assuming a constant material density, the volume 
of a workpiece before and after the shaping of material can be regarded as V0 and V1, 
respectively, as depicted in Figure 2-3. In subtractive manufacturing, V1 will be smaller than 
V0 due to the material removal. In formative shaping, V1 will be equal to V0, as material is 
neither removed nor added. It is only in additive shaping that V1 will be greater than V0, as the 
material will be applied in an additive fashion. Thus, by observing the volume change of the 
workpiece during the shaping process, AM processes can be distinguished from conventional 
manufacturing processes. 
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equivalent or even superior material properties when compared to parts produced with 
conventional casting or wrought processes [Wohl19]. For example, parts produced by SLM 
have a higher yield and ultimate strength than conventionally wrought parts [Zhan18]. 

2.1.2 Industrial AM applications 
The application of AM can be generally divided into three categories: rapid prototyping, in 
which AM is used to produce prototypes, concept models, or other parts, but not products; rapid 
manufacturing, in which AM is used to produce final products or tools that provide long-term 
functionalities; and rapid maintenance, repair, and overhaul (MRO), in which AM is used to 
repair or remanufacture defective parts [Gebh16, Wits16]. In addition, the three categories can 
be allocated to different phases of the lifecycle of an AM product, and each category features 
application subcategories, as depicted in Figure 2-4 and described in the following subsections. 

 
Figure 2-4: Classification of the fields of application of AM (based on [Gebh16, Wits16]) 

2.1.2.1 Rapid prototyping 
Rapid prototyping was the first application area of AM technology after the AM process was 
commercialized in the 1980s. Rapid prototyping can be used during the idea, concept, and 
engineering phases of a product lifecycle, in which physical samples and models are rapidly 
fabricated to demonstrate the concept, shape, functionality, or other basic features of a product 
[Liou19]. Prototypes that demonstrate a product concept are also called show-and-tell models, 
while prototypes used to verify one or few functions of a product or a tool are called functional 
prototype or prototype tool [Gebh16]. Figure 2-5 depicts five examples of AM prototypes in 
different industrial areas. It can take weeks or months to produce a prototype using conventional 
prototyping methods such as molding or handcrafting, while, when using AM, a prototype can 
be printed in hours or days. 

Compared to conventional methods used to make prototypes, such as molding, the absence of 
product-specific tools and the ability to directly produce a prototype from a CAD model when 
using AM enable the elimination of the stages in which tools are prepared and drawings created. 
Consequently, the development costs and the time to market can be significantly reduced 
[Liou19]. Moreover, to further save costs and reduce the time required for product development, 
the use of simple printers and low-priced materials such as paper or plastics is preferred in rapid 
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prototyping. AM processes related to low-priced materials and AM systems include, for 
example, SLA, selective sintering of polymer powders, layer lamination, FDM, inkjet printing, 
and powder-binder jetting [Gebh16, Ponf14]. 

 
Figure 2-5: Examples of prototypes made by AM 

2.1.2.2 Rapid manufacturing 
From the 1990s to the 2000s, the application field of AM was extended from rapid prototyping 
to rapid manufacturing, in which end-use products or tools providing long-term functionalities 
are produced with AM [Levy03]. The direct production of final products is called direct 
manufacturing, whereas the direct production of tools is called direct tooling [Gebh16]. Rapid 
manufacturing is related to the engineering, validation/testing, customization, and 
manufacturing phases of a product lifecycle. Since rapid manufacturing is intended to produce 
products that can be used in the long-term, the materials used therein include engineering 
polymers, metals, ceramics, and composites [Levy03]. The main advantage of AM when 
compared to conventional manufacturing is the increased design freedom, in which novel 
geometrical structures can be applied in a product design. Figure 2-6 shows five examples of 
tools and products produced with AM, in which topology optimization and lattice structure are 
applied. Were these items to have been produced using a machining process, two problems may 
have arisen: first, a high amount of material would have been removed, leading to a high waste 
of material, and, second, it would not have been possible to insert a cutting tool into the interiors 
of the items to shape their internal structures. Had they been produced using a casting process, 
it may have proven extremely expensive or impossible to produce the casting dies that would 
have been used to produce them. 

The AM processes related to rapid manufacturing are laser metal deposition (LMD), SLM, 
electron beam melting (EBM), SLA, cold spray, sheet lamination, and other AM processes that 
can be used to produce metals, composites, and ceramics. Since rapid manufacturing enables 
the creation of products offering long-term full functionality, the relevant systems and materials 
are more expensive overall than the systems and materials used for rapid prototyping. For 
example, the prices of modern SLM and LMD machines can range up to millions or tens of 
millions of euros, while the prices of FDM printers used for prototyping can be under thousands 
or even hundreds of euros [Wohl19]. 
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use, service, and end-of-life phases of an AM product lifecycle [Bour09]. A key motivation for 
the use of rapid MRO is enabling a circular economy in which a defective product is repaired 
or remanufactured with AM to prolong its current use phase or to add a new use phase after that 
product’s end-of-life [Wits16]. One of the most relevant AM processes for rapid MRO is LMD, 
which has three advantages compared to the use of conventional welding process to repair 
components: low heat input, which leads to low distortion; superior microstructures, leading 
to superior material properties; and stable and repeatable energy input of laser beam, which 
enables better reproducibility and reliability of the product quality [Graf12]. Figure 2-7 shows 
an example in which a defective gear tooth has been repaired by LMD. First, the defective gear 
tooth is removed by machining. Second, the removed gear tooth is roughly generated by LMD. 
Finally, using machining once again, the contour of the gear tooth is created and the 
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available. The feedstock for different AM processes should be produced in different forms. For 
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in comparison to AM, conventional subtractive and formative processes are relatively less 
sensitive to the shape of feedstock. Therefore, the production of feedstock for AM may face 
challenges that conventional manufacturing processes do not. For example, in powder-based 
AM processes, powders with different particle sizes require different process parameter 
settings, and recycled and virgin powders may exhibit different performance in terms of final 
material quality [Cord19, Zhan19]. 

 
Figure 2-8: Examples of AM materials 

Feedstocks used for AM processes can be classified as solid, paste, liquid, aerosol, and gas, as 
depicted in Figure 2-9 [Gebh16]. Different materials require different processing principles and 
are suitable for different AM processes, and they are described in the following paragraphs 
[Wohl19, Gebh16, ISO15c]. 
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q Solid: Solid material can be further divided into wire, powder, and sheet (or foil/plate). 
Wire can be used for material extrusion and directed energy deposition. For material 
extrusion, the plastic wire is first melted and then deposited by nozzles onto a platform. 
For directed energy deposition, a high-energy beam (e.g., a laser beam) creates a molten 
pool into which the metal wire is continuously fed and melted into layers. Powder can be 
used for three types of AM processes: directed energy deposition, in which powder is 
melted by a focused energy beam; powder bed fusion, in which a focused energy beam 
scans a selected area of a powder bed; and binder jetting, in which powders are glued by 
binders. Sheet-form materials are used for sheet lamination, in which sheets are cut off from 
lasers or cutting tools and combined to form 3D objects. 

q Paste: Paste-form material can be used for material extrusion and vat photopolymerization. 
Usually, material extrusion involves the use of a heating core to melt plastic filaments and 
then extrude them. However, the extruded materials are not limited to thermoplastics, and 
semi-liquid materials such as gels or slurries can be squeezed directly without any heating. 
For vat photopolymerization, a photo-curable paste can also be used in addition to a liquid.  

q Liquid: Photo-curable liquids are mainly used for vat photopolymerization and material 
jetting. The difference between vat photopolymerization and material jetting is that a liquid 
can be photopolymerized either in a vat or as droplets dispensed through inkjet heads. 

q Aerosol: An AM process called aerosol jet printing deposits a flow of aerosol (the particle 
sizes of which are up to 200 nm) with a diameter between 1 and 5 µm onto a substrate to 
create parts after the precipitation of the aerosol flow [Opto20, Gebh16]. 

q Gas: An AM process involving the use of gas is called laser chemical vapor deposition 
(LCVD), in which laser beams are used to activate a chemical reaction between an 
aluminum gas (AlH3N(CH3)3) and an oxygen-containing gas (N2O). The result of the 
chemical reaction is a solid aluminum oxide that can be combined to generate parts 
[Gebh16, Lehm94]. 

2.1.4 AM processes and system characteristics 
The ISO 17296-2 standard defines seven categories of AM processes [ISO15c]. The following 
subsections describe the system features and technical characteristics of these processes. 

2.1.4.1 Vat photopolymerization 
Vat photopolymerization refers to AM processes in which “(..) liquid photopolymer in a vat is 
selectively cured by light-activated polymerization (…)” [ISO15c]. The feedstocks used for vat 
photopolymerization include light-curable liquids, pastes, resins, and other photopolymers. In 
addition, vat photopolymerization can also be used to process metals, ceramics, or composites 
if they are made into particles and filled with photopolymers [Well15]. 

Figure 2-10 illustrates a vat photopolymerization system, in which a liquid photopolymer is 
filled in a vat. To create a layer, an ultraviolet (UV) light-curing source (typically UV radiation 
from a laser or a lamp) scans a selected area of the vat, where the liquid is solidified into a layer. 
After a layer is created, the platform will be leveled down to allow another processing loop to 
be executed. After the build task is finished, support material should be removed, and post-
processes such as post-curing by further UV exposure may be required. 
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to other polymer AM processes such as SLA and FDM, the drawbacks of material jetting are 
the limited choice of materials and limited geometrical accuracy for larger parts [Gibs15]. 

2.1.4.3 Binder jetting 
Binder jetting refers to AM processes in which “(..) a liquid bonding agent is selectively 
deposited to join powder materials (…)” [ISO15c]. Binder jetting is similar to material jetting 
in that both approaches involve the use of inkjet heads to deposit droplets of liquid material. 
The difference between them is that material jetting prints a build material, while binder jetting 
only prints a binder agent. The powders used for binder jetting can be metals, ceramics, 
polymers, or composites. Therefore, binder jetting is one of the most versatile AM processes, 
as it is capable of processing different materials [Wohl19, Well15]. 

Figure 2-12 shows the main system components of a binder jetting system in which an inkjet 
print head deposits a bonding agent to a powder bed to create layers and parts. Between two 
build cycles, the powder container and powder bed move upwards and downwards, 
respectively, to enable the powder spreading. After the build process, the support structure 
should be removed, and post-thermal treatment may be required. 

The benefits of binder jetting are the ability to use wide range of materials and the capability to 
combine powder materials with additives in binders, printing colors, and slurries with higher 
solids loadings, leading to a higher material density compared to the components made with 
material jetting [Gibs15]. However, binder jetting also has drawbacks, such as requiring 
additional steps for powder spreading, which leads to long processing times and limited 
geometrical accuracy and surface quality. Moreover, for producing metals and ceramics, 
additional sintering or infiltration with a melted material is required to consolidate the material 
[ISO15c]. 

 
Figure 2-12: Components of a binder jetting system (according to [ISO15c]) 
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Powder bed fusion is defined as an AM process in which “(..) thermal energy selectively fuses 
regions of a powder bed (…)” [ISO15c]. Powder bed fusion is a process similar to binder jetting 
in that both involve applying powder beds. The difference between them is that powder bed 
fusion binds powders using thermal energy, whereas binder jetting uses a bonding agent to 
combine powders, and no thermal energy is inputted to the powder bed. The thermal energy 
source of powder bed fusion can be a laser beam, electron beam, or an infrared lamp. Powder 
bed fusion is suitable for processing polymers, metals, ceramics, or powders being filled with 
binder matrix. 
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Figure 2-13 presents a schematic diagram of a powder bed fusion system in which a laser beam 
controlled by a deflection mirror is used to scan a selected area of a powder bed. After a layer 
is scanned, the powder container and powder bed move upwards and downwards, respectively, 
to enable the spreading of the powder. After the build task is finished, the support structure 
should be removed. Post-heat treatment is required for some processes, such as SLS, in which 
the powder is partially melted. For other processes that fully melt powders, such as SLM and 
EBM, heat treatment is not needed. 

The advantages of powder bed fusion when compared to other AM processes are the wide range 
of materials that can be used, excellent material performance, capability to process very small 
features, high geometrical accuracy, and high surface quality. These benefits are also the 
reasons why powder bed fusion has become one of the most used AM process for producing 
metal parts [Wohl19, Gibs15]. The primary drawbacks of powder bed fusion include long 
processing times, high investment costs, and residual stress due to the high energy input. 
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process, and flexibility in terms of processing parts of different sizes. However, material 
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nozzle or orifice (…)” [ISO15c]. Due to the relatively simple nature of this process and the low 
prices of the machines used for it, material extrusion has been widely used for polymer 
prototyping [Wohl19]. In addition, material extrusion can also be used to process structural 
ceramics or even metals if they are in particles and filled with a binder matrix [Müll19]. 

Figure 2-14 presents a schematic diagram of a material extrusion system, in which two nozzles 
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between each two build cycles. After the build task, the support structure should be removed. 
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range of materials that can be used, the relatively low prices of the machines used for this 
process, and flexibility in terms of processing parts of different sizes. However, material 
extrusion is subject to disadvantages such as limited geometrical accuracy due to the shrinkage 
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Directed energy deposition is defined as an AM process in which “(..) focused thermal energy 
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are powders and wires, and three typical thermal energy sources are laser beams, electron 
beams, and plasma arcs [ISO15b]. 
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During the processing, the build platform can move in different directions, which means that 
the material processing and platform leveling can be executed simultaneously. Moreover, a 
rotary table can be used as the platform of a directed energy deposition system to achieve a 
higher degree of freedom during the build [Gibs15]. Today, the accessories used for directed 
laser deposition such as deposition head can be integrated to conventional milling systems to 
enable hybrid additive-subtractive manufacturing [DMG18]. 
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capability to produce small features, and limited surface quality. To ensure the quality of end 
parts, post-processing such as milling and drilling should be required. In addition, depending 
on the materials used, post-heat treatment may be required to relieve the residual stress of 
materials [Gibs15]. 

2.1.4.7 Sheet lamination 
Sheet lamination is defined as an AM process in which “(..) sheets of material are bonded to 
form an object (…)” [ISO15c]. The feedstock of sheet lamination includes metal foil, paper, 
polymer, and composite sheets made of metal or ceramic powders with a binder matrix. The 
binding mechanisms are typically gluing or adhesive bonding, thermal bonding, clamping, or 
ultrasonic welding [Gibs15]. 

Figure 2-16 shows the main components of a sheet lamination system, in which sheets are 
pressed together by a roller and then cut by a laser beam. In practice, a knife or a milling tool 
could also be used to cut the sheets. After a layer is added, the waste take-up roller rotates to 
enable the feeding of a new layer from the material supply roll. During the build, the frame 
around the component is also cut into small pieces, which makes it easier to conveniently 
remove them after the build process. Finally, post-processing such as sintering, infiltration, or 
heat treatment may be required to solidify the material. 

 
Figure 2-16: Components of a sheet lamination system (according to [ISO15c]) 

The benefits of sheet lamination comprise the ability to use a wide range of materials, easy and 
flexible operation, the capability to combine different material layers, no need for supports, 
capability for larger layer thickness, and fast build rates, as only the outline of a layer is cut 
instead of melting or curing a cross-sectional area of a layer [Gibs15]. The main disadvantage 
of sheet lamination is the difficulty of removing the frame and blocks surrounding the 
component [Gebh16]. 

2.1.4.8 Direct write 
Note that in Sections 2.1.4.1 to 2.1.4.7, the seven AM process categories identified in ISO 
17296-2:2015 were described. However, in addition to these seven categories, GIBSON ET AL. 
have proposed another category called direct write, which refers to processes used to create 
small-scale structures or electronics whose feature resolutions are smaller than 50 μm [Gibs15]. 
For example, aerosol jet printing and LCVD (shown in Figure 2-9) do not match the definitions 
of any of the seven AM process categories and thus cannot be included in ISO17296-2:2015. 
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Nevertheless, when one considers that they can produce micro features, they can be allocated 
to the direct write category [Gibs15].  

Direct write evolved from material extrusion when the US Defense Advanced Research 
Projects Agency (DARPA) noted that the material extrusion process could be further developed 
to produce electronic circuitry and mesoscale devices such as capacitors, conductors, insulators, 
and batteries [Gibs15]. With technological progress, direct write processes have also become 
capable of producing microthermal, electrical, chemical, and biological components [Gibs15]. 
Today, based on the processing principle, it is possible to identify six types of direct write 
processes: the ink-based process, in which tailored inks (e.g., inks with nanoparticles) are 
printed to create objects (aerosol jet printing belongs to this type); the laser transfer process, in 
which a laser beam is used to heat, melt, or ablate materials on a micro-scale; thermal spray, in 
which materials are accelerated to high speeds and deposited on a substrate; beam deposition, 
in which high-energy beams (e.g., laser or electron beams) are used to produce solid material 
by condensation, chemical reaction, or conversion of material from a vapor state (LCVD 
belongs to this type); liquid-phase direct deposition, in which thermal or electrical energy is 
used to convert liquid-phase materials into solid materials; and beam tracing processes, in 
which high-energy beams are used to trim layers into prescribed cross-sectional geometries and 
bond them together (in a process similar to that of sheet lamination) [Gibs15]. 

2.1.5 Trends and challenges of AM 

2.1.5.1 Trends and potential of AM 
While it has existed for over 30 years, AM has recently drawn more attention from research 
communities and industries [Atta17]. According to Wohlers Report 2019, the number of 
worldwide AM system manufacturers increased from 33 in 2012 to 177 in 2018 (a factor of 
5.36 times [Wohl19]). Based on current research on AM in terms of technology development 
and applications, the following trends can be observed: 

q Shift of focus from prototyping to manufacturing and MRO: AM was originally 
developed to create models and prototypes. Since the potential of rapid prototyping has 
been well explored over the last decades, the recent focus of AM applications has shifted 
from prototyping to rapid manufacturing and MRO [Bech15, Bour09]. Users expect AM 
to produce parts that can offer long-term functional use, as opposed to producing show-
and-tell models without or with only limited functionality. For AM providers, advances in 
AM systems (e.g., the ability to use stable and high-power ytterbium-lasers [Lee17]) and 
materials (e.g., the ability to use powders such as steel, aluminum, or titanium [Zhan18]) 
ensure that parts produced by AM can offer equivalent or even superior performance to 
those created using conventional casting or wrought processes. 

q Adoption in cross-industrial areas: Due to its ability to use diverse range of materials 
and technologies, AM has been applied in different industries [Atta17]. For example, while 
the aerospace and automotive industries have adopted AM to produce lightweight parts to 
reduce fuel consumption, the dental field has applied AM to create customized dental 
crowns, the electronics industry uses AM to print circuit boards, the architecture industry 
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q More design freedom: On the material level, AM enables the use of multiple materials 
and customized materials, surfaces, or textures, while, on the part level, AM can be used 
to optimize the topology and cellular surface of a part to simultaneously improve the 
component’s functional performance and reduce its material use [Tang16a, Thom16b, 
Ford14]. Moreover, AM enables part consolidation, in which an assembly with a number 
of components can be redesigned into a single complex part [Yang15]. As an additional 
benefit, it is possible to reduce the number of assembly processes and the corresponding 
secondary processes (e.g., transport and storage). Eventually, AM has the potential to allow 
new business models to be designed based on the benefits that this approach offers on the 
material, product, and process chain levels [Thom16b]. For example, AM enables mass 
customization, in which low-priced and high-quality products are produced by AM and 
offered to the market [Chen15]. 

q Merging with conventional subtractive manufacturing: Although AM represents the 
opposite of conventional subtractive manufacturing, it is not intended to replace subtractive 
manufacturing [Atta17]. On the contrary, it has been observed that the latest AM processes 
are being merged with conventional subtractive manufacturing (e.g., milling processes) to 
achieve a higher degree of manufacturability [Zhu13]. AM can produce complex parts that 
cannot be produced by subtractive processes, while subtractive processes can produce 
components with greater dimensional accuracy and surface quality than AM. Therefore, 
the integration of AM with subtractive manufacturing in one system implies the merging 
of the respective advantages of AM and subtractive manufacturing [Sosh17]. 

q Reorganization of production networks and supply chains: AM enables shorter and 
simpler supply chains, localized production networks, innovative distribution models, and 
new collaborations between designers and users [Ford16]. Since products designed for AM 
tend to have fewer parts and require less materials and fewer actors in their production, 
production facilities can be established close to the market. Shorter supply chains and 
decentralized production also imply the reduction of logistics costs. Therefore, in the 
future, when referring to AM, the term “logistics” may refer more to delivering digital 
design files rather than to complex and heavy assemblies or products [Ford16]. Moreover, 
decentralized production with AM may give rise to a more non-linear distribution model 
and more collaborations among designers, producers, and local customers [Chen15]. 

q Improved sustainability: Based on the benefits it offers on the product, process chain, and 
business model levels, AM will likely eventually lead to more sustainable societies 
[Ford16]. For example, at the economic level, AM reduces manufacturing costs by 
preventing material waste or over-production. By allowing companies to offer customer-
oriented products or solutions, AM can help to increase profits [Chen15]. On the ecological 
level, the use of AM results in less material waste and enables the lightweighting of parts, 
which leads to reduced material use [Huan16]. Moreover, the absence of production tools 
and the reduced logistics associated with AM also imply the greater savings of resources 
when compared to conventional production scenarios. On the social level, the ability to 
create customer-oriented products using AM enables greater customer satisfaction, and the 
openness of AM networks allows for increased national and international interaction on 
the educational, technological, and cultural dimensions [Chen15]. In addition, conventional 
manufacturing requires metalworking fluids, which leads to oil mist—a major health 
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concern for human workers. Since AM does not require metalworking fluids, the risk of 
oil mist is absent with AM [Huan13]. 

2.1.5.2 Challenges and obstacles of AM 
While AM offers numerous benefits and has significant potential for wider application in the 
future, the following challenges and obstacles remain to be overcome: 

q High investment costs: According to Wohlers Report 2019, the average selling price of a 
metal AM machine was $413,043 in 2018 [Wohl19]. Depending on the maximum build 
size and power, the selling price of a laser-based AM machine can be over $1 million 
[Wohl19]. Given the additional costs for auxiliary equipment, staff training, and the 
recruitment of new employees, the high investment cost is one of the most important 
obstacles to a wider application of AM [Yi19].  

q Build size and build rate: Size restrictions and long production times for large-scale 
products have been obstacles to the rapid adoption of AM [Atta17]. A large-scale part 
refers to a physical object with a longest axis of at least 1 to 2 m [Nycz16]. Today, the most 
common build size of powder bed fusion systems is 250 x 250 x300 mm, and the build 
volume of the largest SLM system is 800 x 400 x 500 mm [Nycz16]. Only a limited number 
of directed energy deposition systems are capable of processing large-scale metal products 
[Fraz14]. In addition to build size, the slow build rate is another obstacle. The processing 
time of an AM system can range from hours to days to even weeks depending on the AM 
process, part size, parameter sets, and system configurations. Due to these lengthy build 
times, control over the process is critical, as any failure during the process can void the 
entire build task, resulting in defective products and waste of time and cost. 

q New materials: Although the range of products that can be processed by AM systems is 
increasing, industries still require materials that are suitable for use in AM processes and 
that exhibit superior performance and unique functionalities. Among these are digital 
materials (or digital composites), in which two or more composite substances are combined 
simultaneously through jetting processes [Pan16]. Depending on the process used, the 
resulting digital material will have unique electrical, optical, or thermal properties. Another 
type of material is shape memory materials, which exhibit time-dependent shape-changing 
behavior and can be used for the self-assembly or self-repair of products [Mome17]. The 
implementation of AM processes for shape memory materials is also called 4D printing, 
since the time-dependent behavior is considered to be the fourth dimension, and 4D 
printing also implies the next evolutionary stage of 3D printing [Choi15]. 

q Reliability and reproducibility: The mechanical properties of metal parts produced by 
AM can be comparable to or even superior to those produced using conventional 
manufacturing processes. However, two open questions remain to be answered: The first 
is whether this high quality of materials can be reproduced consistently for different 
products, while the second is whether AM production processes will prove stable and 
reliable for long production runs [Dowl20, Jahn15]. The quality of products made with AM 
is determined by numerous factors, such as material, machine, process, system, or even 
CAD model used. The relevant quality features are surface finish, geometrical accuracy, 
mechanical properties, and porosity [Schm17].  

q Lack of AM knowledge and tools: Lack of knowledge concerning AM materials, design 
methods, software, or other relevant aspects has been a significant barrier to the adoption 
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entire build task, resulting in defective products and waste of time and cost. 

q New materials: Although the range of products that can be processed by AM systems is 
increasing, industries still require materials that are suitable for use in AM processes and 
that exhibit superior performance and unique functionalities. Among these are digital 
materials (or digital composites), in which two or more composite substances are combined 
simultaneously through jetting processes [Pan16]. Depending on the process used, the 
resulting digital material will have unique electrical, optical, or thermal properties. Another 
type of material is shape memory materials, which exhibit time-dependent shape-changing 
behavior and can be used for the self-assembly or self-repair of products [Mome17]. The 
implementation of AM processes for shape memory materials is also called 4D printing, 
since the time-dependent behavior is considered to be the fourth dimension, and 4D 
printing also implies the next evolutionary stage of 3D printing [Choi15]. 

q Reliability and reproducibility: The mechanical properties of metal parts produced by 
AM can be comparable to or even superior to those produced using conventional 
manufacturing processes. However, two open questions remain to be answered: The first 
is whether this high quality of materials can be reproduced consistently for different 
products, while the second is whether AM production processes will prove stable and 
reliable for long production runs [Dowl20, Jahn15]. The quality of products made with AM 
is determined by numerous factors, such as material, machine, process, system, or even 
CAD model used. The relevant quality features are surface finish, geometrical accuracy, 
mechanical properties, and porosity [Schm17].  

q Lack of AM knowledge and tools: Lack of knowledge concerning AM materials, design 
methods, software, or other relevant aspects has been a significant barrier to the adoption 
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of AM by production companies [Yi19]. However, this situation could change in the near 
future. Today, national and international standardization institutes (e.g., Technical 
Committee 261 of ISO and Technical Committee 105 of the Association of German 
Engineers) are working on series of standards for addressing AM-related issues (e.g., 
standards related to the classification of processes, the testing of materials, and product 
design). Some of these standards have already been published, while others are under 
development. These standards are intended to help production companies to gain more 
knowledge about AM. 

q Intellectual property and patents: While legitimate producers may use AM to shorten 
their development and production process, copycats may use AM to facilitate the process 
of illegally copying the products of original manufacturers. Current legal frameworks for 
patents and intellectual property protection should be adapted to take into account 
copyrights, utility patents, design rights, trademarks, and other legal issues related to AM 
[Bech15]. 

2.2 Environmental properties of AM 

2.2.1 Potentials and advantages of AM 
Due to the increasing global population and higher expectations in terms of quality of life and 
minimization of resource consumption and environmental impacts, modern production systems 
are required to be cleaner and more sustainable [Herr10]. Against this background, numerous 
studies have addressed the quantification, evaluation, and improvement of environmental 
performance in manufacturing; the resulting tools, methods, approaches, and concepts are 
referred to using different terminologies, such as “sustainable production,” “green 
manufacturing,” or “full lifecycle engineering” [Link16, Dorn13, Herr10]. Compared to 
conventional manufacturing processes, AM processes are considered to be “clean” in that they 
improve the environmental performance of production processes [Yang19, Lebo14]. The 
environmental performance of production refers to measurable results related to different 
environmental aspects, such as energy use, greenhouse gas emissions, or any other impact 
categories [ISO15a]. Therefore, in terms of improving the environmental performance of 
manufacturing processes, AM demonstrates the following advantages, which are also referred 
to as the environmental benefits of AM: 

q Lightweighting and functional improvements: AM enables the use of topology 
optimization, lattice structures, composite materials, and other lightweighting methods. 
Lightweighting implies less material usage during the production phase of a product 
lifecycle, and lightweight products can also prove beneficial for the environment during 
the use phase. For example, due to lightweighting, Boeing 787 aircraft are 20% lighter than 
similar aircraft, resulting in a 10–12% fuel efficiency improvement during the use phases 
of these aircrafts [Mari14]. Moreover, through functional improvements, AM may lead to 
more environmentally friendly customer behavior and end-of-life management for 
products [Horn12]. 

q No or fewer product-specific tools and fluids: The absence of dies, cutting tools, fluids, 
and other product-specific auxiliary materials or systems implies the absence of their 
production, transportation, storage, maintenance, and disposal. Therefore, the resources 
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that would be used for them are saved or reduced with AM, and the environmental impacts 
caused by these tools, materials, and systems are also eliminated or reduced [Morr07]. 

q Less material waste: AM produces fewer scraps than conventional manufacturing. For 
example, in powder-based AM processes such as SLM or LMD, powders that remain after 
a build task can be recycled, screened, and reused [Serr11]. In AM processes, scraps are 
only produced at certain limited points, e.g., the destruction of the support structure or 
during post-subtractive processing. 

q Reduction of manufacturing processes and shortening of supply chains: AM enables 
part consolidation, in which multiple parts are integrated into single complex parts. 
Therefore, the corresponding manufacturing steps are reduced, and supply chains are 
shortened. It is estimated that by 2025, the primary energy and CO2 emission intensities of 
the manufacturing industry could be reduced by a maximum of 5% through supply chain 
re-organization by means of AM implementation [Gebl14]. 

q Circular economy: By using recycled materials for AM, the lifecycle of a product created 
by AM can be expressed in a circular fashion, and the scraps created during the production 
of a product can be recycled and reused in future AM processes [Saue19, Desp17]. In 
addition, during the use phase, products can be repaired by AM, while, during the end-of-
life phase, a product can be remanufactured or reused [Lein16].  

2.2.2 Debates on the environmental benefits of AM 
Despite the various advantages discussed above, recent studies have also claimed that there is 
a need to more critically examine the environmental benefits of AM. In terms of the 
improvement of energy performance, AM is associated with the following concerns: 

q Production of feedstock: Compared to conventional manufacturing, which is not sensitive 
to the shape of feedstocks, feedstocks for AM processes must be produced in specific 
shapes [Kell17]. For example, for binder jetting and powder bed fusion processes, metal 
powers should be produced by for instance water or gas atomization that require a 
significant amount of energy [Vanl17, Chen15]. For printing metal parts with material 
extrusion, metal should be produced into powders and then combined with binder matrix 
into filaments. Subsequently, the production of feedstocks for AM needs extra resources 
and causes more environmental impacts. 

q Cutting tools and fluid in post-processing: While cutting tools or fluid are not required 
during the build phase of AM processes, they are still needed during the post-subtractive 
processing to improve the quality of AM parts [Vanl17]. Therefore, the tools and auxiliary 
materials that are claimed to be absent with AM implementation are still not avoidable. 
Consequently, the resources that should be saved due to their absence are still consumed. 

q Long build times: The build times of AM processes can range from hours to days 
depending on the process parameter set and the machines used [Atta17]. Longer build times 
imply increased electricity consumption and a higher risk of failure. Should an error occur 
during the process, the build will need to be repeated; as a result, the produced layers will 
be scraped, and consumed energy will be wasted. Moreover, the handling of failure layers 
may require additional cost, time, and resources; for example, in SLM, components should 
be removed from the platform by means of mechanical operations. 

q Dependency on digitalization: In AM, a build task begins with a digital parameter set, 
and the process monitoring and control are based on camera-based image collection and 
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analysis (e.g., [Mazz17]). Therefore, these requirements imply that the application of AM 
is highly dependent on digital technologies [Bour16]; this is in contrast to subtractive 
manufacturing, which was used for centuries prior to the invention of computers. It is well 
known that digital technologies require significant amounts of electricity [Morl18]; the 
dependency of AM on digital technologies thus also implies greater electricity demands 
and environmental impacts. 

q Rebound effects: AM enables better product quality and functionality and decreased 
manufacturing costs, leading to lower product prices. Therefore, the functional and 
economic advantages of products created using AM will lead to more buying and 
consuming of such products, which would then increase the overall resource consumption 
and environmental impacts of AM [Sorr08]. 

To ensure the environmental benefits of AM and to overcome the shortcomings that may limit 
these benefits, the environmental dimension of AM should be regarded more critically and 
researched further [Baum17a]. Specifically, the following topics are important: 

q Quantitative assessments of AM processes and systems: The quantification of the 
environmental impacts is the prerequisite for a deeper understanding of the environmental 
performance of AM (e.g., in terms of resource consumption, waste management, and 
pollution control [Peng18]). Among the various environmental dimensions, energy issues 
merit greater research attention [Reje18]. Recent research has shown that the energy 
performance of AM can be worse than that of conventional manufacturing in specific cases, 
and the energy use of AM is sensitive to many impact factors, such as part size, build 
orientation, batch size, process parameters, and machine configuration [Kell17]. In 
addition, energy use is related to other economic and ecological issues, such as costs and 
carbon emissions, and this topic therefore requires further research. 

q Comparison of AM with conventional manufacturing in multiple life phases: 
Compared to conventional manufacturing, AM demonstrates both advantages and 
disadvantages in different life stages. Therefore, the quantification of the environmental 
impacts of AM and the comparison thereof with those of conventional manufacturing 
should be performed throughout different life phases (e.g., production phase, distribution 
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of products made using specific AM equipment. Future research should adopt a broader 
perspective and consider wider AM production networks and multiple life stages of 
products within such networks [Ford16]. 

q Policies, control strategies, and regulations: AM leads to changes in production and 
consumption and even in society; hence, new policies, regulations, and legal frameworks 
are required [Reje18]. From an ecological perspective, research communities and 
policymakers should focus on the development of new standards and best practices, as well 
as guidelines for the operation of AM equipment, division of responsibilities, handling of 
material and waste, pollution control, assessment criteria for environmental impacts, and 
other environmental issues related to AM [Reje18, Verh18]. 

It is urged that research communities related to AM address the abovementioned research. 
Therefore, it should be noted that this dissertation focuses exclusively on eco-design for AM 
and does not address other issues. The motivation for this decision, as well as the theoretical 
background of eco-design, is presented in the next section. 

2.2.3 Energy performance of AM 
Compared to environmental performance, in which different impact categories are considered, 
energy performance focuses exclusively on measures related to the energy consumption, energy 
efficiency, and energy use of a system or process and omits all other impacts [ISO15a]. Energy 
performance is one of the most important environmental issues associated with AM due to the 
following reasons: 

q Energy is a key factor causing the environmental impacts of AM: In AM, high-power 
devices such as laser transmitters are widely used [Lee17]. Therefore, electricity 
consumption during build processes is significant. According to a study conducted by 
FALUDI ET AL., in the cradle-to-gate impact of SLM, electricity consumption accounts for 
a share of approximately 80% of the embodied energy, and the proportion of the impact 
caused by electricity consumption ranges from approximately 67% to 75% of the total 
cradle-to-gate impact [Falu17]. Compared to electricity consumption, the impact caused 
by material waste, argon, and machine transportation and disposal is negligible, and the 
impact caused by powder production never accounts for more than 10–12% of the total 
impact [Falu17]. The fact that energy use accounts for the majority of the environmental 
impacts of AM implies that the improvement of the energy performance of AM is a key 
factor in improving the environmental performance of this process. 

q Energy performance is sensitive to many factors in AM: The energy performance of 
AM can be influenced by many factors. Product-related factors include the materials used, 
part size, and number of parts featured in a build task [Kell17]. Generally, melting metal 
parts requires more energy than melting plastic parts, and larger parts require more build 
time and electricity use than small parts. Process-related factors include build orientation, 
build speed, layer thickness, and scan pattern [Yi20a]. Changing the build orientation leads 
to changes in the support structure and number of layers, which in turn result in different 
levels of energy consumption. For the same reason, should changes be made to the build 
speed, layer thickness, and/or scan pattern, the build time and energy use will be impacted 
as well. In addition to product- and process-related factors, factors related to machines and 
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technologies can also influence the energy use of AM (e.g., a ytterbium fiber laser 
transmitter is more efficient than a carbon dioxide laser transmitter [Lee17]). 

q Lower energy efficiency and high specific consumption: In laser-based AM processes, 
the heat radiation, reflection, conduction, and convection of molten pools lead to high 
energy waste. For example, the adiabatic efficiency of laser AM processes (the ratio 
between the actual build rate with heat loss and the theoretical maximum build rate without 
heat loss) varies from 3.6% to 7% for aluminum and from 9% to 23% for steel [Guto17]. 
The specific energy consumption (energy consumption per 1 kg material) of AM processes 
can be one to two orders of magnitude higher than that of machining and molding processes 
[Kell17]. 

In summary, the energy performance of AM processes is not always superior to that of 
conventional manufacturing processes and deserves more research attention. As described in 
the next subsection, to ensure the environmental benefits and to improve the energy 
performance of AM, eco-design approaches are needed in the AM design phase. 

2.3 Eco-design and its implication for AM 

2.3.1 General eco-design and its definition and concepts 

2.3.1.1 Origins and definition of general eco-design 
The origins of the term “eco-design” can be traced back to the 1980s, when it was proven that 
end-of-pipe technologies were unable to deal with growing environmental problems such as 
resource shortages and heavy industrial pollution [Hübn12]. End-of-pipe technologies address 
emissions and pollutions at the end of production activities without making any changes to the 
processes involved in those activities [Yari03]. Since pollution and wastes are already 
generated, the treatment thereof requires additional equipment and investment. For reasons of 
cost and efficiency, at the end of the 1980s, industry adopted a more preventive approach called 
“middle-of-pipe” or “cleaner production,” in which waste and resource consumption are 
minimized by modifying production processes in a cleaner fashion [Math07]. At the same time, 
another concept, namely eco-design, was introduced, in which the focus of the treatment of 
environmental issues is further emphasized in the design phase of a product lifecycle [Karl06]. 

The main motivation for considering environmental impacts in the product design phase is due 
to the following two factors: First, the initial product idea and design concept have a great 
influence on the ultimate life phases and the corresponding environmental impact of that 
product [McAl15]. As depicted in Figure 2-17A, approximately 80% of the fixed environmental 
impacts in a product lifecycle can be influenced in the early concept phase [Tisc00]. Second, 
as shown in Figure 2-17B, over the entire lifecycle of a product, the costs of reducing 
environmental impacts trend to increase, while the opportunities to reduce environmental 
impacts tend to decrease. This is because once products are manufactured and distributed to the 
market, changes to the designs of those products will require modifications to the underlying 
supply chain or distribution network or even the recall of sold products, resulting in additional 
costs and environmental impacts [Yi20b]. Therefore, the design phase encompasses the most 
opportunities to reduce environmental impacts at lower costs, and production companies should 
thus engage in eco-design. 
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In addition, it is important to note that eco-design is not the same thing as sustainable design. 
While sustainable design covers ecological, economic, and social dimensions, eco-design only 
focuses on the ecological dimension [Char10]. Therefore, this dissertation only focuses on the 
environmental issues associated with AM and does not consider social and economic issues. 

2.3.1.2 Legal eco-design framework in Europe 
The first EU directive on eco-design was Directive 2005/32/EC, which focused on the 
improvement of the efficiency of energy-using products because they account for a large 
proportion of the consumption of natural resources and energy [Euro05]. Directive 2005/32/EC 
was proposed to amend three previous directives: Directive 92/42/EEC on efficiency 
requirements for hot water boilers; Directives 96/57/EC on efficiency requirements for 
household electric cooling devices; and Directive 2000/55/EC on efficiency requirements for 
ballasts for fluorescent lighting. These directives are depicted in Figure 2-18 [Euro00c, Euro96, 
Euro92]. The focus of Directive 2005/32/EC was mainly on energy issues and the improvement 
of energy efficiencies, and its creation was related to other EU activities, such as the European 
Climate Change Program (ECCP) [Euro00a]. 

 
Figure 2-18: Legal framework for eco-design in Europe (adapted from [Sany14]) 

In 2009, Directive 2005/32/EC was replaced by Directive 2009/125/EC, in which the focus on 
eco-design has been extended from energy efficiency to include the assessment of the 
environmental impacts of entire product lifecycles [Sany14]. This modification was mainly 
driven by an increasing concern regarding the environmental impacts of products and services 
and lifecycle thinking, especially since the Integrated Product Policy (IPP) came into force 
[Sany14, Euro01]. Moreover, other policies, such as Directive 94/62/EC on packaging and 
packaging waste and Directive 2000/53/EC on end-of-life vehicles, positively influenced the 
eco-design framework [Sany14, Euro00b, Euro94]. 

After Directive 2009/125/EC was published, it had a positive impact on other policies, such as 
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the standard product information of the energy or other resource consumption, which was later 
replaced by Regulation 2017/1369 [Euro17, Euro10b, Euro10a]. From an eco-design tools 
perspective, the ISO has published various standards addressing the basic methodologies used 
in assessing and reducing environmental impacts in production activities. Examples are ISO/TR 
14062 and ISO 14006 on guidelines and general frameworks for eco-design in product design 
and development, ISO 14040 on the LCA framework, and ISO 14955 on the environmental 
evaluation of machine tools; these standards are depicted in Figure 2-18 [ISO18, ISO17, ISO11, 
ISO06, ISO02]. 

2.3.1.3 Levels of eco-design 
In general, trends, challenges, and other issues related to eco-design can be discussed on the 
following four levels: the system success level, the strategy level, the action level, and the tools 
level. These levels are shown in Figure 2-19 and described in the following [Paul15]. 

 
Figure 2-19: Four levels of eco-design (based on [Paul15]) 

q System and success level: The term “system” refers to human society acting within the 
ecosystem. The term "success" implies that nature is not faced with increased material 
extraction from the earth, overwhelmed by production activities, or degraded by physical 
means in the course of meeting human needs [Robè02]. 

q Strategy level: To achieve success throughout human society, general strategies and 
guidelines should be specified. When maintaining the ecosystem, economic benefits should 
also be considered to avoid a lack of economic resources.  

q Action level: The plans, guidelines, and policies identified at the strategic level should be 
further refined on the operational dimension, where activities related to eco-design are 
planned and implemented to ensure that strategies are successful. 

q Tools level: This level describes the measures, methodologies, software and hardware, and 
other tools used to support the activities at the action level. 

In the context of this dissertation, the discussion is limited to the action and tools levels, as the 
aim is the development and validation of a methodological framework containing design and 
assessment activities and tools intended to facilitate eco-design by AM users. 
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in assessing and reducing environmental impacts in production activities. Examples are ISO/TR 
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evaluation of machine tools; these standards are depicted in Figure 2-18 [ISO18, ISO17, ISO11, 
ISO06, ISO02]. 

2.3.1.3 Levels of eco-design 
In general, trends, challenges, and other issues related to eco-design can be discussed on the 
following four levels: the system success level, the strategy level, the action level, and the tools 
level. These levels are shown in Figure 2-19 and described in the following [Paul15]. 
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2.3.2 Eco-design for AM and its benefits and challenges 

2.3.2.1 Concept of eco-design for AM 
The concept of eco-design for AM can be regarded as involving interactions among three 
fundamental domains: manufacturing, product lifecycle, and sustainability (see Figure 2-20). 
The product lifecycle domain comprises four core stages: design, in which product idea, a rough 
concept, and detailed engineering solutions are defined and validated; production, in which the 
components are manufactured and assembled into products; use, in which products are 
implemented for specific purposes; and end-of-life, in which products that have exceeded their 
lifespans are recycled and disposed [West00]. As described in Section 2.1.1.3, the 
manufacturing domain encompasses additive, subtractive, and formative manufacturing as 
three essential elements [ISO15b]. The sustainability domain consists of three fundamental 
dimensions: ecology, in which interactions between humans or other life forms within the 
surrounding environment enable sustainable development; economy, in which the production, 
distribution, and consumption of goods or services are realized in a sustainable form; and 
society, in which systems of individuals with same cultural characters are required to achieve a 
sustainable existence [Unit05]. By combining design, ecology, and AM from the respective 
domains, the new domain of eco-design for AM arises.  

 
Figure 2-20: Rise of the concept of eco-design for AM 

Based on the concept that eco-design arises from the domain interaction, an eco-design for AM 
approach should exhibit the following properties: 

q Use of innovative design tools to improve the environmental performance of AM: This 
property refers to the use of innovative design techniques that are appropriate for AM to 
propose design solutions that are more environmentally friendly. In accordance with the 
general solution-based perspective introduced in Section 2.3.1.1, the design object can be 
a product, supply chain, production network, business model, or other design object related 
to AM.  

q Evaluation of the environmental performance of AM: This property refers to the use of 
quantitative or qualitative evaluation methods (e.g., LCA or energy performance 
assessment) to analyze the environmental performance of AM-specific design solutions 
(e.g., emissions, material and energy use, resource depletion, or other environmental 
impacts).  
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q Consideration of specific features of AM processes: This property describes the use of 
AM processes and consideration of their functions, cost, materials, system characters, or 
other technological features during design and evaluation activities.  

2.3.2.2 Design and evaluation tools in eco-design for AM 
In general, each eco-design for AM approach should comprise at least two tools: a tool for 
environmental evaluation and a tool for environmental design [Dieg16, LePo07]. While the 
evaluation tool aims at identifying and quantifying the scale of the environmental impacts 
caused by AM, the design tool describes the formulation of the parameters of design solutions 
with AM. The following two tools are widely applied for the environmental evaluation of AM: 

q LCA: Generally, LCA should be performed in four phases: goal and scope definition, in 
which the functional unit, system boundaries, impact categories, and other general 
requirements are specified; inventory analysis, in which the inventory flows into (e.g., 
electricity use, water use, and land use) and out of (e.g., heat, emissions, and waste) the 
system boundary along the product lifecycle are quantified; lifecycle impact assessment 
(LCIA), in which the environmental impacts of AM are quantified in different equivalent 
indicators (e.g., CO2-eq. in kg) based on inventory data; and interpretation, in which 
significant issues are addressed and recommendations are made. During the LCIA, 
different methodologies can be used, in which the impact categories and calculation 
methods of the equivalent indicators may differ. For example, cumulative energy demand 
(CED) only considers the impact categories of primary energy carriers (e.g., fossil, solar, 
and wind power), while ReCiPe covers the impact categories such as climate change, 
acidification, and human toxicity. By using LCA as well as different LCIA methodologies, 
the environmental impacts of AM can be assessed in terms of different focal impact 
categories. 

q Energy-related metrics: Compared to LCA, energy-related metrics and evaluation 
methodologies omit other impact categories and only focus on energy issues. On the 
machine level, the most widely used energy metrics are, for instance, total energy 
consumption in J or kWh, specific energy consumption in MJ/kg, or exergy efficiency in %. 
On the process chain level, the most used energy metric is primary energy. By using these 
energy-related metrics, the energy performance of design solutions with AM can be 
quantified and assessed. 

The following three types of tools for environmental design in eco-design for AM can be found 
in the existing literature: 

q Product-related design tools: On the product level, common environmental design tools 
include topology optimization, use of porous structure, part consolidation, and multi-
material design. In topology optimization, finite element analysis (FEA) is used to evaluate 
the performance (e.g., in terms of stress and strain) of a product under certain mechanical 
conditions, and the geometrical layout of the product is meshed based on given 
optimization objectives (e.g., reduction of weight). Porous structures such as lattice and 
honeycomb structures are suitable for AM, as they can simultaneously improve the 
functionality and reduce the weight of a product. In part consolidation, multiple 
components within an assembly are integrated into one or few components with greater 
complexity, which leads to the reduction of the manufacturing steps involved and the 
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saving of resources. Multiple material design enables the combination of different materials 
in one component to simultaneously improve its functionality and make it more 
environmentally friendly. In summary, product-related design tools are used to endow 
products with certain geometrical or material properties. 

q Process-related design tools: These design tools refer to different methodologies for 
process or process chain planning. Process planning aims to determine process parameters 
such as build rate, layer thickness, and laser power while taking into consideration 
environmental performance, product quality, and process performance. In process chain 
planning, the design focus lies on determining the logical sequence of AM process and 
peripheral processes such as build task preparation and post-processing, taking into 
consideration both the environmental performance of the process chain as well as its 
productivity and manufacturability. 

q Business model-related design tools: On the business model level, the design focus is on 
issues related to value creation and transfer of AM products between production networks 
and customers. During the design process, both environmental performance and business 
opportunities should be considered. 

2.3.2.3 Benefits and challenges of eco-design for AM 
As described previously, eco-design for AM is key in investigating, assessing, and ensuring the 
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However, the implementation of eco-design for AM is also faced with the following challenges 
that need to be overcome: 

q Determining design scope with AM: The design objects of eco-design for AM can be 
products, processes, production networks, life phases, or other design issues related to AM. 
Therefore, the definition of an appropriate design scope needs to be considered at the 
beginning of eco-design for AM. 

q Collaboration between design and assessment activities: Design and assessment 
activities should not be isolated from each other, as eco-design for AM represents a holistic 
framework for ensuring the environmental benefits of AM. Therefore, the integration of 
different activities within an eco-design for AM framework may prove challenging and 
should be appropriately arranged before they are carried out. 

q Quantification of the environmental profiles in the early phase: The quantification of 
environmental performance requires inventory data of AM processes and systems. 
However, in the design phase, processes may not have been implemented, and the relevant 
systems may not have been purchased; therefore, it would be impossible to conduct 
experiments for data acquisition. Consequently, the inconvenience of data collection in the 
early phase may challenge eco-design for AM in terms of the quantification of the 
environmental performance of AM. 

q Methods and criteria for assessment and decision-making: A design case with AM is 
subject to the internal or external design requirements proposed by companies or 
customers. Thus, determining which methods or criteria should be considered can be a 
challenge during design and assessment activities. 

2.3.3 Requirements for general eco-design for AM approaches 
Based on the concept and properties of eco-design for AM, the following requirements are 
identified as the boundary conditions that general eco-design for AM approaches should fulfill; 
these requirements are also considered in developing the framework in this dissertation. 

Requirement 1: Description of the environmental performance of AM 

The description of the environmental performance of AM is the prerequisite for quantifying 
and improving that performance. The environmental performance of AM refers to measurable 
results related to different environmental aspects, such as energy use, greenhouse gas emissions, 
water consumption, or any other environmental impact related to AM [ISO15a]. In eco-design 
for AM, environmental performance should be described in metrics that represent the condition 
or status of AM processes in terms of environmental properties. More specifically, the term 
“description” refers to, first, choosing at least one impact category of environmental 
performance, and, second, using at least one metric to quantify the selected impact category. 

Requirement 2: Enabling convenient and reliable energy predictions of AM processes 

The quantification and improvement of the environmental performance of AM require accurate 
prediction of the material and energy use of AM processes. The material use can be defined as 
the sum of the volumes of a component and its corresponding support structure. However, the 
energy use of AM is difficult to quantify because it can be influenced by many factors, such as 
machine configuration, part design, and process parameters. In the design phase, experiments 
are not suitable because AM build times can be up to hours or days, and time-intensive 
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experiments will significantly increase the overall design cost and time. Thus, rapid and reliable 
energy predictions are required for eco-design for AM approaches. 

Requirement 3: Integration of assessment and design activities 

Since eco-design for AM represents a holistic framework for identifying, evaluating, and 
ensuring the environmental benefits of AM, the related assessment and design issues should be 
integrated. The assessment activity aims at quantifying the energy performance of a design 
solution with AM, whereas the design activity seeks to improve the energy performance of this 
solution with respect to the assessment results. 

Requirement 4: Integrated consideration of design benefits and environmental impacts 

Eco-design for AM aims at the maximization of the design benefits of AM while minimizing 
environmental impacts. The design benefits of AM include, but are not limited to, improved 
functionality, increased customer satisfaction, cost benefits, enhanced manufacturability, and 
other benefits related to the use of AM. Therefore, in eco-design for AM, the design benefits 
and environmental impacts of AM should be considered and evaluated in an integrated fashion. 

Requirement 5: Convenience, ease-of-use, and robustness 

Different designers have individual design needs. An eco-design for AM approach should be 
robust enough to solve a variety of different design problems, not just one specific problem. In 
addition, good design and evaluation tools can significantly reduce development costs and time. 
Therefore, convenient usability, modifiability, and robustness are required for an eco-design 
for AM approach. 

2.4 Existing approaches related to eco-design for AM 
Based on the requirements defined in Chapter 2.3.3, existing approaches related to eco-design 
for AM are collected, specified, and analyzed. Whether an approach is included in this chapter 
depends on whether it meets at least one of the five requirements identified previously. In 
assessing the existing approaches, it can be concluded that they can be clustered into the 
following five categories. 

2.4.1 Category I: Unit process inventory and impact analysis 
Studies that fall in this category feature experiments intended to measure electricity use for 
specific AM machines. By applying analytical models and LCIA methods, inventory data (i.e., 
concerning material and electricity consumption) can be converted into equivalent 
environmental impact indicators (e.g., midpoint indicators such as CO2 emission and endpoint 
indicators such as damage to human health). The relevant studies are described below: 

q BALOGUN ET AL. carried out experiments on the Stratasys Dimension SST FDM system and 
calculated its CO2 emissions using analytical models [Balo15]. The authors concluded that 
the increased part volume and complexity lead to higher electricity consumption and a 
greater carbon footprint. Moreover, BALOGUN ET AL. also found that post-processing 
accounts for a significant portion of the total energy consumption and carbon footprint. 

q BAUMERS ET AL. performed experiments to analyze the electricity consumption of six AM 
systems: the SLM250, the M3 Linear, the EOSINT M270, the A1, the EOSINT P390, and 
the FDM 400mc [Baum11]. In this study, it was observed that the capacity utilization of a 
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the FDM 400mc [Baum11]. In this study, it was observed that the capacity utilization of a 
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build task has an impact on the specific energy consumptions of AM machines, especially 
for SLS/SLM and EBM. 

q BAUMERS ET AL. measured and modeled the electricity consumption and build costs of an 
EOSINT M270 machine using a series of experiments [Baum13]. The proposed cost and 
electricity consumption models enable the rapid and reliable estimation of the cost and 
energy consumption of the studied AM machine. 

q KELLENS ET AL. performed experiments on four AM machines: the EOSINST P760, the 
EOSINT P360, the EOSINT FORMIGA P100, and the Concept Laser M3 Linear [Kell11]. 
The authors quantified and analyzed the electricity, compressed air, and powder 
consumption of these machines; their results represent valuable inventory data for SLS and 
SLM processes.  

q LUNETTO ET AL. measured the electricity consumption of the Arcam A2x EBM machine 
and modeled the electricity consumption based on the average deposition rate of the 
process [Lune20]. The results show that the specific energy consumption of EBM 
demonstrates a hyperbolic correlation to the average deposition rate. 

q NAGARAJAN ET AL. carried out experiments involving the Fast Mask Image Project 
Stereolithography (MIP-SL) process and evaluated the environmental impacts of 
producing six components using the ReCiPe LCIA method [Naga17]. The authors modeled 
energy consumption with the build time using empirical methods, and the resulting model 
can be used for energy predictions. 

q SREENIVASAN AND BOURELL measured and analyzed the energy consumption of the 
Vanguard HiQ+HS SLS machine [Sree09]. The authors concluded that the chamber heater 
subsystem of the machine consumed the most energy, followed by the stepper motors, 
roller, and laser device. 

q WATSON AND TAMINGER applied parametric modeling to the energy consumption of 
general AM processes [Wats18]. In their model, the energy consumption of AM. including 
the feedstock production, transport, removal of supports, and post-processing, is expressed 
as a function about part volumes and other assumed variables. 

q WIPPERMANN ET AL. performed experiments on three AM systems, the Trumpf TruPrint 
1000, the EWM alpha Q352, and the DMG Mori Lasertec 65 3D, and compared the 
electricity use of these devices with that of a milling machine [Wipp20]. The authors 
concluded that the implementation of a hybrid additive-subtractive manufacturing strategy 
at higher material removal ratios will reduce the electricity demand of the process. 

q XU ET AL. measured and modeled the electricity consumption of a binder jetting machine 
using a physical parametric approach [Xu15]. The outcome of this study is a validated 
model for the prediction of the energy consumption of the studied binder jetting machine. 

q YI et al. performed physical modeling and experiments on two AM systems: the Ultimaker 
3 and the Concept Laser Mlab [Yi20c, Yi20d]. In their study, a simulation tool was 
developed and validated to enable the prediction of the energy consumption of the studied 
AM machines. 

2.4.2 Category II: Investigation of the influencing factors 
The studies that fall into this category involve experiments with various parameters intended to 
observe the relationship between the selected influencing parameters (e.g., layer thickness and 
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processing speed) and the material and energy use or environmental impacts of given AM 
machines. The relevant studies are as follows: 

q BAUMERS ET AL. analyzed the correlation between the process energy consumption of the 
Arcam A1 EBM machine and the geometrical complexity of products [Baum17b]. The 
authors concluded that the process energy consumption of the studied machine shows only 
weak correlation to the complexity of the shapes of the products. 

q FALUDI ET AL. investigated sensitive factors associated with the environmental impacts of 
the use of the Renishaw AM250 SLM machine based on the ReCiPe Endpoint H/A LCIA 
method [Falu17]. The authors found that the main environmental impacts of Renishaw 
AM250 were caused by the electricity consumption of the machine. 

q GRIFFITHS ET AL. performed two-level full factorial design of experiments (DoE) on four 
factors: slice orientation, infill, number of shells, and layer height [Grif16]. In their 
experiments, they studied the Makerbot Replicator FDM machine and examined the part 
weight, scrap weight, and energy consumption. The results showed that the slice orientation 
has a great impact on scrap weight, that the infill and number of shells are factors in 
determining part weight, and that the layer height is most sensitive to energy use. 

q KELLENS ET AL. studied the energy consumption and environmental impacts of the EOSINT 
P760 SLS machine using the ReCiPe Endpoint LCIA method [Kell14]. The authors found 
the influencing factors to be the layer thickness, nesting efficiency, process chamber, and 
machine control. 

q LUO ET AL. compared the environmental impacts of different SLA, SLS, and FDM machines 
based on the Eco-indicator 95 LCIA method [Luo99]. The authors concluded that the 
materials used, energy, and disposal strategies are three important factors in determining 
the environmental performance of AM. 

q MOGNOL ET AL. studied the energy consumption of three AM systems: the Stratasys 
FDM3000, the 3DS Thermojet, and the EOSINT M250 Xtended [Mogn06]. The authors 
identified the heights of parts as the influencing factor for the energy consumption 
minimization of the Thermojet and EOSINT M250 systems and the volume of supports as 
the main impact factor for the Stratasys FDM3000. 

q SONG AND TELENKO studied the material waste and energy consumption of the Afinia H480 
FDM printer [Song17]. The authors found that print failures caused by calibration problems 
resulted in the most material waste. To reduce energy consumption, the standby and pre-
heating times should be reduced. 

q YANG ET AL. performed two-level full factorial DoE on four influencing factors: layer 
thickness, the curing time for stable layers, curing time transition rate, and orientation 
[Yang17]. The result showed that the layer thickness has the most significant influence on 
the energy consumption of a studied machine. Moreover, the statistical model used for the 
experiments can be used to predict the energy consumption of the machine. 

2.4.3 Category III: Comparison of AM with conventional manufacturing 
Studies falling into this category compare the cradle-to-gate or full lifecycle environmental 
impacts of AM with those of conventional subtractive or formative manufacturing. For 
inventory analysis, a number of studies performed experiments to measure the electricity 
consumption of selected AM machines, while other studies applied empirical inventory data 
from of previous works or commercial databases. These studies are as follows: 
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q FALUDI ET AL. compared the lifecycle environmental impacts (using the ReCiPe method) 
of two AM machines, namely the Dimension 1200BST and the Objet Connex 350, with 
those of the Haas VF0 CNC milling machine [Falu15]. The authors concluded that 
electricity consumption is the dominant factor in terms of the environmental impacts of 
AM, while the dominant factor for milling is material waste. 

q HUANG ET AL. analyzed and compared the cradle-to-gate primary energy demands and CO2 
emissions in different scenarios concerning the production of aircraft components by AM 
and conventional manufacturing [Huan16]. The authors found that the energy and emission 
savings of AM may be due to the reduced material requirements for production in AM and 
the reduction of fuel consumption in the use phase due to the lightweighting of components. 

q KREIGER AND PEARCE measured the electricity use of the RepRep FDM printer and 
quantified its cumulative energy demand (CED) and greenhouse gas (GHG) emissions 
[Krei13]. In their study, they compared the CED and GHG emissions of distributed 
production scenarios enabled by FDM with those of conventional scenarios. The results 
confirmed the potential to reduce CED and GHG emissions in the scenarios involving 
FDM. 

q VAN LE ET AL. compared the cradle-to-gate environmental impacts of the Arcam A1 EBM 
machine with those of the conventional machining process [Vanl17]. The authors 
concluded that EBM has less environmental impacts than conventional manufacturing for 
larger material removal volumes, while, for smaller material removal volumes, 
conventional manufacturing has less environmental impacts than EBM. 

q MORROW ET AL. compared the cradle-to-gate energy and emissions of the laser metal 
deposition process and the conventional milling process [Morr07]. The results of this study 
indicated that the production of parts with lower solid-to-cavity ratios with laser metal 
deposition produces less environmental impacts. Moreover, the remanufacture and repair 
of tools by AM is an important factor for reducing the environmental impacts of 
manufacturing. 

q PARIS ET AL. compared the cradle-to-gate impact of the Arcam EBM machine with that of 
conventional milling process using two LCIA methods, CML 2 Baseline 2000 and CExD 
[Pari16]. The result indicated that the EBM process was more environmentally friendly 
than milling for producing parts that require heavy material removal. 

q PRIARONE ET AL. examined and compared the cradle-to-gate and disposal energy 
consumption and carbon emissions of EBM process with those of subtractive 
manufacturing, including milling and turning [Pria17b]. The authors found that AM 
involves lower energy consumption and produces fewer emission when the use of 
subtractive manufacturing requires more material to be machined off.  

q TELENKO AND SEEPERSAD compared the lifecycle inventories of SLS and injection molding 
[Tele12]. This study confirmed that the energy consumption per part of AM is lower than 
that of injection molding for small production quantities. Moreover, increasing the number 
of parts in one build task can significantly reduce the per part energy consumption of AM. 

q WILSON ET AL. compared the Optomec LENS 750 laser metal deposition machine with the 
conventional casting process in terms of the remanufacturing of a turbine blade [Wils14]. 
This study compared the energy consumption and CO2 emissions for repairing a defective 
turbine blade and producing a new blade using casting. The result showed that for small 
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defects, it would be more environmentally friendly to repair and remanufacture using laser 
metal deposition than casting. 

2.4.4 Category IV: Sustainable business models and circular economy 
Studies falling into this category focused on the exploration and realization of the sustainable 
values of AM in terms of business model innovation and new circular economy patterns. These 
studies are as follows: 

q DESPEISSE ET AL. proposed a methodological framework to explore and ensure the 
sustainable values of AM technologies; this framework applies a road-mapping approach 
and sustainable value analysis [Desp17]. In their approach, six strategies for ensuring the 
sustainable values of AM are identified: designing of products and processes for efficiency, 
manufacturing system configuration, business model, efficiency in use, product life 
extension, and closing the loop. 

q FORD AND DESPEISSE analyzed the potential of AM in terms of sustainability enhancement 
in manufacturing [Ford16]. This study proposed four categories that enable the 
sustainability benefits of AM: product and process redesign, material input processing, 
make-to-order component and product manufacturing, and closing the loop. 

q SAUERWEIN ET AL. investigated opportunities in terms of using AM to enable a circular 
economy [Saue19]. This work identified five circular design strategies: product attachment, 
durability and reliability, repair and upgrades, dis- and reassembly, and designing for 
recyclability.  

2.4.5 Category V: Sustainable design and eco-design frameworks 
Studies falling into this category focused on the development of tools or methodological 
frameworks of eco-design for AM. These studies are as follows: 

q LANTADA ET AL. proposed a framework based on the eco-efficient design of support 
structures [Lant17]. This approach employs a tree-like support structure for AM to reduce 
the material and energy consumption, cost, and CO2 emissions of AM. 

q MA ET AL. developed a framework based a heuristic approach to minimize the material cost 
and energy consumption of SLS [Ma18]. In this framework, the material cost and energy 
consumption were modeled as mathematical functions based on process parameters such 
as layer thickness and laser speed. Using the NSGA-II genetic algorithm, the optimal 
parameter combination (i.e., that wish the lowest energy use and material cost) can be 
identified. 

q MAMI ET AL. proposed a framework in which the normalized lifecycle costs and 
environmental impacts of AM and conventional manufacturing scenarios were visualized 
and compared [Mami17]. Based on the eco-efficiency of each design solution, the authors 
identified the solution with the lowest costs and environmental impacts. 

q MARKOU ET AL. proposed a conceptual framework for eco-design for AM in which four 
tools are used: the lifecycle design strategies wheel, AM process information sheets, 
materials cards, and a strengths-weaknesses-opportunities-threats (SWOT) analysis 
[Mark17]. This approach enables the generation, evaluation, and selection of different 
product ideas in the early design phase. 
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q PRIARONE AND INGARAO developed an AM process selection tool in which primary energy 
demands and CO2 emissions are used to compare different AM processes in the design 
phase [Pria17a]. 

q TANG ET AL. proposed a framework in which topology optimization is applied as the design 
tool and LCA is used as the evaluation tool [Tang16b]. The proposed framework is able to 
assess and reduce the environmental impacts of product and process design with AM. 

q YANG ET AL. developed a framework in which part consolidation and LCA are combined 
to enable eco-design for AM [Yang19]. Moreover, this study summarized a generic process 
model for other AM users to execute eco-design for AM. 

2.5 Assessment of existing approaches related to eco-design for AM 
In this chapter, the approaches presented in Chapter 2.4 are evaluated based on the requirements 
defined in Chapter 2.3.3. The evaluations are presented below. 

Assessment of requirement 1: Description of the environmental performance of AM 
The first requirement is fulfilled by most approaches, as they express the environmental 
performance of AM in one of two ways. The first way is to use LCIA methods, in which 
environmental performance is expressed in equivalent environmental impact indicators (e.g., 
CO2 equivalent for global warming effects and CED for primary resource depletion). Examples 
are the approaches of KELLENS ET AL., LUO ET AL., and LE ET AL., in which the LCIA methods 
ReCiPe, Eco-indicator 95, CExD, and CML are applied [Vanl17, Kell11, Luo99]. The second 
way is to focus on energy performance (e.g., electricity consumption or efficiency). Examples 
are the approaches of YI ET AL., LUNETTO ET AL., and WATSON AND TAMINGER [Lune20, Yi20c, 
Yi20d, Wats18]. These approaches confirm the understanding that the evaluation and 
improvement of energy performance can be equivalent to the evaluation and improvement of 
environmental performance under specific conditions, as it has been proven that electricity 
consumption is the dominant factor in terms of causing the environmental impacts of AM, and 
energy issues associated with AM thus merit more research attention [Baum11]. 

Assessment of requirement 2: Enabling convenient and reliable energy predictions of AM  
In a handful of approaches, predictions of the energy use of AM are made by either an empirical 
or a physical method. The empirical method follows a black box principle in which the interior 
of a system is not analyzed. In empirical models, the energy consumption or specific energy 
consumption of AM is described using hypothetical variables and parameters that are observed 
from outside of an AM system (e.g., shape complexity or build rate). Examples include the 
approach of LUNETTO ET AL., in which the specific energy consumption and mean build rate are 
modeled using a hyperbolic model, and that of YANG ET AL., in which the energy consumption 
is modeled to parameters in a statistic model [Lune20, Yang17]. In contrast, the physical 
method employs a white box principle that requires the analysis of the interior of a system. A 
physical model describes the energy consumption of AM using variables that are observed from 
within an AM system. Examples are the approaches of XU ET AL. and YI ET AL., in which the 
energy consumption of AM is modeled based on power and time variables  [Yi20c, Xu15]. 
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Assessment of requirement 3: Integration of assessment and design activities 
In a few approaches, design and assessment activities are integrated in one of two ways. The 
first way is called the “evaluate after design” principle, in which the assessment is executed 
after the design process or only integrated into the later design stage. Examples are the 
approaches by TANG ET AL. and YANG ET AL., in which products are first optimized and their 
entire process chains are defined, after which environmental impacts are evaluated using LCA. 
The second way is called the “evaluate during design” principle, in which the assessment is 
integrated into the middle stage of the design process. An example is the approach of MA ET 

AL., in which the process design is formulated as a multi-objective optimization problem 
regarding material cost and energy consumption [Ma18]. Since energy consumption is a part of 
the optimization objective, the search for the optimal process parameters and the evaluation of 
the energy consumption are carried out simultaneously using a genetic algorithm. 

In the “evaluate after design” approach, the collaboration between the assessment and design is 
relatively loose compared to the “evaluate during design” approach. The reason why the 
majority of approaches follow the “evaluate after design” principle is that they all have adopted 
LCA, the implementation of which in AM requires detailed inventory data and a fully mapped 
process chain; therefore, LCA can only be executed after the design process or in the later 
design stage after most decisions have already been made. If the LCA results show that the 
environmental performance of a design solution is insufficient, the decisions that have been 
made will need to be repeated and improved, or, in the worst case, the entire design solution 
will need to be revised. Nevertheless, should designers still attempt to perform LCA in the 
middle design phase, the only way is to use an LCI database containing inventory data collected 
from the reference processes of a database provider. However, should the real processes that 
will be implemented by users differ significantly from the reference processes in the LCI 
database, the inventory data in the LCI database may deviate significantly from the inventory 
data of real processes. Consequently, the reliability of LCA results may not be adequate. Given 
that unique design cases and approaches are encouraged for AM, there is a high possibility that 
the inventory data from an LCI database will deviate significantly from that of real processes. 
In addition, the inventory data from different LCI database providers can also differ, and this 
can lead to greater uncertainty regarding LCA results in the middle design phase. In conclusion, 
LCA is not an appropriate quantification tool for the middle design phase. As an alternative 
solution, the energy performance assessment is more suitable for the middle design stage, as it 
requires neither a full process chain model nor detailed inventory data. 

Assessment of requirement 4: Integrated consideration of design benefits and 
environmental impacts 
In a few approaches, the integration of design benefits and the environmental impacts of AM is 
realized in two ways. The first approach is to combine them during the definition of evaluation 
metrics. An example is the approach of LANTADA ET AL., in which the metric eco-efficiency is 
expressed as the ratios of CO2 emission, material consumption, and energy consumption to 
costs in the units kg/€ and kWh/€ [Lant17]. In the second approach, the design benefits and 
environmental impacts are still quantified in different metrics but evaluated in a pairwise 
fashion. An example is the approach of MAMI ET AL., in which environmental impacts and build 
costs are respectively quantified and normalized [Mami17]. For the evaluation, an x-y 
coordinate is applied, in which the x and y axes represents normalized environmental impacts 
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and costs, respectively. The economic and ecological performances of design solutions can be 
described as points on the x-y plane. 

Assessment of requirement 5: Convenience, ease of use, and robustness 
This requirement is fulfilled in those approaches in which tools are proposed to support the 
design, quantification, or assessment of eco-design for AM approaches. Examples include the 
approach of YANG ET AL., in which a part consolidation method is introduced, and that of 
DESPEISSE ET AL., in which a sustainable value roadmap tool is proposed to identify sustainable 
business opportunities for AM [Yang19, Desp17]. Moreover, the approach adopted by YANG 

ET AL. provides a generalized process model in which general steps for executing eco-design 
for AM are described [Yang19]. This process model improves the general feasibility of their 
approach, as it can be referred by other designers facing similar problems. 

Figure 2-21 and Figure 2-22 below provide an overview of the assessment of the presented 
approaches. 
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Figure 2-21: Evaluation of existing approaches (1/2) 

Question for the evaluation: How much does the following research approach 
fulfill the requirements for Eco-design for AM frameworks?
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Figure 2-22: Evaluation of existing approaches (2/2) 

As can be seen from the above figures, none of these approaches fully meet the requirements. 
Therefore, this dissertation addresses this research gap by developing an eco-design for AM 
framework that fulfills all of the requirements.  
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Figure 2-22: Evaluation of existing approaches (2/2) 

As can be seen from the above figures, none of these approaches fully meet the requirements. 
Therefore, this dissertation addresses this research gap by developing an eco-design for AM 
framework that fulfills all of the requirements.  
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Figure 2-22: Evaluation of existing approaches (2/2) 

As can be seen from the above figures, none of these approaches fully meet the requirements. 
Therefore, this dissertation addresses this research gap by developing an eco-design for AM 
framework that fulfills all of the requirements.  
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Figure 2-22: Evaluation of existing approaches (2/2) 

As can be seen from the above figures, none of these approaches fully meet the requirements. 
Therefore, this dissertation addresses this research gap by developing an eco-design for AM 
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3 Research Framework 
This chapter describes the research motivations, objectives, and tasks of this dissertation. First, 
Chapter 3.1 summarizes the important understandings derived from the “State of the Art” 
chapter based on which the research objectives and tasks are defined and described in Chapter 
3.2. Thereafter, Chapter 3.3. describes the structure of the remainder of this dissertation.  

3.1 Understandings derived from the “State of the Art” chapter 
Fundamental insights regarding AM technologies, including their general and environmental 
properties, and eco-design for AM can be drawn from the “State of the Art” chapter. The most 
important understandings can be summarized as follows: 

q AM represents an alternative to conventional manufacturing methodologies and can be 
used to produce components with complex geometries. AM offers revolutionary benefits 
such as design freedom, production network and supply chain reorganization, and 
innovative business models. 

q Due to advances in mechanical engineering and material science, modern AM processes 
are capable of processing metal parts that provide long-term functional use. Therefore, the 
application focus of AM has shifted from rapid prototyping to rapid manufacturing and 
rapid MRO. 

q AM is considered as a cleaner production technology given its capability for lightweighting 
and process chain shortening, as well as its other environmental benefits. However, critics 
also argue that the environmental benefits of AM should be more critically investigated 
because the environmental performance of AM is an extremely complex phenomenon, and 
AM may exhibit disadvantages in different life stages. 

q A most promising solution to ensure the environmental benefits of AM is eco-design, in 
which the environmental performance of a design solution is considered and improved in 
the design stage of an AM product lifecycle. 

q General eco-design can be discussed at the levels of system and success, strategies, actions, 
and tools. On the manufacturing level, eco-design for AM approaches are mainly discussed 
on the levels of actions and tools. 

q The concept of eco-design for AM is derived from the interactions among the 
manufacturing, product lifecycle, and sustainability domains. Eco-design for AM implies 
a holistic methodology in which AM, design, and environmental issues are considered. 

q In existing approaches, the environmental performance of AM is mainly analyzed using 
LCA and energy performance evaluation. In AM, energy use is the major factor in terms 
of causing environmental impacts. 

q The energy consumption of an AM process can be predicted using either an empirical or a 
physical method. The empirical method determines the energy consumption of AM based 
on hypothetical variables and parameters that are observed from outside of the AM system 
(the black box principle), while the physical method determines the energy consumption 
of AM based on system parameters that are observed from inside of the system (white box 
principle). 

q In the LCA-based eco-design for AM approaches, design and assessment activities are 
separated or only loosely integrated, as LCA requires detailed inventory data and full 
process chain descriptions and can only be executed after the design process or in the later 
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design stage (the “evaluate after design” principle). A superior approach is to use energy 
performance assessment, which enables simultaneous assessment and design (the “evaluate 
during design” principle). 

q In existing eco-design for AM approaches, the integrated consideration of design benefits 
and environmental impacts can be performed in one of two ways. Either design benefits 
and environmental impacts are described in a single metric, usually expressed as a ratio, or 
design benefits and environmental impacts are expressed in different metrics but are 
evaluated in a pairwise form. 

q The development of tools or generalized process models to support quantification, design, 
assessment, or other activities within an eco-design for AM framework can significantly 
improve that framework’s usability and robustness in dealing with individual design cases.  

In summary, eco-design for AM is a key factor in investigating, assessing, and ensuring the 
environmental benefits of AM. A general eco-design for AM approach should fulfill the 
following requirements: It should be able to describe environmental performance and to make 
energy consumption predictions, feature integrated design and assessment, allow for the 
consideration of the environmental impacts of designs, and offer convenient and robust 
usability. However, while the approaches found in the literature satisfy one or less of these 
requirements, none of them fully satisfy all of these requirements. Therefore, based on these 
findings, the research objectives and tasks of this dissertation are identified and described in the 
next subsection. 

3.2 Research objective and tasks 

3.2.1 Objective and scope  
In line with the observations presented above, the research objective of this dissertation is 
defined as the development of an eco-design for AM framework aimed at the middle design 
stage based on energy performance quantification and assessment. In this statement, two issues 
are identified as being within the scope of this research: the “middle stage” and “energy 
performance.” This statement of the objectives of this research is based on the following 
hypotheses: 

Hypothesis 1: The design process of AM can be expressed in three stages and seven phases. 

As shown in Figure 3-1, this dissertation expresses the design process with AM in three stages 
and seven phases: the early stage, in which customer and market requirements are analyzed and 
general product ideas are created; the middle stage, in which the specific functional and 
geometrical features of a product are defined, the AM system for handling the production tasks 
is designed, and the build process based on the product and AM system is defined; and the late 
stage, in which the process chain with AM on the factory level and the entire production 
network are defined.  

Hypothesis 2: In eco-design for AM, it is preferable to integrate evaluation activities in 
the middle stage rather than the early or late stages. 

In this dissertation, the focus is on the middle phase of eco-design for AM. The other two design 
stages are omitted due to the following two reasons: First, the middle stage is more suitable 
than the late stage for executing performance evaluation because earlier identification of 
environmental problems implies the saving of development time and costs. If the evaluation 
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and improvement are performed in the later stage, the potential benefits of doing so in the 
middle stage will be lost. Second, it is preferable to engage in eco-design for AM in the middle 
stage than the early stage because, in the early stage, rough product ideas are abstract, and there 
are not enough data for a quantitative performance evaluation.  
Hypothesis 3: In the middle stage, energy performance assessment is more suitable than 
LCA. 
As discussed previously, LCA requires detailed inventory data of the full process chain with 
AM, which means that this assessment approach is more suitable for the late design stage. 
Should designers attempt to perform LCA in the middle design stage, they will need to use an 
LCI database, which may lead to unreliable quantification results. Therefore, this dissertation 
adopts energy performance assessment, which, as depicted in Figure 3-1, can be performed 
based on the predicted energy use of AM on the unit process level in the middle design stage. 

Hypothesis 4: The assessment and improvement of energy performance can be equivalent 
to the assessment and improvement of environmental performance. 

Since energy use interacts with other environmental impacts of AM, more energy use implies 
more environmental impacts. As discussed previously, the electricity use of AM shares 80% of 
the embodied energy and causes up to 75% of cradle-to-gate environmental impacts of AM. 
Therefore, this dissertation assumes that the evaluation and improvement of energy 
performance can be considered equivalent to the evaluation and improvement of the entire 
environmental performance of AM.  

 
Figure 3-1: Design process with AM and research scope of the dissertation 

3.2.2 Research tasks 
Based on the defined research objective, scope, and hypotheses, four research tasks are defined; 
these tasks are depicted in Figure 3-2 and described in the following paragraphs. 

Research task 1: Development of a tool for the prediction of energy consumption of AM 

The first research task is to develop an energy prediction tool that enables the convenient and 
reliable quantification of the energy consumption of users in the middle design phase. This task 
is defined based on Requirements 3 and 5 (see Chapter 2.3.3), which respectively state that 
general eco-design for AM approaches should enable the prediction of energy consumption of 
AM and offer convenient usability. To accomplish this task, this dissertation adopts a physical 
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approach in which the system components of AM systems are specified and energy flows 
between the system components are analyzed and modeled. Thereafter, a simulation tool is 
developed based on the MATLAB/Simulink platform. The functional logic of the simulation 
follows the NC code and database-driven approach, which is introduced in Chapter 4.4. To 
verify the reliability of the simulation, experiments are performed, and the results thereof are 
compared with those of simulations. 

Research task 2: Development of a model for the assessment of the energy performance 
of AM 

The second research task seeks to propose a model to describe the energy performance of AM, 
as Requirements 1 and 4 (see Chapter 2.3.3) respectively stress that general eco-design for AM 
approaches should describe the environmental performance of AM and enable a combination 
of design benefits and environmental performance. To accomplish this task, this dissertation 
proposes a multidimensional energy performance assessment model based on energy 
performance indicators, which are defined by combining the energy-related and performance-
related metrics of AM-specific design solutions. 

Research task 3: Integration of the prediction tool and assessment model into a holistic 
eco-design for AM method 

Following the development of the prediction tool and assessment model, the third task aims to 
combine them into a holistic method for carrying out eco-design for AM based on energy 
performance assessment. The definition of this task respects Requirements 3 and 5, which 
concern the integration of design and assessment and convenient and robust usability, 
respectively. In this dissertation, the proposed method is presented in the form of a generalized 
process model that describes the necessary specification, design, quantification, and assessment 
activities with the support of the developed prediction tool and assessment model. The proposed 
method can be used as a guideline for other users facing design and environmental issues 
associated with AM. 

Research task 4: Validation of the proposed method 

The last task aims to validate the proposed method in different use cases to ensure that all the 
requirements identified in Chapter 2.3.3 are fulfilled and that the feasibility of the prediction 
tool, the assessment model, and the generalized process model for eco-design for AM is 
confirmed. 

Figure 3-2 provides an overview of the motivations, objective, and tasks of the dissertation. 
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combine them into a holistic method for carrying out eco-design for AM based on energy 
performance assessment. The definition of this task respects Requirements 3 and 5, which 
concern the integration of design and assessment and convenient and robust usability, 
respectively. In this dissertation, the proposed method is presented in the form of a generalized 
process model that describes the necessary specification, design, quantification, and assessment 
activities with the support of the developed prediction tool and assessment model. The proposed 
method can be used as a guideline for other users facing design and environmental issues 
associated with AM. 

Research task 4: Validation of the proposed method 

The last task aims to validate the proposed method in different use cases to ensure that all the 
requirements identified in Chapter 2.3.3 are fulfilled and that the feasibility of the prediction 
tool, the assessment model, and the generalized process model for eco-design for AM is 
confirmed. 

Figure 3-2 provides an overview of the motivations, objective, and tasks of the dissertation. 
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Thereafter, the assessment method based on the proposed model is explained, in which 
normalization, pairwise comparison, and aggregation techniques are applied. 

q Chapter 6 describes a method for carrying out eco-design for AM based on energy 
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integrated. The method is presented in the form of a generalized process model that features 
five main phases: situation analysis, topology optimization, AM workstation design, build 
process design, and EnPI-based assessment. 

q To demonstrate the feasibility of the proposed method, three use cases are performed and 
described in Chapter 7. 

q Chapter 8 presents a summary and outlook of the research presented in this dissertation. 

q Development of a tool to enable the energy prediction of AM
q Development of a model to describe and assess the energy performance of AM
q Integration of prediction tool and assessment model into a holistic eco-design for AM method
q Validation of the developed method

Research tasks

q The environmental performance of AM is complex, and environmental benefits of AM should 
be confirmed and assessed more critically

q Ensuring the environmental benefits of AM requires eco-design approaches, in which the 
environmental performance is considered in the design phase

q Energy performance assessment enables a better interaction between design and assessment
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q Development of an eco-design for AM framework using energy performance quantification 
and assessment aiming at middle design stage

Objective
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Figure 3-3: Structure of the remaining chapters of the dissertation 
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4 Energy Modeling and Simulation for AM 
This chapter describes the approach for the energy modeling and simulation implementation of 
AM, which is divided into five main parts: system exploration, energy modeling, software 
implementation, simulation tool, and experimental verification. Chapter 4.1 presents an 
overview of the approach, and Chapters 4.2 to 4.6 describe each of the main parts in detail. 
Finally, Chapter 4.7 presents a discussion of the development approach. 

4.1 Overview of the approach 
Figure 4-1 presents an overview of the approach for energy modeling and simulation 
implementation, as well as the layout of the subsections. The first step of the approach is the 
system exploration, which is introduced in Chapter 4.2. In the system exploration step, the 
system boundaries of the AM process are first defined. Based on the defined system boundaries, 
the composition and functions of the system are specified, and the datasheets of AM machines 
and peripheral units are collected. Chapter 4.3 describes the energy modeling step, which is 
divided into power flow modeling and time modeling. In this phase, the power flow modeling 
aims at the description of the power transfer and consumption of the system components, and 
the time modeling focuses on the description of the work status and times of the system 
components. Chapter 4.4 describes the software implementation, in which simulation software 
is developed based on the power model and time model. At the core of the simulation is a 
Numerical Control (NC) code and database-driven approach in which time parameters are 
extracted from the NC code and the power parameters of system components are generated 
from a power database. The result of the software implementation is a simulation tool, the 
architecture and graphical user interface (GUI) of which are described in Chapter 4.5. Chapter 
4.6 describes the process used to verify the accuracy of the simulation, in which experiments 
are performed and the results thereof compared with those of simulations. 

For a better understanding, the modeling and simulation implementation steps are explained 
based on the research of the SLM process, in which the SLM machine is the Concept Laser 
Mlab at TU Kaiserslautern [Conc19a]. 
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4.2 System exploration 

4.2.1  Definition of system boundary 
In general, manufacturing consists of six hierarchical levels: the manufacturing network level, 
the manufacturing location level, the manufacturing segment level, the manufacturing system 
level, the manufacturing cell level, and the workstation/machine level (see Figure 4-2 
[West00]). According to ISO 14955-1, at the workstation/machine level, the system boundary 
for the environmental evaluation of a machine tool shall include the machine tool itself and its 
peripheral units, and the system components refer to the mechanical, electrical, hydraulic, or 
pneumatic devices or a combination thereof within the system boundary [ISO17]. According to 
ISO/ASTM 52900, an AM system is the system of AM machine and its auxiliary equipment 
used for AM [ISO15b]. Therefore, by combining the ISO 14955-1 and ISO/ASTM 52900 
standards, the system boundary of an AM process can be considered to be equivalent to an AM 
system consisting of an AM machine and its accessories (see Figure 4-2). To analyze and 
quantify the energy performance of the system, energy flows in and out of the system 
boundaries (e.g., electricity, heat exchange, and protection gases) should be considered. 

 
Figure 4-2: Definition of the system boundary of an AM process 
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device, respectively. Before the SLM process is performed, the metal powder must be screed 
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Otherwise, the heterogeneous particle size will result in produced parts with a lower material 
density. The Concept Laser Mlab offers three types of build platforms and can process different 
types of materials, including steel, aluminum, titanium alloy, gold, and other metal powders. 
The layer thickness can be defined from 15 to 50 µm. The laser power is up to 100 W, and the 
scan speed can be up to 7 m/s. During the build process, the laser beam creates a high-
temperature molten pool on the powder bed, which, as shown in Figure 4-3D, causes small 
sparks. After the build process, the remaining powder can be recycled, screened, and reused. 
The support structure for parts, which are depicted in Figure 4-3E, must be removed, and the 
parts can be post-processed and then used directly. The material density of finished parts is 
generally higher than 99.5%, which is comparable or even superior to the performance of a cast 
part [Wohl19]. The accuracy of the production of a component from a CAD model to a final 
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product ranges from -0.05 to +0.05 mm, and the surface quality of a finished part (Ra) varies 
from 4.5 to 7 µm [Wohl19]. 

 
Figure 4-3: The Concept Laser Mlab and its technical data 
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and adding of powders into a solid part. The main function is then decomposed into 
subfunctions based on the five general function categories, and the system components 
associated with the functions are identified.  
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4.2.3 Data collection 
The final step in the exploration of the studied AM system is to collect data related to the 
system’s components, functions, and energy consumption. In addition to the list of system 
components presented in the previous subsection, other system documents include, but are not 
limited to, for example, product descriptions, material sheets, circuit diagrams, and the research 
literature on the AM system (see Figure 4-5.)  
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effort variable (e) and a flow variable (f), which is expressed as Equation 4-1: 

 𝑃𝑃 = 𝑒𝑒 × 𝑓𝑓 Equation 4-1 
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Figure 4-6 depicts the bond graph of the cooling function for the Concept Laser Mlab. The 
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machine at a constant temperature. The functional logic of the external air conditioner can be 
ideally described as the vaporization-condensation cycle of a refrigerant, as depicted in the 
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circuit diagram in Figure 4-6. First, the refrigerant expands from the liquid to the gaseous state 
and then absorbs the heat from inside of the machine. Thereafter, the vaporized refrigerant is 
compressed and condensed to a liquid state and then distributes heat into the room. The liquid 
refrigerant will subsequently vaporize again to perform another cooling cycle. To map the 
power flows as well as to create the bond graph, the related power variables are defined and 
allocated to the system components or the condensate (i.e., u and i represent the voltage and 
current of the motor to drive the compressor, and τ and ω represent the torque and angular 
velocity of the motor). 

 
Figure 4-6: Bond graph of the cooling function of the Concept Laser Mlab 
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electricity consumption of which requires the effort and flow variables of voltage u and current 
i. Thereafter, the power flows from Se to the port 1-junction, where the flow variable i is 
conserved and the effort variable u is distributed. A part of the power flows from 1-junction to 
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port R, which represents the power loss of the motor with the equivalent resistance Rm. The 
remaining power flows from 1-junction to port GY, which is an abbreviation of the term 
gyrator. A gyrator defines the conservation of power flow, where the effort on the input bond 
is the constraint to the flow on the output bond. The gyrator is required to represent the change 
of the energy domains of specific energy transmission systems. In this bond graph, the motor 
converts the electricity into the rotation of the compressor and should be represented by port 
GY because the torque τ is the product of the motor torque constant kt and the current i. 
Thereafter, the power flows from port GY to port TEFMA, which is an ad hoc port representing 
a turbomachine [Thom00]. In this bond graph, port TEFMA represents the compressor, where 
the power flows out of the port is the sum of the power input from ports GY and HEXA. It 
should be noted that the bonds with a circle in the middle indicate a power exchange associated 
with matter exchange. In this bond graph, matter exchange refers to the circulation of the 
refrigerant. Because the refrigerant is compressible, its power exchange with other ports should 
be expressed by liaison variables using the Eulerian reference frame in thermodynamics 
[Thom00]. This means that the pressure and mass flow (p, ṁ) describe hydraulic power, while 
the temperature and enthalpy flow (T, Ḣ) describe thermal power. According to the bond graph 
terminology, the pressure and temperature variables (p, T) are combined to represent the effort, 
while the mass flow and enthalpy flow (ṁ, Ḣ) are used to represent the flow. Note that neither 
the product of a pressure variable and a mass flow variable nor the product of a temperature 
variable and an enthalpy flow variable is the power, which indicates a pseudo bond graph 
[Thom00]. The ports Cv and Cl indicate the liquefaction and vaporization of the refrigerant, 
respectively. In this bond graph, the power flowing from port TEFMA to port Cl describes the 
condensation of the compressed vapor refrigerant. Thereafter, the power (Q̇slm_out) flows to the 
multiport C2, which represents the room, via port HEXA, which describes the heat exchange 
between the liquid refrigerant and the room. Following port HEXA, the power flows to port 
Cv, indicating the vaporization of the liquid refrigerant. The vapor refrigerant subsequently 
flows to a second port HEXA, which represents the absorption of the heat from the SLM 
machine (Q̇slm_in). Finally, the vapor refrigerant flows to port TEFMA, which again indicates 
the compression again and a new vaporization-condensation cycle. Figure 4-6 shows the system 
model and the bond graph for the cooling function, and the entire bond graph for the Concept 
Laser Mlab is provided in Appendix B. 

After the power flows among individual system components are mapped using bond graph, the 
power consumption model of the Concept Laser Mlab can be created using the bottom-up 
approach. First, the power consumption for each function category (Pfun) is the sum of the power 
consumption of the system components (Pcom) that are assigned to this function category, and 
it is given by Equation 4-2, in which k represents the total number of the system components 
allocated to this function category: 

 
𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓 = �𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛)

𝑘𝑘

𝑛𝑛=1

 Equation 4-2 

The total power consumption model of the Concept Laser Mlab (PSLM) is the sum of the power 
consumption of the five function categories, and it is expressed as Equation 4-3: 
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4.3.2 Modeling of work times 
The SLM process (tSLM) on the workstation/machine-level is divided into three subphases: the 
pre-step (tpre), which summarizes the operations of system components before layers are 
deposited (e.g., powder screening, vacuuming, and system calibration); the in-step (tin), which 
summarizes the operations that occur during the build of layers (e.g., laser scanning of layers, 
cooling process, and gas circulation); and the post-step (tpost), which summarizes the operations 
that occur after the build of layers (e.g., cooldown, as depicted in Figure 4-7). In summary, the 
time required for an SLM process can be expressed using Equation 4-4: 

 𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑡𝑡𝑖𝑖𝑖𝑖 + 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 Equation 4-4 
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be further divided into three operations: leveling of the platform and container (tlpc), powder 
spreading (tps), and laser scanning (tls). Thus, the time required for the in-step can be defined by 
Equation 4-6, in which k represents the total number of layers: 
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In the post-step, the build chamber is cooled down and the powder is recycled. Thus, the time 
of post-step (tpost) can be expressed as Equation 4-7, in which tcd and tcle represent the time 
required for the cooldown and powder recycling, respectively: 

 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑡𝑡𝑐𝑐𝑐𝑐 + 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 Equation 4-7 
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The work status of system components can vary in different operations. In the approach to the 
energy modeling and simulation of this dissertation, the work status of a system component is 
ideally assumed to be one of two possibilities: in operation and standby/shutdown. The  
in operation status implies that the system component is working, consuming power, and 
providing specific functions, while, in standby/shutdown, the system component is assumed to 
consume no power. Based on this assumption and the time model described above, the work 
status of each system component is summarized in Table 4-2, in which the value 1 represents 
the status “in operation” and value 0 represents the status “standby or shutdown.”  

 
Table 4-2: Work status of system components in the SLM process 

4.4 Software implementation 

4.4.1 Creation of database 
In general, power data can be obtained either by experiments or simulations. This dissertation 
adopts the simulation method because it is convenient and fast. First, equivalent simulation 
models of all system components are created using MATLAB/Simulink based on the bond 
graphs [Math19]. The results of the Simulink models are exported in the form of .mat files that 
form the database for the Concept Laser Mlab, as shown in Figure 4-8. 

 
Figure 4-8: Creation of a database using MATLAB/Simulink 

Laser device 0 0 0 1 0 0 0 0
Powder bed 0 0 1 0 1 0 0 0
Deflection device 0 0 0 1 0 0 0 0
CNC-module 0 1 1 1 1 1 1 0
Vacuum pump 0 1 0 0 0 0 0 0
Gas tank 0 0 1 1 1 1 0 0
Circulation fan 0 0 1 1 1 1 1 0
Gas sensor 0 1 1 1 1 1 1 0
Motor (build platform) 0 0 0 0 1 0 0 0
Motor (powder container) 0 0 0 0 1 0 0 0
Motor (powder-spreading) 0 0 0 0 0 1 0 0
Screening device 1 0 0 0 0 0 0 0
Vacuum cleaner 0 0 0 0 0 0 0 1
Cooling device 0 1 1 1 1 1 1 0
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4.4.2 NC code and database-driven approach 
In conventional manufacturing, simulations or calculations of the energy use of machine tools 
based on NC code are more precise than calculations without the use of NC code [Zhou16]. 
Given this fact, this dissertation proposes the NC code and database-driven approach, in which 
the simulation is based on the time parameters extracted from the NC code of a build task and 
the power data of the system components from a database. 

In the development case of the Concept Laser Mlab, the NC code file containing the process 
information is exported from the Autodesk Netfabb software [Auto19]. After the process 
preparation, in which the layer thickness, laser speed, scan patterns, and other process 
parameters are defined, an .lsr file can be exported. The .lsr file contains all the process 
information of the build task (see Figure 4-9). In each line of the .lsr file, the scan path of a 
laser beam is defined. In the example of Figure 4-9, the first scan path of layer 1059 is 
highlighted, in which the first coordinate (x0, y0, z0) represents the position of the current laser 
beam, while the second coordinate (x1, y1, z1) represents the target position to which the laser 
point will move. The two numbers after the coordinate (x1, y1, z1) are the laser speed (slaser) and 
current time (tcurrent), respectively.  

As depicted in Figure 4-9 and described below, the functional logic of the NC code and 
database-driven approach can be explained in five steps with one decision gateway: 

q Step 1: Read time parameters. In general, NC codes are text files, including the .lsr file 
used in this approach. The first step of the NC code and database-driven approach is to 
extract the time parameters from the NC code. For example, in the case of the Concept 
Laser Mlab, a program that extracts the last number of each line in an .lsr file is written in 
MATLAB.  

q Step 2: Generate a time array. Based on the extracted time parameters, a time array is 
created using a specific sampling time. For example, as shown in Figure 4-9, it is assumed 
that the time parameter for processing the first layer is 10 s and that the sampling time is  
1 s. Thus, numbers from 1 to 10 are added to the time array, with each number representing 
a point in time. Furthermore, the attributes of the points in time are noted. In the example, 
the numbers from 1 to 10 are the times for layer 1. In the 10 s, numbers from 1 to 5 are the 
times in which the laser scans, while 6 to 10 are the times in which the platform moves. 

q Step 3: Check work status. In this step, the work status of each system component at each 
point in time of the time array is determined based on Table 4-2. For example, the laser 
device generates the laser beam used to scan the powders. Thus, during the laser scan 
phase, the laser device is in operation (work status = 1), while, during the operation 
platform move, it is on standby (work status = 0). Depending on the work status, the next 
steps will differ, as indicated by the decision gateway in Figure 4-9. 

q Step 4.1: Generate power values from the database. If the work status of a system 
component in a specific phase is “1,” the power of the system component (Pt) at each point 
in time (t) in this phase will be generated from the database. The power can be determined 
using Equation 4-8, in which the aggregate D represents the database and contains the 
power data for this system component. 

 𝑃𝑃𝑡𝑡 ← 𝑃𝑃𝑖𝑖  in 𝐷𝐷 = {𝑃𝑃𝑖𝑖 , 𝑖𝑖 ∈ 𝑁𝑁∗} Equation 4-8 
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q Step 4.2: Set power values to zero. If the work status of a system component is “0” in a 
phase, its power values in this phase are set as zero, as indicated by Equation 4-9: 

 𝑃𝑃𝑡𝑡 ← 0 Equation 4-9 

 
Figure 4-9: The NC code and database-driven simulation approach 
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q Step 4.2: Set power values to zero. If the work status of a system component is “0” in a 
phase, its power values in this phase are set as zero, as indicated by Equation 4-9: 

 𝑃𝑃𝑡𝑡 ← 0 Equation 4-9 
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After the power values of a system component are generated for each phase, they can be 
arranged as a power array whose length is equal to that of the time array. The power arrays of 
all system components are added to the power array of the entire AM system as defined by 
Equation 4-3.  

Finally, the energy consumption of the entire system (E) can be calculated through a trapezoidal 
numerical integration of the power array (P) with the time array (T), as defined in Equation 
4-10: 

 
𝐸𝐸 = � 𝑃𝑃(𝑡𝑡)𝑑𝑑𝑑𝑑 ≅ �

𝑃𝑃(𝑘𝑘 − 1) + 𝑃𝑃(𝑘𝑘)
2

∆𝑡𝑡
𝑇𝑇

𝑘𝑘=1

𝑇𝑇

0
 Equation 4-10 

It should be noted that the database-driven simulation approach has an issue in that the 
generated power curve does not appear to match the actual power curve. For example, in the 
blue power curve (obtained from the experiment in Chapter 4.6) at the bottom left of Figure 
4-9, the peaks and valleys represent the laser scan and platform move (including powder 
spreading) phases, respectively. The green power curve at the bottom right of Figure 4-9 is the 
simulated power curve based on Equation 4-8. Each peak and valley on the blue power curve 
look different, while the peaks and valleys on the green power look the same. This is because 
the power values in the database are always the same. For each layer and each laser scan and 
platform move, the same power data are generated and plotted. A similar issue can be found in 
the study conducted by XU ET AL. [Xu15]. To create a more realistic power curve, the approach 
of this dissertation adopts a method that involves adding random numbers to adjust the power 
values generated from the database. The core idea is to assume a constant A that describes the 
range of the power values of a real AM process, as shown in Figure 4-9. Based on Equation 
4-8, the power of a system component (Pt) at a point in time t can be given by Equation 4-11, 
in which f (Pt, A) is the adjustment function for power values and r is a random number that 
should be generated from the range [-A, A]. For different cases, the constant A should be 
defined individually. 

 𝑃𝑃𝑡𝑡 ← 𝑓𝑓(𝑃𝑃𝑡𝑡,𝐴𝐴) = 𝑃𝑃𝑡𝑡 + 𝑟𝑟, with 𝑟𝑟 ∈ [−𝐴𝐴,𝐴𝐴] Equation 4-11 

The orange power curve at the bottom right of Figure 4-9 shows the simulated power curve 
based on Equation 4-11 and demonstrates a more realistic behavior than the blue curve. 
Nevertheless, a concern regarding the use of the power adjustment function f is that it may have 
an impact on simulation accuracy. However, based on the experimental verification, it is 
concluded that this impact is negligible, as is discussed in Chapter 4.6.2. 

4.4.3 Programming of the simulation tool 
In the development case of the Concept Laser Mlab, MATLAB App Designer is used as the 
programming platform [Math19]. Figure 4-10 shows an overview of the platform, in which the 
NC code and database-driven approach is programmed as a simulation tool. The architecture 
and GUI of the simulation tool are described in the next subsection. 
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Figure 4-11: Functional flow block diagram of the simulation tool 

4.5.2 GUI design 
The GUI of the simulation tool is shown in Figure 4-12. Prior to the simulation, the .lsr and .stl 
files should be imported through the file input bar. During the simulation, the simulation status 
can be monitored and the .stl file can be visualized. After the simulation, the power curves of 
the Concept Laser Mlab, powder screen device, and vacuum cleaner are visualized, and the 
simulation data can be exported in the form of .txt file. 
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4.5.2 GUI design 
The GUI of the simulation tool is shown in Figure 4-12. Prior to the simulation, the .lsr and .stl 
files should be imported through the file input bar. During the simulation, the simulation status 
can be monitored and the .stl file can be visualized. After the simulation, the power curves of 
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simulation data can be exported in the form of .txt file. 
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Figure 4-12: Overview of the GUI of the simulation tool 

4.6 Experimental verification 

4.6.1 Design and setup of experiments 
The power meter used for the experiments is a YOKOGAWA WT1806E [Yoko19]. The wiring 
for the power measurement is depicted in Figure 4-13, in which the interfaces for measuring 
voltage are connected with the Concept Laser Mlab in parallel and the interfaces for measuring 
current are connected in series. In Figure 4-13, ① and ② are interfaces for measuring the 
voltage, while ③ and ④ are for measuring the current. During the measurement, a laptop 
captures the power data with a sampling time of 1 s. In the experiments, four build tasks with 
different components are performed. Thereafter, as is described in the next subsection, 
simulations of the build tasks are performed and the experimental data are compared. 
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4.6.2 Comparison of experimental and simulation results 
The analysis of the simulation accuracy begins with an evaluation of the power curves of the 
simulation and experiment. Figure 4-14 shows an exemplary power curve that is characterized 
by three stages. The first stage represents the calibration and vacuuming of the build chamber, 
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the second stage indicates the build of layers, and the third stage indicates the cooldown. In the 
second stage, a periodic behavior is observed, as indicated by ④ and ⑤ in Figure 4-14A. The 
reason for this is that the cyclic operation of the cooling device’s compressor leads to the 
cyclical power increasing by nearly 300 W. In addition, another periodical power increase is 
observed, as indicated by ⑥ and ⑦, which represent the laser scanning and powder spreading, 
respectively. During the laser scanning, the power use increases by nearly 210 W. 
Although the simulated power curve and the actual power curve generally fit, there are still 
errors in the details. One obvious error is the time offset, which is indicated by ⑧. The reason 
for this error is that the time parameters used in the simulation are imported from .lsr file; these 
parameters differ from the actual time parameters. Thus, the timelines of the simulation and the 
experiment do not match. 

 
Figure 4-14: Comparison of simulated and experimental power curves 

The deviation between the simulation and experiment is expressed in Equation 4-12, in which 
P and E represent the mean power and energy consumption, respectively:  

 Δ𝑃𝑃 = |𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠|, and Δ𝐸𝐸 = |𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒 − 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠| Equation 4-12 
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concluded that the simulation accuracy is verified and that the simulation tool can be used for 
the energy performance quantification and evaluation of the Concept Laser Mlab. 
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the power consumption is approximately 130 W. Following the print process, the Ultimaker 3 
cools down, as indicated by ⑤ in Figure 4-15. The print process encompasses a cyclical 
behavior in which the leveling of the platform and extrusion of filaments cause a different level 
of power consumption, as indicated by ⑥ and ⑦ in Figure 4-15. Moreover, a time offset is 
also observed, in which the timeline from the NC code file varies from the real timeline, as 
indicated by ⑧ in Figure 4-15. 

 
Figure 4-15: Development of the energy simulation for the Ultimaker 3 

In the experimental verification, eight experiments were performed, the results of which are 
summarized in Table 4-4. The ACCE and ACCP values range from 90.5% to 98.4% and 95.4% 
to 98.5%, respectively, and the mean ACCE and ACCP values are 94.7% and 96.7%, 
respectively. Based on the transfer of the development approach to FDM, it can be concluded 
that the development approach presented in this dissertation, as well as the NC code and 
database-driven approach, demonstrates good feasibility for different AM processes.  
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Table 4-4: Simulated and experimental results for the Ultimaker 3 

4.7.2 Benefits and challenges of the simulation approach 
Compared to existing approaches for the energy prediction of AM processes, the approach 
proposed in this dissertation offers the following innovative benefits: 

q Integration of NC code into the energy simulation: In previous approaches related to the 
calculation of energy demands of AM processes, NC code was not considered. The main 
benefit of the proposed NC code-driven simulation approach is high prediction accuracy. 
Compared to energy prediction using the empirical method (e.g., the approach of BAUMERS 

ET AL. has the highest accuracy of 96.45%, [Baum13]), the accuracy in this approach can 
be up to 98.5%. The main reason for the improvement is the use of the time parameters 
from the NC code. Since the build process of AM is controlled by NC codes, the use of NC 
codes in the energy simulation implies a more detailed consideration of the process data, 
which eventually leads to increased accuracy.  

q Use of a power adjustment function to imitate real energy-consuming behavior: An 
AM system is a complex mechatronic system comprised of both software and hardware. 
The power consumption of an AM system varies at each point in time of a build process 
and is influenced by machine and process parameters, the geometry of each layer of the 
object, and even ambient noise. If all these parameters are considered during the simulation, 
the complexity of the simulation model will be extremely high. Therefore, this approach 
simplifies the effects of these factors into a power adjustment equation based on adding or 
subtracting a randomly generated value according to an assumed constant. The benefit is 
that the simulated power curves more realistically indicate the energy-consuming behavior 
of an AM system. 

q Fast simulation through the use of a power database: If the Simulink models are directly 
integrated into the GUI, the simulation time will be hours. The reason for this is that an AM 
build process can take hours or even days, and the simulation of system components that 
operate for hours or days in Simulink models is extremely time-consuming. Considering 
that a single AM machine comprises more than ten system components and Simulink 
models, the total GUI simulation time can be up to hours. However, by using a power 
database in which the simulation data of the Simulink models are already stored and having 
the GUI only takes power values from the power database, the simulation time can be 
reduced to seconds or minutes. 

q A greater understanding of the relationship between system and energy consumption: 
The entire development approach adopts a function-oriented approach to system 

1 203.18 121.07 123.78 2.71 97.8 0.41 0.42 0.01 97.6
2 207.53 118.54 123.22 4.68 96.0 0.41 0.43 0.02 95.1
3 264.57 117.93 124.14 6.21 94.7 0.52 0.54 0.02 96.2
4 268.60 122.86 124.82 1.96 98.4 0.55 0.56 0.01 98.4
5 81.35 116.53 114.77 1.77 98.5 0.16 0.15 0.01 94.9
6 83.10 118.41 114.44 3.98 96.6 0.16 0.15 0.01 93.3
7 105.12 119.86 114.38 5.49 95.4 0.21 0.19 0.02 90.5
8 105.47 119.47 115.00 4.46 96.3 0.21 0.19 0.02 91.4

No. tbuild (min) Pexp (W) Psim (W) ΔP (W) ACCP
(%)

Eexp 
(kWh)

Esim 
(kWh)

ΔE 
(kWh)

ACCE 
(%)

66 Energy Modeling and Simulation for AM 

 

 
Table 4-4: Simulated and experimental results for the Ultimaker 3 

4.7.2 Benefits and challenges of the simulation approach 
Compared to existing approaches for the energy prediction of AM processes, the approach 
proposed in this dissertation offers the following innovative benefits: 

q Integration of NC code into the energy simulation: In previous approaches related to the 
calculation of energy demands of AM processes, NC code was not considered. The main 
benefit of the proposed NC code-driven simulation approach is high prediction accuracy. 
Compared to energy prediction using the empirical method (e.g., the approach of BAUMERS 

ET AL. has the highest accuracy of 96.45%, [Baum13]), the accuracy in this approach can 
be up to 98.5%. The main reason for the improvement is the use of the time parameters 
from the NC code. Since the build process of AM is controlled by NC codes, the use of NC 
codes in the energy simulation implies a more detailed consideration of the process data, 
which eventually leads to increased accuracy.  

q Use of a power adjustment function to imitate real energy-consuming behavior: An 
AM system is a complex mechatronic system comprised of both software and hardware. 
The power consumption of an AM system varies at each point in time of a build process 
and is influenced by machine and process parameters, the geometry of each layer of the 
object, and even ambient noise. If all these parameters are considered during the simulation, 
the complexity of the simulation model will be extremely high. Therefore, this approach 
simplifies the effects of these factors into a power adjustment equation based on adding or 
subtracting a randomly generated value according to an assumed constant. The benefit is 
that the simulated power curves more realistically indicate the energy-consuming behavior 
of an AM system. 

q Fast simulation through the use of a power database: If the Simulink models are directly 
integrated into the GUI, the simulation time will be hours. The reason for this is that an AM 
build process can take hours or even days, and the simulation of system components that 
operate for hours or days in Simulink models is extremely time-consuming. Considering 
that a single AM machine comprises more than ten system components and Simulink 
models, the total GUI simulation time can be up to hours. However, by using a power 
database in which the simulation data of the Simulink models are already stored and having 
the GUI only takes power values from the power database, the simulation time can be 
reduced to seconds or minutes. 

q A greater understanding of the relationship between system and energy consumption: 
The entire development approach adopts a function-oriented approach to system 

1 203.18 121.07 123.78 2.71 97.8 0.41 0.42 0.01 97.6
2 207.53 118.54 123.22 4.68 96.0 0.41 0.43 0.02 95.1
3 264.57 117.93 124.14 6.21 94.7 0.52 0.54 0.02 96.2
4 268.60 122.86 124.82 1.96 98.4 0.55 0.56 0.01 98.4
5 81.35 116.53 114.77 1.77 98.5 0.16 0.15 0.01 94.9
6 83.10 118.41 114.44 3.98 96.6 0.16 0.15 0.01 93.3
7 105.12 119.86 114.38 5.49 95.4 0.21 0.19 0.02 90.5
8 105.47 119.47 115.00 4.46 96.3 0.21 0.19 0.02 91.4

No. tbuild (min) Pexp (W) Psim (W) ΔP (W) ACCP
(%)

Eexp 
(kWh)

Esim 
(kWh)

ΔE 
(kWh)

ACCE 
(%)

66 Energy Modeling and Simulation for AM 

 

 
Table 4-4: Simulated and experimental results for the Ultimaker 3 

4.7.2 Benefits and challenges of the simulation approach 
Compared to existing approaches for the energy prediction of AM processes, the approach 
proposed in this dissertation offers the following innovative benefits: 

q Integration of NC code into the energy simulation: In previous approaches related to the 
calculation of energy demands of AM processes, NC code was not considered. The main 
benefit of the proposed NC code-driven simulation approach is high prediction accuracy. 
Compared to energy prediction using the empirical method (e.g., the approach of BAUMERS 

ET AL. has the highest accuracy of 96.45%, [Baum13]), the accuracy in this approach can 
be up to 98.5%. The main reason for the improvement is the use of the time parameters 
from the NC code. Since the build process of AM is controlled by NC codes, the use of NC 
codes in the energy simulation implies a more detailed consideration of the process data, 
which eventually leads to increased accuracy.  

q Use of a power adjustment function to imitate real energy-consuming behavior: An 
AM system is a complex mechatronic system comprised of both software and hardware. 
The power consumption of an AM system varies at each point in time of a build process 
and is influenced by machine and process parameters, the geometry of each layer of the 
object, and even ambient noise. If all these parameters are considered during the simulation, 
the complexity of the simulation model will be extremely high. Therefore, this approach 
simplifies the effects of these factors into a power adjustment equation based on adding or 
subtracting a randomly generated value according to an assumed constant. The benefit is 
that the simulated power curves more realistically indicate the energy-consuming behavior 
of an AM system. 

q Fast simulation through the use of a power database: If the Simulink models are directly 
integrated into the GUI, the simulation time will be hours. The reason for this is that an AM 
build process can take hours or even days, and the simulation of system components that 
operate for hours or days in Simulink models is extremely time-consuming. Considering 
that a single AM machine comprises more than ten system components and Simulink 
models, the total GUI simulation time can be up to hours. However, by using a power 
database in which the simulation data of the Simulink models are already stored and having 
the GUI only takes power values from the power database, the simulation time can be 
reduced to seconds or minutes. 

q A greater understanding of the relationship between system and energy consumption: 
The entire development approach adopts a function-oriented approach to system 

1 203.18 121.07 123.78 2.71 97.8 0.41 0.42 0.01 97.6
2 207.53 118.54 123.22 4.68 96.0 0.41 0.43 0.02 95.1
3 264.57 117.93 124.14 6.21 94.7 0.52 0.54 0.02 96.2
4 268.60 122.86 124.82 1.96 98.4 0.55 0.56 0.01 98.4
5 81.35 116.53 114.77 1.77 98.5 0.16 0.15 0.01 94.9
6 83.10 118.41 114.44 3.98 96.6 0.16 0.15 0.01 93.3
7 105.12 119.86 114.38 5.49 95.4 0.21 0.19 0.02 90.5
8 105.47 119.47 115.00 4.46 96.3 0.21 0.19 0.02 91.4

No. tbuild (min) Pexp (W) Psim (W) ΔP (W) ACCP
(%)

Eexp 
(kWh)

Esim 
(kWh)

ΔE 
(kWh)

ACCE 
(%)

66 Energy Modeling and Simulation for AM 

 

 
Table 4-4: Simulated and experimental results for the Ultimaker 3 

4.7.2 Benefits and challenges of the simulation approach 
Compared to existing approaches for the energy prediction of AM processes, the approach 
proposed in this dissertation offers the following innovative benefits: 

q Integration of NC code into the energy simulation: In previous approaches related to the 
calculation of energy demands of AM processes, NC code was not considered. The main 
benefit of the proposed NC code-driven simulation approach is high prediction accuracy. 
Compared to energy prediction using the empirical method (e.g., the approach of BAUMERS 

ET AL. has the highest accuracy of 96.45%, [Baum13]), the accuracy in this approach can 
be up to 98.5%. The main reason for the improvement is the use of the time parameters 
from the NC code. Since the build process of AM is controlled by NC codes, the use of NC 
codes in the energy simulation implies a more detailed consideration of the process data, 
which eventually leads to increased accuracy.  

q Use of a power adjustment function to imitate real energy-consuming behavior: An 
AM system is a complex mechatronic system comprised of both software and hardware. 
The power consumption of an AM system varies at each point in time of a build process 
and is influenced by machine and process parameters, the geometry of each layer of the 
object, and even ambient noise. If all these parameters are considered during the simulation, 
the complexity of the simulation model will be extremely high. Therefore, this approach 
simplifies the effects of these factors into a power adjustment equation based on adding or 
subtracting a randomly generated value according to an assumed constant. The benefit is 
that the simulated power curves more realistically indicate the energy-consuming behavior 
of an AM system. 

q Fast simulation through the use of a power database: If the Simulink models are directly 
integrated into the GUI, the simulation time will be hours. The reason for this is that an AM 
build process can take hours or even days, and the simulation of system components that 
operate for hours or days in Simulink models is extremely time-consuming. Considering 
that a single AM machine comprises more than ten system components and Simulink 
models, the total GUI simulation time can be up to hours. However, by using a power 
database in which the simulation data of the Simulink models are already stored and having 
the GUI only takes power values from the power database, the simulation time can be 
reduced to seconds or minutes. 

q A greater understanding of the relationship between system and energy consumption: 
The entire development approach adopts a function-oriented approach to system 

1 203.18 121.07 123.78 2.71 97.8 0.41 0.42 0.01 97.6
2 207.53 118.54 123.22 4.68 96.0 0.41 0.43 0.02 95.1
3 264.57 117.93 124.14 6.21 94.7 0.52 0.54 0.02 96.2
4 268.60 122.86 124.82 1.96 98.4 0.55 0.56 0.01 98.4
5 81.35 116.53 114.77 1.77 98.5 0.16 0.15 0.01 94.9
6 83.10 118.41 114.44 3.98 96.6 0.16 0.15 0.01 93.3
7 105.12 119.86 114.38 5.49 95.4 0.21 0.19 0.02 90.5
8 105.47 119.47 115.00 4.46 96.3 0.21 0.19 0.02 91.4

No. tbuild (min) Pexp (W) Psim (W) ΔP (W) ACCP
(%)

Eexp 
(kWh)

Esim 
(kWh)

ΔE 
(kWh)

ACCE 
(%)



Energy Modeling and Simulation for AM 67 

 

exploration and energy modeling, which implies that the simulated energy consumption 
can be reassigned to the functions and components of the AM system. In contrast to 
previous empirical modeling approaches, in which an AM process is treated as a black box 
and the calculated energy consumption cannot be allocated to system components, this 
approach follows a white box principle and facilitates a deeper understanding of the 
relationship between the composition and the energy consumption of AM systems. 

Despite the benefits described above, the approach developed in this dissertation is still subject 
to the following two challenges, which should be addressed prior to future implementation: 

q Time offset between the simulation and the real process: The time parameters from the 
NC code and the actual process may be different. If the deviation between them is 
significant (e.g., the total process time in the NC code is 1 h, while the real process time is 
1.5 h), the simulation result may not be reliable. For example, a machine that has just started 
up and a machine that has already performed several build tasks may require different times 
to heat up for a new next build task. Thus, even for the same build task, these machines’ 
processing times may differ due to the time required for pre-heating. Unfortunately, the 
effects of the environment cannot be considered in an NC code. For the NC code-driven 
approach, the risk of time offset is always present. A solution to minimize this risk is to 
establish guidelines for standardizing tools, workflow, environment, and other factors 
during the application of AM processes to reduce the impact of the unpredictable factors 
that may affect the build time of an AM process. 

q Additional work required for the implementation of new AM systems: Different AM 
systems feature different system compositions. Thus, when applying this approach to a new 
AM system, the entire process, starting from the system exploration stage, may have to be 
repeated. It is only for AM systems with the same or similar system architectures that the 
system exploration and energy modeling stages can be performed once, and the same 
Simulink models can be used again. For example, the Simulink models of the Concept 
Laser Mlab can be conveniently modified for other SLM machines with similar 
constructions. However, for AM systems system constructions that differ from those of 
SLM machines, all steps from the system exploration stage onward will have to be carried 
out. A solution to minimize the workload for the implementation of the developed approach 
may be that developers can create templates of Simulink models for AM systems falling in 
the same AM process category. The template Simulink models and parameters can then be 
modified for specific AM systems.  

Energy Modeling and Simulation for AM 67 

 

exploration and energy modeling, which implies that the simulated energy consumption 
can be reassigned to the functions and components of the AM system. In contrast to 
previous empirical modeling approaches, in which an AM process is treated as a black box 
and the calculated energy consumption cannot be allocated to system components, this 
approach follows a white box principle and facilitates a deeper understanding of the 
relationship between the composition and the energy consumption of AM systems. 

Despite the benefits described above, the approach developed in this dissertation is still subject 
to the following two challenges, which should be addressed prior to future implementation: 

q Time offset between the simulation and the real process: The time parameters from the 
NC code and the actual process may be different. If the deviation between them is 
significant (e.g., the total process time in the NC code is 1 h, while the real process time is 
1.5 h), the simulation result may not be reliable. For example, a machine that has just started 
up and a machine that has already performed several build tasks may require different times 
to heat up for a new next build task. Thus, even for the same build task, these machines’ 
processing times may differ due to the time required for pre-heating. Unfortunately, the 
effects of the environment cannot be considered in an NC code. For the NC code-driven 
approach, the risk of time offset is always present. A solution to minimize this risk is to 
establish guidelines for standardizing tools, workflow, environment, and other factors 
during the application of AM processes to reduce the impact of the unpredictable factors 
that may affect the build time of an AM process. 

q Additional work required for the implementation of new AM systems: Different AM 
systems feature different system compositions. Thus, when applying this approach to a new 
AM system, the entire process, starting from the system exploration stage, may have to be 
repeated. It is only for AM systems with the same or similar system architectures that the 
system exploration and energy modeling stages can be performed once, and the same 
Simulink models can be used again. For example, the Simulink models of the Concept 
Laser Mlab can be conveniently modified for other SLM machines with similar 
constructions. However, for AM systems system constructions that differ from those of 
SLM machines, all steps from the system exploration stage onward will have to be carried 
out. A solution to minimize the workload for the implementation of the developed approach 
may be that developers can create templates of Simulink models for AM systems falling in 
the same AM process category. The template Simulink models and parameters can then be 
modified for specific AM systems.  

Energy Modeling and Simulation for AM 67 

 

exploration and energy modeling, which implies that the simulated energy consumption 
can be reassigned to the functions and components of the AM system. In contrast to 
previous empirical modeling approaches, in which an AM process is treated as a black box 
and the calculated energy consumption cannot be allocated to system components, this 
approach follows a white box principle and facilitates a deeper understanding of the 
relationship between the composition and the energy consumption of AM systems. 

Despite the benefits described above, the approach developed in this dissertation is still subject 
to the following two challenges, which should be addressed prior to future implementation: 

q Time offset between the simulation and the real process: The time parameters from the 
NC code and the actual process may be different. If the deviation between them is 
significant (e.g., the total process time in the NC code is 1 h, while the real process time is 
1.5 h), the simulation result may not be reliable. For example, a machine that has just started 
up and a machine that has already performed several build tasks may require different times 
to heat up for a new next build task. Thus, even for the same build task, these machines’ 
processing times may differ due to the time required for pre-heating. Unfortunately, the 
effects of the environment cannot be considered in an NC code. For the NC code-driven 
approach, the risk of time offset is always present. A solution to minimize this risk is to 
establish guidelines for standardizing tools, workflow, environment, and other factors 
during the application of AM processes to reduce the impact of the unpredictable factors 
that may affect the build time of an AM process. 

q Additional work required for the implementation of new AM systems: Different AM 
systems feature different system compositions. Thus, when applying this approach to a new 
AM system, the entire process, starting from the system exploration stage, may have to be 
repeated. It is only for AM systems with the same or similar system architectures that the 
system exploration and energy modeling stages can be performed once, and the same 
Simulink models can be used again. For example, the Simulink models of the Concept 
Laser Mlab can be conveniently modified for other SLM machines with similar 
constructions. However, for AM systems system constructions that differ from those of 
SLM machines, all steps from the system exploration stage onward will have to be carried 
out. A solution to minimize the workload for the implementation of the developed approach 
may be that developers can create templates of Simulink models for AM systems falling in 
the same AM process category. The template Simulink models and parameters can then be 
modified for specific AM systems.  

Energy Modeling and Simulation for AM 67 

 

exploration and energy modeling, which implies that the simulated energy consumption 
can be reassigned to the functions and components of the AM system. In contrast to 
previous empirical modeling approaches, in which an AM process is treated as a black box 
and the calculated energy consumption cannot be allocated to system components, this 
approach follows a white box principle and facilitates a deeper understanding of the 
relationship between the composition and the energy consumption of AM systems. 

Despite the benefits described above, the approach developed in this dissertation is still subject 
to the following two challenges, which should be addressed prior to future implementation: 

q Time offset between the simulation and the real process: The time parameters from the 
NC code and the actual process may be different. If the deviation between them is 
significant (e.g., the total process time in the NC code is 1 h, while the real process time is 
1.5 h), the simulation result may not be reliable. For example, a machine that has just started 
up and a machine that has already performed several build tasks may require different times 
to heat up for a new next build task. Thus, even for the same build task, these machines’ 
processing times may differ due to the time required for pre-heating. Unfortunately, the 
effects of the environment cannot be considered in an NC code. For the NC code-driven 
approach, the risk of time offset is always present. A solution to minimize this risk is to 
establish guidelines for standardizing tools, workflow, environment, and other factors 
during the application of AM processes to reduce the impact of the unpredictable factors 
that may affect the build time of an AM process. 

q Additional work required for the implementation of new AM systems: Different AM 
systems feature different system compositions. Thus, when applying this approach to a new 
AM system, the entire process, starting from the system exploration stage, may have to be 
repeated. It is only for AM systems with the same or similar system architectures that the 
system exploration and energy modeling stages can be performed once, and the same 
Simulink models can be used again. For example, the Simulink models of the Concept 
Laser Mlab can be conveniently modified for other SLM machines with similar 
constructions. However, for AM systems system constructions that differ from those of 
SLM machines, all steps from the system exploration stage onward will have to be carried 
out. A solution to minimize the workload for the implementation of the developed approach 
may be that developers can create templates of Simulink models for AM systems falling in 
the same AM process category. The template Simulink models and parameters can then be 
modified for specific AM systems.  



68 An Energy Performance Assessment Model for AM 

 

5 An Energy Performance Assessment Model for AM 
This chapter describes the multidimensional energy performance assessment model for AM 
based on energy performance indicators (EnPIs). An EnPI is a metric of energy performance 
that refers to the measurable results associated with the energy efficiency, energy consumption, 
and energy use of a system or process [ISO14]. The model presented in this dissertation is 
divided into three levels: original EnPI (Level I), normalized EnPI (Level II), and aggregated 
EnPI (Level III). Chapter 5.1 provides an overview of the assessment model, while Chapter 5.2 
describes the three levels in detail. Finally, Chapter 5.3 presents a discussion of the proposed 
assessment model. 

5.1 Overview of the model 
The quantification and assessment of energy performance for AM require a model capable of 
describing the specific implications of energy performance in the context of AM processes; in 
addition, this model should establish the basis for the calculation and assessment of the energy 
performance of AM-specific solutions in the eco-design. The proposed assessment model in 
this dissertation is adopted from an EnPI-based evaluation approach and is called the 
multidimensional energy performance assessment model for AM. This model consists of three 
levels, which are depicted in Figure 5-1.  

 
Figure 5-1: Overview of the multidimensional energy performance assessment model for AM 

Level I features original EnPIs that can be directly investigated from AM processes. These 
EnPIs can be divided into four types: direct energy values, ratios of energy values, combination 
of energy and non-energy values, and non-energy unit but related values. The original EnPI 
level is introduced in Chapter 5.2.1. Since original EnPIs are expressed in different units and 
cannot be compared directly, they need to be normalized to eliminate their units so that they 
can be directly added to or subtracted from each other. Therefore, Level II is called normalized 
EnPI; this level is described in Chapter 5.2.2. In addition, in practice, users may have different 
expectations regarding different EnPIs, and the weighting factors for EnPIs may therefore need 
to be calculated based on the pairwise comparison approach. Thereafter, weighting factors (see 
WF in Figure 5-1) need to be multiplied by the normalized EnPI values; the results are called 
aggregated EnPIs, which comprise Level III. The sum of the aggregated EnPIs represents the 
final energy performance score of a design solution for AM, based on which different design 
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solutions can be compared and the optimum solution can be selected (see Figure 5-2). The level 
of aggregated EnPIs is introduced in Chapter 5.2.3.  

 
Figure 5-2: Concept of the EnPI-based approach to energy performance assessment 
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only energy variables are used, there are two ways to compose EnPIs. First, energy variables 
can be used directly or synthesized without changing units (i.e., sum or minus). In this approach, 
the EnPIs are called direct energy values (e.g., energy consumption per build task, peak power, 
and the difference between the energy consumption of two AM systems). Second, energy 
variables can be divided into ratios of energy values, which indicate the energy transformation 
efficiency or exergy efficiency (e.g., the ratio between required and consumed energy demand 
or the ratio between the laser power and the total power of AM systems). For combining energy 
and non-energy variables into EnPIs, the units of both variables can be combined into single 
units. For example, the energy consumption of a build task in joules (energy variable) can be 
combined with the mass of a product in kilograms (non-energy variable) into specific energy 
consumption in J/kg. Finally, non-energy variables can be used by synthesizing them to create 
EnPIs. It should be noted that not every non-energy variable can be used as an EnPI; rather, 
only those that are energy-related can be used as EnPIs. While the direct energy values, ratios 
of energy values, and combinations of energy and non-energy values indicate the energy use, 
efficiency, and consumption of AM, non-energy unit but related values describe the effects of 
the energy use, efficiency, and consumption of AM (e.g., energy cost and residual stress).  

In practice, EnPIs should be defined individually for different design purposes. Table 5-1 
provides examples of EnPIs that developers can refer to for their own cases. In general, since 
direct energy values only consider energy or power values, they are suitable for design 
objectives that involve evaluating or optimizing the energy consumption or uses of different 
AM processes, product designs, or systems. If designers attempt to consider the energy 
efficiency or energy consumption of other design factors, such as products or AM systems, 
ratios of energy values and combination of energy and non-energy values would be more 
suitable. If designers attempt to consider the effects of the energy use of AM systems, such as 
thermal stress and displacement, non-energy unit but related values should be preferred. 

 
Table 5-1: Examples of EnPIs and the design objectives for which they are suitable 

EnPI types Examples of EnPI
Energy consumption per build task (J, kWh)
Energy consumption per day or week (J, kWh)
Energy waste in the build task (J, kWh)
Peak power consumption (W)

Specific energy consumption (J/cm³ or J/kg)
Energy consumption per layer (E/layer)

Ratio between required/consumed energy (%)
Ratio between heat dissipation and energy consumption (%)

Ratio between power and print temperature (W/K)
Ratio between safety factor and energy consumption (1/J)*
Heat distortion (mm)

Energy cost (€)

Direct energy 
values

Ratio of 
energy value

Combination 
of energy and 
non-energy 
values

Non-energy 
unit but 
related values

*: Safety factor describes the ratio between yield stress (MPa) and maximal stress (MPa) of a part, and hence, the unit of 
safety factor is MPa/MPa=1.

Ratio between laser power and total power (%)

Residual stress (MPa)

Suitable design objectives

Evaluation and reduction of energy 
consumptions or uses for different AM 
processes, product design, etc.

Evaluation and improvements of energy use, 
consumption, or efficiency with 
consideration of other factors related to 
product, AM process, machines, etc.

Evaluation and improvement of energy 
efficiency for different AM processes, 
machines, etc.

Evaluation and improvement of the effect 
related to the energy use of AM processes, 
machines, etc.
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5.2.2 Level II: Normalized EnPIs 
In EnPI-based assessment, either single or multiple EnPIs can be used. Should designers 
attempt to use single EnPIs, the decision of an optimum design solution can be made based on 
comparing the EnPI values of all solutions. However, should designers adopt multiple EnPIs in 
an assessment, they may be confronted with the problem that different EnPIs indicate different 
optimum design solutions. For example, design solution A may consume less energy in total 
than solution B, while solution B may have a higher energy efficiency than A. Thus, since 
different metrics may indicate different optimum solutions, a final decision cannot be made. In 
addition, since different EnPI have different units, they cannot be added directly. To solve this 
problem, this dissertation applies the normalization method to eliminate the units of all EnPI 
and convert them into comparable units. 

The normalization method used in this dissertation adopts the min-max scaling approach, which 
has been widely used for forms of data processing such as image retrieval [Akso01]. In this 
work, each EnPI’s normalized value, denoted as EnPI′, can be scaled to a value belonging to 
the range [0,1]. The normalization can be performed based on either the maximum or the 
minimum value. The normalization of the EnPI value for i-th solution based on the minimum 
EnPI is expressed by Equation 5-1, in which max (EnPI) and min (EnPI) respectively represent 
the maximum and minimum values of all solutions: 

 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖′ =
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 − min (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)

max(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸) − min (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)
 Equation 5-1 

Similarly, the maximum EnPI value-based normalization is defined using Equation 5-2: 

 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖′ =
max(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸) − 𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑖𝑖

max(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸) − min (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)
 Equation 5-2 

The reason for proposing two normalization equations is that different EnPIs require different 
evaluation rules that in turn require different normalization strategies. For example, if the EnPI 
is the total energy consumption of an AM system, the general evaluation rule is that lower 
energy consumption implies greater energy-saving and should thus be considered a better rating 
(according to the principle “the lower, the better”). In this case, the maximum value-based 
normalization, as expressed by Equation 5-1, should be applied so that the minimum value will 
be normalized to “1,” which is the highest value in the min-max scaling approach. However, if 
the EnPI is energy efficiency, the general evaluation rule for which is that a higher efficiency 
implies less energy waste and should be considered a better rating, the minimum value-based 
normalization according to Equation 5-2 should be used (according to the principle “the higher, 
the better”). Hence, the maximum energy efficiency will be normalized to the value “1.” In the 
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After the weighting of EnPIs, the normalized EnPIs are aggregated with their respective WFs. 
For the i-th design solution and j-th EnPI, the product of the normalized EnPI (denoted as 
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Figure 5-6 shows an example of the aggregation of EnPIs, in which five EnPIs are assumed. 
For a design solution (denoted as solution A, in which i takes the value of 1), the values for the 
original EnPI are normalized and aggregated with their WFs. The final energy performance 
score of the design solution (EnPIi′′) is the sum of all aggregated EnPIs (EnPIi

j′′), which is 
determined using  Equation 5-5: 
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The final energy performance score represents the final energy performance of a design 
solution. The best design solution can be selected by comparing the final energy performance 
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Figure 5-6: Aggregation of normalized EnPIs with weighting factors 

5.3 Discussion of the model 
The model proposed in this dissertation describes the energy performance of an AM process 
and is divided into three levels. The assessment model is the core element of the eco-design for 
AM method presented in this dissertation, which is introduced in Chapter 6. Compared to 
existing approaches, the model presented in this dissertation offers the following benefits: 

q Enabling assessments based on multiple EnPIs: In existing approaches, the energy 
performance of AM is always evaluated based on a single indicator (e.g., total energy 
consumption or specific energy consumption). Through the use of the normalization 
technique, the proposed model enables the definition, calculation, and evaluation of 

Aggregation of EnPI

EnPI1′′ 0.83

Level I: 
Original EnPI

Level II: 
Normalized 

EnPI

Level III: 
Aggregated 

EnPI
+

EnPI1
5 25

EnPI1
5′ 0.93

WF5 0.09

EnPI1
5′′ 0.08

EnPI1
4 30

EnPI1
4′ 0.58

WF4 0.23

EnPI1
4′′ 0.13

EnPI1
3 18

EnPI1
3′ 0.63

WF3 0.09

EnPI1
3′′ 0.06

EnPI1
2 20

EnPI1
2′ 0.85

WF2 0.23

EnPI1
2′′ 0.2EnPI1

1′′ 0.36

EnPI1
1′ 1

WF1 0.36

EnPI1
1 100

Calculation of EnPI1′′ for 
design solution A

Normalized EnPI Weighting factors of EnPI
Original EnPI

So
lu

tio
n A

B
C
D

EnPI1
100
30
40
20

...

...

...

...

...

...

Solution

EnPI1

Highest

Lowest
Range

A B C D

Or

...

Solution

EnPI1

A B C D

Upper difference for EnPI1

...

Solution

EnPI1

Lower difference for EnPI1

A B C D

EnPI1′= 80/80=1

EnPI1′= 10/80=0.125

EnPI1′= 20/80=0.25

EnPI1′= 0/80=0

LD-Normalization

So
lu

tio
n

A

B

C

D

...

...

...

...

EnPI1′= 0/80=0

EnPI1′= 70/80=0.875

EnPI1′= 60/80=0.75

EnPI1′= 0/80=0

UD-Normalization

So
lu

tio
n

A

B

C

D

...

...

...

...

∑: 68 ∑: 1.00

EnPI5EnPI4EnPI3EnPI2EnPI1

6
16
6
16
24

Scorei

0.09
0.23
0.09
0.23
0.36
WFi

6666
6361
3111
6631

1311

EnPI

EnPI5

EnPI4

EnPI3

EnPI2

EnPI1

EnPI

E
nP

I

Priority defined by users Pairwise comparison of EnPI

Low
Middle

Low
Middle
High

Priority

EnPI5

EnPI4

EnPI3

EnPI2

EnPI1

EnPI

An Energy Performance Assessment Model for AM 73 
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After the weighting of EnPIs, the normalized EnPIs are aggregated with their respective WFs. 
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Figure 5-6 shows an example of the aggregation of EnPIs, in which five EnPIs are assumed. 
For a design solution (denoted as solution A, in which i takes the value of 1), the values for the 
original EnPI are normalized and aggregated with their WFs. The final energy performance 
score of the design solution (EnPIi′′) is the sum of all aggregated EnPIs (EnPIi
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After the weighting of EnPIs, the normalized EnPIs are aggregated with their respective WFs. 
For the i-th design solution and j-th EnPI, the product of the normalized EnPI (denoted as 
EnPIi

j′) and the WFj is the aggregated EnPIi
j′′, as expressed by Equation 5-4: 

 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖
𝑗𝑗′′ = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖

𝑗𝑗′ × 𝑊𝑊𝑊𝑊𝑗𝑗 Equation 5-4 

Figure 5-6 shows an example of the aggregation of EnPIs, in which five EnPIs are assumed. 
For a design solution (denoted as solution A, in which i takes the value of 1), the values for the 
original EnPI are normalized and aggregated with their WFs. The final energy performance 
score of the design solution (EnPIi′′) is the sum of all aggregated EnPIs (EnPIi

j′′), which is 
determined using  Equation 5-5: 

 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖′′ = �𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑗𝑗′′

𝑘𝑘

𝑗𝑗=1

 Equation 5-5 

The final energy performance score represents the final energy performance of a design 
solution. The best design solution can be selected by comparing the final energy performance 
score, with the highest score indicating the optimum design solution. 

 
Figure 5-6: Aggregation of normalized EnPIs with weighting factors 

5.3 Discussion of the model 
The model proposed in this dissertation describes the energy performance of an AM process 
and is divided into three levels. The assessment model is the core element of the eco-design for 
AM method presented in this dissertation, which is introduced in Chapter 6. Compared to 
existing approaches, the model presented in this dissertation offers the following benefits: 

q Enabling assessments based on multiple EnPIs: In existing approaches, the energy 
performance of AM is always evaluated based on a single indicator (e.g., total energy 
consumption or specific energy consumption). Through the use of the normalization 
technique, the proposed model enables the definition, calculation, and evaluation of 

Aggregation of EnPI

EnPI1′′ 0.83

Level I: 
Original EnPI

Level II: 
Normalized 

EnPI

Level III: 
Aggregated 

EnPI
+

EnPI1
5 25

EnPI1
5′ 0.93

WF5 0.09

EnPI1
5′′ 0.08

EnPI1
4 30

EnPI1
4′ 0.58

WF4 0.23

EnPI1
4′′ 0.13

EnPI1
3 18

EnPI1
3′ 0.63

WF3 0.09

EnPI1
3′′ 0.06

EnPI1
2 20

EnPI1
2′ 0.85

WF2 0.23

EnPI1
2′′ 0.2EnPI1

1′′ 0.36

EnPI1
1′ 1

WF1 0.36

EnPI1
1 100

Calculation of EnPI1′′ for 
design solution A

Normalized EnPI Weighting factors of EnPI
Original EnPI

So
lu

tio
n A

B
C
D

EnPI1
100
30
40
20

...

...

...

...

...

...

Solution

EnPI1

Highest

Lowest
Range

A B C D

Or

...

Solution

EnPI1

A B C D

Upper difference for EnPI1

...

Solution

EnPI1

Lower difference for EnPI1

A B C D

EnPI1′= 80/80=1

EnPI1′= 10/80=0.125

EnPI1′= 20/80=0.25

EnPI1′= 0/80=0

LD-Normalization

So
lu

tio
n

A

B

C

D

...

...

...

...

EnPI1′= 0/80=0

EnPI1′= 70/80=0.875

EnPI1′= 60/80=0.75

EnPI1′= 0/80=0

UD-Normalization

So
lu

tio
n

A

B

C

D

...

...

...

...

∑: 68 ∑: 1.00

EnPI5EnPI4EnPI3EnPI2EnPI1

6
16
6
16
24

Scorei

0.09
0.23
0.09
0.23
0.36
WFi

6666
6361
3111
6631

1311

EnPI

EnPI5

EnPI4

EnPI3

EnPI2

EnPI1

EnPI

E
nP

I

Priority defined by users Pairwise comparison of EnPI

Low
Middle

Low
Middle
High

Priority

EnPI5

EnPI4

EnPI3

EnPI2

EnPI1

EnPI



74 An Energy Performance Assessment Model for AM 

 

multiple EnPIs. The application of multiple EnPI-based assessment further enables a more 
comprehensive consideration of the energy performance of an AM process.  

q Consideration of non-energy variables. In existing approaches, assessment of the energy 
performance of AM processes mainly focus on energy variables and neglect non-energy 
variables. The most used EnPIs are total energy consumption, specific energy consumption, 
and adiabatic efficiency (e.g., [Lune20, Guto17, Kell17]). The model proposed in this 
dissertation allows for combining non-energy variables together with energy variables, 
meaning that the process characteristics and design benefits of AM are also considered in 
assessments.  

q Integration of subjective design needs. Energy consumption is a metric that can be 
quantified using objective means such as experiments or simulations, and it is independent 
of the subjective expectations of designers. In the proposed model, the weighting factors 
of EnPI are multiplied by the normalized EnPI. Since the weighting factors are derived 
from the pairwise comparison based on priorities that are pre-defined by designers, the 
integration of the weighting factors with EnPIs also implies the consideration of the 
subjective expectations of designers in the assessment. The benefit is that the selected 
optimum solution will be closer to the design requirements as well as the designer’s 
application scenario. 

Beyond the advantages described above, the implementation of the proposed multidimensional 
energy performance assessment model faces a challenge in that the use of multiple EnPIs also 
implies a high complexity of calculation and the additional effort of investigating the non-
energy variables. A solution to this challenge could be the use of computer-aided engineering 
(CAE) software to simulate the characteristics of the AM process for a given AM system and 
process parameters. 
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6 An Eco-Design for AM Method 
This chapter describes the method of eco-design for AM, in which the proposed simulation tool 
and assessment model are applied. The method is presented in the form of a process model 
consisting of five phases: situation analysis, topology optimization, AM workstation design, 
build process design, and EnPI-based assessment. Chapter 6.1 provides an overview of the 
method, and the details of each phase are introduced in Chapters 6.2 to 6.8. Finally, Chapter 
6.9 presents a discussion of the proposed method. 

6.1 Overview of the method 
The fundamental logic of the proposed eco-design for AM method is to propose different design 
solutions by varying the parameters in designing products, systems, and processes with AM 
and to then use the multidimensional energy performance assessment model to select the 
optimal design. Based on the developed simulation tool and assessment model, the eco-design 
for AM method based on energy performance quantification and assessment is presented in the 
form of a general process model with five phases, which is depicted in Figure 6-1.  

 
Figure 6-1: Overview of the proposed eco-design for AM method 
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is planned. Similarly to the topology optimization process, different AM machines can be 
considered in the process of designing the AM workstation to develop different design 
solutions. Thereafter, in the fourth phase, namely the build process design phase, the process 
parameters of the build, such as layer thickness and laser speed, are defined. It should be noted 
that the material properties of AM parts, such as porosity and fatigue, are sensitive to the process 
parameters; thus, process performance should be considered while designing process 
parameters. In this method, the evaluation of the process performance is performed using 
thermal-structural simulations. Moreover, during the process design stage, multiple parameter 
combinations can also be proposed. Finally, different product geometries, AM workstation 
designs, and build process parameter combinations yield different design solutions, which are 
considered during the fifth phase. In the fifth phase, the energy simulations for all design 
solutions are performed, and the EnPIs for each design solution are calculated, normalized, 
weighted, and aggregated into the final energy performance score, according to which the 
optimal design solution is selected. 

An example in the form of a design in which a holder block is used as a reference component 
is used throughout the description of the eco-design for AM method. The holder block is part 
of the equipment to measure the scratch process of an indenter with a diamond abrasive tool, 
as depicted in Figure 6-2. The indenter can be inserted into the holder, which is then fixed on a 
bracket, and a servo drives a glass pane to execute the scratch process. The result of the scratch 
is compared with the result of an FE model to characterize the properties of the abrasive 
manufacturing process. The holder has eight holes and is a solid part without further complex 
geometrical features; the following subsections present the details of the design example. 

 
Figure 6-2: Example of a holder design 

6.2 Phase 1: Situation analysis 
In the situation analysis, a product and its use condition are first specified, in which general 
design requirements are defined according to the use scenarios of customers and the functions 
of the product are modeled using a function analysis system technique (FAST) approach. 
Thereafter, the manufacturing steps and production tasks in a conventional production scenario 
are specified. Based on the desired product function and specified production scenario, AM 
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processes and systems with application potentials are analyzed and evaluated with regard to 
their technical and economic aspects. Therefore, the workflow of this phase comprises three 
tasks: analysis of use scenario and product, analysis of conventional production scenario, and 
potential analysis of AM technology. The following subsections describe the phases, and Figure 
6-3 depicts the subtasks in each phase.  

 
Figure 6-3: Overview of the situation analysis 

6.2.1 Analysis of use scenario and product 
The use scenario for a design case represents a boundary condition that a designer should 
consider during the design process. The analysis of the use condition and product consists of 
three subtasks: identification of design requirements, function analysis, and definition of 
functional surfaces. 

Identification of design requirements 

Design requirements describe the physical or functional conditions that a specific product or 
process design should fulfill and can be proposed by either internal (manufacturer) or external 
(customer) fields. This dissertation identifies the following four types of design requirements: 

q Product-related requirements: This category summarizes requirements related to the 
desired properties of a product. Such requirements include those concerning specific 
materials, shape, function, aesthetics, use purpose, and quality. 

q Production-related requirements: These requirements refer to the desired properties of 
the production system and process chain used to produce the designed product. Such 
requirements include those concerning the flexibility of the production system, the 
reliability and stability of the production process, and the cycle time of production. 

q Customer-related requirements: These requirements are related to the customer use 
scenarios in which the designed product will be applied. Therefore, based on the individual 
use purposes, customers may have requirements in terms of delivery time, quality, or cost. 

q Regulatory-related requirements: This category consists of requirements related to the 
national or international legal frameworks that a designer should obey. These frameworks 
can include standards for production safety, quality, environments or other specific 
regulations. 
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The definition of these requirements can be carried out in the form of a workshop in which 
designers, production staff, and customers can participate. The outcome of the workshop is a 
list of design requirements that establish the boundary conditions for further design and 
assessment activities. Figure 6-4 shows the list of requirements for designing the example 
holder, in which eight requirements are defined based on the workshop held with the researchers 
who performed the scratch experiment and applied the holder. During the experiment, the 
scratch process will exert a vertical force on the indenter. Since the indenter will be fixed on 
the holder, a vertical force of up to 300 N can be applied to the holder. Therefore, the main 
requirement for the design case is that the designed holder must withstand a load of 300 N.  

 
Figure 6-4: List of requirements for the design example of the holder 

Function analysis 

After the design requirements are collected, the functions of the product should be defined. For 
this step, a FAST in which the functions of a product are described according to their logical 
relationships is applied [Mukh18]. Figure 6-5 shows the FAST diagram of the holder used as 
the design example.  
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In the second step of a FAST approach, the functions should be described from left to right 
following a HOW principle, which involves considering the following question: How is the 
function achieved? For example, to enable the function Create a scratch path, the indenter with 
an abrasive tool should scratch the glass pane. Therefore, the function Indenter scratches the 
glass pane is defined on the right side of the function Create a scratch path, as depicted in 
Figure 6-5. Subsequently, to enable the function Indenter scratches the glass pane, the indenter 
should first be fixed on the holder at an appropriate angle. Therefore, the functions Adjustment 
of the position of the indenter and Fix of the indenter on the holder are described to the right 
side of the Indenter scratches the glass pane function. Moreover, since the functions Adjustment 
of the position of the indenter and Fix of the indenter on the holder should be performed 
simultaneously, their description follows a WHEN principle, which involves asking the 
following question: When performing this function, what other functions should be executed 
simultaneously? Subsequently, before the position of the indenter is adjusted, the indenter has 
to be inserted into the holder and the holder has to be fixed on the bracket. Therefore, the 
functions Insert the indenter into the holder and Fix the holder on the bracket are further 
described. Thereafter, the lower order function Setup of the bracket is performed and is directly 
connected to the Fix the holder on the bracket function.  

The final step of the FAST approach is to review the modeled functions from right to left 
following a WHY principle, which involves considering the following question: Why is this 
function necessary? For example, for checking the functions of the holder, the logical reasoning 
may be as follows: The bracket has to be set up, as the holder will be fixed on it. Fixing the 
holder on the bracket is necessary, as, otherwise, the indenter cannot be inserted into the 
holder. The indenter needs to be inserted into the holder because the indenter should be fixed 
on the holder at an appropriate angle. The indenter has to be adjusted and fixed because the 
indenter will scratch the glass pane to create a scratch path for a scratch experiment. 

In practice, FAST can also be implemented by first adopting the WHY principle and then the 
HOW principle to check functions or by applying the HOW and WHY principles simultaneously. 
The FAST approach is a convenient and flexible tool for function analysis, and the most 
important rule for its implementation is that the functions described in a FAST approach should 
be causally linked to each other. 

Definition of functional surfaces 

The final task in the analysis of the use condition and product is the definition of the functional 
surfaces of a product. A functional surface refers to a surface created by a manufacturing 
process; the term functional surface refers to the outer boundary of an object that isolates that 
object from the surrounding environment [Lona02]. While functions are generally described 
and not specific to a product, functional surfaces describe the physical attributes associated with 
specific products. Therefore, the definition of functional surfaces implies the transformation of 
conceptual and neutral functions into the specific physical geometrical features of a product.  

In the design example of the holder, the functional surfaces are the holes shown in Figure 6-2. 
The collaboration between the functional surfaces and the functions of the holder is depicted in 
Figure 6-6, in which holes 1 and 2 are intended to be used to connect the holder with the bracket 
by inserting two screws and the indenter can be inserted into either hole 6, 7, or 8 in order to 
vary the pressure angle as required by the experiment. Finally, by adjusting the position of the 
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indenter, a screw can be inserted into thread hole 3, 4, or 5 in order to attach the indenter to the 
holder. Described in the top half of Figure 6-2 are the five functions of the holder that have 
been defined based on the FAST approach, while the functional surfaces and the physical body 
of the holder are described in the bottom half of Figure 6-2. Moreover, it should be noted that 
the design example of the holder represents a case in which an existing product is redesigned, 
in which the functional surfaces can be directly described based on the existing product. In 
practice, there may be cases that involve designing new products; in such cases, the functional 
surfaces should also be determined according to their defined functions. 

 
Figure 6-6: Relationship between the functions and the functional surfaces of the holder 

6.2.2 Analysis of conventional production scenario 
While the analysis of the use condition implies an investigation of the initial situation from the 
user’s perspective, the analysis of conventional production scenario involves the clarification 
of the initial situation from the producer’s side. The latter analysis encompasses two subtasks: 
identification of conventional manufacturing steps and description of production task. 

Identification of conventional manufacturing steps 

In conventional methods, the manufacturing steps of a product are defined according to its 
geometrical and functional properties [Kloc07]. In terms of the design case, the manufacturing 
process chain is defined according to the contours and functional surfaces of the holder. Figure 
6-7 shows the process chain, in which four manufacturing steps are described. In a conventional 
scenario, a rectangular raw material is used to produce the holder. The first step of the process 
chain is to create the outer contour of the holder by means of a milling process. Thereafter, the 
second and third steps involve drilling holes 1 and 2, each of which has a diameter of 7 mm, 
and holes 6, 7, and 8, each of which has a diameter of 4 mm. In the final thread drilling step for 
holes 3, 4, and 5, three through holes with a diameter of 3.3 mm are first made and then the M4 
thread holes are created.  
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been defined based on the FAST approach, while the functional surfaces and the physical body 
of the holder are described in the bottom half of Figure 6-2. Moreover, it should be noted that 
the design example of the holder represents a case in which an existing product is redesigned, 
in which the functional surfaces can be directly described based on the existing product. In 
practice, there may be cases that involve designing new products; in such cases, the functional 
surfaces should also be determined according to their defined functions. 

 
Figure 6-6: Relationship between the functions and the functional surfaces of the holder 
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and holes 6, 7, and 8, each of which has a diameter of 4 mm. In the final thread drilling step for 
holes 3, 4, and 5, three through holes with a diameter of 3.3 mm are first made and then the M4 
thread holes are created.  
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Description of production task 

After a product is analyzed and the manufacturing steps are identified, the production task 
associated with that product can be described, in which four dimensions of information should 
be considered (see Figure 6-8 [Ever96]). The first dimension is called order details; it includes 
information such as the product name, customer, series size, and other important information 
related to a customer order. The second dimension, geometry, comprises information 
concerning the geometrical properties of a product (e.g., size, volume, and number of surfaces, 
holes, or other form elements). The third dimension is manufacturing technology, which 
summarizes the information related to the manufacturing process chain, such as the number of 
manufacturing steps, the material used, and any requirements in terms of geometrical accuracy 
or surface finishing. The final dimension is called time information, which includes information 
concerning time parameters for manufacturing, logistics, tool preparation, and other operations 
related to manufacturing steps. 

In terms of the design case, most information was already collected during the previous step. 
For example, the order information was specified during the analysis of the use scenario, while 
the geometry of the holder was analyzed during the definition of the functional surfaces.  

 
Figure 6-8: Description of the production task of the holder 
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should not exceed the maximum build size of an AM system. Therefore, sizes of machines 
available on the market for AM processes should be considered. In addition, the build rate 
also has a significant impact on processing time and product quality. The build times of AM 
processes can vary from hours to days depending on the process parameters and 
configuration of AM systems. Therefore, a higher build rate implies a rapid completion of 
build tasks and higher productivity. 

q Processable material: In general, the more material an AM process can process, the greater 
potential it has, since it can perform more diverse production tasks. Particularly when a 
specific material is explicitly required for a case, determining whether an AM process is 
capable of processing that material is a decisive factor in determining whether that AM 
process should be considered. 

q Technical capability: The most important quality features of AM products are surface 
quality, geometrical accuracy, porosity, and the mechanical properties of the produced 
components [Schm17]. Therefore, in the pre-selection process, one should consider the 
technical capabilities of an AM process, such as the capability of achieving the minimum 
desired wall thickness, the material density and surface finish that can be achieved, the 
strength of the manufactured part, and dimensional accuracy. 

q Support by manufacturer: Since design for AM requires AM-related knowledge, users 
may need support from AM technology providers while designing their products. Means of 
providing such support include, but are not limited to, offering technical documentation, 
making manufacturer or service partner hotlines available, and providing consulting 
services and training. Support is important to take into consideration during the pre-
selection stage, as a wider range of support options implies that an AM process has a higher 
potential. 

q Investment cost: The AM equipment and materials available on the market for different 
AM processes are priced at different levels. The additional costs associated with providing 
staff training and reorganizing production networks can make investing in AM process 
extremely costly. In the pre-selection stage, investment costs can be a decisive factor, 
especially for small and medium-sized companies, which tend to be sensitive to cost factors. 

q Data availability: The availability of data regarding AM process and system is an important 
factor in the pre-selection stage, as large amounts of data are required to calculate EnPIs. In 
addition to technical and cost data, the availability of energy-related data such as power 
consumption should be considered. In general, the more data that can be found for an AM 
process, the greater the potential that AM process may have. 

Based on the evaluation of the six criteria, it can be decided whether to include or exclude an 
AM process during the design stage. For the design example, SLM is pre-selected as the AM 
process to be studied in further design and assessment activities, as it is one of the most widely 
applied AM processes for metal parts. Nevertheless, the evaluation in this step can be further 
detailed to the machine level, as is described in the next subsection. 

Specification of AM systems 

It is necessary to identify one or more AM systems that have potential in terms of the pre-
selected AM process(es) required in a design case. For each AM system, a datasheet containing 
important data on that system is created; this datasheet will be used in the following technical 
and economic evaluations. In a datasheet, the collected data concerning an AM system can be 

82 An Eco-Design for AM Method 

 

should not exceed the maximum build size of an AM system. Therefore, sizes of machines 
available on the market for AM processes should be considered. In addition, the build rate 
also has a significant impact on processing time and product quality. The build times of AM 
processes can vary from hours to days depending on the process parameters and 
configuration of AM systems. Therefore, a higher build rate implies a rapid completion of 
build tasks and higher productivity. 

q Processable material: In general, the more material an AM process can process, the greater 
potential it has, since it can perform more diverse production tasks. Particularly when a 
specific material is explicitly required for a case, determining whether an AM process is 
capable of processing that material is a decisive factor in determining whether that AM 
process should be considered. 

q Technical capability: The most important quality features of AM products are surface 
quality, geometrical accuracy, porosity, and the mechanical properties of the produced 
components [Schm17]. Therefore, in the pre-selection process, one should consider the 
technical capabilities of an AM process, such as the capability of achieving the minimum 
desired wall thickness, the material density and surface finish that can be achieved, the 
strength of the manufactured part, and dimensional accuracy. 

q Support by manufacturer: Since design for AM requires AM-related knowledge, users 
may need support from AM technology providers while designing their products. Means of 
providing such support include, but are not limited to, offering technical documentation, 
making manufacturer or service partner hotlines available, and providing consulting 
services and training. Support is important to take into consideration during the pre-
selection stage, as a wider range of support options implies that an AM process has a higher 
potential. 

q Investment cost: The AM equipment and materials available on the market for different 
AM processes are priced at different levels. The additional costs associated with providing 
staff training and reorganizing production networks can make investing in AM process 
extremely costly. In the pre-selection stage, investment costs can be a decisive factor, 
especially for small and medium-sized companies, which tend to be sensitive to cost factors. 

q Data availability: The availability of data regarding AM process and system is an important 
factor in the pre-selection stage, as large amounts of data are required to calculate EnPIs. In 
addition to technical and cost data, the availability of energy-related data such as power 
consumption should be considered. In general, the more data that can be found for an AM 
process, the greater the potential that AM process may have. 

Based on the evaluation of the six criteria, it can be decided whether to include or exclude an 
AM process during the design stage. For the design example, SLM is pre-selected as the AM 
process to be studied in further design and assessment activities, as it is one of the most widely 
applied AM processes for metal parts. Nevertheless, the evaluation in this step can be further 
detailed to the machine level, as is described in the next subsection. 

Specification of AM systems 

It is necessary to identify one or more AM systems that have potential in terms of the pre-
selected AM process(es) required in a design case. For each AM system, a datasheet containing 
important data on that system is created; this datasheet will be used in the following technical 
and economic evaluations. In a datasheet, the collected data concerning an AM system can be 

82 An Eco-Design for AM Method 

 

should not exceed the maximum build size of an AM system. Therefore, sizes of machines 
available on the market for AM processes should be considered. In addition, the build rate 
also has a significant impact on processing time and product quality. The build times of AM 
processes can vary from hours to days depending on the process parameters and 
configuration of AM systems. Therefore, a higher build rate implies a rapid completion of 
build tasks and higher productivity. 

q Processable material: In general, the more material an AM process can process, the greater 
potential it has, since it can perform more diverse production tasks. Particularly when a 
specific material is explicitly required for a case, determining whether an AM process is 
capable of processing that material is a decisive factor in determining whether that AM 
process should be considered. 

q Technical capability: The most important quality features of AM products are surface 
quality, geometrical accuracy, porosity, and the mechanical properties of the produced 
components [Schm17]. Therefore, in the pre-selection process, one should consider the 
technical capabilities of an AM process, such as the capability of achieving the minimum 
desired wall thickness, the material density and surface finish that can be achieved, the 
strength of the manufactured part, and dimensional accuracy. 

q Support by manufacturer: Since design for AM requires AM-related knowledge, users 
may need support from AM technology providers while designing their products. Means of 
providing such support include, but are not limited to, offering technical documentation, 
making manufacturer or service partner hotlines available, and providing consulting 
services and training. Support is important to take into consideration during the pre-
selection stage, as a wider range of support options implies that an AM process has a higher 
potential. 

q Investment cost: The AM equipment and materials available on the market for different 
AM processes are priced at different levels. The additional costs associated with providing 
staff training and reorganizing production networks can make investing in AM process 
extremely costly. In the pre-selection stage, investment costs can be a decisive factor, 
especially for small and medium-sized companies, which tend to be sensitive to cost factors. 

q Data availability: The availability of data regarding AM process and system is an important 
factor in the pre-selection stage, as large amounts of data are required to calculate EnPIs. In 
addition to technical and cost data, the availability of energy-related data such as power 
consumption should be considered. In general, the more data that can be found for an AM 
process, the greater the potential that AM process may have. 

Based on the evaluation of the six criteria, it can be decided whether to include or exclude an 
AM process during the design stage. For the design example, SLM is pre-selected as the AM 
process to be studied in further design and assessment activities, as it is one of the most widely 
applied AM processes for metal parts. Nevertheless, the evaluation in this step can be further 
detailed to the machine level, as is described in the next subsection. 

Specification of AM systems 

It is necessary to identify one or more AM systems that have potential in terms of the pre-
selected AM process(es) required in a design case. For each AM system, a datasheet containing 
important data on that system is created; this datasheet will be used in the following technical 
and economic evaluations. In a datasheet, the collected data concerning an AM system can be 

82 An Eco-Design for AM Method 

 

should not exceed the maximum build size of an AM system. Therefore, sizes of machines 
available on the market for AM processes should be considered. In addition, the build rate 
also has a significant impact on processing time and product quality. The build times of AM 
processes can vary from hours to days depending on the process parameters and 
configuration of AM systems. Therefore, a higher build rate implies a rapid completion of 
build tasks and higher productivity. 

q Processable material: In general, the more material an AM process can process, the greater 
potential it has, since it can perform more diverse production tasks. Particularly when a 
specific material is explicitly required for a case, determining whether an AM process is 
capable of processing that material is a decisive factor in determining whether that AM 
process should be considered. 

q Technical capability: The most important quality features of AM products are surface 
quality, geometrical accuracy, porosity, and the mechanical properties of the produced 
components [Schm17]. Therefore, in the pre-selection process, one should consider the 
technical capabilities of an AM process, such as the capability of achieving the minimum 
desired wall thickness, the material density and surface finish that can be achieved, the 
strength of the manufactured part, and dimensional accuracy. 

q Support by manufacturer: Since design for AM requires AM-related knowledge, users 
may need support from AM technology providers while designing their products. Means of 
providing such support include, but are not limited to, offering technical documentation, 
making manufacturer or service partner hotlines available, and providing consulting 
services and training. Support is important to take into consideration during the pre-
selection stage, as a wider range of support options implies that an AM process has a higher 
potential. 

q Investment cost: The AM equipment and materials available on the market for different 
AM processes are priced at different levels. The additional costs associated with providing 
staff training and reorganizing production networks can make investing in AM process 
extremely costly. In the pre-selection stage, investment costs can be a decisive factor, 
especially for small and medium-sized companies, which tend to be sensitive to cost factors. 

q Data availability: The availability of data regarding AM process and system is an important 
factor in the pre-selection stage, as large amounts of data are required to calculate EnPIs. In 
addition to technical and cost data, the availability of energy-related data such as power 
consumption should be considered. In general, the more data that can be found for an AM 
process, the greater the potential that AM process may have. 

Based on the evaluation of the six criteria, it can be decided whether to include or exclude an 
AM process during the design stage. For the design example, SLM is pre-selected as the AM 
process to be studied in further design and assessment activities, as it is one of the most widely 
applied AM processes for metal parts. Nevertheless, the evaluation in this step can be further 
detailed to the machine level, as is described in the next subsection. 

Specification of AM systems 

It is necessary to identify one or more AM systems that have potential in terms of the pre-
selected AM process(es) required in a design case. For each AM system, a datasheet containing 
important data on that system is created; this datasheet will be used in the following technical 
and economic evaluations. In a datasheet, the collected data concerning an AM system can be 



An Eco-Design for AM Method 83 

 

summarized in three categories: general data, which refer to the information provided by the 
manufacturer; technical data, which refer to the information concerning the manufacturing 
capabilities of AM systems; and cost data, which refer to information related to the time and 
cost of AM systems. For the specification as well as the data collection, the relevant data sources 
include, but are not limited to, scientific articles, reports, feedback from commercial consulting, 
and product sheets provided by manufacturers.  

Figure 6-9 shows the datasheet of the Concept Laser Mlab SLM machine, in which the data are 
collected from Wohlers Report 2019 and the product documents provided by the manufacturer 
[Conc19a, Wohl19].  

 
Figure 6-9: Datasheet of the Concept Laser Mlab SLM system 

Evaluation of technical and economic potentials 

In the final step of the potential analysis, the selected AM systems are evaluated with regard to 
their technical and economic dimensions. Compared to the evaluation in the pre-selection, in 
which AM processes are generally and roughly assessed, the technical and economic 
evaluations should be performed for specific products. From a technical perspective, when 
deciding to include an AM system in a design case, it should have at least one of the following 
benefits when compared to conventional manufacturing: 

q Reduction of manufacturing steps: For a given AM system, it is necessary to determine 
whether the number of manufacturing steps for a specific product in the AM scenario will 
be reduced in comparison with the conventional production scenario. To assess this 

Data sheet of AM systems

GE Additive Concept LaserSystem manufacturer
Machine type Concept Laser Mlab Cusing
Process category Powder bed fusion (Selective laser melting)

Achieved density after build

4.5 to 7 µm

Technical data

Cost data

Processible materials

± 0.05

Purchase price Basic price 163,000 €
Cost factors Machine cost, material cost, electricity cost, labor cost, cost for protection gas
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criterion, the information in the datasheet concerning the pre- and post-operation should be 
considered. 

q Enhanced product quality: Compared to the conventional production scenario, an AM 
system should provide superior or at least equivalent product quality. For assessing this 
criterion, technical data such as the achieved density, surface finish, and accuracy from 
CAD to part in the datasheet should be considered with regard to the production 
requirements of a specific product. 

q Manufacturability of complex geometries: An important advantage of AM over 
conventional manufacturing is the feasibility of creating complex geometries such as 
lattices and hollow bodies. Therefore, a selected AM system should be capable of 
processing the complex geometrical features of a specific product. For assessing this 
criterion, technical data concerning geometrical limitations, layer thickness, and accuracy 
from CAD to part are considered with regard to the geometrical features of a specific 
product. 

q Increased productivity and flexibility: In general, modern production systems tend to 
deal with production tasks characterized by a higher level of quantity and variety. 
Therefore, a selected AM system should enable the improvement of the productivity and 
flexibility of production systems. For assessing this criterion, the build volume and build 
rate in the datasheet should be considered with regard to the required product quantity, 
delivery time, and part size of a specific product. 

Based on the above four evaluation criteria, there are two ways of determining whether an AM 
system should be included in the design scope. First, an AM system will be considered only if 
all four of these criteria are met, an approach that implies a more rigorous evaluation. Second, 
an AM system will be considered when any one of the four criteria is fulfilled, indicating a 
more lenient approach to evaluation. Considering that this dissertation aims to realize a broader 
application of AM, the lenient approach to evaluation is suggested.  

For the economic evaluation, cost and time estimations are recommended, as the build rate, 
purchasing price of the AM system, and cost factors are investigated in the datasheet. Figure 
6-10 shows the manufacturing cost and build time when using Concept Laser Mlab to produce 
the holder, in which 25%, 50%, and 75% reductions in the volume are assumed. The cost factors 
for the estimation are machine cost, material cost, protective gas (nitrogen) cost, labor cost, and 
electricity cost [Yi19]. 

 
Figure 6-10: Cost and time estimations for the AM scenario for the holder 
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It can be seen that the cost and build time are significantly reduced as a result of an increase of 
the build rate. Considering that the production of the holder is a one-off task, conventional 
manufacturing offers no significant benefit over AM. Since the cost and time are still within 
the acceptable range of the design case, it is concluded that the Concept Laser Mlab SLM 
system is economically appropriate for this design case and will be considered in further design 
and evaluation activities. 

6.2.4 Results of the situation analysis 
The results of the situation analysis comprise the list of design requirements, the FAST diagram 
from the function analysis, descriptions of the process chain and production task of a 
conventional production scenario, the datasheets for the selected AM systems, and the results 
of the technical and economic evaluations. The first phase aims to specify the initial situation 
of a design case and to confirm that the implementation of AM has technical or economic 
benefits over conventional manufacturing. The results of this phase serve as the information 
input to the design and assessment activities introduced in the following subsections. 

6.3 Phase 2: Topology optimization 
After the specification of the initial situation, the product should be designed for AM. This 
dissertation adopts topology optimization, in which FEA is performed and the volume of a 
component is reduced to generate new geometries. The Siemens NX 12 CAD/CAE software 
with the integrated Topology Optimization add-on is used for the topology optimization 
[Mila19]. The workflow of the topology optimization process comprises three tasks: definition 
of design space, optimization setup, and generation of new geometries (see Figure 6-11). 

 
Figure 6-11: Overview of the steps involved in topology optimization 
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Creation of CAD model 

For modeling a component in AM, there are two main approaches. The first is to draw a CAD 
model of the product by stretching, rotating, and performing Boolean operations on lines, 
surfaces, and volumes using CAD software such as CATIA or NX. The second is to reconstruct 
the CAD model by 3D scanning the actual object. The main advantage of 3D scanning is that 
it is easy to perform and builds models quickly, while its disadvantage is that the data collected 
during the scanning process are influenced by the real environment, and the resulting models 
may thus have deviations from the real geometries of products. In comparison, a model 
developed in CAD software is error-free because the geometric features of the CAD model are 
not based on a data collection process but are instead defined by designers. Base on this 
comparison, the design example of the holder applies the drawing method, in which the Siemens 
NX 12 software is used to create a CAD model of the holder based on its technical drawing, as 
shown in Figure 6-12. 

Selection of functional surfaces 

In this step, the functional surfaces identified during the situation analysis are selected in the 
CAD model. In the next steps, forces and constraints, such as fixing and sliding, are added to 
the functional surfaces. For the design example, the through holes and screw holes are selected 
as functional surfaces, as shown in Figure 6-12. 

Definition of excluded features 

The final step involves defining the features to be excluded during the topology optimization. 
Exclusion indicates that a geometrical feature that will not be changed during the volume 
reduction process. In the CAD model for the design example, as shown in the final step of 
Figure 6-12, the features highlighted in red are excluded during the optimization process. The 
excluded features are defined as shell volumes of the holes with a thickness of 2 mm. The 
volume of the holder is approximately 25.5 cm³, and the volume of the excluded features is 
approximately 2.5 cm³. These values mean that the remaining space of 23 cm³ is the design 
space in which the new geometries are generated. 

 
Figure 6-12: CAD model and design space 

6.3.2 Optimization setup 
After the design space is defined, the parameters should be set for the FEA and volume 
reduction. This process includes three steps: definition of mechanical loads and constraints, 
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In general, the definition of loads and constraints is based on the actual use scenario. For 
example, in the design example of the holder, two 7-mm diameter through holes (holes 1 and 
2) are used to secure the holder to the bracket, and a fixing constraint is therefore applied to 
them. During the scratch experiment, holes 6, 7, and 8 would be subjected to an axial force of 
up to 300 N. Based on the principle of taking the maximum value, a force of 300 N is applied 
to holes 6, 7, and 8. This value is chosen because, if the optimized component can withstand a 
force of 300 N, it will be able to withstand a force of less than 300 N. 

Allocation of material 

After the mechanical loads and constraints are applied, the material to be used for the 
component is defined. In the design example of the holder, 316L steel is defined according to 
the material data sheet provided by the machine’s manufacturer. In practice, the properties of a 
material being processed in a build process may differ from those of the standard material. 
Nevertheless, since the topology optimization aims to generate new product geometries, the 
deviation between theoretical and actual material performance can be neglected in this step. 

Setup of optimization objective 

In terms of the Siemens NX 12 CAD software, the optimization objective can be defined as one 
of three types: minimize strain energy subject to mass target, minimize volume subject to safety 
factor, and minimize natural frequency subject to mass target. In the design example, the 
optimization objective is defined as the minimization of strain energy subject to mass target, in 
which the mass target should be defined by the designer.  

To obtain a complete understanding of the geometry of the product at different defined mass 
targets, the design case of the holder takes different mass targets in seven different 
optimizations, as is explained in the next subsection. 

6.3.3 Generation of new geometries 
After the design space is defined and optimization parameters are configured, new product 
geometries can be generated through two steps: FEA and meshing and evaluation of stress and 
strain.  

FEA and meshing 

The FEA calculates the strain and stress of a component under a given mechanical boundary 
condition, in which the volumes with less strain and stress are removed, and the meshing creates 
a facet mesh that can be exported in the form of an .stl file, which is a standard CAD model 
format for AM. 

Figure 6-13 shows the FEA and meshing of the design case of the holder, in which eight FEAs 
and seven meshing are carried out. First, under the defined mechanical loads and constraints, 
the FEA is executed for the original component (denoted as 0. FEA in Figure 6-13). Thereafter, 
in the first optimization, as the optimization objective is defined as 90% of the original mass 
(10% mass reduction), the FEA and lightweighting are carried out to generate an optimum 
geometry aimed at minimization of the strain energy. The FEA image and the mesh of the first 
optimization in Figure 6-13 (denoted as 1. FEA and lightweighting and 1. New facet mesh, 
respectively) show the results of the optimum geometry. Thereafter, in the remaining second, 
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third, fourth, fifth, sixth, and seventh optimizations, the mass reduction is defined from 20% to 
70%, respectively. 

From the results presented in Figure 6-13, it can be seen that in the first optimization, only 
materials around the two M7 through holes are reduced, since, for the first optimization, a mass 
reduction of only 10% is desired. During the second optimization, the mass reduction is 
increased to 20%; thus, the material in the middle of the holder begins to be removed. From the 
third to fifth optimizations, the material at the bottom of the holder gradually decreases with 
the increase in the desired mass reduction. By the seventh optimization, the mass reduction is 
defined as 70%, which means that only 30% of the original mass should remain, resulting in 
the material at the top and bottom of the holder being removed. When comparing the results of 
the seventh optimization with the original design space, it can be seen that the seventh facet 
mesh only contains the excluded features and the spreading-like struts that connect the excluded 
features, implying that 70% may be the maximum value of the possible mass reduction for the 
design case. Moreover, it should be noted that during the optimization process, the achieved 
mass may vary from the defined mass target. Figure 6-14 shows the target and achieved values. 

 
Figure 6-13: FEA and meshing of the holder 
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Evaluation of stress and strain 

To evaluate the results of the optimization process, the maximum stress (von Mises stress, 
denoted as σmax) and distortion (denoted as εmax) are analyzed. Figure 6-14 summarizes the 
values of σmax and εmax for the design case of the holder and depicts their curves against the 
lightweighting factor, which is denoted as α and defines the ratio between the reduced mass 
(Δm) to the original mass (m0) of a component, expressed by the following equation: 

In Figure 6-14, it can be seen that the achieved mass value is always slightly lower than the 
defined mass target, which means that greater quantities of materials are removed during the 
optimization. In assessing the curves of σmax and εmax, two stages can be observed: In the first 
stage, the values of σmax and εmax increase slowly in a linear fashion until the value of α is 
approximately 0.5. Thereafter, in the second stage, the growth of σmax and εmax shows 
exponential behavior. In general, higher values of σmax and εmax describe a stronger response of 
the material to mechanical loads and imply a higher risk of material failure; therefore, a 50% 
reduction in mass may be a critical point for the lightweighting of the holder, after which the 
risk of material failure will increase. Nevertheless, considering that the yield strength of 316L 
steel is approximately 385 MPa, the stresses in all FEAs are still within the permitted range, 
which means that all the optimized geometries qualify for final use. 

 
Figure 6-14: Stress and distortion values of the FEAs 
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Figure 6-15: Overview of the steps for AM workstation design 

6.4.1 Definition of peripheral units 
As noted above, an AM workstation consists of an AM machine and peripheral units. Since the 
AM machine has already been selected and evaluated in the situation analysis, the 
corresponding peripheral units should be identified in this subtask. This is done in two steps: 
First, it is necessary to define the operations that will be carried out by the AM workstation. 
Second, it is necessary to assign one or more peripheral units to the execution of each operation. 
Figure 6-16 shows the workflow for defining the peripheral units for the AM workstation for 
the design example. According to the datasheet created in the situation analysis, the operations 
related to the Concept Laser Mlab include CAD model preparation, preparation of .stl files, 
powder screening and loading, powder recycling, removal of support structure, and post-
processing. Since the data preparation and post-processing can be executed in a development 
department and a mechanical processing workshop, the remaining operations are identified as 
those that are carried out in the AM workstation. In the second step, the peripheral units are 
allocated to the operations. To execute powder screening and loading, a screen device is 
required to filter out powder with larger diameter. To enable the build process, the Concept 
Laser Mlab machine and a source of nitrogen gas are needed. To recycle the powder, a vacuum 
cleaner and a handling station are required. To remove the support structure from the substrate, 
a bench vise is needed. In addition, the screen device and the bench vise cannot be placed on 
the ground; therefore, two desks are allocated to them. 
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Finally, it is necessary to determine whether each operation has corresponding peripheral units. 
Once all the peripheral units are assigned, the following step is to design their layout, which is 
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described in the next subsection. Otherwise, the selection and allocation of the peripheral units 
should be repeated. 

6.4.2 Design of system layout 
At the workstation/machine-level, the layout of an AM workstation describes the arrangement 
of the included AM machine and peripheral units located in a manufacturing cell. Therefore, 
the process of laying out the design of the AM comprises the following two steps: definition of 
the location of AM workstation and the layout planning for AM workstation. 

Definition of the location of AM workstation 

Before determining the layout of an AM workstation, it is necessary to determine the location 
and size of the workstation that is needed. In the design example of the holder, according to the 
datasheet provided by the machine manufacturer, the Concept Laser Mlab SLM system 
occupies an area of 0.86 m². The areas required for the handling station, vacuum cleaner, screen 
device, N2 gas tank, and bench vise are 0.48 m², 0.19 m², 0.16 m², 0.04 m², and 0.12 m², 
respectively. Therefore, by adding the values of the areas for the AM machine and peripheral 
units, the minimum area required for the workstation is determined to be 1.85 m2. However, the 
bench vise and screen device are placed on desks with the same size of 2 m², as shown in Figure 
6-17. Therefore, the minimum area required for the workstation is 5.57 m², which is the sum of 
the areas required for the AM machine (0.86 m²), handling station (0.48 m²), vacuum cleaner 
(0.19 m²), N2 gas tank (0.04 m²), and two desks (4 m²). The required minimum area does not, 
however, include the area required for human activities. Therefore, for the design case, a room 
with a total area of 17.16 m2

 is allocated to the workstation for the AM system, as depicted in 
Figure 6-17. 

Layout planning for AM workstation 

After the location and area of an AM workstation are defined, the AM machine and the 
peripheral units are arranged in a specific layout. In the design example of the holder, the 
Siemens Plant Simulation software is used for the layout design; Figure 6-17 shows the result. 

Since the implementation of SLM requires a number of human operations before and after the 
build process, the principle for the system layout is that the SLM machine and peripheral units 
are allocated near the wall of the workstation to allow workers to move in the middle of the 
workstation. Figure 6-17 shows three operations: powder screening, powder recycling, and the 
removal of the support structure. In the powder screening operation, the powders are filtered 
through a vibrating screening net with a specific diameter. After the build process, the handling 
station is connected to the Concept Laser Mlab to remove the build platform. During powder 
recycling, a vacuum cleaner is used to recycle the powders. Following the powder recycling, 
the part is removed from the platform, and the support structure is then removed from the part 
using the bench vise. 

An Eco-Design for AM Method 91 

 

described in the next subsection. Otherwise, the selection and allocation of the peripheral units 
should be repeated. 

6.4.2 Design of system layout 
At the workstation/machine-level, the layout of an AM workstation describes the arrangement 
of the included AM machine and peripheral units located in a manufacturing cell. Therefore, 
the process of laying out the design of the AM comprises the following two steps: definition of 
the location of AM workstation and the layout planning for AM workstation. 

Definition of the location of AM workstation 

Before determining the layout of an AM workstation, it is necessary to determine the location 
and size of the workstation that is needed. In the design example of the holder, according to the 
datasheet provided by the machine manufacturer, the Concept Laser Mlab SLM system 
occupies an area of 0.86 m². The areas required for the handling station, vacuum cleaner, screen 
device, N2 gas tank, and bench vise are 0.48 m², 0.19 m², 0.16 m², 0.04 m², and 0.12 m², 
respectively. Therefore, by adding the values of the areas for the AM machine and peripheral 
units, the minimum area required for the workstation is determined to be 1.85 m2. However, the 
bench vise and screen device are placed on desks with the same size of 2 m², as shown in Figure 
6-17. Therefore, the minimum area required for the workstation is 5.57 m², which is the sum of 
the areas required for the AM machine (0.86 m²), handling station (0.48 m²), vacuum cleaner 
(0.19 m²), N2 gas tank (0.04 m²), and two desks (4 m²). The required minimum area does not, 
however, include the area required for human activities. Therefore, for the design case, a room 
with a total area of 17.16 m2

 is allocated to the workstation for the AM system, as depicted in 
Figure 6-17. 

Layout planning for AM workstation 

After the location and area of an AM workstation are defined, the AM machine and the 
peripheral units are arranged in a specific layout. In the design example of the holder, the 
Siemens Plant Simulation software is used for the layout design; Figure 6-17 shows the result. 

Since the implementation of SLM requires a number of human operations before and after the 
build process, the principle for the system layout is that the SLM machine and peripheral units 
are allocated near the wall of the workstation to allow workers to move in the middle of the 
workstation. Figure 6-17 shows three operations: powder screening, powder recycling, and the 
removal of the support structure. In the powder screening operation, the powders are filtered 
through a vibrating screening net with a specific diameter. After the build process, the handling 
station is connected to the Concept Laser Mlab to remove the build platform. During powder 
recycling, a vacuum cleaner is used to recycle the powders. Following the powder recycling, 
the part is removed from the platform, and the support structure is then removed from the part 
using the bench vise. 

An Eco-Design for AM Method 91 

 

described in the next subsection. Otherwise, the selection and allocation of the peripheral units 
should be repeated. 

6.4.2 Design of system layout 
At the workstation/machine-level, the layout of an AM workstation describes the arrangement 
of the included AM machine and peripheral units located in a manufacturing cell. Therefore, 
the process of laying out the design of the AM comprises the following two steps: definition of 
the location of AM workstation and the layout planning for AM workstation. 

Definition of the location of AM workstation 

Before determining the layout of an AM workstation, it is necessary to determine the location 
and size of the workstation that is needed. In the design example of the holder, according to the 
datasheet provided by the machine manufacturer, the Concept Laser Mlab SLM system 
occupies an area of 0.86 m². The areas required for the handling station, vacuum cleaner, screen 
device, N2 gas tank, and bench vise are 0.48 m², 0.19 m², 0.16 m², 0.04 m², and 0.12 m², 
respectively. Therefore, by adding the values of the areas for the AM machine and peripheral 
units, the minimum area required for the workstation is determined to be 1.85 m2. However, the 
bench vise and screen device are placed on desks with the same size of 2 m², as shown in Figure 
6-17. Therefore, the minimum area required for the workstation is 5.57 m², which is the sum of 
the areas required for the AM machine (0.86 m²), handling station (0.48 m²), vacuum cleaner 
(0.19 m²), N2 gas tank (0.04 m²), and two desks (4 m²). The required minimum area does not, 
however, include the area required for human activities. Therefore, for the design case, a room 
with a total area of 17.16 m2

 is allocated to the workstation for the AM system, as depicted in 
Figure 6-17. 

Layout planning for AM workstation 

After the location and area of an AM workstation are defined, the AM machine and the 
peripheral units are arranged in a specific layout. In the design example of the holder, the 
Siemens Plant Simulation software is used for the layout design; Figure 6-17 shows the result. 

Since the implementation of SLM requires a number of human operations before and after the 
build process, the principle for the system layout is that the SLM machine and peripheral units 
are allocated near the wall of the workstation to allow workers to move in the middle of the 
workstation. Figure 6-17 shows three operations: powder screening, powder recycling, and the 
removal of the support structure. In the powder screening operation, the powders are filtered 
through a vibrating screening net with a specific diameter. After the build process, the handling 
station is connected to the Concept Laser Mlab to remove the build platform. During powder 
recycling, a vacuum cleaner is used to recycle the powders. Following the powder recycling, 
the part is removed from the platform, and the support structure is then removed from the part 
using the bench vise. 

An Eco-Design for AM Method 91 

 

described in the next subsection. Otherwise, the selection and allocation of the peripheral units 
should be repeated. 

6.4.2 Design of system layout 
At the workstation/machine-level, the layout of an AM workstation describes the arrangement 
of the included AM machine and peripheral units located in a manufacturing cell. Therefore, 
the process of laying out the design of the AM comprises the following two steps: definition of 
the location of AM workstation and the layout planning for AM workstation. 

Definition of the location of AM workstation 

Before determining the layout of an AM workstation, it is necessary to determine the location 
and size of the workstation that is needed. In the design example of the holder, according to the 
datasheet provided by the machine manufacturer, the Concept Laser Mlab SLM system 
occupies an area of 0.86 m². The areas required for the handling station, vacuum cleaner, screen 
device, N2 gas tank, and bench vise are 0.48 m², 0.19 m², 0.16 m², 0.04 m², and 0.12 m², 
respectively. Therefore, by adding the values of the areas for the AM machine and peripheral 
units, the minimum area required for the workstation is determined to be 1.85 m2. However, the 
bench vise and screen device are placed on desks with the same size of 2 m², as shown in Figure 
6-17. Therefore, the minimum area required for the workstation is 5.57 m², which is the sum of 
the areas required for the AM machine (0.86 m²), handling station (0.48 m²), vacuum cleaner 
(0.19 m²), N2 gas tank (0.04 m²), and two desks (4 m²). The required minimum area does not, 
however, include the area required for human activities. Therefore, for the design case, a room 
with a total area of 17.16 m2

 is allocated to the workstation for the AM system, as depicted in 
Figure 6-17. 

Layout planning for AM workstation 

After the location and area of an AM workstation are defined, the AM machine and the 
peripheral units are arranged in a specific layout. In the design example of the holder, the 
Siemens Plant Simulation software is used for the layout design; Figure 6-17 shows the result. 

Since the implementation of SLM requires a number of human operations before and after the 
build process, the principle for the system layout is that the SLM machine and peripheral units 
are allocated near the wall of the workstation to allow workers to move in the middle of the 
workstation. Figure 6-17 shows three operations: powder screening, powder recycling, and the 
removal of the support structure. In the powder screening operation, the powders are filtered 
through a vibrating screening net with a specific diameter. After the build process, the handling 
station is connected to the Concept Laser Mlab to remove the build platform. During powder 
recycling, a vacuum cleaner is used to recycle the powders. Following the powder recycling, 
the part is removed from the platform, and the support structure is then removed from the part 
using the bench vise. 



92 An Eco-Design for AM Method 

 

 
Figure 6-17: Defined AM machines and peripheral units 

6.4.3 Results of the AM workstation design 
The results of this phase include the defined AM workstation, which includes the AM machine, 
the peripheral units, and the location of, as well as the area required for, the AM workstation. 
Since the AM workstation can be designed in different solutions, in which different AM 
machines or peripheral units may be used, leading to different levels of energy performance, 
varying the workstation design can also be a means of proposing different AM design solutions. 
In line with the results of the topology optimization, the results of the workstation design serve 
as the input for the next phases, which are explained in the following subsections. 

6.5 Phase 4: Build process design 
Since the product and AM workstation have been designed, the fourth phase aims to define the 
build process, in which the process parameter set is first defined and the process performance 
is evaluated using a thermal-structural simulation. Thereafter, according to the desired 
functionality of the functional surface, any necessary post-processing required to improve the 
material properties, geometrical accuracy, or surface quality of the produced components is 
identified. Figure 6-18 shows the workflow of this phase, which includes two subtasks: 
definition of process parameter set and definition of post-processing steps. 
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6.5.1 Definition of process parameter set 
The first subtask of this phase is the definition of the process parameter set, in which the 
following three steps are performed: definition of build direction and support structure, 
definition of layer thickness and scan parameters, and thermal-structural simulation of build 
process. 

Definition of build direction and support structure 

Before defining other process parameters, the build direction of a part is first defined, as the 
direction has a significant impact on the final material property, process performance, and build 
time. In general, the definition of build direction in SLM follows the 45° rule, which states that 
if the angle between a surface and a platform is less than 45°, this surface is called a down 
surface; it is necessary to add a support structure to such a surface to prevent it from 
overhanging and collapsing. In addition, the support structure also enables heat dissipation 
during the fusion of layers to reduce residual stresses in a final product. 

Figure 6-19 shows the seven different ways of placing the holder, in which the angle between 
the bottom surface of the holder and the platform increases from 0° to 90° (i.e., from a 
"standing" to a "lying down" build-up position). Due to the different positioning angles, 
different support structures are required. For example, before the angle is increased to 45°, 
supports are added to the circular surfaces of the two cylinders on both sides. After the angle is 
increased to above 45°, the supports are no longer attached to the circular surfaces but instead 
to the toroidal surfaces. In general, the volume of the support structure is not as large or as small 
as it should be. An optimal support structure would be one that allows minimal deformation 
due to the melting and cooling of layers during the build process. The deformation of a 
workpiece can only be determined by means of a thermal-structural simulation, as is described 
in the following paragraphs. 

 
Figure 6-19: Definition of build orientation and support structure 

Definition of layer thickness and scan parameters 

In general, the parameter settings of a build process (e.g., layer thickness, laser speed, hatching 
space, and laser power) have a significant impact on the material properties of the final product; 
therefore, manufacturers of AM machines usually provide recommended settings for different 
materials to ensure product quality. In cases in which users do not have access to the 
recommended parameter settings, it is suggested that volumetric energy density (VED) be used 
to evaluate process parameter combinations. Existing research notes that the material density 
of a part produced by SLM has a significant correlation with VED, which is related to the laser 
power (P), laser speed (v), layer thickness (h), and hatching distance (H). This correlation is 
expressed as follows [Meie08]: 
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 𝑉𝑉𝑉𝑉𝑉𝑉 =
𝑃𝑃
𝑣𝑣ℎ𝐻𝐻

 Equation 6-2 

Specific VED value ranges indicate optimum performance for different materials. For example, 
for 316L stainless steel, a VED value between 40 and 90 J/mm³ enables the highest density and 
lowest surface roughness of a component produced by SLM [Meie08]. However, the material 
properties related to SLM are a very comprehensive research topic. In addition to VED, the 
product quality of an SLM process is also related to the properties of the powder used for a 
build, such as particle size, composition, and whether the powder is virgin or recycled. Figure 
6-20 shows the recommended process parameter settings identified in the literature for the use 
of 316L materials in SLM [Yasa10, Grec20, Krut12, Wei11, Krut10, Yadr10, Spie09, Yasa09]. 

 
Figure 6-20: Recommended process parameters for SLM with 316L powders 

For the design example of the holder, two process strategies are defined. The first is a fast-
scanning strategy, in which P, v, h, and H are respectively defined as 90 W, 300 mm/s,  
0.03 mm, and 0.15 mm. The second strategy is a slow strategy, in which P, v, h, and H are 
respectively defined as 50 W, 250 mm/s, 0.02 mm, and 0.15 mm. The material used for the 
build is defined as 316L stainless steel powder with the same VED value of 66.67 J/mm³ for 
both parameter settings. Therefore, according to the hypothesis that the same VED leads to the 
same material property, the material performance for both parameter settings should be 
equivalent.  

Thermal-structural simulation of build process 

After the process parameters are defined, a thermal-structural simulation is required to evaluate 
the deformation of material used due to the melting and cooling of layers. Figure 6-21 shows 
the simulation results, namely the maximum displacement due to thermal stress, for holders that 
have been lightweighted by 50%, 60%, and 70%, in which the build orientation angle is 
increased from 0° to 90°. 
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the minimum displacement is always observed at an angle of 15°, which implies that the build 
orientation with an angle of 15° between the bottom surface of the holder and platform is 
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To achieve the desired product functionalities, two post-processing steps may be needed for 
SLM. The first post-processing is heat treatment to relieve the residual stress, while the second 
post-processing step is subtractive manufacturing to improve the geometrical accuracy or 
surface quality of the final product. In general, design requirements determine whether post-
processing is needed. For example, in the design example, the holder encompasses three thread 
holes whose geometrical accuracy and surface finish cannot be achieved by SLM. Therefore, 
the required drilling process is defined as a post-processing step. 

6.5.3 Results of the build process design 
In general, the definition of the process parameters is executed with AM pre-processing 
software. For example, when defining the build orientation and support structure, it is not 
necessary to attach the support structure manually. By importing .stl files into pre-processing 
software, the support structure can be generated automatically. In this dissertation, Netfabb is 
used to prepare .stl files and generate supports, and Amphyon is used to perform the thermal-
structural simulation of the build processes [Addi20, Auto19]. The results of this phase include 
a defined build orientation and generated supports, processed .stl files and parameter set files, 
simulation results, calculated VED values, and defined post-processing steps. Based on these 
results, the energy performance of each design solution can be evaluated, as is discussed in the 
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6.6 Phase 5: EnPI-based assessment 
The evaluation of the energy performance of all design solutions for AM is based on the 
quantification of EnPIs that represent measures of energy performance. The EnPI-based 
assessment phase encompasses three subtasks: energy simulation, quantification of EnPIs, and 
assessment of EnPIs. Figure 6-22 shows the workflow of the subtasks for this phase. 

 
Figure 6-22: Overview of the steps for the quantification of EnPIs 

6.6.1 Energy simulation 
The first subtask in an energy performance quantification and assessment is to simulate the 
energy consumption of each design solution, in which the following three steps are carried out: 
composition of design solutions, exporting NC code files, and simulation of energy 
consumption using the simulation tool, the development of which is described in Chapter 4. 

Composition of design solutions 

The first step in quantifying EnPIs is to present various product, process, and workstation 
designs in the form of different design solutions. For the design case, by considering the results 
of the topology optimization, AM workstation design, and build process designs, eight design 
solutions are determined and regarded as candidates for the energy performance assessment 
(see Figure 6-23). In the topology optimization, the new geometries with approximately a 50% 
and 70% reduction in volume—representing the lightweighting with less strain increase and 
less material, respectively—are chosen as the new geometries that should be considered in the 
composition of design solutions. With regard to the AM workstation design, the Concept Laser 
Mlab and the Ultimaker 3 are identified as two AM workstations capable of handling the 
production task of the new product design by using 316L and polylactic acid (PLA). The results 
of the build process design are two parameter sets, in which slow and fast scanning strategies 
are defined. Finally, considering three factors with two levels each leads to eight design 
solutions (2³=8). 

After the design solutions are determined, it must be determined whether the design 
requirements identified in the situation analysis are considered. For the design case, two 
relevant design requirements are that a volume reduction of at least 50% is expected and that 
the selected AM process should be capable of producing a holder with the desired quality. For 
the first requirement, the two product designs with 50% and 70% weight reductions are 
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considered, and the first requirement is therefore satisfied. For the second design requirement, 
both SLM and FDM systems are able to produce a holder with the desired mechanical 
performance; thus, this requirement is also fulfilled. 

 
Figure 6-23: Determination of design solutions for the design case 
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As described in Section 4, this dissertation adopts an NC code and database-driven simulation 
approach; therefore, the first step of the energy simulation is to set the process parameters of 
the build process and output them in the form of NC code files. In this step, the NC code file 
for SLM is the .lsr file format provided by Netfabb, while the NC code for FDM is the .gcode 
file generated by Ultimaker Cura. 

Simulation of energy consumption 

Once the NC codes are exported, they are then imported into the simulation tool. Thereafter, 
the energy simulation is performed for each design solution, and the results thereof are stored 
in .txt files. The energy consumptions of all design solutions in the design example are 
summarized in the Etotal rows in Figure 6-25. 

6.6.2 Quantification of EnPIs 
The EnPIs represent energy performance and provide a comparison baseline for all design 
solutions. To quantify the EnPIs for each design solution, the following three steps are carried 
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Definition of EnPIs 

As described in Section 5, different design cases require individual EnPIs. For the design case 
of the holder, with respect to the defined design requirements, the following four EnPIs are 
defined: total energy consumption (Etotal), specific energy consumption (SEC), the safety factor-
energy consumption ratio (SFER), and energy cost (EC). These EnPIs are described below. 

The total energy consumption (Etotal) refers to the sum of the energy consumption of an AM 
machine (EAM) and the peripheral units (Epu) in a build process, and it is defined as the following 
equation: 

 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐸𝐸𝐴𝐴𝐴𝐴 + �𝐸𝐸𝑝𝑝𝑝𝑝 Equation 6-3 

For the Concept Laser Mlab, the peripheral units with energy consumption are the vacuum 
cleaner and screen device, while, for the Ultimaker 3, the vacuum cleaner is the only peripheral 
unit with energy consumption. The SEC defines the ratio between the total energy consumption 
(Etotal) and the volume of the part (Vpart), and it is defined by the following equation: 

 𝑆𝑆𝑆𝑆𝑆𝑆 =
𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 Equation 6-4 

A safety factor (SF) defines the ratio between the yield strength and the maximum stress of a 
part under certain mechanical conditions. The safety factor-energy consumption ratio (SFER) 
defines the ratio between a safety factor and total energy consumption (Etotal) for a specific part, 
and it is expressed by the following equation: 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑆𝑆𝑆𝑆
𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 Equation 6-5 

The final EnPI is the energy cost (EC), which is the product of the total energy consumption 
(Etotal) and the electricity price, and it is expressed in Equation 6-6. In Germany, the electricity 
price for industrial use is 0.19 €/kWh [Euro20]. 

 𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 Equation 6-6 

Weighting of EnPIs 

After the EnPIs are defined, they are weighted using the pairwise comparison approach, as 
described in Section 5. For the design case, the general design requirement is to use less energy 
and to reduce the costs in producing the holder. Therefore, Etotal and EC are evaluated with the 
highest priority level. SEC indicates the energy consumption per material unit and is widely 
used for build tasks with multiple parts. However, the design example of the holder is a one-off 
task, and its SEC is therefore defined as having a middle priority level. For the SFER, it is 
known that the yield strengths of PLA and 316L are 49.5 MPa and 385 MPa, respectively, and 
that the maximum stress of all design solutions is only 20.13 MPa (for lightweighting by 70%) 
[Conc19b, Ulti18]. Therefore, since the safety factor is higher than 1 for both the 316L and 
PLA materials, which implies that the optimized parts always qualify for final use, the SFER is 
assigned a low priority level. Figure 6-24 depicts the pairwise comparison and weighting of the 
EnPIs. 
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Figure 6-24: Weighting of EnPIs for the design case 

Calculation of EnPIs 
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holder. It can be seen that the calculation of original EnPIs requires the values of other product- 
and material-related factors, such as part volumes, yield strength, and safety factors for PLA 
and 316L steel powder (denoted as SF_PLA and SF_316L in Figure 6-25).  

Following the calculation of the original EnPIs, the ranges of the EnPI values for all design 
solutions are determined, according to which the normalized EnPIs′ are calculated. It should be 
noted that the normalization of an EnPI can be based on either Equation 5-1 or Equation 5-2, 
depending on whether the general evaluation rule follows the principle of “the higher, the 
better” or “the lower, the better.” For Etotal, SEC, and EC, the general rule is that a lower value 
implies better performance, while, for SFER, a higher value indicates better performance 
because the energy consumption is a denominator, not a numerator. Therefore, the 
normalization of Etotal, SEC, and EC for the i-th solution can be expressed as follows: 
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𝐸𝐸𝐸𝐸(𝑖𝑖)
′ =

max(𝐸𝐸𝐸𝐸) − 𝐸𝐸𝐸𝐸(𝑖𝑖)

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐸𝐸𝐸𝐸)  

Equation 6-7 

The normalization of SFER is given by the following equation: 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖)
′ =

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖) − min(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)  Equation 6-8 

Following the normalization, the WF values shown in Figure 6-24 are aggregated with 
normalized EnPIs′; therefore, Equation 5-4 can be modified into the following equations: 

 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖)′′ = 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖)′ × 0.37 

𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖)
′′ = 𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖)

′ × 0.19 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖)
′′ = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖)

′ × 0.07 

𝐸𝐸𝐸𝐸(𝑖𝑖)
′′ = 𝐸𝐸𝐸𝐸(𝑖𝑖)

′ × 0.37 

Equation 6-9 

Finally, based on Equation 5-5, the final energy performance score of the i-th solution, denoted 
as EnPI′′(Sum) in Figure 6-25, can be rewritten into the following equation: 

 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑖𝑖)
′′ (Sum) = 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖)

′′ + 𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖)
′′ + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖)

′′ + 𝐸𝐸𝐸𝐸(𝑖𝑖)
′′  Equation 6-10 
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Calculation of EnPIs 

The calculation of EnPIs for a design case can be handled on three levels: original, normalized, 
and aggregated EnPIs. Figure 6-25 shows the calculation of EnPIs for the design case of the 
holder. It can be seen that the calculation of original EnPIs requires the values of other product- 
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Figure 6-25 presents the results of the calculation of the original EnPIs, normalization, and 
aggregation of the EnPIs.  
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6.6.3 Assessment of EnPIs 
Based on the quantification of the EnPIs, the energy performance of each design solution is 
assessed in two steps: visualization of EnPIs and selection of optimal design solution. 

Visualization of EnPIs 

To evaluate the energy performance of design solutions, the values of all normalized and 
aggregated EnPIs are visualized. In the design example of the holder, stacked area charts and 
stacked percentage bar charts are used to visualize the normalized and aggregated EnPIs, as 
depicted in Figure 6-26. From the two stacked area charts, two findings can be observed: First, 
in general, the FDM-related design solutions (solutions 1 to 4) have overall higher performance 
values than the SLM-related solutions (solutions 5 to 8). The main reason for this difference is 
that FDM-based solutions have less overall total energy consumption than those solutions based 
on SLM. Second, after the normalization, solution 2 scores significantly higher than the other 
solutions; after the aggregation, solution 2 still has the highest score of 0.95, but it is closely 
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followed by solution 4, with a difference of 0.02 between the two solutions. From the two 
stacked percentage bar charts, it can be observed that the composition of the SFER in each bar 
is reduced after the aggregation. In addition, with the exception of solution 5, the composition 
of the SEC in each bar is also reduced after the aggregation. These reductions are due to the 
fact that the SEC and SFER have low and middle priority levels, respectively, and the priority 
levels, as well as the resulting weighting factors, have a certain impact on the results of the 
aggregation of the EnPIs. 

 
Figure 6-26: Stacked area chart of normalized and aggregated EnPIs for the design case 
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6.6.4 Results of the EnPI-based assessment 
The initial results of the EnPI-based assessment are the defined design solution, NC codes, the 
results of the energy simulation, and the defined and calculated EnPI values. The final result of 
this phase is the optimal design solution, which is determined based on the evaluation of the 
EnPIs. Moreover, the selection of the optimal solution also represents the end of the eco-design 
for AM method proposed in this dissertation. 

6.7 Discussion of the method 

6.7.1 Follow-up of the implementation of the optimized holder 
Eco-design for AM only focuses on design issues and excludes the application phase; thus, the 
implementation of the optimized holder was not described in previous subsections, as the focus 
was on introducing the design and evaluation activities. However, the feasibility of the proposed 
method can only be demonstrated by the implementation of the design solution, in which the 
optimized holders are produced based on solutions 2 and 8 (see Figure 6-27). In the application, 
the optimized holders are mounted on the equipment used for the scratch experiment. During 
the scratch experiment, it was observed that the optimized holders are functionally feasible for 
final use. 

 
Figure 6-27: Implementation of the optimized holders 
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product design, such as topology optimization, the use of lattice structures, and part 
consolidation, are applied. In the workflows for product-related design cases, the second 
phase is the design focus and the parameters related to the topology optimization are varied, 
while the parameters for AM workstation design and build process design remain the same. 

q System-specific design mechanism: A system-specific approach to design refers to 
designers only varying the parameters of AM workstations to propose different design 
solutions. An example of such a design case would be a situation in which designers already 
have a given product and build process design and must select one of three different AM 
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machines to perform the build task. Therefore, in the workflows of the system-related 
approach to design, the design focus is the AM workstation design phase, while the 
parameters for the product design and build process design remain the same for all solutions. 

q Process-specific design mechanism: This design mechanism refers to designers viewing 
the build process design as the design focus and proposing different design solutions by 
varying parameters such as build speeds, layer thicknesses, and build orientation. 
Meanwhile, the parameters related to the product and AM workstation are consistent for 
all solutions. 

q Multiple design mechanism: A design case with a multiple design mechanism involves 
designers varying parameters from at least two of the phases involved in designing product, 
AM workstation, and build process to propose design solutions. The design example of the 
holder belongs to this type. 

 
Figure 6-28: Four general design mechanisms and their modified workflows 
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The selection of a workflow for a specific case depends on the designers’ selection of a design 
mechanism. For example, if a specific product design is given, then designers only need to 
focus on designing the AM system and build process, or if an AM system has been already 
purchased, then designers only need to focus on the product and build process design. 

6.7.3 Evaluation of the method 
Based on the analysis of the design case and the comparison with other eco-design for AM 
methods, the method proposed in the dissertation, including the simulation tool and assessment 
model, has been proven to be feasible for enabling eco-design for AM. With respect to the 
requirements defined in Chapter 2.3.3, the proposed method has the following benefits:  

q Requirement 1: Description of the environmental performance of AM: The method 
proposed in this dissertation focuses on environmental performance. Since other, non-
energy-related impact categories are not taken into account, the benefit is the reduced 
complexity in terms of describing the environmental performance of AM. In the assessment 
model, the EnPIs are normalized, weighted, and aggregated to a score representing the final 
energy performance of AM. Therefore, a benefit of the proposed method is the improved 
comparability of multiple design solutions within the same evaluation baseline. 

q Requirement 2: Enabling convenient and reliable energy prediction of AM processes: 
In comparison with experiments, which can be are cost- and time-intensive, the main 
benefit of the simulation tool is the reliable and efficient quantification of the energy 
demands of AM processes in the middle design phase. 

q Requirement 3: Integration of assessment and design activities: While the NC code 
represents the final result of the design of a build process, it is also required as the input 
for the energy simulation. In this sense, the NC code serves as the interface that connects 
design and assessment activities. Moreover, the simulation model is implemented in 
MATLAB, which implies the possibility of the model being transferred to other 
programming platforms and integrated to CAD or AM pre-processing software. 

q Requirement 4: Integrated consideration of design benefits and environmental 
impacts: The assessment model allows the combination of energy and non-energy 
parameters to create EnPIs. This leads to the benefit that variables used to indicate design 
performance can also been integrated in EnPIs and considered during the evaluation 
process. In addition, the aggregation of EnPIs with weighting factors implies that subjective 
perceptions are reflected in the EnPIs and integrated with objective perceptions (quantified 
energy and non-energy variables of AM) during the evaluation. This leads to the benefit 
that the chosen design solution will more closely fit the expectations of designers. 

q Requirement 5: Convenience, ease-of-use, and robustness: The simulation tool, 
assessment model, and the workflows summarized in the five phases of the method provide 
a detailed description of the activities involved in conducting eco-design for AM. This 
leads to the benefit of the improved usability of the proposed framework. Moreover, 
although the latest version of the simulation tool only contains power data for two AM 
systems, it can easily be extended. Even if designers predict energy demand with other 
empirical models instead of applying the simulation model proposed in this dissertation, 
the steps involving the topology optimization, AM workstation design, build process 
design, and calculation and assessment of EnPIs can still be performed. This leads to the 
benefits of the improved flexibility and modifiability of the method. 
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7 Use cases 
To demonstrate the feasibility of the proposed simulation tool, assessment model, and eco-
design for AM method, three use cases are performed. In the first use case, the proposed method 
is used to design the cam plate of a conveyor system. The second use case concerns the 
implementation of the proposed method in the design of the process of producing a ring with a 
lattice structure. Finally, the last use case presents the application of the proposed method to 
combine the energy performance assessment with the cost estimation of an optimized bottle 
opener in different process designs. Through these use cases, the usability, robustness, 
simulation capability, and reliability of the proposed eco-design for AM framework are well 
demonstrated.  

7.1 Use case 1: Optimization of a cam plate 

7.1.1 Situation analysis of the cam plate 
The component considered in the first use case is a cam plate driven by a chain gear. The entire 
equipment is used to produce cylindrical rods, and the cam plate is a component of the 
conveying system (see Figure 7-1). In the production process, cylindrical rods are produced and 
then fall onto the cam plate, which rotates clockwise to push the rods onto the conveyor band 
with a certain takt time. The exterior diameter of the cam plate is approximately 100 mm, and 
its mass is approximately 433 g. The entire system is still in development and has not yet been 
manufactured, and the cam plate is to be produced using milling with 16MnCr5 steel. In this 
design case, the design objective is defined as the lightweighting of the cam plate to save 
material and reduce energy use by means of AM. Therefore, this design case implies a product-
related design mechanism, in which the product design is the design focus and the parameters 
for the workstation and process design remain the same for all design solutions. In this case, 
the workstation is based on the Concept Laser Mlab, which is consistent with the workstation 
designed for the holder design case, and the process parameters also adopt the fast build strategy 
employed in the holder case. 

7.1.2 Topology optimization of the cam plate 
Based on the use scenario, two mechanical load cases are defined: First, when a cylindrical rod 
falls on the cam plate, the impact force is approximately 750 N maximum. By considering a 
factor of two, axial forces of 1,500 N pointing to the center of the cam plate are assumed, as 
depicted in load case 1 in Figure 7-1. Second, the rod is conveyed by the cam plate, leading to 
a tangential force of 600 N. In the center of the cam plate, fixed support is defined because it is 
connected to a shaft, as depicted in load case 2 in Figure 7-1. 

For the optimization of the cam plate, the same approach as in the design case of the holder is 
applied, in which the ratio of volume reduction (α in Figure 7-1) has been varied from 0.01 to 
0.7. For each α value, an optimization is performed and a new geometry is created, and the 
maximum stress and distortion (σmax and εmax) values are summarized in Table 7-1. Considering 
that the calculated safety factors for all design solutions are greater than 3, it can be concluded 
that all of the optimized geometries are feasible for functional use and should be considered in 
the energy performance assessment. 
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Figure 7-1: Design solutions for the product optimization of the cam plate 

7.1.3 EnPI-based assessment of the optimized cam plate 
Following the topology optimization, the energy simulations are conducted. Five EnPIs are 
defined for the energy performance assessment, of which three are the same EnPIs used in the 
design case of the holder (TEC, SFER, and EC). The other two EnPIs are the volume-TEC 
(VTEC) coefficient and distortion-TEC (DTEC) coefficient. The VTEC describes the inverse 
of the product of the volume (V1) and total energy consumption (TEC), and it is defined as 
follows: 

 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 =
1

𝑇𝑇𝑇𝑇𝑇𝑇 × 𝑉𝑉1
 Equation 7-1 

When evaluating VTEC, a higher value implies superior energy performance; hence, the 
general approach to enlarging VTEC is reducing either V1 or TEC. The DTEC describes the 
inverse of the product of the maximum distortion as indicated by FEA (εmax) and TEC, and it is 
expressed as follows: 

 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
1

𝑇𝑇𝑇𝑇𝑇𝑇 × 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚
 Equation 7-2 

The evaluation of DTEC follows a similar principle to the evaluation of VTEC in that higher 
values imply better ratings. Therefore, the general approach to enlarging DTEC is reducing 
either TEC or εmax. Table 7-1 presents the calculated original EnPI values. 

 
Table 7-1: Simulation results and calculated original EnPIs 
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normalization and aggregation, as approximately 70% of the intended volume reduction is 
achieved. Moreover, another finding is that the area of DTEC is reduced from the normalization 
to the aggregation. The reason for this reduction is that DTEC is considered to have a low 
priority level, as the distortions of the cam plate under different design conditions are on the 
µm level and not critical for actual use. Finally, design solution 8 is selected as the best solution, 
and the optimized part is produced using SLM, as shown in Figure 7-1.  
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7.2 Use case 2: Build orientation design for producing a lattice ring 

7.2.1 Situation analysis of the lattice ring 
In the second use case, the design objective is to determine the optimal build orientation for 
producing a lattice ring with respect to energy performance. Figure 7-3 shows the design of the 
lattice ring, the outer and inner diameters of which are 22 mm and 19.5 mm, respectively. The 
outer side of the ring features a lattice structure consisting of numerous lattice units with a rod 
diameter of 0.03 mm and a rod length of 1.2 mm. This design case implies a process-related 
design mechanism, meaning that the product design and workstation design remain the same 
for all design solutions. 

7.2.2 Build process design of lattice ring 
By varying the angle between the circle surface of the ring and the build platform, the build 
orientation of the ring can be changed to propose different design solutions, as shown in Figure 
7-3. It can be seen that the change of the build orientation has a significant impact on the 
distribution of thermal stress as well as distortion. From the thermal-structural simulation, it is 
concluded that the maximum stress and distortion occur when the orientation angle is 60°, while 
the minimum stress and distortion occur when the angle is set to 0°. 

 
Figure 7-3: Design case of the lattice ring 

7.2.3 EnPI-based assessment of different build orientation solutions 
Since this use case focuses on the process design, the EnPIs that indicate aspects of product 
performance such as the safety factor-TEC ratio (SFER) or SEC, are not used. In this use case, 
the energy performance assessment considers only two original EnPIs, as shown in Table 7-2. 
The first is the total energy consumption (TEC), while the second is the displacement (εmax) of 
the build process, which is obtained from the thermal-structural simulation.  

In this use case, both EnPIs show the same importance; hence, the weighting factor of 0.5 is 
defined for both. Subsequently, the aggregated EnPI′′ is the product of 0.5 with the sum of the 
normalized εmax′ and TEC′, and it is given by the following equation: 

 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸′′ = 0.5(𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚
′ + 𝑇𝑇𝑇𝑇𝑇𝑇′) Equation 7-3 
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Table 7-2: Quantification of EnPIs for the design solutions of the lattice ring 

The normalized and aggregated EnPIs are summarized in Table 7-2 and visualized in Figure 
7-4. From Figure 7-4, it can be seen that design solution 1 scores the highest for both normalized 
and aggregated EnPIs, followed by solutions 2 and 3. These results indicate that the best build 
orientation is to set the angle between the ring and the platform at 0°.  

 
Figure 7-4: Curves of the calculated EnPI 

7.3 Use case 3: Build process design of a bottle opener regarding build cost 
and energy performance 

7.3.1 Situation analysis of the opener 
The third use case involves combining the energy performance assessment and the cost 
estimation for determining the optimum process design for producing a bottle opener. 
Compared to the previous design cases, in which only single parts were considered, this use 
case considers the production of multiple parts during one build task. The AM workstation is 
the same as that used for the design case of the holder. 

7.3.2 Topology optimization and build process design of the opener 
Although this use case also involves the application of topology optimization to make the 
product more suitable for AM, the product design remains the same for all design solutions; 
hence, the use case implies the process-related design mechanism, and the design focus is on 
the process design.  
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In topology optimization, a weight reduction of 45% is achieved. For the process design, the 
build orientation and number of parts are considered; the design solutions are depicted in Figure 
7-5. In solutions 1 to 5, the opener is built in the “standing” position, and the number of parts 
increases from one to nine. In the remaining four design solutions, the opener is produced in 
the “lying down” position, and the number of parts increases from one to seven. Due to the 
change in the build orientation, the support structure and the number of layers change, and these 
changes will eventually result in different levels of energy performance. 

 
Figure 7-5: Design solutions for the bottle opener 

7.3.3 EnPI-based assessment combined with cost estimation 
Similarly to the use case of the lattice ring, this use case focuses on the process design and 
considers the impact of changes in build orientation. Thus, the maximum displacement (εmax) 
from the thermal-structural simulation of the build process is defined as the first EnPI. The 
second EnPI is the energy consumption per piece (EP), which is the ratio between the total 
energy consumption (TEC) and the number of parts (n), as defined below: 

 𝐸𝐸𝐸𝐸 =
𝑇𝑇𝑇𝑇𝑇𝑇
𝑛𝑛

 Equation 7-4 

For the aggregation, the weighting factors for both EnPIs are defined as 0.5; hence, the 
aggregated EnPI′′ is the product of 0.5 with the sum of the normalized εmax′ and EP′, and it is 
expressed as follows: 

 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸′′ = 0.5(𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚
′ + 𝐸𝐸𝐸𝐸′) Equation 7-5 

Table 7-3 summarizes the results of the calculation, normalization, and aggregation of both 
EnPIs. Based on the evaluation of εmax, it can be seen that the displacement of the solutions with 
the orientation “standing” (solution 1 to 5) is lower than that of the solutions with the orientation 
“lying down” (solution 6 to 9), which suggests that “standing” is a better build orientation. 

Design solutions in different build orienations and varied number of parts
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“lying down” (solution 6 to 9), which suggests that “standing” is a better build orientation. 
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In topology optimization, a weight reduction of 45% is achieved. For the process design, the 
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the “lying down” position, and the number of parts increases from one to seven. Due to the 
change in the build orientation, the support structure and the number of layers change, and these 
changes will eventually result in different levels of energy performance. 
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Based on the evaluation of EP, it is concluded that a higher number of parts leads to lower EP 
values. The reason for this is that, for the build with multiple parts, the fixed energy 
consumption can be amortized by the inclusion of more parts. For example, solutions 1 and 5 
have the same number of layers (1,068 layers), as the heights of parts and predefined layer 
thickness (25 µm) for both solutions are the same. Consequently, both solutions have the same 
number of scanning loops and the same fixed energy use of the servos used for build platform 
leveling and powder spreading. However, in solution 1, the fixed energy use is allocated to a 
single part, while, in solution 5, the fixed energy use is amortized by nine parts. Therefore, the 
EP in solution 5 is lower than in solution 1. 

 
Table 7-3: Calculation of EnPIs and build cost 

The aggregated EnPI′′ are visualized together with the estimated build costs in the form of a 
point chart (see Figure 7-6). The general rule for evaluating the combined build cost and energy 
performance is to identify design solutions with higher EnPI′′ values and lower cost values. 
Therefore, the solutions located in the bottom right of the point chart indicate better 
performances with lower build costs. Based on the evaluation of the EnPI′′ values, solution 4 
scores the highest (0.81), followed by solution 5 (0.8). Since the difference between the scores 
of solutions 4 and 5 is negligible, it can be seen that the energy performances of solutions 4 and 
5 are equivalent. Moreover, given that the build cost of solution 5 is approximately 1 € lower 
than that of solution 4, solution 5 should be selected as the optimum design solution. 

 
Figure 7-6: Point chart of the build cost and energy performance per piece 
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8 Summary and Outlook 
AM is considered to be cleaner than conventional manufacturing, and its environmental benefits 
include, for example, the resource savings that can be achieved through lightweighting, the 
shortening of process chains, and innovation in terms of sustainable business models. However, 
recent studies have also indicated that the environmental performance of AM can be worse than 
that of conventional manufacturing in different life stages and application scenarios. Therefore, 
the environmental performance of AM should be evaluated in the design phase, and the 
environmental benefits of AM should be validated using eco-design methods. 

Today, eco-design for AM approaches focus on the use of LCA, in which process chains are 
mapped with respect to predefined functional units and system boundaries. Based on the 
inventory and lifecycle impact analyses, the environmental performance of AM can be 
expressed in the form of equivalent impact indicators, and AM-related design solutions can be 
further evaluated and compared with the same baseline. However, LCA requires the full process 
chain model and detailed inventory data; therefore, LCA can only be performed after the design 
process or must be integrated into the later design stage. This may result in repeated design and 
evaluation activities, which can lead to waste in terms of both time and cost. To enable a better 
integration of design and evaluation, an energy performance assessment can be used to replace 
LCA as the evaluation tool in the middle design stage of eco-design for AM, as such an 
assessment requires neither a full process chain model nor detailed inventory data. However, 
no existing study has integrated an energy performance assessment into an eco-design for AM 
approach. By aiming to address this research gap, this dissertation contributes by presenting a 
holistic framework intended to enable the eco-design for AM based on energy performance 
quantification and assessment. In the following, the content of the proposed framework is first 
briefly summarized, after which possibilities in terms of future work are described. 

Summary of the framework 

The research objective of this dissertation is to develop and validate a holistic concept for the 
implementation of eco-design for AM featuring an energy performance assessment. The 
proposed framework consists of the following three parts:  

First, based on the modeling of the energy flows of two representative AM systems, a 
simulation tool is developed in which the NC code and database-driven approach is applied 
using the MATLAB/Simulink platform. For the simulation, users need to finish the process 
design and generate an NC code for the designed build process. Thereafter, the time parameters 
of the NC code are extracted and integrated with the power data of system components stored 
in a predefined database into energy values. With the simulation tool, designers can 
conveniently predict the energy demand of a build process in seconds. Moreover, to verify the 
simulation accuracy and reliability, experiments are performed, and the results thereof are 
compared with those of simulations.  

Second, to enable the energy performance assessment of AM, an EnPI-based multiple-
dimensional assessment model is proposed. This model consists of the following three levels: 

q Level I: Original EnPIs: The first level comprises the EnPIs that can be directly quantified 
from the AM processes based on experiments or simulations. According to the units used, 
the original EnPIs can be classified as energy values, ratios of energy values, combinations 
of energy and non-energy values, and non-energy unit but related values. 
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q Level II: Normalized EnPIs: The second level contains normalized EnPI values. Since 
multiple original EnPIs have different units and cannot be compared directly, this 
assessment model suggests using a min-max scaling approach to scale the values of original 
EnPI into dimensionless values ranging from 0 to 1. 

q Level III: Aggregated EnPIs: The third level describes the aggregation of normalized 
EnPIs with weighting factors. To calculate the weighting factors, the pairwise comparison 
approach has been used. The sum of the aggregated EnPI values for a design solution 
represents the final energy performance of the case. 

Third, based on the proposed simulation tool and assessment model, a method for eco-design 
for AM is proposed, in which the following five phases are described: 

q Phase 1: Situation analysis: In the first phase, the use scenario and the requirements are 
first specified and the functional and geometric features of the existing product are 
described. Thereafter, production scenario with conventional manufacturing is described 
and documented. Finally, AM processes that can be used for the design case are specified 
and compared with the conventional production scenario from the economic and technical 
perspectives. 

q Phase 2: Topology optimization: The second phase describes the product design for AM 
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Future work 

With respect to the future application and extension of the framework presented in this 
dissertation, the following issues should be addressed: 

q Extension of the power database: In this dissertation, the database of the simulation tool 
only contains the power data of two AM systems. However, the simulation logic and 
software architecture have already been described, and the possibility of extending the 
database has been identified. Therefore, the first possibility in terms of future work could 
be the acquisition and integration of power data for different AM systems into the power 
database. 

q Exploration of additional EnPIs: In eco-design for AM, EnPI should be defined 
according to the specific requirements of a design purpose. Therefore, another area of 
future work could be the exploration of additional possible EnPIs for dealing with 
individual design cases. 

q Transfer and standardization of the framework: Last but not least, in the future, it is 
suggested that production companies interested in AM technologies apply and standardize 
the proposed framework within their companies or production networks. The cumulative 
environmental benefits achieved by individual companies through the adoption of the 
framework will eventually lead to an environmental improvement across the entire 
manufacturing industry. 
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10 Appendix 
10.1 Appendix A: A brief introduction to bond graph 
In modeling physical systems, graphical representation of system models is always more 
suitable for human perception than an oral or textual representation [Boru10]. Compared to 
other graphic modeling approaches like block diagrams or signal flow diagrams, a bond graph 
applies a bond to indicate a power flowing from a system to another. Bond graphs follow the 
hypothesis that the power (p) can be expressed as the product of an effort variable (e) and a 
flow variable (f); it is expressed in the following equation [Payn61]: 

 𝑝𝑝 = 𝑒𝑒 × 𝑓𝑓 Equation 10-1 

In different energy domains, the interpretation of the effort and flow variable is different. For 
example, in the electric domain, effort and flow are voltage and current, respectively, while in 
translational mechanics, the effort is force and flow is velocity. Table 10-1 summarizes the 
effort and flow variables in different energy domains. 

 
Table 10-1: Effort and flow variables in different energy domains [Boru10] 

In bond graph, the places, where systems can be connected, and power can flow between them, 
are called ports [Karn12]. The systems with those ports are called multiports. According to the 
number of ports, a system with one port is called 1-port element, and a system with n ports is 
called n-port element. For example, batteries are usually 1-port elements because they can only 
output energy, and electric motors are 2-port elements, since they first consume electricity from 
a battery or grid (input port) and then transform the electricity to the rotational movement 
(output port). In the terminology of the bond graph, the fundamental multiports are effort source 
(Se), flow source (Sf), inductor (I), capacitor (C), resistor (R), transformer (TF), gyrator (GY), 
0-junction, and 1-junction. The general structure of a bond graph is shown in Figure 10-1. 
Between any two multiports, the power flow is represented in a bond with half arrow. For more 
information about the port elements, please refer to [Karn12, Boru10]. 

 
Figure 10-1: General structure of a bond graph 

Table 10-2 summarizes the symbols and preferred causalities of multiports. The causality is 
indicated by a perpendicular stroke on a bond, representing the direction of effort signal 
[Boru10]. Note that the signal direction of an effort is not always the same to the direction of a 

Energy domain Effort Flow
Mechanical translational Force Velocity

Mechanical rotational Torque Angular velocity

Electro-magnetic
Voltage Current

Magneto motive force Magnetic flux rate
Hydraulic Total pressure Volume flow

Thermodynamic Temperature Entropy flow
Chemical Chemical potential Molar flow

Energy sources (Se, Sf) Energy transmission
(TF, GY)

Energy distribution (0-
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10.1 Appendix A: A brief introduction to bond graph 
In modeling physical systems, graphical representation of system models is always more 
suitable for human perception than an oral or textual representation [Boru10]. Compared to 
other graphic modeling approaches like block diagrams or signal flow diagrams, a bond graph 
applies a bond to indicate a power flowing from a system to another. Bond graphs follow the 
hypothesis that the power (p) can be expressed as the product of an effort variable (e) and a 
flow variable (f); it is expressed in the following equation [Payn61]: 

 𝑝𝑝 = 𝑒𝑒 × 𝑓𝑓 Equation 10-1 

In different energy domains, the interpretation of the effort and flow variable is different. For 
example, in the electric domain, effort and flow are voltage and current, respectively, while in 
translational mechanics, the effort is force and flow is velocity. Table 10-1 summarizes the 
effort and flow variables in different energy domains. 
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power flow. For example, the element Se provides constant effort, and the causality stroke 
should be added to the side with the arrow, and its direction is consistent with the direction of 
power flow, while the element Sf provides constant flow, and the causality stroke should be 
added to the side without the arrow, implying the direction of effort signal is different with the 
direction of the power flow. Moreover, it is to mention that at the 0-junction, all power bonds 
share the same effort, and only one effort is allowed to be an input. Therefore, only one causality 
stroke is allowed on the bond into the 0-junction. Conversely, for the 1-junction, all efforts 
except one must be the input to the 1-junction; hence, only one power bond on the 1-junction 
is allowed to have the causality stroke on the outside of the bonds connected with the 1-junction. 

 
Table 10-2: Symbols and preferred causality of multiports [Boru10] 

The bond graph, in which the power is the product of effort and flow variables, is also called a 
true bond graph. In the thermodynamic and hydraulic domain, a pseudo bond graph is also 
applied to model the power exchange of thermal fluid systems [Boru10, Thom75]. In a pseudo 
bond graph, the effort and flow variables are pressure and mass flow for representing hydraulic, 
and temperature and heat flow or enthalpy flow for representing thermal power. For more 
information about the pseudo bond graph, please refer to [Thom00]. 
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10.2 Appendix B: Bond graph for Concept Laser Mlab 

 
Figure 10-2: Bond graph for material processing 
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Figure 10-4: Bond graph for material feeding 
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Figure 10-5: Bond graph for material preparation/recycling 
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Figure 10-6: Bond graph for heating/cooling 
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10.3 Appendix C: Bond graph for Ultimaker 3 

 
Figure 10-7: Bond graph for Ultimaker 3
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